User’S Guide to
Symbolics Computers

User's Guide to
Symbolics Computers

symbolics™

Cambridge, Massachusetts

User’s Guide to Symbolics Computers
#999017

July 1986

This document corresponds to Genera 7.0 and later releases.

The software, data, and information contained herein are proprietary to, and comprise
valuable trade secrets of, Symbolics, Inc. They are given in confidence by Symbolics
pursuant to a written license agreement, and may be used, copied, transmitted, and
stored only in accordance with the terms of such license. This document may not be
reproduced in whole or in part without the prior written consent of Symbolics, Inc.

Copyright © 1986, 1985 Symbolics, Inc. All Rights Reserved.
Portions of font library Copyright © 1984 Bitstream Inc. All Rights Reserved.
Portions Copyright © 1980 Massachusetts Institute of Technology. All Rights Reserved.

Symbolics, Symbolics 3600, Symbolics 3670, Symbolics 3675, Symbolics 3640,
Symbolics 3645, Symbolics 3610, Genera, Symbolics-LIsp®, Wheels, Symbolics
Common Lisp, Zetalisp®, Dynamic Windows, Document Examiner, Showcase,
SmartStore, SemantiCue, Frame-Up, Firewall, S-DYNAMICS®, S-GEOMETRY,
S-PAINT, S-RENDER®, MACSYMA, COMMON LISP MACSYMA, CL-MACSYMA,
LISP MACHINE MACSYMA, MACSYMA Newsletter and Your Next Step in

- Computing are trademarks of Symbolics, Inc.

UNIX is a trademark of AT&T Bell Laboratories.
VAX and VMS are trademarks of the Digital Equipment Corporation.

Restricted Rights Legend

Use, duplication, and disclosure by the Government are subject to restrictions as set
forth in subdivision (b)(3)(ii) of the Rights in Technical Data and Computer Software
Clause at FAR 52.227-7013.

Symbolics, Inc.

4 New England Tech Center
555 Virginia Road

Concord, MA 01742

Text written and produced on Symbolics 3600-family computers by the Documentation
Group of Symbolics, Inc.

Text masters produced on Symbolics 3600-family computers and printed on Symbolics
LGP2 Laser Graphics Printers.

Cover Design: Schafer/LaCasse

Printer: CSA Press

Printed in the United States of America.

Printing year and number: 8887 86987654321

i

July 1986

User's Guide to Symbolics Computers

Table of Contents

1. Overview of Symbolics Computers

1.1 Documentation Notation Conventions

1.1.1 Notation Conventions Quick Reference

1.2 Introduction to the Symbolics 3600 Family of Computers

13

1.2.1 Introduction

1.2.2 Packaging

1.2.3 Console

1.2.4 Main Unit

1.2.5 CPU

1.2.6 Caches

1.2.7 FPU

1.2.8 Memory

1.2.9 Input/Output

1.2.10 FEP

Introduction to Genera

1.3.1 The Console

1.3.2 The Screen

1.3.3 Mouse Documentation Line
1.3.4 Status Line

1.3.5 Process State

1.3.6 Run Bars

1.3.7 The Keyboard

1.3.8 The Mouse

1.3.9 The Mouse and Menus
1.3.10 Selecting and Creating Windows

2. Starting up

21
2.2
2.3
2.4
2.5

Powering up
Logging in
Logging Out
Powering Down
Getting Acquainted with Genera
2.,5.1 Using the System Menu
2.5.2 Trying Out the Command Processor
2.5.3 Getting Acquainted with Dynamic Windows
2.5.4 What You Have Learned

Page

O 0 WPWJIJI TN IO WWWEREKFH =

=
W o

15

15
17
17
18
18
18
22
26
31

iv

User’s Guide to Symbolics Computers

3. Communicating with Genera

3.1

Overview of the Command Processor

3.2 Parts of a Command

3.3

Entering Commands
3.3.1 Entering a Command
3.3.2 Editing a Command
3.3.3 Help in the Command Processor
3.3.4 Completion in the Command Processor

3.4 Command History

3.5
3.6

Error Handling in the Command Processor
Turning the Command Processor on and Off

4. Using the Online Documentation System

41
4.2
4.3
44
4.5

4.6
4.7

Introduction to the Document Examiner
Looking up Documentation
Documentation Lookup Commands
Documentation Hardcopy Commands
Document Examiner Window

4.5.1 Document Examiner Viewer

4.5.2 Document Examiner List of Current Candidates

4.5.3 Document Examiner List of Bookmarks

4.5.4 Document Examiner Command Pane
Repositioning Text in the Document Examiner
Document Examiner Private Documents

5. Creating and Manipulating Files

51
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

Overview

Entering Zmacs with SELECT E

Entering Zmacs with the Mouse
Entering Zmacs with ed

Entering Zmacs with zwei:edit-functions
Keystrokes

Extended Commands

Description of Moving the Cursor
Summary of Moving the Cursor

5.10 Getting Out of Trouble

5.10.1 Overview of Getting Out of Trouble
5.10.2 Getting Out of Prefixes and Prompts
5.10.3 Large Deletions

5.11 Overview of Finding Out About Zmacs Commands
5.12 Finding Out About Zmacs Commands with HELP

July 1986

33

33
33
34
34
38
38
39
39
40
40

43

43
44
46
54
54
55
57
58
59
60
61

65

65
65
66
66
66
67
68
68
68
69
69
69
70
71
7

14

July 1986

513

514

5.15
5.16
5.17

User’s Guide to Symbolics Computers

Finding Out What a Zmacs Command Does

5.13.1 Example

5.13.2 Finding Out What a Prefix Command Does

5.13.3 Finding Out What an Extended Command Does
Searching for Appropriate Zmacs Commands

5.14.1 Method for Searching for Appropriate Zmacs Commands
5.14.2 Example of a Search String for HELP A

Finding Out What You Have Typed

Creating a Buffer

Creating a File

6. Sending and Receiving Messages and Mail
6.1 Using Zmail

6.1.1 Introduction

6.1.2 Starting up Zmail

6.1.3 Sending Your Mail

6.1.4 Reading Your Mail

6.1.5 What to Do After Reading a Message
6.1.6 Getting Fancy with Zmail

6.2 Talking to Other Users

6.2.1 Introduction to Converse
6.2.2 Using Converse

7. Customizing Genera

7.1 What is Customizing?

7.2 Init Files

7.3 How to Create an Init File

7.4 TUseful Customizations to Put in Your Init File

7.4.1 Adjusting Console Parameters

7.4.2 Customizing the Command Processor

7.4.3 Calling Command Processor Commands From Your Init File
7.4.4 Zmacs Customization in Init Files

7.4.5 Customizing the Input Editor

7.4.6 Customizing Converse

7.4.7 Customizing Hardcopy Facilities

7.4.8 Censoring Fields for lispm-finger and name Services

7.5 Logging in Without Processing Your Init File
7.6 Customizing Zmail

8. Getting Help
8.1 HELP Key

71
72
72
72
72
73
73
73
74
75

77

77
77
77
79
80
83
85
87
87
87

93

93
93
96
96
96
98
101
102
105
106
108
109
110
110

113
113

vi

User's Guide to Symbolics Computers July 1986
8.2 Interaction with Completion and Typeout Windows 113
8.2.1 HELP Key in Any Zmacs Editing Window 114

8.2.2 Zmacs Completion 115

8.2.3 Completion in Other Contexts 116

8.2.4 Typeout Windows in Zmacs 117

8.2.5 FEP Command Completion 117

8.3 Summary of Help Functions in Different Contexts 17
8.3.1 Zmacs Commands for Finding Out About the State of 118

Buffers

8.3.2 Zmacs Commands for Finding Out About the State of Zmacs 118

8.3.3 Zmacs Commands for Finding Out About Lisp 118

8.3.4 Zmacs Commands for Finding Out About Flavors 119

8.3.5 Zmacs Commands for Interacting with Lisp 119

8.3.6 Lisp Facilities for Finding Out About Lisp 120

8.4 Reference Description of Help Functions 120
8.5 Editing Your Input 134
8.5.1 Input Editor Commands 135

8.5.2 Histories and Yanking 135

8.5.3 Types of Histories 136

8.5.4 Input Editor 136

8.5.5 The Displayed Default 137

8.5.6 Using Numeric Arguments for Yanking 137

8.6 System Conventions and Helpful Hints 138
8.6.1 Miscellaneous Conventions 138

8.6.2 Answering Questions the System Asks 139

8.6.3 Questions Users Commonly Ask 139

8.6.4 Questions About the FEP and LMFS 141

9. Recovering From Errors and Stuck States 143
9.1 Introduction 143
9.2 Recovery Procedures 143
9.3 The Debugger: Recovering From Errors and Stuck States 144
9.4 Resetting the FEP 144
9.5 Warm Booting 145
9.6 Halting 145
10. How to Get Output to a Printer 147
10.1 Introduction to the Hardcopy Facilities 147
10.2 Printing and Hardcopy Commands 147
10.2.1 Commands for Producing Hardcopy 147
10.2.2 Other Hardcopy Commands 152

vii

July 1986

11. When and How to Use the Garbage Collector

13.

14.

15.

11.1 Principles of Garbage Collection

Understanding Character Styles

12.1 Default Character Styles

12.2 Merging Character Styles

12.3 Using Character Styles in the Input Editor
12.4 Character Styles and the Lisp Listener
12.5 Using Character Styles in Zmail

12.6 Using Character Styles in Hardcopy

Understanding Networks and the Namespace System

13.1 Introduction to the Namespace System
13.1.1 Namespace System Classes
13.1.2 Namespace System Attributes
13.1.3 Data Types of Namespace System Attributes
13.1.4 Names and Namespaces
13.2 Connecting to a Remote Host Over the Network
13.3 Updating the Namespace Database
13.3.1 Editing a Namespace Object
13.3.2 Creating a New Namespace Object

A Brief Introduction to the Lisp World

14.1 Lisp Objects
14.1.1 Functions
14.1.2 Macros and Special Forms
14.1.3 Flavors, Flavor Operations, and Init Options
14.1.4 Variables
14.2 The Lisp Top Level
14.3 Logging in
14.4 Some Utility Functions

Checking on What the Machine is Doing

15.1 Poking Around in the Lisp World
15.1.1 Variables for Examining the Lisp World
15.2 Utility Functions
15.3 Dribble Files
15.4 zl:status and zl:sstatus
15.5 Using Peek
15.5.1 Overview of Peek
15.5.2 Peek Modes

User's Guide to Symbolics Computers

157
157

161

161
161
162
163
164
165

167

167
167
168
168
169
170
171
172
173

175

175
175
176
177
178
178
179
179

183

183
186
189
191
191
192
192
193

vii

User's Guide to Symbolics Computers

16. Tools for Lisp Debugging

17.

18.

19.

16.1 Overview of the Debugger

16.2
16.3
16.4

16.1.1 Overview of Debugger Commands

16.1.2 Overview of Debugger Evaluation Environment
16.1.3 Overview of Debugger Mouse Capabilities
16.1.4 Overview of Debugger Help Facilities

Flavor Examiner

How the Inspector Works

Entering and Leaving the Inspector

Quick Reference

17.1
17.2
17.3
17.4
17.5
17.6
17.7
17.8
17.9
17.10
17.11
17.12
17.13
17.14

General Help Facilities
Zmacs Help Facilities
Extended Commands
Writing Files

Buffer Operations
Character Operations
Word Operations

Line Operations
Sentence Operations
Paragraph Operations
Screen Operations
Region Operations
Window Operations
Search and Replace

Quick Summary of Mouse Functions

18.1
18.2
18.3

Mouse Cursor Shape
Mouse Gestures on Dynamic Windows
Scrolling with the Mouse

Index of Special Function Keys

19.1
19.2
19.3
19.4
19.5
19.6
19.7
19.8

Introduction

ABORT Key

BACKSPACE Key

CLEAR INPUT Key

COMPLETE Key

END Key

ESCAPE Key

FUNCTION Key

19.8.1 Display and Hardcopy Commands

July 1986

197

197
200
201
202
202
202
204
206

207

207
207
207
208
208
208
208
209
209
209
209
210
210
210

211

211
211
212

215

215
215
215.
216
216
216
216
216
217

ix

July 1986

20.

User's Guide to Symbolics Computers

19.8.2 Selection and Notification Commands 218

19.8.3 Recovering From Stuck States 219
19.9 HELP Key 220
19.10 LINE Key 220
19.11 LocAL Key 220
19.12 NETWORK Key 221
19.13 PAGE Key 222
19.14 REFRESH Key 222
19.15 REPERT Key 222
19.16 RESUME Key 223
19.17 RETURN Key 223
19.18 RUBOUT Key 223
19.19 SCROLL Key 223
19.20 SELECT Key 224
19.21 SUSPEND Key 224
19.22 syMBOL Key 295
19.23 TAB Key 225
19.24 Keys Not Currently Used 225
Dictionary of Command Processor Commands 227
20.1 Clear Commands 227
20.2 Compile Commands 228
20.3 Copy Commands 230
20.4 Create Commands 232
20.5 Delete Commands 233
20.6 Disable Commands 234
20.7 Edit Commands 234
20.8 Enable Commands 236
20.9 Expunge Commands 236
20.10 Find Commands 237
20.11 Halt Commands 238
20.12 Hardcopy Commands 240
20.13 Help Commands 241
20.14 Initialize Commands 242
20.15 Inspect Commands 243
20.16 Load Commands 244
20.17 Login and Logout Commands 246
20.18 Rename Commands 248
20.19 Reset Commands 249
20.20 Restart Commands 250
20.21 Save Commands 250
20.22 Select Commands 251

X

User's Guide to Symbolics Computers

20.23 Send Commands
20.24 Set Commands

20.24.1 Set Site Command

20.25 Show Commands

20.25.1 Show Flavor Commands

20.26 Start Commands
20.27 Undelete Commands

Index

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.

Figure 12.

Figure 13.
Figure 14.
Figure 15.

Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.

List of Figures

A Momentary Menu
A Choose-variable-values Menu
The Front Panel on a 3600
The Front Fanel on a 3670 or 3640
The System Menu
Positioning the Upper Left Corner of a New Window
Select Activity Command
Show Herald and its Keywords
Set Window Options Menu
Show Directory Command Menu
Document Examiner display of Show Overview of topic "Disk
Error Handling".
Top-level Display
Top-level Display with Mail File
Mail Mode Display (One-window Mode)
A Message about to be Sent
Mail Mode Display (Two-window Mode)
A Fresh Converse Window
A Converse Message About to be Sent
A Converse Conversation
Profile mode display
The Hardcopy Menu
Flavor Examiner Window
The Inspector

July 1986

251
252
259
263
266
2817
288

289

1
12
16
16
19
22
23
24
30
31
53

78
78
80
81
85
88
88
89
112
149
203
205

July 1986

1. Overview of Symbolics Computers

1.1 Documentation Notation Conventions

1.1.1 Notation Conventions Quick Reference
Modifier Key Conventions

Modifier keys are designed to be held down while pressing other keys. They do
not themselves transmit characters. A combined keystroke like META-¥ is
pronounced "meta x" and written as m-X. This notation means that you press the
META key and, while holding it down, press the X key.

Modifier keys are abbreviated as follows:

Key Abbreviation
CONTROL c-

METR mn-

SUPER s

HYPER h-

SHIFT sh-

SYMBOL sy~

Modifier keys can be used in combination, as well as singly. For example, the
notation e-n-Y indicates that you should hold down both the CONTROL and the META
keys while pressing ¥.

Modifier keys can also be used, both singly and in combination, to modify mouse
commands. For example, the notation sh-(L) means hold down the SHIFT key
while clicking left on the mouse and c-n-(M) means hold down CONTROL and META
while clicking middle.

The keys with white lettering (like ¥ or SELECT) all transmit characters.
Combinations of these keys should be pressed in sequence, one after the other (for
example, SELECT L). This notation means that you press the SELECT key, release it,
and then press the L key.

LOCAL is an exception to this rule. Despite its white lettering, you must hold it
down while pressing another key, or it has no effect. For example, to brighten the
image on your monitor, you would hold down LOCAL while pressing B.
Documentation Conventions

This documentation uses the following notation conventions:

2

User's Guide to Symbolics Computers July 1986

Appearance
cond, zl:hostat

RETURN, ABORT, c-F
SPACE
login

(make-symbol "foo")

Representing
Printed representation of Lisp objects in running text.

Keyboard keys.
Space bar.
Literal typein.

Lisp code examples.

(function-name argl &optional arg2)

argl

&optional
Show File, Start

Insert File (n—-¥)

[Map Over]
L), (R2)

Syntax description of the invocation of function-name.

Argument to the function function-name, usually
expressed as a word that reflects the type of
argument (for example, string).

Introduces optional argument(s)

Command Processor command names and command
names in Zmacs, Zmail, and the front-end processor
(FEP) appear with the initial letter of each word
capitalized.

Extended command names in Zmacs and Zmail. Use
mn-¥ to invoke one.

Menu items.
Mouse clicks: L=left, L2=sh-left, M=middle,
M2=sh-middle, R=right, R2=sh-right.

(sh-left means that you.press the SHIFT key while
holding down the left mouse button. You can achieve
the same result by clicking the button quickly twice.)

Mouse Command Conventions

The following conventions are used to represent mouse actions:

1. Square brackets delimit a menu item.

2. Slashes (/) separate the members of a compound mouse command.

3. The standard clicking pattern is as follows:

e For a single menu item, always click left. For example, the following
two commands are identical:

[Previous]
[Previous (L)]

July 1986

e For a compound command, always click right on each menu item (to
display a submenu) except the last, where you click left (to cause an
action to be performed). For example, the following two compound
commands are equivalent:

[Map Over / Move / Hardcopy]
[Map Over (R) / Move (R) / Hardcopy (L)]

4. When a command does not follow the standard clicking order, the notation
for the command shows explicitly which button to click. For example:

[Map Over / Move (M)]
[Previous (R)]

1.2 Introduction to the Symbolics 3600 Family of Computers

1.2.1 Introduétlon

The Symbolics family of advanced symbolic processing machines covers a full
range of symbolic processing power and functionality. The unique design of
Symbolics machines allows them to implement LISP and other symbolic
programming languages with both speed and efficiency. The machines are faster
and more efficient than other language specific machines and are superior to
conventional computers for applications ranging from artificial intelligence,
CAD/CAM, high resolution graphics, and expert system research and development
as well as many general-purpose applications. The power, speed, and flexibility of
Symbolics processing machines result from optimizing the hardware design to
match the the software environment. Some of the special architecture features
include :

Tagged architecture

Multiple caches

Hardware stack management
Pipelined instruction cycles

Parallel processing

Hardware assisted garbage collected
Fully ECC’ed system memory

1.2.2 Packaging

Members of the Symbolics family of advanced symbolic processing machines are
single-user machines. The larger machines can be powerful stand-alone work
stations or file or knowledge servers in networks, while the smaller versions are

4

User’s Guide to Symbolics Computers July 1986

suitable as delivery vehicles for previously developed applications. All of the
larger machines and some of the smaller machines are packaged as single-cabinet
main units plus a console. Many of the delivery vehicles are complete in one
desktop unit. Main units for the larger machines are desk-side size (30-inch and
55-inch cabinets) and the delivery vehicle machines fit under the average desk.
The console for all models is a desktop unit with a full size black and white CRT
and an extended keyboard.

1.2.3 Console

The high resolution, fully bit-mapped, black and white screen, the keyboard, and
the mouse together form the console.

The three button mouse is a graphic input device with an on screen pointer and
one or more screen text lines devoted to the mouse status. The mouse is used to
point to and select menu items, to mark regions of the screen, and in some
applications, to draw screen graphics.

The extended keyboard has eighty-eight keys divided into three sections: the
typewriter section, the modify section, and the function section. The standard
typewriter section of the keyboard contains the character keys. These keys are the
primary user interface the system. The action of any of the character keys is
changed by simultaneously holding down any of the modifying keys and the
character key. The third section of the keyboard contains the function keys.
Typing a function before typing some key combinations modifies the action of the
other keys.

The high resolution black and white screen can be replaced with any of a wide
selection of R-G-B color screens suited to particular applications.

1.2.4 Main Unit

The main unit of a Symbolics machine contains all of the electronics except the
audio and video circuits of the console. The major parts of the main unit are the
central processor and caches (CPU), the optional Floating Point Unit (FPU), the
main memory, the Input/Output controller, and the Front End Processor (FEP).

1.25 CPU

The proprietary central processor unit is the heart of all Symbolics machines.
Features that contribute to its power include : tagged architecture, multiple
caches, hardware stack pointers, pipelined instruction cycles, and parallel
processing.

Tagged architecture allows run-time data checking to catch invalid operations
before they occur. Data type checking is performed in parallel with instruction

July 1986

execution thus eliminating the need for extra microinstructions and other software
overhead.

The multiple caches used in the processor provide high speed access to the most
current data and instructions, provide fast translation of virtual addresses, and
allow efficient garbage collection.

Hardware stack pointers support high speed access to the stack and eliminate the
need to execute microinstructions for managing the stack. Special hardware
registers maintain top-of-stack and other stack addresses at all times to allow
speedy access.

Symbolics machines that have the Enhanced Performance Option (EPO), perform
three stage pipelined instruction cycles. An instruction fetched (first stage) from
the instruction cache is dispatched (second stage) to the microsequencer. In the
execute stage (third stage), the Instruction Fetch Unit supplies any necessary
immediate argument to the processor.

The processor suppoi'ts garbage collecting, run-time data-type checking, and
instruction fetching, decoding, and executing in parallel.

1.2.6 Caches

Symbolics processing machines include multiple caches. Major caches are the
Stack cache, the Memory Map cache, and the Instruction cache.

Symbolics processing machines are stack oriented machines with no general
registers. This means that instructions are executed out of the control stack.
The high-speed stack cache contains the top portion of the control stack and
several pages surrounding the current stack pointer. These pages are most likely
to contain the next referenced data object.

The Memory Map cache is a high speed 8K RAM located within the processor
(CPU). It cross references the virtual page number and the physical page
number.

The Instruction cache is part of the optional EPO. It is a 1 Kword cache that
stores 2048 instructions loaded from the prefetch part of the Instruction Fetch
Unit.

1.2.7 FPU

The Floating Point Unit is implemented in with a combination of NMOS VLSI and
Schottky TTL technology. It is compatible with IEEE standard 754 for binary
floating-point arithmetic. Because it works in parallel with the CPU, there is
never a wait state while transferring a numerical operand to the FPU.

6

User’s Guide to Symbolics Computers July 1986

1.2.8 Memory

The memory word on Symbolics machines includes at least 36 bits for data plus
Error Correction Code bits. The memory controller automatically corrects single-
bit errors and detects and reports double-bit errors.

The physical (main) memory can be as large as 28 MB and the full-paging virtual
memory is a maximum of 1 GBytes. The memory transfer rate can be as high as
5 Mwords /s. Some virtual memory is main memory and some resides on disk.
The hardware automatically swaps between main memory and the pages on disk.
A virtual address translates into a physical address through a hierarchy of
mapping tables, some of which are cached in high-speed memory on the processor.

Disk storage is on either fixed Winchester or removable disks with capacities of up
to 474 MB. The disk storage is expandable by adding expansion cabinets to hold
eight 474 MB disk drives increasing the total capacity to the maximum 3.8
GBytes.

1.2.9 Input/Output

Symbolics processing machines support high and low speed I/O. Low speed devices
such as the mouse, keyboard, cartridge tape, and serial lines are connected
through the FEP. ‘

One of the serial lines may be run synchronously and all of them can operate
asynchronously. There is always one serial line from the console. The
transmission rate of all serial lines is programmable up to 19.2 K baud.

Winchester disk drives are the mass storage medium for files and virtual memory
paging , the disk controller hardware is linked through the system memory bus to
the processor for high speed I/O.

1.2.10 FEP

The Front End Processor (FEP) is based on the MC68000 microprocessor chip
which some computer manufactures use as the Central Processor Unit for their
general purpose computers. Symbolics machines restrict the MC68000 to reducing
the workload of the proprietary central processor. The FEP takes care of the
initial bootstrapping of the machine and offloads low-speed peripheral I/O from the
CPU.

1.3 Introduction to Genera

The Symbolics software environment that runs on the Symbolics Family of
Computers is called Genera.

July 1986

1.3.1 The Console

The devices that are used to talk to Genera are collectively referred to as the
console. These include one or more bit-raster displays, a specially extended
keyboard, and pointing device called a mouse.

1.3.2 The Screen

The screen always contains one or more windows. Regardless of which windows
are displayed, the screen always contains some information displays, including a
mouse documentation line and a status line. These information displays are helpful
in determining whether Genera is operating normally or needs intervention. See
the section "Recovering From Errors and Stuck States", page 143.

1.3.3 Mouse Documentation Line

The mouse documentation lines contain information about what different mouse
clicks mean. As you move the mouse across different mouse-sensitive areas of the
screen, the mouse documentation lines change to reflect the changing commands
available,

When no documentation appears, it does not necessarily mean that the mouse
clicks are undefined. Not all programs have provided material for the mouse
documentation line. When the mouse documentation lines are blank at "top level"
in a window, the mouse usually offers some standard commands. Clicking
Mouse-Left selects a window. Clicking Mouse-Right often brings up a menu
specific to the application. Clicking sh-Mouse-Right brings up the System menu.

The mouse documentation lines are normally displayed enclosed in a box in
reverse video. Pressing FUNCTION m~-C complements the video state of the mouse
documentation line.

1.3.4 Status Line

The status line is the line of text at the bottom of the screen. It contains the
following information:

o Date and time

e Login name

e Current package

e Process state

¢ Run bars

e Other context-dependent information, such as
° Console idle time
° Network service indicators

8

User's Guide to Symbolics Computers July 1986

1.3.5 Process State

The process state refers to the processes associated with the selected window. See
the section "Selecting and Creating Windows", page 13. The following list shows
some common states:

State Meaning

Mouse Out Waiting for the mouse process to notice a change of windows.
Net In Waiting for data from another machine on the network.

Net Out Waiting to send data to another machine on the network.
Open Waiting to open a file on another machine on the network.
Run Process is running.

User Input Waiting for input from keyboard or mouse.

1.3.6 Run Bars

The run bars are thin horizontal lines near the process state in the status line. A
description of each one follows:

GC bar (under the package name)
Left half is visible when the scavenger is looking for references
to objects that are candidates to become garbage. Right half is
visible when the transporter is copying an object.

Disk bar Visible when the processor is waiting for the disk, typically
because of paging. Nonpaging disk I/O usually waits via
process-wait, in which case this bar does not appear.

Run bar (under the run/wait state)
Visible when a process is running and not waiting for the disk.
Not visible when the scheduler is looking for something to do.

Disk-save bar Visible when zl:disk-save is reading from the disk; zl:disk-save
alternatively reads and writes large batches of pages. The
alternating state of this bar tells you that zl:disk-save is
working while you wait for it.

1.3.7 The Keyboard

There are 88 keys on the keyboard. The keyboard has unlimited rollover, meaning
that a keystroke is sensed when the key is pressed, no matter what other keys are
depressed at the time.

The keys are divided into three groups: special function keys, character keys, and
modifier keys. Special function keys and character keys transmit something. They
have white labels on the tops and are typed in sequence. Modifier keys are

July 1986

intended to be held down while a function or character key is typed, to alter the
effect of the key. They have dark labels on the tops.

Function Keys
FUNCTION, ESCAPE, REFRESH, CLEAR INPUT, SUSPEND, RESUME, RBORT,
NETWORK, HELP, TARB, BRACKSPACE, PAGE, COMPLETE, SELECT, RUBOUT,
RETURN, LINE, END and SCROLL

Character Keys
abcdefghijklmnopgrstuvwuxy=zBl23456
789 :-=4*~] (03 ', . and the space bar.

Modifier Keys
LOCAL, CAPS LOCK, SYMBOL, SHIFT, REPEAT, MODE LOCK, HYPER, SUPER,
METAR, and CONTROL

The following keys are reserved for use by the user (for example, for custom
editor commands or keyboard macros):

CIRCLE
SQURRE
TRIRNGLE
HYPER

1.3.7.1 Auto-repeat

You can have keys repeat if they are held down. This feature is disabled by
default, but you can enable it by setting si:*kbd-auto-repeat-enabled-p* to t.

(setf si:xkbd-auto-repeat-enabled-px t)

The speed of repetition is controlled by si:*kbd-repetition-interval*. See the
variable si:*kbd-repetition-interval®*, page 223.

You can exempt certain keys from auto-repetition using the function
si:set-auto-repeat-p. For example, to make SQUARE one of the keys that do not
auto-repeat, you would type:

(si:set-auto-repeat-p #\Square nil)

See the function si:set-auto-repeat-p, page 97.

1.3.8 The Mouse

The mouse is a pointing device that can be moved around on a flat surface.
These motions are sensed by Genera, which usually responds by moving a cursor
around on the screen in a corresponding manner. The shape of the cursor varies,
depending on context.

There are three buttons on the mouse, called left, middle, and right. They are

10

User's Guide to Symbolics Computers July 1986

used to specify operations to be performed. Typically you point at something with
the mouse and specify an operation by clicking the mouse buttons. "Shift clicks",
indicated by sh-, are conventionally distinguished from single clicks. Holding
down the SHIFT key while clicking a button is the same as clicking that button
twice quickly. In any specific context, there are up to six operations that can be
performed with the mouse, invoked by Left, sh-Left, Middle, sh-Middle, Right, and
sh-Right clicks. Some of these operations are local to particular programs such as
the editor, and some are defined more widely across the system.

Typically the operations available by clicking the mouse buttons are listed at the
bottom of the screen. This display, called the mouse documentation line, changes
as you move the mouse around or run different programs.

Sometimes holding a mouse button down continuously for a period of time may
also be defined to perform some operation, for example, drawing a curve on the
screen. This will be indicated by the word "Hold". For example, "Middle Hold"
means to click the middle mouse button down and hold it down, releasing it only
when the operation is complete, "sh-Left Hold" means hold down the SHIFT key
and click left, then release the SHIFT key but hold the left button down until the
operation is complete.

1.3.9 The Mouse and Menus

1.3.9.1 Mouse-sensitivity

Parts of the screen can be mouse-sensitive; that is, clicking one of the mouse
buttons on these parts causes some action to occur. When the mouse cursor
moves over a portion of the screen that is mouse-sensitive, an outline box appears
around the item. Clicking on the boxed item in the manner specified in the
mouse documentation line causes the desired action to occur.

1.3.9.2 Scrolling

Many windows in the system respond to scrolling commands. Bump the mouse
against the left side of the pane until a scroll bar and double-headed pointer
appear.

The scroll bar, by its size and placement on the left side of the pane, indicates the
percentage of the pane or buffer contents that is currently visible on the screen.
For example, a very short scroll bar at the bottom of the pane indicates that you
are seeing the last part and only a small percentage of the contents of that pane
or buffer. A very long scroll bar in the center of the pane indicates that you are
seeing a large proportion and are approximately half-way through the pane’s entire
contents.

To scroll using the scroll bar and the double-headed pointer, use one of the
following mouse buttons:

11

July 1986

L
L2

Moves the line currently at the top of the screen to the position
indicated by the pointer.

Displays the percentage of the pane contents that approximately
corresponds to the position indicated by the pointer.

Moves the line indicated by the pointer to the top of the screen.

Moves the line indicated by the pointer to the bottom of the screen.

1.3.9.3 Menus

One common application of a mouse button is to call up a menu of options,
containing mouse-sensitive choices. Menus are lists of mouse-sensitive choices,
surrounded by a border. They normally appear in the part of the screen where
the mouse cursor was positioned when you clicked the button.

The 3600 has several styles of menus, including the following common ones:

¢ Momentary menu

Each item is a possible choice. Positioning the mouse cursor over an item

and then clicking the appropriate button makes the choice. The System

Menu is a momentary menu.

: Minor edits

RACTERS|: Edits
CHARACTERS|: Edits

AND KEYWORD NAMES|: Edits
. Edits

STER SET|: Edits

~ edits

Marking and_yanking operations

Yank top of kill ring %

|+ New recor
ZETALISP-USE

ceywords)

JLLING) | :

Figure 1. A Momentary Menu

¢ Choose-variable-values menu

Each line presents one or more possible values of a particular variable. The

12

User's Guide to Symbolics Computers July 1986

Hardcopy File

[JEile: Honbat:>KJones>proposal.text
NPrinter name: Asahi Shinbun
tle: a string k
dy-Character-Style: a fully specified character style
ading-Character-Style: & fully specified character style
ples: 1
NDelete: Yes Mo
NFile-Types: Text Suds-Plot Press Lgp Lgp2 Dmpl Hgp Use-Canonical-Type
N Orientation: Landscape Portrait
NRunning-Head: None MNumbered
K Starting-Page: 1
NEnding-Page: End of file

Abort Done

Figure 2. A Choose-variable-values Menu

Window Attributes Menu is a choose-variable-values menu. Each variable
has a type that controls what values it can take on. The way in which the
possible values are presented and the way in which you choose a value
depend upon the type. Variables can have one of two types.

° A type with a small number of legal values. Each line in the menu
presents the possible legal values of a particular parameter. The
current value appears in bold face. Each of the values is mouse-
sensitive. Clicking on a value selects it.

° A type with a large or infinite number of legal values. Each line in
the menu presents only the current value of a particular parameter. A
numerical value is of this type. To change a value, select the current
value by clicking on it, type in a new value, and press RETURN.
Rubbing out more characters than have been typed in restores the
original value instead of changing it.

You exit menus in a variety of ways. For some menus, like the System Menu,
making the choice causes the menu to disappear. Moving the mouse cursor off
this kind of menu also causes the menu to disappear. Other menus have explicit
commands, such as [Do It], [Exit], or [Abort], which you must click on to make
the menu disappear. Other menus are displayed in the frame permanently, such
as the Zmail Command Menu.

13

July 1986

1.3.9.4 System Menu

The System Menu is a momentary menu that lists several choices for acting upon
windows and calling programs (for example, Lisp Listener, Zmacs, or the
Inspector). You can always call the system menu by clicking sh-right (or the
right mouse button twice). Use the System Menu to do many things, among them:

¢ Create new windows.

e Select old windows.

e Change the size and placement of windows on the screen.
¢ Hardcopy a file.

For more information about the mouse and menus: See the section "Using the
Window System". See the section "Window System Choice Facilities".

B 5. 82 23 5, 239
1.3.10 Selecting and Creating Windows

1.3.10.1 Introduction

All user interaction with the 3600, except with the FEP, occurs in windows. The
screen always contains one or more windows. The window that you are
interacting with is called the selected window. You select a window via the mouse,
a menu, or a keyboard key. If the window is not already exposed, it appears on
the screen. See Introduction to Using the Window System for more information
about windows.

1.3.10.2 Default Windows

The 3600 has a default set of windows available, some of which are available via a
System Menu and some via the SELECT key as well.

Use [Select] in the Windows column of the system menu to see a menu of
currently available windows. Some default windows are

Main Zmail Window
Lisp Listener 1
Edit: pathname

1.3.10.3 Moving

On the 3600, you do not "leave" a window with an explicit terminating command;
instead, you select a different window. You can return to the most recently used
window by pressing FUNCTION S,

1.3.10.4 SELECT Key

This key is a prefix for a family of commands, generally used’to-select a window
of a specified type, such as a Lisp Listener or Zmail. The current list is:

14

User's Guide to Symbolics Computers July 1986

Converse

Document Examiner
Editor

File system maintenance
Inspector

Lisp

Zmail

Notifications

Peek

Frame-Up

Terminal

Flavor Examiner

X 490 0T ZrHTMmBOo

SELECT c- creates a new window of the specified type.

15

July 1986

2. Starting up

This section provides information about how to start, cold boot, log in to, and log
out of the 3600 family of machines. It assumes that the software is installed and
your site has been configured. If you are not sure that this has been done, check
with your site manager. The software must be installed and the site configured
before you attempt to use the system. For information on installation and site
configuration:

See the Software Installation Guide
See the section "Installation Procedures” in Site Operations.

2.1 Powering up

To power up and start using the your Symbolics Computer, use the following
procedure:

1. If you have a 3600:

a. Plug in the 3600. The front panel lights on the processor cabinet
display "3600" when the machine is plugged in. If they are not lit,
check that the main circuit breaker at the lower rear of the cabinet is
turned on.

b. Turn the key on the front panel to the vertical position, marked LoCAL.

c. After the front panel lights display "Power up?”, push the spring-
loaded switch marked vYes. The front panel lights then display "3600

on".
2. If you have a 3670 or 3640:
a. Plug in the machine.
b. Press the Power button on the front panel.

See the section "Cold Booting After Powering up”.

16

User’s Guide to Symbolics Computers July 1986

YES+ NO+ ENTER RUN FAULT SECURE LOCAL REMOTE

Egg@% OFF——\ :E;L;ii

RESET POWER

@ DO

Figure 3. The Front Panel on a 3600

p
(symbolica 3640

n] |
m] |
=] |
=] |

E BrE==3

Figure 4. The Front Panel on a 3670 or 3640

17

July 1986

2.2 Logging in

After cold booting, you are in a window named Dynamic Lisp Listener 1. You are
now ready to log in. If your login name is KdJones, you can log in in any of the
following ways: (Note that the examples are given in upper and lower case, but
the machine is not case sensitive. You can use all upper case, all lower case, or
mixed case as you prefer.)

e To log into the default host machine, using your init file, type
Login KJones

o To log into your machine, without your init file, type
Login KJones :init file none

o To log into another machine "sc3", using your init file, type
Login KJones :host sc3

If the host machine you log in to is a timesharing computer system, you must
have a directory and account on that host machine.

For more information about logging in: See the section "Login Functions and
Variables".

For more information about how to write init files: See the section "Customizing
Genera", page 93.

2.3 Logging Out

1. Use a Lisp Listener by pressing SELECT L.
2. Log out by typing either the command Logout or the function (Togout).

Wait until the Lisp Listener says that you have been logged out before you
go to the next step.

3. Cold boot the machine.

This step is optional. It is not necessary to cold boot if the machine has
been used only a short while and if no major changes to the machine state
have been made. If the machine has been used for several hours and many
files have been loaded or read into it, we recommend that the machine be
cold-booted.

Cold booting frees up virtual memory and puts the machine in a fresh state.
In this way your customizations do not affect the next user’s environment.

18
User’s Guide to Symbolics Computers July 1986

Note: You need not turn the machine off each night; however, it does not hurt
the machine to do so.

2.4 Powering Down

To power down your machine:

1. First logout by giving the command:
Logout

2. Next, halt the machine by giving the command:
Halt Machine

3. If you have a 3600, turn the key on the front panel to the off position.

If you have a 3670 or 3640, give the shutdown command to the FEP:
Shutdown

or press the power button on the front panel.

Note: it is not necessary to turn off the circuit breaker on the back of the
machine unless you are planning to unplug the machine and move it.

2.5 Getting Acquainted with Genera

2.5.1 Using the System Menu

1. Press down the SHIFT key and click the right mouse button. (This is usually
denoted in documentation as sh-Mouse-right.) You should see the System
menu pop up on the screen as in Figure 4. Notice that the mouse cursor
has become an x and that there is a box around the word bury. The word
bury is in the column titled "This Window" and its being in a box means
that bury mouse sensitive. If you were to click a mouse button while the box
is around bury, thereby selecting it, the current window ("This window")
would be buried down at the bottom of the stack of active windows (that is,
shuffled to the bottom as you might do to a stack of paper). The mouse
documentation line at the bottom of the screen says:

Bury the window that the mouse is over, beneath all other active windows.

Move your mouse so that it is off this menu. The menu disappears. That is

19

July 1986

The System Menu
Windows This window Programs
Create Move Lisp
Select Shape Edit
Split Screen Expand Inspect
Layouts Hardcopy Mail
Edit Screen Refresh Font Edit
Set Mouse Screen Buy Trace
Kill Emergency Break
Reset Layout Designer
Arrest Namespace
Un-Arrest Frame-Up
Attributes Hardcopy
File System
Document Examiner

Figure 5. The System Menu

the way pop-up menus work: they disappear when the mouse is moved off
them.

Click sh-Mouse-right again. Notice that the System menu again pops up,
but it has followed your mouse. A pop-up menu always pops up where your
mouse is, because it can only remain on the screen when the mouse is inside
its borders. Try moving the mouse and clicking sh-Mouse-right several
more times. sh-Mouse-right summons the System menu in all contexts in
Genera. This is important to remember.

2. Click sh-Mouse-right again and now take a more careful look at the
information the System menu is providing.

The operations that the System menu provides to you are divided into three
categories:

Windows
This Window
Programs

Windows refers to general window operations, as indicated by the items in
that column (See Figure)Q:

&

20

User's Guide to Symbolics Computers July 1986

e Create - Create a new window.

¢ Select - Select one of the windows already established by Genera or
created by you. Another pop-up menu appears, offering all the
windows currently available in Genera.

e Split Screen - Divide your screen so that two windows are completely
visible at the same time.

¢ Layouts - Operate on the geography of the screen display by restoring
the previous state or saving the current state. You can do what
Layouts does with Edit Screen and the Undo option.

* Edit Screen - Modify the geography of the screen.

e Set Mouse Screen - Set the screen the mouse is on if you have more
than one screen (for example, a color console and a standard one).

This Window refers to operations of the current window, that is, the one
that you were looking at and typing to when you clicked sh-Mouse-right.

e Move - Change the location of the current window on the screen.

e Shape - Modify the shape of the current window (square to rectangle,
and so on).

e Expand - Make the current window larger by occupying unused space on
the screen.

e Hardcopy - Send an image of the current window to a printer. This is
the same as pressing FUNCTION c-Q. See the section "FUNCTION Key",
page 216.

e Refresh - Redisplay the current window. This is the same as pressing
FUNCTION REFRESH. See the section "FUNCTION Key", page 216.

e Bury - Shuffle the current window down to the bottom of the stack of
windows, selecting the previous (next down in the stack) window as
current.

¢ Ki11 - Remove the current window.

¢ Reset - Initialize the current window, that is, restart it in its initial
state. This is useful if a window is in a confused state. It might
cause loss of information, however. See the section "Recovering From
Errors and Stuck States", page 143.

21

July 1986

® Arrest - Halt any processes running in the current window.

e Un-Arrest - Release any processes in the current window, allowing
them to continue.

e Attributes - Modify the attributes of the current window. This
summons a menu of the attributes of the window and allows you to
selectively change them. Move the mouse down vertically and click on
Attributes. Notice that the menu that appears has two choices in its
bottom margin: Abort and Done. These are for exiting from the menu.
You can click on unhighlighted entries in the central portion of the
menu (the choice section). Highlighted items are the current
attributes. Clicking on an unhighlighted entry highlights it and selects
it to go into effect, but nothing happens until you exit from the menu.
Try clicking on several choices to see how it works. This is called an
Accept Variable Values menu, or in some cases a Choose Variable Values
menu. Now, since you do not really want to modify anything just now,
click on Abort. The menu goes away.

Click sh-Mouse-right again to get the System menu back and look at the
third column:

Programs refers to available preloaded programs, or activities, in Genera.

You can select an activity from this menu, or you can use the Select Activity
command processor command. See the section "Select Activity Command",
page 251. For now, just move your mouse off the menu.

3. Click sh-Mouse-right once more. This time, move the mouse to the left and
position it over the Windows column,

Move it to sit on Create.

Click left on Create. Another pop-up menu appears containing a list of
window types.

Click on Lisp.

The menu disappears and ah icon representing the upper left corner of a box
appears where your mouse cursor was. Move this icon using the mouse to
some convenient location on your screen. (See Figure 5). Press the left
mouse button and notice that the left corner now sprouts two more sides and
becomes a rubber band with four corners. Stretch it around by moving the
mouse. Notice what happens if you pull it up to the left of the left corner
that you just positioned. If you were to click left at this point, you would
create a new window that is the full size of the screen.

22

User's Guide to Symbolics Computers July 1986

Figure 6. Positioning the Upper Left Corner of a New Window

Now, pull it down to make a reasonable sized window, at least ten inches
across and at least 25 lines (about four inches) vertically. Click left if your
mouse and the new window are not in the proximity of any other window
edge. If the lower right hand corner of your new window is near the edge
of another window, click right. Clicking right (as the mouse documentation
line says) is smart. This means it tries to optimize the position of the edges
of windows so that thiey do not overlap. Windows that overlap by very tiny
amounts at the edge can confuse you as to which window is actually
selected, especially if you choose not to use the graying option for non-
selected windows. (See the section "Set Screen Options Command", page
258.)

You have just created a second Lisp Listener, and it is selected. That means
that any typing you do at this point goes into this window.

2.5.2 Trying Out the Command Processor

2.5.2.1 Typing Commands

Type Select Activity SPACE Lisp RETURN. You are now back in your original Lisp
Listener. Type Select Activity SPACE Lisp RETURN again to get back to our newly
created Lisp Listener. Select Activity activity will cycle through all the windows

23

July 1986

of a given activity. Get back to your original Lisp Listener, typing Select
Activity if necessary. Notice that there is a key labelled SELECT. Press SELECT
followed by L. You are now in your other Lisp Listener. SELECT L is the same as
Select Activity Lisp. Press SELECT followed by HELP to see a display of the other
single letter abbreviations for activities.

Select Activity is a command that takes one argument, an activity name. Some
commands take no arguments. Some take more than one argument. Some

commands also take optional arguments called keywords that control the behavior
of the command.

2.5.2.2 Using the HELP Key

Type Select Activity SPACE then press the HELP key. You should see a display
like that in Figure 6.

Activity (program) to interact with next
Type of input expected: a activity

These are the possible activities:
Accept Values FEP-Tape Frane-Up Menu Progran Terninal
Converse File Server Inspector MNotifications Zracs
Document Exaniner File systen operations 'Lisp Peek Znail
Editor Flavor Exaniner Hail Presentation Inspector

Connand: Select Activity (activity name [default Editor]) N

Figure 7. Select Activity Command

Press CLEAR INPUT. The command goes away. ABORT would also cancel the
command, but since you had not finished typing the arguments to the command
(that is, the activity you wanted to select), there is nothing to abort so the
"smaller hammer", just clearing the input you have typed, can be used.

24

User’s Guide to Symbolics Computers July 1986

2.5.2.3 Using Keywords Arguments

Type Show Herald RETURN. The Herald (the initial screen display announcing the
system version loaded) is printed on your console. Show Herald is a command
that takes no arguments.

Type Show Herald again and then press SPARCE. The prompt (keywords) pops into
your input line. Press HELP. You should see:

You are being asked to enter a keyword argument

These are the possible keyword arguments:
:Detailed Whether to print version information in full detail
:0utput Destination Redirects the output of this command to the specified streams.

Command: Show Herald keywords
Figure 8. Show Herald and its Keywords

This time add :detailed before pressing RETURN. Now you should see additional s
information about the version of the FEP you are running with and other systems
that are loaded in your world.

This demonstrates in a very simply way how keywords can affect the behavior of a
command.

2.5.2.4 Some Useful Command Processor Commands

1. Type Show Machine Configuration. When this command takes no arguments,
it displays the information about your particular machine. You can give
Show Machine Configuration the name of another machine on your network
as an argument and it will show you the information about that machine.
This is an important command to know because if you have to call Symbolics
Software Support you might be asked for information about your hardware
that you can get only from this display. Of particular importance when you
call Software Support is the Machine Serial Number, appearing in the third
line of the display.

2. Type Show Command Processor Status. Again, this command takes no
arguments because it is displays information about the setting of the
Command Processor. Unless you have changed the Command Processor
Mode or your prompt, you should see a display like this:

25

July 1986

Command: Show Command Processor Status
The command processor’s current mode is
Command Preferred: Interprets input starting with an alphabetic
character as commands; type an initial , to
force Lisp interpretation.

The prompt string is “Command: “.

The prompt strings for other modes are:
Form Preferred: "
Form Only: "
Command Only: “Command: "

This means that your Command Processor is in the default mode and any
typing you do to it is assumed to be a Command Processor command unless
it begins with a left parenthesis or a comma. Type

,*packagex SPACE

This asks for the value of the Lisp variable *package*. The value returned
should match the package shown in the status line at the bottom of the
screen.

You can change the mode of the Command Processor. See the section "Set
Command Processor Command", page 254.

3. Type Show FEP Directory. This displays a list of all the files on the local
disk(s) of your machine. The files that Genera is currently using (the Worild
load from which Genera was booted, the paging files, and the microcode in
use) are displayed in boldface. That is to remind you that you should not
delete them.

Type Show FEP Directory again and this time press SPACE three times. When
it prompts for keywords, press HELP. Try Show FEP Directory with the :type
keyword. After typing :type press HELP again and select a kind of file,
perhaps boot. This displays only those files that are boot files, that is, files
that contain a script of commands for booting a world. See the section "Cold
Booting After Powering up".

2.5.2.5 Looking Back Over Your Output (Scrolling)

By now you have had to press SPARCE at xxMorexx breaks several times. Hold down
the META key and press SCROLL (this is usually denoted n-SCROLL). You can look
back over your interaction with Genera. To get back to the "end" of this output
history you can press SCROLL, press m-sh->, or just start typing a new command.
Without pressing anything, from where you are in the middle, try typing Show

26

User's Guide to Symbolics Computers July 1986

Namespace Object user your user name. If your user name were KJones, you would
see the window scroll forward to the new command line and then display:

View in namespace ACME:

USER KJONES

LISPM-NAME KJones
PERSONAL-NAME "Jones, Kingsley"
HOME-HOST ACME

MAIL-ADBRESS kjones ACME
LOGIN-NAME kjones VAXB81
NICKNAME King

WORK-ADDRESS “Building 3-701"
WORK-PHONE 5891

BIRTHDAY “19 June"

PROJECT Database

SUPERVISOR “Finklestein”
USER-PROPERTY :USUAL-LOGIN-HOST wombat

For more details about scrolling windows: See the section "Scrolling with the
Mouse", page 212.

Now you have tried a few command processor commands and it is time to show
you how Semanticue and Dynamic Windows can speed up your work by cutting
down on your typing. See the section "Getting Acquainted with Dynamic
Windows", page 26.

2.5.3 Getting Acquainted with Dynamic Windows

2.5.3.1 Reusing Commands

1. Press c-n-Y.

Press n-v.
Press m-Y again.

Notice how each successive previous command processor command you typed
is placed at the Command: prompt. Conveniently, you can reactivate any of
these commands by pressing RETURN when the one you want appears. For
now just press CLEAR INPUT.

. Type Show Documentation SPACE "Show Documentation Command” RETURN. (The

topic name should be inside quotation marks.)

. Press c-n-Y. Press m—-RUBOUT three times to erase "Show Documentation

Command". Now type “Reusing Commands” RETURN. You can use Show

27

July 1986

Documentation on any topic in the documentation set. Those topics whose
documentation you have displayed in your Lisp Listener are also read into
the Document Examiner. See the section "Using the Online Documentation
System”, page 43.

2.5.3.2 Using Your Output History

1

Type Show Directory SPACE sys:examples;. This is a directory of sample
programs you can look at and run.

Move your mouse slowly over the display of the directory. Notice that the
individual files (or subdirectories) listed are mouse sensitive, that is, a box
appears around them as the mouse passes over them.

. Now type Show File and click the mouse left on one of the files in the

display from Show Directory, perhaps on Teach-Zmacs-Info.text. The
pathname is inserted in your new command line. Press RETURN to activate
the command, or CLEAR INPUT if you do not want to see the contents of the
file displayed. (This file, Teach-Zmacs-Info.text, is a good one to remember
about when you are ready to learn about Genera’s editor, Zmacs. It tells you
how to run a tutorial that explains the editor.)

. Scroll back, using m~SCROLL or m-V, over your output history so far. Select a

command line you would like to reactivate. Move the mouse over it and
when it becomes mouse sensitive, click left. The entire command line is
yanked down to the current prompt. You can press RETURN to reactivate it,
or RUBOUT or other editing commands to edit it. See the section "Editing
Your Input”, page 134.

. Once again scroll back over your history and select a command to reactivate.

Click sh-Mouse-Left, that is, hold down the shift key while you click the left
mouse button. This time your selected command is not only yanked down to
the current prompt but also is reactivated without your having to press
RETURN.

. When your history is long, scrolling back over it is tedious. Hold down the

SUPER key and press R (s-R). Now type a string of characters, Show for
instance. Notice that your cursor is moved back through to the history to
the most recent occurrence of the word show. Press s-R again. You are
moved back to the next most recent occurrence. If you move past the
occurrence of show that you want, press s-S to search forward. Press END to
terminate the search. You can now click Mouse-Left or sh-Mouse-Left.

. Sometimes you know exactly what command you want to yank and do not

28

User's Guide to Symbolics Computers July 1986

want to search for it. Hold down the CONTROL, META, and SHIFT keys and
press Y (this is denoted c-n-sh-Y). You are prompted for a character string
to use and the most recent command that contains that string is yanked
directly. If the most recent command containing the string is not the one
you want, press m-sh-Y and the previous most recent command is yanked
instead. Successive uses of n-sh-Y go back farther and farther in your
history locating commands containing the string.

Now that you know how to move back through your history it is time to learn
some more ways to make use of it. See the section "Using the Mouse", page 28.

2.5.3.3 Using the Mouse

1. Move your mouse so it is just off the top of the screen. Look down at the
mouse documentation lines just above the date and time at the bottom of the
screen. Notice that it is blank. Move the mouse back down onto a blank
part of the screen. Now the mouse documentation line says "To see other
commands, press Shift, Control, Meta-Shift, or Super".

2. Move the mouse so that it is over a previous command. Now notice the
mouse documentation line. It now says that Mouse-L is the command,
meaning that clicking left yanks the command. You have already discovered
this: See the section "Using Your Output History", page 27. Mouse-R says
"Menu". Click right. A menu pops up with a list of operations that can be
performed on the command line the mouse is over. Move your mouse off the
menu to make it disappear.

3. Now position your mouse over the command line again. Press SHIFT.
Notice that the documentation changes to indicate what operations can be
performed by pressing SHIFT (sh-Mouse-) while clicking Left or Right.
sh-Mouse-Left you have already tried: See the section "Using Your Output
History", page 27. sh-Mouse-Right pops up the System menu: See the
section "Using the System Menu", page 18.

4. Release SHIFT and press CONTROL. The operations offered by pressing
CONTROL while clicking the mouse (c-Mouse-) are for marking regions or
words for yanking or copying. c-Mouse-Left marks a region. Hold down
the CONTROL key and the left mouse button while you move your mouse
around. Notice that the text the mouse moves over is underlined. Release
CONTROL key and the left mouse button. Now click c-Right. The Marking
and Yanking menu pops up, offering you four things to do with the text you
have marked. Usually you want to push the text on the kill ring, the place
where text that has been deleted with one of the kill commands (c-K, c-N,
and others) in any context (Lisp, Zmacs, or Zmail) is stored for recall with

29

July 1986

c-Y. You can push the marked text on the kill ring by clicking on that
choice in the menu. Do that now. Because pushing text on the kill ring is
such a common operation, it can also be done by holding down SUPER and
pressing W (s-W). Now press c~Y. The text you marked is yanked back at
the current prompt. In this way you can yank arbitrary pieces of text for
editing and turning into a new command. Since the kill ring is common to
Lisp and Zmacs, this is a way to transfer something from your Lisp Listener
to an editor buffer for editing or for saving in a file.

5. c-Mouse-Middle marks and yanks the word the mouse is over. Try pressing
c-Mouse-Middle several times to yank arbitrary words from your output
history. Press CLEAR INPUT.

6. Hold down both the CONTROL key and the SHIFT. c-sh-Mouse-Middle allows
you to mark (without yanking) words.

7. Holding down the META and SHIFT keys and clicking right pops up the
Window Operation menu. This menu offers operations to perform on the
current window, much like the "This Window" column in the System menu.
See the section "Using the System Menu", page 18.

'25.3.4 Using Menus
Using the Mouse and the Keyboard on Menus

Type Set Window Options and press RETURN. An Accept Variable Values menu is
displayed. The items in the menu are the various options that you can set to
customize your Lisp Listener. The highlighted (boldface) items are the current
settings. Move your mouse over the menu and notice that items become mouse
sensitive. You can click on an unhighlighted choice in a list and it will become
highlighted. You can click left on a displayed value to replace it with a new
value. You can click middle on displayed value to edit the old value. You can
click on <abort> or <exit> to cancel or activate the command. You can also use
keyboard commands to interact with this kind of menu. The keyboard commands
available are:

SPACE Enter a value for an item.

c-E Edit the value of an item.

REFRESH Force complete redisplay.

HELP Display list of commands.

END Use these choices.

ABORT Abort these choices.

c-N Move down to next item.

c-P Move up to previous item.

c-F Move to next choice in a list of choices.
c-B Move to previous choice in a list of choices.

30

User’s Guide to Symbolics Computers July 1986

More processing enabled: Yes No

Reverse video: Yes No

Vertical spacing: 2

Deexposed typein action: Wait until exposed Notify user

Deexposed typeout action: Wait until exposed Notify user Let it happen
Signal error Other

ALU function for drawing: Ones Zeroes Complement

ALU function for erasing: Ones Zeroes Compliement

Screen manager priority: None

Save bits: Yes No

Default character style: FIX.ROMAN.NORMAL

Echo character style: NIL.NIL.NIL

Typein character style: NIL.NIL.NIL

End of screen action: Default Scroll Truncate Wrap

Amount to scroll by: Default

<abort> aborts, <end> uses these values

Figure 9. Set Window Options Menu

Press c-N and notice that the first option, "More processing enabled" is
underlined. Press c-F. The underlining moves over to the word Yes. Press c-F
again. Now the underlining is under the work "No". Press SPACE. The line
redisplays with the No choice in boldface. Press c-N to move to the next option,
"Reverse video". Press c-F. Suppose at this point you decide you do not want to
change the video after all. Just press c-P (or c-N) to continue. Press c-P now to
return to the "More processing enabled" and c-F followed by SPACE to set more
processing back on. Now press END to exit from the menu.

Occasionally typing on a menu causes some overwriting of other parts of a menu.
REFRESH or FUNCTIUN REFRESH will redisplay it correctly.

Using m-COMPLETE

Type Show Directory sys:examples;. The Show Directory command takes several
keywords to control the format of the display. You can type them directly in the
command line, but with some commands the interactions among keywords is
complex and it is more convenient to see all the options and be able to alter them
selectively. Press m-COMPLETE. You should see a menu like Figure 10. The items
in the menu are mouse sensitive; you can select keyword values with the mouse or
by keyboard commands. Pressing END or clicking on <end> uses these values
activates the command.

31

July 1986

Show Directory SYS:EXAMPLES;x.x.NEWEST

Files: SYS:EXAMPLES;x.x NEWEST

Size: @

Since: a universal time or a null value

Before: a universal time or a null value

Order: Smallest-First Largest-First O0ldest-First Newest-First Name Type
Output-Destination: a destination

<abort> aborts, <end> uses these values

Figure 10. Show Directory Command Menu

2.5.4 What You Have Learned

If you have followed all the directions given in the sections starting with "Getting
Acquainted with Genera" (See the section "Getting Acquainted with Genera", page
18.), you should now be able to do the following:

s Use the System menu

¢ Use other menus

e Use the command processor to do some simple information gathering tasks
e Use the mouse

¢ Use facilities of Semanticue provided by Dynamic Windows to create new
commands from your previous commands

You are now ready to learn in more detail about the command processor: See the
section "Communicating with Genera", page 33.

For detailed descriptions of all the commands available in the command processor:
See the section "Dictionary of Command Processor Commands", page 227.

To learn how to allow your application programs to take advantage of the power of
dynamic windows and the command processor: See the section "The Command
Processor Program Interface".

32

User’s Guide to Symbolics Computers July 1986

33

July 1986

3. Communicating with Genera

3.1 Overview of the Command Processor

The command processor is a utility program that accepts a command and its
arguments and then runs that command for you. The command processor takes
care of various chores:

¢ Prompting for arguments

e Checking arguments for correctness
¢ Providing completion when possible
¢ Providing documentation on request

The command processor operates in all Lisp Listeners and zl:break loops. The
prompt "Command: " indicates that you should enter a command or a Lisp form.
By default, command processor is in command-preferred mode. This means that
input to a Lisp Listener or zl:break loop is treated as a command if it begins with
an alphabetic character or a colon. Input is treated as a Lisp form if it begins
with a nonalphabetic character or is preceded by a comma.

For information on entering a command: See the section "Entering a Command",
page 34.

For information on changing the command processor’s mode, prompt, and other
characteristics: See the section "Customizing the Command Processor", page 98.

For descriptions of predefined commands: See the section "Dictionary of
Command Processor Commands", page 227.

For information on the command processor reader and the facility for defining
your own commands: See the section "The Command Processor Program
Interface".

For information on turning the command processor on and off: See the section
"Turning the Command Processor on and Off", page 40.

3.2 Parts of a Command

A command has three logical parts to it, which you specify in this order:

1. Command name. This is a word or a series of words separated by spaces.

34

User’s Guide to Symbolics Computers July 1986

2. Positional arguments. These are arguments that the command processor
prompts for directly after the command name. Some commands have several
positional arguments; others have none. Commands that have arguments
might use default values for the ones that you don’t specify.

3. Keyword arguments. Some commands have keyword arguments that make it
simple to modify the meaning of the commands. Most of these arguments
require values. These arguments have default values that the command
processor assumes if you specify the command without mentioning the
argument name. Some commands have arguments whose values differ
according to whether you omit the argument altogether or mention the
argument name and omit its value. These argument defaults are called
unmentioned defaults and mentioned defaults.

4. Some keyword arguments do not have values at all.

For information on entering command names and arguments: See the section
"Entering a Command", page 34. See the section "Completion in the Command
Processor”, page 39.

For information on help in the command processor: See the section "Help in the
Command Processor"”, page 38.

3.3 Entering Commands

3.3.1 Entering a Command

In entering a command, you enter the components in order: first the command
name, then its positional arguments, then its keyword arguments, then the
command terminator (RETURN or END). (When the command processor is in
:form-preferred mode, you must precede the entire command by a colon: See the
section "Setting the Command Processor Mode", page 99.)

The parts of the command can be entered using the keyboard or the mouse. You
can click Mouse-Left on previous commands on the screen to yank them for
reactivation. If you click sh-Mouse-Left on a previous command it is yanked and
reactivated in one step.

When you type a command, items from your output history on the screen become
mouse sensitive if they are appropriate as arguments to a command. Clicking
Mouse-Left on such an object yanks it into the current command line.

c-Mouse-Middle yanks the word the mouse is over for use in composing a new
command line. For example, if you have done Show Mail and a message refers to
a file that you want to look at, you can yank the file name as an argument to a
Show File command.

35

July 1986

The command processor can complete components of commands. While you are
typing a command name or keyword argument name, if you press SPACE the
command processor attempts to complete the current word and all previous words
in that command name or keyword argument name. If you press COMPLETE, the
command processor attempts to complete the entire command name or keyword
argument name. The command processor can also complete argument values that
are members of a limited set of possibilities. If you press m-COMPLETE the
command processor displays a menu of the argument values it has collected so far.
You can then select values from the menu using the keyboard or the mouse.
When you terminate a command, the command processor completes any command
component in progress.

Some arguments have default values. If you press SPACE instead of typing an
argument, the command processor uses the default for that argument. The
command processor also uses the defaults for any arguments you haven’t specified
at all when you terminate the command.

All this means that you don’t have to type an entire command to enter it.
Suppose, for example, that you type the following:

d e SPACE f SPRACE f o o . x SPACE : g SPACE y RETURN
You see the following on the screen:

Delete File (file [default ACME-BLUE:>joe>foo.lisp]) foo.x
(keywords) :Query (Yes, No, or Ask) Yes

While entering a command, pressing HELP or c-? displays documentation
appropriate for the current stage of entering the command. See the section "Help
in the Command Processor", page 38.

3.3.1.1 Supplying a Command Name

You type the command name, or some portion of it, followed by SPACE. The
command processor either recognizes the command from what you have typed or it
doesn’t. :

e When it recognizes the command, it fills in the part of the command name
that you didn’t type and then prompts you for the first argument. For
example, you type:

d e SPACE f SPACE
The command processor displays:
Delete File (file [default ACME-BLUE:>joe>foo.lisp])
e When it doesn’t recognize what you have typed so far as being the possible
beginning of a command, the command processor informs you that no such

commands are available. You have to edit your input or erase it and start
Over.

36

User's Guide to Symbolics Computers July 1986

e When it determines that what you have typed matches the beginning of
several different commands, it fills in as much of the command as possible
and waits for more input. You can use SPACE again to see if there is a
default completion for this command, or you can use HELP or c-? to see the
set of commands that begin with what you typed.

3.3.1.2 Supplying Positional Arguments to a Command

When the command processor has prompted you for a positional argument, you
enter whatever argument is appropriate for the command. The prompt words
indicate what the command expects:

Delete File (file [default ACME-BLUE:>joe>foo.1lisp])
Set Package (A package)
Load Patches (for systems)

An argument can be either a single item or, sometimes, a set of items separated
by commas. An argument cannot end with a comma, so SPACE can appear after a
comma for attractiveness if you want; the command processor just ignores SPACE
after a comma.

Load Patches (for systems) System, Zmail

You end each argument with SPACE. The command processor then checks
whatever you have entered and prompts for the next argument (if there is one) or
for the keyword arguments. If you haven’t typed anything except SPACE, it fills in
the default argument when one exists. Otherwise it checks what you typed for
validity (for example, if the command wants a number, it makes sure that you
didn’t enter a string).

Delete File (file [default ACME-BLUE:>joe>foo.1isp]) foo.x (keywords)

Some arguments can only be members of a limited set of possibilities, displayed in
the prompt. In this case the command processor can attempt to complete the
argument. If you begin to type the argument and press SPACE, the command
processor attempts to complete the current word and all words before that word in
the argument. If you begin to type the argument and press COMPLETE, the
command processor attempts to complete the entire argument. For example, you
type:

s e SPACE c SPACE p SPACE f - p SPACE

The command processor displays:

Set Command Processor (Form-Only, Form-Preferred, Command-Preferred,
or Command-Only) Form-Preferred (prompt string) '

What if one of the items in the argument list needs to contain one of the special
characters (SPACE, comma, leading colon, or RETURN)? Use double quotes to
delimit that item:

37

July 1986

Show Hosts (hosts) Missouri,”Red River”

Most arguments have a default, which is usually indicated by the argument’s
prompt. When you want to use the default for an argument, you can indicate that
simply by using SPACE. This terminates the argument, causing the command
processor to fill in the default.

Sometimes when you supply a value for argument, the value that the command
processor actually uses is a function of both the default and what you type. This
is what happens with pathname arguments; the default pathname and the value
that you type are merged to form the argument value that the command processor
gives to the command.

Once you have specified as many of the arguments as you need (even none), you
can use RETURN or END to enter the command. The command processor uses the
defaults for any arguments you haven’t specified.

Suppose you want to use the defaults for the remaining positional arguments, but
you want to supply some keyword arguments. You must use SPACE to fill in the
default for each of the remaining positional arguments. When you have finished
the positional arguments, the command processor prompts for keyword arguments.

3.3.1.3 Supplying Keywords and Values for a Command

The command processor prompts for keyword arguments when you have entered
all of the positional arguments for the command.

Suppose you have supplied all of the arguments to the Delete File command and
are now being prompted for any keywords for modifying the standard action of the
command. You enter keywords and their values in any order, finishing off the
command with RETURN or END. The keyword prompt does not appear for every
keyword, as that would clutter up your command.

The command processor can attempt to complete keyword argument names and
values that are members of a limited set of possibilities. When you are typing a
word, if you press SPACE the command processor attempts to complete that word
and all previous words in the current keyword argument name or values. If you
press COMPLETE, the command processor attempts to complete the entire keyword
argument name or value in progress. For example, you type the following:

d e SPACE f SPACE f o o . x SPACE : e SPACE n SPACE
: q SPACE a RETURN

The command processor displays:

Delete File (file [default ACME-BLUE:>joe>foo.lisp]) foo.x
(keywords) :Expunge (Yes, No, or Ask) No :Query (Yes, No, or Ask) Ask

You can also press m—-COMPLETE and see a menu of the arguments and their values.

Most keyword arguments have several values, but some are flag keywords with no

38

User's Guide to Symbolics Computers July 1986

value. For these keywords, you do not specify a value. Often, such flag keywords
exist as synonyms for some other keyword/value combination. For example,
suppose there was a keyword argument called :Expunge that had three values:
Yes, No, and Ask. The person defining the command could have decided for
convenience to offer :No-Expunge as a flag keyword that is synonymous with
":Expunge No".

Some commands have keyword arguments with interesting defaulting behavior.
These arguments have two different kinds of "defaults”, one that applies when you
mention the keyword without explicitly supplying a value, and one that applies
when you omit the keyword altogether. For example, consider the :Expunge
argument for Delete File. When you omit :Expunge, the command processor
assumes you mean ":Expunge No". When you supply :Expunge and use SPACE to
fill in the default, it assumes you mean ":Expunge Yes". This style of argument
occurs less often than the one with the conventional defaulting behavior.

Keywords can be specified at most once in a command line. The command
processor views a command line in which the same keyword has been specified
twice as ambiguous; you have to correct the problem by removing one of the
keyword argument pairs.

3.3.2 Editing a Command

The command processor uses the input editor to manage typing, displaying, and
editing of a command that you are entering. You can move from field to field
within a command, change arguments, delete keywords, even change the command
name. See the section "Editing Your Input", page 134.

3.3.3 Help in the Command Processor

Press HELP to the command processor at any time before or during entering a
command. (Once you have started to enter a command, you can also use c~?.) It
provides documentation that is appropriate for the particular stage you have
reached in entering the command.

Before starting Explains how to enter a command processor command.

Command name Shows the commands that could be completions of what you
have typed so far.

Positional argument
Explains the characteristics of the argument that is required at
this position, including possible values.

Keyword argument name
If you have not yet typed a keyword flag character, the
command processor lists the remaining arguments and briefly

39

July 1986

describes them. If you have typed a keyword flag character, the
command processor shows the keywords that could be
completions of what you have typed so far.

Keyword argument value
The command processor presents documentation for the meaning
of all the possible values of the argument.

3.3.4 Completion in the Command Processor

The command processor offers two kinds of completion: partial completion and
token completion. A token is a command component, such as the command name
or a keyword argument name.

o Partial completion: When you are typing a word in a command n:ire or
keyword argument name, if you press SPACE the command processor attempts
to complete the current word and all previous words in the current command
name or keyword argument name.

e Token completion: When you are typing a command name or keyword
argument name, if you press COMPLETE the command processor attempts to
complete the entire command name or keyword argument name in progress.

Completion is also available for argument values that are members of a limited set
of possibilities, and for system and package names.

3.4 Command History

Command processor commands are maintained in the input editor input history,
along with other input to the Lisp Listener or zl:break loop. c-m-t yanks the last
element of the history. m-Y yanks the next previous element. Thus you can press
c-n-Y followed by m-Y m-Y ... to yank successively further back elements in your
input history. c-m-8 c-n-Y lists the elements of the history. A numeric
argument to c-n-Y yanks the element of the history specified by the argument.

c-n-sh-Y prompts you for a string and yanks the most recent element containing
that string. m-sh-Y acts like n-Y, yanking successive previous elements.

Your output history is maintained on the Lisp Listener window. You can scroll
back over your history using m-SCROLL or m-V. Scrolling forward is done with
SCROLL and c-V, just as in Zmacs and Zmail.

s—-R searches back through your history. END terminates the search so that you
can yank the element you have found. s-S searches forward.

40

User's Guide to Symbolics Computers July 1986

You can mark sections of your output to be pushed on the kill ring.
c-Mouse-Right pops up a menu of marking and yanking options, or you can mark
elements directly using c-Mouse-Left. Hold down the CONTROL key and the left
mouse button and move the mouse over the area you want to mark. The marked
region is underlined. You can push the marked region on the kill ring by clicking
on that choice in the Marking and Yanking menu or by pressing s-MW.

If you have two Lisp Listeners side by side on your screen, the histories of both
remain mouse sensitive and you can yank elements from either one.

Clicking Mouse-Right on an element of your history pops up a menu of possible
operations on that object. For example, clicking right on a pathname offers,
among other operations, a choice of Show File.

For a list of the mouse gestures that can be used on to manipulate your history on
dynamic windows: See the section "Mouse Gestures on Dynamic Windows", page
211.

You can also copy your output history into a Zmacs buffer for editing or saving in
a file. See the section "Copy Output History Into Editor Command", page 231.

You can clear your output history if you want to clean up and do a garbage
collection. See the section "Clear Output History Command", page 228.

3.5 Error Handling in the Command Processor

Part of the command processor’s contract with the programs it serves is to collect
syntactically valid arguments for the command you want to use. Thus if the
command wants a numeric argument and you have entered a file spec, the
command processor notices the problem, complains about the argument that you
typed, moves the cursor there, and requests that you edit what you typed in order
to make it appropriate for the command.

The command processor checks for errors of omission as well, warning you when
you try to finish a command before specifying some argument that needs to be
explicit.

In making its error warnings, the command processor prints out a diagnosis of the
problem and asks you to correct your input. It never removes anything from what
you have typed, since you are the best judge of how to remedy the problem.

3.6 Turning the Command Processor on and Off

The command processor is on by default in all Lisp Listeners and zl:break loops.
You can turn the command processor on and off, but normally you should have to

41

July 1986

do neither. If you want the command processor to treat input differently from the
default, or if you want a prompt that is different from the default, you can change
these characteristics by using the Set Command Processor command or setting
special variables: See the section "Setting the Command Processor Mode", page
99. See the section "Setting the Command Processor Prompt", page 100.

For example, suppose you want the command processor to act as if it weren’t
there. You can use the Set Command Processor command to set the dispatch
mode to :form-only and the prompt to the empty string. Alternatively, you can
set cp:*dispatch-mode* to :form-only and cp:*prompt* to nil or the empty string.
If you then want to return the command processor to its default behavior, you can
set cp:*dispatch-mode* to :command-preferred and cp:*prompt* to

"command: ".

If for some reason you need to turn the command processor off completely, you
can call cp:cp-off.

cp:cp-off Function
Turns off the command processor in all Lisp Listeners and zl:break loops.

Once you call cp:cp-off, you must call zl:ep-on to turn the command processor
back on.

cp:cp-on &optional (dispatch-mode cp:*dispatch-mode*) Function
(prompt-string nil prompt-supplied)
Turns on the command processor and sets its mode and prompt in all Lisp
Listeners and zl:break loops.

dispatch-mode is :form-only, :command-only, :form-preferred, or
:command-preferred. For the meaning of these keywords: See the section
"Setting the Command Processor Mode", page 99. This argument becomes
the value of the variable cp:*dispatch-mode*. The default mode is the
current mode (the current value of cp:*dispatch-mode*). The initial
default mode is :command-preferred.

prompt is a prompt option for displaying the command processor prompt in
Lisp Listeners and zl:break loops. This argument becomes the value of
the variable cp:*prompt* and is passed to the input editor as the value of
the :prompt option. The value can be nil, a string, a function, or a symbol
other than nil (but not a list): See the section "Displaying Prompts in the
Input Editor" in Reference Guide to Streams, Files, and I/O.

The default prompt depends on dispatch-mode. If dispatch-mode is
:command-preferred or :command-only, the default prompt is
"Command: ". If dispatch-mode is :form-preferred or :form-only, the
default prompt is the empty string, and no prompt is displayed. If you
supply a value of nil or the empty string, no prompt is displayed.

42

User's Guide to Symbolics Computers July 1986

43

July 1986

4. Using the Online Documentation System

4.1 Introduction to the Document Examiner

The Document Examiner is a utility for finding and reading documentation.

e Using the Document Examiner is similar to using the printed documentation.
Books in the document set are available on a shelf or on your desk; in the
Document Examiner, they are available in the Current Candidates pane when
you first select the Document Examiner. Just as you can open a book to any
topic and read through to the end of that topic, the Document Examiner lets
you "open" the documentation to any topic and read to the end of that topic.

e When you use the Document Examiner, you do not have to remember how
information is arranged; for example, you do not have to remember the
section, chapter, or printed book in which a particular function is explained.
Each function (and each section, chapter, or other division of printed
information — even entire books), is directly accessible.

e In addition to looking up documentation, you can create private
documents with the Document Examiner by placing bookmarks in
documentation topics and saving the list of bookmarks for future use.

¢ The online documentation is kept in a documentation database. The
documentation database consists of documentation binary files. Loaded into
your Lisp world is index information about the documentation database.

¢ Each documentation topic is stored as a record in the documentation
database. Each record contains information on a particular topic and is
uniquely identified by a topic name. Records fall into two categories: Object
records documenting code objects, such as make-array or tvimenu, and
concept records documenting abstract ideas that are not tied to code, such as
"Introduction to the Document Examiner". Records also have a type
designation. Examples of object record types are function, flavor, and
variable. Concept records have a type of section.

e SELECT D, [Document Examiner] in the System menu, and the command
Select Activity Document Examiner select the Document Examiner. Pressing
HELP in the Document Examiner displays a listing of its commands.

Note that the Document Examiner offers a command that lets you read complete
self-documentation:

44

User's Guide to Symbolics Computers July 1986

Document Examiner Documentation
Provides complete, chapter-length documentation of all
Document Examiner features. This command is equivalent to
clicking middle on [Help] in the command pane.

4.2 Looking up Documentation

You can look up documentation in the Document Examiner, in an editor (Zmacs,
Zmail, Converse), or at a Lisp Listener using a variety of commands. One
command looks up and displays documentation by name. Another set of commands
pops up a menu of all documentation topic names that satisfy a query request.
Such query requests are carried out by matching an initial substring, substrings,
or whole words against documentation topic names or their keywords. (A keyword
is comparable to a word in an index entry.) Clicking on a topic in one of these
menus looks up and displays the documentation for that topic. See the section
"Documentation Lookup Commands"”, page 46.

Another set of commands is available for repositioning text in the Document
Examiner. See the section "Repositioning Text in the Document Examiner", page
60.

Your lookup request is always made in terms of a documentation topic name. You
are prompted for a type (section or function, for instance) only when several topics
have the same topic name but different types. For instance, suppose there are two
topics whose names are "error"; one documents a flavor and the other a function.
Requesting a display of "error" causes a menu of the possible types (flavor or
function) to pop up. You choose the type you want displayed.

When you look up documentation, the more general the topic you look up, the
larger the amount of documentation you see for it. The most general topic names
are the names of the books in the printed documentation set. When you first
select the Document Examiner, these books appear as items in the Current
Candidates pane. If you are unsure what level in the documentation you need, use
the command Find Table Of Contents, giving it the name of the printed book or
section that interests you.

In the Document Examiner, you can look at an overview of a given topic. The
overview includes the topic(s) and book(s) in which the topic appears, as well as a
list of keywords included in the topic. In addition, the overview includes a graph
showing the topic’s position in the book or books in which it appears. You can use
this graph to look at the topics that precede and follow the current topic in the
printed documentation.

You can look at a topic’s overview by using one of the following methods:

45

July 1986

¢ Click middle on a mouse-sensitive item in the viewer.

e Click middle on a topic in the list of current candidates or the list of
bookmarks.

e Use Show Overview at the command prompt and supply the name of a topic.
¢ Use [Show (M)] in the command menu and supply the name of a topic.

For more information on the overview facility: See the section "Show Overview",
page 52.

In addition, you can find the printed book in which the topic appears by using
What Document (m-X) in the editor.

When you use one of the documentation find commands in an editor or the
Document Examiner, a menu of topic names is displayed. This menu includes all
the topic names that fulfill your lookup query. When you click on one of the topic
names, the chosen topic is displayed. The find commands are Find Initial
Substring Candidates, Find Whole Word Candidates, Find Any Candidates, or Find
Table Of Contents.

Recovering From a Stuck Document Examiner

When you look up documentation at a Lisp Listener or an editor, the Document
Examiner is updated to include the last topic or menu you looked up. This
normally happens within a few seconds. Occasionally, the topic you look up in the
editor or Lisp Listener does not show up in a matter of seconds in the Document
Examiner. If this occurs, enter Peek. In Peek, press P to see a listing of
processes. Notice that a process called "DEX background" is showing. This
process appears only if there is a problem. Click on this process and select
"Debugger” from the menu. You should see a number of proceed options in the
Debugger, one of which offers to skip trying to process the current topic and move
on to the next pending one. Choose that proceed option. The background process
that feeds queued topics or candidates lists to the Document Examiner should then
"unplug” and put everything that it has been saving into the Document Examiner,
one thing at a time.

Topics Pruned From the Documentation Database

When the Documentation Database is installed at your site, the installation
manager has the option of pruning the database. By selecting from a menu of
major sections in the database, the system manager specifies which files are
deleted from the documentation database file server. In this way, space can be
saved on the file server by pruning sections not needed at your site.

Trying to display a topic that has been pruned from the database causes a

46

User's Guide to Symbolics Computers July 1986

"dummy" topic to be displayed. Suppose, for example, the files containing the
section "Streams" were pruned from the database at your site. Trying to display
the topic ":tyi" produces the following display:

:tyi message
Documentation for :tyi as a Message is offline.

It appears in document: Reference Guide to Streams, Files, and I/0

Reload the file SYS: DOC; STR; STR2.SAB.4 to make this topic

accessible online.

If you decide you do want to see the topic online, you can use
sage:load-index-info to load the file that contains the index information for the
topic.

sage:load-index-info pathname Function
Loads pathname, a .sab file, into your world.

4.3 Documentation Lookup Commands

The Document Examiner, the editor, and the command processor all provide
various commands for looking up documentation. Some commands are available in
all three contexts, while others are available in only one of the contexts. The
following are descriptions of the commands provided, categorized according to the
context in which the command is available.

Lookup Commands Available in the Document Examiner, Editor, and
Command Processor

Show Documentation (an Overview)

Show Documentation looks up a topic and displays it. You can use the command
in the Document Examiner, in an editor, and at a command processor.

¢ In the Document Examiner, Show Documentation prompts for a te¢pic name,
with completion, accepting only those topics for which documentation exists
in the database. You can use Show Documentation in the Document
Examiner any of the following ways:

° Type the command at the command pane.
° Use [Show] in the Document Examiner command pane menu.

° Click left on a mouse-sensitive item in the viewer or an item in the
list of candidates or list of bookmarks.

47

July 1986

¢ In an editor, Show Documentation (n-¥, n-sh-D) prompts you for a topic
name, with completion, accepting only those topics for which documentation
exists in the database. You can direct the display of a documentation topic
to a supported printer (LGP1, LGP2, or DMP1) by issuing Show
Documentation (n-X) with a numeric argument. This prompts for an output
device.

o At a command processor, Show Documentation prompts you for a topic name,
with completion, accepting only those topics for which documentation exists
in the database. When you give the command the keyword argument
:destination, the command offers to route it to the default text printer.

Note that topic names for methods are of the form

(flavor:method :generic-function-name flavor-name), for example,

(flavor:method :set-edges tv:menu). To look up documentation for methods, use
one of the following strategies:

e Use Show Documentation, giving it the topic name of the method in the
form (:method :generic-function-name flavor-name).

e Use Find Whole Word Candidates, giving it the name of the method in the
form :generic-function-name. Then click on the item whose documentation
you want to see.

Lookup Commands Available in the Document Examiner and Editor

Find Any Candidates

Sometimes you want to know if the documentation database contains any topics
about a particular subject. You might have a string or strings in mind dealing
with that subject. Using the command Find Any Candidates, you can search the
database for any topics whose topic names or keywords contain the string or
strings as substring(s).

A substring is a string that appears somewhere in another string. A substring
can be an initial substring. However, when you use the command Find Any
Candidates, the search is for a substring that appears anywhere in another string,
not necessarily as the initial substring of some word or words in the string. The
string "et" is a substring of the strings "set" and "setq". The string "et" is both
a substring and an initial substring of the string "etc". The string "et" is not a
substring of the strings "est" and "login". '

The following situation shows how you can use this command: You want to know
if the database contains any topics about setting values of variables. You guess
that any such topics would use the string "set” somewhere in their topic names or
keywords. So, you use the command Find Any Candidates to search the database

48

User's Guide to Symbolics Computers July 1986

for any topics whose topic names or keywords contain the string "set" as a
substring. The search returns a list of almost 400 candidates.

You can provide the command with a string of several words, for instance, the
string "resource window". Note that when the given string contains any space or
hyphen characters, the command breaks the string into tokens using the space and
hyphen characters as delimiters. For example, given the string "resource
window", the command breaks it into two tokens, "resource" and "window".

The command looks at all the topic names and keywords in the database and lists
any in which all the tokens appear as substrings, in effect performing a logical
and test on the tokens. Given the string "resource window", the command lists
several topics, among them the function zl-user:defwindow-resource and the
section "The Top-level Function”. Both tokens are substrings in the topic name
zl-user:defwindow-resource and in the keywords of "The Top-level Function".
The order in which you provide the words does not affect the search for topics.

Again, this search is performed not only on the topic names in the documentation
database, but also on the keywords listed for each topic. This means that you
often find topic names in which the given string does not appear at all. It does,
however, appear among the topic’s keywords.

In the Document Examiner, the command lists the topic names it has found in the
candidates list. In an editor, the list takes the form of a menu.

In an editor, you can direct the display of a documentation topic to a supported
printer (LGP1, LGP2, or DMP1) by issuing Find Any Candidates with a numeric
argument. This pops up a menu offering to display the documentation on the
screen or route it to a supported printer.

This command is also available as [Find (R)] in the Document Examiner command
pane menu.

Find Initial Substring Candidates

Sometimes you want to know if the documentation database contains any topics
about a particular subject. You might have an initial substring or substrings in
mind dealing with that subject. Using the command Find Initial Substring
Candidates, you can search the database for any topics whose topic names or
keywords contain the substring or substrings as initial substring(s).

An initial substring is a string that appears as the beginning of some string. For
example, the string "set" is an initial substring of the string "setq". The string
"set" is not an initial substring of the string "reset". The string "set" is a
substring of the string "reset”.

The following situation shows how you can use this command: You want to know
if the database contains any topics about setting values of variables. You guess
that any such topics would use the string "set" as an initial substring somewhere

49

July 1986

in their topic names or keywords. So, you use the command Find Initial Substring
Candidates to search the database for any topics whose topic names or keywords
contain the string "set” as an initial substring. The search returns a list of over
200 candidates.

You can provide the command with a string of more than one word, for example,
the string "set-globally”. Note that when the given string contains any space or
hyphen characters, the command breaks the string into lokens using the space and
hyphen characters as delimiters. For example, given the string "set globally”, the
command breaks it into two tokens, "set" and "globally".

The command looks at all the topic names and keywords in the database and lists
any in which all the tokens appear as initial substrings, in effect performing a
logical and test on the tokens. Given the string "set globally”, the command lists
two topic names, the functions zl:set-globally and zl:setq-globally. Both tokens
are initial substrings in each topic name. The order in which you provide the
words does not affect the search for topics.

Again, this search is performed not only on the topic names in the documentation
database, but also on the keywords listed for each topic. This means that you
often find topic names in which the given string does not appear at all. It does,
however, appear among the topic’s keywords.

In the Document Examiner, the command lists the topic names it has found in the
candidates list. In an editor, the list takes the form of a menu.

Find Initial Substring Candidates treats leading punctuation as part of the word.
Thus, asking for initial substring of "area" does not return "*area" or "%area". If
you want "anything containing area" you must use the most general matching
command, Find Any Candidates.

In an editor you can direct the display of a documentation topic to a supported
printer (LGP1, LGP2, or DMP1) by issuing Find Initial Substring Candidates with
a numeric argument. This pops up a menu offering to display the documentation
on the screen or route it to a supported printer.

This command is also available as [Find (M)] in the Document Examiner command
pane menu.

Find Table of Contents

Displays a menu containing the given topic’s table of contents. For example, the
table of contents of "The Document Examiner"” displays as:

50

User’s Guide to Symbolics Computers July 1986

The Document Examiner
Introduction to the Document Examiner
Looking Up Documentation
Recovering From a Stuck Document Examiner
Topics Pruned From the Documentation Database
Documentation Lookup Commands
Lookup Commands Available in the Document Examiner, Editor, and Command Processor
Show Documentation (an Overview)
Lookup Commands Available in the Document Examiner and Editor
Find Any Candidates

You can ask to see a table of contents for any topic; it is not limited to top-level
books. The table of contents of "Documentation Lookup Commands" displays as:

Documentation Lookup Commands
Lookup Commands Available in the Document Examiner, Editor, and Command Processor
Show Documentation (an Overview)
Lookup Commands Available in the Document Examiner and Editor
Find Any Candidates

This command 1is also available as [Show (R)] in the Document Examiner command
pane menu.

Find Whole Word Candidates

Sometimes you want to know if the documentation database contains any topics
about a particular subject. You might have a word or words in mind dealing with
that subject. Using the command Find Whole Word Candidates, you can search
the database for any topics whose topic names or keywords contain the word or
words as whole word(s).

A whole word is a string separated from other strings by space or hyphen
characters. The string "set" appears as a whole word in the topic name "Creating
a Set of Condition Flavors" and in the topic name "set-globally". It does not
appear as a whole word in the topic name "setq". In the topic name "setq", the
string "set" appears as an initial substring.

The following situation shows how you can use this command: You want to know
if the database contains any topics about setting values of variables. You guess

that any such topics would use the string "set" in their topic names or keywords.
So, you use the command Find Whole Word Candidates to search the database for

51

July 1986

any topics whose topic names or keywords contain the string "set" as a whole
word. The search returns a list of almost 200 candidates.

You can provide the command with more than one word. For example, you give
the command the string "set globally”". Note that when the given string contains
any space or hyphen characters, the command breaks the string into tokens using
the space and hyphen characters as delimiters. For example, given the string "set
globally”, the command breaks it into two tokens, "set” and "globally".

The command looks at all the topic names and keywords in the database and lists
any in which all the tokens appear as whole words, in effect performing a logical
and test on the tokens. Given the string "set globally”, the command lists exactly
one topic, the function zl:set-globally. The order in which you provide the words
does not affect the search for topics.

Again, this search is performed not only on the topic names in the documentation
database, but also on the keywords listed for each topic. This means that you
often find topic names in which the given string does not appear at all. It does,
however, appear among the topic’s keywords.

In the Document Examiner, the command lists the topic names it has found in the
candidates list. In an editor, the list takes the form of a menu.

Find Whole Word Candidates treats leading punctuation as part of the word.
Thus, asking for whole word match of "area" does not return "*area" or "%area".
If you want "anything containing area"™ you must use the most general matching
command, Find Any Candidates.

In an editor you can direct the display of a documentation topic to a supported
printer (LGP1, LGP2, or DMP1) by issuing Find Whole Word Candidates with a
numeric argument. This pops up a menu offering to display the documentation on
the screen or route it to a supported printer.

This command is also available as [Find] in the Document Examiner command
pane menu.
Lookup Commands Available In the Document Examiner

Select Candidate List

Selects from the history of candidates lists, popping up a menu of the
documentation find commands and their arguments issued in the current session.
You can reinstate a list of candidates by using this command.

This command is very helpful when, for instance, you need to cycle through
several lists. Instead of reconstructing a candidate list each time you want to look
at it, just use Select Candidate List and click on the list that you want to see.

This command is also available as [Select] in the Document Examiner command
pane menu.

52

User's Guide to Symbolics Computers July 1986

Show Overview

Prompts for a topic name. Shows an overview of the given topic. This overview
has two parts:

e The top part includes the type (section or function, for instance) and name
of the topic, possibly a short summary of the topic, the names of any other
topics in the documentation that include this one, the names of any printed
books that contain the topic, and the topic’s keywords. The names of the
topic(s) and book(s) are mouse sensitive.

e The bottom part is a graph of the document hierarchy around the topic you
choose. (If the topic has multiple parents, multiple graphs are displayed.)
This graph includes:

° The topic’s parent (the topic that includes the original topic)

° The parent’s children (other topics called by the parent — the siblings
of the original topic)

© The topic’s children (topics the original topic includes)

Figure 11 shows the display produced by doing Show Overview of the topic "Disk
Error Handling".

Note that the graph has some limitations:
¢ Long topic names are truncated in the graph.

e Very large hierarchies cannot be displayed fully; the truncated part of the
display is not accessible.

Like the topics in the top part of the overview display, the topics in the graph are
mouse sensitive; you can use the same mouse commands on them that you use on
topics in the top part of the display. This provides a good way to explore the
context in which a topic occurs. Clicking middle on different topics to generate
new graphs starting from those locations in the tree is the online equivalent of
looking in a printed book at the immediately surrounding pages for a topic.

For example, when you get an overview of "Disk Error Handling", you can see
that the topic is included in the topic "3600-Family Disk System User Interface"
and that it includes four other topics. If this overview does not give you enough
information, try an overview on the parent topic (in this case, "3600-Family Disk
System User Interface").

This command is also available as [Show (M)] in the Document Examiner
command pane menu.

53

July 1986

Document Examiner Curre
 User
Overview Symb
Sectlon: "Disk Error Handling" ;ext
It Is Included In topic: "3600-Familly Disk System User Interface" R:?i
It appears in document: internals, Processes, and Storage Management Connm
Keywords: SUPPRESS RECOVERY *N RETRIES* variable grouping related ;::2
transfers Sl: DISK EVENT ERROR TYPE function Handling Netw
Gene
3600-Famlly Disk System De ggg:
Disk Arrays Synb
Disk Events
o s
3600-Family Disk System Us{4E——Disk Error Handlin 7o
Disk Error Codes
FEP File System Disk Error Meters
Disk Performance
Examples of High Disk Perfor
Disk and FEP File System Utlii Books
N
N

Figure 11. Document Examiner display of Show Overview of topic "Disk Error
Handling".

Lookup Commands Avallable in an Editor

What Document (n-X)

Displays the name of the printed book that contains the given documentation topic.
If the topic is included in more than one book, the titles of all the books
containing the given topic are listed. In the Document Examiner, this information
is available in the topic overview by clicking middle on any mouse-sensitive item
in the viewer or any item in the list of current candidates or list of bookmarks.

Lookup Commands Available At a Lisp Listener and in Zmacs

When you are typing at a Lisp Listener or in Lisp Mode in Zmacs, you can use
the following input editor commands to look up the documentation for the current
Lisp object (the one that precedes point). For example, pressing m-sh-A after
typing (z1:1ogin ’whit displays the documentation for zl:login.

n~sh-A Looks up the documentation for the current function.

54

User’s Guide to Symbolics Computers July 1986
n-sh-y Looks up the documentation for the current variable.
n-sh-F Looks up the documentation for the current flavor.

When you look up documentation at a Lisp Listener using one of these input
editor commands, the documentation appears on the screen, and the input editor
then redisplays whatever you were typing.

When these commands do not find any documentation for the current
function/variable/flavor in the documentation database, they check the object itself
for a documentation string. If they find a documentation string, the string is
displayed.

It should be noted that once a documentation string is displayed in this manner,
the string has been installed as the documentation in your world. Thereafter, the
display does not change if the documentation string is changed. In other words,
this facility does not provide support for your putting new documentation into the
documentation database.

4.4 Documentation Hardcopy Commands

The Document Examiner provides several commands for hardcopying topics in
different combinations:

Hardcopy Documentation
Sends the documentation for a topic to a supported printer
(LGP1, LGP2, or DMP1). This option is also available on the
menu obtained by clicking right on a mouse-sensitive topic
anywhere in the Document Examiner.

Hardcopy Private Document
Prints a private document on a supported printer (LGP1, LGP2,
or DMP1). For more information on private documents: See the
section "Document Examiner Private Documents”, page 61.

Hardcopy Viewer Sends the topics in a viewer to a supported printer (LGP1,
LGP2, or DMP1). Also available as [Viewer (R)] in the
command menu,

4.5 Document Examiner Win8ow

When you look at the Document Examiner window you see the following panes:

55

July 1986
Pane Description
Viewer Displays documentation.

Current candidates
When you first enter the Document Examiner, displays the list
of books registered in the documentation database. After that,
displays the menu of topics that appeared the last time you used
one of the documentation find commands.

Bookmarks Displays a list of bookmarks, which are the names of topics
displayed in the viewer or added to the list of bookmarks
without being displayed.

Commands Accepts commands at the prompt to the left and displays a
menu of selected Document Examiner commands to the right.

4.5.1 Document Examiner Viewer

The large area on the left of the Document Examiner window is called the viewer.
Documentation is displayed in the viewer. You can have multiple viewers, just as
you can have multiple editor buffers. The viewer currently visible is called the
current viewer. You can choose another viewer by using the command menu item
[Viewer]. The command prompts you for the name of a viewer. You can see a
list of viewers by pressing c-?. This is a completion command. It lists the
possible completions of your response so far. Since you have made no response at
this point, all viewers are possible completions. Items in the list are mouse
sensitive.

To view documentation topics in the Document Examiner viewer, you can do one
of several things:

e Click on mouse-sensitive items in the viewer.

¢ Click on topics in the list of current candidates or the list of bookmarks.
See the section "Document Examiner List of Current Candidates", page 57.
See the section "Document Examiner List of Bookmarks", page 58.

e Use the Show Documentation command in the command pane. See the
section "Show Documentation (an Overview)", page 46.

¢ Use [Show] in the command pane menu. See the section "Document
Examiner Command Pane", page 59.

In the Document Examiner, when you select a topic for viewing, the topic is
displayed at the end of the current viewer and the topic’s name is added to the
list of bookmarks. Topics chosen for display in the viewer are separated by
horizontal lines.

When you select a topic for viewing at a Lisp Listener or an editor, the topic is
displayed there, added to the end of the current Document Examiner viewer, and

56
User’s Guide to Symbolics Computers July 1986

the topic name is added to the end of the list of bookmarks. However, when you
abort out of viewing a topic at a Lisp Listener or an editor, the Document
Examiner just adds the topic name to the end of the list of bookmarks and does
not display the topic in the current viewer.

Examples of Lisp code whose lines are wider than the viewer display with those
lines wrapped around. When you need to see such examples in their entirety, use
the Command Processor command Show Documentation in a wider window (for
example, a Lisp Listener).

In the viewer, cross-references and documented Lisp objects are mouse sensitive.
The following actions can be performed on mouse-sensitive items:

Mouse click Action
left Displays the topic in the current viewer. v
middle Shows an overview of the topic, in two parts. The top part

includes the type (section or function, for instance) and name of
the topic, possibly a short summary of the topic, the names of
any other topic(s) in the documentation that include this one,
the names of the printed books that contain the topic, and the
topic’s keywords.

The bottom part is a graph of the document hierarchy around
the topic you choose. (If the topic has multiple parents,
multiple graphs are displayed.) This graph includes:

e The topic’s parent (the topic that includes it)

e The children of the parent (other topics called by the
parent — the siblings of the original topic)

e The children of the original topic (topics the original topic
includes)

The names of the topic(s) and book(s) in both parts of the
overview are mouse sensitive. For an example of an overview:
See the section "Show Overview", page 52.

Issuing any command, pressing any keyboard key, or clicking a
mouse button causes the overview display to go away.

sh-middle On a mouse-sensitive item in the viewer or list of current
candidates, adds the name of the topic to the list of bookmarks.
On an item in the list of bookmarks, discards the name of the
topic from the list of bookmarks, and, if the topic has been
displayed, discards the display from the current viewer.

right Pops up a menu of several commands with which to act on the
display. Commands listed but not mouse sensitive do not apply
to the pane on which you clicked.

57

July 1986

You can create, remove, and hardcopy viewers whenever you want and select
another viewer by using the following commands in the Document Examiner.

Command Action

Select Viewer Selects or creates a viewer, prompting for a name. Also
available as [Viewer] in the command menu.

Remove Viewer Removes a viewer, prompting for a name, then selects the last
viewer displayed. Also available as [Viewer (M)] in the
command pane.

Hardcopy Viewer Sends the topics in a viewer to a supported printer (LGP1,
LGP2, or DMP1). Also available as [Viewer (R)] in the
command menu.

4.5.2 Document Examiner List of Current Candidates

The upper right-hand pane of the Document Examiner window contains the list of
current candidates, which begins as a menu of books registered in the
documentation database. It then becomes the menu of topics that appeared the
last time you used one of the documentation find commands. A menu remains
until it is superseded by the next such command. Note that lines that are wider
than the list of current candidates pane are truncated.

You can reinstate a list of candidates by using the command Select Candidate List
or the menu command [Select], which pops up a menu of the documentation find
commands and their arguments issued in the current session.

The following actions can be performed on topics in the list of current candidates:

Mouse click Action
left Displays the topic in the current viewer.
middle Shows an overview of the topic, in two parts. The top part

includes the type (section or function, for instance) and name of
the topic, possibly a short summary of the topic, the names of
any other topic(s) in the documentation that include this one,
the names of the printed books that contain the topic, and the
topic’s keywords. '

The bottom part is a graph of the document hierarchy around
the topic you choose. (If the topic has multiple parents,
multiple graphs are displayed.) This graph includes:

e The topic’s parent (the topic that includes it)

e The children of the parent (other topics called by the
parent — the siblings of the original topic)

58

User's Guide to Symbolics Computers July 1986

e The children of the original topic (topics the original topic
includes)

The names of the topic(s) and book(s) in both parts of the
overview are mouse sensitive. For an example of an overview:
See the section "Show Overview", page 52.

Issuing any command, pressing any keyboard key, or clicking a
mouse button causes the overview display to go away.

sh-middle On a mouse-sensitive item in the viewer or list of current
candidates, adds the name of the topic to the list of bookmarks.
On an item in the list of bookmarks, discards the name of the
topic from the list of bookmarks, and, if the topic has been
displayed, discards the display from the current viewer.

right Pops up a menu of several commands with which to act on the
display. Commands listed but not mouse sensitive do not apply
to the pane on which you clicked.

4.5.3 Document Examiner List of Bookmarks

The lower right-hand pane of the Document Examiner window contains the list of
bookmarks. This is a history of bookmarks you place in the documentation. A
bookmark is a pointer to a documentation topic. Each time you display a topic, a
bookmark is placed in that topic, and the name of the topic is added to the list of
bookmarks. You can also simply place a bookmark in a topic without displaying it
in the viewer by clicking middle twice on an item in the list of current candidates.
When you select another viewer, the list of bookmarks associated with it is also
selected.

The list of bookmarks distinguishes between bookmarks whose topics have been
displayed and those that have not. Topics that are displayed in the viewer are
listed on a white background in the order in which you looked them up. Topics
not displayed in the viewer follow and are listed on a gray background in the
order in which you created the bookmarks. A marker on the list of bookmarks
indicates the topic currently being displayed at the top of the viewer.

Lines that are wider than the list of bookmarks pane are truncated.

The following actions can be performed on topic names:

Mouse click Action
left Displays the topic in the current viewer.
middle Shows an overview of the topic, in two parts. The top part

includes the type (section or function, for instance) and name of
the topic, possibly a short summary of the topic, the names of

59

July 1986

any other topic(s) in the documentation that include this one,
the names of the printed books that contain the topic, and the
topic’s keywords.

The bottom part is a graph of the document hierarchy around
the topic you choose. (If the topic has multiple parents,
multiple graphs are displayed.) This graph includes:

e The topic’s parent (the topic that includes it)

e The children of the parent (other topics called by the
parent — the siblings of the original topic)

¢ The children of the original topic (topics the original topic
includes)

The names of the topic(s) and book(s) in both parts of the
overview are mouse sensitive. For an example of an overview:
See the section "Show Overview", page 52.

Issuing any command, pressing any keyboard key, or clicking a
mouse button causes the overview display to go away.

sh-middle On a mouse-sensitive item in the viewer or list of current
candidates, adds the name of the topic to the list of bookmarks.
On an item in the list of bookmarks, discards the name of the
topic from the list of bookmarks, and, if the topic has been
displayed, discards the display from the current viewer.

right Pops up a menu of several commands with which to act on the
display. Commands listed but not mouse sensitive do not apply
to the pane on which you clicked.

4.5.4 Document Examiner Command Pane

The bottom portion of the Document Examiner window contains the command
pane. The command pane offers completion on command names as well as topic
names. c-? and (after you type at least one character) HELP display a mouse-
sensitive list of possible completions. Pressing HELP before starting to type a
command name displays the available commands.

The command pane contains a command menu at the lower right. Use the
following mouse clicks to perform these actions or commands.

Mouse Command
[Help] Brief command summary
[Help (VD] Show the Document Examiner documentation

60

User's Guide to Symbolics Computers July 1986
[Showl] Show Documentation

[Show (M)] Show Overview

[Show (R)] Find Table Of Contents

[Viewer] Select Viewer

[Viewer (M)] Remove Viewer

[Viewer (R)] Hardcopy Viewer

[Find] Find Whole Word Candidates (XXXXX)
[Find (M)] Find Initial Substring Candidates (XXX....)
[Find (R)] Find Any Candidates (..XXX..)

[Select] Select Candidate List

[Private] Read Private Document

[Private (M)]
[Private (R)]

Load Private Document
Save Private Document

4.6 Repositioning Text in the Document Examiner

The Document Examiner viewer, list of current candidates, and list of bookmarks
each have a bar located at its left edge. These bars provide the scrolling
capabilities found in dynamic windows throughout Genera. For more information
on the scrolling mechanism: See the section "Scrolling”, page 10.

Note that, when you display a multipage topic, the positioning mechanism knows
about only the part of the topic you have seen. If you look at only one page of a
multipage topic, the Document Examiner knows about only that page. Positioning
in the Document Examiner works this way so as to limit the amount of space that
documentation takes up in memory.

You can perform several types of positioning with the mouse and the bar. You can
get a listing of positioning commands by pressing HELP while in the Document
Examiner.

e To reposition text forward one screen:
° Press c-V.
° Press SCROLL.
° Click left in the box at the bottom of the bar.

¢ To reposition text backward one screen:
° Press m-V.

61

July 1986

° Press m-SCROLL.
° Click right in the box at the bottom of the bar.

e To reposition quickly to any part of the current viewer:
° Place the mouse over the scroll bar, note the repositioning options in
the mouse documentation line, and click accordingly.

¢ To reposition a few lines forward:
° Press c-SCROLL.
° Click left in the arrow at the top of the bar.

¢ To reposition a few lines backward:
° Press c-m-SCROLL.
¢ Click right in the arrow at the top of the bar.

¢ To reposition to the beginning or end of the current viewer or topic:
° Press m—< to reposition to the beginning of the current viewer.
° Press m-> to reposition to the end of the current viewer. Note that
using this command while you have a partially displayed topic exposed
in the viewer refreshes the display.

Two additional commands allow you to reposition text for a single topic:

Beginning of Topic
Repositions the viewer to the beginning of the current topic.

End of Topic Repositions the viewer to the last screen displayed for the
current topic.

4.7 Document Examiner Private Documents

The Document Examiner provides mechanisms for placing bookmarks in the online
documentation and for creating private documents out of these bookmarks. The
bookmarks are pointers to documentation topics in the database. A private
document is a collection of bookmarks you put together and write out to a file.
This allows you to create your own customized documents by grouping together
selected documentation topics.

To create a private document you first create a list of bookmarks, either by
looking up some topics or by clicking appropriately on the list of candidates or on
mouse-sensitive items in the viewer. Then you save the list of bookmarks, using
the command Save Private Document, answering its prompt with a pathname of a
file to contain the bookmarks. You can load (Load Private Document) or read
(Read Private Document) the private document back into the Document Examiner

62

User's Guide to Symbolics Computers July 1986

at any time, again answering the prompt with the pathname of the file that
contains the bookmarks for the private document. For example:

1. Create a list of bookmarks consisting of some topics documenting login
procedures and functions. For example:

login-forms

Togin-setq

System Initialization Lists
z1:login

2. Use Save Private Document. The command prompts you and you answer
with the pathname of a file to contain the private document’s bookmarks.
Following is the prompt for Save Private Document:

Enter a pathname for the document to contain these bookmarks
(default ACME-BLUE: /usr2/whit/private.psb):

Pathname merging is supported by this command and the default location for
a private document is always your home directory. So, with a home
directory of /usr2/whit/ on ACME-BLUE, if you give Save Private Document
the filename "login-book", the command writes the list of bookmarks to
ACME-BLUE: /usr2/whit/login-book.psb.

The following commands manipulate private documents:

Save Private Document
Saves the current list of bookmarks as a private document,
prompting for a pathname. Save Private Document writes the
list of bookmarks to the file whose pathname is given.

Read Private Document
Reads a private document into your computer and shows it in
the viewer. This command prompts for the pathname of a file
containing the bookmarks of a private document and the name
of a viewer to show it in. The default location for a private
document is always your home directory, and pathname merging
follows the standard rules.

Load Private Document
Loads a private document into your computer but does not show
it in the viewer. This command prompts for the pathname of a
file containing the bookmarks of a private document and the
name of a viewer. The default location for a private document
is always your home directory, and pathname merging follows
the standard rules.

63

July 1986

Hardcopy Private Document
Prints a private document on a supported printer (LGP1, LGP2,
or DMP1). For more information on private documents: See the
section "Document Examiner Private Documents", page 61.

64

User's Guide to Symbolics Computers July 1986

65

July 1986

5. Creating and Manipulating Files

5.1 Overview

Zmacs, the Lisp Machine editor, is built on a large and powerful system of text-
manipulation functions and data structures, called Zwei.

Zwei is not an editor itself, but rather a system on which other text editors are
implemented. For example, in addition to Zmacs, the Zmail mail reading system
also uses Zwei functions to allow editing of a mail message as it is being
composed or after it has been received. The subsystems that are established upon
Zwei are:

e Zmacs, the editor that manipulates text in files
e Dired, the editor that manipulates directories represented as text in files
¢ Zmail, the editor that manipulates text in mailboxes

e Converse, the editor that manipulates text in messages

Since these subsystems share Zwei in the dynamically linked Lisp environment,
many of the commands available as Zmacs commands are available in other editing
contexts as well.

In this manual, we discuss Zmacs commands in the context of Zmacs only. We
also describe Dired, the directory editor, since it is used within Zmacs.

You can find a tutorial for Zmacs in sys:examples; directory. Information on
running it can be found in the file teach-zmacs-info.text.

Show File sys:examples;teach-zmacs-info.text

You can enter, or invoke, the editor in several ways: Press SELECT E, use the
mouse, or run either the function ed or the function zwei:edit-functions. You can
also use the command Select Activity, specifying either Zmacs or Editor as its
argument.

5.2 Entering Zmacs with seLecT E

You can invoke the editor by pressing the SELECT key and then the letter E:

¢ If you have already been in the editor since booting the machine, Zmacs
returns you to the same place in the same buffer that you last used.

e If this is the first time you are entering Zmacs since booting the machine,
Zmacs puts you in an empty buffer named xBuffer-1x.

66

User's Guide to Symbolics Computers July 1986

SELECT E enters or returns you to the editor from anyplace in the system, not just
when you are talking to Lisp.

5.3 Entering Zmacs with the Mouse

You can invoke the editor using the mouse.

Summon a System menu by clicking right twice [(R2)]. Then click left on the
Edit option [Edit (L)], which puts you into a Zmacs buffer. As for SELECT E, if
you are returning to the editor Zmacs puts you back at the same place in the
same buffer, and if you are entering Zmacs for the first time it puts you in an
empty buffer.

5.4 Entering Zmacs with ed

The Lisp function ed enters Zmacs from a Lisp Listener. See the function ed,
page 180.

When reentering Zmacs within a login session, ed enters the editor, preserving its
state as it was when you left. When entering Zmacs for the first time during a
login session, ed initializes Zmacs and creates an empty buffer.

arg can have these values.

Value Description

t The ed function enters the editor, creates an empty
buffer, and selects it.

Pathname or string The ed function enters the editor and finds or creates
a buffer with the specified file in it.

Defined symbol The editor tries to find the source definitibn of that
symbol for you to edit. A defined symbol can be, for
example, a function, macro, variable, flavor, or system.

The symbol”zwei:reload" The system reinitializes the editor. This destroys all
existing buffers, so use this only if you have to.

5.5 Entering Zmacs with zwei:edit-functions

The Lisp function zwei:edit-functions also enters Zmacs from a Lisp Listener.

67

July 1986

zweizedit-functions Function

zweizedit-functions is like ed in that inside the editor process it throws you back
into the editor, whereas from another process it just sends a message to the editor
and selects the editor’s window. zwei:edit-functions gives spec-list to the editor in
the same way that Edit Callers and similar editor commands would. See the
section "The Zmacs Edit Callers Commands" in Text Editing and Processing.

This command is useful when you have collected the names of things that you
need to change, for example, using some program to generate the list. spec-list is
a list of definitions; these are either function specs (if the definitions are
functions) or symbols.

Zmacs sorts the list into an appropriate order, putting definitions from the same
file together, and creates a support buffer called xFunction-Specs-to-Edit-nx. It
selects the editor buffer containing the first definition in the list.

To insert new text anywhere in the buffer, position the cursor at the place you
want the new text to go and type the new text. Zmacs always inserts characters
at the cursor. The text to the right of the cursor is pushed along ahead of the
text being inserted.

5.6 Keystrokes

A keystroke has a character component and a modifier component, and is
performed by pressing a primary key (alphanumeric), possibly while holding down
a shift key or a group of shift keys. The primary key held down with either the
SHIFT or SYMBOL keys determines the character part of a keystroke. Whether you
hold down the other shift keys, CONTROL, META, HYPER, and SUPER, determines the
modifier part of the keystroke.

In general, commands that begin with a CONTROL (c-) key modifier operate on
single characters, commands that begin with a META (n-) key modifier operate on
words, sentences, paragraphs, and regions, and commands that begin with a
CONTROL META (c-m-) modifier operate on Lisp code.

Prefix character commands consist of more than one keystroke per command. For
example, to invoke the command c-¥ F, you first type the prefix character c-% and
then the primary key F. Prefix character commands are not case-sensitive — that
is, Zmacs converts a lowercase character following a prefix character command
(like c-K) to uppercase. For example, c-X f is equivalent to c-X F.

Zmacs commands are self-delimiting. Unless otherwise specified, you do not need

to type a carriage return or other terminating character to finish typing a
command.

68

User's Guide to Symbolics Computers July 1986

5.7 Extended Commands

Extended commands extend the range of commands past the one-or-two-keystroke
limitation. You invoke Zmacs extended commands by name using the m-X
command:

n=K Extended Command
Prompts for the name of a Zmacs command and executes that command.

Command completion is provided. See the section "Completion for Extended
Commands (n-¥ Commands)", page 115.

5.8 Description of Moving the Cursor

To do more than insert characters, you have to know how to move the cursor.

For complete descriptions of the commands summarized here and other cursor-
moving commands: See the section "Moving the Cursor in Zmacs" in Text Editing
and Processing.

5.9 Summary of Moving the Cursor

c-A Beginning of Line
Moves to the beginning of the line.

c-E End of Line
Moves to the end of the line.

c-F Forward
Moves forward one character.

c-B Backward
Moves backward one character.

mn—-F Forward Word
Moves forward one word.

mn-B Backward Word

Moves backward one word.

m-E Forward Sentence
Moves to the end of the sentence in text mode.

m-A Backward Sentence
Moves to the beginning of the sentence in text mode.

69

July 1986

c-N

Moves down one line.

c-P

Moves up one line.

m—-]

Moves to the start of the next paragraph.

n-[

Moves to the start of the current (or last) paragraph.

c-X]

Moves to the next page.
c-X% [

Moves to the previous page.

c-V, SCROLL
Moves down to display the next screenful of text.

m-V, m—-SCROLL
Moves up to display the previous screenful of text.

m-<

Moves to the beginning of the buffer.

m->

Moves to the end of the buffer.

5.10 Getting Out of Trouble

5.10.1 Overview of Getting Out of Trouble

Down Real Line

Up Real Line

Forward Paragraph

Backward Paragraph

Next Page

Previous Page

Next Screen

Previous Screen

Goto Beginning

Goto End

Sometimes you type the wrong command. Mostly it is obvious what you have done
wrong, and it is a simple matter to undo it. There are, however, some kinds of

trouble you can get into that require special remedies.

For example, you might

accidentally delete large chunks of text you need or you might begin to type a

command and then change your mind.

This section tells you how to recover from these situations.

5.10.2 Getting Out of Prefixes and Prompts

Most of the commands we have described are single keystrokes, but some
keystrokes are prefixes that must be completed with a second keystroke to specify

a command. c-X is the most important of these.

70

User's Guide to Symbolics Computers July 1986

5.10.2.1 Getting Out of Keystroke Prefixes

If you press a c-X and don’t mean it, you can get out by pressing either c-G or
ABORT. These are general "get me out of here" commands, which you should use
whenever you get yourself into a confused state. ABORT and c-G are, for the most
part, synonymous in Zmacs.

5.10.2.2 Getting Out of Minibuffer Prompts

Sometimes you accidentally type a command that prompts for some additional
information, or you type such a command on purpose and change your mind
afterwards. When Zmacs prompts and you just want to get out of the minibuffer
and back to where you were, press ABORT. If, instead, you wish to cancel and
reenter your response, use c~G, which clears any typein but leaves you still in the
minibuffer. When the minibuffer is empty, c-G cancels the minibuffer command.
(With some echo area prompts, you have to use ABORT.)

ABORT Abort At Top Level

Cancels the last command typed. It also cancels numeric arguments and region
marking.
c-G Beep

Cancels the last command. It also cancels numeric arguments and region
marking, except when given an argument. It cancels one thing at a time, so that
if you’ve typed a number of commands or responses, you must use use successive
c-Gs to cancel each one and return to top level.

5.10.3 Large Deletions

Do not delete large pieces of text by repeatedly pressing RUBOUT and c-D. Apart
from being slow, text deleted character-by-character is gone for good.

Instead, use delete and kill commands that save deleted regions in the kill history.
c-K, m-K, and the commands that deal with regions easily wipe out and save larger
chunks. Also, RUBOUT or c-D with a numeric argument erases that many
characters all at once and saves them in the kill history. For full descriptions of
these delete and kill commands: See the section "Deleting and Transposing Text
in Zmacs" in Text Editing and Processing.

5.10.3.1 Getting Text Back

The system has different histories for different contexts. One of these is always
the current history. The two histories that you need to use for yanking in Zmacs
are the kill history and the command history. The kill history remembers pieces
of text that you killed or copied into it. In the context of Zmacs, the command
history remembers all the editor commands that use the minibuffer in any way.

Additions to the histories are placed at the top of the list, so that history elements
are stored in reverse chronological order — the newer elements at the top of the

71

July 1986

history, the older elements toward the bottom. A history remembers everything
that has been typed to it since the last cold boot — it has no size limit.

Yanking commands pull in the elements of the history. Top-level commands start
a yanking sequence; for example, c-Y yanks back the last text killed from the kill
history, and c-m-Y yanks back the last command performed in the minibuffer. n-¥
performs all subsequent yanks in the same sequence; for example, pressing mn-Y
while the kill history is the current history yanks the next item from that history.

A yanking sequence ends when you type new text, execute a form or command, or
start another yanking sequence.

For complete descriptions of killing and yanking: See the section "Working with
Regions in Zmacs" in Text Editing and Processing.

5.11 Overview of Finding Out About Zmacs Commands

Sometimes you want to know if a Zmacs command exists that performs a certain
function. Or, you might think that you know what a certain keystroke does, but
you still want to make sure, or refresh your memory about its exact usage. This
manual is one resource you might use in these circumstances. Zmacs itself has a
number of built-in self-documentation facilities. This section describes some ways
to get at this documentation.,

5.12 Finding Out About Zmacs Commands with HeLP

The HELP key is a prefix to a useful group of commands giving various kinds of
online help. If you forget what a command does, which keystrokes perform an
action, or have no idea how to accomplish something, press HELP.

Whenever you have a question of any kind, press HELP. Zmacs prompts you in the
minibuffer for details on what kind of help. If you don’t know, press HELP again
and it tells you, in the typeout window, how to find what you’re looking for. The
typeout window displays right over the editor window. The actual contents of the
buffer are not affected, and the next command you type restores the buffer
display.

5.13 Finding Out What a Zmacs Command Does

HELP C

The command HELP C displays "Document Command:" below the mode line and

72

User’s Guide to Symbolics Computers July 1986

waits for you to type a command. When you do, Zmacs displays the internal
documentation for that command. :

5.13.1 Example

If you press HELP-C followed by c-F, the response is:

c-F is Forward, implemented by COM-FORWARD:
Moves forward one character.
With a numeric argument (n), it moves forward n characters.

The first line above tells you the name of the command (in this case Forward),
and the name of the internal Lisp function that actually does the work (in this
case zwei:com-forward). (You don’t need to know these internal names for basic
editing.) The COM-xxx name displayed by HELP C is mouse-sensitive: clicking left
on it edits the COM-xxx function, and clicking right displays a menu with choices of
Arglist, Edit, Disassemble, and Documentation.

The next line is a very short description of what the command does; it usually
tells you what the command does without a numeric argument and how a numeric
argument modifies that behavior.

5.13.2 Finding Out What a Prefix Command Does

When you ask (with HELP C) for documentation on a prefix command like c-¥,
Zmacs prompts you, in the typeout window, to complete the command. Zmacs
displays the documentation for the prefix command in the typeout window.

5.13.3 Finding Out What an Extended Command Does

HELP D

When you want to find out what an extended command does, you can display the
documentation for the command by pressing HELP D, which prompts in the
minibuffer "Describe command:", to which you type the command’s name.

5.14 Searching for Appropriate Zmacs Commands

HELP R
n—-X Apropos

When you can only guess at part of the name or function of a command by the
action it performs, there is a command, HELP R, to help you scan information
about all the available Zmacs commands to find the one you want. All you have to

73

July 1986

do is type in a string, such as "buffer" and all command names plus the first line
of all help documentation are scanned for the string you specify.

Each Zmacs command has a name. The name is almost always exactly what you
would expect; that is, the name describes the function of the command in
reasonably plain English. If not, the word you’re looking for is almost surely in
the first line of the help documentation.

With a numeric argument, HELP A searches only the command names.

The A stands for apropos. The m-X Apropos command works the same way.

5.14.1 Method for Searching for Appropriate Zmacs Commands

To find the command you want, just press HELP A or type m—¥ Apropos. Zmacs
prompts you for a substring, you enter your guess, and then Zmacs displays short
descriptions of all the commands whose names contain that substring. If the
substring that you enter contains a space, then Zmacs displays a short description
of all the commands whose names or help documentation includes a similarly
positioned space. Each description gives the short documentation for the command
and tells what keystrokes invoke it.

5.14.2 Example of a Search String for HELP A

The command you perform when you use m-Q is called "Fill Paragraph", so you
might expect a command that counts the number of paragraphs in the buffer to be
called something like "Count Paragraphs” or "Paragraphs Count”. No matter
what, the word paragraph is going to be in the name or the first line of the help
documentation.

5.15 Finding Out What You Have Typed

HELP L

As you are editing you might find yourself in a hopelessly confused state and not
know how to recover.

If this happens to you it is often very enlightening to press HELP L to list the last
60 keystrokes you typed. By examining your own recent activity, it is often
possible to find out where you went wrong and how to save yourself.

Some Zmacs operations require you to provide names — for example, names of
extended commands, Lisp objects, buffers, or files. Often you do not have to type
all the characters of a name; Zmacs offers completion over some names. When
completion is available, the word Completion appears in parentheses above the
right side of the minibuffer.

74

User's Guide to Symbolics Computers July 1986

You can request completion when you have typed enough characters to specify a
unique word or name. For extended commands and most other names, completion
works on initial substrings of each word. For example, n-X ¢ SPACE b is
sufficient to specify the extended command Compile Buffer. SPACE, COMPLETE,
RETURN, and END complete names in different ways. Press HELP or click right
once, [(R)], on the editor window or minibuffer to list possible completions for the
characters you have typed. c-~ displays every command that contains the
substring.

SPACE Completes words up to the current word.

HELP or c-? Displays possible completions in the typeout area.

[(R)] Pops up a menu of possible completions.

c-/ Runs Apropos for each of the partially typed words in the name.
COMPLETE Completes as much as possible. This could be the full name.

RETURN or END Confirms the name if possible, whether or not you have seen the
full name.

5.16 Creating a Buffer

Zmacs creates your initial buffer when you first enter the editor. To create other
buffers, use c-X B, Select Buffer, to create an empty buffer or c-X c-F, Find File,
to create either an empty buffer or a buffer containing a file.

c-%¥ B prompts for the name of the buffer to which you want to go. Type the
buffer name and RETURN. If the buffer exists, Zmacs switches to that buffer and
displays it on the screen. If the buffer does not already exist, Zmacs offers to let
you create it by terminating the buffer name with c~RETURN. When you create a
new (empty) buffer, the display is blank.

The other way to create another buffer is c-X c~F, Find File. (c-X c-F) is
described in detail in "Editing Existing Files". c-X c-F prompts for the name of
a file, terminated by RETURN.

When you type c-¥ c-F for the first time in a Zmacs session, Zmacs offers you, as
a default file name, an empty file (with the Lisp suffix native to your host
computer) in your home directory on your host computer. For example:

System Empty Buffer Name
Lisp Machine foo.lisp
UNIX foo.l

VMS foo.lsp

75

July 1986

Base and Syntax Default Settings for Lisp

When you read a file that has a Lisp file type into the buffer, if that file does not
begin with an attribute line containing Base and Syntax attributes, Zmacs warns
that the file "has neither a Base nor a Syntax attribute" and announces that it
will use the defaults, Base 10 and Common-Lisp. See the section "Buffer and File
Attributes in Zmacs" in Text Editing and Processing.

Buffer Contents with c-% c-F

The first time you use c-X c-F, you can create an empty buffer using the Zmacs
default file name, create an empty buffer using a name that you specify, or create
a buffer containing an existing file:

e To create an empty buffer with the initial default file name as the one
Zmacs associates with your buffer, press RETURN.

¢ To create a new empty buffer, respond with any name. Zmacs switches to
an empty buffer, gives the buffer the new name, and displays (New File) in
the echo area.

e To create a new buffer containing some file, respond to the prompt with the
name of that file. Zmacs switches to an empty buffer, reads that file in, and
names the buffer appropriately.

5.17 Creating a File

The first time you save or write the buffer, Zmacs creates the new file. You can
create a new file with c-X c-S. Since a new file does not have a name associated
with it yet, Zmacs asks for a name for the new file. It offers a default pathname,
which is the name of the buffer. If you wish to save the file out to the default
pathname, simply type a RETURN in response to the prompt.

If you wish to save the buffer in another file, provide that name as your response.
Completion is offered to simplify your response.

You can also write the buffer out with c-% c-W, Write File. Zmacs prompts in the
minibuffer for the name of the place you want to write the buffer’s contents. c-X
c-W also offers a default pathname, in this case, the name you supplied with c-%
c-F.

76

User's Guide to Symbolics Computers July 1986

77

July 1986

6. Sending and Receiving Messages and Mail

6.1 Using Zmail

6.1.1 Introduction

Zmail is a display-oriented mail system for Genera. Using Zmail, you can send
and receive electronic mail, archive your mail in disk files, and operate on groups
of messages selected according to very flexible criteria. This tutorial is intended
to give you a brief introduction to the basic features of Zmail. For a complete
description of all Zmail’s capabilities: See the section "Zmail Reference Guide" in
Communicating with Other Users.

Since Zmail messages are typed into editor buffers, some familiarity with the
editor is also helpful. (See the section "Zmacs Manual" in Text Editing and
Processing.)

6.1.2 Starting up Zmail

Before running Zmail, be sure that you are logged in. See the section "Logging
in", page 17.

To run Zmail, do one of the following:

e Press SELECT M.
¢ Give the command Select Activity Zmail (or Select Activity Mail).

You get a display similar to Figure 11, called the top-level display. Now you can
send or read mail.

The top-level display consists of four windows: the Summary Window, the
Command Menu, the Message Window, and the Minibuffer, which contains the
Mode Line. The Summary Window displays a line for each message in the
current sequence, with an arrow indicating the current message.

The Command Menu provides a mouse-sensitive menu of the most useful top-level
commands. In Zmail documentation, when we say, for example, "[Get inbox]", we
mean the Get inbox command in this menu. Some of these commands (for
example, [Delete]) apply only to the current message.

The Message Window displays the current message. The message window is an
editor buffer.

The Mode Line gives status information about Zmail and about the current
message, including its properties and keywords.

The top-level display, with a mail file read in, is shown in Figure 12. Command
documentation is available online in several forms:

78
User's Guide to Symbolics Computers July 1986

Ho. Lines Date Fron+io Subject or Tent

Profile Quit Delete Undelete Reply
Configure Save yext 'Z:ethés Conu.r;ue
Si F ump ywords ai
ggiy Map over x Move Select Other

[JType the HELP key for help.

HTo read your nail, click Left on "Get inbox".
NTo send a nessage, click Left on "Mail".

N To send a bug report, click Hiddle on "Hail®.

Hessage
Znail No current nessage sequence

Bead new mall: Mouse-L: for current buffer; Mouse-M: specily Inbox for current buffer; Mouse-R: specify the Buffer by menu

[Fri 18 JoT 9:43:38] Ellen TL-USER: User Input Meather belng Inltlalized>

Figure 12. Top-level Display

___Yo. Lines TDate Fron+To Subfect or Text
[469: 15 17-Jul andreu+Sales-Marketing® Re: TI knockoffs requested
470: 8 17-Jul 1ittlesLRNG, sp Open Meeting
®471R 44 17-Ju) CGARY+ Teach Znacs
472- 136 17-Jul pascoe+dcp [donceisi-varxa.ARPA: bug on 3688 running rel6.1]
473~ 52 17-Jul Ret{i+HIC,Cyphers,DCP,Bu Khy does TV:PREPARE-SHEET bind INHIBIT-SCHEDULING-FLAG to T7
474: 52 17-Ju) nancy+Bug-Sage pernuter problen
475- 43 17-Ju) Hunter@WHIT+cur@WHITE,D Don’t throw out those college textbooks yet,
476- 32 17-Jul roy+BUG-LISPH, roy Possible bug in Renove-duplicates
477: 44 17-Jul DODDS+Palter New In-house Horlds
478: 34 1B8-Jul DCP+Houk, BUG-LISPH FSPT.FSPT

479: 73 18-Ju) Skatel1+5P, BKelly, Spoer Layered Products Numbering convention infornation
480: 43 18-Jul parnenter+Houk, parnente brackets
481- 55 18-Jul BSG+j1beCD, RLB, DCP, Bug- What funargs do what

482~ 31 18-Ju) SGR+Marketing [cfrye02.AL.NIT.EDU: Speech Generation/Recognition software for 3600s]
483- 11 18-Jul sned+Bug-Lispn ACL bugs
\
Profile Quit Delete Undelete Reply
Configure Save Next Previous Continue
Survey Get inbox Jump Keywords ai
Sort Map over Move Select Other

M Date: Thu, 17 Jul 86 16:21 EDT
R Fron: Carl L. Gay <CGAYSWRIKATO>
Subject: Teach Znacs

H To: el1en8STONY-BROOK

Date: Thu, Jul 86 15:13 EDT
Fron: V. E1Ten Golden <el1en®STONY-BROOK.SCRC.Synbolics.COM>

Date: Thu, 17 Jul 86 11:32 EDT
Fron: Car) L. Gay <CGARY®WRIKATO.SCRC.Symbolics.COM>

Date: Tue, 15 Jul 86 15:17 EDT
Fron: U, Ellen Golden <el1en@®STONY-BROOK.SCRC.Synbolics.COM>

Message

Znail S:>elien>ellen.babyl Msg #4717483 (answered) ()} --More below--
New mail in S:>Ellen>nail.text for S:>ellen>ellen.baby)l at 19:86.

Mouse-L: Edit this message; Mouse-R: Editor menu.

To see other commands, press Shift, Control, or Meta-Shift.
FrT 18 JoT 7iT4e30] Brten TL-USER: User Tnpot Westher beTrg TnTtTalzed
Figure 13. Top-level Display with Mail File

79

July 1986

o Explanations displayed automatically: usually appear below the mode line.
e Mouse documentation line.

e HELP key: provides short command documentation.

e Apropos (m-K): lists commands whose name contains a given string.

See the section "Online Help for Zmail" in Communicating with Other Users.

6.1.3 Sending Your Mall

To send a message, click on [Mail], which is displayed in the command menu.

Command Meaning
[Mail]l or M (Kbd) Starts up a window for composing a mail message.

[Mail (M)] Starts up a window for composing a bug report. You can
control the behavior of click middle in your profile. See the
variable zwei:*mail-middle-mode* in Communicating with Other
Users.

[Mail (R)] Calls up a menu of mail sending operations.

Zmail displays two windows, one for the message headers, and one for the message
itself. If you are sending a bug message, information about the software
configuration of your machine is automatically added to the message window. (See
figure 14)

At this point, the headers window is selected, with the cursor following the word
To:. The program is prompting you for the contents of the To: field, which
specifies to whom the message is to be sent. Respond by entering a list of one or
more user names or mailing lists separated by commas.

If you wish to send someone a carbon copy of the message (which means they also
get the message, but are not considered a primary recipient), press RETURN, then
type Cc: followed by a list of one or more user names or mailing lists, separated
by commas. If you want to save a copy of the message for yourself, include your
own name on the Cc: list (or on the To: list).

Use c-N to get down to line containing the word Subject:. Fill in a short subject
line for the message. This Subject is used in the summary display of the
recipient’s mail file. (If you have no Subject: field, the text of the first
meaningful line is used.)

To enter the message itself, select the message window by pressing END. The
message window is an editor window; you can type in the message using all the
commands of the editor. See the section "Zmacs Manual" in Text Editing and
Processing. The headers window is also an editor window.

80

User's Guide to Symbolics Computers July 1986

JTo: I
N Subject:
Hecc: ellen

Headers

N
N
N
N
N
N
N
N

X
N
N
N
N
N
N
N
N
N
N
N
N
§
N

s

78,2070 RSB ROAS, B 0

Mail

Znatl Mail (Text) Headers End adds more text, Abort aborts
Type END when done editing.

Mouse-L: Select this window; Mgusfe-hf:: Markl Ii':‘\e; Mg;ﬁs‘e-ﬁ: Esdltor menu.
To see other commands, press Shift, Contro ota- t, or Super.
TFr1 18 JuY 7:55:26] E’llpen * —TL-USER: * User Input Heather belng Initlalized>

Figure 14. Mail Mode Display (One-window Mode)

At any time during editing you can return to the headers window to add or
change entries; just click left on the headers window. To get back to the mail
window, press END or click left on the mail window.

If you change your mind while working on the message and decide that you do not
want to send anything, press RBORT, and you return to top level; nothing is sent.
If you later decide that you did want to send the message after all, use [Continue].
See the section "Continuing Completed or Aborted Zmail Messages" in
Commaunicating with Other Users.

When you are satisfied, press END to send the message. If you are in the headers
window, press END twice. See figure 15 for a message about to be sent.

If the message is sent successfully, Zmail displays "Message sent" and returns to
top level. If there is a problem, Zmail tells you about it and remains in mail
mode. Typical problems are omitting the To: field, trying to send mail to a
nonexistent user, or mistyping a user name. Correct the error and resend the
message by pressing END twice.

6.1.4 Reading Your Mail

To read your mail, use [Get inbox]; Zmail reads in your primary mail file
(containing old mail) and any new mail.

81

July 1986

[JTo: KJoneseWonbat
N&ubject: Tryirg out Znailll
Hece: elien

Headers

This is a test nessage.

Hail
Ennil Hail (Text) Mail End nails, Abort aborts
[19:56:19 From YUKON: Your request of 771886 19:50:24 (°*Screen Hardcopy®) has been conpleted.]

Mouse-L: Move point; Mouse-M: Mark word; Mouse-R: Editor menu.

To see other commands, press Shift, Control, Meta-Shift, or Super.
{Fri 18 Jul 7:56:23] Ellen CL-USER: Eserﬁput Meather Belng Inttiall;

Figure 15. A Message about to be Sent

82

User’'s Guide to Symbolics Computers July 1986

Command Meaning

[Get inbox] or G from the keyboard
Gets the new mail (inbox) for the current buffer. It has no
effect when a collection is current.

[Get inbox (M)] Prompts you for an inbox name for the current buffer.

[Get inbox (R)] Calls up a menu of possible buffers for which to get the new
mail.

For a complete discussion of the [Get Inbox] command: See the section "[Get
Inbox] Zmail Menu Item" in Communicating with Other Users.

Two files are involved here: your primary mail file, which contains messages you
have already seen, and your inbox, which contains new mail. If you do not have a
mail file — as might be the case the first time you run Zmail - the program offers
to create one for you. Press RETURN to let Zmail create the file, or ABORT if for
some reason you do not want a mail file. No similar problem with inbox files
exists; they are created when needed, and are deleted when Zmail reads your new
mail from them.

While an internal data structure used for conversation and reference commands is
created, the following message appears in the status line:

Parsing messages in filename

The parsing required in the creation of reference hash tables is time-consuming
for large unparsed files. The appearance of this message notifies you that it is
building a reference hash table so that you do not think something is wrong. If
you store your mail files in KBIN format, which is already parsed, this wait is
eliminated. See the section "Binary Format for Storing Mail Files" in
Communicating with Other Users.

If you have no new mail, Zmail says so. Otherwise, the summary window starts to
scroll as lines appear for new messages, and the first new message is displayed in
the message window as the current message.

If the message does not fit entirely in the window, the bottom edge of the window
is a jagged line and the words --more below-- appear in the mode line. When text
is off-screen both above and below, both the top and the bottom edge of the
window are jagged and the message reads --more above and below--; when you
reach the final screen of the message, the top edge of the window is jagged and
the message reads --more above--.

There are several ways to scroll using the keyboard:

To display the next screen of the message
SPACE
c-V
SCROLL

83

July 1986

To go back to the previous screen
BRACKSPACE
n-Y
m—-SCROLL

To return to the beginning of the current message

c-mn—-<

To use the mouse for scrolling, you can click left on the --more ...-- messages to
scroll forward one screen, or click middle to scroll back one screen. If you click
right, you get a menu of four items: [Forward] and [Backward], which move
forward and backward by one screen, and [Beginning] and [End], which move to
the beginning and the end of the message. For more precise control of scrolling,
use the scroll bar in the left margin of the window. See the section "Scrolling",
page 10.

6.1.5 What to Do After Reading a Message

Once you have finished reading a particular message, there are several things you
might want to do. You might want to read the next new message (if any), you
might want to delete the message if it is no longer of value, or you might want to
reply to the message.

6.1.5.1 Deleting and Undeleting Messages

After you have finished reading a message, you often want to delete it and move
on to the next one. To do this, click on [Delete] or press D. This marks the
message as deleted — a D appears in its summary line — and moves to the next
message.

If you change your mind, you can undelete a message; click on [Undelete] or press
U. This starts at the current message and searches backward for a deleted
message, undeletes it, and selects it as the current message. When you delete a
message from a mail buffer, the message is not actually removed — it just acquires
the property Deleted. You remove the message when you expunge the buffer; this
happens automatically when you save it, or you can expunge it manually.

6.1.5.2 Moving Among Messages

When you finish reading a message that you do not want to delete, use [Next] to
read the next message. To go back to the previous message, use [Previous]. To
jump to the first message in the file, use [Previous (M)]; for the last message, use

84
User’'s Gulde to Symbolics Computers July 1986

[Next (M)]. (Note: These commands ignore deleted messages; they actually give
you the next undeleted message, previous nondeleted, first nondeleted, and last
undeleted.)

To read an arbitrary message, select it from the summary window by clicking left
on its summary line. If the summary does not all fit in the window, you might
first have to scroll the display using the left-margin scroll bar.

6.1.5.3 Replying to Mall
To reply to the current message, click on [Reply].

Command Meaning

[Reply] or R (Kbd)Starts up a window to reply to the current message. You can
customize the window configuration. See the variable
zwei:*reply-window-mode* in Communicating with Other Users.

[Reply (M)] Starts up a window to reply to the current message with the
message being replied to included. You can control the behavior
of click middle in your profile. . See the variable
zwei:*middle-reply-mode* in Communicating with Other Users.

[Reply (R)] Calls up a menu of reply options.

This sets up the screen as three windows: the Message window displays the
current message, the Headers window contains the reply headers, and the Mail
window is where you write the reply itself. (See Figure 16)

The cursor is in the Mail window, so you can just type in the text of the message,
using editor commands to edit what you are typing. To send the message, press
END. If you change your mind and do not want to reply, press ARBORT. If you want
to edit the headers, you can select the Headers window by clicking left on it.
These commands are the same as in mail mode. See the section "Sending Your
Mail", page 79.

What is special about reply mode is that the reply headers are written
automatically. The headers that Zmail writes are the To: field, the cC: field, the
Subject: field, and the In-Reply-To: field. The Subject: field is simply a copy of
the original Subject:. Defaults for the To: and CC: fields are provided. Notice
the mouse-documentation line. To set up alternate To: and CC: fields, use [Reply
(R)] and choosing from the pop-up menu the combination of To: and CC: you want.
See the section "[Reply] Zmail Menu Item" in Communicating with Other Users.

6.1.5.4 Saving the Mall File

When you have finished reading your new mail, you should save your mail file by
using [Savel. This expunges deleted messages from the file and then saves it,
writing the modified mail file back out to the file system where it is kept until
next time.

85

July 1986

[JBate: Thu, 17 Jul 86 16:21 EDT
NFron: Carl L. %y <CGAYOHAIKATO>

§ Subject: TeachfZnacs
NTo: el1en#STONY-BROOK

Ncc: coay®HRIKATO

N

N In-Reply-To: <B68717151344.4.ELLEN®TOKHEE .6CRC.Synbo) {cs.COM>

Date: Thu, 17 Jul 66 15:13 EDT
Fron: V. Ellen Golden <ellen8STONY-BROOK.SCRC.Synbolics.COM>

Date: Thu, 17 Jul 86 11:32 EDT
Fron: Carl L. Gay <CGAY®KAIKATO.SCRC.Synbolics.CON>

Date: Tue, 15 Jul 86 15:17 EDT
Fron: V. Ellen Golden <¢ellen®STONY-BROOK,SCRC.Synbolics.COM>

You have noved Teach Znacs to the rel-6 sys:exanples; I see, but you haven’t
noved it to rel-? yet. Could you do that so ue can have DA try {t?

The directory (if you are running rel-6 so it isn’t in your logical translations)
18 q:2rel-7>sys’>exanples .

N
N
N
N
N
o

[JTo: KJoneseHonbat
Bl Subject: Trying out Zmailll
[Jcc: ellen

Headers

Hessage

This is a test nessage.

Nail

Znail Mail (Text) Mail End naills, fibort aborts
{19:56:19 From YUKON: Your request of 7718786 19:50:24 ("Screen Hardcopy") has been conpleted.]

Mouse-L: Select this window; Mouse-M: Mark word; Mouse-R: Ealtor menu.

To see other commands, press Shift, Control, Meta-Shift, or Super.
TFeT 18 JuT 7:586:30] Bifen o O SUReRt o Dser Yrpit Teathe beTrg THETaTToed
Figure 16. Mail Mode Display (Two-window Mode)

If you now wish to leave Zmail, select another program using the SELECT key or
the System menu.

6.1.6 Getting Fancy with Zmall

Once you have mastered the basics of Zmail, there are many advanced facilities
that you can use for composing messages and for organizing your mail files. This
section touches on three commonly used facilities. For more detailed information
and further suggestions: See the section "Zmail Reference Guide" in
Communicating with Other Users.

See the section "Using Character Styles in Zmail", page 164.

6.1.6.1 Tagglng Messages with Keywords

Zmail allows you to classify and categorize messages by adding keywords to them.
Keywords are useful in many ways, among them:

Topic Indicators Indicate the major topic of the message. If your work involves
designing natural language interfaces, for example, you might
use keywords such as dictionary, parser, and syntax-checker.
The topic indicators you need depend on the sort of messages
you get.

86

User's Guide to Symbolics Computers July 1986

Classifiers Indicate the type of message. For example, you might use
keywords such as bug, feature-request, documentation-bug, and
issue to categorize messages as bug reports, requests for
features, reports of documentation bugs, and issues under
discussion.

Status Flags Indicate the status or priority of the message. For example, you
might use a keyword such as to-do to flag messages that require
you to do something and a keyword such as timing-out to flag
messages on which you are awaiting action from other people.
You could use P1, P2, and P3 to indicate the priority of a
message requiring further action.

To add keywords to the current message, click on [Keywords] in the Zmail menu.
If you are using keywords for the first time, click right.

[Keywords (R)] Pops up a highlighted menu of your keywords, in addition to the
entry [New] for adding a new keyword. If you have never
specified keywords for any messages, the menu contains only
three items: [Do It], [Abort], and [New]. Click on [New] and
type a keyword. The keyword appears on the menu, highlighted.
Click on [Do It] and the keyword appears in braces on the
summary line of the message. Keywords are stored in the mail
files of the messages they are attached to. You can specify
keyword/mail file associations explicitly in your Profile. See the
section "Zmail Profile Options" in Communicating with Other
Users.

Clicking left on [Keywords] adds the last used keyword(s) to the current message.

You can sort your mail files by keywords, to have all the messages on one topic
together. See the section "[Sort] Zmail Menu Item" in Communicating with Other
Users.

Your keywords appear in the menu offered by [Survey] so you can get a list of all
the messages with a specific keyword attached to them. See the section "[Survey]
Zmail Menu Item" in Communicating with Other Users.

For more information about using keywords:

See the section "[Keywords] Zmail Menu Item" in Communicating with Other
Users.

See the section "Hints for Using Keywords, Mail Collections, and Mail Files" in
Communicating with Other Users.

87

July 1986

6.2 Talking to Other Users

6.2.1 Introduction to Converse

Converse is a facility for communicating interactively with other logged-in users.
A message sent with Converse pops up on the screen of the recipient almost
instantaneously. The recipient has the choice of replying right in the pop up
window, entering Converse to reply, or doing nothing.

The Converse interactive message editor is operated by a window with its own
process. Converse keeps track of all of the messages that you have received or
sent. The Converse window shows all of the messages that have been sent or

received since the machine was cold booted.

Messages sent between you and another user are organized into a conversation.
Conversations are separated from each other by a thick black line. Within each
conversation are all messages, outgoing and incoming, arranged in chronological
order, and separated by thin black lines.

You can use Converse to look at conversations, send messages, and receive
messages. Converse is built on the Zwei editor, so you can edit your message as
you type it, or pick text up and move it around between one message and another,
or among messages, files, and pieces of mail.

To enter Converse, do one of the following:
e Press SELECT C.
¢ Evaluate (zl:qsend).
e Click on [Select / Converse] in the System menu.

¢ Answer C in the Converse pop-up window when a message arrives.

6.2.2 Using Converse
6.2.2.1 Sending and Replying to Messages with Converse

When you enter Converse for the first time, the window is empty except for a
blank message at the top of the screen, starting with To:. You start a message by
filling in a recipient after the To:, pressing RETURN and then typing the message
text. It is not necessary to know what machine the person is using, but if you do
know and give the recipient as name@host the message is sent considerably faster
since it is not necessary to search the namespace to find the machine. To send
the finished message, press END. When the message has been sent successfully, it
appears as part of a conversation. A blank message remains at the top of the
screen, and just below that, a heavy black line delimits the message(s) of the

88

User's Guide to Symbolics Computers July 1986

onverse (lext) Tnd Just sends, Abort Just exits, Control-End sends and exits

Mouse-L: Move to end of this line; Mouse-M: Mark line.

To see other commands, press Shift, Control, Meta-Shift, or Super.
T e T B e S e O e R User Trput ——Mesther et TRTETAITED
Figure 17. A Fresh Converse Window

Figure 18. A Converse Message About to be Sent

conversation you just started. Just below the heavy black line is another blank
message, but this one has the name of the person to whom you sent the message
filled in. Below this blank message, separated by a thin black line, the message
you just sent appears, with the date and time it was sent.

When the person to whom you sent the message replies, the reply appears in the
conversation above the message you sent, and below the blank message. Your
cursor is left in the blank message so you can reply easily.

You use regular editor commands to move around in the Converse window. Two
commands, specific to Converse, are particularly useful: c-n-] (move to next
conversation) and c-n-[(move to previous conversation).

You exit from Converse by pressing ABORT or by selecting another window. You
can also press c-END when sending a message to send the message and exit from
Converse.

To start a conversation, enter Converse, go to the top of the Converse window and
fill in the blank message, starting with the To: line to specify the new recipient.
Finish by pressing END to send the message. To send the message and exit
Converse, finish by pressing c-END.

89

July 1986

R To: JoB8big-bird.STT.Corner.COM
NTo: Kdoneselonbat

HHiessage sent to KJoneseMonbat (7718786 17:53:05)
HOK. How about Monday?

BlKJoneselonbat 7/18/86 17:54:33
{Yes, let’'s discuss it over lunch.

HHessage sent to KJones#Honbat (7/18/86 17:41:15)
;Have you read ny proposal yet?

Figure 19. A Converse Conversation

To send a message as part of an existing conversation, find that conversation in
Converse and fill in the blank message at the beginning of the conversation,
finishing by pressing END to send the message, or by pressing c-END to send the
message and exit Converse.

You do not have to be in the main Converse window to receive messages.
Converse will deliver a message to you in any window. Since this might be
annoying, you can customize what happens when a message arrives by using the
variable zwei:*converse-mode*. See the section "Customizing Converse", page
106.

When you are in a window other than Converse and a new message arrives, a
window pops up at the top of the screen displaying the message. You can respond
R to type in a reply, N (for "no action") to make the message window deexpose, or
C to enter Converse. Entering Converse has several advantages: you can look
over the previous messages in the conversation, and you can use the editor to help
you construct a reply.

Converse remembers all messages that you send or receive, even if you did not use
the main Converse window to send them or reply to them.

Converse lets you know as soon as a message comes in, by beeping or flashing the
screen, and if it is supposed to notify you, it does so without waiting for the main
Converse process to wake up. In pop-up mode, if the pop-up message window is

90

User's Guide to Symbolics Computers July 1986

already in use, an incoming message causes the message window to beep or flash
but not to display the message. This is necessary since only one message at a
time should pop up. When the message window is deexposed it is reexposed
immediately with the new message in it.

If the main Converse window is exposed, a new message is shown there with its
conversation; it is never shown via a notification or a pop-up message window. If
the main Converse window is exposed but its process is busy (typically, when it is
in the Debugger or in an editor command and waiting for typein), Converse beeps
or flashes but does not display the message. You can display the message by
clearing the Converse process. You can usually clear the Converse process by
pressing ABORT.

6.2.2.2 Converse Commands

Converse has several commands for managing your conversations.

HELP Displays a summary of Converse commands.

END Sends the current message. The behavior of this key can be
changed by the variable zwei:*converse-end-exits*.

c-END Sends the current message and exits from Converse. The
behavior of this key can be changed by the variable
zwei:*converse-end-exits*.

ABORT Exits Converse.
c-M Mails the current message instead of sending it. This is useful

if Converse reports that the person you want to send the
message to is not logged in anywhere.

c-n-[Moves to the previous conversation.
c-n-] Moves to the next conversation.

Delete Conversation (m-¥)
Deletes the current conversation from the Converse window.

Write Buffer (n-X)
Writes the entire Converse buffer (all conversations) to a file.
It prompts for a pathname.

Write Conversation (n-X)
Writes only the current conversation to a file. It prompts for a
pathname.

91

July 1986

Append Buffer (n-X)
Appends the entire Converse buffer (all conversations) to the

end of a file. It prompts for a pathname.

Append Conversation (n-X)
Appends only the current conversation to the end of a file. It
prompts for a pathname.

Regenerate Buffer (n-X)
Rebuilds the structure of the Converse buffer. This might be
necessary if you damage the buffer in some way, for instance by
removing one of the black lines separating conversations. Some
error messages might ask you to give this command and try
again. The message you are currently typing might be lost, but
you can prevent this by putting the text on the kill ring by
marking it and using n-W before issuing the m-X Regenerate
Buffer command.

6.2.2.3 Lisp Listener Commands for Converse

zwei:qsends-off &optional (gag-message t) Function
Sometimes, you might wish not to be interrupted with interactive messages.
A function called zwei:qsends-off exists for such occasions. If you give it
a string argument, gag-message, the variable zwei:*converse-gagged* is set
to this string and the string is returned to anyone who tries to send a
message to you. Otherwise, they just get a note saying that you are not
accepting messages. zwei:qsends-on toggles zwei:*converse-gagged*.

zwei:gsends-on Function
After using zwei:qsends-off to notify interactive message senders that you
are not accepting messages, zwei:qsends-on allows interactive messages to
be received again.

chaos:notify-local-lispms &optional message &key (report t) Function
Sends message to all Lisp Machines at your site based upon information it
gets from the namespace database about the Lisp Machines at the local
site. message should be a string; if it is not provided, the function prompts
for a message. Each recipient receives the message as a notification,
rather than as an interactive message.

If report is t (the default), the function reports whether it succeeded or
failed to deliver the message to each machine at your site. If report is nil,
it only reports its failures.

92

User's Guide to Symbolics Computers July 1986

zl:qsend &optional destination message Macro
Sends interactive messages to users on other machines on the network.

destination is normally a string of the form name@~host, to specify the
recipient. If you omit the @host part and just give a name, zl:qsend looks
at all of the Lisp Machines at your site to find any that name is logged
into; if the user is logged into one Lisp Machine, it is used as the host; if
more than one, zl:qsend asks you which one you mean. If you leave out
destination altogether, doing just (zl:qsend), Converse is selected as if you
had pressed SELECT C.

message should be a string. For example:
(gsend kjonesBwombat “Want to go to lunch?")

If message is omitted, zl:qsend asks you to type in a message. You should
type in the contents of your message and press END when you are done.

The input editor is used while you type in a message to zl:qsend. So you
get some editing power, although not as much as with full Converse (since
the latter uses Zwei). See the section "Editing Your Input", page 134.
zl:qsend predates Converse and is retained for compatibility.

print-sends &optional (stream zl:standard-output) Function
Prints out all messages you have received (but not messages you have
sent), in forward chronological order, to stream. Converse is more useful
for looking at your messages, but this function predates Converse and is
retained for compatibility.

zl:qreply &optional text Function
Sends a reply to the Converse message received most recently. You can
supply a string as the text of the message or omit it and let zl:qreply
prompt for it. It returns a string of the form "user@host", indicating the
recipient of the message. This function predates Converse and is retained
for compatibility.

93

July 1986

7. Customizing Genera

7.1 What is Customizing?

When you load a file or set a variable (for example, specifying that your
hardcopies are sent to a certain printer, changing the character style of the screen
display, or changing the appearance of the command prompt), you alter the default
system behavior in your environment for the rest of the time you remain logged
in. This type of per-session customization does not remain in effect in your
machine after you log out or cold boot. If you load a file or set a variable for an
intentionally temporary effect, this is fine.

However, if you decide that you want these changes to be put into effect every
time you log in (permanently in your environment), you can save them in an init
file, thereby instructing the system to automatically execute this sequence of
commands every time you log in.

7.2 Init Files

An init file is a Lisp program that gets loaded when you log in; it can be used to
set up a personalized environment. An init file contains only Lisp forms. The
name depends on the type of file system it is stored on:

3600 lispm-init.lisp
UNIX 4.1 lispm-init.1
UNIX 4.2 lispm-init.lisp

VMS lispmini.lsp
TOPS-20 lispm-init.lisp
ITS name lispm

A simple init file consists primarily of the login-forms and the setq special forms.
The login-forms special form evaluates forms in your init file and arranges for
them to be undone when you log out. The setq special form sets the value of one
or more variables.

Here is an example of a simple init file:

; -%- Mode: LISP; Package: USER; Lowercase: T; Patch-file: T -x-

(login-forms
(setq si:xcp-promptx ’si:arrow-prompt)

94

User's Guide to Symbolics Computers July 1986

zwei:
(setq text-mode-hook ’auto-fill-if-appropriate)

(setq si:local-finger-location
(cond ((y-or-n-p "in your office? ")
"348 Domingo x562")
(t (format t "~&Where are you? ")
(readline query-io)))))

(si:set-default-hardcopy-device "Echo-Lake")
(si:set-screen-hardcopy-device “Echo-Lake")

In this simple init file, the first setq changes the value of the variable that
displays the command processor prompt from the default Command: to an arrow.
The second setq specifies that the system automatically fill text that you type in
any editor-based activity when appropriate. The third setq sets the value of the
variable that reports your user ID and on what machine you are logged in to ask
you when you log in whether you are in your office, and if not, where you are so
that it can send that information to the network namespace database.

The rest of the init file contains two functions that set the default printer for the
various commands that hardcopy files and for the FUNCTION @ Screen Hardcopy
command.

Here is the description of setq:

setq {variable value}... Special Form
Used to set the value of one or more variables. The first value is
evaluated, and the first variable is set to the result. Then the second value
is evaluated, the second variable is set to the result, and so on for all the
variable/value pairs. setq returns the last value, that is, the result of the
evaluation of its last subform. Example:

(setg x (+ 32 1) y (cons x nil))

x is set to 6, y is set to (6), and the setq form returns (6). Note that the
first variable was set before the second value form was evaluated, allowing
that form to use the new value of x.

If you do not cold boot your machine after each session, you should arrange for
your customizations to be undone when you log out. You do this by using
login-forms:

95

July 1986

login-forms &body forms Special Form
login-forms is a special form for wrapping around a set of forms in your
init file. It evaluates the forms and arranges for them to be undone when
you log out.

login-forms always evaluates the forms, even when it does not know how to
undo them. For forms that it cannot undo, it prints a warning message.

In the following example, login-forms arranges for the base to be reset at
logout to 10 (the default) and for zl-user:bar either to become undefined or
to get its old function definition. It would warn you about zl-user:quux
being impossible to undo.

(login-forms
(setg-standard-value base 8)
(setq-standard-value ibase 8)
(defun bar (x y) (+ xy))
(quux 3))

You can create functions to undo forms that login-forms does not
recognize. To undo a given form, you put a property on the symbol that is
the car of the form to undo. For example, to create a function to undo
zl-user:quux:

(defun (:property quux :undo-function) (form)
‘(undo-quux , (cadr form)))

The value returned by an undo function is a form to be evaluated at logout
time.

zl:setq-standard-value is a special form, similar to setq, that you should use if
you reset any of the variables that control aspects of the Lisp environment (for
example, the default base) as opposed to convenience features. See the section

"Standard Variables" in Symbolics Common Lisp.

Other variables can be set inside login-forms using zl:setq-globally:

zl:setq-globally &rest vars-and-vals Special Form
zl:setq-globally should be used with login-forms for anything that might
be bound while evaluating the login-forms.

zl:setq-globally works like setq but sets the global values, bypassing any
special-variable bindings. login-forms knows how to undo this.
zl:setq-globally is the recommended way to set things in your init file that
are not set with zl:setq-standard-value.

An example:

(login-forms
(setg-globally zwei:xconverse-beep-countx 4))

96

User’s Guide to Symbolics Computers July 1986

To load individual files from your init file, use the zl:load function:

(cp:execute-command “show file" “foo.lisp")
(cp:execute-command “show herald" :detailed t)
(cp:execute-command "load system” "mysystem” :compile :always :automatic-answer t)

(load “SYS: LISP; MY-PROJECT")
(lToad "Tuna:>kjones>examples>decorate”)
(load "vixen://usr//kjones//tools//toolkit")

See the function cp:execute-command, page 102.

The first sample form loads a file using its logical pathname; the second form
loads a file from a LMFS using its physical pathname. The third form loads a file
from a Unix system in the appropriate syntax (the slashes are doubled).

7.3 How to Create an Init File

The easiest way to create an init file is by copying the sample init file shown here
and then building on it, or by copying someone else’s init file. Often you acquire
customizations that you find out about from people who have been using Genera
longer than you.

7.4 Useful Customizations to Put in Your Init File

The number and kinds of customizations you can put in your init file is limited
only by your imagination. This section offers some suggestions that many users
have found useful, but it is by no means an exhaustive list.

7.4.1 Adjusting Console Parameters

si:*kbd-auto-repeat-enabled-p* Variable
Controls whether or not keys repeat if held down (auto-repeat). The
default is nil, meaning that holding keys down does not cause repetition.
It can be set using setf:

(setf si:xkbd-auto-repeat-key-enabled-px t)

Setting si:*kbd-auto-repeat-key-enabled-p* to t turns on auto-repeat. You
can set the length of time a key must be held down before it starts to
repeat with si:*kbd-auto-repeat-initial-delay*.

Controls how long you must hold down a key before auto-repetition starts,

97

July 1986

in sixtieths of a second. The default is 42, which is between half and
three-quarters of a second. You can adjust it using setf.

si:*kbd-auto-repeat-initial-delay* Variable
Controls how long you must hold down a key before auto-repetition starts,
in sixtieths of a second. The default is 42, which is between half and
three-quarters of a second. You can adjust it using setf.

sicset-auto-repeat-p key &optional (state t) Function
Allows you to specify keys that should not auto-repeat even if auto-repeat is
enabled. By default all keys can auto-repeat except for FUNCTION, SELECT,
NETWORK, RBORT, SUSPEND, and RESUME. For example,

(si:set-auto-repeat-p #\Square nil)

turns off auto-repetition for the SQUARE key. You can make SQUARE auto-
repeat again by setting it back to t.

tv:screen-brightness main-screen-mixin Function
Returns the brightness of the screen as a floating point number between 0
and 1. (tv:screen-brightness tv:main-screen) may be set in your init file
using zl:setf to adjust the screen brightness. Console hardware varies
slightly so you must experiment to find the value that suits you best. One
technique for doing this is to adjust the brightness using LOCAL-B and
LOCAL-D until it is to your liking. Then use
(tv:screen-brightness tv:main-screen) to find that value. For example:

(tv:screen-brightness tv:main-screen) returns 8.43387087
Then in your init file you place the form
(setf (tv:screen-brightness tv:main-screen) 8.433870887)

and each time you log in with your init file the screen brightness is
automatically set to that value.

tv:*dim-screen-after-n-minutes-idle* Variable
Controls the length of time a console must be idle before its screen dims.
You can set this in your init file to adjust the length of time it takes the
screen dimmer to activate. The default is 20 minutes. Setting it to nil
disables the screen dimmer entirely.

tv:*screen-dimness-percent* Variable
Controls the brightness value of the screen when it is dimmed. You can
set this in your init file to adjust the dimness of the screen. The default is
0, meaning black. 100 is bright. If you want a number that will leave the
screen very dim but visible, the value will vary with your particular
hardware. Experiment to find a good setting, starting with 50.

98

User’s Guide to Symbolics Computers July 1986

sys:console-volume &optional (console sys:*slb-main-console*) Function
Returns the current volume setting for the console, which is a number
between 1.0 (loudest) and 0 (softest). The console volume can be changed
with setf, as in the example:

(cl:setf (sys:console-volume) 8.5)
Starting up Zmall in the Background

You can start up Zmail from your init file by using the function
zwei:preload-zmail. See the function zwei:preload-zmail, page 98.

zwei:preload-zmail &rest files Function
Starts up Zmail, loading in files.

(zwei:preload-zmail "wombat:>kjones>mail.text")

This gets the mail loading operation underway while you are doing
something else.

There are two keyword options to zwei:preload-zmail:

:find-file Find the file and load it in for processing.
:examine-file Finds the file and reads it into Zmail but in read only
mode.

As an example, the following form can be included in your LISPM-INIT to
preload several mail files into Zmail with some of them being read only:

(zwei:preload-zmail ’(:find-file "y:>palter>mailboxes>palter.xmail”)
*(:find-file "y:>palter>mailboxes>reminders.xmail")
'(sexamine-file “y:>palter>mailboxes>junk.xmail")
’(:examine-file "y:>palter>mailboxes>videotech-digest.xmail”
’ (:hang-when-deexposed t)
’ (:hang-when-deexposed nil))

The last two operations in the above form cause the Zmail background to
stop after reading the mail files in question without parsing the contained
messages. The background parsing will commence as soon as Zmail is
selected. (If the last two operations had been placed first, Zmail would not
preload anything until it was first selected.)

7.4.2 Customizing the Command Processor

You can change the command processor’s mode, prompt, and special characters,
and you can customize the display of the prompt and help messages. Usually you
customize the command processor by setting special variables. You might want to
do this in your init file, inside a login-forms special form.

99

July 1986

Whenever you change the command processor’s mode, prompt, or other
characteristics, you set its state for all Lisp Listeners and zl:break loops. You
cannot put the command processor into one mode in one Lisp listener and another
mode in another.

If you change the command processor’s mode or prompt, or if you turn the
command processor on or off, the change takes place immediately in that Lisp
Listener or zl:break loop but not in others that are waiting for input. For
example, suppose you use the Set Command Processor command in a zl:break loop
to change the prompt and dispatch mode. These changes do not take effect in a
Lisp Listener that is waiting for input until you execute a command or form or
you press ABORT there.

7.4.2.1 Setting the Command Processor Mode

The command processor mode determines how input is treated. Following are the
four modes and their meanings:

:form-only All input is treated as a Lisp form.
:command-only All input is treated as a command invocation.

:form-preferred Input is treated as a Lisp form unless you precede it by a
command dispatch character. In this case it is treated as a
command invocation. By default, the command dispatch
character is a colon.

:command-preferred
Input is treated as a command invocation if it begins with an
alphabetic character. Input is treated as a Lisp form if it is
does not begin with an alphabetic character or if you precede it
by a form dispatch character. By default, the form dispatch
character is a comma.

You can set the command processor mode for Lisp Listeners and zl:break loops i
two ways: '

1. Use the Set Command Processor command. The first argument to this
command is the dispatch mode. See the section "Set Command Processor
Command", page 254.

2. Set the value of the special variable cp:*dispatch-mode*.

cp:*dispatch-mode* Variable
The current command processor dispatch mode in Lisp Listeners and
zl:break loops; a keyword. Possible values are :form-only,
:form-preferred, :command-only, and :command-preferred. For the

100

User's Guide to Symbolics Computers July 1986

meanings of these values: See the section "Setting the Command Processor
Mode", page 99. The default is :command-preferred.

The default dispatch mode for cp:read-command-or-form is the value of
cp::*default-dispatch-mode*.

7.4.2.2 Setting the Command Processor Prompt

You can set the command processor prompt for Lisp Listeners and zl:break loops
in two ways:

1. Use the Set Command Processor command. The second argument to this
command is a string to be displayed as the prompt. See the section "Set
Command Processor Command”, page 254.

2. Set the value of the special variable cp:*prompt*.

cp:*prompt* Variable
A prompt option for displaying the current command processor prompt in
Lisp Listeners and zl:break loops. The value of this variable is passed to
the input editor as the value of the :prompt option. The value can be nil,
a string, a function, or a symbol other than nil (but not a list): See the
section "Displaying Prompts in the Input Editor" in Reference Guide to
Streams, Files, and I/O.

The default is "Command: ". If the value is nil or the empty string, no
prompt is displayed. If the value is si:arrow-prompt, an arrow is displayed
as the prompt.

The default prompt for cp:read-command and cp:read-command-or-form
is the value of cp::*default-prompt*.

7.4.2.3 Setting Command Processor Speclal Characters

You can change the command and form dispatch characters by setting the special
variables *cp:*command-dispatchers* and cp::*form-dispatchers*.

cp::*command-dispatchers* Variable .
A list of characters that precede commands, distinguishing them from input
to the Lisp interpreter, when the command processor is in :form-preferred
mode. The default is (#:).

cp::*form-dispatchers* Variable
A list of characters that precede Lisp forms, distinguishing them from
commands, when the command processor is in :command-preferred mode.
(These characters are needed only when the Lisp form begins with an
alphabetic character.) The default is (#/,).

101

July 1986

7.4.2.4 Customizing Command Processor Display

By setting special variables, you can control the action the command processor
takes when you type a blank line and how it displays the screen when you ask for
help.

cp:*blank-line-mode* Variable
A keyword that determines what action the command processor takes when
you type a blank line in Lisp Listeners and zl:break loops:

:reprompt Redisplay the prompt, if any. This is the default.
:beep Beep.
signore Do nothing.

The default blank line mode for cp:read-command and
cp:read-command-or-form is the value of cp::*default-blank-line-mode*.

cp::*typeout-default* Variable
A keyword that determines how the command processor prints help
messages. Possible values are those acceptable as the first argument to
the :start-typeout message to interactive streams:

:insert The help message, like a notification, is inserted before
the current input.

:overwrite The help message is inserted before the current input,
but the next time an :insert or :overwrite operation is
done, this message is overwritten. This is the default.

:append , The help message appears after the current input, which
is reprinted after the help message.

:temporary The help message appears after the current input and
disappears when you type the next character.

:clear-window The window is cleared and the help message appears at
the top.

For more information: See the method (:method si:interactive-stream
:start-typeout) in Reference Guide to Streams, Files, and I/0.

7.4.3 Calling Command Processor Commands From Your Init File

If you want to put command processor commands in your init file, you can do so
using the function cp:execute-command:

102
User's Guide to Symbolics Computers July 1986

cp:execute-command command-name &rest command-arguments Function
Invokes a command processor command from within a program.

command-name
Symbol or string naming the command to invoke; if a string,
it must be in the command table to which
cp:*command-table* is currently bound.

command-arguments
Positional and keyword arguments to the named command.
Examples:

(cp:execute-command "show file" "test-data.text")

(cp:execute-command ’si:com-load-system "unifier”
:condition :always :automatic-answer t)

For an overview cp:execute-command and related facilities: See the
section "Overview of Basic Command Facilities" in Programming the User
Interface.

7.4.4 Zmacs Customization in Init Files

You can set Zmacs parameters in your init file also. This section gives you some
guidelines for how to set different types of parameters. For information about the
available features: See the section "Zmacs Manual" in Text Editing and
Processing.

7.4.4.1 Setting Editor Variables

The forms described show how to set Zmacs variables (the kind that Set Variable
(m-¥) sets).

To set these variables, which are symbol macros, you must use the zl:setf macro.
For a description of symbol macros: See the section "Symbol Macros" in
Symbolics Common Lisp. For a description of the zl:setf macro: See the macro
zl:setf in Symbolics Common Lisp.

Ordering Buffer Lists

(SETF ZMWETI:xSORT-ZMACS-BUFFER-LISTx NIL)

This displays the list of buffers in the order the buffers were created rather than
in the order they were most recently visited.

103

July 1986

Putting Buffers Into Current Package

(SETF ZMWETI :xDEFAULT-PACKAGEx NIL)

This puts buffers created with c-X B (Select Buffer) into whatever package is
current; the default is to put them in the user package.

Setting Default Major Mode

(SETF ZWET : xDEFAULT-MAJOR-MODEx ’:TEXT)

This sets the default major mode to Text Mode for buffers with no Mode attribute
and no major mode deducible from the file type; the default is Fundamental Mode.

Setting Find File Not to Create New Files

(SETF ZWEI:xFIND-FILE-NOT-FOUND-IS-AN-ERRORx T)

This beeps and prints an error message when you give c-X c-F (Find File) the
name of a nonexistent file. The default prints (New File) and creates an empty
buffer, which when saved by c-X c-S (Save File) creates the file that was
nonexistent.

Setting Goal Column for Real Line Commands

(SETF ZWEI : xPERMANENT-REAL-LINE-GOAL-XPOSx B8)
This moves subsequent c-N and c-P (Down Real Line and Up Real Line)
commands to the left margin, like doing c-8 c-X c-N (Set Goal Column to zero).

Fixing White Space for Kill/'Yank Commands

(SETF ZWEI :xKILL-INTERVAL-SMARTSx T)

This tells the killing and yanking commands optimize white space surrounding the
killed or yanked text.

7.4.4.2 Key Bindings

To bind keys, you first define the comtab in which to put the binding. For
example, *standard-comtab* and *standard-control-x-comtab* define features of
all Zwei-based editors; *zmacs-comtab* and *zmacs-control-x-comtab* define
features that are Zmacs-specific.

White Space in Lisp Code

ZWEI : (SET-COMTAB *STANDARD-CONTROL-X-COMTABx
* (#\SP COM-CANONICALIZE-WHITESPACE))

104

User's Guide to Symbolics Computers July 1986

This defines c~-X SPACE as a command that makes the horizontal and vertical
white space around point (or around mark if given a numeric argument or
immediately after a yank command) conform to standard style for Lisp code.

c-n-L on the SQUARE Key

ZWET : (SET-COMTAB *xZMACS-COMTABx
* (#\SQUARE COM-SELECT-PREVIOUS-BUFFER))

This defines the SQURRE key to do the same thing as c-m-L. This key binding is
placed in *zmacs-comtab* rather than *standard-comtab* since buffers are a
feature of Zmacs, not of all Zwei-based editors.

Edit Buffers on c-X c-B

ZWEI : (SET-COMTAB %ZMACS-CONTROL-X-COMTABx
* (#\c-B COM-EDIT-BUFFERS))

This makes c-% ¢-B invoke Edit Buffers rather than List Buffers. This key
binding is placed in *zmacs-control-x-comtab* rather than
standard-control-x-comtab since buffers are a feature of Zmacs, not of all Zwei-
based editors. .

Edit Buffers on mn-

ZWEI: (SET-COMTAB *ZMACS-COMTABx

0
(MAKE-COMMAND-ALIST ’ (COM-EDIT-BUFFERS)))

This makes Edit Buffers available on m-X in Zmacs (by default it is only available
on c-n-¥).
n-. on n—(L)
ZWEI: (SET-COMTAB *ZMACS-COMTABx
’ (#\m-MOUSE-L. COM-EDIT-DEFINITION))

This makes clicking the left mouse button while holding down the METR key do
what m-. does. Invoking this command from the mouse is convenient when you
specify the name of the definition to be edited by pointing at it rather than typing
it.

7.4.4.3 Setting Mode Hooks

Each major mode has a mode hook, a variable which, if bound, is a function that
is called with no arguments when that major mode is turned on.

105

July 1986

Electric Shift Lock in Lisp Mode

(SETF ZWEI:LISP-MODE-HOOK ’ZWEI:ELECTRIC-SHIFT-LOCK-IF-APPROPRIATE)

This tells Lisp major mode to turn on Electric Shift Lock minor mode unless the
buffer has a Lowercase attribute. The effect is that by default Lisp code is
written in upper case.

Auto Fill in Text Mode

(SETF ZWEI:TEXT-MODE-HOOK ’ZWEI:AUTO-FILL-IF-APPROPRIATE)

This tells Text major mode to turn on Auto Fill minor mode unless the buffer has
a Nofill attribute. The effect is that by default lines of text are automatically
broken by carriage returns when they get too wide.

7.4.5 Customizing the Input Editor

To change the behavior of the yank system, use login-forms and zl:setq-globally
to set the following Lisp internal variables in your init file.

Alternatively, you can set them with Set Variable (n-X); when Set Variable
prompts you for a variable name, supply the name given in each of the following
descriptions.

zwei:*history-menu-length* Variable
The maximum number of history elements displayed. Default is 20.

History Menu Length is the name to use with Set Variable (n-¥).
zwei:*history-yank-wraparound* Variable
Determines what happens after m-¥ runs off the end of a history or
m- - m-Y runs off the beginning of a history. Default is t.

Value Meaning

t n-y wraps around to the other end of the history. For
example, after n-¥ yanks the oldest element in the
history, it returns to the top of the history and yanks the
newest element. :

nil m—-¥ does not wrap around to the other end of the history.
Instead, the 3600 flashes (the LM-2 beeps).

History Yank Wraparound is the name to use with Set Variable (n-X).

106

User's Guide to Symbolics Computers July 1986
zwei:*history-rotate-if-numeric-arg* Variable
Determines what happens when c-Y or c-n-Y is given after m-Y. Default is
nil.
Value Meaning
t A numeric argument to ¢~Y or c-n-Y is measured from
the origin, not the newest element in the history. The
origin is always element #1. All other elements are
numbered relative to the origin. Elements that are
newer than the origin are assigned negative numbers, in
ascending order with their distance from the origin.
nil A numeric argument to c-Y or c-m-Y is measured from

the the newest history element, not the origin. However,
c-Y or c-m-Y given without an argument yanks the
element at the origin; thus, the origin has meaning only
when you use a top-level command without an argument.
When you display a history, its elements are numbered
from 1 on and the origin is indicated with a pointer.

History Rotate If Numeric Arg is the name to use with Set Variable (n-X).

See the section "The Input Editor Program Interface" in Reference Guide to

Streams, Files, and I/O.

7.4.6 Customizing Converse

The following variables allow you to customize Converse’s behavior. You can set

them in your init file.

zwei:*converse-mode*

Variable

Controls what happens when an interactive message arrives. It should
have one of the following values:

:pop-up

(This is the default.) A message window pops up at the
top of the screen, displaying the message. You are asked
to type R (for Reply), N (for Nothing), or C (for Converse).
If you type R, you can type a reply to the message inside
the message window. When you type END, this reply is
sent back to whomever sent the original message to you,
and the pop-up message window window disappears. If
you type N, the message window disappears immediately.
If you type C, the Converse window is selected. The
input editor is used while you reply to a message in the

107

July 1986

pop-up message window, so you get some editing power,
although not as much as with full Converse (since the
latter uses Zwei).

:auto The Converse window is selected. This is the window
that shows you all of your conversations, letting you see
everything that has happened, and letting you edit your
replies with the full power of the Zwei editor. With this
window selected, you can reply to the message that was
sent, send new messages, participate in other
conversations, or edit and write out messages or
conversations. You can exit with c-END or ABORT (c—END
sends a message and exits; ABORT just exits), or you can
select a new window by any of the usual means (such as
the FUNCTION or SELECT keys).

:notify A notification is printed, telling you that a message
arrived and from whom. If you want to see the message,
enter Converse by pressing SELECT €. There you can
read the message and reply if you want to.

:notify-with-message
A notification is printed, which includes the entire
contents of the message and the name of the sender. If
you want to reply, you can enter Converse.

zwei:*converse-append-p* Variable
If the value is nil (the default), a new message is prepended to its
conversation. If the value is not nil, a new message is appended to its
conversation. print-sends is not affected by this variable; it always
displays messages in forward chronological order.

zwei:*converse-beep-count* Variable
The value is the number of times to beep or flash the screen when a
message arrives. The default value is two. Beeping or flashing occurs
only if the Converse window is exposed or if the value of
zwei:*converse-mode* is :pop-up or :auto. (Otherwise, notification tells
you about the message and includes the usual beeping or flashing.)

zwei:*converse-end-exits* Variable
Controls the behavior of END and c¢-END. If zl-user:*converse-end-exits* is
set to nil, the default, END sends the message and you remain in Converse.
c-END sends the message and exits Converse. Setting
zl-user:*converse-end-exits* to t reverses this, so that c-END sends the
message and remains in Converse and END sends and exits.

108
User's Guide to Symbolics Computers July 1986

7.4.7 Customizing Hardcopy Facllities

You can specify the printer you want to use for hardcopying files and screen
images in your init file.

There are two variables that determine which printer is used for a hardcopy
request:

hardcopy:*default-text-printer* Variable
hardcopy:*default-text-printer* is a variable whose value is the printer to
be used for printing text files, that is a printer object. Its initial value is
determined from the printer slot in the namespace object for your machine,
or if your machine does not specify a printer, from the namespace object
for your site.

hardcopy:*default-bitmap-printer* Variable
hardcopy:*default-bitmap-printer* is a variable whose value is the printer
to be used for printing screen hardcopy, that is a printer object. Its initial
value is determined from the bitmap printer slot in the namespace object
for your machine, or if your machine does not specify a bitmap printer,
from the namespace object for your site.

These variables can be set with the following two functions:

hardcopy:set-default-text-printer name Function
hardcopy:set-default-text-printer specifies the printer to be used for all of
the hardcopy commands except the screen copy command. name is a string
specifying the device name. This is the real name of the printer, its name
attribute not its pretty-name. For example:

(login-forms
(hardcopy:set-default-text-printer "caspian-sea"))

caspian-sea is the real name of the printer whose pretty name is Caspian
Sea. (The valid set of device names are the printer objects in your
namespace database.)

hardcopy:set-default-bitmap-printer name Function
hardcopy:set-default-bitmap-printer specifies the printer to be used for
screen copies (by the FUNCTION @ command). name is a string specifying
the device name. This is the real name of the printer, its name attribute
not its pretty-name. For example:

(login-forms
(hardcopy:set-default-bitmap-printer "caspian-sea"))

caspian-sea is the real name of the printer whose pretty name is Caspian
Sea. (The valid set of device names are the printer objects in your
namespace database.)

109

July 1986

You can specify your preferred character styles for each printer in your init file by
setting hardcopy:*hardcopy-default-character-styles®.

hardcopy:*hardcopy-default-character-styles* Variable
hardcopy:*hardcopy-default-character-styles* is a variable whose value is
an association list where each element specifies a device and a set of
keyword/value pairs designating the character style. The keywords are
:body-character-style and :heading-character-style.

For example:

(login-forms
(setq hardcopy:xhardcopy-default-character-stylesx
’(("Itasca" :body-character-style (:fix :roman :small))
("Caspian Sea" :body-character-style (:fix :roman :normal)))))

in your init file will specify fixed width small-sized roman as the default
character style for the printer Itasca and fixed width normal-sized roman as
the default character style for the printer Caspian Sea. The value of
hardcopy:*hardcopy-default-character-styles* is merged with the default
style for the printer, so if the printer is using a fixed width normal sized
roman and you want it larger, you only need to specify (nil nil :larger).
See the section "Character Styles" in Converting to Genera 7.0.

7.4.8 Censoring Fields for lispm-finger and name Services

You might prefer to keep certain fields of information private, and prevent those
fields from being returned by the lispm-finger and name protocol servers.

You can censor the information returned by those servers by pushing recognized
keywords onto one or both of the following lists: neti:*finger-fields-to-suppress*
and neti:*finger-fields-to-suppress-for-untrusted-hosts*.

The recognized keywords include:

ssoftware-info
shardware-info
:whois

:project
:supervisor
:work-address
:work-phone
:home-address
:home-phone

110

User's Guide to Symbolics Computers July 1986

neti:*finger-fields-to-suppress* Variable
This variable is a list of keywords that should be censored for the
lispm-finger and name servers. Use push to add others to the list. The
default value is nil.

For a list of recognized keywords: See the section "Censoring Fields for
lispm-finger and name Services", page 109.

neti:*finger-fields-to-suppress-for-untrusted-hosts* Variable
This variable is a list of keywords that should be censored for the
lispm-finger and name servers, for untrusted hosts only. Use push to add
others to the list. The default value is nil.

For a list of recognized keywords: See the section "Censoring Fields for
lispm-finger and name Services", page 109.

7.5 Logging in Without Processing Your Init File

You might want to log in and work in the standard default system environment,
that is, without having your init file set up your usual customizations. Perhaps
you want to test a program of yours in the standard environment or try a new
system feature in an unpolluted environment. Log in this way:

Login username :init file none

to tell the Login command that you do not want your init file automatically
loaded.

7.6 Customizing Zmail

The Profile command allows you to customize Zmail by setting various display and
command options to your personal taste. You can set an option temporarily or
permanently, the latter by saving the option in your Zmail Profile.

Classes of options you can set include the following:
e Format used for hardcopies of messages
e Mail-file attributes
e Lists of mail files and other objects that Zmail knows about at startup
» Associations between certain objects

e (M) actions for many top-level commands

111

July 1986

e Screen configurations

o Default actions taken when reading, sending, replying to, or forwarding mail

¢ Command Tables

Customizing is done in profile mode, entered by clicking on [Profile] in the
command menu at top level. The profile mode display (Figure 20) shows the text
of your profile and the current settings of various options.

Setting and Saving Zmail Options

Option settings are stored in eight distinct places:

1L

2.

7.

8.

Your mind: your conception of how the options should be set.

The Zmail environment: the way the options are actually set at the moment.

. The defaults: the way the options are actually set before you alter them.
. The editor buffer: the in-memory buffer of your profile.
. The source version of your profile: on disk.

. The compiled version of your profile: also on disk.

Mail buffers: options associated and stored with the individual mail buffers.

Mail files: options associated with a mail buffer saved as a file.

Enter Profile Mode by clicking on [Profile] in the Zmail menu. The simplest way
to use profile mode is:

L

Make the changes you want using the menu items or user options window,
two regions of the display indicated in Figure 20. For a list of the various
options and what they mean: See the section "Zmail Profile Options" in
Communicating with Other Users.

. Click on [Exit] to leave profile mode. Check to see that you like your

changes.

. To save your changes, reenter profile mode and click dn [Save]. Before you

do this for the first time, use [Save (M)] and press RETURN to the question
Zmail asks. This specifies that you want your file compiled, which makes it
load and run faster. Answer yes to any questions about inserting changes or
recompiling your file. At this point Lisp code corresponding to your option

112

User's Guide to Symbolics Computers July 1986

settings will be stored in your profile. Options changed using [File options]
or [Keywords] are stored in the individual mail buffers and must be saved
using [Save] on the top-level command menu.

What [Save] actually does is move option settings from the environment (where
you altered them in the first step) to the editor buffer, then from the editor buffer
to the source copy of your init file, and finally from the source file to the compiled
file (by recompiling). You can also move option settings one step at time, by
using [Reset] and [Default], and the menu options available by using [Save].

[Fllters I [Universaes | LMall fllm [Flle options l [Kaywords l I Hardcopy I

User options:

Top
Default startup window setup: Summary only Both Message only Flitering commands
Defauvlt sunnary windou fornat: Standard No Date Reminder
Fraction of the frame occupied by the summary: 0.45
Spaces are trimned fron the left of the subject in sunmary: Yes No
Amount by which to glitch sumnary windouw: 0.5
Fraction of the frane occupied by the summary in filter mode: none
Default file for initial Get Inbox or Select: S:>ellen’ellen.babyl
Appending of inboxes to neu mail files: Append Prepend Sticky Ask
Read in inbox in the background: Yes No
Periodically check for new mail in the background: No Yes
Hove to first message even when no new nail in inbox: Yes No
Reselect previous current nessage even if current message in sequence: Yes No
Reformatting of babyl files is enabled by nornal babyl options: Yes No
Reformat headers in non-BRBYL files: Yes No

More delow

I Exit I I Reset I | Defaults | | Save I I Edit |

333 —%= Node: LISP; Syntax: Zetalisp; Package: ZNEI; Base: 10 -z~

333 333 This block contains forns representing the non-default settings of user
HH options that you made using the profile nenus. It is generated
333 autonatically. RAvotd inserting any other forns before the end of the block.

§ (LOGIN-SETQ *QUERY-BEFORE-EXPUNGES T)

(LOGIN-SETQ *INHIBIT-BACKGROUND-SRVES: T)

(LOGIN-SETQ *PRUNE~-HERDERS-AFTER-YANKING® T)

(LOGIN-SETQ *DELETE-HIDDLE-HMODEs ':NO)

(LOGIN-SETQ $REQUIRE-SUBJECTS* ':INIT) f
(LOGIN-SETQ *DEFAULT-CC-LIST* '((:NAME “ellen® :HOST NIL)))

(LOGIN-GETQ *DELETE-EXPIRED-NSGS® *:ASK)

(LOGIN-SETQ sREPLY-HODEs °:SENDER)

(LOGIN-SETQ #1R-REPLY-HODE® ’:ALL)

(LOGIN-SETQ sHIDDLE-REPLY-HINDOW-MODEs ':YANK)

0
N
N
§
N
N
3

(LOGIN-6ETO $FORHARDED-MESSAGE-BEGIN® **—-——-| Begin Forwarded Hessage----- *)
(LOGIN-SETQ *$FORHWARDED-NESSAGE-SEPARATORS ’®-c-eemmcmmcccmmaa e ")
(LOGIN-SETQ sFORWARDED-MESSAGE-ENDS **~-—-~~| End Foruvarded Message------ ")

(LOGIN-SETQO xZMAIL-STARTUP-FILE-NAME® **S:>ellen>ellen.babyl®)
(LOGIN-SETQ sDEFAULT-HOVE-MAIL-FILE-NAMES '“S:>ellendellen.xnail®)
(LOGIN-SETQ $DEFAULT-DRAFT-FILE-NAMES *"S:>ellen>doc2?-stat-nsg.temp”)

~ Profile

[Erail Frofile S:>E11er>enaii-init.11ap (41)
Aborting, use the "Continue® comnand to continue.
Reading profile 8:>ellen>znail-init.1isp.41

Mouse-L: Edit.
To sea other commands, press Shift, Control, Meta-Shift, or Super.
TFr1 18 JuY 7:58:11] Ellen ZRET: User Tnput Weather belng Tnitialized>

Figure 20. Profile mode display

113

July 1986

8. Getting Help

The Genera environment contains many help facilities. This chapter summarizes
the facilities for finding out information about the program you are writing and
about the general state of Genera.

This chapter is a collection of the support tools and facilities available for finding
the kind of information you need while programming. It is not exhaustive but
suggestive. It does not recommend strategies for applying these facilities but
rather lays out what is available for creating a personal style of using Genera
effectively.

8.1 HeLr Key

The key labelled HELP looks up context-dependent documentation.

HELP - Shows documentation available for the current activity. In some
programs, c-HELP, m-HELP, and so on, provide additional
documentation.

c—HELP Shows a list of input editor commands (when typed at a Lisp
Listener).

sy-HELP Shows a list of the special function keys and the special
character keys.

SELECT HELP Shows programs and utilities that you can select using the
SELECT Kkey.

FUNCTION HELP Shows a list of useful functions that you can invoke using the
FUNCTION key.

See the section "HELP Key in Any Zmacs Editing Window", page 114.

8.2 Interaction with Completion and Typeout Windows

The Genera software has some general interaction conventions. For example,
many editor commands offer name completion. You can apply these facilities to
exploring the command space of the machine. This section describes some general
facilities and strategies for making more effective use of the machine.

114

User's Guide to Symbolics Computers July 1986

8.2.1 HELP Key In Any Zmacs Editing Window

The HELP key enables you to locate help material that is relevant to the current
context. Individual programs are responsible for providing the routines that
support the HELP key. The most complex general help facility is that provided by
Zmacs editing windows. The HELP key provides access to a number of distinct
kinds of help, depending on the key you press after the HELP key.

Command

HELP ? or HELP HELP

HELP A

HELP C

HELP D

HELP L

HELP U

HELP Y

Description

Displays a brief summary of the Zmacs help options (similar
to the rest of this chart).

For looking up all Zmacs commands whose names contain a
specified substring. You type the substring. Zmacs
displays the one-line documentation for the command and
tells you which key, if any, invokes it in the current
context. See HELP V for looking up variable names. The
"A" stands for "apropos". When people say, "Use Apropos,"
they are referring to this command.

For looking up which command is bound to a particular
key. You type the key; Zmacs displays the name of the

command and its summary paragraph. HELP C uses Self
Document.

For looking up the summary paragraph for a Zmacs
command. You enter the command name. Completion is
available. It does not tell you how to invoke a command.
Use HELP W for that. HELP D uses Describe Command.

For finding out what you did that caused unexpected
behavior. Zmacs displays a representation of the last 60
keys that you pressed. HELP L uses What Lossage.

For undoing the last major operation. Zmacs preserves a
copy of the buffer before doing certain operations, in
particular, sorting and filling. You can revert to the state
prior to one of those kinds of operations by using HELP U.
Zmacs queries you whether to go ahead with undoing; the
only information you have about what is being undone is
the name of the class of operation, for example, "fill" or
"sort". HELP U uses Undo.

For looking up all Zmacs user variables whose print names
contain a specified substring. You type the substring.
Zmacs displays the variable names and their current values.

115

July 1986

See HELP A for looking up command names. HELP V uses
Variable Apropos.

HELP W For finding the key assignment for a particular command.
You type the command name; Zmacs displays the current
key assignment. Completion is available. HELP W uses
Where Is.

HELP SPACE Repeats the last HELP command you used.

In this chapter, all Zmacs commands appear by name rather than by key binding.
Command tables indicate whether the command has a standard key binding or
whether it must be used as an extended command. For example, Edit Zmacs
Command is an extended command and requires that you invoke it with n-X.
Forward Word is bound to m-F; you invoke it by holding down the META key and
pressing F.

Command Type of command

Edit Zmacs Command (n-¥) An extended command

Forward Word (n-F) A command with a standard key binding
Find File (c-X c-F) A command with a standard key binding

Functions and their arguments appear as in the following example:
(apropos string package inferiors superiors)

Words in italics are the arguments to the function. The words reflect the
meaning of the argument. Bold words are optional arguments; you can leave them
out. The reference description for the function explains the meanings of the
arguments and the default values for optional arguments.

8.2.2 Zmacs Completion

Zmacs minibuffer commands offer completion, a facility for reducing the number of
keys you need to type to specify a name. As soon as you have typed enough
characters for a name to be recognized as unique, you can ask for completion. Up
until then, you can ask to see which names are possible completions of what you
have typed. You can tell when completion is available; the notation "(Completion)"
appears at the right end of the minibuffer label line.

8.2.2.1 Completion for Extended Commands (n-x Commands)

The following table summarizes the keys that control completion for entering
extended commands.

116

User's Guide to Symbolics Computers July 1986

Key Action in m-X commands

SPACE Completes the words up to the current word, as far as they are
unique.

HELP or c-? Shows the possible completions in the typeout area.
Mouse-R Pops up a menu of the possible completions.
c—/ Runs Apropos for each of the partially typed words in the name.
COMPLETE Displays the full command name, if possible.
RETURN, END
Confirms the command when possible, whether or not you have seen
its full name.

Request completion by pressing either COMPLETE or RETURN. Using COMPLETE
shows the completed name, requiring a further RETURN to confirm it; using RETURN
gets you completion and confirmation in one step.

Any time you are typing a Zmacs extended command name, completion is
available. Zmacs command name completion works on initial substrings of each
word in the command. For example, "m-X e z" is enough to specify the extended
command "Edit Zmacs Command".

Until Zmacs can recognize the name as unique, your request for completion just
completes as far as possible and moves the input cursor to the first ambiguous
place in the command name.

Whenever you are entering a name in a minibuffer that offers completion, you can
find out all possible completions of what you have typed so far. Twy styles are
possible. Pressing HELP or c-? shows the list of completions in the typeout area;
the names are mouse sensitive. Clicking Mouse-R shows the list in a pop-up
menu. One good strategy for browsing is to look at the list of completions for
initial substrings that are common command verbs, like "show" or "set".

8.2.2.2 Completion for n-.

The m-. (Edit Definition) command offers completion over the set of names that is
in the files that have already been loaded into editor buffers. In this case, you
request completion with COMPLETE and then confirm it with RETURN.

n-. offers initial substring name completion, with hyphens rather than spaces
delimiting the words. For example, "e-d-i" would be sufficient for specifying
zwei:edit-definition-internal (assuming that Zmacs had previously parsed the
source file containing it into a buffer).

8.2.3 Completion in Other Contexts

Completion is available in several other contexts, for example, buffer names and
package names. Be on the lookout for the presence of "(Completion)" in the
minibuffer label line. The conventions for extended commands usually apply.

117

July 1986

8.2.4 Typeout Windows in Zmacs

Most of the Zmacs commands for looking up information display the information in
a typeout window. A typeout window overlays the current buffer display with its
contents and disappears as soon as you type any character. Most typeout windows
contain mouse-sensitive items. In particular, Zmacs commands and Lisp function
specs are mouse sensitive and small menus of operations on the names are
available (Arglist, Edit Definition, and so on). See the mouse documentation line.

8.2.5 FEP Command Completion

While the keyboard is connected to the FEP, the following forms of completion are
available:

e Pressing the HELP key at the FEP prompt (Fep>) or after typing part of the
first word of a command shows the commands understood by the FEP
command processor.

¢ Pressing the HELP key after typing the first word of a command shows a list
of commands that begin with that word. Example: set SPACE HELP gives a
list of commands that begin with the word set.

8.2.5.1 See...

e For more information about help facilities in editing: See the section
"Getting Out of Trouble", page 69.

¢ For more information about help facilities in the mail program: See the
section "Using Zmail", page 77.

¢ For more information about the FEP and a listing of available commands:
See the section "The Front-End Processor" in Site Operations.

8.3 Summary of Help Functions in Different Contexts

Both Zmacs and Lisp offer facilities for finding information either about
themselves or about the current environment. In addition, Zmacs offers ways to
find information about Lisp functions and variables.

This section lists the names of the functions and commands that are available,
grouped according to the context in which they are available. The purpose of this
section is to summarize the capabilities and to help you determine both the overall
contexts for which you can find help and a particular function that might be what
you are looking for. Explanations for each of these functions appear in an

118

User's Guide to Symbolics Computers

alphabetical listing. See the section "Reference Description of Help Functions",

page 120.

8.3.1 Zmacs Commands for Finding Out About the State of Buffers

Edit Buffers (n-X)

Edit Changed Definitions (n-X)

Edit Changed Definitions Of Buffer (n-X)
List Buffers (c-X c-B)

List Changed Definitions (n-X)

List Changed Definitions Of Buffer (n-¥)
List Definitions (n-&)

List Matching Lines (m-X)

Print Modifications (n-¥)

Select System as Tag Table (n-K)

Tags Search (m—-¥)

8.3.2 Zmacs Commands for Finding Out About the State of Zmacs

Apropos (n-K), HELP A
Describe Variable (n-¥)

Edit Zmacs Command (n-¥)
List Commands (n-X)

List Registers (n-X)

List Some Word Abbrevs (n-¥)
List Tag Tables (n-X)

List Variables (n~¥)

List Word Abbrevs (m-¥)

8.3.3 Zmacs Commands for Finding Out About Lisp

Describe Variable At Point (c-sh-V)
Edit Callers (n-¥)

Edit CP Command n-X

Edit Definition (n-.)

Edit File Warnings (n-X)
Function Apropos (mn-K)

List Callers (n—-X)

List Matching Symbols (n-X)
Long Documentation (c-sh-D)
Multiple Edit Callers (m-X)
Multiple List Callers (n—-¥)

119

July 1986

Quick Arglist (c-sh-R)

Show Documentation (n—~sh-D)

Show Documentation Function (n-sh-R)
Show Documentation Variable (m-sh-V)
Where Is Symbol (n-X)

8.3.4 Zmacs Commands for Finding Out About Flavors

Describe Flavor (m-X)

Show Documentation Flavor (m—-sh-F)
Edit Combined Methods (n-¥X)

Edit Methods (n-¥)

List Combined Methods (m-¥)

List Methods (n-X)

8.3.5 Zmacs Commands for Interacting with Lisp

Break (SUSPEND)

Compile And Exit (n-2)

Compile Buffer (n-X)

Compile Changed Definitions (n-X)
Compile Changed Definitions Of Buffer (n-X), m-sh-C
Compile File (n-X)

Compile Region (n-X), c-sh-C

Compiler Warnings (n-X)

Edit Compiler Warnings (n-%)

Evaluate And Exit (c-n-2)

Evaluate And Replace Into Buffer (m-X)
Evaluate Buffer (n-%)

Evaluate Changed Definitions (m-X)
Evaluate Changed Definitions Of Buffer (m-X), m-sh-E
Evaluate Into Buffer (n-H)

Evaluate Minibuffer (ESCRPE)

Evaluate Region (n-X), c-sh-E

Evaluate Region Hack (n-X)

Evaluate Region Verbose (c-mn-sh-E)
Load Compiler Warnings (n-X)

Macro Expand Expression (mn-¥), c-sh-M
Trace (m-X)

Quit (c-2)

120

User’s Guide to Symbolics Computers July 1986

8.3.6 Lisp Facilities for Finding Out About Lisp

(apropos string package inferiors superiors)
(arglist function flag)

(describe object)

(describe-area area-name)

(describe-defstruct instance structure-name)
(describe-flavor flavor-name)
(describe-package package-name)
(describe-system system-name)

(disassemble function)

(documentation function)
(si:flavor-allowed-init-keywords flavor-name)
(inspect object)
(compiler:load-compiler-warnings file flush-flag)
(mexp)

(trace specs)

(untrace specs)

(variable-boundp variable)

(what-files-call string package)

(where-is symbol package)

(who-calls symbol package inferiors superiors)

8.4 Reference Description of Help Functions

This section contains a summary paragraph of documentation for each of the
information-finding commands and functions. See the section "Summary of Help
Functions in Different Contexts", page 117.

This reference list is in alphabetical order by name of the command or function.
Zmacs editor commands appear according to the names of the commands that
implement them, rather than according to the names of the keys that invoke them.
For example, Compile Buffer (m-X) appears under "C" rather than under "M";
c-sh-A appears under "Q" (because its name is Quick Arglist) rather than under
"C". For commands that are usually invoked by a single key rather than by m-X,
the key name appears with the command. (Remember that you can always use
HELP W to find the key that invokes a particular command.)

Some Zmacs commands come in pairs, such as List Callers and Edit Callers. The
commands are very similar. The List version allows you to just look at the list or
to decide to start editing the items in the list. The list items are always mouse
sensitive. For the Edit version of the command, c-. is always the command for
moving to the next item.

121

July 1986

Apropos (m-R), HELP A

Displays all the Zmacs commands whose names contain a
specified substring. You type the substring. Zmacs displays one
line of documentation for the command and which key invokes it
in the current context, if any.

(apropos string package inferiors superiors)

Displays all the symbols whose print names contain the string.
By default, it looks in the zl-user:global package and its
descendants, but you can specify a package name. For symbols
that have function bindings, it displays the argument list. For
symbols that are bound, it displays the notation "Bound".
zl:apropos returns the symbols that it found as a list.

(apropos “forward"” ’zwei)

(arglist function flag) (see also Quick Arglist)

Break (SUSPEND)

c-m-sh-E
c-sh-A
c-sh-C
c-sh-D
c-sh-E
c-sh-{

Returns a representation of the arguments that the function
expects. When the original function definition contained an
arglist declaration, arglist returns that list when flag is not
specified or nil. When flag is not nil, then arglist returns the
real argument list from the function. When the original
function used a values declaration, arglist returns the names
for the values returned by the function.

(arglist ’make-array)

You cannot use arglist to find the arguments for combined
methods.

Enters a Lisp Listener from the current window. It uses the
screen area of the frame that was selected when you used
SUSPEND. When you use it from the editor, any Lisp forms you
type are evaluated in the current package (the one showing in
the status line). Use RESUME to return to the original context.

See Evaluate Region Verbose.
See Quick Arglist.

See Compile Region.

See Long Documentation.

See Evaluate Region.

See Describe Variable At Point.

Compile And Exit (n-2)

Compiles the buffer and returns from top level. It selects the

122

User's Guide to Symbolics Computers July 1986

window from which the last (ed) function or the last debugger
c-E command was executed.

Compile Buffer (n-X)
Compiles the entire buffer. With a numeric argument, it
compiles from point to the end of the buffer. (This is useful for
resuming compilation after a prior Compile Buffer has failed.)

Compile Changed Definitions (n-X)
Compiles any definitions that have changed in any Lisp mode
buffers. With a numeric argument, it queries individually about
whether to compile each changed definition.

Compile Changed Definitions Of Buffer (m-sh-C, n-X)
Compiles any definitions in the current buffer that have been
changed. With a numeric argument, it prompts individually
about whether to compile each changed definition.

Compile File (n-X)
Compiles a file, offering to save it first. It prompts for a file
name in the minibuffer, using the file associated with the
current buffer as the default. It offers to save the file if the
buffer has been modified.

Compile Region (c-sh-C, n-¥)
Compiles the region, or if no region is defined, the current
definition.

Compiler Warnings (n-X) (see also Edit Compiler Warnings)
Puts all pending compiler warnings in a buffer and selects that
buffer. It loads the compiler warnings database into a buffer
called *Compiler-Warnings-1*, creating that buffer if it does not
exist.

(describe object) (see also inspect)
Displays available information about an object, in a format that
depends on the type of the object. For example, describing a
symbol displays its value, definition, and properties. describe
returns the object.

(describe ’time:get-time)

(describe-area area-name)
Displays attributes of the specified area.

(describe-area (Zarea-number ’foo))
(describe-area ’working-storage-area)

123

July 1986

(describe-defstruct instance structure-name)
Displays a description of the instance, showing the contents of
each of its slots. structure-name is not necessary for named
structures but must be provided for unnamed structures. When
you supply zl-user:structure-name, you force the function to use
that structure name instead of letting the system figure it out;
in addition, it overrides the :describe option for structures that
know how to describe themselves.

Describe Flavor (n-¥) (see also zl-user:describe-flavor)
Displays a description of a flavor. It reads a flavor name via
the mouse or from the minibuffer using completion. It displays
a description of the flavor in a typeout window. The description
includes names of flavors that the specified one directly depends
on and names of flavors that depend on it. It also displays the
documentation and the names of its instance variables.

(describe-flavor flavor-name) (see also Describe Flavor)
Displays descriptive information about a flavor.

(describe-flavor ’tv:basic-menu)

(describe-package package-name)
Displays information about a package.

(describe-package ’zwei)
That example is the same as this one:
(describe (pkg-find-package ’zwei))

(describe-system system-name)
Displays information about a system, including the name of the
file containing the system declaration and when the files in the
current version of the system were compiled.

Describe Variable (m-X)
Displays the documentation and current value for a Zmacs
variable. It reads the variable name from the minibuffer, using
completion.

Describe Variable At Point (c-sh-V)
Displays information, in the echo area, about the current Lisp
variable. The information includes whether the variable is
declared special, whether it has a value, what file defines it, and
whether it has documentation put on by defvar or zl:defconst.
When nothing is available, it checks for lookalike symbols in
other packages.

124

User's Guide to Symbolics Computers July 1986

(disassemble function) (see also mexp, Macro Expand Expression)
Displays the macro-instructions for the function. It does not
work for functions that are not compiled or that are
implemented in microcode, like cons or car.

(disassemble ’plus)

Use this function for things like finding clues about whether a
macro is being expanded correctly.

Edit Buffers (mn-X) (see also List Buffers)
Displays a list of all buffers, allowing you to save or delete
buffers and to select a new buffer. A set of single character
subcommands lets you specify various operations for the buffers.
For example, you can mark buffers to be deleted, saved, or not
modified. Use HELP to see further explanation. The buffer is
read-only; you can move around in it by searching and with
commands like c-N or c-P.

Edit Callers (m-X) (see also List Callers, Multiple Edit Callers)
Prepares for editing all functions that call the specified one. It
reads a function name via the mouse or from the minibuffer
with completion. By default, it searches the current package.
You can control the package being searched by giving the
function an argument. With c-U, it searches all packages; with
c-U e-U, it prompts for a package name. It selects the first
caller; use c-. (Next Possibility) to move to a subsequent
definition. It takes about 5 minutes to search all packages.

Edit Changed Definitions (n-X) (see also List Changed Definitions)
Determines which definitions in any Lisp mode buffer have
changed and selects the first one. It makes an internal list of
all the definitions that have changed in the current session and
selects the first one on the list. Use c-. (Next Possibility) to
move to a subsequent definition. Use a numeric argument to
control the starting point for determining what has changed:
1 For each buffer, since the file was last read (the default).
2 For each buffer, since it was last saved.
3 For each definition in each buffer, since the definition was

last compiled.

Edit Changed Definitions Of Buffer (n-%) (see also List Changed Definitions Of
Buffer)
Determines which definitions in the buffer have changed and
selects the first one. It makes an internal list of all the
definitions that have changed since the buffer was read in and
selects the first one on the list. Use c-. (Next Possibility) to

125

July 1986

move to subsequent definitions. Use a numeric argument to

control the starting point for determining what has changed:

1 Since the file was last read (the default).

2 Since the buffer was last saved.

3 Since the definition was last compiled, for each definition in
the buffer.

Edit Combined Methods (n-X) (see also List Combined Methods)
Prepares to edit the methods for a specified message to a
specified flavor. It prompts first for a message name, then for a
flavor name. It selects the first combined method component.
Use c-. (Next Possibility) to move to a subsequent definition.
The definitions appear in the order that they would be called
when the message was sent. Error messages appear when the
flavor does not handle the message and when the flavor
requested is not a composed, instantiated flavor.

Edit Compiler Warnings (n-%) (see also Compiler Warnings)
Prepares to edit all functions whose compilation caused a
warning message. It queries, for each of the files mentioned in
the database, whether you want to edit the warnings for the
functions in that file. It splits the screen, putting the warning
message in the top window. The bottom window displays the
source code whose compilation caused the message. Use c-.
(Next Possibility) to move to a subsequent warning and source
function. After the last warning, it returns the screen to its
previous configuration.

Edit Definition (m-.)
Prepares to edit the definition of a function, variable, flavor, or
anything else defined with a "defsomething" special form. It
prompts for a definition name from the minibuffer. Name
completion is available for definitions in files that have already
been loaded into buffers. You can select a name by clicking the
mouse over a definition name in the current buffer. It selects
the buffer containing the definition for that name, first reading
in the file if necessary. With a numeric argument, it selects
the next definition that satisfies the most recent name given. It
tells you in the echo area when it finds more than one definition
for a name.

Edit File Warnings (n-X)
Prepares to edit any functions in a specified file for which
warnings exist. It prompts for a file name, which can be either
a source file or a compiled file. It splits the screen, putting a

126

User's Guide to Symbolics Computers July 1986

warning message from the warnings database in the top window.
The bottom window displays the source code whose compilation
caused the message. If the database does not contain any
warnings for this file, it prompts for the name of a file
containing the warnings. Use c-. (Next Possibility) to move to
a subsequent warning and source function. After the last
warning, it returns the screen to its previous configuration.

Edit Methods (n-K) (see also List Methods)
Prepares to edit all the methods on any flavor for a particular
message. It prompts for a message name. It finds all the
flavors with handlers for the message, makes an internal list of
the method names, and selects the definition for the first one.
Use c-. (Next Possibility) to move to subsequent definitions.

Edit Zmacs Command (n-X)
Finds the source for the function installed on a key. You can
press any key combination or enter an extended command name.
Use a numeric argument to edit the function that implements a
prefix command (like m-¥ or c-¥X).

Evaluate And Exit (c-n-2)
Evaluates the buffer and returns from top level. It selects the
window from which the last ed function or the last debugger
c-E command was executed.

Evaluate And Replace Into Buffer (m-X)
Evaluates the Lisp object following point in the buffer and
replaces it with its result.

Evaluate Buffer (n-X)
Evaluates the entire buffer. With a numeric argument, it
evaluates from point to the end of the buffer.

Evaluate Changed Definitions (n-X)
Evaluates any definitions that have changed in any buffers.
With a numeric argument, it prompts individually about whether
to evaluate particular changed definitions.

Evaluate Changed Definitions Of Buffer (m-sh-E, n-X)
Evaluates any definitions in the current buffer that have been
changed. With a numeric argument, it prompts individually
about whether to evaluate particular changed definitions.

Evaluate Into Buffer (n-X)
Evaluates a form read from the minibuffer and inserts the
result into the buffer. You enter a Lisp form in the minibuffer,

127

July 1986

which is evaluated when you press END. The result of
evaluating the form appears in the buffer before point. With a
numeric argument, it also inserts any typeout that occurs during
the evaluation into the buffer.

Evaluate Minibuffer (n-ESCAPE)
Evaluates forms from the minibuffer. You enter Lisp forms in
the minibuffer, which are evaluated when you press END. The
value of the form itself appears in the echo area. If the form
displays any output, that appears as a typeout window.

Evaluate Region (c-sh-E, m-K)
Evaluates the region. When no region has been defined, it
evaluates the current definition. It shows the results in the
echo area. '

Evaluate Region Hack (n-R)
Evaluates the region, ensuring that any variables appearing in a
defvar have their values set. When no region has been defined,
it evaluates the current definition. It shows the results in the
echo area.

Evaluate Region Verbose (c-n-sh-E)
Evaluates the region. When no region has been defined, it
evaluates the current definition. It shows the results in a
typeout window.

(flavor-allowed-init-keywords flavor-name) (In si:)
Returns a list containing the init keywords and initable instance
variables allowed for a particular flavor.

(si:flavor-allowed-init-keywords ’tv:basic-menu)

Function Apropos (n-X)
Displays all the Lisp functions whose print names contain a
particular substring. It reads the substring from the minibuffer.
By default, it searches the current package. You can control the
package being searched by giving the function an argument.
With c-U, it searches all packages; with c-U c-U, it prompts for
a package name.

(inspect object) (see also describe)
Creates or selects an Inspector window and displays available
information about an object. inspect and describe provide
similar information, except that inspect is an interactive facility
for further exploring a data structure.

128

User's Guide to Symbolics Computers July 1986

(inspect tv:selected-window)
(inspect (tv:window-under-mouse))

List Buffers (c-X c-B) (see also Edit Buffers)
Prints a list of all the buffers and their associated files. The
lines in the list are mouse sensitive, offering a menu of
operations on the buffers. Clicking left on a line selects the
buffer. For buffers with associated files, the version number of
the file appears. For buffers without associated files, the size of
the buffer in lines appears. For Dired buffers, the pathname
used for creating the buffer appears as the version. The list of
buffers appears sorted in order of last access, with the currently
selected one at the top. You can inhibit sorting by setting
zwei:*sort-zmacs-buffer-list* to nil.

List Callers (n-X) (see also Edit Callers, Multiple List Callers)
Lists all functions that call the specified function. It reads a
function name via the mouse or from the minibuffer with
completion. By default, it searches the current package. You
can control the package being searched by giving the function
an argument. With c-U, it searches all packages; with c-U c-U,
it prompts for a package name. The names are mouse sensitive.
Use c-. (Next Possibility) to start editing the definitions in the
list. It takes about 5 minutes to search all packages.

List Changed Definitions (n-¥) (see also Edit Changed Definitions)
Displays a list of any definitions that have been edited in any
buffer. Use c-. (Next Possibility) to start editing the
definitions in the list. Use a numeric argument to control the
starting point for determining what has changed:
1 For each buffer, since the file was last read (the default).
2 For each buffer, since it was last saved.
3 For each definition in each buffer, since the definition was

last compiled.

List Changed Definitions Of Buffer (n-X) (see also Edit Changed Definitions Of
Buffer)
Displays the names of definitions in the buffer that have
changed. It makes an internal list of the definitions changed
since the buffer was read in and offers to let you edit them.
Use c-. (Next Possibility) to move to subsequent definitions.
Use a numeric argument to control the starting point for
determining what has changed:
1 Since the file was last read (the default).
2 Since the buffer was last saved.

129

July 1986

3 Since the definition was last compiled, for each definition in
the buffer.

List Combined Methods (n-X) (see also Edit Combined Methods)
Lists the methods for a specified message to a specified flavor.
It prompts first for a message name, then for a flavor name. It
lists the names in a typeout window. Error messages appear
when the flavor does not handle the message and when the
flavor requested is not a composed, instantiated flavor. Use c-.
(Next Possibility) to start editing the definitions in the list.

List Commands (n-X)
Lists names and one-line summaries for all extended commands
available in the current context. It displays the names in a
typeout window. The list is not sorted.

List Definitions (n-¥)
Displays the definitions from a specified buffer. It reads the
buffer name from the minibuffer, using the current buffer as
the default. It displays the list as a typeout window. The
individual definition names are mouse sensitive.

List Matching Lines (n-X)
Displays all the lines following point in the current buffer that
contain a given string. It prompts for the string in the
minibuffer. With a numeric argument, it shows only the first n
occurrences of the string following point. The lines are mouse
sensitive.

List Matching Symbols (n-¥)
Lists the symbols that satisfy a predicate. It prompts for a
predicate lambda expression of one argument. The predicate
gets compiled, for speed. The predicate must return something
other than nil for the symbol to be included in the list. For
example
you pressed: m-8% L M S
mintbuffer contains: °’ (LAMBDA (SYMBOL))
revised minibuffer: ’(LAMBDA (SYMBOL) (string-search “foo"
symbol))
By default, it searches the current package. You can control the
package being searched by giving the function an argument.
With c-U, it searches all packages; with c¢-U c-U, it prompts for
a package name. It selects the first one; use c-. (Next
Possibility) to move to a subsequent definition.

130

User’s Guide to Symbolics Computers July 1986

List Methods (n-X) (see also Edit Methods)
Lists all the function specs for all methods on any flavor that

handle a particular message. It prompts for the message name.
It finds all the flavors with methods for the message and
displays the information in a typeout window. The function
specs are mouse sensitive.

List Registers (n—¥)
Displays names and contents of all defined registers. Use
Apropos to see commands for manipulating registers.

List Some Word Abbrevs (m-X)
Lists the abbreviations or expansions that contain the given
string. Use Apropos to see the other abbreviation commands.

List Tag Tables (n-X)
Lists the names of all the tag tables currently available. Use
Apropos to see other commands using tags.

List Variables (n-X)
Lists all Zmacs variable names and their values. With a
numeric argument, it also displays the documentation line for
the variable. Zmacs variables are those that have been provided
for customizing the editor. Their names differ from their
internal Lisp names:

Zmacs variable name:
Fill Column
Internal Lisp name: zwei:*fill-column*

List Word Abbrevs (n-X)
Lists all current abbreviations and their expansions.

(load-compiler-warnings file flush-flag) (In compiler:) (see also Load Compiler
Warnings)
Loads a file containing compiler warning messages into the
warnings database. It expects to load a file containing the
printed representation of compiler warnings (as saved by
print-compiler-warnings). It uses flush-flag to determine
whether to replace any of the warnings already in the database.
When the flag is not nil, it deletes any warnings associated with
a source file before loading any new warnings for that file.
Otherwise, it merges warnings from the file with those already
in the warnings database. The default is t.

Load Compiler Warnings (n-¥) (see also compiler:load-compiler-warnings)
Loads a file containing compiler warning messages into the
warnings database. It prompts for the name of a file that

131

July 1986

contains the printed representation of compiler warnings. It
always replaces any warnings already in the database.

Long Documentation (c-sh-D) (see also Show Documentation)

n-e
n-ESCAPE
n-sh-A
m-sh-C
m-sh-D
m—-sh-E
n-sh-F
m-sh-V

Displays the summary documentation for the specified Lisp
function. It prompts for a function name, which you can either
type in or select with the mouse. The default is the current
function.

See Edit Definition.

See Evaluate MiniBuffer.

See Show Documentation Function.

See Compile Changed Definitions Of Buffer.
See Show Documentation.

See Evaluate Changed Definitions Of Buffer.
See Show Documentation Flavor.

See Show Documentation Variable.

Macro Expand Expression (c-sh-M, n-X)

Displays the macro expansion of the next Lisp expression in the
buffer. It reads the Lisp expression following point and expands
all macros within it at all levels, displaying the result on the
typeout window. With a numeric argument, it pretty-prints the
result back into the buffer, immediately following the
expression.

(mexp) (see also disassemble)

Displays the expansion of a macro. It prompts for a macro
invocation to expand and then displays its expansion without
evaluating it. It continues prompting until you enter something
that is not a cons (for example, () stops it.)

Multiple Edit Callers (n-X) (see also Edit Callers)

Prepares for editing all functions that call the specified ones. It
reads a function name from the minibuffer, with completion. It
then keeps asking for another function name until you end it
with just RETURN. By default, it searches the current package.
You can control the package being searched by giving the
function an argument. With c-U, it searches all packages; with
c-U c-U, it prompts for a package name. It selects the first
caller; use c-. (Next Possibility) to move to a subsequent
definition.

132

User’s Guide to Symbolics Computers . July 1986

Multiple List Callers (m-X) (see also List Callers)

Lists all the functions that call the specified functions. It reads
a function name from the minibuffer, with completion. It
continues prompting for a function name until you end it with
just RETURN. By default, it searches the current package. You
can control the package being searched by giving the function
an argument. With c-U, it searches all packages; with c-U c-U,
it prompts for a package name. Use c-. (Next Possibility) to
start editing the definitions in the list.

Print Modifications (n—-¥)

Displays the lines in the current buffer that have changed since
the file was first read into a buffer. With a numeric argument,
it displays the lines that have changed since the last save. To
provide context, it shows the first line of each section that
contains a change, whether or not that line has changed. The
lines are mouse sensitive, allowing you to move to the location
of a change.

Quick Arglist (c-sh-R) (see also arglist)

Quit (c-2)

Displays the argument list for the current function. With a
numeric argument, it reads the function name via the mouse or
from the minibuffer. When the original function uses a values
declaration, Quick Arglist returns the names for the values
returned by the function.

Returns from top level. It selects the window from which the
last (ed) function or the last debugger c-E command was
executed.

Select Some Buffers as Tag Table (n-X)

Creates a tag table by selecting some buffers currently read in,
querying about each one. With a numeric argument, it asks
only about buffers whose name contains a given string.

Select System as Tag Table (n-X)

Creates a tag table for all the files in a system. It uses the file
names as they appear in the defsystem function for that system.

Show Documentation (m-¥, m-sh-D)

Looks up a topic from the documentation database and displays
it on a typeout window. It offers the current definition as a
default, but prompts for a definition, which can be supplied by
mouse or minibuffer. It accepts only those topics for which
documentation has been installed.

133

July 1986

Show Documentation Flavor (m-sh-F)
Displays the documentation for the current flavor. With a

numeric argument, it prompts for a device. The devices
currently supported are the screen and an LGP printer.

Show Documentation Function (n~sh-R)
Displays the documentation for the current function. With a
numeric argument, it prompts for a device. The devices
currently supported are the screen and an LGP printer.

Show Documentation Variable (n-sh-V)
Displays the documentation for the current variable. With a
numeric argument, it prompts for a device. The devices
currently supported are the screen and an LGP printer.

Tags Search (n-X)Searches all files in a tags table for a specified string. It reads
the string from the minibuffer and then prompts for a tags
table name.

Trace (m—-¥) (see also untrace)
Toggles tracing for a function. With a numeric argument, it
simply enables tracing for some function, without prompting you
for trace options. It uses the same interface for specifying
options as the Trace program in the System menu. See the
section "Tracing Function Execution" in Program Development
Utilities.

(trace specs) (see also untrace)
Turns on tracing for a function. With no arguments, it returns
a list of all things currently being traced. With no additional
options, tracing displays the name and arguments for a function
each time it is called and its name and value(s) each time it
returns. Complex options are available for entering breakpoints
or executing code conditionally during tracing. See the section
"Tracing Function Execution" in Program Development Utilities.
See the section "Trace" in Text Editing and Processing.

(trace foo bar)
(trace #’ (:method command-found :push))

Tracing very common functions (like zl:format) or functions
used by trace itself or by the scheduler (like time:get-time) can
crash the machine.

(untrace specs) Turns off tracing for a function that is being traced. With no
argument, it turns off tracing for all functions currently being
traced.

134
User's Guide to Symbolics Computers July 1986

(variable-boundp variable)
Returns nil or t indicating whether or not the variable is bound.

(variable-boundp tv:current-window)

(what-files-call symbol package)
Displays the names of files that contain uses of symbol as a
function, variable, or constant. It searches all the function cells
of all the symbols in package. By default, it searches the global
package and its descendants. It returns a list of the pathnames
of the files containing the callers.

Where Is Symbol (n-X)
Displays the names of packages that contain symbols with the
specified name.

(where-is string package)
Displays the names of all packages that contain a symbol whose
print name is string. It ignores the case of string. By default,
it looks in the global package and its descendants. where-is
returns a list of the symbols that it finds.

(where-is "foobar")

(who-calls symbol package inferiors superiors)
Displays a line of information about uses of the symbol as a
function, variable, or constant. It searches all the function cells
of all the symbols in package. By default, it searches the global
package and its descendants. It returns a list of the names of
the callers.

(who-calls ’time:get-time ’hacks)

8.5 Editing Your Input

When you make a mistake in typing or change your mind when typing a command
or expression to the system, you have two choices:

e Press ABORT and begin again.
¢ Edit your input.

You do not need to invoke the input editor explicitly. The input editor is a
feature of all interactive streams.

135

July 1986

8.5.1 Input Editor Commands

Input Editor Commands: c-number, c-Minus and c-U provide numeric arguments.

REFRESH Refresh Window HELP
PAGE Erase Typeout c—HELP
n=-< Beginning Of Buffer m-HELP
m-> End Of Buffer ESCRPE
CLEAR INPUT Clear Input c-ESCAPE
c-F Forward Character c-Y

c-B Backward Character n=Y

c-D Delete Character c-n-Y
RUBOUT Rubout Character c-H

c-T Exchange Characters n~W

c-A Beginning Of Line c—-SPACE
c-E End Of Line c—<

c-P Previous Line c->

c-N Next Line c-sh-Y
c-K Kill Line m-sh-{
mn—-F Forward Word c-m-sh-Y¥
n-B Backward Word SCROLL
m-D Delete Word c-V
m-RUBOUT Rubout Word m-SCROLL
n-T Exchange Words m-y

n-U Upcase Word s—SCROLL
n-L Downcase Word s~m-SCROLL
n-C Capitalize Word c-n-S
c-n-F Forward Parentheses c-m-R
c-n-B Backward Parentheses s-H
c-m-K Delete Parentheses

c-n-RUBOUT Rubout Parentheses s-S

LINE New Line s-R

BACK SPACE Backward Character c-sh-A
c-L Refresh Window c-sh-V
c-0 Open Line c—-sh-D
c-Q Quote Character c-n-J
m-sh-A Lookup Function Documentation
n-sh-y Lookup Variable Documentation
m~sh-F Lookup Flavor Documentation

8.5.2 Histories and Yanking

Display Documentation
Display Commands
Display Internal State
Display Input History
Display Kill History

Yank

Yank Pop

Yank Input

Kill Region

Save Region

Set Mark

Mark Beginning

Mark End

Yank Matching

Yank Pop Matching

Yank Input Matching

Scroll Vertical Forward

Scroll Vertical Forward

Scroll Vertical Backward

Scroll Vertical Backward

Scroll Horizontal Forward

Scroll Horizontal Backward

Save Scroll Position

Restore Scroll Position

Kill Ring Push Region
Strings

Scroll Search Forward
Scroll Search Backward
Describe Arguments
Describe Variable
Document Symbol

Set Typein Style

A history remembers commands and pieces of text, placing them in a history list.
Additions to the history are placed at the top of the list, so that history elements

136

User’s Guide to Symbolics Computers July 1986

are stored in reverse chronological order — the newer elements at the top of the
history, the older elements toward the bottom.

Yanking commands pull in the elements of a history. Top-level commands start a
yanking sequence. Other commands perform all subsequent yanks in the same
sequence. A yanking sequence ends when you type new text, execute a form or
command, or start another yanking sequence.

The system has different histories for different contexts. One of these is always
the current history.

8.5.3 Types of Historles

Genera uses the following histories:

Type Description

Input History containing text typed at the input editor; a separate
history exists for each window.

Kill History of text deleted or saved in any window; a global history.

Replace History of arguments to Query Replace (n-X) and related
commands.

Buffer History of editor buffers visited in this window.

Pathname History of file names that have been typed.

Command History of editor commands that use the minibuffer, and their

arguments. Commands that do not use the minibuffer, such as
m—RUBOUT, are not recorded in the history.

Definition History of names of definitions that have been typed.
Except for the input histories, which are per-window, only a single instance of

each of these histories exists, shared among all editors, including Zmacs, Zmail,
and Dired.

8.5.4 Input Editor

In the input editor c-m-Y yanks from the history of previous inputs.

Because the input editor’s kill history is the same as the Zwei kill history,
c-SPACE, c-W, m-HW, c-<, c->, c-Y¥, and related commands can be used in the input
editor to move text back and forth between Zmacs, Zmail and the Input Editor .
(Press c~HELP for a summary of commands.) Unlike Zwei, however, the input
editor does not underline a marked region.

You can use most Zwei editing commands on yanked forms. Reactivating a yanked

137

July 1986

form is simple: just press END anywhere within or at the end of the form. ESCAPE
displays the history of previous inputs. A numeric argument controls the length
of the input history to be displayed. An argument of 0 displays the entire history.

c-ESCARPE displays the default kill history. A numeric argument controls the
length of the kill history to be displayed. An argument of 0 displays the entire
history.

8.5.5 The Displayed Default

When a command that reads an argument in the minibuffer displays a default, it
puts the default onto the history temporarily. After reading and defaulting your
input, it puts the argument onto the history instead. Thus c¢-n-Y always yanks
the displayed default and c-m-2 c-m-Y yanks the last thing typed in that context.
If no default is displayed, c-m-Y yanks the last thing typed in that context.

The displayed default is usually not the same as the most recent item in the
history; often it is computed according to some heuristic based on past history and
the exact command being given. It is pushed onto the top of the history in order
to allow you to easily yank and edit it. This is useful when the heuristic comes
close but does not provide exactly what you want.

8.5.6 Using Numeric Arguments for Yanking

A numeric argument of 0 to any yank command displays a list of the history and
the numeric argument required to get each element of the history.

Example: The input history invoked in a Dynamic Lisp Listener by c-mn-8 c-n-Y:
Lisp Listener 1 Input history:

1: (+ 218 32)

2: (x 17 6)

3: Load Patches

4: Show System Modifications
5: Show Herald

6: Login KJones

The history is displayed in reverse chronological order — the newest element first,
for example, (+ 218 32); the oldest last, for example, Login KJones.

By default, a positive argument to c-Y and c-m-Y specifies how far from the
newest element into past history is the element to be yanked. The numbers in the
history display can be used as numeric arguments. (Optionally, you can set the
variable zwei:*history-rotate-if-numeric-arg* so that arguments to the yanking
commands are measured relative to the origin. See the section "Customizing the
Input Editor", page 105.)

Example: c-n-1 c-n-Y yanks element #1, (+ 218 32), from the history.

138

User's Guide to Symbolics Computers July 1986

Example: c-m-2 c-n-Y yanks element #2, (x 17 6), from the history.

A positive or negative argument to m-Y is measured relative to the last element
yanked, not the newest element.

Example: Pressing c-m-2 c-n-Y yanks (x 17 6); then pressing m-4 m-Y yanks
Login KJones, not element #4. Displaying the history at this point looks this:

Lisp Listener 1 Input history:
1: (+ 218 32)
2: (x 17 6)
3: Load Patches
4: Show System Modifications
5: Show Herald

-> 6: Login KJones

Element #6, marked by a pointer, is the origin. (Note: The origin is not the most
recent element because m-Y has changed the origin.)

A top-level command given without an argument retrieves the element at the
origin, which is the last element yanked in the previous yanking sequence, not
necessarily the newest element of the history.

Example: c-m-Y yanks Login KJones) from the history.

A numeric argument of c-U not followed by any digits is the same as no numeric
argument with one exception: Point is placed before the text yanked and mark is
placed after — the reverse of the ordinary placement.

To find out how to customize the input editor: See the section "Customizing the
Input Editor", page 105.

8.6 System Conventions and Helpful Hints

8.6.1 Miscellaneous Conventions

All uses of the phrase "Lisp reader”, unless further qualified, refer to the part of
Lisp that reads characters from I/O streams (the zl:read function), and not the
person reading this documentation.

By default, Symbolics-Lisp displays numbers in base 10. If you wish to change it:
See the section "What the Reader Recognizes" in Reference Guide to Streams,
Files, and 1/0.

Several terms that are used widely in other references on Lisp are not used much
in Symbolics documentation, as they have become largely obsolete and misleading.
They are: "S-expression”, which means the printed representation of a lisp object;
"Dotted pair", which means a cons; and "Atom", which means, roughly, symbols

139

July 1986

and numbers and sometimes other things, but not conses. For definitions of the
terms "list" and "tree": See the section "Manipulating List Structure” in
Symbolics Common Lisp.

8.6.2 Answering Questions the System Asks

The system occasionally asks you to confirm some command. There are two forms
this can take:

e Simple commands such as Load File or Save File Buffers might ask you to
confirm with a question requiring a Y (for yes) or an N (for no).

Save Buffer program.lisp >kjones>new-project> tuna: ? (Y or N)

You press Y or SPRCE for yes, N for no.

¢ Destructive commands, such as Initialize Mail, require that you type the
entire word yes to confirm them.

Do you really want to do this? (Yes or No)

You must type the entire word yes to confirm the the command. Thus you
are less likely to issue such a command accidentally.

Lisp provides several functions for this kind of querying: See the section
"Querying the User".

8.6.3 Questions Users Commonly Ask
What is a Logical Pathname?

A logical pathname is a kind of pathname that doesn’t correspond to any
particular physical file server or host. Logical pathnames are used to make it
easy to keep software on more than one file system. An important example is the
software that constitutes the Lisp Machine system. Every site has a copy of the
basic sources of the programs that are loaded into the initial Lisp environment.
Some sites might store the sources on a UNIX file system, while others might
store them on a TOPS-20. However, the software needs to find these files no
matter where they are stored. This is accomplished by using a logical host called
SYS. All pathnames for system software files are actually logical pathnames with
host SYS. At each site, SYS is defined as a logical host, and there is a translation
table that maps the SYS host to the actual physical machine for that site.

Here is how translation is done. For each logical host, there is a mapping that
takes the name of a directory on the logical host, and produces a device and a
directory for the corresponding physical host. For example, the logical host SYS
has a directory SITE;. At a site that keeps its sources on a TOPS-20 this might

140

User's Guide to Symbolics Computers July 1986

map to SS:<SITE> . Then the file SYS:SITE;NAMESPACE.LISP translates to
SS:<SITE>SNAMESPACE.LISP. On a UNIX system this same file might translate
to /usr/system/namespace.l. The important thing is that everyone can refer to the
file by its logical pathname, SYS:SITE;NAMESPACE.LISP, where the name before
the ":" is the logical host name, and logical directories are separated by ";"s. You
can define the translation of a logical pathname to be any physical pathname of
any operating system type, but to access a file with a logical pathname you need

only to use logical pathname syntax.

The function fs:set-logical-pathname-host is used to define a logical host and its
logical directories. Here are some sample uses:

(fs:set-1ogical-pathname-host "SYS" :physical-host "my-vms"
:translations ’(("games;" "[games]")
“x;" "[symbolics.x]")))

This says that sys:games; translates to my-vms:[games], and that any other logical
directory on the logical host SYS translates to a subdirectory under [symbolics] of
the same name. See the function fs:set-logical-pathname-host in Reference Guide
to Streams, Files, and 1/O.

What is a World Load?

A world load can be thought of as a snapshot of an operating Lisp environment.
All of the functions, variables, and other Lisp objects that were present in the
Lisp environment when the snapshot was made are contained in the world load file
on the disk. Typically, snapshots of worlds are made only when such a snapshot
would save significant time later. For example, after you have initially configured
your new machine at your site, it is useful to make a snapshot of the configured
environment because it saves you time in the future (you don’t have to configure
the machine each time you boot it). If you usually load MACSYMA or FORTRAN
each time you boot, it is advantageous to make a snapshot of a world with that
software loaded, to save you the time of loading it. Remember, everything in the
environment is contained in the snapshot, so you don’t want to create a world load
file after you've been using the editor or most system facilities (you don’t want to
find old text in your editor buffer when you cold boot.). The way to create a
snapshot and save it to disk is by using the command Save World or the function
(zl:disk-save).

Why Do You Name Machines and Printers?

Naming inanimate objects such as hosts, printers, sites, and networks may seem
foolish if you have only one of each, but if you have large numbers of machines,
names are a convenient way to easily refer to a particular machine with a
particular address without having to remember its network address, machine type,
and physical location. One customer named its machines after the characters in
Winnie the Pooh, while another named its machines after the wives of Henry VIIL.

141

July 1986

8.6.4 Questions About the FEP and LMFS
Why Can’t | Write Out Files When | Have Free Disk Space?

The 3600 disk is physically divided into partitions known as FEP files. This
division of the disk is called the FEP file system. However, when one speaks of
the file system of a Lisp Machine, one is generally referring to the LMFS (Lisp
Machine File System) of that machine. This is the file system you edit when you
click left on [Tree Edit Root] in the FSEdit window, and is the file system used
when you specify file names of the form Lisp Machine
Name:>directory>filename.type.version. The entire Lisp Machine local file system
normally resides inside one big file of the FEP file system (typically
FEP0:>LMFS.FILE.1). Thus, LMFS is full when the amount of space allocated to
it (in other words, FEP0:>LMFS.FILE.1) is full. Thus, LMFS could be full but
there could still be 100,000 unused blocks on the disk (not even allocated as FEP
files). See the section "Adding a Spare World Load as LMFS File Space" in
Internals, Processes, and Storage Management,

How Do | Create a FEP File?

There aren’t too many reasons for creating FEP files. If you want to create a file
to allocate more LMFS file space, simply enter the File System Editing Operations
window, by using SELECT F, by clicking on [File System] in the System Menu, or
by using the Select Activity File System Operations command. Then click on
[Local LMFS Operations]. The second level menu pops up. Click on [LMFS
Maintenance Operations]. Click right on [Initialize]. A menu pops up. Click on
[Auxiliary Partition] and click on the name above this so that you can specify a
name for the auxiliary partition. Typically, a good name is FEP0O:>LMFS-
AUX.FILE. (Of course, if you have more than one drive, or a FEP file named
LMFS-AUX.FILE already exists, you should choose another name.) Then click on
[Do It]. It will ask you how much space to allocate to this file; specify a number
of blocks.

When working with FEP files, the File System Editor is good only for creating
FEP files to be allocated to LMFS. If you need a FEP file for another purpose
(extra paging, for example) and create it with FSEdit, the LMFS data structure
contained on your disk might become very confused, and can potentially destroy
the file system of your machine. The Create FEP File command creates a FEP
file for purposes other than a LMFS partition. See the section "Create FEP File
Command”, page 232. The following Lisp function also creates such a FEP file:

(WITH-OPEN-FILE (FILE FEPn:>Filename.type.version
:DIRECTION :BLOCK
: IF-EXISTS :ERROR)
(SEND FILE :GROW 30000))

142

User's Guide to Symbolics Computers July 1986

The italicized string above represents the name of the FEP file to be created, and
the italicized 30000 represents the size you want to make the file.

For more information about LMFS and the FEP file system: See the section "FEP
File System" in Internals, Processes, and Storage Management.

143

July 1986

9. Recovering From Errors and Stuck States

9.1 Introduction

Sometimes. it is hard to know whether or not your machine is in trouble, because
some operations, particularly those involving other network machines, can take a
long time. Periodically check the process state and the run bars on the status
line. The run bars flicker when the machine is working. As long as the run bars
are flickering and the process state is changing occasionally, the machine is
probably working properly. Some process states mean trouble if they persist, say,
for a minute or more.

Look at the clock in the status line. If the clock is ticking, processes are being
scheduled. If the clock is not ticking, the 3600 is halted. As long as the FEP is
working, it prints a message near the top of the screen when the 3600 has halted
and then gives its Fep> prompt. When the 3600 resumes its previous state, it
updates the clock with the correct time.

9.2 Recovery Procedures

If the status line displays one of the following process states, recover by using the
appropriate procedure:

State Recovery procedure

Wait Forever Select a different window, then reselect the one you were in.

Output Hold Press FUNCTION ESCAPE (the ESCAPE key is in the top row,
second from the left); if that puts you in the Debugger, use
ABORT.

Arrest Press FUNCTION ~ A (that is, a three-key sequence).

Lock Try FUNCTION 8 S to see if any windows want to type out. If
that does not help, press c-ABORT.

Selected Press FUNCTION 6 S.

(no window) Use the mouse or SELECT key to select the window you want.

You can press SUSPEND to get to a Lisp read-eval-print loop. You can press
c-m—-SUSPEND to force the current process into the Debugger.

144

User's Guide to Symbolics Computers July 1986

9.3 The Debugger: Recovering From Errors and Stuck States

Errors that are not caught and handled by the program that triggered them
invoke the Debugger. See the section "Entering the Debugger in Program
Development . Utilities.

9.4 Resetting the FEP

Resetting the FEP restarts the FEP system, thereby discarding knowledge of the
FEP’s free storage area. Resetting might be necessary if you unplug the console
video cable from either end or turn the console off and on. You also need to reset
the FEP if you receive the error message: No More Memory. [You can reset the
FEP from either the keyboard or the processor front panel. Note that when the
FEP is being reset the fault light (located on the front panel of the processor box)
is turned on by the hardware. Then, when the FEP finishes initializing itself the
FEP turns the fault light off.]

¢ To reset the FEP from the keyboard:

1. Type the Halt Machine command at a Lisp command prompt to stop
Lisp and give control of the keyboard to the FEP.

If no Lisp Listener is responsive, press h-c~FUNCTION to stop Lisp.
2. Type the command Reset FEP to the FEP prompt.
3. Press Y to answer the confirmation prompt.

4. Type the command Hello to the FEP prompt to initialize the overlay
files.

e To reset the FEP from the processor front panel:
1. Push the red RESET button on the processor front panel.

2. Press the spring-loaded YEs switch to answer the "Reset FEP?"
question (This question is asked only if you have a 3600 machine
model).

After you reset the FEP, the keyboard is connected to the FEP, not to Lisp. Type
the Hello command to the FEP prompt, and then give the Start command and
press RETURN to warm boot the machine and Lisp, and return control of the
keyboard to Lisp.

145

July 1986

9.5 Warm Booting

If an error occurs in the keyboard process, window system, or scheduler, making
the machine unresponsive to the keyboard, you may have to warm boot the
machine. Warm booting causes either a :flush or :reset message to be sent to all
processes in the system, depending on the type of process.

To warm boot the computer, use the following procedure:
1. Type one of the following to a Lisp Listener:
o Halt Machine
e (si:halt)
You are now connected to the FEP. o+

If you cannot obtain a Lisp Listener window or if no Llsp Listener is
responding to keyboard input, you should use h-c-fpperteh :
‘@y@_@n&mﬁd&m&wﬁhe—keyboap&;mmtmLamm

 keyboards-andJFUNCTION gh-newkeyboards:))

2. Type start at the FEP prompt (Fep>) and press RETURN.

Sometimes, the machine prints 1isp stopped itself and returns control to the
FEP. When this happens, at the FEP prompt (Fep>) you should type show status,
check the information it provides, and then type start.

9.6 Halting

Halting the 3600 leaves all Lisp states intact. To halt the 3600 in order to
connect to the FEP, type sys:halt to a Lisp Listener or use h-c-upper-left. You
are now connected to the FEP. To return to Lisp, type continue at the FEP
prompt (Fep>) and press RETURN.

on the screen: Fep>
you type: continue
you press: RETURN

The 3600 can halt itself under exceptional conditions. In this case, try typing
continue. If continue does not work, use start.

146

User’s Guide to Symbolics Computers July 1986

147

July 1986

10. How to Get Output to a Printer

10.1 Introduction to the Hardcopy Facilities

The hardcopy System provides a uniform interface for sending output to a printer.
It allows the user or the program to specify formatting information in a device
independent way for output on a supported printer.

The first section of this document deals with the commands provided for the user
to request and control hardcopy. The second section deals with the functions a
program needs to request hardcopy.

In order for menu items, commands, and functions that refer to printing and
hardcopy to work, your site must have a properly connected printing device.

See the Printer Installation Guide for your printer type.
See the section "Namespace System Printer Objects” in Networks.

10.2 Printing and Hardcopy Commands

10.2.1 Commands for Producing Hardcopy

You can produce hardcopy from the Command Processor, by using the System
Menu, from the editor, from Zmail, from Dired in the editor, and from the file
system editor. You can also get a hardcopy of your screen at any time.

10.2.1.1 Hardcopying From the Command Processor

The simplest way to produce hardcopy is with the Command Processor:
Hardcopy File file-spec printer keywords

Sends a file to a hardcopy device.

file-spec The pathname of the file to be printed. The default is the

usual file default.

printer The printer to use to output the file. The default is determined
from your init file or from the default-printer attribute for the
host in the namespace database.

keywords :Body Character Style :Copies :Delete :Ending Page :File Types
:Heading Character Style :Orientation :Running Head .
:Starting Page

148

User's Guide to Symbolics Computers July 1986

:Body Character Style

:Copies
:Delete

:Ending Page

:File Types

The character style to use for printing the text of the file and
against which to merge any character styles in the file. The

default is the null style, (nil nil nil), meaning use the default
for the printer.

{number} The number of copies to print. The default is 1.

{yes, no} Whether to delete the file after it is printed. The
default is no, not to delete. Adding the :delete keyword to your
hardcopy command string is the same as :delete yes.

{number} The last physical page to print. The default is the
last page of the file. A page is defined by the presence of a
PAGE character or form feed in the file. Thus plain text files
with no page markers in them are treated as a single page,
although they take up several sheets of paper. Press format
files, on the other hand, have form feeds or PRGE characters in
them. It is important to remember that these are physical
pages and do not necessarily correspond to the page numbering
appearing in the heading. For example, the first physical page
of a press file is probably a title page and the second physical
page might be numbered ¢ so the page numbered 1 might be the
third physical page.

{Text, Suds-Plot, Press, Lgp, Lgp2, Dmpl, Xgp or use-canonical-
type} The internal format of the contents of the file, to
interpret for printing. The default is use-canonical-type,
meaning that the type is determined from the extension to the
file name.

:Heading Character Style

:Orientation

:Running Head

:Starting Page

The character style to use for the running head supplied by the
:running head keyword.

{landscape, portrait} Orientation on the paper for the output.
Portrait is left to right across the short dimension of the paper.
Landscape is left to right across the long dimension. The
default is portrait.

{none, numbered} Type of running head to print on the top of
each page. The default is numbered.

{number} The first physical page to print. The default is the
first page of the file. A page is defined by the presence of a
PAGE character or form feed in the file. Thus plain text files
with no page markers in them are treated as a single page,

149

July 1986

although they take up several sheets of paper. Press format
files, on the other hand, have form feeds or PRGE characters in
them. It is important to remember that these are physical
pages and do not necessarily correspond to the page numbering
appearing in the heading. For example, the first physical page
of a press file is probably a cover page and the second physical
page might be numbered i so the page numbered 1 might be the
third physical page.

:‘Title {string} Title to appear on the cover page to identify the output.
The default is your user name.
10.2.1.2 Hardcopying From the System Menu

To produce hardcopy using the System Menu, click on [Hardcopyl. This pops up a
Choose Variable Values menu that allows you to specify the pathname of the file
to be hardcopied and to select the printer, character style and other parameters.

Hardcopy File

Fi'le Honbat : ’)KJones>proposal.text

NPrinter name: Asahi Shinbun

NTitle: a string \
\ Body-Character-Style: a fully specified character style

Headlng Character-Style: a fully specified character style

\~ Coples: 1

De'lete Yes Mo

File-Types Text Suds-Plot Press Lgn Lgp2 Dnpl Hgp Use-Canonical-Type
Urientat‘lon Landscape Portrait

Runn!ng-Head None llunberv

\ Starting-Page: 1

Ending Page: End of file

Abort Done

Figure 21. The Hardcopy Menu

10.2.1.3 Hardcopying From Zmacs

You can hardcopy a region, a buffer, or a file from Zmacs.

Hardcopy Region (n—X)

Sends a region’s contents to the local hardcopy device for printing.

150

User's Guide to Symbolics Computers July 1986

For full information on Genera hardcopying: See the section "How to Get Output
to a Printer", page 147.

Hardcopy Buffer (n-X)

Prompts for the name of a buffer and then prints the specified buffer on the local
hardcopy device.

For full information on Genera hardcopying: See the section "How to Get Output
to a Printer", page 147.

Hardcopy File (n-X)

Prompts for the name of a file and then prints the specified file on the local
hardcopy device.

For full information on Genera hardcopying: See the section "How to Get Output
to a Printer", page 147.

Kill Or Save Buffers (n-X)

Puts up a multiple-choice menu listing all existing buffers. Choices are: Save,
Kill, Unmodify, and Hardcopy. Specify these options next to the buffer names in
the menu. This command appears on the editor menu.

10.2.1.4 Hardcopying From Zmail

You can hardcopy a single message or a collection of messages from Zmail.

Hardcopying

Hardcopy Message (n-X) Hardcopies the current message.
Hardcopy All (n-X) Hardcopies all the messages in the current
sequence.

You can click right on [Other] in the Zmail menu and select Hardcopy to hardcopy
the current message.

You can also click right on [Move] and select Hardcopy.

For any individual message you can click right on its summary line then click
right on [Move] and select Hardcopy.

To copy all messages in current sequence click right on [Map Over] then right on
[Move] and select Hardcopy.

In any of these commands you can click right on Hardcopy to get a menu that

151

July 1986

permits you to specify the number of copies and which printer to use. The Other
option in the list of printers allows you to specify an arbitrary printer, using
either its pretty name or its namespace name. This printer becomes the selected
printer, and remains in the menu for subsequent hardcopy commands.

You can check the status of a printer from Zmail.

Show Printer Status (n-¥X)
Prompts for the name of a printer and displays its print queue.

You can also hardcopy files from Zmail.

Hardcopy File (n-X)
Prompts for a pathname and sends the specified file to the
printing device specified in Hardcopy Options in your Zmail
profile. The default is the first pathname specified in the File-
References: header field.

Format File (n-X) Prompts for a pathname and displays the specified file formatted
using the editor’s formatting capability. c~U m-% Format File
formats the file and sends it to a printer. The default
pathname is the first pathname specified in the File-
References: header field.

10.2.1.5 Hardcopying From Dired

You can mark files to be hardcopied in Dired. When you exit from Dired, the files
marked to be hardcopied are sent to the printer.
P Dired Hardcopy File

Marks the current file for printing. Dired puts a P in the first column to show
that the file has been so marked.

With a numeric argument n, marks the next n files for printing.

10.2.1.6 Hardcopying the Screen

You can get a hardcopy of what is displayed on your screen by pressing FUNCTION
a:

Q Hardcopies the entire screen.
c-0 Hardcopies the selected window.
n-0Q Hardcopies the entire screen, minus the status and mouse

documentation lines.

152

User’s Guide to Symbolics Computers July 1986

10.2.1.7 Hardcopying From the File System Editor

You can use the system hardcopy menu from FSEdit. You click on Hardcopy in the
menu of file operations invoked by clicking right on a file name.

10.2.2 Other Hardcopy Commands
10.2.2.1 Changing the Default Printer

When a site has more than one printer, one of the printers is specified as the site
default printer. Show Printer Defaults tells you what the current printer is:
Show Printer Defaults

Displays the current default printer(s). If you send all your hardcopy output to
one printer, this is displayed as

Default Printer: printer-name
If you use a different printer for text and screen hardcopy, this is displayed as

Default Text Printer: printer-namel
Default Bitmap Printer: printer-name2

You can change the default printer with the Set Printer command:
Set Printer printer-name keywords

Sets the default printer for hardcopy.

printer-name The name of a supported printer that can be reached by your
machine.
keywords :Output Type

:Output Type {text bitmap both} The type of output to send to that printer.
Text means files and mail messages, bitmap means graphics and
screen hardcopy. The default is both, meaning use the same
printer for both types of output.

You can change the default in your init file to specify the printer that is most
convenient for you. See the function hardcopy:set-default-text-printer, page 108.

The Hardcopy File command accepts a keyword argument of :printer, allowing you
to specify a printer when you give the command. For example:

Hardcopy File q:>kjones>report.pr :printer beacon

In the System Menu, using [Hardcopy] allows you to specify a different printer
name; the printer name is mouse-sensitive.

153

July 1986

10.2.2.2 Managing the Print Spooler Queue

You can find out the status of a printer and its spooler queue with the Show
Printer Status command:

Show Printer Status Command
Show Printer Status printer
Displays the print queue for the specified printer or printers.

printer The name of a printer or printers (separated by commas) whose
print queue to show, or All to show all the queues for all
printers at your site. The default is your current printer
default. If your text printer and your bitmap printer are
different, your text printer is used as the default for Show
Printer Status.

The display of requests is mouse sensitive and can be clicked on to select
arguments for the Delete Printer Request and Restart Printer Request commands.
This is only true for print spoolers running Release 7.0.

This command is also available in Zmail as n-%¥ Show Printer Status.

Print requests can be canceled by using the Delete Printer Request command.
Delete Printer Request Command

Delete Printer Request printer-request

Deletes the specified print request from the print queue.

printer-request A string specifying the printer and the request. The print
request should be selected with the mouse from the display of
the Show Printer Status command. See the section "Show
Printer Status Command", page 153.

Print requests can be restarted by using the Restart Printer Request command.
Restart Printer Request Command
Restart Printer Request printer-request

Restarts a print request that has not yet finished. This is useful if something
goes wrong with the printing, for example the paper is coming out crumpled.

printer-request A string specifying the printer and the request. The print

154

User's Guide to Symbolics Computers July 1986

request should be selected with the mouse from the display of
the Show Printer Status command. See the section "Show
Printer Status Command", page 153.

The Printer can be halted, started and reset remotely.

Halt Printer Command

Halt Printer printer printer-request keywords

Halts the specified printer.

printer

printer-request

keywords

:Disposition

:Reason

The name of the printer to halt.

(Optional) If the printer is printing a request when the Halt
Printer command is given, it displays the request and asks you
to confirm the halt command. If you supply a printer-request
argument and it matches the request that is printing, the
printer is halted immediately without requiring confirmation.
The print request should be selected with the mouse from the
display of the Show Printer Status command. See the section
"Show Printer Status Command", page 153.

:Disposition, :Extent, :Reason, :Starting From, :Urgency

{Delete, Hold, Restart} What to do with the request that is
printing. Delete deletes the request from the queue; you must
request it again to have it printed. Hold retains the request in
the queue but does not print it when the printer restarts.
Restart restarts printing the interrupted request from the
beginning when the printer restarts. The default is Delete.

{string} The reason for the shutdown. This appears in the
display from Show Printer Status to explain what is happening
to users. The default is "Printer suspended by operator.”

The following three keywords are related and interact to control precisely when

the printer halts.

:Extent

:Starting From

{Entire, Copy} The extent of the request to be cancelled. Entire
refers to the whole request. Copy refers to a single copy. In a
request for one copy of a document, Entire and Copy are
synonymous. The default is Entire.

{number} The copy number. If :Extent is Entire, this has no
meaning. If :Extent is Copy, this is the number of the copy
after which to halt the printer. The default is 0.

155

July 1986

:Urgency

{Asap, After-Extent} When to halt. Asap means instantly,
ignoring any settings of :Extent and :Starting From. After-
Extent means halt based on the settings of the :Extent and
:Starting From keywords. The default is Asap.

Start Printer Command

Start Printer printer

Starts the specified printer processing its print queue again after it has been
halted with the Halt Printer command.

printer

The name of the printer to start.

Reset Printer Command

Reset Printer printer printer-request keywords

Resets a printer.

printer

printer-request

keywords

:Disposition

The printer to reset.

(Optional) If the printer is printing a request when the Reset
Printer command is given, it displays the request and asks you
to confirm the reset command. If you supply a printer-request
argument and it matches the request that is printing, the
printer is reset immediately without requiring confirmation.
The print request should be selected with the mouse from the
display of the Show Printer Status command. See the section
"Show Printer Status Command", page 1583.

:Disposition

{Delete, Hold, Restart} What to do with the request that is
printing. Delete deletes the request from the queue; you must
request it again to have it printed. Hold retains the request in
the queue but does not print it when the printer restarts.
Restart restarts printing the interrupted request from the
beginning when the printer restarts. The default is Delete.

Resetting is like turning the printer off and then on again except that it is done
remotely, you do not have to go over to the printer.

156

User’s Guide to Symbolics Computers July 1986

157

July 1986

11. When and How to Use the Garbage Collector

11.1 Principles of Garbage Collection

It is fundamental to the nature of Lisp tliat programs and systems allocate
memory dynamically and in large amounts. (The allocation of memory for a basic
list element, or cons, or for any other purpose, is called consing for the purpose of
this discussion and in most other writings on Lisp.) Even with the large amount
of virtual memory on a Symbolics computer, it is possible for a program to use it
all up. At this point the machine halts and must be rebooted. This event can
always be delayed, almost indefinitely, if the underlying system can reclaim
memory that is unused.

Objects that are no longer in use, with no references from other objects, are
termed garbage. Garbage is distinguished from good objects or good data by the
fact that it no longer serves any purpose in the current Lisp world. For example,
if the car of a cons is changed from object A to object B, and there are no other
references to A, then A is garbage. Objects in the Genera environment can be
said to have a lifetime, which means how long the object remains "good" or valid.
Three lifespans are distinguishable:

Static Object will probably never become garbage. Example: standard
system functions.

Dynamic Object will probably become garbage eventually. Example: lines
in editor buffers.

Ephemeral Object will probably become garbage very quickly. Example:
intermediate structure generated by the compiler.

You can control the garbage collection status of your own areas with the
make-area function.

Garbage collection (GC) involves these three steps:

e Scavenging virtual memory, that is, periodically sifting through areas of
memory, separating good objects from the garbage

o Transporting good objects to a safe place
o Reclaiming the memory occupied by garbage

Several strategies for garbage collection exist. Some allow you to continue doing
other work and some do a more complete job but require additional machine
resources for some period of time.

158

User's Guide to Symbolics Computers July 1986

Garbage collection need not be used at all. It should be used either when you are
running a program that allocates large amounts of virtual memory (where the
total allocated might exceed the amount of free memory in a cold-booted system)
or when the total allocations of many programs might, over a relatively long
period of time, exceed the capacity. In either case, garbage collection is a strategy
aimed primarily at preserving the state of an operating Lisp world as long as
possible and avoiding a cold boot.

Incremental Versus Immediate GC

There are two basic modes of garbage collection, each with some variations
possible:

e Incremental garbage collection works in parallel with other processes in the
system, allowing you to continue working while it is in progress. This mode
is based on incremental copying, so called because objects are copied one at a
time and there is relatively little effect on the user’s interaction with the
system. Dynamic-object garbage collection incrementally collects garbage in
all nonstatic areas of memory. Ephemeral-object garbage collection
incrementally collects garbage, concentrating on specific parts of memory
that are known to contain short-lived objects. Both kinds of incremental
operation ignore static areas of memory that change slowly and so are
unlikely to contain garbage. For an explanation of static memory: See the
section "Theory of Operation of the GC Facilities" in Internals, Processes,
and Storage Management.

e Nonincremental, or immediate, garbage collection takes less free memory and
less total processor time to work successfully than does the incremental
mode. Nonincremental garbage collection is normally done with the Start
GC :Immediately command or with the ge-immediately function, although
those directives still ignore static areas. These directives allow no other
work to be done by the process running it, although other processes are still
scheduled. In most cases, though, immediate garbage collection places a
heavy enough burden on the machine that other processes are not useful
while it is operating. The immediate garbage collection invoked by the
function si:full-gc deals with static areas.

Note: Areas of memory can be specified as being static with the function
make-area.

The command Show GC Status allows you to check on how much free space you
have and determine whether or not you should turn on the garbage collector.

159

July 1986

Show GC Status

Status of the ephemeral garbage collector: On

First level of METERING:METERING-CONS-AREA: capacity 196K, 8K allocated, @K
used. :

Second Tevel of METERING:METERING-CONS-AREA: capacity 98K, 8K allocated, 6K
used.

First level of DW::xEQL-DISPATCH-AREAx: capacity 98K, 256K allocated, 56K used.
Second level of DW::xEQL-DISPATCH-AREAx: capacity 49K, @K allocated, BK used.

First Tevel of WORKING-STORAGE-AREA: capacity 196K, 448K allocated, 29K used.
Second level of WORKING-STORAGE-AREA: capacity 98K, 2848K allocated, 47K used.

Status of the dynamic garbage collector: Oon

Dynamic (new+copy) space 6,498,761. 01d space 8. Static space 12,479,751.
Free space 26,574,848. Committed guess 22,488,118, leaving 3,824,586 to use
before flipping.

There are 9,779,900 words available before Start GC :Immediately might run out
of space.

Doing Start GC :Immediately now would take roughly 33 minutes.

There are 26,574,848 words available if you elect not to garbage collect.

Garbage collector process state: Await ephemeral or dynamic full

Scavenging during cons: On, Scavenging when machine idle: On

The GC generation count is 328 (1 full GC, 2 dynamic GC’s, and 325 ephemeral
GC’s).

Since cold boot 53,843,930 words have been consed, 45,867,153 words of garbage
have

been reclaimed, and 11,658,295 words of non-garbage have been transported.

The total "scavenger work" required to accomplish this was 121,864,225 units.
Use Set GC Options to examine or modify the GC parameters.

The command Start GC turns on the garbage collector.
Start GC keywords

Turns on the garbage collector.

keywords :Dynamie, :Ephemeral, :Immediately
:Dynamic {yes, no} Dynamic Level of incremental GC.
:Ephemeral {yes, no} Ephemeral Level of incremental GC.

:Immediately {yes, no} Perform a complete garbage collection right now.

160

User's Guide to Symbolics Computers July 1986

Start GC :ephemeral is recommended for general purposes. This cleans up after
you as you work, keeping virtual memory requirements for garbage collecting to a
minimum. When, in spite of scavenging, enough garbage has accumulated, you
receive a notification. At that point you can use Start GC :immediately to do a
complete garbage collection. See the section "Ephemeral-Object Garbage
Collection" in Internals, Processes, and Storage Management.

161

July 1986

12. Understanding Character Styles

See the section "Using Character Styles in Zmacs" in Text Editing and Processing.

What is a Character Style?

A character style is a combination of three characteristics that describe how a
character appears. These characteristics are the family, face, and size.

Family Characters of the same family have a typographic integrity, so
that all characters of the same family resemble one another.
Examples: SWISS, DUTCH, and FIX.

Face A modification of the family, such as BOLD or ITALIC.
Size The size of the character, such as NORMAL or VERY-SMALL,.
The character style is the grouping of the family, face, and size fields. A
character style is often represented by the convention:

family.face.size
An example of a fully specified character style is:

SWISS.ITALIC.LARGE

Each element of the character style can be specified or left unspecified. A family,
face, or size of NIL means to use the default value. Most characters have the
following character style:

NIL.NIL.NIL

Characters of style NIL.NIL.NIL are displayed in the default character style
established for the current output device.

12.1 Default Character Styles

The appearance of a character depends on two things: the character style of the
character, and the default character style. Windows, buffers, files, and printers
have each have default character styles for output. The default character style
specifies the appearance of a character whose character style is NIL.NIL.NIL.
The character’s style is merged against the default character style to produce the
final appearance of the character.

162

User’'s Guide to Symbolics Computers July 1986

We recommend that you use character styles by making good use of the default
character styles. You preserve the most flexibility by keeping the character style
of the characters themselves as unspecified as possible. If you want to change the
appearance of all characters in a Zmacs buffer, a Zmail message or a window, you
can change the default character style instead of changing the character style of
each character.

The default character style affects the appearance of a character on output.

There is also a typein character style, which is normally NIL.NIL.NIL. The typein
character style affects the character style in which characters are entered as
input. If the typein character style is NIL.BOLD.NIL, any characters you enter at
the keyboard have the character style NIL.BOLD.NIL. It is important to be sure
that the application program can handle characters whose character style is
something other than NIL.NIL.NIL, if you are going to use a typein character
style other than NIL.NIL.NIL.

If you only want to change the way that characters echo, but not the way they are
entered as input, you can change the echo character style. See the section "Using
Character Styles in the Input Editor", page 162.

12.2 Merging Character Styles

This section gives some examples of how the character style of a character is
merged against the default character style to produce a final result.

In general, we advise that you specify as little as possible when changing a
character style. That is, if you want the character’s face to be italic, specify only
the face component and let the family and size come from the default character
style.

Character Style Default Result of

of a Character Character Style Merging

NIL.NIL.NIL FIX ROMAN.NORMAL FIX. ROMAN.NORMAL
NIL.ITALIC.NIL FIX ROMAN.NORMAL FIX.ITALIC.NORMAL

NIL.BOLD-ITALIC.LARGE FIX. ROMAN.NORMAL FIX.BOLD-ITALIC.LARGE
SWISS.BOLD.LARGER FIX ROMAN.NORMAL SWISS.BOLD.LARGE

The family and face components are either NIL or the name of a family or face.
The size component can be NIL, an absolute size (such as LARGE or VERY-
SMALL) or a relative size (such as LARGER or SMALLER). A relative size is
merged against the default size such that when you merge LARGER against
NORMAL, the result is the next size larger than NORMAL.

163

July 1986

12.3 Using Character Styles in the Input Editor

The default character style for the input editor is FIX ROMAN.NORMAL.

You can use the Set Window Options CP command to change the default character
style, the typein character style, or the echo character style. The default
character style and typein character style are described elsewhere: See the section
"Default Character Styles", page 161.

It is important to be sure that the application program can handle characters
whose character style is something other than NIL.NIL.NIL, if you are going to
use a typein character style other than NIL.NIL.NIL. If you only want to change
the way that characters echo, but not the way they are entered as input, you can
change the echo character style.

The echo character style affects the way that characters you enter at the keyboard
are echoed. The appearance of characters that you type depends on: the
character style of the character (which is usually the same as the typein style),
which is merged against the echo character style, which is merged against the
default character style.

In addition to the Set Window Options command, you can change the typein
character style in the input editor by using c-n-J. You are then prompted for a
character style. Enter something in the family.face.size convention, such as
DUTCH.BOLD-ITALIC.LARGER.

12.4 Character Styles and the Lisp Listener

This section and diagram describes the role of the typein character style, the echo
character style, and the default character style in the Lisp Listener.

When you type a character at the keyboard, it follows one path which eventually
causes it to be echoed on the screen. The same character follows a path to the
application program. The application program might produce some output, which
is also displayed on the screen.

164

User’'s Guide to Symbolics Computers

KEYBOARD

v

INPUT EDITOR
TYPEIN-STYLE

\
ECHO-STYLE
\
APPLICATION
\ V

DEFAULT-CHARACTER-STYLE

\

SCREEN

For example:

User enters a character at keyboard.
This is called the input character.

The Input Editor reads the input
character and sets its style to
TYPEIN-STYLE. The input character
proceeds to the application and
and toward the screen to be echoed.

The input character is merged against
the echo style.

Meanwhile, the application program
receives the input character. The
program performs its function and
produces output, which can be in any
character style.

Both the output characters from the
application and the input character
are merged against the default
character style, which could have been
modified if the application program
used with-character-style. The

characters are displayed on the screen.

Typein style is: SWISS.NIL.NIL
Echo style is: NIL.BOLD.NIL
Default character style is: FIX. ROMAN.NORMAL

July 1986

165

July 1986

The input editor reads in the input character according to the typein style, so the
input character has the character style of SWISS.NIL.NIL. The input character is
merged against the echo style, so it is then SWISS.BOLD.NIL. The input
character is then merged against the default character style, so it is finally
displayed on the screen in the character style SWISS.BOLD.NORMAL.

Meanwhile the original input character of style SWISS.NIL.NIL is sent to the
application. As it runs, the application program produces output characters of
style NIL.BOLD-ITALIC.NIL. The output characters are merged against the
default character style; they are displayed in the character style FIX.BOLD-
ITALIC.NORMAL.

Note that the application program can use with-character-style,
with-character-face and so on when producing output. If this is done, the
specified style information is merged against the default character style. Thus it
affects both the way that the input characters are echoed and the way any output
characters are displayed.

If you want to specify how your input characters appear, you can change the echo
style. If you want your input characters to have the character style set to
something other than NIL.NIL.NIL, you can change the typein style.

12.5 Using Character Styles in Zmail

Every message has its own default character style used for displaying the message.
The default is recorded in a new Default-Character-Style header. If this header
is not present, the message is displayed using FIX ROMAN.NORMAL as the
default character style.

A new command, (n-X) Set Message Default Character Style, may be used to
change the default character style of the current message. This command is also
available in the menu offered by Mouse-Right.

When composing draft messages, the new (m-X) Set Default Character Style
command may be used to change the default character style for the message under
composition. Again, this command is also available in the menu offered by Mouse-
Right. If you do not set the default style of a draft, it will be set to

FIX ROMAN.NORMAL on transmission.

When you are in Zmail, you can use the Zmacs commands for changing character
styles. For a list of available commands and a description of how to enter a new
character style: See the section "Using Character Styles in Zmacs" in Text
Editing and Processing.

166

User's Guide to Symbolics Computers July 1986

12.6 Using Character Styles in Hardcopy

When you hardcopy a file, the outcome depends on the character style of the
characters in the file and the printer’s default values for the body character style
and header character style.

The printer’s defaults are stored in the printer object in the namespace database,
in the attributes:

body-character-style
The default character style to be used by this printer

headers-character-style

The default character style to be used for the headers by this
printer.

You can override the defaults stored in the printer objects by using setq on the
variable hardcopy:*hardcopy-default-character-styles*. Note that the value of
hardcopy:*hardcopy-default-character-styles* is merged with the default style

for the printer. See the variable hardcopy:*hardcopy-default-character-styles*,
page 109.

167

July 1986

13. Understanding Networks and the Namespace
System

13.1 Introduction to the Namespace System

The namespace database consists of a collection of objects. Each object has:

e A class: See the section "Namespace System Classes", page 167.
o Attributes: See the section "Namespace System Attributes", page 168.
o A name: See the section "Names and Namespaces", page 169.

Each type of object contains a few required attributes and many optional
attributes. Note that when you are using the namespace editor, the required
attributes appear with an asterisk (*) after them.

All objects except namespaces themselves are added to the namespace database by
using the namespace editor, which is invoked with the CP command Edit
Namespace Object, or by choosing Namespace from the System menu. See the
section "Updating the Namespace Database", page 171.

13.1.1 Namespace System Classes

Every object has a class, which indicates its type. Each class is identified by a
global-name. For a discussion of global-names: See the section "Data Types of
Namespace System Attributes”, page 168.

The following classes are especially important to the Symbolics system:

host A host object represents any computer, usually connected to a
network.

user A user object represents a person who uses any of the hosts, or
a daemon user, for example, a Symbolics computer.

network A network object represents a computer network, to which some
hosts are attached.

printer A printer object represents a device for producing hardcopy.

site A site object represents a collection of hosts, printers, and

networks, grouped together in one physical location.

namespace A namespace object represents a mapping from object names to
objects.

168

User’s Guide to Symbolics Computers July 1986

13.1.2 Namespace System Attributes

Attributes represent characteristics of an object. Each attribute has an indicator
(the name of the attribute) and a value; they work like property lists in Lisp. For
example, every host has a system-type (saying which operating system it runs),
every printer has a type (saying what type of printer it is), and every user has a
personal-name.

Each object class has one or more required attributes. However, most attributes
are optional; for example, hosts can optionally have a pretty-name, printers can
have a default-font, and a user can have a home-address. Some attributes can
occur more than once for a given object; for example, a host object can have
multiple addresses if it is attached to multiple networks.

When editing a namespace object, you can easily determine whether an attribute is
required or optional. Required attributes contain an asterisk by them, whereas
optional attributes do not.

Each object class has a fixed set of required and optional attributes. You cannot
create additional attributes.

13.1.3 Data Types of Namespace System Attributes

Each class has attributes defined to have specific data types. Since the actual
representation of the various types of data represented in the database varies from
system to system, the namespace system uses the following system-independent
types:

Data type Value

object-class An object in the database, for example, a site object. See the
section "Namespace System Classes"”, page 167.

name A name in some namespace; name is not shared by all
namespaces.

global-name A name which is not specific to a particular namespace but is
shared by all namespaces.

token An arbitrary character string.

set An ordered set of elements of the same data type. For example,

a value can be a set of names or a set of triples.

pair A list of two elements of specific data types; each element can
be of a different data type.

triple A list of three elements; each element can be of a different data
type.

169

July 1986

Name, global-name and token require simple values, whereas set, pair and triple
require compound values.

Note: Namespace data types specific to the Symbolics computer are described
elsewhere: See the section "Namespace System Lisp Data Types" in Networks.

13.1.4 Names and Namespaces

Every object has a name, which is a character string. Two objects of different
classes can have the same name. For example, there can be a printer named
george and a user named george; the two are unrelated. An object is identified by
its class and its name. If you want to look up an object in the database and you
know its name, you have to say "Find the printer named george” or "Find the
user named george”, not just "Find george".

When long-distance networks are used to link together different sites, however, the
possibility of name conflicts arises; that is, two sites might use the same name in
the same class for conflicting purposes. For example, suppose you had a host
named orange, and you wanted to connect your site over a long-distance network
to some other site that happens to have picked the name orange for one of its own
hosts. Neither site is forced to change its host names just because it wants to
connect to the other site.

To avoid these naming conflicts, the database can include more than one
namespace. A namespace is a mapping from names to objects, and names in one
namespace are unrelated to names in another namespace. More strictly, a
namespace is a mapping from [class, name] pairs to objects, since an object is
identified by its class and its name. Normally each site has one namespace, and
the names of all the objects at that site are in that namespace. An object in some
namespace other than your own can be referred to by a qualified name, which
consists of the name of the namespace, a vertical bar, and the name of the object
in that namespace.

For example, suppose both Harvard and Yale have computer centers. Harvard has
three hosts named yellow, orange, and blue, and Yale has three hosts named apple,
orange, and banana. Each computer center would have its own namespace, one
named harvard and one named yale. At Harvard, the Harvard computers would be
referred to by their unqualified names (yellow, orange, and blue), whereas the Yale
computers would be referred to (by users at Harvard) by qualified names
(yalelapple, yalelorange, and yalelbanana). At Yale it would all work the other way
around.

Each namespace also has a list of namespaces called search rules. When a name
is looked up, each of the namespaces in the search rules list is consulted in turn,
until an object of that name is found in one of the namespaces. If you have some
other namespace in your search list, it is easier to refer to objects in that
namespace, because you do not have to use qualified names unless a name conflict
exists.

170

User’s Guide to Symbolics Computers July 1986

For example, in the scenario above, the search list for the harvard namespace
could have the harvard namespace first and the yale namespace second. Then
users at Harvard could refer to Yale’s computers as apple, yalelorange, and
banana. The qualified name is only necessary if a name conflict exists.

Actually, only some classes of objects have names that are in namespaces; other
classes of objects are globally named, which means that the names are universal,
and conflicts are not permitted. In particular, classes, namespaces, and sites are
globally named; networks, hosts, printers, and users are named within namespaces.
There is never a need for multiply-qualified names; the names of namespaces are
global and never need to be qualified themselves.

Some namespaces do not correspond to any local site. Most large nationwide or
worldwide networks have their own host-naming convention. For example, the
U.S. Department of Defense Arpanet has its own set of host names, and this is
considered a namespace. If a local site includes some hosts that are on the
Arpanet, it might want to put the Arpanet namespace into its search list, and
install gateways on its Arpanet machine so that other machines on the local
network can access the Arpanet.

Some objects can also have nicknames. In particular, networks and hosts can have
nicknames; objects of other classes cannot. A nickname serves as an alternative
name for the object. Sometimes you give an object a nickname because its full
name is too long to type conveniently, such as a host whose name you type
frequently. However, each object has one primary name, which is always used
when the object is printed.

It is possible for an object to be in several namespaces at once. For example, a
host which is on both the Arpanet and a local network at some site might be in
both the Arpanet namespace and the local namespace. In this case, each
namespace maintains its own separate information on the object. The information
from each namespace is merged before being presented to the user.

Note: Search lists are not followed recursively. If a user at Harvard looks up a
name and Yale’s namespace is in Harvard’s search list, Yale’s search list is not
relevant.

13.2 Connecting to a Remote Host Over the Network

If your Symbolics computer is on a network and configured properly, you can
access other hosts on the network with the Terminal program.

To use the Terminal program, press SELECT T. The prompt is:
Connect to host:

Type the name of the host to which you want to connect. The network system

171

July 1986

makes a connection, and you will see the prompt of the remote host displayed on
the screen. You are now communicating directly with the remote machine.

When you are connected to a remote host, the NETWORK key provides several useful
commands. For example:

NETWORK HELP Displays the list of options for the NETWORK key.

NETHORK L Logs out of remote host, and breaks the connection.

NETWORK D Disconnects without logging out first.

See the section "NETWORK Key", page 221.

If you want to use the Terminal program to log in to a remote Symbolics
computer when someone is logged in to that machine, you must first enable
remote login by evaluating the form (net:remote-login-on) on that machine. See
the function net:remote-login-on in Networks.

13.3 Updating the Namespace Database

To begin editing the namespace database, use the CP command Edit Namespace
Object or choose [Namespace] from the System menu. Once in the namespace
window, you can use the [Edit] command to modify information stored in the
database, or use the [View] command to examine information without changing it.

Dottom

Help Edit Save Lreste Vew Copy
Delete Primary Name Add Namespace . Locally Quit
Mo current object. Click on Edit, View, or Create.

The namespace editor window has three parts. The top pane shows the current
information about the object being edited. The middle pane is the command pane;
the commands that appear here are mouse-sensitive. The namespace editor uses
the bottom pane to prompt you for new information.

The namespace editor commands include:

Help Displays a brief explanation.

View Displays information about an object for inspection but not
editing.

172

User’s Guide to Symbolics Computers July 1986

Edit Displays information about an object for editing.

Locally Toggles whether to edit the local or global copy of the
information for an object. The initial state is global.

Save Saves the current information about an object.

Delete Removes an object from the database.

Create Adds a new object to the database.

Quit Exits from the namespace editor, without saving the current

information. If you want to save information, use [Save] before
using [Quit].

Copy Creates a new object by copying the current one.
Add Namespace Adds an existing object to a new namespace.

Primary Name Changes the primary name of the current object.

13.3.1 Editing a Namespace Object

First select the Namespace editor by using the Edit Namespace Object command.
To edit an existing namespace object, click on [Edit]. A menu of object classes
pops up. Click on the class of object you want to edit. You are prompted for the
name of an object to edit. The current information for the object is retrieved
from the namespace database and displayed in the top window.

The attribute fields are mouse-sensitive. Clicking on an attribute prompts you for
information in the bottom window. Mouse clicks have the following meaning:

Left Replace the information in the attribute.
Middle Delete information in the attribute.
Right Edit the information in the attribute.

The window can be scrolled. See the section "Scrolling with the Mouse", page
212,

Once you have finished editing the information, you have three possible ways to
proceed. You can [Quit] without saving the changed information. If you are just
practicing using the namespace editor, that would be appropriate.

The other two choices are to save the information locally or globally. If you save
it globally, the new information is stored in the site’s namespace database. If you
save it locally, the new information is stored only in your machine’s local copy of
the namespace; these changes would affect only your machine.

The initial state of the namespace editor is the global mode. When you are in
global mode the top line of the screen looks like:

173

July 1986

Editing: Host SCRC|JUNCO

If you have clicked on [Locally], you are in local mode. The top line of the screen
looks like:

Editing: Host SCRC|JUNCO (locally)

You can click on [Locally] to toggle the mode between global and local. When you
are ready, click on [Save] to save the information. Then click on [Quit] to exit
the namespace editor.

13.3.2 Creating a New Namespace Object

First select the Namespace editor by using the Edit Namespace Object command.
To create a new namespace object, click on [Create]l. A menu of object classes
pops up. Click on the class of object you want to create. You are prompted for
the name of the new object. A template for the information is displayed in the
top window. The attributes are mouse-sensitive. Clicking on an attribute prompts
you in the bottom window for the information to put in the attribute.

Note that the required attributes appear with an asterisk (*) after them. All
object classes have a small number of required attributes, and several optional
attributes.

You can also create a new object by copying an existing object by clicking on
[Copy] and then editing the object as appropriate.

The window can be scrolled. See the section "Scrolling with the Mouse", page
212,

When you are satisfied with the information, you can enter it in the database by
clicking on [Save]. Then click on [Quit] to exit the namespace editor.

For a discussion of saving (locally or globally) new information in the namespace
database: See the section "Editing a Namespace Object", page 172.

174

User's Guide to Symbolics Computers July 1986

176

July 1986

14. A Brief Introduction to the Lisp World

14.1 Lisp Objects

14.1.1 Functions

A typical description of a Lisp function looks like this:

function-name argl arg2 &optional arg3 (arg4 (foo3)) function
Adds together argl and arg2, and then multiplies the result by arg3. If arg3
is not provided, the multiplication is not done. function-name returns a list
whose first element is this result and whose second element is arg4.
Examples:

(function-name 3 4) => (7 4)
(function-name 1 2 2 ’bar) => (6 bar)

The word "&optional" in the list of arguments tells you that all of the arguments
past this point are optional. The default value of an argument can be specified
explicitly, as with arg4, whose default value is the result of evaluating the form
(foo 3). If no default value is specified, it is the symbol nil. This syntax is used
in lambda-lists in the language. (For more information on lambda-lists: See the
section "Evaluating a Function Form" in Symbolics Common Lisp.) Argument
lists can also contain "&rest", which is part of the same syntax.

Note that the documentation uses several fonts, or typefaces. In a function
description, for example, the name of the function is in boldface in the first line,
and the arguments are in italics. Within the text, printed representations of Lisp
objects are in the same boldface font, such as (+ foo 56), and argument references
are italicized, such as argl and arg2.

Other fonts are used as follows:

"Typein" or "example" font (function-name)
Indicates something you are expected to type. This font is also
used for Lisp examples that are set off from the text and in
some cases for information, such as a prompt, that appears on
the screen.

"Key" font (RETURN, c-L)
For keystrokes mentioned in running text.

176
User's Guide to Symbolics Computers July 1986

14.1.2 Macros and Special Forms

The descriptions of special forms and macros look like the descriptions of these
imaginary ones:

do-three-times form Special Form
Evaluates form three times and returns the result of the third evaluation.

with-foo-bound-to-nil form... Macro
Evaluates the forms with the symbol foo bound to nil. It expands as follows:

(with-foo-bound-to-nil
form1

form2 ...) ==>

(let ((foo nil))
form1

form2 ...)

Since special forms and macros are the mechanism by which the syntax of Lisp is
extended, their descriptions must describe both their syntax and their semantics;
unlike functions, which follow a simple consistent set of rules, each special form is
idiosyncratic. The syntax is displayed on the first line of the description using the
following conventions.

o Italicized words are names of parts of the form that are referred to in the
descriptive text. They are not arguments, even though they resemble the
italicized words in the first line of a function description.

¢ Parentheses ("()") stand for themselves.
e Brackets ("[1") indicate that what they enclose is optional.

¢ Ellipses ("...") indicate that the subform (italicized word or parenthesized
list) that precedes them can be repeated any number of times (possibly no
times at all).

¢ Braces followed by ellipses ("{ }...") indicate that what they enclose can be
repeated any number of times. Thus, the first line of the description of a
special form is a "template" for what an instance of that special form would
look like, with the surrounding parentheses removed.

The syntax of some special forms is too complicated to fit comfortably into this
style; the first line of the description of such a special form contains only the
name, and the syntax is given by example in the body of the description.

The semantics of a special form includes not only its contract, but also which
subforms are evaluated and what the returned value is. Usually this is clarified
with one or more examples.

177

July 1986

A convention used by many special forms is that all of their subforms after the
first few are described as "body...". This means that the remaining subforms
constitute the "body" of this special form; they are Lisp forms that are evaluated
one after another in some environment established by the special form.

This imaginary special form exhibits all of the syntactic features:

twiddle-frob [(frob option...)] {parameter value}... Special Form
Twiddles the parameters of frob, which defaults to default-frob if not
specified. Each parameter is the name of one of the adjustable parameters of
a frob; each value is what value to set that parameter to. Any number of
parameter/value pairs can be specified. If any options are specified, they are
keywords that select which safety checks to override while twiddling the
parameters. If neither frob nor any options are specified, the list of them
can be omitted and the form can begin directly with the first parameter
name,

frob and the values are evaluated; the parameters and options are syntactic
keywords and are not evaluated. The returned value is the frob whose
parameters were adjusted. An error is signalled if any safety check is
violated.

14.1.3 Flavors, Flavor Operations, and Init Options

Flavors themselves are documented by the name of the flavor.

Flavor operations are described in three ways: as methods, as generic functions,
and as messages. When it is important to show the exact flavor for which the
method is defined, methods are described by their function specs. Init options are
documented by the function spec of the method.

When a method is implemented for a set of flavors (such as all streams), it is
documented by the name of message or generic function it implements.

The following examples are taken from the documentation.

sys:network-error Flavor
This set includes errors signalled by networks: These are generic network
errors that are used uniformly for any supported networks. This flavor is
built on error.

:clear-window of tv:sheet Method
Erase the whole window and move the cursor position to the upper left
corner of the window.

:tyo char Message
The stream will output the character char. For example, if s is bound to a
stream, then the following form will output a "B" to the stream:

178

User's Guide to Symbolics Computers July 1986

(send s :tyo #\B)

For binary output streams, the argument is a nonnegative number rather
than specifically a character.

dbg:special-command-p condition special-command Generic Function
Returns t if command-type is a valid Debugger special command for this
condition object; otherwise, returns nil.

The compatible message for dbg:special-command-p is:

:special-command-p

:bottom bottom-edge (for tv:sheet) Init Option
Specifies the y-coordinate of the bottom edge of the window.

14.1.4 Variables

Descriptions of variables ("special" or "global" variables) look like this:

typical-variable _ Variable
The variable typical-variable has a typical value....

14.2 The Lisp Top Level

These functions constitute the Lisp top level and its associated functions.

si:lisp-top-level Function
This is the first function called in the initial Lisp environment. It calls
sys:lisp-reinitialize, clears the screen, and calls si:lisp-top-levell.

sys:lisp-reinitialize &optional (called-by-user t) Function
This function restarts the Lisp system, resetting the values of various
global constants and initializing the error system.

si:lisp-top-levell stream Function
This is the actual top-level loop. It reads a form from zl:standard-input,
evaluates it, prints the result (with slashification) to zl:standard-output,
and repeats indefinitely. If several values are returned by the form, all of
them will be printed. Also the values of *, +, -, zl:/, ++, **, +++ and ***
are maintained.

prinl . Variable
The value of this variable is normally nil. If it is non-nil, then the read-
eval-print loop uses its value instead of the definition of prinl to print the

179

July 1986

values returned by functions. This hook lets you control how things are
printed by all read-eval-print loops — the Lisp top level, the zl:break
function, and any utility programs that include a read-eval-print loop. It
does not affect output from programs that call the prinl function or any of
its relatives such as print and zl:format; to do that, you need more
information on customizing the printer. See the section "Output
Functions" in Reference Guide to Streams, Files, and I/0. If you set prinl
to a new function, remember that the read-eval-print loop expects the
function to print the value but not to output a Return character or any
other delimiters.

14.3 Logging in

After cold booting, you are in a window named Dynamic Lisp Listener 1. You are
now ready to log in. If your login name is KJones, you can log in in any of the
following ways: (Note that the examples are given in upper and lower case, but
the machine is not case sensitive. You can use all upper case, all lower case, or
mixed case as you prefer.)

* To log into the default host machine, using your init file, type
Login KJones

¢ To log into your machine, without your init file, type
Login KJones :init file none

e To log into another machine "sc3", using your init file, type
Login KJones :host sc3 '

If the host machine you log in to is a timesharing computer system, you must
have a directory and account on that host machine.

For more information about logging in: See the section "Login Functions and
Variables".

- For more information about how to write init files: See the section "Customizing
Genera", page 93.

14.4 Some Utility Functions

zwei:save-all-files &optional (ask t) Function
This function is useful in emergencies in which you have modified material
in Zmacs buffers that needs to be saved, but the editor is partially broken.
This function does what the editor command Save File Buffers (n-%) does,

180

User’s Guide to Symbolics Computers July 1986

but it stays away from redisplay and other advanced facilities so that it
mright work if other things are broken.

zwei:zmail-save-all-files is similar, but saves mail files from Zmail.

ed &optional thing Function
ed is the main Lisp function for entering Zmacs. Select Activity Zmacs is
the command for entering Zmacs.

(ed) or (ed nil) enters Zmacs, leaving everything as it was when you last
left Zmacs. If Zmacs has not yet been used in the current session, it is
initialized and an empty buffer created.

(ed t) enters Zmacs, and creates and selects an empty buffer.

If the argument is a pathname or a string, the ed function enters Zmacs,
and finds or creates a buffer with the specified file in it. This is the same
as the Edit File command.

If the argument is a symbol that is defined as a function, Zmacs will try to
find the source definition for that function for the user to edit. This is the
same as the Edit Definition command.

Finally, if the argument is the symbol zwei:reload, Zmacs will be
reinitialized. All existing buffers will be lost, so use this only if you have
to.

zl:dired &optional (pathname "") Function
Puts up a window and edits the directory named by pathname, which
defaults to the last file opened. While editing a directory you may view,
edit, compare, hardcopy, and delete the files it contains. While in the
directory editor press the HELP key for further information. This is similar
to the Edit Directory command, except that Edit Directory enters Zmacs
and runs Dired (n-¥).

zl:mail &optional initial-destination initial-body prompt initial-idx Function
bug-report (make-subject
(zl:memq zwei:*require-subjects* (quote (t :init))))
initial-subject
Sends mail by putting up a window in which you can compose the mail.

initial-destination is a symbol or string that is the recipient.

initial-body is a string that is the initial contents of the mail. If these are
unspecified they can be typed in during composition of the mail. Press the
END key to send the mail and return from the zl:mail function.

prompt and initial-idx are used by programs, such as zl:bug, that call
zl:mail. prompt is a string printed in the minibuffer of the mail window
created by zl:mail. initial-idx positions point in the mail window.

181

July 1986

zl:bug &optional (system (quote zwei:lispm)) additional-body prompt Function
point-before-additional-body (make-subject
(zl:memq zwei:*require-subjects* (quote (t :init :bug))))
initial-subject
Reports a bug. This is the same as the Report Bug command. zl:bug is
like zl:mail but includes information about the system version and what
machine you are on in the text of the message.

system is the name of the faulty program (a symbol or a string). It
defaults to zl-user:lispm (the Lisp Machine system itself). This
information is important to the maintainers of the faulty program; it aids
them in reproducing the bug and in determining whether it is one that is
already being worked on or has already been fixed.

additional-body is user-supplied text appended to the information supplied
by the system.

prompt is text supplied by the system printed in the minibuffer of the mail
window concerning the bug-mail you are sending.

point-before-additional-body is a position for point supplied by the system.

zl:qsend &optional destination message Macro
Sends interactive messages to users on other machines on the network.

destination is normally a string of the form name@host, to specify the
recipient. If you omit the @host part and just give a name, zl:qsend looks
at all of the Lisp Machines at your site to find any that name is logged
into; if the user is logged into one Lisp Machine, it is used as the host; if
more than one, zl:qsend asks you which one you mean. If you leave out
destination altogether, doing just (zl:qsend), Converse is selected as if you
had pressed SELECT C.

message should be a string. For example:
(gsend kjonesBwombat “Want to go to lunch?")

If message is omitted, zl:qsend asks you to type in a message. You should
type in the contents of your message and press END when you are done.

The input editor is used while you type in a message to zl:gsend. So you
get some editing power, although not as much as with full Converse (since
the latter uses Zwei). See the section "Editing Your Input”, page 134.
zl:qsend predates Converse and is retained for compatibility.

182

User's Guide to Symbolics Computers July 1986

183

July 1986

15. Checking on What the Machine is Doing

15.1 Poking Around in the Lisp World

This section describes a number of functions, most of which are not normally used
in programs, but are "commands”, that is, things that you type directly at Lisp.
They are useful for finding information about your current state or about the Lisp
world in general.

who-calls symbol &optional how Function
who-calls tries to find all the functions in the Lisp world that call symbol.
how may be nil, meaning all ways to call the symbol, a keyword, meaning
only find symbol called as keyword, or a list of keywords. The permitted
keywords are:

:variable
:function
:microcoded-function
:constant

:flavor
:instance-variable
:macro
:defined-constant
:condition
:flavor-component
:generic-function

who-calls takes a single symbol as its argument. It no longer takes a list
of symbols. The package filtering has been removed.

who-calls prints one line of information for each caller it finds. It also
returns a list of the names of all the callers.

who-calls works only on bound symbols. To locate unbound symbols: See
the function si:who-calls-unbound-functions, page 184.

The compiler records, as part of its debugging-info property, which macros
were expanded and which functions were optimized away, with the
exception of basic parts of the language, such as car and when. This
information is used by who-calls and similar functions. Thus you can use
who-calls for macros. who-calls can also find callers of open-coded
functions, such as substitutable functions.

The who-calls database is created at site configuration time using the
function si:enable-who-calls.

184

User’s Guide to Symbolics Computers July 1986

si:enable-who-calls &optional mode Function
This command takes an argument which is the mode in which the
database should be enabled. If you need the full database, use
si:enable-who-calls during site configuration time. If you do not
need a full database you can create an incremental database by
choosing a suitable mode.

mode can be one of the following:

:all Creates a full callers database. This takes many
minutes and about 2000 pages of storage. :all
also queries about the old state.

:all-remake Creates a full callers database but does not query
about the old state. This takes many minutes and
about 2000 pages of storage.

inew Creates a callers database that includes only new
functions.
:all-no-make Creates a callers database that includes only new

functions. When you follow it with a si:full-ge
the entire database is created. This takes many
minutes and about 2000 pages of storage.

:explicit Enables items to be added to the callers database
explicitly by using
si:add-files-to-who-calls-database or
si:add-system-to-who-calls-database.

After you create the database, you should run
si:compress-who-calls-database.

si:compress-who-calls-database Function
si:compress-who-calls-database makes the who-calls database more
compact and more efficient. You should call this function after
si:enable-who-calls. If you used (si:enable-who-calls ’:all),
si:compress-who-calls-database takes a long time to complete its
job. However, it is faster than using si:full-gc and the result can
be saved using incremental disk save.

The editor has a command, List Callers (n-X), that is similar to who-calls.

si:who-calls-unbound-functions Function
si:who-calls-unbound-functions Searches the compiled code for any calls
through a symbol that is not currently defined as a function. This is
useful for finding errors such as functions whose names you misspelled or
forgot to write.

185

July 1986

what-files-call symbol-or-symbols &optional how Function
Similar to who-calls but returns a list of the pathnames of all the files
that contain functions that who-ecalls would have printed out. This is
useful if you need to recompile and/or edit all those files. how may be nil,
meaning all ways to call the symbol, a keyword, meaning only find symbol
called as keyword, or a list of keywords. The permitted keywords are:

:variable

:function
:microcoded-function
:constant

«flavor
:instance-variable
:macro
:defined-constant
:condition
:flavor-component
:generic-function

zl:apropos apropos-substring &optional pkg (do-packages-used-by t) Function
do-packages-used

Tries to find all symbols whose print-names contain apropos-substring as a
substring. When it finds a symbol, it prints out the symbol’s name; if the
symbol is defined as a function and/or bound to a value, it tells you so, and
prints the names of the arguments (if any) to the function. It checks all
symbols in a certain set of packages. The set always includes pkg. If
do-packages-used-by is true, the set also includes all packages that use pkg.
If do-packages-used is true, the set also includes all packages that pkg uses.
pkg defaults to the zl-user:global package, so normally all packages are
searched. zl:apropos returns a list of all the symbols it finds. This is
similar to the Find Symbol command, except that Find Symbol only
searches the current package unless you specify otherwise.

where-is pname Function
Finds all symbols named pname and prints on zl:standard-output a
description of each symbol. The symbol’s home package and name are
printed. If the symbol is present in a different package than its home
package (that is, it has been imported), that fact is printed. A list of the
packages from which the symbol is accessible is printed, in alphabetical
order. where-is searches all packages that exist, except for invisible
packages.

If pname is a string it is converted to uppercase, since most symbols’
names use uppercase letters. If pname is a symbol, its exact name is used.

where-is returns a list of the symbols it found.

186

User's Guide to Symbolics Computers July 1986

The find-all-symbols function is the primitive that does what where-is
does without printing anything.

describe anything &optional no-complaints Function
Tries to tell you all the interesting information about any object except
array contents). describe knows about arrays, symbols, all types of
numbers, packages, stack groups, closures, instances, structures, compiled
functions, and locatives, and prints out the attributes of each in human-
readable form. Sometimes it describes something that it finds inside
something else; such recursive descriptions are indented appropriately. For
instance, describe of a symbol tells you about the symbol’s value, its
definition, and each of its properties. describe of a floating-point number
shows you its internal representation in a way that is useful for tracking
down roundoff errors and the like.

If anything is a named-structure, describe handles it specially. To
understand this: See the section "Named Structures" in Symbolics
Common Lisp. First it gets the named-structure symbol, and sees whether
its function knows about the :describe operation. If the operation is
known, it applies the function to two arguments: the symbol :describe, and
the named-structure itself. Otherwise, it looks on the named-structure
symbol for information that might have been left by zl:defstruct; this
information would tell it the symbolic names for the entries in the
structure. describe knows how to use the names to print out each field’s
name and contents.

describe describes an instance by sending it the :describe message. The
default method prints the names and values of the instance variables.

This is the same as the Show Object command.

describe always returns its argument, in case you want to do something
else to it.

inspect &optional object Function
A window-oriented version of describe. See the section "How the Inspector
Works", page 204.

disassemble function Function
function is either a compiled function, or a symbol or function spec whose
definition is a compiled function. disassemble prints out a human-readable
version of the macroinstructions in function.

187

July 1986

15.1.1 Variables for Examining the Lisp World

Variable
While a form is being evaluated by a read-eval-print loop, - is bound to the
form itself.

+ Variable
While a form is being evaluated by a read-eval-print loop, + is bound to the
previous form that was read by the loop.

* Variable
While a form is being evaluated by a read-eval-print loop, * is bound to the
result printed the last time through the loop. If several values were
printed (because of a multiple-value return), * is bound to the first value.
If no result was printed, * is not changed.

zl:/ Variable
While a form is being evaluated by a read-eval-print loop, zl:/ is bound to a
list of the results printed the last time through the loop.

++ Variable
++ holds the previous value of +, that is, the form evaluated two
interactions ago.

-+ Variable
+++ holds the previous value of ++.

w . Variable
% holds the previous value of *, that is, the result of the form evaluated
two interactions ago.

wk Variable
***% holds the previous value of **,

grindef &rest fens Special Form

Prints the definitions of one or more functions, with indentation to make
the code readable. Certain other "pretty-printing" transformations are
performed:

e The quote special form is represented with the ’> character.

e Displacing macros are printed as the original code rather than the
result of macro expansion.

e The code resulting from the backquote (‘) reader macro is represented
in terms of °

The subforms to grindef are the function specs whose definitions are to be
printed; ordinarily, grindef is used with a form such as (grindef foo) to
print the definition of foo. When one of these subforms is a symbol, if the

188

User’s Guide to Symbolics Computers July 1986

symbol has a value its value is prettily printed also. Definitions are
printed as defun special forms, and values are printed as setq special
forms.

If a function is compiled, grindef says so and tries to find its previous
interpreted definition by looking on an associated property list. See the
function uncompile in Program Development Utilities. This works only if
the function’s interpreted definition was once in force; if the definition of
the function was simply loaded from a BIN file, grindef does not find the
interpreted definition and cannot do anything useful.

With no subforms, grindef assumes the same arguments as when it was
last called.

zl:break &optional tag (conditional t) Special Form
Enters a breakpoint loop, which is similar to a Lisp top-level loop. (break
tag) always enters the loop; (break tag conditional) evaluates conditional
and only enter the break loop if it returns non-nil. If the break loop is
entered, zl:break prints out:

;Breakpoint fag; Resume to continue, Abort to quit.

The standard values for any variables are checked. If zl:break rebinds any
of these standard variables, it warns you that it has done so. zl:break
then enters a loop reading, evaluating, and printing forms. A difference
between a break loop and the top-level loop is that when reading a form,
zl:break checks for the following special cases: If the ABORT key is pressed,
control is returned to the previous break or Debugger, or to top level if
there is none. If the RESUME key is pressed, zl:break returns nil. If the
list (return form) is typed, zl:break evaluates form and returns the result.

Inside the zl:break loop, the streams zl:standard-output,
zl:standard-input, and zl:query-io are bound to be synonymous to
zl:terminal-io; zl:terminal-io itself is not rebound. Several other internal
system variables are bound, and you can add your own symbols to be bound
by pushing elements onto the value of the variable sys:*break-bindings*.
(See the variable sys:*break-bindings*, page 188.)

If tag is omitted, it defaults to nil.

There are two easy ways to write a breakpoint into your program:
(zl:break) gets a read-eval-print loop, and (zl:dbg) gets the Debugger.
(These are the programmatic equivalents of the SUSPEND and m-SUSPEND
keys on the keyboard.)

-

sys:*break-bindings* Variable
When zl:break is called, it binds some special variables under control of
the list that is the value of sys:*break-bindings*. Each element of the list

189

July 1986

is a list of two elements: a variable and a form that is evaluated to produce
the value to bind it to. The bindings happen sequentially. You can
zl:push things on this list (adding to the front of it), but should not
replace the list wholesale since several of the variable bindings on this list
are essential to the operation of zl:break.

dbg:*debugger-bindings* Variable
When the Debugger is entered, it binds some special variables under
control of the list that is the value of dbg:*debugger-bindings*. Each
element of the list is a list of two elements: a variable and a form that is
evaluated to produce the value to bind it to. The bindings happen
sequentially. You can zl:push things on this list (adding to the front of it),
but should not replace the list wholesale since several of the variable
bindings on this list are essential to the operation of the Debugger.

15.2 Utility Functions

print-sends &optional (stream zl:standard-output) Function
Prints out all messages you have received (but not messages you have
sent), in forward chronological order, to stream. Converse is more useful
for looking at your messages, but this function predates Converse and is
retained for compatibility.

zl:print-notifications &optional (from 0) (to Function
(1- (zl:length tv:notification-history)))
Reprints any notifications that have been received. The difference between
notifications and sends is that sends come from other users, while
notifications are asynchronous messages from the Lisp Machine system
itself. If from or to is specified, prints only part of the notifications list.

Example: (print-notifications 8 4) prints the five most recent
notifications.

This is the same as the Show Notifications command.

si:show-login-history &optional (whole-history si:login-history) Function

Prints one line for each time the login command has been used since the
world was last cold booted. It also shows the logins done during the
creation of the world load. Each line contains the name of the user who

190

User's Guide to Symbolics Computers July 1986

logged in, the name of the machine on which the world load was running
at that time, and the date and time. This command also shows the name
of an init file, if one was loaded. If you cold boot, log in, and then do
Show Login History, the last line refers to your own login and all previous
lines refer to logins that were done before doing Save World (or running
zl:disk-save).

This information is useful to determine how many times a world load has
been disk-saved, on what machines it was disk-saved, and who disk-saved it.

The first couple of lines do not contain any date or time, because they were
made during the initial construction of the world load before it found out
the current time. Names of users at other sites that are not in the local
site’s namespace search list are qualified with the site’s namespace name
and a vertical bar. The user LISP-MACHINE is the dummy user used by
si:login-to-sys-host when new world loads are created.

This function replaces si:print-login-history.

zl:hostat &rest hosts Function
Asks each of the hosts for its status, and prints the results. If no hosts are
specified, asks all hosts on the Chaosnet. Hosts can be specified by either
name or octal number.

For each host, a line is displayed that either says that the host is not
responding or gives metering information for the host’s network
attachments. If a host is not responding, probably it is down or there is no
such host at that address. A Lisp Machine can fail to respond if it is
looping inside without-interrupts or paging extremely heavily, such that it
is simply unable to respond within a reasonable amount of time.

To abort the host status report produced by zl:hostat or FUNCTION H, press
c—-ABORT.

zl-user:uptime &rest hosts Function
Queries the specified hosts, asking them for their "uptime"; each host .
responds by saying how long it has been up and running. zl-user:uptime
prints out the results. If zl-user:uptime reports that a host is "not
responding”, either the host is not responding to the network, or it does
not support the UPTIME protocol.

The zl-user:uptime function is a variant of zl:hostat.

191

July 1986

15.3 Dribble Files

Sometimes it is useful to have a more permanent record of what is happening on
your screen when a program is running. Dribble files allow you to save the
output from or interaction with a program in a file or a buffer. Formerly such
files were called wallpaper files because the resulting long strips of paper output
resembled wallpaper and were sometimes posted on the wall to demonstrate the
operation of a program. Now that display consoles are in wide use, the files are
referred to as dribble files because the output "dribbles" out of the running
program,

zl:dribble-start pathname &optional editor-p (concatenate-p t) Function
Opens filename as a "dribble file". It rebinds zl:standard-input and
zl:standard-output so that all of the terminal interaction is directed to the
file as well as to the terminal. If editor-p is non-nil, then instead of
opening filename on the file computer, zl:dribble-start directs the terminal
interaction into a Zmacs buffer whose name is filename, creating it if it
does not exist.

zl:dribble-end , Function
Closes the file opened by zl:dribble-start and resets the I/O streams.

15.4 zl:status and zl:sstatus

The zl:status and zl:sstatus special forms exist for compatibility with Maclisp.
Programs that are designed to run in both Maclisp and Zetalisp can use zl:status
to determine in which one they are running. Also,

(zl:sstatus zl-user:feature zl-user:...) can be used as it is in Maclisp.

zl:status status-function &optional (item nil item-p) Spectal Form
(zl:status zl-user:features) returns a list of symbols indicating features of
the Lisp environment. The default list for the Lisp Machine is:

(:DEFSTORAGE :LOOP :DEFSTRUCT :LISPM :SYMBOLICS 3608 :CHAOS :SORT
:FASLOAD :STRING :NEWID :ROMAN :TRACE :GRINDEF :GRIND)

The value of this list will be kept up to date as features are added or
removed from the Lisp Machine system. Most important is the symbol
:lispm; this indicates that the program is executing on the Lisp Machine.
The order of this list should not be depended on, and might not be the
same as shown above.

The following symbols in the features list can be used to distinguish
different Lisp implementations, using the #+ and #- reader syntax.

192

User's Guide to Symbolics Computers July 1986

Three symbols indicate which Lisp Machine hardware is running:

:lispm Any kind of Lisp Machine, as opposed to Maclisp
:cadr An M.IT. CADR
:3600 A 3600-family machine

One symbol indicates which kind of Lisp Machine software is running:
:symbolics Symbolics software

See the section "Sharp-sign Reader Macros" in Reference Guide to Streams,
Files, and 1/0.

(status feature symbol) returns t if symbol is on the
(zl:status zl-user:features) list, otherwise nil.

(status nofeature symbol) returns t if symbol is not on the
(zl:status zl-user:features) list, otherwise nil.

(zl:status zl-user:userid) returns the name of the logged-in user.

(zl:status zl-user:tabsize) returns the number of spaces per tab stop
(always 8). Note that this can actually be changed on a per-window basis:
however, the zl:status function always returns the default value of 8.

(zl:status zl-user:opsys) returns the name of the operating system, always
the symbol :lispm.

(zl:status zl-user:site) returns the name of the local machine, for example,
"mit-lispm-6". Note that this is not the same as the value of zl:site-name.

(zl:status zl:status) returns a list of all zl:status operations.
(zl:status zl:sstatus) returns a list of all zl:sstatus operations.

zl:sstatus status-function item Special Form
(sstatus feature symbol) adds symbol to the list of features.

(sstatus nofeature symbol) removes symbol from the list of features.

15.5 Using Peek

15.5.1 Overview of Peek

You start up Peek by pressing SELECT P, by using the Select Activity Peek
command, or by evaluating (zl:peek).

The Peek program gives a dynamic display of various kinds of system status.

193

July 1986

When you start up Peek, a menu is displayed at the top, with one item for each
system-status mode. The item for the currently selected mode is highlighted in
reverse video. If you click on one of the items with the mouse, Peek switches to
that mode. Pressing one of the keyboard keys as listed in the Help message also
switches Peek to the mode associated with that key. The Help message is a Peek
mode; Peek starts out in this mode.

Pressing the HELP key displays the Help message.

The 0 command exits Peek and returns you to the window from which Peek was
invoked.

Most of the modes are dynamic: they update some part of the displayed status
periodically. The time interval between updates can be set using the Z command.
Pressing nz, where n is some number, sets the time interval between updates to n
seconds. Using the Zz command does not otherwise affect the mode that is
running.

Some of the items displayed in the modes are mouse sensitive. These items, and
the operations that can be performed by clicking the mouse on them, vary from
mode to mode. Often clicking the mouse on an item gives you a menu of things
to do to that object.

The Peek window has scrolling capabilities, for use when the status display is
longer than the available display area. SCROLL or c-V scrolls the window forward
(towards the bottom), mn-SCROLL or m-V scrolls it backward (towards the top).

As long as the Peek window is exposed, it continues to update its display. Thus a
Peek window can be used to examine things being done in other windows in real
time.

15.5.2 Peek Modes
Processes (P)

In Processes mode, invoked by pressing P or by clicking on the [Processes] menu
item, you see all the processes running in your environment, one line for each.
The process names are mouse sensitive; clicking on one of them pops up a menu
of operations that can be performed:

Arrest (or Un-Arrest)
Arrest causes the process to stop immediately. Unarrest causes
it to pick up where it left off and continue.

Flush Causes the process to go into the state Wait Forever. This is
one way to stop a runaway process that is monopolizing your
machine and not responding to any other commands. A process
that has been flushed can be looked at with the debugger or
inspector and can be reset.

194

User’s Guide to Symbolics Computers July 1986

Reset Causes the process to start over in its initialized state. This is
one way to get out of stuck states when other commands do not
work.

Kill Causes the process to go away completely.

Debugger Enters the Debugger to look at the process.

Describe Displays information about the process.

Inspect Enters the Inspector to look at the process.

See the section "Introduction to Processes" in Internals, Processes, and Storage
Management.

Areas (A)

Areas mode, invoked by pressing A or by clicking on [Areas], shows you
information about your machine’s memory. The first line is hardware information:
the amount of physical memory on the machine, the amount of swapping space
remaining in virtual memory, and how many wired pages of memory the machine
has. The following lines show all the areas in virtual memory, one line for each.
For each area you are shown how many regions it contains, what percentage of it
is free, and the number of words (of the total) in use. Clicking on an area inserts
detailed information about each region: its number, its starting address, its
length, how many words are used, its type, and its GC status. See the section
"Areas" in Internals, Processes, and Storage Management.

Meters (M)

Meters mode, invoked by pressing M or by clicking on [Meters], shows you a list of
all the metering variables for storage, the garbage collector, and the disk. There
are two types of storage and disk meters:

Timers Timers have names that start with zl-user:*ms-time- and keep a
total of the milleseconds spent in some activity.

Counts Counts have names that start with zl-user:*count- and keep a
running total of the number of times some event has occurred.

The garbage collector meters fall into two groups according to which part of the
garbage collector they pertain to: the scavenger or the transporter. See the
section "Operation of the Garbage Collector”.

195

July 1986

File System (F)

File System mode, invoked by pressing F or by clicking on [File System], provides
you information about your network connections for file operations. For each host
the access path, protocol, user-id, host or server unit number, and connection state
are listed. For active connections information about the actual packet flow is also
given. The various items are mouse sensitive. For hosts, you can get hostat
information, do a file reset, log in remotely, find out who is on the remote
machine, and send a message to the machine. You can reset, describe, or inspect
data channels, and close streams.

Resetting an access path makes the server on a foreign host go away, which might
be useful to free resources on that host or if you suspect that the server is not
working correctly.

Windows (1)

Windows mode, invoked by pressing W or clicking on [Windows], shows you all the
active windows in your environment with the panes they contain. This allows you
to see the hierarchical structure of your environment. The items are mouse
sensitive. Clicking on a window name pops up a menu of operations that you can
perform on the window.

Servers (S)

Clicking on [Servers] or pressing S puts Peek in Servers mode. If your machine is
a server (for example, a file server), Servers mode shows the status of each active
server.

Network (N)

Network mode, invoked by pressing N or by clicking on [Network], shows
information about the networks connected to your machine. For each network
there are three -headings for information:

Active connections
The data channels that your machine has opened to another
machine or machines on the network.

Meters Information about the data flow (packets) between your machine
and other machines on the network.

Routing table A list of all the subnets and for each the route to take to send
packets to a host on that subnet.

To view the information under one of these headings, you click on the heading.
The hosts and data channels in the list of active connections are mouse sensitive.

196

User’s Guide to Symbolics Computers July 1986

For hosts, you can get hostat information, do a file reset, login remotely, find out
who is on the remote machine, and send a message to the machine. You can
reset, describe, or inspect data channels.

Information about the hardware network interface is also displayed, as well as
metering variables for the networks.

Hostat (H)

Clicking on [Hostat] or pressing H starts polling all the machines connected to the
local network. For each host on the network a line of information is displayed.
Those machines that do not respond to the poll are marked as "Host not
responding”. You terminate the display by pressing c-ABORT.

Help and Quit

Clicking on the [Help] menu item or pressing HELP displays the help information
that is displayed when Peek is selected the first time.

Clicking on [Quit] or pressing G buries the Peek window and returns you to the
window from which you invoked Peek.

197

July 1986

16. Tools for Lisp Debugging

16.1 Overview of the Debugger

Genera: The Symbolics Software Environment offers you a host of powerful
debugging tools. The most comprehensive of these tools is the Symbolics
interactive Debugger and its window-oriented counterpart, the Window Debugger.

Other debugging tools, also known as debugging aids, are:

e The Trace facility, which performs certain debugging actions at the time a
function is called or at the time a function returns. See the section
"Tracing Function Execution” in Program Development Utilities.

e The Advise facility, which modifies the behavior of a function. See the
section "Advising a Function" in Program Development Utilities.

e The Step facility, which allows you to execute forms in your program, one at
a time, so that you can examine what is happening when execution suspends
at every "step." See the section "Stepping Through an Evaluation” in
Program Development Utilities. The Debugger’s :Single Step command also
performs stepping. See the section "Single Step Command" in Program
Development Utilities.

o The evalhook facility, which allows you to get a particular Lisp form
whenever the evaluator is called. The Step facility also uses evalhook. See
the section "evalhook" in Program Development Utilities.

Another tool related to debugging is the Inspector, which is a window-oriented
program that lets you inspect data objects and their components. See the section
"Using the Inspector" in Program Development Utilities.

In the Genera software environment, unlike more traditional programming
environments, you do not have to explicitly include the Debugger when you
compile your programs. Generally, you can debug your code as you write it
without having to perform a series of complicated compiling, loading, and
executing procedures between source code development and debugging.

Because Symbolics Dynamic Windows and other user-interface features allow you
to many Symbolics activities simultaneously — Zmacs, Zmail, the file system, the
Dynamic Lisp Listener, and so on — debugging becomes an easy task, regardless of
how many system activities you are using. You can move in and out of the
Debugger as easily as you can move in and out of any other process in Genera.
For example, the Debugger command, :Edit Function, brings up a function for

198

User’s Guide to Symbolics Computers July 1986

editing in a Zmacs editor window. This is useful when you have found the
function that caused the error and want to edit that function immediately.
Another command, :Mail Bug Report, brings up a mail message window and puts a
backtrace into the message to be mailed as a bug report. While composing the
bug report, you can switch back and forth between the Debugger and the mail-
sending window.

As in any other process, you can suspend the Debugger or use split-screen
windows to run two or more processes simultaneously.

The Symbolics Debugger is there whenever you need it. The Debugger is
signalled whenever an error occurs in your program’s execution or the execution
of a system function. That is, your machine brings you into the Debugger
whenever it encounters an error that is not bound to a condition handler, for
example, when you reference an unbound variable. See the section "Entering and
Exiting the Debugger" in Program Development Utilities. Once in the Debugger,
you are given a choice of actions that can correct the error. These actions are
called proceed and restart options. See the section "Proceeding and Restarting in
the Debugger" in Program Development Utilities.

You can also enter the Debugger explicitly, at any time, by pressing m~SUSPEND or
c-m-SUSPEND, or make your program signal the Debugger by inserting the
cl:break or zl:dbg function into your program code. See the section "Entering
and Exiting the Debugger" in Program Development Utilities.

Upon Debugger entry, besides selecting one of the proceed and restart options, you
can enter any of the Debugger’s 58 commands. These commands are full-form
English commands, built on normal command processor (CP) commands. In fact,
several Debugger commands are also CP commands. For more detailed
information on Debugger commands: See the section "Entering a Debugger
Command” in Program Development Utilities.

In the Debugger you can also evaluate a form in the lexical, user-program context
of the current frame. This context is referred to as the Debugger’s evaluation
environment. You can think of the Debugger’s evaluation environment as a special
read-eval-print loop that not only evaluates forms but also evaluates local variables
while the execution of its lexical function is suspended. For more detailed
information on the evaluation environment: See the section "Evaluating a Form
in the Debugger" in Program Development Utilities.

Like all other output in the Genera software environment, Debugger output is
mouse sensitive, so you can perform many useful Debugger operations using the
mouse. For more detailed information on mouse capabilities: See the section
"Using the Mouse in the Debugger" in Program Development Utilities.

The Debugger also provides some online help facilities. For more detailed
information on help facilities: See the section "Getting Help with Debugger
Commands".

199

July 1986

For complete information on the uses of these features and other Debugger
features — plus a list of descriptions for all Debugger commands: See the section
"Using the Debugger" in Program Development Utilities. For information on the
Window Debugger: See the section "The Window Debugger".

In general, you would use the Debugger when:

o Your program triggers the Debugger because garbage — an unbound variable
or too many arguments perhaps — was passed to a function, and you want to
find out where the garbage came from. See the section "Analyze Frame
Command" in Program Development Utilities.

o You want to see what’s happening in the sequence of function calls just
executed, including a history of these function calls, the argument values
passed, the local-variables values, the source code, and the compiled code.
See the section "Show Backtrace Command" in Program Development
Utilities. Also: See the section "Debugger Commands for Viewing a Stack
Frame" in Program Development Utilities.

o You want to find out who or what is referencing a special variable or any
other location in memory. See the section "Monitor Variable Command”,
page 247.

o You want to remember all the Debugger’s key-binding command accelerators,
like c-B and c-n-F, and you wish they were associated with real English
commands, like :Show Backtrace and :Show Function. See the section
"Debugger Command Descriptions" in Program Development Utilities.

o You want to perform debugging operations using the mouse. See the section
"Using the Mouse in the Debugger" in Program Development Utilities.

e You want to continue program execution, proceed from the error, restart a
function, return from a function, or throw through a function. See the
section "Debugger Commands to Continue Execution" in Program
Development Utilities.

o Your condition handler breaks, and you want to call the Debugger when this
handler is encountered so that you can debug it. See the section "Enable
Condition Tracing Command" in Program Development Utilities.

o You want to edit your function’s source code in Zmacs immediately after you
have found the error using the Debugger. See the section "Edit Function
Command" in Program Development Utilities.

o You want to put a Debugger backtrace into a mail message and send this

200

User's Guide to Symbolics Computers July 1986

message as a bug report. See the section "Mail Bug Report Command"” in
Program Development Utilities.

e You want to use Debugger breakpoint commands, instead of using the Trace
facility or inserting a function in your code, to set Debugger breakpoints.
See the section "Commands for Breakpoints and Single Stepping”.

16.1.1 Overview of Debugger Commands

The Debugger comprises 58 full-form English commands, which are implemented
as CP commands. Debugger commands are entered inside the Debugger at the
Debugger’s command prompt, a right arrow (—). Commands fall into eight
general categories:

Commands for viewing a stack frame
Commands for stack motion

Commands for general information display
Commands to continue execution

Trap commands

Commands for breakpoints and single stepping
Commands for system transfer

Miscellaneous commands

Most Debugger commands have corresponding key-binding accelerators, which
means you can press a combination of one or more keys in place of the command.
For example, you can type the accelerator c-E instead of the command :Edit
Function.

Like CP commands, most Debugger commands have keywords that you can use to
modify the command’s behavior.

There are 13 Debugger commands that share the global command table with CP
commands. Therefore, you can enter these commands in the CP as well as the
Debugger. They are:

201

July 1986

:Clear All Breakpoints
:Clear Breakpoint

:Disable Condition Tracing
:Edit Function

:Enable Condition Tracing
:Monitor Variable

:Set Breakpoint

:Set Stack Size

:Show Breakpoints

:Show Compiled Code
:Show Monitored Locations
:Show Source Code

:Unmonitor Variable

Note, however, that you must type a preceding colon with every command entered
in the Debugger; for example, you must type :Set Breakpoint in the Debugger.

For complete information on Debugger commands: See the section "Entering a
Debugger Command" in Program Development Utilities.

16.1.2 Overview of Debugger Evaluation Environment

In the Debugger, you can evaluate a form as easily as you can in a Dynamic Lisp
Listener read-eval-print loop. Evaluating a form in the Debugger, however, is
particularly useful because you are evaluating the form in the context of a user
program and the current stack frame. This means you can see the value of Lisp
objects at the point in program execution where an error occurred or at the
precise place in your program where you explicitly suspend execution and signal
the Debugger. You can even see the values of lexical (local) variables at the point
where execution suspends.

Evaluating a form in the Debugger is a simple task. If you type a character other
than the first character in a Debugger command — a colon or accelerator key — the

202

User’'s Guide to Symbolics Computers July 1986

Debugger immediately brings you into its evaluation environment. In other words,
just type the form. Evaluation happens automatically.

For complete information on how to evaluate a form in the Debugger: See the
section "Evaluating a Form in the Debugger" in Program Development Utilities.

16.1.3 Overview of Debugger Mouse Capabllities

When the output generated by Debugger commands is displayed on a Dynamic
Window, the output is mouse sensitive. You can perform several useful debugging
operations simply by using the mouse to click on something. Some of these
operations include: setting a breakpoint, monitoring a variable or another location
in memory, evaluating a form, editing a function, setting the current frame, and
choosing a proceed or restart option.

Besides performing certain mouse operations by clicking directly on displayed
Debugger output, you can use menus to perform the usual large variety of other
types of operations on Debugger output, just as you can with other output
generated anywhere else in the Genera software environment.

For more information on using the mouse in the Debugger: See the section
"Using the Mouse in the Debugger" in Program Development Utilities.

16.1.4 Overview of Debugger Help Facllities

The Debugger provides online help for Debugger commands and their components,
such as keywords. You can get help for all Debugger commands by typing c-HELP,
which displays brief command descriptions and available key-binding accelerators.
For more information about Debugger help: See the section "Getting Help for
Debugger Commands" in Program Development Utilities.

16.2 Flavor Examiner

The Flavor Examiner enables you to examine flavors, methods, generic functions,
and internal flavor functions defined in the Lisp environment. It is a congenial
environment for using the Show Flavor commands.

You can select the Flavor Examiner with SELECT X, or with the Select Activity
Flavor Examiner command.

Figure 22 shows the initial window.
The Flavor Examiner window is divided into five panes.
Menu of Commands — the top-left pane

The top-left pane offers a menu of flavor-related commands, such as Flavor

203

July 1986

Flavor Examiner

Flavor Components Flavor Methods
Flavor Dependents Flavor Operations
Flavor Instance Variables Generic Function
Flavor Initializations Flaveor Handler
In-flavor Functions Function Arguments
Help Clear Display
Please type commands, or click on menu above
[You are typing a command at Flavor Examiner.
Use the command names you see In the menu above,
N or cllck on one with the mouse. The :Help command
N offers more detalled documentation about Flavor

\; Examiner Itself, and about each of Its commands.

To see other commands, press Shift, Control, Meta-Shift, or Super.
TFr1 18 Jul 7:53:32] Ellen CL-USER: User Input Heather belng Inltlalized>

Figure 22. Flavor Examiner Window

Components; this is the same as the Show Flavor Components command. You can
choose one of these commands by clicking left or right. Clicking left makes the
command appear in the Command Input Pane. Clicking right makes the command
appear and also displays the command’s arguments, in a form that you can edit.

The HELP command displays documentation on the flavor-related commands. The
HELP key provides information on all the CP commands you can enter.

The Flavor Examiner offers two commands for clearing and refreshing the display.
The CLEAR DISPLAY command clears the display from the three output panes; it
first asks for confirmation. The REFRESH DISPLAY command displays the
information on the screen again.

When you click left or right on a command name, the command appears in the
Command Input Pane.

Command Input Pane — the bottom-left pane

The bottom-left pane is a command processor window. If you click on commands
in the Menu of Commands, the commands appear in this window. You can enter
arguments (or commands) by typing them at the keyboard. This pane saves the
history of all commands entered. You can click on the scroll bar to show different
parts of the history.

You are not restricted to the commands in the Menu of Commands. You can give
any command processor command.

204

User's Guide to Symbolics Computers July 1986

The output of all commands appears in the Main Command Output Pane.
Main Command Output Pane — the bottom-right pane

Each command’s output appears here. This pane saves the history of the output
of all flavor-related commands. You can use the scroll bar to show different parts
of the history.

Parts of the output of flavor-related commands are mouse-sensitive. You can make
use of that by clicking on a flavor name or method name to enter it as an
argument to another command.

If you give commands that are not flavor-related (such as the Show Host
command), the output appears in a typeout window in the Main Command Output
Pane. This kind of output is not saved in the history of this pane. The typeout
window is itself a dynamic window with its own history.

When the output of the current command appears in the Main Command Output
Pane, the output of the previous command is copied to the Previous Command
Output Pane.

Previous Command Output Pane — the middle-right pane

This pane displays the output of the previous command. This pane does not save
a history, but the second-to-last command is copied to the Second-to-Last Command
Output Pane.

Second-to-last Command Output Pane — the top-right pane

This pane displays the output of the second-to-last command. This pane does not
save a history. When another command is given, the contents of the Previous
Command Output Pane are copied to this pane. Similarly, the contents of the
Main Command Output Pane are copied to the Previous Command Output Pane.

16.3 How the Inspector Works

The Inspector is a window-oriented program for inspecting data structures. When
you ask to inspect a particular object, its components are displayed. The
particular components depend on the type of object; for example, the components
of a list are its elements, and those of a symbol are its value binding, function
definition, and property list.

The component objects displayed on the screen by the Inspector are mouse-
sensitive, allowing you to do something to that object, such as inspect it, modify it,
or give it as the argument to a function. Choose these operations from the menu
pane at the top-right part of the screen.

When you click on a component object itself, that component object gets inspected.
It expands to fill the window and its components are shown. In this way, you can

205

July 1986

explore a complex data structure, looking into the relationships between objects
and the values of their components.

The Inspector can be part of another program or it can be used standalone; for
example, the Window Debugger can utilize some of the panes of the Inspector.
Note, however, that although the display looks the same as that of the standalone
Inspector, the handling of the mouse buttons depends upon the particular program
being run.

Figure 23 shows the standalone Inspector window. The display consists of the
following panes, from top to bottom:

e A small interaction pane
e A history pane and menu pane
¢ Some number of inspection panes (three by default)

F .
Top of History Exit
Return
Hodify
DeCache
Clear
Set 7
Bottom of History
Top of odject
Empty
Bottom of odject
Top of odject
Empty
Bottom of odject
Top of odject
Empty
Bottom of odfect
‘Choose a value by polnting at the value. HTghl tinds functlon detlinition.
OFr1 18 Jul 7:59:06] Ellen CL-USER: User Input Heather belng Inltialized

Figure 23. The Inspector

206

User’s Guide to Symbolics Computers July 1986

16.4 Entering and Leaving the Inspector

You can enter the standalone Inspector via:
o Select Activity Inspector
e SELECT I
e [Inspect] in the System menu
e The Inspect command, which inspects its argument, if any
¢ The inspect function, which inspects its argument, if any

Warning: If you enter with the Inspect command or the inspect function, the
Inspector is not a separate activity from the Lisp Listener in which you invoke it.
In this case you cannot use SELECT L to return to the Lisp Listener; you should
always exit via the [Exit] or [Return] option in the Inspector menu. If you forget
and exit the Inspector by selecting another activity, you might need to use
c-m-ABORT to return the Lisp Listener to its normal state.

See the section "The Inspector” in Program Development Utilities.

207

July 1986

17. Quick Reference

17.1 General Help Facilities

c~ABORT Aborts the function currently executing.

c-G Aborts a command while it is being entered, unselects the region,
or unmerges a Kkill; that is, resets "state".

HELP A string Shows every command containing string (try HELP A Paragr or
HELP A Buffer).

HELP C x Explains the action of any command (try HELP C c-K as an
example).

HELP D string Describes a command (try HELP D Query Rep).

HELP L Displays the last 60 keys pressed.

SUSPEND Starts a Lisp Listener (return from it with RESUME).

17.2 Zmacs Help Facilities

Undo (n-R) Reverts to buffer before last kill, unkill, fill, sort, or similar
complex command.

c-Y Yanks back the last thing killed.

n-Y After a c-Y, yanks back things previously killed; used after a c-v
to cycle through the kill ring.

17.3 Extended Commands

Extended commands (the m-X commands) put you in a small area of the screen
with full editing capabilities (a minibuffer) for entering names and arguments.
Several kinds of help are available in a minibuffer.

COMPLETE Completes as much of the current command as possible.

HELP Gives information about special characters and possible
completions.

c-7 Shows possible completions for the command currently being
entered.

END or RETURN Complete the command, and then execute it.
c—/ Does an apropos on what has been typed so far.

208

User's Guide to Symbolics Computers July 1986

17.4 Writing Files

c-¥ c-S Writes the current buffer into a new version of the current file
name.
c-% c-i Writes the current buffer into a file with a different name.

Save All Files (m-R)
Offers to save each file whose buffer has been modified.

17.5 Buffer Operations

c~K ec-F Gets a file into a buffer for editing.

c-% B Selects a different buffer (prompts; default is the last one).
c-X c-B Displays a menu of available buffers; lines are mouse-sensitive.
c-K% K Kills a buffer (prompts for which one; default is current one).
n—< Moves to the beginning of the current buffer.

n—-> Moves to the end of the current buffer.

17.6 Character Operations

c-B Moves left (back) a character.

c-F Moves right (forward) a character.

c-P Moves up (previous) a character.

c-N Moves down (next) a character.

RUBOUT Deletes a character left.

c-D Deletes a character right.

c-T Transposes the two characters around point; if at the end of a

line, transposes the two characters before point, ht -> th.

17.7 Word Operations

n-B Moves left (back) a word.

n-F Moves right (forward) a word.

m-RUBOUT Kills a word left (c-Y yanks it back at point).
m-D Kills a word right (c-Y yanks it back at point).

=T Transposes the two words around point (if only -> only if).
n-C Capitalizes the word following point,

m-L Lower-cases the word following point.

n-U Upper-cases the word following point.

209

July 1986

17.8 Line Operations

0O 0 0
o m>D

c-X¥ c~-0
CLEAR-INPUT

c-K

Moves to the beginning of the line.

Moves to the end of the line.

Opens up a line for typing.

Closes up any blank lines around point.

Kills from the beginning of the line to point (c-Y yanks it back at
point).

Kills from point to the end of the line (c-Y yanks it back at
point).

17.9 Sentence Operations

RUBOUT

Moves to the beginning of the sentence.

Moves to the end of the sentence.

Kills from the beginning of the sentence to point (c-Y yanks it
back at point).

Kills from point to the end of the sentence (c-Y yanks it back at
point).

17.10 Paragraph Operations

3 3 3

-C
-]
-Q

c-H F

&

Moves to the beginning of the paragraph.

Moves to the end of the paragraph.

Fills the current paragraph (see HELP A Auto fi11).
Sets the fill column to n (example: c-6 c-5 c-K F).

17.11 Screen Operations

SCROLL or c-V Shows next screen.
m-SCROLL or m-VShows previous screen.

c-8 c-L
c-n-R

c-m-L

Moves the line where point is to line 0 (top) of the screen.
Repositions the window to display all of the current definition, if
possible.

Selects the most recently selected buffer in this window.

210

User's Guide to Symbolics Computers July 1986

17.12 Region Operations

c-SPACE Sets the mark, a delimiter of a region. Move the cursor from
mark to create a region; (the editor underlines to show the
region). Use with region commands c-W, m-k, and c-¥.

c-H Kills region (c-Y yanks it back at point).
n-H "Saves" region (c-Y yanks it back at point).
c-Y Yanks back the last thing killed.

17.13 Window Operations

c-¥ 2 Splits the screen in two windows, using the current buffer and
the previously selected buffer (the one that c-m-L would select).

c-¥ 1 Resumes single window, using the current window.

c-¥ 0 Moves cursor to other window.

c-n-V Shows next screen of the buffer in the other window; with a

numeric argument scrolls that number of lines — positive for the
usual direction, negative for the reverse direction.

c-¥ 4 Splits the screen into two windows and asks what should be
shown in the other window.

17.14 Search and Replace

c-S string "Incremental” search; searches while you are entering the string;
terminate search with END.
c-R string "Incremental” backward search; terminate search with END.

c-7 stringl RETURN string2 RETURN
Replaces stringl with string2 throughout.

m-2 stringl RETURN string2 RETURN
Replaces stringl with string2 throughout, querying for each
occurrence of stringl; press SPACE meaning "do it", RUBOUT
meaning "skip", or HELP to see all optioas; (see HELP C n-2).

211

July 1986

18. Quick Summary of Mouse Functions

18.1 Mouse Cursor Shape

These are some of the more common mouse cursors:

A thin arrow pointing North by Northwest (up and to the left). This is the
default mouse cursor. The mouse documentation line indicates any special
commands. If the mouse is over a partially exposed window, clicking left will
select that window. Clicking sh-Mouse-Right will get you the System menu.

A thin arrow pointing North by Northeast (up and to the right). This means the
mouse is in an editor window. There are a number of editor commands on the
mouse buttons. See the section "Mouse Documentation Line in Zmacs" in Text
Editing and Processing.

A slightly thicker arrow pointing North (straight up). The editor uses this to
show that it is asking you for the name of a function or for a symbol. If you
point the mouse at a function name, and stop moving it, the name will light up
and you can click to select it.

A small x. This is used when the mouse cursor should be unobtrusive, for
instance in menus.

18.2 Mouse Gestures on Dynamic Windows

Mouse-Left On a directory listing, does a Show File of the file. In Other
contexts yanks the command line.

sh-Mouse-Left Like Left, but also activates. Click sh-Mouse-Left on a
command line to yank and activate the command.

c-Mouse-Left Marks a region, s-W pushes marked region on the kill ring.
Mouse-Middle On a Lisp Object does a describe of the Object.

c-Mouse-Middle Yank the word the mouse is over. Useful for using arbitrary
text to compose commands, for example after a Show Mail, click
c-Mouse-Middle on a pathname mentioned in a mail message as
an argument to Show File.

Mouse-Right on an object
Pops up a menu of possible operations on the object.

n-sh-Mouse-R Gets the menu of window operations.

212

User’s Guide to Symbolics Computers July 1986

m-Mouse—Left in Zmacs
Edit Definition. Hold down the left button and move the mouse
around to see what is mouse sensitive.

m-Mouse-Middle in Zmacs
Evaluate form. Hold down the middle button and move the
mouse to see what is mouse sensitive.

18.3 Scrolling with the Mouse

Windows display "contents” that are too big to fit entirely in the window. When
this is the case, you see only a portion of the contents, and you can scroll the
contents up and down using the mouse.

Dynamic windows all have scroll bars along one side. The default position is
along the left side. You can position the scroll bar along the right edge if you
prefer.

When the mouse is moved over the scroll bar its cursor becomes a double-headed
arrow. A gray area in the scroll bar indicates what portion of the window’s
contents is visible. The vertical position of the gray area within the scroll bar
shows the position of the visible portion of the window’s contents relative to the
whole. At the top and bottom of the scroll bar are small boxes.

Clicking the mouse in the box at the top scrolls by lines. The mouse clicks are:

Left Scroll by one line (next line)
Middle Scroll to the top (first available screen) of the window.

Clicking the mouse in the box at the bottom scrolls by screens. The mouse clicks
are:

Left Scroll to the next screen.
Middle Scroll to the end of the window (last available screen).

Right Scroll to the previous screen.

Clicking the mouse in the scroll bar beside the middle of window scrolls
proportionally. The mouse clicks are:

Left Next screen, making this line the top line of the screen.
sh-Left Previous screen, making this line the last line of the screen.
Middle Put window here.

213

July 1986

Right Previous screen, placing the line that is currently the top line
' on the screen here.

The Lisp Listener window can also be scrolled horizontally. s-SCROLL scrolls the
window to allow you to see what is to the right. m-s-SCROLL scrolls to the left.

Other scrolling conventions with the mouse are:

e A fat arrow, pointing up or down. This indicates you are in a scrolling zone.
Moving the mouse slowly in the direction of the arrow scrolls the window,
revealing more of the text in the direction the arrow points.

¢ Scrolling zones often say more above or more below in small italic letters.
Clicking on one of these legends scrolls the window up and down by its
height, thus you see the next or previous windowful. When the top or
bottom of the window contents is reached, so that it is not possible to scroll
any farther in one direction, the legend in the scrolling zone changes to
indicate this.

214

User's Guide to Symbolics Computers July 1986

215

July 1986

19. Index of Special Function Keys

19.1 Introduction

This is a quick reference guide to the Symbolics 3600-family special function keys.
Most of these keys have the same function in any window. However, a few of
them perform differently in different contexts.

19.2 aBorT Key

RBORT

c-ABORT

m—ABORT

When read by a program, the program stops what it is doing and
returns to its "command loop”. Lisp Listeners, for example, respond
to ABORT by throwing back to the read-eval-print loop (top level or
zl:break). Note that ABORT takes effect when it is read, not when it
is pressed; it does not stop a running program.

Aborts the operation currently being performed by the process to
which you are typing, immediately (not when it is read). For instance,
this forces a Lisp Listener to abandon the current computation and
return to its read-eval-print loop.

When read by a program, the program stops what it is doing and
returns through all levels of commands to its "top level". Lisp
Listeners, for example, throw completely out of their computation,
including any zl:break levels, then start a new read-eval-print loop.

c-m—-ABORT A combination of ¢-ABORT and m~ABORT, this immediately throws out of

all levels of computation and restarts the process to which you type it.

19.3 BACkspACE Key

In a Lisp Listener, BACKSPACE moves the cursor back one character, as does ¢-B,
so that you can insert additional text or edit. In Zmacs, Converse, and Zmail
message windows, it inserts a backspace character into the buffer. In the main
Zmail window it scrolls the current message backward (as do m-SCROLL and m-\).

216

User's Guide to Symbolics Computers July 1986

19.4 cLeAR INPUT Key

Usually erases the expression you are typing. In an editor buffer CLEAR INPUT
erases from the location of your cursor to the beginning of the current line. If
you are at the beginning of the line, it erases the previous line.

19.5 compPLETE Key

Completes as much as possible of partially typed commands. In the Document
Examiner, COMPLETE works on topic names. In Zmacs and Zmail, when completion
is available for a command or pathname in the minibuffer, the word (Completion)
appears in the mode line.

m-COMPLETE in the command processor displays a menu of the arguments and
keywords for the command you are typing. You can then specify the arguments
and keywords from the menu using the mouse or the keyboard. See the section
"Using Menus", page 29.

19.6 eno Key

Marks the end of input to many programs. Single-line input can be terminated
with RETURN or END. END terminates multiple-line input where RETURN is used to
separate lines. When you are typing Lisp input, balanced parentheses terminate
expressions and END is not used. However, if you use the input editor to yank a
previous command or expression, END terminates it. See the section "Editing Your
Input”, page 134,

19.7 escare Key

Displays the input editor history. c-ESCAPE displays the global kill history. Sends
Escape/Altmode (octal 033) in the Terminal program.

19.8 FuncTion Key

This key is a prefix for a family of commands relating to the screen, which you
can type at any time, no matter what program you are running.

217

July 1986

19.8.1 Display and Hardcopy Commands

The FUNCTION commands that control screen display and hardcopying are:

RUBOUT

Does nothing; press this key to cancel FUNCTION if you typed the latter
by accident.

CLEAR INPUT

REFRESH

R

Discards typeahead.
Clears and redisplays all windows.

Arrests the process shown in the status line. FUNCTION - A resumes
the process.

Buries the currently selected window, if any - that is, it moves it
underneath all other windows. This brings up the previously selected
window, which is automatically selected.

Complements the entire screen. An argument of 1 means white-on-
black; an argument of 0 means black-on-white.

Complements the selected window, with fhe same argument as
FUNCTION C.

Complements the mouse documentation line, with the same argument
as FUNCTION C.

Shows users logged in on other machines on your network. Arguments
can be assigned to shows users logged in on various machines at your
site. FUNCTION 8 F prompts you for a specific user or host to show.
Giving a user name followed by /w displays the information in the
user’s namespace entry.

Shows status of network hosts. With an argument, it prompts for
hosts.

Controls global MORE processing. No argument means toggle, 0
means turn off, 1 means turn on.

Controls MORE processing for the selected window. The arguments
are the same as for FUNCTION M.

Selects another exposed window.

Hardcopies the entire screen.

218

User's Guide to Symbolics Computers July 1986
c-0 Hardcopies the selected window.
n-Q Hardcopies the entire screen, minus the status and mouse

documentation lines.

19.8.2 Selection and Notification Commands

The FUNCTION commands that control window selection and notification are:

S Selects the most recently selected window. With an argument n
(default is 2), it selects the nth previously selected window and rotates
the top n windows. An argument of 1 rotates through all windows (a
negative argument rotates in the other direction); 0 selects a window
that requires attention (for example, to report an error).

T Controls the selected window’s input and output notification
characteristics. If an attempt is made to output to a window when it
is not exposed, one of three things can happen:

e The program can simply wait until the window is exposed.

¢ It can send a notification that it wants to type out and then
wait.

¢ It can quietly type out "in the background"; when the window is
next exposed the output becomes visible.

Similarly, if an attempt is made to read input from a window that is
not selected (and has no typed-ahead input in it), the program can
either wait for the window to become selected, or send a notification
that it wants input and then wait.

The FUNCTION T command controls these characteristics based on its
argument, as follows:

no argument If output notification is off, turns input and output
notification on; otherwise turns input and output
notification off. This essentially toggles the current

state.

0 Turns input and output notification off.

1 Turns input and output notification on.

2 Turns output notification on, and input notification
off.

3 Turns output notification off, and input notification
on.

4 Allows output to proceed in the background, and

turns input notification on.

219

July 1986
5 Allows output to proceed in the background, and
turns input notification off.
W Controls the status line. With no argument, the status line is

redisplayed. The arguments control the process the status line
watches. The options are:

0

4

Gives a menu of all processes, and freezes the status
line on the process you select. When the status line
is frozen on a process, the name of that process
appears where your user ID normally would (next to
the date and time), and the status line does not
change to another process when you select a new
window.

The status line watches whatever process is using
the keyboard, and changes processes when you select
a new window. This is the default initial state.

Changes the status line so that it displays the name
of the process instead of the name of the user. This
also freezes the status line on that process; normally
the status line switches to display a different
process whenever the window system tells it to.

Use this if you see an unexpected state in the status
line. It will help you find out what process is in
that state; you might find that you are not talking
to the process you think you should be.

Rotates the status line among all processes.

Rotates the status line in the other direction.

19.8.3 Recovering From Stuck States

The following FUNCTION commands should all be used with caution.

ESCAPE Helps you recover from stuck states such as "Output Hold" and "Sheet

Lock".

c-A Arrests all processes except the one shown in the status line and
critical system processes, such as the keyboard and mouse processes.
FUNCTION - c-AR resumes all processes arrested by this command.

SUSPEND Gets to the cold-load stream.

220

User’s Guide to Symbolics Computers July 1986

c-T Deexposes temporary windows. This is useful if the system seems to
be hung because there is a temporary window on top of the window
that is trying to type out.

c—-CLEAR INPUT
Clears window system locks. This is a last resort, although not as
drastic as warm booting. Use this when none of the windows will talk
to you, when you cannot get a System menu, and so on.

19.9 HeLp Key

The key labelled HELP looks up context-dependent documentation.

HELP Shows documentation available for the current activity. In some
programs, c-HELP, m-HELP, and so on, provide additional
documentation.

c—HELP Shows a list of input editor commands (when typed at a Lisp
Listener).

sy—HELP Shows a list of the special function keys and the special
character keys.

SELECT HELP Shows programs and utilities that you can select using the
SELECT key.

FUNCTION HELP Shows a list of useful functions that you can invoke using the
FUNCTION key.

19.10 LiNE Key

The function of this key varies considerably. It is used as a command by the
Debugger, and sends a Line Feed character in the Terminal program. In the
editor it behaves like a RETURN followed by a TAB to the indentation level
appropriate to the mode of the editor. See the section "TAB Key", page 225.

19.11 LocaL Key

On 3670 and 3640 consoles this key controls local console functions:

LOCAL-G Rings the bell.

221

July 1986

LOCAL~D Makes the screen dimmer.
LOCAL~B Makes the screen brighter.
LOCAL-Q Makes the audio quieter.
LOCAL-L Makes the audio louder.

LOCAL-n LOCAL-C Changes the contrast of the screen.
n is a digit between 1 and 4.
4 is greatest contrast.

Related Lisp functions:

See the function tv:screen-brightness, page 97.
See the function sys:console-volume, page 98.

19.12 NeTwork Key

This key is used to get the attention of the Terminal program. You must be
connected to a host via the Terminal program before you can use this key. See
the section "Connecting to a Remote Host Over the Network", page 170.

Once connected, commands are given by pressing NETWORK and another single
character.

The following commands are available:

NETWORK HELP Display the list of options for the NETWORK key.

NETWORK A Send an ATTN (in Telnet, a new Telnet "Interrupt Process").
NETWORK D Disconnect without logging out first.

NETWORK L Log out of remote host, and break the connection.

NETWORK Q Quit, by disconnecting and deselecting this window.

NETWORK M Toggle More processing.

NETWORK X Enter an extended network command; see below.

More complicated commands are entered with the extended command, NETWORK X.
This command invokes a Choose Variable Values window.

NETWORK K provides the capability to tailor the following:
e The escape character. The default is NETWORK.

e Whether characters overstrike or erase. Characters erase by default.

222

User's Guide to Symbolics Computers July 1986

e Whether More processing is enabled. More processing is enabled by default.

e Whether to enable the wallpaper facility, which logs host output to a file.
By default, wallpaper is not enabled.

e The filename of the wallpaper file.

e For Telnet, what level of filtering and interpretation is placed on the
characters; for example, whether Imlac terminal codes are interpreted in
host output.

19.13 race Key

In Zmacs (in searches and after c-0Q) this key inserts a page separator character,
which displays as PRGE in a box.

19.14 RrerresH Key

Usually erases and redisplays the selected window.

19.15 RePeaT Key

Repeats the key pressed while the REPEAT key is held down. You can press and
hold down a key and then press the REPERT key, or you can hold down the REPEART
key and press a key. Once the repetition starts, it continues until you lift your
finger from the REPEAT key. You can lift your finger from the first key and press
another while still holding down REPEAT and that key starts to repeat. Pressing
the REPERT key without pressing any other key does nothing. The REPEAT key is
enabled by default, but you can disable and re-enable it by setting the variable
si:*kbd-repeat-key-enabled-p* with setf.

si:*kbd-repeat-key-enabled-p* Variable
Controls whether or not the REPERT key is enabled. The default is t. It
can be set using setf:

(setf si:xkbd-repeat-key-enabled-px nil)
Setting si:*kbd-repeat-key-enabled-p* to nil turns off repeating using the
REPEAT key.

There are two variables to control the frequency of the repetition and the delay
before repetition starts.

223

July 1986

siz*kbd-repetition-interval* Variable
Controls the speed of repetition of characters when the REPEAT key is held
down, in sixtieths of a second. Its default is 2, which is a thirtieth of a
second between repeated characters.

si:*kbd-repeat-key-initial-delay* Variable
Controls how long you must hold down a key before repetition with the
REPERT key starts, in sixtieths of a second. The default is 0, meaning
repetition starts as soon as the REPEAT key and another key are depressed.

In addition to the REPEAT key, you can have keys repeat if they are held down.
See the section "Auto-repeat”, page 9.

19.16 ResuMe Key

Continues from the zl:break function and the Debugger. In the Terminal
program this sends a Backspace character.

19.17 RreTURN Key

"Carriage return" or end of line. The exact significance of carriage return varies
according to context.

19.18 rusout Key

Usually erases the last character typed.

19.19 scroLL Key

Scrolls the display forward. m-SCROLL scrolls it backward.

c-SCROLL Initiates scrolling of the history for the typeout window of
current window. You use this in conjunction with e-n-SCROLL
to make use of the history in your Zmacs or Zmail windows.

c-m—SCROLL Used after c-SCROLL, scrolls backward through the history of
the current typeout window. As with any dynamic window,
previous commands and arguments are mouse sensitive and can
be re-executed or used in composing new commands.

224

User’s Guide to Symbolics Computers July 1986

19.20 seLecT Key

This key is a prefix for a family of commands, generally used to select a window
of a specified type, such as a Lisp Listener or Zmail. The current list is:

X 490 v ZEr+~=mTTmBobao

Converse

Document Examiner
Editor

File system maintenance
Inspector

Lisp

Zmail

Notifications

Peek

Frame-Up

Terminal

Flavor Examiner

SELECT c- creates a new window of the specified type.

19.21 suspenp Key

SUSPEND

c—-SUSPEND

m=SUSPEND

Usually forces the process to which you are typing into a zl:break
read-eval-print loop, so that you can see what the process is doing, or
stop it temporarily. The effect occurs when the character is read, not
immediately. Press RESUME to continue the interrupted computation
(this applies to the three modified forms of the SUSPEND key as well).
While you are in the break, elements of your history in the other
window remain mouse sensitive so you can yank them into the break
for experimentation.

Like SUSPEND, but takes effect immediately rather than when it is
read. Press RESUME to continue the interrupted computation.

Forces the process to which you type it into the Debugger when it is
read. It should type out ">>BREAK:", any proceed options, and the
Debugger prompt "-3. You can examine the process, then press
RESUME or s-A to continue.

c—-m—-SUSPEND

Forces the process to which you type it into the Debugger, whether or
not it is running.

225

July 1986

19.22 symsoL Key

Acts as a modifier key to produce special characters. Pressing sy-HELP produces a
display of special function and special character keys.

19.23 118 Key

This key is only sometimes defined. Its exact function depends on context, but in
general it is used to move the cursor to an appropriate point to the right. The
LINE key is related to TAB in that LINE does a RETURN followed by a TRB. If you
change the behavior of the TAB key, the behavior of LINE can be affected.

19.24 Keys Not Currently Used

The following key currently has no function:
MODE LOCK

The following keys are reserved for use by the user (for example, for custom
editor commands or keyboard macros):

CIRCLE
SOQURRE
TRIANGLE
HYPER

226

User's Guide to Symbolics Computers July 1986

227

July 1986

20. Dictionary of Command Processor Commands

Add Paging File Command
Add Paging File pathname :prepend
Adds a pathname as a paging file.

pathname The pathname of the new paging file. The default pathname is
the disk unit from which you most recently booted. For
example, if you most recently booted from FEP1:>, the default
paging file might look like:

FEP1:>.page
keywords :prepend
:prepend {yes no} Yes means to put the paging file at the beginning of

the list of swap space to use when new space is needed. This
makes the new paging file used almost immediately. No, which
is the default, puts the paging file at the end of the list of
paging files. Consequently, this new paging file will not be used
until the previous swap space is completely used.

20.1 Clear Commands

Clear All Breakpoints Command
:Clear All Breakpoints compiled-function-spec

Clears all breakpoints in the current frame’s function or in any other compiled
function.

compiled-function-spec
The name of a compiled function in which you want to clear

breakpoints. (Default clears all breakpoints in the current
frame’s function.)

Clear Breakpoint Command

:Clear Breakpoint compiled-function pc

228

User's Guide to Symbolics Computers July 1986

Clears a breakpoint.

compiled-function The name of a compiled function in which you want to clear a
breakpoint.

pc The PC (program counter) line at which you want to clear a
breakpoint.

Suggested mouse operations

e To clear a breakpoint in a compiled function: Display disassembled code
with the :Show Compiled Code command, point the mouse at a PC (program
counter) line, and press c-m-Mouse-Middle.

e To clear a breakpoint in a code fragment: Display the code with the :Show
Source Code command, point the mouse at a code fragment, and press
c—-m—-Mouse-Middle.

Clear Output History Command
Clear Output History window

Discards the history for the specified window. This is useful for when you want
to clean up and do an incremental garbage collection.

window The window whose history to clear. The default is the current
window.

20.2 Compile Commands

Compile File Command
Compile File file-spec keywords

Compile the file designated in file-spec.

file-spec The pathname of the file to compile. The default is the usual
file default. (
keywords :Compiler, :Load, :Query
:Compiler {Lisp, use-canonical-type} The compiler to use. The default is
use-canonical-type.
:Load {yes, no, ask} Whether to load the file after compiling. The

default is yes.

229

July 1986

:Query

{yes, no, ask} Whether to ask for confirmation before compiling.
The default is no.

Compile System Command

Compile System system keywords

Compile the files that make up system.

system-spec

keywords

:Batch

:Condition

:Load

name of the system to compile. The default is the last system
loaded.

:Batch, :Condition, :Load, :New Major Version, :Query,
:Redefinitions Ok :Silent, :Simulate, :Update Directory

{yes, no} Whether to save the compiler warnings in a file
instead of printing them on the console. The default is no, to
just print them on the console. Adding the keyword :batch to
your Compile System command is the same as :batch yes.

{always, new-sourcg} Under what conditions to compile each file
in the system. Always means compile each file. New-source
means compile a file only if it has been changed since the last
compilation, The default is new-source.

{Everything, Newly-Compiled, Only-For-Dependencies, Nothing}
Whether to load the system you have just compiled into the
world. The default is Everything. The mentioned default is
Newly-Compiled.

:New Major Version

:Query

{yes, no, ask} Whether to give your newly compiled version of
the system the next higher version number. The default is yes.
Giving the choice no will ask you to confirm that you really
want to "prevent incrementing system major version number".

{Everything, Confirm-only, No} Whether to query before
compiling. Everything means query before compiling each file.
Confirm-only means create a list of all the files to be compiled
and then ask for confirmation before proceeding. No means just
go ahead and compile the system without asking any questions.
The default is Confirm-only. The mentioned default is
Everything.

230

User's Guide to Symbolics Computers July 1986

:Redefinitions Ok
{yes, no} Controls what happens if the system asks for

confirmation of any redefinition warnings during the
compilation. Yes means assume that all requests for
confirmation are answered yes and proceed. No means pause at
each redefinition and await confirmation. The default is No.
The mentioned default is Yes. This allows you to start a
compilation that you know will take a long time and leave it to
finish by itself without interruption for questions such as
"Warning: function-name being redefined, ok? (Y or N)".

:Silent {yes, no} Whether to suppress output to the console. The
default is no, to allow output. Adding the :silent keyword to
your Compile System is the same as :silent yes.

:Simulate {yes no} Print a simulation of what compiling would do. The
default is no. Adding this keyword to your Compile System
command string is the same as :simulate yes.

:Update Directory
{yes, no} Whether to update the directory of the system’s
components. The default is yes.

20.3 Copy Commands

Copy File Command
Copy File [from file-spec] [to destination-spec keywords]

Makes a copy of a file.

file-spec The pathname of the file you want to copy.

destination-spec The pathname of the location you want to put the file.

keywords :Byte Size, :Copy Properties, :Create Directories, :Mode, :Query
:Byte Size {number} Byte size in which to do the copy operation.

:Copy Properties
{list of file properties} The properties you want duplicated in the
new file. The default is author and creation-date.

:Create Directories
{yes error query-each} What to do if the destination directory
does not exist. The default is query-each.

:Mode {character binary default} The mode in which to perform the
transfer. The default is default.

231

July 1986

:Query {yes no ask} Whether to ask for confirmation before copying
each file. The default is no.

Copy Microcode Command
Copy Microcode {version or pathname} destination keywords
Installs a version of microcode.

version or pathname
Microcode version number or pathname to copy. version is a
microcode version number (in decimal). pathname rarely needs
to be supplied. It defaults to a file on FEPn:> (where n is unit
number of the boot disk) whose name is based on the microcode
name and version. (The file resides in the logical directory
sys:l-ucode;.) The version actually stands for the file
appropriate-hardware-MIC.MIC.version on FEPn:>. (See the
Section "Genera 7.0 Microcode Types" in Software Installation
Guide)

destination FEP file specification. The pathname on your FEPn:> directory.
The default is created from the microcode version.

keywords :update boot file

:update boot file
{FEP-file-spec none}. The default is the current default boot
file name.

Copy Output History Into Editor Command

Copy Output History Into Editor

Creates an editor buffer and copies the history of your interaction with the Lisp
Listener into it. This is useful if you want to edit your interaction for saving as a
text file or for hardcopying.

Copy World Command

Copy World file destination keywords

Makes a copy of a world load.

file FEP file spec. file is required (no default).
destination FEP file spec. Required when copying a world from the local

232

User's Guide to Symbolics Computers July 1986

host to another host. When copying a world to the local host
the default is same as the source file specification.

keywords :Block Count, :Start Block, :Update Boot File

:Block Count . Number of blocks to copy. The default is the length of the
band, meaning copy the entire band.

:Start Block Number of the block to start with. The default is 0, meaning
begin at the beginning.

:Update Boot file
{FEP-file-spec none}. The default is the current default boot
file name if destination is the local host.

20.4 Create Commands

Create Directory Command

Create Directory file-spec

Creates a directory for storage of files on a file system specified in file-spec.
file-spec The pathname of the directory to be created.

Create FEP File Command

Create FEP File file-spec size

Creates a file on a FEP directory on your machine.

file-spec The pathname of the file to create. The default is
FEPO:>temporary.temp.

size The size in FEP blocks of the file. You must supply this.
Use Create FEP File to do the following:

e To create an extra paging file. For example:

Create FEP File fepB:>aux.page 108000

e To allocate space into which to load a world load. For example:

Create FEP File fep@:>release-6-1.1oad 306000

233

July 1986

Create Link Command
Create Link pathname target keywords

Creates an association between one pathname and a second pathhame, called the
target. The first pathname is linked to the target so that any references to the
first pathname actually refer to the target.

pathname The pathname you want to link from. The default is the
standard file default.
target The pathname you want to link to. This pathname must exist.
There is no default.
keywords :Type
‘Type {Read-Only, Read-Write, Create-Through, All, or Use-Default}

The kind of link to create. The default is Use-Default.

20.5 Delete Commands

Delete File Command

Delete File file-spec keywords

Deletes or marks for deletion the file file-spec.

file-spec Pathname of the file to delete. The default is the usual file
default. The version defaults to newest.
keywords :Expunge, :Keep, :Query
:Expunge {yes, no,’ask}. Whether to expunge the file. The default is no.

Adding this keyword to your Delete File command is the same
as :expunge yes.

:Keep N versions. The number of versions to retain. The default is 0.

:Query {yes, no, ask} Whether to ask for confirmation before deleting
the file. The default is no.

234

User’s Guide to Symbolics Computers July 1986

Delete Printer Request Command
Delete Printer Request printer-request
Deletes the specified print request from the print queue.

printer-request A string specifying the printer and the request. The print
request should be selected with the mouse from the display of
the Show Printer Status command. See the section "Show
Printer Status Command", page 153.

20.6 Disable Commands

Disable Network Command
Disable Network network(s)
Disables the network on the local machine.

Network(s) {network, All} The network(s) to disable. The possibilities are
the networks to which your machine is connected, that is on
which it is has addresses. The default is All, meaning disable
all network service on your machine.

Disable Services Command

Disable Services service-type

Turns off service(s) on the local machine.

service-type {All-Services, Append, Chaos-Status, Converse, Lgp-Status,

Lispm-Finger, Telnet, Time} The service to turn off. The
default is All-services.

20.7 Edit Commands

Edit Definition Command
Edit Definition name
Finds the definition of the object name and puts it in an editor buffer for you to

edit. This is the same as the Zmacs command m-.. See the section "Edit
Definition" in Text Editing and Processing.

235

July 1986

name Name of the object whose definition you want to edit.
Edit Directory Command
Edit Directory directory-spec keywords

Invokes the directory editor zl:dired in Zmacs. See the section "Dired Mode in
Zmacs" in Text Editing and Processing.

directory-spec Pathname of the directory to edit. The default is the usual file

default.
keywords :0Order, :Property, :Version
.Order {alphabetical chronological}
:Property File properties to display.
:Version {all newest number} The default is all.

Edit File Command
Edit File file-spec keywords

Enters the editor and reads in file-spec.

file-spec The pathname of the file to edit. The default is the usual file
default.
keywords :Initialize
:Initialize {yes, no} Mentioned default is yes, omitted default is no.

Edit Font Command
Edit Font font
Invokes the Font Editor with font loaded to be edited.

font A font name. There is no default. Issuing the command with
no arguments invokes the font editor with no font loaded.

Edit Namespace Object Command

Edit Namespace Object class name keywords

Create or modify an object in the namespace database.

236

User’s Guide to Symbolics Computers ' July 1986
class {User Printer Network Host Site Namespace any} The kind of
object to create or edit. The default is any.
name Name of the object to create or edit. The default is any.
keywords :locally
:locally {yes no} Whether to edit only a local copy of the information for

the object. The default is no, meaning to edit the object in the
central namespace database. Mentioning :locally in your
command means yes, edit only a local copy.

20.8 Enable Commands

Enable Services Command
Enable Services service-type
Turns on service(s) on the local machine.

service-type {All-Services, Append, Chaos-Status, Converse, LGP-Status,
Lispm-Finger, Telnet, Time} The service to turn on. The
default is all-services.

Enable Network Command
Enable Network network(s)
Enables (turns on) the network(s) on the local machine.

network(s) {network, All} The network(s) to enable. The possibilities are
any of the networks to which your machine is connected, that on
which it is has addresses. The default is All, meaning enable
all network service on your machine.

20.9 Expunge Commands

Expunge Directory Command

Expunge Directory file-spec keywords

Expunges files marked for deletion.

237

July 1986

The :query option is useful for directories containing
subdirectories or if you have used a wildcard in the pathname.

file-spec The pathname of the directory to be expunged. The default is
the usual file default.
keywords :query
:query {yes no ask} Ask for confirmation before expunging the

directory. The default is no.

20.10 Find Commands

Find Symbol Command
Find Symbol name keywords

Tries to find the symbol name.

name The symbol to look for.
keywords :Package, :Type
:Package {all, package-name} The package to search for the symbol. The

default is the current package.

:Type {all-types, variable, function, flavor, resource, unbound} The type
of the symbol. The default is all-types.

Format File Command
Format File pathname keywords

Displays the contents of one or more files in formatted form, using the Document
Examiner formatter.

pathname The file or sequence of files to be formatted.
keywords :destination :page headings
:destination {screen printer} The destination for formatted output. The

default is screen. The mentioned default is the default hardcopy
text printer (the value of hardcopy:*default-text-printer®) if
that printer can handle formatted output; otherwise, the
mentioned default is the last printer used to produce formatted

238

User's Guide to Symbolics Computers July 1986

output; otherwise, there is no mentioned default. Other possible
values for printer are Remote Printer or a local supported
printer. Completion is available over the set of local supported
printers. If the value is Remote Printer, the user is prompted
for the name of a printer at any accessible site, with completion
available over the set of supported printers in the namespaces in
the namespace search list.

:page headings {yes, no} Whether to print a heading line at the top of the page.
The default is yes. The heading line consists of the word Page
followed by the page number.

Format File is similar to the Format File (n-X) Zwei command. The file to be
formatted must be a text file. It can contain the same formatting commands and
environments as files acceptable to Format File (m-X). See the section "Zmacs
Commands for Formatting Text" in Text Editing and Processing.

For example, to display a file in formatted form on the screen you might do the
following:

Format File (file) acme-blue:>project>documentation.mss

To send the same file to a printer you might do:

Format File (file) acme-blue:>project>documentation.mss (keywords)
:Destination (a destination for formatted output [default Our-Printer]) Our-Printer

20.11 Halt Commands

Halt commands shut down some activity in such a way that you can resume it.
Halt GC Command

Halt GC

Turns ephemeral and dynamic garbage collection off.
Halt Machine Command

Halt Machine

Halt Machine stops execution of Lisp and gives control to the FEP. You can now
enter Fep commands, for example, to warm or cold boot the machine.

239

July 1986

Halt Printer Command

Halt Printer printer printer-request keywords

Halts the specified printer.

printer

printer-request

keywords

:Disposition

:Reason

The name of the printer to halt.

(Optional) If the printer is printing a request when the Halt
Printer command is given, it displays the request and asks you
to confirm the halt command. If you supply a printer-request
argument and it matches the request that is printing, the
printer is halted immediately without requiring confirmation.
The print request should be selected with the mouse from the
display of the Show Printer Status command. See the section
"Show Printer Status Command", page 153.

:Disposition, :Extent, :Reason, :Starting From, :Urgency

{Delete, Hold, Restart} What to do with the request that is
printing. Delete deletes the request from the queue; you must
request it again to have it printed. Hold retains the request in
the queue but does not print it when the printer restarts.
Restart restarts printing the interrupted request from the
beginning when the printer restarts. The default is Delete.

{string} The reason for the shutdown. This appears in the
display from Show Printer Status to explain what is happening
to users. The default is "Printer suspended by operator.”

The following three keywords are related and interact to control precisely when

the printer halts.

:Extent

:Starting From

:Urgency

{Entire, Copy} The extent of the request to be cancelled. Entire
refers to the whole request. Copy refers to a single copy. In a
request for one copy of a document, Entire and Copy are
synonymous. The default is Entire.

{number} The copy number. If :Extent is Entire, this has no
meaning. If :Extent is Copy, this is the number of the copy
after which to halt the printer. The default is 0.

{Asap, After-Extent} When to halt. Asap means instantly,
ignoring any settings of :Extent and :Starting From. After-
Extent means halt based on the settings of the :Extent and
:Starting From keywords. The default is Asap.

240

User's Guide to Symbolics Computers July 1986

20.12 Hardcopy Commands

Hardcopy File Command

Hardcopy File file-spec printer keywords

Sends a file to a hardcopy device.

file-spec

printer

keywords

The pathname of the file to be printed. The default is the
usual file default.

The printer to use to output the file. The default is determined
from your init file or from the default-printer attribute for the
host in the namespace database.

:Body Character Style :Copies :Delete :Ending Page :File Types
:Heading Character Style :Orientation :Running Head
:Starting Page

:Body Character Style

:Copies
:Delete

:Ending Page

:File Types

The character style to use for printing the text of the file and
against which to merge any character styles in the file. The

default is the null style, (nil nil nil), meaning use the default
for the printer.

{number} The number of copies to print. The default is 1.

{yes, no} Whether to delete the file after it is printed. The
default is no, not to delete. Adding the :delete keyword to your
hardcopy command string is the same as :delete yes.

{number} The last physical page to print. The default is the
last page of the file. A page is defined by the presence of a
PRGE character or form feed in the file. Thus plain text files
with no page markers in them are treated as a single page,
although they take up several sheets of paper. Press format
files, on the other hand, have form feeds or PAGE characters in
them. It is important to remember that these are physical
pages and do not necessarily correspond to the page numbering
appearing in the heading. For example, the first physical page
of a press file is probably a title page and the second physical
page might be numbered i so the page numbered 1 might be the
third physical page.

{Text, Suds-Plot, Press, Lgp, Lgp2, Dmpl, Xgp or use-canonical-
type} The internal format of the contents of the file, to

241

July 1986

interpret for printing. The default is use-canonical-type,
meaning that the type is determined from the extension to the
file name.

:Heading Character Style

:Orientation

:Running Head

:Starting Page

:Title

The character style to use for the running head supplied by the
:running head keyword.

{landscape, portrait} Orientation on the paper for the output.
Portrait is left to right across the short dimension of the paper.
Landscape is left to right across the long dimension. The
default is portrait.

{none, numbered} Type of running head to print on the top of
each page. The default is numbered.

{number} The first physical page to print. The default is the
first page of the file. A page is defined by the presence of a
PAGE character or form feed in the file. Thus plain text files
with no page markers in them are treated as a single page,
although they take up several sheets of paper. Press format
files, on the other hand, have form feeds or PAGE characters in
them. It is important to remember that these are physical
pages and do not necessarily correspond to the page numbering
appearing in the heading. For example, the first physical page
of a press file is probably a cover page and the second physical
page might be numbered i so the page numbered 1 might be the
third physical page.

{string} Title to appear on the cover page to identify the output.
The default is your user name.

20.13 Help Commands

Help Command

Help keywoids

Displays a list of command processor commands.

keywords

:format

:format

{brief, detailed} The level of detail to show in the list. Brief
means that only unique command names are shown in full and
for the rest, the verb is shown with a number indicating the

242

User's Guide to Symbolics Computers July 1986

number of commands that start with that verb. Detailed means
the entire list of available commands is displayed. The default
is brief. This is the same as pressing the HELP key.

20.14 Initialize Commands

Initialize Mail Command

Initialize Mail

Reloads Zmail without disturbing the rest of the system. The state of your mail
on the machine is lost, so you only want to use this when your Zmail process is
irreparably stuck.

Initialize Mouse Command

Initialize Mouse

Restarts the mouse process.
Initialize Time Command
Initialize Time time keywords

Resets the time. You can use this function to correct the time if it appears to be
inaccurate.

time A string representing date and time. The default is obtained
from the network or from the calendar clock if there is no
network available, If the calendar clock is also being initialized,
you are prompted to enter the correct time from the keyboard.

keywords :Clock

:Clock {status-line, both, ask} The clock to update. Status-line is the
little clock in the lower left hand corner of the screen. Both
means update both the calendar clock and the status line clock.
Ask is the default. It asks you which time source to use and
updates the status line clock and asks if you also want to update
the calendar clock (unless that is the time source you are
using).

Initialize Time accepts most reasonable printed representations of date and time
and converts them to the standard internal forms. The following are
representative formats that are accepted by the parser:

243

July 1986

“March 15, 1968" "15 March 1968" “3/15/68" "3/15/1968"
*3-15-68" "3-15" "15-March-68" "15-Mar-668" "March-15-68"
“19608-3-15" “1968-March-15" "“1968-Mar-15"

“1130." "11:30" "11:38:17" "11:30 pm" "11:38 am” "1130" "113008"
"11.38" "11.30.88" "11.3" "11 pm" "12 noon"

“midnight” "m" "Friday, March 15, 1988" "6:66 gmt" "“3:80 pdt”
“15 March 68" "15 March 60 seconds”

“fifteen March 68" "the fifteenth of March, 1968;"

“one minute after March 3, 1960"

“two days after March 3, 1968"

"Three minutes after 23:59:59 Dec 31, 1959"

“now" "today" "yesterday” "two days after tomorrow”

“one day before yesterday” “the day after tomorrow”

“five days ago”

Date strings in ISO standard format are accepted also. These strings are of the
form "yyyy-mm-dd", where:
yyyy Four digits representing the year

mm The name of the month, an abbreviation for the month, or one
or two digits representing the month

dd One or two digits representing the day
Following are some restrictions on strings to be parsed:
¢ You cannot represent any year before 1900.

e A four-digit number alone is interpreted as a time of day, not a year. For
example, "1954" is the same as “19:54:80" or "7:54 pm", not the year 1954.

e The parser does not recognize dates in European format. For example,
“3/4/85" or "3-4-85" is always the same as "March 4, 1985", never
“April 3, 1985". A string like "15/3/85" is an error. In such strings, the
first integer is always parsed as the month and the second integer as the
day.

20.15 Inspect Commands

Inspect Command

Inspect object

244

User's Guide to Symbolics Computers July 1986

Displays the components of object. This is similar to Show Object but it uses the
Inspector, a window oriented program for showing data structures. It allows you
to do something to that object, such as inspect it, modify it, or give it as the
argument to a function. You exit from the Inspector by clicking the mouse on
EXIT in the Inspector menu.

object Any Lisp object. The default is "unspecified".

See the section "The Inspector” in Program Development Utilities.

20.16 Load Commands

Load File Command
- Load File file-spec keywords

Loads files into the current world.

file-spec The pathname of the file to load. More than one pathname may
be specified, separated by commas. The default is the usual file
default.
keywords :package, :query, :silently
:package package-name The package into which to load the file. The

default is the file’s "home" package.

:query {yes no ask} Whether to ask for confirmation before loading
each file. The default is no.

:silently {yes no} Whether to print a line as each file is loaded.
Load Patches Command
Load Patches system keywords

Loads patches into the current world for the indicated systems or for all systems.
See the function load-patches in Program Development Utilities.

system {All system-namel, system-name2 ... } The default is All
keywords :Query, :Save, :Show
{Query {yes no ask} Whether to ask for confirmation before loading

each patch. The default is no.

245

July 1986

:Save

:Show

{file-spec, Prompt, No-Save} The file in which to save the world
with all patches loaded. Omitting this keyword means do not
save the world. The default when this keyword is added to your
command is Prompt which means save the world and then
prompt for a pathname.

{yes no ask} Whether to print the patch comments as each
patch is loaded. The default is yes.

Load System Command

Load System system keywords

Loads a system into the current world.

system

keywords

:Condition

:Load Patches

:Query

Name of the system to load. The default is the last system
loaded.

:Condition :Load Patches :Query :Redefinitions Ok :Silent
:Simulate :Version

{always, never, newly-compiled} Under what conditions to load
each file in the system. Always means load each file. Newly-
compiled means load a file only if it has been compiled since the
last load. The default is always.

{yes, no} Whether to load patches after loading the system.
The default is yes.

{Everything, Confirm-only, No} Whether to query before loading.
Everything means query before loading each file. Confirm-only
means create a list of all the files to be loaded and then ask for
confirmation before proceeding. No means just go ahead and
load the system without asking any questions. The default is
Confirm-only. The mentioned default is Everything.

:Redefinitions Ok

{yes, no} Controls what happens if the system asks for
confirmation of any redefinition warnings during the loading
process. Yes means assume that all requests for confirmation
are answered yes and proceed. No means pause at each
redefinition and await confirmation. The default is No. The
mentioned default is Yes. This allows you to start loading a
system that you know will take a long time to load and leave it
to finish by itself without interruption for questions such as
"Warning: function-name being redefined, ok? (Y or N)".

246

User's Guide to Symbolics Computers July 1986

:Silent

:Simulate

:Version

{yes, no} Whether to turn off output to the console while the
load is going on. The default is no. Adding this keyword to
your Load System command string is the same as :silent yes.

{yes, no} Print a simulation of what compiling and loading
would do. The default is no. Adding this keyword to your Load
System command string is the same as :simulate yes.

{released, latest, newest, use-default, version-number,
version-name} Which version number to load. The default is
use-default, that is latest.

Note: This command only loads a system. If you want to compile and load a
system: See the section "Compile System Command", page 229.

20.17 Login and Logout Commands

Login Command

Login user keywords

Logs the user into Genera.

user

keywords

:host

:init file

Any string. Your user ID.
:host :init file

{local any-host-name} A particular host computer. Local as an
argument to :host is particularly useful if your namespace
system is down and you wish to log in to your Lisp Machine
without having it try to use the namespace database. The
default comes from login host for your user object in the
namespace database.

{default-init-file none} Whether to load your init file. The
default is to load your default init file. To avoid loading your
init file, use :init file none.

If someone is already logged in when you give the Login command, that user is
logged out. If this happens, you see the message

Warning -~ You are logging out from program-name

247

July 1986

Logout Command

Logout keywords

Logs you out of Genera.

keywords :Save Buffers, :Save Mail

:Save Buffers {yes, no, ask} Whether to write out modified editor buffers to
disk. The default is yes.

:Save Mail {yes, no, ask} Whether to write out modified mail buffers to
disk. The default is yes.

Monitor Variable Command
:Monitor Variable symbol keywords

Monitors the access of a special variable. This command arranges for a trap to be
signalled when any process accesses the monitored location. This command is
used to answer the question: "What program or process is reading or writing this
location in memory?”. This is particularly useful when there are several processes
sharing some data structures, and you want to debug the interactions between the
processes.

symbol The name of a symbol whose location in memory you want to
monitor. Enter the name of a symbol and, optionally, its Value-
Cell or Function-Cell. (See the :Cell keyword description below.)

keywords :Boundp, :Cell, :Locf, :Makunbound, :Read, :Write
:Boundp {Yes, No} Monitors the location for boundp operations.
(Default is No.)
:Cell {Value-Cell, Function-Cell} Specifies the cell that you want to

monitor within the location. The Debugger gives you two
choices: Value-Cell or Function-Cell. (Default is Value-Cell.)

:Locf {Yes, No} Monitors the location for locf operations. (Default is
No.)

:Makunbound {Yes, No} Monitors the location for makunbound operations.
(Default is No.)

:Read {Yes, No} Monitors the location for reads. (Default is No.)
:Write {Yes, No} Monitors the location for writes. (Default is Yes.)

248

User's Guide to Symbolics Computers July 1986

Suggested mouse operations

¢ To monitor a location: Point the mouse at a locative, structure slot, or
instance variable and press c-m-sh-Mouse-Left.

e To unmonitor a location: Point the mouse at a locative, structure slot, or
instance variable that was previously monitored and press
c-m-sh-Mouse-HMiddle.

Optimize World Command
Optimize World keywords
Optimizes the world that is currently loaded into your environment. Use this

command if you load special programs or systems in addition to the distribution by
reorganizing the world to improve paging performance.

keywords
:show

:show Displays the progress of the optimization process on the screen.

20.18 Rename Commands

Rename File Command

Rename File from-file to-file keyword

from-file The pathname of the file to be renamed. The default is the
usual file default.
to-file The new pathname. The default is the usual file default.
keyword :Query
:Query {yes, no, ask} Whether to ask for confirmation before renaming.

The default is no.
Report Bug Command
Report Bug system name

Sends a bug report. It starts up a bug mail window with the message header To:
BUG-system name. If system name is omitted, BUG-LISPM is used.

249

July 1986

20.19 Reset Commands

Reset Network Command
Reset Network

Turns your network interfaces off and back on again, and also resets the
namespace system. Turning the interfaces off and on can be useful if your
network connections appear to be stuck and nothing is being transmitted or
received. Resetting the namespace system can cure problems caused by
information related to the namespace having been corrupted on your local
machine. One symptom of that is your host repeatedly trying to connect to
another host, without success.

The Reset Network command is the same as entering (neti:general-network-reset)
followed by (neti:enable).

Reset Printer Command
Reset Printer printer printer-request keywords
Resets a printer.

printer The printer to reset.

printer-request (Optional) If the printer is printing a request when the Reset
Printer command is given, it displays the request and asks you
to confirm the reset command. If you supply a printer-request
argument and it matches the request that is printing, the
printer is reset immediately without requiring confirmation.
The print request should be selected with the mouse from the
display of the Show Printer Status command. See the section
"Show Printer Status Command", page 153.

keywords :Disposition

:Disposition {Delete, Hold, Restart} What to do with the request that is
printing. Delete deletes the request from the queue; you must
request it again to have it printed. Hold retains the request in
the queue but does not print it when the printer restarts.
Restart restarts printing the interrupted request from the
beginning when the printer restarts. The default is Delete.

Resetting is like turning the printer off and then on again except that it is done
remotely, you do not have to go over to the printer.

250

User's Guide to Symbolics Computers July 1986

20.20 Restart Commands

Restart Printer Request Command
Restart Printer Request printer-request

Restarts a print request that has not yet finished. This is useful if something
goes wrong with the printing, for example the paper is coming out crumpled.

printer-request A string specifying the printer and the request. The print
request should be selected with the mouse from the display of

the Show Printer Status command. See the section "Show
Printer Status Command", page 153.

20.21 Save Commands

Save File Buffers Command

Save File Buffers keywords

Saves your modified Zmacs file buffers on disk.
keywords :Query

:Query {yes, no, ask} The default is yes, meaning that it asks you about
each buffer before writing it out.

Save Mail Buffers Command

Save Mail Buffers keywords

Saves on disk any modified mail buffers.

keywords :expunge, :query
:expunge {yes no ask} Whether to expunge each buffer before saving.
The default is ask.
:query {yes no ask} The default is yes, meaning that it asks you about

each buffer before writing it out.

251

July 1986

Save World Command
Save World (Complete or Incremental) file-spec

Saves the current world. The system prompts (Complete or Incremental) if
Incremental Disk Save is enabled. You specify Complete to do a save of the entire
world, or Incremental to do an Incremental Disk Save. If Incremental Disk Save
is not enabled, the prompt is (Complete). You enter Complete by pressing SPACE
or by typing complete.

file-spec The pathname to use for the saved world. The default is the
FEP file specification for the local machine, based on the
version number of the current system and on whether the save
is to be complete or incremental.

20.22 Select Commands

Select Activity Command
Select Activity activity

Selects activity and makes it current.

Activity can be:

Accept Values Lisp

Converse Mail

Document Examiner Menu Program

Editor Notifications
FEP-Tape Peek

File Server Presentation Inspector
File system operations Terminal

Flavor Examiner Zmacs

Frame-Up Zmail

Inspector

20.23 Send Commands

Send Mail Command

Send Mail recipient keywords

252

User’s Guide to Symbolics Computers July 1986

Prompts for the text of a message and sends it as electronic mail to recipient.

recipient One or more electronic mail addresses of the form user or
user@host. Multiple addresses should be separated by commas.
If you supply only user, the namespace for your site is searched
to locate the proper host for that user’s mail.

keywords :Cc, :Subject

:Cc {user, user@host} One or more addresses to send a Ce, carbon
copy, of the message.

:Subject {string} A line to serve as the subject for the message.

Send Message Command

Send Message recipient

Sends a message to the specified recipient.

recipient user or user@host. The person to whom to send the message.
If @host is omitted, all Lisp machines on your network are
polled to locate user.

Send Message prompts for text to send as a Converse message. END terminates

and sends the message. This is equivalent to zl:qsend. See the section
"Converse" in Communicating with Other Users.

20.24 Set Commands

Set commands set status variables.
Set Base Command
Set Base number

Sets the input and output bases to number.

The value of zl:base is a number that is the radix in which integers and ratios
are printed in, or a symbol with a si:princ-function property. The initial value of
zl:base is 10. zl:base should not be greater than 36 or less than 2.

The printing of trailing decimal points for integers in base ten is controlled by the

value of variable *print-radix*. See the section "Printed Representation of
Rational Numbers" in Symbolics Common Lisp.

253

July 1986

The following variable is a synonym for zl:base:

print-base

number

A number in base 10. The default is 10.

Set Breakpoint Command

:Set Breakpoint compiled-function pc

Sets a breakpoint.

compiled-function The name of a compiled-function in which you want to set a

pc

keywords

:Action

:Conditional

breakpoint.

The PC (program counter) line at which you want to set a
breakpoint.

:Action, :Conditional

{Show-All, Show-Args, Show-Locals, expression} Specifies an
action to take when the breakpoint is encountered. Show-All:
Displays arguments and local variables. Show-Args: Displays
arguments and no local variables. Show-Locals: Displays only
local variables. Give an expression if you want it to be
evaluated in the lexical context of the frame. (Default is no
action. Mentioned default is Show-All)

{Always, Mode-Lock, Never, Once, expression} Executes the
breakpoint trap according to certain conditions. Always: The
breakpoint is always taken. Mode-Lock: The breakpoint is taken
only when the MODE LOCK key is depressed. Never: The
breakpoint is never taken. Once: The breakpoint is taken only
for the first time it is encountered. Give an expression if you
want it to be evaluated in the lexical context of the frame.
(Default is Always.)

Suggested mouse operations

e To set a breakpoint in a compiled function: Display disassembled code with
the :Show Compiled Code command, point the mouse at a PC line, and press
c—-m-Mouse-Lef't.

e To set a breakpoint in a code fragment: Display the code with the :Show
Source Code command, point the mouse at a code fragment, and press
c-m—Mouse-Left.

254

User's Guide to Symbolics Computers July 1986

Set Calendar Clock Command
Set Calendar Clock time
time A date and time string.

Machines in the 3600 family have a calendar clock that operates independently of
the other software timers. When you cold boot and the machine fails to get the
time from the network, it asks you to type in the time. If the calendar clock has
been set, it uses that time reading as the default. If the calendar clock has not
been set, it offers to set it to the time you enter from the keyboard.

Set Calendar Clock allows you to set this clock if you need to. If you do not
specify time, it prompts you to enter it from the keyboard or press S to use the
time in the status line. Set Calendar Clock accepts the standard formats for date
and time. See the section "Set Time Command", page 261.

Set Command Processor Command

Set Command Processor mode prompt-string

Sets the mode for the command processor.

mode

form-only Anything typed is taken as a Lisp form to be
evaluated.

form-preferred Anything typed is taken as Lisp forms unless
it is preceded by a colon (:), in which case it
is taken as a command processor command.

command-preferred
Anything typed is taken as a command
processor command unless it begins with a
left parenthesis or, in the case of a variable to
be evaluated, a comma (,) or any
nonalphabetic character.

command-only. Anything typed is taken as a command
processor command.

The default is command-preferred.

prompt-string Any string. The default for command-preferred and command-
only modes is Command: . The default for form-preferred and
form-only modes is " ". To include a space in your prompt, you
must enclose the string in double quotes. For example:

255

July 1986

Set Command Processor Command-Preferred “Command: "

Setting the prompt for a mode makes the prompt you set the default for that
mode. You can set the prompt for all modes in your init file by calling si:cp-on

Set File Properties Command
Set File Properties pathname keywords
Change the properties of a file.

pathname The file whose properties you are modifying.

keywords :Author, :Creation Date, :Delete, :Generation Retention Count
:Modification Date, :Reap, :Reason

:Author Who created this file.

:Creation Date When this file was created.

:Delete Whether or not this file can be deleted explicitly with the Delete
File command.

:Generation Retention Count
How many versions of this file to keep unmarked for deletion.
Extra copies of the file are marked for deletion.

:Modification Date
When this file was last modified.

:Reap Whether or not this file can be reaped. Reaping is deletion
under program control.
:Reason Why this file cannot be deleted.
Set GC Options Command

Set GC Options

Select options for garbage collection from a menu. The menu looks like this:

v

256

User’s Guide to Symbolics Computers July 1986

:Set GC Options
Garbage collector status:
Ephemeral GC: Off On
Garbage collector report controls:
Report the activity of the ephemeral GC: Yes No
Report the activity of the dynamic GC: Yes No
Report space reclaimed individually for each area:
Yes No Dynamic only Ephemeral only
Enable warnings, for example that the GC should be turned on: Yes No
Minimum interval between repetitions of a GC warning: Forever
Minimum adequate level of free space to suppress GC warnings: 10006600
Minimum free space to suppress warnings when ephemeral GC is on: 2000800
Ratio of free space sizes on successive GC warnings: 0.75
Bisposition of GC reports: notification

Garbage collection options:
Normal garbage collection mode: Incremental Immediate
Mode when free space is low: Turn GC off Immediate
Mode when collecting ephemeral objects: Incremental Immediate
Fraction of free space committed to the garbage collector: 1
Minimum fraction of free space GC will accept: Same

Garbage collector process controls:
Process priority for foreground operations: 5
Process priority for background operations: 0
Process priority for immediate garbage collection mode: 5
Priority of GC daemon processes: 5
Delay before warning that flipping is inhibited: 38 seconds
Time that processes wait before inhibiting flips: 5 seconds

Scavenger performance options:
Amount of “scavenger work" done with interrupts inhibited: 1824
Maximum time (microseconds) with interrupts inhibited: 500808
Number of words scavenged before turning to another region: 128
Number of pages of Copy space to prefetch: 9
Number of pages that refer to ephemeral objects to prefetch: 15
Number of pages of 01d space to prefetch: 5
Number of words to look ahead for prefetchable
01d space references: 2048
Declare pages flushable from main memory after scavenging them: Yes No

<ABORT> aborts, <END> uses these values

257

July 1986

Set Input Base Command
Set Input Base new-base

Sets the input bases to new-base.

The value of zl:base is a number that is the radix in which integers and ratios
are printed in, or a symbol with a si:prine-function property. The initial value of
zl:base is 10. zl:base should not be greater than 36 or less than 2,

The printing of trailing decimal points for integers in base ten is controlled by the
value of variable *print-radix*. See the section "Printed Representation of
Rational Numbers" in Symbolics Common Lisp.

The following variable is a synonym for zl:base:

print-base
new-base A number in base 10. The default is 10.

Since the Input Base is closely linked to the Output Base, if you set one of them,
you should set the other to the same value.

Set Lisp Context Command
Set Lisp Context lisp-syntax
lisp-syntax Zetalisp or Common-Lisp.

Sets the current context to use Zetalisp or Common Lisp syntax and sets the
current package zl-user (for Zetalisp) or cl-user (for Common Lisp). The default
is the current lisp syntax, so using the command with no arguments does not
change anything.

Set Output Base Command
Set Output Base new-base

Sets the output bases to new-base.

The value of zl:base is a number that is the radix in which integers and ratios
are printed in, or a symbol with a si:princ-function property. The initial value of
zl:base is 10. zl:base should not be greater than 36 or less than 2.

The printing of trailing decimal points for integers in base ten is controlled by the
value of variable *print-radix*. See the section "Printed Representation of
Rational Numbers" in Symbolics Common Lisp.

The following variable is a synonym for zl:base:

258

User's Guide to Symbolics Computers July 1986

print-base
new-base A number in base 10. The default is 10.

Since the Output Base is closely linked to the Input Base, if you set one of them,
you should be sure to set the other to the same value.

Set Package Command
Set Package package-name

Makes package-name the current package; in other words, the variable zl:package
is set to the package named by package-name.

package The name of a package.
Set Printer Command
Set Printer printer-name keywords

Sets the default printer for hardcopy.

printer-name The name of a supported printer that can be reached by your
machine.
keywords :Output Type

:Output Type {text bitmap both} The type of output to send to that printer.
Text means files and mail messages, bitmap means graphics and
screen hardcopy. The default is both, meaning use the same
printer for both types of output.

Set Screen Options Command
Set Screen Options

Allows you to customize your screen by selecting parameters from a menu
containing all the screen options. You select options with the mouse.

The menu looks like this:

259

July 1986

Documentation 1ine options:
Mouse documentation area height: 2
Mouse documentation area background: Black White
Mouse documentation area character style: SANS-SERIF.ROMAN.NORMAL
Interval between keyboard input and mouse motion after
which to blank documentation line: None
Interval before mouse documentation 1ine goes blank after
exiting input context: None

Status line options:
Status line time display:
[Mon 31 Jan 11:59:59] 12/31/89 23:59:53 Mon 31 Jan 11:59pm
Clock colon blink half period: 1 second
Process display: User name Process name
Machine name: Visible Invisible
Progress area character style: FIX.EXTRA-CONDENSED.NORMAL
Progress area: Wide bar No display Text and thin bar

Screen options:
Background gray pattern:
None 5.5%2 6% 7% 87 97 10% 12% HES 25% 33% 50% 75% Black White
Partially exposed window gray pattern:
None 5.572 6% 77 8% 9% 107 127 HES 25% 33% 50% 75% Black White
Interval to wait before dimming screen: 28 minutes
Dimness percentage: 8
Beep mode: Beep only Flash only Beep and flash
Screen background: Black White

Global window defaults:
End of screen action: Scroll Truncate Wrap
Amount to scroll (number of lines or screen fraction): 1
Overlap between screens when scrolling (lines): 1
Character style for prompts: NIL.NIL.NIL
Highlighting mode for highlighting menus: Inverse video box
ABORT aborts, END uses these values

20.24.1 Set Site Command
Set Site site name

Starts a dialogue to set the current site to be site name. This command is used to
configure the software and identify your machine before you use a new world load.

260

User's Guide to Symbolics Computers July 1986

It should be the first thing you type to your machine after booting the new
software.

When a new world is booted for the first time, the herald gives the machine name
as DIS-LOCAL-HOST. You are prompted in the course of the Set Site dialogue
for a name for the machine.

You need the following information to use the Set Site command:

Site name What you call the location of your machines. This might be the
name of your company, or, if you are more whimsical-minded, it
might be related to the machine names you have chosen. In the
sample dialogues, we have chosen the site name Downunder.

Name of the local host
The name of the Symbolics computer you are configuring. See
the section "Why Do You Name Machines and Printers?”, page
140. In the sample dialogues, we have chosen machine names
Koala and Kangaroo.

Name of the namespace server
The name of the machine where the namespace database is
stored.

Chaosnet address of the namespace server
The octal number that identifies the location of the namespace
server on the network. You can use Show Host machine name
or (zl:hostat "machine name") to find this number.

If you are configuring a new site, you also need:

SYS host The machine where the sources are to be stored.

Host for bug reports
The machine to which bug reports are to be sent.

SYS:SITE; directory translation
The physical pathname that sys:site; translates to on the sys
host. See the section "What is a Logical Pathname?", page 139.
In the sample dialogues, this is

koala:>sys>site>

System account The user-id that the system uses when a server logs into a
machine. In the sample dialogues, we have chosen Wombat.

261

July 1986

Set Stack Size Command
:Set Stack Size stack-type stack-size
Sets the size of a stack.

stack-type The type of the stack. Enter Control, Binding, or Data.
(Default is Control.)

stack-size The size of the stack. Enter a number of machine words that
represents the stack size.

Set Time Command
Set Time time

Sets the local time on your machine. This allows you to set the time that appears
in the lower left hand corner of the status line if you need to. If you do not
specify a time, you are prompted to enter the time from the keyboard. The
default is constructed from the status line time.

time A date and time string.

Set Time accepts most reasonable printed representations of date and time and
converts them to the standard internal forms. The following are representative
formats that are accepted by the parser:

“March 15, 1968 "15 March 1968" "3/15/68" "3/15/1968"
“3-15-68" "3-15" "15-March-68" "15-Mar-68" "March-15-68"
“1960-3-15" "1968-March-15" "1968-Mar-15"

"113@8." “11:38" "11:38:17" "11:30 pmn" "11:38 am" "11368" "113008"
“11.30" "11.38.08" "11.3" "11 pm" "12 noon”

"midnight" "m" “Friday, March 15, 1988" "6:00 gmt" "3:08 pdt”
“15 March 608" "15 March 68 seconds”

"fifteen March 68" "the fifteenth of March, 1968;"

“one minute after March 3, 1968"

“two days after March 3, 1968"

“Three minutes after 23:59:59 Dec 31, 1959"

“now” "today" "yesterday" "two days after tomorrow"

“one day before yesterday" "the day after tomorrow"

"five days ago”

Date strings in ISO standard format are accepted also. These strings are of the
form "yyyy-mm-dd“, where:

yyyy Four digits representing the year

262

User's Guide to Symbolics Computers July 1986

mm The name of the month, an abbreviation for the month, or one
or two digits representing the month

dd One or two digits representing the day
Following are some restrictions on strings to be parsed:
¢ You cannot represent any year before 1900.

e A four-digit number alone is interpreted as a time of day, not a year. For
example, "1954" is the same as "19:54:08" or “7:54 pm", not the year 1954.

e The parser does not recognize dates in European format. For example,
"3/4/85" or "3-4-85" is always the same as “March 4, 1985", never
"April 3, 1985". A string like "15/3/85" is an error. In such strings, the
first integer is always parsed as the month and the second integer as the
day.

Set Window Options Command
Set Screen Options

Displays a menu of the settable options for the current window. See the section
"Using Menus", page 29.

More processing enabled: Yes No

Reverse video: Yes No

Vertical spacing: 2

Deexposed typein action: Wait until exposed Notify user
Deexposed typeout action: Wait until exposed Notify user Let it happen Signal error
ALU function for drawing: Ones Zeroes Complement

ALU function for erasing: Ones Zeroes Complement
Screen manager priority: None

Save bits: Yes No

Default character style: FIX.ROMAN.NORMAL

Echo character style: NIL.NIL.NIL

Typein character style: NIL.NIL.NIL

End of screen action: Default Scroll Truncate Wrap
Amount to scroll by: Default

<Abort> aborts, <End> uses these values

Other

263

July 1986

20.25 Show Commands

Show commands allow you to request informational displays of all kinds. These
displays are mouse sensitive when appropriate and can be used in composing other
commands. For example, after a Show Directory display, the individual pathnames
in the directory can be selected as arguments to a Show File command.

Show Command Processor Status Command

Show Command Processor Status

Displays the current mode of the Command Processor and the current prompt. It
also displays the prompts for the other modes. For example:

The command processor’s current mode is
Form Preferred: Interprets input starting with an alphabetic
character as Lisp;
type an initial : to force command interpretation.

The prompt string is "->".

The prompt strings for other modes are:

Command Preferred: "Command: *“
Form Only: "
Command Only: "Command: “

Show Directory Command
Show Directory pathname keywords

Displays a directory listing. The default for name, type, and version of pathname
is :wild. The format of the listing varies with the operating system.

pathname The pathname of the directory to list. The default is the usual
file default.
keywords :Before, :Order, :Output, :Since, :Size
:Before a date. Show only those files created prior to this date.
:Order {oldest-first smallest-first largest-first newest-first standard}

Show files in this order. The default is standard, which is
usually alphabetical.

:Output Destination
{buffer file stream window} Where to display the information.
The default is the current window.

264

User's Guide to Symbolics Computers July 1986
:Since a date. Show only those files created after this date.
:Size Show only those files the same size or larger than N blocks.

The default is 0, meaning that all files will be listed, even if
they are empty.

Show Disabled Services Command

Show Disabled Services

Shows you which services are disabled (with the Disable Services Command).
Show Documentation Command

Show Documentation topic keywords

Displays the documentation for fopic. If you omit fopic, you are prompted for it.
If topic is more than one word, it must be enclosed in double-quotes:

Show Documentation (for topic) "The Document Examiner"”
keywords :destination

:destination {screen, "remote printer", or printer name}. Where to display
(print) the documentation. Entering "remote printer" prompts
for the name of a printer. You can also give the name of a
local supported printer explicitly. Names containing spaces
must be enclosed in double-quotes. The default is to display the
documentation on the screen. Mentioning the :destination
keyword changes the default to the default hardcopy device, if it
is a supported printer, or to the supported printer most recently
used for formatted output.

See the section "Using the Online Documentation System", page 43.
Show Expanded Lisp Code Command

Show Expanded Lisp Code form keywords

Shows the lisp definition of form.

form {macro name None} The Lisp form whose code to expand.
Specifying None causes the command to prompt you for a macro
form to evaluate just as if you had used (mexp). See the
function mexp in Symbolics Common Lisp.

keywords :As If Compiler :Constant Folding :Expand :Output Destination
:Repeat :Whole Form

265

July 1986

:As If Compiler {yes no} Does everything the compiler would do to the
form. The default is no. The mentioned default is yes.

:Constant Folding {yes no} Does any constant computations, arithmetic for
instance, that will not change and thus can be done now.
The default is no. The mentioned default is yes.

:Expand {macros inline-functions style-checkers optimizers constants}
Does macro expansion. The default is to expand inline-
functions and macros.

:Repeat {yes no} Takes the output and operates on it again to
expand it fully. The default is no. The mentioned default
is yes.

:Whole Form {yes no} Expands recursively until the innermost code loop

is expanded. The default is yes.

Example:

Show Expanded Lisp Code (defmacro form ()())

(PROGN (SI :DEFMACRO~CLEAR-INDENTATION-FOR-ZWEI ’FORM)
(MACRO FORM (SI:.FORM. SI:.ENV.)
(DECLARE (ARGLIST))
(BLOCK FORM
(TAGBODY
(LETx NIL
(AND (CDR SI:.FORM.)
(GO #:61227))
(IGNORE SI:.ENV.)
(RETURN-FROM FORM
(PROGN NIL)))
#:61227 (RETURN-FROM FORM
(SI:DEFMACRO-ARGUMENT-ERROR *FORM ’NIL SI:.FORM.))))))

Show Expanded Mailing List Command
Show Expanded Mailing List electronic-mailing-list keywords
Shows the list of individuals who receive messages sent to a mailing list.

electronic-mailing-list
The name of a mailing list (from the file
>mail>static>mailboxes. text)

keywords :All Levels :Matching :Output Destination

266

User's Guide to Symbolics Computers July 1986

:All Levels {yes no} Whether to show the expansion of mailing lists that
are included in the selected mailing list. The default is yes,
expand all lists down to individuals.

:Matching {string} Shows only those names on the mailing list matching
string.

:Output Destination
{buffer file stream window} Where to display the information.

Show FEP Directory Command
Show FEP Directory host unit keywords

Displays a description of the FEP files on unit.

host A host on the network. The default is local.

unit {disk-unit-number All} The default is All. disk-unit-number is
an integer, interpreted as a disk unit number on the specified
host.

Show FEP Directory first displays an estimate of the number of free blocks and
the proportion of blocks used on unit. It then displays a summary of the files on
unit, one line per file. For each file, it displays the file name, the length in
blocks, the creation date, the comment, and the author.

Show File Command
Show File file-spec

Displays a file on the screen. If there is more than one screenful, it pauses
between screenfuls displaying --More-- at the bottom.

file-spec The pathname of the file to be printed. The default is the
usual file default.

20.25.1 Show Flavor Commands

The following commands show attributes of a flavor, generic function, method, or
handler. Only those keywords that are specific to each command (or have a
different meaning for each command) are explained in the command descriptions.
For an explanation of any keywords not covered in the command descriptions: See
the section "Keyword Options for Show Flavor Commands" in Symbolics Common
Lisp.

267

July 1986

Show Flavor Components Command
Show Flavor Components flavor keywords
Shows the order of the components of this flavor.

keywords :brief, :detailed, :duplicates, :functions, :initializations, :instance
variables, :match, :methods, and :output destination. See the
section "Keyword Options for Show Flavor Commands” in
Symbolics Common Lisp.

:duplicates {yes, no} Indicates whether or not to display duplicate
occurrences of flavors. The default is no.

:brief {yes, no} yes indicates that the output should not be indented to
show the structure. The default is no.

The flavor components are ordered from top to bottom. The top flavor is the most
specific flavor in the ordering. The indentation graphically represents which
flavors are components of which other flavors. In the example below,
tv:minimum-window has six direct components: tv:essential-expose,
tv:essential-activate, tv:essential-set-edges, tv:essential-mouse,
tv:essential-window, and flavor:vanilla.

When you use the :duplicates keyword and show the components of complex
flavors, you notice special symbols in the display. For example:

Command: Show Flavor Components TV:MINIMUM-WINDOW :Duplicates
-=> TV:MINIMUM-WINDOW
TV:ESSENTIAL-EXPOSE
[TV:ESSENTIAL-WINDOW] {
TV:ESSENTIAL-ACTIVATE
[TV:ESSENTIAL-WINDOW] {
TV:ESSENTIAL-SET-EDGES
[TV:ESSENTIAL-WINDOW] 4
TV:ESSENTIAL-MOUSE
TV:ESSENTIAL-WINDOW
TV:SHEET
SI:0UTPUT-STREAM
SI:STREAM
FLAVOR: VANILLA

Bracketed flavors are duplicates that are included by the parent flavor here, but
are not ordered in this position because of some ordering constraint. They appear
in another place in the display without brackets, in their correct order. All
bracketed components have an arrow beside them. A down-arrow indicates that

268

User's Guide to Symbolics Computers July 1986

this component’s position in the ordering is later in the display. An up-arrow
indicates that this component’s position in the ordering is earlier in the display;
these occurrences are infrequent.

For example, the flavor tv:essential-window is a component of four other
components: tv:essential-expose, tv:essential-activate, tv:essential-set-edges, and
tv:minimum-window itself. Its correct position in the ordering is directly after
tv:essential-mouse, where it appears without brackets.

You can read the order of flavor components by reading all unbracketed flavors
from top to bottom, ignoring punctuation. If :duplicates is no, this is all that is
displayed.

For information on how the order is determined: See the section "Ordering Flavor
Components" in Symbolics Common Lisp.

Show Flavor Dependents Command
Show Flavor Dependents flavor keywords
Shows the names of flavors that are dependent on this flavor.

keywords :brief, :detailed, :duplicates, :functions, :initializations, :instance
variables, :levels, :match, :methods, :output destination. See the
section "Keyword Options for Show Flavor Commands" in
Symbolics Common Lisp.

:brief {yes, no} yes indicates that the output should not be indented to
show the structure. The default is no.

:duplicates {yes, no} Indicates whether or not to display duplicate
occurrences of flavors. The default is no.

:levels {all, integer} Specifies how many levels of indirect dependency to
display. The default is all, which shows all levels. For some
flavors the output can be voluminous, and it is helpful to use
:levels to pare it down.,

A dependent flavor is a flavor that uses this flavor as a component (directly or
indirectly). This is useful in program development or debugging, to answer the
question "What flavors will be affected if I change the definition of this flavor?"
For example:

269

July 1986

Command: Show Flavor Dependents TV:SCROLL-WINDOW-WITH-DYNAMIC-TYPEOUT
—--> TV:SCROLL-WINDOW-WITH-DYNAMIC-TYPEOUT
TV:BASIC-PEEK
TV:PEEK-PANE
TV:BASIC-TREE-SCROLL
LMFS:AFSE-MIXIN
LMFS:FSMAINT-AFSE-PANE
LMFS :FSMAINT-HIERED-PANE
TV:MOUSABLE-TREE-SCROLL-MIXIN
TV:TREE-SCROLL-WINDOW

The output is indented to clarify which flavor is built on which component flavors.
The structure of the output is the inverse of the output of Show Flavor
Components. In this example, tv:basic-peek is a direct dependent of
tv:scroll-window-with-dynamic-typeout, and tv:peek-pane is a direct dependent
of tv:basic-peek.

Show Flavor Differences Command
Show Flavor Differences flavorl flavor2 keywords

Shows the characteristics that two flavors have in common, and the characteristics
in which they differ.

keywords :match and :output destination. See the section "Keyword
Options for Show Flavor Commands" in Symbolics Common Lisp.

:match {string} Displays only those generic functions or messages that
match the given substring.

This is most useful for two flavors that share many characteristics. Here is some
sample output:

Command: Show Flavor Differences TV:ESSENTIAL-WINDOW TV:MINIMUM-WINDOW
-=> TV:ESSENTIAL-WINDOW and TV:MINIMUM-WINDOW have
common components:
flavors...
TV:MINIMUM-WINDOW has other components:
flavors...

Differences in :ACTIVATE methods from TV:ESSENTIAL-WINDOW
to TV:MINIMUM-WINDOW
TV:SHEET before, primary,
TV:ESSENTIAL-ACTIVATE after [added]

270
User's Guide to Symbolics Computers July 1986

Differences in handling of :BURY
Flavor TV:ESSENTIAL-WINDOW does not handle :BURY
Methods of TV:MINIMUM-WINDOW:
TV:ESSENTIAL-EXPOSE wrapper, TV:ESSENTIAL-ACTIVATE
more differences...

First, the common components are displayed. Second, the extra components of
either (or both) flavors are displayed. Third, any differences in handling of
generic functions are displayed.

In this example, tv:minimum-window has one method for :activate that
tviessential-window does not have: an :after method provided by flavor
tv:essential-activate. The term [added] indicates that this method is defined for
the second flavor but not for the first flavor. If the command had been given
such that flavor-1 was tv:minimum-window and flavor-2 was tv:essential-window,
the term would have been [deleted]. To interpret which flavor "adds" or
"deletes" a method, look at the line that defines the perspective: "Differences in
:ACTIVATE methods from TV:ESSENTIAL-WINDOW to TV:MINIMUM-WINDOW".

When comparing two complex flavors, the output can be voluminous. You can use
:match to pare down the output so it answers a specific question. For example:

Command: Show Flavor Differences DYNAMIC-LISP-LISTENER SHEET :Match
screen
--> information about common and different components...

Difference in handling of :FULL-SCREEN
Method of DW::DYNAMIC-LISP-LISTENER: TV:ESSENTIAL-SET-EDGES
Flavor TV:SHEET does not handle generic operation :FULL-SCREEN

another difference...

5 Tocal functions found with no differences:
TV :SCREEN-MANAGE-RESTORE-AREA
TV:SCREEN-MANAGE-CLEAR-AREA
TV:SCREEN-MANAGE-CLEAR-UNCOVERED-AREA
TV:SCREEN-MANAGE-CLEAR-RECTANGLE
TV:SCREEN-MANAGE-MAYBE-BLT-RECTANGLE

120 differing local functions were found that did not
contain the substring “screen”.

Show Flavor Handler Command
Show Flavor Handler generic-function flavor keywords

Provides information on the handler that performs generic-function on instances of
flavor.

271

July 1986
keywords :code and :output destination. See the section "Keyword Options
for Show Flavor Commands" in Symbolics Common Lisp.
:code {yes, no, detailed} Specifies whether the Lisp code of the

handler should be displayed. The default is no. Yes displays a
template that resembles the actual code of the handler.
Detailed displays the actual code of the handler. This displays
some internal functions and data structures of the Flavors
system. For most purposes, yes is more useful than detailed.

If the handler is a single method (not a combined method), its function spec is
given:

Command: Show Flavor Handler CHANGE-STATUS CELL
--> The handler for CHANGE-STATUS of an instance of CELL is
the method (FLAVOR:METHOD CHANGE-STATUS CELL).
The method-combination type is :AND :MOST-SPECIFIC-LAST.

If the handler is a combined method, the method combination type and order of
methods are displayed. In the following example, the methods used in the
combined method are represented by the names of the flavors that implement
them. Even in this abbreviated format, the representation of the method is
mouse-sensitive.

Command: Show Flavar Handler CHANGE-STATUS BOX-WITH-CELL
--> The handler for CHANGE-STATUS of an instance of
BOX-WITH-CELL is a combined method, with
method-combination type :AND :MOST-SPECIFIC-LAST.
The methods in the combined method, in order of
execution, are: CELL, BOX-WITH-CELL

For combined methods, :code yes is useful. It requests a template that resembles
the actual code of the handler:

Command: Show Flavor Handler CHANGE-STATUS BOX-WITH-CELL :Code yes
--> The handler for CHANGE-STATUS of an instance of

BOX-WITH-CELL is a combined method, with

method-combination type :AND :MOST-SPECIFIC-LAST.

(DEFUN (FLAVOR:COMBINED CHANGE-STATUS BOX-WITH-CELL)
(SELF SYS:SELF-MAPPING-TABLE FLAVOR::.GENERIC.
&REST FLAVOR::DAEMON-CALLER-ARGS.)

(AND call (FLAVOR:METHOD CHANGE-STATUS CELL)
call (FLAVOR:METHOD CHANGE-STATUS BOX-WITH-CELL)))

272

User's Guide to Symbolics Computers July 1986

Show Flavor Initializations Command

Show Flavor Initializations flavor keywords

Shows the initialization keywords accepted by make-instance of this flavor, and
any default initial values.

keywords

:detailed

:locally

:match

For example:

:detailed, :locally, :match, :sort, and :output destination. See the
section "Keyword Options for Show Flavor Commands" in
Symbolics Common Lisp.

{yes, no} The default is no, which requests the allowed
initialization keywords that can be given to make-instance of
this flavor, including init keywords and initable instance
variables. If :detailed is yes, any additional instance variables
are also shown; these are not initable instance variables. They
are initialized by default values given in the defflavor form.
Also, any initialization methods are shown. In other words,
when :detailed is no, you see the initializations from an external
perspective (useful for making an instance). When :detailed is
yes, you see the initializations from an internal perspective and
gain information about how the flavor is constructed internally.

{yes, no} If yes, inherited initializations are not shown. The
default is no, which requests all initializations defined for this
flavor or inherited by this flavor.

{string} Requests only those initializations matching the given
substring.

273

July 1986

Command:
-

Show Flavor Initializations BOX-WITH-CELL :Detailed
Instances of BOX-WITH-CELL are created in the default area
Another area can be specified with the keyword :AREA
Initialization keywords that initialize

instance variables:
:BOX-X — BOX-X
:BOX-Y — BOX-Y
:SIDE-LENGTH — SIDE-LENGTH, default is xSIDE-LENGTHx
:STATUS — STATUS, default is (IF (EVENP (RANDOM 2))

’:ALIVE ’:DEAD)

X = X
Y > Y

Initialization method:

MAKE-INSTANCE method: BOX-WITH-CELL

Show Flavor Instance Variables Command

Show Flavor Instance Variables flavor keywords

Shows the state maintained by instances of the given flavor.

keywords

:detailed

:locally

:sort

For example:

:detailed, :locally, :match, :output destination and :sort. See the
section "Keyword Options for Show Flavor Commands" in
Symbolics Common Lisp.

{yes, no} If yes, the attributes of the instance variables are
shown, such as their accessibility or initializations. The default
is no.

{yes, no} If yes, inherited instance variables are not shown.
The default is no, which shows all instance variables defined for
this flavor or inherited by this flavor.

{alphabetical, flavor} If flavor, each instance variable is
displayed along with the component flavor that provides it. The
default is alphabetical.

Command: Show Flavor Instance Variables CELL
~-> NEIGHBORS

NEXT-STATUS
STATUS

274
User's Guide to Symbolics Computers July 1986

Show Flavor Methods Command
Show Flavor Methods flavor
Displays all methods defined for the given flavor.

Keywords :locally, :match, :output destination, and :sort. See the section
"Keyword Options for Show Flavor Commands" in Symbolics
Common Lisp.

:locally {yes, no} If yes, inherited methods are not shown. The default
is no, which shows all methods defined for this flavor or
inherited by this flavor.

:match {string} Requests only those methods for generic functions that
match the given string.

Each line of output contains the name of the generic function, followed by the
name of each flavor that provides a method for the generic function. If the
method is not a primary method, its type is also displayed.

Command: Show Flavor Methods BOX-WITH-CELL
--> ALIVENESS method: CELL
CHANGE-STATUS: methods: CELL, BOX-WITH-CELL
COUNT-LIVE-NEIGHBORS method: CELL
:DESCRIBE method: FLAVOR:VANILLA
others...

This command is similar to Show Flavor Operations. See the section "Show
Flavor Operations Command", page 274. The difference between the two
commands is in the perspective:

Show Flavor Methods displays information from ar,internal perspective, answering
the question: What methods are defined for this flavor, or inherited from its
component flavors?

Show Flavor Operations displays information from an external perspective,
answering the question: What operations (generic functions and messages) are
supported by instances of this flavor?

Show Flavor Operations Command
Show Flavor Operations flavor keywords

Shows all operations supported by instances of the given flavor, including generic
functions and messages.

275

July 1986
keywords :detailed, :match, and :output destination. See the section
"Keyword Options for Show Flavor Commands" in Symbolics
Common Lisp.
:detailed {yes, no} If yes, the display shows the arguments of each
operation. The default is no.
:match {string} Shows only those operations matching the given

substring.

For example:

Command: Show Flavor Operations BOX-WITH-CELL
--> ALIVENESS
CHANGE-STATUS
COUNT-LIVE-NEIGHBORS
:DESCRIBE
MAKE-INSTANCE
SYS:PRINT-SELF (:PRINT-SELF)
others...

One of the operations can be performed by using the generic function
sys:print-self or sending the message :print-self. This operation was defined with
defgeneric, using the :compatible-message option.

This command is similar to Show Flavor Methods. See the section "Show Flavor
Methods Command"”, page 274. The difference between the two commands is in
the perspective:

Show Flavor Operations displays information from an external perspective,
answering the question: What operations (generic functions and messages) are
supported by instances of this flavor?

Show Flavor Methods displays information from an internal perspective, answering
the question: What methods are defined for this flavor, or inherited from its
component flavors?

Show Flavor Functions Command
Show Flavor Functions flavor keywords
Shows internal flavor functions for the given flavor.

keywords :locally, :match, :output destination, and :sort. See the section
"Keyword Options for Show Flavor Commands" in Symbolics
Common Lisp.

:locally {yes, no} If yes, inherited internal flavor functions are not

276

User's Guide to Symbolics Computers July 1986

shown. The default is no, which shows all internal flavor
functions defined for this flavor or inherited by this flavor.

:match {string} Displays only those internal functions that match the
given substring.

Internal flavor functions are defined by defun-in-flavor, defmacro-in-flavor, and
defsubst-in-flavor. See the section "Defining Functions Internal to Flavors" in
Symbolics Common Lisp.

Command: Show Flavor Functions TV:MAKE-WINDOW
--> TV:ADJUST-MARGINS
SI:ANY-TYI-CHECK-EOF
SI:ASSURE-INSIDE-INPUT-EDITOR
others...

Show Generic Function Command
Show Generic Function operation keywords

Shows information on the given operation, which can be a generic function or
message.

keywords :flavors, :methods and :output destination. See the section
"Keyword Options for Show Flavor Commands" in Symbolics
Common Lisp.

:methods {yes, no} yes displays all methods for the generic function, and
their types.
:flavors {yes, no} yes displays the flavors that implement methods for

the generic function.

For example:

Command: Show Generic Function CHANGE-STATUS
--> Generic function CHANGE-STATUS takes arguments: (CELL-UNIT)
This is an explicit DEFGENERIC in file SYS:EXAMPLES;FLAVOR-LIFE.
Method-combination type is :AND :MOST-SPECIFIC-LAST.

Show Font Command
Show Font font

Displays all characters of the font. You can get a list of the fonts loaded by
pressing HELP after typing Show Font or by clicking on List Fonts in the font
editor. You enter the font editor by using the Edit Font command with no
arguments.

font Font name.

277

July 1986

Show GC Status Command

Show GC Status

Displays statistics about the garbage collector.
Show Herald Command

Show Herald keywords

Displays the herald message. The herald is part of the screen display on a cold
booted machine. It shows you the name of the FEP file or partition for the
current world load, any comment added to the herald, a measure of the physical
memory and swapping space available, the versions of the systems that are
running, the site name, and the machine’s own host name.

keywords :Detailed,:Output Destination

:Detailed {yes no} Whether or not to print the version information in full
detail. The default is no.

:Output Destination
{buffer file printer stream window} Where to display the
information. The default is the current window.

Show Hosts Command
Show Hosts host-spec

Asks each of the hosts for its status, and prints the results. If no hosts are
specified, asks all hosts on the Chaosnet. Hosts can be specified by either name
or octal number.

For each host, a line is displayed that either says that the host is not responding
or gives metering information for the host’s network attachments. If a host is not
responding, probably it is down or there is no such host at that address. A Lisp
Machine can fail to respond if it is looping inside without-interrupts or paging
extremely heavily, such that it is simply unable to respond within a reasonable
amount of time.

host-spec A host or list of hosts (names or network addresses) or sites,
separated by commas.

278

User's Guide to Symbolics Computers July 1986

For example:

Show Hosts Wombat
Show Hosts chaos|23557
Show Hosts Wombat,Kangaroo,Wallaby

The display looks like this:
Chaosnet host status report. Type Control-Abort to quit.

Site Name/Status Subnet #-in #-out abort lost crc ram bitc other

23557 Wombat 51 4615995 89709 B 22 8214524 87749784 919

Site The chaosnet address of the host, in this case 23557.

Name/Status The name of ths host, in this case Wombat.

Subnet For sites with large networks, the number of the subnet on
which host resides, in this case 51.

#-in The number of chaosnet packets received by host since it was
cold booted last.

#-out The number of chaosnet packets transmitted by host.

abort The number of packets host attempted to send but was
unsuccessful due to network collisions.

lost The number of incoming packets that host was forced to discard.

cre Cyclic Redundancy Check. The number of packets that failed

this check, because they were damaged either in transmission or
by host when they were received.

ram Random Access Memory. The number of hardware memory
errors host has experienced, in this case 0.

bite Bit Count. The number of packets whose actual bit count did
not match the bit count recorded for them.

other Other errors.

Show Legal Notice Command

Show Legal Notice
Displays the Symbolics Legal Notices, such as copyrights and trademarks.

Show Lisp Context Command

Show Lisp Context

Displays the currently enabled lisp context (Zetalisp or Common-Lisp), the current
package, and the current input and output bases. For example:

Zetalisp syntax is now enabled.
Package is USER; Input base is 18; Output base is 10.

279

July 1986

Show Login History Command
Show Login History

Prints one line for each time the login command has been used since the world
was last cold booted. It also shows the logins done during the creation of the
world load. Each line contains the name of the user who logged in, the name of
the machine on which the world load was running at that time, and the date and
time. This command also shows the name of an init file, if one was loaded. If
you cold boot, log in, and then do Show Login History, the last line refers to your
own login and all previous lines refer to logins that were done before doing Save
World (or running zl:disk-save).

This information is useful to determine how many times a world load has been
disk-saved, on what machines it was disk-saved, and who disk-saved it.

The first couple of lines do not contain any date or time, because they were made
during the initial construction of the world load before it found out the current
time. Names of users at other sites that are not in the local site’s namespace
search list are qualified with the site’s namespace name and a vertical bar. The
user LISP-MACHINE is the dummy user used by si:login-to-sys-host when new
world loads are created.

Show Machine Configuration Command
Show Machine Configuration host

Shows the board-level hardware information about any 3600-family machine on the
same network as your machine.

host The name of a 3600-family machine. The default is your
machine.

This information is useful for service personnel. You might be asked for the
machine serial number (in line 3) if you call Symbolics Software Support. The
display from Show Machine Configuration looks like this:

280

User's Guide to Symbolics Computers July 1986

:Show Machine Configuration (A host) acme-sling-shot
Chassis (PN 178219, Serial 238) in Chassis or NanoFEP:

Manufactured on 1/106/85 as rev 1, functions as rev 1, ECO level 8

Machine Serial Number: 4185
Datapath (PN 170032, Serial 1253):

Manufactured on 9/28/83 as rev 3, functions as rev 3, ECO level 0O
Sequencer (PN 176842, Serial 2576):

Manufactured on 4/21/85 as rev 4, functions as rev 4, ECO level O
Memory Control (PN 1780652, Serial 1381) in Memory Control or IFU:

Manufactured on 12/3/83 as rev 5, functions as rev 5, ECO level @
Front End (PN 170862, Serial 2388) in FEP:

Manufactured on 2/1/84 as rev 5, functions as rev 5, ECO level 8
512K Memory (PN 170002, Serial 1258) 1in LBus slot 08:

Octal Base address: @

Manufactured on 3/2/84 as rev 2, functions as rev 2, ECO level O
512K Memory (PN 178882, Serial 2572) in LBus slot 81:

Octal Base address: 2000000

Manufactured on 2/22/85 as rev 2, functions as rev 2, ECO level @
512K Memory (PN 178882, Serial 148) in LBus slot 82:

Octal Base address: 4888009

Manufactured on 1/19/83 as rev 2, functions as rev 2, ECO Tevel O
I0 (PN 178157, Serial 356) in LBus slot 03:

Octal Base address: 6600009

Manufactured on 9/22/84 as rev 6, functions as rev 6, ECO level O
512K Memory (PN 178682, Serial 2932) 1in LBus slot 04:

Octal Base address: 10008000

Manufactured on 4/11/85 as rev 2, functions as rev 2, ECO level 8
FEP Paddle Card (PN 178869, Serial 943) 1in FEP -- PADDLE side:

Manufactured on 3/21/85 as rev 1, functions as rev 1, ECO level ©
10 Paddle Card (PN 178245, Serial 3) in LBus slot 83 -- PADDLE side:

Manufactured on 4/28/84 as rev 1, functions as rev 1, ECO level 8

Ethernet Address: ©88-68-85-83-18-080

Monitor Type: Philips

Show Mail Command
Show Mail file-spec

Displays your mail inbox on the screen. If there is more than one screenful, it
pauses between screenfuls displaying --More-- at the bottom.

file-spec The pathname of the mail inbox to be read. The default is the
default inbox.

281

July 1986

Show Monitored Locations Command

:Show Monitored Locations

Displays all of variables and other locations in memory that you are monitoring

via the :Monitor Variable command, the dbg:monitor-location function, and so on.

Show Namespace Object Command

Show Namespace Object class name keywords

Shows the information in the namespace database for name.

class
User, Network, and Printer.
name
keywords :Locally
:Locally

Here is what the namespace object for a user might look like:

The type of object. Possible types are: Host, Site, Namespace,

The name of the object, that is a user-id, the name of a
machine, or the name of the site or namespace.

{yes, no} Whether to show the information cached in the local

machine or to consult the namespace server. The default is no,

to consult the server. The mentioned default is yes.

Command: Show Namespace Object User KJONES

View in namespace ACME:

USER KJONES

LISPM-NAME KJones
PERSONAL-NAME “Jones, Kingsley"
HOME-HOST ACME

MAIL-ADDRESS kjones ACME
LOGIN-NAME kjones VAX81
NICKNAME King

WORK-ADDRESS "Building 3-761"
WORK-PHONE 5891

BIRTHDAY “19 June”

PROJECT Database

SUPERVISOR “Finklestein”

USER-PROPERTY :USUAL-LOGIN-HOST wombat

282

User's Guide to Symbolics Computers July 1986

Show Notifications Command
Show Notifications keywords

Re-displays any notifications that have been received. Notifications are
asynchronous messages from Genera.

keywords :before,:from,:matching,:newest,:oldest,:since,:through

:before A date to serve as one limit for notifications to show:
:before 11/1/84
:from A number to use as the first notification to show.

:matching A string to search for. Only show notifications that contain
that string:

:matching hardcopy

:newest A number of notifications to show, for instance, the ten most
recent ones:

:newest 10
Using this keyword without a number is the same as :newest 1.

:oldest A number of notifications to show, for instance, the ten earliest
ones:

:oldest 10

Using this keyword without a number is the same as :oldest 1.

:since A date to serve as one limit for notifications to show.
:through A number to use as the last notification to show:
:through 17

Using the Show Notifications command with no keyword arguments means show
all notifications in reverse chronological order (most recent first).

Show Object Command
Show Object name keywords

Show Object tries to tell you all the interesting information about any object
(except for array contents). Show Object knows about areas, structures, packages,
pathnames, systems, variables, functions, flavors, and resources. It displays the
attributes of each. Show Object symbol will tell you about symbol’s value, its
definition, and each of its properties.

283

July 1986
name Any Lisp object.
keywords :Type
‘Type {all, area, structure, partition, package, logical-host, pathname

system, variable, function, flavor, resource}. The default is all.
Show Printer Defaults Command

Show Printer Defaults

Displays the current default printer(s). If you send all your hardcopy output to
one printer, this is displayed as

Default Printer: printer-name
If you use a different printer for text and screen hardcopy, this is displayed as

Default Text Printer: printer-namel
Default Bitmap Printer: printer-name2

Show Printer Status Command
Show Printer Status printer
Displays the print queue for the specified printer or printers.

printer The name of a printer or printers (separated by commas) whose
print queue to show, or All to show all the queues for all
printers at your site. The default is your current printer
default. If your text printer and your bitmap printer are
different, your text printer is used as the default for Show
Printer Status.

The display of requests is mouse sensitive and can be clicked on to select
arguments for the Delete Printer Request and Restart Printer Request commands.
This is only true for print spoolers running Release 7.0.

Show Source Code Command
:Show Source Code compiled-function-spec e-% c-D

Displays the source code for a function. This command works only when your
code resides in an editor buffer. The output is mouse sensitive only when the
function is compiled with source locators. When you specify a compiled function
for which you want to see source code — for example, myfunction — the Debugger
displays the source code for myfunction beneath the following message:

284

User's Guide to Symbolics Computers July 1986

Source code for MYFUNCTION:

If myfunction were not compiled with source locators, the Debugger would still
display the source code, but the output would not be mouse sensitive. The
Debugger would display the source code only after giving you this message:

Function MYFUNCTION has no source locators; the code will not be sensitive.
compiled-function-spec

The name of a compiled function for which you want to see
source code. (Default is the function in the current frame.)

Suggested mouse operations

When a function has been compiled using source locators — mapping source code
to PCs via the editor’s c-n-sh-C command — you can perform the following mouse
operations:

e To use this command with the mouse: Type in the :Show Source Code
command. When the Debugger asks you for a compiled-function-spec, point
the mouse at the name of a compiled function previously displayed in the
output of another command, such as :Show Backtrace, and click Mouse-Left.

¢ To set a breakpoint: Point the mouse at a form (a code fragment) in the
displayed source code and press c-m-Mouse-Left.

¢ To clear a breakpoint: Point the mouse at a form (a code fragment) in the
displayed source code and press c-m-Mouse-Middle.

¢ To evaluate a code fragment: Point the mouse at a form in the displayed
source code and press m-Mouse-Middle.

Show System Definition Command
Show System Definition system keywords

Displays a the system definition of system including its current patch level, status
(experimental or released), and the files that make up the system.

system A loaded system.
keywords :Detailed
:Detailed {Yes,No} Whether to list all the component systems of the

system or not. The default is no, the mentioned default is yes.

285

July 1986

Show System Modifications Command
Show System Modifications system-name keywords

With no arguments, Show System Modifications lists all the systems present in
this world and, for each system, all the modifications that have been loaded into
this world. For each modification it shows the major version number (which will
always be the same since a world can only contain one major version), the minor
version number, and an explanation of what the modification does, as entered by
the person who made it.

If Show System Modifications is called with an argument, only the modifications to
system-name are listed.

system-name The system for which to show modifications. The default is All
keywords :Author, :Before, :From, :Matching, :Newest, :Number, :Oldest,
:Since, :Through
:Author A name. Show modifications by a particular person. For
example:

:show modifications system :author kjones

would only show those modifications made by the person whose
user ID is kjones.

:Before A date to serve as one limit for modifications to show:
:before 11/1/84
From A number to use as the first modification to show.

:Matching A string to search for in the comments and only show
modifications whose comment contain that string:

:matching namespace

:Newest A number of modifications to show, for instance the ten most
recent ones:

:newest 10
Using this keyword without a number is the same as :newest 1.

:Number A number. Show only this particular modification. For
example:

Show Modifications :number 6
would show modification number 6.

:Oldest A number of modifications to show, for instance the ten earliest
ones:

286

User's Guide to Symbolics Computers July 1986

:0ldest 10

Using this keyword without a number is the same as :oldest 1.

:Since A date to serve as one limit for modifications to show.
:Through A number to use as the last modification to show:
:through 17

Show Users Command
Show Users user-spec keywords
Shows the users logged into host.

user-spec {user user@host user@site @host @site} The user or users to
locate and the host or site to search. The default is to show all
users logged in at the local site.

keywords :Format :Order :Output Destination
:Format {brief normal detailed} How much information to display.
Brief Gives the user’s login name, the host name and the

idle time only.
kjones wombat 1:12

Normal Gives the user’s full name and information about the
world they are running in addition to the information
displayed by brief.

kjones Kingsley Jones Wombat 1:12 Computer Room (x515) (Relwvase 7.0)
Detailed Displays the information in the user’s namespace

object.

The default when only one user is specified is full, if more than
one is specified the default is brief.

:order {host idle user} The order in which to sort the entries in the
display.
host Sorts alphabetically by host name.
user Sorts alphabetically by user login name.
idle Sorts by idle time, from active to greatest idle time.

:output destination

287

July 1986

{buffer file stream window} Where to display the information.
The default is the current window.

20.26 Start Commands

Start GC Command

Start GC keywords

Turns on the garbage collector.

keywords

:Dynamic
:Ephemeral

:Immediately

:Dynamic, :Ephemeral, :Immediately

{yes, no} Dynamic Level of incremental GC.
{yes, no} Ephemeral Level of incremental GC.

{yes, no} Perform a complete garbage collection right now.

Unmonitor Varlable Command

:Unmonitor Variable symbol keyword

Stops monitoring one or all special variables in memory.

symbol

keyword

:Cell

{location, RETURN} A location specifies one location that you want
to stop monitoring. Enter the name of a symbol and, optionally,
its Value-Cell or Function-Cell. (See the :Cell keyword
description below.) Press the RETURN key if you want to stop
monitoring all locations.

:Cell

{Value-Cell, Function-Cell} Specifies which cell within the
location you want to stop monitoring. The Debugger gives you
two choices: Value-Cell or Function-Cell. (Default is Value-
Cell)

Suggested mouse operations

e To unmonitor a location: Point the mouse at a locative, structure slot, or
instance variable that was previously monitored and press
c-m-sh-Mouse-Middle.

288

User’s Guide to Symbolics Computers July 1986

20.27 Undelete Commands

Undelete File Command
Undelete File file-spec keywords
Undeletes a deleted file, if the host on which the file resides supports undelete. It

prompts for the name of a file to undelete. It displays a message if the specified
file does not exist.

file-spec The pathname of the file to be undeleted. The default is the
usual file default.
keywords :Query
:Query {yes, no, ask} Whether to ask for confirmation before removing

the delete flag on the file. The default is no.

289

July 1986

Index

&

*
*Function-Specs-to-Edit-n

+

/

riH

&optional 175
&rest 175

% buffer 66

* variable 187
** variable 187
*** yariable 187

xFunction-Specs-to-Edit-nx buffer 66

+ variable 187
++ variable 187
+++ variable 187

- variable 187

/ variable 187

A

Areas (
Example of a Search String for HELP
FUNCTION

HELP

Zmacs Commands for Finding Out
Lisp Facilities for Finding Out
Zmacs Commands for Finding Out
Questions

Zmacs Commands for Finding Out
Zmacs Commands for Finding Out
Overview of Finding Out

Finding Out

Getting

Getting

Summary of Getting

Document Examiner

Document Examiner Command Pane
Display status of

A) 194

A 73

A 217

A Zmacs command 73

ABORT command 79, 84
ABORT Key 215

ABORT Zmacs command 70
Abort At Top Level 70

About Flavors 119

About Lisp 120

About Lisp 118

About the FEP and LMFS 141
About the State of Buffers 118
About the State of Zmacs 118
About Zmacs Commands 71
About Zmacs Commands with HELP 71
Accidental deletion 70
Acquainted with Dynamic Windows 26
Acquainted with Genera 18
Acquainted with Genera 31
Actions 56, 57, 58

Actions 59

active processes 192

Index

290

User’s Guide to Symbolics Computers

Select

Cold boot

What to Do

Clear

Sending message to
Hardcopy

Sending message to
Show Documentation

Find
HELP Key in

Searching for

Method for Searching for
Searching for

m-X

zl:

Display status of window
Display status of

Numeric

Using Keywords

Using Numeric

Supplying Positional

c-U

Poking

Moving

Questions Users Commonly
Answering Questions the System

Buffer

Data Types of Namespace System
File

Namespace System

Showing

Showing

Showing

Init File Form:

Lookup Commands
Lookup Commands
Lookup Commands
Lookup Commands
Lookup Commands

July 1986

Activity Command 251

Add Paging File Command 227

Adjusting Console Parameters 96

after logging out 17

After Reading a Zmail Message 83

All Breakpoints Command 227

all Lisp Machines at site 91

All (m-X) Zmail Command 150

All reply mode 84

another user 92, 181

(an Overview) 46

Answering Questions the System Asks 139

Any Candidates 47

Any Zmacs Editing Window 114

Append Buffer (m-X) Converse Command 90

Append Conversation (m-X) Converse Command 91

Appropriate Commands 73

Appropriate Zmacs Commands 73

Appropriate Zmacs Commands 72

Apropos 73

apropos function 185

Apropos (m-X) 72

Apropos (m-X) Zmail command 77

area 192

areas 192

Areas (A) 194

arguments 72

Arguments 24

Arguments for Yanking 137

Arguments to a Command 36

argument to yanking commands 137

Around in the Lisp World 183

Around Zmail Messages 83

Ask 139

Asks 139

Atom 138

Attribute indicator 168

attributes 75

Attributes 168

attributes 75

Attributes 168

attributes of flavors 266

attributes of generic functions 266

attributes of methods 266

Attribute value 168

Audio loudness 220

Auto Fill in Text Mode 105

Auto-repeat 9, 96, 222

Available At a Lisp Listener and in Zmacs 53

Available in an Editor 53

Available in the Document Examiner 51

Available in the Document Examiner and Editor 47

Available in the Document Examiner, Editor, and
Command Processor 46

291

July 1986

FUNCTION
c-X
Getting Text
Starting up Zmail in the
Looking

Run
Default

Set
Set Input
Set Output

Goto

Default
Documentation
Setting Key
cp:

Document Examiner List of
List of

List of

Cold

Warm

Curly
Square
zl:
sys:

Clear
Set
Write a
Enter a
Clear All
A
Screen

xFunction-Specs-to-Edit-nx
Creating a

Deleting messages from mail
Restoring messages to mait

Init File Form: Ordering
Append

Regenerate

Write

Hardcopy

Index

B 217

B Zmacs command 75

Back 70

Background 98

Back Over Your Output (Scrolling) 25
BACKSPACE Key 215

Backward 68

Backward Paragraph 68

Backward Sentence 68

Backward Word 68

Bars 8

base 138

Base and Syntax Default Settings for Lisp 75
Base Command 252

Base Command 257

Base Command 257

Basic Command Facilities 102

Beep 70

Beeping 89

Beginning 68

Beginning of Line 68

Beginning of Topic 60, 61

Behavior of Converse 89

binary file 43

Bindings in Init Files 103
blank-line-mode variable 101
:body-character-style keyword 109
Bookmarks 61

Bookmarks 58

bookmarks 55

bookmarks display 58

boot after logging out 17

Booting 145

:bottom init option for tv:sheet 178
brackets 176

brackets 176

break special form 188
break-bindings variable 188
Break loop 178

Breakpoint 178

Breakpoint Command 227
Breakpoint Command 253
breakpoint into a program 188
breakpoint loop 188

Breakpoints Command 227

Brief Introduction to the Lisp World 175
brightness 220

Browsing documentation 44, 52
buffer 66

Buffer 74, 75

buffer 83

buffer 83

Buffer attributes 75

Buffer Contents with c-X c-F 75
Buffer history 136

Buffer Lists 102

Buffer (m~X) Converse Command 90
Butfer (m-X) Converse Command 91
Buffer (n-X) Converse Command 90
Buffer (m-X) Zmacs command 150

292

User’s Guide to Symbolics Computers July 1986

‘ Buffer Operations 208
Zmacs Commands for Finding Out About the State of Buffers 118
Save File Buffers Command 250
Save Mail Buffers Command 250
Init File Form: Putting Buffers Into Current Package 103
Init File Form: Edit Buffers onc-X c-B 104
Init File Form: Edit Buffers onm-X 104
Reportinga bug 181
zl: bug function 181
Report Bug Command 248
Reset button 144
Mouse buttons 9

FUNCTION C 217
HELP C 71
SELECT C command 87
HELP C Zmacs command 72
¢~/ completion command 73
HELPor c-? 73
c-? completion command 73
FUNCTION c-A 219
c-A Zmacs command 68
Init File Form: Edit Buffersonc-X c¢-B 104
c-B Zmacs command 68
FUNCTION c-CLEAR INPUT 220
c-D Zmacs command 70
c-E Zmacs command 68
c-END Converse command 90
Buffer Contents with c~X c-F 75
F Zmacs command 68
c-X F Zmacs command 75
G Zmacs command 70
HELP 113, 220
M

FUNCTION M 217
Converse Command 90
-0 c-m-Y List History 39
L on the SQUARE Key 104
SCROLL 60, 223
-sh-Y 27
Y 26
-Y List History 39
¥ yank command 137
L
-]
u
ou

Init File Form:

-m-
m-
m-
m-
m-
m-
m-
-m-Y Yank History 39
m-[Converse Command 90
-m-] Converse Command 90
Mouse-Left 28
Mouse-Middle 28
N Zmacs command 68
P Zmacs command 68
FUNCTION g
FUNCTION T
U
v
v
W
X
Xc
Xc

151, 217
CROLL 60, 223
219
argument to yanking commands 137
27,60
Zmacs command 68
Zmacs command 75
B Zmacs command 75
-B 104
-F 75

c-X

Init File Form: Edit Buffers on

c-
c-
c-
c-
c-
c-
c-
c-
c-
C-
c-
c-
c-
c-
c-
c-
c-
c-
c-
c-
c-
c-
c-
c~
c-
c-
c-
c-
c-
Buffer Contents with c-

293

July 1986

Hardware

Set

Functions for finding
List

Identifying

Select

Document Examiner List of Current
Find Any

Find Initial Substring

Find Whole Word

List of current

Why

Overview of Debugger Mouse

Prefix

Setting Command Processor Special
Whatis a

Default

Merging

Understanding

Using
Using
Using

Namespace System

FUNCTION

Mouse

Set Calendar

Init File Form: White Space in Lisp
Show Expanded Lisp

Show Source

Editing the source

Incremental garbage
Nonincremental garbage

Index

c-X c-F Zmacs command 75

c-X c-W Zmacs command 75

c-X [Zmacs command 68

c-X] Zmacs command 68

c-Y yank command 137

Caches 5

Calendar Clock Command 254

callers 183

Callers (m-X) Zmacs command 183

callers of variables 183

Calling Command Processor Commands From Your
Init File 101

Cancel last command 70

Cancel response 70

Candidate List 51, 57

Candidates 57

Candidates 47

Candidates 48

Candidates 50

candidates 51

Can't | Write Out Files When | Have Free Disk
Space? 141

Capabilities 202

Carbon copies 79

Carriage return 67

Cc field 79

Censoring Fields for lispm-finger and
name Services 109

Changing the Default Printer 152

chaos:notify-local-lispms function 91

character commands 67

Character Operations 208

Characters 100

Character Style? 161

Character Styles 161

"Character Styles 161

Character Styles 161

Character Styles and the Lisp Listener 163
Character Styles in Hardcopy 165
Character Styles in the Input Editor 162
Character Styles in Zmail 164
Checking on What the Machine is Doing 183
CIRCLE key 9, 225

Classes 169

Classes 167

Clear Commands 227

CLEAR INPUT 217

CLEAR INPUT Key 216

Clear All Breakpoints Command 227
Clear Breakpoint Command 227

Clear Output History Command 228
:clear-window method of tv:sheet 177
clicks 9

Clock Command 254

Code 103

Code Command 264

Code Command 283

code of a function 66, 180

Cold boot after logging out 17
collection 157

collection 157

294

User's Guide to Symbolics Computers

Principles of Garbage

Dynamic garbage
Ephemeral-object garbage
When and How to Use the Garbage
Init File Form: Setting Goal
ABORT

ABORT Zmacs

Add Paging File

Append Buffer (n-X) Converse
Append Conversation (n-X) Converse
Apropos (m-X) Zmail

c-/ completion

c-? completion

c-A Zmacs

c-B Zmacs

c-D Zmacs

c-E Zmacs

c~END Converse

c-F Zmacs

c-G Zmacs

c-M Converse

c-m-Y yank

c-m-[Converse

c-m-] Converse

c-N Zmacs

c-Y yank

Cancel last

Clear All Breakpoints
Clear Breakpoint

Clear Output History
Compile File

Compile System
COMPLETE completion
Copy File

Copy Microcode

Copy Output History Into Editor
Copy World

Create Directory
Create FEP File

Create Link

Delete Conversation (m-X) Converse
Delete File

Delete Printer Request
Disable Network
Disable Services

Edit Definition

Edit Directory

Edit File

Edit Font
Editing a

Edit Namespace Object
Enable Network
Enable Services

END

Collection 157
collector 158
collector 157
Collector 157
Column for Real Line Commands 103
command 79, 84
command 70
Command 227
Command 90
Command 91
command 77
command 73
command 73
command 68
command 68
command 70
command 68
command 90
command 68
command 70
Command 90
command 137
Command 90
Command 90
command 68
command 68
command 68
command 75
command 75
command 75
command 68
command 68
command 137
command 70
Command 227
Command 227
Command 228
Command 228
Command 229
command 73
Command 230
Command 231
Command 231
Command 231
Command 232
Command 232
Command 233
Command 90
Command 233
Command 153, 234
Command 234
Command 234
Command 234
Command 235
Command 235
Command 235
Command 38
Command 235
Command 236
Command 236
command 79

295

July 1986

END completion

END Converse
Entering a

Expunge Directory
Extended

Find File Zmacs
Finding the right

Find Symbol

Format File

Format File (m-X) Zmail
FUNCTION H

G Zmail
h-c-FUNCTION

Halt GC

Halt Machine

Halt Printer

Hardcopy All (m-X) Zmail
Hardcopy Buffer (n-X) Zmacs
Hardcopy File

Hardcopy File (m~X) Zmacs
Hardcopy File (m-X) Zmail
Hardcopy Message (m-X) Zmail
Help

HELP A Zmacs

HELP C Zmacs

HELP completion

HELP D Zmacs

HELP L Zmacs

Initialize Mail

Initialize Mouse

Initialize Time

Inspect

: Inspect

List Callers (m-X) Zmacs
Load File

Load Patches

Load System

Login

Logout

m-< Zmacs

m-> Zmacs

m-A Zmacs

m-B Zmacs

m-F Zmacs

m-SCROLL Zmacs
m-sh-A input editor
m-sh-D editor

m-sh-F input editor
m-sh-V input editor
m-V Zmacs

m-Y yank

m-[Zmacs

m-] Zmacs

Monitor Variable
NETWORK X

Optimize World

P Dired

Parts of a

[Profile] Zmail
Regenerate Buffer (n-X) Converse
Rename File

command
command
Command
Command
Command
command
command
Command
Command
Command
command
command
command
Command
Command
Command
Command
command
Command
command
Command
Command
Command
command
command
command
command
command
Command
Command
Command
Command
command
command
Command
Command
Command
Command
Command
command
command
command
command
command
command
command
command
command
command
command
command
command
command
Command
command
Command
command
Command
command
Command
Command

73
90
34
236
68
75
73
237
237
151
190
80
144
238
238
154, 239
150
150
147, 240
150
151
150
241
73
72
73
72
73
242
242
242
243
206
183
244
244
245
246
247
68
68
68
68
68
68
46
46
46
46
68
137
68
68
247
170
248
151
33
110
91
248

Index

296

User's Guide to Symbolics Computers

Report Bug
Resst

Reset Network

Reset Printer

Restart Printer Request
RETURN completion
RUBOUT Zmacs

Save File Buffers

Save Mail Buffers

Save World

SCROLL Zmacs
SELECTC

SELECT M

Select Activity

Send Mail

Send Message

Set Base

Set Breakpoint

Set Calendar Clock

Set Command Processor
Set File Properties

Set GC Options

Set Input Base

Set Lisp Context

Set Output Base

Set Package

Set Printer

Set Screen Options

Set Site
Set sleep time between updates Peek
Set Stack Size

Set Time

Set Variable (m-X)

Set Window Options
Show Command Processor Status
Show Directory

Show Disabled Services
Show Documentation
Show Expanded Lisp Code
Show Expanded Mailing List
Show FEP Directory
Show File

Show Flavor Components
Show Flavor Dependents
Show Flavor Differences
Show Flavor Functions
Show Flavor Handler
Show Flavor Initializations
Show Flavor Instance Variables
Show Flavor Methods
Show Flavor Operations
Show Font

Show GC Status

Show Generic Function
Show Herald

Show Hosts

Show Legal Notice

Show Lisp Context

Show Login History

Show Machine Configuration
Show Mail

Command 248
command 144
Command 249

Command 155, 249
Command 153, 250

command 73

command 70

Command 250
Command 250
Command 251
command 68

command 87

command 77

Command 251
Command 251
Command 252
Command 252
Command 253
Command 254
Command 254
Command 255
Command 255
Command 257
Command 257
Command 257
Command 258
Command
Command 258
Command 259
command 192
Command 261
Command 261
command 105
Command 262
Command 263
Command 263
Command 264
Command 264
Command 264
Command 265
Command 266
Command 266
Command 267
Command 268
Command 269
Command 275
Command 270
Command 272
Command 273
Command 274
Command 274
Command 276
Command 277
Command 276
Command 277
Command 277
Command 278
Command 278
Command
Command 279
Command 280

152, 258

189, 279

297

July 1986

Show Monitored Locations

Show Namespace Object

Show Notifications

Show Object

Show Printer Defaults

Show Printer Status

Show Printer Status (m-X) Zmail
Show Source Code

Show System Definition

Show System Modifications

Show Users

SPACE complstion

Start GC

Start Printer

Supplying Keywords and Values for a
Supplying Positional Arguments to a
Undelete File

Unmonitor Variable

Write Buffer (n-X) Converse

Write Conversation (m-X) Converse
Write File Zmacs

FEP

Help facilities, FEP

Mouse

cp::

Example of Finding Out What a Zmacs
Finding Out What an Extended
Finding Out What a Prefix

Finding Out What a Zmacs

Basic

Document Examiner
Zmail
Supplying a

Document Examiner
Document Examiner

Completion in the
Customizing the

Error Handling in the
Hardcopying From the
Help in the

Index

Command 281

Command 281

Command 282

Command 282

Command 152, 283
Command 153, 283
Command 151

Command 283

Command 284

Command 285

Command 286

command 73

Command 159, 287
Command 155

Command 37

Command 36

Command 288

Command 287

Command 90

Command 90

command 75

Command Completion 117
command completion 117
Command Conventions 2
command-dispatchers variable 100
Command documentation 77
Command Does 72
Command Does 72
Command Does 72
Command Does 71
Command Facilities 102
Command History 39, 70, 136
command menu 59
Command Menu 77
Command Name 35
:command-only command processor mode 99
Command Pane 59
Command Pane Actions 59
:command-preferred command processor mode 99
Command Processor 39
Command Processor 98
Command Processor 40
Command Processor 147
Command Processor 38

Lookup Commands Available in the Document Examiner, Editor, and

Overview of the
Trying Out the
Set

Dictionary of
Some Useful
Calling

Customizing
:command-only
:command-preferred
:form-only
:form-preferred
Setting the

Turning the

Setting the

Command Processor 46
Command Processor 33
Command Processor 22
Command Processor Command 254
Command Processor Commands 227
Command Processor Commands 24
Command Processor Commands From Your Init
File 101
Command Processor Display 101
command processor mode 99
command processor mode 99
command processor mode 99
command processor mode 99
Command Processor Mode 99
Command Processor on and Off 40
Command Processor Prompt 100, 255

298

User's Guide to Symbolics Computers July 1986

Setting Command Processor Special Characters 100
Show Command Processor Status Command 263
c-U argument to yanking commands 137
Clear Commands 227
Compile Commands 228
Completion for Extended Commands (n-X Commands) 115
Converse Commands S0
Copy Commands 230
Create Commands 232
Cursor movement commands 68
Delete Commands 233
Dictionary of Command Processor Commands 227
Disable Commands 234
Documentation find commands 44, 46
Documentation Hardcopy Commands 54
Documentation Lookup Commands 46
Edit Commands 234
Enable Commands 236
Entering Commands 34
Expunge Commands 236
Extended Commands 72, 207
Find Commands 237
FUNCTION Key: Display and Hardcopy Commands 217
FUNCTION Key: Selection and Notification Commands 218
Halt Commands 238
Hardcopy Commands 240
Help Commands 241
Init File Form: Fixing White Space for Kill/'Yank Commands 103
Init File Form: Setting Goal Column for Real Line Commands 103
Initialize Commands 242
Input Editor Commands 135
Inspect Commands 243
Introduction to Zmacs Extended Commands 68
List the last sixty commands 73
Load Commands 244
Login and Logout Commands 246
Method for Searching for Appropriate Zmacs Commands 73
Names of commands 72
Online documentation for commands 72
Other Hardcopy Commands 152
Overview of Debugger Commands 200
Overview of Finding Out About Zmacs Commands 71
Prefix Commands 72
Prefix character commands 67
Printer commands 147
Printing and Hardcopy Commands 147
Rename Commands 248
Reset Commands 249
Restart Commands 250
Reusing Commands 26
Save Commands 250
Searching for Appropriate Commands 73
Searching for Appropriate Zmacs Commands 72
Select Commands 251
Send Commands 251
Set Commands 252
Show Commands 263
Show Flavor Commands 266
Some Useful Command Processor Commands 24
Start Commands 287
Typing Commands 22

299

July 1986

Undelete
Lookup

Lookup
Lookup
Lookup

Lookup

Lisp Listener
Zmacs
Zmacs
Zmacs

Zmacs

Zmacs
Keyboard

Calling Command Processor
Completion for Extended
Finding Out About Zmacs
Questions Users

:speclal-command-p

FEP Command
Help facilities, FEP command
Zmacs
Interaction with
c-/

c-7?
COMPLETE
END

HELP

RETURN
SPACE

Show Flavor

si:

Introduction to the Symbolics 3600 Family of
Overview of Symbolics

Documentation

Show Machine

Hardware
The
Adjusting

Index

Commands 288

Commands Available At a Lisp Listener and in
Zmacs 53

Commands Available in an Editor 53

Commands Available in the Document Examiner 51

Commands Available in the Document Examiner and
Editor 47

Commands Available in the Document Examiner,
Editor, and Command Processor 46

Commands for Converse 91

Commands for Finding Out About Flavors 119

Commands for Finding Out About Lisp 118

Commands for Finding Out About the State of
Buffers 118

Commands for Finding Out About the State of
Zmacs 118

Commands for Interacting with Lisp 119

commands for Menus 29

Commands for Producing Hardcopy 147

Commands From Your Init File 101

Commands (m-X Commands) 115

Commands with HELP 71

Commonly Ask 139

Communicating with Genera 33

compatible message to
dbg:special-command-p 178

Compile Commands 228

Compile File Command 228

Compile System Command 229

COMPLETE completion command 73

COMPLETE Key 216

Completion 73

Completion 117

completion 117

Completion 115

Completion and Typeout Windows 113

completion command 73

completion command 73

completion command 73

completion command 73

completion command 73

completion command 73

completion command 73

Completion for Extended Commands (m-X
Commands) 115

Completion form-. 116

Completion in Other Contexts 116

Completion in the Command Processor 39

Completion in the Document Examiner §9

Components Command 267

compress-who-calls-database function 184

Computers 3

Computers 1

concept record 43

Configuration Command 279

Connecting to a Remote Host Over the Network 170

Cons 157

Consing 157

Console 4

Console 7

Console Parameters 96

300

User's Guide to Symbolics Computers

sys:
Find Table of

Delete

Buffer

Set Lisp

Show Lisp

Completion in Other
Summary of Help Functions in Different
Screen

Documentation
Documentation Notation
Miscellaneous

Modifier Key

Mouse Command
System

Notation

Notation
Notation
Notation
Notation
Notation
Append
Delete
Write

Customizing

Default Behavior of
Introduction to

Lisp Listener Commands for
Sending and Replying to Messages with
Using

zwei:

zwel:

Append Buffer (m-X)
Append Conversation (m-X)
Cc-END

c-M

c-m-[

c-m-J

Delete Conversation (m-X)
END

Regenerate Buffer (m-X)
Write Buffer (m-X)

Write Conversation (m-X)

zwel:
zwel:
Turning off
Turning on
zwei:

Carbon
Default printer for screen

July 1986

console-volume function 98

Contents 49

contents of window 177

Contents with c-X c-F 75

Context Command 257

Context Command 278

Contexts 116

Contexts 117

contrast 220

Conventions 1

Conventions 1

Conventions 138

Conventions 1

Conventions 2

Conventions and Helpful Hints 138

Conventions for Flavors, Flavor Operations, and Init
Options 177

Conventions for Functions 175

Conventions for Lisp Objects 175

Conventions for Macros and Special Forms 176

Conventions for Variables 178

Conventions Quick Reference 1

Conversation (m-X) Converse Command 91

Conversation (m-X) Converse Command 90

Conversation (n-X) Converse Command 90

Conversations 87

Converse 106

Converse 89

Converse 87

Converse 91

Converse 87

Converse 87

converse-append-p variable 107

converse-beep-count variable 107

Converse Command 90

Converse Command 91

Converse command 90

Converse Command 90

Converse Command 90

Converse Command 90

Converse Command 90

Converse command 90

Converse Command 91

Converse Command 90

Converse Command 90

Converse Commands 90

converse-end-exits variable 107

converse-gagged 91

Converse messages 91

Converse messages 91

converse-mode variable 106

Converse Pop-up Message Window 89

Converse variables 106

copies 79

copies 108

Copy Commands 230

Copy File Command 230

Copy Microcode Command 231

Copy Output History Into Editor Command 231

Copy World Command 231

cp::*command-dispatchers* variable 100

301

July 1986

cp:
cp:
Hardware

How Do |
How to

Init File Form: Setting Find File Not to

Introduction: Selecting and
Selecting and

Document Examiner List of
List of

Display
Keys Not

Init File Form: Putting Buffers Into
Description of Moving the
Summary of Moving the

Mouse
Zmacs
Useful
What is

HELP
SELECT
HELP
Good
Documentation
Pruning the documentation
Topics Pruned From the Documentation
Updating the Namespace
Documentation

:special-command-p compatible message to

D

Index

cp::*form-dispatchers* variable 100
cp::*typeout-default* variable 101
cp:*blank-line-mode* variable 101
cp:cp-off function 41

cp:cp-on function 41
cp:*dispatch-mode* variable 99
cp:execute-command function 102
cp:*prompt* variable 100

cp-off function 41

cp-on function 41

CPU 4

Create Commands 232

Create a FEP File? 141

Create an Init File 96

Create Directory Command 232
Create FEP File Command 232
Create Link Command 233

Create New Files 103

Creating a Buffer 74, 75

Creating a File 75

Creating and Manipulating Files 65
Creating a New Namespace Object 173
Creating Windows 13

Creating Windows 13

Curly brackets 176

Current Candidates 57

current candidates 51

Current history 135

current history 137

Currently Used 225

Current message 80

Current Package 103

Cursor 68

Cursor 68

Cursor movement commands 68
Cursor Shape 211

Customization in Init Files 102
Customizations to Put in Your Init File 96
Customizing? 93

Customizing Command Processor Display 101
Customizing Converse 106
Customizing Genera 93

Customizing Hardcopy Facilities 108
Customizing the Command Processor 98
Customizing the Input Editor 105
Customizing Zmail 110

D 72

D 43

D Zmacs command 72

data 157

database 43

database 45

Database 45

Database 171

database installation 45

Data Types of Namespace System Attributes 168
dbg:*debugger-bindings* variable 189
dbg:special-command-p 178

302

User’s Guide to Symbolics Computers

Overview of the
dbg:

Overview of
Overview of
Overview of
Overview of
The

Tools for Lisp
Mentioned
The Displayed
Unmentioned

hardcopy:
Init File Form: Setting

Changing the

Show Printer
Base and Syntax
Personal
hardcopy:

Edit
Show System

Editing the
Formatted print of function

Expunging

Accidental
Large
Show Flavor

Reference

Show Flavor
Summary of Help Functions in
tv:

Edit

Create

Edit

Expunge

Show

Show FEP
Hardcopying From
zl:

P

July 1986

dbg:speclal-command-p generic function 178

Debugger 144

Debugger 197

debugger-bindings variable 189

Debugger Commands 200

Debugger Evaluation Environment 201

Debugger Help Facilities 202

Debugger Mouse Capabilities 202

Debugger: Recovering From Errors and Stuck
States 144

Debugging 197

Default 33

Default 137

Default 33

Default base 138

Default Behavior of Converse 89

default-bitmap-printer variable 108

Default Character Styles 161

Default Major Mode 103

Default printer 108

Default Printer 152

Default printer for screen copies 108

[Default] Profile Mode menu item 111

Defaults Command 152, 283

Default Settings for Lisp 75

default styles 109

default-text-printer variable 108

Default Windows 13

Definition Command 234

Definition Command 284

Definition history 136

definition of a function 66, 180

definitions 187

Delete Commands 233

Delste contents of window 177

Delete Conversation (m—X) Converse Command 90

deleted messages 84

Delete File Command 233

Delete Printer Request Command 153, 234

[Delete] Zmail menu item 83

Deleting and Undeleting Zmail Messages 83

Deleting messages from mail buffer 83

deletion 70

Deletions 70

Dependents Command 268

describe function 186

Description of Help Functions 120

Description of Moving the Cursor 68

Dictionary of Command Processor Commands 227

Differences Command 269

Different Contexts 117

dim-screen-after-n-minutes-idle variable 97

directory 180

Directory Command 232

Directory Command 235

Directory Command 236

Directory Command 263

Directory Command 266

Dired 151

dired function 180

Dired command 151

303

July 1986
Show
World load
Why Can't | Write Out Files When | Have Free
cp:

Customizing Command Processor
Display status of file system
Documentation

List of bookmarks

FUNCTION Key:

The

Documentation

What to

Hardcopy Private
Load Private

Read Private

Save Private
Browsing
Command
Document Examiner
Hardcopy

Looking up

Use of Fonts in the
Show

Show

Pruning the
Topics Pruned From the

Online
Online

Loading

Mouse

Using the Online

Index

Dired Hardcopy File 151

Disable Commands 234

Disabled Services Command 264
Disable Network Command 234
Disable Services Command 234
disassemble function 186

disk-saves 189

Disk Space? 141

dispatch-mode variable 99

Display 101

display 192

display 46

display 58

Display and Hardcopy Commands 217
Display current history 137

Displayed Default 137

Displaying previous keystrokes 73
Displaying pruned topics 45

display in the Document Examiner 55
Display status of active processes 192
Display status of areas 192

Display status of file system display 192
Display status of hostat 192

Display status of window area 192

Do After Reading a Zmail Message 83
Document 54, 61, 62

Document 61, 62

Document 61, 62

Document 61, 62

documentation 44, 52

documentation 77

Documentation 43

Documentation 54

Documentation 44

Documentation 175

Documentation (an Overview) 46
Documentation binary file 43
Documentation Command 264
Documentation concept record 43
Documentation Conventions 1
Documentation database 43
documentation database 45
Documentation Database 45
Documentation database installation 45
Documentation display 46
Documentation display in the Document Examiner 55
Documentation find commands 44, 46
documentation for commands 72
documentation for prefixes 72
Documentation Hardcopy Commands 54
documentation index files 45
Documentation keywords 44
Documentation Line 7,77
Documentation Lookup Commands 46
Documentation Notation Conventions 1
Documentation object record 43
Documentation overview 44, 52
Documentation record 43
Documentation System 43
Documentation topic name 43, 44
Documentation topic type 43, 44

304

User's Guide to Symbolics Computers

Completion in the

Documentation display in the

HELP in the

Introduction to the

Lookup Commands Available in the
Recovering From a Stuck
Repositioning Text in the

Lookup Commands Available in the

Lookup Commands Available in the

[Find]
[Find (R)]
[Select]
[Show]
[Show (M)}
[Show (R)]

Multiple

Private

Document Examiner Private

Example of Finding Out What a Zmacs Command
Finding Out What an Extended Command
Finding Out What a Prefix Command

Finding Out What a Zmacs Command

How

Checking on What the Machine is

Powering

Why
2l:

2l:

Getting Acquainted with
Mouse Gestures on

Entering Zmacs with SELECT
SELECT
Entering Zmacs with

Init File Form:
Init File Form:

E

July 1986

Document Examiner 59

Document Examiner 55

Document Examiner 43, 59

Document Examiner 43

Document Examiner 51

Document Examiner 45

Document Examiner 60

Document Examiner Actions 56, 57, 58

Document Examiner and Editor 47

Document Examiner command menu 59

Document Examiner Command Pane 59

Document Examiner Command Pane Actions 59

Document Examiner Documentation 43

Document Examiner, Editor, and Command
Processor 46

Document Examiner List of Bookmarks 58

Document Examiner List of Current Candidates 57

Document Examiner menu item 50

Document Examiner menu item 47

Document Examiner menu item 51

Document Examiner menu item 46

Document Examiner menu item 52

Document Examiner menu item 49

Document Examiner Private Documents 61

Document Examiner Viewer 55

Document Examiner viewers 55

Document Examiner Window 54

document name 61

Documents 61

Does 72

Does 72

Does 72

Does 71

Do | Create a FEP File? 141

Doing 183

Dotted pair 138

Down 18

Down Real Line 68

Do You Name Machines and Printers? 140

dribble-end function 191

Dribble Files 191

dribble-start function 191

Dynamic garbage collector 158

Dynamic objects 157

Dynamic Windows 26

Dynamic Windows 211

E 65

E 65

ed 66

ed function 66, 180

Edit Commands 234

Edit Buffers on c-X c-B 104
Edit Buffers onm-X 104

Edit Definition Command 234
Edit directory 180

Edit Directory Command 235
Edit File Command 235

Edit Font Command 235

305

July 1986

Entering Zmacs with zwel:
zwel:

HELP Key in Any Zmacs

Customizing the Input

Entering Zwei

Hardcopying From the File System
Input

Lookup Commands Available in an

Index

edit-functions 66

edit-functions function 66

Editing a Command 38

Editing a Namespace Object 172

Editing the definition of a function 66, 180
Editing the source code of a function 66, 180
Editing Window 114

Editing Your Input 134

Edit Namespace Object Command 235
Editor 105

editor 180

Editor 152

Editor 136

Editor 53

Lookup Commands Available in the Document Examiner and

Using Character Styles in the Input
Using the ESCAPE key with the Input

Editor 47
Editor 162
Editor 136

Lookup Commands Available in the Document Examiner,

Copy Output History Into
m-sh-A input

m-sh-D

m-sh-F input

m-sh-V input

" Input

Input

Setting

Init File Form:

Retrieve

si:
Goto

Using the mouse to

Overview of Debugger Evaluation
Lisp

Start GC

Introduction: Recovering From

Editor, and Command Processor 46
Editor Command 231
editor command 46
editor command 46
editor command 46
editor command 46
Editor Commands 135
Editor kill history 136
Editor Variables in Init Files 102
Electric Shift Lock in Lisp Mode 105
element at origin 137
Enable Commands 236
Enable Network Command 236
Enable Services Command 236
enable-who-calls function 184
End 68
END command 79
END completion command 73
END Converse command 90
END Key 216
End of Line 68
End of Topic 60, 61
Enter a breakpoint loop 188
Entering a Command 34
Entering and Leaving the Inspector 206
Entering Commands 34
Entering Zmacs 65
Entering Zmacs with ed 66
Entering Zmacs with SELECT E 65
Entering Zmacs with the Mouse 66
Entering Zmacs with zwel:edit-functions 66
Entering Zwei editor 180
enter Zmacs 66
Environment 201
environment features list 191
:Ephemeral 157
Ephemeral-object garbage collector 157
Ephemeral objects 157
Erase window 177
Error Handling in the Command Processor 40
Error recovery 69
Errors and Stuck States 143

306

User's Guide to Symbolics Computers

Recovering From
The Debugger: Recovering From
FUNCTION

Using the
Overview of Debugger

Completion in the Document

Documentation display in the Document
Flavor

HELP in the Document

Introduction to the Document

Lookup Commands Available in the Document
Recovering From a Stuck Document
Repositioning Text in the Document
Document

Lookup Commands Available in the Document
Document

Document

Document

Document

Lookup Commands Available in the Document
Document

Document

[Find] Document

[Find (R)] Document

[Select] Document

[Show] Document

[Show (M)] Document

[Show (R)] Document

Document

Document

Multiple Document

Document

Variables for

cp:

Show
Show

Finding Out What an

Introduction to Zmacs
Completion for

F F

File System (
FUNCTION

Basic Command

Customizing Hardcopy

General Help

Help

July 1986

Errors and Stuck States 143

Errors and Stuck States 144

ESCAPE 219

ESCAPE Key 216

ESCAPE key with the Input Editor 136

Escaping from prompts 70

Evaluation Environment 201

:Examine-file Option to Zwei:preload-zmail 98

Examiner 59

Examiner 55

Examiner 202

Examiner 43, 59

Examiner 43

Examiner 51

Examiner 45

Examiner 60

Examiner Actions 56, 57, 58

Examiner and Editor 47

Examiner command menu 59

Examiner Command Pane 59

Examiner Command Pane Actions 59

Examiner Documentation 43

Examiner, Editor, and Command Processor 46

Examiner List of Bookmarks 58

Examiner List of Current Candidates 57

Examiner menu item 50

Examiner menu item 47

Examiner menu item 51

Examiner menu item 46

Examiner menu item 52

Examiner menu item 49

Examiner Private Documents 61

Examiner Viewer 55

Examiner viewers 55

Examiner Window 54

Examining the Lisp World 186

Example of a Search String for HELP A 73

Example of Finding Out What a Zmacs Command
Does 72

execute-command function 102

Exiting the Inspector 206

[Exit] Profile Mode menu item 111

Expanded Lisp Code Command 264

Expanded Mailing List Command 265

Expunge Commands 236

Expunge Directory Command 236

Expunging deleted messages 84

Extended Command 68

Extended Command Does 72

Extended Commands 72, 207

Extended Commands 68

Extended Commands (m~X Commands) 115

F) 195
F 217
Facilities 102
Facilities 108
Facilities 207
facilities 113

307

July 1986

Introduction to the Hardcopy
Overview of Debugger Help
Zmacs Help
Help
Lisp

Request for Nlongs
Introduction to the Symbolics 3600
Getting
Lisp environment
Hardware
Resetting the
Questions About the

Help facilities,
Show

How Do | Create a
Create

Cc
Subject
To
Censoring

Index

Facilities 147

Facilities 202

Facilities 207

facllities, FEP command completion 117
Facilities for Finding Out About Lisp 120
failed. 144

Family of Computers 3

Fancy with Zmail 85

features list 191

FEP 6

FEP 144

FEP and LMFS 141

FEP Command Completion 117

FEP command completion 117

FEP Directory Command 266

FEP File? 141

FEP File Command 232

FEP, HELP key 117

field 79

field 79

field 79

Fields for lispm-finger and name Services 109

Calling Command Processor Commands From Your Init

Creating a

Dired Hardcopy

Documentation binary

How to Create an Init

Logging in Without Processing Your Init
Mail

Primary mail

Saving terminal interactions in

Saving the Mail

Useful Customizations to Put in Your Init
. Wallpaper

How Do | Create a FEP

Save

Add Paging
Compile
Copy
Create FEP
Delete

Edit

Format
Hardcopy
Load
Rename
Show
Undelete
Init

Init

Init

Init

Init

Init

Init
Init
Init
Init

File 101

File 75

File 151

file 43

File 96

File 110

file 80

file 80

file 191

File 84

File 96

file 191

File? 141

File attributes 75

File Buffers Command 250

File Command 227

File Command 228

File Command 230

File Command 232

File Command 233

File Command 235

File Command 237

File Command 147, 240

File Command 244

File Command 248

File Command 266

File Command 288

File Form: Auto Fill in Text Mode 105

File Form: c-m-L on the SQUARE Key 104

File Form: Edit Buffers on c-X c-B 104

File Form: Edit Buffers onm-X 104

File Form: Electric Shift Lock in Lisp Mode 105

File Form: Fixing White Space for Kill/Yank
Commands 103

File Form:m~-. onm-(L) 104

File Form: Ordering Buffer Lists 102

File Form: Putting Buffers Into Current Package 103

File Form: Setting Default Major Mode 103

308

User's Guide to Symbolics Computers

\ Init
Init

Init

Hardcopy

Format

Hardcopy

Init File Form: Setting Find
Set

Creating and Manipulating
Dribble

Init

Init File Form: Setting Find File Not to Create New
Loading documentation index
Setting Editor Variables in Init
Setting Key Bindings in Init
Setting Mode Hooks in Init
Writing

Zmacs Customization in Init
Why Can't | Write Out
Display status of

Hardcopying From the

Find
Write
Init File Form: Auto

Documentation

Init File Form: Setting

Functions for

Zmacs Commands for
Lisp Facilities for
Zmacs Commands for
Zmacs Commands for
Zmacs Commands for
Overview of

Example of

neti:
neti:

Init File Form:
sys:network-error

July 1986

File Form: Setting Find File Not to Create New
Files 103

File Form: Setting Goal Column for Real Line
Commands 103

File Form: White Space in Lisp Code 103

File (m-X) Zmacs command 150

File (m—X) Zmail Command 151

File (n—X) Zmail Command 151

File Not to Create New Files 103

File Properties Command 255

Files 65.

Files 191

Files 93

Files 103

files 45

Files 102

Files 103

Files 104

Files 208

Files 102

Files When | Have Free Disk Space? 141

file system display 192

File System Editor 152

File System (F) 195

File Zmacs command 75

File Zmacs command 75

Fill in Text Mode 105

[Find] 59

Find Commands 237

Find Any Candidates 47

find commands 44, 46

[Find] Document Examiner menu item 50

Find File Not to Create New Files 103

:Find-file Option to Zwei:preload-zmail 98

Find File Zmacs command 75

finding callers 183

Finding Out About Flavors 119

Finding Out About Lisp 120

Finding Out About Lisp 118

Finding Out About the State of Buffers 118

Finding Out About the State of Zmacs 118

Finding Out About Zmacs Commands 71

Finding Out About Zmacs Commands with HELP 71

Finding Out What an Extended Command Does 72

Finding Out What a Prefix Command Does 72

Finding Out What a Zmacs Command Does 71

Finding Out What a Zmacs Command Does 72

Finding Out What You Have Typed 73

Finding the right command 73

Find Initial Substring Candidates 48

[Find (M)] 48, 59

[Find (R)] 59

[Find (R)] Document Examiner menu item 47

Find Symbol Command 237

Find Table of Contents 49

Find Whole Word Candidates 50

finger-fields-to-suppress variable 110

finger-fields-to-suppress-for-untrusted-hosts
variable 110

Fixing White Space for Kill/'Yank Commands 103

flavor 177

309

July 1986

Show
Show
Show
Show

Show

Show

Show

Show

Show

Notation Conventions for Flavors,
Show

Showing attributes of

Zmacs Commands for Finding Out About
Notation Conventions for

Edit

Show

Use of

grindef special

login-forms special

setq special

2zl:break special

2l:setq-globally special
zl:sstatus special

2l:status special

Init File
Init File

cp::
Init File
Init File
Init File
Init File

Init File
Init File

Init File

Notation Conventions for Macros and Special
Reexecuting yanked

Init File

Init File

Init File

Init File

Hardware

Why Can't | Write Out Files When | Have
Recovering

Hardcopying

Introduction: Recovering

Recovering

The Debugger: Recovering

FUNCTION Key: Recovering
Hardcopying

Topics Pruned

Index

Flavor Commands 266

Flavor Components Command 267

Flavor Dependents Command 268

Flavor Differences Command 269

Flavor Examiner 202

Flavor Functions Command 275

Flavor Handler Command 270

Flavor Initializations Command 272

Flavor Instance Variables Command 273

Flavor Methods Command 274

Flavor Operations, and Init Options 177

Flavor Operations Command 274

flavors 266

Flavors 119 .

Flavors, Flavor Operations, and Init Options 177

Font Command 235

Font Command 276

Fonts in the Documentation 175

form 187

form 95

form 94

form 188

form 95

form 192

form 191

Format File Command 237

Format File (m-X) Zmail Command 151

Formatted print of function definitions 187

Form: Auto Fill in Text Mode 105

Form: c-m-L on the SQUARE Key 104

form-dispatchers variable 100

Form: Edit Buffers on c-X c-B 104

Form: Edit Buffers onm-X 104

Form: Electric Shift Lock in Lisp Mode 105

Form: Fixing White Spacs for Kill/Yank
Commands 103

Form:m-. onm-(L) 104

:form-only command processor mode 99

Form: Ordering Buffer Lists 102

sform-preferred command processor mode 99

Form: Putting Buffers Into Current Package 103

Forms 176

forms 136

Form: Setting Default Major Mode 103

Form: Setting Find File Not to Create New Files 103

Form: Setting Goal Cofumn for Real Line
Commands 103

Form: White Space in Lisp Code 103

Forward 68

Forward Paragraph 68

Forward Word 68

FPU 5

Free Disk Space? 141

From a Stuck Document Examiner 45

From Dired 151

From Errors and Stuck States 143

From Errors and Stuck States 143

From Errors and Stuck States 144

From Stuck States 219

From the Command Processor 147

From the Documentation Database 45

310

User's Guide to Symbolics Computers July 1986

Hardcopying From the File System Editor 152
Hardcopying From the System Menu 149
Calling Command Processor Commands From Your Init File 101
Hardcopying From Zmacs 149
Hardcopying From Zmail 150
chaos:notify-local-lispms function 91
cp:cp-off function 41
cp:cp-on function 41
cp:execute-command function 102
dbg:special-command-p generic function 178
describe function 186
disassemble function 186
ed function 66, 180
Editing the definition of a function 66, 180
Editing the source code of a function 66, 180
hardcopy:set-default-bitmap-printer function 108
hardcopy:set-default-text-printer function 108
Inspect function 186, 206
Key with No Function 225
print-sends function 92, 189
sage:load-index-info function 46
si:compress-who-calls-database function 184
sl:enable-who-calls function 184
sl:lisp-top-level function 178
sl:lisp-top-leveli function 178
si:set-auto-repeat-p function 97
si:show-login-history function 189
si:who-calls-unbound-functions function 184
sys:console-volume function 98
sys:lisp-relnitialize function 178
tv:screen-brightness function 97
what-files-call function 185
where-Is function 185
who-calls function 183
zl:apropos function 185
zl:bug function 181
zl:dired function 180
zl:dribble-end function 191
zl:dribble-start function 191
zl:hostat function 190
zl:mail function 180
zl:print-notifications function 189
2l:qreply function 92
zl-user:uptime function 190
zwel:edit-functions function 66
zwel:preload-zmall function 98
zwel:qsends-off function 91
zwel:qsends-on function 91
zwel:save-all-files function 179
FUNCTION A 217
FUNCTION B 217
FUNCTION C 217
FUNCTION c-A 219
FUNCTION c-CLEAR INPUT 220
FUNCTION c-M 217
FUNCTION c-Q 151,217
FUNCTION c-T 219
FUNCTION CLEAR INPUT 217
h-c- FUNCTION command 144
FUNCTION ESCAPE 219
FUNCTION F 217

311

July 1986

Show Generic

Formatted print of

Index of Special

Introduction: Index of Special
Notation Conventions for
Quick Summary of Mouse
Reference Description of Help
Showing attributes of generic
Some Utility

Utility

Show Flavor

Summary of Help

G

Incremental
Nonincremental

Principles of

Dynamic
Ephemeral-object

When and How to Use the
Halt

Start

Start

Set

Set

zl:

Show

Communicating with
Customizing

Getting Acquainted with
Introduction to

Summary of Getting Acquainted with

dbg:special-command-p
Show

Showing attributes of
Mouse

Zmail:

How to

Index

FUNCTION H 217
FUNCTION Hcommand 190
FUNCTION HELP 113, 220
FUNCTION Key 216
FUNCTION Key: Display and Hardcopy
Commands 217
FUNCTION Key: Recovering From Stuck States 219
FUNCTION Key: Selection and Notification
Commands 218
FUNCTION M 217
FUNCTION m-Q 151,217
FUNCTION 0 217
FUNCTION Q 108, 151,217
FUNCTION REFRESH 217
FUNCTION RUBOUT 217
FUNCTION S 218
FUNCTION SUSPEND 219
FUNCTION T 218
FUNCTION W 219
Function Command 276
function definitions 187
Function Keys 215
Function Keys 215
Functions 175
Functions 211
Functions 120
functions 266
Functions 179
Functions 189
Functions Command 275
Functions for finding callers 183
Functions in Different Contexts 117

G Zmail command 80
garbage collection 157
garbage collection 157
Garbage Collection 157
garbage collector 158
garbage collector 157
Garbage Collector 157

GC Command 238

GC Command 159, 287
GC :Ephemeral 157

gc options 157

GC Options Command 255
gc-status Output 158

GC Status Command 277
Genera 33

Genera 93

Genera 18

Genera 6

Genera 31

General Help Facilities 207
generic function 178
Generic Function Command 276
generic functions 266
Gestures on Dynamic Windows 211
Get Inbox 80

Get Output to a Printer 147

312

User's Guide to Symbolics Computers

Summary of

Overview of

Namespace
Init File Form: Setting

FUNCTION
Hostat (
FUNCTION

Show Flavor
Error

Commands for Producing
Using Character Styles in

Documentation

FUNCTION Key: Display and
Other

Printing and

hardcopy:

Customizing
Introduction to the
Dired

July 1986

Getting Acquainted with Dynamic Windows 26
Getting Acquainted with Genera 18

Getting Acquainted with Genera 31

Getting Fancy with Zmail 85

Getting Help 113

Getting new mail 80

Getting Out of Keystroke Prefixes 70
Getting Out of Minibuffer Prompts 70
Getting Out of Prefixes and Prompts 69
Getting Out of Trouble 69

Getting Out of Trouble 69

Getting Text Back 70

Globally named objects 169

global-name 168

Goal Column for Real Line Commands 103
Good data 157

Good objects 157

Goto Beginning 68

Goto End 68

grindef special form 187

H 217

H) 196

H command 190

h-c-FUNCTION command 144

Halt Commands 238

Halt GC Command 238

Halting 145

Halt Machine Command 238

Halt Printer Command 154, 239

Handler Command 270

Handling in the Command Processor 40

Hardcopy 151

Hardcopy 147

Hardcopy 165

Hardcopy Commands 240

hardcopy:*default-bitmap-printer* variable 108

hardcopy:*default-text-printer* variable 108

hardcopy:*hardcopy-default-character-styles*
variable 109

hardcopy:set-default-bitmap-printer function 108

hardcopy:set-default-text-printer function 108

Hardcopy All (n-X) Zmail Command 150

Hardcopy Buffer (n-X) Zmacs command 150

Hardcopy Commands 54

Hardcopy Commands 217

Hardcopy Commands 152

Hardcopy Commands 147

hardcopy-default-character-styles variable 109

Hardcopy Documentation 54

Hardcopy Facilities 108

Hardcopy Facilities 147

Hardcopy File 151

Hardcopy File Command 147, 240

Hardcopy File (m-X) Zmacs command 150

Hardcopy File (m-X) Zmail Command 151

Hardcopying From Dired 151

Hardcopying From the Command Processor 147

Hardcopying From the File System Editor 152

313

July 1986

Why Can't | Write Out Files When |
Finding Out What You

Finding Out About Zmacs Commands with
FUNCTION

Getting
SELECT

Example of a Search String for

FEP,
Using the

General
Overview of Debugger
Zmacs

System Conventions and
Reference Description of
Summary of

Show
System Conventions and Helpful

Index

Hardcopying From the System Menu 149
Hardcopying From Zmacs 149
Hardcopying From Zmail 150
Hardcopying the Screen 151
Hardcopying Zmail Messages 150
Hardcopy Message (m-X) Zmail Command 150
Hardcopy Private Document 54, 61, 62
Hardcopy system 147

Hardcopy Viewer 54, 57

Hardware Caches §

Hardware Console 4

Hardware CPU 4

Hardware FEP 6

Hardware FPU 5

Hardware Input/Qutput 6

Hardware Introduction 3

Hardware Main Unit 4

Hardware Memory 6

Hardware Packaging 3

Have Free Disk Space? 141

Have Typed 73

Headers window 84
:heading-character-style keyword 109
[Help] 59 N

HELP 71

HELP 71

HELP 113, 220

Help 113

HELP 113, 220

HELP A 73

HELP A Zmacs command 73

HELP C Zmacs command 72

Help Commands 241

HELP completion command 73

HELP D Zmacs command 72

HELP in the Document Examiner 43, 59
HELP key 71, 113, 220

HELP key 117

HELP Key 23

HELP Key in Any Zmacs Editing Window 114
HELP L Zmacs command 73

HELP orc-? 73

HELP a 72

Help and Quit 196

HELP C 71

Help Command 241

HELPD 72

Help facilities 113

Help Facilities 207

Help Facilities 202

Help Facilities 207

Help facilities, FEP command completion 117
Helpful Hints 138

Help Functions 120

Help Functions in Different Contexts 117
Help in the Command Processor 38
HELPL 73

[Help (M)] 59

Help: Ses... 117

Herald Command 277

Hints 138

314

User’s Guide to Symbolics Computers

Types of

Buffer

c-m-0 c-m-Y List
c-m-Y Yank
Command
Current

Definition

Display current
Input

Input Editor kill

Kili

m-Y Yank
Pathname
Replace

Using Your Output
Clear Output
Show Login

Copy Output

zwel:

zwel:

zwel:

Setting Mode
Display status of
Quitting

zl:

Connecting to a Remote

Show

When and

SELECT
Zmail: Get

Loading documentation

Introduction:

. Attribute

Calling Command Processor Commands From Your
How to Create an

Logging in Without Processing Your

Useful Customizations to Put in Your

July 1986

Histories 136

Histories and Yanking 135

history 136

History 39

History 39

History 39, 70, 136

history 135

history 136

history 137

history 136

history 136

history 70, 136

History 39

history 136

history 136

History 27

History Command 228

History Command 189, 279

History Into Editor Command 231
History length 105
history-menu-length variable 105
history-rotate-if-numeric-arg variable 106, 137
history-yank-wraparound variable 105

Hooks in Init Files 104

hostat 192

Hostat 190

hostat function 190

Hostat (H) 196

Host object 167

Host Over the Network 170

Hosts 169

Hosts Command 277

Host Status 190, 277

Host status report 190

How Do | Create a FEP File? 141
How the Inspector Works 204
How to Create an Init File 96

How to Get Output to a Printer 147
How to Use the Garbage Collector 157
HYPER key 9, 225

1 206

Identifying callers of variables 183

Inbox 80

Inbox 80

Incoming messages 89

Incremental garbage collection 157

index files 45

Index of Special Function Keys 215

Index of Special Function Keys 215
indicator 168

Init File 101

Init File 96

Init File 110

Init File 96

Init File Form: Auto Fill in Text Mode 105
Init File Form: c-m-L on the SQUARE Key 104
Init Fite Form: Edit Buffers on c-X c-B 104
Init File Form: Edit Buffers on m-X 104

315

July 1986

Setting Editor Variables in
Setting Key Bindings in
Setting Mode Hooks in

Zmacs Customization in
Show Flavor

si:
Find
:bottom

Index

Init File Form: Electric Shift Lock in Lisp Mode 105

Init File Form: Fixing White Space for Kill/Yank
Commands 103

Init File Form: m-. onm-(L) 104

Init File Form: Ordering Buffer Lists 102

Init File Form: Putting Buffers Into Current
Package 103

Init File Form: Setting Default Major Mode 103

Init File Form: Setting Find File Not to Create New
Files 103

Init File Form: Setting Goal Column for Real Line
Commands 103

Init File Form: White Space in Lisp Code 103

Init Files 93

Init Files 102

Init Files 103

Init Files 104

Init Files 102

Initializations Command 272

Initialize Commands 242

Initialize Mail Command 242

Initialize Mouse Command 242

Initialize Time Command 242

Initial-readtable variable 188

Initial Substring Candidates 48

init option for tv:sheet 178

Notation Conventions for Flavors, Flavor Operations, and

Editing Your
FUNCTION c-CLEAR
FUNCTION CLEAR
CLEAR

Hardware

Set

Customizing the

Using Character Styles in the
Using the ESCAPE key with the
m-sh-A

m-sh-F

m-sh-V

Entering and Leaving the
Exiting the

How the

Documentation database
Show Flavor

Zmacs Commands for
Saving terminal

Sending
Hardware
Zmail Tutorial

Init Options 177
Input 134
INPUT 220
INPUT 217
INPUT Key 216
Input/Output 6
Input Base Command 257
Input Editor 136
Input Editor 105
Input Editor 162
Input Editor 136
input editor command 46
input editor command 46
input editor command 46
Input Editor Commands 135
Input Editor kill history 136
Input history 136
Inspect Commands 243
inspect function 186, 206
Inspect command 206
Inspect Command 243
[Inspect] in System menu 206
Inspector 206
Inspector 206
Inspector Works 204
installation 45
Instance Variables Command 273
Interacting with Lisp 119
interactions in file 191
Interaction with Completion and Typeout

Windows 113
interactive messages 87
Introduction 3
Introduction 77

316

User's Guide to Symbolics Computers

A Brief

What
What
What
What
Checking on What the Machine

July 1986

Introduction: Index of Special Function Keys 215

Introduction: Recovering From Errors and Stuck
States 143

Introduction: Selecting and Creating Windows 13

Introduction to Converse 87

Introduction to Genera 6

Introduction to the Document Examiner 43

Introduction to the Hardcopy Facilities 147

Introduction to the Lisp World 175

Introduction to the Namespace System 167

Introduction to the Symbolics 3600 Family of
Computers 3 .

Introduction to Zmacs Extended Commands 68

Introduction to Zmacs Keystrokes 67

Invoking Zmacs 65

is a Character Style? 161

is a Logical Pathname? 139

is a World Load? 140

is Customizing? 93

is Doing 183

K

sl:

sk:

sl:

si:

sl:

ABORT
BACKSPACE
CIRCLE
CLEAR INPUT
COMPLETE
END
ESCAPE
FEP, HELP
FUNCTION
HELP
HYPER

Init File Form: c-m~L on the SQUARE
LINE
LOCAL
NETWORK
PAGE
REFRESH
REPEAT
RESUME
RETURN
RUBOUT
SCROLL
SELECT
SELECT T
SQUARE
SUSPEND
SYMBOL
TAB
TRIANGLE
Using the HELP
Setting

The

kbd-auto-repeat-enabled-p variable 96
kbd-auto-repeat-initial-delay variable 97
kbd-repeat-key-enabled-p variable 222
kbd-repeat-key-initial-delay variable 223
kbd-repetition-interval variable 223
Key 215

Key 215

key 9, 225

Key 216

Key 216

Key 216

Key 216

key 117

Key 216

key 71,113,220

key 9, 225

Key 104

Key 220

Key 220

Key 221

Key 222

Key 222

Key 222

Key 223

Key 223

Key 223

Key 223

Key 13, 22, 224

key 170

key 9, 225

Key 224

Key 225

Key 225

key 9, 225

Key 23

Key Bindings in Init Files 103

Keyboard 8

Keyboard commands for Menus 29

317

July 1986

Using the Mouse and the

Modifier

FUNCTION

HELP

FUNCTION

Index of Special Function

Introduction: Index of Special Function
Shift

FUNCTION

Getting Out of

Displaying previous
Introduction to Zmacs
List the last sixty

Using the ESCAPE
:body-character-style
:heading-character-style
Documentation

Tagging Zmail Messages with
Zmail

Supplying

Using

Init File Form: Fixing White Space for

Input Editor

L L

HELP
Init File Form: m-. on m-
HELP

Cancel

List the
Listthe
Entering and
Show
History
Abort At Top
The Lisp Top
Beginning of
Down Real
End of
Mouse Documentation
Status

Up Real
Zmail Mode

Init File Form: Setting Goal Column for Real

Create

Base and Syntax Default Settings for
Lisp Facilities for Finding Out About
Zmacs Commands for Finding Out About
Zmacs Commands for Interacting with
Init File Form: White Space in

Index

Keyboard on Menus 29

Key Conventions 1

Key: Display and Hardcopy Commands 217
Key In Any Zmacs Editing Window 114
Key: Recovering From Stuck States 219
Keys 215

Keys 215

keys 67

Key: Selection and Notification Commands 218
Keys Not Currently Used 225

Keys Reserved for the User 9, 225
Keystroke Prefixes 70

Keystrokes 67

keystrokes 73

Keystrokes 67

keystrokes 73

Key with No Function 225

key with the Input Editor 136

keyword 109

keyword 109

keywords 44

Keywords 85

Keywords 85

Keywords and Values for a Command 37
Keywords Arguments 24

Keywords for who-calls and what-files-call 183, 185
[Keywords (R)] Zmail Menu ltem 86
Kill/'Yank Commands 103

Kill history 70, 136

kill history 136

L 73

(L) 104

L Zmacs command 73
Large Deletions 70
last command 70

last sixty commands 73
last sixty keystrokes 73
Leaving the Inspector 206
Legal Notice Command 278
length 105

Level 70

Level 178

Line 68

Line 68

Line 68

Line 7,77

Line 7

Line 68

Line 77

LINE Key 220

Line Commands 103
Line Operations 209
Link Command 233
Lisp 75

Lisp 120

Lisp 118

Lisp 119

Lisp Code 103

318

User's Guide to Symbolics Computers

Show Expanded
Set

Show

Tools for

Character Styles and the
Lookup Commands Available At a

Sending message to all

Censoring Fields for

Init File Form: Electric Shift Lock in
Notation Conventions for

sys:

The

si:

si:

A Brief Introduction to the
Poking Around in the
Variables for Examining the
Lisp environment features
Select Candidate

Show Expanded Mailing

Character Styles and the Lisp

Lookup Commands Available At a Lisp
Lisp

c-m-8 c-m-Y

Document Examiner

Document Examiner

Init File Form: Ordering Buffer
Questions About the FEP and

What is a World
World

sage:

Show Monitored
Init File Form: Electric Shift

Cold boot after
Whatis a

Show

Login and

July 1986

Lisp Code Command 264

Lisp Context Command 257

Lisp Context Command 278

Lisp Debugging 197

Lisp environment features list 191
Lisp Facilities for Finding Out About Lisp 120
Lisp Listener 163

Lisp Listener and in Zmacs 53

Lisp Listener Commands for Converse 91
Lisp Machines at site 91
lispm-finger and name Services 109
Lisp Mode 105

Lisp Objects 175

Lisp Reader 138

lisp-reinitialize function 178

Lisp Top Level 178

lisp-top-level function 178
lisp-top-level1 function 178

Lisp World 175

Lisp World 183

Lisp World 186

list 191

List 51, 57

List Callers (m-X) Zmacs command 183
List Command 265

Listener 163

Listener and in Zmacs 53

Listener Commands for Converse 91
List History 39

List of bookmarks 55

List of Bookmarks 58

List of bookmarks display 58

List of current candidates 51

List of Current Candidates 57

Lists 102

List the last sixty commands 73

List the last sixty keystrokes 73
LMFS 141

Load Commands 244

Load? 140

load disk-saves 189

Load File Command 244
load-index-info function 46
Loading documentation index files 45
Load Patches Command 244

Load Private Document 61, 62

Load System Command 245

LOCAL Key 220

Locations Command 281

Lock in Lisp Mode 105

Logging in 17,179

Logging in Without Processing Your Init File 110
Logging Out 17

logging out 17

Logical Pathname? 139

Login and Logout Commands 246
Login Command 246

login-forms special form 95

Login History Command 189, 279
LOGIN service 170

Logout Commands 246

319

July 1986

Request for N

Documentation

Break

Enter a breakpoint
Read-eval-print
Top-level

Audio

[Find
FUNCTION

[Help

Meters (

[Private

[Show

[Viewer
SELECT

Completion for
Init File Form:

Using

Init File Form: m-. on
FUNCTION

Apropos (
Init File Form: Edit Buffers on

Completion for Extended Commands (
Set Variable (

Append Buffer (

Append Conversation (

Delete Conversation (

Regenerate Buffer (

M

Index

Logout Command 247

longs failed. 144

Looking Back Over Your Output (Scrolling) 25
Looking up Documentation 44

Lookup Commands 46

‘Lookup Commands Available At a Lisp Listener and

in Zmacs 53

Lookup Commands Available in an Editor 53

Lookup Commands Available in the Document
Examiner 51

Lookup Commands Available in the Document
Examiner and Editor 47

Lookup Commands Available in the Document
Examiner, Editor, and Command Processor. 46

loop 178

loop 188

loop 178

loop 178

loudness 220

(M)] 48,59

M 217

(M)] 59

M) 194

(M)] 59

(M)] 59

(M)] 59

M command 77

m-. 234

m-. 116

m-. onm-(L) 104

m-< 60

m-< Zmacs command 68

m-> 60

> Zmacs command 68

A Zmacs command 68

-B Zmacs command 68
COMPLETE 30

-F Zmacs command 68

(L) 104

-Q 151,217

SCRULL 60

SCROLL Zmacs command 68
sh-A input editor command 46
-sh-D editor command 46

h-F input editor command 46
h- V input editor command 46

Zmacs command 68

) 72

104

Apropos 73

-X Commands) 115

-X) command 105

X) Converse Command 90
X

-X

-X

-S
S
Ve
v
X6
X
X
X

) Converse Command 91
) Converse Command 90

m-
m-
m-
m-
m-
m-
m-
m-
m-
m-
m-
m-
m-
m-
m-
m-
m-
m-
m-
m-
m-
m-
m-
m-
m-X) Converse Command 91

320

User’s Guide to Symbolics Computers

Write Buffer (

Wirite Conversation (
Hardcopy Buffer (
Hardcopy File (

List Callers (
Apropos (

Format File (
Hardcopy All (
Hardcopy File (
Hardcopy Message (
Show Printer Status (

Halt

Show

Checking on What the

Why Do You Name
Sending message to all Lisp

zl:qsend

Notation Conventions for
Getting new

Printing

Reading Your

Replying to

Send

Sending and Receiving Messages and
Sending Your

Zmail:

2l:

Deleting messages from
Restoring messages to
Save

Initialize

Send

Show

Primary
Saving the
Show Expanded

Hardware
Init File Form: Setting Default

Creating and

[Show
Hardware

Document Examiner command
Hardcopying From the System
[Inspect] in System

Marking and Yanking

System

Using the System

Zmail Command

[Default] Profile Mode

[Delete] Zmail

X) Converse Command 90
X) Converse Command 90
X) Zmacs command 150
X) Zmacs command 150
-X) Zmacs command 183
X) Zmail command 77

X) Zmail Command 151
-X) Zmail Command 150
X) Zmail Command 151
X) Zmail Command 150
X) Zmail Command 151

Y yank command 137
m-Y Yank History 39

m-[Zmacs command 68
m-] Zmacs command 68
Machine Command 238
Machine Configuration Command 279
Machine is Doing 183
Machines and Printers? 140
Machines at site 91

Maclisp 191

macro 92, 181

Macros and Special Forms 176
mail 80

mail 150

Mail 80

Mail 84

mail 180

Mail 77

Mail 79

Mail 79

mail function 180

mail buffer 83

mail buffer 83

Mail Buffers Command 250
Mail Command 242

Mail Command 251

Mail Command 280

Mail file 80

mail file 80

Mail File 84

Mailing List Command 265
{Mail] Zmail menu item 79
Main Unit 4

Major Mode 103

Managing the Print Spooler Queue 153
Manipulating Files 65
Mapping names to objects 169
Marking and Yanking Menu 28
(M)] Document Examiner menu item 52
Memory 6

Mentioned Default 33

menu 59

Menu 149

menu 206

Menu 28

Menu 13

Menu 18

Menu 77

menu item 111

menu item 83

m-
m-
m-
m-
m-
m-
m-
m-
m-
m-
m-
m-

321

July 1986

[Exit] Profile Mode

[Find] Document Examiner
[Find (R)] Document Examiner
[Keywords (R)] Zmail

[Mail] Zmail

[Next] Zmail

[Previous] Zmail

[Profile] Zmail

[Reply] Zmail

[Reset] Profile Mode

[Save] Zmail

[Select] Document Examiner
[Show] Document Examiner
[Show (M)] Document Examiner
[Show (R)] Document Examiner
[Undelete] Zmail

Keyboard commands for

The Mouse and

Using

Using the Mouse and the Keyboard on

Current

Scrolling a Zmail

:ityo

What to Do After Reading a Zmail
Send

Hardcopy

Deleting and Undeleting Zmail
Expunging deleted
Hardcopying Zmail

Incoming

Moving Around Zmail
Printing

Reprint

Selecting

Sending interactive
Turning off Converse
Turning on Converse
Sending and Receiving
Deleting

Restoring

Sending and Replying to
Tagging Zmail

Sending

Sending
:special-command-p compatible

Converse Pop-up
Using the mouse to scroll the
Zmail

:clear-window
Showing attributes of
Show Flavor

Copy

Getting Out of

Index

menu item 111

menu item 50

menu item 47

Menu ltem 86

menu item 79

menu item 83

menu item 83

menu item 110

menu item 84

menu item 111

menu item 84, 111

menu item 51

menu item 46

menu item 52

menu item 49

menu item 83

Menus 11

Menus 29

Menus 10

Menus 29

Menus 29

Merging Character Styles 161

message 80

Message 82

message 177

Message 83

Message Command 252

Message (m-X) Zmail Command 150

Message recipients 79

Messages 83

messages 84

Messages 150

messages 89

Messages 83

messages 150

messages 92, 189

messages 83

messages 87

messages 91

messages 91

Messages and Mail 77

messages from mail buffer 83

messages to mail buffer 83

Messages with Converse 87

Messages with Keywords 85

message to all Lisp Machines at site 91

message to another user 92, 181

message to dbg:speclal-command-p 178

Message window 84

Message Window 89

message window 80

Message Window 77

Meters (M) 194

Method for Searching for Appropriate Zmacs
Commands 73

method of tv:sheet 177

methods 266

Methods Command 274

Microcode Command 231

Minibuffer Prompts 70

Minibuffer Prompts 70

322

User's Guide to Symbolics Computers

All reply

:command-only command processor
:command-preferred command processor
:form-only command processor
:form-preferred command processor
Init File Form: Auto Fill in Text

Init File Form: Electric Shift Lock in Lisp
Init File Form: Setting Default Major
Profile

Reply

Sender reply

Setting the Command Processor
Using Zmail Profile

Setting

Zmait

[Default] Profile

[Exit] Profile

[Reset] Profile

Profile

Peek

Show System

Show

Entering Zmacs with the
Scrolling with the

The

Using the

The
Using the

Overview of Debugger

Initialize

Quick Summary of

Using the
Using the
Cursor

Description of
Summary of

Network (

Request for
*Function-Specs-to-Edit-
Documentation topic
Private document

Qualified

Supplying a Command

N

July 1986

Miscellaneous Conventions 138
mode 84

mode 99

mode 99

mode 99

mode 99

Mode 105

Mode 105

Mode 103

mode 110, 111

mode 84

mode 84

Mode 99

Mode 111

Mode Hooks in Init Files 104

Mode Line 77

Mode menu item 111

Mode menu item 111

Mode menu item 111

mode options 110

Modes 193

Modifications Command 285
Modifier Key Conventions 1
Monitored Locations Command 281
Monitor Variable Command 247
Mouse 66

Mouse 66

Mouse 212

Mouse 9

Mouse 28

Mouse-Left 27

Mouse and Menus 10

Mouse and the Keyboard on Menus 29
Mouse buttons 9

Mouse Capabilities 202

Mousae clicks 9

Mouse Command 242

Mouse Command Conventions 2
Mouse Cursor Shape 211

Mouse Documentation Line 7, 77
Mouse Functions 211

Mouse Gestures on Dynamic Windows 211
Mouse-sensitivity 10

mouse to enter Zmacs 66

mouse to scroll the message window 80
movement commands 68

Moving 13

Moving Around Zmail Messages 83
Moving the Cursor 68

Moving the Cursor 68

Multiple Document Examiner viewers 55

N) 195

Nlongs failed. 144
nx buffer 66

name 43, 44

name 61

name 169

Name 35

323

July 1986

Censoring Fields for lispm-finger and
Globally
Why Do You

Updating the

Creating a New
Editing a

Edit

Show

Names and

Introduction to the
Understanding Networks and the

Data Types of

Mapping

Connecting to a Remote Host Over the

Disable
Enable
Reset
sys:

Understanding

Init File Form: Setting Find File Not to Create
Getting

Creating a

Key with

Documentation

Keys

Show Legal

FUNCTION Key: Selection and
Show

chaos:

Index

name Services 109

named objects 169

Name Machines and Printers? 140

Names and Namespaces 169

Names of commands 72

Namespace Database 171

Namespace global-name 168

Namespace object 167

Namespace Object 173

Namespace Object 172

Namespace Object Command 235

Namespace Object Command 281

Namespace pair 168

Namespaces 169

Namespaces 169

Namespace set 168

Namespace System 167

Namespace System 167

Namespace System Attributes 168

Namespace System Attributes 168

Namespace System Classes 167

Namespace token 168

Namespace triple 168

names to objects 169

neti:*finger-flelds-to-suppress* variable 110

neti:*finger-fields-to-suppress-for-untrusted-
hosts* variable 110

Network 170

NETWORK Key 221

NETWORK X command 170

Network Command 234

Network Command 236

Network Command 249

network-error flavor 177

Network (N) 195

Network object 167

- Networks 169

Networks and the Namespace System 167

New Files 103

new mail 80

New Namespace Object 173

Next Page 68

Next Screen 68

[Next] Zmail menu item 83

Nicknames 169

No Function 225

Nonincremental garbage collection 157

Notation Conventions 1

Notation Conventions for Flavors, Flavor Operations,
and Init Options 177

Notation Conventions for Functions 175

Notation Conventions for Lisp Objects 175

Notation Conventions for Macros and Special
Forms 176

Notation Conventions for Variables 178

Notation Conventions Quick Reference 1

Not Currently Used 225

Notice Command 278

Notification Commands 218

Notifications Command 282

notify-local-lispms function 91

324

User's Guide to Symbolics Computers

Init File Form: Setting Find File
Serial

Using

FUNCTION
Creating a New Namespace
Editing a Namespace
Host
Namespace
Network
Printer
Site
User
Edit Namespace
Show
Show Namespace
Documentation
Dynamic
Ephemeral
Globally named
Good
Mapping names to
Notation Conventions for Lisp
Static

Turning the Command Processor on and
Turning

Using the
Buffer
Character
Line
Paragraph
Region
Screen
Sentence
Window
Word
Notation Conventions for Flavors, Flavor
Show Flavor

:bottom init

July 1986

Not to Create New Files 103
Nullifying prefixes 70

Number 279

Numeric arguments 72

Numeric Arguments for Yanking 137

g 217

Object 173

Object 172

object 167

object 167

object 167

object 167

object 167

object 167

Object Command 235

Object Command 282

Object Command 281

object record 43

objects 157

objects 157

objects 169

objects 157

objects 169

Objects 175

objects 157

Obsolete Terms 138

Off 40

off Converse messages 91
Online documentation for commands 72
Online documentation for prefixes 72
Online Documentation System 43
Operations 208 :
Operations 208

Operations 209

Operations 209

Operations 210

Operations 209

Operations 209

Operations 210

Operations 208

Operations, and Init Options 177
Operations Command 274
Optimize World Command 248
option for tv:sheet 178

Notation Conventions for Flavors, Flavor Operations, and Init

Profile mode
Setge

Setting and Saving Zmail
Set GC

Set Screen

Set Window

User

:Examine-file
:Find-file

Init File Form:
Retrieve element at
Completion in

Options 177
options 110
options 157
Options 111
Options Command 255
Options Command 258
Options Command 262
options window 111
Option to Zwei:preload-zmail 98
Option to Zwei:preload-zmail 98
Ordering Buffer Lists 102
origin 137
Other Contexts 116

325

July 1986

Talking to

Cold boot after logging
Logging

Zmacs Commands for Finding
Lisp Facilities for Finding
Zmacs Commands for Finding
Zmacs Commands for Finding
Zmacs Commands for Finding
Overview of Finding

Finding

Why Can't | Write

Getting

Getting

Getting

Getting

Overview of Getting

Saving

zl:gc-status

Set

Using Your

Clear

Copy

Looking Back Over Your

How to Get

Trying

Finding

Finding

Example of Finding

Finding

Finding

Documentation

Show

Show Documentation (an

Processes (

Init File Form: Putting Buffers Into Current
Set

Hardware

Next

Previous

Add

Dotted

Namespace

Document Examiner Command
Document Examiner Command

P

Index

Other Hardcopy Commands 152

Other Users 87

out 17

Out 17

Out About Flavors 119

Out About Lisp 120

Out About Lisp 118

Out About the State of Buffers 118

Out About the State of Zmacs 118

Out About Zmacs Commands 71

Out About Zmacs Commands with HELP 71
Out Files When | Have Free Disk Space? 141
Out of Keystroke Prefixes 70

Out of Minibuffer Prompts 70

Out of Prefixes and Prompts 69

Out of Trouble 69

Out of Trouble 69

output 191

Output 158

Output Base Command 257

Output History 27

Output History Command 228

Output History Into Editor Command 231 .
Output (Scrolling) 25

Output to a Printer 147

Out the Command Processor 22

Out What an Extended Command Does 72
Out What a Prefix Command Does 72

Out What a Zmacs Command Does 72

Out What a Zmacs Command Does 71

Out What You Have Typed 73

overview 44, 52

Overview 52

Overview) 46

Overview of Debugger Commands 200
Overview of Debugger Evaluation Environment 201
Overview of Debugger Help Facilities 202
Overview of Debugger Mouse Capabilities 202
Overview of Finding Out About Zmacs Commands 71
Overview of Getting Out of Trouble 69
Overview of Peek 192

Overview of Symbolics Computers 1
Overview of the Command Processor 33
Overview of the Debugger 197

Overview of Zmacs 65

P) 193

P Dired command 151
Package 103

Package Command 258
Packaging 3

Page 68

Page 68

PAGE Key 222

Paging File Command 227
pair 138

pair 168

Pane 59

Pane Actions 59

326

User's Guide to Symbolics Computers

Backward
Forward

Adjusting Console

Load
Whatis a Logical

Overview of
Using
Set sleep time between updates

Converse
Supplying

Finding Out What a

Getting Out of Keystroke
Nullifying

Online documentation for
Getting Out of

zwel:

Displaying

Changing the Default
Default

How to Get Output to a
Halt

Reset

Set

Start

Show
Default

Delste
Restart

Why Do You Name Machines and

Show
Show

zl:
Formatted

Managing the

Paragraph 68

Paragraph 68

Paragraph Operations 209
Parameters 96

Parentheses 176

Parts of a Command 33

Patches Command 244

Pathname? 139

Pathname history 136

Peek 192

Peek 192

Peek command 192

Peek Modes 193

Personal default styles 109

Poking Around in the Lisp World 183
Pop-up Message Window 89
Positional Arguments to a Command 36
Powering Down 18

Poweringup 15

Prefix character commands 67
Prefix Command Does 72

Prefix Commands 72

Prefixes 70

Prefixes 70

prefixes 70

prefixes 72

Prefixes and Prompts 69
preload-zmail function 98
Pretty-printing 187

previous keystrokes 73

Previous Page 68

Previous Screen 68

[Previous] Zmail menu item 83
Primary mail file 80

prin1 variable 178

Principles of Garbage Collection 157
Printer 152

printer 108

Printer 147 :
Printer Command 154, 239

Printer Command 155, 249

Printer Command 152, 258

Printer Command 155

Printer commands 147

Printer Defaults Command 152, 283
printer for screen copies 108

Printer object 167

Printer Request Command 153, 234
Printer Request Command 153, 250
Printers 169

Printers? 140

Printer Status Command 153, 283
Printer Status (m-X) Zmail Command 151
Printing and Hardcopy Commands 147
Printing mail 150

Printing messages 150
print-notifications function 189
print of function definitions 187
Printout 147

print-sends function 92, 189

Print Spooler Queue 153

327

July 1986

Hardcopy
Load
Read
Save

.Document Examiner

Recovery
Display status of active

Logging in Without

Completion in the Command
Customizing the Command

Error Handling in the Command
Hardcopying From the Command
Help in the Command

Index

[Private] 59

Private Document 54, 61, 62
Private Document 61, 62
Private Document 61, 62
Private Document 61, 62
Private document name 61
Private Documents 61
[Private (M)] 59

[Private (R)] 59

Procedures 143

processes 192

Processes (P) 193
Processing Your Init File 110
Processor 39

Processor 98

Processor 40

Processor 147

Processor 38

Lookup Commands Available in the Document Examiner, Editor, and Command

Overview of the Command
Trying Out the Command
Set Command

Dictionary of Command
Some Useful Command
Calling Command
Customizing Command
:command-only command
:command-preferred command
:form-only command
:form-preferred command
Setting the Command
Turning the Command
Setting the Command
Setting Command

Show Command

Commands for
Zmail

Using Zmail
[Default]
[Exit]
[Resst]

Supdup

Telnet

Using the Terminal

Write a breakpoint into a
Setting the Command Processor
To:

cp:

Escaping from

Getting Out of Minibufter
Getting Out of Prefixes and
Minibuffer

Set File

Topics

Displaying

Processor 46
Processor 33
Processor 22
Processor Command 254
Processor Commands 227
Processor Commands 24
Processor Commands From Your Init File 101
Processor Display 101
processor mode 99
processor mode 99
processor mode 99
processor mode 99
Processor Mode 99
Processor on and Off 40
Processor Prompt 100, 255
Processor Special Characters 100
Processor Status Command 263
Process State 8
Producing Hardcopy 147
Profile 111
Profile mode 110, 111
Profile Mode 111
Profile Mode menu item 111
Profile Mode menu item 111
Profile Mode menu item 111
Profile mode options 110
[Profile] Zmail command 110
[Profile] Zmail menu item 110
program 170
program 170
Program 170
program 188
Prompt 100, 255
prompt 79
prompt variable 100
prompts 70
Prompts 70
Prompts 69
Prompts 70
Properties Command 255
Pruned From the Documentation Database 45
pruned topics 45

328

User's Guide to Symbolics Computers July 1986

Pruning the documentation database 45
Useful Customizations to Put in Your Init File 96

Init File Form:

FUNCTION
zl:
zl:

zwel:
zwel:

Answering
Managing the Print Spooler
Notation Conventions

Help and

[Find
[Private
[Show
[Viewer
[Find
[Show
Lisp

What to Do After

2l:

Down

Up

Init File Form: Setting Goal Column for
Sending and

Message

Documentation

Documentation concept
Documentation object

Introduction:
The Debugger:
FUNCTION Key:
Error

Notation Conventions Quick
Quick

FUNCTION

R

Putting Buffers Into Current Package 103

Q 108, 151, 217

qreply function 92

qsend macro 92, 181

qsends-off function 91

qsends-on function 91

Qualified name 169

Questions About the FEP and LMFS 141
Questions the System Asks 139
Questions Users Commonly Ask 139
Queue 153

Quick Reference 207

Quick Reference 1

Quick Summary of Mouse Functions 211
Quit 196

Quitting Hostat 190

(R)] S9

(R)] 59

(R)] 59

(R)] 59

(R)] Document Examiner menu item 47

(R)] Document Examiner menu item 49
Reader 138

Read-eval-print loop 178

Reading a Zmail Message 83

Reading Your Mail 80

Read Private Document 61, 62

readtable variable 188

Real Line 68

Real Line 68

Real Line Commands 103

Receiving Messages and Mail 77

recipients 79

record 43

record 43

record 43

Recovering 143

Recovering From a Stuck Document Examiner 45
Recovering From Errors and Stuck States 143
Recovering From Errors and Stuck States 143
Recovering From Errors and Stuck States 144
Recovering From Stuck States 219

recovery 69

Recovery Procedures 143

Reexecuting yanked forms 136

Reference 1

Reference 207

Reference Description of Help Functions 120
REFRESH 217

REFRESH Key 222

Regenerate Buffer (m-X) Converse Command 91
Region Operations 210

329

July 1986

Connecting to a

Search and
Zmail:
Sending and

All
Sender

Host status

Delete Printer
Restart Printer

Keys

Cancel

Carriage

Finding the
FUNCTION

Search

[Keywords

FUNCTION
Servers (

zwel:

Index

Reinitializing Zmacs 66, 180

Remote Host Over the Network 170
Remove Viewer 57

Rename Commands 248

Rename File Command 248

REPEAT Key 222

Replace 210

Replace history 136

Reply 84

Replying to Mail 84

Replying to Messages with Converse 87
Reply mode 84

reply mode 84

reply mode 84

[Reply] Zmail menu item 84

report 190

Report Bug Command 248

Reporting a bug 181

Repositioning Text in the Document Examiner 60
Reprint messages 92, 189

Request Command 153, 234
Request Command 153, 250
Request for Nlongs failed. 144
Reserved for the User 9, 225

Reset Commands 249

Reset button 144

Reset command 144

Reset Network Command 249

Reset Printer Command 155, 249
[Reset] Profile Mode menu item 111
Resetting the FEP 144

response 70

Restart Commands 250

Restart Printer Request Command 153, 250
Restoring messages to mail buffer 83
Restoring text 70

RESUME Key 223

Retrieve element at origin 137

return 67

RETURN completion command 73
RETURN Key 223

Reusing Commands 26

right command 73

RUBOUT 217

RUBOUT Key 223

RUBOUT Zmacs command 70

rules 169

Run Bars 8

(R)] Zmail Menu ltem 86

S 218

S) 195

s-R 27

s-W 28

sage:load-index-Info function 46
Save Commands 250
save-all-files function 179

Save File Buffers Command 250
Save Mail Buffers Command 250

330

User's Guide to Symbolics Computers

Setting and
Hardcopying the
Next

Previous

The

tv:

Default printer for
tv:

Set

Looking Back Over Your Output

Using the mouse to

Method for

Example of a
Help:

Entering Zmacs with

Introduction:

FUNCTION Key:

July 1986

Save Private Document 61, 62

Save World Command 251

[Save] Zmail menu item 84, 111

Saving output 191

Saving terminal interactions in file 191

Saving the Mail File 84

Saving Zmail Options 111

Screen 7,8

Screen 151

Screen 68

Screen 68

Screen 7

Screen brightness 220

screen-brightness function 97

Screen contrast 220

screen copies 108

screen-dimness-percent variable 97

Screen Operations 209

Screen Options Command 258

SCROLL 27,60

SCROLL Key 223

SCROLL Zmacs command 68

Scrolling 10

(Scrolling) 25

Scrolling a Zmail Message 82

Scrolling summary window 83

Scrolling with the Mouse 212

scroll the message window 80

Search and Replace 210

Searching for Appropriate Commands 73

Searching for Appropriate Zmacs Commands 72

Searching for Appropriate Zmacs Commands 73

Search rules 169

Search String for HELP A 73

See... 117

[Select] 59

SELECT C command 87

Select Commands 251

SELECT D 43

SELECTE 65

SELECT E 65

SELECT HELP 113, 220

SELECT I 206

SELECT Key 13, 22, 224

SELECT Mcommand 77

SELECT T key 170

Select Activity Command 251

Select Candidate List 51, 57

[Select] Document Examiner menu item 51

Selecting and Creating Windows 13

Selecting and Creating Windows 13

Selecting messages 83

Selection and Notification Commands 218

Select Viewer 57

Send Commands 251

Sender reply mode 84

Sending and Receiving Messages and Mail 77

Sending and Replying to Messages with
Converse 87

Sending interactive messages 87

Sending message to all Lisp Machines at site 91

331

July 1986

Backward

LOGIN

Censoring Fields for lispm-finger and name
Disable

Enable

Show Disabled

Namespace

si:

hardcopy:
hardcopy:

zl:

Init File Form:
Init File Form:
Init File Form:

Base and Syntax Default

Mouse Cursor
:bottom init option for tv:
:clear-window method of tv:

Init File Form: Electric

Index

Sending message to another user 92, 181
Sending Your Mail 79

Send mail 180

Send Mail Command 251

Send Message Command 252

Sentence 68

Sentence Operations 209

Serial Number 279

Servers (S) 195

service 170

Services 109

Services Command 234

Services Command 236

Services Command 264

set 168

Set Commands 252

set-auto-repeat-p function 97

Set Base Command 252

Set Breakpoint Command 253

Set Calendar Clock Command 254

Set Command Processor Command 254
set-default-bitmap-printer function 108
set-default-text-printer function 108

Set File Properties Command 255

Set gc options 157

Set GC Options Command 255

Set Input Base Command 257

Set Lisp Context Command 257

Set Output Base Command 257

Set Package Command 258

Set Printer Command 152, 258

setq special form 94

setq-globally special form 95

Set Screen Options Command 258

Set Site Command 259

Set sleep time between updates Peek command 192
Set Stack Size Command 261

Set Time Command 261

Setting and Saving Zmail Options 111
Setting Command Processor Special Characters 100
Setting Default Major Mode 103

Setting Editor Variables in Init Files 102
Setting Find File Not to Create New Files 103
Setting Goal Column for Real Line Commands 103
Setting Key Bindings in Init Files 103
Setting Mode Hooks in Init Files 104
Settings for Lisp 75

Setting the Command Processor Mode 99
Setting the Command Processor Prompt 100, 255
Set Variable (n-X) command 105

Set Window Options Command 262
S-expression 138

sh-Mouse-Left 27

Shape 211

sheet 178

sheet 177

Shift keys 67

Shift Lock in Lisp Mode 105

[Show] 59

Show Commands 263

Show Command Processor Status Command 263

332

User's Guide to Symbolics Computers July 1986

Show Directory Command 263
Show Disabled Services Command 264
Show Documentation (an Overview) 46
Show Documentation Command 264
[Show] Document Examiner menu item 46
Show Expanded Lisp Code Command 264
Show Expanded Mailing List Command 265
Show FEP Directory Command 266
Show File Command 266
Show Flavor Commands 266
Show Flavor Components Command 267
Show Flavor Dependents Command 268
Show Flavor Differences Command 269
Show Flavor Functions Command 275
Show Flavor Handler Command 270
Show Flavor Initializations Command 272
Show Flavor Instance Variables Command 273
Show Flavor Methods Command 274
Show Flavor Operations Command 274
Show Font Command 276
Show GC Status Command 277
Show Generic Function Command 276
Show Herald Command 277
Show Hosts Command 277
Showing attributes of flavors 266
Showing attributes of generic functions 266
Showing attributes of methods 266
Show Legal Notice Command 278
Show Lisp Context Command 278

si: show-login-history function 189
Show Login History Command 189, 279
[Show (M)] 59
Show Machine Configuration Command 279
Show Mail Command 280
[Show (M)] Document Examiner menu item 52
Show Monitored Locations Command 281
Show Namespace Object Command 281
Show Notifications Command 282
Show Object Command 282
Show Overview 52
Show Printer Defaults Command 152, 283
Show Printer Status Command 153, 283
Show Printer Status (m-X) Zmail Command 151
[Show (R)] 59
[Show (R)] Document Examiner menu item 49
Show Source Code Command 283
Show System Definition Command 284
Show System Modifications Command 285
Show Users Command 286
sl:compress-who-calls-database function 184
si:enable-who-calls function 184
sh:initial-readtable variable 188
si:*kbd-auto-repeat-enabled-p* variable 96
sl:*kbd-auto-repeat-initial-delay* variable 97
si:*kbd-repeat-key-enabled-p* variable 222
si:*kbd-repeat-key-initial-delay* variable 223
si:*kbd-repetition-interval* variable 223
si:lisp-top-level function 178
si:lisp-top-levelt function 178
si:set-auto-repeat-p function 97
sl:show-login-history function 189

333

July 1986

Sending message to all Lisp Machines at
Set

List the last
List the last
Set Stack
Set

Show
Editing the

Static

Why Can't | Write Out Files When | Have Free Disk
Init File Form: Fixing White

Init File Form: White

Setting Command Processor
:special-command-p compatible message to dbg:

dbg:

grindef

login-forms

setq

2l:break
2l:setq-globally
2l:sstatus

zl:status

Notation Conventions for Macros and
Index of

Introduction: Index of
Managing the Print

Init File Form: c-m-L on the

zl:status and zl:
2l:
Set

Process

Zmacs Commands for Finding Out About the
Zmacs Commands for Finding Out About the
FUNCTION Key: Recovering From Stuck
Introduction: Recovering From Errors and Stuck
Recovering From Errors and Stuck

The Debugger: Recovering From Errors and Stuck

Host
System

Index

sl:who-calls-unbound-functions function 184

si:print-login-history 189

site 91

Site Command 259

Site object 167

Sites 169

sixty commands 73

sixty keystrokes 73

Size Command 261

sleep time between updates Peek command 192

Some Useful Command Processor Commands 24

Some Utility Functions 179

Source Code Command 283

source code of afunction 66, 180

SPACE 73

space 157

SPACE completion command 73

Space? 141

Space for Kill/'Yank Commands 103

Space in Lisp Code 103

Special Characters 100

speclal-command-p 178

:speclal-command-p compatible message to
dbg:special-command-p 178

speclal-command-p generic function 178

special form 187

special form 95

special form 94

special form 188

special form 95

special form 192

special form 191

Special Forms 176

Spaecial Function Keys 215

Special Function Keys 215

Spooler Queue 153

SQUARE key 9, 225

SQUARE Key 104

Square brackets 176

sstatus 191

sstatus special form 192

Stack Size Command 261

Start Commands 287

Start GC Command 159, 287

Start GC :Ephemeral 157

Startingup 15

Starting up Zmail 77

Starting up Zmail in the Background 98

Starting Zmacs 65

Start Printer Command 155

State 8

State of Buffers 118

State of Zmacs 118

States 219

States 143

States 143

States 144

Static objects 157

Static space 157

Status 190, 277

status 192

334

User's Guide to Symbolics Computers

2l;

zl:

Show Command Processor
Show GC

Show Printer

Show Printer

Display

Display

Display

Display

Display

Host

Example of a Search

Recovering From a

FUNCTION Key: Recovering From
Introduction: Recovering From Errors and
Recovering From Errors and

The Debugger: Recovering From Errors and
What is a Character

Default Character

Merging Character

Personal default

Understanding Character
Character

Using Character

Using Character

Using Character

Find Initial
Quick

Scrolling
Zmail

FUNCTION

Find

Introduction to the
Overview of

Base and

Hardcopy

Introduction to the Namespace
Understanding Networks and the Namespace
Using the Online Documentation

Answering Questions the

Data Types of Namespace

Namespace

July 1986

status and zl:sstatus 191

status special form 191

Status Command 263

Status Command 277

Status Command 153, 283

Status Line 7

Status (m-X) Zmail Command 151
status of active processes 192
status of areas 192

status of file system display 192
status of hostat 192

status of window area 192

status report 190

String for HELP A 73

Stuck Document Examiner 45
Stuck States 219

Stuck States 143

Stuck States 143

Stuck States 144

Style? 161

Styles 161

Styles 161

styles 109

Styles 161

Styles and the Lisp Listener 163
Styles in Hardcopy 165

Styles in the Input Editor 162
Styles in Zmail 164

Subject field 79

Substring Candidates 48
Summary of Getting Acquainted with Genera 31
Summary of Help Functions in Different Contexts 117
Summary of Mouse Functions 211
Summary of Moving the Cursor 68
Summary window 80

summary window 83

Summary Window 77

Supdup program 170

Supplying a Command Name 35
Supplying Keywords and Values for a Command 37
Supplying Positional Arguments to a Command 36
SUSPEND 224

SUSPEND 219

SUSPEND Key 224

sy-HELP 113, 220

SYMBOL Key 225

Symbol Command 237

Symbolics 3600 Family of Computers 3
Symbolics Computers 1

Syntax Default Settings for Lisp 75
sys:*break-bindings* variable 188
sys:console-volume function 98
sys:lisp-reinitialize function 178
sys:network-error flavor 177
system 147

System 167

System 167

System 43

System Asks 139

System Attributes 168

System Attributes 168

335

July 1986

Namespace
Compile
Load

Show

Display status of file
Hardcopying From the File
File

Hardcopying From the
[Inspect] in

Using the

Show

FUNCTION
SELECT

Find

Saving

Using the

Obsolete

Restoring

Getting

Repositioning

Init File Form: Auto Fill in
Set sleep

Initialize

Set

Namespace

Beginning of

End of
Documentation
Displaying pruned

Documentation

Abort At
The Lisp

Namespace
Getting Out of
Overview of Getting Out of

Zmail

:bottom init option for

T

Index

System Classes 167

System Command 229

System Command 245

System Conventions and Helpful Hints 138
System Definition Command 284
system display 192

System Editor 152

System (F) 195

System Menu 13

System Menu 149

System menu 206

System Menu 18

System Modifications Command 285
System status 192

T 218

T key 170

TAB Key 225

Table of Contents 49

Tagging Zmail Messages with Keywords 85
Talking to Other Users 87

Teach Zmacs 27

Telnet program 170

terminal interactions in file 191

Terminal Program 170

Terms 138

text 70

Text Back 70

Text in the Document Examiner 60

Text Mode 105

time between updates Peek command 192
Time Command 242

Time Command 261

To field 79

token 168

Tools for Lisp Debugging 197

Topic 60, 61

Topic 60, 61

topic name 43, 44

topics 45

Topics Pruned From the Documentation Database 45
topic type 43, 44

Top Level 70

Top Level 178

Top-level loop 178

To: prompt 79

TRIANGLE key 9,225

triple 168

Trouble 69

Trouble 69

Trying Out the Command Processor 22
Turning off Converse messages 91
Turning on Converse messages 91
Turning the Command Processor on and Off 40
Tutorial Introduction 77
tv:*dim-screen-after-n-minutes-idle* variable 97
tv:screen-brightness function 97
tv:*screen-dimness-percent* variable 97
tvisheet 178

336

User's Guide to Symbolics Computers

:clear-window method of

Documentation topic
Finding Out What You Have
cp::

Interaction with Completion and

Data

Deleting and

Hardware Main

Powering
Starting
Set sleep time between

Looking

zl-user:

Starting

Starting

Keys Not Currently
Some

Keys Reserved for the
Sending message to another

Talking to Other
Show
Questions

Some

Attribute
Supplying Keywords and
*

¥
wkk

+
+
+H

cp::*command-dispatchers*
cp::*form-dispatchers*

U

\'}

July 1986

tv:sheet 177

:tyo message 177

type 43, 44

Typed 73

typeout-default variable 101
Typeout window 71

Typeout Windows 113

Typeout Windows in Zmacs 117
Types of Historles %36

Types of Namespace System Attributes 168
Typing Commands 22

Undelete Commands 288

Undelste File Command 288

[Undelete] Zmail menu item 83

Undeleting Zmail Messages 83

Understanding Character Styles 161

Understanding Networks and the Namespace
System 167

Unit 4 :

Unmentioned Default 33

Unmonitor Variable Command 287

up 15

up 15

updates Peek command 192

Updating the Namespace Database 171

up Documentation 44

Up Real Line 68

uptime function 190

up Zmail 77

up Zmail in the Background 98

Used 225

Useful Command Processor Commands 24

Useful Customizations to Put in Your Init File 96

User 9, 225

user 92, 181

User object 167

User options window 111

Users 169

Users 87

Users Command 286

Users Commonly Ask 139

Utility Functions 189

Utility Functions 179

value 168
Values for a Command 37
variable 187
variable 187
variable 187
variable 187
variable 187
variable 187
variable 187
variable 100
variable 100

337

July 1986

cp::*typeout-default*
cp:*blank-line-mode*
cp:*dispatch-mode*

cp:*prompt*
dbg:*debugger-bindings*
hardcopy:*default-bitmap-printer*
hardcopy:*default-text-printer*
hardcopy:*hardcopy-default-character-styles*
neti:*finger-fields-to-suppress*
neti:*finger-fields-to-suppress-for-untrusted-hosts*
prini

si:initial-readtable
si:*kbd-auto-repeat-enabled-p*
si:*kbd-auto-repeat-initial-delay*
si:*kbd-repeat-key-enabled-p*
sl:*kbd-repeat-key-initial-delay*
si:*kbd-repetition-interval*
sys:*break-bindings*
tv:*dim-screen-after-n-minutes-idle*
tv:*screen-dimness-percent*

2l:/

zl:readtable
Zwel:*converse-append-p*
zwel:*converse-beep-count*
2wei:*converse-end-exits*
zwei:*converse-mode*
zwel:*history-menu-length*
zwei:*history-rotate-if-numeric-arg*
zwel:*history-yank-wraparound*
Monitor

Unmonitor

Set

Converse

Identifying callers of

Notation Conventions for

Show Flavor Instance

Setting Editor

Document Examiner
Hardcopy

Remove

Select

Multiple Document Examiner

FUNCTION
Windows (

Finding Out

Finding Out

Example of Finding Out
Finding Out

Keywords for who-calls and

variable
variable
variable
variable
variable
variable
variable
variable
variable
variable
variable
variable
variable
variable
variable
variable
variable
variable
variable
variable
variable
variable
variable
variable
variable
variable
variable
variable
variable

Variable Command 247
Variable Command 287
Variable (m~X) command 105

101
101
99
100
189
108
108
109
110
110
178
188
96
97
222
223
223
188
97
97
187
188
107
107
107
106
105
106, 137
105

variables 106
variables 183
Variables 178

Variables Command 273
Variables for Examining the Lisp World 186
Variables in Init Files 102

[Viewer]

59

Viewer 55
Viewer 54, 57
Viewer §7
Viewer 57
[Viewer (M)] 59
[Viewer (R)] 59
viewers 55

w

W 219
W) 195

Wallpaper file 191

Warm Booting 145

What an Extended Command Does 72
What a Prefix Command Does 72
What a Zmacs Command Does 72
What a Zmacs Command Does 71
what-files-call 183, 185
what-files-call function 185

What is a Character Style? 161
Whatis a Logical Pathname? 139

Index

338

User's Guide to Symbolics Computers

Checking on
Finding Out
Why Can't | Write Out Files

Init File Form: Fixing
Init File Form:
Keywords for

sl:
Find

Converse Pop-up Message
Delete contents of

Document Examiner

Erase

Headers

HELP Key in Any Zmacs Editing
Message

Scrolling summary

Summary

Typeout

User options

Using the mouse to scroll the message
Zmail Message

Zmail Summary

Display status of

Set

Default

Getting Acquainted with Dynamic
Interaction with Completion and Typeout
Introduction: Selecting and Creating
Mouse Gestures on Dynamic

Selecting and Creating

Typeout

Logging in
Backward
Forward
Find Whole

How the Inspector

A Brief Introduction to the Lisp
Poking Around in the Lisp
Variables for Examining the Lisp
Copy

Optimize

Save

Whatis a

Why Can't |

July 1986

What is a World Load? 140

What is Customizing? 93

What the Machine is Doing 183

What to Do After Reading a Zmail Message 83

What You Have Typed 73

When and How to Use the Garbage Collector 157

When | Have Free Disk Space? 141

where-Is function 185

White Space for Kill/Yank Commands 103

White Space in Lisp Code 103 '

who-calls and what-files-call 183, 185

who-calls function 183

who-calls-unbound-functions function 184

Whole Word Candidates 50

Why Can't | Write Out Files When | Have Free Disk
Space? 141

Why Do You Name Machines and Printers? 140

Window 89

window 177

Window 54

window 177

window 84

Window 114

window 84

window 83

window 80

window 71

window 111

window 80

Window 77

Window 77

window area 192

Window Operations 210

Window Options Command 262

Windows 13

Windows 26

Windows 113

Windows 13

Windows 211

Windows 13

Windows in Zmacs 117

Windows (W) 195

Without Processing Your Init File 110

Word 68

Word 68

Word Candidates 50

Word Operations 208

Works 204

World 175

World 183

World 186

World Command 231

World Command 248

World Command 251

World Load? 140

World load disk-saves 189

Write a breakpoint into a program 188

Write Buffer (n—X) Converse Command 90

Write Conversation (m-X) Converse Command 90

Write File Zmacs command 75

Write Out Files When | Have Free Disk Space? 141

339
July 1986 Index

Writing Files 208

NETWORK X command 170

Y Y Y
c-m-Y yankcommand 137
c-Y yankcommand 137
m-Y yank command 137
Reexecuting yanked forms 136
c-m-Y Yank History 39
m-Y Yank History 39

Yanking 70
Histories and Yanking 135
Using Numeric Arguments for Yanking 137
c-Uargumentto yanking commands 137
Marking and Yanking Menu 28
Finding Out What You Have Typed 73
Why Do You Name Machines and Printers? 140
Calling Command Processor Commands From Your Init File 101
Logging in Without Processing Your Init File 110
Useful Customizations to Putin Your Init File 96
Editing Your Input 134
Reading Your Mail 80
Sending Your Mail 79
Using Your Output History 27
Looking Back Over Your Output (Scrolling) 25

Z Z Z

zl:/ variable 187
zl:apropos function 185
zl:break special form 188
zl:bug function 181
2zl:dired function 180
2l:dribble-end function 191
2l:dribble-start function 191
zl:gc-status Output 158
zl:hostat function 190
2l:mail function 180
2l:print-notifications function 189
zl:qreply function 92
2[:qsend macro 92, 181
zl:readtable variable 188
zl:setq-globally special form 95
zl:status and zl:sstatus 191
2l:sstatus special form 192
2l:status and zl:sstatus 191
2l:status special form 191
zl-user:uptime function 190
Entering Zmacs 65
Hardcopying From Zmacs 149
Invoking Zmacs 65
Lookup Commands Available At a Lisp Listener andin Zmacs 53
Overview of Zmacs 65
Reinitializing Zmacs 66, 180
Starting Zmacs €5

340

User's Guide to Symbolics Computers

Teach

Typeout Windows in

Using the mouse to enter

Zmacs Commands for Finding Out About the State ql_f
ABOR

OO? (] (;) an0ona
FETNMO<TZOoOMMOwW>

eY
9 xxo
XX0 0

P Q<
| -

Find File

Hardcopy Buffer (m-X)
Hardcopy File (m—X)

HELP A

HELPC

HELP D

HELP L

List Callers (m-X)

m-<

m->

m-A

m-B

m-F

m-SCROLL

- om=V

m-L

m-]

RUBOUT

SCROLL

Write File

Example of Finding Out What a
Finding Out What a

Method for Searching for Appropriate
Overview of Finding Out About
Searching for Appropriate

Finding Out About

HELP Key in Any
Introduction to

Introduction to
Entering
Entering
Entering

July 1986

Zmacs 27
Zmacs 117
Zmacs 66
Zmacs 118
Zmacs command
Zmacs command
Zmacs command
Zmacs command
Zmacs command
Zmacs command
Zmacs command
Zmacs command
Zmacs command
Zmacs command
Zmacs command
Zmacs command
Zmacs command
Zmacs command
Zmacs command
Zmacs command
Zmacs command
Zmacs command
Zmacs command
Zmacs command
Zmacs command
Zmacs command
Zmacs command
Zmacs command
Zmacs command -
Zmacs command
Zmacs command
Zmacs command
Zmacs command
Zmacs command
Zmacs command
Zmacs command
Zmacs command
Zmacs command
Zmacs command 75
Zmacs Command Does 72
Zmacs Command Does 71
Zmacs Commands 73
Zmacs Commands 71
Zmacs Commands 72
Zmacs Commands for Finding Out About Flavors 119
Zmacs Commands for Finding Out About Lisp 118
Zmacs Commands for Finding Out About the State of
Buffers 118
Zmacs Commands for Finding Out About the State of
Zmacs 118
Zmacs Commands for Interacting with Lisp 119
Zmacs Commands with HELP 71
Zmacs Completion 115
Zmacs Customization in Init Files 102
Zmacs Editing Window 114
Zmacs Extended Commands 68
Zmacs Help Facilities 207
Zmacs Keystrokes 67
Zmacs with ed 66
Zmacs with SELECT E 65
Zmacs with the Mouse 66

341

July 1986

Entering

Customizing

Getting Fancy with
Hardcopying From
Starting up

Using

Using Character Styles in
Apropos (m-X)

Format File (m-X)

G

Hardcopy All (m-X)
Hardcopy File (m-X)
Hardcopy Message (m-X)
[Profile]

Show Printer Status (m-X)

Starting up

[Delete

[Keywords (R)

[Mail

[Next

[Previous

[Profile

[Reply

[Save

[Undelete

Scrolling a

What to Do After Reading a
Deleting and Undeleting
Hardcopying

Moving Around

Tagging

Setting and Saving
Using

Entering Zmacs with

Entering
:Examine-file Option to
:Find-file Option to

Index

Zmacs with zwel:edit-functions 66

Zmail 110

Zmail 85

Zmail 150

Zmail 77

Zmall 77

Zmail 164

Zmail command 77

Zmail Command 151

Zmail command 80

Zmail Command 150

Zmail Command 151

Zmail Command 150

Zmail command 110

Zmail Command 151

Zmail Command Menu 77

Zmail: Get Inbox 80

Zmail in the Background 98

Zmail Keywords 85

Zmail: Mail 79

Zmail menu item 83

Zmail Menu ltem 86

Zmail menu item 79

Zmail menu item 83

Zmail menu item 83

Zmail menu item 110

Zmail menu item 84

Zmail menu item 84, 111

Zmail menu item 83

Zmail Message 82

Zmail Message 83

Zmail Messages 83

Zmail Messages 150

Zmail Messages 83

Zmail Messages with Keywords 85

Zmail Message Window 77

Zmail Mode Line 77

Zmail Options 111

Zmail Profile 111

Zmail Profile Mode 111

Zmail: Reply 84

Zmail Summary Window 77

Zmail Tutorial Introduction 77

zwel:*converse-append-p* variable 107

zwel:*converse-beep-count* variable 107

zwel:*converse-end-exits* variable 107

zwel:*converse-gagged* 91

zwel:*converse-mode* variable 106

zwel:edit-functions 66

zwel:edit-functions function 66

zwel:*history-menu-length* variable 105

zwel:*history-rotate-if-numeric-arg* variable 106,
137

zwel:*history-yank-wraparound* variable 105

zwel:preload-zmail function 98

zwel:qsends-off function 91

zwel:qsends-on function 91

zwel:save-all-files function 179

Zwei editor 180

Zwei:preload-zmail 98

Zwei:preload-zmail 98

342

User's Guide to Symbolics Computers July 1986

c-X [Zmacs command 68

c-X] Zmacs command 68

