

symbolicS™

8 Internals, Processes, and
Storage Management

Cambridge, Massachusetts

Internals, Processes, and Storage Management
999008

July 1986

This document corresponds to Genera 7.0 and later releases.

The software, data, and information contained herein are proprietary to, and comprise
valuable trade secrets of, Symbolics, Inc. They are given in confidence by Symbolics
pursuant to a written license agreement, and may be used, copied, transmitted, and
stored only in accordance with the terms of such license. This document may not be
reproduced in whole or in part without the prior written consent of Symbolics, Inc.

Copyright © 1986, 1985, 1984 Symbolics, Inc. All Rights Reserved.
Portions of font library Copyright © 1984 Bitstream Inc. All Rights Reserved.
Portions Copyright © 1980 Massachusetts Institute of Technology. All Rights Reserved.

Symbollcs, Symbollcs 3600, Symbollcs 3670, Symbollcs 3675, Symbollcs 3640,
Symbollcs 3645, Symbollcs 3610, Genera, Symbollcs-Llsp®, Wheels, Symbolics
Common Lisp, Zetallsp®, Dynamic Windows, Document Examiner, Showcase,
SmartStore, SemantiCue, Frame-Up, Firewall, S-DYNAMICS®, S-GEOMETRY,
S-PAINT, S-RENDER®, MACSYMA, COMMON LISP MACSYMA, CL-MACSYMA,
LISP MACHINE MACSYMA, MACSYMA Newsletter and Your Next Step In
Computing are trademarks of Symbolics, Inc.

Restricted Rights Legend
Use, duplication, and disclosure by the Government are subject to restrictions as set
forth In subdivision (b)(3)(ii) of the Rights in Technical Data and Computer Software
Clause at FAR 52.227-7013.

Symbolics, Inc.
4 New England Tech Center
555 Virginia Road
Concord, MA 01742

Text written and produced on Symbolics 3600-family computers by the Documentation
Group of Symbolics, Inc.
Text masters produced on Symbolics 3600·family computers and printed on Symbolics
LGP2 Laser Graphics Printers.
Cover design: Schafer/LaCasse
Printer: CSA Press
Printed in the United States of America.

Printing year and number: 88 87 86 9 8 7 6 5 43 2 1

iii

July 1986 Internals, Processes, and Storage Management

Table of Contents

Page

I. Internals 1

1. Stack Groups 3

1.1 Resuming of Stack Groups 4
1.2 Stack Group Functions 5
1.3 Input/Output in Stack Groups 7
1.4 An Example of Stack Groups 7

2. Allocation on the Stack 11

2.1 Consing Lists on the Control Stack 11
2.2 The Data Stack 12

3. SUbprimitives 17

3.1 Data Type SUbprimitives 18
3.2 Forwarding Words in Memory 20
3.3 Pointer Manipulation 22
3.4 Analyzing Structures 23
3.5 Basic Locking Subprimitive 25
3.6 Accessing Arrays Specially 25
3.7 Storage Layout Definitions 26
3.8 Special Memory Referencing 27
3.9 Special Variable Binding Sub primitive 31
3.10 Function-calling Subprimitives 31
3.11 The Paging System 33

4. 3600-Family Disk System User Interface 37

4.1 Defmitions and Constants 37
4.2 Disk Arrays 39
4.3 Disk Events 40

4.3.1 Synchronization Functions 40
4.3.2 Disk Event Accessor Functions 41

4.4 Disk Transfers 43
4.5 Disk Error Handling 45

4.5.1 Disk Error Variables 47
4.5.2 Disk Error Conditions 47

iv

Internals, Processes, and Storage Management

4.5.3 Disk Error Codes
4.5.4 Disk Error Meters

4.6 FEP File System
4.6.1 Naming of FEP Files
4.6.2 FEP File Types
4.6.3 Configuration Files
4.6.4 FEP File Comment Properties
4.6.5 Accessing FEP Files
4.6.6 Operating on Disk Streams
4.6.7 Input and Output Disk Streams
4.6.8 Block Disk Streams
4.6.9 FEP File Properties
4.6.10 FEP File Locks
4.6.11 Installing Microcode
4.6.12 Using a Spare World Load for Paging
4.6.13 Adding a Spare World Load as LMFS File Space

4.7 Disk Performance
4.8 Examples of High Disk Performance

4.8.1 Initializing a FEP File
4.8.2 Copying FEP Files

4.9 Disk and FEP File System Utilities
4.9.1 Initializing a Disk Unit
4.9.2 Mounting a Disk Unit
4.9.3 Verifying a FEP File System

II. Initializations

5. Introduction to Initializations

6. System Initialization Lists

m. Processes

7. Introduction to Processes

8. The Scheduler

8.1 Scheduler Functions and Variables

9. Locks

10. Creating a Process

July 1986

48
50
51
52
53
54
55
56
56
57
58
59
60
60
61
61
62
64
65
65
70
70
71
71

73

75

79

81

83

85

86

91

95

v

July 1986 Intemals, Processes, and Storage Management

10.1 How to Choose Process Priority Levels

11. Process Functions

11.1 Process Attribute Functions
11.2 Run and Arrest Reason Functions
11.3 Functions for Starting and Stopping Processes

12. Process Messages

12.1 Process Attribute Messages
12.2 Run and Arrest Reason Messages
12.3 Messages for Stopping the Process

13. Process Flavors

14. Timer Queues

IV. Storage Management

15. Overview of Storage Management

15.1 Automatic Storage Management
15.2 Manual Storage Management

16. Areas

16.1 Regions Within Areas
16.2 Area Functions and Variables
16.3 Interesting Areas
16.4 The sys:reset-temporary-area Feature
16.5 Memory Mapping Tools

16.5.1 Area and Region Predicates
16.5.2 Mapping Routines

97

99

99
101
102

105

105
107
108

111

113

115

117

117
117

119

120
120
124
125
125
125
126

17. The Garbage Collector Facilities 131

17.1 Principles of Garbage Collection 131
17.2 Invoking the Garbage Collection Facilities 133
17.3 Theory of Operation of the GC Facilities 137

17.3.1 Dynamic and Static Spaces 137
17.3.2 Flipping 139
17.3.3 Ephemeral-Object Garbage Collection 141
17.3.4 How Garbage Collection Improves Locality of Reference 144

17.4 Storage Requirements for Dynamic Garbage Collection 145

vi

Internals, Processes, and Storage Management July 1986

17.5 Controlling Garbage Collection 148
17.6 Strategy for Unattended Operation with the Garbage Collector 154
17.7 Setting up GC Before Loading a Large System 154

18. Reporting the Use of Memory 155

19. Resources 157

19.1 Introduction to Resources 157

20. Wiring Memory 165

Index 167

List of Figures

Figure 1. FEP File Comment Properties 55

July 1986 Internals

PART I.

Internals

2

Internals, Processes, and Storage Management July 1986

3

July 1986 Internals

1. Stack Groups

A stack group (abbreviated "SG") is a type of Lisp object useful for implementation
of certain advanced control structures such as coroutines and generators.
Processes, which are a kind of coroutine, are built on top of stack groups. (See
the section "Processes", page 81.) A stack group represents a computation and its
internal state, including the Lisp stack.

At any time, the computation being performed by a Symbolics computer is
associated with one stack group, called the current or running stack group. The
operation of making some stack group be the current stack group is called a
resumption or a stack group switch; the previously running stack group is said to
have resumed the new stack group. The resume operation has two parts: first, the
state of the running computation is saved away inside the current stack group,
and secondly the state saved in the new stack group is restored, and the new stack
group is made current. Then the computation of the new stack group resumes its
course.

The stack group itself holds a great deal of state information. It contains the
control stack. The control stack is what you are shown by the Debugger's
backtracing commands (c-B, M-B, and c-M-B); it remembers the function that is
running, its caller, its caller's caller, and so on, and the point of execution of each
function (the "return addresses" of each function). A stack group contains the
binding (environment) stack. This contains all of the values saved by binding of
special variables. A stack group also contains structures allocated on the data
stack by such operations as sys:make-stack-array. See the function sys:make­
stack-array, page 14. The name "stack group" derives from the existence of these
stacks. Finally, the stack group contains various internal state information
(contents of machine registers and so on).

When the state of the current stack group is saved away, all of its bindings are
undone, and when the state is restored, the bindings are put back. Note that
although bindings are temporarily undone, unwind-protect handlers are not run by
a stack-group switch.

Each stack group is a separate environment for purposes of function calling,
throwing, dynamic variable binding, and condition signalling. All stack groups run
in the same address space, thus they share the same Lisp data and the same
global (not bound) variables.

When a new stack group is created, it is empty: it doesn't contain the state of any
computation, so it cannot be resumed. In order to get things going, the stack
group must be set to an initial state. This is done by presetting the stack group.
To preset a stack group, you supply a function and a set of arguments. The stack
group is placed in such a state that when it is first resumed, this function calls
those arguments. The function is called the initial function of the stack group.

4

Internals, Processes, and Storage Management July 1986

1.1 Resuming of Stack Groups

Stack groups resume each other. When one stack group resumes a second stack
group, the current state of Lisp execution is saved away in the first stack group,
and is restored from the second stack group. Resuming is also called switching
stack groups.

At any time, there is one stack group associated with the current computation; it
.is called the current stack group. The computations associated with other stack
groups have their states saved away in memory, and they are not computing. So
the only stack group that can do anything at all, in particular resuming other
stack groups, is the current one.

You can look at things from the point of view of one computation. Suppose it is
running along, and it resumes some stack group. Its state is saved away in the
current stack group, and the computation associated with the one it called starts
up. The original computation lies dormant in the original stack group, while other
computations go around resuming each other, until finally the original stack group
is resumed by someone. Then the computation is restored from the stack group
and runs again.

There are several ways that the current stack group can resume other stack
groups. This section describes all of them.

Associated with each stack group is a resumer. The resumer is nil or another
stack group. Some forms of resuming examine and alter the resumer of some
stack groups.

Resuming has another ability: it can transmit a Lisp object from the old stack
group to the new stack group. Each stack group specifies a value to transmit
whenever it resumes another stack group; whenever a stack group is resumed, it
receives a value.

In the descriptions below, let c stand for the current stack group, s stand for some
other stack group, and x stand for any arbitrary Lisp object.

Stack groups can be used as functions. They accept one argument. If c calls s as
a function with one argument x, then s is resumed, and the object transmitted is
x. When c is resumed (usually - but not necessarily - by s), the object
transmitted by that resumption is returned as the value of the call to s. This is
one of the simple ways to resume a stack group: call it as a function. The value
you transmit is the argument to the function, and the value you receive is the
value returned from the function. Furthermore, this form of resuming sets s's
resumer to be c.

Another way to resume a stack group is to use stack-group-return. Rather than
allowing you to specify which stack group to resume, this function always resumes
the resumer of the current stack group. Thus, this is a good way to resume

5

July 1986 Internals

whoever it was who resumed you, assuming it was done by function-calling.
stack-group-return takes one argument, which is the object to transmit. It
returns when someone resumes the current stack group, and returns one value,
the object that was transmitted by that resumption. stack-group-return does not
affect the resumer of any stack group.

The most fundamental way to do resuming is with stack-group-resume, which
takes two arguments: the stack group, and a value to transmit. It returns when
someone resumes the current stack group, returning the value that was
transmitted by that resumption, and does not affect any stack group's resumer.

If the initial function of c attempts to return a value x, the regular kind of Lisp
function return cannot take place, since the function did not have any caller (it
got there when the stack group was initialized). So instead of normal function
returning, a "stack group return" happens. c's resumer is resumed, and the value
transmitted is x. c is left in a state (" exhausted") from which it cannot be
resumed again; any attempt to resume it signals an error. Presetting it makes it
work again.

Those are the "voluntary" forms of stack group switch; a resumption happens
because the computation said it should. There are also two "involuntary" forms,
in which another stack group is resumed without the explicit request of the
running program.

When certain events occur, such as a 1I60th of a second clock tick, a sequence
break occurs. Sequence breaks are handled by system code, operating below the
level of stack groups. After a certain amount of time has elapsed (typically l/lOth
of a second), a sequence break causes the occurrence of a preemption. A
preemption forces the current stack group to resume a special stack group called
the scheduler. (See the section "The Scheduler", page 85.) The scheduler
implements processes by resuming, one after another, the stack group of each
process that is ready to run.

1.2 Stack Group Functions

make-stack-group name &rest options Function
This creates and returns a new stack group. name may be any symbol or
string; it is used in the stack group's printed representation. options is a
list of alternating keywords and values. The options are not too useful;
most calls to make-stack-group do not need any options at all. The
options are:

:sg-area
The area in which to create the stack group structure itself.
Defaults to the value of permanent-storage-area.

6

Internals, Processes, and Storage Management July 1986

:regular-pdl-area
The area in which to create the stack group's control stack. The
default is sys:stack-area.

:special-pdl-area
The area in which to create the binding (environment) stack.
Defaults to the default area (the value of sys:stack-area).

:regular-pdl-size
How big to make the stack group's control stack. The default is
large enough for most purposes.

:special-pdl-size
How big to make the stack group's special binding pdl. The default
is large enough for most purposes.

: safe If this flag is 1 (the default), a strict call-return discipline among
stack groups is enforced. If 0, no restriction on stack-group
switching is imposed.

stack-group-preset sg function &rest args Function
This sets up sg so that when it is resumed, function is applied to args
within the stack group. Both stacks are made empty; all saved state in the
stack group is destroyed. stack-group-preset is typically used to initialize
a stack group just after it is made, but it may be done to any stack group
at any time. Doing this to a stack group that is not exhausted destroys its
present state without properly cleaning up by running unwind-protects.

stack-group-resume sg value Function
Resumes sg, transmitting the value value. No stack group's resumer is
affected.

stack-group~return value Function
Resumes the current stack group's resumer, transmitting the value value.
No stack group's resumer is affected.

sys:sg-previous-stack-group stack-group
Returns the resumer of stack-group.

Function

symbol-value-in-stack-group sym sg &optional frame as-if-current Function
Evaluates the variable sym in the binding environment of sg. If sg is the
current stack group, this is just zl-user:symbol-value. Otherwise it looks
inside sg to see if sym is bound there; if so, the binding is returned; if not,
the global value is returned. If the variable has no value this generates an
unbound-variable error. If frame is specified, the value visible in that
frame is returned. If as-if-current is non-nil, a location is returned
indicating where the value would be if the specified stack group were

7

July 1986 Internals

running. The value, though, is the current one, not the one stored in that
location.

zl:symeval-in-stack-group sym sg &optional frame as-if-current Function
Evaluates the variable sym in the binding environment of sg. If sg is the
current stack group, this is just zl:symeval. Otherwise this function is the
same as symbol-value-in-stack-group.

A large number of functions in the sys: and dbg: packages exist for manipulating
the internal details of stack groups. These are not documented here as they are
not necessary for most users or even system programmers to know about.

1.3 Input/Output in Stack Groups

Because each stack group has its own set of dynamic bindings, a stack group does
not inherit its creator's value of *terminal-io*, nor its caller's, unless you make
special provision for this. See the variable *terminal-io* in Reference Guide to
Streams, Files, and lID. The *terminal-io* a stack group gets by default is a
"background" stream that does not normally expect to be used. If it is used, it
turns into a "background window" that requests the user's attention. Usually this
is because an error printout is trying to be printed on the stream.

If you write a program that uses multiple stack groups, and you want them all to
do input and output to the terminal, you should pass the value of *terminal-io* to
the top-level function of each stack group as part of the stack-group-preset, and
that function should bind the variable *terminal-io*.

Another technique is to use a dynamic closure as the top-level function of a stack
group. This closure can bind *terminal-io* and any other variables that are
desired to be shared between the stack group and its creator. Note that a dynamic
enclosure must be used, not a lexical enclosure. Lexical closures do not close over
special variables. See the function closure in Symbolics Common Lisp. See the
special form special in Program Development Utilities.

1.4 An Example of Stack Groups

The canonical coroutine example is the so-called same fringe problem: Given two
trees, determine whether they contain the same atoms in the same order, ignoring
parenthesis structure. A better way of saying this is, given two binary trees built
out of conses, determine whether the sequence of atoms on the fringes of the trees
is the same, ignoring differences in the arrangement of the internal skeletons of
the two trees. Following the usual rule for trees, nil in the cdr of a cons is to be
ignored.

8

Internals, Processes, and Storage Management July 1986

One way of solving this problem is to use generator coroutines. We make a
generator for each tree. Each time the generator is called it returns the next
element of the fringe of its tree. After the generator has examined the entire
tree, it returns a special "exhausted" flag. The generator is most naturally
written as a recursive function. The use of coroutines, that is, stack groups,
allows the two generators to recurse separately on two different control stacks
without having to coordinate with each other.

The program is very simple. Constructing it in the usual bottom-up style, we first
write a recursive function that takes a tree and stack-group-returns each element
of its fringe. The stack-group-return is how the generator coroutine delivers its
output. We could easily test this function by replacing stack-group-return with
print and trying it on some examples.

(defun fringe (tree)
(cond «atom tree) (stack-group-return tree))

(t (fringe (car tree))
(if (not (null (cdr tree)))

(fringe (cdr tree))))))

Now we package this function inside another, which takes care of returning the
special "exhausted" flag.

(defun fringe1 (tree exhausted)
(fringe tree)
exhausted)

The samefringe function takes the two trees as arguments and returns t or nil.
I t creates two stack groups to act as the two generator coroutines, presets them to
run the fringe! function, then goes into a loop comparing the two fringes. The
value is nil if a difference is discovered, or t if they are still the same when the
end is reached.

(defun samefringe (tree1 tree2)
(let «sg1 (make-stack-group "samefringe1"))

(sg2 (make-stack-group "samefringe2"))
(exhausted (ncons nil))) ;unique item

(stack-group-preset sg1 #'fringe1 tree1 exhausted)
(stack-group-preset sg2 #'fringe1 tree2 exhausted)
(do «v1) (v2)) (nil)

(setq v1 (funcall sg1.nil)
v2 (funcall sg2 nil))

(cond «neq v1 v2) (return nil))
«eq v1 exhausted) (return t))))))

Now we test it on a couple of examples.

July 1986

(samefrtnge '(a b c) '(a (b c))) => t
(samefringe '(a b c) '(a b cd)) => nil

9

Internals

The problem with this is that a stack group is quite a large object, and we make
two of them every time we compare two fringes. This is a lot of unnecessary
overhead. It can easily be eliminated with a modest amount of explicit storage
allocation, using the resource facility. See the special form defresource, page 158.
While we're at it, we can avoid making the exhausted flag fresh each time; its
only important property is that it not be an atom.

(defvar *exhausted-flag* (ncons nil))

(defresource samefringe-coroutine ()
:constructor (make-stack-group "for-samefringe"))

(defun samefringe (tree1 tree2)
(using-resource (sg1 samefringe-coroutine)

(using-resource (sg2 samefringe-coroutine)
(stack-group-preset sg1 #'fringe1 tree1 *exhausted-flag*)
(stack-group-preset sg2 #'fringe1 tree2 *exhausted-flag*)
(do «v1) (v2)) (nil)

(setq v1 (funcall sg1 nil)
v2 (funcall sg2 nil))

(cond «neq v1 v2) (return nil))
«eq v1 *exhausted-flag*) (return t)))))))

Now we can compare the fringes of two trees with no allocation of memory
whatsoever.

10

Internals, Processes, and Storage Management July 1986

11

July 1986 Internals

2. Allocation on the Stack

2.1 Consing Lists on the Control Stack

with-stack-list and with-stack-list* cons lists on the control stack so that when
you are finished, the lists are popped off without leaving any physical garbage.
This is essentially giving you access to the mechanism that &rest arguments use.
Because these are on the control stack, you cannot return the lists that are made,
use rplacd with them, or place references to them in permanent data structures.
The special form sys:with-stack-array is similar, but it makes arrays on the data
stack instead of lists.

The macros stack-let and stack-let· provide an alternative to with-stack-list and
with-stack-list* for consing lists on the control stack. They are especially useful
for building nested list structures on the stack.

with-stack-list (variable &rest list-elements) body... Special Form
with-stack-list is used to bind a variable to a list and evaluate some forms
in the context of that binding. It is like let (in that it binds a variable),
except that it conses the list on the stack.

(scl:with-stack-list (var element1 element2 ... elementn)
body)

is like

(let «var (list element1 element2 ... elementn»)
body)

If you want these values to be returned, or to be made part of permanent
storage, then it is necessary to copy them with the sys:copy-if-necessary
function. This function checks whether an object is in temporary storage
or on a stack, and moves it to permanent storage if it is. See the function
sys:copy-if-necessary in Symbolics Common Lisp.

with-stack-list* (variable &rest list-elements) body... Special Form
Used to bind a variable to a list and evaluate some forms in the context of
that binding. It is like let (in that it binds a variable), except that
with-stack-list* conses the list on the stack. with-stack-list* simulates
list* instead of list. (See the function list* in Symbolics Common Lisp.)

(scl :with-stack-list* (var element1 element2 ... elementn)
body)

12

Internals, Processes, and Storage Management July 1986

is like

(let ((var (list* element1 element2 ... elementn»)
body)

stack-let clauses &body body Macro
stack-let provides an alternative syntax for constructing lists on the control
stack. It uses the same syntax (and very similar semantics) as let. For
example, the form:

(stack-let ((a (list x y z») body)

expands into:

(scl :with-stack-list (a x y z) body)

This syntax is convenient for complex expressions involving nested lists,
such as:

(stack-let ((a \((:foo ,faa) (:bar ,bar»» body)

which expands into three nested with-stack-list forms. If an expression in
a stack-let clause is of the form:

(list (reverse (list ... »)

only the outermost list is constructed on the stack. No codewalking is
performed.

stack-let* clauses &body body Macro
stack-let· provides an alternative syntax for constructing lists on the
control stack. It is similar to stack-let, but it uses the same syntax and
similar semantics as let·.

2.2 The Data Stack

sys:with-stack-array (var length &key type element-type Special Form
initial-element initial-contents displaced-to
displaced-index-offset displaced-conformally
leader-list leader-length named-structure-symbol
initial-value fill-pointer) &body body

This form is like with-stack-list but makes an array. The array has a
dynamic lifetime and becomes "conceptual garbage" when the form is
exited, just as with with-stack-list. ("Conceptual garbage" means objects
that are no longer in use by the program and are thus fair game for the
garbage collector. "Physical garbage," in contrast, is storage that is

13

July 1986 Internals

occupied by conceptual garbage and has not yet been reclaimed for
productive use.) If you have an array that becomes conceptual garbage
when control exits a form, that array is a candidate for implementation by
sys:with-stack-array so that there won't be any physical garbage.

The array is created on the data stack, which is part of a stack group.
Only arrays can be allocated on the data stack.

The keyword options to sys:make-stack-array include options that are
accepted by make-array and zl:make-array. For information on these
options: See the section "Keyword Options for make-array" in Symbolics
Common Lisp. See the function zl:make-array.

This recognizes various special case combinations of make-array keywords
and calls fast specialized runtime routines. It works especially well with
one-dimensional indirect arrays.

Here is an example of the use of sys:with-stack-array.

(sys:with-staek-array (a n :element-type 'el :string-ehar
:initial-element #\spaee) ...)

More information is available about stack arrays and the data stack. See
the function sys:make-stack-array, page 14. See the special form sys:with­
data-stack, page 14.

For rasters, use sys:with-raster-stack-array instead: See the special form
sys:with-raster-stack-array, page 13.

sys:with-raster-stack-array (var width height &key type element-type Special Form
initial-element initial-contents displaced-to
displaced-index-offset displaced-conformally
leader-list leader-length named-structure-symbol
initial-value fill-pointer) &body body

Provides the same functionality as does sys:with-stack-array, but it is used
for rasters. Note that sys:with-raster-stack-array has width and height
arguments instead of the length argument of sys:with-stack-array.

See the special form sys:with-stack-array, page 12.

The keyword options to sys:make-stack-array include options that are
accepted by make-array and zl:make-array. For information on these
options: See the section "Keyword Options for make-array" in Symbolics
Common Lisp. See the function zl:make-array.

In the following example, note that in the Genera 7.0 row-major
implementation the height is the first dimension and width is the second:

(sel :make-raster-array 2 7 :element-type 'boolean)
=> #<ART-BOOLEAN-7-2 61B47172>

14

Internals, Processes, and Storage Management July 1986

(sys:with-raster-stack-array (array 2 7 :element-type 'boolean)
(print array)
nil)

=> #<ART-800LEAN-7-2 214BBBB1>
NIL

sys:with-data-stack &body body Special Form
This primitive special form takes care of cleaning up the data stack when
the body is exited. You sometimes want to optimize for extra speed by
putting a sys:with-data-stack around a piece of code that calls
sys:make-stack-array multiple times, perhaps even inside a loop that is
known not to be executed more than a few times. This can be more
efficient than doing sys:with-stack-array multiple times.

sys:make-stack-array dimensions &rest keywords Function
This function is a special version of zl:make-array and make-array that
allocates on the data stack. You should call this only when dynamically
inside a sys:with-data-stack. This is actually a macro that expands into a
call to an appropriate routine, to allocate the desired kind of array on the
data stack.

The keyword options to sys:make-stack-array include all options that are
accepted by make-array and zl:make-array. For information on these
options: See the section "Keyword Options for make-array" in Symbolics
Common Lisp. See the function zl:make-array.

For rasters, use sys:with-raster-stack-array instead: See the special form
sys:with-raster-stack-array, page 13.

Currently, you cannot make anything but arrays and rasters on the data
stack.

sys:make-raster-stack-array width height &key keywords Function
Provides the same functionality as does sys:make-stack-array, but it is
used for rasters. Note that sys:with-raster-stack-array has width and
height arguments instead of the dimensions argument of
sys:make-stack-array.

See the function sys:make-stack-array, page 14.

The keyword options to sys:make-raster-stack-array include all options
that are accepted by make-array and zl:make-array. For information on
these options: See the section "Keyword Options for make-array" in
Symbolics Common Lisp. See the function zl:make-array.

In the following example, note that in the Genera 7.0 row-major
implementation the height is the first dimension and width is the second:

July 1986

(sys:with-data-stack
(let ((array (sys:make-raster-stack-array

(print array))
nil)

3 5 :element-type 'character)))

=> #<ART-FAT-STRING-5-3 21400001>

15

Internals

16

Internals, Processes, and Storage Management July 1986

17

July 1986 Internals

3. Subprimitives

Subprimitives are functions that are not intended to be used by the average
program, only by "system programs". They allow you to manipulate the
environment at a level lower than normal Lisp. Subprimitives usually have names
that start with a % character. The" primitives" described elsewhere typically use
subprimitives to accomplish their work. The subprimitives take the place of
machine language in other systems, to some extent. In most cases, sub primitive
operations have been hand-coded in microcode by Symbolics.

Subprimitives, by their very nature, cannot do full checking. Improper use of
subprimitives can destroy the environment. Subprimitives come in varying degrees
of dangerousness. Those without a % sign in their name cannot destroy the
environment, but are dependent on "internal" details of the Lisp implementation.
The ones whose names start with a % sign can violate system conventions if used
improperly. Note that this chapter does not document all the things you need to
know in order to use them. Still other sUbprimitives are not documented here
because they are very specialized. Most of these are never used explicitly by a
programmer; the compiler inserts them into the program to perform operations
that are expressed differently in the source code.

The most common problem you can cause using subprimitives, though by no
means the only one, is to create invalid pointers: pointers that, because of one
storage convention or another, are not allowed to exist. The storage conventions
are not documented; as we said, you have to be an expert to correctly use a lot of
the functions in this chapter. If you create such an invalid pointer, it probably
will not be detected immediately, but later on parts of the system might see it,
notice that it is invalid, and (probably) halt the machine.

In a certain sense car, cdr, rplaca, and rplacd are subprimitives. If these are
given a locative instead of a list, they access or modify the cell addressed by the
locative without regard to what object the cell is inside. Subprimitives can be
used to create locatives to strange places.

Many subprimitives that are used only for effect also return values. A few look
like functions but are really macros; they do not evaluate their arguments in left­
to-right order.

Names of subprimitives are currently in a variety of packages, but all of them are
exported by the system package. The best way to reference a sub primitive is to
use a system: preflx, which can be abbreviated sys:. You can also make your own
package use the system package.

Additional information can be found in the system deflnition flIes, which are
available from Symbolics as part of the Additional Optional Compiler Sources
package.

18

Internals, Processes, and Storage Management July 1986

sys: l-sys; sysdef.lisp
Data structure definitions

sys: l-sys; sysdfl.lisp
Communication areas, escape routines

sys: l-sys; opdef.lisp
Instruction set definition

3.1 Data Type Subprimitives

data-type arg Function
data-type returns a symbol that is the name for the internal data type of
the "pointer" that represents argo Note that some types as seen by the
user are not distinguished from each other at this level, and some user
types can be represented by more than one internal type. For example,
sys:dtp-extended-number is the symbol that data-type would return for a
double-precision floating-point number, a bignum, a complex number, or a
rational number even though those types are quite different. The type
function is a higher-level primitive that is more useful in most cases;
normal programs should always use type rather than data-type. Another
useful function is type-of.

Some of these type codes are internal tag fields that are never used in
pointers that represent Lisp objects at all, but they are listed here anyway.

sys:dtp-symbol

sys:dtp-nil

sys:dtp-fix

dtp-float

The object is a symbol.

nil has a data type of dtp-nil, rather than
sys:dtp-symbol, and does not have a pointer field
of zero. symbolp of nil is true, and the address
field points to the same storage representation as
all other symbols.

The object is a flXIlum; the numeric value is
contained in the address field of the pointer.

The object is a single-precision floating-point
number.

sys:dtp-extended-number

sys:dtp-list

The object is a double-precision floating-point,
rational, or complex number, or a bignum. This
value will also be used for future numeric types.

The object is a cons.

July 1986

sys:dtp-Iocative

dtp-array

dtp-compiled-function

sys:dtp-closure

sys:d tp-Iexical-closure

sys:dtp-instance

19

Internals

The object is a locative pointer.

The object is an array.

The object is a compiled function.

The object is a dynamic closure. See the section
"Dynamic Closures" in Symbolics Common Lisp.

The object is a lexical closure. See the section
"Lexical Scoping" in Symbolics Common Lisp.

The object is an instance of a flavor, that is, an
"active object". See the section "Flavors" in
Symbolics Common Lisp.

sys:dtp-generic-function The object is a generic function. See the section
"Generic Functions" in Symbolics Common Lisp.

sys:dtp-character

sys:dtp-null

The object is a character. See the section
"Characters" in Symbolics Common Lisp.

Nothing to do with nil. This is used in unbound
value and function cells.

sys:dtp-external-value-cell-pointer
An "invisible pointer" used for external value
cells, which are part of the closure mechanism.
See the section "Dynamic Closures" in Symbolics
Common Lisp.

sys:dtp-header-forward An" invisible pointer" used to indicate that the
structure containing it has been moved elsewhere.
The "header word" of the structure is replaced by
one of these invisible pointers.

sys:dtp-element-forward An "invisible pointer" used to indicate that the
structure containing it has been moved elsewhere.
This points to the new location of the word
containing it.

sys:dtp-one-q-forward An" invisible pointer" used to indicate that the
single cell containing it has been moved
elsewhere.

sys:dtp-Iogic-variable An" invisible pointer" used by Symbolics Prolog.

sys:dtp-monitor-forward An "invisible pointer" used by the debugging
facilities such as the Command Processor
command Monitor Variable. See the section
"Debugger" in Release 7.0 Release Notes.

20

Internals, Processes, and Storage Management July 1986

sys:dtp-gc-forward This is used by the garbage collector to flag the
obsolete copy of an object; it points to the new
copy.

sys:dtp-odd-pc,dtp-even-pc
The object is a program counter and points to
macroinstructions.

sys:dtp-header-i,dtp-header-p
Internal markers in storage, found at the base of
the storage of structures.

sys:*data-types* Variable
The value of sys:*data-types· is a list of all of the symbolic names for
data types described above under data-type. TheE?e are the symbols whose
print names begin with "dtp-". The values of these symbols are the
internal numeric data-type codes for the various types.

si:data-types type-code Function
Given the internal numeric data-type code, returns the corresponding
symbolic name.

sys:%instance-flavor instance Function
Gets the flavor structure of instance.

sys:%change-list-to-cons list Function
Changes the two-element cdr-coded list to a dotted pair by altering the cdr
codes.

sys:%flonum number Function
This function sets the data type field to convert a fIXnum to a flonum. It
is not the function zl:float, but instead provides direct access to the
internal bit representation of single-precision floating-point numbers.

sys:%ilXllum number Function
This function sets the data type field to convert a flonum to a fIXnum. It
is not the function zl:ilX, but instead provides direct access to the internal
bit representation of single-precision floating-point numbers.

3.2 Forwarding Words in Memory

An invisible pointer is a kind of pointer that does not represent a Lisp object, but
just resides in memory. There are several kinds of invisible pointers, and there
are various rules about where they can appear. The basic property of an invisible

21

July 1986 Internals

pointer is that if the machine reads a word of memory and finds an invisible
pointer there, instead of seeing the invisible pointer as the result of the read, it
does a second read, at the location addressed by the invisible pointer, and returns
that as the result instead. Writing behaves in a similar fashion. When the
machine writes a word of memory it first checks to see if that word contains an
invisible pointer; if so it goes to the location pointed to by the invisible pointer
and tries to write there instead. Many subprimitives that read and write memory
do not do this checking.

The simplest kind of invisible pointer has the data type code
sys:dtp-one-q-forward. It is used to forward a single word of memory to
someplace else. The invisible pointers with data types sys:dtp-header-forward
and sys:dtp-element-forward are used for moving whole Lisp objects (such as
cons cells or arrays) somewhere else. The sys:dtp-external-value-cell-pointer is
very similar to the sys:dtp-one-q-forward; the difference is that it is not
"invisible" to the operation of binding. If the (internal) value cell of a symbol
contains a sys:dtp-external-value-cell-pointer that points to some other word (the
external value cell), then symbol-value or set operations on the symbol consider
the pointer to be invisible and use the external value cell, but binding the symbol
saves away the sys:dtp-external-value-cell-pointer itself, and stores the new value
into the internal value cell of the symbol. This is how dynamic closures are
implemented.

sys:dtp-gc-forward is not an invisible pointer at all; it only appears in old space
and is never seen by any program other than the garbage collector. When an
object is found not to be garbage, and the garbage collector moves it from old
space to copy space, a sys:dtp-gc-forward is left behind to point to the new copy
of the object. This ensures that other references to the same object get the same
new copy.

structure-forward old new &optional (old-header-size 1) Function
(new-header-size 1)

This causes references to old to actually reference new, by storing invisible
pointers in old. It returns old.

An example of the use of structure-forward is zl:adjust-array-size. If the
array is being made bigger and cannot be expanded in place, a new array
is allocated, the contents are copied, and the old array is structure­
forwarded to the new one. This forwarding ensures that pointers to the old
array, or to cells within it, continue to work. When the garbage collector
goes to copy the old array, it notices the forwarding and uses the new
array as the copy; thus the overhead of forwarding disappears eventually if
garbage collection is in use.

22

Internals, Processes, and Storage Management July 1986

follow-structure-forwarding object Function
Normally returns object, but if object has been structure-forwarded,
returns the object at the end of the chain of forwardings. If object is not
exactly an object, but a locative to a cell in the middle of an object, a
locative to the corresponding cell in the latest copy of the object is
returned.

forward-value-cell from-symbol to-symbol Function
This alters from-symbol so that it always has the same value as to-symbol,
by sharing its value cell. A sys:dtp-one-q-forward invisible pointer is
stored into from-symbol's value cell.

To forward one arbitrary cell to another (rather than specifically one value
cell to another), given two locatives do

(sys:70p-store-tag-and-pointer locative1
sys:dtp-one-q-forward locative2)

follow-cell-forwarding loc evcp-p Function
loc is a locative to a cell. Normally loc is returned, but if the cell has been
forwarded, this follows the chain of forwardings and returns a locative to
the final cell. If the cell is part of a structure that has been forwarded,
the chain of structure forwardings is followed, too. If evcp-p is t, external
value cell pointers are followed; if it is nil they are not.

3.3 Pointer Manipulation

I t should be emphasized that improper use of these functions can damage or
destroy the Lisp environment. It is possible to create pointers with illegal data
type, to create pointers to nonexistent objects, and to completely confuse the
garbage collector.

sys:%pointerp object Function
sys:%pointerp returns t when object has an address (as opposed to being
an immediate object).

sys:%pointer-type-p data-type-number Function
sys:%pointer-type-p returns t if the argument is a data type code that has
an associated address (rather than an associated immediate field). The
argument comes from sys:%data-type or sys:%p-data-type.

For example:

(sys:70po;nter-type-p (sys:70data-type 'symbol))

23

July 1986 Internals

sys:%pointer-Iessp pl p2 Function
Compares two addresses. Returns t if pl has a pointer field lower in the
address space than p2's pointer field; returns nil otherwise.

sys:%data-type x Function
Returns the data-type field of x, as a flXnum.

sys:%pointer x Function
Returns the pointer field of x, as a flXnum. For most types, this is
dangerous since the garbage collector can copy the object and change its
address.

sys:%make-pointer data-type pointer Function
This makes up a pointer, with data-type in the data-type field and the
pointer field of pointer in the pointer field, and returns it. data-type should
be an internal numeric data-type code; these are the values of the symbols
that start with dtp-. pointer can be any object; its pointer field is used.
This is most commonly used for changing the type of a pointer. Do not
use this to make pointers that are not allowed to be in the machine, such
as sys:dtp-null, invisible pointers, etc.

sys:%make-pointer-offset new-dtp pointer offset Function
This returns a pointer with new-dtp in the data-type field, and pointer plus
offset in the pointer field. The new-dtp and pointer arguments are like
those of sys:%make-pointer; offset can be any object but is usually a
flXnum. The types of the arguments are not checked; their pointer fields
are simply added together. This is useful for constructing locative pointers
into the middle of an object, although sys:%p-structure-offset may be more
appropriate.

sys:%pointer-difference pointer-l pointer-2 Function
Returns a flXnum that is pointer-l's pointer field minus pointer-2's
pointerfield. No type checks are made. For the result to be meaningful,
the two pointers must point into the same object, so that their difference
cannot change as a result of garbage collection.

3.4 Analyzing Structures

sys:%find-structure-header pointer Function
This sub primitive finds the structure into which pointer points, by
searching backward for a header. It is a basic low-level function used by
such things as the garbage collector. pointer is normally a locative, but its
data-type is ignored.

24

Internals, Processes, and Storage Management July 1986

In structure space, the "containing structure" of a pointer is well-defined
by system storage conventions. In list space, it is considered to be the
contiguous, cdr-coded segment of list surrounding the location pointed to.
If a cons of the list has been copied out by rplacd, the contiguous list
includes that pair and ends at that point.

sys:%find-structure-Ieader pointer Function
The result of sys:%find-structure-leader is always the lowest address in
the structure (as a locative).

sys:%structure-total-size pointer Function
Returns the total number of words occupied by the representation of the
indicated object.

sys:%find-structure-extent pointer
This is roughly a combination of sys:%find-structure-header,
sys:%find-structure-Ieader, and sys:%structure-total-size.

sys:%find-structure-extent returns three values:

1. The structure into which pointer points.

Function

2. A locative to the base of the structure. This is almost the same as
sys:%find-structure-Ieader, but sys:%find-structure-extent always
returns a locative.

3. The total number of words occupied by the object (the same thing
sys:%structure-total-size returns).

Example:

(defun page-in-structure (obj &optional
(hang-p *default-page-in-hang~p*)
(normalize-p *default-page-in-normalize-p*»

(setq obj (follow-structure-forwarding obj»
(multiple-value-bind (nil leader size)

(sys:%find-structure-extent obj)
(page-in-words leader size

hang-p normalize-p»)

25

July 1986 Internals

3.5 Basic Locking Subprimitive

store-conditional pointer old new Function
Takes three arguments: pointer (a locative which addresses some cell), old
(any Lisp object), and new (any Lisp object). It checks to see whether the
cell contains old, and, if so, it stores new into the cell. The test and the
set are done as a single atomic operation. store-conditional returns t if
the test succeeded and nil if the test failed. It behaves like
sys:%p-store-contents in that it leaves the cdr code of the location that is
being stored into undisturbed. You can use store-conditional to do
arbitrary atomic operations to variables that are shared between processes.
For example, to atomically add 3 into a variable x:

(do «old»
«store-conditional (locf x) (setq old x) (+ old 3»»

The first argument is a locative so that you can atomically affect any cell
in memory; for example, you could atomically add 3 to an element of an
array or structure.

store-conditional locks out microtasks but cannot lock out the FEP or
external-DMA devices. Protocols for communicating with such devices
must use locking methods that do not depend on atomic read-modify-write,
such as those based on cells that are only written by one party and only
read by the other party.

The old name for this function, sys:%store-conditional, is still accepted,
but should not be used in new programs.

3.6 Accessing Arrays Specially

The function sys:array-row-span is for users of sys:%ld-aref and the
sys:array-register-ld declaration who need to perform their own subscript
calculations and do special loop optimizations.

sys:array-row-span array Function
sys:array-row-span, given a two-dimensional array, returns the number of
array elements spanned by one of its rows. Normally, this is just equal to
the length of a row (that is, the number of columns), but for conformally
displaced arrays, the length and the span are not equal.

Note: if the array is conceptually a raster, it is better to use
decode-raster-array instead of sys:array-row-span.

26

Internals, Processes, and Storage Management July 1986

3.7 Storage Layout Definitions

The following special variables have values that define the most important
attributes of the way Lisp data structures are laid out in storage. In addition to
the variables documented here, there are many others that are more specialized.
They are not documented here since they are in the system package rather than
the global package. The variables whose names start with %% are byte specifiers,
intended to be used with subprimitives such as sys:%p-Idb. If you change the
value of any of these variables, you will probably bring the machine to a crashing
halt.

The byte specifiers sys:%%q-ilXllwn and sys:%%q-high-type reflect the fact that
the number of bits in a fumum does not equal the number of bits in a pointer.

For details about byte specifiers, field values, and accessor macros for the internal
da,ta structures, see the file sys:l-sys;sysdef.1isp. This file is part of the Additional
Optional Compiler Source package available from Symbolics.

sys:%%q-cdr-code Variable
The field of a memory word that contains the cdr-code. See the section
"Cdr-Coding" in Symbolics Common Lisp.

sys:%%q-data-type Variable
The field of a memory word that contains the data type code. See the
section "Data Types" in Symbolics Common Lisp.

sys:%%q-pointer Variable
The field of a memory that contains the pointer address, or immediate data.

sys:%%q-pointer-within-page Variable
The field of a memory word that contains the part of the address that lies
within a single page.

sys:%%q-typed-pointer Variable
The concatenation of the sys:%%q-data-type and sys:%%q-pointer fields.

sys:%%q-all-but-typed-pointer Variable
The field of a memory word that contains the tag field sys:%%q-cdr-code.

sys:%%q-all-but-pointer
The concatenation of all fields of a memory word except for
sys:%%q-pointer.

sys:%%q-all-but-cdr-code
The concatenation of all fields of a memory word except for
sys:%%q-cdr-code.

Variable

Variable

27

July 1986 Internals

sys:cdr-normal Variable
The value of this variable is one of the numeric values that go in the cdr­
code field of a memory word. This value means that the cdr is stored in
the next location. See the section "Cdr-Coding" in Symbolics Common
Lisp.

sys:cdr-next Variable
The value of this variable is one of the numeric values that go in the cdr­
code field of a memory word. This value means that the cdr is the next
location. See the section "Cdr-Coding" in Symbolics Common Lisp.

sys:cdr-nil Variable
The value of this variable is one of the numeric values that go in the cdr­
code field of a memory word. The cdr is nil. See the section "Cdr-Coding"
in Symbolics Common Lisp.

3.8 Special Memory Referencing

sys:%p-structure-offset x offset Function
Does follow-structure-forwarding on x, then sys:%make-pointer-offset
sys:dtp-Iocative of that and offset. This operation captures the inherent
primitive underlying sys:%p-Idb-offset and the like.

sys:%p-contents-offset pointer offset Function
This checks the cell pointed to by pointer for a forwarding pointer. Having
followed forwarding pointers to the real structure pointed to, it adds offset
to the resulting forwarded pointer and returns the contents of that location.

There is no %p-contents, since location-contents performs that operation.

sys:%p-contents-as-Iocative x Function
Given a pointer to a memory location containing a pointer that is not
allowed to be "in the machine" (typically an invisible pointer) this function
returns the contents of the location as a sys:dtp-Iocative. It changes the
disallowed data type to sys:dtp-Iocative so that you can safely look at it
and see what it points to. You must be sure that the location really
contains a pointer data type.

sys:%p-contents-as-Iocative-offset pointer offset Function
This checks the cell pointed to by pointer for a forwarding pointer. Having
followed forwarding pointers to the real structure pointed to, it adds offset
to the resulting forwarded pointer, fetches the contents of that location, and
returns it with the data type changed to sys:dtp-Iocative in case it was a

28

Internals, Processes, and Storage Management July 1986

type that is not allowed to be "in the machine" (typically an invisible
pointer).

sys:%p-store-contents pointer x Function
x is stored into the data-type and pointer fields of the location addressed by
pointer. The cdr-code field remains unchanged. x is returned.

sys:%p-store-contents-offset value pointer offset Function
This checks the cell pointed to by pointer for a forwarding pointer. Having
followed forwarding pointers to the real structure pointed to, it adds offset
to the resulting forwarded pointer, and stores value into the data-type and
pointer fields of that location. The cdr-code field remains unchanged.
value is returned.

sys:%p-store-tag-and-pointer pointer tag-fields pointer-field Function
The location addressed by pointer is written, without following invisible
pointers, such that the tag fields of the location contain tag-fields and the
pointer field contains pointer-field. This is a good way to store a
forwarding pointer from one structure to another (for example).

sys:%p-store-cdr-and-contents pointer x cdr Function
Stores cdr and the object x into a memory location identified by pointer,
without reading the previous contents of that location or following invisible
pointers. Use this sub primitive to store flXllums and single-precision
floating-point numbers, because sys:%p-store-tag-and-pointer cannot be
reasonably used to do so, because the tag overlaps the value.

This function can be used to write to hardware registers in Symbolics
machines.

sys:%p-store-cdr-type-and-pointer pointer cdr-field type-field
pointer-field

This is a more general form of sys:%p-store-tag-and-pointer.

Function

sys:%p-Idb byte-spec pointer Function
This is a read operation like ldb ("load byte") but it fetches a byte
specified by byte-spec from the location addressed by pointer. Note that you
can load bytes out of the data type, not just the pointer field, and that the
source word need not be a flXllum. The result returned is always a
flXllum.

The size of byte-spec must be 32 or less, and the sum of the size and
position must be less than or equal to 36.

This function can be used for reading hardware registers.

29

July 1986 Internals

sys:%p-Idb-offset byte-spec pointer offset Function
This checks the cell pointed to by pointer for a forwarding pointer. Having
followed forwarding pointers to the real structure pointed to, the byte
specified by byte-spec is loaded from the contents of the location addressed
by the forwarded pointer plus offset, and returned as a fumum.

The size of byte-spec must be 32 or less, and the sum of the size and
position must be less than or equal to 36.

sys:%p-dpb value byte-spec pointer Function
The value, a fumum, is stored into the byte selected by byte-spec in the
word addressed by pointer. nil is returned. You can use this to alter data
types, cdr codes, and so on.

The size of byte-spec must be 32 or less, and the sum of the size and
position must be less than or equal to 36.

sys:%p-dpb-offset value byte-spec pointer offset Function
This checks the cell pointed to by pointer for a forwarding pointer. Having
followed forwarding pointers to the real structure pointed to, the value is
stored into the byte specified by byte-spec in the location addressed by the
forwarded pointer plus offset. nil is returned. The size of byte-spec must
be 32 or less, and the sum of the size and position must be less than or
equal to 36.

sys:%p-pointer pointer Function
Extracts the pointer field of the contents of the location addressed by
pointer and returns it as a fumum.

sys:%p-data-type pointer Function
Extracts the data-type field of the contents of the location addressed by
pointer and returns it as a fumum.

sys:%p-cdr-code pointer Function
Extracts the cdr-code field of the contents of the location addressed by
pointer and returns it as a fumum.

sys:%p-store-pointer pointer value Function
Clobbers the pointer field of the location addressed by pointer to value, and
returns value.

sys:%p-store-data-type pointer value Function
Clobbers the data-type field of the location addressed by pointer to value,
and returns value.

30

Internals, Processes, and Storage Management July 1986

sys:%p-store-cdr-code pointer value Function
Clobbers the cdr-code field of the location addressed by pointer to value,
and returns value.

sys:%stack-frame-pointer Function
Returns a locative pointer to its caller's stack frame. This function is not
defined in the interpreted Lisp environment; it only works in compiled code.

sys:%block-store-cdr-and-contents address count cdr contents Function
increment

The contiguous region of memory specified by the beginning address and
count of words is efficiently filled with the object contents and the cdr-code
(cdr). The addresses to be initialized must not be mapped to A memory.
The increment to contents is typically o. The increment is added to the
address field (sys:%%q-pointer) of contents. If increment is nonzero, it
must not be used to increment a pointer across the boundaries of a garbage
collector "space"; otherwise, the garbage collector tags will be set
incorrectly.

sys:%block-store-tag-and-pointer address count tag pointer Function
increment

The contiguous region of memory specified by the beginning address and
count of words is efficiently filled with a word assembled from the tag and
pointer fields, allowing the construction of invisible pointers. The addresses
to be initialized must not be mapped to A memory. The increment to
contents is usually o. If increment is nonzero, it must not be used to
increment a pointer across the boundaries of a garbage collector "space";
otherwise, the garbage collector tags will be set incorrectly.

sys:%block-search-eq object address count Function
The contiguous region of memory specified by the beginning address and
count of words is searched for the specified object. The comparison uses
the eq function. If it doesn't find anything it returns nil, otherwise it
returns the address of the word it found.

sys:%unsynchronized-device-read address Function
Reads registers from the revision 2 I/O board. It allows data that are not
properly synchronized to the Lbus clock to be read without causing a parity
error.

31

July 1986 Internals

3.9 Special Variable Binding Subprimitive

sys:%bind-Iocation locative value Function
Binds the cell pointed to by locative to value, in the caller's environment.
This function is not defined in the interpreted Lisp environment; it only
works from compiled code. Since it turns into an instruction, the "caller's
environment" really means "the binding block for the stack frame that
executed the sys:%bind-Iocation instruction". The preferred higher-level
primitives that turn into this are let-if, progv, progw, and letf.

3.10 Function-calling Subprimitives

Except for sys:%push and sys:%pop, the subprimitives for calling with a run­
time-variable number of arguments, without consing a list, are the
sys:%start-function-call and sys:%finish-function-call special forms.

sys:%start-function-call function destination n-arguments lexpr Function
Used for calling a function with a variable number of arguments at run
time, without consing a list. See the section "Function-calling
Subprimitives", page 31.

sys:%finish-function-call function destination n-arguments lexpr Function
Used to finish a call to a function with a variable number of arguments at
run time, without consing a list. See the section "Function-calling
Subprimitives", page 31.

sys:%start-function-call and sys:%finish-function-call each take the same four
subforms. The subforms are:

function

destination

A form evaluated to yield the function to be called.

The disposition of its results. Not evaluated. It takes these
values:

Value

nil

t

return

Meaning

Call for effect.

Receive one value on the stack. You must use
sys:%pop to fetch the value off the stack. You
should not use the value of the "call" to
sys:%finish-function-call.

Return all values from the function in which
it is being used.

32

Internals, Processes, and Storage Management July 1986

There is no provision for receiving multiple values.

n-arguments A form evaluated to yield the number of times sys:%push has to
be done.

lexpr True if the last sys:%push is a list of arguments rather than a
single argument; false in the normal case. Not evaluated.

Follow these steps:

1. Do a sys:%start-function-call.

2. Do a sys:%push on each argument.

3. Do a sys:%finish-function-call.

The order of evaluation of the subforms is not guaranteed, and you must make
certain to pass the same subform values to the sys:%start-function-call and the
sys:%finish-function-call. Generally it is best to use variables and not do
computations in these subforms.

Also, you must not allocate or deallocate any local variables between the
sys:%start-function-call and the sys:%finish-function-call, because they will get
in the way of the sys:%push subprimitives. Thus, the following will not work:

(sys:70start-function-call ...)
(dolist (x 1) (sys:70push x))
(sys:%finish-function-call ...)

Instead, write:

(let «x 1))
(sys:70start-function-call ...)
(do 0 «null x)) (sys: 70push (pop x)))
(sys:70finish-function-call ...))

sys:%push value Function
Pushes value onto the stack. Use this to push the arguments. See the
section "Function-calling Subprimitives", page 31.

sys:%pop Function
Pops the top value off of the stack and returns it as its value. See the
section "Function-calling SUbprimitives", page 31.

33

July 1986 Internals

3.11 The Paging System

Note that it is futile to page-in sections of virtual memory that are larger than
physical memory. Be especially wary of sys:page-in-area and sys:page-in-region.

sys:page-in-structure obj &optional (hang-p Function
si:*default-page-in-hang-p*) (normalize-p
si:*default-page-in-normalize-p*)

Makes sure that the storage that represents obj is in main memory. Any
pages that have been swapped out to disk are read in, using as few disk
operations as possible. Consecutive disk pages are transferred together,
taking advantage of the full speed of the disk. If obj is large, this is much
faster than bringing the pages in one at a time on demand. The storage
occupied by obj is defined by the sys:%find-structure-extent subprimitive.

If hang-p is t, the function waits for the disk reads to finish before
returning. Otherwise, the function returns immediately after requesting
the disk reads, which may still be in progress. In other words hang-p
causes the process to hang until the input/output is complete, i.e., until all
the requested pages are there. The default value,
si:*default-page-in-hang-p*, is t by default.

normalize-p specifies whether the pages are "normal" (not flushable from
main memory). normalize-p causes the paged-in pages to receive the
"normal" page age rather than the "page-in" age. Its default value,
si:*default-page-in-normalize-p*, is t by default.

sys:page-in-array array &optional from to (hang-p Function
si:*default-page-in-hang-p*) (normalize-p
si:*default-page-in-normalize-p*)

This is a version of sys:page-in-structure that can bring in a portion of an
array. from and to are lists of subscripts; if they are shorter than the
dimensionality of array, the remaining subscripts are assumed to be zero.

For the meaning of hang-p and normalize-p, See the function sys:page-in­
structure, page 33.

sys:page-in-words address n-words &optional (hang-p Function
si:*default-page-in-hang-p*) (normalize-p
si:*default-page-in-normalize-p*)

Any pages in the range of address space starting at address and continuing
for n-words that have been swapped out to disk are read in with as few
disk operations as possible.

For the meaning of hang-p and normalize-p, See the function sys:page-in­
structure, page 33.

34

Internals, Processes, and Storage Management July 1986

sys:page-in-area area &optional (hang-p Function
si:*default-page-in-hang-p*) (normalize-p
si:*default-page-in-normalize-p*)

All swapped-out pages of the specified area are brought into main memory.
For the meaning of hang-p and normalize-p, See the function sys:page-in­
structure, page 33.

sys:page-in-region region &optional (hang-p Function
si:*default-page-in-hang-p*) (normalize-p
si:*default-page-in-normalize-p*)

All swapped-out pages of the specified region are brought into main
memory. For the meaning of hang-p and normalize-p, See the function
sys:page-in-structure, page 33.

sys:page-out-structure ob} &optional (hang-p Function
si:*default-page-out-hang-p*)

Similar to sys:page-in-structure, but take pages out of main memory
rather than bringing them in. Any modified pages are written to disk,
using as few disk operations as possible. The pages are then made
flushable; if they are not touched again soon, their memory is reclaimed for
other pages. Use this operation when you are done with a large object, to
make the virtual memory system prefer reclaiming that object's memory
over swapping something else out.

For the meaning of hang-p: See the function sys:page-in-structure, page
33.

sys:page-out-array array &optional from to (hang-p Function
si:*default-page-out-hang-p*)

Similar to sys:page-in-array, but take pages out of main memory rather
than bringing them in. Any modified pages are written to disk, using as
few disk operations as possible. The pages are then made flushable; if they
are not touched again soon their memory is reclaimed for other pages. Use
this operation when you are done with a large object, to make the virtual
memory system prefer reclaiming that object's memory over swapping
something else out.

For the meaning of hang-p: See the function sys:page-in-structure, page
33.

sys:page-out-words address n-words &optional (hang-p Function
si:*default-page-out-hang-p*)

Similar to sys:page-in-words, but take pages out of main memory rather
than bringing them in. Any modified pages are written to disk, using as
few disk operations as possible. The pages are then made flushable; if they
are not touched again soon their memory is reclaimed for other pages. Use

35

July 1986 Internals

this operation when you are done with a large object, to make the virtual
memory system prefer reclaiming that object's memory over swapping
something else out.

For the meaning of hang-p: See the function sys:page-in-structure, page
33.

sys:page-out-area area &optional (hang-p Function
si:*default-page-out-hang-p*)

Similar to sys:page-in-area, but take pages out of main memory rather
than bringing them in. Any modified pages are written to disk, using as
few disk operations as possible. The pages are then made flushable; if they
are not touched again soon their memory is reclaimed for other pages. Use
this operation when you are done with a large object, to make the virtual
memory system prefer reclaiming that object's memory over swapping
something else out.

For the meaning of hang-p: See the function sys:page-in-structure, page
33.

sys:page-out-region region &optional (hang-p Function
. si:*default-page-out-hang-p*)

Similar to sys:page-in-region, but take pages out of main memory rather
than bringing them in. Any modified pages are written to disk, using as
few disk operations as possible. The pages are then made flushable; if they
are not touched again soon their memory is reclaimed for other pages. Use
this operation when you are done with a large object, to make the virtual
memory system prefer reclaiming that object's memory over swapping
something else out.

For the meaning of hang-p: See the function sys:page-in-structure, page
33.

36

Internals, Processes, and Storage Management July 1986

37

July 1986 Internals

4. 3600-Family Disk System User Interface

This chapter describes the portions of the 3600 family's disk system that are
available to the user. The discussion is organized as follows:

Three sections introduce some basic definitions and concepts. For a discussion of
the terms used throughout this chapter: See the section "3600-Family Disk
System Definitions and Constants", page 37.

For descriptions of the disk array and disk event data structures that are the basic
buffers for data and synchronization information: See the section "Disk Arrays",
page. 39. See the section "Disk Events", page 40.

Three sections describe disk transfers in detail. For a description of the low-level
user disk transfer mechanism that is the basis for more sophisticated interfaces,
such as the FEP file system: See the section "Disk Transfers", page 43.

To learn about the error-handling mechanism: See the section "Disk Error
Handling", page 45.

For a discussion of the FEP file system and disk streams: See the section "FEP
File System", page 51.

For a discussion of disk performance, along with some basic approaches for
achieving high performance: See the section "Disk Performance", page 62.

For examples that illustrate concepts introduced in all the sections mentioned
above: See the section "Examples of High Disk Performance", page 64.

For a description of the disk utilities such as the FEP file system verifier, and of
routines to mount disk units: See the section "Disk and FEP File System
Utilities", page 70.

4.1 Definitions and Constants

The 3600-family disk system is capable of transferring data in either 32-bit
mode or 36-bit mode. In 32-bit mode data are packed 32 bits per memory word,
with a flXIlum data type automatically supplied, making the data all integers. In
36-bit mode the data are packed into all 36 bits of a memory word, so the data
type is supplied by the disk's data. These modes only affect how the data are
represented in memory; the data are stored as a stream of bits on the disk in
either case. 32-bit mode is referred to as user mode and is handled by the disk
system user interface described in this section. This section does not describe 36-
bit mode, also called system mode, since it is used only by the virtual memory
system.

38

Internals, Processes, and Storage Management July 1986

Data are stored on a disk pack. To access the disk pack, you must use a disk
drive. The 3600 family can address multiple disk drives, but only one disk pack at
a time can be mounted per disk drive. Most of the disk drives available on the
3600 family, such as the Fujitsu M2284 and M2351 and the Maxtor XT-1140, have

. nonremovable disk packs.

Each disk drive is assigned a unique small positive number, called the unit
number, that indentifies the drive. A unit number ranges from 0 up to, but
excluding, 32 decimal. However, the disk drive hardware can restrict the
maximum to a smaller value, such as 8 decimal. The term disk unit refers to the
combination of the disk drive and a mounted disk pack.

The space available on a disk unit is divided into equal-sized blocks called disk
blocks or disk pages. A disk block is the smallest unit that can be transferred
between the disk and virtual memory. I t consists of 64 bits called check words and
9,216 bits of data. In user mode, the data bits are packed into
si:disk-sector-data-size32 (288) fumums. The two checkword fIXnums are
reserved by the FEP file system. If the disk block is not part of a FEP file
system, the checkwords are available for use by the user program.

A disk address is a unique identifier for a disk block residing on a mounted disk
pack. A disk address, also called a disk page number (DPN), is composed of a unit
number and a block number relative to that unit.

sys:%%dpn-unit Constant
A byte specifier for accessing the unit number field in a disk address.

sys:%%dpn-page-num Constant
A byte specifier for accessing the block number field in a disk address.
Block numbers are relative to a disk unit, where zero addresses the first
disk block, and successive integers address consecutive blocks. The first
disk block resides at cylinder zero, head zero, sector zero, with consecutive
blocks being ordered by increasing sector numbers, then head numbers, and
fmally cylinder numbers.

si:disk-sector-data-size32 Constant
The number of data cells available in a disk block, excluding checkwords.

si:disk-block-Iength-in-bytes Constant
The number of bytes available in a disk block, excluding checkwords.

39

July 1986 Internals

4.2 Disk Arrays

Disk arrays are arrays that buffer disk transfers and are specially allocated to
satisfy page alignment constraints imposed by the disk system. The data
contained in consecutive disk blocks are stored in the array elements of a disk
array; each element of a disk array contains a 32-bit datum from a disk block.
The checkwords for each block are stored in the array's leader.

Disk arrays are resource objects, and so must be allocated and deallocated
explicitly by the allocate-resource and deallocate-resource functions, or by the
using-resource special form. (For more information about resources: See the
section "Resources", page 157.)

si:disk-array &optional length &rest make-array-options Resource
The si:disk-array resource is the set of all disk arrays currently known by
the system. The length resource parameter specifies the minimum number
of elements the disk array should contain; its default value is
si:disk-sector-data-size32. The length of the disk array actually allocated
can be greater. make-array-options is a list of keywords and values to pass
to zl:make-array. Only the following keywords are permitted in
make-array-options:

:area

: type

: initial-value

The area the array should be allocated in. The area's
:gc attribute must be :static. The default area is
si:disk-array-area.

The type of the array to be allocated. Only IlXIlums
should be stored in the disk array. The default type is
sys:art-ilXllUIn.

The initial value to flll the array with, which must be a
IIXnum. The default value is zero.

The si:disk-array resource allocator returns a disk array object at least
length elements long and with matching :area and :type values, Iilled with
the value of :initial-value. If a matching disk array object cannot be
found, a new one is created.

si:disk-array-area Variable
The value of this variable is the default area to allocate disk arrays in.

si:disk-array-block-count disk-array Function
This function accesses the slot in disk-array describing the number of disk
blocks that the disk array can contain.

40

Internals, Processes, and Storage Management July 1986

si:disk-array-checkwords disk-array check word-index Function
This function accesses the checkwords stored in disk-array's leader. The
value of check word-index specifies which checkword in disk-array is being
accessed. For example, if check word-index is 0, the first checkword of the
first block stored in disk-array is accessed. A check word-index value of 3
accesses the second checkword of the second block, since there are two
checkwords per disk block.

4.3 Disk Events

Disk events are sys:art-2b arrays used for synchronizing disk transfers and for
storing disk error information. Disk events are resource objects, and so must be
allocated and deallocated explicitly by the allocate-resource and
deallocate-resource functions, or by the using-resource special form. (For more
information about resources: See the section "Resources", page 157.)

Synchronization is accomplished through the use of disk event tasks. A disk event
task is a disk command that is enqueued into the disk queue in the same way that
disk reads and disk writes are enqueued. When the disk system dequeues the
task, the task is flagged as being completed. si:disk-event-task-done-p is a
predicate that examines this flag, returning true when the task is completed. For
example, if the disk queue contains a disk read, then a disk event task, and finally
a disk write, the disk event task is flagged as completed after the disk finishes
reading but before the disk starts writing.

Disk event tasks are identified by a task number that must be explicitly allocated
and deallocated by the si:disk-event-enq-task and si:return-disk-event-task
functions, or by the si:with-disk-event-task special form.

In addition to synchronizing disk transfers, disk events are also associated with
disk transfers in case of a disk error. (For a detailed description of disk error
handling: See the section "Disk Error Handling", page 45.) You associate a disk
event with a disk transfer via the sys:disk-read and sys:disk-write functions.

si:disk-event Resource
The si:disk-event resource is the set of disk event objects currently known
by the system. The resource allocator returns a disk event object, creating
a new one if all the current disk events are already in use.

4.3.1 Synchronization Functions

The following functions manipulate disk event tasks for synchronizing disk
transfers:

41

July 1986 Internals

si:with-disk-event-task variable disk-event &body body Special Form
Allocates and enqueues a task in disk-event and binds the task number to
variable. The task is deallocated on exit or if the body is aborted.

si:disk-event-enq-task disk-event Function
Allocates a free task in disk-event, and enqueues it in the disk queue. The
return value is the task number.

si:return-disk-event-task disk-event task-number
Deallocates the task-number task in disk-event.

Function

si:disk-event-task-done-p disk-event task-number Function
Returns true if the task-number task in disk-event has completed. nil is
returned if it has not completed.

si:wait-for-disk-event-task disk-event task-number Function
Waits for the task-number task in disk-event to complete.

si:wait-for-disk-event disk-event Function
Waits for all outstanding disk transfers associated with disk-event to
complete.

si:wait-for-disk-done Function
Waits for all outstanding disk transfers to complete, regardless of which
disk event the transfer is associated with, or whether the transfer is in
user or system mode.

4.3.2 Disk Event Accessor Functions

The following accessor functions refer to the error information and task counters
stored in a disk event. Most of the error information is meaningless if an error
has not occurred yet. The si:disk-event-error-type accessor function is the
correct predicate to use to determine if an error has occurred for a disk transfer
associated with the disk event.

si:disk-event-size disk-event Function
Accesses the slot in disk-event containing the number of disk event tasks
that can be concurrently allocated.

si:disk-event-count disk-event Function
Accesses the slot in disk-event containing the number of disk event tasks
currently allocated.

42

Internals, Processes, and Storage Management July 1986

si:disk-event-error-type disk-event Function
Accesses the slot in disk-event containing a disk error code or nil if no disk
transfer associated with disk-event has generated an error. A disk error
code is a number indicating the type of disk error, as described elsewhere:
See the section "Disk Error Codes", page 48. This accessor function is the
predicate for determining if an error has occurred for a disk transfer
associated with disk-event.

si:disk-event-error-unit disk-event Function
Accesses the slot in disk-event containing the unit number on which the
error occurred. This slot contains a nil if the unit number was unrelated
to the error.

si:disk-event-error-cylinder disk-event Function
Accesses the slot in disk-event containing the cylinder number on which the
error occurred. This slot contains a nil if the cylinder number was
unrelated to the error.

si:disk-event-error-head disk-event Function
Accesses the slot in disk-event containing the head number on which the
error occurred. This slot contains a nil if the head number was unrelated
to the error.

si:disk-event-error-sector disk-event Function
Accesses the slot in disk-event containing the sector number on which the
error occurred. This slot contains a nil if the sector number was unrelated
to the error.

si:disk-event-error-string disk-event Function
Accesses the slot in disk-event containing the error string supplied by the
recovery routine.

si:disk-event-error-flushed-transfer-count disk-event Function
Accesses the slot in disk-event containing the total number of transfers
aborted or removed from the disk queue due to the disk error.

si:disk-event-suppress-error-recovery disk-event Function
Accesses the slot in disk-event that indicates if the automatic error recovery
for specific error codes is suppressed for transfers associated with
disk-event. All other transfers are unaffected. The bits in the mask
correspond to the disk error code numbers. If the bit is set (a value of
one) the corresponding error is not automatically recovered from and
instead is signalled immediately. If the bit is clear (a value of zero) an
error causes the disk system to attempt to recover from the error,
signalling an error only if it cannot recover from the disk error. See the
section "Disk Error Codes", page 48.

43

July 1986 Internals

Setting the disk event's si:disk-event-suppress-error-recovery mask
immediately affects any pending disk transfers that are associated with the
disk event in addition to any subsequently associated transfers. The error
recovery remains suppressed until the corresponding bit in the mask is
cleared.

For example, to turn off the automatic recovery of ECC errors so that an
error would be signalled on any ECC error in a transfer associated with a
given disk event, even if the ECC error is correctable, use the form:

(setf (ldb (byte 1 sys:%disk-error-ecc)
(si:disk-event-suppress-error-recovery disk-event»

1)

The following form returns a value of 1 if the disk event's ECC error
recovery is suppressed, or 0 if it is not.

(ldb (byte 1 sys:%disk-error-ecc) ; Hake a PPSS byte specifier
(si:disk-event-suppress-error-recovery disk-event»

si:disk-event-error-dcw disk-event Function
Accesses the slot in disk-event containing the first word of the disk
command word block of the failed transfer.

4.4 Disl< Transfers

This section describes the low-level interface for initiating disk read and write
transfers. The FEP file system provides a higher-level interface built upon these
functions and is the standard way to access the disk. For details on the FEP file
system: See the section "FEP File System", page 51.

Disk transfers can be either disk reads or disk writes. A disk read copies data
from the disk into disk arrays. A disk write copies data from disk arrays to the
disk. The data transferred must always be a multiple of a disk block, due to
constraints imposed by the disk system.

Transfers are always performed in the order they are enqueued. This permits a
sequence of transfers that must be performed in a particular order to be enqueued
without having to wait for completion between each transfer.

For example, when the FEP file system creates a new flie, it first enqueues the
writes of the modified blocks in its free page data structure. It then enqueues a
write of the file's page table, followed by a write of the directory entry pointing to
the file's page table, without waiting for the individual writes to complete before
enqueuing the next. These data structures must be written in this particular
order to ensure that the copy of the file system on the disk is always consistent.
When the FEP file system enqueues the writes it specifies a hang-p argument of

44

Internals, Processes, and Storage Management July 1986

nil to sys:disk-write, and uses the same disk event for all the transfers in the
sequence. Since all the transfers are associated with the same disk event, if one
transfer fails and is aborted, all subsequent transfers are also aborted. (For more
details on error handling: See the section "Disk Error Handling", page 45.) Thus,
if the write of the file's page table fails and is aborted, the write of the directory
page is also automatically aborted.

All the disk arrays and the disk event must be wired for the duration of the disk
transfer. (Wiring a structure locks it in memory until it is explicitly unwired,
permitting the disk system to use physical memory addresses for the data
transfers.) Disk arrays are wired with the si:wire-disk-array and
si:with-wired-disk-array functions, while disk events are wired with the
si:wire-structure and si:with-wired-structure functions.

If the hang-p argument to the disk transfer function is true, the function wires
and unwires the disk arrays and disk event itself. Otherwise these must be wired
by the caller and unwired only after the disk transfer has completed. See the
section "Synchronization Functions", page 40. The functions described there can
be used to determine when the disk transfer has completed.

sys:disk-read disk-arrays disk-event dpn &optional n-blocks (hang-p Function
t) (block-offset 0)

sys:disk-read causes the disk to start reading the consecutive disk blocks
beginning with the block at disk address dpn, storing the data from the
disk into the arrays in disk-arrays. disk-arrays can be a disk array or a
list of disk arrays. n-blocks is the number of disk blocks to read, and
defaults to the number of blocks disk-arrays can contain. When n-blocks is
greater than one, each disk array is completely filled before using the next
disk ·array in disk-arrays. Unused disk arrays or portions of disk arrays
remain unmodified.

When hang-p is t (its default value), sys:disk-read waits for all the reads
to complete before returning. If hang-p is false, sys:disk-read returns
immediately upon enqueuing the disk reads without waiting for completion.
When hang-p is false all of the disk-arrays and the disk-event must be
wired before calling sys:disk-read, and must remain wired until the disk
reads complete.

disk-event must be the disk-event to associate with all the disk reads.

block-offset is an offset into .disk-arrays. It is used when you wish to
transfer the data to a starting position other than the beginning of the
first array.

sys:disk-write disk-arrays disk-event dpn &optional n-blocks (hang-p Function
t) (block-offset 0)

sys:disk-write causes the disk to start writing the consecutive disk blocks

45

July 1986 Internals

beginning with the block at disk address dpn with the data stored in the
disk arrays in disk-arrays. The arguments to sys:disk-write are identical
to those of sys:disk-read.

si:with-wired-disk-array (disk-array) &body body Special Form
Before the body is entered, the disk-array is made permanently resident in
main memory. When control leaves the body, either normally or
abnormally (via a throw, such as by an error which was not handled within
the body), the array is made eligible for replacement by the memory
system.

si:wire-disk-array disk-array Function
Makes disk array be permanently resident in main memory until
si:unwire-disk-array is called. Disk arrays must be wired for the duration
of a disk transfer. The transfer functions automatically wire disk arrays if
they also wait for the transfer to complete; otherwise the programmer must
explicitly wire and unwire the disk arrays.

It is preferable to use si:with-wired-disk-array rather than explicit calls to
si:wire-disk-array and si:unwire-disk-array.

si:unwire-disk-array disk-array Function
Makes the disk array eligible for replacement by the virtual memory
system. There must be a matching si:unwire-disk-array for every
si:wire-disk-array. si:unwire-disk-array is usually called as a cleanup
handler in an unwind-protect form.

4.5 Disk Error Handling

The disk system automatically attempts to recover from a disk error by resetting
the relevant disk state and retrying the failed disk transfer. (The associated disk
event's si:disk-event-suppress-error-recovery slot can be used to selectively
suppress the automatic error recovery for a set of disk error types.) After the
number of retry attempts specified as the value of si:*n-disk-retries* fail, the
error is considered to be unrecoverable and the failed transfer is aborted.

The disk system permits related disk transfers to be grouped together by
associating them with the same disk event. If one of the transfers fails, the
remaining transfers in its group are aborted. This makes it possible to enqueue
transfers that must be performed in a particular order without having to wait for
each transfer to complete. Aborting the remaining transfers in a group does not
interfere with transfers in other groups.

Disk errors are signalled after they actually occur because they are detected at a
low level in the system, asynchronous to the execution of the responsible process.

46

Internals, Processes, and Storage Management July 1986

In order to make condition handling of disk errors possible, the error is signalled
when a process waits for the disk transfers to finish.

The disk system performs the following sequence of events when an error is
,detected:

1. It suspends processing of the disk queue at the failed disk transfer.

2. It retries the failed disk transfer si:*n-disk-retries* times, depending on the
type of error. If one of the retries succeeds, no error is signalled and
processing of the disk queue resumes.

3. If the disk error recovery logic cannot automatically recover from the error,
or if error recovery is being suppressed, the error becomes unrecoverable and
the disk system aborts the failed disk transfer.

4. If the failed disk transfer does not have an associated disk event, the
unrecoverable error becomes fatal and the disk system halts the machine.
(Most system mode disk transfers do not have an associated disk event.)
Otherwise, it stores the information describing the error in the disk event.

5. The disk system removes from the disk queue any remaining pending
transfers that are associated with the same disk event as the failed transfer.
The si:disk-event-error-flushed-transfer-count slot in the disk event
contains the number of transfers that were removed from the disk queue,
including the failed transfer.

6. The disk system resumes processing of the remaining transfers that are not
associated with the failed transfer's disk event.

7. It discards any subsequent attempts to initiate a disk transfer associated
with the failed transfer's disk event (unless
si:*signal-disk-errors-from-enqueue-p* is true, in which case a disk error is
signalled from the disk transfer function, incrementing the disk event's
si:disk-event-error-flushed-transfer-count slot).

8. When si:wait-for-disk-event or si:wait-for-disk-event-task waits for a task
in the failed transfer's disk event, an si:disk-error-event condition (which is
built upon the sys:disk-error condition) is signalled. These synchronization
functions are also used by the transfer functions when their hang-p
argument is true.

The si:disk-event-error-type slot of a disk event can also be explicitly checked to
determine if an error has occurred.

47

July 1986 Internals

4.5.1 Disk Error Variables

si:*n-disk-retries· Variable
The value of si:*n-disk-retries* is the number of times to retry the failing
disk operation before declaring it unrecoverable.

si:*signal-disk-errors-from-enqueue-p* Variable
Controls whether enqueuing a disk transfer associated with a disk event
that is already associated with a failed transfer signals an error or causes
the disk system to discard the enqueue request. If the value is true, an
si:disk-error-event condition is signalled. If the value is false, which is
the default, an error is not signalled and the transfer is discarded,
incrementing the disk event's si:disk-event-error-flushed-transfer-count
slot.

A false value is useful when multiple disk transfers are being enqueued
without waiting for completion and it is not desirable to provide an error
handler for each enqueue. In this case, the condition handler needs to be
provided only for the final synchronization function.

The enqueue function still signals an error if it waits for completion of a
failed transfer. For example, sys:disk-read signals an error regardless of
the value of si:*signal-disk-errors-from-enqueue-p* when its hang-p
argument is true.

si:*automatically-recover-from-hung-disks* Variable
When this variable is false, the machine halts when the disk stops
responding to transfer requests. A true value causes the disk system to
attempt to recover from a hung disk. By default the value of the variable
is true.

4.5.2 Disk Error Conditions

si:disk-error-event Flavor
This condition flavor is signalled while waiting for a task in a disk event
that is associated with a disk transfer that generated a disk error.
si:disk-error-event is based upon the sys:disk-error condition; condition
handlers should use the sys:disk-error condition.

: disk-event of si:disk-error-event Method
This method returns the disk event associated with the failed transfer.
This is especially useful when transfers associated with multiple disk
events can be handled by the same condition handler.

48

Internals, Processes, and Storage Management July 1986

:error-type of si:disk-error-event Method
This method returns the error type code number, which is also stored in
the disk event's si:disk-event-error-code slot. For a list of the possible
disk error code numbers: See the section "Disk Error Codes", page 48.

:flushed-transfer-count of si:disk-error-event Method
This method returns the number of disk transfers that were not performed
because of the error, including the failed transfer. The value is the same
as is· stored in the disk event's si:disk-event-flushed-transfer-count slot.

4.5.3 Disk Error Codes

A disk error code is a number indicating the type of the disk error. System
constants containing the disk error code numbers exist so the codes can be
referred to mnemonically.

sys:*disk-error-codes* Constant
A list of symbols corresponding to the disk error code numbers. You can
convert a disk error code number into the symbol of its corresponding
constant as follows:

(nth disk-error-code-number sys: *di sk-error-codes*)

The following list shows the disk error constants and describes the corresponding
error causes.

sys:%disk-error-select Constant
The disk unit could not be selected. For a disk unit to be selectable the
drive must be properly connected to the machine and a unique disk unit
number set in the drive's unit address switches. The error recovery logic
tries to reselect the unit before failing with an unrecoverable select error.

sys:%disk-error-not-ready Constant
The disk unit was selected, but was not ready. A disk unit is ready when
the drive is spinning at its rated speed. Some drives are not ready when
they are in a device fault. When a disk is started, the unit is not ready for
a short period (10 to 50 seconds for most drives) while the disk is spinning
up.

The error recovery logic waits 60 seconds for the unit to be ready before
signalling this error.

sys:%disk-error-device-check Constant
The disk unit is in a device fault, also called a device check, state. Device
faults indicate a write to a write-protected drive or a malfunction in the
disk system. If the fault was caused by a write to a write-protected drive,

49

July 1986 Internals

an error is signalled. Otherwise the error recovery logic clears the fault
condition and retries the disk transfer si:*n-disk-retries* times before
signalling this error.

sys:%disk-error-seek Constant
An error was detected during a seek. This can occur if an invalid disk
address is specified in the transfer request, or if the disk system
malfunctions. Most disk drive specifications allow for a small percentage of
errors generated by seeks. The error recovery logic recalibrates the drive
and retries the disk seek si:*n-disk-retries* times before signalling this
error.

sys:%disk-error-search Constant
The disk block addressed by a disk transfer could not be found. This can
occur if the addressed track on the disk is improperly formatted, if the disk
address is invalid, or if the disk selected the wrong track. The disk system
recalibrates the disk drive and retries the disk transfer si:*n-disk-retries*
times before signalling this error.

sys:%disk-error-overrun Constant
The disk attempted to transfer data faster than the machine could
accommodate. This error is expected to occur occasionally, due to conflicts
when multiple I/O devices attempt to acc~ss memory simultaneously. The
error recovery logic retries the disk transfer si:*n-disk-retries* times
before signalling this error.

sys:%disk-error-ecc Constant
The data read from the disk has at least one invalid bit. The disk error
recovery logic first attempts to correct the data. If the correction fails, it
retries the transfer si:*n-disk-retries· times before signalling an
unrecoverable ECC error. The disk array contains the incorrect data that
was read from the disk for the block generating the ECC error. If a
multiple blocks transfer has been requested, the disk array is not modified
for the blocks following the failed block.

sys:%disk-error-state-machine Constant
The disk hardware detected an error that was not already listed above.
This can be caused by a number of disk system malfunctions. The error
recovery logic resets the disk state and retries the disk transfer
si:*n-disk-retries* times before signalling this error.

sys:%disk-error-misc Constant
The disk microcode detected an error, but no error flags were set in the
disk's status register. The error recovery logic resets the disk state and
retries the disk transfer si:*n-disk-retries* times before signalling this
error.

50

Internals, Procosses, and Storage Management July 1986

4.5.4 Disk Error Meters

These meters are updated when the disk system detects an error, including errors
from which it automatically recovers. Meters that are primarily affected by
system mode transfers are not included here. Most of these meters can be
inspected with the Peek utility; type SELECT P and click left on [Meters].

The value of the following meters is the number of:

si:*count-total-disk-errors*
All types of disk errors.

si:*count-disk-select-errors*
sys:%disk-error-select errors.

si:*count-disk-not-ready*
sys:%disk-error-not-ready errors.

si:*count-disk-search-errors*
sys:%disk-error-search errors.

si:*count-disk-overruns*
sys:%disk-error-overrun errors.

si: * count-disk-ecc-errors*
sys:%disk-error-ecc errors.

si:*count-disk-seek-errors*
sys:%disk-error-seek errors.

si:*count-disk-device-checks*
sys:%disk-error-device-check errors.

si:*count-disk-state-machine-errors*
sys:%disk-error-state-machine errors.

si: *count-disk-other-errors*
sys:%disk-error-misc errors.

si:*count-disk-hung-restarts*
Times the disk was hung.

Variable

Variable

Variable

Variable

Variable

Variable

Variable

Variable

Variable

Variable

Variable

si:*count-disk-errors-Iost* Variable
Times the disk was hung due to a disk error not waking up the disk
software.

51

July 1986 Internals

si:*count-disk-stops-Iost* Variable
Times the disk was hung due to the disk system not waking up after the
disk queue became empty.

4.6 FEP File System

The Symbolics computer disk has a file system called the FEP file system. The
entire disk is divided up into FEP files (that is, files of the FEP file system).
FEP files have names syntactically similar to those of files in the Symbolics
computer's own local file system. However, the FEP file system and the Lisp
Machine File System (LMFS) are completely distinct.

The FEP file system manages the disk space available on a disk pack, grouping
sets of data into named structures called FEP files. All. the available space on a
disk pack is described by the FEP file system. A single FEP file system cannot
extend beyond a single disk pack; each disk pack has its own separate FEP file
system.

The FEP file system supports all of the generic file system operations. It also
supports multiple file versions, soft deletion and expunging, and hierarchical
directories.

Although "FEP" is an acronym for front-end processor, the FEP file system is
managed by the main Lisp processor. It is called the FEP file system because the
FEP can read files stored in the FEP file system. For example, the FEP uses the
FEP file system for booting the machine and running diagnostics.

Disk streams access FEP files. A disk stream is an I/O stream that performs
input and output operations on the disk. (For information about streams: See the
section "Types of Streams" in Reference Guide to Streams, Files, and I/O. See the
section "Stream Operations" in Reference Guide to Streams, Files, and I/O. When
disk streams are opened with a :direction keyword of :input or : output, the disk
stream reads or writes bytes, respectively, buffering the data internally as
required. When the :direction is : block, the disk stream can both read and write
the specified disk blocks. Block mode disk streams address blocks with a block
number relative to the beginning of the file, starting at file block number zero.
This file block number is internally translated into the corresponding disk address.
The checkwords of all disk blocks contained in the FEP file system are reserved
for use by the FEP file system, so block mode transfers should not use the
checkwords stored in the disk array. See the section "3600-Family Disk System
Definitions and Constants", page 37.

The FEP file system is also used by the system for allocating system overhead
files, such as the paging file. See the section "FEP File Types", page 53. This
section lists some of these files and what they are used for.

52

Internals, Processes, and Storage Management July 1986

The need to allow the FEP to access FEP files, and also to allow the system to
use them imposes some constraints on the design of the FEP file system. The
internal data structures of the file system must be simple enough to permit the
FEP to read them, and a small amount of concurrent access by both the FEP and
Lisp must be tolerated. A FEP file's data blocks should have a high degree of
locality on the disk to minimize access times. And the FEP file system must be
very reliable, since the FEP needs to use the file system for running diagnostics
and for booting the machine.

Note: Because of these constraints, the FEP file system is not intended to be a
replacement for LMFS. (See the section "Lisp Machine File System" in Reference
Guide to Streams, Files, and 110.) Allocating new blocks for FEP files is slow, so
creating many files, especially many small files, might impair the performance of
the FEP file system, and ultimately the virtual memory system, if paging files or
world load files become highly fragmented.

4.6.1 Naming of FEP Flies

The FEP filename format is similar to the LMFS filename format. See the
section "Lisp Machine File System" in Reference Guide to Streams, Files, and liD.
There are differences, however. Here are the format details of a FEP filename:

host

directory

name

The name of the FEP file system host. The format for a FEP
host is host I FEPdisk-unit, where the host field specifies which
machine's FEP file system you are referring to, and disk-unit
specifies the disk unit number on the machine. The host field
defaults to the local machine if you omit it and the terminating
vertical bar (I). If you omit both the host and disk-unit fields,
the FEP host defaults to the disk unit the world was booted
from on the local machine. For example:

Herr; mack I FEPB The FEP file system on Merrimack's unit o.
FEP2 The FEP file system on the local machine's

unit 2.

FEP The FEP file system the booted world load
file resides on.

The name of the directory. The FEP file system supports
hierarchical directories in the same format as in LMFS. Each
directory name is limited to a maximum of 32 characters; there
is no limit on the total length of a hierarchical directory
specification.

The name of the FEP file, which cannot exceed 32 characters.

July 1986

type

version

53

Internals

The type of the FEP file, which cannot exceed 4 characters.

The version number of the FEP file, which must be a positive
integer or the word "newest".

FEP files can be renamed. For example, if you save a world containing
MACSYMA, you might want to rename the world file to >macsyma.load or
>mac symal.lo ad. Be sure to update your boot file if you intend this to be the
default world.

4.6.2 FEP File Types

By convention, the following file types are used by the FEP file system for files
used by that system.

boot

load

mic

fspt

file

page

flod

The file contains FEP commands that can be read by the FEP's
Boot command. boot files are text files, and can be manipulated
by the editor. See the section "Configuration Files", page 54.

The file contains a world load image, or band, that is used to
boot the system. For example, >release-7.load.newest contains
the Genera 7 world load image.

The file contains a microcode image, plus the contents of other
internal high-speed memories that are initialized when the
computer is booted. For example, >3640-mic.mic.384 contains
version 384 of the microcode for the 3640.

The file contains a LMFS partition table. It tells LMFS which
FEP files to use for file space. For example, >fspt.fspt.newest is
the default partition table used by LMFS.

The file contains a LMFS partition which holds the machine's
local file system. The entire Symbolics computer local file
system normally resides inside one big file of the FEP file
system. For example, >lmfs.file.newest is the default LMFS file
partition.

The file contains disk space that can be used by the virtual
memory system. To increase the effective size of virtual
memory, you can add additional paging files. See the section
"Allocating Extra Paging Space" in Reference Guide to Streams,
Files, and I/O. For example, >page.page.newest is the default file
used by the virtual memory system as storage for swapping
pages in and out of main memory.

The file contains a FEP Load file. FEP Load files contain
binary code the FEP can load and execute.

54

Internals, Processes, and Storage Management July 1986

fep

dir

The file contains binary information used by the FEP file
system. These files should not be written to by user programs.
Some examples of these files are:

>root-directory.dir This is the root directory for the FEP file
system.

>free-pages.fep Describes which blocks on the disk are
allocated to existing files.

>bad-blocks.fep Owns all the blocks that contain a media
defect and should not be used.

>sequence-number.fep

>disk-label.fep

Contains the highest sequence number in use.
The FEP file system uses sequence numbers
internally to uniquely identify files. This is to
assist in rebuilding the file system in case of
a catastrophic disk failure.

Contains the disk pack's physical disk label.
The label is used to identify the pack and
describe its characteristics.

The file contains a FEP directory. For example, fepO:>root­
directory.dir.newest contains the top-level root directory. The
directory file for fepO:>dang>examples> would reside in
fepO:>dang>examples.dir.1.

4.6.3 Configuration Files

Configuration files contain FEP commands tailored for a particular Symbolics
computer configuration. The commands are executed if you specify the file as
argument to a Boot command when cold booting the machine. See the section
"FEP Commands" in Installation and Site Operations.

The configuration file >Boot.boot usually contains FEP commands to:

• Clear the internal state of the machine
• Load the microcode
• Load a world
• Set the Chaosnet address
• Start the machine

To change the selection of microcode and world loads that are booted by default,
simply use Zmacs to edit the file FEPn>Boot.boot, where FEPn is the disk unit.
Be careful to avoid typographical errors; otherwise, you might have to type in the

55

July 1986 Internals

commands manually in order to boot the machine. Also, be sure that the last
command in the file is followed by RET URN.

4.6.4 FEP File Comment Properties

Comment properties supply additional information about the contents of FEP files.
In the Dired mode of Zmacs, they are listed inside square brackets, where the
reference or expunge date appears for other file systems. You can list the
contents of the FEP file system by using the Show FEP Directory command. The
Zmacs command Dired (M-H) of fepn:>*, or the form (dired "fep:n>*") (where n
is the disk unit) invokes the directory editor on the FEP file system. An example
of the Zmacs Dired command output is shown in figure 1.

48150 free, 322330/370480 used (87%)
FEPO:>BAD-BLOCKS.FEP.1 776 0(8) 9/14/83 11:46:56 [List of bad blocks] rll
FEPO:>boot.boot.15 121(8) 1/15/84 12:19:15 [] DEG
FEPO:>boot.boot.16 121(8) 1/29/84 13:06:43 [] DEG
FEPO:>boot.boot.17 1 121(8) 2/21/84 13:35:28 [] whit
FEPO:>boot.boot.18 1 124(8) 2/21/84 13:39:20 [] whit
FEPO:>DISK-LABEL.FEP.1 24 0(8) 9/14/83 11:46:55 [The disk label] rll
FEPO:>FREE-PAGES.FEP.1 41 0(8) 9/14/83 11:46:56 [Free pages map] rll
FEPO:>fspt.fspt.1 1 0(8) 9/14/83 11:46:58 [A filesystem partition table] rll
FEPO:>LHFS.file.1 50000 0(8) 1/05/84 23:20:13 [] ptaylor
FEPO:>Hicrocode1.HIC.1 103 117020(8) 6/30/83 08:19:16 [THC5-HIC 219] Feinberg
FEPO:>PAGE.PAGE.1 150000 0(8) 9/14/83 11:46:58 [Hain paging area] rll
FEPO:>Release-5-0.load.1 19109 22013568(8) 11/02/83 17:02:31 [Release 5 Beta Test] joseph
FEPO:>ROOT-DIRECTORV.DIR.1 2 0(8) 9/14/83 11:46:55 [His highness] rll
FEPO:>sequence-number.fep.1 1 0(8) 9/14/83 11:49:39 [] rll
FEPO:>System-243-463.load.1 22348 25733376(8) 1/02/84 11:46:14 [Exp 243.463] Zippy
FEPO:>system-243-481.load.1 20544 23666688(8) 1/11/84 22:48:56 [Exp 243.481, Full-GC]
FEPO:>system-243-516.load.1 20754 23908608(8) 1/24/84 23:23:41 [Exp 243.516, Full-GC] Zippy
FEPO:>system-243-559.load.1 19157 22068864(8) 2/19/84 19:32:45 [Exp 243.559, Full-GC] Hoon
FEPO:>THC5-HIC.HIC.247 103 118018(8) 10/03/83 20:25:07 [THC5-HIC 247, Beta Test] joseph
FEPO:>THC5-HIC.HIC.262 101 115233(8) 12/27/83 21:15:16 [THC5-HIC 262] whit
FEPO:>THC5-HIC.HIC.273 101 115810(8) 2/19/84 15:13:56 [THC5-HIC 273] whit
FEPO:>World1.load.1 19138 20318976(8) 10/07/83 12:09:08 [Rel 4.5] LISPHNIL

Figure 1. FEP File Comment Properties

56

Internals, Processes, and Storage Management July 1986

4.6.5 Accessing FEP Flies

FEP files are accessed by open disk streams. A disk stream is opened by the
open function. (See the section "Accessing Files" in Reference Guide to Streams,
Files, and liD. That section contains more details on accessing files.) If a FEP
file system residing on a remote host is referred to, a remote stream is returned
with limited operations, as specified by the remote file protocol.

In addition to the normal open options, the following keywords are recognized:

: if-locked This keyword specifies the action to be taken if the specified file
is locked. This keyword is not supported by the remote file
protocol.

:error

:share

Signal an error. This is the default.

Open the specified file even if it is already
locked, incrementing the file's lock count.
This mode permits multiple processes to write
to the same flie simultaneously. (See the
section "FEP File Locks", page 60. That
section contains more information on file
locks.)

:number-of-disk-blocks
The value of this keyword is the number of disk blocks to buffer
internally if the :direction keyword is :input or :output. This
keyword is ignored for other values of :direction or for files on
remote hosts. The default :number-of-disk-blocks is two.

4.6.6 Operating on Disk Streams

All disk streams to a local FEP file system handle the following messages:

:grow &optional n-blocks &key :map-area :zero-p Message
This message allocates n-blocks of free disk blocks and appends them to the
FEP file. The value of n-blocks defaults to one. If :zero-p is true the new
blocks are filled with zeros; otherwise, they are not modified. The return
value of :grow is the file's . data map (the format of the data map is
described in :create-data-map's description below). The value of
:map-area is the area to allocate the data map in, which defaults to
default-eons-area.

:allocate n-blocks &key :map-area :zero-p Message
This message ensures that the FEP file is at least n-blocks long, allocating
additional free blocks as required. Returns the file's data map (the format

57

July 1986 Internals

of the data map is described in :create-data-map's description below).
:map-area specifies the area to create the data map in, and defaults to
default-eons-area. The newly allocated blocks are filled with zeros if
:zero-p is true. :zero-p defaults to nil.

:file-access-path Message
This message returns the disk stream's file access path.

For example, you can find out what unit number a FEP file resides on as
follows:

(send (send stream :file-access-path) :unit)

:map-block-no block-number grow-p Message
This message translates the relative file block-number into a disk address,
and returns two values: the first value is the disk address, and the second
is the total number of disk blocks, starting with block-number, that are in
consecutive disk addresses. grow-p specifies whether the file should be
extended if block-number addresses a block that does not exist. When
growp is true, free disk blocks are allocated and appended to the FEP file
to extend it to include block-number. Otherwise, if grow-p is false, nil is
returned if block-number addresses a block that does not exist.

:create-data-map &optional area Message
This message returns a copy of the FEP file's data map allocated in area
area, which defaults to default-eons-area. A FEP file data map is a one­
dimensional art-q array. Each entry in the file data map describes a.
number of contiguous disk blocks, and requires two array elements. The
first element is the number of disk blocks described by the entry. The
second element is the disk address for the first block described by the
entry. The array's fill-pointer contains the number of active elements in
the data map times two.

:write-data-map new-data-map disk-event Message
This message replaces the file's data map with new-data-map. disk-event is
the disk event to associate with the disk writes when the disk copy of the
file's data map is updated. This message overwrites the file's contents and
should be used with caution.

4.6.7 Input and Output Disk Streams

Input and output disk streams are buffered streams. In addition to the standard
buffered stream messages, local input and output disk streams also support the
messages described elsewhere: See the section "Operating on Disk Streams", page
56.

58

Internals, Processes, and Storage Management July 1986

Input disk streams read bytes of data starting at the current byte position in the
FEP file, updating the byte position as the data is read. Output disk streams
write bytes of data in the same way.

The bytes of data are stored in buffers internal to the stream. The
:number-of-disk-blocks open keyword controls how many disk blocks the internal
buffers can hold. When the current pointer moves beyond a disk block boundary,
the buffered disk block is written to the file for an output stream, or the next
unbuffered block is read in from the file for an input stream. Output streams
also write out all the buffered disk blocks when the stream is sent a :close
message without an :abort option.

4.6.8 Block Disk Streams

Block disk streams can both read and write disk blocks at specified file block
numbers. A file block number is the relative block offset into the file. The first
block in the file is at file block number zero, the second is at file block number
one, and so on.

Block disk streams do not buffer any blocks internally and are not supported by
the remote file protocol.

See the section "Operating on Disk Streams", page 56. In addition to the
messages described in that section, block disk streams support the following
messages:

:block-Iength Message
The :block-Iength message returns the length of the FEP file in disk
blocks.

: block-in block-number n-blocks disk-arrays &key :hang-p Message
: disk-event

The :block-in message causes the disk to start reading data from the disk
into the disk arrays in disk-arrays, starting with the file block number
block-number, and continuing for n-blocks. disk-arrays can be a disk array
or a list of disk arrays. The value of n-blocks is the number of disk blocks
to read. When n-blocks is greater than one, each disk array is completely
filled before using the next disk array in disk-arrays. The checkwords
stored in the disk arrays are reserved for use by the FEP file system. See
the section "3600-Family Disk System Definitions and Constants", page 37.
Unused disk arrays or portions of disk arrays remain unmodified.

When the value of :hang-p is true, which it is by default, :block-in waits
for all the reads to complete before returning. If the value of :hang-p is
false, :block-in returns immediately upon enqueuing the disk reads without
waiting for completion. In this case, all disk-arrays and the disk-event
must be wired before sending the :block-in message, and must remain
wired until the disk reads complete.

59

July 1986 Internals

If the :disk-event keyword is supplied, its value is the disk event to
associate with the disk reads. Otherwise the :block-in message allocates a
disk event for its duration. A :disk-event must be supplied when :hang-p
is false.

:block-out block-number n-blocks disk-arrays &key :hang-p Message
: disk-event

The : block-out message causes the disk to start writing the data in the
disk arrays in disk-arrays onto the disk, starting with the file block number
block-number, and continuing for n-blocks. The arguments to the
: block-out message are identical to those of the : block-in message.

4.6.9 FEP File Properties

In addition to having a name and containing data, FEP files also have properties.
These properties store information about the file itself, such as when it was last
written and whether it can be deleted or not. File properties are read by the
fs:file-properties function, and modified by the fs:change-file-properties function.
The fs:directory-list function also returns the file properties of several files at
once. (See the section "Accessing Directories" in ·Reference Guide to Streams,
Files, and I/O.)

The following file properties can be both read and modified:

: creation-date The universal time the file was last written to. Universal times
are integers. (See the section "Dates and Times" in
Programming the User Interface, Volume B.)

: author The user-id of the last writer. The user-id must be a string.

:length-in-bytes The length of the file, expressed as an integer.

:deleted When t the file is marked as being deleted. A deleted file can
then be marked as being undeleted by changing this property to
nil. The disk space used by a deleted file is not actually
reclaimed until the file is expunged.

:dont-delete When t, attempting to delete or overwrite the file signals an
error. nil indicates the file can be deleted or written to.

:comment A comment to be displayed in brackets in the directory listing.
The comment must be a string.

The following file properties are returned by the :properties message, but cannot
be modified by :change-properties:

:byte-size The number of bits in a byte. The value of this property is
always 8.

60

Internals, Processes, and Storage Management July 1986

:length-in-blocks The block length of the file expressed as an integer.

:directory If t, the file is a directory; otherwise nil.

4.6.10 FEP File Locks

A FEP file is locked for the interval from when it is opened for reading or writing
until it is closed. If the :direction keyword is : input, the file is read-locked; if the
:direction keyword is :output or :block, the file is write-locked.

When the :if-Iocked keyword is :error, which is its default, a file that is read­
locked can still be opened for reading but signals an error if opened for writing; a
file that is write-locked cannot be opened for reading or writing. This permits
mUltiple readers to access a file concurrently, while prohibiting writing to the file
being read.

When the :if-Iocked keyword is :share in an open call for write, it succeeds in
opening the file even if it is already read- or write-locked.

An expunge operation on a file that is either read- or write-locked does not
expunge the file. If expunging a directory fails to expunge a file, the file must be
closed and the directory expunged again.

4.6.11 Installing Microcode

Use the Copy Microcode command to retrieve any new microcode from the file
system of the sys host.

Copy Microcode Command

Copy Microcode {version or pathname} destination keywords

Installs a version of microcode.

version or pathname

destination

Microcode version number or pathname to copy. version is a
microcode version number (in decimal). pathname rarely needs
to be supplied. It defaults to a file on FEPn:> (where n is unit
number of the boot disk) whose name is based on the microcode
name and version. (The file resides in the logical directory
sys:l-ucode;.) The version actually stands for the file
appropriate-hardware-MIC.MIC. version on FEPn:>. (See the
Section "Release 7.0 Microcode Types" in Software Installation
Guide)

FEP file specification. The pathname on your FEPn:> directory.
The default is created from the microcode version.

61

July 1986 Internals

keywords

:update boot file

:update boot file

{FEP-file-spec none}. The default is the current default boot
file name.

Initially, the Symbolics personnel who install your system establish these
microcode files for you.

4.6.12 Using a Spare World Load for Paging

You can reuse FEP file space for paging files. You may have a spare world load
file, which you can transform into a paging file. For example, once you have
successfully installed a new software release, you can rename the old world load to
be a paging file. Note: Do not use the world load you are currently running for a
paging file, as this action overwrites the previous contents of the specified file.

If your old world load is Release-6-1.load, is resident on FEPO:>, and is 36,000
blocks in size, and you want to create a new paging file called FEPO:>page2.page
(with a block size of 36,000), follow these steps:

1. You should rename the file FEPO:>release-6-1.load to FEPO:>page2.page using
the Rename File command. For example, type:

Rename File FEP8:>release-6-1.load FEP8:>page2.page

Now the world load has been renamed to a paging file.

2. Use the Add Paging File command to initialize the paging file from the Lisp
environment.

3. Edit your FEPn:>Boot.boot file to declare the new paging file. Use the
Declare Paging-files command in your boot file to do this. For information
about the Declare Paging-file command: See the section "FEP System
Commands: General Usage" in Installation and Site Operations.

You can also create new FEP files and use them for extra paging space: See the
section "Allocating Extra Paging Space" in Reference Guide to Streams, Files, and
110.

4.6.13 Adding a Spare World Load as LMFS File Space

Partitions can be added to LMFS by following these steps:

1. Create the partition you wish to add to LMFS prior to entering the File
system editing operations program. In addition, when you add a new

62

Internals, Processes, and Storage Management July 1986

partition or a partition on another disk, the disk should be free of errors and
properly initialized and formatted.

2. Press SELECT F to select the File system editing operations program.

3. Click on [Local LMFS Operations] to invoke the second level of the File
System Maintenance Program.

4. Click on [LMFS Maintenance Operations] to invoke the third level menu,
which is a menu of file-system maintenance operations.

5. Click right on [Initialize] to invoke a menu of initialization options, which
offers [New File System] and [Auxiliary Partition] as choices. Clicking on
[New File System] is similar to clicking left on [Initialize]; it initializes a
partition to be the basis of a file system.

6. Click on [Auxiliary Partition] to add another partition.

7. Enter the pathname of the FEP file to be used as the new partition. The
default presented, which is correct for [New File System], is never correct
for adding a partition.

8. Click on [Do It]. The system then performs much verification and error
checking, roughly as much as when initializing a new partition. It must not
be interrupted while performing these actions.

9. When finished, the File system editing operations program adds the partition
and edits the FSPT automatically.

4.7 Disk Performance

You can improve the disk performance of a program by overlapping the disk
transfers with computation and by reducing the disk latency by grouping
contiguous transfers together.

The disk latency is the amount of time required by the disk unit to transfer a
number of disk blocks. The minimum disk latency is the absolute lower bound on
the time required to transfer a number of blocks; if shorter transfer times are
required, a higher blocking factor or a faster disk unit is required. The software
overhead can be determined by subtracting the minimum disk latency from the
total time to transfer a number of blocks.

You overlap transfers with computation by specifying that a transfer request
should not wait for the transfers to actually complete before returning.
Computations can then continue while the disk is transferring the data. When

63

July 1986 Internals

your program actually requires data, the process can wait for the disk transfer to
complete.

For example, if data is to be read from one block on the disk and then written to
another block, the read request can be immediately followed by the write request
without waiting for the read to actually finish, since disk transfers are always
performed in the order in which they were enqueued. The time required to read
and write the data is reduced since the write transfer can be enqueued while the
disk is performing the read, so by the time the read completes the disk can
immediately start writing the block.

Disk latency can be reduced by enqueuing multiple disk transfers to consecutive
disk addresses without waiting for completion between transfers. This permits the
disk to perform multiple transfers on the same disk revolution, or at least with a
minimum of seeking.

The equation below yields the approximate minimum disk latency for transferring
N contiguous disk blocks.

Equation 1:

Tn = Ta + T/2 + NT/S + TsL«A mod HS)+N-l)IHSJ

Where:

H

lxJ

Minimum time to transfer N blocks.

Average seek time.

Rotation time.

Number of blocks to transfer.

Number of blocks per track.

Average single cylinder seek time.

The disk block number. The sys:%%dpn-page-num field of the
disk address.

Number of data heads, excluding any servo heads.

Floor of x. The truncated integer value of x.

The terms in Equation 1 account for the various phases of a disk transfer, where:

• The first term accounts for the average seek time to position the heads to
the cylinder the first block resides on .

• The second term accounts for an average initial delay of half a rotation for
the first block to be positioned under the disk heads.

64

Internals, Processes, and Storage Management July 1986

• The third term yields the time to actually transfer N blocks of data.

• The last term yields the time spent seeking to adjacent cylinders.

The time required to switch heads is insignificant, since head switching time is
small enough not to affect the disk latency. Enough space is provided on the disk,
between the last and first blocks on a track, for the head switch to complete after
the last block has been transferred but before the first block of the next track
passes under the heads. No extra rotation delays are incurred.

The values of the constants used in Equation 1 can be found in Table 1 for some
of the available disk drives. To find the values for drives that are not listed,
check the disk specifications supplied in the manual shipped along with the disk
drive.

Table 1: Selected Disk Specifications

M2284 M2351 T-306 D2257

H 10 20 19 8
S 16 22 16 16
T 27ms 18ms 30ms 20ms
T

a
20.24ms 15.15ms 17.5ms 17.09ms r

T 6ms 5ms 7.5ms 5ms s

If N single block transfers are requested to consecutive disk blocks, Equation 1
becomes:

Equation 2:

Tn = Ta + NT/2 + NT/S + Tsl«A mod HS)+N-l)IHSJ

Equation 2 shows that, in addition to the cost of not performing computations
concurrently with disk transfers, the minimum disk latency is increased by an
average of a half rotation per disk transfer when single block disk transfers are
made to consecutive blocks, waiting for each transfer to complete. However,
Equation 2 is true only if the position of the disk is random with respect to the
disk block being accessed. For example, if single transfer requests are made to
consecutive disk blocks without a delay between transfer requests, the minimum
disk latency would be increased by a full rotation per transfer.

4.8 Examples of High Disk Performance

65

July 1986 Internals

4.8.1 Initializing a FEP File

The following function is an example of how you can achieve high disk
performance. It writes zeroes over an entire FEP file.

(defun zero-fep-file (file)
;; FILE should be an open block disk stream.
;; Allocate a disk array and disk event
(using-resource (disk-array si:disk-array)

(using-resource (disk-event si:disk-event)
II Wire both the disk array and disk event into memory for the
;; duration of all the transfers. This is required when
;; HANG-P is NIL.
(si:with-wired-disk-array (disk-array)

(si:with-wired-structure disk-event
;; Iterate over all blocks in the file enqueuing a
;; write without waiting for the write to complete.
(loop for block-number below (send file :block-length)

doing (send file :block-out block-number 1 disk-array
:disk-event disk-event
:hang-p nil»

;; Finally, wait for all the writes to complete before
;; unwiring and returning the disk array and disk event.
(si:wait-for-disk-event disk-event»»»

The zero-fep-file function writes the same disk array over all the blocks in the
file without waiting for each write to finish before enqueuing the next write. This
minimizes the time required to zero the FEP file since the write transfers are
enqueued concurrent with the disk actually writing the data, and the transfers are
enqueued in ascending file block number order. The FEP file system attempts to
make FEP files as contiguous as possible with the disk addresses ascending in file
block number order, so zero-fep-file writes as many blocks as can fit on a sector
in one disk rotation.

4.8.2 Copying FEP Files

The next examples show alternative algorithms for copying a FEP file, starting
out with a slow but simple example and developing it into a much faster version.

The following function shows a simple way to copy a FEP file. To simplify the
example, the source-file and dest-file must be complete file specifications, and file
properties, including the byte length, are not copied.

(Note that none of these functions copies any of the file's properties, not even the
length-in-bytes. In a real file-copying application, you might want to copy some of
the properties.)

66

Internals, Processes, and Storage Management July 1986

(defun slow-copy (source-file dest-file)
(with-open-file (source source-file

:direction :block
:if-exists :overwrite)

(with-open-file (dest dest-file
:direction :block
:if-exists :overwrite
:if-does-not-exist :create)

" First preallocate the same number of disk blocks for the
" destination file as is required by the source file.
" Allocating many blocks at once is much faster than implicitly
" allocating a block at a time, and results in better locality
" on the disk.
(send dest :allocate (send source :block-length))
;; Allocate a disk array to buffer the data and a disk event
(using-resource (disk-array si:disk-array)

(using-resource (disk-event si:disk-event)
;; Now iterate over all blocks in the source file, copying
;; the block to the destination file.
(loop for block-number below (send source :block-length)

do
(send source :block-in block-number 1 disk-array

:disk-event disk-event)
(send dest :block-out block-number 1 disk-array

:disk-event disk-event)))))))

While the slow-copy function is simple, it is also very slow. The reason for this
is that the : block-in message waits for the disk read to complete before the
: block-out message can be enqueued. This function can be sped up by over a
factor of two and a half by supplying a :hang-p keyword with a value of nil,
allowing the : block-in and : block-out messages not to wait for completion. For
example:

67

July 1986 Internals

(defun quick-copy (source-file dest-file)
(with-open-file (source source-file

:direction :block
:if-exists :overwrite)

(with-open-file (dest dest-file
:direction :block
:if-exists :overwrite
:if-does-not-exist :create)

;; First preallocate the same number of disk blocks for the
;; destination file as is required by the source file.
(send dest :allocate (send source :block-length))
;; Allocate a disk array to buffer the data and a disk event
(using-resource (disk-array si:disk-array)

(using-resource (disk-event si:disk-event)
" The disk array and disk event must be wired for the
" duration of all the transfers. When HANG-P is true, the
" transfer functions automatically wire and unwire the disk
" event and disk arrays. But since this function specifies a
" HANG-P of NIL for speed, it must do the wiring itself.
(si:with-wired-disk-array (disk-array)

(si:with-wired-structure disk-event
" Iterate over all the blocks in the source file,
;; enqueuing reads and then enqueuing writes
;; to the destination file.
(loop for block-number below (send source :block-length)

do
;; Enqueue the source read without waiting for the
;; transfer to actually complete.
(send source :block-in block-number 1 disk-array

:disk-event disk-event :hang-p nil)
Enqueue the destination write while the
source read is still in progress. This does not

" have to wait for the read to complete since
" disk transfers are always performed in the
" order they were enqueued.
(send dest :block-out block-number 1 disk-array

:disk-event disk-event :hang-p nil))
" Wait for all pending transfers to complete.
(si:wait-for-disk-event disk-event))))))))

quick-copy has increased speed by overlapping disk requests with computation.
This keeps the disk queue full, so that the disk is continually copying the file
without having to stop and wait for the next disk transfer to be enqueued. But
the disk is still reading a block, then seeking to the destination block, then

68

Internals, Processes, and Storage Management July 1986

writing a block, and seeking back to the next source block. Performance can be
further enhanced by reducing the disk latency if both the source and destination
files reside on the same disk unit.

The disk latency can be reduced by reading multiple source blocks, then seeking to
the destination file and writing multiple destination blocks, eliminating disk seeks.
Thus, the following function combines minimized disk latency (achieved by using a
large blocking factor between seeks) with overlapped computations and disk
transfers. The resulting speed is about three times faster than quick-copy, and
seven times faster than slow-copy.

69

July 1986 Internals

(defun fast-copy (source-file dest-file &optional (blocking-factor 20.))
(with-open-file (source source-file

:direction :block
:if-exists :overwrite)

(with-open-file (dest dest-file
:direction :block
:if-exists :overwrite
:if-does-not-exist :create)

;; First preallocate the same number of disk blocks for the
;; destination file as is required by the source file.
(send dest :allocate (send source :block-length))
(let «disk-arrays (make-array blocking-factor)))

;; Allocate a disk event.
(using-resource (disk-event si:disk-event)

;; The disk event must be wired for the duration of all the
;; transfers.
(si:with-wired-structure disk-event

(unwind-protect
(progn

;; Allocate and wire the disk arrays. The disk arrays
;; must be wired for the duration of the disk transfer.
(dotimes (i blocking-factor)

(let «disk-array (allocate-resource Isi:disk-array)))
(si:wire-disk-array disk-array)
(aset disk-array disk-arrays i)))

(loop
with blk-length = (send source :block-length)
for start-blkn from e by blocking-factor below blk-length
do
;; Enqueue the source reads without waiting for the
;; transfers to actually complete.
(loop for blkn from start-blkn below blk-length

for array being the array-elements of disk-arrays
do
(send source :block-in blkn 1 array

:disk-event disk-event :hang-p nil))
II Enqueue the destination writes while the
II source reads are still in progress. This does not
II have to wait for the reads to complete since
II disk transfers are always performed in the
II order they were enqueued.
(loop for blkn from start-blkn below blk-length

for array being the array-elements of disk-arrays

70

Internals, Processes, and Storage Management July 1986

do
(send dest :block-out blkn 1 array

:disk-event disk-event :hang-p nil))))
" Wait for all pending transfers to complete.
(si:wait-for-disk-event disk-event)
;; Finally, return the disk arrays.
(loop

for disk-array being the array-elements of disk-arrays
when disk-array
do
(when (si:structure-wired-p disk-array)

(si:unwire-disk-array disk-array))
(deallocate-resource 'si:disk-array disk-array)))))))))

This example still does not include some functionality that would make it
complete. However, it does illustrate how to use disk-events effectively. To make
it a reasonable function, other features, such as preserving file properties, offering
pathname defaulting and merging, and using unwind-protects, should be included.

4.9 Disk and FEP File System Utilities

4.9.1 Initializing a Disk Unit

Before a disk unit can be used, it must be formatted and have a valid disk label.
Disks are formatted by the FEP, which can also write the label and initialize the
FEP file system from cartridge tape. See the section "The Front-End Processor"
in Installation and Site Operations. In addition, the following functions are
available:

si:write-fep-Iabel unit Function
Writes the disk label for unit number unit, interactively asking for any
necessary information. After the label is written the disk unit is left
mounted.

si:edit-fep-Iabel &optional unit Function
Permits the disk label of the disk unit unit to be edited by exposing a
chose variable values window. unit defaults to disk unit o.

si:read-fep-Iabel unit label-array disk-event Function
Reads the disk label for unit unit into the disk array in label-array,
associating the read transfers with disk-event in case of an error.

71

July 1986 Internals

4.9.2 Mounting a Disk Unit

Disk units can be mounted either by the FEP or by Lisp. See the section "The
Front-End Processor" in Installation and Site Operations. When a disk unit is
mounted, its disk label is read and the system's disk unit tables are updated. A
disk unit must be mounted before it is available for disk transfers.

si:mount-disk-unit unit Function
Make the disk unit available to the Lisp system by reading its label and
updating the system's disk unit tables. unit is the unit number to mount,
and must be the address of an online disk unit.

4.9.3 Verifying a FEP File System

The following function checks for and flxes inconsistencies in the FEP flle system.

si:verify-fep-filesystem &optional (unit 0) &key (jix-checkwords Function
':ask)

Checks the FEP flle system on disk unit unit, which defaults to zero,
reporting any detected inconsistencies and offering to correct certain types
of failures. If :f'lX-checkwords is :ask (the default), you are prompted if
anything has to be fIxed; the other options are :yes (always fIx), :no (never
flx), :silently (always fIx without a message), and :inform-only (send
messages only, do not fIx, do not ask).

si:print-fep-filesystem &optional (unit 0) Function
Outputs a textual description of the FEP flle system on disk unit unit.
The default value of unit is O.

si:resequence-fep-filesystem &optional (unit 0) Function
Resequences all the FEP flies in the FEP fIle system on unit unit. The
value of unit defaults to zero. The flIes are resequenced by iterating over
all flIes in the FEP flle system and assigning each a unique sequence
number, starting with zero. Sequence numbers are used by the FEP file
system to check for consistency and identify pages in the flle system. They
can be used to rebuild the FEP flle system or flnd missing flIes in case of
a catastrophic failure.

72

Internals, Processes, and Storage Management July 1986

73

July 1986 Jnitializations

PART II.

In itializations

74

Internals, Processes, and Storage Management July 1986

75

July 1986 Initializations

5. Introduction to Initializations

A number of programs and facilities in Symbolics computers require that
"initialization routines" be run when the facility is first loaded, or when the
system is booted, or both. These initialization routines can set up data structures,
start processes running, open network connections, and so on.

An initialization that needs to be done once, when a file is loaded, can be done
simply by putting the Lisp forms to do it in that file; when the file is loaded the
forms are evaluated. However, some initializations need to be done each time the
system is booted, and some initializations depend on several files having been
loaded before they can work. Also, some initializations should be done once and
only once, regardless of any particular file being reloaded.

The system provides a consistent scheme for managing these initializations.
Rather than having a magic function that runs when the system is started and
knows everything that needs to be initialized, each thing that needs initialization
contains its own initialization routine. The system keeps track of all the
initializations through a set of functions and conventions, and executes all the
initialization routines when necessary. The system also avoids reexecuting
initializations if a program file is loaded again after it has already been loaded
and initialized.

An initialization list is a symbol whose value is an ordered list of initializations.
Each initialization has a name, a form to be evaluated, a flag saying whether the
form has yet been evaluated, and the source file of the initialization, if any.
When the time comes, initializations are evaluated in the order that they were
added to the list. The name is a string and lies in the car of an initialization;
thus assoc can be used on initialization lists. All initialization lists also have a
si:initialization-list property of t. This is mainly for internal use.

add-initialization name form &optional keyword-list list-name Function
Adds an initialization called name (a string) with the form form to the
initialization list specified either by list-name or by a keyword-list. If the
initialization list already contains an initialization called name, it is
removed and the new one is added.

list-name, if specified, is a symbol that has as its value the initialization
list. If it is unbound, it is initialized to nil, and is given an
si:initialization-list property of t. If the keyword-list specifies an
initialization list, list-name is ignored and should not be specified.

Two kinds of keywords are allowed. The first kind specifies which
initialization list to use. This is the which keyword. All the which keywords
are shown here:

76

Internals, Processes, and Storage Management July 1986

:cold

:warm

: before-cold

: once

: system

: login

: logout

:site

Use the standard cold-boot list.

Use the standard warm-boot list. This is the default.

Use the standard before-disk-save list.

Use the once-only list.

Use the system list.

Use the login list.

Use the logout list.

Use the site list. (The form is evaluated immediately by
default, as well as each time a site initialization is
performed.)

:enable-services Use the enable-services list.

:disable-services Use the disable-services list.

:full-gc

:after-full-gc

Use the full-gc list.

Use the after-full-gc list.

For more information on these lists: See the section "System Initialization
Lists", page 79.

The second kind of keyword specifies when to evaluate form. This the when
keyword, of which there are four:

: normal Only place the form on the list. Do not evaluate it until the
time comes to do this kind of initialization. This is the default
unless : system, :site, or :once is specified.

: now

:first

:redo

Evaluate the form now as well as adding it to the list. (This is
the default for :site.)

Evaluate the form now if it is not flagged as having been
evaluated before. This is the default if :system or :once is
specified.

Do not evaluate the form now, but set the flag to nil even if the
initialization is already in the list and flagged t.

Actually, the keywords are compared with zl:string-equal and can be in
any package. If both kinds of keywords are used, the which keyword should
come before the when keyword in keyword-list; otherwise the which keyword
can override the when keyword.

The add-initialization function keeps each list ordered so that
initializations added first are at the front of the list. Therefore, by

77

July 1986 Initializations

controlling the order of execution of the additions, explicit dependencies on
order of initialization can be controlled. Typically, the order of additions is
controlled by the loading order of files. The :system list is the most
critically ordered of the predefined lists. See the section "System
Initialization Lists", page 79.

delete-initialization name &optional keywords (list-name Function
'si:warm-initialization-list)

Remove the specified initialization from the specified initialization list.
Keywords can be any of the list options allowed by add-initialization.

initializations list-name &optional (redo-flag nil) (flag t) Function
Perform the initializations in the specified list. redo-flag controls whether
initializations that have already been performed are re-performed; nil
means no, non-nil is yes, and the default is nil. flag-value is the value to
be stored into the flag slot of an entry when the initialization form is run.
If it is unspecified, it defaults to t, meaning that the system should
remember that the initialization has been done. There is no convenient
way for you to specify one of the specially-known-about lists because you
should not be calling initializations on them.

reset-ini tializa tions list-name Function
Sets the flag of all entries in the specified list to nil, thereby causing them
to get rerun the next time the function initializations is called on the
initialization list.

If you want to add new keywords that can be understood by add-initialization and
the other initialization functions, you can do so by pushing a new element onto the
following variable:

si:initializa tion-Iteywords Variable
Each element on this list defines the name of one initialization list. Each
element is a list of two or three elements. The first is the keyword symbol
that names the initialization list. The second is a special variable, whose
value is the initialization list itself. The third, if present, is a symbol
defining the default time at which initializations added to this list should
be evaluated; it should be si:normal, si:now, si:first, or si:redo. The third
element is the default; if the list of keywords passed to add-initialization
contains one of the keywords normal, now, first, or redo, it overrides this
default. If the third element is not present, si:normal is assumed.

Note that the keywords used in add-initialization need not be keyword-package
symbols (you are allowed to use first as well as : first) , because zl:string-equal is
used to recognize the symbols.

78

Internals, Processes, and Storage Management July 1986

79

July 1986 Initializations

6. System Initialization Lists

The special initialization lists that are known about by the initialization functions
allow you to have your subsystems initialized at various critical times without
modifying any system code to know about your particular subsystems. This also
allows only a subset of all possible subsystems to be loaded without necessitating
either modifying system code (such as sys:lisp-reinitialize) or such awkward
methods as using fboundp to check whether or not something is loaded.

The :once initialization list is used for initializations that need to be done only
once when the subsystem is loaded and must never be done again. For example,
some databases need to be initialized the first time the subsystem is loaded, but
they should not be reinitialized every time a new version of the software is loaded
into a currently running system. This list is for that purpose. The initializations
function is never run over it; its "when" keyword defaults to :first and so the
form is normally only evaluated at load-time, and only if it has not been evaluated
before. The :once initialization list serves a similar purpose to the defvar special
form, which sets a variable only if it is unbound.

The :system initialization list is for things that need to be done before other
initializations stand any chance of working. Initializing the process and window
systems, the file system, and the Chaosnet NCP falls in this category. The
initializations on this list are run every time the machine is cold- or warm-booted,
as well as when the subsystem is loaded unless explicitly overridden by a :normal
option in the keywords list. In general, the system list should not be touched by
user subsystems, though there can be cases when it is necessary to do so.

The :cold initialization list is used for things that must be run once at cold-boot
time. The initializations on this list are run after the ones on :system but before
the ones on the :warm list. They are run only once, but are reset by
zl:disk-save, thus giving the appearance of being run only at cold-boot time.

The :warm initialization list is used for things that must be run every time the
machine is booted, including warm boots. The function that prints the greeting,
for example, is on this list. Unlike the :cold list, the :warm list initializations are
run regardless of their flags.

The : before-cold initialization list is a variant of the :cold list. These
initializations are run before the world is saved out by zl:disk-save. Thus they
happen essentially at cold-boot time, but only once when the world is saved, not
each time it is started up.

The :login and :logout lists are run by the zl:login and zl:logout functions,
respectively. Note that zl:disk-save calls zl:logout. Also note that often people
do not call zl:logout; they just cold boot the machine.

80

Internals, Processes, and Storage Management July 1986

The forms on :enable-services are run by sys:enable-services. In addition, they
are run automatically by sys:lisp-reinitialize when a nonserver Symbolics
computer is warm- or cold-booted.

The forms on :disable-services are run by sys:disable-services. In addition, they
are run automatically by : before-cold when you use zl:disk-save.

The forms on :full-gc are run by si:full-gc before running the garbage collector.

The forms on :after-full-gc are run by si:full-gc after it collects all the garbage.

User programs are free to create their own initialization lists to be run at their
own times. Some system programs, such as the editor, have their own
initialization list for their own purposes.

81

July 1986 Processes

PART III.

Processes

82

Internals, Processes, and Storage Management July 1986

83

July 1986 Processes

7. Introduction to Processes

Symbolics computers support multiprocessing; several computations can be executed
"concurrently" by placing each in a separate process. A process is like a
processor, simulated by software. Each process has its own "program counter", its
own stack of function calls and its own special-variable binding environment in
which to execute its computation. (This is implemented with stack groups: See
the section "Stack Groups", page 3.) A process is a Lisp object, an instance of
one of several flavors of process. See the section "Process Flavors", page 111.

If all the processes are simply trying to compute, the machine time-slices among
them. This is not a particularly efficient mode of operation, since dividing the
finite memory and processor power of the machine among several processes
certainly cannot increase the available power and in fact wastes some of it in
overhead. The way processes are normally used is different: there can be several
ongoing computations, but at a given moment only one or two processes are trying
to run. The rest are either waiting for some event to occur, or stopped, that is,
not allowed to compete for resources.

A process waits for an event by means of the process-wait primitive, which is
given a predicate function that defines the event being waited for. A module of
the system called the process scheduler periodically calls that function. If it
returns nil the process continues to wait; if it returns t the process is made
runnable and its call to process-wait returns, allowing the computation to proceed.

A process can be active or stopped. Stopped processes are never allowed to run;
they are not considered by the scheduler, and so never become the current process
until they are made active again. The scheduler continually tests the waiting
functions of all the active processes, and those that return non-nil values are
allowed to run. When you first create a process with make-process, it is stopped.

A process has two sets of Lisp objects associated with it, called its run reasons and
its arrest reasons. These sets are implemented as lists. Any kind of object can be
in these sets; typically, keyword symbols and active objects such as windows and
other processes are found. A process is considered active when it has at least one
run reason and no arrest reasons. A process that is not active is stopped, is not
referenced by the process scheduler, and does not compete for machine resources.

To start a computation in another process, you must first create a process, and
then specify the computation you want to occur in that process. The computation
to be executed by a process is specified as an initial function for the process and a
list of arguments to the initial function. When the process starts up it applies the
function to the arguments. In some cases the initial function is written so that it
never returns, while in other cases it performs a certain computation and then
returns, which stops the process.

84

Internals, Processes, and Storage Management July 1986

To reset a process means to "throw out" of its entire computation, then force it to
call its initial function again. (See the special form throw in Symbolics Common
Lisp.) Resetting a process clears its waiting condition, and so if it is active it
becomes runnable. To preset a process is to set up its initial function (and
arguments), and then reset it. This is one way to start up a computation in a
process.

All processes in a Symbolics computer run in the same virtual address space,
sharing the same set of Lisp objects. Unlike other systems, which have special
restricted mechanisms for interprocess communication, Symbolics computers allow
processes to communicate in arbitrary ways through shared Lisp objects. One
process can inform another of an event simply by changing the value of a global
variable. Buffers containing messages from one process to another can be
implemented as lists or arrays. The usual mechanisms of atomic operations,
critical sections, and interlocks are provided. For more information:

See the function store-conditional, page 25.
See the special form without-interrupts, page 86.
See the function process-lock, page 91.

85

July 1986 Processes

8. The Scheduler

At any time a set of active processes exists; these are all the processes that are not
stopped. Each active process is either currently running, trying to run, or waiting
for some condition to become true. The active processes are managed by a special
stack group called the scheduler, which repeatedly cycles through the active
processes, determining for each process whether it is ready to be run or whether
it is waiting. The scheduler determines whether a process is ready to run by
applying the process's wait-function to its wait-argument-list. If the wait-function
returns a non-nil value, then the process is ready to run; otherwise, it is waiting.
If the process is ready to run, the scheduler resumes the current stack group of
the process.

When a process's wait-function returns non-nil, the scheduler resumes its stack
group and lets it proceed. The process is now the current process, that is, the one
process that is running on the machine. The scheduler sets the variable
current-process to it. The process remains the current process and continues to
run until either it decides to wait, or a sequence break occurs and causes the
process to remove itself from scheduling. In either case, the scheduler stack
group is resumed and it continues to cycle through the active processes. This
way, each process that is ready to run gets its share of time in which to execute.

A process can wait for some condition to become true by calling process-wait,
which sets up its wait-function and wait-argument-list accordingly, and resumes
the scheduler stack group. A process can also wait for just a moment by calling
process-allow-schedule, which resumes the scheduler stack group but leaves the
process runnable; it will run again as soon as all other runnable processes of the
same or higher priority have had a chance.

A sequence break is a kind of interrupt that is generated by Genera for any of a
variety of reasons; when it occurs, the scheduler is resumed. The function
si:sb-on can be used to control when sequence breaks occur. The default clock
interval used by si:sb-on is controlled by the variable
si:*default-sequence-break-interval*. Thus, if a process runs continuously
without waiting, it is forced to return control to the scheduler once per this
interval so that any other runnable processes get their turn. A process is
preempted when the scheduler regains control, even though the process is trying to
run and is not waiting.

The system does not generate a sequence break when a page fault occurs; thus
time spent waiting for a page to come in from the disk is "charged" to a process
the same as time spent computing, and cannot be used by other processes. This is
done for the sake of simplicity; it allows the implementation of the process system
to reside in ordinary virtual memory without having to worry particularly about
paging. The performance penalty is small since Symbolics computers are personal

86

Internals, Processes, and Storage Management July 1986

computers and are not multiplexed among a large number of processes. Usually
only one process at a time is runnable.

A process's wait-function is free to touch any data structure and to perform any
computation it likes. Since the wait-function consumes resources even when its
process is not running, wait-functions should be kept simple, using only a small
. amount of time, not consing, and touching only a small number of pages.
Otherwise, system performance is affected. If a wait-function gets an error, the
error occurs inside the scheduler. All scheduling comes to a halt and the user is
thrown into the Debugger. Wait-functions should be written in such a way that
they cannot get errors. Note that process-wait calls the wait function once before
giving it to the scheduler, so an error due simply to bad arguments won't occur
inside the scheduler.

Note well that a process's wait-function is executed inside the scheduler stack
group, not inside the process. This means that a wait-function cannot access
special variables bound in the process. It is allowed to access global variables. It
could access variables bound by a process through the closure mechanism, but
more commonly, any values needed by the wait-function are passed to it as
arguments. See the section "Dynamic Closures" in Symbolics Common Lisp.

8.1 Scheduler Functions and Variables

current-process Variable
The value of current-process is the process that is currently executing, or
nil while the scheduler is running. When the scheduler calls a process's
wait-function, it binds current-process to the process so that the wait­
function can access its process.

without-interrupts body... Special Form
The body forms are evaluated with inhibit-scheduling-flag bound to t.
This is the recommended way to lock out multiprocessing over a small
critical section of code to prevent timing errors. In other words, the body
is an atomic operation with respect to process scheduling. (It does not lock
out microcode tasks.) The value(s) of a without-interrupts is/are the
value(s) of the last form in the body.

Examples:
(without-interrupts

(push item list»

87

July 1986 Processes

(without-interrupts
(cond «member item list)

(setq list (delete item list»
t)

(t nil»)

inhibit-scheduling-flag Variable
The value of inhibit-scheduling-flag is normally nil. If it is t, preempts
are deferred until inhibit-scheduling-flag becomes nil again. This means
that no process other than the current process can run.

process-wait whostate function &rest arguments Function
This is the primitive for waiting. The current process waits until the
application of function to arguments returns non-nil (at which time
process-wait returns). Note that function is applied in the environment of
the scheduler, not the environment of the process-wait, so bindings in
effect when process-wait was called are not in effect when function is
applied. Be careful when using any free references to special variables in
function. whostate is a string containing a brief description of the reason
for waiting. If the status line at the bottom of the screen is looking at
this process, it shows whostate.

Examples:
(process-wait "sleep"

#' (1 ambda (now)
(> (time-difference (time) now) 100.»

(time»

(process-wait "Buffer"
#'(lambda (b) (not (zerop (buffer-n-things b»»
the-buffer)

sleep n-seconds &key (sleep-reason "Sleep") Function
This function, which is not in standard Common Lisp, simply waits for
n-seconds and then returns. It uses process-wait.

zl:process-sleep interval &optional (whostate "Sleep") Function
This simply waits for interval sixtieths of a second, and then returns. It
uses process-wait.

process-wait-with-timeout whostate time function &rest args Function
This is a primitive for waiting. It applies function to args until the
function returns something other than nil or until the interval times out.
time is a time in 60ths of a second. When the process times out,

88

Internals, Processes, and Storage Management July 1986

process-wait-with-timeout returns nil. When the function returns
something other than nil within the interval, process-wait-with-timeout
returns t.

If time is nil, process-wait-with-timeout waits indefinitely for the
application of function to arguments to return something other than nil.
This behavior is the same as that of process-wait.

process-wait-forever &optional (whostate "Wait Forever") Function
This function causes the current process to wait forever. The process is
still active, though, and will begin running again if reset or preset.

process-allow-schedule Function
This function simply waits momentarily; all other processes of the same or
higher priority get a chance to run before the current process runs again.

sys:scheduler-stack-group Variable
This is the stack group in which the scheduler executes.

sys:clock-function-list Variable
This is a list of functions to be' called by the scheduler 60 times a second.
Each function is passed one argument: the number of 60ths of a second
since the last time that the functions on this list were called. These
functions implement various system overhead operations, such as blinking
the blinking cursor on the screen.

Note that these functions are called inside the scheduler, just as are the
functions of simple processes. (See the flavor si:simple-process, page 111.)
The scheduler calls these functions as often as possible, but never more
often than 60 times a second. That is, if there are no processes ready to
run, the scheduler calls the functions 60 times a second, assuming that, all
together, they take less than 1/60 second to run. If there are processes
continually ready to run, then the scheduler calls these functions as often
as it can; usually this is ten times a second, since usually the scheduler
only gets control that often.

sys:active-processes Variable
This is the scheduler's data structure. It is a list of lists, where the car of
each element is an active process or nil and the cdr is information about
that process.

sys:all-processes Variable
This is a list of all the processes in existence. It is mainly for debugging.

89

July 1986 Processes

si:initial-process Variable
This is the process in which the system starts up when it is booted.

si:sb-on &optional when Function
si:sb-on controls what events cause a sequence break, that is, when
rescheduling occurs. The following keywords are names of events that can
cause a sequence break.

:clock

: disk

:mouse

:keyboard

This event happens periodically based on a clock and is
enabled by default. The period is the value of the
variable si:sequence-break-interval, initially having the
value of the variable
si:*default-sequence-break-interval*.

A sequence break happens whenever the disk
hardware/firmware decides to wake up the wired disk
system. This might occur with every disk I/O operation
or after several have been completed. This event is
always enabled; you cannot turn it off. However, these
sequence breaks do not cause rescheduling.

Happens when the mouse moves. Sixty times per second
it tests the variable sys:mouse-wakeup, which is set by
the FEP. Causes a sequence break if the value is not
nil. This event is enabled by default.

Happens whenever a key is typed.

With no argument, si:sb-on returns a list of keywords for the currently
enabled events.

With an argument, the set of enabled events is changed. The argument
can be a keyword, a list of keywords, or nil (which disables sequence
breaks entirely, since it is the empty list).

si:*default-sequence-break-interval* Variable
This variable controls the interval used by si:sb-on. Its default value is
100000 microseconds (0.1 seconds).

90

Internals, Processes, and Storage Management July 1986

91

July 1986 Processes

9. Locks

A lock is a software construct used for synchronization of two processes. A lock
protects some resource or data structure so that only one process at a time can
use it. A lock is either held by some process, or is free. When a process tries to
seize a lock, it waits until the lock is free, and then it becomes the process
holding the lock. When it is finished, it unlocks the lock, allowing some other
process to seize it.

In Symbolics computers, a lock is a locative pointer to a cell. If the lock is free,
the cell contains nil; otherwise it contains the process that holds the lock. The
process-lock and process-unlock functions are written in such a way as to
guarantee that two processes can never both think that they hold a certain lock;
only one process can ever hold a lock at a time.

process-lock locative-pointer &optional lock-value (whostate "Lock") Function
interlock-function

This is used to seize the lock to which locative-pointer points. If necessary,
process-lock waits until the lock becomes free. When process-lock
returns, the lock has been seized. lock-value is the object to store into the
cell specified by locative-pointer, and whostate is passed on to process-wait
if the process must wait. If lock-value is nil or unsupplied, the value of
current-process is used.

The argument interlock-function must be nil or a function of zero
arguments. process-lock guarantees to call interlock-function if the lock is
successfully changed to be locked, and not otherwise. It can therefore be
used to implement atomic unwind-protect of locking.

This is atomic and protected from unlocking locks held at a higher level. In
this case, "atomic" means that the operation cannot be decomposed into
smaller operations. If an operation is atomic, then c-Abort and other
interrupts cannot occur in the middle of it.

Here is an example.

(let «locked nil»
(unwind-protect

(progn
(process-lock lock si:current-process "Lock"

#'(lambda () (setq locked t»)
body of locked code ...

)

(when locked (process-unlock lock si:current-process»»

92

Internals, Processes, and Storage Management July 1986

In the example, a program is designed to lock a lock. It wants to use
unwind-protect, when it exists, if and only if the lock was locked.
Therefore, the program needs to maintain a flag that indicates if the lock
has indeed been locked. Changing the state of the lock and the flag must
happen together. If they occur asynchronously, errors ensue. Thus the
sequence of changing the lock and setting the flag must be atomic.

For simple sets of operations, without-interrupts gives atomicity. However,
you cannot call process-wait while in a without-interrupts, and locking a
lock calls process-wait. This is why process-lock supplies this argument
and guarantees that calling the function and setting the lock to be locked
will be atomic.

process-unlock locative-pointer &optionallock-value error-p Function
This is used to unlock the lock to which locative-pointer points. If the lock
is free or was locked by some other process, an error is signalled if error-p
is t. Otherwise the lock is unlocked. If lock-value is nil or unsupplied, the
value of current-process is used.

It is a good idea to use unwind-protect to make sure that you unlock any lock
that you seize. For example, if you write:

(unwind-protect
(progn (process-lock lock-3)

(function-1)
(function-2))

(process-unlock lock-3))

then even if function-! or function-2 does a throw, lock-3 is unlocked correctly.
Particular programs that use locks often define special forms that package up this
unwind-protect into a convenient stylistic device.

process-lock and process-unlock are written in terms of a sub primitive function
called store-conditional, which is sometimes useful in its own right.

You can also use si:make-process-queue and related functions to set up a queue
for processes waiting to seize a lock. Each process on the queue is given a chance
to seize the lock in the order in which it requests the lock.

si:make-process-queue name size Function
Makes and returns a queue for processes requesting a lock. name is an
external name for the queue and is used only in printing the queue. size is
the size of the queue. This is the maximum number of processes that will
be guaranteed to lock the queue in exact requesting order.

93

July 1986 Processes

si:process-enqueue queue &optional queue-value (whostate "lock") Function
Locks queue. queue-value is an object to enter on the queue; if queue-value
is nil or unsupplied, the object is the current process. If queue is empty,
seizes the lock immediately by inserting queue-value on the queue and
returning. If queue is not full but other processes are on the queue
waiting for the lock to be free, inserts queue-value at the end of the queue,
waits for the lock to be free, and then seizes the lock by returning. If
queue is full, waits until queue is not full and tries again to seize the lock.
whostate is displayed in the status line while waiting to seize the lock.
Signals an error if queue-value has already seized the lock.

si:process-dequeue queue &optional queue-value (error-p t) Function
Unlocks queue. queue-value is an object on the queue. If queue-value is nil
or unsupplied, it is the current process; if not nil, it should be the same as
the queue-value given to the matching call to si:process-enqueue. If
queue-value has the lock, unlocks the lock by removing queue-value from
queue and giving the next process on the queue a chance to seize the lock.
If queue-value does not have the lock and error-p is not nil, signals an
error.

si:process-queue-Iocker queue Function
Returns the queue-value for the process that holds the lock on queue, or nil
if the lock is free.

si:reset-process-queue queue Function
Unlocks queue and removes all processes on the queue.

94

Internals, Processes, and Storage Management July 1986

95

July 1986 Processes

10. Creating a Process

There are two ways of creating a process. The primary way is to say simply, "call
this function on these arguments in another process, and don't bother waiting for
the result." In this case you never actually use the process as an object. The
other way is to create a "permanent" process that you instantiate and manipulate
as desired. In this latter case you use the make-process function.

Normally the function to be run should not do any input or output to the terminal.
For a discussion of the issues: See the section "Input/Output in Stack Groups",
page 7.

The following function implements the first way of creating a process. It allows
you to call a function and have its execution happen asynchronously in another
process. This can be used either as a simple way to start up a process that will
run "forever", or as a way to make something happen without having to wait for
it to complete. When the function returns, the process is returned to a pool of
free processes, making these operations quite efficient.

process-run-function name-or-kwds function &rest args Function
Creates a process, presets it so it will apply function to args, and starts it
running. name-or-kwds can be a symbol or string that becomes the
process's name, or it can be a list of alternating keywords and values to
which the corresponding process attributes are set.

The keywords are:

: name The name of the process; it must be a string or a
symbol. The default name is "Anonymous".

:restart-after-reset
If this is t, the :reset message to the process restarts the
process. If this is nil, the :reset message to the process
returns the process to the pool of free processes. The
default is nil.

:restart-after-boot
Applies to both warm and cold booting, if the cold boot
occurs after a disk save with the process in it. If this is
t, booting the machine restarts the process. If this is
nil, booting the machine returns the process to the pool
of free processes. The default is nil.

: warm-boot-action
If this option is provided, its value controls what happens

96

Internals, Processes, and Storage Management July 1986

:priority

: quantum

when the machine is warm booted. If it is nil or not
provided, the value of the :restart-after-boot option takes
effect. For a description of the value of the warm-boot
action: See the method (flavor:method :warm-boot­
action si:process), page 107.

The priority of the process. The default is O.

The amount of time the process is allowed to be run
without waiting before the scheduler runs another
process. The value should be a fIXnum in units of 60ths
of a second. The default is 6 (0.1 second).

The next function, make-process implements another way of creating a process.
make-process creates a permanent Lisp object that can be manipulated by calling
various functions. See the section "Process Functions", page 99.

make-process name &rest init-args Function
Creates and returns a process named name. The process will not be
capable of running until it has been reset or preset in order to initialize
the state of its computation.

The init-args are alternating keywords and values that allow you to specify
things about the process; however, no options are necessary if you are not
doing anything unusual. The following init-args are allowed:

:simple-p

:fIavor

:stack-group

Specifying t here gives you a simple process. See the
section "Process Flavors", page 111.

Specifies the flavor of process to be created. For a list
of all the flavors of process supplied by the system: See
the section "Process Flavors", page 111.

The stack group the process is to use. If this option is
not specified a stack group will be created according to
the relevant options below.

:warm-boot-action

: quantum

What to do with the process when the machine is booted.
See the method (flavor:method :warm-boot-action
si:process), page 107.

The number of seconds the process is allowed to be run
without waiting before the scheduler runs another
process. The value should be a fIXnum in units of 60ths
of a second. The default is 6 (0.1 second). See the
method (flavor:method :quantum si:process), page 106.

97

July 1986 Processes

:priority

: run-reasons

The priority of the process. The default is o. See the
method (flavor:method :priority si:process), page 106.

Lets you supply an initial list of run reasons. The
default is nil. Note: Do not use the :run-reasons
init-option to start a process. The only way to start a
process created with make-process is to preset it and
explicitly specify the run-reason with the
si:process-enable-run-reason function.

:arrest-reasons Lets you supply an initial list of arrest reasons. The
default is nil.

In addition, the options of make-stack-group are accepted. See the
function make-stack-group, page 5.

If you specify : flavor, there can be additional options implemented by that
flavor.

10.1 How to Choose Process Priority Levels

The following are some guidelines about what values to use when you modify a
process's priority.

Normal processes run with a default priority of 0 when computing and 1 when
they are interacting with a user. If the priority number is higher, the process
receives higher priority. You should avoid using priority values higher than 9,
since some critical system processes use priorities of 10 to 30; setting up
competing processes could lead to degraded performance or system failure. You
can also use negative values to get processes to run in the background. Values of
-5 or -10 for background processes and 2 or 5 for urgent processes are reasonable.

Use the Command Processor command Show Processes to see the priorities used
by existing processes.

Only the relative values of these numbers are important. (You could use floating­
point numbers to squeeze in more intermediate levels, though there should never
be any need to do so.)

Once these relative priority values are set, be advised that the process priorities
are interpreted consistently. If a priority 1 process runs forever without calling
process-wait, no lower-priority process will ever run.

/

98

Internals, Processes, and Storage Management July 1986

99

July 1986 Processes

11. Process Functions

Processes can be manipulated using the functions described in this sectiop. Using
the functions documented here is the preferred means of interacting with
processes. Flavor messages provide an alternate means used in older programs, but
they should not be used in new code. See the section "Process Messages", page
105.

11.1 Process Attribute Functions

These functions let you find out the attributes of a process.

process-name process Function
Returns the name of the process, which was the first argument to
make-process or process-run-function when the process was created. The
name is a string that appears in the printed representation of the process,
stands for the process in the status line and the Peek display, and so on.

process-stack-group process Function
Returns the stack group currently executing on behalf of this process.
This can be different from the initial-stack-group if the process contains
several stack groups that coroutine among themselves.

Note that the stack group of a simple process is not a stack group at all,
but a function. See the flavor si:simple-process, page 111.

process-initial-stack-group process Function
Returns the stack group the initial-function is called in when the process
starts up or is reset.

process-initial-form process Function
Returns the initial "form" of the process. This is not really a Lisp form; it
is a cons whose car is the initial-function and whose cdr is the list of
arguments to which that function is applied when the process starts up or
is reset.

In a simple process, the initial form is a list of one element, the process's
function. See the flavor si:simple-process, page 111.

To change the initial form, call the process-preset function.

100

Internals, Processes, and Storage Management July 1986

process-wait-function process Function
Returns the process's current wait-function, which is the predicate used· by
the scheduler to determine if the process is runnable. This is #'true if the
process is running, and #'false if the process has no current computation
(just created, initial function has returned, or "flushed").

process-wait-argument-list process Function
Returns the arguments to the process's current wait-function. This is
frequently the &rest argument to process-wait in the process's stack,
rather than a true list. The system always uses it in a safe manner, that
is, it forgets about it before process-wait returns.

process-whostate process Function
Returns a string that is the state of the process to go in the status line at
the bottom of the screen. This is "Run" if the process is running or trying
to run, otherwise the reason why the process is waiting. If the process is
stopped, then this who state string is ignored and the status line displays
"Arrest" if the process is arrested or "Stop" if the process has no run
reasons.

si:default-quantum Variable
Use setf to set this variable to the number of 60ths of a second a process
is allowed to run without waiting before rescheduling. The default is 6 (0.1
seconds).

si:process-quantum-remaining process Function
Returns the amount of time remaining for this process to run before
rescheduling, in 60ths of a second.

si:process-priority process Function
Returns the priority of this process. Use setf to change its value. A
runnable process with higher priority will run to the exclusion of lower­
priority processes. Within a priority level, the scheduler runs all runnable
processes in a round-robin fashion. Regardless of priority a process will
not run for more than its quantum. The default priority is O.

si:process-warm-boot-action process Function
Returns the process's warm-.boot-action, which controls what happens if the
machine is booted while this process is active. Use setf to change its
value. (Note: Contrary to the name, this applies to both cold and warm
booting.) This can be a function to call or nil, which means to "flush" the
process. The default is si:process-warm-boot-delayed-restart, which resets
the process after initializations have been completed, causing it to start
over at its initial function. You can also use si:process-warm-boot-reset,
which throws out of the process's computation and kills the process.

101

July 1986 Processes

si:process-simple-p process Function
Returns t for a simple process, nil for a normal process. See the flavor
si:simple-process, page 111.

11.2 Run and Arrest Reason Functions

This section describes the functions used to specify the run reasons and arrest
reasons for processes.

si:process-run-reasons process Function
Returns the list of run reasons, which are the reasons why this process
should be active (allowed to run).

si:process-arrest-reasons process Function
Returns the list of arrest reasons, which are the reasons why this process
should be inactive (forbidden to run).

process-enable process Function
Activates process by revoking all its run and arrest reasons, then giving it
a run reason of :enable.

process-disable process Function
Stops process by revoking all its run reasons. Also revokes all its arrest
reasons.

si:process-enable-run-reason process &optional (reason 'user]) Function
Adds run-reason to the process's run reasons. This can activate the
process.

si:process-disable-run-reason process &optional (reason 'user]) Function
Removes run-reason from the process's run reasons. This can stop the
process.

si:process-enable-arrest-reason process &optional (reason 'user]) Function
Adds arrest-reason to the process's arrest reasons. This can stop the
process.

si:process-disable-arrest-reason process &optional (reason 'user]) Function
Removes arrest-reason from the process's arrest reasons. This can activate
the process.

si:process-active-p Function
Returns t if the process is active, that is, it can run if its wait-function
allows. Returns nil if the process is stopped.

102

Internals, Processes, and Storage Management July 1986

11.3 Functions for Starting and Stopping Processes

This section describes the functions used to start and stop processes.

process-preset process function &rest args Function
Sets the process's initial function to function and initial arguments to args.
The process is then reset so that it throws out of any current computation
and start itself up by applying function to args. A process-preset call to a
stopped process returns immediately, but does not activate the process,
hence the process does not really apply function to args until it is activated
later.

process-reset process &optional unwind-option kill (without-aborts Function
: ask)

Forces the process to reset, that is, to throw out of its present computation
and apply its initial function to its initial arguments, when it next runs.
The throwing out is skipped if the process has no present computation (for
example, it was just created), or if unwind-option option so specifies. The
possible values for unwind-option are:

:un1ess-current or nil

: always

t

Unwind unless the stack group to be unwound is the one
we are currently executing in, or belongs to the current
process.

Unwind in all cases. This can cause the process-reset
to throw through its caller instead of returning.

Never unwind.

If kill is t, the process is to be killed after unwinding it. This is for
internal use by the si:process-kill function only.

without-aborts indicates what to do if the process is not currently
resettable. See the macro sys:without-aborts in Symbolics Common Lisp.
It takes the values :force, :ask, and nil.

:force

:ask

nil

Process is reset anyway.

Queries the user as to whether to force the process to
reset or not.

Return a list of reasons why the process cannot be reset.

A process-reset call to a stopped process returns immediately, but does not
activate the process, hence the process does not really get reset until it is
activated later.

July 1986

process-reset-and-enable process
Resets process then enables it.

103

Processes

Function

process-abort process &key message all (query t) (time-out Function
si:*default-process-abort-timeout*) stream

This function is used by the Abort key. It aborts process but respects
processes that are executing code in or are called in the body of a
sys:without-aborts macro. See the macro sys:without-aborts in Symbolics
Common Lisp: Language Dictionary.) sys:without-aborts notifies users
when they attempt to abort a process that is executing code in or is called
in the body of the macro. Most code that currently uses the form (signal
'abort) should instead use (process-abort *current-process*).

process-abort waits until the process is abortable or asks the user what to
do if it is not abortable. It returns t if it successfully aborts the process or
nil on a failure to abort. When queried, the user can force the process to
abort, examine it with the Debugger, wait longer for it to become
abortable, or abandon the attempt to abort it. Each time the user forces a
process to abort, an entry is made in the variable
si:*processes-forcibly-aborted*.

process-abort takes several keyword parameters. The argument to all is t
to abort all the way (reset the process), or nil to abort to the innermost
command level (signal an "abort" condition). The argument to the message
keyword is printed on the process's terminal-io if it is not nil. The
argument to stream overrides the default destination for message. The
argument to time-out is how long to wait (in 60ths of a second) when the
process is not abortable. The argument to query is nil to give up after an
interval of time-out, or t to query the user what to do, or :cold to query the
user via the cold-load stream.

The variable si:*default-process-abort-timeout* is the number of 60ths of
a second to wait before consulting the user, when a process is to be reset
or aborted but it's not abortable. The default value is 300 (5 seconds).

si:process-flush process Function
Forces the proces.s to wait forever. A process cannot flush itself. Flushing
a process is different from stopping (killing) it, in that it is still active;
thus, if it is reset or preset, it starts running again.

si:process-kill process &optional (without-aborts :ask) Function
Liquidates the process. The process is reset, stopped, and removed from
sys: all-processes.

without-aborts indicates what to do if the process is not currently abortable.
It takes the values : force, :ask, and nil.

:force The process is aborted anyway.

104

Internals, Processes, and Storage Management July 1986

:ask

nil

Queries the user as to whether to force the process to
abort or not.

Return a list of reasons why the process cannot be
aborted and do not kill the process.

si:process-interrupt function &rest args Function
Forces the process to apply function to args. When function returns, the
process continues the interrupted computation. If the process is waiting, it
wakes up, calls function, then waits again when function returns.

If the process is stopped it does not apply function to args immediately, but
later when it is activated. Normally the si:process-interrupt function
returns immediately, but if the process's stack group is in an unusual
internal state, si:process-interrupt might have to wait for the process to
exit that state.

If function does a throw and process is not abortable, it could be subverted
by having its computation aborted unexpectedly. In some cases
si:process-abort should be used instead of si:process-interrupt. If function
returns normally, this is not a problem.

105

July 1986 Processes

12. Process Messages

This section describes the messages that can be sent to any flavor of process.
Certain process flavors can define additional messages. Not all possible messages
are listed here, only those of interest to most users.

This message documentation is provided for compatibility with existing programs
written using messages. New programs should not use these messages. Rather,
they should use the functions with similar names, but with process- prepended to
them. See the section "Process Functions", page 99.

12.1 Process Attribute Messages

:name of si:process Method
Returns the name of the process, which was the first argument to
make-process or process-run-function when the process was created. The
name is a string that appears in the printed representation of the process,
stands for the process in the status line and the Peek display, and so on.

:stack-group of si:process Method
Returns the stack group currently executing on behalf of this process.
This can be different from the initial-stack-group if the process contains
several stack groups that coroutine among themselves.

Note that the stack group of a simple process is not a stack group at all,
but a function. See the flavor si:simple-process, page 111.

:initial-stack-group of si:process Method
Returns the stack group the initial-function is called in when the process
starts up or is reset.

:initial-form of si:process Method
Returns the initial "form" of the process. This is not really a Lisp form; it
is a cons whose car is the initial-function and whose cdr is the list of
arguments to which that function is applied when the process starts up or
is reset.

In a simple process, the initial form is a list of one element, the process's
function. See the flavor si:simple-process, page Ill.

To change the initial form, send the :preset message.

106

Internals, Processes, and Storage Management July 1986

:wait-function of si:process Method
Returns the process's current wait-function, which is the predicate used by
the scheduler to determine if the process is runnable. This is #'true if the
process is running, and #'false if the process has no current computation
(just created, initial function has returned, or "flushed").

:wait-argument-list of si:process Method
Returns the arguments to the process's current wait-function. This is
frequently the &rest argument to process-wait in the process's stack,
rather than a true list. The system always uses it in a safe manner, that
is, it forgets about it before process-wait returns.

:whostate of si:process Method
Returns a string that is the state of the process to go in the status line at
the bottom of the screen. This is "Run" if the process is running or trying
to run, otherwise the reason why the process is waiting. If the process is
stopped, then this who-state string is ignored and the status line displays
"Arrest" if the process is arrested or "Stop" if the process has no run
reasons.

:quantum of si:process Method
Returns the number of 60ths of a second this process is allowed to run
without waiting before the scheduler runs someone else. The quantum
default is governed by the variable si:default-quantum.

:set-quantum 60ths of si:process Method
Changes the number of 60ths of a second this process is allowed to run
without waiting before the scheduler runs someone else. The quantum
default is governed by the variable si:default-quantum.

si:default-quantum Variable
Use setf to set this variable to the number of 60ths of a second a process
is allowed to run without waiting before rescheduling. The default is 6 (0.1
seconds).

:quantum-remaining of si:process Method
Returns the amount of time remaining for this process to run before
rescheduling, in 60ths of a second.

:priority of si:process Method ,
Returns the priority of this process. A runnable process with higher
priority will run to the exclusion of lower-priority processes. Within a
priority level, the scheduler runs all runnable processes in a round-robin
fashion. Regardless of priority a process will not run for more than its
quantum. The default priority is O.

107

July 1986 Processes

:set-priority priority-number of si:process Method
Changes the priority of this process. A runnable process with higher
priority will run to the exclusion of lower-priority processes. Within a
priority level the scheduler runs all runnable processes in a round-robin
fashion. Regardless of priority a process will not run for more than its
quantum. The default priority is O.

:warm-boot-action of si:process Method
Returns the process's warm-boot-action, which controls what happens if the
machine is booted while this process is active. (Contrary to the name, this
applies to both cold and warm booting.) This can be a function to call or
nil, which means to "flush" the process. The default is
si:process-warm-boot-delayed-restart, which resets the process after
initializations have been completed, causing it to start over at its initial
function. You can also use si:process-warm-boot-reset, which throws out
of the process's computation and kills the process.

:set-warm-boot-action action of si:process Method
Changes the process's warm-boot-action, which controls what happens if the
machine is booted while this process is active. (Contrary to the name, this
applies to both cold and warm booting.) This can be a function to call or
nil, which means to "flush" the process. The default is
si:process-warm-boot-delayed-restart, which resets the process after
initializations have been completed, causing it to start over at its initial
function. You can also use si:process-warm-boot-reset, which throws out
of the process's computation and kills the process.

:simple-p of si:process Method
Returns t for a simple process, nil for a normal process. See the flavor
si:simple-process, page 111.

12.2 Run and Arrest Reason Messages

:run-reasons of si:process Method
Returns the list of run reasons, which are -the reasons why this process
should be active (allowed to run).

:run-reason object of si:process Method
Adds object to the process's run reasons. This can activate the process.

:revoke-run-reason object of si:process Method
Removes object from the process's run reasons. This can stop the process.

108

Internals, Processes, and Storage Management July 1986

:arrest-reasons of si:process Method
Returns the list of arrest reasons, which are the reasons why this process
should be inactive (forbidden to run).

:arrest-reason object of si:process Method
Adds object to the process's arrest reasons. This can stop the process.

:revoke-arrest-reason object of si:process Method
Removes object from the process's arrest reasons. This can activate the
process.

:active-p of si:process Method
This message is the same as :runnable-p of si:process. t is returned if
the process is active, that is, it can run if its wait-function allows. nil is
returned if the process is stopped.

:runnable-p of si:process Method
This message is the same as :active-p of si:process. t is returned if the
process is active, that is, it can run if its wait-function allows. nil is
returned if the process is stopped.

12.3 Messages for Stopping the Process

:preset function &rest args of si:process Method
Sets the process's initial function to function and initial arguments to args.
The process is then reset so that it throws out of any current computation
and start itself up by applying function to args. A :preset message to a
stopped process returns immediately, but does not activate the process,
hence the process does not really apply function to args until it is activated
later.

:reset &optional unwind-option kill without-aborts of si:process Method
Forces the process to throw out of its present computation and apply its
initial function to its initial arguments, when it next runs. The throwing
out is skipped if the process has no present computation (for example, it
was just created), or if unwind-option option so specifies. The possible
values for unwind-option are:

:unless-current or nil

: always

Unwind unless the stack group to be unwound is the one
we are currently executing in, or belongs to the current
process.

Unwind in all cases. This can cause the message to
throw through its caller instead of returning.

109

July 1986 Processes

t Never unwind.

If kill is t, the process is to be killed after unwinding it. This is for
internal use by the :kill message only.

without-aborts indicates what to do if the process is not currently abortable.
It takes the values :force, :ask, and nil. If the value is :force, the process
is aborted anyway. :ask queries the user as to whether to force the
process to abort or not. nil means return a list of reasons why the process
cannot be aborted.

A :reset message to a stopped process returns immediately, but does not
activate the process, hence the process does not really get reset until it is
activated later.

:flush of si:process Method
Forces the process to wait forever. A process cannot :f1ush itself.
Flushing a process is different from stopping it, in that it is still active;
thus, if it is reset or preset, it starts running again.

:kill &optional without-aborts of si:process Method
Liquidates rid of the process. It is reset, stopped, and removed from
sys:all-processes.

without-aborts indicates what to do if the process is not currently abortable.
It takes the values : force, : ask, and nil. If the value is : force, the process
is aborted anyway. :ask queries the user as to whether to force the
process to abort or not. nil means return a list of reasons why the process
cannot be aborted.

:interrupt function &rest args of si:process Method
Forces the process to apply function to args. When function returns, the
process continues the interrupted computation. If the process is waiting, it
wakes up, calls function, then waits again when function returns.

If the process is stopped it does not function to args immediately, but later
when it is activated. Normally the :interrupt message returns
immediately, but if the process's stack group is in an unusual internal state
it might have to wait for it to get out of that state.

110

Internals, Processes, and Storage Management July 1986

111

July 1986 Processes

13. Process Flavors

These are the flavors of process provided by the system. It is possible for users to
define additional flavors of their own.

si:process Flavor
This is the standard default flavor of process. See its instance variables,
initializations, and methods by using the Flavor Examiner Se 1 ect-K

si:simple-process Flavor
A simple process is not a process in the conventional sense. It has no
stack group of its own; instead of having a stack group that gets resumed
when it is time for the process to run, it has a function that gets called
when it is time for the process to run. When the wait-function of a simple
process becomes true, and the scheduler notices it, the simple process's
function is called, in the scheduler's own stack group. Since a simple
process does not have any stack group of its own, it cannot save "control"
state in between calls; any state that it saves must be saved in data
structure.

The only advantage of simple processes over normal processes is that they
use up less system overhead, since they can be scheduled without the cost
of resuming stack groups. They are intended as a special, efficient
mechanism for certain purposes. For example, packets received from the
Chaosnet are examined and distributed to the proper receiver by a simple
process that wakes up whenever there are any packets in the input buffer.
However, they are harder to use, because you cannot save state information
across scheduling. That is, when the simple process is ready to wait again,
it must return; it cannot call process-wait and continue to do something
else later. In fact, it is an error to call process-wait from inside a simple
process. Another drawback to simple processes is that if the function
signals an error, the scheduler itself will be broken, and multiprocessing
will stop; this situation can be hard to repair. Also, while a simple process
is running, no other process is scheduled; simple processes should never
run for a long time without returning, so that other processes can run.

Asking for the stack group of a simple process does not signal an error, but
returns the process's function instead.

Since a simple process cannot call process-wait, it needs some other way to
specify its wait-function. To set the wait-function of a simple process, use
si:set-process-wait. So, when a simple process wants to wait for a
condition, it should call si:set-process-wait to specify the condition, setf its
process-whostate to a string that defines what it's waiting for and then
return.

112

Internals, Processes, and Storage Management July 1986

si:set-process-wait simple-process wait-function wait-argument-list Function
Set the wait-function and wait-argument-list of simple-process. For more
information: See the flavor si: simple-process , page 111.

113

July 1986 Processes

14. Timer Queues

Periodically a system process wakes up and selects an item off the timer priority
queue or timer queue. The timer queue is a list of items in time order. You can
directly add functions to the timer queue or remove them. This mechanism enables
you to perform a periodic action without the overhead of process waits and
time outs.

The timer queue list shows up in the Peek display. See the section "The Peek
Program" in Program Development Utilities.

si:add-timer-queue-entry time repeat name function &rest args Function
Adds an entry to the timer queue. function is called with args when the
timer fires. time can be in the form

(:absolute universal-time)

(or just universal-time) or

(:relative n-secs)

repeat is of the form :once, (:forever n-secs), or (n-times n-secs). name is a
string that names the timer queue entry.

si:add-timer-queue-entry returns the id of the entry. To effect a "repeat
function," the called function can (conditionally) add another timer queue
entry.

si:remove-timer-queue-entry timer-id Function
Removes the entry which has timer-id as its id. Note: the timer-id is
returned by si:add-timer-queue-entry. See the function
si:add-timer-queue-entry, page 113.

si:print-timer-queue &optional stream Function
Prints the contents of the timer queue. Optionally the stream to which the
queue is printed can be specified.

114

Internals, Processes, and Storage Management July 1986

115

July 1986 Storage Management

PART IV.

Storage Management

116

Internals, Processes, and Storage Management July 1986

117

July 1986 Storage Management

15. Overview of Storage Management

The Genera virtual memory system offers users and programmers the ability to
run extremely large programs in a virtual memory which, depending on available
disk space, can be on the order of 1 billion bytes.

Genera also has facilities for both automatic and manual (program-controlled)
management of virtual storage. Simply stated, storage management is a strategy
for allocating pieces of memory as they are needed by a program and then freeing
the memory for reuse when it is no longer needed for the same purpose.

15.1 Automatic Storage Management

Some virtual memory systems concentrate exclusively (in the automatic case) on
managing the stack, because they are optimized for programming languages that
allocate most temporary storage on the stack.

In Lisp, however, management of the stack would in no way be sufficient, since
programs nearly always allocate large structures and lists in "ordinary" virtual
memory. Automatic storage management is nevertheless an extremely important
aspect of Lisp programming, because deciding in an application program whether
storage can be freed safely is such a difficult problem, difficult enough that
programmers should not be faced with it routinely. Automatic storage
management in Genera is performed by a suite of programs collectively called the
garbage collector. See the section "The Garbage Collector Facilities", page 131.

Areas are also provided, which help you improve the locality of reference in
programs without giving up the ease of automatic storage management. See the
section "Areas", page 119. See the section "Locality of Reference".

15.2 Manual Storage Management

"Manual" storage management means that the allocation and freeing of virtual
memory is controlled by your application program. It should be regarded as a
special purpose technique, but it is nevertheless a necessity in some cases.

One of the primary manual storage management facilities is the resource. See the
section "Resources", page 157.

See the section "Consing Lists on the Control Stack", page 11.

Manual storage management includes the use of the technique of wiring parts of

118

Internals, Processes, and Storage Management July 1986

memory. To wire a piece of memory means to lock its contents in main
(semiconductor) memory and not allow it to be paged to disk. See the section
"Wiring Memory", page 165. This technique is useful for critical applications in
which a program cannot wait for certain information to be paged in when needed.

119

July 1986 Storage Management

16. Areas

Storage in the Symbolics system is divided into areas. Each area contains related
objects, of any type. Areas are intended to give you control over the paging
behavior of your program, among other things. By putting related data together,
locality of reference can be greatly increased.

Locality of reference is a desirable property of programs that run in a virtual
memory environment like Genera. It means, essentially, that objects and their
references (or more generally, any pieces of related information), are located near
each other, that is, located at nearby addresses in virtual memory. When this is
true, the paging system can avoid thrashing: swapping many pages in and out of
main memory in order to access relatively few data.

The use of areas is a programming technique available in Genera that improves
locality of reference in programs that allocate virtual memory in large amounts
and for specific purposes. Areas are especially useful when the objects allocated
are static, since the objects will then be left completely alone by most kinds of
garbage collection.

Whenever you create a new object you can also specify the area it uses. For
example, instead of using cons you can use cons-in-area. Object-creating functions
that take keyword arguments generally accept a :area argument. You can also
control which area is used by binding default-cons-area; most functions that
allocate storage use the value of this variable, by default, to specify the area to
use. The default value of default-cons-area is working-storage-area.

Specifying the area as an argument is usually preferred over binding the variable
because it gives you more control and avoids accidentally getting other objects into
your area.

Areas also give you a handle to control the garbage collector. Some areas can be
declared to be static, which means that they change slowly and the garbage
collector should not attempt to reclaim any space in them. This can eliminate a
lot of useless copying.

Each area can potentially have a different storage discipline and a different paging
algorithm. Each area has a name and a number. The name is a symbol whose
value is the number. The number is an index into various internal tables.
Normally the name is treated as a special variable, so the number is what is given
as an argument to a function that takes an area as an argument. Thus, areas are
not Lisp objects; you cannot pass an area itself as an argument to a function, you
just pass its number. There is a maximum number of areas (set at cold-load
generation time); you can only have that many areas before the various internal
tables overflow. Currently the limit is 128 areas, of which about 30 already exist
in a cold-booted system.

120

Internals, Processes, and Storage Management July 1986

The area mechanism can be overused. If you put two objects into different areas,
it is guaranteed that they will never be near each other in virtual memory. If you
put each type of object in your program in a different area, you may cause
performance degradations. For maximum benefit,objects in different areas should
be completely unrelated or used at different times.

16.1 Regions Within Areas

The storage of an area consists of one or more regions. Each region is a
contiguous section of address space with certain homogeneous properties. One of
these is the data representation type. A given region can only store one type. The
two types are list and structure. A list is anything made out of conses (a closure,
for instance). A structure is anything made out of a block of memory with a
header at the front: symbols, strings, arrays, instances, bignums, compiled
functions, and so on. Since lists and structures cannot be stored in the same
region, they cannot be on the same page. It is necessary to know about this when
using areas to increase locality of reference.

When you create an area, no regions ~re created initially. When you create an
object in some area, the system tries to find a region that has the right data
representation type to hold it, and that has enough room for it to fit. If no such
region exists, it makes a new one or, if possible, extends an existing one (or
signals an error; see the :size option to make-area). The size of the new region
is an attribute of the area (controllable by the :region-size option to make-area).

If regions are too large, memory can get taken up by a region and never used. If
regions are too small, the system can run out of regions because regions, like
areas, are defined by internal tables that have a fixed size (set at cold-load
generation time). The limit is sys:number-of-regions regions, of which about 90
already exist when you start in a cold-booted system. The system will grow or
shrink regions as required so these limitations are usually not a problem.

16.2 Area Functions and Variables

default-cons-area Variable
The value of this variable is the number of the area in which objects are
created by default. It is initially the number of working-storage-area.
Giving nil where an area is required uses the value of default-cons-area.
l~ote that to put objects into an area other than working-storage-area you
can either bind this variable or use functions such as cons-in-area that
take the area as an explicit argument. The latter technique is usually
preferred since it avoids accidentally getting other objects into your area.

121

July 1986 Storage Management

(It is not wise to bind this variable to the number corresponding to a
temporary area.)

make-area &key name size (zxed-size region-size representation gc Function
read-only swap-recommendations n-levels
capacity capacity-ratio room
sys:%%region-space-type
sys:%%region-scavenge-enable

This function creates a new area, whose name and attributes are specified
by the keywords; it can also be used to change the characteristics of an
existing area. You must specify a symbol as a name. The symbol is setqed
to the area-number of the new area, and that number is also returned, so
that you can use make-area as the initialization of a defvar. The
keywords beginning with % are similar to subprimitives; their meanings are
system-dependent, and they should not be used in user programs.

The following keywords exist:

:name A symbol that will be the name of the area. This item is required.
If it names an existing area, the effect is to change the
characteristics of that area.

:size The maximum allowed size of the area, in words. Defaults to
infinite. If the number of words allocated to the area reaches this
size, attempting to cons an object in the area signals an error.

:gc The type of garbage collection to be employed. The choices are
:dynamic (which is the default), : temporary, :ephemeral, and
:static. :static means that the area will not be copied by the
garbage collector, and nothing in the area or pointed to by the area
will ever be reclaimed unless a garbage collection of this area is
manually requested. :dynamic means that the area is subject to
ordinary incremental garbage collection. :ephemeral means that
objects created in this area (while the ephemeral-object garbage
collector is operating) are likely to become garbage soon after their
creation; the ephemeral-object garbage collector will concentrate on
this area. :temporary, a rarely used and risky option, is for manual
storage management, wherein you clear the area by an explicit,
programmed action instead of having the area garbage-collected
automatically. See the section "The
sys:reset-temporary-area Feature", page 125.

:n-Ievels
A rucrium (default 2) specifying the number of levels for ephemeral
objects; this keyword is valid only for ephemeral areas. That is, the
area must either be ephemeral already, or the call including this
option must also include :gc :ephemeral.

122

Internals, Processes, and Storage Management July 1986

: capacity
An integer specifying the capacity of the first level or a list of
integers specifying the capacity of each level in words (default
200000 decimal). This keyword is valid only for ephemeral areas.
That is, the area must either be ephemeral already, or the call
including this option must also include :gc :ephemeral. If the list
is too short, the last element is multiplied by the ratio, in same way
as when a single number is supplied.

: capacity-ratio
A number (default 0.5) specifying the ratio of capacities in adjacent
ephemeral levels. That is, :capacity gives the capacity of the first
ephemeral level, which is multiplied by the ratio to give the second
level's capacity, and so on. This keyword is valid only for
ephemeral areas; that is, the area must either be ephemeral already,
or the call including this option must also include :gc :ephemeral.
:capacity-ratio applies after the :capacity list runs out.

:room With an argument of t, adds this area to the list of areas that are
displayed by default by the room function. The default is nil.

: read-only
With an argument of t, causes the area to be made read-only.
Defaults to nil. If an area is read-only, any attempt to change
anything in it (altering a data object in the area or creating a new
object in the area) signals an error.

: swap-recommendations
Sets the number of extra pages to be read in from disk after a page
from this area is brought in due to demand paging.

:ilXed-size
If you set this to t then the system will never make your regions
smaller, even if they contain unused space and address space is
running out. :ilXed-size does not prevent your regions from
expanding if you fill them up and free address space is available
after the end of the region. The default is nil.

: region-size
The approximate size, in words, for regions within this area. The
default is the area size if a :size argument was given, otherwise the
default size is 1,048,576 words. It is usually not necessary to create
a larger region than the default size. Note that if you specify :size
and not : region-size, the area will have exactly one region.

: representation
The type of object to be contained in the area's initial region. The

July 1986

123

Storage Management

argument to this keyword can be :list, : structure, or a numeric
code. If this option is specified, an initial region is created.
Otherwise, no region is created until you cons something.

sys:%%region-space-type
Lets you specify the space type explicitly, overriding the specification
from the other keywords. It is rarely useful in user programs. The
default is nil.

sys:%%region-scavenge-enable
Lets you override the scavenge-enable bit explicitly. This is an
internal flag related to the garbage collector. Do not try to use it!
The default is nil.

Examples of make-area:

(make-area :name '*foo-area*
: gc ': dynam; c)

(defvar *bar-area*
(make-area :name '*bar-area*

: gc ': ephemeral
: capac; ty 10l:HH30
:capac;ty-rat;o 0.75
:n-levels 3»

describe-area area Function
area can be the name or the number of an area. Various attributes of the
area are printed.

sys:area-list Variable
The value of sys:area-list is a list of the names of all existing areas. This
list shares storage with the internal area name table, so you should not
change it.

sys:%area-number address Function
Returns the number of the area of address, or nil if it is not within any
known area. address is either an object whose memory address is used, or
an integer used directly.

sys:%region-number address Function
Returns the number of the region of address, or nil if it is not within any
known region. address is either an object whose memory address is used,
or an integer used directly. (This information is generally not very
interesting to users; it is important only inside the system.)

124

Internals, Processes, and Storage Management July 1986

sys:area-name area Function
Given an area number, returns the name. This "function" is actually an
array.

See the function cons-in-area in Symbolics Common Lisp. See the function
list-in-area in Symbolics Common Lisp. See the function room, page 155.

16.3 Interesting Areas

This section lists the names of some interesting areas and explains their use in
the system. Many other less interesting areas exist. To see all the existing areas
in your system, select the [Areas] option to Peek.

working-storage-area Variable
This is the normal value of default-eons-area. Most working data are
consed in this area.

permanent-storage-area Variable
This area is to be used for "permanent" data, that (almost) never becomes
garbage. Unlike working-storage-area, the contents of this area are not
continually copied by the garbage collector; it is a static area.

sys:pname-area Variable
Print-names of symbols are stored in this area.

sys:symbol-area Variable
This area contains most of the interned symbols in the Lisp world.

si:pkg-area Variable
This area contains packages, principally the hash tables with which intern
keeps track of symbols.

sys:compiled-function-area Variable
Compiled functions are put here by the compiler.

sys:property-list-area Variable
This area holds the property . lists of symbols.

sys:stack-area Variable
This area contains the control, binding, and data stacks of stack groups.
Each process uses a portion of this area.

125

July 1986 Storage Management

16.4 The sys:reset-temporary-area Feature

Some programs use the dangerous sys:reset-temporary-area feature to deallocate
all Lisp objects stored in a given area. Use of this technique is not recommended,
since gross system failure can result if any outstanding references to objects in
the area exist.

Those programs that use the feature must declare any areas that are to be
mistreated this way. When you create a temporary area with make-area, you
must give the :gc keyword and supply the value :temporary. (This also marks
the area as :static; all temporary areas are considered static by the garbage
collector.) sys:reset-temporary-area signals an error if its argument has not
been declared temporary.

16.5 Memory Mapping Tools

Several functions are provided to allow you to apply an operation to entire regions
or areas, to objects within these, and so on.

The general philosophy is that a mapping routine is called, possibly with one or
more predicates, a function to apply, and additional arguments to that function.
The function (not the mapping routine) is called with some arguments based on
the mapping routine's contract, followed by any additional arguments supplied for
it. This is similar to the :map-hash and :modify-hash philosophy of hash tables.
(Lexical scoping removes most needs for the additional-arguments feature.)

Predicates control what areas and/or regions the mapping routine considers. The
defined names start with si:area-predicate- and si:region-predicate-. If nil is
supplied in lieu of the predicate, then the default predicate is used. You are free
to define your own routines that select specific qualities of areas or regions.

16.5.1 Area and Region Predicates

These predicates identify qualities of specific areas or regions within areas.

si:area-predicate-all-areas area Function
This predicate returns non-nil for all areas. This is not the default
predicate.

si:area-predicate-areas-with-objects area Function
This function returns non-nil for areas that contain objects. It is the
default area predicate. There is at least one area (sys:page-table-area)
that does not contain objects and is therefore not of interest to users.

126

Internals, Processes, and Storage Management July 1986

si:region-predicate-all-regions region Function
This predicate returns non-nil for all regions. It is the default region
predicate.

si:region-predicate-structure region Function
This predicate returns non-nil for regions that contain structures (as
opposed to lists).

si:region-predicate-list region Function
This predicate returns non-nil for regions that contain lists (as opposed to
structures).

si:region-predicate-not-stack-list region Function
This predicate returns non-nil for all regions (list and structure) except
those of type "stack list" (for example, control stacks).

si:region-predicate-copyspace region Function
This predicate returns non-nil only for regions in copyspace. It might be
useful for determining what is (or was) transported to copyspace.

16.5.2 Mapping Routines

These are the routines that apply a designated function to designated areas or
regions. In these routines, if other-function-args are supplied, they are passed
along to the supplied function as additional arguments.

si:map-over-areas area-predicate function &rest other-function-args Function
For each area that satisfies area-predicate, function is called with the area
number followed by other-function-args.

For example, the following form invokes describe-area on all areas:

(si:map-over-areas #Jsi:area-predicate-all-areas #Jdescribe-area)

si:map-over-regions-of-area area region-predicate function &rest Function
other-function-args

For each region in area (an area number) that satisfies region-predicate,
function is called with the region number followed by other-function-args.

For example, the following form prints the names of all compiled functions
in sys:compiled-function-area:

July 1986

127

Storage Management

(defun print-compiled-function-names ()
(si:map-over-regions-of-area

sys:compiled-function-area
#'si:region-predicate-structure
#'(lambda (region-number)

(let* «origin (sys:region-origin region-number»
(free (+ origin (sys:region-free-pointer region-number»»

(si:scanning-through-memory scan1 (origin free)
(loop for address = origin then (+ address object-size)

while « address free)
do (si:check-memory-scan scan1 address)
as object = (%find-structure-header address)
as object-size = (%structure-total-size object)
when (typep object 'compiled-function)

do (print (si:compiled-function-name object»»»»

A better way to do it, since si:map-over-objects-in-area takes care of the
memory scanning, is as follows:

(defun print-compiled-function-names-2 ()
(si:map-over-objects-in-area

sys:compiled-function-area #'si:region-predicate-structure
#'(lambda (ignore ignore header ignore ignore)

(when (typep header compiled-function)
(print (si:compiled-function-name header»»»

si:map-over-regions area-predicate region-predicate function &rest Function
other-function-args

For each region that satisfies region-predicate and is in an area that
satisfies area-predicate, function is called with the area number and region
number followed by other-function-args.

For example, the following form prints all region numbers, with the name
of the area:

(si:map-over-regions
nil nil
#'(lambda (area-number region-number)

(print (list (area-name area-number) region-number»»

There is a similar set of mapping functions that map over objects (structures and
lists). In addition to possible area and region arguments, the supplied functions
are passed four other arguments:

address A fIXnum giving the virtual memory address where the system
started scanning to find the extent of the object.

128

Internals, Processes, and Storage Management July 1986

header

leader

Slze

The object itself, for example, an array, compiled function, list,
or closure.

A locative to the base of the structure. Under most
circumstances, the address portion of the leader is the same as
the address. The header and leader do not necessarily point to
the same location; the header sometimes points to the middle of
an object, as with compiled functions.

The size of the object in words.

Most applications are only interested in the header (object) and, possibly, the size.
The address and leader are usually ignored. Area number and region number, for
those mapping routines that supply them, are usually ignored as well.

si:map-over-objects-in-region region-number function &rest Function
other-function-args

For each object in region-number, function is called with the address, the
header, the leader, and the size, followed by other-function-args.

si:map-over-objects-in-area area-number region-predicate function Function
&rest other-function-args

For each object in each region in area-number, where the region satisfies
region-predicate, function is called with the region number, the address, the
header, the leader, and the size, followed by other-function-args. For an
example: See the function si:map-over-regions-of-area, page 126.

si:map-over-objects area-predicate region-predicate function &rest Function
other-function-args

For each object in each region that satisfies region-predicate, in an area
that satisfies area-predicate, function is called with the area number, the
region-number, the address, the header, the leader, and the size, followed
by other-function-args.

Additionally, there is a technique for interacting with the paging system to avoid
excessive page faults while scanning forward through a known section of virtual
memory. The object-scanning routines use this technique, which nearly eliminates
page faults on the objects (but not necessarily on data pointed to by the objects).

si:scanning-through-memory identifier-symbol (starting-address Macro
limit-address &optional (pages-per-whack 16»
&body body

The body is executed normally. The starting-address is the address where
scanning begins. The limit-address is the (exclusive) address where
scanning ends.

129

July 1986 Storage Management

The argument pages-per-whack, default 16, is the number of pages to page
out and in when prefetching needs to be done. The slower the rate at
which memory is scanned (for example, when looking at many words or
spending a lot of time working on each section), the smaller
pages-per-whack can be, because the disk will be able to keep up. The
faster the scanning rate (for example, when counting the number of
objects), the larger pages-per-whack can be, to avoid taking page faults on
pages not quite paged in. pages-per-whack should not be greater than
about 32, or else the program will spend time waiting for the disk queue to
empty before it can queue all the page transfers.

identifier-symbol identifies this set of parameters. This allows correct
nesting of si:scanning-through-memory macros. identifier-symbol is not
evaluated, so it must not be quoted.

si:check-memory-scan identifier-symbol current-address Macro
The identifier-symbol, an unevaluated symbol, matches the identifier symbol
of a lexically visible si:scanning-through-memory. The current-address is
the next address the code is about to use. Each time the address advances
by pages-per-whack, the paging system pages out previous addresses and
pages in future addresses. (See the macro si:scanning-through-memory,
page 128.)

130

Internals, Processes, and Storage Management July 1986

131

July 1986 Storage Management

17. The Garbage Collector Facilities

17.1 Principles of Garbage Collection

It is fundamental to the nature of Lisp that programs and systems allocate
memory dynamically and in large amounts. (The allocation of memory for a basic
list element, or cons, or for any other purpose, is called consing for the purpose of
this discussion and in most other writings on Lisp.) Even with the large amount
of virtual memory on a Symbolics computer, it is possible for a program to use it (
all up. At this. poillt the machine halts and must be rebooted. This event can ,
always 'be" delayed: a'iiilost ind~fi~it~iY:~·iTth~~~derlying system can reclaim
memory that is unused.

Objects that are no longer in use, with no references from other objects, are
termed garbage. Garbage is distinguished from good objects or good data by the
fact that it no longer serves any purpose in the current Lisp world. For example,
if the car of a cons is changed from object A to object B, and there are no other
references to A, then A is garbage. Objects in the Genera environment can be
said to have a lifetime, which means how long the object remains "good" or valid.
Three lifespans are distinguishable:

Static

Dynamic

Ephemeral

Object will probably never become garbage. Example: standard
system functions.

Object will probably become garbage eventually. Example: lines
in editor buffers.

Object will probably become garbage very quickly. Example:
intermediate structure generated by the compiler.

You can control the garbage collection status of your own areas with the
make-area function.

Garbage collection (GC) involves these three steps:

• Scavenging virtual memory, that is, periodically sifting through areas of
memory, separating good objects from the garbage

• Transporting good objects to a safe place

• Reclaiming the memory occupied by garbage

Several strategies for garbage collection exist. Some allow you to continue doing
other work and some do a more complete job but require additional machine
resources for some period of time.

132

Internals, Processes, and Storage Management July 1986

Garbage collection need not be used at all. It should be used either when you are
running a program that allocates large amounts of virtual memory (where the
total allocated might exceed the amount of free memory in a cold-booted system)
or when the total allocations of many programs might, over a relatively long
period of time, exceed the capacity. In either case, garbage collection is a strategy
aimed primarily at preserving the state of an operating Lisp world as long as
possible and avoiding a cold boot.

Incremental Versus Immediate GC

There are two basic modes of garbage collection, each with some variations
possible:

• Incremental garbage collection works in parallel with other processes in the
system, allowing you to continue working while it is in progress. This mode
is based on incremental copying, so called because objects are copied one at a
time and there is relatively little effect on the user's interaction with the
system. Dynamic-object garbage collection incrementally collects garbage in
all nonstatic areas of memory. Ephemeral-object garbage collection
incrementally collects garbage, concentrating on specific parts of memory
that are known to contain short-lived objects. Both kinds of incremental
operation ignore static areas of memory that change slowly and so are
unlikely to contain garbage. For an explanation of static memory: See the
section "Theory of Operation of the GC Facilities", page 137.

• Nonincremental, or immediate, garbage collection takes less free memory and
less total processor time to work successfully than does the incremental
mode. Nonincremental garbage collection is normally done with the Start
GC :Immediately command or with the gc-immediately function, although
those directives still ignore static areas. These directives allow no other
work to be done by the process running it, although other processes are still
scheduled. In most cases, though, immediate garbage collection places a
heavy enough burden on the machine that other processes are not useful
while it is operating. The immediate garbage collection invoked by the
function si:full-gc deals with static areas.

Note: Areas of memory can be specified as being static with the function
make-area.

133

July 1986 Storage Management

17.2 Involdng the Garbage Collection Facilities

This section explains how to invoke the various garbage collection facilities For
more information on garbage collection in Genera: See the section "Theory of
Operation of the GC Facilities", page 137.

Running with No GC

Maximum program speed is usually achieved by running with no garbage
collection at all, although the machine will run out of virtual memory much faster.
Running with no GC turned on is not recommended, since many system facilities
assume that at least the Ephemeral GC is turned on. When your address space
becomes low, GC notifications will be sent informing you that you are in danger of
running out of memory space. Should your memory space be exhausted, your only
recourse is to cold boot or add a new paging flie. See the section "Add Paging
File".

Turning on the Ephemeral GC

If you would like to preserve the state of your machine much longer, with the
least effect on performance, you should run with the ephemeral-object garbage
collector (ephemeral GC) turned on. Some programs runs better with the
ephemeral GC turned on than with no GC turned on, because there is less paging.
(See the section "Ephemeral-Object Garbage Collection", page 141.) The
ephemeral GC is turned on by default. You can also turn it on with the gc-on or
zl:choose-gc-parameters functions or with the Start GC :Ephemeral or Set· GC
Options commands. Another way of invoking the function (e.g., from your init file)
is to use cp:execute-command.

Turning on the Dynamic GC

To preserve the virtual memory of your machine as long as possible, you should
run with both the ephemeral ~nd dynamic garbage collectors turned on. When a
certain limit is passed, the dynamic GC is invoked. The dynamic GC slows
performance of other programs for a period of usually 20 to 30 minutes. The
dynamic GC requires more virtual memory for its own use than does the
ephemeral GC. The dynamic GC is turned off by default, but it can be turned on
by evaluating gc-on with no arguments. You can also turn it on command Start
GC :Dynamic or with the cp:execute-function command.

GC Needs Sufficient Space In Order to Run

All the garbage collection facilities require some additional virtual memory for
their own use. Until the scavenging process is complete, running with a garbage
collector can require up to twice as much space as running without a garbage

134

Internals, Processes, and Storage Management July 1986

collector (depending on how much of old space was garbage, compared to how
much had to be copied). If you have been running without the garbage collector
for a long time, you might not have enough room to successfully run the garbage
collector and collect all the garbage. If the garbage collector is not operating, the
system sends notifications as you run out of free memory space. See the section
"Storage Requirement for Dynamic Garbage Collection".

One solution is to turn on the garbage collector sooner, so it is left with enough
space to operate. Another is to use ge-immediately. Another is to increase the
size of the paging space on your local disk. See the section "Allocating Extra
Paging Space" in Reference Guide to Streams, Files, and I/O.

Garbage collection can be optimized for particular applications by manipulating
areas and their attributes. See the section "Areas", page 119. The [Areas] option
of the Peek utility can be used to examine the garbage-collection attributes of
particular areas; try it, and then click left on working-storage-area, for example.

The rest of this section is a listing of the functions and associated Command
Processor commands for invoking the various garbage collection facilities.

ContrOlling GC from the Command Processor

In a Dynamic Lisp Listener window, you can use the Command Processor to
control the operation of the GC facilities. The primary commands are Set GC
Options and Start GC.

Set GC Options invokes a menu with which you can set 30 parameters dealing
with garbage collection. See the section "Set Gc Options Command".

Start GC invokes up to three types of garbage collection. The keyword arguments
are : Immediately, : Ephemeral, and : Dynamic. See the section "Start GC
Command" in User's Guide to Symbolics Computers.

Garbage Collection Functions and Variables

zl:ehoose-ge-parameters Function
The function zl:ehoose-ge-parameters activates a menu that you can use
to control the operation of the garbage collector. Most of its features,
including the ability to turn garbage collection on or off, are available
elsewhere, but this is a single and more convenient interface. The variable
si:*ge-parameters* is a list that defines the variables controlled by this
function.

Another way to invoke this function is to type Set GC Options to the
Command Processor. See the section "Set Gc Options Command".

135

July 1986 Storage Management

gc-on &key ephemeral dynamic Function

gc-off

Turns on ephemeral and dynamic garbage collection facilities. The
dynamic GC is off by default. The keywords :ephemeral and :dynamic
select the type(s) of garbage collection employed; the defaults are
:ephemeral t and :dynamic t if no options are specified. If either option
is specified, the other defaults to nil; this allows you to turn on one form
of garbage collection and leave the other one off.

If you do not explicitly specify one of the keyword options, this function
leaves that option in its previous state. For example:

(sys:gc-on :ephemeral t)

turns on the ephemeral GC and leaves dynamic GC in its previous state,
either on or off. The function returns a list of four values which
constitute the current state of the gc:

(:ephemeral ~phemeral-is-on :dynamic dynamic-is-on)

where ephemeral-is-on and dynamic-is-on are either t or nil.

Note: the Command Processor command Set GC Options provides a more
comprehensive facility for specifying many parameters of garbage collection.
See the section "Set Gc Options Command".

Function
Turns ephemeral and dynamic garbage collection off.

~~ ~~k
The value of this variable is a list specifying the status of the ephemeral
and dynamic GCs. Here is an example:

(:ephemeral t :dynamic nil)

This indicates that the ephemeral GC in on and the dynamic GC is off.
ge-on is useful in finding out whether the garbage collector has turned
itself off (as it does when not enough free space remains to be able to
complete a copying garbage collection).

gc-immediately &optional no-query Function
ge-immediately invokes nonincremental, immediate garbage collection.
Nonincremental GC effectively takes over the system while it runs, not
allowing user input. As a result, it takes less space and less total time than
an incremental GC. The main advantage of nonincremental, immediate GC
compared to incremental GC is that it requires less free space and hence
can succeed where an incremental GC would fail because virtual memory
was too full.

If no-query is not nil, ge-immediately commences garbage collection

136

Internals, Processes, and Storage Management July 1986

without asking any questions, regardless of how much space is available. If
it is nil, and if an immediate garbage collection might require more space
than the amount of free space, you are asked whether you want to proceed.

Another way to invoke this function is via the Start GC :Immediate
command. See the section "Start GC Command" in User's Guide to
Symbolics Computers.

You should usually call gc-immediately rather than si:full-gc. The
difference is that gc-immediately does not lock out other processes, does
not run various full-gc initializations, and does not affect static areas of
virtual memory.

Suppose garbage collection has already started, that the flip has occurred
but not all good data have been copied out of old space. gc-immediately
then copies the rest of the good data but does not flip again.

si:full-gc &key system-release Function
Garbage-collects the entire Genera virtual memory environment, including
some static areas (those on the list bound to si:full-gc-static-areas).
However, because static areas change slowly and are not. likely to contain
much garbage, you should not normally need this function to perform
nonincremental garbage collection; use gc-immediately or the command
Start GC :Immediate instead. See the section "Start GC Command" in
User's Guide to Symbolics Computers. si:full-gc leaves the garbage
collector facilities in the state that it originally finds them, that is, with
the same dynamic and ephemeral option settings.

If you must use si:full-gc, call it with no arguments. The option
:system-release is reserved for use by Symbolics.

si:full-gc does an immediate, complete, nonincremental garbage collection
as a preparation for saving a world immediately thereafter. The operations
it performs are as follows:

• Reset temporary areas

• Setup static areas to be cleaned up

• Flip

• Scavenge and flush oldspace

• Make static areas static again

It is not useful to perform an Incremental Disk Save after running
si:full-gc. Use a complete disk save.

137

July 1986 Storage Management

Note: The Command Processor command Optimize World is the preferred
high-level interface to the functions si:full-gc, si:reorder-memory, and
si:optimize-compiled-functions. See the section "Optimize World
Command" in Installation and Site Operations.

Using the Initialization Lists Invoked by sl :full-gc

Two initialization lists, accessed through the full-gc and
after-full-gc keywords to add-initialization, are run by si:full-gc. See the
section "Introduction to Initializations", page 75.

si:full-gc runs the forms on the full-gc initialization list and then does
garbage collection without mUltiprocessing (inside a without-interrupts
form). The machine essentially "freezes" and does nothing but garbage
collection for the duration. This operation takes 20 minutes or more,
depending on the size of the world. After the garbage collection is
completed, and before it reenables scheduling and returns, si:full-gc runs
the forms on the after-full-gc initialization list.

full-gc is a system initialization list. You can add forms to it by passing
the :full-gc keyword in the list of keywords that is the third argument of
add-initialization The full-gc initialization list is run just before a full
garbage collection is performed by si:full-gc. All· forms are executed
without mUltiprocessing, so the evaluation of these forms must not require
any use of multiprocessing: they should not go to sleep or do input/output
operations that might wait for something. Typical forms on this
initialization list reset the temporary area of subsystems and make sure
that what is logically garbage has no more pointers to it and, thus, is
really garbage and will be collected.

17.3 Theory of Operation of the GC Facilities

This section describes the theory and terminology of garbage collection (GC) on
Symbolics computers.

17.3.1 Dynamic and Static Spaces

The garbage collector treats the machine's virtual memory as if it were divided
into three spaces: static, dynamic, and free space.

Static space The parts of memory in which relatively permanent objects are
allocated. Objects allocated in static space are not likely to
become garbage; examples are the standard system functions
and other objects that are likely to be referenced throughout the

138

Internals, Processes, and Storage Management July 1986

Dynamic space

Free space

lifetime of a particular program or application. Static areas are
ignored by all forms of garbage collection except si:full-gc.

The parts of memory in which user programs and other
programs allocate most of their objects are collectively called
dynamic space. Objects allocated in dynamic space are likely to
become garbage at some point, and all versions of garbage
collection except si:full-gc pay exclusive attention to dynamic
space. Dynamic space is further subdivided by the garbage
collector into old, new, and copy spaces. (In addition, ephemeral
levels are part of dynamic space; See the section "Ephemeral­
Object Garbage Collection", page 141.)

The unused space in paging files on the disk.

This diagram shows what the Genera virtual memory space looks like before the
first garbage collection. This chapter contains a number of similar diagrams that
show the division of Genera's virtual memory space into subspaces. In all these
diagrams, keep in mind that these subspaces are not physically contiguous, but are
rather scattered around in virtual memory. We show them as contiguous in order
to simplify the visual presentation. In addition, the proportions of the spaces in
the diagram are not necessarily true to scale.

When a machine has been cold-booted and used only slightly such that no garbage
collection has yet started, virtual memory is divided into three spaces. Static space
contains system functions and other long-lived objects. Dynamic space contains
only newly-created objects and is therefore called new space. In a pristine system,
all objects are allocated in new space. Free space is unused space in paging files
on disk. The first diagram shows virtual memory space before the first garbage
collection.

Before the first garbage collection:

Static 1 Dynamic 1 Free
space ---------->1 space ->1 space -------------------->1

New
space

Virtual memory --->1
Note that these spaces do not correspond directly to areas. All spaces can exist

139

July 1986 Storage Management

within a given area, but the area specifies the space in which its newly created
objects reside. See the section "Areas", page 119.

17.3.2 Flipping

When the first garbage collection process starts, two more subspaces are created
within dynamic space: old space and copy space.

• Old space is the portion of dynamic space that is created from the previous
new and copy spaces and may still contain valid objects. (That is, the
scavenger is actually looking for good objects here by perusing references in
the current static and copy spaces.) When the scavenger is finished,
everything in old space is garbage, so it is released to become free space.

o Copy space .
Copy space is the portion of dynamic space to which the transporter moves
good objects found in old space.

Thus, when garbage collection starts, virtual memory looks like this:

At the start of garbage collection:

Static 1 Dynamic 1 Free
space --->1 space ----------------------------->1 space --->1

Old
space

Copy
space

New
space

Virtual memory --->1

Three agents are involved in garbage collection.

• A user program that creates new objects and so changes the contents of
memory. This program is called the mutator for the purpose of this
discussion .

• A scavenger program that reads through memory looking for references to
objects that are in old space. It finds all accessible objects by starting at a
root set of static objects, such as the hash table of all interned symbols, and
recursively traces through the objects in the root set and the objects they

140

Internals, Processes, and Storage Management July 1986

reference. (The root set is a collection of data that is known to contain
direct or indirect references to all valid data.) The scavenger runs during
consing, during idle time, and (in the case of nonincremental garbage
collection) in the user or garbage collector process.

• A transporter program invoked when either the mutator or the scavenger
refers to an object in old space. If the object actually is still in old space, it
evacuates the object (moves it to copy space). If the object has already been
moved, the program locates its incarnation in copy space by following a
forwarding pointer from old space. (Note that objects are copied only once.)
The transporter redirects its client objects to copy space in either case.

In subsequent garbage collections, the spaces are /Zipped. When a flip occurs,
these three steps are taken by the system:

1. New space and copy space are lumped together to form a new version of old
space. (This old space is then scavenged.)

2. A fresh new space is created; new objects will be allocated here while
garbage collection of old space is in progress.

3. A fresh copy space is created; this space will receive copies of objects
evacuated from old space. When an object is evacuated from old space, its
incarnation there is replaced by a forwarding pointer that addresses the
object's incarnation in copy space.

A GC causes the spaces to flip:

Static 1 Dynamic 1 Free
space --> 1 space ----------------------------------->1 space

(current)
Old space (fresh) (fresh)
made out of the New Copy
past new and copy space space
spaces

Virtual memory -->1

Once all good objects have been evacuated from old space to copy space, old space
contains only garbage. Old space's memory is then reclaimed by the garbage
collector, turns into free space, and becomes available for assignment to new
space. Another flip can occur any time after old space has been reclaimed.

141

July 1986 Storage Management

After garbage collection the spaces look like this:

After garbage collection:

Static 1 Dynamic 1 Free
space --->1 space ---------------->1 space ---------------->1

Copy
space

New
space

Virtual memory --->1

The dynamic GC flips when it estimates that a large portion of the remaining free
virtual memory will be needed for its own use.

A nonincremental garbage collection requires less virtual memory than an
incremental one because the mutator is prevented from allocating new storage
(consing) while the garbage collector is operating. See the section "Storage
Requirements for Dynamic Garbage Collection", page 145.

17.3.3 Ephemeral-Object Garbage Collection

Ephemeral-object garbage collection is a unique hardware-assisted incremental
garbage collection method in which scavenger agents can pay special attention to
short-lived (ephemeral) objects. A typical example of an ephemeral object is the
intermediate structure generated by the compiler.

The ephemeral GC is effective on any area having the
:gc :ephemeral characteristic as specified by make-area. Your
working-storage-area has the ephemeral characteristic by default. Since working
storage is the initial value of default· cons-area, objects created with no area
specification are subject to ephemeral-object garbage collection while it is turned
on.

The overall effects of the ephemeral GC are as follows:

• All objects created in ephemeral areas while the ephemeral collector is
operating are considered ephemeral objects .

• The ephemeral-object garbage collector has means of tracking ephemeral

142

Internals, Processes, and Storage Management July 1986

objects, to avoid having to scan all of virtual memory for possible references
to them.

• Garbage collection tends to increase the locality of objects and their
references, so that ephemeral objects and their references are likely to be
concentrated on relatively few pages.

• The above factors combine to dramatically reduce the amount of paging the
garbage collector must do to find and process garbage, compared with
dynamic GC, which operates on all of dynamic space rather than just the
ephemeral portion of it. See the section "Dynamic and Static Spaces", page
137.

• When the dynamic (nonephemeral) objects are eventually garbage-collected,
dynamic space contains less garbage than would otherwise be the case.

17.3.3.1 Ephemeral Levels

The ephemeral-object GC introduces the concept of ephemeral levels, which are
subdivisions of a particular area of memory. The advantage of having several
levels of ephemeral GC is that the garbage collector spends most of its time
dealing with only a small fraction of the total number of objects and total storage
in the system, namely, with the ephemeral levels. This greatly decreases paging,
total time to complete a garbage collection, and the amount of virtual memory
that has to be committed to the garbage collector's use.

Each ephemeral level contains its own old, new, and copy space. The diagram
below is a schematic representation of two ephemeral levels in dynamic space,
along with a non-ephemeral part of dynamic space. Level 1 of ephemeral space
contains the shortest-lived objects in dynamic space.

For convenience in the diagram, we show the old, new, and copy spaces vertically
in each ephemeral level and in dynamic space. Again, this diagram does not
represent the actual physical allocation of these spaces in virtual memory.

143

July 1986 Storage Management

ILong-lived objects-------------->Short-lived objects 1
1---1 Free
IStatic 1 Dynamic 1 space
Ispace ---->1 space -------------------------------->1

1 Non-ephemeral 1 Ephemeral 1 Ephemeral
1 level 1 1 obj ects 1 1 evel 2

Old space Old space Old space

New space New space New space

Copy space Copy space Copy space

Virtual memory --->1

Consider, for example, the following, abbreviated output of (describe-area
working-storage-area):

Area #4: WORKING-STORAGE-AREA has 15 regions,
max size 2BBBBBBBBB, region size 34BBBB (octal):

First ephemeral level: 2 regions, capacity 196K, 416K allocated, 122K used.
Second ephemeral level: 3 regions, capacity 98K, 336K allocated, 148K used.
Last (dynamic) level: 1B regions, 2448K allocated, 2216K used.

The "first" ephemeral level is the one in which all new objects in this area are
created. It, like other ephemeral levels, has a capacity in words. When the
capacity of the first level is reached, the ephemeral level is flipped, and any
objects that are not proven to be garbage are evacuated to the next level by the
usual incremental garbage collection methods.

The levels after the first are flipped only when the first level is flipped. (You can
see, in this example, that the second level has exceeded its capacity, because it is
waiting for the first level to flip.)

When the last (dynamic) level has received enough objects from the ephemeral
levels, it is flipped and garbage collected by the dynamic GC as usual for dynamic
areas. It has no capacity in the sense of an ephemeral level because the decision
to flip in the dynamic GC is based on different principles. See the section
"Storage Requi:r:ement for Dynamic Garbage Collection".

The output of the function zl:gc-status or the command Show GC Status includes
one line for each ephemeral level that exists.

144

Internals, Processes, and Storage Management July 1986

By default, gc-on or the Start GC command enables the ephemeral collector along
with dynamic-object garbage collection. The area working-storage-area has the
ephemeral characteristic and two ephemeral levels by default, so the ephemeral
feature is effective even if you do not explicitly manipulate areas.

You can get additional insight into the concept of levels by experimenting with the
following features:

• Using the function zl:choose-gc-parameters or the Command Processor
command Set GC Options, select the options for reporting the activity of the
ephemeral GC.

o Using the [Areas] option of the Peek utility, examine the GC characteristics
of particular areas, such as, for a start, working-storage-area. (Point at
this area and click left to see the details.) The describe-area function can
be used for the same purpose.

• Using the :capacity, : capacity-ratio, and :n-Ievels options of the make-area
function, you can define the number of ephemeral levels for specific areas.
With programs that create mostly ephemeral objects, it may be possible to
extend the length of a session considerably, by adding additional ephemeral
levels.

17.3.4 How Garbage Collection Improves Locality of Reference

Locality of reference means that objects and their references (or more generally,
any pieces of related information), are located near each other, that is, located at
nearby addresses in virtual memory. When this is true, the paging system can
avoid thrashing: swapping many pages in and out of main memory in order to
access relatively few data.

One way to improve locality of reference is to use areas. See the section "Areas",
page 119. This technique can greatly improve locality of reference in programs
that allocate virtual memory in large amounts and for specific purposes. Areas
are especially useful when the objects allocated are static. In this case, the objects
are left completely alone by most kinds of garbage collection.

Another way to improve locality of reference in Genera is to use the garbage
collection facilities. This improves locality of reference through dynamic memory
space, including the working-storage-area. How does GC improve locality of
reference?

• First, the operation of copying good objects to a separate space (copy space)
compacts objects on virtual memory pages. Good objects are not interleaved
with garbage.

145

July 1986 Storage Management

• Second, the use of separate new and copy spaces improves locality further,
because new objects are likely to be "less related" to older ones, and the two
are not interleaved.

• Finally, the garbage collector uses a technique called approximately
depth-first copying, which improves locality in typical programs.

Approximately depth-first copying works as follows:

1. The scavenger concentrates on the most recent, partially filled page in copy
space, looking for references to old space (that is, looking for objects that
might have to be evacuated from old space).

2. If no such objects are found, or if the last page in copy space is full already,
the scavenger looks at the first (lowest-addressed) page in copy space that
has not yet been scavenged. It proceeds from this page forward, page by
page, looking for old-space references.

3. As soon as an object is transported from old space to copy space, the
scavenger returns its attention to the last page in copy space and considers
the objects referenced by the newly transported object.

4. By the time the scavenger has finished scanning the last page of copy space,
it has either found no old-space references (in which case all of old space is
garbage and can be immediately reclaimed) or it has found them and has
evacuated the corresponding object into copy space.

The effect is that object references and the corresponding objects tend to fall on
the same page in virtual memory.

17.4 Storage Requirements for Dynamic Garbage Collection

Interpreting the Output of Show GC Status

Besides showing the state of the ephemeral GC levels, the output of the Show GC
Status command (or zl:gc-status function) shows the storage requirement for
dynamic garbage collection, in the form of a committed guess. For example,
suppose the command reports the following information:

146

Internals, Processes, and Storage Management July 1986

Status of the dynamic garbage collector On
Dynamic (new+copy) space 6,327,236. Old space B. Static space 12,462,221.
Free space 26,738,688. Committed guess 22,486,124, leaving 3,99B,42B

to use before flipping.
There are 9,943,582 words available before Start GC :Immediately

might run out of space.
Doing Start GC : Immediately now would take roughly 32 minutes.
There are 26,738,688 words if you elect not to garbage collect.

The free space (or free paging space) is the total amount of unused space (in words,
not bytes) allocated to paging on the local disk(s). If garbage collection is turned
off, free space is the amount available for new objects. The free space minus the
committed guess, minus a relatively small amount, should equal the amount left
before flipping.

The committed guess is the garbage collector's estimate of the amount of free
storage it will need for copying and for new consing. It is accurate for compute­
bound programs, on which most of the underlying assumptions are based. For
interactive programs, it is conservative because the garbage collector runs during
idle time and so finishes more quickly.

Static 1 Dynamic 1 Free
space 1 space ----------->1 space -------------->1

Copy
space

New
space

Committed
guess

1

1

1 *
1

1

1

1

Virtual memory ------------------------------------>1

* Indicates available free space before a flip.

The computation goes as follows, assuming that si:gc-flip-ratio = 1:

Dynamic (new+copy) space 184,BBB. Old space B. Static space 7,5BB,BBB.
Free space 17, BBB, BBB. Commi tted guess 11 ,'677, 5BB, 1 eavi ng 5,322, 5BB to

use before flipping.

If you cons 5.32 megawords of dynamic space, in addition to the space you already
have, and then the flip occurs, then at the instant the garbage collector completes

147

July 1986 Storage Management

(after it has copied all of old space but before old space is reclaimed), oldspace
and copy space will each be 5.5 megawords. That accounts for 11 megawords; all
but .184 megawords of that has to come out of your 1 i megawords of free space.

To complete the garbage collection, the scavenger has to do 5.5 MWU (million
work units) to copy 5.5 megawords from old space to copy space, plus 5.5 MWU to
scan through that copy space looking for references to old space, plus 7.5 MWU to
scan through static space looking for references to copy space, plus x MWU to
scan through the x words of additional objects you might cons in static space
during the garbage collection. (It has no way to distinguish these from objects
that existed in static space before the garbage collection, so it can't take
advantage of knowledge that objects created after the flip cannot contain
references to old space; it does take advantage of this invariant for dynamic space,
but not for static space). The total scavenger work to be done is therefore 18.5+x
MWU. The rate at which the scavenger works is pegged to the rate of consing;
the scavenger does 4 "work units" for each word consed. Thus the total consing
during the garbage collection is (18.5+x)/4 megawords. In the worst case, all this
consing will be in static space, hence 4x = 18.5+x or x = 6.17.

Thus you cons 5.32 megawords before the garbage collection and 6.17 megawords
during the garbage collection.

The primary reason that nonincremental garbage collection (such as invoked by
gc-immediately or Start GC :Immediately) requires less memory is that consing is
prohibited in the invoking process (the mutator cannot run).

To check the computation: at the instant the garbage collection completes, the
total space occupied will be 5.5 mega words of old space, 5.5 megawords of copy
space, 7.5 megawords of old static space and 6.17 megawords of new static space;
total = 24.67. The total you have right now is .184 megawords of dynamic space,
7.5 megawords of static space, and 17 megawords of free space; total = 24.68. So,
you can see that you have just enough free space to be able to cons 5.322
megawords, flip, cons 6.17 mega words more during the garbage collection, and
reclaim old space, creating more free space, just as you exhaust the last bit of free
space. This is what the committed guess is all about.

Of course, this is all based on worst-case assumptions. If some of dynamic space
is garbage, so copy space is smaller than 5.5 megawords, or some of your consing
before the flip is in static space (making old space smaller than 5.5 megawords),
or some of your consing after the flip is in dynamic space (making the scavenger
not have to work as hard), the garbage collection will complete with some free
space left over. Also, scavenging during idle time makes the garbage collection
complete sooner.

The GC includes some safety factors. The committed guess is increased by the
constant 256 Kwords and the amount you can cons before the flip is decreased by
an additional 256 Kwords (value of si:gc-delta). So, you lose about .5 megawords
of consing.

148

Internals, Processes, and Storage Management July 1986

Dynamic (new+copy) space 184,888. Old space 8. Static space 7,588,888.
Free space 17,888,888. Committed guess 11,939,644, leaving 4,798,212 to

use before flipping.

If you cons 4.8 megawords of dynamic space, in addition to the space you already
have, and then the flip occurs, old space and copy space will each be 4.98
megawords at the instant the garbage collection completes. That accounts for 10
megawords; all but .184 megawords comes out of your 17 megawords of free space.

The scavenger has to do 4.98 MWU to copy 4.98 megawords from old space to
copy space, plus 4.98 MWU to scan through that copy space looking for references
to old space, plus 7.5 MWU to scan through static space looking for references to
copy space, plus x MWU to scan through the x words of additional objects you
might cons in static space during the garbage collection. The total scavenger
work to be done is therefore 17.46+x MWU. Thus the total consing during the
garbage collection is (17.46+x)/4 megawords. In the worst case, all this consing
will be in static space, hence 4x = 17.46+x or x = 5.82. At the time the garbage
collection completes, the total space occupied will be 4.98 megawords of old space,
4.98 megawords of copy space, 7.5 megawords of old static space and 5.82
megawords of new static space; total = 23.23. You will have 1.4 megawords of free
space left over. This provides a cushion against the effects of storage
fragmentation caused by the use of multiple areas.

17.5 Controlling Garbage Collection

zl:gc-status Function
zl:gc-status prints statistics about the garbage collector. It prints different
information depending on whether the scavenger is running or finished and
how full virtual memory is.

Another way to invoke this function is via the Show GC Status command.
See the section "Show GC Status Command" in User's Guide to Symbolics
Computers.

(gc-status)

Status of the ephemeral garbage collector: On
First level of METERING:METERING-CONS-AREA: capacity 196K, 8K allocated,
8K used.
Second level of METERING:METERING-CONS-AREA: capacity 98K, 8K allocated,
8K used.

First level of OW::*EQL-OISPATCH-AREA*: capacity 98K, 256K allocated,
56K used.
Second level of OW: :*EQL-OISPATCH-AREA*: capacity 49K, 8K allocated, 8K

149

July 1986 Storage Management

used.

First level of WORKING-STORAGE-AREA: capacity 196K, 448K allocated, 29K
used.
Second level of WORKING-STORAGE-AREA: capacity 98K, 2048K allocated, 47K
used.

Status of the dynamic garbage collector: On
Dynamic (new+copy) space 6,490,761. Old space 0. Static space
12,479,751.
Free space 26,574,848. Committed guess 22,488,118, leaving 3,824,586 to
use before flipping.
There are 9,779,900 words available before Start GC : Immediately might
run out of space.
Doing Start GC : Immediately now would take roughly 33 minutes.
There are 26,574,848 words available if you elect not to garbage
call ect.

Garbage collector process state: Await ephemeral or dynamic full
Scavenging during cons: On, Scavenging when machine idle: On
The GC generation count is 328 (1 full GC, 2 dynamic GC's, and 325
ephemeral GC's).
Since cold boot 53,043,930 words have been consed, 45,867,153 words of
garbage have
been reclaimed, and 11,658,295 words of non-garbage have been
transported.
The total "scavenger work" required to accomplish this was 121,864,225
units.
Use Set GC Options to examine or modify the GC parameters.

In the zl:gc-status report, the free space figure minus the committed guess
figure is approximately equal to the amount of memory available before
flipping. (If the garbage collector were currently off, this field would show
the amount of memory available before incremental garbage collection must
be turned on, to avoid the risk of running out of space.)

Notice that a nonincremental garbage collection (gc-immediately) requires
less memory, although it will run exclusively, in the invoking process, for a
long time. An estimate of the time, which depends on the size of the
world, is printed.

As shown here, when the garbage collector is on, the scavenger operates
during consing and when the processor is idle (when no process wants to
run). The operation of the scavenger is also signalled by the garbage
collector's run bar; the left half of this bar, which appears under the

150

Internals, Processes, and Storage Management July 1986

package name on the machine's status line, blinks to indicate scavenging.
The right half of the bar blinks when the transporter moves objects out of
old space.

You could also turn off garbage collection at this point (with the Halt GC
command or gc-off function) and still have over 26 million words available
before you ran out of virtual memory.

The "garbage collector process state" is the state of the process that starts
a garbage collection when it is time (by flipping) and generally supervises
the garbage collector.

si:print-gc-meters Function
The function si:print-gc-meters displays a history of garbage collection
work done in the current world, including the number of times the
transporter and scavenger were invoked, the time they consumed, their
paging activity, and so on. I t also shows statistics on the references
handled by the garbage collector page table (GCPT) and the ephemeral
space reference table (ESRT); these are, respectively, the ephemeral-object
garbage collector's tables of swapped-in and swapped-out pages that contain
ephemeral objects.

si:inhibit-gc-flips body... Macro
si:inhibit-gc-flips prevents the ephemeral and dynamic garbage collectors
from flipping within the body of the macro.

si:with-ephemeral-migration-mode mode &body body Macro
This macro controls what happens when ephemeral space is garbage
collected and also determines the space in which new copies of ephemeral
objects that survive garbage collection are created. Permissible modes
include the following.

: dynamic

: normal

Put the copies in dynamic space.

Put the copies in the next ephemeral level or dynamic
space if this is the last ephemeral level.

The following variables control various aspects of the garbage collector's operation;
all are accessible via the Command Processor command Set GC Options or the
zl:choose-gc-parameters function.

151

July 1986 Storage Management

si:gc-report-stream Variable
si:gc-report-stream specifies where to put output messages from the
garbage collector.

Value

t

nil

stream

Meaning

Notifies you (default)

Discards the output

Sends output to the stream

si:gc-area-reclaim-report Variable
si:gc-area-reclaim-report controls reporting of reclaimed areas. If it is any
of the values other than nil, each reclaimed area is reported individually.

Value Meaning

nil Does not report anything (default).

: dynamic Reports only after dynamic garbage collection.

: ephemeral Reports only after ephemeral-object garbage collection.

t Reports after any kind of garbage collection.

si:gc-warning-threshold Variable
si:gc-warning-threshold controls the warnings to turn on the garbage
collector. This warning-threshold indicates (when it is warning you for the
first time) how close you are to the last safe point (in words of memory).
After you have passed the last safe point, you cannot turn on the GC
without probably running out of memory. The last safe point is arrived at
by comparison to the amount of uncommitted free space.

When the storage manager notices that the amount of free space remaining
has reached the threshold, it notifies you that you need to turn on the
garbage collector before it is too late to do so. The default value is
1000000 (words). It is usually not necessary to change this value from the
default.

si:gc-warning-ratio Variable
si:gc-warning-ratio controls how often (after the si:gc-warning-threshold)
has been passed) you see warnings that you need to turn on the garbage
collector. Basically, this ratio is multiplied by the previous warning
threshold to give a new warning threshold. For example, the default
si:gc-warning-ratio is 0.75. With the default values for
si:gc-warning-threshold and si:gc-warning-ratio, you would see warnings
with 1000000, 750000, 562500, and 421875 words remaining, and so on.
This variable has no effect if si:gc-warning-interval is set to nil, which is
the default.

152

Internals, Processes, and Storage Management July 1986

si:gc-warning-interval Variable
This variable contains the interval in 60ths of a second between repetitions
of the same garbage collector warning; it applies only to reports that use
the notification system. The rationale for this variable is that you can
control how often you want to be bothered by such messages.

The default value is nil, which shuts off repetitious warnings. Each
warning is given only once.

si:gc-flip-ratio Variable
si:gc-flip-ratio specifies when a flip takes place. When this number times
the amount of committed free space (the "committed guess" reported by
Show GC Status) is greater than the amount of free space, a flip occurs.
The default value is 1.

The number can be less than 1. This would cause the garbage collector to
wait longer before flipping at the risk of exhausting virtual memory if a
larger fraction of dynamic space contains good objects than you expected.
Rather than setting the ratio to a number less than 1, we recommend
turning on the ephemeral-object garbage collector.

For a discussion of finer control over the onset of garbage collection: See
the variable si:gc-flip-minim.um-ratio, page 152.

si:gc-flip-minimum-ratio Variable
si:gc-flip-minimum-ratio contains a number that specifies when to turn the
garbage collector off because memory is too full to allow copying anything.
The default value is nil, which specifies that this ratio has the same value
as si:gc-flip-ratio. Otherwise it should be a number less than
si:gc-flip-ratio.

Putting 0.25 in si:gc-flip-minimum-ratio and 0.5 in si:gc-flip-ratio means
that you believe that fewer than 25 per cent of the dynamic-space objects
consed are good data and will need to be copied by the garbage collection.
In spite of this, you want to flip when there is enough space to copy 50 per
cent (half) of the objects. Thus, the flip ratio controls how often the
garbage collector flips; the minimum ratio controls when it should get
desperate.

The minimum ratio is most useful if you turn on
si:gc-reclaim-immediately-if-necessary, to make the garbage collector do
something useful when it is desperate. Even without that, it is useful if
you would rather risk doing a garbage collection when there might not be
enough memory left in preference to turning the garbage collector off, for
example, when the machine is operating unattended and turning off the
garbage collector would be guaranteed to make it exhaust memory.

Choosing good values for this variable is a matter of guesswork and
experience with the particular application.

153

July 1986 Storage Management

si:gc-reclaim-immediately Variable
When the value is nil, (the default), the incremental (dynamic) garbage
collector is not affected. When the value is not nil, then, in effect, an
immediate garbage collection is performed as soon as the flip occurs.

si:gc-reclaim-ephemeral-immediately Variable
When the value is nil, (the default), the ephemeral-object garbage collector
is not affected. When the value is not nil, then, in effect, an ephemeral
GC is performed as soon as the capacity of the first ephemeral level is
exceeded.

si:gc-reclaim-immediately-if-necessary Variable
si:gc-reclaim-immediately-if-necessary controls whether the garbage
collector starts nonincremental garbage collection or shuts down when
space is running too low for incremental garbage collection. This variable
is irrelevant when si:gc-reclaim-immediately is set because then the
garbage collector always reclaims immediately, even if it does not need to.

The variable controls what happens when not enough free space remains to
copy everything. When the value is nil (the default), it notifies you and
turns itself off. For other values, it tries nonincremental garbage
collection and shuts itself off only when it determines that nonincremental
garbage collection is not guaranteed to work.

It is possible for so little space to remain that even a nonincremental
garbage collection would exhaust virtual memory. The decisions about
what would exhaust virtual memory depend on your prediction of the
fraction of dynamic space that contains good (nongarbage) objects. (This is
the value of si:gc-flip-minimum-ratio.)

si:gc-process-immediate-reclaim-priority Variable
This variable supplies the process priority at which nonincremental
(immediate) garbage collection operates. Its default value is 5, which locks
out other, computational processes. It is also accessible via the function
zl:choose-gc-parameters and the command Set GC options. Note: This
variable is not related to the gc-immediately function nor to the
:Immediate option of the Start GC command.

si:gc-process-foreground-priority Variable
This variable sets process priority for the garbage collector while it is
waiting to flip and in the process of flipping. Its default value is 5.

si:gc-process-background-priority Variable
This variable provides the priority (default 0) of the garbage collector
process while it is reclaiming old space.

154

Internals, Processes, and Storage Management July 1986

si:gc-flip-inhibit-time-until-warning Variable
si:gc-flip-inhibit-time-until-warning sets the reasonable time window for
flipping. If flipping does not occur successfully during this time, the
garbage collector notifies you about the problem. The time is expressed in
60ths of a second. The default is 1800 (30 seconds). Flipping cannot occur
when some program (such as maphash) is running in an si:inhibit-gc-flips
special form.

17.6 Strategy for Unattended Operation with the Garbage Collector

I t is risky to leave very large compilations that do a lot of consing running
unattended. You can set the following variables in order to control the
assumptions that the system makes about the amount of space needed or available.
See the section "Controlling Garbage Collection", page 148.

si:gc-flip-minimum-ratio
si:gc-flip-ratio
si:gc-reclaim-immediately-if-necessary

More background information is available, to help you use these variables
appropriately. See the section "Theory of Operation of the GC Facilities", page
137. See the section "Principles of Garbage Collection", page 131.

17.7 Setting up GC Before Loading a Large System

Some people find it necessary to have garbage collection working in order to load
large systems. Here are several recommended strategies.

• Before loading the system, turn on ephemeral-object garbage collection with
the command Start GC : Ephemeral or with the form (sys: gc-on : ephemeral
t).

o After loading the system, do an immediate garbage collection with the with
the command Start GC : Immediately or with the function gc-immediately.

• Do both the above .

• After loading the system, do a full garbage collection by calling si:full-gc
with no arguments. Note, though, that si:full-gc does a lot of unnecessary
work and disables multiprocessing, thus causing network connections to be
lost. Then execute the command Optimize World in order to move things
around in virtual memory so as to improve locality of reference and decrease
paging.

155

July 1986 Storage Management

18. Reporting the Use of Memory

The room function and variable allow you to examine the current use of physical
and virtual memory in the machine. The current use of memory areas can also be
examined with the Areas option of the Peek utility.

room &rest args Function

room

Tells you the amount of physical memory on the machine, the amount of
available virtual memory not yet filled with data (that is, the portion of the
available virtual memory that has not yet been allocated to any region of
any area), and the amount of "wired" physical memory (that is, memory not
available for paging). Then it tells you how much room is left in some
areas. For each area it tells you about, it prints out the name of the area,
the number of regions that currently make up the area, the current size of
the area in kilo words, and the amount of the area that has been allocated,
also in kilowords. If the area cannot grow, the percentage that is free is
displayed.

(room) tells you about those areas that are in the list that is the value of
the variable room. These are the most interesting ones.

(room areal area2 ...) tells you about those areas, which can be either the
names or the numbers.

(room t) tells you about all the areas.

(room nil) does not tell you about any areas; it only prints the header.
This is useful if you just want to know how much memory is on the
machine or how much virtual memory is available.

Variable
The value of room is a list of area names and/or area numbers, denoting
the areas that the function room will describe if given no arguments. Its
initial value is:

(working-storage-area compiled-function-area)

156

Internals, Processes, and Storage Management July 1986

157

July 1986 Storage Management

19. Resources

19.1 Introduction to Resources

Storage allocation is handled differently by various computer systems. With many
languages, you must spend a lot of time thinking about when variables and
storage units are allocated and deallocated. With Lisp, freeing of allocated storage
is normally done automatically by the Lisp system. When an object is no longer
accessible to the Lisp environment, it is garbage collected. This relieves you of a
great burden, and makes writing programs much easier.

Automatic freeing of storage incurs an expense: more computer resources must be
devoted to the garbage collector. If your program uses a great deal of temporary
storage that must be garbage collected, this expense can be high. In some cases,
you might decide that it is worth putting up with the inconvenience of having to
free storage under program control, rather than letting the system do it
automatically. In this way you can eliminate a great deal of overhead from the
garbage collector.

It is usually not worth worrying about the freeing of storage when the units of
storage are very small things such as conses or small arrays. Numbers are not a
problem, either; fumums and single-precision floating point numbers do not occupy
storage. But when a program allocates and then gives up very large objects at a
high rate (or large objects at a very high rate), it can be very worthwhile to keep
track of that one kind of object manually. Several programs in Genera are
examples of this case. For example, the Chaosnet software allocates and frees
moderately large packets at a very high rate. The window system allocates and
frees certain kinds of windows (e.g., menus), which are very large, moderately
often. Both of these programs manage their objects by themselves, keeping track
of when the the objects are no longer used.

When we say that a program frees storage, it does not really mean that the
storage is freed in the same sense that the garbage collector frees storage.
Instead, a list of unused objects is kept. When a new object is desired, the
program first looks on the list to see if one already exists, and if so, uses it. Only
if the list is empty does it actually allocate a new one. When the program is
finished with the object, it returns it to this list.

The functions and special forms described in this section perform these tasks.
The set of objects forming each such list is called a resource. For example, a
Chaosnet packet could be specified as a resource. defresource defines a new
resource; allocate-resource allocates one of the objects; deallocate-resource frees
one of the objects (putting it back on the list); and using-resource temporarily
allocates an object and then frees it.

158

Internals, Processes, and Storage Management July 1986

Resources are not the only facility for manual storage management. See the
section "Consing Lists on the Control Stack", page 11. See the section "The Data
Stack", page 12.

defresource name parameters &rest options Special Form
The defresource special form is used to define a new resource.

name should be a symbol; it is the name of the resource and gets a
defresource property of the internal data structure representing the
resource.

parameters is a lambda-list giving names and default values (if &optional
is used) of parameters to an object of this type. For example, if you had a
resource of two-dimensional arrays to be used as temporary storage in a
calculation, the resource would typically have two parameters, the number
of rows and the number of columns. In the simplest case parameters is O.

The keyword options control how the objects of the resource are made and
kept track of. The syntax of each option is a keyword followed by a value.
The following keywords are allowed:

: constructor
The value is either a form or the name of a function. It is
responsible for making an object, and is used when someone tries to
allocate an object from the resource and no suitable free objects
exist. If the value is a form, it can access the parameters as
variables. If it is a function, it is given the internal data structure
for the resource and any supplied parameters as its arguments; it
needs to default any unsupplied optional parameters. This keyword
is required, unless the :finder keyword is specified. :constructor is
meaningless if :finder is provided, because :finder is expected to
construct and manage its own objects.

: initial-copies
The value is a number (or nil, which means 0). This many objects
are made as part of the evaluation of the defresource; this is useful
to set up a pool of free objects during loading of a program. The
default is to make no initial copies.

If initial copies are made and there are parameters, all the
parameters must be &optional and the initial copies have the
default values of the parameters.

:finder The value is a form or a function as with :constructor and sees the
same arguments. If this option is specified, the resource system
does not keep track of the objects. Instead, the finder must do so.
It is called inside a without-interrupts and must find a usable
object somehow and return it.

159

July 1986 Storage Management

:matcher
The value is a form or a function as with : constructor. In addition
to the parameters, a form here can access the variable object (in
the current package). A function gets the object as its second
argument, after the data structure and before the parameters. The
job of the matcher is to make sure that the object matches the
specified parameters. If no matcher is supplied, the system
remembers the values of the parameters (including optional ones
that defaulted) that were used to construct the object, and assumes
that it matches those particular values for all time. The comparison
is done with zl:equal (not eq). The matcher is called inside a
without-interrupts. The matcher returns t if there is a match, nil
if not.

: checker
The value is a form or a function, as above. In addition to the
parameters, a form here can access the variables object and
in-use-p (in the current package). A function receives these as its
second and third arguments, after the data structure and before the
parameters. The job of the checker is to determine whether the
object is safe to allocate. The checker returns (not in-use-p). If no
checker is supplied, the default checker looks only at in-use-p; if the
object has been allocated and not freed it is not safe to allocate,
otherwise it is. The checker is called inside a without-interrupts.

:initializer
The value is either a form or the name of a function. If the value
is a form, it can access the parameters as variables. In addition to
the parameters, a form here can access the variable object (in the
current package). If it is a function, it is given the internal data
structure for the resource, the object, and any supplied parameters
as its arguments; it needs to default any unsupplied optional
parameters. If the initializer is supplied, it is called by the resource
allocator after an object has been allocated.

It sees object and its parameters as arguments when object is
about to be allocated, whether it is being reused or was just created;
it can initialize the object.

:deinitializer
The value is either a form or the name of a function. If it is a
form, it can access the variable object (in the current package). If
it is the name of a function, the function will be called with two
arguments: the internal data structure for the resource, and the
object.

160

Internals, Processes, and Storage Management July 1986

If the deinitializer is supplied, it is called when the object is
deallocated. If both :finder and :deinitializer are specified, the
deinitializer is called when the object is deallocated even though the
resource mechanism is not keeping track of the objects.
deallocate-whole-resource calls the deinitializer for objects marked
as in use. clear-resource does not.

:deinitializer should be used when an object being controlled via
resources refers to other objects that have a chance to be reclaimed
by the garbage collector. The deinitializer should clear references
to such objects.

:free-list-size
The value is a number, with nil meaning the default value of 20
(decimal). :free-list-size is the initial size of the array that the
resource uses to remember the objects it allocates and deallocates.
The array expands if necessary.

Any function supplied to defresource for : matcher, : checker, or
:initializer must supply defaults for any un supplied optional arguments.

If these options are used with forms (rather than functions), the forms get
compiled into functions as part of the expansion of defresource. These
functions are given names like (:property resource-name
si:resource-constructor); these names may change in the future.

Most of the options are not used in typical cases. Here is an example:

(defresource two-dimensional-array (rows columns)
:constructor (make-array (list rows columns»)

Suppose the array were usually going to be 100 by 100, and you wanted to
preallocate one during loading of the program so that the first time you
needed an array you would not have to spend the time to create one. You
might simply put:

(using-resource (foo two-dimensional-array 199 199)
)

after your defresource, which would allocate a 100 by 100 array and then
immediately free it. Alternatively, you could do this:

(defresource two-dimensional-array
(&optional (rows 199) (columns 199»

:constructor (make-array (list rows columns»
:initial-copies 1)

Here is an example of how you might use the :matcher option. Suppose
you wanted to have a resource of two-dimensional arrays, as above, except

161

July 1986 Storage Management

that when you allocate one you do not care about the exact size, as long as
it is big enough. Furthermore, you realize that you are going to have a lot
of different sizes and if you always allocated one of exactly the right size,
you would allocate a lot of different arrays and would not reuse a
preexisting array very often. So you might do the following in Symbolics
Common Lisp:

(defresource sloppy-two-dimensional-array (rows columns)
:constructor (make-array (list rows columns))
:matcher (and (~ (array-dimension object 9) rows)

(~ (array-dimension object 1) columns)))

Here, an array is filled with nil when it is initially allocated and when it is
deallocated:

(defresource array-of-temporaries ()
:constructor (make-array 199.)
:initializer (fill object nil)
:deinitializer (fill object nil))

allocate-resource resource-name &rest parameters Function
Allocates an object from the resource specified by resource-name. The
various forms and/or functions given as options to defresource, together
with any parameters given to allocate-resource, control how a suitable
object is found and whether a new one has to be constructed or an old one
can be reused.

Returns a resource and a descriptor. The descriptor is an object that points
directly to this resource in the resource table. Using the descriptor with
deallocate-resource speeds up deallocation.

Note that the using-resource special form is usually what you want to use,
rather than allocate-resource itself.

deallocate-resource resource-name object &optional descriptor Function
Frees the object resource-name, returning it to the free-object list of the
resource specified by object. Descriptor is an object that points to the
resource table. A descriptor is the second object returned by
allocate-resource. If descriptor is used with deallocate-resource,
deallocation is faster.

deallocate-whole-resource resource-name Function
Deallocates all allocated objects of the resource specified by resource-name,
returning them to the free-object list of the resource. You should use this
function with caution. It marks all allocated objects as free, even if they
are still in use. If you call deallocate-whole-resource when objects are
still in use, future calls to allocate-resource might allocate those same
objects for another purpose.

162

Internals, Processes, and Storage Management July 1986

clear-resource resource-name Function
Forgets all the objects being remembered by the resource specified by
resource-name. Future calls to allocate-resource create new objects. This
function is useful if something about the resource has been changed
incompatibly, such that the old objects are no longer usable. If an object of
the resource is in use when clear-resource is called, an error is signalled
when that object is deallocated.

map-resource resource-name function &rest args
Calls function once for every object in the resource specified by
resource-name. function is called with the following arguments:

• The object

• t if the object is in use, or nil if it is free

• resource-name

• Any additional arguments specified by args

Function

using-resource (variable resource parameters ...) body... Special Form
The body forms are evaluated sequentially with variable bound to an object
allocated from the resource named resource, using the given parameters.
The parameters (if any) are evaluated, but resource is not.

using-resource is often more convenient than calling allocate-resource and
deallocate-resource. Furthermore it is careful to free the object when the
body is exited, whether it returns normally or via throw. This is done by
using unwind-protect.

Here is an example of using-resource:

(defresource huge-16b-array (&optional (size 1000»
:constructor (make-array size :element-type J(unsigned-byte 16»)

(defun do-complex-computation (x y)
(using-resource (temp-array huge-16b-array)

(set (aref temp-array i) 5)
... »

;Within the bodYJ the array can be used

;The array is returned at the end

using-resource also works with more than one resource, as in this
schematic example:

(using-resource «r1 foo-array-resource faa-parameters)
(r2 bar-array-resource bar-parameters»

<body»

This example allocates several resources for the duration of <body>.

163

July 1986 Storage Management

si:describe-resource resource-name Function
Describes the internal data structure for managing the resource named
resource-name. It also tells how many objects have been created in the
resource and, for each object, prints the object, the parameters, and
whether or not the object is in use.

si:repair-resource resource-name Function
If you believe that a resource has become inconsistent due to typing
c-Abort while an allocation was in progress, this function will reclaim
objects that the resource believes to be busy. It only reclaims objects that
can safely be reclaimed. si:repair-resource does useful work only when
there is no :checker or :finder supplied to defresource. Presumably the
:checker would be able to repair similar damage on its own.

If a resource is aborted during an allocation or a deallocation with the
resource locked, then the only damage that happens is that there is a
possibility that the object being dealt with might never be allocated.

164

Internals, Processes, and Storage Management July 1986

165

July 1986 Storage Management

20. Wiring Memory

It is possible to wire objects in memory, in other words, lock them main memory.
Wiring prevents them from being paged out or moved by the Genera system. This
can greatly improve the response time of certain time-critical operations and
references.

si:wire-words address number-of-words Function
Wire at least number-of-words starting at the specified address.
si:wire-words wires any extent of virtual memory into physical memory,
although the page frames into which successive pages are wired might not
be contiguous.

si:wire-consecutive-words address number-of-words Function
Wire at least number-of-words consecutively starting at the specified virtual
memory address (address). si:wire-consecutive-words wires any extent of
virtual memory into physical memory. Successive pages are guaranteed to
be stored in successive page frames in physical memory.

si:unwire-words address number-of-words Function
Unwire at least number-of-words starting at the specific address. The first
or last page of the range can stay wired if its wired-count doesn't go to
zero because other words on that page are wired.

si:wire-structure object Function
Wire the object in main memory. si:wire-structure wires an entire
structure (a convenience device to avoid having to calculate the location
and extent of the virtual memory occupied by a structure) in the manner of
si:wire-words.

si:unwire-structure object Function
Unwire the structure object.

si:page-array-calculate-bounds array to from Function
Calculate the bounds of a page-in or page-out array. from and to are either
flXllums or a list of subscripts. If they are flXllums then they are the
flattened (coerced to one dimensional) array indices. If they are lists and
the lists are shorter than the number of dimensions, zero is used for each
missing element of from and the maximum index for the corresponding
dimension is used for each missing element of to. (Therefore, nil for from
means the start of the array and nil for to means the end of the array.) In
all cases, from is inclusive and to is exclusive.

166

Internals, Processes, and Storage Management July 1986

If the array is eventually displaced to an absolute address then nil is
returned. Otherwise three values are returned: the array (after chasing
indirect pointers), the starting address of data, and the number of words of
data. Indirect arrays and indirect arrays with the element size changing
are both supported.

Note: sys:%find-structure-header and sys:%structure-total-size are used
to find the virtual memory location and extent of whole arrays or other
structures to be wired. si:page-array-calculate-bounds can be used to
calculate the virtual memory location and extent of portions of an array
that are to be be wired, when si:wire-words or si:wire-consecutive-words
is used. sys:%pointer-difference can also be used to determine the length
of the extent, in words, between two addresses obtained via these primitives
or the zl:aloc function or the locf macro.

July 1986

>

A

167

Index

Index

>

A
Process

Disk Event

sys:

:before-cold option for
:cold option for

:dlsable-servlces option for
:enabIe-servlces option for

:first option for
:full-gc option for

:Iogln option for
:Iogout option for
:normal option for

:now option for
:once option for
:redo option for
:slte option for

:system option for
:warm option for

Block number field in disk
Disk

Translate relative file block number into disk
Unit number field in disk

>BAD·BLOCKS.FEP file 53
>DIR FEP file type 53
>DISK·LABEL.FEP file 53
>FREE·PAGES.FEP file 53
>SEQUENCE·NUMBER.FEP file 53

aborting 103
Aborting a process 103
Accessing Arrays Specially 25
Accessing FEP Files 56
Accessor Functions 41
:actlve-p method of sI:process 108
Active processes 83, 85
active-processes variable 88
Adding a LMFS Partition 61

>

A

Adding a Spare World Load as LMFS File Space 61
Adding new keywords to initialization functions 75
add-Initialization 75
add-Initialization 75
add-Initialization 75
add-Initialization 75
add-Initialization 75
add-InItIalization 136
add-Initialization 75
add-Initialization 75
add-InItIalization 75
add-InItIalization 75
add-Initialization 75
add-Initialization 75
add-Initialization 75
add-Initialization 75
add-Initialization 75
add-Initialization function 75
Additional Optional Compiler Sources 17, 26
Add paging file 133
Add Paging File command 61
address 37
address 37
address 57
address 37
Address space low 133

sl: add-tlmer-queue-entry function 113
:allocate message 56

Disk event tasks currently
Disk event tasks that can be concurrently

Default area to
Deallocating

allocated 41
allocated 41
allocate disk arrays 39
allocated objects of a resource 161
allocate-resource function 161
Allocating and freeing Chaosnet storage

resources 157

168

Internals, Processes, and Storage Management July 1986

Allocating and freeing window system storage
resources 157

Storage allocation 157
Allocation on the Stack 11
:allow-unknown-keywords option for

make-stack-group 5
sys: all-processes variable 88

zl-user: always option for :reset 108
Analyzing Structures 23
Approximately depth-first copying 144

Compiled function storage area 124
Packages storage area 124

Property list storage area 124
Symbol print names storage area 124

Symbols storage area 124
:area option for zl :make-array 39
Area and Region Predicates 125
Area Functions and Variables 120

sys: area-list variable 123
Area name 119

sys: area-name function 124
Area number 119

sys: %area-number function 123
sl: area-predlcate-all-areas function 125
sl: area-predlcate-areas-with-obJects function 125

Area region size 119
Areas 119, 144

Interesting Areas 124
Introduction to Areas 119

Mapping functions over areas 125
Memory management of storage areas 119

Regions Within Areas 120
Storage management of areas 119

Default area to allocate disk arrays 39
Variable argument number without consing list 31

Number of disk blocks disk array can contain 39
sys: array-row-span function 25

Arrays 14
Default area to allocate disk arrays 39

Disk Arrays 39, 43
Stack arrays 12

Arrays on the control stack 11
Consing arrays on the data stack 12

Accessing Arrays Specially 25
:arrest-reason method of sl :process 1 08

Run and Arrest Reason Functions 101
Run and Arrest Reason Messages 1 07

Arrest reasons 83,97, 101
:arrest-reasons method of sl :process 1 08
:arrest-reasons option for make-process 96

zl: assoc function 75
Asynchronous execution of functions 95

Process Attribute Functions 99
Process Attribute Messages 105

:author FEP file property 59
sl: *automatlcally-recover-from-hung-disks*

variable 47
Automatic error recovery 42
Automatic Storage Management 117

Bytes available in a disk block 37
Data cells available in a disk block 37

Available virtual memory 155

169

July 1986 Index

B B B
Debugger's backtrace 3

Saving a compressed band 136
Garbage collector run bar 148

Basic Locking Subprimitive 25
:before-cold initialization list 79
:before-cold option for add-initialization 75

Setting up GC Before Loading a Large System 154
Bidirectional disk streams 56, 58

Dynamic variable binding 3
Stack group bindings 3

Binding stack 3,5
Special Variable Binding Subprimitive 31

sys: %blnd-Iocatlon function 31
Bytes available in a disk block 37

Data cells available in a disk block 37
:block disk stream 56
Block disk stream messages 58

:hang-p keyword for block disk stream messages 65
Block Disk Streams 58
:block-In message 58
:block-Iength message 58
Block mode disk streams 51

Disk block not found 49
File block number 51, 58

Block number field in disk address 37
Translate relative file block number into disk address 57

:block-out message 59
Disk blocks 37

Number of disk blocks disk array can contain 39
sys: %block-search-eq function 30
sys: %block-store-cdr-and-contents function 30
sys: %block-store-tag-and-polnter function 30

Input/output board 30
Boot 75

Warm boot initialization 75
Clock sequence break 89

Disk sequence break 89
Mouse sequence break 89

Sequence break 4,85
Buffering disk transfers 39

Referencing byte fields 29
Bytes available in a disk block 37
Byte specifiers 26

C C C
Function calling 3

Disk event tasks that can be concurrently allocated 41
Number of disk blocks disk array can contain 39

Canonical coroutine example 7
:capaclty option for make-area 121
:capaclty-ratlo option for make-area 121

Extracting cdr-code 29
Destroying cdr-code field 30

sys: cdr-next variable 27
sys: cdr-nil variable 27
sys: cdr-normal variable 27
Data cells available in a disk block 37
sys: %change-list-to-cons function 20

170

Internals, Processes, and Storage Management July 1986

:change-property message 59
Allocating and freeing Chaosnet storage resources 157

:checker option for defresource 158
sl: check-memory-scan macro 129

Check words 37
zl: choose-gc-parameters function 134

How to Choose Process Priority Levels 97
clear-resource function 162
:clock option for sl :sb-on 89

sys: clock-function-list variable 88
Clock sequence break 89

Disk error code 42
Disk Error Codes 48

:cold Initialization list 79
:cold option for add-Initialization 75

Controlling Garbage Collection 148
Dynamic garbage collection 151

Ephemeral-Object Garbage Collection 141
Incremental garbage collection 131

Nonincremental garbage collection 131
Principles of Garbage Collection 131

Storage Requirements for Dynamic Garbage Collection 145
Invoking the Garbage Collection Facilities 133

How Garbage Collection Improves Locality of Reference 144
Garbage collection statistics 150
Garbage collection, turning it on and off 135

Controlling the garbage collector 134
Dynamic garbage collector 135, 148, 151, 152, 153

Ephemeral garbage collector 135, 153
Ephemeral-object garbage collector 131

Garbage collector 157
Output messages from the garbage collector 148

Status of garbage collector 148
Strategy for Unattended Operation with the Garbage Collector 154

The Garbage Collector Facilities 131
Garbage collector process state 148
Garbage collector run bar 148

Printing garbage collector statistics 148
Garbage collector warnings 148

Add Paging File command 61
Copy Microcode Command 60

Declare Paging-files command 61
make-area command 125

Optimize World command 133
Rename File command 61

Set GC Options Command 134
Show FEP Directory Command 55

FEP File Comment Properties 55
Disk label comments 55

Committed guess 145
sys: complled-functlon-area variable 124

Compiled function storage area 124
Additional Optional Compiler Sources 17, 26

Saving a compressed band 136
Overlapping disk transfers with computation 62

Disk event tasks that can be concurrently allocated 41
Disk Error Conditions 47

Error conditions 4
Condition signalling 3
Configuration Files 54

FEP configuration files 54

171

July 1986 Index

Cons 131
cons-In-area function 119
Consing 131
Consing arrays on the data stack 12

Variable argument number without consing list 31
Con sing Lists on the Control Stack 11

sl:dlsk-block-Iength-In-bytes constant 38
sl :dlsk-sector-data-slze32 constant 38

sys:*dlsk-error-codes* constant 48
sys:%dlsk-error-devlce-check constant 48

sys:%dlsk-error-ecc constant 49
sys:%dlsk-error-mlsc constant 49

sys:%dlsk-error-not-ready constant 48
sys:%dlsk-error-overrun constant 49
sys:%dlsk-error-search constant 49

sys:%dlsk-error-seek constant 49
sys:%dlsk-error-select constant 48

sys:%dlsk-error-state-machlne constant 49
sys:%%dpn-page-num constant 38

sys:%%dpn-unlt constant 38
3600-Family Disk System Definitions and Constants 37

:constructor option for defresource 158
Number of disk blocks disk array can contain 39

Controlling Garbage Collection 148
Controlling the garbage collector 134
Control stack 3.5

Arrays on the control stack 11
Consing Lists on the Control Stack 11

Lists on the control stack 11
Approximately depth-first copying 144

Copying FEP Files 65
Copy Microcode Command 60
Copy space 137. 144. 145
Coroutine 3

Canonical coroutine example 7
Generator coroutines 7

sl: *count-dlsk-devlce-checks* variable 50
sl: *count-dlsk-ecc-errors* variable 50
sl: *count-dlsk-errors-Iost* variable 50
sl: *count-dlsk-hung-restarts* variable 50
sl: *count-dlsk-not-ready* variable 50
sl: *count-dlsk-other-errors* variable 50
sl: *count-dlsk-overruns* variable 50
sl: *count-dlsk-search-errors* variable 50
sl: *count-dlsk-seek-errors* variable 50
sl: *count-dlsk-select-errors* variable 50
sl: *count-dlsk-state-machlne-errors* variable 50
sl: *count-dlsk-stops-Iost* variable 51
sl: *count-total-dlsk-errors* variable 50

:create symbol in :If-does-not-exlst option for
open 56

:create-data-map message 57
Creating a Process 95
:creatlon-date FEP file property 59

Disk event tasks currently allocated 41
Current process 85
current-process variable 85. 86
Current stack group 3

172

Internals, Processes, and Storage Management July 1986

D D
32-bit mode
36-bit mode

Good

FEP file

Con sing arrays on the
The

sys:dtp-closure
sys :dtp-extended-number

sys:dtp-external-value-cell-polnter
sys:dtp-flx

sys:dtpiJc-forward
sys :dtp-header-forward

sys :dtp-Instance
sys:dtp-list

sys :dtp-Iocatlve
sys:dtp-null

sys:dtp-one-q-forward
sys:dtp-symbol

zl-user:dtp-array
zl-user:dtp-character

zl-user:dtp-complled-functlon
zl-user:dtp-element-forward

zl-user:dtp-even-pc
zl-user:dtp-generlc-functlon

zl-user:dtp-header.:.1
zl-user:dtp-header-p

zl-user:dtp-Iexlcal-closure
zl-user:dtp-Ioglc-varlable

zl-user:dtp-monltor-forward
zl-user:dtp-nll

zl-user:dtp-odd-pc

sys:
Destroying
Extracting

data 37
data 37
data 131.152.153
Data cells available in a disk block 37
data map 57
Data representation type 119
Data stack 3. 14
data stack 12
Data Stack 12
data type 18
data type 18
data type 18
data type 18
data type 18
data type 18
data type 18
data type 18
data type 18
data type 18
data type 18
data type 18
data type 18
data type 18
data type 18
data type 18
data type 18
data type 18
data type 18
data type 18
data type 18
data type 18
data type 18
data type 18
data type 18
data-type function 18
%data-type function 23
data type field 29
data type field 29
Data types 18

sl: data-types function 20
data-types variable 20
Data Type Subprimitives 18

sys:

sl:
sl:

Storage Layout
3600-Family Disk System

:checker option for
:constructor option for

:flnder option for
:free-list-size option for
:Inltial-coples option for

:Initlallzer option for
:matcher option for

deallocate-resource function 161
deallocate-whole-resource function 161
Deallocating allocated objects of a resource 161
Debugger's backtrace 3
Declare Paging-files command 61
Default area to allocate disk arrays 39
default-eons-area variable 119. 120. 124
default-quantum variable 100. 106
default-sequence-break-Interval variable 89
Definitions 26
Definitions and Constants 37
defresource 158
defresource 158
defresource 158
defresource 158
defresource 158
defresource 158
defresource 158

D

July 1986

defresource special form 158
delete-Initialization function 77

Approximately depth-first copying 144
describe-area function 123

sl: describe-resource function 163
Destroying cdr-code field 30
Destroying data type field 29
Destroying pointer field 29
:dlrectlon option for open 56, 60

Sys: I-ucode; logical directory 60
:dlrectory FEP file property 59

Show FEP Directory Command 55
FEP directory name 52

173

Index

:dlsable-servlces initialization list 79
:dlsable-servlces option for add-Initialization 75
:dlsk option for sl:sb-on 89
Disk address 37

Block number field In disk address 37
Translate relative file block number into disk address 57

Unit number field in disk address 37
Disk and FEP File System Utilities 70

sl: dlsk-array resource 39
sl: dlsk-array-area variable 39
sl: dlsk-array-block-count function 39

Number of disk blocks disk array can contain 39
sl: dlsk-array-checkwords function 40

Disk Arrays 39, 43
Default area to allocate disk arrays 39

Bytes available in a disk block 37
Data cells available in a disk block 37

sl: dlsk-block-Iength-In-bytes constant 38
Disk block not found 49
Disk blocks 37

Number of disk blocks disk array can contain 39
Disk drives 37
Disk error code 42
Disk Error Codes 48

sys: *dlsk-error-codes* constant 48
Disk Error Conditions 47

sys: %dlsk-error-devlce-check constant 48
sys: %dlsk-error-ecc constant 49

:dlsk-event method of sl: dlsk-error-event 47
:error-type method of sl: dlsk-error-event 48

:flushed-transfer-count method of sl: dlsk-error-event 48
sl: dlsk-error-event flavor 47

Disk Error Handling 45
Storing disk error information 40

Disk Error Meters 50
Peek utility for disk error meters 50

sys: %dlsk-error-mlsc constant 49
sys: %dlsk-error-not-ready constant 48
sys: %dlsk-error-overrun constant 49
sys: %dlsk-error-search constant 49
sys: %dlsk-error-seek constant 49
sys: %dlsk-error-select constant 48
sys: %disk-error-state-machine constant 49

Disk Error Variables 47
:disk-event method of sl:dlsk-error-event 47

sl: dlsk-event resource 40
Disk Event Accessor Functions 41

sl: dlsk-event-count function 41

174

Internals, Processes, and Storage Management July 1986

sl: dlsk-event-enq-task function 41
sl: dlsk-event-error-cylinder function 42
sl: dlsk-event-error-dcw function 43
sl: dlsk-event-error-flushed-transfer-count

function 42
sl: dlsk-event-error-head function 42
sl: dlsk-event-error-sector function 42
sl: dlsk-event-error-strlng function 42
sl: dlsk-event-error-type function 42,45
sl: dlsk-event-error-unlt function 42

Disk Events 40
sl: dlsk-event-slze function 41
sl: dlsk-event-suppress-error-recovery function 42,

45
sl: dlsk-event-task-done-p function 41

Disk event tasks 40
Disk event tasks currently allocated 41
Disk event tasks that can be concurrently

allocated 41
Disk label comments 55
Disk latency 62

Reducing disk latency 65
Minimum disk latency for transfers 62

Disk pack 37
Disk page number (DPN) 37
Disk pages 37
Disk Performance 62

Examples of High Disk Performance 64
Disk read 43

sys: disk-read function 44
sl: disk-sector-data-slze32 constant 38

Disk sequence break 89
:block disk stream 56
:Input disk stream 56

:output disk stream 56
:probe disk stream 56

Disk stream messages 56
Block disk stream messages 58

:hang-p keyword for block disk stream messages 65
Disk streams 51

Bidirectional disk streams 56, 58
Block Disk Streams 58

Block mode disk streams 51
Input and Output Disk Streams 57

Operating on Disk Streams 56
3600-Family Disk System Definitions and Constants 37
3600-Family Disk System User Interface 37

Disk Transfers 43
Buffering disk transfers 39

Grouping related disk transfers 45
Synchronizing disk transfers 40

Overlapping disk transfers with computation 62
Disk unit 37

Initializing a Disk Unit 70
Mounting a Disk Unit 71

Disk write 43
sys: disk-write function 44

:dont-delete FEP file property 59
Disk page number (DPN) 37

sys: %%dpn-page-num constant 38
sys: %%dpn-unlt constant 38

175

July 1986 Index

E

Disk drives 37
zI-user: dtp-array data type 18
zI-user: dtp-character data type 18

sys: dtp-closure data type 18
zI-user: dtp-complled-function data type 18
zI-user: dtp-element-forward data type 18
zI-user: dtp-even-pc data type 18

sys: dtp-extended-number data type 18
sys: dtp-external-value-cell-polnter data type 18
sys: dtp-flx data type 18
sys: dtp-gc-forward data type 18

zI-user: dtp-generlc-functlon data type 18
sys: dtp-header-forward data type 18

zI-user: dtp-header-I data type 18
zI-user: dtp-header-p data type 18

sys: dtp-Instance data type 18
zI-user: dtp-Iexlcal-closure data type 18

sys: dtp-list data type 18
sys: dtp-Iocatlve data type 18

zl-user: dtp-Ioglc-varlable data type 18
zI-user: dtp-monltor-forward data type 18
zI-user: dtp-nll data type 18

sys: dtp-null data type 18
zI-user: dtp-odd-pc data type 18

sys: dtp-one-q-forward data type 18
sys: dtp-symbol data type 18

Dynamic and Static Spaces 137
Dynamic garbage collection 151

Storage Requirements for Dynamic Garbage Collection 145

E

Dynamic garbage collector 135, 148, 151, 152, 153
Dynamic objects 131
Dynamic space 137,144,145
Dynamic variable binding 3

sl: edlt-fep-Iabel function 70
Enabled events 89
:enable-servlces initialization list 79
:enable-servlces option for add-initialization 75
Environment stack 3, 5

Start GC :Ephemeral 131
Ephemeral garbage collector 135, 153
Ephemeral levels 141, 142
Ephemeral-Object Garbage Collection 141
Ephemeral-object garbage collector 131
Ephemeral-object gc 141,142
Ephemeral objects 131
:error symbol in :If-does-not-exlst option for

open 56
:error symbol In :If-exlsts option for open 56
:error symbol In :If-Iocked option for open 56

Disk error code 42
Disk Error Codes 48

Error conditions 4
Disk Error Conditions 47
Disk Error Handling 45

Storing disk error Information 40
Disk Error Meters 50

Peek utility for disk error meters 50
Automatic error recovery 42

E

176

Internals, Processes, and Storage Management July 1986

F

:error-type method of sl:disk-error-event 48
Disk Error Variables 47

ESRT 150
:estlmated-Iength option for open 56

Disk Event Accessor Functions 41
Disk Events 40

Enabled events 89
Disk event tasks 40
Disk event tasks currently allocated 41
Disk event tasks that can be concurrently allocated 41

Canonical coroutine example 7
An Example of Stad< Groups 7

Examples of High Disk Performance 64
Asynchronous execution of functions 95

Extracting cdr-code 29
Extracting data type field 29
Extracting pointer field 29
Extra paging space 61

F
Invoking the Garbage Collection Facilities 133

The Garbage Collector Facilities 131
Theory of Operation of the GC Facilities 137

Page fault 85
The sys:reset-temporary-area Feature 125

FEP configuration files 54
Show FEP Directory Command 55

FEP directory name 52
FEP FEP file type 53

Increase size of FEP file 56
Initializing a FEP File 65

FEP File Comment Properties 55
FEP file data map 57
FEP File Locks 60
FEP filename format 52
FEP file properties 55, 59

:author FEP file property 59
:creatlon-date FEP file property 59

:dlrectory FEP file property 59
:dont-delete FEP file property 59

:Iength FEP file property 59
:truename FEP file property 59
Accessing FEP Files 56

Copying FEP Files 65
Naming of FEP Files 52

Writing FEP Files to Tape 71
FEP File System 51

Verifying a FEP File System 71
Disk and FEP File System Utilities 70

>DIR FEP file type 53
FEP FEP file type 53
FILE FEP file type 53

FLOD FEP file type 53
FSPT FEP file type 53
LOAD FEP file type 53

MIC FEP file type 53
PAGE FEP file type 53

FEP File Types 53
FEP host 52

Destroying cdr-code field 30

F

177

July 1986 Index

Destroying data type field 29
Destroying pointer field 29

Extracting data type field 29
Extracting pointer field 29

Block number field in disk address 37
Unit number field in disk address 37

Referencing byte fields 29
Memory word field variables 26

>BAD-BLOCKS.FEP file 53
>DISK-LABEL.FEP file 53

>FREE-PAGES.FEP file 53
>SEQUENCE-NUMBER.FEP file 53

Add paging file 133
Increase size of FEP file 56

Initializing a FEP File 65
:flle-access-path message 57
File block number 51, 58

Translate relative file block number into disk address 57
Add Paging File command 61

Rename File command 61
FEP File Comment Properties 55
FEP file data map 57

FILE FEP file type 53
FEP File Locks 60
FEP filename format 52
FEP file properties 55, 59

:author FEP file property 59
:creatlon-date FEP file property 59

:dlrectory FEP file property 59
:dont-delete FEP file property 59

:Iength FEP file property 59
:truename FEP file property 59
Accessing FEP Files 56

Configuration Files 54
Copying FEP Files 65

FEP configuration files 54
Naming of FEP Files 52

Adding a Spare World Load as LMFS File Space 61
Writing FEP Files to Tape 71

FEP File System 51
Verifying a FEP File System 71

Disk and FEP File System Utilities 70
>DIR FEP file type 53
FEP FEP file type 53
FILE FEP file type 53

FLOD FEP file type 53
FSPT FEP file type 53
LOAD FEP file type 53

M IC FEP file type 53
PAGE FEP file type 53

FEP File Types 53
:flnder option for defresource 158

sys: %find-structure-extent function 24
sys: %flnd-structure-header function 23
sys: %flnd-structure-Ieader function 24
sys: %finish-function-call function 31
sys: %finish-function-call special form 31

:first option for add-Initialization 75
sys: %flxnum function 20

sl:dlsk-arror-event flavor 47
sl:procass flavor 111

178

Internals, Processes, and Storage Management July 1986

sl:slmple-process flavor 111
:flavor option for make-process 96

Process Flavors 111
Flip 137,139
Flipping 139, 154
FLOD FEP file type 53

sys: %flonum function 20
:flush method of sl :process 109
:flushed-transfer-count method of

sl:dlsk-error-event 48
follow-cell-forwardlng function 22
follow-structure-forwardlng function 22
Forgetting objects remembered by a resource 162

defresource special form 158
let special form 31

let-If special form 31
sl:wlth-dlsk-event-task special form 41

sl :wlth-wlred-dlsk-array special form 45
sys:%flnlsh-functlon-call special form 31
sys:%start-functlon-call special form 31

sys:wlth-data-stack special form 14
sys:with-raster-stack-array special form 13

sys:wlth-stack-array special form 12
using-resource special form 162

without-Interrupts special form 86
with-stack-list special form 11

wlth-stack-list* special form 11
zl:progv special form 31

FEP filename format 52
Forwarding pointer 28
Forwarding Words in Memory 20
forward-value-cell function 22

Disk block not found 49
Allocating and freeing Chaosnet storage resources 157

Freeing of objects 157
Allocating and freeing window system storage resources 157

:free-list-size option for defresource 158
Free space 145
Front-end Processor 51
FSPT FEP file type 53

sl: full-gc function 136
:full-gc option for add-Initialization 136

add-Initialization function 75
allocate-resource function 161

clear-resource function 162
cons-In-area function 119

data-type function 18
deallocate-resource function 161

deallocate-whole-resource function 161
delete-Initialization function 77

describe-area function 123
follow-cell-forwarding function 22

follow-structure-forwardlng function 22
forward-value-cell function 22

gc-Immedlately function 135
gc-off function 135
gc-on function 135

Inltlallzatlons function 77
make-area function 121

make-process function 96
make-stack-group function 5

179

July 1986 Index

map-resource function 162
open function 56

Presetting a function 83
process-allow-schedule function 85. 88

process-dlsable function 101
process-enable function 101

process-Inltlal-form function 99
process-Inltlal-slack-group function 99

process-lock function 91
process-name function 99

process-preset function 102
process-reset function 102

process-reset-and-enable function 103
process-run-functlon function 95
process-stack-group function 99

process-unlock function 92
process-walt function 85. 87

process-wait-argument-list function 100
process-wall-forever function 88

process-walt-function function 100
process-walt-wlth-tlmeout function 87

process-whostate function 100
reset-Inltlallzatlons function 77

room function 155
sl :add-tlmer-queue-enlry function 113

sl :area-predlcate-all-areas function 125
sl:area-predlcate-areas-wlth-obJecls function 125

sl:data-types function 20
sl:descrlbe-resource function 163

sl:dlsk-array-block-count function 39
sl:dlsk-array-checkwords function 40

sl:dlsk-event-count function 41
sl:dlsk-event-enq-task function 41

sl:dlsk-event-error-cyllnder function 42
sl:dlsk-event-error-dcw function 43

sl:dlsk-event-error-flushed-transfer-count function 42
sl:dlsk-event-error-head function 42

sl:dlsk-event-error-seclor function 42
sl:dlsk-event-error-slrlng function 42

sl:dlsk-event-error-type function 42.45
sl:dlsk-event-error-unlt function 42

sl:dlsk-event-slze function 41
sl:dlsk-event-suppress-error-recovery function 42.45

sl:dlsk-event-task-done-p function 41
sl:edit-fep-Iabel function 70

sl :full-gc function 136
sl:lnstall-mlcrocode function 60

sl:make-process-queue function 92
sl:map-over-areas function 126

sl:map-over-obJects function 128
sl:map-over-obJects-ln-area function 128

sl:map-over-objects-In-reglon function 128
sl:map-over-reglons function 127

sl:map-over-reglons-of-area function 126
sl:mount-dlsk-unlt function 71

sl:page-array-calculale-bounds function 165
sl:prlnt-fep-fllesystem function 71

sl:prlnt-gc-meters function 150
sl:prlnt-tlmer-queue function 113

sl:process-abort function 103
sl:process-actlve-p function 101

180

Internals, Processes, and Storage Management July 1986

sl :process-arrest-reasons function 101
sl:process-dequeue function 93

sl:process-dlsable-arrest-reason function 101
sl :process-dlsable-run-reason function 101

sl:process-enable-arrest-reason function 101
sl :process-enable-run-reason function 101

sl:process-enqueue function 93
sl:process-flush function 103

sl:process-Interrupt function 104
sl:process-klll function 103

sl:process-prlorlty function 100
sl:process-quantum-remalnlng function 100

sl:process-queue-Iocker function 93
sl :process-run-reasons function 101

sl:process-slmple-p function 101
si :process-warm-boot-actlon function 100

sl:read-fep-Iabel function 70
sl:reglon-predlcate-all-reglons function 126
sl :region-predicate-copyspace function 126

si:region-predicate-list function 126
sl:region-predicate-not-stack-list function 126

si:reglon-predlcate-structure function 126
sl :remove-tlmer-queue-entry function 113

sl:repalr-resource function 163
sl:resequence-fep-fllesystem function 71

sl:reset-process-queue function 93
sl:return-cllsk-event-task function 41

sl:sb-on function 85, 89
sl :set-process-walt function 112

sl:unwlre-dlsk-array function 45
sl:unwlre-structure function 165

sl :unwlre-words function 165
sl:verlfy-fep-fllesystem function 71

sl:walt-for-cllsk-done function 41
sl:walt-for-dlsk-event function 41

sl :walt-for-cllsk-event-task function 41
sl:wlre-consecutlve-words function 165

sl:wlre-dlsk-array function 45
sl:wlre-structure function 165

sl:wlre-words function 165
sl:wrlte-fep-Iabel function 70

sleep function 87
stack-group-preset function 6

stack-group-resume function 4, 6
stack-group-return function 4, 6

store-conditional function 25
structure-forward function 21

symbol-value-In-stack-group function 6
sys:area-name function 124

sys:%area-number function 123
sys:array-row-span function 25
sys:%blnd-I.ocatlon function 31

sys:%block-search-eq function 30
sys :%block-store-cdr-and-contents function 30

sys:%block-store-tag-and-polnter function 30
sys:%change-list-to-cons function 20

sys :%data-type function 23
sys:dlsk-read function 44
sys:dlsk-wrlte function 44

sys:%flnd-structure-extent function 24
sys:%flnd-structure-header function 23

sys:%flnd-structurc-Icadcr function 24
sys:%flnlsh-functlon-call function 31

sys:%flxnum function 20
sys:%flonum function 20

sys:%lnstance-flavor function 20
sys:%make-polnter function 23

sys:%make-polnter-offset function 23
sys:make-raster-stack-array function 14

sys:make-stack-array function 14
sys:page-In-arca function 34

sys:page-In-array function 33
sys:pagc-In-reglon function 34

sys:page-In-structure function 33
sys:page-In-words function 33
sys:page-out-area function 35

sys:page-out-array function 34
sys:page-out-reglon function 35

sys:page-out-structure function 34
sys:page-out-words function 34

sys:%p-cdr-code function 29
sys:%p-contents-as-Iocatlve function 27

sys:%p-contents-as-Iocatlve-offset function 27
sys:%p-contents-offset function 27

sys:%p-data-type function 29
sys:%p-dpb function 29

sys:%p-dpb-offset function 29
sys:%p-Idb function 28

sys:%p-Idb-offset function 29
sys:%polnter function 23

sys:%polnter-dlfference function 23
sys:%polnter-Iessp function 23

sys:%polnterp function 22
sys:%polnter-type-p function 22

sys:%pop function 32
sys:%p-polnter function 29

sys:%p-store-cdr-and-contents function 28
sys:%p-store-cdr-code function 30

sys:%p-store-cdr-type-and-polnter function 28
sys:%p-store-contents function 28

sys:%p-store-contents-offset function 28
sys:%p-store-data-type function 29

sys:%p-store-polnter function 29
sys:%p-store-tag-and-polnter function 28

sys:%p-structure-offset function 27
sys:%push function 32

sys:%reglon-number function 123
sys:reset-temporary-area function 125

sys:sg-prevlous-stack-group function 6
sys:%stack-frame-polnter function 30

sys:%start-functlon-call function 31
sys:%structure-total-slze function 24

sys:%unsynchronlzed-devlce-read function 30
tape:write-fep-flles-to-tape function 72

zl :assoc function 75
zl:choose-gc-parameters function 134

zl:gc-status function 148
zl:logln function 79

zl:logout function 79
zl:make-array function 39

zl:process-sleep function 87
zl:symeval-In-stack-group function 7

181

182

Internals, Processes, and Storage Management July 1986

G

Function calling 3
Function-calling Subprimitives 31

Adding new keywords to Initialization functions 75
Asynchronous execution of functions 95

Disk Event Accessor Functions 41
Process Functions 99

Process Attribute Functions 99
Run and Arrest Reason Functions 101

Stack Group Functions 5
Synchronization Functions 40

Area Functions and Variables 120
Scheduler Functions and Variables 86

Functions for Starting and Stopping Processes 1 02
Mapping functions over areas 125
Mapping functions over objects 125
Mapping functions over regions 125

Compiled function storage area 124

G
Controlling Garbage Collection 148

Dynamic garbage collection 151
Ephemeral-Object Garbage Collection 141

Incremental garbage collection 131
Nonincremental garbage collection 131

Principles of Garbage Collection 131
Storage Requirements for Dynamic Garbage Collection 145

Invoking the Garbage Collection Facilities 133
How Garbage Collection Improves Locality of

Reference 144
Garbage collection statistics 150
Garbage collection, turning it on and 6ff 135
Garbage collector 157

Controlling the garbage collector 134
Dynamic garbage collector 135, 148, 151, 152, 153

Ephemeral garbage collector 135, 153
Ephemeral-object garbage collector 131

Output messages from the garbage collector 148
Status of garbage collector 148

Strategy for Unattended Operation with the Garbage Collector 154
The Garbage Collector Facilities 131

Garbage collector process state 148
Garbage collector run bar 148

Printing garbage collector statistics 148
Garbage collector warnings 148

Ephemeral-object gc 141, 142
:gc option for make-area 121, 125

sl: gc-area-reclalm-report variable 151
Setting up GC Before Loading a Large System 154

Start GC :Ephemeral 131
Theory of Operation of the GC Facilities 137

sl: gc-fllp-Inhlblt-tlme-untll-warnlng variable 154
sl: gC-flip-mlnlmum-ratio variable 152
sl: gC-flip-ratio variable 152

gc-Immediately function 135
gc-off function 135
gc-on function 135
gc-on variable 135

Set gc options 131, 135
Set GC Options Command 134
sl: *gc-parameters* variable 134

G

July 1986

H

sl:
sl:
sl:

sl:
sl:
sl:
sl:
zl:
zl:
sl:
sl:
sl:

Current stack
Presetting the stack

Running stack
Stack
Stack

An Example of Stack
Input/Output in Stack

Resuming of Stack
Stack

Switching stack
Stack

Committed

H
Disk Error

Reading
Examples of

FEP

:create symbol in
:error symbol in

nil symbol in

:error symbol in
:new-verslon symbol in

nil symbol in
:overwrite symbol in

:supersede symbol in

:error symbol in
:share symbol in

183

Index

gc-process-background-priority variable 153
gc-process-foreground-priorlty variable 153
gc-process-Immedlate-reclalm-prlority

variable 153
GCPT 150
gc-reclalm-ephemeral-Immedlately variable 153
gc-reclalm-Immedlately variable 153
gc-reclalm-Immedlately-If-necessary variable 153
gc-report-stream variable 151
gc-status function 148
gc-status Output 148
gc-warnlng-Interval variable 152
gc-warnlng-ratlo variable 151
gc-warnlng-threshold variable 151
Generator coroutines 7
:get message 59
Global variables 3
Good data 131, 152, 153
Good objects 131,144,153
group 3
group 3
group 3
group bindings 3
Group Functions 5
Grouping related disk transfers 45
Groups 7
Groups 7
Groups 4
Groups 3
groups 4
group switch 3
:grow message 56
guess 145

H
Handling 45
:hang-p keyword for block disk stream messages 65
hardware registers 28
High Disk Performance 64
host 52
How Garbage Collection Improves Locality of

Reference 144
How to Choose Process Priority Levels 97

:If-does-not-exlst option for open 56
:If-does-not-exlst option for open 56
:If-does-not-exlst option for open 56
:If-does-not-exlst option for open 56
:If-exlsts option for open 56
:If-exlsts option for open 56
:If-exlsts option for open 56
:If-exlsts option for open 56
:If-exlsts option for open 56
:If-exlsts option for open 56
:If-Iocked option for open 56, 60
:If-Iocked option for open 56
:If-Iocked option for open 56

184

Internals, Processes, and Storage Management July 1986

K

How Garbage Collection Improves Locality of Reference 144
Increase size of FEP file 56
Incremental garbage collection 131

Storing disk error information 40
91: Inhlblt-gc-fllps macro 150

Inhlblt-schedullng-flag variable 87
:Inltlal-coples option for defresource 158
:Inltlal-form method of sl:process 105

Warm boot initialization 75
Adding new keywords to initialization functions 75

sl: Initialization-keywords variable 77
Initialization list 75

:before-cold initialization list 79
:cold initialization list 79

:dlsable-servlces initialization list 79
:enable-servlces initialization list 79

:Iogln initialization list 79
:Iogout initialization list 79

:once initialization list 79
:system initialization list 79

:warm initialization list 79
System Initialization Lists 79

User-created initialization lists 79
Initializations 73

Introduction to Initializations 75
Order of initializations 75

Inltlallzatlons function 77
:Inltlallzer option for defresource 158
Initializing a Disk Unit 70
Initializing a FEP File 65

sl: Initial-process variable 89
:Inltlal-stack-group method of sl :process 105
:Inltlal-value option for zl:make-array 39
:Input disk stream 56
Input/output board 30
Input/Output in Stack Groups 7
Input and Output Disk Streams 57
Installing Microcode 60

sl: Install-microcode function 60
sys: %Instance-flavor function 20

Interesting Areas 124
3600-Family Disk System User Interface 37

Internals 1

K

:Interrupt method of sl:process 109
Interrupting a process 1 04
Introduction to Areas 119
Introduction to Initializations 75
Introduction to Processes 83
Introduction to Resources 157
Invisible pointer 20
Invisible pointers 18
Invoking the Garbage Collection Facilities 133

:hang-p keyword for block disk stream messages 65
Adding new keywords to initialization functions 75

:klll method of sl:process 109

K

July 1986

L L
Disk label comments 55

Setting up GC Before Loading a Large System 154
Disk latency 62

Reducing disk latency 65
Minimum disk latency for transfers 62

Storage Layout Definitions 26
Lbus reading 30
:Iength FEP file property 59
let special form 31
let-If special form 31
Levels 141,142

Ephemeral levels 141, 142
How to Choose Process Priority Levels 97

Ust 119
:before-cold initialization list 79

:cold initialization list 79
:dlsable-servlces initialization list 79
:enable-servlces initialization list 79

Initialization list 75
:Iogln initialization list 79

:Iogout initialization list 79
:once initialization list 79

:system initialization list 79
Variable argument number without consing list 31

:warm initialization list 79
System Initialization Usts 79

User-created initialization lists 79
Usts on the control stack 11

Consing Usts on the Control Stack 11
Property list storage area 124

Adding a Spare World Load as LMFS File Space 61
Adding a LMFS Partition 61

Adding a Spare World Load as LMFS File Space 61
LOAD FEP file type 53

Using a Spare World Load for Paging 61
Setting up GC Before Loading a Large System 154

How Garbage Collection Improves Locality of Reference 144
Local variables 31

Returning a locative pointer 30
Basic Locking Subprimitive 25

Lock queue 93
Locks 91

FEP File Locks 60
Sys: I-ucode; logical directory 60

Logic variables 18
zl: login function 79

:Iogln initialization list 79
:Iogln option for add-Initialization 75

zl: logout function 79
:Iogout initialization list 79
:Iogout option for add-Initialization 75

Address space low 133
Sys: I-ucode; logical directory 60

185

Index

L

186

Internals, Processes, and Storage Management

M M
sl :check-memory-scan

sl:lnhlblt-gc-flips
sl :scannlng-through-memory

sl:with-ephemeral-mlgratlon-mode
stack-let

stack-Iet*
:capaclty option for

:capacJty-ratio option for
:gc option for

:name option for
:n-Ievels option for

:read-only option for
:reglon-slze option for

:representatlon option for
:room option for

:slze option for
:swap-recommendatlons option for

sys:%%reglon-scavenge-enable option for
sys:%%reglon-space-type option for

:area option for zl
:Inltlal-value option for zl

:type option for zl
zl:

sys:
sys:

:arrest-reasons option for
:flavor option for

:priorlty option for
:quantum option for

:regular-pdl-area option for
:regular-pdl-slze option for

:run-reasons option for
:sg-area option for

:simple-p option for
:speclal-pdl-area option for
:spoclal-pdl-slze option for

:stack-group option for
:warm-boot-actlon option for

macro 129
macro 150
macro 128
macro 150
macro 12
macro 12
make-area 121
make-area 121
make-area 121, 125
make-area 121
make-area 121
make-area 121
make-area 121
make-area 121
make-area 121
make-area 121
make-area 121
make-area 121
make-area 121
make-area command 125
make-area function 121
make-array 39
make-array 39
make-array 39
make-array function 39
%make-polnter function 23
%make-polnter-offset function 23
make-process 96
make-process 96
make-process 96
make-process 96
make-process 96
make-process 96
make-process 96
make-process 96
make-process 96
make-process 96
make-process 96
make-process 96
make-process 96
make-process function 96

sys:
sys:

:allow-unknown-keywords option for
:regular-pdl-area option for
:regular-pdl-slze option for

:safe option for
:sg-area option for

:speclal-pdl-area option for
:speclal-pdl-slze option for

Automatic Storage
Manual Storage

sl: make-process-queue function 92
make-raster-stack-array function 14
make-stack-array function 14
make-stack-group 5
make-stack-group 5
make-stack-group 5
make-stack-group 5
make-stack-group 5
make-stack-group 5
make-stack-group 5
make-stack-group function 5
Management 117

Overview of Storage
Storage
Storage
Memory
Pointer

Management 117
Management 117
Management 115
management of areas 119
management of storage areas 119
Manipulation 22
Manual Storage Management 117

July 1986

M

July 1986

FEP file data map 57
:map-block-no message 57

sl: map-over-areas function 126
sl: map-over-objects function 128
sl: map-over-objects-In-area function 128
sl: map-over-objects-In-reglon function 128
sl: map-over-reglons function 127
sl: map-over-reglons-of-area function 126

Mapping functions over areas 125
Mapping functions over objects 125
Mapping functions over regions 125
Mapping Routines 126

Memory Mapping Tools 125
map-resource function 162
:matcher option for defresource 158

A memory 30
Available virtual memory 155

Forwarding Words in Memory 20
Physical memory 155

Reporting the Use of Memory 155
Searching memory 30

Virtual memory 133
Wiring Memory 165

Memory management of storage areas 119
Memory Mapping Tools 125

Special Memory Referencing 27
Memory word field variables 26

:allocate message 56
:block-In message 58

:block-Iength message 58
:block-out message 59

:change-property message 59
:create-data-map message 57
:flle-access-path message 57

:get message 59
:grow message 56

:map-block-no message 57
:write-data-map message 57

Block disk stream messages 58
Disk stream messages 56

:hang-p keyword for block disk stream messages 65
Process Messages 105

Process Attribute Messages 105
Run and Arrest Reason Messages 107

Messages for Stopping the Process 108
Output messages from the garbage collector 148

Disk Error Meters 50
Peek utility for disk error meters 50

:dlsk-event method of sl:dlsk-error-event 47
:error-type method of sl:dlsk-error-event 48

:flushed-transfer-count method of sl:dlsk-error-event 48
:actlve-p method of sl :process 1 08

:arresl-reason method of sl:process 108
:arrest-reasons method of sl:process 108

:flush method of sl:process 109
:Inltial-form method of sl:process 105

:Inltlal-slack-group method of sl:process 105
:Interrupt method of sl:process 109

:klll method of sl :process 1 09
:name method of sl:process 105

:preset method of sl:process 108

187

Index

188

Internals, Processes, and Storage Management July 1986

N

:prlorlty method of sl:process 106
:quantum method of sl:process 106

:quantum-remalnlng method of sl:process 106
:reset method of sl:process 108

:revoke-arrest-reason method of sl:process 108
:revoke-run-reason method of si:process 107

:runnable-p method of sl:process 108
:run-reason method of sl:process 107

:run-reasons method of sl :process 1 07
:set-prlorlty method of sl :process 1 07

:set-quantum method of sl:process 106
:set-warm-boot-actlon method of sl:process 107

:slmple-p method of sl:process 107
:stack-group method of sl:process 105

:wait-argument-list method of sl:process 106
:walt-functlon method of sl:process 106

:warm-boot-actlon method of sl:process 107
:whostate method of sl:process 106

MIC FEP file type 53
Installing Microcode 60

Copy Microcode Command 60
Minimum disk latency for transfers 62

System mode 37
User mode 37

32-bit mode data 37
36-bit mode data 37
Block mode disk streams 51

sl: mount-disk-unit function 71
Mounting a Disk Unit 71
:mouse option for sl:sb-on 89
Mouse sequence break 89
Multiprocessing 83
Mutator 139

N
Area name 119

FEP directory name 52
:name method of sl:process 105
:name option for make-area 121
:name option for process-run-functlon 95

Symbol print names storage area 124
Naming of FEP Files 52

sl: *n-dlsk-retrles* variable 45,47
Adding new keywords to initialization functions 75

New space 137,144, 145

N

:new-verslon symbol in :If-exists option for open 56
nil symbol in :If-does-not-exlst option for open 56
nil symbol in :If-exlsts option for open 56
:n-Ievels option for make-area 121
Nonincremental garbage collection 131
:normal option for add-Initialization 75

Disk block not found 49
No-unwind options for :reset 108
:now option for add-Initialization 75

Area number 119
File block number 51, 58

Unit number 37
Disk page number (DPN) 37

Block number field in disk address 37
Unit number field in disk address 37

189

July 1986 Index

o

Translate relative file block number Into disk address 57
:number-of-dlsk-blocks option for open 56. 57
Number of disk blocks disk array can contain 39

Variable argument number without con sing list 31

o
Dynamic

Ephemeral
Freeing of

Good
Mapping functions over

Static
Deallocating allocated

Forgetting
Garbage collection. turning it on and

:create symbol in :If-does-not-exlst option for
:dlrectlon option for

:error symbol in :If-does-not-exlst option for
:error symbol in :If-exlsts option for

:error symbol In :If-Iocked option for
:estlmated-Iength option for
:If-does-not-exlst option for

:If-exlsts option for
:If-Iocked option for

:new-verslon symbol in :If-exlsts option for
nil symbol in :If-does-not-exlst option for

nil symbol in :If-exlsts option for
:number-of-dlsk-blocks option for

:overwrlte symbol in :If-exlsts option for
:share symbol in :If-Iocked option for

:supersede symbol in :If-exlsts option for

Theory of
Strategy for Unattended

Additional
:before-cold

:cold
:dlsable-servlces
:enable-servlces

:first
:full-gc

:Iogln
:Iogout

:normal
:now

:once
:redo
:slte

:system
:warm

:checker
:constructor

:flnder
:free-list-size
:Inltial-coples

objects 131
objects 131
objects 157
objects 131. 144. 153
objects 125
objects 131
objects of a resource 161
objects remembered by a resource 162
off 135
Old space 137. 145. 153
:once initialization list 79
:once option for add-Initialization 75
open 56
open 56.60
open 56
open 56
open 56
open 56
open 56
open 56
open 56.60
open 56
open 56
open 56
open 56.57
open 56
open 56
open 56
open function 56
Operating on Disk Streams 56
Operation of the GC Facilities 137
Operation with the Garbage Collector 154
Optimize World command 133
Optional Compiler Sources 17. 26
option for add-Initialization 75
option for add-Initialization 75
option for add-Initialization 75
option for add-Initialization 75
option for add-Initialization 75
option for add-Initialization 136
option for add-Initialization 75
option for add-Initialization· 75
option for add-Initialization 75
option for add-Initialization 75
option for add-Initialization 75
option for add-Initialization 75
option for add-Initialization 75
option for add-Initialization 75
option for add-Initialization 75
option for defresource 158
option for defresource 158
option for defresource 158
option for defresource 158
option for defresource 158

o

190

Internals, Processes, and Storage Management July 1986

:Inltlallzer option for defresource 158
:matcher option for defresource 158
:capaclty option for make-area 121

:capaclty-ratlo option for make-area 121
:gc option for make-area 121, 125

:name option for make-area 121
:n-Ievels option for make-area 121

:read-only option for make-area 121
:reglon-slze option for make-area 121

:representatlon option for make-area 121
:room option for make-area 121

:slze option for make-area 121
:swap-recommendatlons option for make-area 121

sys:%%reglon-scavenge-enable option for make-area 121
sys:%%reglon-space-type option for make-area 121

:arrest-reasons option for make-process 96
:flavor option for make-process 96

:priority option for make-process 96
:quantum option for make-process 96

:regular-pdl-area option for make-process 96
:regular-pdl-slze option for make-process 96

:run-reasons option for make-process 96
:sg-area option for make-process 96

:simple-p option for make-process 96
:speclal-pdl-area option for make-process 96
:special-pdl-size option for make-process 96

:stack-group option for make-process 96
:warm-boot-actlon option for make-process 96

:allow-unknown-keywords option for make-stack-group 5
:regular-pdl-area option for make-stack-group 5
:regular-pdl-sizo option for make-stack-group 5

:safe option for make-stack-group 5
:sg-area option for make-stack-group 5

:speclal-pdl-area option for make-stack-group 5
:special-pdl-size option for make-stack-group 5

:create symbol in :If-does-not-exlst option for open 56
:dlrectlon option for open 56, 60

:error symbol in :if-does-not-exlst option for open 56
:error symbol in :if-exists option for open 56

:error symbol in :If-Iocked option for open 56
:estlmated-Iength option for open 56
:if-does-not-exist option for open 56

:If-exlsts option for open 56
:If-Iocked option for open 56, 60

:new-verslon symbol in :If-exlsts option for open 56
nil symbol in :If-does-not-exlst option for open 56

nil symbol in :If-exists option for open 56
:number-of-disk-blocks option for open 56, 57

:overwrlte symbol in :If-exlsts option for open 56
:share symbol in :If-Iocked option for open 56

:supersede symbol in :If-exlsts option for open 56
:name option for process-run-functlon 95

:prlority option for process-run-functlon 95
:quantum option for process-run-functlon 95

:restart-after-boot option for process-run-functlon 95
:restart-after-reset option for process-run-functlon 95
:warm-boot-action option for process-run-function 95

zl-user:always option for :reset 108
:clock option for sl:sb-on 89
:dlsk option for sl:sb-on 89

:mouse option for sl:sb-on 89

191

July 1986 Index

p

:area option for zl :make-array 39
:Inltlal-value option for zl:make-array 39

:type option for zl :make-array 39
Set gc options 131, 135

Set GC Options Command 134
No-unwind options for :reset 108

Order of initializations 75
zl:gc-status Output 148

:output disk stream 56
Input and Output Disk Streams 57

Output messages from the garbage collector 148
Overlapping disk transfers with computation 62
Overview of Storage Management 117
:overwrlte symbol in :If-exlsts option for open 56

P
Disk pack 37

Packages storage area 124
sl: page-array-calculate-bounds function 165

Page fault 85
PAGE FEP file type 53

sys: page-In-area function 34
sys: page-In-array function 33
sys: page-In-reglon function 34
sys: page-In-structure function 33
sys: page-In-words function 33
Disk page number (DPN) 37
sys: page-out-area function 35
sys: page-out-array function 34
sys: page-out-reglon function 35
sys: page-out-structure function 34
sys: page-out-words function 34
Disk pages 37

Paging 144
Using a Spare World Load for Paging 61

Add paging file 133
Add Paging File command 61

Declare Paging-files command 61
Paging space 133

Extra paging space 61
The Paging System 33

Adding a LMFS Partition 61
sys: %p-cdr-code function 29
sys: %p-contents-as-Iocatlve function 27
sys: %p-contents-as-Iocatlve-offset function 27
sys: %p-contents-offset function 27
sys: %p-data-type function 29
sys: %p-dpb function 29
sys: %p-dpb-offset function 29

Peek utility for disk error meters 50
Disk Performance 62

Examples of High Disk Performance 64
Permanent process 95
permanent-storage-area variable 124
Physical memory 155

sl: pkg-area variable 124
sys: %p-Idb function 28
sys: %p-Idb-offset function 29
sys: pname-area variable 124

Forwarding pointer 28

p

192

Internals, Processes, and Storage Management July 1986

Invisible pointer 20
Returning a locative pointer 30

sys: %polnter function 23
sys: %polnter-dlfference function 23

Destroying pointer field 29
Extracting pointer field 29

sys: %polnter-Iessp function 23
Pointer Manipulation 22

sys: %polnterp function 22
Pointers 27

Invisible pointers 18
sys: %polnter-type-p function 22
sys: %pop function 32
sys: %p-polnter function 29

Area and Region Predicates 125
Preempt 85
Preempting a process 85
:preset method of sl :process 108
Presetting a function 83
Presetting the stack group 3
Principles of Garbage Collection 131

sl: prlnt-fep-filesystem function 71
sl: prlnt-gc-meters function 150

Printing garbage collector statistics 148
Symbol print names storage area 124

sl: prlnt-tlmer-queue function 113
:prlorlty method of sl:process 106
:prlorlty option for make-process 96
:prlorlty option for process-run-functlon 95

How to Choose Process Priority Levels 97
:probe disk stream 56

Samefringe problem 7
Aborting a process 103

:actlve-p method of sl: process 108
:arrest-reason method of sl: process 108

:arrest-reasons method of sl: process 108
Creating a Process 95

Current process 85
:flush method of sl: process 109

:Inltlal-form method of sl: process 105
:Inltlal-stack-group method of sl: process 105

:Interrupt method of sl: process 109
Interrupting a process 104

:klll method of sl: process 109
Messages for Stopping the Process 108

:name method of sl: process 105
Permanent process 95

Preempting a process 85
:preset method of sl: process 108

:prlorlty method of sl: process 106
:quantum method of sl: process 106

:quantum-remalnlng method of sl: process 106
:reset method of sl: process 108

Resetting a process 83
:revoke-arrest-reason method of sl: process 108

:revoke-run-reason method of sl: process 107
:runnable-p method of sl: process 108
:run-reason method of sl: process 107

:run-reasons method of sl: process 107
:set-prlorlty method of sl: process 107

:set-quantum method of sl: process 106

July 1986

:set-warm-boot-actlon method of sl:
Simple

:slmple-p method of sl:
:stack-group method of sl:

:wait-argument-list method of sl:
:walt-functlon method of sl:

:warm-boot-actlon method of sl:
:whostate method of sl:

sl:
sl:

process 107
process 111
process 107
process 105
process 106
process 106
process 107
process 106
process flavor 111
process-abort function 103
Process aborting 1 03

sl: process-actlve-p function 1 01
process-allow-schedule function 85, 88

sl: process-arrest-reasons function 101
Process Attribute Functions 99
Process Attribute Messages 105

sl: process-dequeue function 93
process-dlsable function 101

sl: process-dlsable-arrest-reason function 101
sl: process-dlsable-run-reason function 101

process-enable function 101
sl: process-enable-arrest-reason function 101
sl: process-enable-run-reason function 101
sl: process-enqueue function 93

Active
Functions for Starting and Stopping

Introduction to
Restarting

Stopped
Stopping

Processes 81
processes 83,85
Processes 1 02
Processes 83
processes 108
processes 83
processes 1 08
Process Flavors 111

sl: process-flush function 103
Process Functions 99
process-Inltlal-form function 99
process-Inltlal-stack-group function 99

sl: process-Interrupt function 104
sl: process-kill function 103

process-lock function 91
Process Messages 105
process-name function 99

Front-end

sl:
How to Choose

sl:
sl:

:name option for
:prlorlty option for

:quantum option for
:restart-after-boot option for
:restart-after-reset option for
:warm-boot-actlon option for

Processor 51
process-preset function 102
process-priority function 100
Process Priority Levels 97
process-quantum-remalnlng function 100
process-queue-Iocker function 93
process-reset function 102
process-reset-and-enable function 103
process-run-functlon 95
process-run-functlon 95
process-run-functlon 95
process-run-functlon 95
process-run-functlon 95
process-run-functlon 95
process-run-functlon function 95

sl: process-run-reasons function 1 01
sl: process-slmple-p function 101
zl: process-sleep function 87

process-stack-group function 99
Garbage collector process state 148

193

Index

194

Internals, Processes, and Storage Management July 1986

Q

R

process-unlock function 92
process-walt function 85, 87
process-wait-argument-list function 100
process-walt-forever function 88
Process wait-function 83
process-walt-function function 100
process-walt-with-tlmeout function 87

sl: process-warm-boot-actlon function 100
process-whostate function 100

zl: progv special form 31
Prolog 18

Symbolics Prolog 18
FEP file properties 55, 59

FEP File Comment Properties 55
:author FEP file property 59

:creatlon-date FEP file property 59
:dlrectory FEP file property 59

:dont-delete FEP file property 59
:Iength FEP file property 59

:truename FEP file property 59
sys: property-list-area variable 124

Property list storage area 124
sys: %p-store-cdr-and-contents function 28
sys: %p-store-cdr-code function 30
sys: %p-store-cdr-type-and-polnter function 28
sys: %p-store-contents function 28
sys: %p-store-contents-offset function 28
sys: %p-store-data-type function 29
sys: %p-store-polnter function 29
sys: %p-store-tag-and-polnter function 28
sys: %p-structure-offset function 27
sys: %push function 32

Q
sys: %%q-all-but-cdr-code variable 26
sys: %%q-all-but-polnter variable 26
sys: %%q-all-but-typed-polnter variable 26
sys: %%q-cdr-code variable 26
sys: %%q-data-type variable 26
sys: %%q-pointer variable 26
sys: %%q-pointer-wlthin-page variable 26
sys: %%q-typed-polnter variable 26

:quantum method of si:process 106
:quantum option for make-process 96
:quantum option for process-run-functlon 95
:quantum-remalning method of sl:process 106

Lock queue 93
Unlock queue 93
Timer Queues 113

R
Disk read 43

sl: read-fep-Iabel function 70
Lbus reading 30

Reading hardware registers 28
Registers, reading of 28

Read-locked 60
:read-only option for make-area 121

Q

R

July 1986

Run and Arrest
Run and Arrest

Arrest
Run

Automatic error

How Garbage Collection Improves Locality of
Special Memory

sys:
sl:
sl:
sl:
sl:

Area and
sl:

Mapping functions over
sys:

Area

sys:

Reading hardware

Grouping
Translate

Forgetting objects
sl:

195

Index

Reason Functions 1 01
Reason Messages 107
reasons 83,97,101
reasons 83,97,101
recovery 42
:redo option for add-Initialization 75
Reducing disk latency 65
Reference 144
Referencing 27
Referencing byte fields 29
%reglon-number function 123
reglon-predlcate-all-reglons function 126
reglon-predlcate-copyspace function 126
region-predicate-list function 126
region-predicate-not-stack-list function 126
Region Predicates 125
reglon-predlcate-structure function 126
Regions 119, 120
regions 125
%%reglon-scavenge-enable option for

make-area 121
region size 119
:reglon-slze option for make-area 121
%%reglon-space-type option for make-area 121
Regions Within Areas 120
registers 28
Registers, reading of 28
:regular-pdl-area option for make-process 96
:regular-pdl-area option for make-stack-group 5
:regular-pdl-slze option for make-process 96
:regular-pdl-slze option for make-stack-group 5
related disk transfers 45
relative file block number into disk address 57
remembered by a resource 162
remove-tlmer-queue-entry function 113
Rename File command 61

sl: repair-resource function 163

Data
Storage

sl:
No-unwind options for

zl-user:always option for

Reporting the Use of Memory 155
:representatlon option for make-area 121
representation type 119
Requirements for Dynamic Garbage Collection 145
resequence-fep-filesystem function 71
:reset 108
:reset 108
:reset method of sl:process 108
reset-Inltlallzatlons function 77

sl: reset-process-queue function 93
reset-temporary-area function 125
Resetting a process 83

sys:

Deallocatlng allocated objects of a
Forgetting objects remembered by a

sl :dlsk-array
sl:dlsk-event

Allocating and freeing Chaosnet storage
Allocating and freeing window system storage

Introduction to

resource 161
resource 162
resource 39
resource 40
Resources 157
resources 157
resources 157
Resources 157
:restart-after-boot option for

process-run-functlon 95
:restart-after-reset option for

process-run-function 95

196

Internals, Processes, and Storage Management July 1986

s

Restarting processes 108
Resumer 4
Resuming of Stack Groups 4
Resumption 3

sl: return-dlsk-event-task function 41
Returning a locative pointer 30
:revoke-arrest-reason method of sl:process 108
:revoke-run-reason method of sl:process 107
room function 155
:room option for make-area 121
room variable 155

Mapping Routines 126
Run and Arrest Reason Functions 101
Run and Arrest Reason Messages 107

Garbage collector run bar 148

s

:runnable-p method of sl:process 108
Running stack group 3
:run-reason method of sl:process 107
Run reasons 83,97,101
:run-reasons method of sl:process 107
:run-reasons option for make-process 96

:safe option for make-stack-group 5
Samefringe problem 7
Saving a compressed band 136

:clock option for sl: sb-on 89
:dlsk option for sl: sb-on 89

~mouse option for sl: sb-on 89
sl: sb-on function 85,89
sl: scannlng-through-memory macro 128

Scavenger 139, 145
Scheduler 4

The Scheduler 85
Scheduler Functions and Variables 86

sys: scheduler-stack-group variable 88
Searching memory 30
Sequence break 4, 85

Clock sequence break 89
Disk sequence break 89

Mouse sequence break 89
Set gc options 131, 135
Set GC Options Command 134
:set-prlorlty method of sl:process 107

sl: set-process-walt function 112
:set-quantum method of sl :process 1 06

s

Setting up GC Before Loading a Large System 154
:set-warm-boot-actlon method of sl:process 107
SG 3
:sg-area option for make-process 96
:sg-area option for make-stack-group 5

sys: sg-prevlous-stack-group function 6
:share symbol in :If-Iocked option for open 56
Show FEP Directory Command 55
sl:add-tlmer-queue-entry function 113
sl :area-predlcate-all-areas function 125
sl:area-predlcate-areas-wlth-objects function 125
sl :*automatlcally-recover-from-h ung-disks*

variable 47
sl:check-memory-scan macro 129

July 1986

:dlsk-event method of
:error-type method of

:flushed-transfer-count method of

sl:*count-dlsk-devlce-checks* variable 50
sl:*count-dlsk-ecc-errors* variable 50
sl:*count-dlsk-errors-Iost* variable 50
sl:*count-dlsk-hung-restarts* variable 50
sl:*count-dlsk-not-ready* variable 50
sl:*count-dlsk-other-errors* variable 50
sl:*count-dlsk-overruns* variable 50
sl:*count-dlsk-search-errors* variable 50
sl:*count-dlsk-seek-errors* variable 50
sl:*count-dlsk-select-errors* variable 50

197

Index

sl :*count-dlsk-state-machlne-errors* variable 50
sl:*count-dlsk-stops-Iost* variable 51
sl:*count-total-dlsk-errors* variable 50
sl:data-types function 20
sl:default-quantum variable 100, 106
sl :*default-sequence-break-Interval* variable 89
sl:descrlbe-resource function 163
sl:dlsk-array resource 39
sl:dlsk-array-area variable 39
sl:dlsk-array-block-count function 39
sl:dlsk-array-checkwords function 40
sl:dlsk-block-Iength-In-bytes constant 38
sl:dlsk-error-event 47
sl:dlsk-error-event 48
sl:dlsk-error-event 48
sl:dlsk-error-event flavor 47
sl:dlsk-event resource 40
sl:dlsk-event-count function 41
sl:dlsk-event-enq-task function 41
sl:dlsk-event-error-cyllnder function 42
sl:dlsk-event-error-dcw function 43
sl:dlsk-event-error-flushed-transfer-count

function 42
sl:dlsk-event-error-head function 42
sl:dlsk-event-error-sector function 42
sl:dlsk-event-error-strlng function 42
sl:dlsk-event-error-type function 42,45
sl:dlsk-event-error-unlt function 42
sl:dlsk-event-slze function 41
sl:dlsk-event-suppress-error-recovery function 42,

45
sl:dlsk-event-task-done-p function 41
sl:dlsk-sector-data-slze32 constant 38
sl:edlt-fep-Iabel function 70
sl:full-gc function 136
sl :gc-area-reclalm-report variable 151
sl:gc-fllp-lnhlblt-t1me-until-warnlng variable 154
sl :gc-fllp-mlnlmum-ratio variable 152
sl :gc-fllp-ratlo variable 152
sl:*gc-parameters* variable 134
sl:gc-process-background-prlorlty variable 153
sl:gc-process-foreground-prlorlty variable 153
sl:g c-p rocess-I mmed late-reclaim-priori ty

variable 153
sl:gc-reclalm-ephemeral-Immedlately variable 153
sl:gc-reclalm-Immedlately variable 153
sl:gc-reclalm-Immedlately-If-necessary

variable 153
sl:gc-report-stream variable 151
sl:gc-warnlng-Interval variable 152
sl :gc-warnlng-ratio variable 151

198

Internals, Processes, and Storage Management

:actlve-p method of
:arrest-reason method of

:arrest-reasons method of
:flush method of

:Inltlal-form method of
:Inltlal-stack-group method of

:Interrupt method of
:kill method of

:name method of
:preset method of

:prlorlty method of
:quantum method of

:quanlum-remaining method of
:reset method of

:revoke-arrest-reason method of
:revoke-run-reason method of

:runnable-p method of
:run-reason method of

:run-reasons method of
:set-prlorlty method of

:set-quantum method of
:set-warm-boot-actlon method of

:slmple-p method of
:stack-group method of

:wait-argument-list method of
:walt-functlon method of

:warm-boot-actlon method of
:whostate method of

sl:gc-warnlng-threshold variable 151
sl:lnhlblt-gc-flips macro 150
sl:lnltlalization-keywords variable 77
sl:lnltial-process variable 89
sl:lnstall-mlcrocode function 60
sl:make-process-queue function 92

July 1986

sl :map-over-areas function 126
sl:map-over-objects function 128
sl:map-over-objects-In-area function 128
sl:map-over-objects-In-region function 128
sl:map-over-regions function 127
sl:map-over-regions-of-area function 126
sl:mount-disk-unlt function 71
sl:*n-dlsk-retrles* variable 45,47
sl:page-array-calculate-bounds function 165
sl:pkg-area variable 124
sl:print-fep-filesystem function 71
sl:prlnt-gc-meters function 150
sl:prlnt-timer-queue function 113
sl:process 108
sl:process 108
sl:process 108
sl:process 109
sl:process 105
sl :process 105
sl :process 109
sl:process 109
sl :process 105
sl:process 108
sl:process 106
sl :process 106
sl :process 106
sl:process 108
sl :process 108
sl:process 107
sl:process 108
sl:process 107
sl :process 107
sl:process 107
sl :process 106
sl:process 107
sl :process 107
sl :process 105
sl:process 106
sl:process 106
sl:process 107
sl:process 106
sl:process flavor 111
sl:process-abort function 103
sl:process-actlve-p function 101
sl:process-arrest-reasons function 101
sl:process-dequeue function 93
sl:process-dlsable-arrest-reason function 101
sl:process-dlsable-run-reason function 101
sl:process-enable-arrest-reason function 101
sl:process-enable-run-reason function 101
sl:process-enqueue function 93
sl:process-flush function 103
sl:process-Interrupt function 104
sl:process-kill function 103
sl:process-prlority function 100

July 1986

:clock option for
:dlsk option for

:mouse option for

sl:
Condition

199

Index

sl:process-quantum-remaining function 100
sl:process-queue-Iocker function 93
sl:process-run-reasons function 101
si:process-simple-p function 101
sl:process-warm-boot-action function 100
sl:read-fep-Iabel function 70
sl:reglon-predlcate-all-reglons function 126
sl:reglon-predlcate-copyspace function 126
sl:region-predicate-list function 126
sl:region-predicate-not-stack-list function 126
sl :reglon-predlcate-structure function 126
sl:remove-timer-queue-entry function 113
sl :repalr-resource function 163
si:resequence-fep-filesystem function 71
sl:reset-process-queue function 93
sl :return-disk-event-task function 41
sl:sb-on 89
sl:sb-on 89
sl:sb-on 89
sl:sb-on function 85,89
sl:scannlng-through-memory macro 128
sl:set-process-wait function 112
sl:*slgnal-dlsk-errors-from-enqueue-p* variable 47
sl:slmple-process flavor 111
sl:unwire-disk-array function 45
sl:unwlre-structure function 165
sl:unwlre-words function 165
sl:verify-fep-filesystem function 71
sl:walt-for-dlsk-done function 41
sl:wait-for-dlsk-event function 41
sl:walt-for-disk-event-task function 41
sl:wlre-consecutive-words function 165
sl:wlre-dlsk-array function 45
sl:wlre-structure function 165
sl:wire-words function 165
si:with-disk-avent-task special form 41
si:with-ephemeral-migration-mode macro 150
sl:with-wired-disk-array special form 45
sl:write-fep-Iabel function 70
slgnal-dlsk-errors-from-enqueue-p variable 47
signalling 3
:simple-p method of si:process 107
:slmple-p option for make-process 96
Simple process 111

sl: simple-process flavor 111

Area region

Increase

Additional Optional Compiler
Adding a Spare World Load as LMFS File

Copy
Dynamic

Extra paging
Free
New
Old

Paging
Static
Swap

:site option for add-initialization 75
size 119
:slze option for make-area 121
size of FEP file 56
sleep function 87
Sources 17, 26
Space 61
space 137,144,145
space 137, 144, 145
space 61
space 145
space 137, 144, 145
space 137, 145, 153
space 133
space 131,137,145
space 61,133

200

Internals, Processes, and Storage Management July 1986

Address space low 133
Dynamic and Static Spaces 137

Adding a Spare World Load as LMFS File Space 61
Using a Spare World Load for Paging 61

defresource special form 158
let special form 31

let-If special form 31
sl:wlth-dlsk-event-task special form 41

sl:wlth-wlred-dlsk-array special form 45
sys:%flnllh-functlon-call special form 31
sys:%start-functlon-call special form 31

sys:wlth-data-stack special form 14
sys:wlth-rasler-stack-array special form 13

sys:wlth-stack-array special form 12
using-resource special form 162

without-Interrupts special form 86
with-stack-list special form 11

wlth-stack-list* special form 11
zl:progv special form 31

Accessing Arrays Specially 25
Special Memory Referencing 27
:speclal-pdl-area option for make-process 96
:speclal-pdl-area option for make-stack-group 5
:speclal-pdl-slze option for make-process 96
:speclal-pdl-slze option for make-stack-group 5
Special Variable Binding Subprimitive 31

Byte specifiers 26
Allocation on the Stack 11

Arrays on the control stack 11
Binding stack 3, 5

Consing arrays on the data stack 12
Consing Lists on the Control Stack 11

Control stack 3,5
Data stack 3, 14

Environment stack 3,5
Lists on the control stack 11

The Data Stack 12
sys: stack-area variable 124

Stack arrays 12
sys: %stack-frame-polnter function 30

Current stack group 3
Presetting the stack group 3

Running stack group 3
:stack-group method of sl:process 105
:stack-group option for make-process 96
Stack group bindings 3
Stack Group Functions 5
stack-group-preset function 6
stack-group-resume function 4, 6
stack-group-return function 4, 6
Stack Groups 3

An Example of Stack Groups 7
Input/Output in Stack Groups 7

Resuming of Stack Groups 4
Switching stack groups 4

Stack group switch 3
stack-let macro 12
stack-Iet* macro 12

sys: %start-function-call function 31
sys: %start-functlon-call special form 31

Start GC :Ephemeral 131

201

July 1986 Index

Functions for Starting and Stopping Processes 102
Garbage collector process state 148

Static objects 131
Static space 131, 137, 145

Dynamic and Static Spaces 137
Garbage collection statistics 150

Printing garbage collector statistics 148
Status of garbage collector 148
Stopped processes 83
Stopping processes 108

Functions for Starting and Stopping Processes 102
Messages for Stopping the Process 108

Storage allocation 157
Compiled function storage area 124

Packages storage area 124
Property list storage area 124

Symbol print names storage area 124
Symbols storage area 124

Memory management of storage areas 119
Storage Layout Definitions 26
Storage Management 115

Automatic Storage Management 117
Manual Storage Management 117

Overview of Storage Management 117
Storage management of areas 119
Storage Requirements for Dynamic Garbage

Collection 145
Allocating and freeing Chaosnet storage resources 157

Allocating and freeing window system storage resources 157
store-conditional function 25
Storing disk error information 40
Strategy for Unattended Operation with the Garbage

Collector 154
:block disk stream 56
:Input disk stream 56

:output disk stream 56
:probe disk stream 56

Block disk stream messages 58
Disk stream messages 56

:hang-p keyword for block disk stream messages 65
Bidirectional disk streams 56, 58

Block Disk Streams 58
Block mode disk streams 51

Disk streams 51
Input and Output Disk Streams 57

Operating on Disk Streams 56
Structure 119

Wiring a structure 43
structure-forward function 21

Analyzing Structures 23
sys: %structure-total-slze function 24

Basic Locking Subprimitive 25
Special Variable Binding Subprimitive 31

Subprimitives 17
Data Type Subprimitives 18

Function-calling Subprimitives 31
:supersede symbol in :If-exlsts option for open 56
:swap-recommendatlons option for make-area 121
Swap space 61,133

Stack group switch 3
Switching stack groups 4

202

Internals, Processes, and Storage Management July 1986

sys: symbol-area variable 124
Symbolics Prolog 18

:create symbol in :If-does-not-exlst option for open 56
:error symbol in :If-does-not-exist option for open 56

nil symbol in :If-does-not-exlst option for open 56
:error symbol in :If-exlsts option for open 56

:new-version symbol in :If-exlsts option for open 56
nil symbol in :If-exlsts option for open 56

:overwrlte symbol in :If-exlsts option for open 56
:supersede symbol in :If-exlsts option for open 56

:error symbol in :If-Iocked option for open 56
:share symbol in :If-Iocked option for open 56

Symbol print names storage area 124
Symbols storage area 124
symbol-value-In-stack-group function 6

zl: symeval-In-stack-group function 7
Synchronization Functions 40
Synchronizing disk transfers 40
sys:actlve-processes variable 88
sys :all-processes variable 88
sys:area-list variable 123
sys:area-name function 124
sys:%area-number function 123
sys :array-row-span function 25
sys:%blnd-Iocatlon function 31
sys:%block-search-eq function 30
sys:%block-store-cdr-and-contents function 30
sys:%block-store-tag-and-polnter function 30
sys:cdr-next variable 27
sys:cdr-nll variable 27
sys:cdr-normal variable 27
sys:%change-list-to-cons function 20
sys:clock-function-list variable 88
sys:complled-functlon-area variable 124
sys:%data-type function 23
sys:*data-types* variable 20
sys:*dlsk-error-codes* constant 48
sys:%disk-error-devlce-check constant 48
sys:%dlsk-error-ecc constant 49
sys:%dlsk-error-mlsc constant 49
sys:%dlsk-error-not-ready constant 48
sys:%dlsk-error-overrun constant 49
sys:%dlsk-error-search constant 49
sys:%disk-error-seek constant 49
sys:%dlsk-error-select constant 48
sys:%dlsk-error-state-machlne constant 49
sys:dlsk-read function 44
sys:dlsk-wrlte function 44
sys:%%dpn-page-num constant 38
sys:%%dpn-unlt constant 38
sys:dtp-closure data type 18
sys:dtp-extended-number data type 18
sys:dtp-external-value-cell-polnter data type 18
sys:dtp-fix data type 18
sys:dtp-gc-forward data type 18
sys:dtp-header-forward data type 18
sys:dtp-Instance data type 18
sys:dtp-list data type 18
sys:dtp-Iocatlve data type 18
sys:dtp-null data type 18
sys:dtp-one-q-forward data type 18

July 1986

203

Index

sys:dtp-symbol data type 18
sys:%flnd-structure-extent function 24
sys:%flnd-structure-header function 23
sys:%flnd-structure-Ieader function 24
sys:%flnlsh-functlon-call function 31
sys:%flnlsh-functlon-call special form 31
sys:%flxnum function 20
sys:%flonum function 20
sys:%lnstance-fiavor function 20
sys:%make-polnter function 23
sys:%make-polnter-offset function 23
sys:make-raster-stack-array function 14
sys:make-stack-array function 14
sys:page-In-area function 34
sys:page-In-array function 33
sys:page-In-reglon function 34
sys:page-In-structure function 33
sys:page-In-words function 33
sys:page-out-area function 35
sys:page-out-array function 34
sys:page-out-reglon function 35
sys:page-out-structure function 34
sys:page-out-words function 34
sys:%p-cdr-code function 29
sys:%p-contents-as-Iocatlve function 27
sys:%p-contents-as-Iocatlve-offset function 27
sys:%p-contenls-offset function 27
sys:%p-data-type function 29
sys:%p-dpb function 29
sys:%p-dpb-offset function 29
sys:%p-Idb function 28
sys:%p-Idb-offset function 29
sys:pname-area variable 124
sys:%polnter function 23
sys:%polnter-dlfference function 23
sys:%polnter-Iessp function 23
sys:%polnterp function 22
sys:%polnter-type-p function 22
sys:%pop function 32
sys:%p-polnter function 29
sys:property-list-area variable 124
sys:%p-store-cdr-and-contents function 28
sys:%p-store-cdr-code function 30
sys:%p-store-cdr-type-and-polnter function 28
sys:%p-store-contents function 28
sys:%p-slore-contents-offset function 28
sys:%p-store-data-type function 29
sys:%p-store-polnter function 29
sys:%p-store-tag-and-polnter function 28
sys:%p-structure-offset function 27
sys:%push function 32
sys:%%q-all-but-cdr-code variable 26
sys:%%q-all-but-polnter variable 26
sys:%%q-all-but-typed-polnter variable 26
sys:%%q-cdr-code variable 26
sys:%%q-data-type variable 26
sys:%%q-polnter variable 26
sys:%%q-polnter-withln-page variable 26
sys:%%q-typed-polnter variable 26
sys:%reglon-number function 123

204

Internals, Processes, and Storage Management July 1986

T

The
FEP File

Setting up GC Before Loading a Large
The Paging

Verifying a FEP File

3600-Family Disk

Allocating and freeing window
3600-Family Disk
Disk and FEP File

sys:%%reglon-scavenge-enable option for
make-area 121

sys:%%reglon-space-type option for
make-area 121

sys:reset-temporary-area function 125
sys:scheduler-stack-group variable 88
sys:sg-prevlous-stack-group function 6
sys:stack-area variable 124
sys:%stack-frame-polnter function 30
sys:%start-functlon-call function 31
sys:%start-functlon-call special form 31
sys:%structure-total-slze function 24
sys:symbol-area variable 124
sys:%unsynchronlzed-devlce-read function 30
sys:wlth-data-stack special form 14
sys:wlth-raster-stack-array special form 13
sys:wlth-stack-array special form 12
Sys: I-ucode; logical directory 60
sys:reset-temporary-area Feature 125
System 51
System 154
System 33
System 71
:system initialization list 79
:system option for add-Initialization 75
System Definitions and Constants 37
System Initialization Lists 79
System mode 37
system storage resources 157
System User Interface 37
System Utilities 70

T
Writing FEP Files to Tape 71

Disk event tasks 40
Disk event tasks currently allocated 41
Disk event tasks that can be concurrently allocated 41

termlnal-Io variable 7
Disk event tasks that can be concurrently allocated 41

Theory of Operation of the GC Facilities 137
Thrashing 144
Throwing 3
Timer Queues 113

Memory Mapping Tools 125
Buffering disk transfers 39

Disk Transfers 43
Grouping related disk transfers 45

Minimum disk latency for transfers 62
Synchronizing disk transfers 40

Overlapping disk transfers with computation 62
Translate relative file block number into disk

address 57
Transporter 139
:truename FEP file property 59

Garbage collection, turning it on and off 135
>DIR FEP file type 53

Data representation type 119
FEP FEP file type 53
FILE FEP file type 53

FLOD FEP file type 53

T

205

July 1986 Index

u

FSPT FEP file type 53
LOAD FEP file type 53

MIC FEP file type 53
PAGE FEP file type 53

sys:dtp-closure data type 18
sys:dtp-extended-number data type 1,8

sys:dtp-external-value-cell-polnter data type 18
sys:dtp-flx data type 18

sys:dtp-gc-forward data type 18
sys:dtp-header-forward data type 18

sys:dtp-Instance data type 18
sys:dtp-list data type 18

sys:dtp-Iocatlve data type 18
sys:dtp-null data type 18

sys:dtp-one-q-forward data type 18
sys:dtp-symbol data type 18

zl-user:dtp-array data type 18
zl-user:dtp-character data type 18

zl-user:dtp-complled-functlon data type 18
zl-user:dtp-elemenl-forward data type 18

zl-user:dtp-even-pc data type 18
zl-user:dtp-generlc-functlon data type 18

zl-user:dtp-header-I data type 18
zl-user:dtp-header-p data type 18

zl-user:dtp-Iexlcal-closure data type 18
zI-user:dtp-loglc-varlable data type 18

zl-user:dtp-monltor-forward data type 18
zl-user:dtp-nil data type 18

zl-user:dtp-odd-pc data type 18
:type option for zl:make-array 39

Destroying data type field 29
Extracting data type field 29

Data types 18
FEP File Types 53

Data Type Subprimitives 18

U
Strategy for Unattended Operation with the Garbage

Collector 154
Disk unit 37

Initializing a Disk Unit 70
Mounting a Disk Unit 71

Unit number 37
Unit number field in disk address 37
Unlock queue 93

sys: %unsynchronlzed-devlce-read function 30
sl: unwlre-dlsk-array function 45
sl: unwire-structure function 165
sl: unwire-words function 165

Setting up GC Before Loading a Large System 154
User-created initialization lists 79

3600-Family Disk System User Interface 37
User mode 37
using-resource special form 162

Disk and FEP File System Utilities 70
Peek utility for disk error meters 50

u

206

Internals, Processes, and Storage Management

v V
current-process variable 85, 86

default-cons-area variable 119, 120, 124
gc-on variable 135

inhibit-scheduling-flag variable 87
permanent-storage-area variable 124

room variable 155
sl :*automatically-recover-from-hung-dlsks* variable 47

sl:*count-dlsk-devlce-checks* variable 50
sl:*count-dlsk-ecc-errors* variable 50
sl:*count-disk-errors-Iost* variable 50

sl:*count-disk-hung-restarts* variable 50
si:*count-disk-not-ready* variable 50

sl:*count-disk-other-errors* variable 50
si:*count-disk-overruns* variable 50

si:*count-disk-search-errors* variable 50
sl:*count-disk-seek-errors* variable 50

si:*count-disk-select-errors* variable 50
sl :*count-disk-state-machine-errors* variable 50

si:*count-disk-stops-Iost* variable 51
si:*count-total-disk-errors* variable 50

si:default-quantum variable 100, 106
si:*default-sequence-break-interval* variable 89

si:disk-array-area variable 39
si:gc-area-reclaim-report variable 151

si :gc-fIip-inhibit-time-until-warning variable 154
sl :gc-flip-minimum-ratlo variable 152

si :gc-flip-ratlo variable 152
si:*gc-parameters* variable 134

si:gc-process-background-priority variable 153
si :gc-process-foreground-prlorlty variable 153

sl :gc-process-Immedlate-reclalm-prlority variable 153
sl :gc-reclaim-ephemeral-immedlately variable 153

sl :gc-reclaim-immediately variable 153
si :gc-reclaim-Immediately-if-necessary variable 153

sl:gc-report-stream variable 151
sl :gc-warnlng-Interval variable 152

sl :gc-warnlng-ratlo variable 151
sl:gc-warning-threshold variable 151

sl:lnitialization-keywords variable 77
si:lnitial-process variable 89

sl:*n-dlsk-retrles* variable 45,47
sl:pkg-area variable 124

sl:*slgnal-dlsk-errors-from-enqueue-p* variable 47
sys:active-processes variable 88

sys:all-processes variable 88
sys:area-list variable 123
sys:cdr-next variable 27

sys:cdr-nll variable 27
sys:cdr-normal variable 27

sys:clock-function-list variable 88
sys :com piled-fu nctlon-area variable 124

sys:*data-types* variable 20
sys:pname-area variable 124

sys:property-list-area variable 124
sys:%%q-all-but-cdr-code variable 26

sys:%%q-all-but-pointer variable 26
sys:%%q-all-but-typed-pointer variable 26

sys:%%q-cdr-code variable 26
sys:%%q-data-type variable 26

sys:%%q-pointer variable 26

July 1986

v

207

July 1986 Index

w

sys:%%q-polnter-wlthln-page variable 26
sys:%%q-typed-polnter variable 26

sys:scheduler-stack-group variable 88
sys:stack-area variable 124

sys:symbol-area variable 124
termlnal-Io variable 7

worklng-storage-area variable 124
Variable argument number without consing list 31

Dynamic variable binding 3
Special Variable Binding Subprimitive 31

Area Functions and Variables 120
Disk Error Variables 47

Global variables 3
Local variables 31
Logic variables 18

Memory word field variables 26
Scheduler Functions and Variables 86

sl: verify-fep-filesystem function 71
Verifying a FEP File System 71
Virtual memory 133

Available virtual memory 155

W
Wait 83
Wait-argument-list 85
:walt-argument-list method of sl:process 106

sl: walt-for-dlsk-done function 41
sl: walt-for-dlsk-event function 41
sl: walt-for-dlsk-event-task function 41

Wait-function 85
Process wait-function 83

:walt-function method of si:process 106
:warm initialization list 79
:warm option for add-initialization 75
:warm-boot-action method of si:process 107
:warm-boot-actlon option for make-process 96
:warm-boot-action option for

process-run-function 95
Warm boot initialization 75

Garbage collector warnings 148
:whostate method of si:process 106

Allocating and freeing window system storage resources 157
sl: wlre-consecutive-words function 165
sl: wire-disk-array function 45
sl: wire-structure function 165
sl: wire-words function 165

Wiring 165
Wiring a structure 43
Wiring Memory 165

sys: with-data-stack special form 14
si: with-dlsk-event-task special form 41
sl: with-ephemeral-migration-mode macro 150

Regions Within Areas 120
Variable argument number without consing list 31

without-Interrupts special form 86
sys: wlth-raster-stack-array special form 13
sys: with-stack-array special form 12

with-stack-Iist special form 11
with-stack-Iist* special form 11

sl: wlth-wlred-dlsk-array special form 45

w

208

Internals, Processes, and Storage Management July 1986

z

Memory word field variables 26
Check words 37

Forwarding Words in Memory 20
worklng-storage-area 119
worklng-storage-area variable 124

Optimize World command 133
Adding a Spare World Load as LMFS File Space 61

Using a Spare World Load for Paging 61
Disk write 43

:wrlte-data-map message 57

sl: wrlte-fep-Iabel function 70
Write-locked 60

:area option for
:Inltlal-value option for

:type option for

z
zl:assoc function 75
zl :choose-gc-parameters function 134
zl:gc-status function 148
zI :gc-status Output 148
zl :Iogln function 79
zl :Iogout function 79
zl :make-array 39
zl :make-array 39
zl :make-array 39
zl:make-array function 39
zl:process-sleep function 87
zl:progv special form 31
zI:symeval-ln-stack-group function 7
zI-user:always option for :reset 108
zl-user:dtp-array data type 18
zl-user:dtp-character data type 18
zl-user:dtp-complled-function data type 18
zl-user:dtp-element-forward data type 18
zl-user:dtp-even-pc data type 18
zl-user:dtp-generic-functlon data type 18
zI-user:dtp-header-1 data type 18
zI-user:dtp-header-p data type 18
zI-user:dtp-lexlcal-closure data type 18
zI-user:dtp-loglc-varlable data type 18
zl-user:dtp-monltor-forward data type 18
zI-user:dtp-nil data type 18
zI-user:dtp-odd-pc data type 18

z

