

1 Users Guide to
. Symbolics Computers

symbolics™

Cambridge, Massachusetts

User's Guide to Symbolics Computers
999017

July 1986

This document corresponds.to Genera 7.0 and later releases.

The software, data, and information contained herein are proprietary to, and comprise
valuable trade secrets of, Symbolics, Inc. They are given in confidence by Symbolics
pursuant to a written license agreement, and may be used, copied, transmitted, and
stored only in accordance with the terms of such license. This document may not be
reproduced in whole or in part without the prior written consent of Symbolics, Inc.

Copyright © 1986, 1985 Symbolics, Inc. All Rights Reserved.
Portions of font library Copyright © 1984 Bitstream Inc. All Rights Reserved.
Portions Copyright © 1980 Massachusetts Institute of Technology. All Rights Reserved.

Symbollcs, Symbollcs 3600, Symbollcs 3670, Symbollcs 3675, Symbolics 3640,
Symbollcs 3645, Symbollcs 3610, Genera, symbollcs-Llsp®, Wheels, Symbolics
Common Lisp, Zetalisp®, Dynamic Windows, Document Examiner, Showcase,
SmartStore, SemantiCue, Frame-Up, Firewall, S-DYNAMICS®, S-GEOMETRY,
S-PAINT, S-RENDER®, MACSYMA, COMMON LISP MACSYMA, CL-MACSYMA,
LISP MACHINE MACSYMA, MACSYMA Newsletter and Your Next Step In
Computing are trademarks of Symbolics, Inc.

UNIX is a trademark of AT&T Bell Laboratories.

VAX and VMS are trademarks of the Digital Equipment Corporation.

Restricted Rights Legend
Use, duplication, and disclosure by the Government are subject to restrictions as set
forth in subdivision (b)(3)(ii) of the Rights in Technical Data and Computer Software
Clause at FAR 52.227-7013.

Symbolics, Inc.
4 New England Tech Center
555 Virginia Road
Concord, MA 01742

Text written and produced on Symbolics 3600-family computers by the Docurnentation
Group of Symbolics, Inc.
Text masters produced on Symbolics 3600-family computers and printed on Symbolics
LGP2 Laser Graphics Printers.
Cover Design: Schafer/LaCasse
Printer: CSA Press
Printed in the United States of America.

Printing year and number: 88 87 86 9 8 7 6 5 4 3 2 1

iii

July 1986 User's Guide to Symbolics Computers

Table of Contents

Page

1. Overview of Symbolics Computers 1

1.1 Documentation Notation Conventions 1
1.1.1 Notation Conventions Quick Reference 1

1.2 Introduction to the SymboUcs 3600 Family of Computers 3
1.2.1 Introduction 3
1.2.2 Packaging 3
1.2.3 Console 4
1.2.4 Main Unit 4
1.2.5 CPU 4
1.2.6 Caches 5
1.2.7 FPU 5
1.2.8 Memory 6
1.2.9 Input/Output 6
1.2.10 FEP 6

1.3 Introduction to Genera 6
1.3.1 The Console 7
1.3.2 The Screen 7
1.3.3 Mouse Documentation Line 7
1.3.4 Status Line 7
1.3.5 Process State 8
1.3.6 Run Bars 8
1.3.7 The Keyboard 8
1.3.8 The Mouse 9
1.3.9 The Mouse and Menus 10
1.3.10 Selecting and Creating Windows 13

2. Starting up 15

2.1 Powering up 15
2.2 Logging in 17
2.3 Logging Out 17
2.4 Powering Down 18
2.5 Getting Acquainted with Genera 18

2.5.1 Using the System Menu 18
2.5.2 Trying Out the Command Processor 22
2.5.3 Getting Acquainted with Dynamic Windows 26
2.5.4 What You Have Learned 31

iv

User's Guide to Symbolics Computers July 1986

3. Communicating with Genera 33

3.1 Overview of the Command Processor 33
3.2 Parts of a Command 33
3.3 Entering Commands 34

3.3.1 Entering a Command 34
3.3.2 Editing a Command 38
3.3.3 Help in the Command Processor 38
3.3.4 Completion in the Command Processor 39

3.4 Command History 39
3.5 Error Handling in the Command Processor 40
3.6 Turning the Command Processor on and Off 40

4. Using the Online Documentation System 43

4.1 Introduction to the Document Examiner 43
4.2 Looking up Documentation 44
4.3 Documentation Lookup Commands 46
4.4 Documentation Hardcopy Commands 54
4.5 Document Examiner Window 54

4.5.1 Document Examiner Viewer 55
4.5.2 Document Examiner List of Current Candidates 57
4.5.3 Document Examiner List of Bookmarks 58
4.5.4 Document Examiner Command Pane 59

4.6 Repositioning Text in the Document Examiner 60
4.7 Document Examiner Private Documents 61

5. Creating and Manipulating Files 65

5.1 Overview 65
5.2 Entering Zmacs with SELECT E 65
5.3 Entering Zmacs with the Mouse 66
5.4 Entering Zmacs with ed 66
5.5 Entering Zmacs with zwei:edit-functions 66
5.6 Keystrokes 67
5.7 Extended Commands 68
5.8 Description of Moving the Cursor 68
5.9 Summary of Moving the Cursor 68
5.10 Getting Out of Trouble 69

5.10.1 Overview of Getting Out of Trouble 69
5.10.2 Getting Out of Preflxes and Prompts 69
5.10.3 Large Deletions 70

5.11 Overview of Finding Out About Zmacs Commands 71
5.12 Finding Out About Zmacs Commands with HELP 71

v

July 1986 User's Guide to Symbolics Computers

5.13 Finding Out What a Zmacs Command Does 71
5.13.1 Example 72
5.13.2 Finding Out What a PrefIx Command Does 72
5.13.3 Finding Out What an Extended Command Does 72

5.14 Searching for Appropriate Zmacs Commands 72
5.14.1 Method for Searching for Appropriate Zmacs Commands 73
5.14.2 Example of a Search String for HELP A 73

5.15 Finding Out What You Have Typed 73
5.16 Creating a Buffer 74
5.17 Creating a File 75

6. Sending and Receiving Messages and Mail 77

6.1 Using Zmail 77
6.1.1 Introduction 77
6.1.2 Starting up Zmail 77
6.1.3 Sending Your Mail 79
6.1.4 Reading Your Mail 80
6.1.5 What to Do After Reading a Message 83
6.1.6 Getting Fancy with Zmail 85

6.2 Talking to Other Users 87
6.2.1 Introduction to Converse 87
6.2.2 Using Converse 87

7. Customizing Genera 93

7.1 What is Customizing? 93
7.2 Init Files 93
7.3 How to Create an Init File 96
7.4 Useful Customizations to Put in Your Init File 96

7.4.1 Adjusting Console Parameters 96
7.4.2 Customizing the Command Processor 98
7.4.3 Calling Command Processor Commands From Your Init File 101
7.4.4 Zmacs Customization in Init Files 102
7.4.5 Customizing the Input Editor 105
7.4.6 Customizing Converse 106
7.4.7 Customizing Hardcopy Facilities 108
7.4.8 Censoring Fields for lispm-finger and name Services 109

7.5 Logging in Without Processing Your Init File 110
7.6 Customizing Zmail 110

8. Getting Help 113

8.1 HELP Key 113

vi

User's Guide to Symbolics Computers July 1986

8.2 Interaction with Completion and Typeout Windows 113
8.2.1 HELP Key in Any Zmacs Editing Window 114
8.2.2 Zmacs Completion 115
8.2.3 Completion in Other Contexts 116
8.2.4 Typeout Windows in Zmacs 117
8.2.5 FEP Command Completion 117

8.3 Summary of Help Functions in Different Contexts 117
8.3.1 Zmacs Commands for Finding Out About the State of 118

Buffers
8.3.2 Zmacs Commands for Finding Out About the State of Zmacs 118
8.3.3 Zmacs Commands for Finding Out About Lisp 118
8.3.4 Zmacs Commands for Finding Out About Flavors 119
8.3.5 Zmacs Commands for Interacting with Lisp 119
8.3.6 Lisp Facilities for Finding Out About Lisp 120

8.4 Reference Description of Help Functions 120
8.5 Editing Your Input 134

8.5.1 Input Editor Commands 135
8.5.2 Histories and Yanking 135
8.5.3 Types of Histories 136
8.5.4 Input Editor 136
8.5.5 The Displayed Default 137
8.5.6 Using Numeric Arguments for Yanking 137

8.6 System Conventions and Helpful Hints 138
8.6.1 Miscellaneous Conventions 138
8.6.2 Answering Questions the System Asks 139
8.6.3 Questions Users Commonly Ask 139
8.6.4 Questions About the FEP and LMFS 141

9. Recovering From Errors and Stuck States 143

9.1 Introduction 143
9.2 Recovery Procedures 143
9.3 The Debugger: Recovering From Errors and Stuck States 144
9.4 Resetting the FEP 144
9.5 Warm Booting 145
9.6 Halting 145

10. How to Get Output to a Printer 147

10.1 Introduction to the Hardcopy Facilities 147
10.2 Printing and Hardcopy Commands 147

10.2.1 Commands for Producing Hardcopy 147
10.2.2 Other Hardcopy Commands 152

vii

July 1986 User's Guide to Symbolics Computers

11. When and How to Use the Garbage Collector 157

11.1 Principles of Garbage Collection 157

12. Understanding Character Styles 161

12.1 Default Character Styles 161
12.2 Merging Character Styles 161
12.3 Using Character Styles in the Input Editor 162
12.4 Character Styles and the Lisp Listener 163
12.5 Using Character Styles in Zmail 164
12.6 Using Character Styles in Hardcopy 165

13. Understanding Networks and the Namespace System 167

13.1 Introduction to the Namespace System 167
13.1.1 Namespace Systenn Classes 167
13.1.2 Namespace System Attributes 168
13.1.3 Data Types of Namespace System Attributes 168
13.1.4 Names and Namespaces 169

13.2 Connecting to a Remote Host Over the Network 170
13.3 Updating the Namespace Database 171

13.3.1 Editing a Namespace Object 172
13.3.2 Creating a New Namespace Object 173

14. A Brief Introduction to the Lisp World 175

14.1 Lisp Objects 175
14.1.1 Functions 175
14.1.2 Macros and Special Forms 176
14.1.3 Flavors, Flavor Operations, and Init Options 177
14.1.4 Variables 178

14.2 The Lisp Top Level 178
14.3 Logging in 179
14.4 Some Utility Functions 179

15. Checking on What the Machine is Doing 183

15.1 Poking Around in the Lisp World 183
15.1.1 Variables for Examining the Lisp World 186

15.2 Utility Functions 189
15.3 Dribble Files 191

15.4 zl:status and zl:sstatus 191
15.5 Using Peek 192

15.5.1 Overview of Peek 192

15.5.2 Peek Modes 193

viii

User's Guide to Symbolics Computers July 1986

16. Tools for Lisp Debugging 197

16.1 Overview of the Debugger 197
16.1.1 Overview of Debugger Commands 200
16.1.2 Overview of Debugger Evaluation Environment 201
16.1.3 Overview of Debugger Mouse Capabilities 202
16.1.4 Overview of Debugger Help Facilities 202

16.2 Flavor Examiner 202
16.3 How the Inspector Works 204
16.4 Entering and Leaving the Inspector 206

17. Quick Reference 207

17.1 General Help Facilities 207
17.2 Zmacs Help Facilities 207
17.3 Extended Commands 207
17.4 Writing Files 208
17.5 Buffer Operations 208
17.6 Character Operations 208
17.7 Word Operations 208
17.8 Line Operations 209
17.9 Sentence Operations 209
17.10 Paragraph Operations 209
17.11 Screen Operations 209
17.12 Region Operations 210
17.13 Window Operations 210
17.14 Search and Replace 210

18. Quick Summary of Mouse Functions 211

18.1 Mouse Cursor Shape 211
18.2 Mouse Gestures on Dynamic Windows 211
18.3 Scrolling with the Mouse 212

19. Index of Special Function Keys 215

19.1 Introduction 215
19.2 ABORT Key 215
19.3 BACKSPACE Key 215,
19.4 CLEAR I NPUT Key 216
19.5 COMPLETE Key 216
19.6 END Key 216
19.7 ESCAPE Key 216
19.8 FUNCTION Key 216

19.8.1 Display and Hardcopy Commands 217

ix

July 1986 User's Guide to Symbolics Computers

19.8.2 Selection and Notification Commands 218
19.8.3 Recovering From Stuck States 219

19.9 HELP Key 220
19.10 LINE Key 220
19.11 LOCAL Key 220
19.12 NETWORK Key 221
19.13 PAGE Key 222
19.14 REFRESH Key 222
19.15 REPEAT Key 222
19.16 RESUME Key 223
19.17 RETURN Key 223
19.18 RUBOUT Key 223
19.19 SCROLL Key 223
19.20 SELECT Key 224
19.21 SUSPEND Key 224
19.22 SYMBOL Key 225
19.23 TAB Key 225
19.24 Keys Not Currently Used 225

20. Dictionary of Command Processor Commands 227

20.1 Clear Commands 227
20.2 Compile Commands 228
20.3 Copy Commands 230
20.4 Create Commands 232
20.5 Delete Commands 233
20.6 Disable Commands 234
20.7 Edit Commands 234
20.8 Enable Commands 236
20.9 Expunge Commands 236
20.10 Find Commands 237
20.11 Halt Commands 238
20.12 Hardcopy Commands 240
20.13 Help Commands 241
20.14 Initialize Commands 242
20.15 Inspect Commands 243
20.16 Load Commands 244
20.17 Login and Logout Commands 246
20.18 Rename Commands 248
20.19 Reset Commands 249
20.20 Restart Commands 250
20.21 Save Commands 250
20.22 Select Commands 251

x

User's Guide to Symbolics Computers

20.23 Send Commands
20.24 Set Commands

20.24.1 Set Site Command
20.25 Show Commands

20.25.1 Show Flavor Commands
20.26 Start Commands
20.27 Undelete Commands

Index

List of Figures

Figure 1. A Momentary Menu
Figure 2. A Choose-variable-values Menu
Figure 3. The Front Panel on a 3600
Figure 4. The Front Panel on a 3670 or 3640
Figure 5. The System Menu
Figure 6. Positioning the Upper Left Corner of a New Window
Figure 7. Select Activity Command
Figure 8. Show Herald and its Keywords
Figure 9. Set Window Options Menu
Figure 10. Show Directory Command Menu
Figure 11. Document Examiner display of Show Overview of topic "Disk

Error Handling".
Figure 12. Top-level Display
Figure 13. Top-level Display with Mail File
Figure 14. Mail Mode Display (One-window Mode)
Figure 15. A Message about to be Sent
Figure 16. Mail Mode Display (Two-window Mode)
Figure 17. A Fresh Converse Window
Figure 18. A Converse Message About to be Sent
Figure 19. A Converse Conversation
Figure 20. Profile mode display
Figure 21. The Hardcopy Menu
Figure 22. Flavor Examiner Window
Figure 23. The Inspector

July 1986

251
252
259
263
266
287
288

289

11
12
16
16
19
22
23
24
30
31
53

78
78
80
81
85
88
88
89

112
149
203
205

July 1986

1. Overview of Symbolics Computers

1.1 Documentation Notation Conventions

1.1.1 Notation Conventions Quick Reference

Modifier Key Conventions

Modifier keys are designed to be held down while pressing other keys. They do
not themselves transmit characters. A combined keystroke like MET A-X is
pronounced "meta x" and written as M-K This notation means that you press the
MET A key and, while holding it down, press the X key.

Modifier keys are abbreviated as follows:
Key Abbreviation
CONTROL c-
META M-
SUPER 5-

HYPER h-
SHIFT sh-

SYMBOL sy-

Modifier keys can be used in combination, as well as singly. For example, the
notation C-M-Y indicates that you should hold down both the CO NT ROL and the MET A
keys while pressing Y.

Modifier keys can also be used, both singly and in combination, to modify mouse
commands. For example, the notation sh-(L) means hold down the SHI FT key
while clicking left on the mouse and c-M-(M) means hold down CONT ROL and MET A
while clicking middle.

The keys with white lettering (like X or SELECT) all transmit characters.
Combinations of these keys should be pressed in sequence, one after the other (for
example, SELECT L). This notation means that you press the SELECT key, release it,
and then press the L key.

LOCAL is an exception to this rule. Despite its white lettering, you must hold it
down while pressing another key, or it has no effect. For example, to brighten the
image on your monitor, you would hold down LOCAL while pressing B.

Documentation Conventions

This documentation uses the following notation conventions:

2

User's Guide to Symbolics Computers July 1986

Appearance
cond, zl:hostat

RET URN, ABORT, c-F

SPACE

login

(make-symbol "faa")

Representing
Printed representation of Lisp objects in running text.

Keyboard keys.

Space bar.

Literal typein.

Lisp code examples.

(function-name argl &optional arg2)

argl

&optional

Show File, Start

Insert File (M-X)

[Map Over]

(L), (R2)

Syntax description of the invocation of function-name.

Argument to the function function-name, usually
expressed as a word that reflects the type of
argument (for example, string).

Introduces optional argument(s)

Command Processor command names and command
names in Zmacs, . Zmail, and the front-end processor
(FEP) appear with the initial letter of each word
capitalized.

Extended command names in Zmacs and Zmail. Use
M-H to invoke one.

Menu items.

Mouse clicks: L=left, L2=sh-Ieft, M=middle,
M2=sh-middle, R=right, R2=sh-right.

(sh-Ieft means that you, press the SHI FT key while
holding down the left mouse button. You can achieve
the same result by clicking the button quickly twice.)

Mouse Command Conventions

The following conventions are used to represent mouse actions:

1. Square brackets delimit a menu item.

2. Slashes (I) separate the members of a compound mouse command.

3. The standard clicking pattern is as follows:

• For a single menu item, always click left. For example, the fol]~wing
two commands are identical:

[Previous]
[Previous (L)]

July 1986

• For a compound command, always click right on each menu item (to
display a submenu) except the last, where you click left (to cause an
action to be performed). For example, the following two compound
commands are equivalent:

[Map Over / Move / Hardcopy]
[Map Over (R) / Move (R) / Hardcopy (L)]

4. When a command does not follow the standard clicking order, the notation
for the command shows explicitly which button to click. For eX8:mple:

[Map Over / Move (M)]

[Previous (R)]

1.2 Introduction to the Symbolics 3600 Family of Computers

1.2.1 Introduction

3

The Symbolics family of advanced symbolic processing machines covers a full
range of symbolic processing power and functionality. The unique design of
Symbolics machines allows them to implement LISP and other symbolic
programming languages with both speed and efficiency. The machines are faster
and more efficient than other language specific machines and are superior to
conventional computers for applications ranging from artificial intelligence,
CAD/CAM, high resolution graphics, and expert system research and development
as well as many general-purpose applications. The power, speed, and flexibility of
Symbolics processing machines result from optimizing the hardware design to
match the the software environment. Some of the special architecture features
include:

Tagged architecture
Multiple caches
Hardware stack management
Pipelined instruction cycles
Parallel processing
Hardware assisted garbage collected
Fully ECC'ed system memory

1.2.2 Packaging

Members of the Symbolics family of advanced symbolic processing machines are
single-user machines. The larger machines can be powerful stand-alone work
stations or file or knowledge servers in networks, while the smaller versions are

4

User's Guide to Symbolics Computers July 1986

suitable as delivery vehicles for previously developed applications. All of the
larger machines and some of the smaller machines are packaged as single-cabinet
main units plus a console. Many of the delivery vehicles are complete in one
desktop unit. Main units for the larger machines are desk-side size (3D-inch and
55-inch cabinets) and the delivery vehicle machines fit under the average desk.
The console for all models is a desktop unit with a full size black and white CRT
and an extended keyboard.

1.2.3 Console

The high resolution, fully bit-mapped, black and white screen, the keyboard, and
the mouse together form the console.

The three button mouse is a graphic input device with an on screen pointer and
one or more screen text lines devoted to the mouse status. The mouse is used to
point to and select menu items, to mark regions of the screen, and in some
applications, to draw screen graphics.

The extended keyboard has eighty-eight keys divided into three sections: the
typewriter section, the modify section, and the function section. The standard
typewriter section of the keyboard contains the character keys. These keys are the
primary user interface the system. The action of any of the character keys is
changed by simultaneously holding down any of the modifying keys and the
character key. The third section of the keyboard contains the function keys.
Typing a function before typing some key combinations modifies the action of the
other keys.

The high resolution black and white screen can be replaced with any of a wide
selection of R-G-B color screens suited to particular applications.

1.2.4 Main Unit

The main unit of a Symbolics machine contains all of the electronics except the
audio and video circuits of the console. The major parts of the main unit are the
central processor and caches (CPU), the optional Floating Point Unit (FPU) , the
main memory, the Input/Output controller, and the Front End Processor (FEP).

1.2.5 CPU

The proprietary central processor unit is the heart of all Symbolics machines.
Features that contribute to its power include: tagged architecture, multiple
caches, hardware stack pointers, pipelined instruction cycles, and parallel
processing.

Tagged architecture allows run-time data checking to catch invalid operations
before they occur. Data type checking is performed in parallel with instruction

5

July 1986

execution thus eliminating the need for extra microinstructions and other software
overhead.

The multiple caches used in the processor provide high speed access to the most
current data and instructions, provide fast translation of virtual addresses, and
allow efficient garbage collection.

Hardware stack pointers support high speed access to the stack and eliminate the
need to execute microinstructions for managing the stack. Special hardware
registers maintain top-of-stack and other stack addresses at all times to allow
speedy access.

Symbolics machines that have the Enhanced Performance Option (EPO), perform
three stage pipelined instruction cycles. An instruction fetched (first stage) from
the instruction cache is dispatched (second stage) to the micro sequencer. In the
execute stage (third stage), the Instruction Fetch Unit supplies any necessary
immediate argument to the processor.

The processor supports garbage collecting, run-time data-type checking, and
instruction fetching, decoding, and executing in parallel.

1.2.6 Caches

Symbolics processing machines include multiple caches. Major caches are the
Stack cache, the Memory Map cache, and the Instruction cache.

Symbolics processing machines are stack oriented machines with no general
registers. This means that instructions are executed out of the control stack.
The high-speed stack cache contains the top portion of the control stack and
several pages surrounding the current stack pointer. These pages are most likely
to contain the next referenced data object.

The Memory Map cache is a high speed 8K RAM located within the processor
(CPU). It cross references the virtual page number and the physical page
number.

The Instruction cache is part of the optional EPO. It is a 1 K word cache that
stores 2048 instructions loaded from the prefetch part of the Instruction Fetch
Unit.

1.2.7 FPU

The Floating Point Unit is implemented in with a combination of NMOS VLSI and
Schottky TTL technology. It is compatible with IEEE standard 754 for binary
floating-point arithmetic. Because it works in parallel with the CPU, there is
never a wait state while transferring a numerical operand to the FPU.

6

User's Guide to Symbolics Computers July 1986

1.2.8 Memory

The memory word on Symbolics machines includes at least 36 bits for data plus
Error Correction Code bits. The memory controller automatically corrects single­
bit errors and detects and reports double-bit errors.

The physical (main) memory can be as large as 28 MB and the full-paging virtual
memory is a maximum of 1 GBytes. The memory transfer rate can be as high as
5 Mwords Is. Some virtual memory is main memory and some resides on disk.
The hardware automatically swaps between main memory and the pages on disk.
A virtual address translates into a physical address through a hierarchy of
mapping tables, some of which are cached in high-speed memory on the processor.

Disk storage is on either ilXed Winchester or removable disks with capacities of up
to 474 MB. The disk storage is expandable by adding expansion cabinets to hold
eight 474 MB disk drives increasing the total capacity to the maximum 3.8
GBytes.

1.2.9 Input/Output

Symbolics processing machines support high and low speed I/O. Low speed devices
such as the mouse, keyboard, cartridge tape, and serial lines are connected
through the FEP.

One of the serial lines may be run synchronously and all of them can operate
asynchronously. There is always one serial line from the console. The
transmission rate of all serial lines is programmable up to 19.2 K baud.

Winchester disk drives are the mass storage medium for files and virtual memory
paging, the disk controller hardware is linked through the system memory bus to
the processor for high speed I/O.

1.2.10 FEP

The Front End Processor (FEP) is based on the MC68000 microprocessor chip
which some computer manufactures use as the Central Processor Unit for their
general purpose computers. Symbolics machines restrict the MC68000 to reducing
the workload of the proprietary central processor. The FEP takes care of the
initial bootstrapping of the machine and offloads low-speed peripheral I/O from the
CPU.

1.3 Introduction to Genera

The Symbolics software environment that runs on the Symbolics Family of
Computers is called Genera.

July 1986

1.3.1 The Console

The devices that are used to talk to Genera are collectively referred to as the
console. These include one or more bit-raster displays, a specially extended
keyboard, and pointing device called a mouse.

1.3.2 The Screen

7

The screen always contains one or more windows. Regardless of which windows
are displayed, the screen always contains some information displays, including a
mouse documentation line and a status line. These information displays are helpful
in determining whether Genera is operating normally or needs intervention. See
the section "Recovering From Errors and Stuck States", page 143.

1.3.3 Mouse Documentation Line

The mouse documentation lines contain information about what different mouse
clicks mean. As you move the mouse across different mouse-sensitive areas of the
screen, the mouse documentation lines change to reflect the changing commands
available.

When no documentation appears, it does not necessarily mean that the mouse
clicks are undefined. Not all programs have provided material for the mouse
documentation line. When the mouse documentation lines are blank at "top level"
in a window, the mouse usually offers some standard commands. Clicking
Mouse-Left selects a window. Clicking Mouse-R i sht often brings up a menu
specific to the application. Clicking sh-Mouse-Ri sht brings up the System menu.

The mouse documentation lines are normally displayed enclosed in a box in
reverse video. Pressing FUNCT I ON M-C complements the video state of the mouse
documentation line.

1.3.4 Status Line

The status line is the line of text at the bottom of the screen. It contains the
following information:

• Date and time
• Login name
• Current package
• Process state
• Run bars
• Other context-dependent information, such as

o Console idle time
o Network service indicators

8

User's Guide to Symbolics Computers July 1986

1.3.5 Process State

The process state refers to the processes associated with the selected window. See
the section "Selecting and Creating Windows", page 13. The following list shows
some common states:

State
Mouse Out
Net In
Net Out
Open
Run
User Input

1.3.6 Run Bars

Meaning
Waiting for the mouse process to notice a change of windows.
Waiting for data from another machine on the network.
Waiting to send data to another machine on the network.
Waiting to open a file on another machine on the network.
Process is running.
Waiting for input from keyboard or mouse.

The run bars are thin horizontal lines near the process state in the status line. A
description of each one follows:

GC bar (under the package name)

Disk bar

Left half is visible when the scavenger is looking for references
to objects that are candidates to become garbage. Right half is
visible when the transporter is copying an object.

Visible when the processor is waiting for the disk, typically
because of paging. Nonpaging disk I/O usually waits via
process-wait, in which case this bar does not appear.

Run bar (under the run/wait state)

Disk-save bar

Visible when a process is running and not waiting for the disk.
Not visible when the scheduler is looking for something to do.

Visible when zl:disk-save is reading from the disk; zl:disk-save
alternatively reads and writes large batches of pages. The
alternating state of this bar tells you that zl:disk-save is
working while you wait for it.

1.3.7 The Keyboard

There are 88 keys on the keyboard. The keyboard has unlimited rollover, meaning
that a keystroke is sensed when the key is pressed, no matter what other keys are
depressed at the time.

The keys are divided into three groups: special function keys, character keys, and
modifier keys. Special function keys and character keys transmit something. They
have white labels on the tops and are typed in sequence. Modifier keys are

July 1986

intended to be held down while a function or character key is typed, to alter the
effect of the key. They have dark labels on the tops.

Function Keys
FUNCTION, ESCAPE, REFRESH, CLEAR INPUT, SUSPEND, RESUME, ABORT,
NETWORK, HELP J TAB, BACKSPACE, PAGE, COMPLETE, SELECT, RUBOUT,
RETURN, LINE, END and SCROLL

Character Keys
abc d e f 9 h

789 : - = ' '\
Modifier Keys

j k 1 M n 0 p q r stu v w x y z 0 1 2 8 4 5 6
() ; , , • I' and the space bar.

LOCAL J CAPS LOCK, SYMBOL, SHIFT, REPEAT, MODE LOCK, HYPER, SUPER J

META, and CONTROL

The following keys are reserved for use by the user (for example, for custom
editor commands or keyboard macros):

CIRCLE
SQUARE
TRIANGLE
HYPER

1.3.7.1 Auto-repeat

You can have keys repeat if they are held down. This feature is disabled by
default, but you can enable it by setting si:*kbd-auto-repeat-enabled-p* to t.

(setf si:*kbd-auto-repeat-enabled-p* t)

The speed of repetition is controlled by si:*kbd-repetition-interval*. See the
variable si:*kbd-repetition-interval*, page 223.

You can exempt certain keys from auto-repetition using the function
si:set-auto-repeat-p. For example, to make SQUARE one of the keys that do not
auto-repeat, you would type:

(si:set-auto-repeat-p #\Square nil)

See the function si:set-auto-repeat·p, page 97.

1.3.8 The Mouse

The mouse is a pointing device that can be moved around on a flat surface.

9

These motions are sensed by Genera, which usually responds by moving a cursor
around on the screen in a corresponding manner. The shape of the cursor varies,
depending on context.

There are three buttons on the mouse, called left, middle, and right. They are

10

User's Guide to Symbolics Computers July 1986

used to specify operations to be performed. Typically you point at something with
the mouse and specify an operation by clicking the mouse buttons. "Shift clicks",
indicated by sh-, are conventionally distinguished from single clicks. Holding
down the SHI FT key while clicking a button is the same as clicking that button
twice quickly. In any specific context, there are up to six operations that can be
performed with the mouse, invoked by Left, sh-Left, Middle, sh-Middle, Right, and
sh-Right clicks. Some of these operations are local to particular programs such as
the editor, and some are defined more widely across the system.

Typically the operations available by clicking the mouse buttons are listed at the
bottom of the screen. This display, called the mouse documentation line, changes
as you move the mouse around or run different programs.

Sometimes holding a mouse button down continuously for a period of time may
also be defined to perform some operation, for example, drawing a curve on the
screen. This will be indicated by the word "Hold". For example, "Middle Hold"
means to click the middle mouse button down and hold it down, releasing it only
when the operation is complete. "sh-Left Hold" means hold down the SHI FT key
and click left, then release the SHI FT key but hold the left button down until the
operation is complete.

1.3.9 The Mouse and Menus

1.3.9.1 Mouse-sensitivity

Parts of the screen can be mouse-sensitive,' that is, clicking one of the mouse
buttons on these parts causes some action to occur. When the mouse cursor
moves over a portion of the screen that is mouse-sensitive, an outline box appears
around the item. Clicking on the boxed item in the manner specified in the
mouse documentation line causes the desired action to occur.

1.3.9.2 Scrolling

Many windows in the system respond to scrolling commands. Bump the mouse
against the left side of the pane until a scroll bar and double-headed pointer
appear.

The scroll bar, by its size and placement on the left side of the pane, indicates the
percentage of the pane or buffer contents that is currently visible on the screen.
For example, a very short scroll bar at the bottom of the pane indicates that you
are seeing the last part and only a small percentage of the contents of that pane
or buffer. A very long scroll bar in the center of the pane indicates that you are
seeing a large proportion and are approximately half-way through the pane's entire
contents.

To scroll using the scroll bar and the double-headed pointer, use one of the
following mouse buttons:

July 1986

R

M

L

L2

Moves the line currently at the top of the screen to the position
indicated by the pointer.

Displays the percentage of the pane contents that approximately
corresponds to the position indicated by the pointer.

Moves the line indicated by the pointer to the top of the screen.

Moves the line indicated by the pointer to the bottom of the screen.

1.3.9.3 Menus

One common application of a mouse button is to call up a menu of options,
containing mouse-sensitive choices. Menus are lists of mouse-sensitive choices,
surrounded by a border. They normally appear in the part of the screen where
the mouse cursor was positioned when you clicked the button.

The 3600 has several styles of menus, including the following common ones:

• Momentary menu

Each item is a possible choice. Positioning the mouse cursor over an item
and then clicking the appropriate button makes the choice. The System
Menu is a momentary menu.

: Minor edit~
~ACTERSI: Edit~
:HARACTERSI: Edit~
~ND KEV~ORD NAMESI: Edit~

. Edit~
:TER SETI: Ed1t~

~ edit~

I: New recor
ZETALISP-USE

,eyword~)

lLLING) I :

Figure 1. A Momentary Menu

• Choose-variable-values menu

11

Each line presents one or more possible values of a particular variable. The

12

User's Guide to Symbolics Computers July 1986

Hardcopy File

Ej..l~~_Jlo"bat: >KJones>proposa 1. text
Printer na"e: Asahi Shi"bun

~!~~~~h:r:~~!~~StYle: a fully tlpect/ted character tltyz. \
Heading-Character-Style: a fully tlpectfted character tltyZe
Copies: 1
Delete: Yes "0
File-Types: Text Suds-Plot Press Lgp Lgp2 D"pl Mgp Use-Canonlc.l-T,.pe
Orientation: Landscape Portrait
Running-Head: None "ullbered
Starting-Page: 1
Ending-Page: End of file

Abort. Done

Figure 2. A Choose-variable-values Menu

Window Attributes Menu is a choose-variable-values menu. Each variable
has a type that controls what values it can take on. The way in which the
possible values are presented and the way in which you choose a value
depend upon the type. Variables can have one of two types.

o A type with a small number of legal values. Each line in the menu
presents the possible legal values of a particular parameter. The
current value appears in bold face. Each of the values is mouse­
sensitive. Clicking on a value sele~ts it.

o A type with a large or infinite number of legal values. Each line in
the menu presents only the current value of a particular parameter. A
numerical value is of this type. To change a value, select the current
value by clicking on it, type in a new value, and press RET URN.

Rubbing out more characters than have been typed in restores the
original value instead of changing it.

You exit menus in a variety of ways. For some menus, like the System Menu,
making the choice causes the menu to disappear. Moving the mouse cursor off
this kind of menu also causes the menu to disappear. Other menus have explicit
commands, such as [Do It], [Exit], or [Abort], which you must click on to make
the menu disappear. Other menus are displayed in the frame permanently, such
as the Zmail Command Menu.

13

July 1986

1.3.9.4 System Menu

The System Menu is a momentary menu that lists several choices for acting upon
windows and calling programs (for example, Lisp Listener, Zmacs, or the
Inspector). You can always call the system menu by clicking sh-right (or the
right mouse button twice). Use the System Menu to do many things, among them:

• Create new windows.
• Select old windows.
• Change the size and placement of windows on the screen.
• Hardcopy a file.

For more information about the mouse and menus: See the section " Using the
Window System". See the section "Window System Choice Facilities".

-:J ~ ~. cf ~ ')1] S I 2 J 9
1.3.10 Selecting and Creating Windows

1.3.10.1 Introduction

All user interaction with the 3600, except with the FEP, occurs in windows. The
screen always contains one or more windows. The window that you are
interacting with is called the selected window. You select a window via the mouse,
a menu, or a keyboard key. If the window is not already exposed, it appears on
the screen. See Introduction to Using the Window System for more information
about windows.

1.3.10.2 Default Windows

The 3600 has a default set of windows available, some of which are available via a
System Menu and some via the SELECT key as well.

Use [Select] in the Windows column of the system menu to see a menu of
currently available windows. Some default windows are

Main Zmail Window
Lisp Listener 1
Ed it: pathname

1.3.10.3 Moving

On the 3600, you do not "leave" a window with an explicit terminating command;
instead, you select a different window. You can return to the most recently used
window by pressing FUNCT I ON S.

1.3.10.4 SELECT Key

This key is a pref'lX for a family of commands, generally used' to- select a window
of a specified type, such as a Lisp Listener or Zmail. The current list is:

14

User's Guide to Symbolics Computers July 1986

C Converse
D Document Examiner
E Editor
F File system maintenance
I Inspector
L Lisp
M Zmail
N Notifications
p Peek
Q Frame-Up
T Terminal
H Flavor Examiner

SELECT c- creates a new window of the specified type.

15

July 1986

2. Starting up

This section provides information about how to start, cold boot, log in to, and log
out of the 3600 family of machines. I t assumes that the software is installed and
your site has been configured. If you are not sure that this has been done, check
with your site manager. The software must be installed and the site configured
before you attempt to use the system. For information on installation and site
configuration:

See the Software Installation Guide
See the section "Installation Procedures" in Site Operations.

2.1 Powering up

To power up and start using the your Symbolics Computer, use the following
procedure:

1. If you have a 3600:

a. Plug in the 3600. The front- panel lights on the processor cabinet
display "3600" when the machine is plugged in. If they are not lit,
check that the main circuit breaker at the lower rear of the cabinet is
turned on.

b. Turn the key on the front panel to the vertical position, marked LOCAL.

c. After the front panel lights display "Power up?", push the spring­
loaded switch lnarked YES. The front panel lights then display "3600
on".

2. If you have a 3670 or 3640:

a. Plug in the machine.

b. Press the Power button on the front panel.

See the section "Cold Booting After Powering up".

16

User's Guide to Symbolics Computers July 1986

YES t NO '" ENTER RUN F AUL T SECURE LOCAL REMOTE

1361010 on

~SECURE

OFF -@- REMOTE

RESET POWER . ~

Figure 3. The Front Panel on a 3600

lfIymbo/iclfI :3B4D

----DODO

m l3 H

I
III

~ III
III II
III
III 0

on

iii]

Figure 4. The Front Panel on a 3670 or 3640

17

July 1986

2.2 Logging in

After cold booting, you are in a window named Dynamic Lisp Listener 1. You are
now ready to log in. If your login name is KJones, you can log in in any of the
following ways: (Note that the examples are given in upper and lower case, but
the machine is not case sensitive. You can use all upper case, all lower case, or
mixed case as you prefer.)

• To log into the default host machine, using your init file, type
Login KJones

o To log into your machine, without your init file, type
Login KJones :init file none

o To log into another machine "sc3", using your init file, type
Login KJones :host sc3

If the host machine you log in to is a timesharing computer system, you must
have a directory and account on that host machine.

For more information about logging in: See the section "Login Functions and
Variables" .

For more information about how to write init files: See the section "Customizing
Genera", page 93.

2.3 Logging Out

1. Use a Lisp Listener by pressing SELECT L.

2. Log out by typing either the command Logout or the function (logout).

Wait until the Lisp Listener says that you have been logged out before you
go to the next step.

3. Cold boot the machine.

This step is optional. It is not necessary to cold hoot if the machine has
been used only a short while and if no major changes to the machine state
have been made. If the machine has heen used for several hours and many
files have been loaded or read into it, we recommend that the machine be
cold-booted.

Cold booting frees up virtual memory and puts the machine in a fresh state.
In this way your customizations do not affect the next user's environment.

18

User's Guide to Symbolics Computers July 1986

Note: You need not turn the machine off each night; however, it does not hurt
the machine to do so.

2.4 Powering Down

To power down your machine:

1. First logout by giving the command:

Logout

2. Next, halt the machine by giving the command:

Halt Machine

3. If you have a 3600, turn the key on the front panel to the off position.

If you have a 3670 or 3640, give the shutdown command to the FEP:

Shutdown

or press the power button on the front panel.

Note: it is not necessary to turn off the circuit breaker on the back of the
machine unless you are planning to unplug the machine and move it.

2.5 Getting Acquainted with Genera

2.5.1 Using the System Menu

1. Press down the SHIFT key and click the right mouse button. (This is usually
denoted in documentation as sh-Mouse-ri ght.) You should see the System
menu pop up on the screen as in Figure 4. Notice that the mouse cursor
has become an x and that there is a box around the word bury. The word
bury is in the column titled "This Window" and its being in a box means
that bury mouse sensitive. If you were to click a mouse button while the box
is around bury, thereby selecting it, the current window ("This window")
would be buried down at the bottom of the stack of active windows (that is,
shuffled to the bottom as you might do to a stack of paper). The mouse
documentation line at the bottom of the screen says:

Bury the window that the mouse is over J beneath all other active windows.

Move your mouse so that it is off this menu. The menu disappears. That is

July 1986

The S'Lstem Menu
Windows This window Programs
Create Move Lisp
Select Shape Edit

Split Screen Expand Inspect
Layouts Hardcopy Mail

Edit Screen Refresh Font Edit
Set Mouse Screen lfulpi3 Trace

Kill Emergency Break
Reset Layout Designer
Arrest Namespace

Un-Arrest Frame-Up
Attributes Hardcopy

File System
Document Examiner

Figure 5. The System Menu

the way pop-up menus work: they disappear when the mouse is moved off
them.

19

Click sh-Mouse-r; ght again. Notice that the System menu again pops up,
but it has followed your mouse. A pop-up menu always pops up where your
mouse is, because it can only remain on the screen when the mouse is inside
its borders. Try moving the mouse and clicking sh-Mouse-r; ght several
more times. sh-Mouse-r; ght summons the System menu in all contexts in
Genera. This is important to remember.

2. Click sh-Mouse-r; ght again and now take a more careful look at the
information the System menu is providing.

The operations that the System menu provides to you are divided into three
categories:

Windows
This Window
Programs

Windows refers to general window operations, as indicated by the items in
that column (See Figure A:

~)

20

User's Guide to Symbolics Computers July 1986

• Create - Create a new window.

• Sel ect - Select one of the windows already established by Genera or
created by you. Another pop-up menu appears, offering all the
windows currently available in Genera.

• Spl it Screen - Divide your screen so that two windows are completely
visible at the same time.

• Layouts - Operate on the geography of the screen display by restoring
the previous state or saving the current state. You can do what
Layouts does with Edit Screen and the Undo option.

• Edi t Screen - Modify the geography of the screen.

• Set Mouse Screen - Set the screen the mouse is on if you have more
than one screen (for example, a color console and a standard one).

This Window refers to operations of the current window, that is, the one
that you were looking at and typing to when you clicked sh-Mouse-ri ght.

• Move - Change the location of the current window on the screen.

• Shape - Modify the shape of the current window (square to rectangle,
and so on).

• Expand - Make the current window larger by occupying unused space on
the screen.

• Hardcopy - Send an image of the current window to a printer. This is
the same as pressing FUNCTION c-Q. See the section "FUNCTION Key",
page 216.

• Refresh - Redisplay the current window. This is the same as pressing
FUNCT I ON REFRESH. See the section "FUNCT I ON Key", page 216.

• Bu ry - Shuffle the current window down to the bottom of the stack of
windows, selecting the previous (next down in the stack) window as
current.

• Ki 1 1 - Remove the current window.

• Reset - Initialize the current window, that is, restart it in its initial
state. This is useful if a window is in a confused state. It might
cause loss of information, however. See the section "Recovering From
Errors and Stuck States", page 143.

July 1986

• Arrest - Halt any processes running in the current window .

• Un-Arrest - Release any processes in the current window, allowing
them to continue .

21

• Attri butes - Modify the attributes of the current window. This
summons a menu of the attributes of the window and allows you to
selectively change them. Move the mouse down vertically and click -on
Attributes. Notice that the menu that appears has two choices in its
bottom margin: Abort and Done. These are for exiting from the menu.
You can click on unhighlighted entries in the central portion of the
menu (the choice section). Highlighted items are the current
attributes. Clicking on an unhighlighted entry highlights it and selects
it to go into effect, but nothing happens until you exit from the menu.
Try clicking on several choices to see how it works. This is called an
Accept Variable Values menu, or in some cases a Choose Variable Values
menu. Now, since you do not really want to modify anything just now,
click on Abort. The menu goes away.

Click sh-Mouse-ri ght again to get the System menu back and look at the
third column:

Programs refers to available preloaded programs, or activities, in Genera.

You can select an activity from this menu, or you can use the Select Activity
command processor command. See the section "Select Activity Command",
page 251. For now, just move your mouse off the menu.

3. Click sh-Mouse-ri ght once more. This time, move the mouse to the left and
position it over the Windows column.

Move it to sit on Create.

Click left on Create. Another pop-up menu appears containing a list of
window types.

Click on Lisp.

The menu disappears and ah icon representing the upper left corner of a box
appears where your mouse cursor was. Move this icon using the mouse to
some convenient location on your screen. (See Figure 5). Press the left
mouse button and notice that the left corner now sprouts two more sides and
becomes a rubber band with four corners. Stretch it around by moving the
mouse. Notice what happens if you pull it up to the left of the left corner
that you just positioned. If you were to click left at this point, you would
create a new window that is the full size of the screen.

22

User's Guide to Symbolics Computers July 1986

r

Figure 6. Positioning the Upper Left Corner of a New Window

Now, pull it down to make a reasonable sized window, at least ten inches
across and at least 25 lines (about four inches) vertically. Click left if your
mouse and the new window are not in the proximity of any other window
edge. If the lower right hand corner of your new window is near the edge
of another window, click right. Clicking right (as the mouse documentation
line says) is smart. This means it tries to optimize the position of the edges
of windows so that they do not overlap. Windows that overlap by very tiny
amounts at the edge can confuse you as to which window is actually
selected, especially if you choose not to use the graying option for non­
selected windows. (See the section "Set Screen Options Command", page
258.)

You have just created a second Lisp Listener, and it is selected. That means
that any typing you do at this point goes into this window.

2.5.2 Trying Out the Command Processor

2.5.2.1 Typing Commands

Type Select Activity SPACE Lisp RETURN. You are now back in your original Lisp
Listener. Type Sel ect Activity SPACE Lisp RETURN again to get back to our newly
created Lisp Listener. Select Activity activity will cycle through all the windows

23

July 1986

of a given activity. Get back to your original Lisp Listener, typing Sel ect
Act i vi ty if necessary. Notice that there is a key labelled SELECT. Press SELECT
followed by L. You are now in your other Lisp Listener. SELECT L is the same as
Select Activity Lisp. Press SELECT followed by HELP to see a display of the other
single letter abbreviations for activities.

Select Activity is a command that takes one argument, an activity name. Some
commands take no arguments. Some take more than one argument. Some
commands also take optional arguments called keywords that control the behavior
of the command.

2.5.2.2 Using the HELP Key

Type Sel ect Act i vi ty SPACE then press the HELP key. You should see a display
like that in Figure 6.

~
Activity (progr"M) to int"r"ct uith n"xt
Typ" of input "xpect"d: ""ctivity

Thes" "r" th" possible "ctiviti"s:

I
Acc"pt V"lu"s FEP-T"p" Fr"M"-Up M"nu Progr"M

, Conv"rs" FIl" S"rver In"pector Notific"tions
DocuM"nt EX"Miner Fil" "ysteM oper"tion" . Li"p P"ek
Editor Fl"vor EX"Miner Mall Pr"""ntation Insp"ctor

II
COMM"nd: S"l"ct Activity (llctivity nil"" [d"fault Editor]) •

Figure 7. Select Activity Command

T"rMinlll
ZMIIC::S

ZMllil

Press CLEAR INPUT. The command goes away. ABORT would also cancel the
command, but since you had not finished typing the arguments to the command
(that is, the activity you wanted to select), there is nothing to abort so the
"smaller hammer", just clearing the input you have typed, can be used.

24

User's Guide to Symbolics Computers July 1986

2.5.2.3 Using Keywords Arguments

Type Show Heral d RETURN. The Herald (the initial screen display announcing the
system version loaded) is printed on your console. Show Herald is a command
that takes no arguments.

Type Show Heral d again and then press SPACE. The prompt (keywords) pops into
your input line. Press HELP. You should see:

You are being asked to enter a keyword argument

These are the possible keyword arguments:
:Detailed Whether to print version information in full detail
:Output Destination Redirects the output of this command to the specified streams.

Command: Show Herald keywords

Figure 8. Show Herald and its Keywords

This time add : detai 1 ed before pressing RETURN. Now you should see additional
information about the version of the FEP you are running with and other systems
that are loaded in your world.

This demonstrates in a very simply way how keywords can affect the behavior of a
command.

2.5.2.4 Some Useful Command Processor Commands

1. Type Show Machine Configurati on. When this command takes no arguments,
it displays the information about your particular machine. You can give
Show Machine Configuration the name of another machine on your network
as an argument and it will show you the information about that machine.
This is an important command to know because if you have to call Symbolics
Software Support you might be asked for information about your hardware
that you can get only from this display. Of particular importance when you
call Software Support is the Machine Serial Number, appearing in the third
line of the display.

2. Type Show Command Processor Status. Again, this command takes no
arguments because it is displays information about the setting of the
Command Processor. Unless you have changed the Command Processor
Mode or your prompt, you should see a display like this:

July 1986

Command: Show Command Processor Status
The command processorJs current mode is

Command Preferred: Interprets input starting with an alphabetic
character as commands; type an initial J to
force Lisp interpretation.

The prompt string is "Command: "

The prompt strings for other modes are:
Form Preferred:
Form Only:
Command Only: "Command: "

25

This means that your Command Processor is in the default mode and any
typing you do to it is assumed to be a Command Processor command unless
it begins with a left parenthesis or a comma. Type

J*package* SPACE

This asks for the value of the Lisp variable *package*. The value returned
should match the package shown in the status line at the bottom of the
screen.

You can change the mode of the Command Processor. See the section "Set
Command Processor Command", page 254.

3. Type Show FEP Di rectory. This displays a list of all the files on the local
disk(s) of your machine. The files that Genera is currently using (the World
load from which Genera was booted, the paging files, and the microcode in
use) are displayed in boldface. That is to remind you that you should not
delete them.

Type Show FEP Di rectory again and this time press SPACE three times. When
it prompts for keywords, press HELP. Try Show FEP Directory with the :type
keyword. After typing : type press HELP again and select a kind of file,
perhaps boot. This displays only those files that are boot files, that is, files
that contain a script of commands for booting a world. See the section "Cold
Booting After Powering up".

2.5.2.5 Looking Back Over Your Output (Scrolling)

By now you have had to press SPACE at **Hore** breaks several times. Hold down
the META key and press SCROLL (this is usually denoted n-SCROLL). You can look
back over your interaction with Genera. To get back to the "end" of this output
history you can press SCROLL, press n-sh- >, or just start typing a new command.
Without pressing anything, from where you are in the middle, try typing Show

26

User's Guide to Symbolics Computers July 1986

Namespaee Obj eet user your user name. If your user name were KJones, you would
see the window scroll forward to the new command line and then display:

View in namespaee ACME:
USER KJONES
LISPM-NAME KJones
PERSONAL-NAME "Jones, Kingsley"
HOME-HOST ACME
MAIL-ADDRESS kjones ACME
LOGIN-NAME kjones VAX81
NICKNAME King
WORK-ADDRESS "Building 3-781"
WORK-PHONE 5891
BIRTHDAY "19 June"
PROJECT Database
SUPERVISOR "Finklestein"
USER-PROPERTY :USUAL-LOGIN-HOST wombat

For more details about scrolling windows: See the section "Scrolling with the
Mouse", page 212.

Now you have tried a few command processor commands and it is time to show
you how Semanticue and Dynamic Windows can speed up your work by cutting
down on your typing. See the section "Getting Acquainted with Dynamic
Windows", page 26.

2.5.3 Getting Acquainted with Dynamic Windows

2.5.3.1 Reusing Commands

1. Press C-M-V.

Press M-V.

Press M-V again.

Notice how each successive previous command processor command you typed
is placed at the Command: prompt. Conveniently, you can reactivate any of
these commands by pressing RET URN when the one you want appears. For
now just press CLEAR INPUT.

2. Type Show Doeumentat i on SPACE "Show Doeumentat i on Command" RET URN. (The
topic name should be inside quotation marks.)

3. Press C-M-V. Press M-RUBDUT three times to erase "Show Documentation
Command". Now type "Reusing Commands" RETURN. You can use Show

27

July 1986

Documentation on any topic in the documentation set. Those topics whose
documentation you have displayed in your Lisp Listener are also read into
the Document Examiner. See the section " Using the Online Documentation
System", page 43.

2.5.3.2 Using Your Output History

1. Type Show Di rectory SPACE sys: exampl es;. This is a directory of sample
programs you can look at and run.

Move your mouse slowly over the display of the directory. Notice that the
individual files (or subdirectories) listed are mouse sensitive, that is, a box
appears around them as the mouse passes over them.

2. Now type Show Fil e and click the mouse left on one of the files in the
display from Show Directory, perhaps on Teach-Zmacs-Info. text. The
pathname is inserted in your new command line. Press RET URN to activate
the command, or CLEAR I NPUT if you do not want to see the contents of the
file displayed. (This file, Teach-Zmacs-Info. text, is a good one to remember
about when you are ready to learn about Genera's editor, Zmacs. It tells you
how to run a tutorial that explains the editor.)

3. Scroll back, using M-SCROLL or M-V, over your output history so far. Select a
command line you would like to reactivate. Move the mouse over it and
when it becomes mouse sensitive, click left. The entire command line is
yanked down to the current prompt. You can press RETURN to reactivate it,
or RU80UT or other editing commands to edit it. See the section "Editing
Your Input", page 134.

4. Once again scroll back over your history and select a command to reactivate.
Click sh-Mouse-Left, that is, hold down the shift key while you click the left
mouse button. This time your selected command is not only yanked down to
the current prompt but also is reactivated without your having to press
RETURN.

5. When your history is long, scrolling back over it is tedious. Hold down the
SUPER key and press R (s-R). Now type a string of characters, Show for
instance. Notice that your cursor is moved back through to the history to
the most recent occurrence of the word show. Press s-R again. You are
moved back to the next most recent occurrence. If you move past the
occurrence of show that you want, press s-S to search forward. Press END to
terminate the search. You can now click Mouse-Left or sh-Mouse-Left.

6. Sometimes you know exactly what command you want to yank and do not

28

User's Guide to Symbolics Computers July 1986

want to search for it. Hold down the CO NT ROL, META, and SHI FT keys and
press V (this is denoted c-M-sh-V). You are prompted for a character string
to use and the most recent command that contains that string is yanked
directly. If the most recent command containing the string is not the one
you want, press M-sh-V and the previous most recent command is yanked
instead. Successive uses of M-sh-V go back farther and farther in your
history locating commands containing the string.

Now that you know how to move back through your history it is time to learn
some more ways to make use of it. See the section "Using the Mouse", page 28.

2.5.3.3 Using the Mouse

1. Move your mouse so it is just off the top of the screen. Look down at the
mouse documentation lines just above the date and time at the bottom of the
screen. Notice that it is blank. Move the mouse back down onto a blank
part of th.e screen. Now the mouse documentation line says "To see other
commands, press Shift, Control, Meta-Shift, or Super".

2. Move the mouse so that it is over a previous command. Now notice the
mouse documentation line. It now says that Mouse-L is the command,
meaning that clicking left yanks the command. You have already discovered
this: See the section "Using Your Output History", page 27. Mouse-R says
"Menu". Click right. A menu pops up with a list of operations that can be
performed on the command line the mouse is over. Move your mouse off the
menu to make it disappear.

3. Now position your mouse over the command line again. Press SHIFT.

Notice that the documentation changes to indicate what operations can be
performed by pressing SHI FT (sh-Mouse-) while clicking Left or Right.
sh-Mouse-Left you have already tried: See the section "Using Your Output
History", page 27. sh-Mouse-Right pops up the System menu: See the
section "Using the System Menu", page 18.

4. Release SHI FT and press CONT ROL. The operations offered by pressing
CO NT ROL while clicking the mouse (c-Mouse-) are for marking regions or
words for yanking or copying. c-Mouse-Left marks a region. Hold down
the CONTROL key and the left mouse button while you move your mouse
around. Notice that the text the mouse moves over is underlined. Release
CONTROL key and the left mouse button. Now click c-Ri ght. The Marking
and Yanking menu pops up, offering you four things to do with the text you
have marked. Usually you want to push the text on the kill ring, the place
where text that has been deleted with one of the kill commands (c-K, c-W,
and others) in any context (Lisp, Zmacs, or Zmail) is stored for recall with

29

July 1986

c-Y. You can push the marked text on the kill ring by clicking on that
choice in the menu. Do that now. Because pushing text on the kill ring is
such a common operation, it can also be done by holding down SUPER and
pressing W (s-W). Now press c-Y. The text you marked is yanked back at
the current prompt. In this way you can yank arbitrary pieces of text for
editing and turning into a new command. Since the kill ring is common to
Lisp and Zmacs, this is a way to transfer something from your Lisp Listener
to an editor buffer for editing or for saving in a file.

5. c-Mouse-M i dd 1 e marks and yanks the word the mouse is over. Try pressing
c-Mouse-M i dd 1 e several times to yank arbitrary words from your output
history. Press CLEAR INPUT.

6. Hold down both the CONTROL key and the SHIFT. c-sh-Mouse-Mi ddl e allows
you to mark (without yanking) words.

7. Holding down the META and SHIFT keys and clicking right pops up the
Window Operation menu. This menu offers operations to perform on the
current window, much like the "This Window" column in the System menu.
See the section "Using the System Menu", page 18.

2.5.3.4 Using Menus

Using the Mouse and the Keyboard on Menus

Type Set Wi ndow Opt ions and press RETURN. An Accept Variable Values menu is
displayed. The items in the menu are the various options that you can set to
customize your Lisp Listener. The highlighted (boldface) items are the current
settings. Move your mouse over the menu and notice that items become mouse
sensitive. You can click on an unhighlighted choice in a list and it will become
highlighted. You can click left on a displayed value to replace it with a new
value. You can click middle on displayed value to edit the old value. You can
click on <abort> or <exit> to cancel or activate the command. You can also use
keyboard commands to interact with this kind of menu. The keyboard commands
available are:

SPACE

c-E

REFRESH

HELP

END

ABORT

c-N

c-P

c-F

c-B

Enter a value for an item.
Edit the value of an item.
Force complete redisplay.
Display list of commands.
Use these choices.
Abort these choices.
Move down to next item.
Move up to previous item.
Move to next choice in a list of choices.
Move to previous choice in a list of choices.

30

User's Guide to Symbolics Computers

More processing enabled: 1res No
Reverse video: Yes ~o

Vertical spacing: 2
Deexposed typein action: Wait until exposed ~otify user

July 1986

Deexposed typeout action: Wait until exposed Notify user Let it happen
Signal error Other

ALU function for drawing: ()nes Zeroes Complement
ALU function for erasing: Ones Zeroes Complement
Screen manager priority: None
Save bits: 1res No
Default character style: FIX.ROMAN.NORMAL
Echo character style: NIL.NIL.NIL
Typein character style: NIL.NIL.NIL
End of screen action:])efa~t Scroll Truncate Wrap
Amount to scroll by: Default
<abort> aborts, <end> uses these values

Figure 9. Set Window Options Menu

Press c-N and notice that the first option, "More processing enabled" is
underlined. Press c-F. The underlining moves over to the word 1res. Press c-F
again. Now the underlining is under the work "No". Press SPACE. The line
redisplays with the ~o choice in boldface. Press c-N to move to the next option,
"Reverse video". Press c-F. Suppose at this point you decide you do not want to
change the video after all. Just press c-P (or c-N) to continue. Press c-P now to
return to the "More processing enabled" and c-F followed by SPACE to set more
processing back on. Now press END to exit from the menu.

Occasionally typing on a menu causes some overwriting of other parts of a menu.
REFRESH or FUNCT I uN REFRESH will redisplay it correctly.

Using M-COMPLETE

Type Show Di rectory sys: exampl es;. The Show Directory command takes several
keywords to control the format of the display. You can type them directly in the
command line, but with some commands the interactions among keywords is
complex and it is more convenient to see all the options and be able to alter them
selectively. Press M-COMPLET E. You should see a menu like Figure 10. The items
in the menu are mouse sensitive; you can select keyword values with the mouse or
by keyboard commands. Pressing END or clicking on <end> uses these val ues
activates the command.

July 1986

Show Directory SYS:EXAHPLES;*.*.NEWEST
Files: SYS:EXAHPLES;*.*.NEWEST
Size: 8
Since: a universal time or a null value
Before: a universal time or a null value

31

Order: Smallest-First Largest-First Oldest-First Newest-First ~aD1e Type
Output-Dest i nat ion: a destination
<abort> abortsJ <end> uses these values

Figure 10. Show Directory Command Menu

2.5.4 What You Have Learned

If you have followed all the directions given in the sections starting with "Getting
Acquainted with Genera" (See the section "Getting Acquainted with Genera", page
18.), you should now be able to do the following:

• Use the System menu

• Use other menus

• Use the command processor to do some simple information gathering tasks

• Use the mouse

• Use facilities of Semanticue provided by Dynamic Windows to create new
commands from your previous commands

You are now ready to learn in more detail about the command processor: See the
section "Communicating with Genera", page 33.

For detailed descriptions of all the commands available in the command processor:
See the section "Dictionary of Command Processor Commands", page 227.

To learn how to allow your application programs to take advantage of the power of
dynamic windows and the command processor: See the section "The Command
Processor Program Interface".

32

User's Guide to Symbolics Computers July 1986

July 1986

3. Communicating with Genera

3.1 Overview of the Command Processor

The command processor is a utility program that accepts a command and its
arguments and then runs that command for you. The command processor takes
care of various chores:

• Prompting for arguments

• Checking arguments for correctness

• Providing completion when possible

• Providing documentation on request

33

The command processor operates in all Lisp Listeners and zl: break loops. The
prompt "Command: " indicates that you should enter a command or a Lisp form.
By default, command processor is in command-preferred mode. This means that
input to a Lisp Listener or zl: break loop is treated as a command if it begins with
an alphabetic character or a colon. Input is treated as a Lisp form if it begins
with a nonalphabetic character or is preceded by a comma.

For information on entering a command: See the section "Entering a Command",
page 34.

For information on changing the command processor's mode, prompt, and other
characteristics: See the section "Customizing the Command Processor", page 98.

For descriptions of predefined commands: See the section "Dictionary of
Command Processor Commands", page 227.

For information on the command processor reader and the facility for defining
your own commands: See the section "The Command Processor Program
Interface" .

For information on turning the command processor on and off: See the section
"Turning the Command Processor on and Off', page 40.

3.2 Parts of a Command

A command has three logical parts to it, which you specify in this order:

1. Command name. This is a word or a series of words separated by spaces.

34

User's Guide to Symbolics Computers July 1986

2. Positional arguments. These are arguments that the command processor
prompts for directly after the command name. Some commands have several
positional arguments; others have none. Commands that have arguments
might use default values for the ones that you don't specify.

3. Keyword arguments. Some commands have keyword arguments that make it
simple to modify the meaning of the commands. Most of these arguments
require values. These arguments have default values that the command
processor assumes if you specify the command without mentioning the
argument name. Some commands have arguments whose values differ
according to whether you omit the argument altogether or mention the
argument name and omit its value. These argument defaults are called
unmentioned defaults and mentioned defaults.

4. Some keyword arguments do not have values at all.

For information on entering command names and arguments: See the section
"Entering a Command", page 34. See the section "Completion in the Command
Processor", page 39.

For information on help in the command processor: See the section "Help in the
Command Processor", page 38.

3.3 Entering C9mmands

3.3.1 Entering a Command

In entering a command, you enter the components in order: first the command
name, then its positional arguments, then its keyword arguments, then the
command terminator (RETURN or END). (When the command processor is in
:form-preferred mode, you must precede the entire command by a colon: See the
section "Setting the Command Processor Mode", page 99.)

The parts of the command can be entered using the keyboard or the mouse. You
can click Mouse-Left on previous commands on the screen to yank them for
reactivation. If you click sh-Mouse-Left on a previous command it is yanked and
reactivated in one step.

When you type a command, items from your output history on the screen become
mouse sensitive if they are appropriate as arguments to a command. Clicking
Mouse-Left on such an object yanks it into the current command line.

c-Mouse-Mi ddle yanks the word the mouse is over for use in composing a new
command line. For example, if you have done Show Mail and a message refers to
a file that you want to look at, you can yank the file name as an argument to a
Show File command.

35

July 1986

The command processor can complete components of commands. While you are
typing a command name or keyword argument name, if you press SPACE the
command processor attempts to complete the current word and all previous words
in that command name or keyword argument name. If you press' COMPLET E, the
command processor attempts to complete the entire command name or keyword
argument name. The command processor can also complete argument values that
are members of a limited set of possibilities. If you press M-COMPLET E the
command processor displays a menu of the argument values it has collected so far.
You can then select values from the menu using the keyboard or the mouse.
When you terminate a command, the command processor completes any command
component in progress.

Some arguments have default values. If you press SPACE instead of typing an
argument, the command processor uses the default for that argument. The
command processor also uses the defaults for any arguments you haven't specified
at all when you terminate the command.

All this means that you don't have to type an entire command to enter it.
Suppose, for example, that you type the following:

d e SPACE f SPACE f 0 0 . * SPACE : q SPACE Y RETURN

You see the following on the screen:

Delete File (file [default ACME-BLUE:>joe>foo.lisp]) foo.*
(keywords) :Query (Yes, No, or Ask) Yes

While entering a command, pressing HELP or c-? displays documentation
appropriate for the current stage of entering the command. See the section "Help
in the Command Processor", page 38.

3.3.1.1 Supplying a Command Name

You type the command name, or some portion of it, followed by SPACE. The
command processor either recognizes the command from what you have typed or it
doesn't.

• When it recognizes the command, it fills in the part of the command name
that you didn't type and then prompts you for the first argument. For
example, you type:

d e SPACE f SPACE

The command processor displays:

Delete File (file [default ACME-BLUE:>joe>foo.lisp])

• When it doesn't recognize what you have typed so far as being the possible
beginning of a command, the command processor informs you that no such
commands are available. You have to edit your input or erase it and start
over.

36

User's Guide to Symbolics Computers July 1986

• When it determines that what you have typed matches the beginning of
several different commands, it fills in as much of the command as possible
and waits for more input. You can use SPACE again to see if there is a
default completion for this command, or you can use HELP or c-? to see the
set of commands that begin with what you typed.

3.3.1.2 Supplying Positional Arguments to a Command

When the command processor has prompted you for a positional argument, you
enter whatever argument is appropriate for the command. The prompt words
indicate what the command expects:

Delete File (file [default ACHE-BLUE:>joe>foo.lisp])
Set Package (A package)
Load Patches (for systems)

An argument can be either a single item or, sometimes, a set of items separated
by commas. An argument cannot end with a comma, so SPACE can appear after a
comma for attractiveness if you want; the command processor just ignores SPACE
after a comma.

Load Patches (for systems) System, Zmail

You end each argument with SPACE. The command processor then checks
whatever you have entered and prompts for the next argument (if there is one) or
for the keyword arguments. If you haven't typed anything except SPACE, it fills in
the default argument when one exists. Otherwise it checks what you typed for
validity (for example, if the command wants a number, it makes sure that you
didn't enter a string).

Delete File (file [default ACHE-BLUE:>joe>foo.lisp]) foo.* (keywords)

Some arguments can only be members of a limited set of possibilities, displayed in
the prompt. In this case the command processor can attempt to complete the
argument. If you begin to type the argument and press SPACE, the command
processor attempts to complete the current word and all words before that word in
the argument. If you begin to type the argument and press COMPLET E, the
command processor attempts to complete the entire argument. For example, you
type:

s e SPACE c SPACE P SPACE f - P SPACE

The command processor displays:

Set Command Processor (Form-Only, Form-Preferred, Command-Preferred,
or Command-Only) Form-Preferred (prompt string)

What if one of the items in the argument list needs to contain one of the special
characters (SPACE, comma, leading colon, or RETURN)? Use double quotes to
delimit that item:

37

July 1986

Show Hosts (hosts) Missouri,uRed River"

Most arguments have a default, which is usually indicated by the argument's
prompt. When you want to use the default for an argument, you can indicate that
simply by using SPACE. This terminates the argument, causing the command
processor to fill in the default.

Sometimes when you supply a value for argument, the value that the command
processor actually uses is a function of both the default and what you type. This
is what happens with pathname arguments; the default pathname and the value
that you type are merged to form the argument value that the command processor
gives to the command.

Once you have specified as many of the arguments as you need (even none), you
can use RETURN or END to enter the command. The command processor uses the
defaults for any arguments you haven't specified.

Suppose you want to use the defaults for the remaining positional arguments, but
you want to supply some keyword arguments. You must use SPACE to fill in the
default for each of the remaining positional arguments. When you have finished
the positional arguments, the command processor prompts for keyword arguments.

3.3.1.3 Supplying Keywords and Values for a Command

The command processor prompts for keyword arguments when you have entered
all of the positional arguments for the command.

Suppose you have supplied all of the arguments to the Delete File command and
are now being prompted for any keywords for modifying the standard action of the
command. You enter keywords and their values in any order, finishing off the
command with RET URN or END. The keyword prompt does not appear for every
keyword, as that would clutter up your command.

The command processor c~n attempt to complete keyword argument names and
values that are members of a limited set of possibilities. When you are typing a
word, if you press SPACE the command processor attempts to complete that word
and all previous words in the current keyword argument name or values. If you
press COMPLET E, the command processor attempts to complete the entire keyword
argument name or value in progress. For example, you type the following:

d e SPACE f SPACE f 0 0 . * SPACE : e SPACE n SPACE
: q SPACE a RETURN

The command processor displays:

Delete File (file [default ACME-BLUE:>joe>foo.lisp]) foo.*
(keywords) :Expunge (Yes, N0 1 or Ask) No :Query (Yes l No, or Ask) Ask

You can also press n-COMPLET E and see a menu of the arguments and their values.

Most keyword arguments have several values, but some are flag keywords with no

38

User's Guide to Symbolics Computers July 1986

value. For these keywords, you do not specify a value. Often, such flag keywords
exist as synonyms for some other keyword/value combination. For example,
suppose there was a keyword argument called :Expunge that had three values:
Yes, No, and Ask. The person defining the command could have decided for
convenience to offer :No-Expunge as a flag keyword that is synonymous with
":Expunge No".

Some commands have keyword arguments with interesting defaulting behavior.
These arguments have two different kinds of "defaults", one that applies when you
mention the keyword without explicitly supplying a value, and one that applies
when you omit the keyword altogether. For example, consider the :Expunge
argument for Delete File. When you omit : Expunge, the command processor
assumes you mean ":Expunge No". When you supply :Expunge and use SPACE to
fill in the default, it assumes you mean ":Expunge Yes". This style of argument
occurs less often than the one with the conventional defaulting behavior.

Keywords can be specified at most once in a command line. The command
processor views a command line in which the same keyword has been specified
twice as ambiguous; you have to correct the problem by removing one of the
keyword argument pairs.

3.3.2 Editing a Command

The command processor uses the input editor to manage typing, displaying, and
editing of a command that you are entering. You can move from field to field
within a command, change arguments, delete keywords, even change the command
name. See the section "Editing Your Input", page 134.

3.3.3 Help in the Command Processor

Press HELP to the command processor at any time before or during entering a
command. (Once you have started to enter a command, you can also use c-?) It
provides documentation that is appropriate for the particular stage yo'u have
reached in entering the command.

Before starting Explains how to enter a command processor command.

Command name Shows the commands that could be completions of what you
have typed so far.

Positional argument
Explains the characteristics of the argument that is required at
this position, including possible values.

Keyword argument name
If you have not yet typed a keyword flag character, the
command processor lists the remaining arguments and briefly

39

July 1986

describes them. If you have typed a keyword flag character, the
command processor shows the keywords that could be
completions of what you have typed so far.

Keyword argument value
The command processor presents documentation for the meaning
of all the possible values of the argument.

3.3.4 Completion In the Command Processor

The command processor offers two kinds of completion: partial completion and
token completion. A token is a command component, such as the command name
or a keyword argument name.

o Partial completion: When you are typing a word in a command n:J :':~e or
keyword argument name, if you press SPACE the command proce::::svr attempts
to complete the current word and all previous words in the current command
name or keyword argument name .

• Token completion: When you are typing a command name or keyword
argument name, if you press COMPLET E the command processor attempts to
complete the entire command name or keyword argument name in progress.

Completion is also available for argument values that are members of a limited set
of possibilities, and for system and package names.

3.4 Command History

Command processor commands are maintained in the input editor input history,
along with other input to the Lisp Listener or zl: break loop. C-M-Y yanks the last
element of the history. M-Y yanks the next previous element. Thus you can press
C-M-Y followed by M-Y M-Y ... to yank successively further back elements in your
input history. c-M-0 C-M-Y lists the elements of the history. A numeric
argument to C-M-Y yanks the element of the history specified by the argument.

c-M-sh-Y prompts you for a string and yanks the most recent element containing
that string. M-sh-Y acts like M-Y, yanking successive previous elements.

Your output history is maintained on the Lisp Listener window. You can scroll
back over your history using M-SCROLL or M-V. Scrolling forward is done with
SCROLL and c-V, just as in Zmacs and Zmail.

s-R searches back through your history. END terminates the search so that you
can yank the element you have found. s-S searches forward.

40

User's Guide to Symbolics Computers July 1986

You can mark sections of your output to be pushed on the kill ring.
c-Mouse-R i sht pops up a menu of marking and yanking options, or you can mark
elements directly using c-Mouse-Left. Hold down the CONT ROL key and the left
mouse button and move the mouse over the area you want to mark. The marked
region is underlined. You can push the marked region on the kill ring by clicking
on that choice in the Marking and Yanking menu or by pressing s-W.

If you have two Lisp Listeners side by side on your screen, the histories of both
remain mouse sensitive and you can yank elements from either one.

Clicking Mouse-Ri sht on an element of your history pops up a menu of possible
operations on that object. For example, clicking right on a pathname offers,
among other operations, a choice of Show File.

For a list of the mouse gestures that can be used on to manipulate your history on
dynamic windows: See the section "Mouse Gestures on Dynamic Windows", page
211.

You can also copy your output history into a Zmacs buffer for editing or saving in
a file. See the section "Copy Output History Into Editor Command", page 231.

You can clear your output history if you want to clean up and do a garbage
collection. See the section "Clear Output History Command", page 228.

3.5 Error Handling in the Command Processor

Part of the command processor's contract with the programs it serves is to collect
syntactically valid arguments for the command you want to use. Thus if the
command wants a numeric argument and you have entered a file spec, the
command processor notices the problem, complains about the argument that you
typed, moves the cursor there, and requests that you edit what you typed in order
to make it appropriate for the command ..

The command processor checks for errors of omission as well, warning you when
you try to finish a command before specifying some argument that needs to be
explicit.

In making its error warnings, the command processor prints out a diagnosis of the
problem and asks you to correct your input. It never removes anything from what
you have typed, since you are the best judge of how to remedy the problem.

3.6 Turning the Command Processor on and Off

The command processor is on by default in all Lisp Listeners and zl: break loops.
You can turn the command processor on and off, but normally you should have to

41

July 1986

do neither. If you want the command processor to treat input differently from the
default, or if you want a prompt that is different from the default, you can change
these characteristics by using the Set Command Processor command or setting
special variables: See the section "Setting the Command Processor Mode", page
99. See the section "Setting the Command Processor Prompt", page 100.

For example, suppose you want the command processor to act as if it weren't
there. You can use the Set Command Processor command to set the dispatch
mode to :form-only and the prompt to the empty string. Alternatively, you can
set cp:*dispatch-mode* to :form-only and cp:*prompt* to nil or the empty string.
If you then want to return the command processor to. its default behavior, you can
set cp:*dispatch-mode* to :command-preferred and cp:*prompt* to
"command: ".

If for some reason you need to turn the command processor off completely, you
can call cp:cp-off.

cp:cp-off Function
Turns off the command processor in all Lisp Listeners and zl: break loops.

Once you call cp:cp-off, you must call zl:cp-on to turn the command processor
back on.

cp:cp-on &optional (dispatch-mode cp:*dispatch-mode*) Function
(prompt-string nil prompt-supplied)

Turns on the command processor and sets its mode and prompt in all Lisp
Listeners and zl: break loops.

dispatch-mode is : form-only, : command-only, :form-preferred, or
: command-preferred. For the meaning of these keywords: See the section
"Setting the Command Processor Mode", page 99. This argument becomes
the value of the variable cp:*dispatch-mode*. The default mode is the
current mode (the current value of cp:*dispatch-mode*). The initial
default mode is : command-preferred.

prompt is a prompt option for displaying the command processor prompt in
Lisp Listeners and zl:break loops. This argument becomes the value of
the variable cp:*prompt* and is passed to the input editor as the value of
the :prompt option. The value can be nil, a string, a function, or a symbol
other than nil (but not a list): See the section "Displaying Prompts in the
Input Editor" in Reference Guide to Streams, Files, and I/O.

The default prompt depends on dispatch-mode. If dispatch-mode is
:command-preferred or :command-only, the default prompt is
"Command: ". If dispatch-mode is :form-preferred or :form-only, the
default prompt is the empty string, and no prompt is displayed. If you
supply a value of nil or the empty string, no prompt is displayed.

42

User's Guide to Symbolics Computers July 1986

43

July 1986

4. Using the Online Documentation System

4.1 Introduction to the Document Examiner

The Document Examiner is a utility for finding and reading documentation .

• Using the Document Examiner is similar to using the printed documentation.
Books in the document set are available on a shelf or on your desk; in the
Document Examiner, they are available in the Current Candidates pane when
you first select the Document Examiner. Just as you can open a book to any
topic and read through to the end of that topic, the Document Examiner lets
you "open" the documentation to any topic and read to the end of that topic.

• When you use the Document Examiner, you do not have to remember how
information is arranged; for example, you do not have to remember the
section, chapter, or printed book in which a particular function is explained.
Each function (and each section, chapter, or other division of printed
information - even entire books), is directly accessible.

• In addition to looking up documentation, you can create private
documents with the Document Examiner by placing bookmarks in
documentation topics and saving the list of bookmarks for future use.

• The online documentation is kept in a documentation database. The
documentation database consists of documentation binary files. Loaded into
your Lisp world is index information about the documentation database.

• Each documentation topic is stored as a record in the documentation
database. Each record contains information on a particular topic and is
uniquely identified by a topic name. Records fall into two categories: Object
records documenting code objects, such as make-array or tv: menu, and
concept records documenting abstract ideas that are not tied to code, such as
"Introduction to the Document Examiner". Records also have a type
designation. Examples of object record types are function, flavor, and
variable. Concept records have a type of section .

• SELECT D, [Document Examiner] in the System menu, and the command
Select Activity Document Examiner select the Document Examiner. Pressing
HELP in the Document Examiner displays a listing of its commands.

Note that the Document Examiner offers a command that lets you read complete
self-documentation:

44

User's Guide to Symbolics Computers July 1986

Document Examiner Documentation
Provides complete, chapter-length documentation of all
Document Examiner features. This command is equivalent to
clicking middle on [Help] in the command pane.

4.2 Looking up Documentation

You can look up documentation in the Document Examiner, in an editor (Zmacs,
Zmail, Converse), or at a Lisp Listener using a variety of commands. One
command looks up and displays documentation by name. Another set of commands
pops up a menu of all documentation topic names that satisfy a query request.
Such query requests are carried out by matching an initial substring, substrings,
or whole words against documentation topic names or their keywords. (A keyword
is comparable to a word in an index entry.) Clicking on a topic in one of these
menus looks up and displays the documentation for that topic. See the section
"Documentation Lookup Commands", page 46.

Another set of commands is available for repositioning text in the Document
Examiner. See the section "Repositioning Text in the Document Examiner", page
60.

Your lookup request is always made in terms of a documentation topic name. You
are prompted for a type (section or function, for instance) only when several topics
have the same topic name but different types. For instance,· suppose there are two
topics whose names are "error"; one documents a flavor and the other a functIon.
Requesting a display of "error" causes a menu of the possible types (flavor or
function) to pop up. You choose the type you want displayed.

When you look up documentation, the more general the topic you look up, the
larger the amount of documentation you see for it. The most general topic names
are the names of the books in the printed documentation set. When you first
select the Document Examiner, these books appear as items in the Current
Candidates pane. If you are unsure what level in the documentation you need, use
the command Find Table Of Contents, giving it the name of the printed book or
section that interests you.

In the Document Examiner, you can look at an overview of a given topic. The
overview includes the topic(s) and book(s) in which the topic appears, as well as a
list of keywords included in the topic. In addition, the overview includes a graph
showing the topic's position in the book or books in which it appears. You can use
this graph to look at the topics that precede and follow the current topic in the
printed documentation.

You can look at a topic's overview by using one of the following methods:

July 1986

• Click middle on a mouse-sensitive item in the viewer.

• Click middle on a topic in the list of current candidates or the list of
bookmarks.

45

• Use Show Overview at the command prompt and supply the name of a topic.

• Use [Show (M)] in the command menu and supply the name of a topic.

For more information on the overview facility: See the section "Show Overview",
page 52.

In addition, you can find the printed book in which the topic appears by using
What Document (n-X) in the editor.

When you use one of the documentation find commands in an editor or the
Document Examiner, a menu of topic names is displayed. This m~nu includes all
the topic names that fulfill your lookup query. When you click on one of the topic
names, the chosen topic is displayed. The find commands are Find Initial
Substring Candidates, Find Whole Word Candidates, Find Any Candidates, or Find
Table Of Contents.

Recovering From a Stuck Document Examiner

When you look up documentation at a Lisp Listener or an editor, the Document
Examiner is updated to include the last topic or menu you looked up. This
normally happens within a few seconds. Occasionally, the topic you look up in the
editor or Lisp Listener does not show up in a matter of seconds in the Document
Examiner. If this occurs, enter Peek. In Peek, press p to see a listing of
processes. Notice that a process called "DEX background" is showing. This
process appears only if there is a problem. Click on this process and select
"Debugger" from the menu. You should see a number of proceed options in the
Debugger, one of which offers to skip trying to process the current topic and move
on to the next pending one. Choose that proceed option. The background process
that feeds queued topics or candidates lists to the Document Examiner should then
"unplug" and put everything that it has been saving into the Document Examiner,
one thing at a time.

Topics Pruned From the Documentation Database

When the Documentation Database is installed at your site, the installation
manager has the option of pruning the database. By selecting from a menu of
major sections in the database, the system manager specifies which files are
deleted from the documentation database file server. In this way, space can be
saved on the file server by pruning sections not needed at your site.

Trying to display a topic that has been pruned from the database causes a

46

User's Guide to Symbolics Computers July 1986

"dummy" topic to be displayed. Suppose, for example, the files containing the
section "Streams" were pruned from the database at your site. Trying to display
the topic ":tyi" produces the following display:

:tyi
Documentation for :tyi as a Message is offline.
It appears in document: Reference Guide to Streams, Files, and I/O
Reload the file SYS: DOC; STR; STR2.SAB.4 to make this topic
accessible online.

message

If you decide you do want to see the topic online, you can use
sage:load-index-info to load the file that contains the index information for the
topic.

sage:load-index-info pathname Function
Loads pathname, a .sab file, into your world.

4.3 Documentation Lookup Commands

The Document Examiner, the editor, and the command processor all provide
various commands for looking up documentation. Some commands are available in
all three contexts, while others are available in only one of the contexts. The
following are descriptions of the commands provided, categorized according to the
context in which the command is available.

Lookup Commands Available In the Document Examiner, Editor, and
Command Processor

Show Documentation (an Overview)

Show Documentation looks up a topic and displays it. You can use the command
in the Document Examiner, in an editor, and at a command processor.

• In the Document Examiner, Show Documentation prompts for a t~pic name,
with completion, accepting only those topics for which documentation exists
in the database. You can use Show Documentation in the Document
Examiner any of the following ways:

o Type the command at the command pane.

o Use [Show] in the Document Examiner command pane menu.

o Click left on a mouse-sensitive item in the viewer or an item in the
list of candidates or list of bookmarks.

47

July 1986

• In an editor, Show Documentation (M-H, M-sh-D) prompts you for a topic
name, with completion, accepting only those topics for which documentation
exists in the database. You can direct the display of a documentation topic
to a supported printer (LGPl, LGP2, or DMPl) by issuing Show
Documentation (M-H) with a numeric argument. This prompts for an output
device.

• At a command processor, Show Documentation prompts you for a topic name,
with completion, accepting only those topics for which documentation exists
in the database. When you give the command the keyword argument
: dest i nat i on, the command offers to route it to the default text printer.

Note that topic names for methods are of the form
(flavor:method :generic-function-name flavor-name), for example,
(flavor:method :set-edges tv:menu). To look up documentation for methods, use
one of the following strategies:

• Use Show Documentation, giving it the topic name of the method in the
form (:method :generic-function-name flavor~name).

• Use Find Whole Word Candidates, giving it the name of the method in the
form :generic-function-name. Then click on the item whose documentation
you want to see.

Lookup Commands Available In the Document Examiner and Editor

Find Any Candidates

Sometimes you want to know if the documentation database contains any topics
about a particular subject. You might have a string or strings in mind dealing
with that subject. Using the command Find Any Candidates, you can search the
database for any topics whose topic names or keywords contain the string or
strings as substring(s).

A substring is a string that appears somewhere in another string. A substring
can be an initial substring. However, when you use the command Find Any
Candidates, the search is for a substring that appears anywhere in another string,
not necessarily as the initial substring of some word or words in the string. The
string "et" is a substring of the strings "set" and "setq". The string "et" is both
a substring and an initial substring of the string "etc". The string "et" is not a
substring of the strings "est" and "login".

The following situation shows how you can use this command: You want to know
if the database contains any topics about setting values of variables. You guess
that any such topics would use the string "set" somewhere in their topic names or
keywords. So, you use the command Find Any Candidates to search the database

48

User's Guide to Symbolics Computers

for any topics whose topic names or keywords contain the string "set" as a
substring. The search returns a list of almost 400 candidates.

July 1986

You can provide the command with a string of several words, for instance, the
string "resource window" . Note that when the given string contains any space or
hyphen characters, the command breaks the string into tokens using the space and
hyphen characters as delimiters. For example, given the string "resource
window", the command breaks it into two tokens, "resource" and "window".

The command looks at all the topic names and keywords in the database and lists
any in which all the tokens appear as substrings, in effect performing a logical
and test on the tokens. Given the string "resource window", the command lists
several topics, among them the function zl-user:defwindow-resource and the
section "The Top-level Function". Both tokens are substrings in the topic name
zl-user:defwindow-resource and in the keywords of "The Top-level Function".
The order in which you provide the words does not affect the search for topics.

Again, this search is performed not only on the topic names in the documentation
database, but also on the keywords listed for each topic. This means that you
often find topic names in which the given string does not appear at all. It does,
however, appear among the topic's keywords.

In the Document Examiner, the command lists the topic names it has found in the
candidates list. In an editor, the list takes the form of a menu.

In an editor, you can direct the display of a documentation topic to a supported
printer (LGP1, LGP2, or DMP1) by issuing Find Any Candidates with a numeric
argument. This pops up a menu offering to display the documentation on the
screen or route it to a supported printer.

This command is also available as [Find (R)] in the Document Examiner command
pane menu.

Find Initial Substring Candidates

Sometimes you want to know if the documentation database contains any topics
about a particular subject. You might have an initial substring or substrings in
mind dealing with that subject. U sing the command Find Initial Substring
Candidates, you can search the database for any topics whose topic names or
keywords contain the substring or substrings as initial substring(s).

An initial substring is a string that appears as the beginning of some string. For
example, the string "set" is an initial substring of the string "setq". The string
"set" is not an initial substring of the string "reset". The string "set" is a
substring of the string "reset".

The following situation shows how you can use this command: You want to know
if the database contains any topics about setting values of variables. You guess
that any such topics would use the string "set" as an initial substring somewhere

49

July 1986

in their topic names or keywords. So, you use the command Find Initial Substring
Candidates to search the database for any topics whose topic names or keywords
contain the string "set" as an initial substring. The search returns a list of over
200 candidates.

You can provide the command with a string of more than one word, for example,
the string "set-globally". Note that when the given string contains any space or
hyphen characters, the command breaks the string into tokens using the space and
hyphen characters as delimiters. For example, given the string "set globally", the
command breaks it into two tokens, "set" and "globally".

The command looks at all the topic names and keywords in the database and lists
any in which all the tokens appear as initial substrings, in effect performing a
logical and test on the tokens. Given the string "set globally", the command lists
two topic names, the functions zl:set-globally and zl:setq-globally. Both tokens
are initial substrings in each topic name. The order in which you provide the
words does not affect the search for topics.

Again, this search is performed not only on the topic names in the documentation
database, but also on the keywords listed for each topic. This means that you
often find topic names in which the given string does not appear at all. I t does,
however, appear among the topic's keywords.

In the Document Examiner, the command lists the topic names it has found in the
candidates list. In an editor, the list takes the form of a menu.

Find Initial Substring Candidates treats leading punctuation as part of the word.
Thus, asking for initial substring of "area" does not return "*area" or "%area". If
you want "anything containing area" you must use the most general matching
command, Find Any Candidates.

In an editor you can direct the display of a documentation topic to a supported
printer (LGPl, LGP2, or DMPl) by issuing Find Initial Substring Candidates with
a numeric argument. This pops up a menu offering to display the documentation
on the screen or route it to a supported printer.

This command is also available as [Find (M)] in the Document Examiner command
pane menu.

Find Table of Contents

Displays a menu containing the given topic's table of contents. For example, the
table of contents of "The Document Examiner" displays as:

50

User's Guide to Symbolics Computers July 1986

The Document Examiner
Introduction to the Document Examiner
Looking Up Documentation

Recovering From a Stuck Document Examiner
Topics Pruned From the Documentation Database

Documentation Lookup Commands
Lookup Commands Available in the Document Examiner J Editor J and Command Processor

Show Documentation (an Overview)
Lookup Commands Available in the Document Examiner and Editor

Find Any Candidates

You can ask to see a table of contents for any topic; it is not limited to top-level
books. The table of contents of "Documentation Lookup Commands" displays as:

Documentation Lookup Commands
Lookup Commands Available in the Document Examiner J Editor J and Command Processor

Show Documentation (an Overview)
Lookup Commands Available in the Document Examiner and Editor

Find Any Candidates

This command is also available as [Show (R)] in the Document Examiner command
pane menu.

Find Whole Word Candidates

Sometimes you want to know if the documentation database contains any topics
about a particular subject. You might have a word or words in mind dealing with
that subject. Using the command Find Whole Word Candidates, you can search
the database for any topics whose topic names or keywords contain the word or
words as whole word(s).

A whole word is a string separated from other strings by space or hyphen
characters. The string "set" appears as a whole word in the topic name "Creating
a Set of Condition Flavors" and in the topic name "set-globally". It does not
appear as a whole word in the topic name "setq". In the topic name "setq", the
string "set" appears as an initial substring.

The following situation shows how you can use this command: You want to know
if the database contains any topics about setting values of variables. You guess
that any such topics would use the string "set" in their topic names or keywords.
So, you use the command Find Whole Word Candidates to search the database for

July 1986

any topics whose topic names or keywords contain the string "set" as a whole
word. The search returns a list of almost 200 candidates.

51

You can provide the command with more than one word. For example, you givre
the command the string "set globally". Note that when the given string contains
any space or hyphen characters, the command breaks the string into tokens using
the space and hyphen characters as delimiters. For example, given the string "set
globally", the command breaks it into two tokens, "set" and "globally".

The command looks at all the topic names and keywords in the database and lists
any in which all the tokens appear as whole words, in effect performing a logical
and test on the tokens. Given the string "set globally", the command lists exactly
one topic, the function zl:set-globally. The order in which you provide the words
does not affect the search for topics.

Again, this search is performed not only on the topic names in the documentation
database, but also on the keywords listed for each topic. This means that you
often find topic names in which the given string does not appear at all. It does,
however, appear among the topic's keywords.

In the Document Examiner, the command lists the topic names it has found in the
candidates list. In an editor, the list takes the form of a menu.

Find Whole Word Candidates treats leading punctuation as part of the word.
Thus, asking for whole word match of "area" does not return "*area" or "%area".
If you want "anything containing area" you must use the most general matching
command, Find Any Candidates.

In an editor you can direct the display of a documentation topic to a supported
printer (LGPl, LGP2, or DMPl) by issuing Find Whole Word Candidates with a
numeric argument. This pops up a menu offering to display the documentation on
the screen or route it to a supported printer.

This command is also available as [Find] in the Document Examiner command
pane menu.

Lookup Commands Available In the Document Examiner

Select Candidate List

Selects from the history of candidates lists, popping up a menu of the
documentation find commands and their arguments issued in the current session.
You can reinstate a list of candidates by using this command.

This command is very helpful when, for instance, you need to cycle through
several lists. Instead of reconstructing a candidate list each time you want to look
at it, just use Select Candidate List and click on the list that you want to see.

This command is also available as [Select] in the Document Examiner command
pane menu.

52

User's Guide to Symbolics Computers July 1986

Show Overview

Prompts for a topic name. Shows an overview of the given topic. This overview
has two parts:

• The top part includes the type (section or function, for instance) and name
of the topic, possibly a short summary of the topic, the names of any other
topics in the documentation that include this one, the names of any printed
books that contain the topic, and the topic's keywords. The names of the
topic(s) and book(s) are mouse sensitive.

• The bottom part is a graph of the document hierarchy around the topic you
choose. (If the topic has multiple parents, multiple graphs are displayed.)
This graph includes:

o The topic's parent (the topic that includes the original topic)

o The parent's children (other topics called by the parent - the siblings
of the original topic)

o The topic's children (topics the original topic includes)

Figure 11 shows the display produced by doing Show Overview of the topic "Disk
Error Handling".

Note that the graph has some limitations:

• Long topic names are truncated in the graph.

• Very large hierarchies cannot be displayed fully; the truncated part of the
display is not accessible.

Like the topics in the top part of the overview display, the topics in the graph are
mouse sensitive; you can use the same mouse commands on them that you use on
topics in the top part of the display. This provides a good way to explore the
context in which a topic occurs. Clicking middle on different topics to generate
new graphs starting from those locations in the tree is the online equivalent of
looking in a printed book at the immediately surrounding pages for a topic.

For example, when you get an overview of "Disk Error Handling", you can see
that the topic is included in the topic "3600-Family Disk System User Interface"
and that it includes four other topics. If this overview does not give you enough
information, try an overview on the parent topic (in this case, "3600-Family Disk
System User Interface").

This command is also available as [Show (M)] in the Document Examiner
command pane menu.

July 1986

Document; Examiner Curre
Site
U~er

Overview Synb
Section: "Disk Error Handling" Text

It Is Included In topic: "3600-Famlly Disk System User Interface" Pros
Refe

It appears In document: Internals. Processes. and Storage Management Conn
Keywords: SUPPRESS RECOVERY ·N RETRIES· variable grouping related Pros

Inte
transfers SI: DISK EVENT ERROR TYPE function Handling Net",

Gene
3600-Famlly Disk System De

Conv
Sase

Disk Arrays Synb
Disk Events
01,. T",,"'" ~Ol'. ,=, Varla""

3600-Famlly Disk System Us Disk Error Handlin Disk Error Conditions
FEP File System Disk Error Codes
Disk Performance Disk Error Meters

Examples ot High Disk Perfor
Disk and FEP File System Utili

Bool<l

i

Figure 11. Document Examiner display of Show Overview of topic "Disk Error
Handling".

Lookup Commands Available in an Editor

What Document (M-X)

53

Displays the name of the printed book that contains the given documentation topic.
If the topic is included in more than one book, the titles of all the books
containing the given topic are listed. In the Document Examiner, this information
is available in the topic overview by clicking midcile on any mouse-sensitive item
in the viewer or any item in the list of current candidates or list of bookmarks.

Lookup Commands Available At a Lisp Listener and in Zmacs

When you are typing at a Lisp Listener or in Lisp Mode in Zmacs, you can use
the following input editor commands to look up the documentation for the current
Lisp object (the one that precedes point). For example, pressing M-sh-A after
typing (z1: 1 ogi n I whi t displays the documentation for zl:login.

M-sh-A Looks up the documentation for the current function.

54

User's Guide to Symbolics Computers July 1986

M-sh-V

M-sh-F

Looks up the documentation for the current variable.

Looks up the documentation for the current flavor.

When you look up documentation at a Lisp Listener using one of these input
editor commands, the documentation appears on the screen, and the input editor
then redisplays whatever you were typing.

When these commands do not find any documentation for the current
function/variable/flavor in the documentation database, they check the object itself
for a documentation string. If they find a documentation string, the string is
displayed.

It should be noted that once a documentation string is displayed in this manner,
the string has been installed as the documentation in your world. Thereafter, the
display does not change if the documentation string is changed. In other words,
this facility does not provide support for your putting new documentation into the
documentation database.

4.4 Documentation Hardcopy Commands

The Document Examiner provides several commands for hardcopying topics in
different combinations:

Hardcopy Documentation
Sends the documentation for a topic to a supported printer
(LGPl, LGP2, or DMPl). This option is also available on the
menu obtained by clicking right on a mouse-sensitive topic
anywhere in the Document Examiner.

Hardcopy Private Document
Prints a private document on a supported printer (LGPl, LGP2,
or DMPI). For more information on private documents: See the
section "Document Examiner Private Documents", page 61.

Hardcopy Viewer Sends the topics in a viewer to a supported printer (LG PI,
LG P2, or DMPI). Also available as [Viewer (R)] in the
command menu.

4.5 Document Examiner Win"ow

When you look at the Document Examiner window you see the following panes:

July 1986

Pane
Viewer

55

Description
Displays documentation.

Current candidates

Bookmarks

Commands

When you first enter the Document Examiner, displays the list
of books registered in the documentation database. Mter that,
displays the menu of topics that appeared the last time you used
one of the documentation find commands.

Displays a list of bookmarks, which are the names of topics
displayed in the viewer or added to the list of bookmarks
without being displayed.

Accepts commands at the prompt to the left and displays a
menu of selected Document Examiner commands to the right.

4.5.1 Document Examiner Viewer

The large area on the left of the Document Examiner window is called the viewer.
Documentation is displayed in the viewer. You can have mUltiple viewers, just as
you can have multiple editor buffers. The viewer currently visible is called the
current viewer. You can choose another viewer by using the command menu item
[Viewer]. The command prompts you for the name of a viewer. You can see a
list of viewers by pressing o-? This is a completion command. It lists the
possible completions of your response so far. Since you have made no response at
this point, all viewers are possible completions. Items in the list are mouse
sensitive.

To view documentation topics in the Document Examiner viewer, you can do one
of several things:

• Click on mouse-sensitive items in the viewer.

• Click on topics in the list of current candidates or the list of bookmarks.
See the section "Document Examiner List of Current Candidates", page 57.
See the section "Document Examiner List of Bookmarks", page 58.

• Use the Show Documentation command in the command pane. See the
section "Show Documentation (an Overview)", page 46.

• Use [Show] in the command pane menu. See the section "Document
Examiner Command Pane", page 59.

In the Document Examiner, when you select a topic for viewing, the topic is
displayed at the end of the current viewer and the topic's name is added to the
list of bookmarks. Topics chosen for display in the viewer are separated by
horizontal lines.

When you select a topic for viewing at a Lisp Listener or an editor, the topic is
displayed there, added to the end of the current Document Examiner viewer, and

56

User's Guide to Symbo/ics Computers July 1986

the topic name is added to the end of the list of bookmarks. However, when you
abort out of viewing a topic at a Lisp Listener or an editor, the Document
Examiner just adds the topic name to the end of the list of bookmarks and does
not display the topic in the current viewer.

Examples of Lisp code whose lines are wider than the viewer display with those
lines wrapped around. When you need to see such examples in their entirety, use
the Command Processor command Show Documentation in a wider window (for
example, a Lisp Listener).

In the viewer, cross-references and documented Lisp objects are mouse sensitive.
The following actions can be performed on mouse-sensitive items:

Mouse click

left

middle

sh-middle

right

Action

Displays the topic in the current viewer.

Shows an overview of the topic, in two parts. The top part
includes the type (section or function, for instance) and name of
the topic, possibly a short summary of the topic, the names of
any other topic(s) in the documentation that include this one,
the names of the printed books that contain the topic, and the
topic's keywords.

The bottom part is a graph of the document hierarchy around
the topic you choose. (If the topic has multiple parents,
multiple graphs are displayed.) This graph includes:

• The topic's parent (the topic that includes it)

• The children of the parent (other topics called by the
parent - the siblings of the original topic)

• The children of the original topic (topics the original topic
includes)

The names of the topic(s) and book(s) in both parts of the
overview are mouse sensitive. For an example of an overview:
See the section "Show Overview", page 52.

Issuing any command, pressing any keyboard key, or clicking a
mouse button causes the overview display to go away.

On a mouse-sensitive item in the viewer or list of current
candidates, adds the name of the topic to the list of bookmarks.
On an item in the list of bookmarks, discards the name· of the
topic from the list of bookmarks, and, if the topic has been
displayed, discards the display from the current viewer.

Pops up a menu of several commands with which to act on the
display. Commands listed but not mouse sensitive do not apply
to the pane on which you clicked.

July 1986

You can create, remove, and hardcopy viewers whenever you want and select
another viewer by using the following commands in the Document Examiner.

Command Action

Select Viewer Selects or creates a viewer, prompting for a name. Also
available as [Viewer] in the command menu.

Remove Viewer Removes a viewer, prompting for a name, then selects the last
viewer displayed. Also available as [Viewer (M)] in the
command pane.

Hardcopy Viewer Sends the topics in a viewer to a supported printer (LGPl,
LGP2, or DMPl). Also available as [Viewer (R)] in the
command menu.

4.5.2 Document Examiner List of Current Candidates

57

The upper right-hand pane of the Document Examiner window contains the list of
current candidates, which begins as a menu of books registered in the
documentation database. It then becomes the menu of topics that appeared the
last time you used one of the documentation find commands. A menu remains
until it is superseded by the next such command. Note that lines that are wider
than the list of current candidates pane are truncated.

You can reinstate a list of candidates by using the command Select Candidate List
or the menu command [Select], which pops up a menu of the documentation find
commands and their arguments issued in the current session.

The following actions can be performed on topics in the list of current candidates:

Mouse click

left

middle

Action

Displays the topic in the current viewer.

Shows an overview of the topic, in two parts. The top part
includes the type (section or function, for instance) and name of
the topic, possibly a short summary of the topic, the names of
any other topic(s) in the documentation that include this one,
the names of the printed books that contain the topic, and the
topic's keywords. .

The bottom part is a graph of the document hierarchy around
the topic you choose. (If the topic has multiple parents,
mUltiple graphs are displayed.) This graph includes:

• The topic's parent (the topic that includes it)

• The children of the parent (other topics called by the
parent - the siblings of the original topic)

58

User's Guide to SymboJics Computers July 1986

sh-middle

right

• The children of the original topic (topics the original topic
includes)

The names of the topic(s) and book(s) in both parts of the
overview are mouse sensitive. For an example of an overview:
See the section "Show Overview", page 52.

Issuing any command, pressing any keyboard key, or clicking a
mouse button causes the overview display to go away.

On a mouse-sensitive item in the viewer or list of current
candidates, adds the name of the topic to the list of bookmarks.
On an item in the list of bookmarks, discards the name of the
topic from the list of bookmarks, and, if the topic has been
displayed, discards the display from the current viewer.

Pops up a menu of several commands with which to act on the
display. Commands listed but not mouse sensitive do not apply
to the pane on which you clicked.

4.5.3 Document Examiner List of Bookmarks

The lower right-hand pane of the Document Examiner window contains the list of
bookmarks. This is a history of bookmarks you place in the documentation. A
bookmark is a pointer to a documentation topic. Each time you display a topic, a
bookmark is placed in that topic, and the name of the topic is added to the list of
bookmarks. You can also simply place a bookmark in a topic without displaying it
in the viewer by clicking middle twice on an item in the list of current candidates.
When you select another viewer, the list of bookmarks associated with it is also
selected.

The list of bookmarks distinguishes between bookmarks whose topics have been
displayed and those that have not. Topics that are displayed in the viewer are
listed on a white background in the order in which you looked them up. Topics
not displayed in the viewer follow and are listed on a gray background in the
order in which you created the bookmarks. A marker on the list of bookmarks
indicates the topic currently being displayed at the top of the viewer.

Lines that are wider than the list of bookmarks pane are truncated.

The following actions can be performed on topic names:

Mouse click

left

middle

Action

Displays the topic in the current viewer.

Shows an overview of the topic, in two parts. The top part
includes the type (section or function, for instance) and name of
the topic, possibly a short summary of the topic, the names of

July 1986

sh-middle

right

any other topic(s) in the documentation that include this one,
the names of the printed books that contain the topic, and the
topic's keywords.

The bottom part is a graph of the document hierarchy around
the topic you choose. (If the topic has multiple parents,
multiple graphs are displayed.) This graph includes:

• The topic's parent (the topic that includes it)

• The children of the parent (other topics called by the
parent - the siblings of the original topic)

59

• The children of the original topic (topics the original topic
includes)

The names of the topic(s) and book(s) in both parts of the
overview are mouse sensitive. For an example of an overview:
See the section "Show Overview", page 52.

Issuing any command, pressing any keyboard key, or clicking a
mouse button causes the overview display to go away.

On a mouse-sensitive item in the viewer or list of current
candidates, adds the name of the topic to the list of bookmarks.
On an item in the list of bookmarks, discards the name of the
topic from the list of bookmarks, and, if the topic has been
displayed, discards the display from the current viewer.

Pops up a menu of several commands with which to act on the
display. Commands listed but not mouse sensitive do not apply
to the pane on which you clicked.

4.5.4 Document Examiner Command Pane

The bottom portion of the Document Examiner window contains the command
pane. The command pane offers completion on command names as well as topic
names. c-? and (after you type at least one character) HELP display a mouse­
sensitive list of possible completions. Pressing HELP before starting to type a
command name displays the available commands.

The command pane contains a command menu at the lower right. Use the
following mouse clicks to perform these actions or commands.

Mouse
[Help]
[Help (M)]

Command
Brief command summary
Show the Document Examiner documentation

60

User's Guide to Symbolics Computers

[Show]
[Show (M)]
[Show (R)]

[Viewer]
[Viewer (M)]
[Viewer (R)]

[Find]
[Find (M)]
[Find (R)]

[Select]

[Private]
[Private (M)]
[Private (R)]

Show Documentation
Show Overview
Find Table Of Contents

Select Viewer
Remove Viewer
Hardcopy Viewer

Find Whole Word Candidates (XXXXX)
Find Initial Substring Candidates (XXX)
Find Any Candidates (..XXX ..)

Select Candidate List

Read Private Document
Load Private Document
Save Private Document

4.6 Repositioning Text in the Document Examiner

July 1986

The Document Examiner viewer, list of current candidates, and list of bookmarks
each have a bar located at its left edge. These bars provide the scrolling
capabilities found in dynamic windows throughout Genera. For more information
on the scrolling mechanism: See the section "Scrolling", page 10.

Note that, when you display a multipage topic, the positioning mechanism knows
about only the part of the topic you have seen. If you look at only one page of a
mUltipage topic, the Document Examiner knows about only that page. Positioning
in the Document Examiner works this way so as to limit the amount of space that
documentation takes up in memory.

You can perform several types of positioning with the mouse and the bar. You can
get a listing of positioning commands by pressing HELP while in the Document
Examiner.

• To reposition text forward one screen:
o Press c-V.
o Press SCROLL.

o Click left in the box at the bottom of the bar.

• To reposition text backward one screen:
o Press M-V.

July 1986

o Press M-SCROLL.

o Click right in the box at the bottom of the bar.

• To reposition quickly to any part of the current viewer:
o Place the mouse over the scroll bar, note the repositioning options in

the mouse documentation line, and click accordingly .

• To reposition a few lines forward:
o Press c-SCROLL.

o Click left in the arrow at the top of the bar.

• To reposition a few lines backward:
o Press c-M-SCROLL.

o Click right in the arrow at the top of the bar.

• To reposition to the beginning or end of the current viewer or topic:
o Press M- < to reposition to the beginning of the current viewer.

61

o Press M-> to reposition to the end of the current viewer. Note that
using this command while you have a partially displayed topic exposed
in the viewer refreshes the display.

Two additional commands allow you to reposition text for a single topic:

Beginning of Topic
Repositions the viewer to the beginning of the current topic.

End of Topic Repositions the viewer to the last screen displayed for the
current topic.

4.7 Document Examiner Private Documents

The Document Examiner provides mechanisms for placing bookmarks in the online
documentation and for creating private documents out of these bookmarks. The
bookmarks are pointers to documentation topics in the database. A private
document is a collection of bookmarks you put together and write out to a file.
This allows you to create your own customized documents by grouping together
selected documentation topics.

To create a private document you first create a list of bookmarks, either by
looking up some topics or by clicking appropriately on the list of candidates or on
mouse-sensitive items in the viewer. Then you save the list of bookmarks, using
the command Save Private Document, answering its prompt with a pathname of a
file to contain the bookmarks. You can load (Load Private Document) or read
(Read Private Document) the private document back into the Document Examiner

62

User's Guide to Symbolics Computers July 1986

at any time, again answering the prompt with the pathname of the file that
contains the bookmarks for the private document. For example:

1. Create a list of bookmarks consisting of some topics documenting login
procedures and functions. For example:

login-forms
log;n-setq
System Initialization Lists
zl :login

2. Use Save Private Document. The command prompts you and you answer
with the pathname of a file to contain the private document's bookmarks.
Following is the prompt for Save Private Document:

Enter a pathname for the document to contain these bookmarks
(default ACME-BLUE: lusr2/whit/private.psb):

Pathname merging is supported by this command and the default location for
a private document is always your home directory. So, with a home
directory of /usr2/whitl on ACME-BLUE, if you give Save Private Document
the filename "login-book", the command writes the list of bookmarks to
ACME-BLUE: /usr2/whitllogin-book.psb.

The following commands manipulate private documents:

Save Private Document
Saves the current list of bookmarks as a private document,
prompting for a pathname. Save Private Document writes the
list of bookmarks to the file whose pathname is given.

Read Private Document
Reads a private document into your computer and shows it in
the viewer. This command prompts for the pathname of a file
containing the bookmarks of a private document and the name
of a viewer to show it in. The default location for a private
document is always your home directory, and pathname merging
follows the standard rules.

Load Private Document
Loads a private document into your computer but does not show
it in the viewer. This command prompts for the pathname of a
file containing the bookmarks of a private document and the
name of a viewer. The default location for a private document
is always your home directory, and pathname merging follows
the standard rules.

63

July 1986

Hardcopy Private Document
Prints a private document on a supported printer (LGPl, LGP2,
or DMPl). For more information on private documents: See the
section "Document Examiner Private Documents", page 61.

64

User's Guide to Symbolics Computers July 1986

July 1986

5. Creating and Manipulating Files

5.1 Overview

Zmacs, the Lisp Machine editor, is built on a large and powerful system of text­
manipulation functions and data structures, called Zwei.

65

Zwei is not an editor itself, but rather a system on which other text editors are
implemented. For example, in addition to Zmacs, the Zmail mail reading system
also uses Zwei functions to allow editing of a mail message as it is being
composed or after it has been received. The subsystems that are established upon
Zwei are:

• Zmacs, the editor that manipulates te?Ct in files

• Dired, the editor that manipulates directories represented as text in files

• Zmail, the editor that manipulates text in mailboxes

• Converse, the editor that manipulates text in messages

Since these subsystems share Zwei in the dynamically linked Lisp environment,
many of the commands available as Zmacs commands are available in other editing
contexts as well.

In this manual, we discuss Zmacs commands in the context of Zmacs only. We
also describe Dired, the directory editor, since it is used within Zmacs.
You can find a tutorial for Zmacs in sys: example s; directory. Information on
running it can be found in the file teach-zmacs-info. text.

Show File sys:examples;teach-zmacs-info.text

You can enter, or invoke, the editor in several ways: Press SELECT E, use the
mouse, or run either the function ed or the function zwei:edit-functions. You can
also use the command Select Activity, specifying either Zmacs or Editor as its
argument.

5.2 Entering Zmacs with SELECT E

You can invoke the editor by pressing the SELECT key and then the letter E:

• If you have already been in the editor since booting the machine, Zmacs
returns you to the same place in the same buffer that you last used.

• If this is the first time you are entering Zmacs since booting the machine,
Zmacs puts you in an empty buffer named :+:8uffer-1:+:.

66

User's Guide to Symbolics Computers July 1986

SELECT E enters or returns you to the editor from anyplace in the system, not just
when you are talking to Lisp.

5.3 Entering Zmacs with the Mouse

You can invoke the editor using the mouse.

Summon a System menu by clicking right twice [(R2)]. Then click left on the
Edit option [Edit (L)], which puts you into a Zmacs buffer. As for SELECT E, if
you are returning to the editor Zmacs puts you back at the same place in the
same buffer, and if you are entering Zmacs for the first time it puts you in an
empty buffer.

5.4 Entering Zmacs with ed

The Lisp function ed enters Zmacs from a Lisp Listener. See the function ed,
page 180.

When reentering Zmacs within a login session, ed enters the editor, preserving its
state as it was when you left. When entering Zmacs for the first time during a
login session, ed initializes Zmacs and creates an empty buffer.

arg can have these values.

Value Description

t The ed function enters the editor, creates an empty
buffer, and selects it.

Pathname or string The ed function enters the editor and finds or creates
a buffer with the specified file in it.

Defined symbol The editor tries to find the source definition of that
symbol for you to edit. A defined symbol can be, for
example, a function, macro, variable, flavor, or system.

The symbol "zwei:reload II The system reinitializes the editor. This destroys all
existing buffers, so use this only if you have to.

5.5 Entering Zmacs with zwei:edit-functions

The Lisp function zwei:edit-functions also enters Zmacs from a Lisp Listener.

67

July 1986

zwei:edit-functions Function

zwei:edit-functions is like ed in that inside the editor process it throws you back
into the editor, whereas from another process it just sends a message to the editor
and selects the editor's window. zwei:edit-functions gives spec-list to the editor in
the same way that Edit Callers and similar editor commands would. See the
section "The Zmacs Edit Callers Commands" in Text Editing and Processing.

This command is useful when you have collected the names of things that you
need to change, for example, using some program to generate the list. spec-list is
a list of definitions; these are either function specs (if the definitions are
functions) or symbols.

Zmacs sorts the list into an appropriate order, putting definitions from the same
file together, and creates a support buffer called *Funct i on-Specs-to-Edi t-n*. It
selects the editor buffer containing the first definition in the list.
To insert new text anywhere in the buffer, position the cursor at the place you
want the new text to go and type the new text. Zmacs always inserts characters
at the cursor. The text to the right of the cursor is pushed along ahead of the
text being inserted.

5.6 Keystrokes

A keystroke has a character component and a modifier component, and is
performed by pressing a primary key (alphanumeric), possibly while holding down
a shift key or a group of shift keys. The primary key held down with either the
SHI FT or SV MBOl keys determines the character part of a keystroke. Whether you
hold down the other shift keys, CONT ROl, META, HV PER, and SUPER, determines the
modifier part of the keystroke.

In general, commands that begin with a CO NT ROl (c-) key modifier operate on
single characters, commands that begin with a META (M-) key modifier operate on
words, sentences, paragraphs, and regions, and commands that begin with a
CONT ROL META (C-M-) modifier operate on Lisp code.

Prefix character commands consist of more than one keystroke per command. For
example, to invoke the command c-X F, you first type the prefix character c-x and
then the primary key F. Prefix character commands are not case-sensitive - that
is, Zmacs converts a lowercase character following a prefLX character command
(like c-X) to uppercase. For example, c-X f is equivalent to c-X F.

Zmacs commands are self-delimiting. Unless otherwise specified, you do not need
to type a carriage return or other terminating character to finish typing a
command.

68

User's Guide to Symbolics Computers July 1986

5.7 Extended Commands

Extended commands extend the range of commands past the one-or-two-keystroke
limitation. You invoke Zmacs extended commands by name using the M-H
command:

Extended Command

Prompts for the name of a Zmacs command and executes that command.

Command completion is provided. See the section "Completion for Extended
Commands (M-H Commands)", page 115.

5.8 Description of Moving the Cursor

To do more than insert characters, you have to know how to move the cursor.

For complete descriptions of the commands summarized here and other cursor­
moving commands: See the section "Moving the Cursor in Zmacs" in Text Editing
and Processing.

5.9 Summary of Moving the Cursor

c-A Beginning of Line
Moves to the beginning of the line.

c-E End of Line
Moves to the end of the line.

c-F Forward
Moves forward one character.

c-B Backward
Moves backward one character.

M-F Forward Word
Moves forward one word.

M-B Backward Word
Moves backward one word.

M-E Forward Sentence
Moves to the end of the sentence in text mode.

M-A Backward Sentence
Moves to the beginning of the sentence in text mode.

69

July 1986

c-N Down Real Line
Moves down one line.

c-P Up Real Line
Moves up one line.

M-] Forward Paragraph
Moves to the start of the next paragraph.

M-[Backward Paragraph
Moves to the start of the current (or last) paragraph.

c-H] Next Page
Moves to the next page.

c-H [Previous Page
Moves to the previous page.

c-V, SCROLL Next Screen
Moves down to display the next screenful of text.

M-V, M-SCROLL Previous Screen
Moves up to display the previous screenful of text.

M-< Goto Beginning
Moves to the beginning of the buffer.

M-) Goto End
Moves to the end of the buffer.

5.10 Getting Out of Trouble

5.10.1 Overview of Getting Out of Trouble

Sometimes you type the wrong command. Mostly it is obvious what you have done
wrong, and it is a simple matter to undo it. There are, however, some kinds of
trouble you can get into that require special remedies. For example, you might
accidentally delete large chunks of text you need or you might begin to type a
command and then change your mind.

This section tells you how to recover from these situations.

5.10.2 Getting Out of Prefixes and Prompts

Most of the commands we have described are single keystrokes, but some
keystrokes are preflxes that must be completed with a second keystroke to specify
a command. c-H is the most important of these.

70

User's Guide to Symbolics Computers July 1986

5.10.2.1 Getting Out of Keystroke Prefixes

If you press a c-X and don't mean it, you can get out by pressing either c-G or
ABORT. These are general "get me out of here" commands, which you should use
whenever you get yourself into a confused state. ABORT and c-G are, for the most
part, synonymous in Zmacs.

5.10.2.2 Getting Out of Mlnlbuffer Prompts

Sometimes you accidentally type a command that prompts for some additional
information, or you type such a command on purpose and change your mind
afterwards. When Zmacs prompts and you just want to get out of the minibuffer
and back to where you were, press ABORT. If, instead, you wish to cancel and
reenter your response, use c-G, which clears any typein but leaves you still in the
minibuffer. When the minibuffer is empty, c-G cancels the minibuffer command.
(With some echo area prompts, you have to use ABORT.)
ABORT Abort At Top Level

Cancels the last command typed. It also cancels numeric arguments and region
marking.
c-G Beep

Cancels the last command. It also cancels numeric arguments and region
marking, except when given an argument. It cancels one thing at a time, so that
if you've typed a number of commands or responses, you must use use successive
c-Gs to cancel each one and return to top level.

5.10.3 large Deletions

Do not delete large pieces of text by repeatedly pressing RUBOUT and c-D. Apart
from being slow, text deleted character-by-character is gone for good.

Instead, use delete and kill commands that save deleted regions in the kill history.
c-K, I"I-K, and the commands that deal with regions easily wipe out and save larger
chunks. Also, RUBOUT or c-D with a numeric argument erases that many
characters all at once and saves them in the kill history. For full descriptions of
these delete and kill commands: See the section "Deleting and Transposing Text
in Zmacs" in Text Editing and Processing.

5.10.3.1 Getting Text Back

The system has different histories for different contexts. One of these is always
the current history. The two histories that you need to use for yanking in Zmacs
are the kill history and the command history. The kill history remembers pieces
of text that you killed or copied into it. In the context of Zmacs, the command
history remembers all the editor commands that use the minibuffer in any way.

Additions to the histories are placed at the top of the list, so that history elements
are stored in reverse chronological order - the newer elements at the top of the

July 1986

history, the older elements toward the bottom. A history remembers everything
that has been typed to it since the last cold boot - it has no size limit.

71

Yanking commands pull in the elements of the history. Top-level commands start
a yanking sequence; for example, c-Y yanks back the last text killed from the kill
history, and C-M-Y yanks back the last command performed in the minibuffer. M-Y

performs all subsequent yanks in the same sequence; for example, pressing M-Y

while the kill history is the current history yanks the next item from that history.

A yanking sequence ends when you type new text, execute a form or command, or
start another yanking sequence.

For complete descriptions of killing and yanking: See the section "Working with
Regions in Zmacs" in Text Editing and Processing.

5.11 Overview of Finding Out About Zmacs Commands

Sometimes you want to know if a Zmacs command exists that performs a certain
function. Or, you might think that you know what a certain keystroke does, but
you still want to make sure, or refresh your memory about its exact usage. This
manual is one resource you might use in these circumstances. Zmacs itself has a
number of built-in self-documentation facilities. This section describes some ways
to get at this documentation.

5.12 Finding Out About Zmacs Commands with HELP

The HELP key is a prefIx to a useful group of commands giving various kinds of
online help. If you forget what a command does, which keystrokes perform an
action, or have no idea how to accomplish something, press HELP.

Whenever you have a question of any kind, press HELP. Zmacs prompts you in the
minibuffer for details on what kind of help. If you don't know, press HELP again
and it tells you, in the typeout window, how to fInd what you're looking for. The
typeout window displays right over the editor window. The actual contents of the
buffer are not affected, and the next command you type restores the buffer
display.

5.13 Finding Out What a Zmacs Command Does

HELP C

The command HELP C displays "Document Command:" below the mode line and

72

User's Guide to Symbolics Computers July 1986

waits for you to type a command. When you do, Zmacs displays the internal
documentation for that command.

5.13.1 Example

If you press HELP-C followed by c-F, the response is:

c-F is Forward, implemented by COM-FORWARD:
Moves forward one character.
With a numeric argument (n), it moves forward n characters.

The first line above tells you the name of the command (in this case Forward),
and the name of the internal Lisp function that actually does the work (in this
case zwei:com-forward). (You don't need to know these internal names for basic
editing.) The COM-xxx name displayed by HELP C is mouse-sensitive: clicking left
on it edits the COM-xxx function, and clicking right displays a menu with choices of
Arglist, Edit, Disassemble, and Documentation.

The next line is a very short description of what the command does; it usually
tells you what the command does without a numeric argument and how a numeric
argument modifies that behavior.

5.13.2 Finding Out What a Prefix Command Does

When you ask (with HELP C) for documentation on a prefix command like c-H,
Zmacs prompts you, in the typeout window, to complete the command. Zmacs
displays the documentation for the prefix command in the typeout window.

5.13.3 Finding Out What an Extended Command Does

HELP D

When you want to find out what an extended command does, you can display the
documentation for the command by pressing HELP D, which prompts in the
minibuffer "Describe command:", to which you type the command's name.

5.14 Searching for Appropriate Zmacs Commands

HELP A

M-H Apropos

When you can only guess at part of the name or function of a command by the
action it performs, there is a command, HELP A, to help you scan information
about all the available Zmacs commands to find the one you want. All you have to

73

July 1986

do is type in a string, such as "buffer" and all command names plus the first line
of all help documentation are scanned for the string you specify.

Each Zmacs command has a name. The name is almost always exactly what you
would expect; that is, the name describes the function of the command in
reasonably plain English. If not, the word you're looking for is almost surely in
the first line of the help documentation.

With a numeric argument, HELP A searches only the command names.

The A stands for apropos. The M-H Apropos command works the same way.

5.14.1 Method for Searching for Appropriate Zmacs Commands

To find the command you want, just press HELP A or type M-H Apropos. Zmacs
prompts you for a substring, you enter your 'guess, and then Zmacs displays short
descriptions of all the commands whose names contain that substring. If the
substring that you enter contains a space, then Zmacs displays a short description
of all the commands whose names or help documentation includes a similarly
positioned space. Each description gives the short documentation for the command
and tells what keystrokes invoke it.

5.14.2 Example of a Search String for HELP A

The command you perform when you use M-Q is called "Fill Paragraph", so you
might expect a command that counts the number of paragraphs in the buffer to be
called something like "Count Paragraphs" or "Paragraphs Count". No matter
what, the word paragraph is going to be in the name or the first line of the help
documentation.

5.15 Finding Out What You Have Typed

HELP L

As you are editing you might find yourself in a hopelessly confused state and not
know how to recover.

If this happens to you it is often very enlightening to press HELP L to list the last
60 keystrokes you typed. By examining your own recent activity, it is often
possible to find out where you went wrong and how to save yourself.
Some Zmacs operations require you to provide names - for example, names of
extended commands, Lisp objects, buffers, or files. Often you do not have to type
all the characters of a name; Zmacs offers completion over some names. When
completion is available, the word Campl et i an appears in parentheses above the
right side of the minibuffer.

74

User's Guide to Symbolics Computers July 1986

You can request completion when you have typed enough characters to specify a
unique word or name. For extended commands and most other names, completion
works on initial substrings of each word. For example, M-X c SPACE b is
sufficient to specify the extended command Compile Buffer. SPACE, COMPLET E,
RET URN, and END complete names in different ways. Press HELP or click right
once, [(R)], on the editor window or minibuffer to list possible completions for the
characters you have typed. c-;' displays every command that contains the
substring.

SPACE

HELP or c-?

[(R)]

c-;'

COMPLETE

RET URN or END

Completes words up to the current word.

Displays possible completions in the typeout area.

Pops up a menu of possible completions.

Runs Apropos for each of the partially typed words in the name.

Completes as much as possible. This could be the full name.

Confirms the name if possible, whether or not you have seen the
full name.

5.16 Creating a Buffer

Zmacs creates your initial buffer when you iust enter the editor. To create other
buffers, use c-X 8, Select Buffer, to create an empty buffer or c-X c-F, Find File,
to create. either an empty buffer or a buffer containing a file.

c-X 8 prompts for the name of the buffer to which you want to go. Type the
buffer name and RET URN. If the buffer exists, Zmacs switches to that buffer and
displays it on the screen. If the buffer does not already exist, Zmacs offers to let
you create it by terminating the buffer name with c-RET URN. When you create a
new (empty) buffer, the display is blank.

The other way to create another buffer is c-X c-F, Find File. (c-X c-F) is
described in detail in "Editing Existing Files". c-X c-F prompts for the name of
a file, terminated by RET URN.

When you type c-X c-F for the first time in a Zmacs session, Zmacs offers you, as
a default file name, an empty file (with the Lisp suffix native to your host
computer) in your home directory on your host computer. For example:

System
Lisp Machine
UNIX
VMS

Empty Buffer Name
foo.1isp
foo.1
foo.1sp

75

July 1986

Base and Syntax Default Settings for Lisp

When you read a file that has a Lisp file type into the buffer, if that file does not
begin with an attribute line containing Base and Syntax attributes, Zmacs warns
that the file "has neither a Base nor a Syntax attribute" and announces that it
will use the defaults, Base 10 and Common-Lisp. See the section "Buffer and File
Attributes in Zmacs" in Text Editing and Processing.

Buffer Contents with c-H c-F

The first time you use c-H c-F, you can create an empty buffer using the Zmacs
default rile name, create an empty buffer using a name that you specify, or create
a buffer containing an existing file:

• To create an empty buffer with the initial default file name as the one
Zmacs associates with your buffer, press RETURN.

• To create a new empty buffer, respond with any name. Zmacs switches to
an empty buffer, gives the buffer the new name, and displays (New File) in
the echo area.

• To create a new buffer containing some file, respond to the prompt with the
name of that file. Zmacs switches to an empty buffer, reads that file in, and
names the buffer appropriately.

5.17 Creating a File

The first time you save or write the buffer, Zmacs creates the new file. You can
create a new file with c-H c-S. Since a new file does not have a name associated
with it yet, Zmacs asks for a name for the new file. It offers a default pathname,
which is the name of the buffer. If you wish to save the file out to the default
pathname, simply type a RET URN in response to the prompt.

If you wish to save the buffer in another file, provide that name as your response.
Completion is offered to simplify your response.

You can also write the buffer out with c-H c-W, Write File. Zmacs prompts in the
minibuffer for the name of the place you want to write the buffer's contents. c-X
c-W also offers a default path~ame, in this case, the name you supplied with c-H
c-F.

76

User's Guide to Symbolics Computers July 1986

77

July 1986

6. Sending and Receiving Messages and Mail

6.1 Using Zmail

6.1.1 Introduction

Zmail is a display-oriented mail system for Genera. Using Zmail, you can send
and receive electronic mail, archive your mail in disk files, and operate on groups
of messages selected according to very flexible criteria. This tutorial is intended
to give you a brief introduction to the basic features of Zmail. For a complete
description of all Zmail's capabilities: See the section "Zmail Reference Guide" in
Communicating with Other Users.

Since Zmail messages are typed into editor buffers, some familiarity with the
editor is also helpful. (See the section "Zmacs Manual" in Text Editing and
Processing.)

6.1.2 Starting up Zmail

Before running Zmail, be sure that you are logged in. See the section "Logging
in", page 17.

To run Zmail, do one of the following:

• Press SELECT M.

• Give the command Select Activity Zmail (or Select Activity Mail).

You get a display similar to Figure 11, called the top-level display. Now you can
send or read mail.

The top-level display consists of four windows: the Summary Window, the
Command Menu, the Message Window, and the Minibuffer, which contains the
Mode Line. The Summary Window displays a line for each message in the
current sequence, with an arrow indicating the current message.

The Command Menu provides a mouse-sensitive menu of the most useful top-level
commands. In Zmail documentation, when we say, for example, "[Get inbox]", we
mean the Get inbox command in this menu. Some of these commands (for
example, [DeleteD apply only to the current message.

The Message Window displays the current message. The message window is an
editor buffer.

The Mode Line gives status information about Zmail and about the current
message, including its properties and keywords.

The top-level display, with a mail file read in, is shown in Figure 12. Command
documentation is available online in several forms:

78

User's Guide to Symbolics Computers July 1986

No. .lnes ate Fron" 0 bU ect or eKt

.Pr~.file !lUIt. Uelete lJndelete .~epIY

ConfIgure Save Next. Previous Continue

Survey ~ x Jump Keywords Mail

Sort. ap over Move Select. Other

Type the HELP key for help.
To read your na11, click Left on "Get inboK".
To send a nessage, click Left on "Ma il" •
To send a bug report, click Middle on "Mail".

Message
Znail No current nessage sequence

IRead new mall: Mouse-L: for current buffer; Mouse-M: speclty Inbox for current butter; Mouse-R: specify the buffer by menu

L~rl ltl ..lUi '::I:1'::1:<tbJ tollen CL-UStol<: !:!,.ser Input <Wo!ather ~Ing Initialized>

Figure 12. Top-level Display

No • . lnes uate ~ron+ 0 Sub ect or eKt
469: 15 17-Jul andrew"Sales-Marketingl Re: TI knockoffs requested
479: 8 17-Jul li tt 1 e"LANG, sp Open Meet i ng

.471A 44 17-Jul CGAV .. Teach Znacs
472- 136 17-Jul pascoe"dcp [donclisi-vaKa.ARPA: bug on 3699 running re16.1]
473- 52 17-Jul Ret I+HIC, Cyphers, DCP, 8u Why does TV:PREPARE-SHEET bind INHIBIT -SCHEDULING-FLAG to T?
474: 52 17-Jul nancy+Bug-Sage pernuter prob 1 en
475- 43 17-Jul HunterIWHIT"cwrIWHITE,D Don't throw out those college teKtbooks yet.
476- 32 17-Jul roy"BUG-LISPM, roy Possible bug in Renove-duplicates
477: 44 17-Jul DODDS+Palter New In-house Worlds
47B: 34 18-Jul DCP"Houk, BUG-LISPM FSPT .FSPT
479: 73 18-Jul Skatell"SP, BKelly, Spoer Layered Products Nunberlng convention lnfornatlon
489: 43 18-Jul parnenter .. Houk, parnente brackets
481- 55 18-Jul BSG"jlbICD,RLB,DCP,Bug- What funargs do "hat
482- 31 18-Jul SGR"Marketlng [cfryIOZ.AI .MIT .EDU: Speech Generat i onl'Recogn 1 t i on software for 3699s]
483- 11 18-Jul sned+Bug-L iIIpn ACL bugs

\

yrofile ~Ult. ~~Iete Undelete Reply
Configure Save Next. Previous Continue

Survey Get. inbox Jump Keywords Mail
Sort. Map over Move Select. Other

Date: Thu, 17 Jul 86 16:21 EDT
Fron: Carl L. Gay <CGAVIWAIKATO>
Subject: Teach Znacs
To: ellenISTONV-BROOK
cc: cgaylWAIKATO
In-Reply-To: <86971715134".4. ELLENITOWHEE .SCRC.Synbollcs.COM>

Date: Thu, ~ Jul 86 15:13 EDT
Fron: V. El n Golden <ellenISTONV-BROOK.SCRC.Synbol1cs.COM>

Date: Thu, 17 Jul 86 11:32 EDT
Fron: Carl L. Gay <CGAVIWAIKATO.SCRC.Synbolics.COM>

Date: Tue, 15 Jul 86 15:17 EDT
Fron: V. Ellen Golden <ellenISTONV-BROOK.SCRC.Synbolics.COM>

Message
Znal1 S:>ellen>ellen.babyl Msg 114711'483 (answeredJ {) --More below--
New nail in S:>Ellen>na11.teKt for S:>ellen>ellen.babyl at 19:96.

~ouse-L:Edlt this message; Mouse-A:. Editor menu.
To see other commands press Shift Control or Meta-Shift.
It-rl 18 ..luI 7:14:39J tollen (;L-Ubtol<: User Input <Wo!ather Delng InItialized>

Figure 13. Top-level Display with Mail File

79

July 1986

o Explanations displayed automatically: usually appear below the mode line .

• Mouse documentation line.

• HELP key: provides short command documentation.

o Apropos (M-X): lists commands whose name contains a given string.

See the section "Online Help for Zmail" in Communicating with Other Users.

6.1.3 Sending Your Mall

To send a message, click on [Mail], which is displayed in the command menu.

Command Meaning

[Mail] or M (Kbd) Starts up a window for composing a mail message.

[Mail (M)] Starts up a window for composing a bug report. You can
control the behavior of click middle in your profile. See the
variable zwei:*mail-middle-mode* in Communicating with Other
Users.

[Mail (R)] Calls up a menu of mail sending operations.

Zmail displays two windows, one for the message headers, and one for the message
itself. If you are sending a bug message, information about the software
configuration of your machine is automatically added to the message window. (See
figure 14)

At this point, the headers window is selected, with the cursor following the word
To:. The program is prompting you for the contents of the To: field, which
specifies to whom the message is to be sent. Respond by entering a list of one or
more user names or mailing lists separated by commas.

If you wish to send someone a carbon copy of the message (which means they also
get the message, but are not considered a primary recipient), press RETURN, then
type Ce: followed by a list of one or more user names or mailing lists, separated
by commas. If you want to save a copy of the message for yourself, include your
own name on the Ce: list (or on the To: list).

Use c-N to get down to line containing the word Subj eet:. Fill in a short subject
line for the message. This Subject is used in the summary display of the
recipient's mail file. (If you have no Subj eet: field, the text of the first
meaningful line is used.)

To enter the message itself, select the message window by pressing END. The
message window is an editor window; you can type in the message using all the
commands of the editor. See the section "Zmacs Manual" in Text Editing and
Processing. The headers window is also an editor window.

80

User's Guide to Symbolics Computers July 1986

~TO: • Subject:
cc: ellen
Headers

•

~

"all
Znall "all (Text) Headers End adds nore text, Abort aborts
Type END uhen done edltln9.

IMouse-L: Select this window: Mouse-M: Mark line: Mouse-R: t._dltor menu.
To see other commands press Shift Control, Meta-Shift or Super.
[Fri 18 Jul 7:55:26] Ellen CL-U5ER: !:!.ser lnput <\leather betns tnitlalll~)

Figure 14. Mail Mode Display (One-window Mode)

At any time during editing you can return to the headers window to add or
change entries; just click left on the headers window. To get back to the mail
window, press END or click left on the mail window.

If you change your mind while working on the message and decide that you do not
want to send anything, press ABORT, and you return to top level; nothing is sent.
If you later decide that you did want to send the message after all, use [Continue].
See the section "Continuing Completed or Aborted Zmail Messages" in
Communicating with Other Users.

When you are satisfied, press END to send the message. If you are in the headers
window, press END twice. See figure 15 for a message about to be sent.

If the message is sent successfully, Zmail displays "Message sent" and returns to
top level. If there is a problem, Zmail tells you about it and remains in mail
mode. Typical problems are omitting the To: field, trying to send mail to a
nonexistent user, or mistyping a user name. Correct the error and resend the
message by pressing END twice.

6.1.4 Reading Your Mail

To read your mail, use [Get inbox]; Zmail reads in your primary mail file
(containing old mail) and any new mail.

July 1986

Subject: Trylrtl out Znall1 ~
To: KJoneslllonbat

cc: ellen ~
Headers

This Is a test ne:ss"se.

l1all
Znall l1all (Text) l1all End nails. Abort abOt'"ts
[19:56:19 Fron YUKON: Your request of 7 101'06 19:511:24 (·Screen Hardcopy·) has been conpleted.]

Mouse-L: Move pOint; Mouse-M: Mark word; ~ouse-R:.E~ltor menu.
To see other commands Dress Shift Control, Meta-Shift or Super.
lFrl 18 Jul 7:56:23J Ellen CL-USER: User Input

Figure 15. A Message about to be Sent

81

<Wuther- being InitialIzed>

82

User's Guide to Symbolics Computers July 1986

Command Meaning

[Get inbox] or G from the keyboard
Gets the new mail (inbox) for the current buffer. It has no
effect when a collection is current.

[Get inbox (M)] Prompts you for an inbox name for the current buffer.

[Get inbox (R)] Calls up a menu of possible buffers for which to get the new
mail.

For a complete discussion of the [Get Inboxl command: See the section "[Get
Inboxl Zmail Menu Item" in Communicating with Other Users.

Two files are involved here: your primary mail file, which contains messages you
have already seen, and your inbox, which contains new mail. If you do not have a
mail rIle - as might be the case the first time you run Zmail - the program offers
to create one for you. Press RET URN to let Zmail create the rIle, or ABORT if for
some reason you do not want a mail file. No similar problem with inbox files
exists; they are created when needed, and are deleted when Zmail reads your new
mail from them.

While an internal data structure used for conversation and reference commands is
created, the following message appears in the status line:

Parsing messages in filename

The parsing required in the creation of reference hash tables is time-consuming
for large unparsed files. The appearance of this message notifies you that it is
building a reference hash table so that you do not think something is wrong. If
you store your mail files in KBIN format, which is already parsed, this wait is
eliminated. See the section "Binary Format for Storing Mail Files" in
COlnmunicating with Other Users.

If you have no new mail, Zmail says so. Otherwise, the summary window starts to
scroll as lines appear for new messages, and the first new message is displayed in
the message window as the current message.

If the message does not fit entirely in the window, the bottom edge of the window
is a jagged line and the words --more below-- appear in the mode line. When text
is off-screen both above and below, both the top and the bottom edge of the
window are jagged and the message reads --more above and below--; when you
reach the final screen of the message, the top edge of the window is jagged and
the message reads --more above--.

There are several ways to scroll using the keyboard:

To display the next screen of the message
SPACE

c-v
SCROLL

July 1986

To go back to the previous screen
BACKSPACE
M-V
M-SCROLL

To return to the beginning of the current message

83

To use the mouse for scrolling, you can click left on the --more ... -- messages to
scroll forward one screen, or click middle to scroll back one screen. If you click
right, you get a menu of four items: [Forward] and [Backward], which move
forward and backward by one screen, and [Beginning] and [End], which move to
the beginning and the end of the message. For more precise control of scrolling,
use the scroll bar in the left margin of the window. See the section "Scrolling",
page 10.

6.1.5 What to Do After Reading a Message

Once you have finished reading a particular message, there are several things you
might want to do. You might want to read the next new message (if any), you
might want to delete the message if it is no longer of value, or you might want to
reply to the message.

6.1.5.1 Deleting and Undeletlng Messages

After you have finished reading a message, you often want to delete it and move
on to the next one. To do this, click on [Delete] or press D. This marks the
message as deleted - a 0 appears in its summary line - and moves to the next
message.

If you change your mind, you can undelete a message; click on [Undelete] or press
U. This starts at the current message and searches backward for a deleted
message, undeletes it, and selects it as the current message. When you delete a
message from a mail buffer, the message is not actually removed - it just acquires
the property Deleted. You r~move the message when you expunge the buffer; this
happens automatically when you save it, or you can expunge it manually.

6.1.5.2 Moving Among Messages

When you finish reading a message that you do not want to delete, use [Next] to
read the next message. To go back to the previous message, use [Previous]. To
jump to the first message in the file, use [Previous (M)]; for the last message, use

84

User's Guide to Symbol/cs Computers July 1986

[Next (M)]. (Note: These commands ignore deleted messages; they actually give
you the next undeleted message, previous nondeleted, first nondeleted, and last
undeleted.)

To read an arbitrary message, select it from the summary window by clicking left
on its summary line. If the summary does not all fit in the window, you might
first have to scroll the display using the left-margin scroll bar.

6.1.5.3 Replying to Mall

To reply to the current message, click on [Reply].

Command Meaning

[Reply] or R (Kbd)Starts up a window to reply to the current message. You can
customize the window configuration. See the variable
zwei:*reply-window-mode* in Communicating with Other Users.

[Reply (M)]

[Reply (R)]

Starts up a window to reply to the current message with the
message being replied to included. You can control the behavior
of click middle in your profile. ,See the variable
zwei:*middle-reply-mode* in Communicating with Other Users.

Calls up a menu of reply options.

This sets up the screen as three windows: the Message window displays the
current message, the Headers window contains the reply headers, and the Mail
window is where you write the reply itself. (See Figure 16)

The cursor is in the Mail window, so you can just type in the text of the message,
using editor commands to edit what you are typing. To send the message, press
END. If you change your mind and do not want to reply, press ABORT. If you want
to edit the headers, you can select the Headers window by clicking left on it.
These commands are the same as in mail mode. See the section "Sending Your
Mail", page 79.

What is special about reply mode is that the reply headers are written
automatically. The headers that Zmail writes are the To: field, the Cc: field, the
Subj ect: field, and the I n-Repl y-To: field. The Subj ect: field is simply a copy of
the original Subject:. Defaults for the To: and cc: fields are provided. Notice
the mouse-documentation line. To set up alternate To: and Cc: fields, use [Reply
(R)] and choosing from the pop-up menu the combination of To: and CC: you want.
See the section "[Reply] Zmail Menu Item" in Communicating with Other Users.

6.1.5.4 Saving the Mall File

When you have finished reading your new mail, you should save your mail file by
using [Save]. This expunges deleted messages from the file and then saves it,
writing the modified mail file back out to the file system where it is kept until
next time.

July 1986

~te: Thu, 17 ..Iul 86 16:21 EDT
Fro,,: Corl L. ~y <CGAy.IlAIKATO>
Subject: Teoch "acs
To: ell en.ST ON -BROOK
cc: cgay.IlAIKATO
In-Reply-To: <869717151311.1.ELLEN'TOIlHEE .SCRC.Sy"bollcs.COI1>

Date: Thu, 17 ..Iul 86 15:13 EDT
Fro,,: U. Ellen Golden <ellen'STONV-BROOK.SCRC.Sy"bol1cs.COI1>

Mesaage

Date: Thu, 17 ..Iul 86 11:32 EDT
Fro,,: Carl L. Cay <CGAY'IlAIKATO.SCRC.Sy"bol1cs.COI1>

Dote: Tue, 15 Jul 86 15:17 EDT
Fro"l U. Ellen Colden <ellen'STONV-BROOK.SCRC.Sy"bol1cl.COI1>

You have "oved Teach Z"acs to the r.1-6 sYII:eKa"p1el; I lee, but you haven't
"oved It to rel-7 yet. Could you do that 110 .,. can have DA try It?
The directory (if you are running rel-6 110 It Isn't In your logical translations)
Is q:>rel-7>lIys>eKa"plell

~
To: KJonea'llo"bat
Subject: Trying out Z"anl
ee: ellen
Headera
Thill Is a teat "esllage.

l1al1

I ~ouse-L: .:select tnls WindOw; Mouse-~: Mark word; ~ou8e-R: ~dltor menu.
To see other commands press Shift Control Meta-Shift or Super.

85

Lt-r, ltl .JUI '::>b:atlJ t.llen CL-Ul,ERI Uller Input <lIeather being Initial Ired>

Figure 16. Mail Mode Display (Two-window Mode)

If you now wish to leave Zmail, select another program using the SELECT key or
the System menu.

6.1.6 Getting Fancy with Zmall

Once you have mastered the basics of Zmail, there are many advanced facilities
that you can use for composing messages and for organizing your mail files. This
section touches on three commonly used facilities. For more detailed information
and further suggestions: See the section "Zmail Reference Guide" in
Communicating with Other Users.

See the section "Using Character Styles in Zmail", page 164.

6.1.6.1 Tagging Messages with Keywords

Zmail allows you to classify and categorize messages by adding keywords to them.
Keywords are useful in many ways, among them:

Topic Indicators Indicate the major topic of the message. If your work involves
designing natural language interfaces, for example, you might
use keywords such as dictionary, parser, and syntax-checker.
The topic indicators you need depend on the sort of messages
you get.

86

User's Guide to Symbolics Computers July 1986

Classifiers

Status Flags

Indicate the type of message. For example, you might use
keywords such as bug, feature-request, documentat; on-bug, and
; ssue to categorize messages as bug reports, requests for
features, reports of documentation bugs, and issues under
discussion.

Indicate the status or priority of the message. For example, you
might use a keyword such as to-do to flag messages that require
you to do something and a keyword such as timing-out to flag
messages on which you are awaiting action from other people.
You could use P1, P2, and P3 to indicate the priority of a
message requiring further action.

To add keywords to the current message, click on [Keywords] in the Zmail menu.
If you are using keywords for the first time, click right.

[Keywords (R)] Pops up a highlighted menu of your keywords, in addition to the
entry [New] for adding a new keyword. If you have never
specified keywords for any messages, the menu contains only
three items: [Do It], [Abort], and [New]. Click on [New] and
type a keyword. The keyword appears on the menu, highlighted.
Click on [Do It] and the keyword appears in braces on the
summary line of the message. Keywords are stored in the mail
files of the messages they are attached to. You can specify
keyword/mail file associations explicitly in your Profile. See the
section "Zmail Profile Options" in Communicating with Other
Users.

Clicking left on [Keywords] adds the last used keyword(s) to the current message.

You can sort your mail files by keywords, to have all the messages on one topic
together. See the section "[Sort] Zmail Menu Item" in Communicating with Other
Users.

Your keywords appear in the menu offered by [Survey] so you can get a list of all
the messages with a specific keyword attached to them. See the section " [Survey]
Zmail Menu Item" in Communicating with Other Users.

For more information about using keywords:

See the section "[Keywords] Zmail Menu Item" in Communicating with Other
Users.

See the section "Hints for Using Keywords, Mail Collections, and Mail Files" in
Communicating with Other Users.

July 1986

6.2 Talking to Other Users

6.2.1 Introduction to Converse

Converse is a facility for communicating interactively with other logged-in users.
A message sent with Converse pops up on the screen of the recipient almost
instantaneously. The recipient has the choice of replying right in the pop up
window, entering Converse to reply, or doing nothing.

The Converse interactive message editor is operated by a window with its own
process. Converse keeps track of all of the messages that you have received or
sent. The Converse window shows all of the messages that have been sent or
received since the machine was cold booted.

Messages sent between you and another user are organized into a conversation.
Conversations are separated from each other by a thick black line. Within each
conversation are all messages, outgoing and incoming, arranged in chronological
order, and separated by thin black lines.

87

You can use Converse to look at conversations, send messages, and receive
messages. Converse is built on the Zwei editor, so you can edit your message as
you type it, or pick text up and move it around between one message and another,
or among messages, files, and pieces of mail.

To enter Converse, do one of the following:

• Press SELECT C.

• Evaluate (zl:qsend).

• Click on [Select / Converse] in the System menu.

• Answer C in the Converse pop-up window when a message arrives.

6.2.2 Using Converse

6.2.2.1 Sending and Replying to Messages with Converse

When you enter Converse for the first time, the window is empty except for a
blank message at the top of the screen, starting with To:. You start a message by
filling in a recipient after the To:, pressing RET URN and then typing the message
text. It is not necessary to know what machine the person is using, but if you do
know and give the recipient as name@host the message is sent considerably faster
since it is not necessary to search the namespace to find the machine. To send
the finished message, press END. When the message has been sent successfully, it
appears as part of a conversation. A blank message remains at the top of the
screen, and just below that, a heavy black line delimits the message(s) of the

88

User's Guide to Symbolics Computers July 1986

II'" ·

Figure 17. A Fresh Converse Window

To: KJoneslloloMbllt
Hllve you relld MY proposII1 yet?q

Figure 18. A Converse Message About to be Sent

conversation you just started. Just below the heavy black line is another blank
message, but this one has the name of the person to whom you sent the message
filled in. Below this blank message, separated by a thin black line, the message
you just sent appears, with the date and time it was sent.

When the person to whom you sent the message replies, the reply appears in the
conversation above the message you sent, and below the blank message. Your
cursor is left in the blank message so you can reply easily.

You use regular editor commands to move around in the Converse window. Two
commands, specific to Converse, are particularly useful: C-M-] (move to next
conversation) and C-M- [(move to previous conversation).

You exit from Converse by pressing ABORT or by selecting another window. You
can also press c-END when sending a message to send the message and exit from
Converse.

To start a conversation, enter Converse, go to the top of the Converse window and
fill in the blank message, starting with the To: line to specify the new recipient.
Finish by pressing END to send the message. To send the message and exit
Converse, finish by pressing c-END.

July 1986

To:

To: joQblq-blrd. STT .Corner. CON
To: KJone~'~onbat •
Message sent to KJones'~onbat (1.'18"86 17:53:95)
OK. Ho.. about Monday?

KJones'~onbat 1.'18"86 17:54:33
Ve~. let'~ discuss it over lunch.

Message ~ent to KJones'~onbat (1.'18"86 17:41:15)
Have you read ny proposal yet?

Figure 19. A Converse Conversation

To send a message as part of an existing conversation, find that conversation in
Converse and fill in the blank message at the beginning of the conversation,
finishing by pressing END to send the message, or by pressing c-END to send the
message and exit Converse.

You do not have to be in the main Converse window to receive messages.
Converse will deliver a message to you in any window. Since this might be
annoying, you can customize what happens when a message arrives by using the
variable zwei:*converse-mode*. See the section "Customizing Converse", page
106.

89

When you are in a window other than Converse and a new message arrives, a
window pops up at the top of the screen displaying the message. You can respond
R to type in a reply, N (for "no action") to make the message window deexpose, or
c to enter Converse. Entering Converse has several advantages: you can look
over the previous messages in the conversation, and you can use the editor to help
you construct a reply.

Converse remembers all messages that you send or receive, even if you did not use
the main Converse window to send them or reply to them.

Converse lets you know as soon as a message comes in, by beeping or flashing the
screen, and if it is supposed to notify you, it does so without waiting for the main
Converse process to wake up. In pop-up mode, if the pop-up message window is

90

User's Guide to Symbolics Computers July 1986

already in use, an incoming message causes the message window to beep or flash
but not to display the message. This is necessary since only one message at a
time should pop up. When the message window is deexposed it is reexposed
immediately with the new message in it.

If the main Converse window is exposed, a new message is shown there with its
conversation; it is never shown via a notification or a pop-up message window. If
the main Converse window is exposed but its process is busy (typically, when it is
in the Debugger or in an editor command and waiting for typein), Converse beeps
or flashes but does not display the message. You can display the message by
clearing the Converse process. You can usually clear the Converse process by
pressing ABORT.

6.2.2.2 Converse Commands

Converse has several commands for managing your conversations.

HELP

END

c-END

ABORT

c-M

Displays a summary of Converse commands.

Sends the current message. The behavior of this key can be
changed by the variable zwei:*converse-end-exits*.

Sends the current message and exits from Converse. The
behavior of this key can be changed by the variable
zwei:*converse-end-exits* .

Exits Converse.

Mails the current message instead of sending it. This is useful
if Converse reports that the person you want to send the
message to is not logged in anywhere.

Moves to the previous conversation.

Moves to the next conversation.

Delete Conversation (M-X)

Deletes the current conversation from the Converse window.

Write Buffer (M-X)
Writes the entire Converse buffer (all conversations) to a file.
It prompts for a pathname.

Write Conversation (M-X)

Writes only the current conversation to a file. It prompts for a
pathname.

91

July 1986

Append Buffer (n-X)
Appends the entire Converse buffer (all conversations) to the
end of a file. It prompts for a pathname.

Append Conversation (n-X)

Appends only the current conversation to the end of a file. It
prompts for a pathname.

Regenerate Buffer (n-X)

Rebuilds the structure of the Converse buffer. This might be
necessary if you damage the buffer in some way, for instance by
removing one of the black lines separating conversations. Some
error messages might ask you to give this command and try
again. The message you are currently typing might be lost, but
you can prevent this by putting the text on the kill ring by
marking it and using n-W before issuing the n-H Regenerate
Buffer command.

6.2.2.3 Lisp Listener Commands for Converse

zwei:qsends-off &optional (gag-message t) Function
Sometimes, you might wish not to be interrupted with interactive messages.
A function called zwei:qsends-off exists for such occasions. If you give it
a string argument, gag-message, the variable zwei:*converse-gagged* is set
to this string and the string is returned to anyone who tries to send a
message to you. Otherwise, they just get a note saying that you are not
accepting messages. zwei:qsends-on toggles zwei:*converse-gagged*.

zwei:qsends-on Function
After using zwei:qsends-off to notify interactive message senders that you
are not accepting messages, zwei:qsends-on allows interactive messages to
be received again.

chaos:notify-Iocal-lispms &optional message &key (report t) Function
Sends message to all Lisp Machines at your site based upon information it
gets from the namespace database about the Lisp Machines at the local
site. message should be a string; if it is not provided, the function prompts
for a message. Each recipient receives the message as a notification, .
rather than as an interactive message.

If report is t (the default), the function reports whether it succeeded or
failed to deliver the message to each machine at your site. If report is nil,
it only reports its failures.

92

User's Guide to Symbolics Computers July 1986

zl:qsend &optional destination message Macro
Sends interactive messages to users on other machines on the network.

destination is normally a string of the form name@host, to specify the
recipient. If you omit the @host part and just give a name, zl:qsend looks
at all of the Lisp Machines at your site to find any that name is logged
into; if the user is logged into one Lisp Machine, it is used as the host; if
more than one, zl:qsend asks you which one you mean. If you leave out
destination altogether, doing just (zl:qsend), Converse is selected as if you
had pressed SELECT C.

message should be a string. For example:

(qsend kjones@wombat "Want to go to lunch?")

If message is omitted, zl:qsend asks you to type in a message. You should
type in the contents of your message and press END when you are done.

The input editor is used while you type in a message to zl:qsend. So you
get some editing power, although not as much as with full Converse (since
the latter uses Zwei). See the section "Editing Your Input", page 134.
zl:qsend predates Converse and is retained for compatibility.

print-sends &optional (stream zl:standard-output) Function
Prints out all messages you have received (but not messages you have
sent), in forward chronological order, to stream. Converse is more useful
for looking at your messages, but this function predates Converse and is
retained for compatibility.

zl:qreply &optional text Function
Sends a reply to the Converse message received most recently. You can
supply a string as the text of the message or omit it and let zl:qreply
prompt for it. It returns a string of the form "user@host", indicating the
recipient of the message. This function predates Converse and is retained
for compatibility.

93

July 1986

7. Customizing Genera

7.1 What is Customizing?

When you load a file or set a variable (for example, specifying that your
hardcopies are sent to a certain printer, changing the character style of the screen
display, or changing the appearance of the command prompt), you alter the default
system behavior in your environment for the rest of the time you remain logged
in. This type of per-session customization does not remain in effect in your
machine after you log out or cold boot. If you load a file or set a variable for an
intentionally temporary effect, this is fine.

However, if you decide that you want these changes to be put into effect every
time you log in (permanently in your environment), you can save them in an init
file, thereby instructing the system to automatically execute this sequence of
commands every time you log in.

7.2 Init Files

An init file is a Lisp program that gets loaded when you log in; it can be used to
set up a personalized environment. An init file contains only Lisp forms. The
name depends on the type of file system it is stored on:

3600
UNIX 4.1
UNIX 4.2
VMS
TOPS-20
ITS

lispm-init.lisp
lispm-init.l
lispm-init.lisp
lispmini.lsp
lispm-init.lisp
name lis pm

A simple init file consists primarily of the login-forms and the setq special forms.
The login-forms special form evaluates forms in your init file and arranges for
them to be undone when you log out. The setq special form sets the value of one
or more variables.

Here is an example of a simple init file:

; -*- Mode: LISP; Package: USER; Lowercase: T; Patch-file: T -*-

(login-forms
(setq si:*cp-prompt* 'si:arrow-prompt)

94

Us(!r's Guide to Symbolics Computers July 1986

zwei:
(setq text-mode-hook Jauto-fill-if-appropriate)

(setq si:local-finger-location
(cond «y-or-n-p "in your office? ")

"349 Domingo x562")

(t (format t "-&Where are you? ")
(readline query-io)))))

(si:set-default-hardcopy-device "Echo-Lake")
(si:set-screen-hardcopy-device "Echo-Lake")

In this simple init file, the first setq changes the value of the variable that
displays the command processor prompt from the default Command: to an arrow.
The second setq specifies that the system automatically fill text that you type in
any editor-based activity when appropriate. The third setq sets the value of the
variable that reports your user ID and on what machine you are logged in to ask
you when you log in whether you are in your office, and if not, where you are so
that it can send that information to the network namespace database.

The rest of the init file contains two functions that set the default printer for the
various commands that hardcopy files and for the FUNCTION Q Screen Hardcopy
command.

Here is the description of setq:

setq {variable value}... Special Form
Used to set the value of one or more variables. The first value is
evaluated, and the first variable is set to the result. Then the second value
is evaluated, the second variable is set to the result, and so on for all the
variable/value pairs. setq returns the last value, that is, the result of the
evaluation of its last subform. Example:

(setq x (+ 3 2 1) Y (cons x nil))

x is set to 6, y is set to (6), and the setq form returns (6). Note that the
first variable was set before the second value form was evaluated, allowing
that form to use the new value of x.

If you do not cold boot your machine after each session, you should arrange for
your customizations to be undone when you log out. You do this by using
login-forms:

95

July 1986

login-forms &body forms Special Form
login-forms is a special form for wrapping around a set of forms in your
init file. It evaluates the forms and arranges for them to be undone when
you log out.

login-forms always evaluates the forms, even when it does not know how to
undo them. For forms that it cannot undo, it prints a warning message.

In the following example, login-forms arranges for the base to be reset at
logout to 10 (the default) and for zl-user:bar either to become undefined or
to get its old function definition. It would warn you about zl-user:quux
being impossible to undo.

(login-forms
(setq-standard-value base 8)
(setq-standard-value ibase 8)
(defun bar (x y) (+ x y»
(quux 3»

You can create functions to undo forms that login-forms does not
recognize. To undo a given form, you put a property on the symbol that is
the car of the form to undo. For example, to create a function to undo
zl-user:quux:

(defun (:property quux :undo-function) (form)
'(undo-quux ,(cadr form»)

The value returned by an undo function is a form to be evaluated at logout
time.

zl:setq-standard-value is a special form, similar to setq, that you should use if
you reset any of the variables that control aspects of the Lisp environment (for
example, the default base) as opposed to convenience features. See the section
"Standard Variables" in Symbolics Common Lisp.

Other variables can be set inside login-forms using zl:setq-globally:

zl:setq-globally &rest vars-and-vals Special Form
zl:setq-globally should be used with login-forms for anything that might
be bound while evaluating the login-forms.

zl:setq-globally works like setq but sets the global values, bypassing any
special-variable bindings. login-forms knows how to undo this.
zl:setq-globally is the recommended way to set things in your init file that
are not set with zl:setq-standard-value.

An example:

(login-forms
(setq-globally zwei:*converse-beep-count* 4»

96

User's Guide to Symbolics Computers July 1986

To load individual files from your init file, use the zl:load function:

(cp:execute-command "show file" "foo.lisp")
(cp:execute-command "show herald" :detailed t)
(cp:execute-command "load system" "mysystem" :compile :always :automatic-answer t)

(load "SYS: LISP; MY-PROJECT")
(load "Tuna:>kjones>examples>decorate")
(load "vixen:llusrllkjoneslltoolslltoolkit")

See the function cp:execute-command, page 102.

The first sample form loads a file using its logical pathname; the second form
loads a file from a LMFS using its physical pathname. The third form loads a file
from a Unix system in the appropriate syntax (the slashes are doubled).

7.3 How to Create an Init File

The easiest way to create an init file is by copying the sample in it file shown here
and then building on it, or by copying someone else's init file. Often you acquire
customizations that you find out about from people who have been using Genera
longer than you.

7.4 Useful Customizations to Put in Your Init File

The number and kinds of customizations you can put in your init file is limited
only by your imagination. This section offers some suggestions that many users
have found useful, but it is by no means an exhaustive list.

7.4.1 Adjusting Console Parameters

si:*kbd-auto-repeat-enabled-p* Variable
Controls whether or not keys repeat if held down (auto-repeat). The
default is nil, meaning that holding keys down does not cause repetition.
I t can be set using setf:

(setf si:*kbd-auto-repeat-key-enabled-p* t)

Setting si:*kbd-auto-repeat-key-enabled-p* to t turns on auto-repeat. You
can set the length of time a key must be held down before it starts to
repeat with si:*kbd-auto-repeat-initial-delay*.

Controls how long you must hold down a key before auto-repetition starts,

July 1986

in sixtieths of a second. The default is 42, which is between half and
three-quarters of a second. You can adjust it using setf.

97

si:*kbd-auto-repeat-initial-delay* Variable
Controls how long you must hold down a key before auto-repetition starts,
in sixtieths of a second. The default is 42, which is between half and
three-quarters of a second. You can adjust it using setf.

si:set-auto-repeat-p key &optional (state t) Function
Allows you to specify keys that should not auto-repeat even if auto-repeat is
enabled. By default all keys can auto-repeat except' for FUNCT ION, SELECT,
NET WORK, ABORT, SUSPEND, and RESUME. For example,

(si:set-auto-repeat-p #\Square nil)

turns off auto-repetition for the SQUARE key. You can make SQUARE auto­
repeat again by setting it back to t.

tv:screen-brightness main-screen-mixin Function
Returns the brightness of the screen as a floating point number between 0
and 1. < tv: screen-brightness tv:main-screen) may be set in your init file
using zl:setf to adjust the screen brightness. Console hardware varies
slightly so you must experiment to find the value that suits you best. One
technique for doing this is to adjust the brightness using LOCAL -B and
LOCAL - D until it is to your liking. Then use
<tv:screen-brightness tv:main-screen> to find that value. For example:

(tv:screen-brightness tv:main-screen) returns 0.43307087

Then in your init file you place the form

(setf (tv:screen-brightness tv:main-screen) 0.43307087)

and each time you log in with your init file the screen brightness is
automatically set to that value.

tv:*dim-screen-after-n-minutes-idle* Variable
Controls the length of time a console must be idle before its screen dims.
You can set this in your init file to adjust the length of time it takes the
screen dimmer to activate. The default is 20 minutes. Setting it to nil
disables the screen dimmer entirely.

tv:*screen-dimness-percent* Variable
Controls the brightness value of the screen when it is dimmed. You can
set this in your in it file to adjust the dimness of the screen. The default is
0, meaning black. 100 is bright. If you want a number that will leave the
screen very dim but visible, the value will vary with your particular
hardware. Experiment to find a good setting, starting with 50.

98

User's Guide to Symbolics Computers July 1986

sys:console-volume &optional (console sys:*slb-main-console*) Function
Returns the current volume setting for the console, which is a number
between 1.0 (loudest) and 0 (softest). The console volume can be changed
with setf, as in the example:

(cl:setf (sys:console-volume) 8.5)

Starting up Zmail In the Background

You can start up Zmail from your init file by using the function
zwei:preload-zmail. See the function zwei:preload-zmail, page 98.

zwei:preload-zmail &rest files
Starts up Zmail, loading in files.

(zwei:preload-zmail Uwombat:>kjones>mail.text")

This gets the mail loading operation underway while you are doing
something else.

There are two keyword options to zwei:preload-zmail:

:find-file Find the file and load it in for processing.

Function

: examine-file Finds the file and reads it into Zmail but in read only
mode.

As an example, the following form can be included in your LISPM-INIT to
preload several mail files into Zmail with some of them being read only:

(zwei:preload-zmail '(:find-file "y:>palter>mailboxes>palter.xmail")
'(:find-file uy:>palter>mailboxes>reminders.xmail")
'(:examine-file uy:>palter>mailboxes>junk.xmail")
'(:examine-file uy:>palter>mailboxes>videotech-digest.xmail"
'(:hang-when-deexposed t)
'(:hang-when-deexposed nil»

The last two operations in the above form cause the Zmail background to
stop after reading the mail files in question without parsing the contained
messages. The background parsing will commence as soon as Zmail is
selected. (If the last two operations had been placed first, Zmail would not
preload anything until it was first selected.)

7.4.2 Customizing the Command Processor

You can change the command processor's mode, prompt, and special characters,
and you can customize the display of the prompt and help messages. Usually you
customize the command processor by setting special variables. You might want to
do this in your init file, inside a login-forms special form.

99

July 1986

Whenever you change the command processor's mode, prompt, or other
characteristics, you set its state for all Lisp Listeners and zl:break loops. You
cannot put the command processor into one mode in one Lisp listener and another
mode in another.

If you change the command processor's mode or prompt, or if you turn the
command processor on or off, the change takes place immediately in that Lisp
Listener or zl: break loop but not in others that are waiting for input. For
example, suppose you use the Set Command Processor command in a zl: break loop
to change the prompt and dispatch mode. These changes do not take effect in a
Lisp Listener that is waiting for input until you execute a command or form or
you press ABORT there.

7.4.2.1 Setting the Command Processor Mode

The command processor mode determines how input is treated. Following are the
four modes and their meanings:

: form-only All input is treated as a Lisp form.

:command-only All input is treated as a command invocation.

:form-preferred Input is treated as a Lisp form unless you precede it by a
command dispatch character. In this case it is treated as a
command invocation. By default, the command dispatch
character is a colon.

:command-preferred
Input is treated as a command invocation if it begins with an
alphabetic character. Input is treated as a Lisp form if it is
does not begin with an alphabetic character or if you precede it
by a form dispatch character. By default, the form dispatch
character is a comma.

You can set the command processor mode for Lisp Listeners and zl:break loops in
two ways:

1. Use the Set Command Processor command. The first argument to this
command is the dispatch mode. See the section "Set Command Processor
Command", page 254.

2. Set the value of the special variable cp:*dispatch-mode*.

cp:*dispatch-mode* Variable
The current command processor dispatch mode in Lisp Listeners and
zl: break loops; a keyword. Possible values are :form-only,
:form-preferred, :command·only, and : command-preferred. For the

100

User's Guide to Symbolics Computers July 1986

meanings of these values: See the section "Setting the Command Processor
Mode", page 99. The default is : command-preferred.

The default dispatch mode for cp:read-command-or-form is the value of
cp::*default-dispatch-mode* .

7.4.2.2 Setting the Command Processor Prompt

You can set the command processor prompt for Lisp Listeners and zl: break loops
in two ways:

1. Use the Set Command Processor command. The second argument to this
command is a string to be displayed as the prompt. See the section "Set
Command Processor Command", page 254.

2. Set the value of the special variable cp:*prompt*.

cp:*prompt* Variable
A prompt option for displaying the current command processor prompt in
Lisp Listeners and zl: break loops. The value of this variable is passed to
the input editor as the value of the :prompt option. The value can be nil,
a string, a function, or a symbol other than nil (but not a list): See the
section "Displaying Prompts in the Input Editor" in Reference Guide to
Streams, Files, and I/O.

The default is "Command: ". If the value is nil or the empty string, no
prompt is displayed. If the value is si:arrow-prompt, an arrow is displayed
as the prompt.

The default prompt for cp:read-command and cp:read-command-or-form
is the value of cp::*default-prompt*.

7.4.2.3 Setting Command Processor Special Characters

You can change the command and form dispatch characters by setting the special
variables *cp:*command-dispatchers* and cp::*form-dispatchers*.

cp::*command-dispatchers* Variable
A list of characters that precede commands, distinguishing them from input
to the Lisp interpreter, when the command processor is in :form-preferred
mode. The default is (#/:).

cp::*form-dispatchers* Variable
A list of characters that precede Lisp forms, distinguishing them from
commands, when the command processor is in :command-preferred mode.
(These characters are needed only when the Lisp form begins with an
alphabetic character.) The default is (#/,).

101

July 1986

7.4.2.4 Customizing Command Processor Display

By setting special variables, you can control the action the command processor
takes when you type a blank line and how it displays the screen when you ask for
help.

cp:*blank-line-mode* Variable
A keyword that determines what action the command processor takes when
you type a blank line in Lisp Listeners and zl: break loops:

: reprompt

:beep

: ignore

Redisplay the prompt, if any. This is the default.

Beep.

Do nothing.

The default blank line mode for cp:read-command and
cp:read-command-or-form is the value of cp::*default-blank-line-mode*.

cp::*typeout-default* Variable
A keyword that determines how the command processor prints help
messages. Possible values are those acceptable as the first argument to
the :start-typeout message to interactive streams:

: insert

: overwrite

:append

:temporary

: clear-window

The help message, like a notification, is inserted before
the current input.

The help message is inserted before the current input,
but the next time an :insert or :overwrite operation is
done, this message is overwritten. This is the default.

The help message appears after the current· input, which
is reprinted after the help message.

The help message appears after the current input and
disappears when you type the next character.

The window is cleared and the help message appears at
the top.

For more information: See the method (:method si:interactive-stream
:start-typeout) in Reference Guide to Streams, Files, and I/O.

7.4.3 Calling Command Processor Commands From Your Init File

If you want to put command processor commands in your init file, you can do so
using the function cp:execute-command:

102

User's Guide to Symbolics Computers July 1986

cp:execute-command command-name &rest command-arguments
Invokes a c~mmand processor command from within a program.

command-name

Function

Symbol or string naming the command to invoke; if a string,
it must be in the command table to which
cp:*command-table* is currently bound.

command-arguments
Positional and keyword arguments to the named command.

Examples:

(cp:execute-command "show file" "test-data. text")

(cp:execute-command Jsi:com-load-system "unifier"
:condition :always :automatic-answer t)

For an overview cp:execute-command and related facilities: See the
section "Overview of Basic Command Facilities" in Programming the User
Interface.

7.4.4 Zmacs Customlzatlon In Inlt Flies

You can set Zmacs parameters in your init file also. This section gives you some
guidelines for how to set different types of parameters. For information about the
available features: See the section "Zmacs Manual" in Text Editing and
Processing.

7.4.4.1 Setting Editor Variables

The forms described show how to set Zmacs variables (the kind that Set Variable
(M-H) sets).

To set these variables, which are symbol macros, you must use the zl:setf macro.
For a description of symbol macros: See the section "Symbol Macros" in
Symbolics Common Lisp. For a description of the zl:setf macro: See the macro
zl:setf in Symbolics Common Lisp.

Ordering Buffer Lists

(SETF ZWEI:*SORT-ZHACS-BUFFER-LIST* NIL)

This displays the list of buffers in the order the buffers were created rather than
in the order they were most recently visited.

July 1986

Putting Buffers Into Current Package

(SETF ZWEI:*DEFAULT-PACKAGE* NIL)

This puts buffers created with c-H 8 (Select Buffer) into whatever package is
current; the default is to put them in the user package.

Setting Default Major Mode

(SETF ZWEI:*DEFAULT-MAJOR-MODE* ':TEXT)

103

This sets the default major mode to Text Mode for buffers with no Mode attribute
and no major mode deducible from the file type; the default is Fundamental Mode.

Setting Find File Not to Create New Flies

(SETF ZWEI:*FIND-FILE-NOT-FOUND-IS-AN-ERROR* T)

This beeps and prints an error message when you give c-H c-F (Find File) the
name of a nonexistent file. The default prints (New Fil e) and creates an empty
buffer, which when saved by c-H c-S (Save File) creates the file that was
nonexistent.

Setting Goal Column for Real Line Commands

(SETF ZWEI:*PERMANENT-REAL-LINE-GOAL-XPOS* B)

This moves subsequent c-N and c-P (Down Real Line and Up Real Line)
commands to the left margin, like doing c-0 c-H c-N (Set Goal Column to zero).

Fixing White Space for KIIINank Commands

(SETF ZWEI:*KILL-INTERVAL-SMARTS* T)

This tells the killing and yanking commands optimize white space surrounding the
killed or yanked text.

7.4.4.2 Key Bindings

To bind keys, you first define the comtab in which to put the binding. For
example, *standard-comtab* and *standard-control-x-comtab* define features of
all Zwei-based editors; *zmacs-comtab* and *zmacs-control-x-comtab* define
features that are Zmacs-specific.

White Space In Lisp Code

ZWEI:(SET-COMTAB *STANDARD-CONTROL-X-COMTAB*
, (#\SP COM-CANONICALIZE-WHITESPACE»

104

User's Guide to Symbolics Computers July 1986

This defines c-H SPACE as a command that makes the horizontal and vertical
white space around point (or around mark if given a numeric argument or
immediately after a yank command) conform to standard style for Lisp code.

c-M-L on the SQUARE Key

ZWEI:(SET-COMTAB *ZMACS-COMTAB*
'(#\SQUARE COM-SELECT-PREVIOUS-BUFFER»

This defines the SQUARE key to do the same thing as C-M-L. This key binding is
placed in *zmacs-comtab* rather than *standard-comtab* since buffers are a
feature of Zmacs, not of all Zwei-based editors.

Edit Buffers on c-H c-B

ZWEI:(SET-COMTAB *ZMACS-CONTROL-X-COMTAB*
'(#\c-B COM-EDIT-BUFFERS»

This makes c-H c-B invoke Edit Buffers rather than List Buffers. This key
binding is placed in *zmacs-control-x-comtab* rather than
standard-control-x-comtab since buffers are a feature of Zmacs, not of all Zwei­
based editors. -

Edit Buffers on M-H

ZWEI:(SET-COMTAB *ZMACS-COMTAB*
o
(MAKE-COMMAND-ALIST '(COM-EDIT-BUFFERS»)

This makes Edit Buffers available on M-H in Zmacs (by default it is only available
on c-M-H).

M-. on M-(L)

ZWEI:(SET-COMTAB *ZMACS-COMTAB*
'(#\m-MOUSE-L COM-EDIT-DEFINITION»

This makes clicking the left mouse button while holding down the META key do
what M-. does. Invoking this command from the mouse is convenient when you
specify the name of the defmition to be edited by pointing at it rather than typing
it.

7.4.4.3 Setting Mode Hooks

Each major mode has a mode hook, a variable which, if bound, is a function that
is called with no arguments when that major mode is turned on.

105

July 1986

Electric Shift Locl(In Lisp Mode

(SETF ZWEI:LISP-HODE-HOOK JZWEI:ELECTRIC-SHIFT-LOCK-IF-APPROPRIATE)

This tells Lisp major mode to turn on Electric Shift Lock minor mode unless the
buffer has a Lowercase attribute. The effect is that by default Lisp code is
written in upper case.

Auto Fill In Text Mode

(SETF ZWEI:TEXT-HODE-HOOK JZWEI:AUTO-FILL-IF-APPROPRIATE)

This tells Text major mode to turn on Auto Fill minor mode unless the buffer has
a Nofill attribute. The effect is that by default lines of text are automatically
broken by carriage returns when they get too wide.

7.4.5 Customizing the Input Editor

To change the behavior of the yank system, use login-forms and zl:setq-globally
to set the following Lisp internal variables in your init file.

Alternatively, you can set them with Set Variable (M-X); when Set Variable
prompts you for a variable name, supply the name given in each of the following
descriptions.

zwei:*history-menu-Iength'lt Variable
The maximum number of history elements displayed. Default is 20.

History Menu Length is the name to use with Set Variable (M-H).

zwei:*history-yank-wraparound* Variable
Determines what happens after M-V runs off the end of a history or
M- - M-V runs off the beginning of a history. Default is t.

Value

t

nil

Meaning

M-Y wraps around to the other end of the history. For
example, after M-V yanks the oldest element in the
history, it returns to the top of the history and yanks the
newest element.

M-V does not wrap around to the other end of the history.
Instead, the 3600 flashes (the LM-2 beeps).

History Yank Wraparound is the name to use with Set Variable (M-H).

106

User's Guide to Symbolics Computers July 1986

zwci:*history-rotatc-if-numcric-arg* Variable
Determines what happens when c-V or C-M-V is given after M-V. Default is
nil

Value

t

nil

Meaning

A numeric argument to c-V or C-M-V is measured from
the origin, not the newest element in the history. The
origin is always element #1. All other elements are
numbered relative to the origin. Elements that are
newer than the origin are assigned negative numbers, in
ascending order with their distance from the origin.

A numeric argument to c-V or C-M-V is measured from
the the newest history element, not the origin. However,
c-V or C-M-V given without an argument yanks the
element at the origin; thus, the origin has meaning only
when you use a top-level command without an argument.
When you display a history, its elements are numbered
from 1 on and the origin is indicated with a pointer.

History Rotate If Numeric Arg is the name to use with Set Variable (M-X).

See the section "The Input Editor Program Interface" in Reference Guide to
Streams, Files, and I/O.

7.4.6 Customizing Converse

The following variables allow you to customize Converse's behavior. You can set
them in your init file.

zwci:*convcrsc-modc* Variable
Controls what happens when an interactive message arrives. It should
have one of the following values:

:pop-up (This is the default.) A message window pops up at the
top of the screen, displaying the message. You are asked
to type R (for Reply), N (for Nothing), or C (for Converse).
If you type R, you can type a reply to the message inside
the message window. When you type END, this reply is
sent back to whomever sent the original message to you,
and the pop-up message window window disappears. If
you type N, the message window disappears immediately.
If you type C, the Converse window is selected. The
input editor is used while you reply to a message in the

July 1986

: auto

107

pop-up message window, so you get some editing power,
although not as much as with full Converse (since the
latter uses Zwei).

The Converse window is selected. This is the window
that shows you all of your conversations, letting you see
everything that has happened, and letting you edit your
replies with the full power of the Zwei editor. With this
window selected, you can reply to the message that was
sent, send new messages, participate in other
conversations, or edit and write out messages or
conversations. You can exit with c-END or ABORT (c-END

sends a message and exits; ABORT just exits), or you can
select a new window by any of the usual means (such as
the FUNCT I ON or SELECT keys).

: notify A notification is printed, telling you that a message
arrived and from whom. If you want to see the message,
enter Converse by pressing SELECT C. There you can
read the message and reply if you want to.

:notify-with-message
A notification is printed, which includes the entire
contents of the message and the name of the sender. If
you want to reply, you can enter Converse.

zwei:*converse-append-p* Variable
If the value is nil (the default), a new message is prepended to its
conversation. If the value is not nil, a new message is appended to its
conversation. print-sends is not affected by this variable; it always
displays messages in forward chronological order.

zwei:*converse-beep-count* Variable
The value is the number of times to beep or flash the screen when a
message arrives. The default value is two. Beeping or flashing occurs
only if the Converse window is exposed or if the value of
zwei:*converse-mode* is :pop-up or : auto. (Otherwise, notification tells
you about the message and includes the usual beeping or flashing.)

zwei:*converse-end-exits* Variable
Controls the behavior of END and c-END. If zl-user:*converse-end-exits* is
set to nil, the default, END sends the message and you remain in Converse.
c-END sends the message and exits Converse. Setting
zl-user:*converse-end-exits* to t reverses this, so that c-END sends the
message and remains in Converse and END sends and exits.

108

User's Guide to Symbolics Computers July 1986

7.4.7 Customizing Hardcopy Facilities

You can specify the printer you want to use for hardcopying files and screen
images in your init file.

There are two variables that determine which printer is used for a hardcopy
request:

hardcopy:*default-text-printer* Variable
hardcopy:*default-text-printer* is a variable whose value is the printer to
be used for printing text files, that is a printer object. Its initial value is
determined from the printer slot in the namespace object for your machine,
or if your machine does not specify a printer, from the namespace object
for your site.

hardcopy:*default-bitmap-printer* Variable
hardcopy:*default-bitmap-printer* is a variable whose value is the printer
to be used for printing screen hardcopy, that is a printer object. Its initial
value is determined from the bitmap printer slot in the namespace object
for your machine, or if your machine does not specify a bitmap printer,
from the namespace object for your site.

These variables can be set with the following two functions:

hardcopy:set-default-text-printer name Function
hardcopy:set-default-text-printer specifies the printer to be used for all of
the hardcopy commands except the screen copy command. name is a string
specifying the device name. This is the real name of the printer, its name
attribute not its pretty-name. For example:

(login-forms
(hardcopy:set-default-text-printer "caspian-sea"»

caspi an-sea is the real name of the printer whose pretty name is Caspi an
Sea. (The valid set of device names are the printer objects in your
namespace database.)

hardcopy:set-defauIt-bitmap-printer name Function
hardcopy:set-default-bitmap-printer specifies the printer to be used for
screen copies (by the FUNCT I ON Q command). name is a string specifying
the device name. This is the real name of the printer, its name attribute
not its pretty-name. For example:

(login-forms
(hardcopy:set-default-bitmap-printer "caspian-sea"»

caspi an-sea is the real name of the printer whose pretty name is Caspi an
Sea. (The valid set of device names are the printer objects in your
namespace database.)

109

July 1986

You can specify your preferred character styles for each printer in your init file by
setting hardcopy:*hardcopy-default-character-styles*.

hardcopy:*hardcopy-default-character-styles* Variable
hardcopy:*hardcopy-default-character-styles* is a variable whose value is
an association list where each element specifies a device and a set of
keyword/value pairs designating the character style. The keywords are
: body-character-style and :heading-character-style.

For example:

(login-forms
(setq hardcopy:*hardcopy-default-character-styles*

J«"Itasca" :body-character-style (:fix :roman :small»
("Caspian Sea" :body-character-style (:fix :roman :normal»»)

in your init file will specify fixed width small-sized roman as the default
character style for the printer Itasca and fixed width normal-sized roman as
the default character style for the printer Caspian Sea. The value of
hardcopy:*hardcopy-default-character-styles* is merged with the default
style for the printer, so if the printer is using a fixed width normal sized
roman and you want it larger, you only need to specify (nil nil :larger).
See the section "Character Styles" in Converting to Genera 7.0.

7.4.8 Censoring Fields for IIspm-flnger and name Services

You might prefer to keep certain fields of information private, and prevent those
fields from being returned by the lispm-finger and name protocol servers.

You can censor the information returned by those servers by pushing recognized
keywords onto one or both of the following lists: neti:*finger-fields-to-supprcss*
and neti:*finger-fields-to-suppress-for-untrusted -hosts* .

The recognized keywords include:

: software-info
: hardware-info
:whois
:project
: supervisor
:work-address
:work-phone
:home-address
: home-phone

110

User's Guide to Symbolics Computers July 1986

neti: *finger-fields-to-suppress* Variable
This variable is a list of keywords that should be censored for the
lispm-finger and name servers. Use push to add others to the list. The
default value is nil.

For a list of recognized keywords: See the section "Censoring Fields for
lispm-finger and name Services", page 109.

neti: *finger-fields-to-suppress-for-untrusted -hosts· Variable
This variable is a list of keywords that should be censored for the
lispm-finger and name servers, for untrusted hosts only. Use push to add
others to the list. The default value is nil.

For a list of recognized keywords: See the section "Censoring Fields for
lispm-finger and name Services", page 109.

7.5 Logging in Without Processing Your Init File

You might want to log in and work in the standard default system environment,
that is, without having your init file set up your usual customizations. Perhaps
you want to test a program of yours in the standard environment or try a new
system feature in an unpolluted environment. Log in this way:

Login usernar.ne :init file none

to tell the Login command that you do not want your init file automatically
loaded.

7.6 Customizing Zmail

The Profile command allows you to customize Zmail by setting various display and
command options to your personal taste. You can set an option temporarily or
permanently, the latter by saving the option in your Zr.nail Profile.

Classes of options you can set include the following:

• Format used for hardcopies of messages

• Mail-file attributes

• Lists of mail files and other objects that Zmail knows about at startup

• Associations between certain objects

• (M) actions for many top-level commands

111

July 1986

• Screen configurations

• Default actions taken when reading, sending, replying to, or forwarding mail

• Command Tables

Customizing is done in profile mode, entered by clicking on [Profile] in the
command menu at top level. The profile mode display (Figure 20) shows the text
of your profile and the current settings of various options.

Setting and Saving Zmail Options

Option settings are stored in eight distinct places:

1. Your mind: your conception of how the options should be set.

2. The Zmail environment: the way the options are actually set at the moment.

3. The defaults: the way the options are actually set before you alter them.

4. The editor buffer: the in-memory buffer of your profile.

5. The source version of your profile: on disk.

6. The compiled version of your profile: also on disk.

7. Mail buffers: options associated and stored with the individual mail buffers.

8. Mail files: options associated with a mail buffer saved as a file.

Enter Profile Mode by clicking on [Profile] in the Zmail menu. The simplest way
to use profile mode is:

1. Make the changes you want using the menu items or user options window,
two regions of the display indicated in Figure 20. For a list of the various
options and what they mean: See the section "Zmail Profile Options" In
Communicating with Other Users.

2. Click on [Exit] to leave profile mode. Check to see that you like your
changes.

3. To save your changes, reenter profile mode and click on [Save]. Before you
do this for the first time, use [Save (M)] and press RETURN to the question
Zmail asks. This specifies that you want your file compiled, which makes it
load and run faster. Answer yes to any questions about inserting changes or
recompiling your file. At this point Lisp code corresponding to your option

112

User's Guide to Symbolics Computers July 1986

settings will be stored in your profile. Options changed using [File options]
or [Keywords] are stored in the individual mail buffers and must be saved
using [Save] on the top-level command menu.

What [Save] actually does is move option settings from the environment (where
you altered them in the first step) to the editor buffer, then from the editor buffer
to the source copy of your init file, and finally from the source file to the compiled
file (by recompiling). You can also move option settings one step at time, by
using [Reset] and [Default], and the menu options available by using [Save].

I Filters I I Universes I I Mall flies I I File oetlons I I Ke:lwords I I Hardcoe:ll

u:.~ ... oot 1 on:.'
Top

Defeult startup ulndou setup: Summary only Both Message only FIltering commands
Defeult sunnery ulndou fornat: 5t&ndud No Date Reminder
Fraction of the frene occupied by the sunnary: 9.45
Speces ere trlnned fron the left of the subject In lIunnary: V .. No
Anount by uhlch to glitch lIunnary ulndou: 9.5
Frectlon of the frene occupied by the sunnary In fllter node: none
Defeult flle for Initial Get Inbox or Select: S:>ellen>ellen.bebyl
Append 1 ng of 1 nboxell to neu ne 11 f 11 es: Append Prepend Sdcky Ask
Read In lnbox In the background: VH No
Perlodlcelly check for neu nell 1 n the background: No V ..
Move to flrllt nesllege even uhen no neu nell In lnbox: Yes No
Rese 1 ect prevloull current nessege even 1 f current nellllege 1 n lIequence: V .. No
Refornettlng of bebyl (l1ell is enebled by nornel baby 1 options: Yes No
Refornet heeders In non-BABYL fllell: V .. No

Mon bcl_

~ ~ I Defaults I ~ ~
Jii -.- Mode: LISP; Syntex: Zetel1sp; Peckage: ZIIEI; Base: 19 -.-

I' , ••• This block contelns forns representing the non-defeult lIettlngll of user
I' , options that you nede ulling the proflle nenus. It Is genereted
I' , eutonatlcelly. Avoid Inserting eny other forns before the end of the block.

(LOGIN-SETD 'DUERY-BEFORE-EXPUNGE' Tl
(LOGIN-SETD UNHIBIT-BACKGROUND-SAVES' Tl
(LOGIN-SETD .PRUNE -HEADERS-AFTER-YANKI NG. T)
(LOGIN-SETD • DELETE -MI DDLE -MODE' • :NO)

~ (LOGIN-SETD • REaUIRE -SUBJECT S. ' :INIT)
(LOGIN-SETa .DEFAULT -CC-LISTa 'C(:NAME "ellen" :HOST NIL»)
(LOGIN-SETD • DELETE -EHPI RED-MSGS' ' :ASK)
(LOGIN-SETa 'REPLY-MODE' ' :SENDER)
(LOGIN-SETa *1R-REPLY-MODE' ' :ALL)
(LOGIN-SETa '111 DDLE-REPLY-IIINDOIol-MODEa ' :YANK)
(LOGIN-SETD 'FORIolARDED-MESSAGE-BEGI Na '"-----Begln Foruerded Mellsege-----")
(LOGIN-SETa 'FORIolARDED-MESSAGE -SEPARATOR' ," --------------------")
(LOGIN-SETD 'FORIolARDED-MESSAGE-ENDa ." ------End Foruerded Mnuge------")
(LOGI N-SE Ta alMAI L -START UP-FI LE -NAME' • oS: >ellen>ellen.bebyl")
(LOGIN-SETa * DEFAULT -MOVE-MAIL-FILE-NAMEa • oS: >el1en>ellen.xnell")
(LOGIN-SETa *DEFAUL T -DRAFT -FILE-NAME' ' oS: >el1en>doc27-stet-nsg. tenp")

Profile
Znel1 Proflle S:>Ellen>Enell-1nlt.l1sp (41)
Aborting. use the "Continue" connand to continue.
Reeding proflle S:>ellen>Enell-1nlt.l1sp.41

~ouse-L: .t:dlt.
To see other commands press Shift, Control Meta-Shift or Super.

1I-r1 It:! ..lui f::ltj:i1J Ellen tW~l : User Input <~ath<r being Inltlallz~>

Figure 20. Profile mode display

113

July 1986

8. Getting Help

The Genera environment contains many help facilities. This chapter summarizes
the facilities for finding out information about the program you are writing and
about the general state of Genera.

This chapter is a collection of the support tools and facilities available for finding
the kind of information you need while programming. It is not exhaustive but
suggestive. It does not recommend strategies for applying these facilities but
rather lays out what is available for creating a personal style of using Genera
effectively.

8.1 HELP Key

The key labelled HELP looks up context-dependent documentation.

HELP Shows documentation available for the current activity. In some
programs, c-HELP, M-HELP, and so on, provide additional
documentation.

c-HELP Shows a list of input editor commands (when typed at a Lisp
Listener).

sy-HELP Shows a list of the special function keys and the special
character keys.

SELECT HELP Shows programs and utilities that you can select using the
SELECT key.

FUNCT I ON HELP Shows a list of useful functions that you can invoke using the
FUNCT I ON key.

See the section "HELP Key in Any Zmacs Editing Window", page 114.

8.2 Interaction with Completion and Typeout Windows

The Genera software has some general interaction conventions. For example,
many editor commands offer name completion. You can apply these facilities to
exploring the command space of the machine. This section describes some general
facilities and strategies for making more effective use of the machine.

114

User's Guide to Syrobolics Computers July 1986

8.2.1 HELP Key In Any Zmacs Editing Window

The HELP key enables you to locate help material that is relevant to the current
context. Individual programs are responsible for providing the routines that
support the HELP key. The most complex general help facility is that provided by
Zmacs editing windows. The HELP key provides access to a number of distinct
kinds of help, depending on the key you press after the HELP key.

Command Description

HELP ? or HELP HELP Displays a brief summary of the Zmacs help options (similar
to the rest of this chart).

HELP A

HELP C

HELP D

HELP L

HELP U

HELP V

For looking up all Zmacs commands whose names contain a
specified substring. You type the substring. Zmacs
displays the one-line documentation for the command and
tells you which key, if any, invokes it in the current
context. See HELP V for looking up variable names. The
"A" stands for "apropos". When people say, "Use Apropos,"
they are referring to this command.

For looking up which command is bound to a particular
key. You type the key; Zmacs displays the name of the
command and its summary paragraph. HELP C uses Self
Document.

For looking up the summary paragraph for a Zmacs
command. You enter the command name. Completion is
available. It does not tell you how to invoke a command.
Use HELP W for that. HELP D uses Describe Command.

For finding out what you did that caused unexpected
behavior. Zmacs displays a representation of the last 60
keys that you pressed. HELP L uses What Lossage.

For undoing the last major operation. Zmacs preserves a
copy of the buffer before doing certain operations, in
particular, sorting and filling. You can revert to the state
prior to one of those kinds of operations by using HELP U.

Zmacs queries you whether to go ahead with undoing; the
only information you have about what is being undone is
the name of the class of operation, for example, "fill" or
"sort". HELP U uses Undo.

For looking up all Zmacs user variables whose print names
contain a specified substring. You type the substring.
Zmacs displays the variable names and their current values.

July 1986

See HELP A for looking up command names. HELP V uses
Variable Apropos.

115

HELP W For finding the key assignment for a particular command.
You type the command name; Zmacs displays the current
key assignment. Completion is available. HELP W uses
Where Is.

HELP SPACE Repeats the last HELP command you used.

In this chapter, all Zmacs commands appear by name rather than by key binding.
Command tables indicate whether the command has a standard key binding or
whether it must be used as an extended command. For example, Edit Zmacs
Command is an extended command and requires that you invoke it with M-H,

Forward Word is bound to M-F; you invoke it by holding down the META key and
pressing F.

Command
Edit Zmacs Command (M-H)
Forward Word (M-F)
Find File (c-H c-F)

Type of command
An extended command
A command with a standard key binding
A command with a standard key binding

Functions and their arguments appear as in the following example:

(apropos string package inferiors superiors)

Words in italics are the arguments to the function. The words reflect the
meaning of the argument. Bold words are optional arguments; you can leave them
out. The reference description for the function explains the meanings of the
arguments and the default values for optional arguments.

8.2.2 Zmacs Completion

Zmacs minibuffer commands offer completion, a facility for reducing the number of
keys you need to type to specify a name. As soon as you have typed enough
characters for a name to be recognized as unique, you can ask for completion. Up
until then, you can ask to see which names are possible completions of what you
have typed. You can tell when completion is available; the notation "(Completion)"
appears at the right end of the minibuffer label line.

8.2.2.1 Completion for Extended Commands (M-H Commands)

The following table summarizes the keys that control completion for entering
extended commands.

116

User's Guide to Symbolics Computers July 1986

Action in m-X commands Key
SPACE Completes the words up to the current word, as far as they are

unique.
HELP or c-? Shows the possible completions in the typeout area.
Mouse-R Pops up a menu of the possible completions.
c-/ Runs Apropos for each of the partially typed words in the name.
COMPLET E Displays the full command name, if possible.
RETURN., END

Confirms the command when possible, whether or not you have seen
its full name.

Request completion by pressing either COMPLETE or RETURN. Using COMPLETE
shows the completed name, requiring a further RET URN to confirm it; using RET URN
gets you completion and confirmation in one step.

Any time you are typing a Zmacs extended command name, completion is
available. Zmacs command name completion works on initial substrings of each
word in the command. For example, "m-X e z" is enough to specify the extended
command "Edit Zmacs Command".

Until Zmacs can recognize the name as unique, your request for completion just
completes as far as possible and moves the input cursor to the first ambiguous
place in the command name.

Whenever you are entering a name in a minibuffer that offers completion, you can
find out all possible completions of what you have typed so far. Tw~ styles are
possible. Pressing HELP or c-? shows the list of completions in the typeout area;
the names are mouse sensitive. Clicking Mouse-R shows the list in a pop-up
menu. One good strategy for browsing is to look at the list of completions for
initial substrings that are common command verbs, like "show" or "set".

8.2.2.2 Completion for M-.

The M-. (Edit Definition) command offers completion over the set of names that is
in the files that have already been loaded into editor buffers. In this case, you
request completion with COMPLET E and then confirm it with RET URN.

M-. offers initial substring name completion, with hyphens rather than spaces
delimiting the words. For example, "e-d-;" would be sufficient for specifying
zwei:edit-definition-internal (assuming that Zmacs had previously parsed the
source file containing it into a buffer).

8.2.3 Completion In Other Contexts

Completion is available in several other contexts, for example, buffer names and
package names. Be on the lookout for the presence of "(Completion)" in the
minibuffer label line. The conventions for extended commands usually apply.

117

July 1986

8.2.4 Typeout Windows In Zmacs

Most of the Zmacs commands for looking up information display the information in
a typeout window. A typeout window overlays the current buffer display with its
contents and disappears as soon as you type any character. Most typeout windows
contain mouse-sensitive items. In particular, Zmacs commands and Lisp function
specs are mouse sensitive and small menus of operations on the names are
available (Arglist, Edit Definition, and so on). See the mouse documentation line.

8.2.5 FEP Command Completion

While the keyboard is connected to the FEP, the following forms of completion are
available:

• Pressing the HELP key at the FEP prompt (Fep» or after typing part of the
first word of a command shows the commands understood by the FEP
command processor.

• Pressing the HELP key after typing the first word of a command shows a list
of commands that begin with that word. Example: set SPACE HELP gives a
list of commands that begin with the word set.

8.2.5.1 See ...

• For inore information about help facilities in editing: See the section
"Getting Out of Trouble", page 69.

• For more information about help facilities in the mail program: See the
section "Using Zmail", page 77.

• For more information about the FEP and a listing of available commands:
See the section "The Front-End Processor" in Site Operations.

8.3 Summary of Help Functions in Different Contexts

Both Zmacs and Lisp offer facilities for finding information either about
themselves or about the current environment. In addition, Zmacs offers ways to
find information about Lisp functions and variables.

This section lists the names of the functions and commands that are available,
grouped according to the context in which they are available. The purpose of this
section is to summarize the capabilities and to help you determine both the overall
contexts for which you can find help and a particular function that might be what
you are looking for. Explanations for each of these functions appear in an

118

User's Guide to Symbolics Computers July 1986

alphabetical listing. See the section "Reference Description of Help Functions",
page 120.

8.3.1 Zmacs Commands for Finding Out About the State of Buffers

Edit Buffers (M-H)

Edit Changed Definitions (M-H)

Edit Changed Definitions Of Buffer (M-H)
List Buffers (c-H c-B)

List Changed Definitions (M-H)

List Changed Definitions Of Buffer (M-H)
List Definitions (M-H)

List Matching Lines (M-H)

Print Modifications (M-H)

Select System as Tag Table (M-H)
Tags Search (M-H)

8.3.2 Zmacs Commands for Finding Out About the State of Zmacs

Apropos (M-H), HELP A

Describe Variable (M-H)

Edit Zmacs Command (M-H)

List Commands (M-H)

List Registers (M-H)

List Some Word Abbrevs (M-H)

List Tag Tables (M-H)

List Variables (M-H)

List Word Abbrevs (M-H)

8.3.3 Zmacs Commands for Finding Out About Lisp

Describe Variable At Point (c-sh-V)
Edit Callers (M-H)

Edit CP Command M-H

Edit Definition (M- .)

Edit File Warnings (M-H)

Function Apropos (M-H)

List Callers (M-H)

List Matching Symbols (M-H)

Long Documentation (c-sh-D)

Multiple Edit Callers (M-H)

MUltiple List Callers (M-H)

July 1986

Quick Arglist (c-sh-A)

Show Documentation (n-sh-D)

Show Documentation Function (n-sh-A)

Show Documentation Variable (n-sh-V)

Where Is Symbol (n-H)

8.3.4 Zmacs Commands for Finding Out About Flavors

Describe Flavor (n-H)

Show Documentation Flavor (n-sh-F)

Edit Combined Methods (n-H)
Edit Methods (n-H)

List Combined Methods (n-H)

List Methods (n-H)

8.3.5 Zmacs Commands for Interacting with Lisp

Break (SUSPEND)

Compile And Exit (n-2)

Compile Buffer (n-H)

Compile Changed Definitions (n-H)

Compile Changed Definitions Of Buffer (n-H), n-sh-C
Compile File (n-H)

Compile Region (n-H), c-sh-C
Compiler Warnings (n-H)

Edit Compiler Warnings (n-H)

Evaluate And Exit (c-n-2)

Evaluate And Replace Into Buffer (n-H)
Evaluate Buffer (n-H)

Evaluate Changed Definitions (n-H)

Evaluate Changed Definitions Of Buffer (n-H), n-sh-E
Evaluate Into Buffer (n-H)

Evaluate Minibuffer (ESCAPE)

Evaluate Region (n-H), c-sh-E

Evaluate Region Hack (n-H)

Evaluate Region Verbose (c-n-sh-E)

Load Compiler Warnings (n-H)

Macro Expand Expression (n-H), c-sh-M
Trace (n-H)

Quit (c-2)

119

120

User's Guide to Symbolics Computers

8.3.6 Lisp Facilities for Finding Out About Lisp

(apropos string package inferiors superiors)
(arglist function flag)
(describe object)
(describe-area area-name)
(describe-defstruct instance structure-name)
(describe-flavor flavor-name)
(describe-package package-name)
(describe-system system-name)
(disassemble function)
(documentation function)
(si:flavor-allowed-init-keywords flavor-name)
(inspect object)
(compiler:load-compiler-warnings file flush-flag)
(mexp)
(trace specs)
(untrace specs)
(variable-boundp variable)
(what-files-call string package)
(where-is symbol package)
(who-calls symbol package inferiors superiors)

8.4 Reference Description of Help Functions

July 1986

This section contains a summary paragraph of documentation for each of the
information-finding commands and functions. See the section "Summary of Help
Functions in Different Contexts", page 117.

This reference list is in alphabetical order by name of the command or function.
Zmacs editor commands appear according to the names of the commands that
implement them, rather than according to the names of the keys that invoke them.
For example, Compile Buffer (M-X) appears under "C" rather than under "M";
c-sh-A appears under "Q" (because its name is Quick Arglist) rather than under
"C". For commands that are usually invoked by a single key rather than by M-X,
the key name appears with the command. (Remember that you can always use
HELP W to find the key that invokes a particular command.)

Some Zmacs commands come in pairs, such as List Callers and Edit Callers. The
commands are very similar. The List version allows you to just look at the list or
to decide to start editing the items in the list. The list items are always mouse
sensitive. For the Edit version of the command, c-. is always the command for
moving to the next item.

121

July 1986

Apropos (M-X), HELP A

Displays all the Zmacs commands whose names contain a
specified substring. You type the substring. Zmacs displays one
line of documentation for the command and which key invokes it
in the current context, if any.

(apropos string package inferiors superiors)
Displays all the symbols whose print names contain the string.
By default, it looks in the zl-user:global package and its
descendants, but you can specify a package name. For symbols
that have function bindings, it displays the argument list. For
symbols that are bound, it displays the notation "Bound".
zl:apropos returns the symbols that it found as a list.

(apropos "forward" 'zwei)

(arglist function flag) (see also Quick Arglist)
Returns a representation of the arguments that the function
expects. When the original function definition contained an
arglist declaration, arglist returns that list when flag is not
specified or nil. When flag is not nil, then arglist returns the
real argument list from the function. When the original
function used a values declaration, arglist returns the names
for the values returned by the function.

(arglist 'make-array)

You cannot use arglist to find the arguments for combined
methods.

Break (SUSPEND) Enters a Lisp Listener from the current window. It uses the
screen area of the frame that was selected when you used
SUSPEND. When you use it from the editor, any Lisp forms you
type are evaluated in the current package (the one showing in
the status line). Use RESUME to return to the original context.

c-M-sh-E See Evaluate Region Verbose.

c-sh-A See Quick Arglist.

c-sh-C See Compile Region.

c-sh-D See Long Documentation.

c-sh-E See Evaluate Region.

c-sh-V See Describe Variable At Point.

Compile And Exit (M-2)

Compiles the buffer and returns from top level. It selects the

122

User's Guide to Symbolics Computers July 1986

window from which the last (ed) function or the last debugger
c-E command was executed.

Compile Buffer (M-H)

Compiles the entire buffer. With a numeric argument, it
compiles from point to the end of the buffer. (This is useful for
resuming compilation after a prior Compile Buffer has failed.)

Compile Changed Definitions (M-H)

Compiles any definitions that have changed in any Lisp mode
buffers. With a numeric argument, it queries individually about
whether to compile each changed definition.

Compile Changed Definitions Of Buffer (M-sh-C, M-H)

Compile File (M-H)

Compiles any definitions in the current buffer that have been
changed. With a numeric argument, it prompts individually
about whether to compile each changed definition.

Compiles a file, offering to save it first. It prompts for a rile
name in the minibuffer, using the file associated with the
current buffer as the default. It offers to save the file if the
buffer has been modified.

Compile Region (c-sh-C, M-H)

Compiles the region, or if no region is defined, the current
definition.

Compiler Warnings (M-H) (see also Edit Compiler Warnings)
Puts all pending compiler warnings in a buffer. and selects that
buffer. It loads the compiler warnings database into a buffer
called *Compiler-Warnings-l*, creating that buffer if it does not
exist.

(describe object) (see also inspect)
Displays available information about an object, in a format that
depends on the type of the object. For example, describing a
symbol displays its value, definition, and properties. describe
returns the object.

(describe Jtime:get-time)

(describe-area area-name)
Displays attributes of the specified area.

(describe-area (ioarea-number Jfoo»
(describe-area Jworking-storage-area)

123

July 1986

(describe-defstruct instance structure-name)
Displays a description of the instance, showing the contents of
each of its slots. structure-name is not necessary for named
structures but must be provided for unnamed structures. When
you supply zl-user:structure-name, you force the function to use
that structure name instead of letting the system figure it out;
in addition, it overrides the :describe option for structures that
know how to describe themselves.

Describe Flavor (M-H) (see also zl-user:describe-flavor)
Displays a description of a flavor. It reads a flavor name via
the mouse or from the minibuffer using completion. It displays
a description of the flavor in a typeout window. The description
includes names of flavors that the specified one directly depends
on and names of flavors that depend on it. It also displays the
documentation and the names of its instance variables.

(describe-flavor flavor-name) (see also Describe Flavor)
Displays descriptive information about a flavor.

(describe-flavor 'tv:basic-menu)

(describe-package package-name)
Displays information about a package.

(describe-package 'zwei)

That example is the same as this one:

(describe (pkg-find-package 'zwei»

(describe-system system-name)
Displays information about a system, including the name of the
file containing the system declaration and when the files in the
current version of the system were compiled.

Describe Variable (M-H)

Displays the documentation and current value for a Zmacs
variable. It reads the variable name from the minibuffer, using
completion.

Describe Variable At Point (c-sh-V)

Displays information, in the echo area, about the current Lisp
variable. The information includes whether the variable is
declared special, whether it has a value, what file defines it, and
whether it has documentation put on by defvar or zl:defconst.
When nothing is available, it checks for lookalike symbols in
other packages.

124

User's Guide to Symbolics Computers July 1986

(disassemble function) (see also mexp, Macro Expand Expression)
Displays the macro-instructions for the function. It does not
work for functions that are not compiled or that are
implemented in microcode, like cons or car.

(disassemble 'plus)

Use this function for things like finding clues about whether a
macro is being expanded correctly.

Edit Buffers (M-X) (see also List Buffers)
Displays a list of all buffers, allowing you to save or delete
buffers and to select a new buffer. A set of single character
subcommands lets you specify various operations for the buffers.
For example, you can mark buffers to be deleted, saved, or not
modified. Use HELP to see further explanation. The buffer is
read-only; you can move around in it by searching and with
commands like c-N or c-P.

Edit Callers (M-X) (see also List Callers, Multiple Edit Callers)
Prepares for editing all functions that call the specified one. It
reads a function name via the mouse or from the minibuffer
with completion. By default, it searches the current package.
You can control the package being searched by giving the
function an argument. With c-U, it searches all packages; with
c-U c-U, it prompts for a package name. It selects the first
caller; use c- • (Next Possibility) to move to a subsequent
definition. It takes about 5 minutes to search all packages.

Edit Changed Definitions (M-X) (see also List Changed Definitions)
Determines which definitions in any Lisp mode buffer have
changed and selects the first one. It makes an internal list of
all the definitions that have changed in the current session and
selects the first one on the list. Use c-. (Next Possibility) to
move to a subsequent definition. Use a numeric argument to
control the starting point for determining what has changed:
1 For each buffer, since the file was last read (the default).
2 For each buffer, since it was last saved.
3 For each definition in each buffer, since the definition was

last compiled.

Edit Changed Definitions Of Buffer (M-X) (see also List Changed Definitions Of
Buffer)
Determines which definitions in the buffer have changed and
selects the first one. It makes an internal list of all the
definitions that have changed since the buffer was read in and
selects the first one on the list. Use c- • (Next Possibility) to

July 1986

move to subsequent definitions. Use a numeric argument to
control the starting point for determining what has changed:
1 Since the file was last read (the default).
2 Since the buffer was last saved.

125

3 Since the definition was last compiled, for each definition in
the buffer.

Edit Combined Methods (M-X) (see also List Combined Methods)
Prepares to edit the methods for a specified message to a
specified flavor. It prompts first for a message name, then for a
flavor name. It selects the first combined method component.
Use c- • (Next Possibility) to move to a subsequent definition.
The definitions appear in the order that they would be called
when the message was sent. Error messages appear when the
flavor does not handle the message and when the flavor
requested is not a composed, instantiated flavor.

Edit Compiler Warnings (M-X) (see also Compiler Warnings)
Prepares to edit all functions whose compilation caused a
warning message. It queries, for each of the files mentioned in
the database, whether you want to edit the warnings for the
functions in that file. It splits the screen, putting the warning
message in the top window. The bottom window displays the
source code whose compilation caused the message. Use c-.
(Next Possibility) to move to a subsequent warning and source
function. After the last warning, it returns the screen to its
previous configuration.

Edit Definition (M-.)

Prepares to edit the definition of a function, variable, flavor, or
anything else defined with a "defsomething" special form. It
prompts for a definition name from the minibuffer. Name
completion is available for definitions in files that have already
been loaded into buffers. You can select a name by clicking the
mouse over a definition name in the current buffer. It selects
the buffer containing the definition for that name, first reading
in the file if necessary. With a numeric argument, it selects
the next definition that satisfies the most recent name given. It
tells you in the echo area when it finds more than one definition
for a name.

Edit File Warnings (M-X)

Prepares to edit any functions in a specified file for which
warnings exist. It prompts for a file name, which can be either
a source file or a compiled file. It splits the screen, putting a

126

User's Guide to Symbolics Computers July 1986

warning message from the warnings database in the top window.
The bottom window displays the source code whose compilation
caused the message. If the database does not contain any
warnings for this file, it prompts for the name of a file
containing the warnings. Use c-. (Next Possibility) to move to
a subsequent warning and source function. Mter the last
warning, it returns the screen to its previous configuration.

Edit Methods (M-H) (see also List Methods)
Prepares to edit all the methods on any flavor for a particular
message. It prompts for a message name. It finds all the
flavors with handlers for the message, makes an internal list of
the method names, and selects the definition for the first one.
Use c-. (Next Possibility) to move to subsequent definitions.

Edit Zmacs Command (M-H)

Finds the source for the function installed on a key. You can
press any key combination or enter an extended command name.
Use a numeric argument to edit the function that implements a
prelIX command (like M-H or c-H).

Evaluate And Exit (C-M-Z)

Evaluates the buffer and returns from top level. It selects the
window from which the last cd function or the last debugger
c-E command was executed.

Evaluate And Replace Into Buffer (M-H)

Evaluates the Lisp object following point in the buffer and
replaces it with its result.

Evaluate Buffer (M-H)

Evaluates the entire buffer. With a numeric argument, it
evaluates from point to the end of the buffer.

Evaluate Changed Definitions (M-H)

Evaluates any definitions that have changed in any buffers.
With a numeric argument, it prompts individually about whether
to evaluate particular changed definitions.

Evaluate Changed Definitions Of Buffer (M-sh-E, M-H)

Evaluates any definitions in the current buffer that have been
changed. With a numeric argument, it prompts individually
about whether to evaluate particular changed definitions.

Evaluate Into Buffer (M-H)
Evaluates a form read from the minibuffer and inserts the
result into the buffer. You enter a Lisp form in the minibuffer,

July 1986

127

which is evaluated when you press END. The result of
evaluating the form appears in the buffer before point. With a
numeric argument, it also inserts any typeout that occurs during
the evaluation into the buffer.

Evaluate Minibuffer (M-ESCAPE)

Evaluates forms from the minibuffer. You enter Lisp forms in
the minibuffer, which are evaluated when you press END. The
value of the form itself appears in the echo area. If the form
displays any output, that appears as a typeout window.

Evaluate Region (c-sh-E, M-H)

Evaluates the region. When no region has been defined, it
evaluates the current definition. It shows the results in the
echo area.

Evaluate Region Hack (M-H)

Evaluates the region, ensuring that any variables appearing in a
defvar have their values set. When no region has been defined,
it evaluates the current definition. It shows the results in the
echo area.

Evaluate Region Verbose (c-M-sh-E)

Evaluates the region. When no region has been defined, it
evaluates the current definition. It shows the results in a
typeout window.

(flavor-allowed-init-keywords flavor-name) (In si:)
Returns a list containing the init keywords and initable instance
variables allowed for a particular flavor.

(si:flavor-allowed-init-keywords Itv:basic-menu)

Function Apropos (M-H)

Displays all the Lisp functions whose print names contain a
particular substring. It reads the substring from the minibuffer.
By default, it searches the current package. You can control the
package being searched by giving the function an argument.
With c-U, it searches all packages; with c-U c-U, it prompts for
a package name.

(inspect object) (see also describe)
Creates or selects an Inspector window and displays available
information about an object. inspect and describe provide
similar information, except that inspect is an interactive facility
for further exploring a data structure.

128

User's Guide to Symbolics Computers July 1986

(inspect tv:selected-window)
(inspect (tv:window-under-mouse»

List Buffers (c-X c-B) (see also Edit Buffers)
Prints a list of all the buffers and their associated files. The
lines in the list are mouse sensitive, offering a menu of
operations on the buffers. Clicking left on a line selects the
buffer. For buffers with associated files, the version number of
the file appears. For buffers without associated files, the size of
the buffer in lines appears. For Dired buffers, the pathname
used for creating the buffer appears as the version. The list of
buffers appears sorted in order of last access, with the currently
selected one at the top. You can inhibit sorting by setting
zwei:*sort-zmacs-buffer-list* to nil.

List Callers (M-X) (see also Edit Callers, Multiple List Callers)
Lists all functions that call the specified function. It reads a
function name via the mouse or from the minibuffer with
completion. By default, it searches the current package. You
can control the package being searched by giving the function
an argument. With c-U, it searches all packages; with c-U c-U,

it prompts for a package name. The names are mouse sensitive.
Use c-. (Next Possibility) to start editing the definitions in the
list. It takes about 5 minutes to search all packages.

List Changed Definitions (M-X) (see also Edit Changed Definitions)
Displays a list of any definitions that have been edited in any
buffer. Use c-. (Next Possibility) to start editing the
definitions in the list. Use a numeric argument to control the
starting point for determining what has changed:
1 For each buffer, since the file was last read (the default).
2 For each buffer, since it was last saved.
3 For each definition in each buffer, since the definition was

last compiled.

List Changed Definitions Of Buffer (M-X) (see also Edit Changed Definitions Of
Buffer)
Displays the names of definitions in the buffer that have
changed. It makes an internal list of the definitions changed
since the buffer was read in and offers to let you edit them.
Use c-. (Next Possibility) to move to subsequent definitions.
Use a numeric argument to control the starting point for
determining what has changed:
1 Since the file was last read (the default).
2 Since the buffer was last saved.

July 1986

129

3 Since the definition was last compiled, for each definition in
the buffer.

List Combined Methods (M-X) (see also Edit Combined Methods)
Lists the methods for a specified message to a specified flavor.
It prompts first for a message name, then for a flavor name. It
lists the names in a typeout window. Error messages appear
when the flavor does not handle the message and when the
flavor requested is not a composed, instantiated flavor. Use c-.

(Next Possibility) to start editing the definitions in the list.

List Commands (M-X)

Lists names and one-line summaries for all extended commands
available in the current context. It displays the names in a
typeout window. The list is not sorted.

List Definitions (M-X)

Displays the definitions from a specified buffer. It reads the
buffer name from the minibuffer, using the current buffer as
the default. It displays the list as a typeout window. The
individual definition names are mouse sensitive.

List Matching Lines (M-X)

Displays all the lines following point in the current buffer that
contain a given string. It prompts for the string in the
minibuffer. With a numeric argument, it shows only the first n
occurrences of the string following point. The lines are mouse
sensitive.

List Matching Symbols (M-X)

Lists the symbols that satisfy a predicate. It prompts for a
predicate lambda expression of one argument. The predicate
gets compiled, for speed. The predicate must return something
other than nil for the symbol to be included in the list. For
example

you pressed: M-X L M S
minibuffer contains: J (LAMBDA (SYMBOL»

revised minibuffer: J (LAMBDA (SYMBOL) (stri ng-search "faa"

symbol»
By default, it searches the current package. You can control the
package being searched by giving the function an argument.
With c-U, it searches all packages; with c-U c-U, it prompts for
a package name. It selects the first one; use c-. (Next
Possibility) to move to a subsequent definition.

130

User's Guide to Symbolics Computers July 1986

List Methods (M-H) (see also Edit Methods)
Lists all the function specs for all methods on any flavor that
handle a particular message. It prompts for the message name.
I t finds all the flavors with methods for the message and
displays the information in a typeout window. The function
specs are mouse sensitive.

List Registers (M-H)

Displays names and contents of all defined registers. Use
Apropos to see commands for manipulating registers.

List Some Word Abbrevs (M-H)
Lists the abbreviations or expansions that contain the given
string. Use Apropos to see the other abbreviation commands.

List Tag Tables (M-H)

Lists the names of all the tag tables currently available. Use
Apropos to see other commands using tags.

List Variables (M-H)

Lists all Zmacs variable names and their values. With a
numeric argument, it also displays the documentation line for
the variable. Zmacs variables are those that have been provided
for customizing the editor. Their names differ from their
internal Lisp names:

Zmacs variable name:

Internal Lisp name: zwei:*fill-column*

List Word Abbrevs (M-H)

Lists all current abbreviations and their expansions.

(load-compiler-warnings file flush-flag) (In compiler:) (see also Load Compiler
Warnings)
Loads a file containing compiler warning messages into the
warnings database. It expects to load a file containing the
printed representation of compiler warnings (as saved by
print-compiler-warnings). It uses flush-flag to determine
whether to replace any of the warnings already in the database.
When the flag is not nil, it deletes any warnings associated with
a source file before loading any new warnings for that file.
Otherwise, it merges warnings from the file with those already
in the warnings database. The default is t.

Load Compiler Warnings (M-H) (see also compiler:load-compiler-warnings)
Loads a file containing compiler warning messages into the
warnings database. It prompts for the name of a file that

Fill Column

July 1986

contains the printed representation of compiler warnings. It
always replaces any warnings already in the database.

131

Long Documentation (c-sh-D) (see also Show Documentation)

M-ESCAPE

M-sh-A

M-sh-C

M-sh-D

M-sh-E

M-sh-F

M-sh-V

Displays the summary documentation for the specified Lisp
function. It prompts for a function name, which you can either
type in or select with the mouse. The default is the current
function.

See Edit Definition.

See Evaluate MiniBuffer.

See Show Documentation Function.

See Compile Changed Definitions Of Buffer.

See Show Documentation.

See Evaluate Changed Definitions Of Buffer.

See Show Documentation Flavor.

See Show Documentation Variable.

Macro Expand Expression (c-sh-M, M-X)
Displays the macro expansion of the next Lisp expression in the
buffer. It reads the Lisp expression following point and expands
all macros within it at all levels, displaying the result on the
typeout window. With a numeric argument, it pretty-prints the
result back into the buffer, immediately following the
expression.

(mexp) (see also disassemble)
Displays the expansion of a macro. It prompts for a macro
invocation to expand and then displays its expansion without
evaluating it. It continues prompting until you enter something
that is not a cons (for example, 0 stops it.)

Multiple Edit Callers (M-X) (see also Edit Callers)
Prepares for editing all functions that call the specified ones. It
reads a function name from the minibuffer, with completion. It
then keeps asking for another function name until you end it
with just RET URN. By default, it searches the current package.
You can control the package being searched by giving the
function an argument. With c-U, it searches all packages; with
c-U c-U, it prompts for a package name. It selects the first
caller; use c-. (Next Possibility) to move to a subsequent
definition.

132

User's Guide to Symbolics Computers July 1986

Multiple List Callers (M-H) (see also List Callers)
Lists all the functions that call the specified functions. I treads
a function name from the minibuffer, with completion. It
continues prompting for a function name until you end it with
just RETURN. By default, it searches the current package. You
can control the package being searched by giving the function
an argument. With c-U, it searches all packages; with c-U c-U,

it prompts for a package name. Use c-. (Next Possibility) to
start editing the definitions in the list.

Print Modifications (M-H)

Displays the lines in the current buffer that have changed since
the file was first read into a buffer. With a numeric argument,
it displays the lines that have changed since the last save. To
provide context, it shows the first line of each section that
contains a change, whether or not that line has changed. The
lines are mouse sensitive, allowing you to move to the location
of a change.

Quick Arglist (c-sh-A) (see also arglist)

Quit (c-2)

Displays the argument list for the current function. With a
numeric argument, it reads the function name via the mouse or
from the minibuffer. When the original function uses a values
declaration, Quick Arglist returns the names for the values
returned by the function.

Returns from top level. It selects the window from which the
last (ed) function or the last debugger c-E command was
executed.

Select Some Buffers as Tag Table (M-H)

Creates a tag table by selecting some buffers currently read in,
querying about each one. With a numeric argument, it asks
only about buffers whose name contains a given string.

Select System as Tag Table (M-H)

Creates a tag table for all the files in a system. It uses the file
names as they appear in the defsystem function for that system.

Show Documentation (M-H, M-sh-D)

Looks up a topic from the documentation database and displays
it on a typeout window. It offers the current definition as a
default, but prompts for a definition, which can be supplied by
mouse or minibuffer. It accepts only those topics for which
documentation has been installed.

133

July 1986

Show Documentation Flavor (M-sh-F)
Displays the documentation for the current flavor. With a
numeric argument, it prompts for a device. The devices
currently supported are the screen and an LGP printer.

Show Documentation Function (M-sh-A)
Displays the documentation for the current function. With a
numeric argument, it prompts for a device. The devices
currently supported are the screen and an LGP printer.

Show Documentation Variable (M-sh-V)
Displays the documentation for the current variable. With a
numeric argument, it prompts for a device. The devices
currently supported are the screen and an LGP printer.

Tags Search (M-X) Searches all files in a tags table for a specified string. It reads
the string from the minibuffer and then prompts for a tags
table name.

Trace (M-X) (see also untrace)
Toggles tracing for a function. With a numeric argument, it
simply enables tracing for some function, without prompting you
for trace options. It uses the same interface for specifying
options as the Trace program in the System menu. See the
section "Tracing Function Execution" in Program Development
Utilities.

(trace specs) (see also untrace)
Turns on tracing for a function. With no arguments, it returns
a list of all things currently being traced. With no additional
options, tracing displays the name and arguments for a function
each time it is called and its name and value(s) each time it
returns. Complex options are available for entering breakpoints
or executing code conditionally during tracing. See the section
"Tracing Function Execution" in Program Development Utilities.
See the section "Trace" in Text Editing and Processing.

(trace foo bar)
(trace #J(:method command-found :push»

Tracing very common functions (like zl:format) or functions
used by trace itself or by the scheduler (like time:get-time) can
crash the machine.

(untrace specs) Turns off tracing for a function that is being traced. With no
argument, it turns off tracing for all functions currently being
traced.

134

User's Guide to Symbolics Computers July 1986

(variable-boundp variable)
Returns nil or t indicating whether or not the variable is bound.

(variable-boundp tv:current-window)

(what-files-call symbol package)
Displays the names of files that contain uses of symbol as a
function, variable, or constant. It searches all the function cells
of all the symbols in package. By default, it searches the global
package and its descendants. It returns a list of the pathnames
of the files containing the callers.

Where Is Symbol (M->O
Displays the names of packages that contain symbols with the
specified name.

(where-is string package)
Displays the names of all packages that contain a symbol whose
print name is string. It ignores the case of string. By default,
it looks in the global package and its descendants. where-is
returns a list of the symbols that it finds.

(where-is "foobar")

(who-calls symbol package inferiors superiors)
Displays a line of information about uses of the symbol as a
function, variable, or constant. I t searches all the function cells
of all the symbols in package. By default, it searches the global
package and its descendants. It returns a list of the names of
the callers.

(who-calls 'time:get-time 'hacks)

8.5 Editing Your Input

When you make a mistake in typing or change your mind when typing a command
or expression to the system, you have two choices:

• Press ABORT and begin again.

• Edit your input.

You do not need to invoke the input editor explicitly. The input editor is a
feature of all interactive streams.

135

July 1986

8.5.1 Input Editor Commands

Input Editor Commands: c-number, c-Minus and c-U provide numeric arguments.

REFRESH Refresh Window HELP Display Documentation
PAGE Erase Typeout c-HELP Display Commands
M-(Beginning Of Buffer M-HELP Display Internal State
M-> End Of Buffer ESCAPE Display Input History
CLEAR INPUT Clear Input c-ESCAPE Display Kill History
c-F Forward Character c-V Yank
c-B Backward Character M-V Yank Pop
c-D Delete Character C-M-V Yank Input
RUBOUT Rubout Character c-w Kill Region
c-T Exchange Characters M-W Save Region
c-A Beginning Of Line c-SPACE Set Mark
c-E End Of Line c-(Mark Beginning
c-P Previous Line c-> Mark End
c-N Next Line c-sh-V Yank Matching
c-K Kill Line M-sh-V Yank Pop Matching
M-F Forward Word c-M-sh-V Yank Input Matching
M-B Backward Word SCROLL Scroll Vertical Forward
M-D Delete Word c-V Scroll Vertical Forward
M-RUBOUT Rubout Word M-SCROLL Scroll Vertical Backward
M-T Exchange Words M-V Scroll Vertical Backward
M-U Upcase Word s-SCROLL Scroll Horizontal Forward
M-L Downcase Word s-M-SCROLL Scroll Horizontal Backward
M-C Capitalize Word C-M-S Save Scroll Position
c-M-F Forward Parentheses c-M-R Restore Scroll Position
c-M-B Backward Parentheses s-W Kill Ring Push Region
c-M-K Delete Parentheses Strings
c-M-RUBOUT Rubout Parentheses s-S Scroll Search Forward
LINE New Line s-R Scroll Search Backward
BACK SPACE Backward Character c-sh-A Describe Arguments
c-L Refresh Window c-sh-V Describe Variable
c-o Open Line c-sh-D Document Symbol
c-Q Quote Character C-M-J Set Typein Style
M-sh-A Lookup Function Documentation
M-sh-V Lookup Variable Documentation
M-sh-F Lookup Flavor Documentation

8.5.2 Histories and Yanking

A history remembers commands and pieces of text, placing them in a history list.
Additions to the history are placed at the top of the list, so that history elements

136

User's Guide to Symbolics Computers July 1986

are stored in reverse chronological order - the newer elements at the top of the
history, the older elements toward the bottom.

Yanking commands pull in the elements of a history. Top-level commands start a
yanking sequence. Other commands perform all subsequent yanks in the same
sequence. A yanking sequence ends when you type new text, execute a form or
command, or start another yanking sequence.

The system has different histories for different contexts. One of these is always
the current history.

8.5.3 Types of Histories

Genera uses the following histories:

Type

Input

Kill

Replace

Buffer

Pathname

Command

Definition

Description

History containing text typed at the input editor; a separate
history exists for each window.

History of text deleted or saved in any window; a global history.

History of arguments to Query Replace (M-H) and related
commands.

History of editor buffers visited in this window.

History of file names that have been typed.

History of editor commands that use the minibuffer, and their
arguments. Commands that do not use the minibuffer, such as
M-RUBDUT, are not recorded in the history.

History of names of definitions that have been typed.

Except for the input histories, which are per-window, only a single instance of
each of these histories exists, shared among all editors, including Zmacs, Zmail,
and Dired.

8.5.4 Input Editor

In the input editor C-M-V yanks from the history of previous inputs.

Because the input editor's kill history is the same as the Zwei kill history,
c-SPACE, c-W, M-W, c- <, c- >, c-V, and related commands can be used in the input
editor to move text back and forth between Zmacs, Zmail and the Input Editor .
(Press c-HELP for a summary of commands.) Unlike Zwei, however, the input
editor does not underline a marked region.

You can use most Zwei editing commands on yanked forms. Reactivating a yanked

137

July 1986

form is simple: just press END anywhere within or at the end of the form. ESCAPE
displays the history of previous inputs. A numeric argument controls the length
of the input history to be displayed. An argument of 0 displays the entire history.

c-ESCAPE displays the default kill history. A numeric argument controls the
length of the kill history to be displayed. An argument of 0 displays the entire
history.

8.5.5 The Displayed Default

When a command that reads an argument in the minibuffer displays a default, it
puts the default onto the history temporarily. After reading and defaulting your
input, it puts the argument onto the history instead. Thus C-M-V always yanks
the displayed default and c-M-2 C-M-V yanks the last thing typed in that context.
If no default is displayed, C-M-V yanks the last thing typed in that context.

The displayed default is usually not the same as the most recent item in the
history; often it is computed according to some heuristic based on past history and
the exact command being given. It is pushed onto the top of the history in order
to allow you to easily yank and edit it. This is useful when the heuristic comes
close but does not provide exactly what you want.

8.5.6 Using Numeric Arguments for Yanking

A numeric argument of 0 to any yank command displays a list of the history and
the numeric argument required to get each element of the history.

Example: The input history invoked in a Dynamic Lisp Listener by C-M-(3 C-M-V:

Lisp Listener 1 Input history:
1: (+ 218 32)
2: (* 17 6)
3: Load Patches
4: Show System Modifications
5: Show Herald
6: Login KJones

The history is displayed in reverse chronological order - the newest element first,
for example, (+ 218 32); the oldest last, for example, Login KJones.

By default, a positive argument to c-V and C-M-V specifies how far from the
newest element into past history is the element to be yanked. The numbers in the
history display can be used as numeric arguments. (Optionally, you can set the
variable zwei:*history-rotate-if-numeric-arg* so that arguments to the yanking
commands are measured relative to the origin. See the section "Customizing the
Input Editor", page 105.)

Example: c-M-l C-M-V yanks element #1, (+ 218 32), from the history.

138

User's Guide to Symbolics Computers July 1986

Example: c-M-2 C-M-Y yanks element #2, (lk 17 6), from the history.

A positive or negative argument to M-Y is measured relative to the last element
yanked, not the newest element.

Example: Pressing c-M-2 C-M-Y yanks (lk 17 6); then pressing M-4 M-Y yanks
Logi n KJones, not element #4. Displaying the history at this point looks this:

Lisp Listener 1 Input history:
1: (+ 218 32)

2: (lk 17 6)
3: Load Patches
4: Show System Modifications
5: Show Herald

-> 6: Login KJones

Element #6, marked by a pointer, is the origin. (Note: The origin is not the most
recent element because M-Y has changed the origin.)

A top-level command given without an argument retrieves the element at the
origin, which is the last element yanked in the previous yanking sequence, not
necessarily the newest element of the history.

Example: C-M-Y yanks Login KJones) from the history.

A numeric argument of c-u not followed by any digits is the same as no numeric
argument with one exception: Point is placed before the text yanked and mark is
placed after - the reverse of the ordinary placement.

To find out how to customize the input editor: See the section "Customizing the
Input Editor", page 105.

8.6 System Conventions and Helpful Hints

8.6.1 Miscellaneous Conventions

All uses of the phrase "Lisp reader", unless further qualified, refer to the part of
Lisp that reads characters from I/O streams (the zl:read function), and not the
person reading this documentation.

By default, Symbolics-Lisp displays numbers in base 10. If you wish to change it:
See the section "What the Reader Recognizes" in Reference Guide to Streams,
Files, and I/O.

Several terms that are used widely in other references on Lisp are not used much
in Symbolics documentation, as they have become largely obsolete and misleading.
They are: "S-expression", which means the printed representation of a lisp object;
"Dotted pair", which means a cons; and "Atom", which means, roughly, symbols

139

July 1986

and numbers and sometimes other things, but not conses. For definitions of the
terms "list" and "tree": See the section "Manipulating List Structure" in
Symbolics Common Lisp.

8.6.2 Answering Questions the System Asks

The system occasionally asks you to confirm some command. There are two forms
this can take:

• Simple commands such as Load File or Save File Buffers might ask you to
confirm with a question requiring a Y (for yes) or an N (for no).

Save Buffer program.lisp >kjones>new-project> tuna: ? (Y or N)

You press Y or SPACE for yes, N for no.

• Destructive commands, such as Initialize Mail, require that you type the
entire word yes to confirm them.

Do you really want to do this? (Yes or No)

You must type the entire word yes to confirm the the command. Thus you
are less likely to issue such a command accidentally.

Lisp provides several functions for this kind of querying: See the section
"Querying the User".

8.6.3 Questions Users Commonly Ask

What Is a Logical Pathname?

A logical pathname is a kind of pathname· that doesn't correspond to any
particular physical file server or host. Logical pathnames are used to make it
easy to keep software on more than one file system. An important example is the
software that constitutes the Lisp Machine system. Every site has a copy of the
basic sources of the programs that are loaded into the initial Lisp environment.
Some sites might store the sources on a UNIX file system, while others might
store them on a TOPS-20. However, the software needs to find these files no
matter where they are stored. This is accomplished by using a logical host called
SYS. All pathnames for system software files are actually logical pathnames with
host SYS. At each site, SYS is defined as a logical host, and there is a translation
table that maps the SYS host to the actual physical machine for that site.

Here is how translation is done. For each logical host, there is a mapping that
takes the name of a directory on the logical host, and produces a device and a
directory for the corresponding physical host. For example, the logical host SYS
has a directory SITE;. At a site that keeps its sources on a TOPS-20 this might

140

User's Guide to Symbolics Computers July 1986

map to SS:<SITE>. Then the file SYS:SITE;NAMESPACE.LISP translates to
SS:<SITE>NAMESPACE.LISP. On a UNIX system this same file might translate
to lusrlsystem/namespace.l. The important thing is that everyone can refer to the
file by its logical pathname, SYS:SITE;NAMESPACE.LISP, where the name before
the ":" is the logical host name, and logical directories are separated by ";"s. You
can define the translation of a logical pathname to be any physical pathname of
any operating system type, but to access a tile with a logical pathname you need
only to use logical pathname syntax.

The function fs:set-Iogical-pathname-host is used to define a logical host and its
logical directories. Here are some sample uses:

(fs:set-logical-pathname-host "SYS" :physical-host "my-vms"
:translations '(("games;" "[games]")

("*;" "[symbolics.*]"»)

This says that sys:games; translates to my-vms: [games], and that any other logical
directory on the logical host SYS translates to a subdirectory under [symbolicsl of
the same name. See the function fs:set-Iogical-pathname-host in Reference Guide
to Streams, Files, and lID.

What is a World Load?

A world load can be thought of as a snapshot of an operating Lisp environment.
All of the functions, variables, and other Lisp objects that were present in the
Lisp environment when the snapshot was made are contained in the world load file
on the disk. Typically, snapshots of worlds are made only when such a snapshot
would save significant time later. For example, after you have initially configured
your new machine at your site, it is useful to make a snapshot of the configured
environment because it saves you time in the future (you don't have to configure
the machine each time you boot it). If you usually load MACSYMA or FORTRAN
each time you boot, it is advantageous to make a snapshot of a world with that
software loaded, to save you the time of loading it. Remember, everything in the
environment is contained in the snapshot, so you don't want to create a world load
file after you've been using the editor or most system facilities (you don't want to
find old text in your editor buffer when you cold boot.). The way to create a
snapshot and save it to disk is by using the command Save World or the function
(zl:disk-save).

Why Do You Name Machines and Printers?

Naming inanimate objects such as hosts, printers, sites, and networks may seem
foolish if you have only one of each, but if you have large numbers of machines,
names are a convenient way to easily refer to a particular machine with a
particular address without having to remember its network address, machine type,
and physical location. One customer named its machines after the characters in
Winnie the Pooh, while another named its machines after the wives of Henry VIII.

141

July 1986

8.6.4 Questions About the FEP and LMFS

Why Can't I Write Out Files When I Have Free Disk Space?

The 3600 disk is physically divided into partitions known as FEP files. This
division of the disk is called the FEP file system. However, when one speaks of
the file system of a Lisp Machine, one is generally referring to the LMFS (Lisp
Machine File System) of that machine. This is the file system you edit when you
click left on [Tree Edit Root] in the FSEdit window, and is the file system used
when you specify file names of the form Lisp Machine
Name:>directory>{ilename.type.version. The entire Lisp Machine local file system
normally resides inside one big file of the FEP file system (typically
FEPO:>LMFS.FILE.1). Thus, LMFS is full when the amount of space allocated to
it (in other words, FEPO:>LMFS.FILE.1) is full. Thus, LMFS could be full but
there could still be 100,000 unused blocks on the disk (not even allocated as FEP
files). See the section "Adding a Spare World Load as LMFS File Space" in
Internals, Processes, and Storage Management.

How Do I Create a FEP File?

There aren't too many reasons for creating FEP files. If you want to create a file
to allocate more LMFS file space, simply enter the File System Editing Operations
window, by using SELECT F, by clicking on [File System] in the System Menu, or
by using the Select Activity File System Operations command. Then click on
[Local LMFS Operations]. The second level menu pops up. Click on [LMFS
Maintenance Operations]. Click right on [Initialize]. A menu pops up. Click on
[Auxiliary Partition] and click on the name above this so that you can specify a
name for the auxiliary partition. Typically, a good name is FEPO:>LMFS-
AUX. FILE. (Of course, if you have more than one drive, or a FEP file named
LMFS-AUX.FILE already exists, you should choose another name.) Then click on
[Do It]. It will ask you how much space to allocate to this file; specify a number
of blocks.

When working with FEP files, the File System Editor is good only for creating
FEP files to be allocated to LMFS. If you need a FEP file for another purpose
(extra paging, for example) and create it with FSEdit, the LMFS data structure
contained on your disk might become very confused, and can potentially destroy
the file system of your machine. The Create FEP File command creates a FEP
file for purposes other than a LMFS partition. See the section "Create FEP File
Command", page 232. The following Lisp function also creates such a FEP file:

(WI TH-OPEN-F I LE (F I LE FEPn:>Filename.type.version
:DIRECTION :8LOCK
:IF-EXISTS :ERROR)

(SEND FILE :GROW 30000»

142

User's Guide to Symbolics Computers July 1986

The italicized string above represents the name of the FEP file to be created, and
the italicized 30000 represents the size you want to make the file.

For more information about LMFS and the FEP file system: See the section "FEP
File System" in Internals, Processes, and Storage Management.

143

July 1986

9. Recovering From Errors and Stuck States

9.1 Introduction

Sometimes. it is hard to know whether or not your machine is in trouble, because
some operations, particularly those involving other network machines, can take a
long time. Periodically check the process state and the run bars on the status
line. The run bars flicker when the machine is working. As long as the run bars
are flickering and the process state is changing occasionally, the machine is
probably working properly. Some process states mean trouble if they persist, say,
for a minute or more.

Look at the clock in the status line. If the clock is ticking, processes are being
scheduled. If the clock is not ticking, the 3600 is halted. As long as the FEP is
working, it prints a message near the top of the screen when the 3600 has halted
and then gives its F ep> prompt. When the 3600 resumes its previous state, it
updates the clock with the correct time.

9.2 Recovery Procedures

If the status line displays one of the following process states, recover by using the
appropriate procedure:

State
Wait Forever
Output Hold

Arrest
Lock

Selected
(no window)

Recovery procedure
Select a different window, then reselect the one you were in.
Press FUNCTION ESCAPE (the ESCAPE key is in the top row,
second from the left); if that puts you in the Debugger, use
ABORT.

Press FUNCTION - A (that is, a three-key sequence).
Try FUNCTION 0 S to see if any windows want to type out. If
that does not help, press c-ABORT.

Press FUNCTION 0 S.

Use the mouse or SELECT key to select the window you want.

You can press SUSPEND to get to a Lisp read-eval-print loop. You can press
C-M-SUSPEND to force the current process into the Debugger.

144

User's Guide to Symbolics Computers July 1986

9.3 The Debugger: Recovering From Errors and Stuck States

Errors that are not caught and handled by the program that triggered them
invoke the Debugger. See the section "Entering the Debugger" in Program
Development. Utilities.

9.4 Resetting the FEP

Resetting the FEP restarts the FEP system, thereby discarding knowledge of the
FEP's free storage area. Resetting might be necessary if you unplug the console
video cable from either end or turn the console off and on. You also need to reset
the FEP if you receive the error message: No More Memory. [You can reset the
FEP from either the keyboard or the processor front panel. Note that when the
FEP is being reset the fault light (located on the front panel of the processor box)
is turned on by the hardware. Then, when the FEP finishes initializing itself the
FEP turns the fault light off.]

• To reset the FEP from the keyboard:

1. Type the Halt Machine command at a Lisp command prompt to stop
Lisp and give control of the keyboard to the FEP.

If no Lisp Listener is responsive, press h-c-FUNCT I ON to stop Lisp.

2. Type the command Reset FEP to the FEP prompt.

3. Press y to answer the confirmation prompt.

4. Type the command Hello to the FEP prompt to initialize the overlay
files.

• To reset the FEP from the processor front panel:

1. Push the red RESET button on the processor front panel.

2. Press the spring-loaded YES switch to answer the "Reset FEP?"
question (This question is asked only if you have a 3600 machine
model).

After you reset the FEP, the keyboard is connected to the FEP, not to Lisp. Type
the Hello command to the FEP prompt, and then give the Start command and
press RET URN to warm boot the machine and Lisp, and return control of the
keyboard to Lisp.

145

July 1986

9.5 Warm Booting

If an error occurs in the keyboard process, window system, or scheduler, making
the machine unresponsive to the keyboard, you may have to warm boot the
machine. Warm booting causes either a :flush or :reset message to be 'sent to all
processes in the system, depending on the type of process.

To warm boot the computer, use the following procedure:

1. Type one of the following to a Lisp Listener:

o Halt Machine

o (s; :halt)

You are now connected to the FEP.

If you cannot obtain a Lisp Listener window or if no Lisp Listener is
responding to keyboard input, you should use h-c::-!fPpel:dc/'t, (upPU! left is=the
~) ill th~llpper-:1eft-co.me.r-of-the-key.boa~~~to=L88F-1k en old
lreybea.t4s::sm'ffFUNCTION _

2. Type start at the FEP prompt (F ep » and press RET URN.

Sometimes, the machine prints 1 i sp stopped i tsel f and returns control to the
FEP. When this happens, at the FEP prompt (Fep» you should type show status,
check the information it provides, and then type start.

9.6 Halting

Halting the 3600 leaves all Lisp states intact. To halt the 3600 in order to
connect to the FEP, type sys:halt to a Lisp Listener or use h-c-upper-Ieft. You
are now connected to the FEP. To return to Lisp, type cont i nue at the FEP
prompt (F ep » and press RET URN.

on the screen:
you type:
you press:

Fep>
continue
RETURN

The 3600 can halt itself under exceptional conditions. In this case, try typing
cant i nue. If cont i nue does not work, use start.

146

User's Guide to Symbolics Computers July 1986

147

July 1986

10. How to Get Output to a Printer

10.1 Introduction to the Hardcopy Facilities

The hardcopy System provides a uniform interface for sending output to a printer.
It allows the user or the program to specify formatting information in a device
independent way for output on a supported printer.

The first section of this document deals with the commands provided for the user
to request and control hardcopy. The second section deals with the functions a
program needs to request hardcopy.

In order for menu items, commands, and functions that refer to printing and
hardcopy to work, your site must have a properly connected printing device.

See the Printer Installation Guide for your printer type.
See the section "Namespace System Printer Objects" in Networks.

10.2 Printing and Hardcopy Commands

10.2.1 Commands for Producing Hardcopy

You can produce hardcopy from the Command Processor, by using the System
Menu, from the editor, from Zmail, from Dired in the editor, and from the file
system editor. You can also get a hardcopy of your screen at any time.

10.2.1.1 Hardcopylng From the Command Processor

The simplest way to produce hardcopy is with the Command Processor:

Hardcopy File file-spec printer keywords

Sends a file to a hardcopy device.

file-spec

printer

keywords

The pathname of tlle file to be printed. The default is the
usual file default.

The printer to use to output the file. The default is determined
from your init file or from the default-printer attribute for the
host in the namespace database.

:Body Character Style :Copies :Delete :Ending Page :File Types
:Heading Character Style :Orientation :Running Head
:Starting Page

148

User's Guide to Symbolics Computers July 1986

:Body Character Style
The character style to use for printing the text of the file and
against which to merge any character styles in the file. The
default is the null style, (nil nil nil), meaning use the default
for the printer.

:Copies {number} The number of copies to print. The default is 1.

: Delete {yes, no} Whether to delete the file after it is printed. The
default is no, not to delete. Adding the :delete keyword to your
hardcopy command string is the same as :delete yes.

:Ending Page {number} The last physical page to print. The default is the
last page of the file. A page is defined by the presence of a
PAGE character or form feed in the file. Thus plain text files
with no page markers in them are treated as a single page,
although they take up several sheets of paper. Press format
files, on the other hand, have form feeds or PAGE characters in
them. It is important to remember that these are physical
pages and do not necessarily correspond to the page numbering
appearing in the heading. For example, the first physical page
of a press file is probably a title page and the second physical
page might be numbered i so the page numbered 1 might be the
third physical page.

:File Types {Text, Suds-Plot, Press, Lgp, Lgp2, Dmpl, Xgp or use-canonical­
type} The internal format of the contents of the file, to
interpret for printing. The default is use-canonical-type,
meaning that the type is determined from the extension to the
file name.

:Heading Character Style

: Orientation

The character style to use for the running head supplied by the
:running head keyword.

{landscape, portrait} Orientation on the paper for the output.
Portrait is left to right across the short dimension of the paper.
Landscape is left to right across the long dimension. The
default is portrait.

:Running Head {none, numbered} Type of running head to print on the top of
each page. The default is numbered.

:Starting Page {number} The first physical page to print. The default is the
first page of the file. A page is defined by the presence of a
PAGE character or form feed in the file. Thus plain text files
with no page markers in them are treated as a single page,

149

July 1986

although they take up several sheets of paper. Press format
files, on the other hand, have form feeds or PAGE characters in
them. It is important to remember that these are physical
pages and do not necessarily correspond to the page numbering
appearing in the heading. For example, the first physical page
of a press file is probably a cover page and the second physical
page might be numbered i so the page numbered 1 might be the
third physical page.

: Title {string} Title to appear on the cover page to identify the output.
The default is your user name.

10.2.1.2 Hardcopying From the System Menu

To produce hardcopy using the System Menu, click on [Hardcopy]. This pops up a
Choose Variable Values menu that allows you to specify the pathname of the file
to be hardcopied and to select the printer, character style and other parameters.

Hardcopy File

File: Ilo,.,bat: >KJonell>proposal. text
Printer na,.,e: Asahl 6hl,.,bun
Title: a string '\ Body-Character-Style: a fully sp.ctfi.d charachr styz.
Headlng-Character-6tyle: a fully sp.ctfi.d charact.r styl.
Copies: 1
Delete: Ves No
F il e-Types: Text Suds-Plot Press LSR Lgp2 D,.,pl IIgp Use-Canon I cal-Type
Or I entat I on: Landscape Por\rat t
Running-Head: None Hunber ...
Start lng-Page: 1
Ending-Page: End or rile

Abort. Done

Figure 21. The Hardcopy Menu

10.2.1.3 Hardcopylng From Zmacs

You can hardcopy a region, a buffer, or a file from Zmacs.

Hardcopy Region (M-X)

Sends a region's contents to the local hardcopy device for printing.

150

User's Guide to Symbolics Computers July 1986

For full information on Genera hardcopying: See the section "How to Get Output
to a Printer", page 147.

Hardcopy Buffer (n-X)

Prompts for the name of a buffer and then prints the specified buffer on the local
hardcopy device.

For full information on Genera hardcopying: See the section "How to Get Output
to a Printer", page 147.

Hardcopy File (n-X)

Prompts for the name of a file and then prints the specified file on the local
hardcopy device.

For full information on Genera hardcopying: See the section "How to Get Output
to a Printer", page 147.

Kill Or Save Buffers (n-X)

Puts up a multiple-choice menu listing all existing buffers. Choices are: Save,
Kill, Unmodify, and Hardcopy. Specify these options next to the buffer names in
the menu. This command appears on the editor menu.

10.2.1.4 Hardcopying From Zmall

You can hardcopy a single message or a collection of messages from Zmail.

Hardcopying

Hardcopy Message (n-X)

Hardcopy All (n-X)

Hardcopies the current message.

Hardcopies all the messages in the current
sequence.

You can click right on [Other] in the Zmail menu and select Hardcopy to hardcopy
the current message.

You can also click right on [Move] and select Hardcopy.

For any individual message you can click right on its summary line then click
right on [Move] and select Hardcopy.

To copy all messages in current sequence click right on [Map Over] then right on
[Move] and select Hardcopy.

In any of these commands you can click right on Hardcopy to get a menu that

151

July 1986

permits you to specify the number of copies and which printer to use. The Other
option in the list of printers allows you to specify an arbitrary printer, using
either its pretty name or its namespace name. This printer becomes the selected
printer, and remains in the menu for subsequent hardcopy commands.

You can check the status of a printer from Zmail.

Show Printer Status (M-H)

Prompts for the name of a printer and displays its print queue.

You can also hardcopy files from Zmail.

Hardcopy File (M-H)

Prompts for a pathname and sends the specified file to the
printing device specified in Hardcopy Options in your Zmail
profile. The default is the first pathname specified in the Fi' e­
References: header field.

Format File (M-H) Prompts for a pathname and displays the specified file formatted
using the editor's formatting capability. c-U M-H Format File
formats the file and sends it to a printer. The default
pathname is the first pathname specified in the Fi' e­
References: header field.

10.2.1.5 Hardcopylng From Dlred

You can mark files to be hardcopied in Dired. When you exit from Dired, the files
marked to be hardcopied are sent to the printer.

p Dired Hardcopy File

Marks the current file for printing. Dired puts a P in the first column to show
that the file has been so marked.

With a numeric argument n, marks the next n files for printing.

10.2.1.6 Hardcopylng the Screen

You can get a hardcopy of what is displayed on your screen by pressing FUNCTION
Q:

Q Hardcopies the entire screen.

c-Q Hardcopies the selected window.

M-Q Hardcopies the entire screen, minus the status and mouse
documentation lines.

152

User's Guide to Symbolics Computers July 1986

10.2.1.7 Hardcopylng From the File System Editor

You can use the system hardcopy menu from FSEdit. You click on Hardcopy in the
menu of file operations invoked by clicking right on a file name.

10.2.2 Other Hardcopy Commands

10.2.2.1 Changing the Default Printer

When a site has more than one printer, one of the printers is specified as the site
default printer. Show Printer Defaults tells you what the current printer is:

Show Printer Defaults

Displays the current default printer(s). If you send all your hardcopy output to
one printer, this is displayed as

-
Defaul t Pri nter: printer-name

If you use a different printer for text and screen hardcopy, this is displayed as

Defaul t Text Pri nter: printer-namel
Defaul t Bi tmap Pri nter: printer-name2

You can change the default printer with the Set Printer command:

Set Printer printer-name keywords

Sets the default printer for hardcopy.

printer-name The name of a supported printer that can be reached by your
machine.

keywords :Output Type

:Output Type {text bitmap both} The type of output to send to that printer.
Text means files and mail messages, bitmap means graphics and
screen hardcopy. The default is both, meaning use the same
printer for both types of output.

You can change the default in your init file to specify the printer that is most
convenient for you. See the function hardcopy:set-default-text-printer, page 108.

The Hardcopy File command accepts a keyword argument of :printer, allowing you
to specify a printer when you give the command. For example:

Hardcopy File q:>kjones>report.pr :printer beacon

In the System Menu, using [Hardcopy] allows you to specify a different printer
name; the printer name is mouse-sensitive.

July 1986

10.2.2.2 Managing the Print Spooler Queue

You can find out the status of a printer and its spooler queue with the Show
Printer Status command:

Show Printer Status Command

Show Printer Status printer

Displays the print queue for the specified printer or printers.

153

printer The name of a printer or printers (separated by commas) whose
print queue to show, or All to show all the queues for all
printers at your site. The default is your current printer
default. If your text printer and your bitmap printer are
different, your text printer is used as the default for Show
Printer Status.

The display of requests is mouse sensitive and can be clicked on to select
arguments for the Delete Printer Request and Restart Printer Request commands.
This is only true for print spoolers running Release 7.0.

This command is also available in Zmail as M-H Show Printer Status.

Print requests can be canceled by using the Delete Printer Request command.

Delete Printer Request Command

Delete Printer Request printer-request

Deletes the specified print request from the print queue.

printer-request A string specifying the printer and the request. The print
request should be selected with the mouse from the display of
the Show Printer Status command. See the section "Show
Printer Status Command", page 153.

Print requests can be restarted by using the Restart Printer Request command.

Restart Printer Request Command

Restart Printer Request printer-request

Restarts a print request that has not yet finished. This is useful if something
goes wrong with the printing, for example the paper is coming out crumpled.

printer-request A string specifying the printer and the request. The print

154

User's Guide to Symbolics Computers July 1986

request should be selected with the mouse from the display of
the Show Printer Status command. See the section "Show
Printer Status Command", page 153.

The Printer can be halted, started and reset remotely.

Halt Printer Command

Halt Printer printer printer-request keywords

Halts the specified printer.

printer

printer-request

keywords

:Disposition

:Reason

The name of the printer to halt.

(Optional) If the printer is printing a request when the Halt
Printer command is given, it displays the request and asks you
to confirm the halt command. If you supply a printer-request
argument and it matches the request that is printing, the
printer is halted immediately without requiring confirmation.
The print request should be selected with the mouse from the
display of the Show Printer Status command. See the section
"Show Printer Status Command", page 153.

:Disposition, : Extent, :Reason, :Starting From, : Urgency

{Delete, Hold, Restart} What to do with the request that is
printing. Delete deletes the request from the queue; you must
request it again to have it printed. Hold retains the request in
the queue but does not print it when the printer restarts.
Restart restarts printing the interrupted request from the
beginning when the printer restarts. The default is Delete.

{string} The reason for the shutdown. This appears in the
display from Show Printer Status to explain what is happening
to users. The default is "Printer suspended by operator."

The following three keywords are related and interact to control precisely when
the printer halts.

: Extent {Entire, Copy} The extent of the request to be cancelled. Entire
refers to the whole request. Copy refers to a single copy. In a
request for one copy of a document, Entire and Copy are
synonymous. The default is Entire.

:Starting From {number} The copy number. If :Extent is Entire, this has no
meaning. If :Extent is Copy, this is the number of the copy
after which to halt the printer. The default is o.

July 1986

:Urgency {Asap, After-Extent} When to halt. Asap means instantly,
ignoring any settings of :Extent and :Starting From. After­
Extent means halt based on the settings of the :Extent and
:Starting From keywords. The default is Asap.

155

Start Printer Command

Start Printer printer

Starts the specified printer processing its print queue again after it has been
halted with the Halt Printer command.

printer The name of the printer to start.

Reset Printer Command

Reset Printer printer printer-request keywords

Resets a printer.

printer

printer-request

keywords

:Disposition

The printer to reset.

(Optional) If the printer is printing a request when the Reset
Printer command is given, it displays the request and asks you
to confirm the reset command. If you supply a printer-request
argument and it matches the request that is printing, the
printer is reset immediately without requiring confirmation.
The print request should be selected with the mouse from the
display of the Show Printer Status command. See the section
"Show Printer Status Command", page 153.

:Disposition

{Delete, Hold, Restart} What to do with the request that is
printing. Delete deletes the request from the queue; you must
request it again to have it printed. Hold retains the request in
the queue but does not print it when the printer restarts.
Restart restarts printing the interrupted request from the
beginning when the printer restarts. The default is Delete.

Resetting is like turning the printer off and then on again except that it is done
remotely, you do not have to go over to the printer.

156

User's Guide to Symbolics Computers July 1986

157

July 1986

11. When and How to Use the Garbage Collector

11.1 Principles of Garbage Collection

It is fundamental to the nature of Lisp that programs and systems allocate
memory dynamically and in large amounts. (The allocation of memory for a basic
list element, or cons, or for any other purpose, is called consing for the purpose of
this discussion and in most other writings on Lisp.) Even with the large amount
of virtual memory on a Symbolics computer, it is possible for a program to use it
all up. At this point the machine halts and must be rebooted. This event can
always be delayed, almost indefinitely, if the underlying system can reclaim
memory that is unused.

Objects that are no longer in use, with no references from other objects, are
termed garbage. Garbage is distinguished from good objects or good data by the
fact that it no longer serves any purpose in the current Lisp world. For example,
if the car of a cons is changed from object A to object B, and there are no other
references to A, then A is garbage. Objects in the Genera environment can be
said to have a lifetime, which means how long the object remains" good" or valid.
Three life spans are distinguishable:

Static

Dynamic

Ephemeral

Object will probably never become garbage. Example: standard
system functions.

Object will probably become garbage eventually. Example: lines
in editor buffers.

Object will probably become garbage very quickly. Example:
intermediate structure generated by the compiler.

You can control the garbage collection status of your own areas with the
make-area function.

Garbage collection (GC) involves these three steps:

• Scavenging virtual memory, that is, periodically sifting through areas of
memory, separating good objects from the garbage

• Transporting good objects to a safe place

• Reclaiming the memory occupied by garbage

Several strategies for garbage collection exist. Some allow you to continue doing
other work and some do a more complete job but require additional machine
resources for some period of time.

158

User's Guide to Symbolics Computers July 1986

Garbage collection need not be used at all. It should be used either when you are
running a program that allocates large amounts of virtual memory (where the
total allocated might exceed the amount of free memory in a cold-booted system)
or when the total allocations of many programs might, over a relatively long
period of time, exceed the capacity. In either case, garbage collection is a strategy
aimed primarily at preserving the state of an operating Lisp world as long as
possible and avoiding a cold boot.

Incremental Versus Immediate GC

There are two basic modes of garbage collection, each with some variations
possible:

• Incremental garbage collection works in parallel with other processes in the
system, allowing you to continue working while it is in progress. This mode
is based on incremental copying, so called because objects are copied one at a
time and there is relatively little effect on the user's interaction with the
system. Dynamic-object garbage collection incrementally collects garbage in
all nonstatic areas of memory. Ephemeral-object garbage collection
incrementally collects garbage, concentrating on specific parts of memory
that are known to contain short-lived objects. Both kinds of incremental
operation ignore static areas of memory that change slowly and so are
unlikely to contain garbage. For an explanation of static memory: See the
section "Theory of Operation of the GC Facilities" in Internals, Processes,
and Storage Management.

• Nonincremental, or immediate, garbage collection takes less free memory and
less total processor time to work successfully than does the incremental
mode. Nonincremental garbage collection is normally done with the Start
GC :Immediately command or with the gc-immediately function, although
those directives still ignore static areas. These directives allow no other
work to be done by the process running it, although other processes are still
scheduled. In most cases, though, immediate garbage collection places a
heavy enough burden on the machine that other processes are not useful
while it is operating. The immediate garbage collection invoked by the
function si:full-gc deals with static areas.

Note: Areas of memory can be specified as being static with the function
make-area.

The command Show GC Status allows you to check on how much free space you
have and determine whether or not you should turn on the garbage collector.

July 1986

Show GC Status

Status of the ephemeral garbage collector: On
First level of HETERING:HETERING-CONS-AREA: capacity 196K, 0K allocated, 0K
used.
Second level of HETERING:HETERING-CONS-AREA: capacity 98K, 0K allocated, 0K
used.

159

First level of OW: :*EQL-DISPATCH-AREA*: capacity 98K, 256K allocated, 56K used.
Second level of DW::*EQL-DISPATCH-AREA*: capacity 49K, 0K allocated, 0K used.

First level of WORKING-STORAGE-AREA: capacity 196K, 448K allocated, 29K used.
Second level of WORKING-STORAGE-AREA: capacity 98K, 2048K allocated, 47K used.

Status of the dynamic garbage collector: On
Dynamic (new+copy) space 6,490,761. Old space 0. Static space 12,479,751.
Free space 26,574,848. Committed guess 22,488,118, leaving 3,824,586 to use
before flipping.
There are 9,779,900 words available before Start GC :Immediately might run out
of space.
Doing Start GC : Immediately now would take roughly 33 minutes.
There are 26,574,848 words available if you elect not to garbage collect.

Garbage collector process state: Await ephemeral or dynamic full
Scavenging during cons: On, Scavenging when machine idle: On
The GC generation count is 328 (1 full GC, 2 dynamic GC's, and 325 ephemeral
GC's).
Since cold boot 53,043,930 words have been consed, 45,867,153 words of garbage
have
been reclaimed, and 11,658,295 words of non-garbage have been transported.
The total "scavenger work" required to accomplish this was 121,864,225 units.
Use Set GC Options to examine or modify the GC parameters.

The command Start GC turns on the garbage collector.

Start GC keywords

Turns on the garbage collector.

keywords : Dynamic, :Ephemeral, :Immediately

: Dynamic {yes, no} Dynamic Level of incremental GC.

: Ephemeral {yes, no} Ephemeral Level of incremental GC.

: Immediately {yes, no} Perform a complete garbage collection right now.

160

User's Guide to Symbolics Computers July 1986

Start GC :ephemeral is recommended for general purposes. This cleans up after
you as you work, keeping virtual memory requirements for garbage collecting to a
minimum. When, in spite of scavenging, enough garbage has accumulated, you
receive a notification. At that point you can use Start GC :immediately to do a
complete garbage collection. See the section "Ephemeral-Object Garbage
Collection" in Internals, Processes, and Storage Management.

161

July 1986

12. Understanding Character Styles

See the section "Using Character Styles in Zmacs" in Text Editing and Processing.

What Is a Character Style?

A character style is a combination of three characteristics that describe how a
character appears. These characteristics are the family, face, and size.

Family Characters of the same family have a typographic integrity, so
that all characters of the same family resemble one another.
Examples: SWISS, DUTCH, and FIX.

Face

Size

A modification of the family, such as BOLD or ITALIC.

The size of the character, such as NORMAL or VERY-SMALL.

The character style is the grouping of the family, face, and size fields. A
character style is often represented by the convention:

family·face.size

An example of a fully specified character style is:

SWISS.ITALIC.LARGE

Each element of the character style can be specified or left unspecified. A family,
face, or size of NIL means to use the default value. Most characters have the
following character style:

NIL.NIL.NIL

Characters of style NIL.NIL.NIL are displayed in the default character style
established for the current output device.

12.1 Oefau It Character Styles

The appearance of a character depends on two things: the character style of the
character, and the default character style. Windows, buffers, files, and printers
have each have default character styles for output. The default character style
specifies the appearance of a character whose character style is NIL.NIL.NIL.
The character's style is merged against the default character style to produce the
final appearance of the character.

162

User's Guide to Symbolics Computers July 1986

We recommend that you use character styles by making good use of the default
character styles. You preserve the most flexibility by keeping the character style
of the characters themselves as unspecified as possible. If you want to change the
appearance of all characters in a Zmacs buffer, a Zmail message or a window, you
can change the default character style instead of changing the character style of
each character.

The default character style affects the appearance of a character on output.
There is also a type in character style, which is normally NIL. NIL. NIL. The typein
character style affects the character style in which characters are entered as
input. If the typein character style is NIL. BOLD. NIL, any characters you enter at
the keyboard have the character style NIL.BOLD.NIL. It is important to be sure
that the application program can handle characters whose character style is
something other than NIL.NIL.NlL, if you are going to use a type in character
style other than NIL. NIL. NIL.

If you only want to change the way that characters echo, but not the way they are
entered as input, you can change the echo character style. See the section "Using
Character Styles in the Input Editor", page 162.

12.2 Merging Character Styles

This section gives some examples of how the character style of a character is
merged against the default character style to produce a final result.

In general, we advise that you specify as little as possible when changing a
character style. That is, if you want the character's face to be italic, specify only
the face component and let the family and size come from the default character
style.

Character Style
of a Character

Default
Character Style

NIL.NIL.NIL FIX. ROMAN. NORMAL
NlL.ITALIC.NIL FIX.ROMAN.NORMAL
NIL. BOLD-ITALIC. LARGE FIX.ROMAN.NORMAL
SWISS. BOLD. LARGER FIX. ROMAN. NORMAL

Result of
Merging

FIX. ROMAN. NORMAL
FIX.ITALIC.NORMAL
FIX. BOLD-ITALIC. LARGE
SWISS. BOLD. LARGE

The family and face components are either NIL or the name of a family or face.
The size component can be NIL, an absolute size (such as LARGE or VERY­
SMALL) or a relative size (such as LARGER or SMALLER). A relative size is
merged against the default size such that when you merge LARGER against
NORMAL, the result is the next size larger than NORMAL.

163

July 1986

12.3 Using Character Styles in the Input Editor

The default character style for the input editor is FIX. ROMAN. NORMAL.

You can use the Set Window Options CP command to change the default character
style, the typein character style, or the echo character style. The default
character style and typein character style are described elsewhere: See the section
"Default Character Styles", page 161.

It is important to be sure that the application program can handle characters
whose character style is something other than NIL.NIL.NIL, if you are going to
use a typein character style other than NIL. NIL. NIL. If you only want to change
the way that characters echo, but not the way they are entered as input, you can
change the echo character style.

The echo character style affects the way that characters you enter at the keyboard
are echoed. The appearance of characters that you type depends on: the
character style of the character (which is usually the same as the typein style),
which is merged against the echo character style, which is merged against the
default character style.

In addition to the Set Window Options command, you can change the typein
character style in the input editor by using C-M-J. You are then prompted for a
character style. Enter something in the family.face.size convention, such as
DUTCH. BOLD-ITALIC. LARGER.

12.4 Character Styles and the Lisp Listener

This section and diagram describes the role of the typein character style, the echo
character style, and the default character style in the Lisp Listener.

When you type a character at the keyboard, it follows one path which eventually
causes it to be echoed on the screen. The same character follows a path to the
application program. The application program might produce some output, which
is also displayed on the screen.

164

User's Guide to Symbolics Computers

KEYBOARD

INPUT EDITOR
TYPEIN-STYLE

1
ECHO-STYLE

APPLICATION

DEFAULT-CHARACTER-STYLE

SCREEN

For example:

User enters a character at keyboard.
This is called the input character.

The Input Editor reads the input
character and sets its style to
TYPEIN-STYLE. The input character
proceeds to the application and
and toward the screen to be echoed.

The input character is merged against
the echo style.

Meanwhile, the application program
receives the input character. The
program performs its function and
produces output, which can be in any
character style.

Both the output characters from the
application and the input character
are merged against the default
character style, which could have been
modified if the application program
used with-character-style. The
characters are displayed on the screen.

Typein style is: SWISS. NIL. NIL
Echo style is: NIL.BOLD.NIL
Default character style is: FIX. ROMAN. NORMAL

July 1986

165

July 1986

The input editor reads in the input character according to the typein style, so the
input character has the character style of SWISS.NIL.NIL. The input character is
merged against the echo style, so it is then SWISS. BOLD. NIL. The input
character is then merged against the default character style, so it is finally
displayed on the screen in the character style SWISS. BOLD. NORMAL.

Meanwhile the original input character of style SWISS.NIL.NIL is sent to the
application. As it runs, the application program produces output characters of
style NIL.BOLD-ITALIC.NIL. The output characters are merged against the
default character style; they are displayed in the character style FIX. BOLD­
ITALIC. NORMAL.

Note that the application program can use with-character-style,
with-character-face and so on when producing output. If this is done, the
specified style information is merged against the default character style. Thus it
affects both the way that the input characters are echoed and the way any output
characters are displayed.

If you want to specify how your input characters appear, you can change the echo
style. If you want your input characters to have the character style set to
something other than NIL.NlL.NIL, you can change the typein style.

12.5 Using Character Styles in Zmail

Every message has its own. default character style used for displaying the message.
The default is recorded in a new Default-Character-Style header. If this header
is not present, the message is displayed using FIX. ROMAN. NORMAL as the
default character style.

A new command, (M-H) Set Message Default Character Style, may be used to
change the default character style of the current message. This command is also
available in the menu offered by Mouse-Right.

When composing draft messages, the new (M-H) Set Default Character Style
command may be used to change the default character style for the message under
composition. Again, this command is also available in the menu offered by Mouse­
Right. If you do not set the default style of a draft, it will be set to
FIX.ROMAN.NORMAL on transmission.

When you are in Zmail, you can use the Zmacs commands for changing character
styles. For a list of available commands and a description of how to enter a new
character style: See the section "Using Character Styles in Zmacs" in Text
Editing and Processing.

166

User's Guide to Symbolics Computers July 1986

12.6 Using Character Styles In Hardcopy

When you hardcopy a flie, the outcome depends on the character style or" the
characters in the file and the printer's default values for the body character style
and header character style.

The printer's defaults are stored in the printer object in the namespace database,
in the attributes:

body-character-style
The default character style to be used by this printer

headers-character-style
The default character style to be used for the headers by this
printer.

You can override the defaults stored in the printer objects by using setq on the
variable hardcopy:*hardcopy-default-character-styles*. Note that the value of
hardcopy:*hardcopy-default-character-styles* is merged with the default style
for the printer. See the variable hardcopy:*hardcopy-default-character-styles*,
page 109.

July 1986

13. Understanding Networks and the Namespace
System

13.1 Introduction to the Namespace System

The namespace database consists of a collection of objects. Each object has:

• A class: See the section "Namespace System Classes", page 167.
o Attributes: See the section "Namespace System Attributes", page 168.
o A name: See the section "Names and Namespaces", page 169.

Each type of object contains a few required attributes and many optional
attributes. Note that when you are using the namespace editor, the required
attributes appear with an asterisk (*) after them.

167

All objects except namespaces themselves are added to the namespace database by
using the namespace editor, which is invoked with the CP command Edit
Namespace Object, or by choosing Namespace from the System menu. See the
section "Updating the Namespace Database", page 171.

13.1.1 Namespace System Classes

Every object has a class, which indicates its type. Each class is identified by a
global-name. For a discussion of global-names: See the section "Data Types of
Namespace System Attributes", page 168.

The following classes are especially important to the Symbolics system:

host

user

network

printer

site

namespace

A host object represents any computer, usually connected to a
network.

A user object represents a person who uses any of the hosts, or
a daemon user, for example, a Symbolics computer.

A network object represents a computer network, to which some
hosts are attached.

A printer object represents a device for producing hardcopy.

A site object represents a collection of hosts, printers, and
networks, grouped together in one physical location.

A namespace object represents a mapping from object names to
objects.

168

User's Guide to Symbolics Computers July 1986

13.1.2 Namespace System Attributes

Attributes represent characteristics of an object. Each attribute has an indicator
(the name of the attribute) and a value; they work like property lists in Lisp. For
example, every host has a system-type (saying which operating system it runs),
every printer has a type (saying what type of printer it is), and every user has a
personal-name.

Each object class has one or more required attributes. However, most attributes
are optional; for example, hosts can optionally have a pretty-name, printers can
have a default-font, and a user can have a home-address. Some attributes can
occur more than once for a given object; for example, a host object can have
multiple addresses if it is attached to multiple networks.

When editing a namespace object, you can easily determine whether an attribute is
required or optional. Required attributes contain an asterisk by them, whereas
optional attributes do not.

Each object class has a IlXed set of required and optional attributes. You cannot
create additional attributes.

13.1.3 Data Types of Namespace System Attributes

Each class has attributes defined to have specific data types. Since the actual
representation of the various types of data represented in the database varies from
system to system, the namespace system uses the following system-independent
types:

Data type

object-class

name

global-name

token

set

pair

triple

Value

An object in the database, for example, a site object. See the
section "Namespace System Classes", page 167.

A name in some namespace; name is not shared by all
namespaces.

A name which is not specific to a particular namespace but is
shared by all namespaces.

An arbitrary character string.

An ordered set of elements of the same data type. For example,
a value can be a set of names or a set of triples.

A list of two elements of specific data types; each element can
be of a different data type.

A list of three elements; each element can be of a different data
type.

July 1986

Name, global-name and token require simple values, whereas set, pair and triple
require compound values.

Note: Namespace data types specific to the Symbolics computer are described
elsewhere: See the section "Namespace System Lisp Data Types" in Networks.

13.1.4 Names and Namespaces

169

Every object has a name, which is a character string. Two objects of different
classes can have the same name. For example, there can be a printer named
george and a user named george; the two are unrelated. An object is identified by
its class and its name. If you want to look up an object in the database and you
know its name, you have to s~y "Find the printer named george" or "Find the
user named george", not just II Find george".

When long-distance networks are used to link together different sites, however, the
possibility of name conflicts arises; that is, two sites might use the same name in
the same class for conflicting purposes. For example, suppose you had a host
named orange, and you wanted to connect your site over a long-distance network
to some other site that happens to have picked the name orange for one of its own
hosts. Neither site is forced to change its host names just because it wants to
connect to the other site.

To avoid these naming conflicts, the database can include more than one
names pace. A namespace is a mapping from names to objects, and names in one
namespace are unrelated to names in another namespace. More strictly, a
namespace is a mapping from [class, name] pairs to objects, since an object is
identified by its class and its name. Normally each site has one namespace, and
the names of all the objects at that site are in that namespace. An object in some
namespace other than your own can be referred to by a qualified name, which
consists of the name of the namespace, a vertical bar, and the name of the object
in that namespace.

For example, suppose both Harvard and Yale have computer centers. Harvard has
three hosts named yellow, orange, and blue, and Yale has three hosts named apple,
orange, and banana. Each computer center would have its own namespace, one
named harvard and one named yale. At Harvard, the Harvard computers would be
referred to by their unqualified names (yellow, orange, and blue), whereas the Yale
computers would be referred to (by users at Harvard) by qualified names
(yalelapple, yalelorange, and yalelbanana). At Yale it would all work the other way
around.

Each namespace also has a list of namespaces called search rules. When a name
is looked up, each of the namespaces in the search rules list is consulted in turn,
until an object of that name is found in one of the namespaces. If you have some
other namespace in your search list, it is easier to refer to objects in that
namespace, because you do not have to use qualified names unless a name conflict
exists.

170

User's Guide to Symbolics Computers July 1986

For example, in the scenario above, the search list for the harvard names pace
could have the harvard namespace first and the yale namespace second. Then
users at Harvard could refer to Yale's computers as apple, yalelorange, and
banana. The qualified name is only necessary if a name conflict exists.

Actually, only some classes of objects have names that are in namespaces; other
classes of objects are globally named, which means that the names are universal,
and conflicts are not permitted. In particular, classes, namespaces, and sites are
globally named; networks, hosts, printers, and users are named within namespaces.
There is never a need for multiply-qualified names; the names of namespaces are
global and never need to be qualified themselves.

Some namespaces do not correspond to any local site. Most large nationwide or
worldwide networks have their own host-naming convention. For example, the
U.S. Department of Defense Arpanet has its own set of host names, and this is
considered a namespace. If a local site includes some hosts that are on the
Arpanet, it might want to put the Arpanet namespace into its search list, and
install gateways on its Arpanet machine so that other machines on the local
network can access the Arpanet.

Some objects can also have nicknames. In particular, networks and hosts can have
nicknames; objects of other classes cannot. A nickname serves as an alternative
name for the object. Sometimes you give an object a nickname because its full
name is too long to type conveniently, such as a host whose name you type
frequently. However, each object has one primary name, which is always used
when the object is printed.

It is possible for an object to be in several namespaces at once. For example, a
host which is on both the Arpanet and a local network at some site might be in
both the Arpanet namespace and the local namespace. In this case, each
namespace maintains its own separate information on the object. The information
from each namespace is merged before being presented to the user.

Note: Search lists are not followed recursively. If a user at Harvard looks up a
name and Yale's namespace is in Harvard's search list, Yale's search list is not
relevant.

13.2 Connecting to a Remote Host Over the Network

If your Symbolics computer is on a network and configured properly, you can
access other hosts on the network with the Terminal program.

To use the Terminal program, press SELECT T. The prompt is:

Connect to host:

Type the name of the host to which you want to connect. The network system

171

July 1986

makes a connection, and you will see the prompt of the remote host displayed on
the screen. You are now communicating directly with the remote machine.

When you are connected to a remote host, the NET WORK key provides several useful
commands. For example:

NETWORK HELP

NETWORK L

NETWORK D

Displays the list of options for the NET WORK key.

Logs out of remote host, and breaks the connection.

Disconnects without logging out first.

See the section "NETWORK Key", page 221.

If you want to use the Terminal program to log in to a remote Symbolics
computer when someone is logged in to that machine, you must first enable
remote login by evaluating the form (net:remote-Iogin-on) on that machine. See
the function net:remote-Iogin-on in Networks.

13.3 Updating the Namespace Database

To begin editing the namespace database, use the CP command Edit Namespace
Object or choose [Namespace] from the System menu. Once in the namespace
window, you can use the [Edit] command to modify information stored in the
database, or use the [View] command to examine information without changing it.

II To,

:.: .. :-.::::-.:il--.......... -----.....,..,......----~-----:'~-;;;;;....___;O_:_=_:__---__rr!_:__----..,.__--~··:::·::
reate lew OPY :.

:;:::.:::J6--___ :;.:;~~~~;;;;.~:::_::_:~~~:.:.::.:.:.:=.:..---....;;l;.;.::oc;;.;.all;.!..Y ____ ..;::,Qu;;.;.::it.:.-______ --f:§
:.}:':
: :
.::,:.::,:

1~1 ______________________________ ~I
The namespace editor window has three parts. The top pane shows the current
information about the object being edited. The middle pane is the command pane;
the commands that appear here are mouse-sensitive. The namespace editor uses
the bottom pane to prompt you for new information.

The namespace editor commands include:

Help

View

Displays a brief explanation.

Displays information about an object for inspection but not
editing.

172

User's Guide to Symbolics Computers July 1986

Edit Displays information about an object for editing.

Locally Toggles whether to edit the local or global copy of the
information for an object. The initial state is global.

Save Saves the current information about an object.

Delete Removes an object from the database.

Create Adds a new object to the database.

Quit Exits from the namespace editor, without saving the current
information. If you want to save information, use [Save] before
using [Quit].

Copy Creates a new object by copying the current one.

Add Namespace Adds an existing object to a new namespace.

Primary Name Changes the primary name of the current object.

13.3.1 Editing a Namespace Object

First select the Namespace editor by using the Edit Namespace Object command.
To edit an existing namespace object, click on [Edit]. A menu of object classes
pops up. Click on the class of object you want to edit. You are prompted for the
name of an object to edit. The current information for the object is retrieved
from the namespace database and displayed in the top window.

The attribute fields are mouse-sensitive. Clicking on an attribute prompts you for
information in the bottom window. Mouse clicks have the following meaning:

Left

Middle

Right

Replace the information in the attribute.

Delete information in the attribute.

Edit the information in the attribute.

The window can be scrolled. See the section "Scrolling with the Mouse", page
212.

Once you have finished e~iting the information, you have three possible ways to
proceed. You can [Quit] without saving the changed information. If you are just
practicing using the namespace editor, that would be appropriate.

The other two choices are to save the information locally or globally. If you save
it globally, the new information is stored in the site's namespace database. If you
save it locally, the new information is stored only in your machine's local copy of
the namespace; these changes would affect only your machine.

The initial state of the namespace editor is the global mode. When you are in
global mode the top line of the screen looks like:

173

July 1986

Editing: Host SCRCIJUNCO

If you have clicked on [Locally], you are in local mode. The top line of the screen
looks like:

Editing: Host SCRCIJUNCO (locally)

You can click on [Locally] to toggle the mode between global and local. When you
are ready, click on [Save] to save the information. Then click on [Quit] to exit
the namespace editor.

13.3.2 Creating a New Namespace Object

First select the Namespace editor by using the Edit Namespace Object command.
To create a new namespace object, click on [Create]. A menu of object classes
pops up. Click on the class of object you want to create. You are prompted for
the name of the new object. A template for the information is displayed in the
top window. The attributes are mouse-sensitive. Clicking on an attribute prompts
you in the bottom window for the information to put in the attribute.

Note that the required attributes appear with an asterisk (*) after them. All
object classes have a small number of required attributes, and several optional
attributes.

You can also create a new object by copying an existing object by clicking on
[Copy] and then editing the object as appropriate.

The window can be scrolled. See the section "Scrolling with the Mouse", page
212.

When you are satisfied with the information, you can enter it in the database by
clicking on [Save]. Then click on [Quit] to exit the namespace editor.

For a discussion of saving (locally or globally) new information in the namespace
database: See the section "Editing a Namespace Object", page 172.

174

User's Guide to Symbol/cs Computers July 1986

175

July 1986

14. A Brief Introduction to the Lisp World

14.1 Lisp Objects

14.1.1 Functions

A typical description of a Lisp function looks like this:

function-name argl arg2 &optional arg3 (arg4 (fo03») function
Adds together argl and arg2, and then multiplies the result by arg3. If arg3
is not provided, the mUltiplication is not done. function-name returns a list
whose first element is this result and whose second element is arg4.
Examples:

(function-name 3 4) => (7 4)

(function-name 1 2 2 'bar) => (6 bar)

The wo~d "&optional" in the list of arguments tells you that all of the arguments
past this point are optional. The default value of an argument can be specified
explicitly, as with arg4, whose default value is the result of evaluating the form
(foo 3). If no default value is specified, it is the symbol nil. This syntax is used
in lambda-lists in the language. (For more information on lambda-lists: See the
section "Evaluating a Function Form" in Symbolics Common Lisp.) Argument
lists can also contain "&rest", which is part of the same syntax.

Note that the documentation uses several fonts, or typefaces. In a function
description, for example, the name of the function is in boldface in the first line,
and the arguments are in italics. Within the text, printed representations of Lisp
objects are in the same boldface font, such as (+ foo 56), and argument references
are italicized, such as argl and arg2.

Other fonts are used as follows:

"Typein" or "example" font (function-name)
Indicates something you are expected to type. This font is also
used for Lisp examples that are set off from the text and in
some cases for information, such as a prompt, that appears on
the screen.

"Key" font (RETURN, c-L)

For keystrokes mentioned in running text.

176

User's Guide to Symbolics Computers July 1986

14.1.2 Macros and Special Forms

The descriptions of special forms and macros look like the descriptions of these
imaginary ones:

do-three-times form Special Form
Evaluates form three times and returns the result of the third evaluation.

with-foo-bound-to-nil form... Macro
Evaluates the forms with the symbol foo bound to nil. It expands as follows:

(with-foo-bound-to-nil
forml
form2 ...) ==>
(let «foo nil))
forml
form2 ...)

Since special forms and macros are the mechanism by which the syntax of Lisp is
extended, their descriptions must describe both their syntax and their semantics;
unlike functions, which follow a simple consistent set of rules, each special form is
idiosyncratic. The syntax is displayed on the first line of the description using the
following conventions.

• Italicized words are names of parts of the form that are referred to in the
descriptive text. They are not arguments, even though they resemble the
italicized words in the first line of a function description.

• Parentheses ("()") stand for themselves.

• Brackets ("[]") indicate that what they enclose is optional.

• Ellipses (" ••• ") indicate that the subform (italicized word or parenthesized
list) that precedes them can be repeated any number of times (possibly no
times at all).

• Braces followed by ellipses (" { } ••• ") indicate that what they enclose can be
repeated any number of times. Thus, the first line of the description of a
special form is a "template" for what an instance of that special form would
look like, with the surrounding parentheses removed.

The syntax of some special forms is too complicated to fit comfortably into this
style; the first line of the description of such a special form contains only the
name, and the syntax is given by example in the body of the description.

The semantics of a special form includes not only its contract, but also which
subforms are evaluated and what the returned value is. Usually this is clarified
with one or more examples.

177

July 1986

A convention used by many special forms is that all of their subforms after the
first few are described as "body ••• ". This means that the remaining subforms
constitute the "body" of this special form; they are Lisp forms that are evaluated
one after another in some environment established by the special form.

This imaginary special form exhibits all of the syntactic features:

twiddle-frob [(frob option ...)] {parameter value}... Special Form
Twiddles the parameters of frob, which defaults to default-frob if not
specified. Each parameter is the name of one of the adjustable parameters of
a frob; each value is what value to set that parameter to. Any number of
parameter/value pairs can be specified. If any options are specified, they are
keywords that select which safety checks to override while twiddling the
parameters. If neither frob nor any options are specified, the list of them
can be omitted and the form can begin directly with the first parameter
name.

frob and the values are evaluated; the parameters and options are syntactic
keywords and are not evaluated. The returned value is the frob whose
parameters were adjusted. An error is signalled if any safety check is
violated.

14.1.3 Flavors, Flavor Operations, and Inlt Options

Flavors themselves are documented by the name of the flavor.

Flavor operations are described in three ways: as methods, as generic functions,
and as messages. When it is important to show the exact flavor for which the
method is defined, methods are described by their function specs. Init options are
documented by the function spec of the method.

When a method is implemented for a set of flavors (such as all streams), it is
documented by the name of message or generic function it implements.

The following examples are taken from the documentation.

sys:network-error Flavor
This set includes errors signalled by networks; These are generic network
errors that are used uniformly for any supported networks. This flavor is
built on error.

:clear-window of tv:sheet Method
Erase the whole window and move the cursor position to the upper left
corner of the window.

:tyo char Message
The stream will output the character char. For example, if s is bound to a
stream, then the following form will output a "B" to the stream:

178

User's Guide to Symbolics Computers July 1986

(send s :tyo #\8)

For binary output streams, the argument is a nonnegative number rather
than specifically a character.

dbg:special-command-p condition special-command Generic Function
Returns t if command-type is a valid Debugger special command for this
condition object; otherwise, returns nil.

The compatible message for dbg:special-command-p is:

:special-command-p

: bottom bottom-edge (for tv:sheet)
Specifies the y-coordinate of the bottom edge of the window.

14.1.4 Variables

Descriptions of variables (" special" or "global" variables) look like this:

typical-variable .
The variable typical-variable has a typical value

14.2 The Lisp Top Level

Init Option

Variable

These functions constitute the Lisp top level and its associated functions.

si:lisp-top-Ievel Function
This is the first function called in the initial Lisp environment. I t calls
sys:lisp-reinitialize, clears the screen, and calls si:lisp-top-Ievell.

sys:lisp-reinitialize &optional (called-by-user t) Function
This function restarts the Lisp system, resetting the values of various
global constants and initializing the error system.

si:lisp-top-Ievell stream Function
This is the actual top-level loop. It reads a form from zl:standard-input,
evaluates it, prints the result (with slashification) to zl:standard-output,
and repeats indefinitely. If several values are returned by the form, all of
them will be printed. Also the values of *, +, -, zl:l, -++, **, +++, and ***
are maintained.

print Variable
The value of this variable is normally nil. If it is non-nil, then the read­
eval-print loop uses its value instead of the definition of print to print the

179

July 1986

values returned by functions. This hook lets you control how things are
printed by all read-eval-print loops - the Lisp top level, the zl:break
function, and any utility programs that include a read-eval-print loop. It
does not affect output from programs that call the prinl function or any of
its relatives such as print and zl:format; to do that, you need more
information on customizing the printer. See the section "Output
Functions" in Reference Guide to Streams, Files, and I/O. If you set prinl
to a new function, remember that the read-eval-print loop expects the
function to print the value but not to output a Return character or any
other delimiters.

14.3 Logging in

After cold booting, you are in a window named Dynamic Lisp Listener 1. You are
now ready to log in. If your login name is KJones, you can log in in any of the
following ways: (Note that the examples are given in upper and lower case, but
the machine is not case sensitive. You can use all upper case, all lower case, or
mixed case as you prefer.)

• To log into the default host machine, using your init file, type
Login KJones

• To log into your machine, without your init file, type
Login KJones :init file none

• To log into another machine "sc3", using your init file, type
Login KJones :host sc3

If the host machine you log in to is a timesharing computer system, you must
have a directory and account on that host machine.

For more information about logging in: See the section "Login Functions and
Variables" .

For more information about how to write init files: See the section "Customizing
Genera", page 93.

14.4 Some Utility Functions

zwei:save-all-files &optional (ask t) Function
This function is useful in emergencies in which you have modified material
in Zmacs buffers that needs to be saved, but the editor is partially broken.
This function does what the editor command Save File Buffers (M-H) does,

180

User's Guide to Symbolics Computers July 1986

but it stays away from redisplay and other advanced facilities so that it
wight work if other things are broken.

zwei:zmail-save-all-files is similar, but saves mail files from Zmail.

ed &optional thing Function
ed is the main Lisp function for entering Zmacs. Select Activity Zmacs is
the command for entering Zmacs.

(ed) or (ed nil) enters Zmacs, leaving everything as it was when you last
left Zmacs. If Zmacs has not yet been used in the current session, it is
initialized and an empty buffer created.

(ed t) enters Zmacs, and creates and selects an empty buffer.

If the argument is a pathname or a string, the ed function enters Zmacs,
and finds or creates a buffer with the specified file in it. This is the same
as the Edit File command.

If the argument is a symbol that is defined as a function, Zmacs will try to
find the source definition for that function for the user to edit. This is the
same as the Edit Definition command.

Finally, if the argument is the symbol zwei:reload, Zmacs will be
reinitialized. All existing buffers will be lost, so use this only if you have
to.

zl:dired &optional (pathname "") Function
Puts up a window and edits the directory named by pathname, which
defaults to the last file opened. While editing a directory you may view,
edit, compare, hardcopy, and delete the files it contains. While in the
directory editor press the HELP key for further information. This is similar
to the Edit Directory command, except that Edit Directory enters Zmacs
and runs Dired (M-X).

zl:mail &optional initial-destination initial-body prompt initial-idx Function
bug-report (make-subject
(zl:memq zwei:*require-subjects* (quote (t :init»»
initial-subject

Sends mail by putting up a window in which you can compose the mail.

initial-destination is a symbol or string that is the recipient.

initial-body is a string that is the initial cont~nts of the mail. If these are
unspecified they can be typed in during composition of the mail. Press the
END key to send the mail and return from the zl:mail function.

prompt and initial-idx are used by programs, such as zl: bug, that call
zl:mail. prompt is a string printed in the minibuffer of the mail window
created by zl:mail. initial-idx positions point in the mail window.

181

July 1986

zl:bug &optional (system (quote zwei:lispm» additional-body prompt Function
point-before-additional-body (make-subject
(zl:memq zwei:*require-subjects* (quote (t :init :bug»»
initial-subject

Reports a bug. This is the same as the Report Bug command. zl: bug is
like zl:mail but includes information about the system version and what
machine you are on in the text of the message.

system is the name of the faulty program (a symbol or a string). It
defaults to zl-user:lispm (the Lisp Machine system itself). This
information is important to the maintainers of the faulty program; it aids
them in reproducing the bug and in determining whether it is one that is
already being worked on or has already been fIxed.

additional-body is user-supplied text appended to the information supplied
by the system.

prompt is text supplied by the system printed in the minibuffer of the mail
window concerning the bug-mail you are sending.

point-before-additional-body is a position for point supplied by the system.

zl:qsend &optional destination message Macro
Sends interactive messages to users on other machines on the network.

destination is normally a string of the form name@host, to specify the
recipient. If you omit the @host part and just give a name, zl:qsend looks
at all of the Lisp Machines at your site to fInd any that name is logged
into; if the user is logged into one Lisp Machine, it is used as the host; if
more than one, zl:qsend asks you which one you mean. If you leave out
destination altogether, doing just (zl:qsend), Converse is selected as if you
had pressed SELECT C.

message should be a string. For example:

(qsend kjones@wombat "Want to go to lunch?")

If message is omitted, zl:qsend asks you to type in a message. You should
type in the contents of your message and press END when you are done.

The input editor is used while you type in a message to zl:qsend. So you
get some editing power, although not as much as with full Converse (since
the latter uses Zwei). See the section "Editing Your Input", page 134.
zl:qsend predates Converse and is retained for compatibility.

182

User's Guide to Symbolics Computers July 1986

183

July 1986

15. Checking on What the Machine is Doing

15.1 Poking Around in the Lisp World

This section describes a number of functions, most of which are not normally used
in programs, but are "commands", that is, things that you type directly at Lisp.
They are useful for finding information about your current state or about the Lisp
world in general.

who-calls symbol &optional how Function
who-calls tries to find all the functions in the Lisp world that call symbol.

how may be nil, meaning all ways to call the symbol, a keyword, meaning
only find symbol called as keyword, or a list of keywords. The permitted
keywords are:

:variable
:function
:microcoded-function
: constant
:flavor
: instance-variable
:macro
: defined-constant
: condition
:flavor-component
: generic-function

who-calls takes a single symbol as its argument. It no longer takes a list
of symbols. The package filtering has been removed.

who-calls prints one line of information for each caller it finds. It also
returns a list of the names of all the callers.

who-calls works only on bound symbols. To locate unbound symbols: See
the function si:who-calls-unbound-functions, page 184.

The compiler records, as part of its debugging-info property, which macros
were expanded and which functions were optimized away, with the
exception of basic parts of the language, such as car and when. This
information is used by who-calls and similar functions. Thus you can use
who-calls for macros. who-calls can also find callers of open-coded
functions, such as substitutable functions.

The who-calls database is created at site configuration time using the
function si:enable-who-calls.

184

User's Guide to Symbolics Computers July 1986

si:enable-who-calls &optional mode Function
This command takes an argument which is the mode in which the
database should be enabled. If you need the full database, use
si:enable-who-calls during site configuration time. If you do not
need a. full database you can create an incremental database by
choosing a suitable mode.

mode can be one of the following:

: all

: all-remake

: new

:all-no-make

: explicit

Creates a full callers database. This takes many
minutes and about 2000 pages of storage. :all
also queries about the old state.

Creates a full callers database but does not query
about the old state. This takes many minutes and
about 2000 pages of storage.

Creates a callers database that includes only new
functions.

Creates a callers database that includes only new
functions. When you follow it with a si:full-gc
the entire database is created. This takes many
minutes and about 2000 pages of storage.

Enables items to be added to the callers database
explicitly by using
si:add-files-to-who-calls-database or
si:add-system-to-who-calls-database.

Mter you create the database, you should run
si:compress-who-calls-database.

si:compress-who-calls-database Function
si:compress-who-calls-database makes the who-calls database more
compact and more efficient. You should call this function after
si:enable-who-calls. If you used (si:enable-who-calls ':all),
si:compress-who-calls-database takes a long time to complete its
job. However, it is faster than using si:full-gc and the result can
be saved using incremental disk save.

The editor has a command, List Callers (M->O, that is similar to who-calls.

si:who-calls-unbound-functions Function
si:who-calls-unbound-functions Searches the compiled code for any calls
through a symbol that is not currently defined as a function. This is .
useful for finding errors such as functions whose names you misspelled or
forgot to write.

185

July 1986

what-files-call symbol-or-symbols &optional how Function
Similar to who-calls but returns a list of the pathnames of all the files
that contain functions that who-calls would have printed out. This is
useful if you need to recompile and/or edit all those files. how may be nil,
meaning all ways to call the symbol, a keyword, meaning only find symbol
called as keyword, or a list of keywords. The permitted keywords are:

:variable
: function
: microcoded-function
: constant
: flavor
: instance-variable
:macro
: defined-constant
: condition
:flavor-component
: generic-function

zl:apropos apropos-substring &optional pkg (do-packages-used-by t) Function
do-packages-used

Tries to find all symbols whose print-names contain apropos-substring as a
substring. When it finds a symbol, it prints out the symbol's name; if the
symbol is defined as a function and/or bound to a value, it tells you so, and
prints the names of the arguments (if any) to the function. It checks all
symbols in a certain set of packages. The set always includes pkg. If
do-packages-used-by is true, the set also includes all packages that use pkg.
If do-packages-used is true, the set also includes all packages that pkg uses.
pkg defaults to the zl-user:global package, so normally all packages are
searched. zl:apropos returns a list of all the symbols it finds. This is
similar to the Find Symbol command, except that Find Symbol only
searches the current package unless you specify otherwise.

where-is pname Function
Finds all symbols named pname and prints on zl:standard-output a
description of each symbol. The symbol's home package and name are
printed. If the symbol is present in a different package than its home
package (that is, it has been imported), that fact is printed. A list of the
packages from which the symbol is accessible is printed, in alphabetical
order. where-is searches all packages that exist, except for invisible
packages.

If pname is a string it is converted to uppercase, since most symbols'
names use uppercase letters. If pname is a symbol, its exact name is used.

where-is returns a list of the symbols it found.

186

User's Guide to Symbolics Computers July 1986

The find-aU-symbols function is the primitive that does what where-is
does without printing anything.

describe anything &optional no-complaints Function
Tries to tell you all the interesting information about any object except
array contents). describe knows about arrays, symbols, all types of
numbers, packages, stack groups, closures, instances, structures, compiled
functions, and locatives, and prints out the attributes of each in human­
readable form. Sometimes it describes something that it finds inside
something else; such recursive descriptions are indented appropriately. For
instance, describe of a symbol tells you about the symbol's value, its
definition, and each of its properties. describe of a floating-point number
shows you its internal representation in a way that is useful for tracking
down roundoff errors and the like.

If anything is a named-structure, describe handles it specially. To
understand this: See the section "Named Structures" in Symbolics
Common Lisp. First it gets the named-structure symbol, and sees whether
its function knows about the :describe operation. If the operation is
known, it applies the function to two arguments: the symbol : describe, and
the named-structure itself. Otherwise, it looks on the named-structure
symbol for information that might have been left by zl:defstruct; this
information would tell it the symbolic names for the entries in the
structure. describe knows how to use the names to print out each field's
name and contents.

describe describes an instance by sending it the :describe message. The
default method prints the names and values of the instance variables.

This is the same as the Show Object command.

describe always returns its argument, in case you want to do something
else to it.

inspect &optional object Function
A window-oriented version of describe. See the section "How the Inspector
Works", page 204.

disassemble function Function
function is either a compiled function, or a symbol or function spec whose
definition is a compiled function. disassemble prints out a human-readable
version of the macroinstructions in function.

187

July 1986

15.1.1 Variables for Examining the Lisp World

Variable
While a form is being evaluated by a read-eval-print loop, - is bound to the
form itself.

+ Variable
While a form is being evaluated by a read-eval-print loop, + is bound to the
previous form that was read by the loop.

* Variable

zl:!

++

+++

**

While a form is being evaluated by a read-eval-print loop, • is bound to the
result printed the last time through the loop. If several values were
printed (because of a multiple-value return), • is bound to the first value.
If no result was printed, * is not changed.

Variable
While a form is being evaluated by a read-eval-print loop, zl:! is bound to a
list of the results printed the last time through the loop.

++ holds the previous value of +, that is, the form evaluated two
interactions ago.

+++ holds the previous value of ++.

Variable

Variable

Variable
** holds the previous value· of *, that is, the result of the form evaluated
two interactions ago.

Variable
*** holds the previous value of .*.

grindef &rest fens Special Form
Prints the definitions of one or more functions, with indentation to make
the code readable. Certain other "pretty-printing" transformations are
performed:

• The quote special form is represented with the ' character.

• Displacing macros are printed as the original code rather than the
result of macro expansion.

• The code resulting from the backquote (') reader macro is represented
in terms of '.

The subforms to grindef are the function specs whose definitions are to be
printed; ordinarily, grindef is used with a form such as (grindef foo) to
print the definition of foo. When one of these subforms is a symbol, if the

188

User's Guide to Symbolics Computers July 1986

symbol has a value its value is prettily printed also. Definitions are
printed as defun special forms, and values are printed as setq special
forms.

If a function is compiled, grindef says so and tries to find its previous
interpreted definition by looking on an associated property list. See the
function uncompile in Program Development Utilities. This works only if
the function's interpreted definition was once in force; if the definition of
the function was simply loaded from a BIN file, grindef does not find the
interpreted definition and cannot do anything useful.

With no subforms, grindef assumes the same arguments as when it was
last called.

zl: break &optional tag (conditional t) Special Form
Enters a breakpoint loop, which is similar to a Lisp top-level loop. (break
tag) always enters the loop; (break tag conditional) evaluates conditional
and only enter the break loop if it returns non-nil. If the break loop is
entered, zl: break prints out:

;Breakpoint tag; Resume to continue J Abort to quit.

The standard values for any variables are checked. If zl:break rebinds any
of these standard variables, it warns you that it has done so. zl: break
then enters a loop reading, evaluating, and printing forms. A difference
between a break loop and the top-level loop is that when reading a form,
zl:break checks for the following special cases: If the ABORT key is pressed,
control is returned to the previous break or Debugger, or to top level if
there is none. If the RESUME key is pressed, zl:break returns nil. If the
list (return form) is typed, zl:break evaluates form and returns the result.

Inside the zl:break loop, the streams zl:standard-output,
zl:standard-input, and zl:query-io are bound to be synonymous to
zl:terminal-io; zl:terminal-io itself is not rebound. Several other internal
system variables are bound, and you can add your own symbols to be bound
by pushing elements onto the value of the variable sys:*break-bindings*.
(See the variable sys:*break-bindings*, page 188.)

If tag is omitted, it defaults to nil.

There are two easy ways to write a breakpoint into your program:
(zl: break) gets a read-eval-print loop, and (zl:dbg) gets the Debugger.
(These are the programmatic equivalents of the SUSPEND and M-SUSPEND
keys on the keyboard.)

sys:*break-bindings* Variable
When zl: break is called, it binds some special variables under control of
the list that is the value of sys:*break-bindings*. Each element of the list

189

July 1986

is a list of two elements: a variable and a form that is evaluated to produce
the value to bind it to. The bindings happen sequentially. You can
zl:push things on this list (adding to the front of it), but should not
replace the list wholesale since several of the variable bindings on this list
are essential to the operation of zl: break.

dbg:*debugger-bindings* Variable
When the Debugger is entered, it binds some special variables under
control of the list that is the value of dbg:*debugger-bindings*. Each
element of the list is a list of two elements: a variable and a form that is
evaluated to produce the value to bind it to. The bindings happen
sequentially. You can zl:push things on this list (adding to the front of it),
but should not replace the list wholesale since several of the variable
bindings on this list are essential to the operation of the Debugger.

15.2 Utility Functions

print-sends &optional (stream zl:standard-output) Function
Prints out all messages you have received (but not messages you have
sent), in forward chronological order, to stream. Converse is more useful
for looking at your messages, but this function predates Converse and is
retained for compatibility.

zl:print-notifications &optional (from 0) (to Function
(1- (zl:length tv:notification-history»)

Reprints any notifications that have been received. The difference between
notifications and sends is that sends come from other users, while
notifications are asynchronous messages from the Lisp Machine system
itself. If from or to is specified, prints only part of the notifications list.

Example: (pr; nt-not; f; cat; ons (] 4) prints the five most recent
notifications.

This is the same as the Show Notifications command.

si:show-login-history &optional (whole-history si:login-history) Function

Prints one line for each time the login command has been used since the
world was last cold booted. It also shows the logins done during the
creation of the world load. Each line contains the name of the user who

190

User's Guide to Symbolics Computers July 1986

logged in, the name of the machine on which the world load was running
at that time, and the date and time. This command also shows the name
of an init file, if one was loaded. If you cold boot, log in, and then do
Show Login History, the last line refers to your own login and all previous
lines refer to logins that were done before doing Save World (or running
zl:disk-save).

This information is useful to determine how many times a world load has
been disk-saved, on what machines it was disk-saved, and who disk-saved it.

The first couple of lines do not contain any date or time, because they were
made during the initial construction of the world load before it found out
the current time. Names of users at other sites that are not in the local
site's namespace search list are qualified with the site's namespace name
and a vertical bar. The user LISP-MACHINE is the dummy user used by
si:login-to-sys-host when new world loads are created.

This function replaces si:print-Iogin-history.

zl:hostat &rest hosts Function
Asks each of the hosts for its status, and prints the results. If no hosts are
specified, asks all hosts on the Chaosnet. Hosts can be specified by either
name or octal number.

For each host, a line is displayed that either says that the host is not
responding or gives metering information for the host's network
attachments. If a host is not responding, probably it is down or there is no
such host at that address. A Lisp Machine can fail to respond if it is
looping inside without-interrupts or paging extremely heavily, such that it
is simply unable to respond within a reasonable amount of time.

To abort the host status report produced by zl:hostat or FUNCT I ON H, press
c-ABORT.

zl-user:uptime &rest hosts Function
Queries the specified hosts, asking them for their "uptime"; each host .
responds by saying how long it has been up and running. zl-user:uptime
prints out the results. If zl-user:uptime reports that a host is "not
responding", either the host is not responding to the network, or it does
not support the UPTIME protocol.

The zl-user:uptime function is a variant of zl:hostat.

191

July 1986

15.3 Dribble Files

Sometimes it is useful to have a more permanent record of what is happening on
your screen when a program is running. Dribble files allow you to save the
output from or interaction with a program in a file or a buffer. Formerly such
files were called wallpaper files because the resulting long strips of paper output
resembled wallpaper and were sometimes posted on the wall to demonstrate the
operation of a program. Now that display consoles are in wide use, the files are
referred to as dribble files because the output "dribbles" out of the running
program.

zl:dribble-start pathname &optional editor-p (concatenate-p t) Function
Opens filename as a "dribble file". It rebinds zl:standard-input and
zl:standard-output so that all of the terminal interaction is directed to the
file as well as to the terminal. If editor-p is non-nil, then instead of
opening filename on the file computer, zl:dribble-start directs the terminal
interaction into a Zmacs buffer whose name is filename, creating it if it
does not exist.

zl:dribble-end Function
Closes the file opened by zl:dribble-start and resets the I/O streams.

15.4 zl:status and zl:sstatus

The zl:status and zl:sstatus special forms exist for compatibility with Maclisp.
Programs that are designed to run in both Maclisp and Zetalisp can use zl:status
to determine in which one they are running. Also,
(zl:sstatus zl-user:feature zl-user: .••) can be used as it is in Maclisp.

zl:status status-function &optional (item nil item-p) Special Form
(zl:status zl-user:features) returns a list of symbols indicating features of
the Lisp environment. The default list for the Lisp Machine is:

(:DEFSTORAGE :LOOP :DEFSTRUCT :LISPM :SYMBOLICS 3600 :CHAOS :SORT
:FASLOAD :STRING :NEWIO :ROMAN :TRACE :GRINDEF :GRIND)

The value of this list will be kept up to date as features are added or
removed from the Lisp Machine system. Most important is the symbol
:lispm; this indicates that the program is executing on the Lisp Machine.
The order of this list should not be depended on, and might not be the
same as shown above.

The following symbols in the features list can be used to distinguish
different Lisp implementations, using the #+ and #. reader syntax.

192

User's Guide to Symbolics Computers July 1986

Three symbols indicate which Lisp Machine hardware is running:

:lispm

:cadr

:3600

Any kind of Lisp Machine, as opposed to Maclisp

An M.LT. CADR

A 3600-family machine

One symbol indicates which kind of Lisp Machine software is running:

:symbolics Symbolics software

See the section "Sharp-sign Reader Macros" in Reference Guide to Streams,
Files, and I/O.

(status feature symbol) returns t if symbol is on the
(zl:status zl-user:features) list, otherwise nil.

(status nofeature symbol) returns t if symbol is not on the
(zl:status zl-user:features) list, otherwise nil.

(zl:status zl-user:userid) returns the name of the logged-in user.

(zl:status zl-user:tabsize) returns the number of spaces per tab stop
(always 8). Note that this can actually be changed on a per-window basis:
however, the zl:status function always returns the default value of 8.

(zl:status zl-user:opsys) returns the name of the operating system, always
the symbol :lispm.

(zl:status zl-user:site) returns the name of the local machine, for example,
"mit-lispm-6". Note that this is not the same as the value of zl:site-name.

(zl:status zl:status) returns a list of all zl:status operations.

(zl:status zl:sstatus) returns a list of all zl:sstatus operations.

zl:sstatus status-function item Special Form
(sstatus feature symbol) adds symbol to the list of features.

(sstatus nofeature symbol) removes symbol from the list of features.

15.5 Using Peek

15.5.1 Overview of Peek

You start up Peek by pressing SELECT P, by using the Select Activity Peek
command, or by evaluating (zl:peek).

The Peek program gives a dynamic display of various kinds of system status.

193

July 1986

When you start up Peek, a menu is displayed at the top, with one item for each
system-status mode. The item for the currently selected mode is highlighted in
reverse video. If you click on one of the items with the mouse, Peek switches to
that mode. Pressing one of the keyboard keys as listed in the Help message also
switches Peek to the mode associated with that key. The Help message is a Peek
mode; Peek starts out in this mode.

Pressing the HELP key displays the Help message.

The Q command exits Peek and returns you to the window from which Peek was
invoked.

Most of the modes are dynamic: they update some part of the displayed status
periodically. The time interval between updates can be set using the :2: command.
Pressing nt., where n is some number, sets the time interval between updates to n
seconds. Using the t. command does not otherwise affect the mode that is
running.

Some of the items displayed in the modes are mouse sensitive. These items, and
the operations that can be performed by clicking the mouse on them, vary from
mode to mode. Often clicking the mouse on an item gives you a menu of things
to do to that object.

The Peek window has scrolling capabilities, for use when the status display is
longer than the available display area. SCROLL or c-V scrolls the window forward
(towards the bottom), M-SCROLL or M-V scrolls it backward (towards the top).

As long as the Peek window is exposed, it continues to update its display. Thus a
Peek window can be used to examine things being done in other windows in real
time.

15.5.2 Peek Modes

Processes (p)

In Processes mode, invoked by pressing P or by clicking on the [Processes] menu
item, you see all the processes running in your environment, one line for each.
The process names are mouse sensitive; clicking on one of them pops up a menu
of operations that can be performed:

Arrest (or Un-Arrest)

Flush

Arrest causes the process to stop immediately. Unarrest causes
it to pick up where it left off and continue.

Causes the process to go into the state Wait Forever. This is
one way to stop a runaway process that is monopolizing your
machine and not responding to any other commands. A process
that has been flushed can be looked at with the debugger or
inspector and can be reset.

194

User's Guide to Symbolics Computers July 1986

Reset

Kill

Debugger

Describe

Inspect

Causes the process to start over in its initialized state. This is
one way to get out of stuck states when other commands do not
work.

Causes the process to go away completely.

Enters the Debugger to look at the process.

Displays information about the process.

Enters the Inspector to look at the process.

See the section "Introduction to Processes" in Internals, Processes, and Storage
Management.

Areas (A)

Areas mode, invoked by pressing A or by clicking on [Areas], shows you
information about your machine's memory. The first line is hardware information:
the amount of physical memory on the machine, the amount of swapping space
remaining in virtual memory, and how many wired pages of memory the machine
has. The following lines show all the areas in virtual memory, one line for each.
For each area you are shown how many regions it contains, what percentage of it
is free, and the number of words (of the total) in use. Clicking on an area inserts
detailed information about each region: its number, its starting address, its
length, how many words are used, its type, and its GC status. See the section
"Areas" in Internals, Processes, and Storage Management.

Meters (M)

Meters mode, invoked by pressing M or by clicking on [Meters], shows you a list of
all the metering variables for storage, the garbage collector, and the disk. There
are two types of storage and disk meters:

Timers

Counts

Timers have names that start with zl-user:*ms-time- and keep a
total of the mille seconds spent in some activity.

Counts have names that start with zl-user:*count- and keep a
running total of the number of times some event has occurred.

The garbage collector meters fall into two groups according to which part of the
garbage collector they pertain to: the scavenger or the transporter. See the
section "Operation of the Garbage Collector".

195

July 1986

File System (F)

File System mode, invoked by pressing F or by clicking on [File System], provides
you information about your network connections for file operations. For each host
the access path, protocol, user-id, host or server unit number, and connection state
are listed. For active connections information about the actual packet flow is also
given. The various items are mouse sensitive. For hosts, you can get hostat
information, do a file reset, log in remotely, find out who is on the remote
machine, and send a message to the machine. You can reset, describe, or inspect
data channels, and close streams.

Resetting an access path makes the server on a foreign host go away, which might
be useful to free resources on that host or if you suspect that the server is not
working correctly.

Windows (W)

Windows mode, invoked by pressing W or clicking on [Windows], shows you all the
active windows in your environment with the panes they contain. This allows you
to see the hierarchical structure of your environment. The items are mouse
sensitive. Clicking on a window name pops up a menu of operations that you can
perform on the window.

Servers (8)

Clicking on [Servers] or pressing 8 puts Peek in Servers mode. If your machine is
a server (for example, a file server), Servers mode shows the status of each active
server.

Network (N)

Network mode, invoked by pressing N or by clicking on [Network], shows
information about the networks connected to your machine. For each network
there are three "headings for information:

Active connections

Meters

Routing table

The data channels that your machine has opened to another
machine or machines on the network.

Information about the data flow (packets) between your machine
and other machines on the network.

A list of all the subnets and for each the route to take to send
packets to a host on that subnet.

To view the information under one of these headings, you click on the heading.
The hosts and data channels in the list of active connections are mouse sensitive.

196

User's Guide to Symbolics Computers July 1986

For hosts, you can get hostat information, do a file reset, login remotely, find out
who is on the remote machine, and send a message to the machine. You can
reset, describe, or inspect data channels.

Information about the hardware network interface is also displayed, as well as
metering variables for the networks.

Hostat {H}

Clicking on [Hostat] or pressing H starts polling all the machines connected to the
local network. For each host on the network a line of information is displayed.
Those machines that do not respond to the poll are marked as "Host not
responding". You terminate the display by pressing c-ABORT.

Help and Quit

Clicking on the [Help] menu item or pressing HELP displays the help information
that is displayed when Peek is selected the first time.

Clicking on [Quit] or pressing Q buries the Peek window and returns you to the
window from which you invoked Peek.

197

July 1986

16. Tools for Lisp Debugging

16.1 Overview of the Debugger

Genera: The Symbolics Software Environment offers you a host of powerful
debugging tools. The most comprehensive of these tools is the Symbolics
interactive Debugger and its window-oriented counterpart, the Window Debugger.

Other debugging tools, also known as debugging aids, are:

• The Trace facility, which performs certain debugging actions at the time a
function is called or at the time a function returns. See the section
"Tracing Function Execution" in Program Development Utilities.

• The Advise facility, which modifies the behavior of a function. See the
section "Advising a Function" in Program Development Utilities.

• The Step facility, which allows you to execute forms in your program, one at
a time, so that you can examine what is happening when execution suspends
at every II step. II See the section II Stepping Through an Evaluation II in
Program Development Utilities. The Debugger's :Single Step command also
performs stepping. See the section II Single Step Command II in Program
Development Utilities.

o The evalhook facility, which allows you to get a particular Lisp form
whenever the evaluator is called. The Step facility also uses evalhook. See
the section II evalhook" in Program Development Utilities.

Another tool related to debugging is the Inspector, which is a window-oriented
program that lets you inspect data objects and their components. See the section
"Using the Inspector" in Program Development Utilities.

In the Genera software environment, unlike more traditional programming
environments, you do not have to explicitly include the Debugger when you
compile your programs. Generally, you can debug your code as you write it
without having to perform a series of complicated compiling, loading, and
executing procedures between source code development and debugging.

Because Symbolics Dynamic Windows and other user-interface features allow you
to many Symbolics activities simultaneously - Zmacs, Zmail, the file system, the
Dynamic Lisp Listener, and so on - debugging becomes an easy task, regardless of
how many system activities you are using. You can move in and out of the
Debugger as easily as you can move in and out of any other process in Genera.
For example, the Debugger command, :Edit Function, brings up a function for

198

User's Guide to Symbolics Computers

editing in a Zmacs editor window. This is useful when you have found the
function that caused the error and want to edit that function immediately.

July 1986

Another command, :Mail Bug Report, brings up a mail message window and puts a
backtrace into the message to be mailed as a bug report. While composing the
bug report, you can switch back and forth between the Debugger and the mail­
sending window.

As in any other process, you can suspend the Debugger or use split-screen
windows to run two or more processes simultaneously.

The Symbolics Debugger is there whenever you need it. The Debugger is
signalled whenever an error occurs in your program's execution or the execution
of a system function. That is, your machine brings you into the Debugger
whenever it encounters an error that is not bound to a condition handler, for
example, when you reference an unbound variable. See the section "Entering and
Exiting the Debugger" in Program Development Utilities. Once in the Debugger,
you are given a choice of actions that can correct the error. These actions are
called proceed and restart options. See the section "Proceeding and Restarting in
the Debugger" in Program Development Utilities.

You can also enter the Debugger explicitly, at any time, by pressing n-SUSPEND or
c-n-SUSPEND, or make your program signal the Debugger by inserting the
cl:break or zl:dbg function into your program code. See the section "Entering
and Exiting the Debugger" in Program Development Utilities.

Upon Debugger entry, besides selecting one of the proceed and restart options, you
can enter any of the Debugger's 58 commands. These commands are full-form
English commands, built on normal command processor (CP) commands. In fact,
several Debugger commands are also CP commands. For more detailed
information on Debugger commands: See the section "Entering a Debugger
Command" in Program Development Utilities.

In the Debugger you can also evaluate a form in the lexical, user-program context
of the current frame. This context is referred to as the Debugger's evaluation
environment. You can think of the Debugger's evaluation environment as a special
read-eval-print loop that not only evaluates forms but also evaluates local variables
while the execution of its lexical function is suspended. For more detailed
information on the evaluation environment: See the section "Evaluating a Form
in the Debugger" in Program Development Utilities.

Like all other output in the Genera software environment, Debugger output is
mouse sensitive, so you can perform many useful Debugger operations using the
mouse. For more detailed information on mouse capabilities: See the section
"Using the Mouse in the Debugger" in Program Development Utilities.

The Debugger also provides some online help facilities. For more detailed
information on help facilities: See the section "Getting Help with Debugger
Commands".

199

July 1986

For complete information on the uses of these features and other Debugger
features - plus a list of descriptions for all Debugger commands: See the section
"Using the Debugger" in Program Development Utilities. For information on the
Window Debugger: See the section "The Window Debugger".

In general, you would use the Debugger when:

• Your program triggers the Debugger because garbage - an unbound variable
or too many arguments perhaps - was passed to a function, and you want to
find out where the garbage came from. See the section "Analyze Frame
Command" in Program Development Utilities.

• You want to see what's happening in the sequence of function calls just
executed, including a history of these function calls, the argument values
passed, the local-variables values, the source code, and the compiled code.
See the section "Show Backtrace Command" in Program Development
Utilities. Also: See the section "Debugger Commands for Viewing a Stack
Frame" in Program Development Utilities.

o You want to find out who or what is referencing a special variable or any
other location in memory. See the section "Monitor Variable Command",
page 247.

o You want to remember all the Debugger's key-binding command accelerators,
like c-B and c-M-F, and you wish they were associated with real English
commands, like :Show Backtrace and :Show Function. See the section
"Debugger Command Descriptions" in Program Development Utilities.

o You want to perform debugging operations using the mouse. See the section
"Using the Mouse in the Debugger" in Program Development Utilities.

• You want to continue program execution, proceed from the error, restart a
function, return from a function, or throw through a function. See the
section "Debugger Commands to Continue Execution" in Program
Development Utilities.

o Your condition handler breaks, and you want to call the Debugger when this
handler is encountered so that you can debug it. See the section "Enable
Condition Tracing Command" in Program Development Utilities.

o You want to edit your function's source code in Zmacs immediately after you
have found the error using the Debugger. See the section "Edit Function
Command" in Program Development Utilities.

o You want to put a Debugger backtrace into a mail message and send this

200

User's Guide to Symbolics Computers July 1986

message as a bug report. See the section "Mail Bug Report Command" in
Program Development Utilities .

• You want to use Debugger breakpoint commands, instead of using the Trace
facility or inserting a function in your code, to set Debugger breakpoints.
See the section "Commands for Breakpoints and Single Stepping".

16.1.1 Overview of Debugger Commands

The Debugger comprises 58 full-form English commands, which are implemented
as CP commands. Debugger commands are entered inside the Debugger at the
Debugger's command prompt, a right arrow (~). Commands fall into eight
general categories:

Commands for viewing a stack frame

Commands for stack motion

Commands for general information display

Commands to continue execution

Trap commands

Commands for breakpoints and single stepping

Commands for system transfer

Miscellaneous commands

Most Debugger commands have corresponding key-binding accelerators, which
means you can press a combination of one or more keys in place of the command.
For example, you can type the accelerator c-E instead of the command :Edit
Function.

Like CP commands, most Debugger commands have keywords that you can use to
modify the command's behavior.

There are 13 Debugger commands that share the global command table with CP
commands. Therefore, you can enter these commands in the CP as well as the
Debugger. They are:

201

July 1986

:Clear All Breakpoints

:Clear Breakpoint

:Disable Condition Tracing

:Edit Function

:Enable Condition Tracing

:Monitor Variable

:Set Breakpoint

:Set Stack Size

:Show Breakpoints

:Show Compiled Code

:Show Monitored Locations

:Show Source Code

:Unmonitor Variable

Note, however, that you must type a preceding colon with every command entered
in the Debugger; for example, you must type :Set Breakpoint in the Debugger.

For complete information on Debugger commands: See the section "Entering a
Debugger Command" in Program Development Utilities.

16.1.2 Overview of Debugger Evaluation Environment

In the Debugger, you can evaluate a form as easily as you can in a Dynamic Lisp
Listener read-eval-print loop. Evaluating a form in the Debugger, however, is
particularly useful because you are evaluating the form in the context of a user
program and the current stack frame. This means you can see the value of Lisp
objects at the point in program execution where an error occurred or at the
precise place in your program where you explicitly suspend execution and signal
the Debugger. You can even see the values of lexical (local) variables at the point
where execution suspends.

Evaluating a form in the Debugger is a simple task. If you type a character other
than the first character in a Debugger command - a colon or accelerator key - the

202

User's Guide to Symbolics Computers July 1986

Debugger immediately brings you into its evaluation environment. In other words,
just type the form. Evaluation happens automatically.

For complete information on how to evaluate a form in the Debugger: See the
section "Evaluating a Form in the Debugger" in Program Development Utilities.

16.1.3 Overview of Debugger Mouse Capabilities

When the output generated by Debugger commands is displayed on a Dynamic
Window, the output is mouse sensitive. You can perform several useful debugging
operations simply by using the mouse to click on something. Some of these
operations include: setting a breakpoint, monitoring a variable or another location
in memory, evaluating a form, editing a function, setting the current frame, and
choosing a proceed or restart option.

Besides performing certain mouse operations by clicking directly on displayed
Debugger output, you can use menus to perform the usual large variety of other
types of operations on Debugger output, just as you can with other output
generated anywhere else in the Genera software environment.

For more information on using the mouse in the Debugger: See the section
"Using the Mouse in the Debugger" in Program Development Utilities.

16.1.4 Overview of Debugger Help Facilities

The Debugger provides online help for Debugger commands and their components,
such as keywords. You can get help for all Debugger commands by typing c-HELP,
which displays brief command descriptions and available key-binding accelerators.
For more information about Debugger help: See the section "Getting Help for
Debugger Commands" in Program Development Utilities.

16.2 Flavor Exam iner

The Flavor Examiner enables you to examine flavors, methods, generic functions,
and internal flavor functions defined in the Lisp environment. It is a congenial
environment for using the Show Flavor commands.

You can select the Flavor Examiner with SELECT X, or with the Select Activity
Flavor Examiner command.

Figure 22 shows the initial window.

The Flavor Examiner window is divided into five panes.

Menu of Commands - the top-left pane

The top-left pane offers a menu of flavor-related commands, such as Fl avor

203

July 1986

FlavDr Examiner

I Flavor Componen~s Flavor Hethods
~ Flavor Oependen~s Flavor Opera~ion$

Flavor Instance Variables Generic Func~ion
Flavor Ini~ializa~ions Flavor Handler
In-flavor Functions Func~ion Ar9umen~6
Help Clear Display

Plfla58 tYfMI commands, or cllcl!. on menu aoo""

I
You are typing a command at Flavor Examiner.
Use the command names you see In the menu above,
or click on one with the mouse. The :He/p command
offers more detailed documentation about flavor
Examiner Itself, and about each of Its commands.

)It

To see other commands press Shift Control Meta-Shift or Super.
[Fr! lBJul 7:59:32] Ell.,n L;L-Ul>IOR: Us.,r Input <lIeather being Initialized>

Figure 22. Flavor Examiner Window

Components; this is the same as the Show Flavor Components command. You can
choose one of these commands by clicking left or right. Clicking left makes the
command appear in the Command Input Pane. Clicking right makes the command
appear and also displays the command's arguments, in a form that you can edit.

The HELP command displays documentation on the flavor-related commands. The
HELP key provides information on all the CP commands you can enter.

The Flavor Examiner offers two commands for clearing and refreshing the display.
The CLEAR DISPLAY command clears the display from the three output panes; it
first asks for confirmation. The REFRESH 01 SPLAY command displays the
information on the screen again.

When you click left or right on a command name, the command appears in the
Command Input Pane.

Command Input Pane - the bottom-left pane

The bottom-left pane is a command processor window. If you click on commands
in the Menu of Commands, the commands appear in this window. You can enter
arguments (or commands) by typing them at the keyboard. This pane saves the
history of all commands entered. You can click on the scroll bar to show different
parts of the history.

You are not restricted to the commands in the Menu of Commands. You can give
any command processor command.

204

User's Guide to Symbolics Computers

The output of all commands appears in the Main Command Output Pane.

Main Command Output Pane - the bottom-right pane

July 1986

Each command's output appears here. This pane saves the history of the output
of all flavor-related commands. You can use the scroll bar to show different parts
of the history.

Parts of the output of flavor-related commands are mouse-sensitive. You can make
use of that by clicking on a flavor name or method name to enter it as an
argument to another command.

If you give commands that are not flavor-related (such as the Show Host
command), the output appears in a typeout window in the Main Command Output
Pane. This kind of output is not saved in the history of this pane. The typeout
window is itself a dynamic window with its own history.

When the output of the current command appears in the Main Command Output
Pane, the output of the previous command is copied to the Previous Command
Output Pane.

Previous Command Output Pane - the middle-right pane

This pane displays the output of the previous command. This pane does not save
a history, but the second-to-Iast command is copied to the Second-to-Last Command
Output Pane.

Second-to-Iast Command Output Pane - the top-right pane

This pane displays the output of the second-to-Iast command. This pane does not
save a history. When another command is given, the contents of the Previous
Command Output Pane are copied to this pane. Similarly, the contents of the
Main Command Output Pane are copied to the Previous Command Output Pane.

16.3 How the Inspector Works

The Inspector is a window-oriented program for inspecting data structures. When
you ask to inspect a particular object, its components are displayed. The
particular components depend on the type of object; for example, the components
of a list are its elements, and those of a symbol are its value binding, function
definition, and property list.

The component objects displayed on the screen by the Inspector are mouse­
sensitive, allowing you to do something to that object, such as inspect it, modify it,
or give it as the argument to a function. Choose these operations from the menu
pane at the top-right part of the screen.

When you click on a component object itself, that component object gets inspected.
It expands to fill the window and its components are shown. In this way, you can

I

205

July 1986

explore a complex data structure, looking into the relationships between objects
and the values of their components.

The Inspector can be part of another program or it can be used standalone; for
example, the Window Debugger can utilize some of the panes of the Inspector.
Note, however, that although the display looks the same as that of the standalone
Inspector, the handling of the mouse buttons depends upon the particular program
being run.

Figure 23 shows the standalone Inspector window. The display consists of the
following panes, from top to bottom:

• A small interaction pane
• A history pane and menu pane
• Some number of inspection panes (three by default)

Top of His~ry

Bottom of Himry

Top ofoJJject

Exit
Return
Modi fy

DeCllche
Clellr
Set /

Empty

Bottom tlf object

Top ofoJJjut
Empty

Bottom of oJJjcct

Top ofoJJject
Empty

'\

Bottom of oJJject

-Choose a value by pointing at the value. Right finds function definition.

lFrl Itj Ju I r:5'J:il6J Ellen CL-U:;tl<: y'ser Input <lIeatner Doing Initlalll<d>

Figure 23. The Inspector

206

User's Guide to Symbolics Computers July 1986

16.4 Entering and Leaving the Inspector

You can enter the standalone Inspector via:

• Select Activity Inspector

• SELECT I

• [Inspect] in the System menu

• The Inspect command, which inspects its argument, if any

• The inspect function, which inspects its argument, if any

Warning: If you enter with the Inspect command or the inspect function, the
Inspector is not a separate activity from the Lisp Listener in which you invoke it.
In this case you cannot use SELECT L to return to the Lisp Listener; you should
always exit via the [Exit] or [Return] option in the Inspector menu. If you forget
and exit the Inspector by selecting another activity, you might need to use
c-M-ABORT to return the Lisp Listener to its normal state.

See the section "The Inspector" in Program Development Utilities.

207

July 1986

17. Quick Reference

17.1 General Help Facilities

c-ABORT Aborts the function currently executing.
c-G Aborts a command while it is being entered, unselects the region,

or unmerges a kill; that is, resets "state".
HELP A string

HELP Cx

HELP D string
HELP L

SUSPEND

Shows every command containing string (try HELP A Paragr or
HELP A Buffer).

Explains the action of any command (try HELP C c-K as an
example).
Describes a command (try HELP D Query Rep).

Displays the last 60 keys pressed.
Starts a Lisp Listener (return from it with RESUME).

17.2 Zmacs Help Facilities

Reverts to buffer before last kill, unkill, fill, sort, or similar
complex command.
Yanks back the last thing killed.
Mter a c-V, yanks back things previously killed; used after a c-V

to cycle through the kill ring.

17.3 Extended Commands

Extended commands (the M-X commands) put you in a small area of the screen
with full editing capabilities (a minibuffer) for entering names and arguments.
Several kinds of help are available in a minibuffer.
COMPLET E Completes as much of the current command as possible.
HELP Gives information about special characters and possible

completions.
c-? Shows possible completions for the command currently being

entered.
END or RET URN Complete the command, and then execute it.
c-/ Does an apropos on what has been typed so far.

208

User's Guide to Symbolics Computers July 1986

17.4 Writing Files

c-X c-S Writes the current buffer into a new version of the current file
name.

c-X c-W Writes the current buffer into a file with a different name.
Save All Files (M-X)

Offers to save each file whose buffer has been modified.

17.5 Buffer Operations

c-X
c-X
c-X
c-X
M-<
M->

c-F
B
c-B
K

Gets a file into a buffer for editing.
Selects a different buffer (prompts; default is the last one).
Displays a menu of available buffers; lines are mouse-sensitive.
Kills a buffer (prompts for which one; default is current one).
Moves to the beginning of the current buffer.
Moves to the end of the current buffer.

17.6 Character Operations

c-B
c-F
c-P
c-N
RUBOUT
c-D
c-T

Moves left (back) a character.
Moves right (forward) a character.
Moves up (previous) a character.
Moves down (next) a character.
Deletes a character left.
Deletes a character right.
Transposes the two characters around point; if at the end of a
line, transposes the two characters before point, ht -> tho

17.7 Word Operations

M-B
M-F
M-RUBOUT
M-D
M-T
M-C
M-L
M-U

Moves left (back) a word.
Moves right (forward) a word.
Kills a word left (c-V yanks it back at point).
Kills a word right (c-V yanks it back at point).
Transposes the two words around point (if only -> only if).
Capitalizes the word following point.
Lower-cases the word following point.
Upper-cases the word following point.

July 1986

17.8 line Operations

c-A

c-E

c-O

Moves to the beginning of the line.
Moves to the end of the line.
Opens up a line for typing.
Closes up any blank lines around point.

209

c-H c-O

CLEAR-INPUT Kills from the beginning of the line to point (c-Y yanks it back at
point).

c-K Kills from point to the end of the line (c-Y yanks it back at
point).

17.9 Sentence Operations

M-A

M-E

c-H RUBOUT

Moves to the beginning of the sentence.
Moves to the end of the sentence.
Kills from the beginning of the sentence to point (c-Y yanks it
back at point).
Kills from point to the end of the sentence (c-Y yanks it back at
point).

17.10 Paragraph Operations

M-[

M-]

M-Q

n c-H F

Moves to the beginning of the paragraph.
Moves to the end of the paragraph.
Fills the current paragraph (see HELP A Auto fi 11).

Sets the fill column to n (example: c-6 c-5 c-H F).

17.11 Screen Operations

SCROLL or c-V Shows next screen.
M-SCROLL or M-V Shows previous screen.
c-B c-L Moves the line where point is to line 0 (top) of the screen.
c-M-R Repositions the window to display all of the current definition, if

possible.
c-M-L Selects the most recently selected buffer in this window.

210

User's Guide to Symbolics Computers July 1986

17.12 Region Operations

c-SPACE

c-W

M-W

c-v

Sets the mark, a delimiter of a region. Move the cursor from
mark to create a region; (the editor underlines to show the
region). Use with region commands c-W, M-W, and c-V.

Kills region (c-V yanks it back at point).
"Saves" region (c-v yanks it back at point).
Yanks back the last thing killed.

17.13 Window Operations

c-x 2

c-x 1
c-X 0
C-M-V

c-x 4

Splits the screen in two windows, using the current buffer and
the previously selected buffer (the one that c-M-L would select).
Resumes single window, using the current window.
Moves cursor to other window.
Shows next screen of the buffer in the other window; with a
numeric argument scrolls that number of lines - positive for the
usual direction, negative for the reverse direction.
Splits the screen into two windows and asks what should be
shown in the other window.

17.14 Search and Replace

c-S string

c-R string
c-? stringl

M-? stringl

"Incremental" search; searches while you are entering the string;
terminate search with END.

"Incremental" backward sear-ch; terminate search with END.
RET URN string2 RET URN

Replaces stringl with string2 throughout.
RET URN string2 RET URN

Replaces stringl with string2 throughout, querying for each
occurrence of stringl; press SPACE meaning" do it", RUBOUT
meaning "skip", or HELP to see all OptiO!lS; (see HELP C M-?).

July 1986

18. Quick Summary of Mouse Functions

18.1 Mouse Cursor Shape

These are some of the more common mouse cursors:

A thin arrow pointing North by Northwest (up and to the left). This is the
default mouse cursor. The mouse documentation line indicates any special
commands. If the mouse is over a partially exposed window, clicking left will
select that window. Clicking sh-Mouse-R i ght will get you the System menu.

211

A thin arrow pointing North by Northeast (up and to the right). This means the
mouse is in an editor window. There are a number of editor commands on the
mouse buttons. See the section "Mouse Documentation Line in Zmacs" in Text
Editing and Processing.

A slightly thicker arrow pointing North (straight up). The editor uses this to
show that it is asking you for the name of a function or for a symbol. If you
point the mouse at a function name, and stop moving it, the name will light up
and you can click to select it.

A small x. This is used when the mouse cursor should be unobtrusive, for
instance in menus.

18.2 Mouse Gestures on Dynamic Windows

Mous~-Left On a directory listing, does a Show File of the file. In Other
contexts yanks the command line.

sh-Mouse-Left Like Left, but also activates. Click sh-Mouse-Left on a
command line to yank and activate the command.

c-Mouse-Left Marks a region, s-W pushes marked region on the kill ring.

Mouse-M i dd 1 e On a Lisp Object does a describe of the Object.

c-Mouse-Middl e Yank the word the mouse is over. Useful for using arbitrary
text to compose commands, for example after a Show Mail, click
c-Mouse-Middle on a pathname mentioned in a mail message as
an argument to Show File.

Mouse-Ri ght on an object
Pops up a menu of possible operations on the object.

M-sh-Mouse-R Gets the menu of window operations.

212

User's Guide to Symbolics Computers July 1986

n-Mouse-Left in Zmacs
Edit Definition. Hold down the left button and move the mouse
around to see what is mouse sensitive.

n-Mouse-Mi ddl e in Zmacs
Evaluate form. Hold down the middle button and move the
mouse to see what is mouse sensitive.

18.3 Scrolling with the Mouse

Windows display "contents" that are too big to fit entirely in the window. When
this is the case, you see only a portion of the contents, and you can scroll the
contents up and down using the mouse.

Dynamic windows all have scroll bars along one side. The default position is
along the left side. You can position the scroll bar along the right edge if you
prefer.

When the mouse is moved over the scroll bar its cursor becomes a double-headed
arrow. A gray area in the scroll bar indicates what portion of the window's
contents is visible. The vertical position of the gray area within the scroll bar
shows the position of the visible portion of the window's contents relative to the
whole. At the top and bottom of the scroll bar are small boxes.

Clicking the mouse in the box at the top scrolls by lines. The mouse clicks are:

Left Scroll by one line (next line)

Middle Scroll to the top (first available screen) of the window.

Clicking the mouse in the box at the bottom scrolls by screens. The mouse clicks
are:

Left 'Scroll to the next screen.

Middle Scroll to the end of the window (last available screen).

Right Scroll to the previous screen.

Clicking the mouse in the scroll bar beside the middle of window scrolls
proportionally. The mouse clicks are:

Left

sh-Left

Middle

Next screen, making this line the top line of the screen.

Previous screen, making this line the last line of the screen.

Put window here.

213

July 1986

Right Previous screen, placing the line that is currently the top line
on the screen here.

The Lisp Listener window can also be scrolled horizontally. s-SCROLL scrolls the
window to allow you to see what is to the right. M-s-SCROLL scrolls to the left.

Other scrolling conventions with the mouse are:

• A fat arrow, pointing up or down. This indicates you are in a scrolling zone.
Moving the mouse slowly in the direction of the arrow scrolls the window,
revealing more of the text in the direction the arrow points .

• Scrolling zones often say more above or more below in small italic letters.
Clicking on one of these legends scrolls the window up and down by its
height, thus you see the next or previous wind 0 wful. When the top or
bottom of the window contents is reached, so that it is not possible to scroll
any farther in one direction, the legend in the scrolling zone changes to
indicate this.

214

User's Guide to Symbolics Computers July 1986

215

July 1986

19. Index of Special Function Keys

19.1 Introduction

This is a quick reference guide to the Symbolics 3600-family special function keys.
Most of these keys have the same function in any window. However, a few of
them perform differently in different contexts.

19.2 ABORT Key

ABORT

c-ABORT

M-ABORT

When read by a program, the program stops what it is doing and
returns to its "command loop". Lisp Listeners, for example, respond
to ABORT by throwing back to the read-eval-print loop (top level or
zl:break). Note that ABORT takes effect when it is read, not when it
is pressed; it does not stop a running program.

Aborts the operation currently being performed by the process to
which you are typing, immediately (not when it is read). For instance,
this forces a Lisp Listener to abandon the current computation and
return to its read-eval-print loop.

When read by a program, the program stops what it is doing and
returns through all levels of commands to its "top level". Lisp
Listeners, for example, throw completely out of their computation,
including any zl:break levels, then start a new read-eval-print loop.

c-M-ABORT A combination of c-ABORT and M-ABORT, this immediately throws out of
all levels of computation and restarts the process to which you type it.

19.3 BACKSPACE Key

In a Lisp Listener, BACKSPACE moves the cursor back one character, as does c-B,
so that you can insert additional text or edit. In Zmacs, Converse, and Zmail
message windows, it inserts a backspace character into the buffer. In the main
Zmail window it scrolls the current message backward (as do M-SCROLL and M-V).

216

User's Guide to Symbolics Computers July 1986

19.4 CLEAR I NPUT Key

Usually erases the expression you are typing. In an editor buffer CLEAR INPUT
erases from the location of your cursor to the beginning of the current line. If
you are at the beginning of the line, it erases the previous line.

19.5 COMPLETE Key

Completes as much as possible of partially typed commands. In the Document
Examiner, COMPLET E works on topic names. In Zmacs and Zmail, when completion
is available for a command or pathname in the minibuffer, the word (Completion)
appears in the mode line.

["J-COMPLETE in the command processor displays a menu of the arguments and
keywords for the command you are typing. You can then specify the arguments
and keywords from the menu using the mouse or the keyboard. See the section
"Using Menus", page 29.

19.6 END Key

Marks the end of input to many programs. Single-line input can be terminated
with RET URN or END. END terminates multiple-line input where RET URN is used to
separate lines. When you are typing Lisp input, balanced parentheses terminate
expressions and END is not used. However, if you use the input editor to yank a
previous command or expression, END terminates it. See the section "Editing Your
Input", page 134.

19.7 ESCAPE Key

Displays the input editor history. c-ESCAPE displays the global kill history. Sends
Escape/Altmode (octal 033) in the Terminal program.

19.8 FUNCT I ON Key

This key is a prefIx for a family of commands relating to the screen, which you
can type at any time, no matter what program you are running.

217

July 1986

19.8.1 Display and Hardcopy Commands

The FUNCT I ON commands that control screen display and hardcopying are:

RUBOUT Does nothing; press this key to cancel FUNCTION if you typed the latter
by accident.

CLEAR INPUT

REFRESH

A

B

C

c-C

I"I-C

F

H

M

c-M

o

Q

Discards typeahead.

Clears and redisplays all windows.

Arrests the process shown in the status line. FUNCT I ON - A resumes
the process.

Buries the currently selected window, if any - that is, it moves it
underneath all other windows. This brings up the previously selected
window, which is automatically selected.

Complements the entire screen. An argument of 1 means white-on­
black; an argument of 0 means black-on-white.

Complements the selected window, with the same argument as
FUNCTION C.

Complements the mouse documentation line, with the same argument
as FUNCTION C.

Shows users logged in on other machines on your network. Arguments
can be assigned to shows users logged in on various machines at your
site. FUNCT I ON e F prompts you for a specific user or host to show.
Giving a user name followed by /w displays the information in the
user's namespace entry.

Shows status of network hosts. With an argument, it prompts for
hosts.

Controls global MORE processing. No argument means toggle, 0
means turn off, 1 means turn on.

Controls MORE processing for the selected window. The arguments
are the same as for FUNCT I ON M.

Selects another exposed window.

Hardcopies the entire screen.

218

User's Guide to Symbolics Computers July 1986

c-Q Hardcopies the selected window.

M-Q Hardcopies the entire screen, minus the status and mouse
documentation lines.

19.8.2 Selection and Notification Commands

The FUNCT I ON commands that control window selection and notification are:

s

T

Selects the most recently selected window. With an argument n
(default is 2), it selects the nth previously selected window and rotates
the top n windows. An argument of 1 rotates through all windows (a
negative argument rotates in the other direction); 0 selects a window
that requires attention (for example, to report an error).

Controls the selected window's input and output notification
characteristics. If an attempt is made to output to a window when it
is not exposed, one of three things can happen:

• The program can simply wait until the window is exposed .
• It can send a notification that it wants to type out and then

wait.
• It can quietly type out "in the background"; when the window is

next exposed the output becomes visible.

Similarly, if an attempt is made to read input from a window that is
not selected (and has no typed-ahead input in it), the program can
either wait for the window to become selected, or send a notification
that it wants input and then wait.

The FUNCT I ON T command controls these characteristics based on its
argument, as follows:

no argument

o
1

2

3

4

If output notification is off, turns input and output
notification on; otherwise turns input and output
notification off. This essentially toggles the current
state.

Turns input and output notification off.

Turns input and output notification on.

Turns output notification on, and input notification
off.

Turns output notification off, and input notification
on.

Allows output to proceed in the background, and
turns input notification on.

July 1986

5 Allows output to proceed in the background, and
turns input notification off.

219

Controls the status line. With no argument, the status line is
redisplayed. The arguments control the process the status line
watches. The options are:

o

1

2

3

4

Gives a menu of all processes, and freezes the status
line on the process you select. When the status line
is frozen on a process, the name of that process
appears where your user ID normally would (next to
the date and time), and the status line does not
change to another process when you select a new
window.

The status line watches whatever process is using
the keyboard, and changes processes when you select
a new window. This is the default initial state.

Changes the status line so that it displays the name
of the process instead of the name of the user. This
also freezes the status line on that process; normally
the status line switches to display a different
process whenever the window system tells it to.

Use this if you see an unexpected state in the status
line. It will help you find out what process is in
that state; you might find that you are not talking
to the process you think you should be.

Rotates the status line among all processes.

Rotates the status line in the other direction.

19.8.3 Recovering From Stuck States

The following FUNCT I ON commands should all be used with caution.

ESCAPE

c-A

SUSPEND

Helps you recover from stuck states such as "Output Hold" and "Sheet
Lock".

Arrests all processes except the one shown in the status line and
critical system processes, such as the keyboard and mouse processes.
FUNCT I ON - c-A resumes all processes arrested by this command.

Gets to the cold-load stream.

220

User's Guide to SymboJics Computers July 1986

c-T Deexposes temporary windows. This is useful if the system seems to
be hung because there is a temporary window on top of the window
that is trying to type out.

c-CLEAR INPUT

Clears window system locks. This is a last resort, although not as
drastic as warm booting. Use this when none of the windows will talk
to you, when you cannot get a System menu, and so on.

19.9 HELP Key

The key labelled HELP looks up context-dependent documentation.

HELP Shows documentation available for the current activity. In some
programs, c-HELP, M-HELP, and so on, provide additional
documentation.

c-HELP Shows a list of input editor commands (when typed at a Lisp
Listener).

sy-HELP Shows a list of the special function keys and the special
character keys.

SELECT HELP Shows programs and utilities that you can select using the
SELECT key.

FUNCT I ON HELP Shows a list of useful functions that you can invoke using the
FUNCT I ON key.

19.10 LINE Key

The function of this key varies considerably. It is used as a command by the
Debugger, and sends a Line Feed character in the Terminal program. In the
editor it behaves like a RET URN followed by a T A8 to the indentation level
appropriate to the mode of the editor. See the section "TAB Key", page 225.

19.11 LOCAL Key

On 3670 and 3640 consoles this key controls local console functions:

LOCAL-G Rings the bell.

July 1986

LOCAL-D
LOCAL-B
LOCAL-Q
LOCAL-L
LOCAL-n LOCAL-C

Makes the screen dimmer.
Makes the screen brighter.
Makes the audio quieter.
Makes the audio louder.
Changes the contrast of the screen.
n is a digit between 1 and 4.
4 is greatest contrast.

Related Lisp functions:

See the function tv:screen-brightness, page 97.
See the function sys:console-volume, page 98.

19.12 NETWORK Key

221

This key is used to get the attention of the Terminal program. You must be
connected to a host via the Terminal program before you can use this key. See
the section "Connecting to a Remote Host Over the Network", page 170.

Once connected, commands are given by pressing NET WORK and another single
character.

The following commands are available:

NETWORK HELP Display the list of options for the NET WORK key.

NETWORK A Send an ATTN (in Telnet, a new Telnet "Interrupt Process").

NETWORK D Disconnect without logging out first.

NETWORK L Log out of remote host, and break the connection.

NETWORK Q Quit, by disconnecting and deselecting this window.

NETWORK M Toggle More processing.

NETWORK H Enter an extended network command; see below.

More complicated commands are entered with the extended command, NET WORK H.
This command invokes a Choose Vari abl e Val ues window.

NET WORK H provides the capability to tailor the following:

• The escape character. The default is NET WORK.

• Whether characters overstrike or erase. Characters erase by default.

222

User's Guide to Symbolics Computers July 1986

• Whether More processing is enabled. More processing is enabled by default.

• Whether to enable the wallpaper facility, which logs host output to a file.
By default, wallpaper is not enabled.

• The filename of the wallpaper file.

• For Telnet, what level of filtering and interpretation is placed on the
characters; for example, whether Imlac terminal codes are interpreted in
host output.

19.13 PAGE Key

In Zmacs (in searches and after c-Q) this key inserts a page separator character,
which displays as PAGE in a box.

19.14 REFRESH Key

Usually erases and redisplays the selected window.

19.15 REPEAT Key

Repeats the key pressed while the REPEAT key is held down. You can press and
hold down a key and then press the REPEAT key, or you can hold down the REPEAT
key and press a key. Once the repetition starts, it continues until you lift your
finger from the REPEAT key. You can lift your finger from the first key and press
another while still holding down REPEAT and that key starts to repeat. Pressing
the REPEAT key without pressing any other key does nothing. The REPEAT key is
enabled by default, but you can disable and re-enable it by setting the variable
si:*kbd-repeat-key-enabled-p* with setf.

si:*kbd-repeat-key-enabled-p* Variable
Controls whether or not the REPEAT key is enabled. The default is t. It
can be set using setf:

(setf si:*kbd-repeat-key-enabled-p* nil)

Setting si:*kbd-repeat-key-enabled-p* to nil turns off repeating using the
REPEAT key.

There are two variables to control the frequency of the repetition and the delay
before repetition starts.

223

July 1986

si:*kbd-repetition-interval* Variable
Controls the speed of repetition of characters when the REPEAT key is held
down, in sixtieths of a second. Its default is 2, which is a thirtieth of a
second between repeated characters.

si:*kbd-repeat-key-initial-delay* Variable
Controls how long you must hold down a key before repetition with the
REPEAT key starts, in sixtieths of a second. The default is 0, meaning
repetition starts as soon as the REPEAT key and another key are depressed.

In addition to the REPEAT key, you can have keys repeat if they are held down.
See the section "Auto-repeat", page 9.

19.16 RESUME Key

Continues from the zl:break function and the Debugger. In the Terminal
program this sends a Backspace character.

19.17 RETURN Key

"Carriage return" or end of line. The exact significance of carriage return varies
according to context.

19.18 RUBOUT Key

Usually erases the last character typed.

19.19 SCROLL Key

Scrolls the display forward. M-SCROLL scrolls it backward.

c-SCROLL

c-M-SCROLL

Initiates scrolling of the history for the typeout window of
current window. You use this in conjunction with c-M-SCROLL

to make use of the history in your Zmacs or Zmail windows.

Used after c-SCROLL, scrolls backward through the history of
the current typeout window. As with any dynamic window,
previous commands and arguments are mouse sensitive and can
be re-executed or used in composing new commands.

224

User's Guide to Symbolics Computers July 1986

19.20 SELECT Key

This key is a prefix for a family of commands, generally used to select a window
of a specified type, such as a Lisp Listener or Zmail. The current list is:

C Converse
D Document Examiner
E Editor
F File system maintenance
I Inspector
L Lisp
M Zmail
N Notifications
P Peek
Q Frame-Up
T Terminal
X Flavor Examiner

SELECT c- creates a new window of the specified type.

19.21 SUSPEND Key

SUSPEND Usually forces the process to which you are typing into a zl: break
read-eval-print loop, so that you can see what the process is doing, or
stop it temporarily. The effect occurs when the character is read, not
immediately. Press RESUME to continue the interrupted computation
(this applies to the three modified forms of the SUSPEND key as well).
While you are in the break, elements of your history in the other
window remain mouse sensitive so you can yank them into the break
for experimentation.

c-SUSPEND Like SUSPEND, but takes effect immediately rather than when it is
read. Press RESUME to continue the interrupted computation.

M-SUSPEND Forces the process to which you type it into the Debugger when it is
read. It should type out "> > BREAK: ", any proceed options, and the
Debugger prompt "~. You can examine the process, then press
RESUME or s-A to continue.

c-r')-SUSPEND

Forces the process to which you type it into the Debugger, whether or
not it is running.

225

July 1986

19.22 SYMBOL Key

Acts as a modifier key to produce special characters. Pressing sy-HELP produces a
display of special function and special character keys.

19.23 TAB Key

This key is only sometimes defined. Its exact function depends on context, but in
general it is used to move the cursor to an appropriate point to the right. The
LI NE key is related to TAB in that LI NE does a RET URN followed by a TAB. If you
change the behavior of the TAB key, the behavior of LI NE can be affected.

19.24 Keys Not Currently Used

The following key currently has no function:

MODE LOCK

The following keys are reserved for use by the user (for example, for custom
editor commands or keyboard macros):

CIRCLE
SQUARE
TRIANGLE
HVPER

226

User's Guide to Symbolics Computers July 1986

227

July 1986

20. Dictionary of Command Processor Commands

Add Paging File Command

Add Paging File pathname :prepend

Adds a pathname as a paging file.

pathname The pathname of the new paging file. The default pathname is
the disk unit from which you most recently booted. For
example, if you most recently booted from FEPl:>, the default
paging file might look like:

keywords

:prepend

FEP1 :>.page

:prepend

{yes no} Yes means to put the paging file at the beginning of
the list of swap space to use when new space is needed. This
makes the new paging file used almost immediately. No, which
is the default, puts the paging file at the end of the list of
paging files. Consequently, this new paging file will not be used
until the previous swap space is completely used.

20.1 Clear Commands

Clear All Breakpoints Command

:Clear All Breakpoints compiled-function-spec

Clears all breakpoints in the current frame's function or in any other compiled
function.

compiled-function-spec
The name of a compiled function in which you want to clear
breakpoints. (Default clears all breakpoints in the current
frame's function.)

Clear Breakpoint Command

:Clear Breakpoint compiled-function pc

228

User's Guide to Symbolics Computers July 1986

Clears a breakpoint.

compiled-function The name of a compiled function in which you want to clear a
breakpoint.

pc The PC (program counter) line at which you want to clear a
breakpoint.

Suggested mouse operations

• To clear a breakpoint in a compiled function: Display disassembled code
with the :Show Compiled Code command, point the mouse at a PC (program
counter) line, and press c-M-Mouse-M i dd 1 e.

• To clear a breakpoint in a code fragment: Display the code with the :Show
Source Code command, point the mouse at a code fragment, and press
c-M-Mouse-Middle.

Clear Output History Command

Clear Output History window

Discards the history for the specified window. This is useful for when you want
to clean up and do an incremental garbage collection.

window The window whose history to clear. The default is the current
window.

20.2 Compile Commands

Compile File Command

Compile File file-spec keywords

Compile the file designated in file-spec.

file-spec

keywords

: Compiler

:Load

The pathname of the file to compile. The default is the usual
file default.

: Compiler, :Load, :Query

{Lisp, use-canonical-type} The compiler to use. The default is
use-canonical-type.

{yes, no, ask} Whether to load the file after compiling. The
default is yes.

July 1986

:Query

229

{yes, no, ask} Whether to ask for confirmation before compiling.
The default is no.

Compile System Command

Compile System system keywords

Compile the files that make up system.

system-spec

keywords

:Batch

:Condition

:Load

name of the system to compile. The default is the last system
loaded.

:Batch, : Condition, :Load, :New Major Version, : Query,
:Redefinitions Ok :Silent, : Simulate, : Update Directory

{yes, no} Whether to save the compiler warnings in a file
instead of printing them on the console. The default is no, to
just print them on the console. Adding the keyword : batch to
your Compile System command is the same as : batch yes.

{always, new-sourc~} Under what conditions to compile each file
in the system. Always means compile each file. New-source
means compile a file only if it has been changed since the last
compilation. The default is new-source.

{Everything, Newly-Compiled, Only-For-Dependencies, Nothing}
Whether to load the system you have just compiled into the
world. The default is Everything. The mentioned default is
Newly-Compiled.

:New Major Version

: Query

{yes, no, ask} Whether to give your newly compiled version of
the system the next higher version number. The default is yes.
Giving the choice no will ask you to confirm that you really
want to "prevent incrementing system major version number".

{Everything, Confirm-only, No} Whether to query before
compiling. Everything means query before compiling each file.
Confirm-only means create a list of all the files to be compiled
and then ask for confirmation before proceeding. No means just
go ahead and compile the system without asking any questions.
The default is Confirm-only. The mentioned default is
Everything.

230

User's Guide to Symbolics Computers July 1986

:Redefinitions Ok
{yes, no} Controls what happens if the system asks for
confirmation of any redefinition warnings during the
compilation. Yes means assume that all requests for
confirmation are answered yes and proceed. No means pause at
each redefinition and await confirmation. The default is No.
The mentioned default is Yes. This allows you to start a
compilation that you know will take a long time and leave it to
finish by itself without interruption for questions such as
"Warning: function-name being redefined, ok? (Y or N)".

:Silent {yes, no} Whether to suppress output to the console. The
default is no, to allow output. Adding the :silent keyword to
your Compile System is the same as :silent yes.

: Simulate {yes no} Print a simulation of what compiling would do. The
default is no. Adding this keyword to your Compile System
command string is the same as :simulate yes.

: Update Directory
{yes, no} Whether to update the directory of the system's
components. The default is yes.

20.3 CopyCommands

Copy File Command

Copy File [from file-spec] [to destination-spec keywords]

Makes a copy of a file.

file-spec The pathname of the file you want to copy.

destination-spec The pathname of the location you want to put the file.

keywords :Byte Size, :Copy Properties, :Create Directories, :Mode, :Query

:Byte Size {number} Byte size in which to do the copy operation.

:Copy Properties
{list of file properties} The properties you want duplicated in the
new file. The default is author and creation-date.

:Create Directories
{yes error query-each} What to do if the destination directory
does not exist. The default is query-each.

:Mode {character binary default} The mode in which to perform the
transfer. The default is default.

July 1986

:Query {yes no ask} Whether to ask for confirmation before copying
each file. The default is no.

231

Copy Microcode Command

Copy Microcode {version or pathname} destination keywords

Installs a version of microcode.

version or pathname

destination

keywords

Microcode version number or pathname to copy. version is a
microcode version number (in decimal). pathname rarely needs
to be supplied. It defaults to a file on FEPn:> (where n is unit
number of the boot disk) whose name is based on the microcode
name and version. (The file resides in the logical directory
sys:l-ucode;.) The version actually stands for the file
appropriate-hardware-MIC.MIC.version on FEPn:>. (See the
Section "Genera 7.0 Microcode Types" in Software Installation
Guide)

FEP file specification. The pathname on your FEPn:> directory.
The default is created from the microcode version.

:update boot file

:update boot file
{FEP-file-spec none}. The default is the current default boot
file name.

Copy Output History Into Editor Command

Copy Output History Into Editor

Creates an editor buffer and copies the history of your interaction with the Lisp
Listener into it. This is useful if you want to edit your interaction for saving as a
text file or for hardcopying.

Copy World Command

Copy World file destination keywords

Makes a copy of a world load.

file

destination

FEP file spec. file is required (no default).

FEP file spec. Required when copying a world from the local

232

User's Guide to Symbolics Computers July 1986

host to another host. When copying a world to the local host
the default is same as the source file specification.

keywords :Block Count, :Start Block, :Update Boot File

:Block Count . Number of blocks to copy. The default is the length of the
band, meaning copy the entire band.

:Start Block Number of the block to start with. The default is 0, meaning
begin at the beginning.

:Update Boot file
{FEP-file-spec none}. The default is the current default boot
file name if destination is the local host.

20.4 Create Commands

Create Directory Command

Create Directory file-spec

Creates a directory for storage of files on a file system specified in file-spec.

file-spec The pathname of the directory to be created.

Create FEP File Command

Create FEP File file-spec size

Creates a file on a FEP directory on your machine.

file-spec The pathname of the file to create. The default is
FEPO:>temporary. temp.

slze The size in FEP blocks of the file. You must supply this.

Use Create FEP File to do the following:

• To create an extra paging file. For example:

Create FEP File fep0:>aux.page 10000

• To allocate space into which to load a world load. For example:

Create FEP File fep0:>release-6-1.load 30000

233

July 1986

Create Link Command

Create Link pathname target keywords

Creates an association between one pathname and a second pathname, called the
target. The first pathname is linked to the target so that any references to the
first pathname actually refer to the target.

pathname

target

keywords

: Type

The pathname you want to link from. The default is the
standard file default.

The pathname you want to link to. This pathname must exist.
There is no default.

:Type

{Read-Only, Read-Write, Create-Through, All, or Use-Default}
The kind of link to create. The default is Use-Default.

20.5 Delete Commands

Delete File Command

Delete File file-spec keywords

Deletes or marks for deletion the file file-spec.

file-spec

keywords

: Expunge

:Keep

: Query

Pathname of the file to delete. The default is the usual file
default. The version defaults to newest.

: Expunge, :Keep, :Query

{yes, no,' ask}. Whether to expunge the file. The default is no.
Adding this keyword to your Delete File command is the same
as :expunge yes.

N versions. The number of versions to retain. The default is O.

{yes, no, ask} Whether to ask for confirmation before deleting
the fik. The default is no.

234

User's Guide to Symbolics Computers July 1986

Delete Printer Request Command

Delete Printer Request printer-request

Deletes the specified print request from the print queue.

printer-request A string specifying the printer and the request. The print
request should be selected with the mouse from the display of
the Show Printer Status command. See the section "Show
Printer Status Command", page 153.

20.6 Disable Commands

Disable Network Command

Disable Network network(s)

Disables the network on the local machine.

Network(s) {network, All} The network(s) to disable. The possibilities are
the networks to which your machine is connected, that is on
which it is has addresses. The default is All, meaning disable
all network service on your machine.

Disable Services Command

Disable Services service-type

Turns off service(s) on the local machine.

service-type {All-Services, Append, Chaos-Status, Converse, Lgp-Status,
Lispm-Finger, Telnet, Time} The service to turn off. The
default is All-services.

20.7 Edit Commands

Edit Definition Command

Edit Definition name

Finds the definition of the object name and puts it in an editor buffer for you to
edit. This is the same as the Zmacs command M-.. See the section "Edit
Definition" in Text Editing and Processing.

July 1986

name Name of the object whose definition you want to edit.

Edit Directory Command

Edit Directory directory-spec keywords

Invokes the directory editor zl:dired in Zmacs. See the section "Dired Mode in
Zmacs" in Text Editing and Processing.

235

directory-spec Pathname of the directory to edit. The default is the usual file
default.

keywords

:Order

:Property

:Version

:Order, :Property, :Version

{alphabetical chronological}

File properties to display.

{all newest number} The default is all.

Edit File Command

Edit File file-spec keywords

Enters the editor and reads in file-spec.

file-spec

keywords

: Initialize

The pathname of the file to edit. The default is the usual file
default.

:Initialize

{yes, no} Mentioned default is yes, omitted default is no.

Edit Font Command

Edit Font font

Invokes the Font Editor with font loaded to be edited.

font A font name. There is no default. Issuing the command with
no arguments invokes the font editor with no font loaded.

Edit Namespace Object Command

Edit Namespace Object class name keywords

Create or modify an object in the namespace database.

236

User's Guide to Symbolics Computers July 1986

class

name

keywords

:locally

{User Printer Network Host Site Namespace any} The kind of
object to create or edit. The default is any.

Name of the object to create or edit. The default is any.

: locally

{yes no} Whether to edit only a local copy of the information for
the object. The default is no, meaning to edit the object in the
central namespace database. Mentioning :locally in your
command means yes, edit only a local copy.

20.8 Enable Commands

Enable Services Command

Enable Services service-type

Turns on service(s) on the local machine.

service-type {All-Services, Append, Chaos-Status, Converse, LGP-Status,
Lispm-Finger, Telnet, Time} The service to turn on. The
default is all-services.

Enable Network Command

Enable Network network(s)

Enables (turns on) the network(s) on the local machine.

network(s) {network, All} The network(s) to enable. The possibilities are
any of the networks to which your machine is connected, that on
which it is has addresses. The default is All, meaning enable
all network service on your machine.

20.9 Expunge Commands

Expunge Directory Command

Expunge Directory file-spec keywords

Expunges files marked for deletion.

237

July 1986

The :query option is useful for directories containing
subdirectories or if you have used a wildcard in the pathname.

file-spec

keywords

: query

The pathname of the directory to be expunged. The default is
the usual file default.

: query

{yes no ask} Ask for confirmation before expunging the
directory. The default is no.

20.10 Find Commands

Find Symbol Command

Find Symbol name keywords

Tries to find the symbol name.

name

keywords

: Package

: Type

The symbol to look for.

: Package, :Type

{all, package-name} The package to search for the symbol. The
default is the current package.

{all-types, variable, function, flavor, resource, unbound} The type
of the symbol. The default is all-types.

Format File Command

Format File pathname keywords

Displays the contents of one or more files in formatted form, using the Document
Examiner formatter.

pathname

keywords

: destination

The file or sequence of files to be formatted.

:destination :page headings

{screen printer} The destination for formatted output. The
default is screen. The mentioned default is the default hardcopy
text printer (the value of hardcopy:*default-text-printer*) if
that printer can handle formatted output; otherwise, the
mentioned default is the last printer used to produce formatted

238

User's Guide to Symbolics Computers July 1986

output; otherwise, there is no mentioned default. Other possible
values for printer are Remote Printer or a local supported
printer. Completion is available over the set of local supported
printers. If the value is Remote Printer, the user is prompted
for the name of a printer at any accessible site, with completion
available over the set of supported printers in the namespaces in
the namespace search list.

:page headings {yes, no} Whether to print a heading line at the top of the page.
The default is yes. The heading line consists of the word Page
followed by the page number.

Format File is similar to the Format File (M-X) Zwei command. The file to be
formatted must be a text file. It can contain the same formatting commands and
environments as files acceptable to Format File (M-X). See the section "Zmacs
Commands for Formatting Text" in Text Editing and Processing.

For example, to display a file in formatted form on the screen you might do the
following:

Format File (file) acme-blue:>project>documentation.mss

To send the same file to a printer you might do:

Format File (file) acme-blue:>project>documentation.mss (keywords)
:Destination (a destination for formatted output [default Our-Printer]) Our-Printer

20.11 HaltCommands

Halt commands shut down some activity in such a way that you can resume it.

Halt GC Command

Halt GC

Turns ephemeral and dynamic garbage collection off.

Halt Machine Command

Halt Machine

Halt Machine stops execution of Lisp and gives control to the FEP. You can now
enter Fep commands, for example, to warm or cold boot the machine.

239

July 1986

Halt Printer Command

Halt Printer printer printer-request keywords

Halts the specified printer.

printer

printer-request

keywords

:Disposition

:Reason

The name of the printer to halt.

(Optional) If the printer is printing a request when the Halt
Printer command is given, it displays the request and asks you
to confirm the halt command. If you supply a printer-request
argument and it matches the request that is printing, the
printer is halted immediately without requiring confirmation.
The print request should be selected with the mouse from the
display of the Show Printer Status command. See the section
"Show Printer Status Command", page 153.

:Disposition, : Extent, :Reason, :Starting From, : Urgency

{Delete, Hold, Restart} What to do with the request that is
printing. Delete deletes the request from the queue; you must
request it again to have it printed. Hold retains the request in
the queue but does not print it when the printer restarts.
Restart restarts printing the interrupted request from the
beginning when the printer restarts. The default is Delete.

{string} The reason for the shutdown. This appears in the
display from Show Printer Status to explain what is happening
to users. The default is "Printer suspended by operator."

The following three keywords are related and interact to control precisely when
the printer halts.

:Extent {Entire, Copy} The extent of the request to be cancelled. Entire
refers to the whole request. Copy refers to a single copy. In a
request for one copy of a document, Entire and Copy are
synonymous. The default is Entire.

:Starting From {number} The copy number. If :Extent is Entire, this has no
meaning. If :Extent is Copy, this is the number of the copy
after which to halt the printer. The default is o.

: Urgency {Asap, After-Extent} When to halt. Asap means instantly,
ignoring any settings of :Extent and :Starting From. After­
Extent means halt based on the settings of the :Extent and
:Starting From keywords. The default is Asap.

240

User's Guide to Symbolics Computers July 1986

20.12 HardcopyCommands

Hardcopy File Command

Hardcopy File file-spec printer keywords

Sends a file to a hardcopy device.

file-spec

printer

keywords

The pathname of the file to be printed. The default is the
usual file default.

The printer to use to output the file. The default is determined
from your init file or from the default-printer attribute for the
host in the namespace database.

:Body Character Style :Copies :Delete :Ending Page :File Types
:Heading Character Style :Orientation :Running Head
:Starting Page

:Body Character Style
The character style to use for printing the text of the file and
against which to merge any character styles in the file. The
default is the null style, (nil nil nil), meaning use the default
for the printer.

:Copies {number} The number of copies to print. The default is 1.

:Delete {yes, no} Whether to delete the file after it is printed. The
default is no, not to delete. Adding the :delete keyword to your
hardcopy command string is the same as :delete yes.

:Ending Page {number} The last physical page to print. The default is the
last page of the file. A page is defined by the presence of a
PAGE character or form feed in the file. Thus plain text files
with no page markers in them are treated as a single page,
although they take up several sheets of paper. Press format
files, on the other hand, have form feeds or PAGE characters in
them. It is important to remember that these are physical
pages and do not necessarily correspond to the page numbering
appearing in the heading. For example, the first physical page
of a press file is probably a title page and the second physical
page might be numbered i so the page numbered 1 might be the
third physical page.

:File Types {Text, Suds-Plot, Press, Lgp, Lgp2, Dmp1, Xgp or use-canonical­
type} The internal format of the contents of the file, to

July 1986

241

interpret for printing. The default is use-canonical-type,
meaning that the type is determined from the extension to the
file name.

:Heading Character Style
The character style to use for the running head supplied by the
:running head keyword.

: Orientation {landscape, portrait} Orientation on the paper for the output.
Portrait is left to right across the short dimension of the paper.
Landscape is left to right across the long dimension. The
default is portrait.

:Running Head {none, numbered} Type of running head to print on the top of
each page. The default is numbered.

:Starting Page {number} The first physical page to print. The default is the
first page of the file. A page is defined by the presence of a
PAGE character or form feed in the file. Thus plain text files
with no page markers in them are treated as a single page,
although they take up several sheets of paper. Press format
files, on the other hand, have form feeds or PAGE characters in
them. It is important to remember that these are physical
pages and do not necessarily correspond to the page numbering
appearing in the heading. For example, the first physical page
of a press file is probably a cover page and the second physical
page might be numbered i so the page numbered 1 might be the
third physical page.

: Title {string} Title to appear on the cover page to identify the output.
The default is your user name.

20.13 Help Commands

Help Command

Help keywoids

Displays a list of command processor commands.

keywords

:format

: format

{brief, detailed} The level of detail to show in the list. Brief
means that only unique command names are shown in full and
for the rest, the verb is shown with a number indicating the

242

User's Guide to Symbolics Computers July 1986

number of commands that start with that verb. Detailed means
the entire list of available commands is displayed. The default
is brief. This is the same as pressing the HELP key.

20.14 Initialize Commands

Initialize Mall Command

Initialize Mail

Reloads Zmail without disturbing the rest of the system. The state of your mail
on the machine is lost, so you only want to use this when your Zmail process is
irreparably stuck.

Initialize Mouse Command

Initialize Mouse

Restarts the mouse process.

Initialize Time Command

Initialize Time time keywords

Resets the time. You can use this function to correct the time if it appears to be
inaccurate.

time

keywords

:Clock

A string representing date and time. The default is obtained
from the network or from the calendar clock if there is no
network available. If the calendar clock is also being initialized,
you are prompted to enter the correct time from the keyboard.

:Clock

{status-line, both, ask} The clock to update. Status-line is the
little clock in the lower left hand corner of the screen. Both
means update both the calendar clock and the status line clock.
Ask is the default. It asks you which time source to use and
updates the status line clock and asks if you also want to update
the calendar clock (unless that is the time source you are
using).

Initialize Time accepts most reasonable printed representations of date and time
)and converts them to the standard internal forms. The following are
Irepresentative formats that are accepted by the parser:

243

July 1986

"March 15, 1968" "15 March 1968" "3/15/68" "3/15/1968"
"3-15-68" "3-15" "15-March-68" "15-Mar-68" "March-15-68"
"1968-3-15" "1968-March-15" "1968-Mar-15"
"1138." "11:38" "11:38:17" "11:38 pm" "11:38 am" "1138" "113888"
"11.38" "11.38.88" "11.3" "11 pm" "12 noon"
"midnight" "m" "Friday, March 15, 1988" "6:88 gmt" "3:88 pdt"
"15 March 68" "15 March 68 seconds"
"fifteen March 68" "the fifteenth of March, 1968;"
"one minute after March 3, 1968"
"two days after March 3, 1968"
"Three minutes after 23:59:59 Dec 31, 1959"
"now" "today" "yesterday" "two days after tomorrow"
"one day before yesterday" "the day after tomorrow"
"five days ago"

Date strings in ISO standard format are accepted also. These strings are of the
form "yyyy-mm-dd", where:

yyyy Four digits representing the year

mm

dd

The name of the month, an abbreviation for the month, or one
or two digits representing the month

One or two digits representing the day

Following are some restrictions on strings to be parsed:

• You cannot represent any year before 1900 .

• A four-digit number alone is interpreted as a time of day, not a year. For
example, "1954" is the same as "19: 54 : 88" or "7: 54 pm", not the year 1954 .

• The parser does not recognize dates in European format. For example,
" 3/4/85" or "3-4-85" is always the same as "March 4, 1985", never
"April 3, 1985". A string like "15/3/85" is an error. In such strings, the
first integer is always parsed as the month and the second integer as the
day.

20.15 Inspect Commands

Inspect Command

Inspect object

244

User's Guide to Symbolics Computers July 1986

Displays the components of object. This is similar to Show Object but it uses the
Inspector, a window oriented program for showing data structures. It allows you
to do something to that object, such as inspect it, modify it, or give it as the
argument to a function. You exit from the Inspector by clicking the mouse on
EX I T in the Inspector menu.

object Any Lisp object. The default is "unspecified".

See the section "The Inspector" in Program Development Utilities.

20.16 LoadCommands

Load File Command

Load File file-spec keywords

Loads files into the current world.

file-spec

keywords

: package

: query

: silently

The pathname of the flie to load. More than one pathname may
be specified, separated by commas. The default is the usual file
default.

:package, : query, :silently

package-name The package into which to load the file. The
default is the file's "home" package.

{yes no ask} Whether to ask for confirmation before loading
each file. The default is no.

{yes no} Whether to print a line as each file is loaded.

Load Patches Command

Load Patches system keywords

Loads patches into the current world for the indicated systems or for all systems.
See the function load-patches in Program Development Utilities.

system

keywords

~.Query

{All system-namel, system-name2 ... } The default is All.

: Query, :Save, :Show

{yes no ask} Whether to ask for confirmation before loading
each patch. The default is no.

July 1986

: Save

:Show

245

{file-spec, Prompt, No-Save} The file in which to save the world
with all patches loaded. Omitting this keyword means do not
save the world. The default when this keyword is added to your
command is Prompt which means save the world and then
prompt for a pathname.

{yes no ask} Whether to print the patch comments as each
patch is loaded. The default is yes.

Load System Command

Load System system keywords

Loads a system into the current world.

system

keywords

: Condition

Name of the system to load. The default is the last system
loaded.

:Condition :Load Patches :Query :Redefinitions Ok :Silent
:Simulate :Version

{always, never, newly-compiled} Under what conditions to load
each file in the system. Always means load each file. Newly­
compiled means load a file only if it has been compiled since the
last load. The default is always.

:Load Patches {yes, no} Whether to load patches after loading the system.

: Query

The default is yes.

{Everything, Confirm-only, No} Whether to query before loading.
Everything means query before loading each file. Confirm-only
means create a list of all the files to be loaded and then ask for
confirmation before proceeding. No means just go ahead and
load the system without asking any questions. The default is
Confirm-only. The mentioned default is Everything.

:Redefinitions Ok
{yes, no} Controls what happens if the system asks for
confirmation of any redefinition warnings during the loading
process. Yes means assume that all requests for confirmation
are answered yes and proceed. No means pause at each
redefinition and await confrrmation. The default is No. The
mentioned default is Yes. This allows you to start loading a
system that you know will take a long time to load and leave it
to finish by itself without interruption for questions such as
"Warning: function-name being redefined, ok? (Y or N)".

246

User's Guide to Symbolics Computers July 1986

: Silent

: Simulate

:Version

{yes, no} Whether to turn off output to the console while the
load is going on. The default is no. Adding this keyword to
your Load System command string is the same as :silent yes.

{yes, no} Print a simulation of what compiling and loading
would do. The default is no. Adding this keyword to your Load
System command string is the same as :simulate yes.

{released, latest, newest, use-default, version-number,
version-name} Which version number to load. The default is
use-default, that is latest.

Note: This command only loads a system. If you want to compile and load a
system: See the section "Compile System Command", page 229.

20.17 Login and Logout Commands

Login Command

Login user keywords

Logs the user into Genera.

user

keywords

:host

:init file

Any string. Your user ID.

:host :init file

{local any-host-name} A particular host computer. Local as an
argument to :host is particularly useful if your namespace
system is down and you wish to log in to your Lisp Machine
without having it try to use the namespace database. The
default comes from 1 ogi n host for your user object in the
namespace database.

{default-init-file none} Whether to load your init file. The
default is to load your default init file. To avoid loading your
init file, use :init file none.

If someone is already logged in when you give the Login command, that user is
logged out. If this happens, you see the message

Warning -- You are logging out from program-name

July 1986

logout Command

Logout keywords

Logs you out of Genera.

keywords :Save Buffers, :Save Mail

:Save Buffers {yes, no, ask} Whether to write out modified editor buffers to
disk. The default is yes.

: Save Mail {yes.no. ask} Whether to write out modified mail buffers to
disk. The default is yes.

Monitor Variable Command

:Monitor Variable symbol keywords

247

Monitors the access of a special variable. This command arranges for a trap to be
signalled when any process accesses the monitored location. This command is
used to answer the question: "What program or process is reading or writing this
location in memory?". This is particularly useful when there are several processes
sharing some data structures, and you want to debug the interactions between the
processes.

symbol The name of a symbol whose location in memory you want to
monitor. Enter the name of a symbol and, optionally, its Value­
Cell or Function-Cell. (See the :Cell keyword description below.)

keywords : Boundp, :Cell, : Locf, :Makunbound, :Read, :Write

: Boundp {Yes, No} Monitors the location for boundp operations.
(Default is No.)

:Cell {Value-Cell, Function-Cell} Specifies the cell that you want to
monitor within the location. The Debugger gives you two
choices: Value-Cell or Function-Cell. (Default is Value-Cell.)

:Locf {Yes, No} Monitors the location for locf operations. (Default is
No.)

: Makunbound {Yes, No} Monitors the location for makunbound operations.
(Default is No.)

: Read {Yes, No} Monitors the location for reads. (Default is No.)

: Write {Yes, No} Monitors the location for writes. (Default is Yes.)

248

User's Guide to Symbolics Computers July 1986

Suggested mouse operations

• To monitor a location: Point the mouse at a locative, structure slot, or
instance variable and press c-M-sh-Mouse-Left .

• To unmonitor a location: Point the mouse at a locative, structure slot, or
instance variable that was previously monitored and press
c-M-sh-Mouse-Mi ddl e.

Optimize World Command

Optimize World keywords

Optimizes the world that is currently loaded into your environment. Use this
command if you load special programs or systems in addition to the distribution by
reorganizing the world to improve paging performance.

keywords
:show

:show Displays the progress of the optimization process on the screen.

20.18 Rename Commands

Rename File Command

Rename File from-file to-file keyword

from-file

to-file

keyword

: Query

The pathname of the file to be renamed. The default is the
usual file default.

The new pathname. The default is the usual file default.

: Query

{yes, no, ask} Whether to ask for confirmation before renaming.
The default is no.

Report Bug Command

Report Bug system name

Sends a bug report. It starts up a bug mail window with the message header To:
BUG-system name. If system name is omitted, BUG-L I SPM is used.

249

July 1986

20.19 ResetCommands

Reset Network Command

Reset Network

Turns your network interfaces off and back on again, and also resets the
namespace system. Turning the interfaces off and on can be useful if your
network connections appear to be stuck and nothing is being transmitted or
received. Resetting the namespace system can cure problems caused by
information related to the namespace having been corrupted on your local
machine. One symptom of that is your host repeatedly trying to connect to
another host, without success.

The Reset Network command is the same as entering (neti:general-network-reset>
followed by (neti:enable).

Reset Printer Command

Reset Printer printer printer-request keywords

Resets a printer.

printer

printer-request

keywords

:Disposition

The printer to reset.

(Optional) If the printer is printing a request when the Reset
Printer command is given, it displays the request and asks you
to confirm the reset command. If you supply a printer-request
argument and it matches the request that is printing, the
printer is reset immediately without requiring confirmation.
The print request should be selected with the mouse from the
display of the Show Printer Status command. See the section
"Show Printer Status Command", page 153.

:Disposition

{Delete, Hold, Restart} What to do with the request that is
printing. Delete deletes the request from the queue; you must
request it again to have it printed. Hold retains the request in
the queue but does not print it when the printer restarts.
Restart restarts printing the interrupted request from the
beginning when the printer restarts. The default is Delete.

Resetting is like turning the printer off and then on again except that it is done
remotely, you do not have to go over to the printer.

250

User's Guide to Symbolics Computers July 1986

20.20 Restart Commands

Restart Printer Request Command

Restart Printer Request printer-request

Restarts a print request that has not yet finished. This is useful if something
goes wrong with the printing, for example the paper is coming out crumpled.

printer-request A string specifying the printer and the request. The print
request should be selected with the mouse from the display of
the Show Printer Status command. See the section "Show
Printer Status Command", page 153.

20.21 Save Commands

Save File Buffers Command

Save File Buffers keywords

Saves your modified Zmacs file buffers on disk.

keywords

: Query

:Query

{yes, no, ask} The default is yes, meaning that it asks you about
each buffer before writing it out.

Save Mail Buffers Command

Save Mail Buffers keywords

Saves on disk any modified mail buffers.

keywords

: expunge

: query

: expunge, :query

{yes no ask} Whether to expunge each buffer before saving.
The default is ask.

{yes no ask} The default is yes, meaning that it asks you about
each buffer before writing it out.

251

July 1986

Save World Command

Save World (Complete or Incremental) file-spec

Saves the current world. The system prompts (Complete or Incremental) if
Incremental Disk Save is enabled. You specify Complete to do a save of the entire
world, or Incremental to do an Incremental Disk Save. If Incremental Disk Save
is not enabled, the prompt is (Complete). You enter Complete by pressing SPRCE
or by typing campl ete.

file-spec The pathname to use for the saved world. The default is the
FEP file specification for the local machine, based on the
version number of the current system and on whether the save
is to be complete or incremental.

20.22 Select Commands

Select Activity Command

Select Activity activity

Selects activity and makes it current.

Activity can be:

Accept Values
Converse
Document Examiner
Editor
FEP-Tape
File Server
File system operations
Flavor Examiner
Frame-Up
Inspector

20.23 Send Commands

Send Mail Command

Send Mail recipient keywords

Lisp
Mail
Menu Program
Notifications
Peek
Presentation Inspector
Terminal
Zmacs
Zmail

252

User's Guide to Symbolics Computers July 1986

Prompts for the text of a message and sends it as electronic mail to recipient.

recipient

keywords

:Cc

:Subject

One or more electronic mail addresses of the form user or
user@host. Multiple addresses should be separated by commas.
If you supply only user, the namespace for your site is searched
to locate the proper host for that user's mail.

:Cc, :Subject

{user, user@host} One or more addresses to send a Cc, carbon
copy, of the message.

{string} A line to serve as the subject for the message.

Send Message Command

Send Message recipient

Sends a message to the specified recipient.

recipient user or user@host. The person to whom to send the message.
If @host is omitted, all Lisp machines on your network are
polled to locate user.

Send Message prompts for text to send as a Converse message. END terminates
and sends the message. This is equivalent to zl:qsend. See the section
"Converse" in Communicating with Other Users.

20.24 Set Commands

Set commands set status variables.

Set Base Command

Set Base number

Sets the input and output bases to number.

The value of zl: base is a number that is the radix in which integers and ratios
are printed in, or a symbol with a si:princ-function property. The initial value of
zl:base is 10. zl:base should not be greater than 36 or less than 2.

The printing of trailing decimal points for integers in base ten is controlled by the
value of variable *print-radix*. See the section "Printed Representation of
Rational Numbers" in Symbolics Common Lisp.

253

July 1986

The following variable is a synonym for zl: base:

print-base

number A number in base 10. The default is 10.

Set Breakpoint Command

:Set Breakpoint compiled-function pc

Sets a breakpoint.

compiled-function The name of a compiled-function in which you want to set a
breakpoint.

pc The PC (program counter) line at which you want to set a
breakpoint.

keywords :Action, :Conditional

:Action

: Conditional

{Show-All, Show-Args, Show-Locals, expression} Specifies an
action to take when the breakpoint is encountered. Show-All:
Displays arguments and local variables. Show-Args: Displays
arguments and no local variables. Show-Locals: Displays only
local variables. Give an expression if you want it to be
evaluated in the lexical context of the frame. (Default is no
action. Mentioned default is Show-All.)

{Always, Mode-Lock, Never, Once, expression} Executes the
breakpoint trap according to certain conditions. Always: The
breakpoint is always taken. Mode-Lock: The breakpoint is taken
only when the MODE LOCK key is depressed. Never: The
breakpoint is never taken. Once: The breakpoint is taken only
for the first time it is encountered. Give an expression if you
want it to be evaluated in the lexical context of the frame.
(Default is Always.)

Suggested mouse operations

• To set a breakpoint in a compiled function: Display disassembled code with
the :Show Compiled Code command, point the mouse at a PC line, and press
c-M-Mouse-Left.

• To set a breakpoint in a code fragment: Display the code with the :Show
Source Code command, point the mouse at a code fragment, and press
c-M-Mouse-Left.

254

User's Guide to Symbolics Computers July 1986

Set Calendar Clock Command

Set Calendar Clock time

time A date and time string.

Machines in the 3600 family have a calendar clock that operates independently of
the other software timers. When you cold boot and the machine fails to get the
time from the network, it asks you to type in the time. If the calendar clock has
been set, it uses that time reading as the default. If the calendar clock has not
been set, it offers to set it to the time you enter from the keyboard.

Set Calendar Clock allows you to set this clock if you need to. If you do not
specify time, it prompts you to enter it from the keyboard or press S to use the
time in the status line. Set Calendar Clock accepts the standard formats for date
and time. See the section "Set Time Command", page 261.

Set Command Processor Command

Set Command Processor mode prompt-string

Sets the mode for the command processor.

mode

prompt-string

form-only

form-preferred

Anything typed is taken as a Lisp form to be
evaluated.

Anything typed is taken as Lisp forms unless
it is preceded by a colon (:), in which case it
is taken as a command processor command.

command-preferred

command-only.

Anything typed is taken as a command
processor command unless it begins with a
left parenthesis or, in the case of a variable to
be evaluated, a comma (,) or any
nonalphabetic character.

Anything typed is taken as a command
processor command.

The default is command-preferred.

Any string. The default for command-preferred and command­
only modes is Command: . The default for form-preferred and
form-only modes is " ". To include a space in your prompt, you
must enclose the string in double quotes. For example:

July 1986

Set Command Processor Command-Preferred "Command: "

Setting the prompt for a mode makes the prompt you set the default for that
mode. You can set the prompt for all modes in your init file by calling si:cp-on

Set File Properties Command

Set File Properties pathname keywords

Change the properties of a file.

pathname

keywords

:Author

The file whose properties you are modifying.

:Author, :Creation Date, :Delete, :Generation Retention Count
:Modification Date, : Reap, :Reason

Who created this file.

:Creation Date When this file was created.

255

:Delete Whether or not this file can be deleted explicitly with the Delete
File command.

:Generation Retention Count
How many versions of this file to keep unmarked for deletion.
Extra copies of the file are marked for deletion.

:Modification Date

:Reap

:Reason

When this file was last modified.

Whether or not this file can be reaped. Reaping is deletion
under program control.

Why this file cannot be deleted.

Set GC Options Command

Set GC Options

Select options for garbage collection from a menu. The menu looks like this:

256

User's Guide to Symbolics Computers July 1986

:Set GC Options
Garbage collector status:

Ephemeral GC: Off On
Garbage collector report controls:

Report the activity of the ephemeral GC: Yes No
Report the activity of the dynamic GC: Yes No
Report space reclaimed individually for each area:

Yes No Dynamic only Ephemeral only
Enable warnings, for example that the GC should be turned on: Yes No
Minimum interval between repetitions of a GC warning: Forever
Minimum adequate level of free space to suppress GC warnings: 1000000
Minimum free space to suppress warnings when ephemeral GC is on: 200000
Ratio of free space sizes on successive GC warnings: 0.75
Disposition of GC reports: notification

Garbage collection options:
Normal garbage collection mode: Incremental Immediate
Mode when free space is low: Turn GC off Immediate
Mode when collecting ephemeral objects: Incremental Immediate
Fraction of free space committed to the garbage collector:
Minimum fraction of free space GC will accept: Same

Garbage collector process controls:
Process priority for foreground operations: 5
Process priority for background operations: 0
Process priority for immediate garbage collection mode: 5
Priority of GC daemon processes: 5
Delay before warning that flipping is inhibited: 30 seconds
Time that processes wait before inhibiting flips: 5 seconds

Scavenger performance options:
Amount of "scavenger work" done with interrupts inhibited: 1024
Maximum time (microseconds) with interrupts inhibited: 50000
Number of words scavenged before turning to another region: 128
Number of pages of Copy space to prefetch: 9
Number of pages that refer to ephemeral objects to prefetch: 15
Number of pages of Old space to prefetch: 5
Number of words to look ahead for prefetchable

Old space references: 2048
Declare pages flushable from main memory after scavenging them: Yes No

<ABORT> aborts, <END> uses these values

257

July 1986

Set Input Base Command

Set Input Base new-base

Sets the input bases to new-base.

The value of zl: base is a number that is the radix in which integers and ratios
are printed in, or a symbol with a si:princ-function property. The initial value of
zl:base is 10. zl:base should not be greater than 36 or less than 2.

The printing of trailing decimal points for integers in base ten is controlled by the
value of variable *print-radix*. See the section "Printed Representation of
Rational Numbers" in Symbolics Common Lisp.

The following variable is a synonym for zl: base:

·print-base·

new-base A number in base 10. The default is 10.

Since the Input Base is closely linked to the Output Base, if you set one of them,
you should set the other to the same value.

Set Lisp Context Command

Set Lisp Context lisp-syntax

lisp-syntax Zetalisp or Common-Lisp.

Sets the current context to use Zetalisp or Common Lisp syntax and sets the
current package zl-user (for Zetalisp) or cl-user (for Common Lisp). The default
is the current lisp syntax, so using the command with no arguments does not
change anything.

Set Output Base Command

Set Output Base new-base

Sets the output bases to new-base.

The value of zl: base is a number that is the radix in which integers and ratios
are printed in, or a symbol with a si:princ-function property. The initial value of
zl: base is 10. zl: base should not be greater than 36 or less than 2.

The printing of trailing decimal points for integers in base ten is controlled by the
value of variable ·print-radix*. See the section "Printed Representation of
Rational Numbers" in Symbolics Common Lisp.

The following variable is a synonym for zl: base:

258

User's Guide to Symbolics Computers July 1986

print-base

new-base A number in base 10. The default is 10.

Since the Output Base is closely linked to the Input Base, if you set one of them,
you should be sure to set the other to the same value.

Set Package Command

Set Package package-name

Makes package-name the current package; in other words, the variable zl:package
is set to the package named by package-name.

package The name of a package.

Set Pri nter Command

Set Printer printer-name keywords

Sets the default printer for hardcopy.

printer-name The name of a supported printer that can be reached by your
machine.

keywords :Output Type

:Output Type {text bitmap both} The type of output to send to that printer.
Text means files and mail messages, bitmap means graphics and
screen hardcopy. The default is both, meaning use the same
printer for both types of output.

Set Screen Options Command

Set Screen Options

Allows you to customize your screen by selecting parameters from a menu
containing all the screen options. You select options with the mouse.

The menu looks like this:

July 1986

Documentation line options:
Mouse documentation area height: 2
Mouse documentation area background: Black White
Mouse documentation area character style: SANS-SERIF.RoMAN.NoRMAL
Interval between keyboard input and mouse motion after

which to blank documentation line: None
Interval before mouse documentation line goes blank after

exiting input context: None

Status line options:
Status line time display:

[Mon 31 Jan 11:59:59] 12/31/89 23: 59: 59 Man 31 Jan 11: 59pm
Clock colon blink half period: 1 second
Process display: llser name Process name
Machine name: Visible Invisible
Progress area character style: FIX. EXTRA-CONDENSED. NORMAL
Progress area: Wide bar No di spl ay Text and thin bar

Screen options:
Background gray pattern:

259

None 5.5% 6% 7% 8% 9% 10% 12% HES 25% 33% 50% 75% Black VVhite
Partially exposed window gray pattern:

None 5.5% 69C 7% 8% 9% 10% 12% HES 25% 33% 50% 75% Black White
Interval to wait before dimming screen: 20 minutes
Dimness percentage: 0
Beep mode: Beep onl y Fl ash onl y Beep and flash
Screen background: Black VVhite

Global window defaults:
End of screen action: Scroll Truncate Wrap
Amount to scroll (number of lines or screen fraction):
Overlap between screens when scrolling (lines): 1
Character style for prompts: NIL.NIL.NIL
Highlighting mode for highlighting menus: Inverse video box

ABORT aborts, END uses these values

20.24.1 Set Site Command

Set Site site name

Starts a dialogue to set the current site to be site name. This command is used to
configure the software and identify your machine before you use a new world load.

260

User's Guide to Symbolics Computers July 1986

It should be the first thing you type to your machine after booting the new
software.

When a new world is booted for the first time, the herald gives the machine name
as DIS-LOCAL-HOST. You are prompted in the course of the Set Site dialogue
for a name for the machine.

You need the following information to use the Set Site command:

Site name What you call the location of your machines. This might be the
name of your company, or, if you are more whimsical-minded, it
might be related to the machine names you have chosen. In the
sample dialogues, we have chosen the site name Downunder.

Name of the local host
The name of the Symbolics computer you are configuring. See
the section "Why Do You Name Machines and Printers?", page
140. In the sample dialogues, we have chosen machine names
Koala and Kangaroo.

Name of the namespace server
The name of the machine where the namespace database is
stored.

Chaosnet address of the namespace server
The octal number that identifies the location of the namespace
server on the network. You can use Show Host machine name
or (zl:hostat "machine name") to find this number.

If you are configuring a new site, you also need:

SYS host The machine where the sources are to be stored.

Host for bug reports
The machine to which bug reports are to be sent.

SYS:SITE; directory translation
The physical pathname that sys:site; translates to on the sys
host. See the section "What is a Logical Pathname?", page 139.
In the sample dialogues, this is

koala:>sys>site>

System account The user-id that the system uses when a server logs into a
machine. In the sample dialogues, we have chosen Wombat.

July 1986

Set Stack Size Command

:Set Stack Size stack-type stack-size

Sets the size of a stack.

stack-type The type of the stack. Enter Control, Binding, or Data.
(Default is Control.)

261

stack-size The size of the stack. Enter a number of machine words that
represents the stack size.

Set Time Command

Set Time time

Sets the local time on your machine. This allows you to set the time that appears
in the lower left hand corner of the status line if you need to. If you do not
specify a time, you are prompted to enter the time from the keyboard. The
default is constructed from the status line time.

time A date and time string.

Set Time accepts most reasonable printed representations of date and time and
converts them to the standard internal forms. The following are representative
formats that are accepted by the parser:

"March 15, 1968" "15 March 1968" "3/15/68" "3/15/1968"
"3-15-68" "3_15" "15-March-68" "15-Mar-68" "March-15-68"
"1968-3-15" "1968-March-15" "1968-Mar-15"
"1138." "11:38" ~11:38:17" "11:38 pm" "11:38 am" "1138" "113888"
"11.38" "11.38.88" "11.3" "11 pm" "12 noon"
"midnight" "m" "Friday, March 15, 1988" "6:88 gmt" "3:88 pdt"
"15 March 68" "15 March 68 seconds"
"fifteen March 68" "the fifteenth of March, 1968;"
"one minute after March 3, 1968"
"two days after March 3, 1968"
"Three minutes after 23:59:59 Dec 31, 1959"
"now" "today" "yesterday" "two days after tomorrow"
"one day before yesterday" "the day after tomorrow"
"five days ago"

Date strings in ISO standard format are accepted also. These strings are of the
form "yyyy-mm-dd", where:

yyyy Four digits representing the year

262

User's Guide to Symbolics Computers July 1986

mm The name of the month, an abbreviation for the month, or one
or two digits representing the month

dd One or two digits representing the day

Following are some restrictions on strings to be parsed:

• You cannot represent any year before 1900.

• A four-digit number alone is interpreted as a time of day, not a year. For
example, "1954" is the same as "19: 54 : ee" or "7: 54 pm", not the year 1954.

• The parser does not recognize dates in European format. For example,
"3/4/85" or "3-4-85" is always the same as "March 4, 1985", never
"Apri 1 3, 1985". A string like" 15/3/85" is an error. In such strings, the
first integer is always parsed as the month and the second integer as the
day.

Set Window Options Command

Set Screen Options

Displays a menu of the settable options for the current window. See the section
" Using Menus", page 29.

More processing enabled: l(es No
Reverse video: Yes No
Vertical spacing: 2
Deexposed typein action: Wait until exposed Notify user
Deexposed typeout action: Wait until exposed Notify user Let it happen Signal error Other
ALU function for drawing: Ones Zeroes Complement
ALU function for erasing: Ones Zeroes Complement
Screen manager priority: None
Save bits: Yes No
Default character style: FIX.ROMAN.NORMAL
Echo character style: NIL.NIL.NIL
Typein character style: NIL.NIL.NIL
End of screen action: Default Scroll Truncate Wrap
Amount to scroll by: Default
<Abort> aborts, <End> uses these values

263

July 1986

20.25 Show Commands

Show commands allow you to request informational displays of all kinds. These
displays are mouse sensitive when appropriate and can be used in composing other
commands. For example, after a Show Directory display, the individual pathnames
in the directory can be selected as arguments to a Show File command.

Show Command Processor Status Command

Show Command Processor Status

Displays the current mode of the Command Processor and the current prompt. It
also displays the prompts for the other modes. For example:

The command processor's current mode is
Form Preferred: Interprets input starting with an alphabetic

character as Lisp;
type an initial : to force command interpretation.

The prompt string is "->".

The prompt strings for other modes are:
Command Preferred: "Command: "
Form Only:
Command Only: "Command: "

Show Directory Command

Show Directory pathname keywords

Displays a directory listing. The default for name, type, and version of pathname
is :wild. The format of the listing varies with the operating system.

pathname

keywords

:Before

:Order

The pathname of the directory to list. The default is the usual
file default.

:Before, :Order, : Output, :Since, :Size

a date. Show only those files created prior to this date.

{oldest-first smallest-first largest-first newest-first standard}
Show files in this order. The default is standard, which is
usually alphabetical.

:Output Destination
{buffer file stream window} Where to display the information.
The default is the current window.

264

User's Guide to Symbolics Computers July 1986

: Since

:Size

a date. Show only those files created after this date.

Show only those files the same size or larger than N blocks.
The default is 0, meaning that all files will be listed, even if
they are empty.

Show Disabled Services Command

Show Disabled Services

Shows you which services are disabled (with the Disable Services Command).

Show Documentation Command

Show Documentation topic keywords

Displays the documentation for topic. If you omit topic, you are prompted for it.
If topic is more than one word, it must be enclosed in double-quotes:

Show Documentation (for topic) "The Document Examiner"

keywords

: destination

: destination

{screen, "remote printer", or printer name}. Where to display
(print) the documentation. Entering "remote printer" prompts
for the name of a printer. You can also give the name of a
local supported printer explicitly. Names containing spaces
must be enclosed in double-quotes. The default is to display the
documentation on the screen. Mentioning the :destination
keyword changes the default to the default hardcopy device, if it
is a supported printer, or to the supported printer most recently
used for formatted output.

See the section " Using the Online Documentation System", page 43.

Show Expanded Lisp Code Command

Show Expanded Lisp Code form keywords

Shows the lisp definition of form.

form

keywords

{macro name None} The Lisp form whose code to expand.
Specifying None causes the command to prompt you for a macro
form to evaluate just as if you had used (mexp). See the
function mexp in Symbolics Common Lisp.

:As If Compiler :Constant Folding :Expand :Output Destination
:Repeat :Whole Form

265

July 1986

:As If Compiler {yes no} Does everything the compiler would do to the
form. The default is no. The mentioned default is yes.

:Constant Folding {yes no} Does any constant computations, arithmetic for
instance, that will not change and thus can be done now.
The default is no. The mentioned default is yes.

:Expand {macros inline-functions style-checkers optimizers constants}
Does macro expansion. The default is to expand inline­
functions and macros.

:Repeat {yes no} Takes the output and operates on it again to
expand it fully. The default is no. The mentioned default
is yes.

:Whole Form

Example:

{yes no} Expands recursively until the innermost code loop
is expanded. The default is yes.

Show Expanded Lisp Code (defmacro form ()(»

(PROGN (5I:DEFMACRO-CLEAR-INDENTATION-FOR-ZWEI 'FORM)
(MACRO FORM (51: .FORM. 51: .ENV.)

(DECLARE (ARGLI5T»
(BLOCK FORM

(TAGBODY
(LET* NIL

(AND (CDR 51: .FORM.)
(GO #:G1227»

(IGNORE 51: .ENV.)
(RETURN-FROM FORM

(PROGN NIL»)
#:G1227 (RETURN-FROM FORM

(5I:DEFMACRO-ARGUMENT-ERROR 'FORM 'NIL 51: .FORM.»»»

Show Expanded Mailing List Command

Show Expanded Mailing List electronic-mailing-list keywords

Shows the list of individuals who receive messages sent to a mailing list.

electronic-mailing-list

keywords

The name of a mailing list (from the file
>mail>static>mailboxes.text)

:All Levels :Matching :Output Destination

266

User's Guide to Symbolics Computers July 1986

:All Levels

:Matching

{yes no} Whether to show the expansion of mailing lists that
are included in the selected mailing list. The default is yes,
expand all lists down to individuals.

{string} Shows only those names on the mailing list matching
string.

:Output Destination
{buffer file stream window} Where to display the information.

Show FEP Directory Command

Show FEP Directory host unit keywords

Displays a description of the FEP files on unit.

host

unit

A host on the network. The default is local.

{disk-unit-number All} The default is All. disk-unit-number is
an integer, interpreted as a disk unit number on the specified
host.

Show FEP Directory first displays an estimate of the number of free blocks and
the proportion of blocks used on unit. It then displays a summary of the files on
unit, one line per file. For each file, it displays the file name, the length in
blocks, the creation date, the comment, and the author.

Show File Command

Show File file-spec

Displays a file on the screen. If there is more than one screenful, it pauses
between screenfuls displaying --More-- at the bottom.

file-spec The pathname of the file to be printed. The default is the
usual file default.

20.25.1 Show Flavor Commands

The following commands show attributes of a flavor, generic function, method, or
handler. Only those keywords that are specific to each command (or have a
different meaning for each command) are explained in the command descriptions.
For an explanation of any keywords not covered in the command descriptions: See
the section "Keyword Options for Show Flavor Commands" in Symbolics Common
Lisp.

267

July 1986

Show Flavor Components Command

Show Flavor Components flavor keywords

Shows the order of the components of this flavor.

keywords : brief, : detailed, : duplicates, :functions, :initializations, :instance
variables, :match, :methods, and :output destination. See the
section "Keyword Options for Show Flavor Commands" in
Symbolics Common Lisp.

: duplicate s

:brief

{yes, no} Indicates whether or not to display duplicate
occurrences of flavors. The default is no.

{yes, no} yes indicates that the output should not be indented to
show the structure. The default is no.

The flavor components are ordered from top to bottom. The top flavor is the most
specific flavor in the ordering. The indentation graphically represents which
flavors are components of which other flavors. In the example below,
tv:minimum-window has six direct components: tv:essential-expose,
tv: essential-activate, tv:essential-set-edges, tv:essential-mouse,
tv: essential-window, and flavor:vanilla.

When you use the :duplicates keyword and show the components of complex
flavors, you notice special symbols in the display. For example:

Command: Show Flavor Components TV:MINIMUM-WINDOW :Duplicates
--> TV:MINIMUM-WINDOW

TV:ESSENTIAL-EXPOSE
[TV:ESSENTIAL-WINDOW] ~

TV:ESSENTIAL-ACTIVATE
[TV:ESSENTIAL-WINDOW] ~

TV:ESSENTIAL-SET-EDGES
[TV:ESSENTIAL-WINDOW] ~

TV:ESSENTIAL-MOUSE
TV:ESSENTIAL-WINDOW

TV:SHEET
SI:OUTPUT-STREAM

SI:STREAM
FLAVOR:VANILLA

Bracketed flavors are duplicates that are included by the parent flavor here, but
are not ordered in this position because of some ordering constraint. They appear
in another place in the display without brackets, in their correct order. All
bracketed components have an arrow beside them. A down-arrow indicates that

268

User's Guide to Symbolics Computers July 1986

this component's position in the ordering is later in the display. An up-arrow
indicates that this component's position in the ordering is earlier in the display;
these occurrences are infrequent.

For example, the flavor tv:essential-window is a component of four other
components: tv: essential-expose, tv: essential-activate, tv:essential-set-edges, and
tv:minimum-window itself. Its correct position in the ordering is directly after
tv: essential-mouse, where it appears without brackets.

You can read the order of flavor components by reading all unbracketed flavors
from top to bottom, ignoring punctuation. If :duplicates is no, this is all that is
displayed.

For information on how the order is determined: See the section ,. Ordering Flavor
Components" in Symbolics Common Lisp.

Show Flavor Dependents Command

Show Flavor Dependents flavor keywords

Shows the names of flavors that are dependent on this flavor.

keywords

:brief

: duplicates

:levels

:brief, : detailed, : duplicates, : functions, :initializations, :instance
variables, : levels, : match, :methods, :output destination. See the
section "Keyword Options for Show Flavor Commands" in
Symbolics Common Lisp.

{yes, no} yes indicates that the output should not be indented to
show the structure. The default is no.

{yes, no} Indicates whether or not to display duplicate
occurrences of flavors. The default is no.

{all, integer} Specifies how many levels of indirect dependency to
display. The default is all, which shows all levels. For some
flavors the output can be voluminous, and it is helpful to use
:levels to pare it down.

A dependent flavor is a flavor that uses this flavor as a component (directly or
indirectly). This is useful in program development or debugging, to answer the
question "What flavors will be affected if I change the definition of this flavor?"
For example:

July 1986

Command: Show Flavor Dependents TV:SCROLL-WINDOW-WITH-DYNAMIC-TYPEOUT
--> TV:SCROLL-WINDOW-WITH-DYNAMIC-TYPEOUT

TV:BASIC-PEEK
TV:PEEK-PANE

TV:BASIC-TREE-SCROLL
LMFS:AFSE-MIXIN

LMFS:FSHAINT-AFSE-PANE
LMFS:FSMAINT-HIERED-PANE
TV:MOUSABLE-TREE-SCROLL-MIXIN

TV:TREE-SCROLL-WINDOW

269

The output is indented to clarify which flavor is built on which component flavors.
The structure of the output is the inverse of the output of Show Flavor
Components. In this example, tv: basic-peek is a direct dependent of
tv:scroll-window-with-dynamic-typeout, and tv:peek-pane is a direct dependent
of tv:basic-peek.

Show Flavor Differences Command

Show Flavor Differences flavorl flavor2 keywords

Shows the characteristics that two flavors have in common, and the characteristics
in which they differ.

keywords

:match

:match and :output destination. See the section "Keyword
Options for Show Flavor Commands" in Symbolics Common Lisp.

{string} Displays only those generic functions or messages that
match the given SUbstring.

This is most useful for two flavors that share many characteristics. Here is some
sample output:

Command: Show Flavor Differences TV:ESSENTIAL-WINDOW TV:MINIMUM-WINDOW
--> TV:ESSENTIAL-WINDOW and TV:MINIMUM-WINDOW have

common components:
flavors ...

TV:MINIMUM-WINDOW has other components:
flavors ...

Differences in :ACTIVATE methods from TV:ESSENTIAL-WINDOW
to TV:MINIMUM-WINDOW

TV:SHEET before J primarYJ
TV:ESSENTIAL-ACTIVATE after [added]

270

User's Guide to Symbolics Computers July 1986

Differences in handling of :BURY
Flavor TV:ESSENTIAL-WINDOW does not handle :BURY
Methods of TV:MINIMUM-WINDOW:

TV:ESSENTIAL-EXPOSE wrapper, TV:ESSENTIAL-ACTIVATE
more differences ...

First, the common components are displayed. Second, the extra components of
either (or both) flavors are displayed. Third, any differences in handling of
generic functions are displayed.

In this example, tv:minimum-window has one method for :activate that
tv:essential-window does not have: an :after method provided by flavor
tv: essential-activate. The term [added] indicates that this method is defined for
the second flavor but not for the first flavor. If the command had been given
such that flavor-l was tv:minimum-window and flavor-2 was tv: essential-window,
the term would have been [del eted]. To interpret which flavor "adds" or
"deletes" a method, look at the line that defines the perspective: "Di fferences in
:ACTIVATE methods from TV:ESSENTIAL-WINDOW to TV:MINIMUM-WINDOW".

When comparing two complex flavors, the output can be voluminous. You can use
:match to pare down the output so it answers a specific question. For example:

Command: Show Flavor Differences DYNAMIC-LISP-LISTENER SHEET :Match
screen

--> information about common and different components ...
Difference in handling of :FULL-SCREEN

Method of DW::DYNAMIC-LISP-LISTENER: TV:ESSENTIAL-SET-EDGES
Flavor TV:SHEET does not handle generic operation :FULL-SCREEN

another difference ...
5 local functions found with no differences:

TV:SCREEN-MANAGE-RESTORE-AREA
TV:SCREEN-MANAGE-CLEAR-AREA
TV:SCREEN-MANAGE-CLEAR-UNCOVERED-AREA
TV:SCREEN-MANAGE-CLEAR-RECTANGLE
TV:SCREEN-MANAGE-MAYBE-BLT-RECTANGLE

128 differing local functions were found that did not
contain the substring "screen".

Show Flavor Handler Command

Show Flavor Handler generic-function flavor keywords

Provides information on the handler that performs generic-function on instances of
flavor.

271

July 1986

keywords :code and :output destination. See the section "Keyword Options
for Show Flavor Commands" in Symbolics Common Lisp.

:code {yes, no, detailed} Specifies whether the Lisp code of the
handler should be displayed. The default is no. Yes displays a
template that resembles the actual code of the handler.
Detailed displays the actual code of the handler. This displays
some internal functions and data structures of the Flavors
system. For most purposes, yes is more useful than detailed.

If the handler is a single method (not a combined method), its function spec is
given:

Command: Show Flavor Handler CHANGE-STATUS CELL
--> The handler for CHANGE-STATUS of an instance of CELL is

the method (FLAVOR:METHOD CHANGE-STATUS CELL).
The method-combination type is :AND :MOST-SPECIFIC-LAST.

If the handler is a combined method, the method combination type and order of
methods are displayed. In the following example, the methods used in the
combined method are represented by the names of the flavors that implement
them. Even in this abbreviated format, the representation of the method is
mouse-sensitive.

Command: Show Flavor Handler CHANGE-STATUS BOX-WITH-CELL
--> The handler for CHANGE-STATUS of an instance of

BOX-WITH-CELL is a combined method J with
method-combination type :AND :MOST-SPECIFIC-LAST.
The methods in the combined method J in order of
execution J are: CELL J BOX-WITH-CELL

For combined methods, :code yes is useful. It requests a template that resembles
the actual code of the handler:

Command: Show Flavor Handler CHANGE-STATUS BOX-WITH-CELL :Code yes
--> The handler for CHANGE-STATUS of an instance of

BOX-WITH-CELL is a combined method J with
method-combination type :AND :MOST-SPECIFIC-LAST.
(DEFUN (FLAVOR:COMBINED CHANGE-STATUS BOX-WITH-CELL)

(SELF SYS:SELF-MAPPING-TABLE FLAVOR:: .GENERIC.
&REST FLAVOR::DAEMON-CALLER-ARGS.)

(AND call (FLAVOR:METHOD CHANGE-STATUS CELL)
call (FLAVOR:METHOD CHANGE-STATUS BOX-WITH-CELL»)

272

User's Guide to Symbolics Computers July 1986

Show Flavor Inltlallzatlons Command

Show Flavor Initializations flavor keywords

Shows the initialization keywords accepted by make-instance of this flavor, and
any default initial values.

keywords

: detailed

: locally

:match

For example:

: detailed, : locally, :match, :sort, and :output destination. See the
section "Keyword Options for Show Flavor Commands" in
Symbolics Common Lisp.

{yes, no} The default is no, which requests the allowed
initialization keywords that can be given to make-instance of
this flavor, including init keywords and initable instance
variables. If :detailed is yes, any additional instance variables
are also shown; these are not initable instance variables. They
are initialized by default values given in the defflavor form.
Also, any initialization methods are shown. In other words,
when :detailed is no, you see the initializations from an external
perspective (useful for making an instance). When :detailed is
yes, you see the initializations from an internal perspective and
gain information about how the flavor is constructed internally.

{yes, no} If yes, inherited initializations are not shown. The
default is no, which requests all initializations defined for this
flavor or inherited by this flavor.

{string} Requests only those initializations matching the given
substring.

273

July 1986

Command: Show Flavor Initializations BOX-WITH-CELL :Detailed
--> Instances of BOX-WITH-CELL are created in the default area

Another area can be specified with the keyword :AREA
Initialization keywords that initialize

instance variables:
:BOX-X ~ BOX-X
:BOX-Y ~ BOX-Y
:SIDE-LENGTH ~ SIDE-LENGTH, default is *SIDE-LENGTH*
:STATUS ~ STATUS, default is (IF (EVENP (RANDOM 2))

:X ~ X
:Y ~ Y

Initialization method:

, : AL I VE ': DEAD)

MAKE-INSTANCE method: BOX-WITH-CELL

Show Flavor Instance Variables Command

Show Flavor Instance Variables flavor keywords

Shows the state maintained by instances of the given flavor.

keywords

: detailed

: locally

:sort

: detailed, : locally, :match, :output destination and :sort. See the
section "Keyword Options for Show Flavor Commands" in
Symbolics Common Lisp.

{yes, no} If yes, the attributes of the instance variables are
shown, such as their accessibility or initializations. The default
is no.

{yes, no} If yes, inherited instance variables are not shown.
The default is no, which shows all instance variables defined for
this flavor or inherited by this flavor.

{alphabetical, flavor} If flavor, each instance variable is
displayed along with the component flavor that provides it. The
default is alphabetical.

For example:

Command: Show Flavor Instance Variables CELL
--> NEIGHBORS

NEXT-STATUS
STATUS
X
Y

274

User's Guide to Symbolics Computers July 1986

Show Flavor Methods Command

Show Flavor Methods flavor

Displays all methods defined for the given flavor.

Keywords

: locally

: match

: locally, : match, :output destination, and :sort. See the section
"Keyword Options for Show Flavor Commands" in Symbolics
Common Lisp.

{yes, no} If yes, inherited methods are not shown. The default
is no, which shows all methods defined for this flavor or
inherited by this flavor.

{string} Requests only those methods for generic functions that
match the given string.

Each line of output contains the name of the generic function, followed by the
name of each flavor that provides a method for the generic function. If the
method is not a primary method, its type is also displayed.

Command: Show Flavor Methods BOX-WITH-CELL
--> ALIVENESS method: CELL

CHANGE-STATUS: methods: CELL J BOX-WITH-CELL
COUNT-LIVE-NEIGHBORS method: CELL
:DESCRIBE method: FLAVOR:VANILLA
others ...

This command is similar to Show Flavor Operations. See the section "Show
Flavor Operations Command", page 274. The difference between the two
commands is in the perspective:

Show Flavor Methods displays information from ar internal perspective, answering
the question: What methods are defined for this flavor, or inherited from its
component flavors?

Show Flavor Operations displays information from an external perspective,
answering the question: What operations (generic functions and messages) are
supported by instances of this flavor?

Show Flavor Operations Command

Show Flavor Operations flavor keywords

Shows all operations supported by instances of the given flavor, including generic
functions and messages.

July 1986

keywords

:detailed

:match

For example:

: detailed, :match, and :output destination. See the section
"Keyword Options for Show Flavor Commands" in Symbolics
Common Lisp.

{yes, no} If yes, the display shows the arguments of each
operation. The default is no.

{string} Shows only those operations matching the given
substring.

Command: Show Flavor Operations BOX-WITH-CELL
--> ALIVENESS

CHANGE-STATUS
COUNT-LIVE-NEIGHBORS
:DESCRIBE
HAKE-INSTANCE
SYS:PRINT-SELF (:PRINT-SELF)
others ...

275

One of the operations can be performed by using the generic function
sys:print-self or sending the message :print-self. This operation was defined with
defgeneric, using the :compatible-message option.

This command is similar to Show Flavor Methods. See the section "Show Flavor
Methods Command", page 274. The difference between the two commands is in
the perspective:

Show Flavor Operations displays information from an external perspective,
answering the question: What operations (generic functions and messages) are
supported by instances of this flavor?

Show Flavor Methods displays information from an internal perspective, answering
the question: What methods are defined for this flavor, or inherited from its
component flavors?

Show Flavor Functions Command

Show Flavor Functions flavor keywords

Shows internal flavor functions for the given flavor.

keywords

:locally

: locally, :match, :output destination, and :sort. See the section
"Keyword Options for Show Flavor Commands" in Symbolics
Common Lisp.

{yes, no} If yes, inherited internal flavor functions are not

276

User's Guide to Symbolics Computers July 1986

: match

shown. The default is no, which shows all internal flavor
function~ defined for this flavor or inherited by this flavor.

{string} Displays only those internal functions that match the
given substring.

Internal flavor functions are defined by defun-in-flavor, defmacro-in-flavor, and
defsubst-in-flavor. See the section "Defining Functions Internal to Flavors" in
Symbolics Common Lisp.

Command: Show Flavor Functions TV:MAKE-WINDOW
--> TV:ADJUST-MARGINS

SI:ANY-TYI-CHECK-EOF
SI:ASSURE-INSIDE-INPUT-EDITOR
others ...

Show Generic Function Command

Show Generic Function operation keywords

Shows information on the given operation, which can be a generic function or
message.

keywords

:methods

: flavors

For example:

: flavors, :methods and :output destination. See the section
"Keyword Options for Show Flavor Commands" in Symbolics
Common Lisp.

{yes, no} yes displays all methods for the generic function, and
their types.

{yes, no} yes displays the flavors that implement methods for
the generic function.

Command: Show Generic Function CHANGE-STATUS
--> Generic function CHANGE-STATUS takes arguments: (CELL-UNIT)

This is an explicit DEFGENERIC in file SYS:EXAMPLES;FLAVOR-LIFE.
Method-combination type is :AND :MOST-SPECIFIC-LAST.

Show Font Command

Show Font font

Displays all characters of the font. You can get a list of the fonts loaded by
pressing HELP after typing Show Font or by clicking on List Fonts in the font
editor. You enter the font editor by using the Edit Font command with no
arguments.

font Font name.

277

July 1986

Show GC Status Command

Show GC Status

Displays statistics about the garbage collector.

Show Herald Command

Show Herald keywords

Displays the herald message. The herald is part of the screen display on a cold
booted machine. It shows you the name of the FEP file or partition for the
current world load, any comment added to the herald, a measure of the physical
memory and swapping space available, the versions of the systems that are
running, the site name, and the machine's own host name.

keywords

: Detailed

:Detailed,:Output Destination

{yes no} Whether or not to print the version information in full
detail. The default is no.

:Output Destination
{buffer file printer stream window} Where to display the
information. The default is the current window.

Show Hosts Command

Show Hosts host-spec

Asks each of the hosts for its status, and prints the results. If no hosts are
specified, asks all hosts on the Chaosnet. Hosts can be specified by either name
or octal number.

For each host, a line is displayed that either says that the host is not responding
or gives metering information for the host's network attachments. If a host is not
responding, probably it is down or there is no such host at that address. A Lisp
Machine can fail to respond if it is looping inside without-interrupts or paging
extremely heavily, such that it is simply unable to respond within a reasonable
amount of time.

host-spec A host or list of hosts (names or network addresses) or sites,
separated by commas.

278

User's Guide to Symbolics Computers July 1986

For example:

Show Hosts Wombat
Show Hosts chaosl23557
Show Hosts Wombat,Kangaroo,Wallaby

The display looks like this:

Chaosnet host status report. Type Control-Abort to quit.
Site Name/Status Subnet #-in #-out abort lost crc ram bitc other

87749784 919 23557 Wombat 51 4615995 89789 8 22 8214524

Site
Name/Status
Subnet

#-in

#-out
abort

lost
crc

ram

bitc

other

The chaosnet address of the host, in this case 23557.
The name of ths host, in this case Wombat.
For sites with large networks, the number of the subnet on
which host resides, in this case 51.
The number of chaosnet packets received by host since it was
cold booted last.
The number of chaosnet packets transmitted by host.
The number of packets host attempted to send but was
unsuccessful due to network collisions.
The number of incoming packets that host was forced to discard.
Cyclic Redundancy Check. The number of packets that failed
this check, because they were damaged either in transmission or
by host when they were received.
Random Access Memory. The number of hardware memory
errors host has experienced, in this case o.
Bit Count. The number of packets whose actual bit count did
not match the bit count recorded for them.
Other errors.

Show Legal Notice Command

Show Legal Notice

Displays the Symbolics Legal Notices, such as copyrights and trademarks.

Show Lisp Context Command

Show Lisp Context

Displays the currently enabled lisp context (Zetalisp or Common-Lisp), the current
package, and the current input and output bases. For example:

Zetalisp syntax is now enabled.
Package is USER; Input base is 18; Output base is 18.

279

July 1986

Show Login History Command

Show Login History

Prints one line for each time the login command has been used since the world
was last cold booted. It also shows the logins done during the creation of the
world load. Each line contains the name of the user who logged in, the name of
the machine on which the world load was running at that time, and the date and
time. This command also shows the name of an init file, if one was loaded. If
you cold boot, log in, and then do Show Login History, the last line refers to your
own login and all previous lines refer to logins that were done before doing Save
World (or running zl:disk-save).

This information is useful to determine how many times a world load has been
disk-saved, on what machines it was disk-saved, and who disk-saved it.

The first couple of lines do not contain any date or time, because they were made
during the initial construction of the world load before it found out the current
time. Names of users at other sites that are not in the local site's namespace
search list are qualified with the site's namespace name and a vertical bar. The
user LISP-MACHINE is the dummy user used by si:login-to-sys-host when new
world loads are created.

Show Machine Configuration Command

Show Machine Configuration host

Shows the board-level hardware information about any 3600-family machine on the
same network as your machine.

host The name of a 3600-family machine. The default is your
machine.

This information is useful for service personnel. You might be asked for the
machine serial number (in line 3) if you call Symbolics Software Support. The
display from Show Machine Configuration looks like this:

280

User's Guide to Symbolics Computers

:Show Machine Configuration (A host) acme-sling-shot

Chassis (PN 170219, Serial 230) in Chassis or NanoFEP:
Manufactured on 1/10/85 as rev 1, functions as rev 1, ECO level 0
Machine Serial Number: 4185

Datapath (PN 170032, Serial 1253):
Manufactured on 9/20/83 as rev 3, functions as rev 3, ECO level 0

Sequencer (PN 170042, Serial 2576):
Manufactured on 4/21/85 as rev 4, functions as rev 4, ECO level 0

Memory Control (PN 170052, Serial 1381) in Memory Control or IFU:
Manufactured on 12/3/83 as rev 5, functions as rev 5, ECO level 0

Front End (PN 170062, Serial 2380) in FEP:
Manufactured on 2/1/84 as rev 5, functions as rev 5, ECO level 0

512K Memory (PN 170002, Serial 1258) in LBus slot 00:
Octal Base address: 0
Manufactured on 3/2/84 as rev 2, functions as rev 2, ECO level 0

512K Memory (PN 170002, Serial 2572) in LBus slot 01:
Octal Base address: 2000000
Manufactured on 2/22/85 as rev 2, functions as rev 2, ECO level 0

512K Memory (PN 170002, Serial 140) in LBus slot 02:
Octal Base address: 4000000
Manufactured on 1/19/83 as rev 2, functions as rev 2, ECO level 0

10 (PN 170157, Serial 356) in LBus slot 03:
Octal Base address: 6000000
Manufactured on 9/22/84 as rev 6. functions as rev 6, ECO level 0

512K Memory (PN 170002, Serial 2932) in LBus slot 04:
Octal Base address: 10000000
Manufactured on 4/11/85 as rev 2, functions as rev 2, ECO level 0

FEP Paddle Card (PN 170069, Serial 943) in FEP -- PADDLE side:
Manufactured on 3/21/85 as rev 1, functions as rev 1, ECO level 0

10 Paddle Card (PN 170245, Serial 3) in LBus slot 03 -- PADDLE side:
Manufactured on 4/20/84 as rev 1, functions as rev 1, Eca level 0
Ethernet Address: 08-00-05-03-18-00
Monitor Type: Philips

Show Mail Command

Show Mail file-spec

July 1986

Displays your mail inbox on the screen. If there is more than one screenful, it
pauses between screenfuls displaying --More-- at the bottom.

file-spec The pathname of the mail inbox to be read. The default is the
default inbox.

281

July 1986

Show Monitored Locations Command

:Show Monitored Locations

Displays all of variables and other locations in memory that you are monitoring
via the :Monitor Variable command, the dbg:monitor-Iocation function, and so on.

Show Namespace Object Command

Show Namespace Object class name keywords

Shows the information in the namespace database for name.

class

name

The type of object. Possible types are: Host, Site, Namespace,
User, Network, and Printer.

The name of the object, that is a user-id, the name of a
machine, or the name of the site or namespace.

keywords : Locally

: Locally {yes, no} Whether to show the information cached in the local
machine or to consult the namespace server. The default is no,
to consult the server. The mentioned default is yes.

Here is what the namespace object for a user might look like:

Command: Show Namespace Object User KJONES
View in namespace ACME:
USER KJONES
LISPM-NAME KJones
PERSONAL-NAME "Jones, Kingsley"
HOME-HOST ACME
MAIL-ADDRESS kjones ACME
LOGIN-NAME kjones VAX01
NICKNAME King
WORK-ADDRESS "Building 3-701"
WORK-PHONE 5891
BIRTHDAY "19 June"
PROJECT Database
SUPERVISOR "Finklestein"
USER-PROPERTY :USUAL-LOGIN-HOST wombat

282

User's Guide to Symbolics Computers July 1986

Show Notifications Command

Show Notifications keywords

Re-displays any notifications that have been received. Notifications are
asynchronous messages from Genera.

keywords

:before

: from

: matching

:newest

:oldest

: since

: through

:before,:from,:matching,:newest,:oldest,:since,:through

A date to serve as one limit for notifications to show:

:before 11/1/84

A number to use as the first notification to show.

A string to search for. Only show notifications that contain
that string:

:matching hardcopy

A number of notifications to show, for instance, the ten most
recent ones:

:newest 19

U sing this keyword without a number is the same as : newest 1.

A number of notifications to show, for instance, the ten earliest
ones:

:oldest 19

Using this keyword without a number is the same as : 01 dest 1.

A date to serve as one limit for notifications to show.

A number to use as the last notification to show:

:through 17

Using the Show Notifications command with no keyword arguments means show
all notifications in reverse chronological order (most recent first).

Show Object Command

Show Object name keywords

Show Object tries to tell you all the interesting information about any object
(except for array contents). Show Object knows about areas, structures, packages,
pathnames, systems, variables, functions, flavors, and resources. It displays the
attributes of each. Show Object symbol will tell you about symbol's value, its
definition, and each of its properties.

July 1986

name

keywords

Any Lisp object.

:Type

283

: Type {all, area, structure, partition, package, logical-host, pathname
system, variable, function, flavor, resource}. The default is all.

Show Printer Defaults Command

Show Printer Defaults

Displays the current default printer(s). If you send all your hardcopy output to
one printer, this is displayed as

Defaul t Pri nter: printer-name

If you use a different printer for text and screen hardcopy, this is displayed as

Defaul t Text Pri nter: printer-namel
Defaul t Bi tmap Pri nter: printer-name2

Show Printer Status Command

Show Printer Status printer

Displays the print queue for the specified printer or printers.

printer The name of a printer or printers (separated by commas) whose
print queue to show, or All to show all the queues for all
printers at your site. The default is your current printer
default. If your text printer and your bitmap printer are
different, your text printer is used as the default for Show
Printer Status.

The display of requests is mouse sensitive and can be clicked on to select
arguments for the Delete Printer Request and Restart Printer Request commands.
This is only true for print spoolers running Release 7.0.

Show Source Code Command

:Show Source Code compiled-function-spec c-X c-D

Displays the source code for a function. This command works only when your
code resides in an editor buffer. The output is mouse sensitive only when the
function is compiled with source locators. When you specify a compiled function
for which you want to see source code - for example, myfunction - the Debugger
displays the source code for myfunction beneath the following message:

284

User's Guide to Symbolics Computers July 1986

Source code for MYFUNCT I ON:

If myfunction were not compiled with source locators, the Debugger would still
display the source code, but the output would not be mouse sensitive. The
Debugger would display the source code only after giving you this message:

Function MYFUNCTION has no source locators; the code will not be sensitive.

compiled-function-spec
The name of a compiled function for which you want to see
source code. (Default is the function in the current frame.)

Suggested mouse operations

When a function has been compiled using source locators - mapping source code
to PCs via the editor's c-M-sh-C command - you can perform the following mouse
operations:

• To use this command with the mouse: Type in the :Show Source Code
command. When the Debugger asks you for a compiled-function-spec, point
the mouse at the name of a compiled function previously displayed in the
output of another command, such as :Show Backtrace, and click Mouse-Left.

• To set a breakpoint: Point the mouse at a form (a code fragment) in the
displayed source code and press c-M-Mouse-Left.

• To clear a breakpoint: Point the mouse at a form (a code fragment) in the
displayed source code and press c-M-Mouse-M; dd 1 e.

• To evaluate a code fragment: Point the mouse at a form in the displayed
source code and press M-Mouse-M; dd 1 e.

Show System Definition Command

Show System Definition system keywords

Displays a the system definition of system including its current patch level, status
(experimental or released), and the files that make up the system.

system

keywords

:Detailed

A loaded system.

: Detailed

{Yes,No} Whether to list all the component systems of the
system or not. The default is no, the mentioned default is yes.

285

July 1986

Show System Modifications Command

Show System Modifications system-name keywords

With no arguments, Show System Modifications lists all the systems present in
this world and, for each system, all the modifications that have been loaded into
this world. For each modification it shows the major version number (which will
always be the same since a world can only contain one major version), the minor
version number, and an explanation of what the modification does, as entered by
the person who made it.

If Show System Modifications is called with an argument, only the modifications to
system-name are listed.

system-name

keywords

:Author

: Before

:From

:Matching

:Newest

: Number

:Oldest

The system for which to show modifications. The default is All.

:Author, :Before, :From, :Matching, :Newest, : Number, :Oldest,
:Since, :Through

A name. Show modifications by a particular person. For
example:

:show modifications system :author kjones

would only show those modifications made by the person whose
user ID is kjones.

A date to serve as one limit for modifications to show:

:before 11/1/84

A number to use as the first modification to show.

A string to search for in the comments and only show
modifications whose comment contain that string:

:matching namespace

A number of modifications to show, for instance the ten most
recent ones:

:newest 18

Using this keyword without a number is the same as : newest 1.

A number. Show only this particular modification. For
example:

Show Modifications :number 6

would show modification number 6.

A number of modifications to show, for instance the ten earliest
ones:

286

User's Guide to Symbolics Computers July 1986

: Since

: Through

:oldest 10

Using this keyword without a number is the same as :oldest 1.

A date to serve as one limit for modifications to show.

A number to use as the last modification to show:

:through 17

Show Users Command

Show Users user-spec keywords

Shows the users logged into host.

user-spec

keywords

: Format

{user user@host user@site @host @site} The user or users to
locate and the host or site to search. The default is to show all
users logged in at the local site.

:Format :Order :Output Destination

{brief normal detailed} How much information to display.

Brief Gives the user's login name, the host name and the
idle time only.

kjones wombat 1:12

Normal Gives the user's full name and information about the
world they are running in addition to the information
displayed by brief.

kjones Kingsley Jones Wombat 1:12 Computer Room (x515) (Rel~ase 7.0)

Detailed Displays the information in the user's namespace
object.

:order

The default when only one user is specified is full, if more than
one is specified the default is brief.

{host idle user} The order in which to sort the entries in the
display.

host Sorts alphabetically by host name.

user Sorts alphabetically by user login name.

idle Sorts by idle time, from active to greatest idle time.

:output destination

July 1986

{buffer file stream window} Where to display the information.
The default is the current window.

20.26 Start Commands

Start GC Command

Start ac keywords

Turns on the garbage collector.

keywords : Dynamic, : Ephemeral, :Immediately

: Dynamic {yes, no} Dynamic Level of incremental ac.
: Ephemeral {yes, no} Ephemeral Level of incremental ac.
: Immediately {yes, no} Perform a complete garbage collection right now.

Unmonltor Variable Command

:Unmonitor Variable symbol keyword

Stops monitoring one or all special variables in memory.

287

symbol {location, RETURN} A location specifies one location that you want
to stop monitoring. Enter the name of a symbol and, optionally,
its Value-Cell or Function-Cell. (See the :Cell keyword
description below.) Press the RET URN key if you want to stop
monitoring all locations.

keyword

:Cell

:Cell

{Value-Cell, Function-Cell} Specifies which cell within the
location you want to stop monitoring. The Debugger gives you
two choices: Value-Cell or Function-Cell. (Default is Value­
Cell.)

Suggested mouse operations

• To unmonitor a location: Point the mouse at a locative, structure slot, or
instance variable that was previously monitored and press
c-M-sh-Mouse-Middle.

288

User's Guide to Symbolics Computers July 1986

20.27 Undelete Commands

Undelete File Command

Undelete File file-spec keywords

Undeletes a deleted file, if the host on which the file resides supports undelete. It
prompts for the name of a file to undelete. It displays a message if the specified
file does not exist.

file-spec

keywords

: Query

The pathname of the file to be undeleted. The default is the
usual file default.

: Query

{yes, no, ask} Whether to ask for confirmation before removing
the delete flag on the file. The default is no.

289

July 1986 Index

Index

& & &
&optional 175
&rest 175

* * *
*Function-Specs-to-Edit-n * buffer 66

* variable 187
** variable 187
*** variable 187
Funct i on-Specs-to-Edi t-n buffer 66

+ + +
+ variable 187
++ variable 187
+++ variable 187

- variable 187

/ / /
zl: Ivariable 187

A A A
Areas (A) 194

Example of a Search String for HELP A 73
FUNCTION A 217

HELP A Zmacs command 73
ABORT command 79, 84
ABORT Key 215
ABORT Zmacs command 70
Abort At Top Level 70

Zmacs Commands for Finding Out About Flavors 119
Lisp Facilities for Finding Out About Lisp 120

Zmacs Commands for Finding Out About Lisp 118
Questions About the FEP and LMFS 141

Zmacs Commands for Finding Out About the State of Buffers 118
Zmacs Commands for Finding Out About the State of Zmacs 118

Overview of Finding Out About Zmacs Commands 71
Finding Out About Zmacs Commands with HELP 71

Accidental deletion 70
Getting Acquainted with Dynamic Windows 26
Getting Acquainted with Genera 18

Summary of Getting Acquainted with Genera 31
Document Examiner Actions 56,57,58

Document Examiner Command Pane Actions 59
Display status of active processes 192

290

User's Guide to Symbolics Computers July 1986

Select Activity Command 251
Add Paging File Command 227
Adjusting Console Parameters 96

Cold boot after logging out 17
What to Do After Reading a Zmail Message 83

Clear All Breakpoints Command 227
Sending message to all Lisp Machines at site 91

Hardcopy All (m-X) Zmail Command 150
All reply mode 84

Sending message to another user 92, 181
Show Documentation (an Overview) 46

Answering Questions the System Asks 139
Find Any Candidates 47

HELP Key in Any Zmacs Editing Window 114
Append Buffer (m-X) Converse Command 90
Append Conversation (m-X) Converse Command 91

Searching for Appropriate Commands 73
Method for Searching for Appropriate Zmacs Commands 73

Searching for Appropriate Zmacs Commands 72
m-X Apropos 73

zl: apropos function 185
Apropos (m-X) 72
Apropos (m-X) Zmail command 77

Display status of window area 192
Display status of areas 192

Areas (A) 194
Numeric arguments 72

Using Keywords Arguments 24
Using Numeric Arguments for Yanking 137

Supplying Positional Arguments to a Command 36
c-U argument to yanking commands 137

Poking Around in the Lisp World 183
Moving Around Zmail Messages 83

Questions Users Commonly Ask 139
Answering Questions the System Asks 139

Atom 138
Attribute indicator 168

Buffer attributes 75
Data Types of Namespace System Attributes 168

File attributes 75
Namespace System Attributes 168

Showing attributes of flavors 266
Showing attributes of generic fUnctions 266
Showing attributes of methods 266

Attribute value 168
Audio loudness 220

Init File Form: Auto Fill in Text Mode 105
Auto-repeat 9, 96, 222

Lookup Commands Available At a Lisp Listener and in Zmacs 53
Lookup Commands Available in an Editor 53
Lookup Commands Available in the Document Examiner 51
Lookup Commands Available in the Document Examiner and Editor 47
Lookup Commands Available in the Document Examiner, Editor, and

Command Processor 46

July 1986

B B
FUNCTION B 217

c-X B Zmacs command 75
Getting Text Back 70

Starting up Zmail in the Background 98
Looking Back Over Your Output (Scrolling) 25

BACKSPACE Key 215

Run
Default

Set
Set Input

Set Output

Goto

Default
Docu mentation

Setting Key
cp:

Document Examiner List of
List of
List of

Cold
Warm

Curly
Square

zl:
sys:

Clear
Set

Write a
Enter a

Clear All
A

Screen

Function-Specs-to-Edit-n
Creating a

Deleting messages from mail
Restoring messages to mail

Init File Form: Ordering
Append

Regenerate
Write

Hardcopy

Backward 68
Backward Paragraph 68
Backward Sentence 68
Backward Word 68
Bars 8
base 138
Base and Syntax Default Settings for Lisp 75
Base Command 252
Base Command 257
Base Command 257
Basic Command Facilities 102
Beep 70
Beeping 89
Beginning 68
Beginning of Une 68
Beginning of Topic 60, 61
Behavior of Converse 89
binary file 43
Bindings in Init Files 103
blank-line-mode variable 101
:body-character-style keyword 109
Bookmarks 61
Bookmarks 58
bookmarks 55
bookmarks display 58
boot after logging out 17
Booting 145
:bottom init option for tv:sheet 178
brackets 176
brackets 176
break special form 188
break-blndings variable 188
Break loop 178
Breakpoint 1 78
Breakpoint Command 227
Breakpoint Command 253
breakpoint into a program 188
breakpoint loop 188
Breakpoints Command 227
Brief Introduction to the Lisp World 175
brightness 220
Browsing documentation 44, 52
buffer 66
Buffer 74, 75
buffer 83
buffer 83
Buffer attributes 75
Buffer Contents with c-X c-F 75
Buffer history 136
Buffer Lists 102
Buffer (m-X) Converse Command 90
Buffer (m-X) Converse Command 91
Buffer (m-X) Converse Command 90
Buffer (m-X) Zmacs command 150

291

Index

B

292

User's Guide to Symbolics Computers

Buffer Operations 208
Zmacs Commands for Finding Out About the State of Buffers 118

c

Save File Buffers Command 250
Save Mail Buffers Command 250

Init File Form: Putting Buffers Into Current Package 103
Init File Form: Edit Buffers on c-X c-8 104
Init File Form: Edit Buffers on m-X 104

Reporting a bug 181
zl: bug function 181

Report Bug Command 248
Reset button 144

Mouse buttons 9

C
FUNCTION C 217

HELP C 71
SELECT C command 87

HELP C Zmacs command 72
c ... / completion command 73

HELP or c-? 73
c-? completion command 73

FUNCTION c-A 219
c-A Zmacs command 68

Init File Form: Edit Buffers on c-X c-8 104
c-8 Zmacs command 68

FUNCTION c-CLEAR INPUT 220
c-O Zmacs command 70
c-E Zmacs command 68
c-ENO Converse command 90

Buffer Contents with c-X c-F 75
c-F Zmacs command 68

c-X c-F Zmacs command 75
c-G Zmacs command 70
c-HELP 113, 220

FUNCTION c-M 217
c-M Converse Command 90
c-m-8 c-m-Y List History 39

Init File Form: c-m-L on the SQUARE Key 104
c-m-SCROLL 60,223
c-m-sh-Y 27
c-m-Y 26

c-m-8 c-m-Y List History 39
c-m-Y yank command 137
c-m-Y Yank History 39
c-m- [Converse Command 90
c-m-] Converse Command 90
c-Mouse-Left 28
c-Mouse-Middle 28
c-N Zmacs command 68
c-P Zmacs command 68

FUNCTION c-Q 151,217
c-SCROLL 60,223

FUNCTION c-T 219
c-U argument to yanking commands 137
c-V 27,60
c-V Zmacs command 68

c-X c-W Zmacs command 75
c-X 8 Zmacs command 75

Init File Form: Edit Buffers on c-X c-8 104
Buffer Contents with c-X c-F 75

July 1986

c

293

July 1986 Index

c-X c-F Zmacs command 75
c-X c-W Zmacs command 75
c-X [Zmacs command 68
c-X] Zmacs command 68
c-Y yank command 137

Hardware Caches 5
Set Calendar Clock Command 254

Functions for finding callers 183
List Callers (m-X) Zmacs command 183

Identifying callers of variables 183
Calling Command Processor Commands From Your

Init File 101
Cancel last command 70
Cancel response 70

Select Candidate List 51, 57
Document Examiner List of Current Candidates 57

Find Any Candidates 47
Find Initial Substring Candidates 48

Find Whole Word Candidates 50
List of current candidates 51

Why Can't I Write Out Files When I Have Free Disk
Space? 141

Overview of Debugger Mouse Capabilities 202
Carbon copies 79
Carriage return 67
Cc field 79
Censoring Fields for IIspm-flnger and

name Services 109
Changing the Default Printer 152
chaos:notlfy-local-lIspms function 91

Prefix character commands 67
Character Operations 208

Setting Command Processor Special Characters 100
What is a Character Style? 161

Default Character Styles 161
Merging Character Styles 161

Understanding Character Styles 161
Character Styles and the Lisp Listener 163

Using Character Styles in Hardcopy 165
Using Character Styles in the Input Editor 162
Using Character Styles in Zmail 164

Checking on What the Machine Is Doing 183
CIRCLE key 9, 225
Classes 169

Namespace System Classes 167
Clear Commands 227

FUNCTION CLEAR INPUT 217
CLEAR I NPUT Key 216
Clear All Breakpoints Command 227
Clear Breakpoint Command 227
Clear Output History Command 228
:clear-wlndow method of tv:sheet 177

Mouse dicks 9
Set Calendar Clock Command 254

Init File Form: White Space in Lisp Code 103
Show Expanded Lisp Code Command 264

Show Source Code Command 283
Editing the source code of a function 66, 180

Cold boot after logging out 17
Incremental garbage collection 157

Nonincremental garbage collection 157

294

User's Guide to Symbolics Computers

Principles of Garbage
Dynamic garbage

Ephemeral-object garbage
When and How to Use the Garbage

Init File Form: Setting Goal
ABORT

ABORT Zmacs
Add Paging File

Append Buffer (m-X) Converse
Append Conversation (m-X) Converse

Apropos (m-X) Zmail
c-/ completion
c-? completion

c-A Zmacs
c-B Zmacs
c-D Zmacs
c-E Zmacs

c-END Converse
c-F Zmacs
c-G Zmacs

c-M Converse
c-m-Y yank

c-m- [Converse
c-m-] Converse

c-N Zmacs
c-P Zmacs
c-V Zmacs

c-X B Zmacs
c-X c-F Zmacs
c-X c-W Zmacs

c-X [Zmacs
c-X] Zmacs

c-Y yank
Cancel last

Clear All Breakpoints
Clear Breakpoint

Clear Output History
Compile File

Compile System
COMPLETE completion

Copy File
Copy Microcode

Copy Output History Into Editor
Copy World

Create Directory
Create FEP File

Create Unk
Delete Conversation (m-X) Converse

Delete File
Delete Printer Request

Disable Network
Disable Services

Edit Definition
Edit Directory

Edit File
Edit Font
Editing a

Edit Namespace Object
Enable Network
Enable Services

END

Collection 157
collector 158
collector 157
Collector 157
Column for Real Line Commands 103
command 79,84
command 70
Command 227
Command 90
Command 91
command 77
command 73
command 73
command 68
command 68
command 70
command 68
command 90
command 68
command 70
Command 90
command 137
Command 90
Command 90
command 68
command 68
command 68
command 75
command 75
command 75
command 68
command 68
command 137
command 70
Command 227
Command 227
Command 228
Command 228
Command 229
command 73
Command 230
Command 231
Command 231
Command 231
Command 232
Command 232
Command 233
Command 90
Command 233
Command 153, 234
Command 234
Command 234
Command 234
Command 235
Command 235
Command 235
Command 38
Command 235
Command 236
Command 236
command 79

July 1986

July 1986

END completion
END Converse

Entering a
Expunge Directory

Extended
Find File Zmacs
Finding the right

Find Symbol
Format File

Format File (m-X) Zmail
FUNCTION H

G Zmail
h-c-FUNCTION

Halt GC
Halt Machine

Halt Printer
Hardcopy All (m-X) Zmail

Hardcopy Buffer (m-X) Zmacs
Hardcopy File

Hardcopy File (m-X) Zmacs
Hardcopy File (m-X) Zmail

Hardcopy Message (m-X) Zmail
Help

HELP A Zmacs
HELP C Zmacs

HELP completion
HELP D Zmacs
HELP L Zmacs

Initialize Mail
Initialize Mouse

Initialize Time
Inspect
Inspect

List Callers (m-X) Zmacs
Load File

Load Patches
Load System

Login
Logout

m-< Zmacs
m-> Zmacs
m-A Zmacs
m-8 Zmacs
m-F Zmacs

m-SCROLL Zmacs
m-sh-A input editor

m-sh-D editor
m-sh-F input editor
m-sh-V input editor

m-V Zmacs
m-Y yank

m-[Zmacs
m-] Zmacs

Monitor Variable
NETWORK X

Optimize World
P Dired

Parts of a
[Profile] Zmail

Regenerate Buffer (m-X) Converse
Rename File

command 73
command 90
Command 34
Command 236
Command 68
command 75
command 73
Command 237
Command 237
Command 151
command 190
command 80
command 144
Command 238
Command 238
Command 154, 239
Command 150
command 150
Command 147,240
command 150
Command 151
Command 150
Command 241
command 73
command 72
command 73
command 72
command 73
Command 242
Command 242
Command 242
Command 243
command 206
command 183
Command 244
Command 244
Command 245
Command 246
Command 247
command 68
command 68
command 68
command 68
command 68
command 68
command 46
command 46
command 46
command 46
command 68
command 137
command 68
command 68
Command 247
command 170
Command 248
command 151
Command 33
command 110
Command 91
Command 248

295

Index

296

User's Guide to Symbolics Computers

Report Bug
Reset

Reset Network
Reset Printer

Restart Printer Request
RETURN completion

RUBOUT Zmacs
Save File Buffers
Save Mail Buffers

Save World
SCROLL Zmacs

SELECT C
SELECT M

Select Activity
Send Mail

Send Message
Set Base

Set Breakpoint
Set Calendar Clock

Set Command Processor
Set File Properties

Set GC Options
Set Input Base

Set Lisp Context
Set Output Base

Set Package
Set Printer

Set Screen Options
Set Site

Set sleep time between updates Peek
Set Stack Size

Set Time
Set Variable (m-X)

Set Window Options
Show Command Processor Status

Show Directory
Show Disabled Services

Show Documentation
Show Expanded Lisp Code

Show Expanded Mailing List
Show FEP Directory

Show File
Show Flavor Components
Show Flavor Dependents
Show Flavor Differences

Show Flavor Functions
Show Flavor Handler

Show Flavor Initializations
Show Flavor Instance Variables

Show Flavor Methods
Show Flavor Operations

Show Font
Show GC Status

Show Generic Function
Show Herald
Show Hosts

Show Legal Notice
Show Lisp Context

Show Login History
Show Machine Configuration

Show Mail

Command 248
command 144
Command 249
Command 155, 249
Command 153, 250
command 73
command 70
Command 250
Command 250
Command 251
command 68
command 87
command 77
Command 251
Command 251
Command 252
Command 252
Command 253
Command 254
Command 254
Command 255
Command 255
Command 257
Command 257
Command 257
Command 258
Command 152,258
Command 258
Command 259
command 192
Command 261
Command 261
command 105
Command 262
Command 263
Command 263
Command 264
Command 264
Command 264
Command 265
Command 266
Command 266
Command 267
Command 268
Command 269
Command 275
Command 270
Command 272
Command 273
Command 274
Command 274
Command 276
Command 277
Command 276
Command 277
Command 277
Command 278
Command 278
Command 189,279
Command 279
Command 280

July 1986

July 1986

Show Monitored Locations
Show Namespace Object

Show Notifications
Show Object

Show Printer Defaults
Show Printer Status

Show Printer Status (m-X) Zmall
Show Source Code

Show System Definition
Show System Modifications

Show Users
SPACE completion

Start GC
Start Printer

Supplying Keywords and Values for a
Supplying Positional Arguments to a

Undelete File
Unmonitor Variable

Write Buffer (m-X) Converse
Write Conversation (m-X) Converse

Write File Zmacs
FEP

Help facilities, FEP
Mouse

cp::

Example of Finding Out What a Zmacs
Finding Out What an Extended

Finding Out What a Prefix
Finding Out What a Zmacs

Basic

Command 281
Command 281
Command 282
Command 282
Command 152,283
Command 153, 283
Command 151
Command 283
Command 284
Command 285
Command 286
command 73
Command 159, 287
Command 155
Command 37
Command 36
Command 288
Command 287
Command 90
Command 90
command 75
Command Completion 117
command completion 117
Command Conventions 2
command-dlspatchers variable 100
Command documentation 77
Command Does 72
Command Does 72
Command Does 72
Command Does 71
Command Facilities 102
Command History 39, 70, 136

Document Examiner command menu 59
Zmail Command Menu 77

Supplying a Command Name 35
:command-only command processor mode 99

Document Examiner Command Pane 59
Document Examiner Command Pane Actions 59

297

Index

:command-preferred command processor mode 99
Completion in the Command Processor 39

Customizing the Command Processor 98
Error Handling in the Command Processor 40

Hardcopying From the Command Processor 147
Help in the Command Processor 38

Lookup Commands Available in the Document Examiner, Editor, and

Overview of the
Trying Out the

Set
Dictionary of
Some Useful

Calling

Customizing
:command-only

:command-preferred
:form-only

:form-preferred
Setting the

Turning the
Setting the

Command Processor 46
Command Processor 33
Command Processor 22
Command Processor Command 254
Command Processor Commands 227
Command Processor Commands 24
Command Processor Commands From Your In it

File 101
Command Processor Display 101
command processor mode 99
command processor mode 99
command processor mode 99
command processor mode 99
Command Processor Mode 99
Command Processor on and Off 40
Command Processor Prompt 1 00, 255

298

User's Guide to Symbolics Computers July 1986

Setting Command Processor Special Characters 100
Show Command Processor Status Command 263

c-U argument to yanking commands 137
Clear Commands 227

Compile Commands 228
Completion for Extended Commands (m-X Commands) 115

Converse Commands 90
Copy Commands 230

Create Commands 232
Cursor movement commands 68

Delete Commands 233
Dictionary of Command Processor Commands 227

Disable Commands 234
Documentation find commands 44,46

Documentation Hardcopy Commands 54
Documentation Lookup Commands 46

Edit Commands 234
Enable Commands 236

Entering Commands 34
Expunge Commands 236

Extended Commands 72, 207
Find Commands 237

FUNCTION Key: Display and Hardcopy Commands 217
FUNCT I ON Key: Selection and Notification Commands 218

Halt Commands 238
Hardcopy Commands 240

Help Commands 241
Init File Form: Fixing White Space for KiIIlYank Commands 103

Init File Form: Setting Goal Column for Real Line Commands 103
Initialize Commands 242

Input Editor Commands 135
Inspect Commands 243

Introduction to Zmacs Extended Commands 68
Ust the last sixty commands 73

Load Commands 244
Login and Logout Commands 246

Method for Searching for Appropriate Zmacs Commands 73
Names of commands 72

Online documentation for commands 72
Other Hardcopy Commands 152

Overview of Debugger Commands 200
Overview of Finding Out About Zmacs Commands 71

Prefix Commands 72
Prefix character commands 67

Printer commands 147
Printing and Hardcopy Commands 147

Rename Commands 248
Reset Commands 249

Restart Commands 250
Reusing Commands 26

Save Commands 250
Searching for Appropriate Commands 73

Searching for Appropriate Zmacs Commands 72
Select Commands 251
Send Commands 251

Set Commands 252
Show Commands 263

Show Flavor Commands 266
Some Useful Command Processor Commands 24

Start Commands 287
Typing Commands 22

299

July 1986 Index

Undelete Commands 288
Lookup Commands Available At a Lisp Listener and in

Zmacs 53
Lookup Commands Available in an Editor 53
Lookup Commands Available in the Document Examiner 51
Lookup Commands Available in the Document Examiner and

Editor 47
Lookup Commands Available in the Document Examiner,

Editor, and Command Processor 46
Lisp Listener Commands for Converse 91

Zmacs Commands for Finding Out About Flavors 119
Zmacs Commands for Finding Out About Lisp 118
Zmacs Commands for Finding Out About the State of

Buffers 118
Zmacs Commands for Finding Out About the State of

Zmacs 118
Zmacs Commands for Interacting with Lisp 119

Keyboard commands for Menus 29
Commands for Producing Hardcopy 147

Calling Command Processor Commands From Your Init File 101
Completion for Extended Commands (m-X Commands) 115

Finding Out About Zmacs Commands with HELP 71
Questions Users Commonly Ask 139

Communicating with Genera 33
:speclal-command-p compatible message to

dbg :speclal-command-p 178
Compile Commands 228
Compile File Command 228
Compile System Command 229
COMPLETE completion command 73
COMPLETE Key 216
Completion 73

FEP Command Completion 117
Help facilities, FEP command completion 117

Zmacs Completion 115
Interaction with Completion and Typeout Windows 113

c-/ completion command 73
c-? completion command 73

COMPLETE completion command 73
END completion command 73

HELP completion command 73
RETURN completion command 73

SPACE completion command 73
Completion for Extended Commands (m-X

Commands) 115
Completion for m-. 116
Completion in Other Contexts 116
Completion in the Command Processor 39
Completion in the Document Examiner 59

Show Flavor Components Command 267
sl: compress-who-calls-database function 184

Introduction to the Symbolics 3600 Family of Computers 3
Overview of Symbolics Computers 1

Documentation concept record 43
Show Machine Configuration Command 279

Connecting to a Remote Host Over the Network 170
Cons 157
Consing 157

Hardware Console 4
The Console 7

Adjusting Console Parameters 96

300

User's Guide to Symbolics Computers

sys:
Find Table of

Delete
Buffer

Set Lisp
Show Lisp

Completion in Other
Summary of Help Functions in Different

Screen
Documentation

Docu mentation Notation
Miscellaneous

Modifier Key
Mouse Command

System
Notation

Notation
Notation
Notation
Notation
Notation
Append

Delete
Write

Customizing
Default Behavior of

Introduction to
Lisp Listener Commands for

Sending and Replying to Messages with
Using
zwei:
zwel:

Append Buffer (m-X)
Append Conversation (m-X)

c-END
c-M

c-m-[
c-m-]

Delete Conversation (m-X)
END

Regenerate Buffer (m-X)
Write Buffer (m-X)

Write Conversation (m-X)

zwel:
zwel:

Turning off
Turning on

zwel:

Carbon
Default printer for screen

console-volume function 98
Contents 49
contents of window 177
Contents with c-X c-F 75
Context Command 257
Context Command 278
Contexts 116
Contexts 117
contrast 220
Conventions 1
Conventions 1
Conventions 138
Conventions 1
Conventions 2
Conventions and Helpful Hints 138

July 1986

Conventions for Flavors, Flavor Operations, and Init
Options 177

Conventions for Functions 175
Conventions for Lisp Objects 175
Conventions for Macros and Special Forms 176
Conventions for Variables 178
Conventions Quick Reference 1
Conversation (m-X) Converse Command 91
Conversation (m-X) Converse Command 90
Conversation (m-X) Converse Command 90
Conversations 87
Converse 1 06
Converse 89
Converse 87
Converse 91
Converse 87
Converse 87
converse-append-p variable 107
converse-beep-count variable 107
Converse Command 90
Converse Command 91
Converse command 90
Converse Command 90
Converse Command 90
Converse Command 90
Converse Command 90
Converse command 90
Converse Command 91
Converse Command 90
Converse Command 90
Converse Commands 90
converse-end-exits variable 107
converse-gagged 91
Converse messages 91
Converse messages 91
converse-mode variable 106
Converse Pop-up Message Window 89
Converse variables 106
copies 79
copies 108
Copy Commands 230
Copy File Command 230
Copy Microcode Command 231
Copy Output History Into Editor Command 231
Copy World Command 231
cp::*command-dispatchers* variable 100

July 1986

D

cp::*form-dlspatchers* variable 100
cp::*typeout-default* variable 101
cp:*blank-llne-mode* variable 101
cp:cp-off function 41
cp:cp-on function 41
cp:*dlspatch-mode* variable 99
cp:execute-command function 102
cp:*prompt* variable 100

cp: cp-off function 41
cp: cp-on function 41

Hardware CPU 4
Create Commands 232

How Do I Create a FEP File? 141
How to Create an Init File 96

Create Directory Command 232
Create FEP File Command 232
Create Link Command 233

Init File Form: Setting Find File Not to Create New Files 103
Creating a Buffer 74, 75
Creating a File 75
Creating and Manipulating Files 65
Creating a New Namespace Object 173

Introduction: Selecting and Creating Windows 13
Selecting and Creating Windows 13

Curly brackets 176
Document Examiner List of Current Candidates 57

List of current candidates 51
Current history 135

Display current history 137
Keys Not Currently Used 225

Current message 80
Init File Form: Putting Buffers Into Current Package 103

Description of Moving the Cursor 68
Summary of Moving the Cursor 68

Cursor movement commands 68
Mouse Cursor Shape 211
Zmacs Customization in Init Files 102
Useful Customizations to Put in Your Init File 96

What is Customizing? 93

D
HELP

SELECT
HELP
Good

Documentation
Pruning the documentation

Topics Pruned From the Documentation
Updating the Namespace

Documentation

Customizing Command Processor Display 101
Customizing Converse 1 06
Customizing Genera 93
Customizing Hardcopy Facilities 108
Customizing the Command Processor 98
Customizing the Input Editor 105
Customizing Zmail 110

D 72
o 43
o Zmacs command 72
data 157
database 43
database 45
Database 45
Database 171
database installation 45

301

Index

D

Data Types of Namespace System Attributes 168
dbg:*debugger-blndings* variable 189

:special-command-p compatible message to dbg :special-command-p 178

302

User's Guide to Symbolics Computers July 1986

dbg:speclal-command-p generic function 178
Debugger 144

Overview of the Debugger 197
dbg: *debugger-blndlngs* variable 189

Overview of Debugger Commands 200
Overview of Debugger Evaluation Environment 201
Overview of Debugger Help Facilities 202
Overview of Debugger Mouse Capabilities 202

The Debugger: Recovering From Errors and Stuck
States 144

Tools for Lisp Debugging 197
Mentioned Default 33

The Displayed Default 137
Unmentioned Default 33

Default base 138
Default Behavior of Converse 89

hardcopy: *default-bltm::1p-prlnter* variable 108
Default Character Styles 161

Init File Form: Setting Default Major Mode 103
Default printer 108

Changing the Default Printer 152
Default printer for screen copies 108
[Default] Profile Mode menu item 111

Show Printer Defaults Command 152, 283
Base and Syntax Default Settings for Lisp 75

Personal default styles 109
hardcopy: *default-text-prlnter* variable 108

Default Windows 13
Edit Definition Command 234

Show System Definition Command 284
Definition history 136

Editing the definition of a function 66, 180
Formatted print of function definitions 187

Delete Commands 233
Delete contents of window 177
Delete Conversation (m-X) Converse Command 90

Expunging deleted messages 84
Delete File Command 233
Delete Printer Request Command 153, 234
[Delete] Zmail menu item 83
Deleting and Undeleting Zmail Messages 83
Deleting messages from mail buffer 83

Accidental deletion 70
Large Deletions 70

Show Flavor Dependents Command 268
describe function 186

Reference Description of Help Functions 120
Description of Moving the Cursor 68
Dictionary of Command Processor Commands 227

Show Flavor Differences Command 269
Summary of Help Functions in Different Contexts 117

tv: *dlm-screen-after-n-mlnutes-Idle* variable 97
Edit directory 180

Create Directory Command 232
Edit Directory Command 235

Expunge Directory Command 236
Show Directory Command 263

Show FEP Directory Command 266
Hardcopying From Dired 151

zl: dlred function 180
P Dired command 151

303

July 1986 Index

Dired Hardcopy File 151
Disable Commands 234

Show Disabled Services Command 264
Disable Network Command 234
Disable Services Command 234
disassemble function 186

World load disk-saves 189
Why Can't I Write Out Files When I Have Free Disk Space? 141

cp: *dlspatch-mode* variable 99
Customizing Command Processor Display 101

Display status of file system display 192
Documentation display 46

List of bookmarks display 58
FUNCT I ON Key: Display and Hardcopy Commands 217

Display current history 137
The Displayed Default 137

Displaying previous keystrokes 73
Displaying pruned topics 45

Documentation display in the Document Examiner 55
Display status of active processes 192
Display status of areas 192
Display status of file system display 192
Display status of hostat 192
Display status of window area 192

What to Do After Reading a Zmail Message 83
Hardcopy Private Document 54, 61, 62

Load Private Document 61, 62
Read Private Document 61, 62
Save Private Document 61,62

Browsing documentation 44, 52
Command documentation 77

Document Examiner Documentation 43
Hardcopy Documentation 54

Looking up Documentation 44
Use of Fonts in the Documentation 175

Show Documentation (an Overview) 46
Documentation binary file 43

Show Documentation Command 264
Documentation concept record 43
Documentation Conventions 1
Documentation database 43

Pruning the documentation database 45
Topics Pruned From the Documentation Database 45

Documentation database installation 45
Documentation display 46
Documentation display in the Document Examiner 55
Documentation find commands 44, 46

Online documentation for commands 72
Online documentation for prefixes 72

Documentation Hardcopy Commands 54
Loading documentation index files 45

Documentation keywords 44
Mouse Documentation Line 7, 77

Documentation Lookup Commands 46
Documentation Notation Conventions 1
Documentation object record 43
Documentation overview 44, 52
Documentation record 43

Using the Online Documentation System 43
Documentation topic name 43, 44
Documentation topic type 43, 44

304

User's Guide to Symbolics Computers July 1986

E

Completion in the Document Examiner 59
Documentation display in the Document Examiner 55

HELP in the Document Examiner 43, 59
Introduction to the Document Examiner 43

Lookup Commands Available in the Document Examiner 51
Recovering From a Stuck Document Examiner 45
Repositioning Text in the Document Examiner 60

Document Examiner Actions 56,57,58
Lookup Commands Available in the Document Examiner and Editor 47

Document Examiner command menu 59
Document Examiner Command Pane 59
Document Examiner Command Pane Actions 59
Document Examiner Documentation 43

Lookup Commands Available in the Document Examiner, Editor, and Command
Processor 46

Document Examiner List of Bookmarks 58
Document Examiner List of Current Candidates 57

[Find] Document Examiner menu item 50
[Find (R)] Document Examiner menu Item 47

[Select] Document Examiner menu item 51
[Show] Document Examiner menu item 46

[Show (M)] Document Examiner menu item 52
[Show (R)] Document Examiner menu item 49

Document Examiner Private Documents 61
Document Examiner Viewer 55

Multiple Document Examiner viewers 55
Document Examiner Window 54

Private document name 61
Document Examiner Private Documents 61

Example of Finding Out What a Zmacs Command Does 72
Finding Out What an Extended Command Does 72

Finding Out What a Prefix Command Does 72
Finding Out What a Zmacs Command Does 71

How Do I Create a FEP File? 141
Checking on What the Machine is Doing 183

Dotted pair 138
Powering Down 18

Down Real Line 68
Why Do You Name Machines and Printers? 140

zl: dribble-end function 191
Dribble Files 191

zl: dribble-start function 191
Dynamic garbage collector 158
Dynamic objects 157

Getting Acquainted with Dynamic Windows 26
Mouse Gestures on Dynamic Windows 211

E
Entering Zmacs with SELECT E 65

SELECT E 65
Entering Zmacs with ed 66

ed function 66, 180
Edit Commands 234

Init File Form: Edit Buffers on c-X c-8 104
Init File Form: Edit Buffers on m-X 104

Edit Definition Command 234
Edit directory 180
Edit Directory Command 235
Edit File Command 235
Edit Font Command 235

E

July 1986

Entering Zmacs with zwel: edit-functions 66
zwel: edit-functions function 66

Editing a Command 38
Editing a Namespace Object 172
Editing the definition of a function 66, 180
Editing the source code of a function 66, 180

HELP Key In Any Zmacs Editing Window 114
Editing Your Input 134
Edit Namespace Object Command 235

Customizing the Input Editor 105
Entering Zwei editor 180

Hardcopying From the File System Editor 152
Input Editor 136

Lookup Commands Available in an Editor 53

305

Index

Lookup Commands Available in the Document Examiner and
Editor 47

Using Character Styles in the Input Editor 162
Using the ESCAPE key with the Input Editor 136

Lookup Commands Available in the Document Examiner,
Editor, and Command Processor 46

Copy Output History Into Editor Command 231
m-sh-A input editor command 46

m-sh-D editor command 46
m-sh-F input editor command 46
m-sh-V input editor command 46

. Input Editor Commands 135
Input Editor kill history 136

Setting Editor Variables in Init Files 102
Init File Form: Electric Shift Lock in Lisp Mode 105

Retrieve element at origin 137
Enable Commands 236
Enable Network Command 236
Enable Services Command 236

sl: enable-who-calls function 184
Goto End 68

END command 79
END completion command 73
END Converse command 90
END Key 216
End of Line 68
End of Topic 60, 61
Enter a breakpoint loop 188
Entering a Command 34
Entering and Leaving the Inspector 206
Entering Commands 34
Entering Zmacs 65
Entering Zmacs with ed 66
Entering Zmacs with SELECT E 65
Entering Zmacs with the Mouse 66
Entering Zmacs with zwel:edit-functlons 66
Entering Zwei editor 180

Using the mouse to enter Zmacs 66
Overview of Debugger Evaluation Environment 201

Usp environment features list 191
Start GC :Ephemeral 157

Ephemeral-object garbage collector 157
Ephemeral objects 157
Erase window 177
Error Handling in the Command Processor 40
Error recovery 69

Introduction: Recovering From Errors and Stuck States 143

306

User's Guide to Symbolics Computers July 1986

F

Recovering From
The Debugger: Recovering From

FUNCTION

Using the

Overview of Debugger

Completion in the Document
Documentation display in the Document

Flavor
HELP in the Document

Introduction to the Document
Lookup Commands Available in the Document

Recovering From a Stuck Document
Repositioning Text in the Document

Document
Lookup Commands Available in the Document

Document
Document
Document
Document

Lookup Commands Available in the Document
Document
Document

[Find] Document
[Find (R)] Document

[Select] Document
[Show] Document

[Show (M)] Document
[Show (R)] Document

Document
Document

Multiple Document
Document

Variables for

cp:

Show
Show

Finding Out What an

Introduction to Zmacs
Completion for

F

Errors and Stuck States 143
Errors and Stuck States 144
ESCAPE 219
ESCAPE Key 216
ESCAPE key with the Input Editor 136
Escaping from prompts 70
Evaluation Environment 201
:Examine-file Option to Zwei:preload-zmail 98
Examiner 59
Examiner 55
Examiner 202
Examiner 43, 59
Examiner 43
Examiner 51
Examiner 45
Examiner 60
Examiner Actions 56,57,58
Examiner and Editor 47
Examiner command menu 59
Examiner Command Pane 59
Examiner Command Pane Actions 59
Examiner Documentation 43
Examiner, Editor, and Command Processor 46
Examiner List of Bookmarks 58
Examiner List of Current Candidates 57
Examiner menu item 50
Examiner menu item 47
Examiner menu item 51
Examiner menu item 46
Examiner menu item 52
Examiner menu item 49
Examiner Private Documents 61
Examiner Viewer 55
Examiner viewers 55
Examiner Window 54
Examining the Lisp World 186
Example of a Search String for HELP A 73
Example of Finding Out What a Zmacs Command

Does 72
execute-command function 102
Exiting the Inspector 206
[Exit] Profile Mode menu item 111
Expanded Lisp Code Command 264
Expanded Mailing List Command 265
Expunge Commands 236
Expunge Directory Command 236
Expunging deleted messages 84
Extended Command 68
Extended Command Does 72
Extended Commands 72, 207
Extended Commands 68
Extended Commands (m-X Commands) 115

File System (F) 195
FUNCTION F 217

Basic Command Facilities 102
Customizing Hardcopy Facilities 108

General Help Facilities 207
Help facilities 113

F

July 1986

Introduction to the Hardcopy
Overview of Debugger Help

Zmacs Help
Help
Usp

Request for N longs
Introduction to the Symbolics 3600

Getting
Usp environment

Hardware
Resetting the

Questions About the

Help facilities,
Show

How Do I Create a
Create

Facilities 147
Facilities 202
Facilities 207
facilities, FEP command completion 117
Facilities for Finding Out About Lisp 120
fail ed. 144
Family of Computers 3
Fancy with Zmail 85
features list 191
FEP 6
FEP 144
FEP and LMFS 141
FEP Command Completion 117
FEP command completion 117
FEP Directory Command 266
FEP File? 141
FEP File Command 232
FEP, HELP key 117

Cc field 79
Subject field 79

To field 79

307

Index

Censoring Fields for IIspm-flnger and name Services 109
Calling Command Processor Commands From Your Init

Creating a
Dired Hardcopy

Documentation binary
How to Create an Init

Logging In Without Processing Your Init
Mail

Primary mail
Saving terminal interactions in

Saving the Mail
Useful Customizations to Put in Your Init

Wallpaper
How Do I Create a FEP

Save
Add Paging

Compile
Copy

Create FEP
Delete

Edit
Format

Hardcopy
Load

Rename
Show

Undelete
Init
Init
Init
Init
Init
Init

File 101
File 75
File 151
file 43
File 96
File 110
file 80
file 80
file 191
File 84
File 96
file 191
File? 141
File attributes 75
File Buffers Command 250
File Command 227
File Command 228
File Command 230
File Command 232
File Command 233
File Command 235
File Command 237
File Command 147,240
File Command 244
File Command 248
File Command 266
File Command 288
File Form: Auto Fill in Text Mode 105
File Form: c-m-L on the SQUARE Key 104
File Form: Edit Buffers on c-X c-8 104
File Form: Edit Buffers on m-X 104
File Form: Electric Shift Lock in Usp Mode 105
File Form: Fixing White Space for KiIINank

Commands 103
Init File Form: m-. on m-(L) 104
Init File Form: Ordering Buffer Lists 102
Init File Form: Putting Buffers Into Current Package 103
Init File Form: Setting Default Major Mode 103

308

User's Guide to Symbolics Computers July 1986

\ Init File Form: Setting Find File Not to Create New
Files 103

Init File Form: Setting Goal Column for Real Line

Init
Hardcopy

Format
Hardcopy

Init File Form: Setting Find
Set

Creating and Manipulating
Dribble

Init
Init File Form: Setting Find File Not to Create New

Loading documentation index
Setting Editor Variables in Init

Setting Key Bindings in Init
Setting Mode Hooks in Init

Writing
Zmacs Customization in Init

Why Can't I Write Out
Display status of

Hardcopying From the

Find
Write

Init File Form: Auto

Docu mentation

Init File Form: Setting

Functions for
Zmacs Commands for

Usp Facilities for
Zmacs Commands for
Zmacs Commands for
Zmacs Commands for

Overview of

Example of

netl:
netl:

Init File Form:
sys:network-error

Commands 103
File Form: White Space in Lisp Code 103
File (m-X) Zmacs command 150
File (m-X) Zmail Command 151
File (m-X) Zmail Command 151
File Not to Create New Files 103
File Properties Command 255
Files 65
Files 191
Files 93
Files 103
files 45
Files 102
Files 103
Files 104
Files 208
Files 102
Files When I Have Free Disk Space? 141
file system display 192
File System Editor 152
File System (F) 195
File Zmacs command 75
File Zmacs command 75
Fill in Text Mode 1 05
[Find] 59
Find Commands 237
Find Any Candidates 47
find commands 44, 46
[Find] Document Examiner menu item 50
Find File Not to Create New Files 103
:Find-file Option to Zwei:preload-zmail 98
Find File Zmacs command 75
finding callers 183
Finding Out About Flavors 119
Finding Out About Lisp 120
Finding Out About Lisp 118
Finding Out About the State of Buffers 118
Finding Out About the State of Zmacs 118
Finding Out About Zmacs Commands 71
Finding Out About Zmacs Commands with HELP 71
Finding Out What an Extended Command Does 72
Finding Out What a Prefix Command Does 72
Finding Out What a Zmacs Command Does 71
Finding Out What a Zmacs Command Does 72
Finding Out What You Have Typed 73
Finding the right command 73
Find Initial Substring Candidates 48
[Find (M)] 48, 59
[Find (R)] 59
[Find (R)] Document Examiner menu item 47
Find Symbol Command 237
Find Table of Contents 49
Find Whole Word Candidates 50
flnger-flelds-to-suppress variable 110
finger-fields-to-suppress-for-untrusted-hosts

variable 110
Fixing White Space for KiIINank Commands 103
flavor 177

July 1986

309

Index

Show Flavor Commands 266
Show Flavor Components Command 267
Show Flavor Dependents Command 268
Show Flavor Differences Command 269

Flavor Examiner 202
Show Flavor Functions Command 275
Show Flavor Handler Command 270
Show Flavor Initializations Command 272
Show Flavor Instance Variables Command 273
Show Flavor Methods Command 274

Notation Conventions for Flavors, Flavor Operations, and Init Options 177
Show Flavor Operations Command 274

Showing attributes of flavors 266
Zmacs Commands for Finding Out About Flavors 119

Notation Conventions for Flavors, Flavor Operations, and Init Options 177
Edit Font Command 235

Show Font Command 276
Use of Fonts in the Documentation 175

grlndef special form 187
login-forms special form 95

setq special form 94
zl:break special form 188

zI:setq-globally special form 95
zl:sstatus special form 192

zl:status special form 191
Format File Command 237
Format File (m-X) Zmail Command 151
Formatted print of function definitions 187

Init File Form: Auto Fill in Text Mode 105
Init File Form: c-m-L on the SQUARE Key 104

cp:: *form-dlspatchers* variable 100
Inlt File Form: Edit Buffers on c-X c-8 104
Init File Form: Edit Buffers on m-X 104
Init File Form: Electric Shift Lock in Lisp Mode 105
Init File Form: Fixing White Space for KillIYank

Commands 103
Init File Form: m-. on m-(L) 104

:form-only command processor mode 99
Init File Form: Ordering Buffer Lists 102

:form-preferred command processor mode 99
Init File Form: Putting Buffers Into Current Package 103

Notation Conventions for Macros and Special Forms 176
Reexecuting yanked forms 136

Init File Form: Setting Default Major Mode 103
Init File Form: Setting Find File Not to Create New Files 103
Init File Form: Setting Goal Co1\Jmn for Real Line

Commands 103
Init File Form: White Space in Lisp Code 103

Forward 68
Forward Paragraph 68
Forward Word 68

Hardware FPU 5
Why Can't I Write Out Files When I Have Free Disk Space? 141

Recovering From a Stuck Document Examiner 45
HarcJcopying From Dired 151

Introduction: Recovering From Errors and Stuck States 143
Recovering From Errors and Stuck States 143

The Debugger: Recovering From Errors and Stuck States 144
FUNCT I ON Key: Recovering From Stuck States 219

Hardcopying From the Command Processor 147
Topics Pruned From the Documentation Database 45

310

User's Guide to Symbolics Computers July 1986

Hardcopying From the File System Editor 152
Hardcopying From the System Menu 149

Calling Command Processor Commands From Your Init File 101
Hardcopying From Zmacs 149
Hardcopying From Zmail 150

chaos:notlfy-local-lIspms function 91
cp:cp-off function 41
cp:cp-on function 41

cp:execute-command function 102
dbg:speclal-command-p generic function 178

describe function 186
disassemble function 186

ed function 66, 180
Editing the definition of a function 66, 180

Editing the source code of a function 66, 180
hardcopy:set-default-bltmap-prlnter function 108

hardcopy:set-default-text-printer function 108
Inspect function 186,206

Key with No Function 225
print-sends function 92, 189

sage:load-Index-Info function 46
sl:compress-who-calls-database function 184

sl:enable-who-calls function 184
sl:lIsp-top-level function 178

sl:lIsp-top-levell function 178
sl:set-auto-repeat-p function 97

sl:show-Iogln-hlstory function 189
si :who-calls-unbound-functlons function 184

sys:console-volume function 98
sys:lIsp-relnltlalize function 178

tv:screen-brightness function 97
what-files-call function 185

where-Is function 185
who-calls function 183

zl :apropos function 185
zl:bug function 181

zl:dlred function 180
zl:dribble-end function 191

zl :dribble-start function 191
zl :hostat function 190

zl :mall function 180
zl :print-notlficatlons function 189

zl:qreply function 92
zl-user:uptlme function 190

zwel:edit-functlons function 66
zwel:preload-zmall function 98

zwel:qsends-off function 91
zwel:qsends-on function 91

zwel :save-all-flles function 179
FUNCTION A 217
FUNCTION B 217
FUNCTION C 217
FUNCTION c-A 219
FUNCTION c-CLEAR INPUT 220
FUNCTION c-H 217
FUNCTION c-Q 151,217
FUNCTION c-T 219
FUNCTION CLEAR INPUT 217

h-c- FUNCT I ON command 144
FUNCTION ESCAPE 219
FUNCTION F 217

G

FUNCTION H 217
FUNCT I ON H command 190
FUNCTION HELP 113,220
FUNCT I ON Key 216
FUNCT I ON Key: Display and Hardcopy

Commands 217

311

FUNCT I ON Key: Recovering From Stuck States 219
FUNCT I ON Key: Selection and Notification

Commands 218
FUNCTION H 217
FUNCTION m-Q 151,217
FUNCTION 0 217
FUNCTION Q 108,151,217
FUNCTION REFRESH 217
FUNCTION RUBOUT 217
FUNCTION S 218
FUNCTION SUSPEND 219
FUNCTION T 218
FUNCT I ON W 219

Show Generic Function Command 276
Formatted print of function definitions 187

Index of Special Function Keys 215
Introduction: Index of Special Function Keys 215

Notation Conventions for Functions 175
Quick Summary of Mouse Functions 211

Reference Description of Help Functions 120
Showing attributes of generic functions 266

Some Utility Functions 179
Utility Functions 189

Show Flavor Functions Command 275
Functions for finding callers 183

Summary of Help Functions in Different Contexts 117

G
G Zmail command 80

Incremental garbage collection 157
NonincrementaJ garbage collection 157

Principles of Garbage Collection 157
DynamiC garbage collector 158

Ephemeral-object garbage collector 157
When and How to Use the Garbage Collector 157

Halt GC Command 238
Start GC Command 159, 287
Start GC :Ephemeral 157

Set gc options 157
Set GC Options Command 255
zl: gc-status Output 158

Show GC Status Command 277
Communicating with Genera 33

Customizing Genera 93
Getting Acquainted with Genera 18

Introduction to Genera 6
Summary of Getting Acquainted with Genera 31

General Help Facilities 207
dbg:speclal-command-p generic function 178

Show Generic Function Command 276
Showing attributes of generic functions 266

Mouse Gestures on Dynamic Windows 211
Zmail: Get Inbox 80

How to Get Output to a Printer 147

G

312

User's Guide to Symbolics Computers July 1986

H

Getting Acquainted with Dynamic Windows 26
Getting Acquainted with Genera 18

Summary of Getting Acquainted with Genera 31
Getting Fancy with Zmall 85
Getting Help 113
Getting new mail 80
Getting Out of Keystroke Prefixes 70
Getting Out of Minibuffer Prompts 70
Getting Out of Prefixes and Prompts 69
Getting Out of Trouble 69

Overview of Getting Out of Trouble 69
Getting Text Back 70
Globally named objects 169

Namespace global-name 168
Init File Form: Setting Goal Column for Real Line Commands 103

Good data 157
Good objects 157
Goto Beginning 68
Goto End 68
grlndef special form 187

H
FUNCTION H 217

Hostat (H) 196
FUNCT I ON H command 190

Show Flavor
Error

Commands for Producing
Using Character Styles in

h-c-FUNCT I ON command 144
Halt Commands 238
Halt GC Command 238
Halting 145
Halt Machine Command 238
Halt Printer Command 154, 239
Handler Command 270
Handling in the Command Processor 40
Hardcopy 151
Hardcopy 147
Hardcopy 165
Hardcopy Commands 240
hardcopy:*default-bltmap-prlnter* variable 108
hardcopy:*default-text-prlnter* variable 108
hardcopy:*hardcopy-default-character-styles*

H

variable 109
hardcopy:set-default-bltmap-prlnter function 108
hardcopy:set-default-text-prlnter function 108
Hardcopy All (m-X) Zmail Command 150

Documentation
FUNCT I ON Key: Display and

Other
Printing and
hardcopy:

Customizing
Introduction to the

Dired

Hardcopy Buffer (m-X) Zmacs command 150
Hardcopy Commands 54
Hardcopy Commands 217
Hardcopy Commands 152
Hardcopy Commands 147
hardcopy-default-character-styles variable 109
Hardcopy Documentation 54
Hardcopy Facilities 108
Hardcopy Facilities 147
Hardcopy File 151
Hardcopy File Command 147,240
Hardcopy File (m-X) Zmacs command 150
Hardcopy File (m-X) Zmail Command 151
Hardcopying From Dired 151
Hardcopying From the Command Processor 147
Hardcopying From the File System Editor 152

July 1986

Why Can't I Write Out Files When I
Finding Out What You

Finding Out About Zmacs Commands with
FUNCTION

Getting
SELECT

Example of a Search String for

FEP,
Using the

General
Overview of Debugger

Zmacs

System Conventions and
Reference Description of

Summary of

Show
System Conventions and Helpful

Hardcopying From the System Menu 149
Hardcopying From Zmacs 149
Hardcopying From Zmail 150
Hardcopying the Screen 151
Hardcopying Zmail Messages 150
Hardcopy Message (m-X) Zmail Command 150
Hardcopy Private Document 54, 61, 62
Hardcopy system 147
Hardcopy Viewer 54, 57
Hardware Caches 5
Hardware Console 4
Hardware CPU 4
Hardware FEP 6
Hardware FPU 5
Hardware Input/Output 6
Hardware Introduction 3
Hardware Main Unit 4
Hardware Memory 6
Hardware Packaging 3
Have Free Disk Space? 141
Have Typed 73
Headers window 84
:headlng-character-style keyword 109
[Help] 59 ~

HELP 71
HELP 71
HELP 113, 220
Help 113
HELP 113,220
HELP A 73
HELP A Zmacs command 73
HELP C Zmacs command 72
Help Commands 241
HELP completion command 73
HELP 0 Zmacs command 72
HELP in the Document Examiner 43,59
HELP key 71, 113, 220
HELP key 117
HELP Key 23
HELP Key in Any Zmacs Editing Window 114
HELP L Zmacs command 73
HELP or c-? 73
HELP a 72
Help and Quit 196
HELP C 71
Help Command 241
HELP D 72
Help facilities 113
Help Facilities 207
Help Facilities 202
Help Facilities 207
Help facilities, FEP command completion 117
Helpful Hints 138
Help Functions 120
Help Functions in Different Contexts 117
Help in the Command Processor 38
HELP L 73
[Help (M)] 59
Help: See... 117
Herald Command 277
Hints 138

313

Index

314

User's Guide to Symbolics Computers July 1986

Types of Histories 136
Histories and Yanking 135

Buffer history 136
c-m-9 c-m-Y List History 39

c-m-Y Yank History 39
Command History 39, 70, 136

Current history 135
Definition history 136

Display current history 137
Input history 136

Input Editor kill history 136
Kill history 70, 136

m-Y Yank History 39
Pathname history 136

Replace history 136
Using Your Output History 27

Clear Output History Command 228
Show Login History Command 189,279

Copy Output History Into Editor Command 231
History length 105

zwel: *hlstory-menu-Iength* variable 105
zwel: *hlstory-rotate-If-numerlc-arg* variable 106, 137
zwel: *hlstory-yank-wraparound* variable 105

Setting Mode Hooks in Init Files 104
Display status of hostat 192

Quitting Hostat 190
zl: hostat function 190

Hostat (H) 196
Host object 167

Connecting to a Remote Host Over the Network 170
Hosts 169

Show Hosts Command 277
Host Status 190, 277
Host status report 190
How Do I Create a FEP File? 141
How the Inspector Works 204
How to Create an Init File 96
How to Get Output to a Printer 147

When and How to Use the Garbage Collector 157
HYPER key 9, 225

SELECT I 206
Identifying callers of variables 183
Inbox 80

Zmail: Get Inbox 80
Incoming messages 89
Incremental garbage collection 157

Loading documentation index files 45
Index of Special Function Keys 215

Introduction: Index of Special Function Keys 215
Attribute indicator 168

Calling Command Processor Commands From Your Init File 101
How to Create an Init File 96

Logging in Without Processing Your Init File 110
Useful Customizations to Put in Your Init File 96

Init File Form: Auto Fill In Text Mode 105
Init File Form: c-m-L on the SQUARE Key 104
Init Fite Form: Edit Buffers on c-X c-8 104
Init File Form: Edit Buffers on m-X 104

July 1986

Setting Editor Variables in
Setting Key Bindings in
Setting Mode Hooks in

Zmacs Customization in
Show Flavor

315

Index

Init File Form: Electric Shift Lock in Lisp Mode '105
Init File Form: Fixing White Space for KilVYank

Commands 103
Init File Form: m-. on m-(L) 104
Init File Form: Ordering Buffer Lists 102
Init File Form: Putting Buffers Into Current

Package 103
Init File Form: Setting Default Major Mode 103
Init File Form: Setting Find File Not to Create New

Files 103
Init File Form: Setting Goal Column for Real Line

Commands 103
Init File Form: White Space in Lisp Code 103
Init Files 93
Init Files 102
Init Files 103
Init Files 1 04
Init Files 102
Initializations Command 272
Initialize Commands 242
Initialize Mail Command 242
Initialize Mouse Command 242
Initialize Time Command 242

sl: Inltlal-readtable variable 188
Find Initial Substring Candidates 48

:bottom init option for tv:sheet 178
Notation Conventions for Flavors, Flavor Operations, and

Editing Your
FUNCTION c-CLEAR

FUNCTION CLEAR
CLEAR

Hardware
Set

Customizing the
Using Character Styles in the

Using the ESCAPE key with the
m-sh-A
m-sh-F
m-sh-V

Entering and Leaving the
Exiting the

How the
Documentation database

Show Flavor
Zmacs Commands for

Saving terminal

Init Options 177
Input 134
INPUT 220
INPUT 217
I NPUT Key 216
InpuVOutput 6
Input Base Command 257
Input Editor 136
input Editor 105
Input Editor 162
Input Editor 136
input editor command 46
input editor command 46
input editor command 46
Input Editor Commands 135
input Editor kill history 136
Input history 136
Inspect Commands 243
Inspect function 186, 206
Inspect command 206
Inspect Command 243
[Inspect] in System menu 206
Inspector 206
Inspector 206
Inspector Works 204
installation 45
Instance Variables Command 273
Interacting with Lisp 119
interactions in file 191
Interaction with Completion and Typeout

Windows 113
Sending interactive messages 87

Hardware Introduction 3
Zmail Tutorial Introduction 77

316

User's Guide to Symbolics Computers July 1986

K

Introduction: Index of Special Function Keys 215
Introduction: Recovering From Errors and Stuck

States 143
Introduction: Selecting and Creating Windows 13
Introduction to Converse 87
Introduction to Genera 6
Introduction to the Document Examiner 43
Introduction to the Hardcopy Facilities 147

A Brief Introduction to the Lisp World 175
Introduction to the Namespace System 167
Introduction to the Symbolics 3600 Family of

Computers 3
Introduction to Zmacs Extended Commands 68
Introduction to Zmacs Keystrokes 67
Invoking Zmacs 65

What is a Character Style? 161
What is a Logical Path name? 139
What is a World Load? 140
What is Customizing? 93

Checking on What the Machine is Doing 183

K
91: *kbd-auto-repeat-enabled-p* variable 96
91: *kbd-auto-repeat-Inltlal-delay* variable 97
91: *kbd-repeat-key-enabled-p* variable 222
91: *kbd-repeat-key-Inltial-delay* variable 223
91: *kbd-repetition-Interval* variable 223

ABORT Key 215
BACKSPACE Key 215

CIRCLE key 9,225
CLEAR INPUT Key 216

COMPLETE Key 216
END Key 216

ESCAPE Key 216
FEP,HELP key 117
FUNCTION Key 216

HELP key 71,113,220
HYPER key 9, 225

Init File Form: c-m-L on the SQUARE Key 104
LINE Key 220

LOCAL Key 220
NETWORK Key 221

PAGE Key 222
REFRESH Key 222

REPEAT Key 222
RESUME Key 223
RETURN Key 223
RUBOUT Key 223
SCROLL Key 223
SELECT Key 13,22,224

SELECT T key 170
SQUARE key 9,225

SUSPEND Key 224
SYMBOL Key 225

TAB Key 225
TRIANGLE key 9,225

Using the HELP Key 23
Setting Key Bindings In Init Files 103

The Keyboard 8
Keyboard commands for Menus 29

K

317

July 1986 Index

L

Using the Mouse and the Keyboard on Menus 29
Modifier Key Conventions 1

FUNCT I ON Key: Display and Hardcopy Commands 217
HELP Key In Any Zmacs Editing Window 114

FUNCT I ON Key: Recovering From Stuck States 219
Index of Special Function Keys 215

Introduction: Index of Special Function Keys 215
Shift keys 67

FUNCT I ON Key: Selection and Notification Commands 218
Keys Not Currently Used 225
Keys Reserved for the User 9, 225

Getting Out of Keystroke Prefixes 70
Keystrokes 67

Displaying previous keystrokes 73
Introduction to Zmacs Keystrokes 67

Ust the last sixty keystrokes 73
Key with No Function 225

Using the ESCAPE key with the Input Editor 136
:body-character-style keyword 109

:headlng-character-style keyword 109
Documentation keywords 44

Tagging Zmail Messages with Keywords 85
Zmail Keywords 85

Supplying Keywords and Values for a Command 37
Using Keywords Arguments 24

Keywords for who-calls and what-files-cali 183, 185
[Keywords (R)] Zmail Menu Item 86

Init File Form: Fixing White Space for KiIIlYank Commands 103
Kill history 70, 136

Input Editor kill history 136

L
HELP

Init File Form: m-. on m­
HELP

Cancel
Ust the
List the

Entering and
Show

History
Abort At Top
The Lisp Top
Beginning of

Down Real
End of

Mouse Documentation
Status

Up Real
Zmail Mode

Init File Form: Setting Goal Column for Real

Create
Base and Syntax Default Settings for
Lisp Facilities for Finding Out About

Zmacs Commands for Finding Out About
Zmacs Commands for Interacting with

Init File Form: White Space in

L 73
(L) 104
L Zmacs command 73
Large Deletions 70
last command 70
last sixty commands 73
last sixty keystrokes 73
Leaving the Inspector 206
Legal Notice Command 278
length 105
Level 70
Level 178
Une 68
Line 68
Line 68
Line 7, 77
Line 7
Une 68
Une 77
LINE Key 220
Une Commands 103
Une Operations 209
Link Command 233
Usp 75
Lisp 120
Lisp 118
Lisp 119
Lisp Code 103

L

318

User's Guide to Symbolics Computers

Show Expanded
Set

Show
Tools for

Character Styles and the
Lookup Commands Available At a

Sending message to all
Censoring Fields for

Init File Form: Electric Shift Lock in
Notation Conventions for

sys:
The

sl:
sl:

A Brief Introduction to the
Poking Around in the

Variables for Examining the
Lisp environment features

Select Candidate

Show Expanded Mailing
Character Styles and the Lisp

Lookup Commands Available At a Lisp
Lisp

c-m-0 c-m-Y

Document Examiner

Document Examiner
Init File Form: Ordering Buffer

Questions About the FEP and

What is a World
World

sage:

Show Monitored
Init File Form: Electric Shift

Cold boot after
What is a

Show

Login and

Lisp Code Command 264
Lisp Context Command 257
Lisp Context Command 278
Lisp Debugging 197
Lisp environment features list 191

July 1986

Lisp Facilities for Finding Out About Lisp 120
Lisp Listener 163
Lisp Listener and in Zmacs 53
Lisp Listener Commands for Converse 91
Lisp Machines at site 91
IIspm-flnger and name Services 109
Lisp Mode 105
Lisp Objects 175
Lisp Reader 138
IIsp-relnltlalize function 178
Lisp Top Level 178
IIsp-top-level function 178
IIsp-top-leveI1 function 178
Lisp World 175
Lisp World 183
Lisp World 186
list 191
List 51,57
List Callers (m-X) Zmacs command 183
List Command 265
Listener 163
Listener and in Zmacs 53
Listener Commands for Converse 91
List History 39
List of bookmarks 55
List of Bookmarks 58
List of bookmarks display 58
List of current candidates 51
List of Current Candidates 57
Lists 102
List the last sixty commands 73
List the last sixty keystrokes 73
LMFS 141
Load Commands 244
Load? 140
load disk-saves 189
Load File Command 244
load-Index-Info function 46
Loading documentation index files 45
Load Patches Command 244
Load Private Document 61, 62
Load System Command 245
LOCAL Key 220
Locations Command 281
Lock in Lisp Mode 105
Logging in 17, 179
Logging in Without Processing Your Init File 110
Logging Out 17
logging out 17
Logical Pathname? 139
Login and Logout Commands 246
Login Command 246
login-forms special form 95
Login History Command 189, 279
LOGIN service 170
Logout Commands 246

319

July 1986 Index

M

Logout Command 247
Request for N longs fa; 1 ed. 144

Looking Back Over Your Output (Scrolling) 25
Looking up Documentation 44

Documentation Lookup Commands 46
"Lookup Commands Available At a Lisp Listener and

In Zmacs 53
Lookup Commands Available In an Editor 53
Lookup Commands Available in the Document

Examiner 51
Lookup Commands Available in the Document

Examiner and Editor 47
Lookup Commands Available in the Document

Examiner, Editor, and Command Processor. 46
Break loop 178

Enter a breakpoint loop 188
Read-eval-print loop 178

Top-level loop 178
Audio loudness 220

M
[Find

FUNCTION
[Help

Meters (
[Private

[Show
[Viewer

SELECT

(M)] 48,59
H 217
(M)] 59
H) 194
(M)] 59
(M)] 59
(M)] 59
H command 77
m-. 234

Completion for m-. 116
Init File Form: m-. on m-(L) 104

m-< 60
m-< Zmacs command 68
m-> 60
m-> Zmacs command 68
m-A Zmacs command 68
m-8 Zmacs command 68

U~ng m-COHPLETE 30
m-F Zmacs command 68

Init File Form: m-. on m-(L) 104
FUNCTION m-Q 151,217

m-SCROLL 60
m-SCROLL Zmacs command 68
m-sh-A input editor command 46
m-sh-O editor command 46
m-sh-F input editor command 46
m-sh-V input editor command 46
m-V 60
m-V Zmacs command 68
m-X 68

Apropos (m-X) 72
Init File Form: Edit Buffers on m-X 104

Completion for Extended Commands (
Set Variable (

Append Buffer (
Append Conversation (

Delete Conversation (
Regenerate Buffer (

m-X Apropos 73
m-X Commands) 115
m-X) command 105
m-X) Converse Command 90
m-X) Converse Command 91
m-X) Converse Command 90
m-X) Converse Command 91

M

320

User's Guide to Symbollcs Computers July 1986

Write Buffer (m-X) Converse Command 90
Write Conversation (m-X) Converse Command 90

Hardcopy Buffer (m-X) Zmacs command 150
Hardcopy File (m-X) Zmacs command 150

List Callers (m-X) Zmacs command 183
Apropos (m-X) Zmail command 77

Format File (m-X) Zmail Command 151
Hardcopy All (m-X) Zmail Command 150

Hardcopy File (m-X) Zmail Command 151
Hardcopy Message (m-X) Zmail Command 150
Show Printer Status (m-X) Zmail Command 151

m-Y yank command 137
m-Y Yank History 39
m-[Zmacs command 68
m-] Zmacs command 68

Halt Machine Command 238
Show Machine Configuration Command 279

Checking on What the Machine is Doing 183
Why Do You Name Machines and Printers? 140

Sending message to all Lisp Machines at site 91
Maclisp 191

zl:qsend macro 92,181
Notation Conventions for Macros and Special Forms 176

Getting new mail 80
Printing mail 150

Reading Your Mail 80
Replying to Mail 84

Send mail 180
Sending and Receiving Messages and Mail 77

Sending Your Mail 79
Zmail: Mail 79

zl: mall function 180
Deleting messages from mail buffer 83

Restoring messages to mail buffer 83
Save Mail Buffers Command 250

Initialize Mail Command 242
Send Mail Command 251
Show Mail Command 280

Mail file 80
Primary mail file 80

Saving the Mail File 84
Show Expanded Mailing List Command 265

[Mail] Zmail menu item 79
Hardware Main Unit 4

Init File Form: Setting Default Major Mode 103
Managing the Print Spooler Queue 153

Creating and Manipulating Files 65
Mapping names to objects 169
Marking and Yanking Menu 28

[Show (M)] Document Examiner menu item 52
Hardware Memory 6

Mentioned Default 33
Document Examiner command menu 59
Hardcopying From the System Menu 149

[Inspect] in System menu 206
Marking and Yanking Menu 28

System Menu 13
Using the System Menu 18
Zmail Command Menu 77

[Default] Profile Mode menu item 111
[Delete] Zmail menu item 83

321

July 1986 Index

[Exit] Profile Mode menu item 111
[Find] Document Examiner menu item 50

[Find (R)] Document Examiner menu item 47
[Keywords (R)] Zmail Menu Item 86

[Mail] Zmail menu item 79
[Next] Zmail menu item 83

[Previous] Zmail menu item 83
[Profile] Zmail menu item 110
[Reply] Zmail menu item 84

[Reset] Profile Mode menu item 111
[Save] Zmail menu item 84, 111

[Select] Document Examiner menu item 51
[Show] Document Examiner menu item 46

[Show (M)] Document Examiner menu item 52
[Show (R)] Document Examiner menu item 49

[Undelete] Zmail menu item 83
Menus 11

Keyboard commands for Menus 29
The Mouse and Menus 10

Using Menus 29
Using the Mouse and the Keyboard on Menus 29

Merging Character Styles 161
Current message 80

Scrolling a Zmail Message 82
:tyo message 177

What to Do After Reading a Zmail Message 83
Send Message Command 252

Hardcopy Message (m-X) Zmail Command 150
Message recipients 79

Deleting and Undeleting Zmail Messages 83
Expunging deleted messages 84
Hardcopying Zmail Messages 150

Incoming messages 89
Moving Around Zmail Messages 83

Printing messages 150
Reprint messages 92, 189

Selecting messages 83
Sending interactive messages 87

Turning off Converse messages 91
Turning on Converse messages 91

Sending and Receiving Messages and Mail 77
Deleting messages from mail buffer 83

Restoring messages to mail buffer 83
Sending and Replying to Messages with Converse 87

Tagging Zmail Messages with Keywords 85
Sending message to all Lisp Machines at site 91
Sending message to another user 92, 181

:speclal-command-p compatible message to dbg:speclal-command-p 178
Message window 84

Converse Pop-up Message Window 89
Using the mouse to scroll the message window 80

Zmail Message Window 77
Meters (M) 194
Method for Searching for Appropriate Zmacs

Commands 73
:clear-wlndow method of tv:sheet 177

Showing attributes of methods 266
Show Flavor Methods Command 274

Copy Microcode Command 231
Minibuffer Prompts 70

Getting Out of Minibuffer Prompts 70

322

User's Guide to Symbolics Computers July 1986

N

Miscellaneous Conventions 138
All reply mode 84

:command-only command processor mode 99
:command-preferred command processor mode 99

:form-only command processor mode 99
:form-preferred command processor mode 99

Inlt File Form: Auto Fill In Text Mode 105
Init File Form: Electric Shift Lock in Lisp Mode 105

Init File Form: Setting Default Major Mode 103
Profile mode 110, 111
Reply mode 84

Sender reply mode 84
Setting the Command Processor Mode 99

Using Zmail Profile Mode 111
Setting Mode Hooks in Init Files 104

Zmail Mode Line 77
[Default] Profile Mode menu item 111

[Exit] Profile Mode menu item 111
[Reset] Profile Mode menu item 111

Profile mode options 110
Peek Modes 193

Show System Modifications Command 285
Modifier Key Conventions 1

Show Monitored Locations Command 281
Monitor Variable Command 247
Mouse 66

Entering Zmacs with the Mouse 66
Scrolling with the Mouse 212

The Mouse 9
Using the Mouse 28

Mouse-Left 27
The Mouse and Menus 1 0

Using the Mouse and the Keyboard on Menus 29
Mouse buttons 9

Overview of Debugger Mouse Capabilities 202
Mouse clicks 9

Initialize Mouse Command 242
Mouse Command Conventions 2
Mouse Cursor Shape 211
Mouse Documentation Line 7, 77

Quick Summary of Mouse Functions 211
Mouse Gestures on Dynamic Windows 211
Mouse-sensitivity 10

Using the mouse to enter Zmacs 66
Using the mouse to scroll the message window 80

Cursor movement commands 68
Moving 13
Moving Around Zmail Messages 83

Description of Moving the Cursor 68
Summary of Moving the Cursor 68

Multiple Document Examiner viewers 55

N
Network (N) 195

Request for Nlongs failed. 144
Funct i on-Specs-to-Edi t- n buffer 66

Documentation topic name 43, 44
Private document name 61

aualified name 169
Supplying a Command Name 35

N

July 1986

Censoring Fields for IIspm-flnger and name Services 109
Globally named objects 169

Why Do You Name Machines and Printers? 140
Names and Namespaces 1 69
Names of commands 72

Updating the Namespace Database 171
Namespace global-name 168
Namespace object 167

Creating a New Namespace Object 173
Editing a Namespace Object 172

Edit Namespace Object Command 235
Show Namespace Object Command 281

Namespace pair 168
Namespaces 169

Names and Namespaces 169
Namespace set 168

Introduction to the Namespace System 167
Understanding Networks and the Namespace System 167

Namespace System Attributes 168
Data Types of Namespace System Attributes 168

Namespace System Classes 167
Namespace token 1 68
Namespace triple 168

Mapping names to objects 169
netl:*flnger-flelds-to-suppress* variable 110
neti:*finger-fields-to-suppress-for-untrusted­

hosts* variable 110
Connecting to a Remote Host Over the Network 170

NETWORK Key 221
NETWORK X command 170

Disable Network Command 234
Enable Network Command 236
Reset Network Command 249

sys: network-error flavor 177
Network (N) 195
Network object 167

. Networks 169
Understanding Networks and the Namespace System 167

Init File Form: Setting Find File Not to Create New Files 103
Getting new mail 80

Creating a New Namespace Object 173
Next Page 68
Next Screen 68
[Next] Zmail menu item 83
Nicknames 169

Key with No Function 225
Nonincremental garbage collection 157

Documentation Notation Conventions 1

323

Index

Notation Conventions for Flavors, Flavor Operations,
and Init Options 177

Notation Conventions for Functions 175
Notation Conventions for Lisp Objects 175
Notation Conventions for Macros and Special

Forms 176
Notation Conventions for Variables 178
Notation Conventions Quick Reference 1

Keys Not Currently Used 225
Show Legal Notice Command 278

FUNCT I ON Key: Selection and Notification Commands 218
Show Notifications Command 282

chaos: notify-local-lIspms function 91

324

User's Guide to Symbolics Computers July 1986

Init File Form: Setting Find File Not to Create New Files 103
Nullifying prefixes 70

Serial Number 279
Numeric arguments 72

Using Numeric Arguments for Yanking 137

000
FUNCTION 0 217

Creating a New Namespace Object 173
Editing a Namespace Object 172

Host object 167
Namespace object 167

Network object 167
Printer object 167

Site object 167
User object 167

Edit Namespace Object Command 235
Show Object Command 282

Show Namespace Object Command 281
Documentation object record 43

Dynamic objects 157
Ephemeral objects 157

Globally named objects 169
Good objects 157

Mapping names to objects 169
Notation Conventions for Lisp Objects 175

Static objects 157
Obsolete Terms 138

Turning the Command Processor on and Off 40
Turning off Converse messages 91

Online documentation for commands 72
Online documentation for prefixes 72

Using the Online Documentation System 43
Buffer Operations 208

Character Operations 208
Line Operations 209

Paragraph Operations 209
Region Operations 21 0
Screen Operations 209

Sentence Operations 209
Window Operations 21 0

Word Operations 208
Notation Conventions for Flavors, Flavor Operations, and Init Options 177

Show Flavor Operations Command 274
Optimize World Command 248

:bottom init option for tv:sheet 178
Notation Conventions for Flavors, Flavor Operations, and Inlt

Options 177
Profile mode options 110

Set gc options 157
Setting and Saving Zmail Options 111

Set GC Options Command 255
Set Screen Options Command 258

Set Window Options Command 262
User options window 111

:Examine-file Option to Zwei:preload-zmail 98
:Find-file Option to Zwei:preload-zmail 98

Init File Form: Ordering Buffer Lists 102
Retrieve element at origin 137

Completion in Other Contexts 116

325

July 1986 Index

p

Other Hardcopy Commands 152
Talking to Other Users 87

Cold boot after logging out 17
Logging Out 17

Zmacs Commands for Finding Out About Flavors 119
Lisp Facilities for Finding Out About Lisp 120

Zmacs Commands for Finding Out About Lisp 118
Zmacs Commands for Finding Out About the State of Buffers 118
Zmacs Commands for Finding Out About the State of Zmacs 118

Overview of Finding Out About Zmacs Commands 71
Finding Out About Zmacs Commands with HELP 71

Why Can't I Write Out Files When I Have Free Disk Space? 141
Getting Out of Keystroke Prefixes 70
Getting Out of Minibuffer Prompts 70
Getting Out of Prefixes and Prompts 69
Getting Out of Trouble 69

Overview of Getting Out of Trouble 69
Saving output 191

zl :gc-status Output 158
Set Output Base Command 257

Using Your Output History 27
Clear Output History Command 228
Copy Output History Into Editor Command 231 .

Looking Back Over Your Output (Scrolling) 25
How to Get Output to a Printer 147

Trying Out the Command Processor 22
Finding Out What an Extended Command Does 72
Finding Out What a Prefix Command Does 72

Example of Finding Out What a Zmacs Command Does 72
Finding Out What a Zmacs Command Does 71
Finding Out What You Have Typed 73

Documentation overview 44, 52
Show Overview 52

Show Documentation (an Overview) 46
Overview of Debugger Commands 200
Overview of Debugger Evaluation Environment 201
Overview of Debugger Help Facilities 202
Overview of Debugger Mouse Capabilities 202
Overview of Finding Out About Zmacs Commands 71
Overview of Getting Out of Trouble 69

p

Overview of Peek 192
Overview of Symbolics Computers 1
Overview of the Command Processor 33
Overview of the Debugger 197
Overview of Zmacs 65

Processes (P) 193
P Dired command 151

Init File Form: Putting Buffers Into Current Package 103
Set Package Command 258

Hardware Packaging 3
Next Page 68

Previous Page 68
PAGE Key 222

Add Paging File Command 227
Dotted pair 138

Namespace pair 168
Document Examiner Command Pane 59
Document Examiner Command Pane Actions 59

p

326

User's Guide to Symbolics Computers July 1986

Backward Paragraph 68
Forward Paragraph 68

Paragraph Operations 209
Adjusting Console Parameters 96

Parentheses 176
Parts of a Command 33

Load Patches Command 244
What is a Logical Path name? 139

Pathname history 136
Overview of Peek 192

Using Peek 192
Set sleep time between updates Peek command 192

Peek Modes 193
Personal default styles 109
Poking Around in the Usp World 183

Converse Pop-up Message Window 89
Supplying Positional Arguments to a Command 36

Powering Down 18
Powering up 15
Prefix character commands 67

Finding Out What a Prefix Command Does 72
Prefix Commands 72
Prefixes 70

Getting Out of Keystroke Prefixes 70
Nullifying prefixes 70

Online documentation for prefixes 72
Getting Out of Prefixes and Prompts 69

zwel: preload-zmall function 98
Pretty-printing 187

Displaying previous keystrokes 73
Previous Page 68
Previous Screen 68
[Previous] Zmail menu item 83
Primary mail file 80
prin1 variable 178
Principles of Garbage Collection 157

Changing the Default Printer 152
Default printer 108

How to Get Output to a Printer 147
Halt Printer Command 154, 239

Reset Printer Command 155, 249
Set Printer Command 152, 258

Start Printer Command 155
Printer commands 147

Show Printer Defaults Command 152, 283
Default printer for screen copies 108

Printer object 167
Delete Printer Request Command 153, 234

Restart Printer Request Command 153, 250
Printers 169

Why Do You Name Machines and Printers? 140
Show Printer Status Command 153, 283
Show Printer Status (m-X) Zmail Command 151

Printing and Hardcopy Commands 147
Printing mail 150
Printing messages 150

zl: print-notifications function 189
Formatted print of function definitions 187

Printout 147
print-sends function 92, 189

Managing the Print Spooler Queue 153

July 1986

[Private] 59
Hardcopy Private Document 54,61,62

Load Private Document 61, 62
Read Private Document 61, 62
Save Private Document 61, 62

Private document name 61
,Document Examiner Private Documents 61

[Private (M)) 59
[Private (R)] 59

Recovery Procedures 143
Display status of active processes 192

Processes (P) 193
Logging in Without Processing Your Init File 110

Completion in the Command Processor 39
Customizing the Command Processor 98

Error Handling in the Command Processor 40
Hardcopying From the Command Processor 147

Help in the Command Processor 38

327

Index

Lookup Commands Available in the Document Examiner, Editor, and Command
Processor 46

Overview of the Command Processor 33
Trying Out the Command Processor 22

Set Command Processor Command 254
Dictionary of Command Processor Commands 227
Some Useful Command Processor Commands 24

Calling Command Processor Commands From Your Init File 101
Customizing Command Processor Display 101

:command-only command processor mode 99
:command-preferred command processor mode 99

:form-only command processor mode 99
:form-preferred command processor mode 99

Setting the Command Processor Mode 99
Turning the Command Processor on and Off 40
Setting the Command Processor Prompt 100, 255

Setting Command Processor Special Characters 100
Show Command Processor Status Command 263

Process State 8
Commands for Producing Hardcopy 147

Zmail Profile 111
Profile mode 11 0, 111

Using Zmail Profile Mode 111
[Default] Profile Mode menu item 111

[Exit] Profile Mode menu item 111
[Reset] Profile Mode menu item 111

Profile mode options 110
[Profile] Zmail command 110
[Profile] Zmail menu item 110

Supdup program 170
Telnet program 170

Using the Terminal Program 170
Write a breakpoint into a program 188

Setting the Command Processor Prompt 100, 255
To: prompt 79
cp: *prompt* variable 100

Escaping from prompts 70
Getting Out of Minibuffer Prompts 70

Getting Out of Prefixes and Prompts 69
Minibuffer Prompts 70

Set File Properties Command 255
Topics Pruned From the Documentation Database 45

Displaying pruned topics 45

328

User's Guide to Symbolics Computers July 1986

Q

R

Pruning the documentation database 45
Useful Customizations to Put in Your Init File 96

Init File Form: Putting Buffers Into Current Package 103

Q Q
FUNCTION Q 108,151,217

zl: qreply function 92
zl: qsend macro 92, 181

zwel: qsends-off function 91
zwel: qsends-on function 91

Qualified name 169
Questions About the FEP and LMFS 141

Answering Questions the System Asks 139
Questions Users Commonly Ask 139

Managing the Print Spooler Queue 153
Quick Reference 207

Notation Conventions Quick Reference 1
Quick Summary of Mouse Functions 211

Help and Quit 196
Quitting Hostat 190

R R
[Find (R)] 59

[Private (R)] 59
[Show (R)] 59

[Viewer (R)] 59
[Find (R)] Document Examiner menu item 47

[Show (R)] Document Examiner menu item 49
Lisp Reader 138

Read-eval-print loop 178
What to Do After Reading a Zmail Message 83

Reading Your Mail 80
Read Private Document 61, 62

zl: read table variable 188
Down Real Line 68

Up Real Line 68
Init File Form: Setting Goal Column for Real Line Commands 103

Sending and Receiving Messages and Mail 77
Message recipients 79

Documentation record 43
Documentation concept record 43

Documentation object record 43
Recovering 143
Recovering From a Stuck Document Examiner 45
Recovering From Errors and Stuck States 143

Introduction: Recovering From Errors and Stuck States 143
The Debugger: Recovering From Errors and Stuck States 144

FUNCT I ON Key: Recovering From Stuck States 219
Error recovery 69

Recovery Procedures 143
Reexecuting yanked forms 136

Notation Conventions Quick Reference 1
Quick Reference 207

Reference Description of Help Functions 120
FUNCTION REFRESH 217

REFRESH Key 222
Regenerate Buffer (m-X) Converse Command 91
Region Operations 210

329

July 1986 Index

s

Reinitializing Zmacs 66, 180
Connecting to a Remote Host Over the Network 170

Remove Viewer 57
Rename Commands 248
Rename File Command 248
REPEA T Key 222

Search and Replace 210
Replace history 136

Zmail: Reply 84
Replying to Mail 84

Sending and Replying to Messages with Converse 87
Reply mode 84

All reply mode 84
Sender reply mode 84

[Reply] Zmail menu item 84
Host status report 190

Report Bug Command 248
Reporting a bug 181
Repositioning Text in the Document Examiner 60
Reprint messages 92, 189

Delete Printer Request Command 153, 234
Restart Printer Request Command 153, 250

Request for N longs fail ed. 144
Keys Reserved for the User 9, 225

Reset Commands 249
Resetbutton 144
Reset command 144
Reset Network Command 249
Reset Printer Command 155, 249
[Reset] Profile Mode menu item 111
Resetting the FEP 144

Cancel response 70
Restart Commands 250
Restart Printer Request Command 153, 250
Restoring messages to mail buffer 83
Restoring text 70
RESUME Key 223
Retrieve element at origin 137

Carriage return 67
RETURN completion command 73
RETURN Key 223
Reusing Commands 26

Finding the right command 73
FUNCTION RUBOUT 217

RUBOUT Key 223
RUBOUT Zmacs command 70

Search rules 169
Run Bars 8

[Keywords (R)] Zmail Menu Item 86

S
FUNCTION S 218

Servers (S) 195
s-R 27
s-W 28
sage:load-Index-Info function 46
Save Commands 250

zwe!: save-all-files function 179
Save File Buffers Command 250
Save Mail Buffers Command 250

s

330

User's Guide to Symbolics Computers July 1986

Save Private Document 61, 62
Save World Command 251
[Save] Zmail menu item 84, 111
Saving output 191
Saving terminal interactions in file 191
Saving the Mail File 84

Setting and Saving Zmail Options 111
Screen 7,8

Hardcopying the Screen 151
Next Screen 68

Previous Screen 68
The Screen 7

Screen brightness 220
tv: screen-brightness function 97

Screen contrast 220
Default printer for screen copies 108

tv: *screen-dlmness-percent* variable 97
Screen Operations 209

Set Screen Options Command 258
SCROLL 27,60
SCROLL Key 223
SCROLL Zmacs command 68
Scrolling 10

Looking Back Over Your Output (Scrolling) 25
Scrolling a Zmail Message 82
Scrolling summary window 83
Scrolling with the Mouse 212

Using the mouse to scroll the message window 80
Search and Replace 210
Searching for Appropriate Commands 73
Searching for Appropriate Zmacs Commands 72

Method for Searching for Appropriate Zmacs Commands 73
Search rules 169

Example of a Search String for HELP A 73
Help: See ... 117

[Select] 59
SELECT C command 87
Select Commands 251
SELECT 0 43
SELECT E 65

Entering Zmacs with SELECT E 65
SELECT HELP 113,220
SELECT I 206
SELECT Key 13, 22, 224
SELECT H command 77
SELECT T key 170
Select Activity Command 251
Select Candidate List 51, 57
[Select] Document Examiner menu item 51
Selecting and Creating Windows 13

Introduction: Selecting and Creating Windows 13
Selecting messages 83

FUNCT I ON Key: Selection and Notification Commands 218
Select Viewer 57
Send Commands 251
Sender reply mode 84
Sending and Receiving Messages and Mail 77
Sending and Replying to Messages with

Converse 87
Sending interactive messages 87
Sending message to all Lisp Machines at site 91

July 1986

Sending message to another user 92, 181
Sending Your Mail 79
Send mail 180
Send Mail Command 251
Send Message Command 252

Backward Sentence 68
Sentence Operations 209
Serial Number 279
Servers (S) 195

LOGIN service 170
Censoring Fields for IIspm-flnger and nama Services 1 09

Disable Services Command 234
Enable Services Command 236

Show Disabled Services Command 264
Namespace set 168

Set Commands 252
sl: set-auto-repeat-p function 97

Set Base Command 252
Set Breakpoint Command 253
Set Calendar Clock Command 254
Set Command Processor Command 254

hardcopy: set-default-bitmap-printer function 108
hardcopy: set-default-text-printer function 108

Set File Properties Command 255
Set gc options 157
Set GC Options Command 255
Set Input Base Command 257
Set Lisp Context Command 257
Set Output Base Command 257
Set Package Command 258
Set Printer Command 152, 258
setq special form 94

zl: setq-globally special form 95
Set Screen Options Command 258
Set Site Command 259

331

Index

Set sleep time between updates Peek command 192
Set Stack Size Command 261
Set Time Command 261
Setting and Saving Zmail Options 111
Setting Command Processor Special Characters 100

Init File Form: Setting Default Major Mode 103
Setting Editor Variables in Init Files 102

Init File Form: Setting Find File Not to Create New Files 103
Init File Form: Setting Goal Column for Real Line Commands 103

Setting Key Bindings in Init Files 103
Setting Mode Hooks in Init Files 104

Base and Syntax Default Settings for Lisp 75
Setting the Command Processor Mode 99
Setting the Command Processor Prompt 100, 255
Set Variable (m-X) command 105
Set Window Options Command 262
S-expression 138
sh-Mouse-Left 27

Mouse Cursor Shape 211
:bottom init option for tv: sheet 178

:clear-window method of tv: sheet 177
Shift keys 67

Init File Form: Electric Shift Lock in Lisp Mode 105
[Show] 59
Show Commands 263
Show Command Processor Status Command 263

332

User's Guide to Symbolics Computers July 1986

Show Directory Command 263
Show Disabled Services Command 264
Show Documentation (an Overview) 46
Show Documentation Command 264
[Show] Document Examiner menu item 46
Show Expanded Lisp Code Command 264
Show Expanded Mailing List Command 265
Show FEP Directory Command 266
Show File Command 266
Show Flavor Commands 266
Show Flavor Components Command 267
Show Flavor Dependents Command 268
Show Flavor Differences Command 269
Show Flavor Functions Command 275
Show Flavor Handler Command 270
Show Flavor Initializations Command 272
Show Flavor Instance Variables Command 273
Show Flavor Methods Command 274
Show Flavor Operations Command 274
Show Font Command 276
Show GC Status Command 277
Show Generic Function Command 276
Show Herald Command 277
Show Hosts Command 277
Showing attributes of flavors 266
Showing attributes of generic functions 266
Showing attributes of methods 266
Show Legal Notice Command 278
Show Lisp Context Command 278

sl: show-login-history function 189
Show Login History Command 189, 279
[Show (M)] 59
Show Machine Configuration Command 279
Show Mail Command 280
[Show (M)] Document Examiner menu item 52
Show Monitored Locations Command 281
Show Namespace Object Command 281
Show Notifications Command 282
Show Object Command 282
Show Overview 52
Show Printer Defaults Command 152, 283
Show Printer Status Command 153, 283
Show Printer Status (m-X) Zmail Command 151
[Show (R)] 59
[Show (R)] Document Examiner menu item 49
Show Source Code Command 283
Show System Definition Command 284
Show System Modifications Command 285
Show Users Command 286
sl :compress-who-calls-database function 184
sl:enable-who-calls function 184
sl :Inltlal-readtable variable 188
sl:*kbd-auto-repeat-enabled-p* variable 96
sl :*kbd-auto-repeat-Inltlal-delay* variable 97
sl:*kbd-repeat-key-enabled-p* variable 222
sl:*kbd-repeat-key-initial-delay* variable 223
sl:*kbd-repetition-Interval* variable 223
sl:lIsp-top-level function 178
sl:lisp-top-leveI1 function 178
sl:set-auto-repeat-p function 97
sl:show-Iogln-hlstory function 189

333

July 1986 Index

sl:who-calls-unbound-functlons function 184
sl:prlnt-Iogln-hlstory 189

Sending message to all Usp Machines at site 91
Set Site Command 259

Site object 167
Sites 169

List the last sixty commands 73
List the last sixty keystrokes 73

Set Stack Size Command 261
Set sleep time between updates Peek command 192

Some Useful Command Processor Commands 24
Some Utility Functions 179

Show Source Code Command 283
Editing the source code of a function 66, 180

SPACE 73
Static space 157

SPACE completion command 73
Why Can't I Write Out Files When I Have Free Disk Space? 141

Init File Form: Fixing White Space for KilVYank Commands 103
Init File Form: White Space in Lisp Code 103

Setting Command Processor Special Characters 100
:speclal-command-p compatible message to dbg: speclal-command-p 178

:speclal-command-p compatible message to
dbg :speclal-command-p 178

dbg: speclal-command-p generic function 178
grlndef special form 187

login-forms special form 95
setq special form 94

zl:break special form 188
zl:setq-globally special form 95

zl:sstatus special form 192
zl:status special form 191

Notation Conventions for Macros and Special Forms 176
Index of Special Function Keys 215

Introduction: Index of Special Function Keys 215
Managing the Print Spooler Queue 153

SQUARE key 9, 225
Init File Form: c-m-L on the SQUARE Key 104

Square brackets 176
zI:status and zl: sstatus 191

zl: sstatus special form 192
Set Stack Size Command 261

Start Commands 287
Start GC Command 159, 287
Start GC :Ephemeral 157
Starting up 15
Starting up Zmail 77
Starting up Zmail in the Background 98
Starting Zmacs 65
Start Printer Command 155

Process State 8
Zmacs Commands for Finding Out About the State of Buffers 118
Zmacs Commands for Finding Out About the State of Zmacs 118

FUNCTION Key: Recovering From Stuck States 219
Introduction: Recovering From Errors and Stuck States 143

Recovering From Errors and Stuck States 143
The Debugger: Recovering From Errors and Stuck States 144

Static objects 157
Static space 157

Host Status 190,277
System status 192

334

User's Guide to Symbo/lcs Computers July 1986

zl: status and zl:sstatus 191
zl: status special form 191

Show Command Processor Status Command 263
Show GC Status Command 277

Show Printer Status Command 153, 283
Status Line 7

Show Printer Status (m-X) Zmail Command 151
Display status of active processes 192
Display status of areas 192
Display status of file system display 192
Display status of hostat 192
Display status of window area 192

Host status report 190
Example of a Search String for HELP A 73

Recovering From a Stuck Document Examiner 45
FUNCT I ON Key: Recovering From Stuck States 219

Introduction: Recovering From Errors and Stuck States 143
Recovering From Errors and Stuck States 143

The Debugger: Recovering From Errors and Stuck States 144
What is a Character Style? 161

Default Character Styles 161
Merging Character Styles 161

Personal default styles 109
Understanding Character Styles 161

Character Styles and the Lisp Listener 163
Using Character Styles in Hardcopy 165
Using Character Styles in the Input Editor 162
Using Character Styles in Zmail 164

Subject field 79
Find Initial Substring Candidates 48

Summary of Getting Acquainted with Genera 31
Summary of Help Functions in Different Contexts 117

Quick Summary of Mouse Functions 211
Summary of Moving the Cursor 68
Summary window 80

Scrolling summary window 83
Zmail Summary Window 77

Supdup program 170
Supplying a Command Name 35
Supplying Keywords and Values for a Command 37
Supplying Positional Arguments to a Command 36
SUSPEND 224

FUNCTION SUSPEND 219
SUSPEND Key 224
sy-HELP 113, 220
SYMBOL Key 225

Find Symbol Command 237
Introduction to the Symbolics 3600 Family of Computers 3

Overview of Symbolics Computers 1
Base and Syntax Default Settings for Lisp 75

sys:*break-blndlngs* variable 188
sys:console-volume function 98
sys:lIsp-relnltlalize function 178
sys:network-error flavor 177

Hardcopy system 147
Introduction to the Namespace System 167

Understanding Networks and the Namespace System 167
Using the Online Documentation System 43

Answering Questions the System Asks 139
Data Types of Namespace System Attributes 168

Namespace System Attributes 168

335

July 1986 Index

T

Namespace System Classes 167
Compile System Command 229

Load System Command 245
System Conventions and Helpful Hints 138

Show System Definition Command 284
Display status of file system display 192

Hardcopying From the File System Editor 152
File System (F) 195

System Menu 13
Hardcopying From the System Menu 149

[Inspect] in System menu 206
Using the System Menu 18

Show System Modifications Command 285
System status 192

T T
FUNCTION T 218

SELECT T key 170
TAB Key 225

Find Table of Contents 49
Tagging Zmail Messages with Keywords 85
Talking to Other Users 87
Teach Zmacs 27
Telnet program 170

Saving terminal interactions in file 191
Using the Terminal Program 170
Obsolete Terms 138
Restoring text 70

Getting Text Back 70
Repositioning Text in the Document Examiner 60

Init File Form: Auto Fill in Text Mode 105
Set sleep time between updates Peek command 192
Initialize Time Command 242

Set Time Command 261
To field 79

Namespace token 168
Tools for Lisp Debugging 197

Beginning of Topic 60, 61
End of Topic 60, 61

Documentation topic name 43,44
Displaying pruned topics 45

Topics Pruned From the Documentation Database 45
Documentation topic type 43, 44

Abort At Top Level 70
The Lisp Top Level 178

Top-level loop 178
To: prompt 79
TRIANGLE key 9,225 .'_

Namespace triple 168
Getting Out of Trouble 69

Overview of Getting Out of Trouble 69
Trying Out the Command Processor 22
Turning off Converse messages 91
Turning on Converse messages 91
Turning the Command Processor on and Off 40

Zmail Tutorial Introduction 77
tv:*dim-screen-after-n-mlnutes-idle* variable 97
tv:screen-brlghtness function 97
tv:*screen-dlmness-percent* variable 97

:bottom init option for tv:sheet 178

336

User's Guide to Symbolics Computers July 1986

u

v

:clear-wlndow method of tv:sheet 177
:tyo message 177

Documentation topic type 43, 44
Finding Out What You Have Typed 73

cp:: *typeout-default* variable 101
Typeout window 71

Interaction with Completion and Typeout Windows 113
Typeout Windows In Zmacs 117
Types of Histories ".'36

Data Types of Namespace System Attributes 168
Typing Commands 22

u

Deleting and

Hardware Main

Powering
Starting

Set sleep time between

Looking

zl-user:
Starting
Starting

Keys Not Currently
Some

Keys Reserved for the
Sending message to another

Talking to Other
Show

Questions

Some

V

Undelete Commands 288
Undelete File Command 288
[Undelete] Zmall menu Item 83
Undeleting Zmail Messages 83
Understanding Character Styles 161
Understanding Networks and the Namespace

System 167
Unit 4
Unmentioned Default 33
Un monitor Variable Command 287
up 15
up 15
updates Peek command 192
Updating the Namespace Database 171
up Documentation 44
Up Real Une 68
uptime function 190
up Zmail 77
up Zmail in the Background 98
Used 225
Useful Command Processor Commands 24
Useful Customizations to Put in Your Init File 96
User 9,225
user 92, 181
User object 167
User options window 111
Users 169
Users 87
Users Command 286
Users Commonly Ask 139
Utility Functions 189
Utility Functions 179

Attribute value 168
Supplying Keywords and Values for a Command 37

* variable 187
** variable 187

*** variable 187
+ variable 187

++ variable 187
+++ variable 187

- variable 187
cp::*command-dlspatchers* variable 100

cp::*form-dlspatchers* variable 100

u

v

cp: :*typeout-default* variable 101
cp:*blank-line-mode* variable 101
cp:*dlspatch-mode* variable 99

cp:*prompt* variable 100
dbg:*debugger-blndlngs* variable 189

hardcopy:*default-bltmap-prlnter* variable 108
hardcopy:*default-text-prlnter* variable 108

hardcopy:*hardcopy-default-character-styles* variable 109
neti:*finger-fields-to-suppress* variable 110

netl:*flnger-fields-to-suppress-for-untrusted-hosts* variable 110
prln1 variable 178

sl:lnltlal-readtable variable 188

w

sl :*kbd-auto-repeat-enabled-p* variable 96
sl:*kbd-auto-repeat-Inltlal-delay* variable 97

sl:*kbd-repeat-key-enabled-p* variable 222
sl:*kbd-repeat-key-Inltlal-delay* variable 223

sl:*kbd-repetltlon-Interval* variable 223
sys:*break-blndlngs* variable 188

tv:*dlm-screen-after-n-mlnutes-Idle* variable 97
tv:*screen-dlmness-percent* variable 97

ll:/ variable 187
ll:readtable variable 188

zwel:*converse-append-p* variable 107
lwei :*converse-beep-count* variable 107

lwel:*converse-end-exlts* variable 107
lwei :*converse-mode* variable 106

lwel:*hlstory-menu-Iength* variable 105
lwei :*hlstory-rotate-If-numerlc-arg* variable 106, 137

lwei :*hlstory-yank-wraparound* variable 105
Monitor Variable Command 247

Unmonitor Variable Command 287
Set Variable (m-X) command 105

Converse variables 106
Identifying callers of variables 183

Notation Conventions for Variables 178
Show Flavor Instance Variables Command 273

Variables for Examining the Lisp World 186
Setting Editor Variables in Init Files 102

[Viewer] 59
Document Examiner Viewer 55

Hardcopy Viewer 54, 57
Remove Viewer 57

Select Viewer 57
[Viewer (M)) 59
[Viewer (R)) 59

Multiple Document Examiner viewers 55

W
FUNCTION W 219

Windows (W) 195

Finding Out
Finding Out

Example of Finding Out
Finding Out

Keywords for who-calls and

Wallpaper file 191
Warm Booting 145
What an Extended Command Does 72
What a Prefix Command Does 72
What a Zmacs Command Does 72
What a Zmacs Command Does 71
what-files-cali 183, 185
what-files-cali function 185
What is a Character Style? 161
What is a Logical Pathname? 139

337

w

338

User's Guide to Symbolics Computers

Checking on

Finding Out

Why Can't I Write Out Files

Init File Form: Fixing
Init File Form:
Keywords for

sl:
Find

Converse Pop-up Message
Delete contents of

Document Examiner
Erase

Headers
HELP Key in Any Zmacs Editing

Message
Scrolling summary

Summary
Typeout

User options
Using the mouse to scroll the message

Zmail Message
Zmail Summary
Display status of

Set
Default

Getting Acquainted with Dynamic
Interaction with Completion and Typeout

Introduction: Selecting and Creating
Mouse Gestures on Dynamic

Selecting and Creating
Typeout

Logging in
Backward

Forward
Find Whole

How the Inspector
A Brief Introduction to the Lisp

Poking Around in the Lisp
Variables for Examining the Lisp

Copy
Optimize

Save
What is a

Why Can't I

What is a World Load? 140
What is Customizing? 93
What the Machine is Doing 183

July 1986

What to Do After Reading a Zmail Message 83
What You Have Typed 73
When and How to Use the Garbage Collector 157
When I Have Free Disk Space? 141
where-Is function 185
White Space for KiIINank Commands 103
White Space in Lisp Code 103
who-calls and what-files-cali 183, 185
who-calls function 183
who-calls-unbound-functlons function 184
Whole Word Candidates 50
Why Can't I Write Out Files When I Have Free Disk

Space? 141
Why Do You Name Machines and Printers? 140
Window 89
window 177
Window 54
window 177
window 84
Window 114
window 84
window 83
window 80
window 71
window 111
window 80
Window 77
Window 77
window area 192
Window Operations 210
Window Options Command 262
Windows 13
Windows 26
Windows 113
Windows 13
Windows 211
Windows 13
Windows in Zmacs 117
Windows (W) 195
Without Processing Your Init File 110
Word 68
Word 68
Word Candidates 50
Word Operations 208
Works 204
World 175
World 183
World 186
World Command 231
World Command 248
World Command 251
World Load? 140
World load disk-saves 189
Write a breakpoint Into a program 188
Write Buffer (m-X) Converse Command 90
Write Conversation (m-X) Converse Command 90
Write File Zmacs command 75
Write Out Files When 1 Have Free Disk Space? 141

July 1986

x

y

z

Writing Files 208

X
NETWORK X command 170

y
c-m-Y yank command 137

c-Y yank command 137
m-Y yank command 137

Reexecuting yanked forms 136
c-m-Y Yank History 39

m-Y Yank History 39
Yanking 70

Histories and Yanking 135
Using Numeric Arguments for Yanking 137

c-U argument to yanking commands 137
Marking and Yanking Menu 28

Finding Out What You Have Typed 73
Why Do You Name Machines and Printers? 140

Calling Command Processor Commands From Your Init File 101
Logging in Without Processing Your Init File 110

Useful Customizations to Put in Your In it File 96
Editing Your Input 134

Reading Your Mail 80
Sending Your Mail 79

Using Your Output History 27
Looking Back Over Your Output (Scrolling) 25

z
zl:1 variable 187
zl:apropos function 185
zl:break special form 188
zl:bug function 181
zl:dlred function 180
zl :drlbble-end function 191
zl:drlbble-start function 191
zl:gc-status Output 158
zl:h ostat function 190
zl:mall function 180
zl :prlnt-notificatlons function 189
zl:qreply function 92
zl:qsend macro 92,181
zl :readtable variable 188
zl:setq-globally special form 95

zl :status and zl :sstatus 191
zl:sstatus special form 192
zl:status and zl:sstatus 191
zl:status special form 191
zl-user:uptlme function 190

Entering Zmacs 65
Hardcopying From Zmacs 149

Invoking Zmacs 65
Lookup Commands Available At a Lisp Listener and in Zmacs 53

Overview of Zmacs 65
Reinitializing Zmacs 66, 180

Starting Zmacs 65

339

Index

x

y

z

340

User's Guide to Symbolics Computers

Teach
Typeout Windows in

Using the mouse to enter
Zmacs Commands for Finding Out About the State of

ABORT
c-A
c-B
c-D
c-E
c-F
c-G
c-N
c-P
c-V

c-X B
c-X c-F
c-X c-W

c-X [
c-X]

Find File
Hardcopy Buffer (m-X)

Hardcopy File (m-X)
HELP A
HELP C
HELP D
HELP L

List Callers (m-X)
m-<
m->
m-A
m-B
m-F

m-SCROLL
m-V
m-[
m-]

RUBOUT
SCROLL

Write File
Example of Finding Out What a

Finding Out What a
Method for Searching for Appropriate

Overview of Finding Out About
Searching for Appropriate

Finding Out About

HELP Key in Any
Introduction to

Introduction to
Entering
Entering
Entering

Zmacs 27
Zmacs 117
Zmacs 66
Zmacs 118
Zmacs command 70
Zmacs command 68
Zmacs command 68
Zmacs command 70
Zmacs command 68
Zmacs command 68
Zmacs command 70
Zmacs command 68
Zmacs command 68
Zmacs command 68
Zmacs command 75
Zmacs command 75
Zmacs command 75
Zmacs command 68
Zmacs command 68
Zmacs command 75
Zmacs command 150
Zmacs command 150
Zmacs command 73
Zmacs command 72
Zmacs command 72
Zmacs command 73
Zmacs command 183
Zmacs command 68
Zmacs command' 68
Zmacs command 68
Zmacs command 68
Zmacs command 68
Zmacs command 68
Zmacs command 68
Zmacs command 68
Zmacs command 68
Zmacs command 70
Zmacs command 68
Zmacs command 75
Zmacs Command Does 72
Zmacs Command Does 71
Zmacs Commands 73
Zmacs Commands 71
Zmacs Commands 72

July 1986

Zmacs Commands for Finding Out About Flavors 119
Zmacs Commands for Finding Out About Lisp 118
Zmacs Commands for Finding Out About the State of

Buffers 118
Zmacs Commands for Finding Out About the State of

Zmacs 118
Zmacs Commands for Interacting with Lisp 119
Zmacs Commands with HELP 71
Zmacs Completion 115
Zmacs Customization in Init Files 102
Zmacs Editing Window 114
Zmacs Extended Commands 68
Zmacs Help Facilities 207
Zmacs Keystrokes 67
Zmacs with ad 66
Zmacs with SELECT E 65
Zmacs with the Mouse 66

341

July 1986 Index

Entering Zmacs with zweJ:edlt-functions 66
Customizing Zmail 110

Getting Fancy with Zmail 85
Hardcopying From Zmail 150

Starting up Zmail 71
Using Zmail 77

Using Character Styles In Zmail 164
Apropos (m-X) Zmail command 77

Format File (m-X) Zmail Command 151
G Zmail command 80

Hardcopy All (m-X) Zmail Command 150
Hardcopy File (m-X) Zmail Command 151

Hardcopy Message (m-X) Zmail Command 150
[Profile] Zmail command 110

Show Printer Status (m-X) Zmail Command 151
Zmail Command Menu 77
Zmail: Get Inbox 80

Starting up Zmail in the Background 98
Zmail Keywords 85
Zmail: Mail 79

[Delete] Zmail menu item 83
[Keywords (R)] Zmail Menu Item 86

[Mail] Zmail menu item 79
[Next] Zmail menu item 83

[Previous] Zmail menu item 83
[Profile] Zmail menu item 110
[Reply] Zmail menu item 84
[Save] Zmail menu item 84, 111

[Undelete] Zmail menu item 83
Scrolling a Zmail Message 82

What to Do After Reading a Zmail Message 83
Deleting and Undeleting Zmail Messages 83

Hardcopying Zmail Messages 150
Moving Around Zmail Messages 83

Tagging Zmail Messages with Keywords 85
Zmail Message Window 77
Zmail Mode Une 77

Setting and Saving Zmail Options 111
Zmail Profile 111

Using Zmail Profile Mode 111
Zmail: Reply 84
Zmail Summary Window 77
Zmail Tutorial Introduction 77
zwel:*converse-append-p* variable 107
zwel:*converse-beep-count* variable 107
zwel:*converse-end-exits* variable 107
zwel:*converse-gagged* 91
zwel:*converse-mode* variable 106

Entering Zmacs with zwel:edit-functlons 66
zwel:edlt-functlons function 66
zwel:*hlstory-menu-Iength* variable 105
zwel:*hlstory-rotate-If-numerlc-arg* variable 106,

137
zwel:*hlstory-yank-wraparound* variable 105
zwel :preload-zmall function 98
zwel:qsends-off function 91
zwel:qsends-on function 91
zwel :save-all-files function 179

Entering Zwei editor 180
:Examine-file Option to Zwei:preload-zmail 98

:Find-fiJe Option to Zwei:preload-zmail 98

342

User's Guide to Symbolics Computers July 1986

[[
c-X [Zmacs command 68

[

]]
c-X] Zmacs command 68

]

