€ sun’

microsystems

SunOS Reference Manual

Part Number: 800-3827-10
Revision A of 27 March, 1990

INTRO(2) SYSTEM CALLS INTRO(2)

NAME
intro — introduction to system services and error numbers

SYNOPSIS
#include <errno.h>

DESCRIPTION
This section describes all of the system calls.

A 2V section number means one or more of the following:
o The man page documents System V behavior only.

o The man page documents default SunOS behavior and System V behavior as it differs from the default
behavior. These System V differences are presented under SYSTEM V section headers.

e The man page documents behavior compliant with IEEE Std 1003.1-1988 (POSIX.1).

Compile programs for the System V environment using /usr/Sbin/cc. Compile programs for the default
SunOS environment using /usr/bin/cc. The following man pages describe the various environments pro-
vided by Sun: lint(1V), ansic(7V), bsd(7), posix(7V), sunos(7V), svidii(7V), svidiii(7V), xopen(7V).

Most of these calls have one or more error returns. An error condition is indicated by an otherwise impos-
sible retum value. This is almost always ‘—1’; the individual descriptions specify the details. An error
code is also made available in the external variable errno. errno is not cleared on successful calls, so it
should be tested only after an error has been indicated. Note: several system calls overload the meanings
of these error numbers, and the meanings must be interpreted according to the type and circumstances of
the call. See ERROR CODES below for a list of system error codes.

As with normal arguments, all return codes and values from functions are of type integer unless otherwise
noted.

The rest of this man page is organized as follows:
SYSTEM PARAMETERS System limits, values and options.

DEFINITIONS System abstractions and services.

STREAMS Modular communication between software layers (tty system, networking).
SYSTEM V IPC System V shared memory, semaphores, and messages.

ERROR CODES A list of system error codes with descriptions.

LIST OF SYSTEM CALLS A list of all system calls with brief descriptions.

SYSTEM PARAMETERS

Sections 2 and 3 support a naming convention for those system parameters that may change from one
object to another (for example, path name length may is 255 on a UFS file system but may be 14 on an
NFS file system exported by a System V based server). Typically, the system has to be queried (using
pathconf(2V), fpathconf(), or sysconf(2V)) to retrieve the parameter of interest. The parameters have
conceptual names such as PATH_MAX. These names are defined in header files if and only if they are
invariant across all file systems and releases of the operating system, that is, very rarely. Because they may
be defined and/or available from the system calls, there have to be separate names for the parameters and
their values. The notation {PATH_MAX]} denotes the value of the parameter PATH_MAX. Do not confuse
this with_PC_PATH_MAX, the name that is passed to the system call to retrieve the value:

maxpathlen = pathconf(".", PC_PATH_MAX);

See pathconf(2V), and sysconf(2V) for further information about these parameters.

Sun Release 4.1 Last change: 21 January 1990 681

INTRO(2) SYSTEM CALLS INTRO (2)

DEFINITIONS
Controlling Terminal
A terminal that is associated with a session. Each session may have at most one controlling terminal; a ter-
minal may be the controlling terminal of at most one session. The controlling terminal is used to direct sig-
nals (such as interrupts and job control signals) to the appropriate processes by way of the tty’s process
group. Controlling terminals are assigned when a session leader opens a terminal file that is not currently a
controlling terminal.

Descriptor
An integer assigned by the system when a file is referenced by open(2V), dup(2V), or pipe(2V) or a socket
is referenced by socket(2) or socketpair(2) that uniquely identifies an access path to that file or socket
from a given process or any of its children.

Directory
A directory is a special type of file that contains entries that are references to other files. Directory entries
are called links. By convention, a directory contains at least two links, .’ and ‘..’, referred to as dot and
dot-dot respectively. Dot refers to the directory itself and dot-dot refers to its parent directory.

Effective User ID, Effective Group ID, and Access Groups
Access to system resources is governed by three values: the effective user ID, the effective group ID, and
the supplementary group ID.

The effective user ID and effective group ID are initially the process’s real user ID and real group ID
respectively. Either may be modified through execution of a set-user-ID or set-group-ID file (possibly by
one of its ancestors) (seec execve(2V)).

The supplementary group ID are an additional set of group ID’s used only in determining resource accessi-
bility. Access checks are performed as described below in File Access Permissions.

File Access Permissions
Every file in the file system has a set of access permissions. These permissions are used in determining
whether a process may perform a requested operation on the file (such as opening a file for writing).
Access permissions are established at the time a file is created. They may be changed at some later time
through the chmod(2V) call.

File access is broken down according to whether a file may be: read, written, or executed. Directory files
use the execute permission to control if the directory may be searched.

File access permissions are interpreted by the system as they apply to three different classes of users: the
owner of the file, those users in the file’s group, anyone else. Every file has an independent set of access
permissions for each of these classes. When an access check is made, the system decides if permission
should be granted by checking the access information applicable to the caller.

Read, write, and execute/search permissions on a file are granted to a process if:
The process’s effective user ID is that of the super-user.

The process’s effective user ID matches the user ID of the owner of the file and the owner permis-
sions allow the access.

The process’s effective user ID does not match the user ID of the owner of the file, and either the
process’s effective group ID matches the group ID of the file, or the group ID of the file is in the
process’s supplementary group IDs, and the group permissions allow the access.

Neither the effective user ID nor effective group ID and supplementary group IDs of the process
match the corresponding user ID and group ID of the file, but the permissions for “other users”
allow access.

Otherwise, permission is denied.

682 Last change: 21 January 1990 Sun Release 4.1

INTRO(2) SYSTEM CALLS INTRO (2)

File Name
Names consisting of up to {NAME_MAX]} characters may be used to name an ordinary file, special file, or
directory.
These characters may be selected from the set of all ASCII character excluding \O (null) and the ASCH code
for / (slash). (The parity bit, bit 8, must be 0.)

Note: it is generally unwise to use *, 2, [, or] as part of file names because of the special meaning attached
to these characters by the shell. See sh(1). Although permitted, it is advisable to avoid the use of unprint-
able characters in file names.

Parent Process ID

A new process is created by a currently active process fork (2V). The parent process ID of a process is the
process ID of its creator.

Path Name and Path Prefix
A path name is a null-terminated character string starting with an optional slash (/), followed by zero or
more directory names separated by slashes, optionally followed by a file name. The total length of a path
name must be less than {PATH_MAX]} characters.

More precisely, a path name is a null-terminated character string constructed as follows:

<path-name >::=<file-name>| <path-prefix><file-name>| /
<path-prefix>::=<riprefix>| |<riprefix>
<riprefix>::=<dirname>/| <rtprefix><dirname>/
where <file-name> is a string of 1 to {NAME_MAX]} characters other than the ASCH slash and null, and

<dirname> is a string of 1 to {NAME_MAX]} characters (other than the ASCH slash and null) that names a
directory.

If a path name begins with a slash, the search begins at the root directory. Otherwise, the search begins at
the current working directory.

A slash, by itself, names the root directory. A dot (.) names the current working directory.

A null path name also refers to the current directory. However, this is not true of all UNIX systems. (On
such systems, accidental use of a null path name in routines that do not check for it may corrupt the current
working directory.) For portable code, specify the current directory explicitly using ‘"."’, rather than ‘""’.

Process Group ID
Each active process is a member of a process group that is identified by a positive integer called the process
group ID. This ID is the process ID of the group leader. This grouping permits the signaling of related
processes (see the description of killpg() on kill(2V)) and the job control mechanisms of csh(1). Process
groups exist from their creation until the last member is reaped (that is, a parent issued a call to wait(2V)).

Process ID

Each active process in the system is uniquely identified by a positive integer called a process ID. The range
of this ID is from 0 to MAXPID (see <sys/param.h>).

Real User ID and Real Group ID
Each user on the system is identified by a positive integer termed the real user ID.

Each user is also a member of one or more groups. One of these groups is distinguished from others and
used in implementing accounting facilities. The positive integer corresponding to this distinguished group
is termed the real group ID.

All processes have a real user ID and real group ID. These are initialized from the equivalent attributes of
the process that created it.

Sun Release 4.1 Last change: 21 January 1990 683

INTRO(2) SYSTEM CALLS INTRO (2)

Root Directory and Current Working Directory
Each process has associated with it a concept of a root directory and a current working directory for the
purpose of resolving path name searches. The root directory is used as the starting point for absolute path
name resolution. The current working directory is used as the starting point for relative path name resolu-
tion. A process’s root directory need not be (but typically is) the root directory of the root file system.

Session

Each process is a member of a session. A session is associated with each controlling terminal in the sys-
tem, such as login shells and windows. Each process is created in the session of its parent. A process may
alter its session using setsid(2V) if it is not already a session leader. The system supports session IDs. A
session leader is a process having process ID equal to process group ID equal to session ID. Only a session
leader may acquire a controlling terminal. In SunOS Release 4.1, processes are created in sessions by
init(8) and inetd (8C). Sessions are also created for processes that disassociate themselves from a control-
ling terminal using

ioctl(fd, TIOCNOTTY, 0)
or
setpgrp(mypid, 0) For more information about sessions, see setsid(2V).

Signal
Signals are used for notification of asynchronous events. Signals may directed to processes, process
groups, and other combinations of processes. Signals may be sent by a process or by the operating system.
Some signals may be caught. There is typically a default behavior on receipt if they are not caught. For
more information about signals, see signal(3V), kill(2V), sigvec(2), termio(4).

Sockets and Address Families
A socket is an endpoint for communication between processes, similar to the way a telephone is the end-
point of communication between humans. Each socket has queues for sending and receiving data.

Sockets are typed according to their communications properties. These properties include whether mes-
sages sent and received at a socket require the name of the partner, whether communication is reliable, the
format used in naming message recipients, etc.

Each instance of the system supports some collection of socket types; consult socket(2) for more informa-
tion about the types available and their properties.

Each instance of the system supports some number of sets of communications protocols. Each protocol set
supports addresses of a certain format. An Address Family is the set of addresses for a specific group of
protocols. Each socket has an address chosen from the address family in which the socket was created.

Special Processes
The processes with a process ID’s of 0, 1, and 2 are special. Process O is the scheduler. Process 1 is the ini-
tialization process init, and is the ancestor of every other process in the system. It is used to control the
process structure. Process 2 is the paging daemon.

Super-user
A process is recognized as a super-user process and is granted special privileges if its effective user ID is 0.

Tty Process Group
Each active process can be a member of a terminal group that is identified by a positive integer called the
tty process group ID. This grouping is used to arbitrate between multiple jobs contending for the same ter-
minal (see csh(1), and termio(4)), to direct signals (tty and job control) to the appropriate process group,
and to terminate a group of related processes upon termination of one of the processes in the group (see
exit(2V) and sigvec(2)).

684 Last change: 21 January 1990 Sun Release 4.1

INTRO (2) SYSTEM CALLS INTRO(2)

STREAMS
A set of kernel mechanisms that support the development of network services and data communication
drivers. It defines interface standards for character input/output within the kernel and between the kernel
and user level processes. The STREAMS mechanism is composed of utility routines, kernel facilities and a
set of data structures.

Stream
A stream is a full-duplex data path within the kernel between a user process and driver routines. The pri-
mary components are a stream head, a driver and zero or more modules between the stream head and
driver. A stream is analogous to a Shell pipeline except that data flow and processing are bidirectional.

Stream Head
In a stream, the stream head is the end of the stream that provides the interface between the stream and a
user process. The principle functions of the stream head are processing STREAMS-related system calls,
and passing data and information between a user process and the stream.

Driver
In a stream, the driver provides the interface between peripheral hardware and the stream. A driver can
also be a pseudo-driver, such as a multiplexor or emulator, and need not be associated with a hardware
device.

Module
A module is an entity containing processing routines for input and output data. It always exists in the mid-
dle of a stream, between the stream’s head and a driver. A module is the STREAMS counterpart to the
commands in a Shell pipeline except that a module contains a pair of functions which allow independent
bidirectional (downstream and upstream) data flow and processing.

Downstream
In a stream, the direction from stream head to driver.

Upstream
In a stream, the direction from driver to stream head.

Message
In a stream, one or more blocks of data or information, with associated STREAMS control structures. Mes-
sages can be of several defined types, which identify the message contents. Messages are the only means of
transferring data and communicating within a stream.

Message Queue
In a stream, a linked list of messages awaiting processing by a module or driver.

Read Queue
In a stream, the message queue in a module or driver containing messages moving upstream.

Write Queue
In a stream, the message queue in a module or driver containing messages moving downstream.

Multiplexor
A multiplexor is a driver that allows STREAMS associated with several user processes to be connected to a
single driver, or several drivers to be connected o a single user process. STREAMS does not provide a
general multiplexing driver, but does provide the facilities for constructing them, and for connecting multi-
plexed configurations of STREAMS,

SYSTEM V IPC
The SunOS system supports the System V IPC namespace. For information about shared memory, sema-
phores and messages see msgctl(2), msgget(2), msgop(2), semctl(2), semget(2), semop(2), shmctl(2),
shmget(2) and shmop(2).

Sun Release 4.1 Last change: 21 January 1990 685

INTRO(2) SYSTEM CALLS INTRO (2)

ERROR CODES
Each system call description attempts to list all possible error numbers. The following is a complete list of
the error numbers and their names as given in <errno.h>.

E2BIG 7 Arg list too long
An argument list longer than 1,048,576 bytes is presented to execve(2V) or a routine that called
execve().

EACCES 13 Permission denied
An attempt was made to access a file in a way forbidden by the protection system.

EADDRINUSE 48 Address already in use
Only one usage of each address is normally permitted.

EADDRNOTAVAIL 49 Can’t assign requested address
Normally results from an attempt to create a socket with an address not on this machine.

EADYV 83 Advertise error
An attempt was made to advertise a resource which has been advertised already, or to stop the
RFS while there are resources still advertised, or to force unmount a resource when it is still
advertised. This error is RFS specific.

EAFNOSUPPORT 47 Address family not supported by protocol family
An address incompatible with the requested protocol was used. For example, you should not
necessarily expect to be able to use PUP Internet addresses with ARPA Internet protocols.

EAGAIN 11 No more processes
A fork(2V) failed because the system’s process table is full or the user is not allowed to create
any more processes, or a system call failed because of insufficient resources.

EALREADY 37 Operation already in progress
An operation was attempted on a non-blocking object that already had an operation in progress.

EBADF 9 Bad file number
Either a file descriptor refers to no open file, or a read (respectively, write) request is made to a file
that is open only for writing (respectively, reading).

EBADMSG 76 Not a data message
During a read(2V), getmsg(2), or ioctl(2) I_RECVFD system call to a STREAMS device, some-
thing has come to the head of the queue that cannot be processed. That something depends on the
system call
read(2V) control information or a passed file descriptor.
getmsg(2) passed file descriptor.
ioctl(2) control or data information.

EBUSY 16 Device busy
An attempt was made to mount a file system that was already mounted or an attempt was made to
dismount a file system on which there is an active file (open file, mapped file, current directory, or
mounted-on directory).

ECHILD 10 No children
A wait(2V) was executed by a process that had no existing or unwaited-for child processes.

ECOMM 85 Communication error on send
An attempt was made to send messages to a remote machine when no virtual circuit could be
found. This error is RFS specific.

ECONNABORTED 53 Software caused connection abort
A connection abort was caused internal to your host machine.

ECONNREFUSED 61 Connection refused
No connection could be made because the target machine actively refused it. This usually results
from trying to connect to a service that is inactive on the foreign host.

686 Last change: 21 January 1990 Sun Release 4.1

INTRO(2) SYSTEM CALLS INTRO (2)

ECONNRESET 54 Connection reset by peer
A connection was forcibly closed by a peer. This normally results from the peer executing a shut-
down(2) call.

EDEADLK 78 Deadlock situation detected/avoided
An attempt was made to lock a system resource that would have resulted in a deadlock situation.

EDESTADDRREQ 39 Destination address required
A required address was omitted from an operation on a socket.

EDOM 33 Math argument
The argument of a function in the math library (as described in section 3M) is out of the domain of
the function.

EDQUOT 69 Disc quota exceeded
A write() to an ordinary file, the creation of a directory or symbolic link, or the creation of a
directory entry failed because the user’s quota of disk blocks was exhausted, or the allocation of
an inode for a newly created file failed because the user’s quota of inodes was exhausted.

EEXIST 17 File exists
An existing file was mentioned in an inappropriate context, for example, link(2V).

EFAULT 14 Bad address
The system encountered a hardware fault in attempting to access the arguments of a system call.

EFBIG 27 File too large
The size of a file exceeded the maximum file size (1,082,201,088 bytes).

EHOSTDOWN 64 Host is down
A socket operation failed because the destination host was down.

EHOSTUNREACH 65 Host is unreachable
A socket operation was attempted to an unreachable host.

EIDRM 77 Identifier removed
This error is returned to processes that resume execution due to the removal of an identifier.

EINPROGRESS 36 Operation now in progress
An operation that takes a long time to complete (such as a connect(2)) was attempted on a non-
blocking object (see ioctl(2)).

EINTR 4 Interrupted system call
An asynchronous signal (such as interrupt or quit) that the process has elected to catch occurred
during a system call. If execution is resumed after processing the signal, and the system call is not
restarted, it will appear as if the interrupted system call returned this error condition.

EINVAL 22 Invalid argument
A system call was made with an invalid argument; for example, dismounting a non-mounted file
system, mentioning an unknown signal in sigvec() or kill(), reading or writing a file for which
Iseek() has generated a negative pointer, or some other argument inappropriate for the call. Also
set by math functions, see intro(3).

EIO 5 1/O error
Some physical I/O error occurred. This error may in some cases occur on a call following the one
to which it actually applies.

EISCONN 56 Socket is already connected
A connect() request was made on an already connected socket; or, a sendto() or sendmsg()
request on a connected socket specified a destination other than the connected party.

EISDIR 21 Is a directory
An attempt was made to write on a directory.

Sun Release 4.1 Last change: 21 January 1990 687

INTRO (2) SYSTEM CALLS INTRO (2)

EISDIR 21 Is a directory
An attempt was made to write on a directory.

ELOOP 62 Too many levels of symbolic links
A path name lookup involved more than 20 symbolic links.

EMFILE 24 Too many open files
A process tried to have more open files than the system allows a process to have. The customary
configuration limit is 64 per process.

EMLINK 31 Too many links
An attempt was made to make more than 32767 hard links to a file.

EMSGSIZE 40 Message too long
A message sent on a socket was larger than the internal message buffer.

EMULTIHOP 87 Multihop attempted
An attempt was made to access remote resources which are not directly accessible. This error is
RFS specific.

ENAMETOOLONG 63 File name too long
A component of a path name exceeded 255 characters, or an entire path name exceeded 1024
characters.

ENETDOWN 50 Network is down
A socket operation encountered a dead network.

ENETRESET 52 Network dropped connection on reset
The host you were connected to crashed and rebooted.

ENETUNREACH 51 Network is unreachable
A socket operation was attempted to an unreachable network.

ENFILE 23 File table overflow
The system’s table of open files is full, and temporarily no more open() calls can be accepted.

ENOBUFS 55 No buffer space available
An operation on a socket or pipe was not performed because the system lacked sufficient buffer
space.

ENODEV 19 No such device
An attempt was made to apply an inappropriate system call to a device (for example, an attempt to
read a write-only device) or an attempt was made to use a device not configured by the system.

ENOENT 2 No such file or directory
This error occurs when a file name is specified and the file should exist but does not, or when one
of the directories in a path name does not exist.

ENOEXEC 8 Exec format error
A request is made to execute a file which, although it has the appropriate permissions, does not
start with a valid magic number (see a.out(5)).

ENOLCK 79 No locks available
A system-imposed limit on the number of simuitaneous file and record locks was reached and no
more were available at that time.

ENOLINK 82 Link has be severed
The link (virtual circuit) connecting to a remote machine is gone. This error is RES specific.

Last change: 21 January 1990 Sun Release 4.1

INTRO(2) SYSTEM CALLS INTRO (2)

ENOMEM 12 Not enough memory
During an execve(2V), sbrk(), or brk(2), a program asks for more address space or swap space
than the system is able to supply, or a process size limit would be exceeded. A lack of swap space
is normally a temporary condition; however, a lack of address space is not a temporary condition.
The maximum size of the text, data, and stack segments is a system parameter. Soft limits may be
increased to their corresponding hard limits.

ENOMSG 75 No message of desired type
An attempt was made to receive a message of a type that does not exist on the specified message
queue; see msgop(2).

ENONET 80 Machine is not on the network
A attempt was made to advertise, unadvertise, mount, or unmount remote resources while the
machine has not done the proper startup to connect to the network. This error is Remote File
Sharing (RFS) specific.

ENOPROTOOPT 42 Option not supported by protocol
A bad option was specified in a setsockopt() or getsockopt(2) call.

ENOSPC 28 No space left on device
A write() to an ordinary file, the creation of a directory or symbolic link, or the creation of a
directory entry failed because no more disk blocks are available on the file system, or the alloca-
tion of an inode for a newly created file failed because no more inodes are available on the file
system.

ENOSR 74 Out of stream resources
During a STREAMS open(2V), either no STREAMS queues or no STREAMS head data structures
were available.

ENOSTR 72 Not a stream device
A putmsg(2) or getmsg(2) system call was attempted on a file descriptor that is not a STREAMS
device.

ENOSYS 90 Function not implemented
An attempt was made to use a function that is not available in this implementation.
ENOTBLK 15 Block device required
A file that is not a block device was mentioned where a block device was required, for example, in
mount(2V).
ENOTCONN 57 Socket is not connected
An request to send or receive data was disallowed because the socket is not connected.

ENOTDIR 20 Not a directory
A non-directory was specified where a directory is required, for example, in a path prefix or as an
argument to chdir(2V).

ENOTEMPTY 66 Directory not empty
An attempt was made to remove a directory with entries other than ‘&.’ and ‘&.|.” by performing
a rmdir() system call or a rename() system call with that directory specified as the target direc-
tory.

ENOTSOCK 38 Socket operation on non-socket
Self-explanatory.

ENOTTY 25 Inappropriate ioctl for device
The code used in an ioctl() call is not supported by the object that the file descriptor in the call
refers to.

ENXIO 6 No such device or address

1/0 on a special file refers to a subdevice that does not exist, or beyond the limits of the device. It
may also occur when, for example, a tape drive is not on-line or no disk pack is loaded on a drive.

Sun Release 4.1 Last change: 21 January 1990 689

INTRO(2) SYSTEM CALLS INTRO (2)

690

EOPNOTSUPP 45 Operation not supported on socket)
For example, trying to accept a connection on a datagram socket.

EPERM 1 Not owner
Typically this error indicates an attempt to modify a file in some way forbidden except to its
owner or super-user. It is also returned for attempts by ordinary users to do things allowed only to
the super-user.

EPFNOSUPPORT 46 Protocol family not supported
The protocol family has not been configured into the system or no implementation for it exists.

EPIPE 32 Broken pipe
An attempt was made to write on a pipe or socket for which there is no process to read the data.
This condition normally generates a signal; the error is returned if the signal is caught or ignored.

EPROTO 86 Protocol error
Some protocol error occurred. This error is device specific, but is generally not related to a
hardware failure.

EPROTONOSUPPORT 43 Protocol not supported
The protocol has not been configured into the system or no implementation for it exists.

EPROTOTYPE 41 Protocol wrong type for socket
A protocol was specified that does not support the semantics of the socket type requested. For
example, you cannot use the ARPA Internet UDP protocol with type SOCK_STREAM.

ERANGE 34 Result too large
The value of a function in the math library (as described in section 3M) is unrepresentable within
machine precision.

EREMOTE 71 Too many levels of remote in path
An attempt was made to remotely mount a file system into a path that already has a remotely
mounted component.

EROFS 30 Read-only file system
An attempt to modify a file or directory was made on a file system mounted read-only.

ERREMOTE 81 Object is remote
An attempte was made to advertise a resource which is not on the local machine, or to
mount/unmount a device (or pathname) that is on a remote machine. This error is RFS specific.

ESHUTDOWN 58 Can’t send after socket shutdown
A request to send data was disallowed because the socket had already been shut down with a pre-
vious shutdown(2) call.

ESOCKTNOSUPPORT 44 Socket type not supported
The support for the socket type has not been configured into the system or no implementation for
it exists.

ESPIPE 29 Illegal seek
An Iseek() was issued to a socket or pipe. This error may also be issued for other non-seekable
devices.

ESRCH 3 No such process
The process or process group whose number was given does not exist, or any such process is
already dead.

ESRMNT 84 Srmount error
An attempt was made to stop RFS while there are resources still mounted by remote machines.
This error is RFS specific.

Last change: 21 January 1990 Sun Release 4.1

INTRO(2) SYSTEM CALLS INTRO (2)

ESTALE 70 Stale NFS file handle
An NFS client referenced a file that it had opened but that had since been deleted.

ETIME 73 Timer expired
The timer set for a STREAMS ioctl(2) call has expired. The cause of this error is device specific
and could indicate either a hardware or software failure, or perhaps a timeout value that is too
short for the specific operation. The status of the ioctl(2) operation is indeterminate.

ETIMEDOUT 60 Connection timed out
A connect request or an NFS request failed because the party to which the request was made did
not properly respond after a period of time. (The timeout period is dependent on the communica-
tion protocol.)

ETXTBSY 26 Text file busy

An attempt was made to execute a pure-procedure program that is currently open for writing, or
an attempt was made to open for writing a pure-procedure program that is being executed.

EUSERS 68 Too many users
An operation to read disk quota information for the user failed because the system quota table was
full.

EWOULDBLOCK 35 Operation would block
An operation that would cause a process to block was attempted on an object in non-blocking
mode (see ioctl(2)).

EXDEV 18 Cross-device link
A hard link to a file on another file system was attempted.

unused 0

SEE ALSO
brk(2), chdir(2V), chmod(2V), connect(2), dup(2V), execve(2V), exit(2V), fork(2V), getmsg(2), get-
sockopt(2), ioctl(2), Kkillpg(2), link(2V), mount(2V), msgctl(2), msgget(2), msgop(2), open(2V),
pipe(2V), putmsg(2), read(2V), semctl(2), semget(2), semop(2), getsockopt(2), shmctl(2), shmget(2),
shmop(2), shutdown(2), sigvec(2), socket(2), socketpair(2), wait(2V), csh(1), sh(1), intro(3), perror(3)
termio(4), a.out(5)

LIST OF SYSTEM CALLS
Name Appears on Page Description

accept accept(2) accept a connection on a socket

access access(2V) determine accessibility of file

acct acct(2V) turn accounting on or off

adjtime adjtime(2) correct the time to allow synchronization of the system clock
async_daemon nfssve(2) NFS daemons

audit audit(2) write a record to the audit log

auditon auditon(2) manipulate auditing

auditsvc auditsve(2) write audit records to specified file descriptor
bind bind(2) bind a name to a socket

brk brk(2) change data segment size

chdir chdir(2V) change current working directory

chmod chmod(2V) change mode of file

chown chown(2V) change owner and group of a file

chroot chroot(2) change root directory

close close(2V) delete a descriptor

connect connect(2) initiate a connection on a socket

creat creat(2V) create a new file

dup dup(2V) duplicate a descriptor

dup2 dup(2V) duplicate a descriptor

Qun Releace 4 1 Last chanee: 21 January 1990 691

INTRO(2)

692

execve

_exit
fchmod
fchown

fentl

flock

fork
fpathconf
fstat

fstatfs

fsync
ftruncate
getauid
getdents
getdirentries
getdomainname
getdtablesize
getegid
geteuid
getgid
getgroups
gethostid
gethostname
getitimer
getmsg
getpagesize
getpeername
getpgrp
getpid
getppid
getpriority
getrlimit
getrusage
getsockname
getsockopt
gettimeofday
getuid

ioctl

kill

kilipg

link

listen

Iseek

Istat

mctl
mincore
mkdir
mkfifo
mknod
mmap
mount
mprotect
msgctl

SYSTEM CALLS INTRO (2)
execve(2V) execute a file
exit(2V) terminate a process
chmod(2V) change mode of file
chown(2V) change owner and group of a file
fentl(2V) file control
flock(2) apply or remove an advisory lock on an open file
fork(2V) create a new process
pathconf(2V) query file system related limits and options
stat(2V) get file status
statfs(2) get file system statistics
fsync(2) synchronize a file’s in-core state with that on disk
truncate(2) set a file to a specified length
getauid(2) get and set user audit identity
getdents(2) gets directory entries in a filesystem independent format
getdirentries(2) gets directory entries in a filesystem independent format
getdomainname(2) get/set name of current domain
getdtablesize(2) get descriptor table size
getgid(2V) get group identity
getuid(2V) get user identity
getgid(2V) get group identity
getgroups(2V) get or set supplementary group IDs
gethostid(2) get unique identifier of current host
gethostname(2) get/set name of current host
getitimer(2) get/set value of interval timer
getmsg(2) get next message from a stream
getpagesize(2) get system page size
getpeername(2) get name of connected peer
getpgrp(2V) return or set the process group of a process
getpid(2V) get process identification
getpid(2V) get process identification
getpriority(2) get/set process nice value
getrlimit(2) control maximum system resource consumption
getrusage(2) get information about resource utilization
getsockname(2) get socket name
getsockopt(2) get and set options on sockets
gettimeofday(2) get or set the date and time
getuid(2V) get user identity
ioctl(2) control device
kill(2V) send a signal to a process or a group of processes
killpg(2) send signal to a process group
link(2V) make a hard link to a file
listen(2) listen for connections on a socket
Iseek(2V) move read/write pointer
stat(2V) get file status
mctl(2) memory management control
mincore(2) determine residency of memory pages
mkdir(2V) make a directory file
mknod(2V) make a special file
mknod(2V) make a special file
mmap(2) map pages of memory
mount(2V) mount file system
mprotect(2) set protection of memory mapping
msgctl(2) message control operations

Last change: 21 January 1990

Sun Release 4.1

INTRO(2)

msgget
msgop
msgrev
msgsnd
msync
munmap
nfssve
open
pathconf
pipe

poll

profil
ptrace
putmsg
quotactl
read
readlink
readv
reboot
recv
recvfrom
recvinsg
rename
rmdir
sbrk
select
semctl
semget
semop
send
sendmsg
sendto
setaudit
setauid
setdomainname
setgroups
sethostname
setitimer
setpgid
setpgrp
setpriority
setregid
setreuid
setrlimit
setsid
setsockopt
settimeofday
setuseraudit
sgetl
shmat
shmctl
shmdt
shmget

Sun Release 4.1

SYSTEM CALLS INTRO (2)
msgget(2) get message queue
msgop(2) message operations
msgop(2) message operations
msgop(2) message operations
msync(2) synchronize memory with physical storage
munmap(2) unmap pages of memory.
nfssve(2) NFS daemons
open(2V) open or create a file for reading or writing
pathconf(2V) query file system related limits and options
pipe(2V) create an interprocess communication channel
poll(2) I/O multiplexing
profil(2) execution time profile
ptrace(2) process trace
putmsg(2) send a message on a stream
quotactl(2) manipulate disk quotas
read(2V) read input
readlink(2) read value of a symbolic link
read(2V) read input
reboot(2) reboot system or halt processor
recv(2) receive a message from a socket
recv(2) receive a message from a socket
recv(2) receive a message from a socket
rename(2V) change the name of a file
rmdir(2V) remove a directory file
brk(2) change data segment size
select(2) synchronous 1I/O multiplexing
semctl(2) semaphore control operations
semget(2) get set of semaphores
semop(2) semaphore operations
send(2) send a message from a socket
send(2) send a message from a socket
send(2) send a message from a socket
setuseraudit(2) set the audit classes for a specified user ID
getauid(2) get and set user audit identity
getdomainname(2) get/set name of current domain
getgroups(2V) get or set supplementary group IDs
gethostname(2) get/set name of current host
getitimer(2) get/set value of interval timer
setpgid(2V) set process group 1D for job control
getpgrp(2V) return or set the process group of a process
getpriority(2) get/set process nice value
setregid(2) set real and effective group IDs
setreuid(2) set real and effective user IDs
getrlimit(2) control maximum system resource consumption
setsid(2V) create session and set process group ID
getsockopt(2) get and set options on sockets
gettimeofday(2) get or set the date and time
setuseraudit(2) set the audit classes for a specified user ID
sputl(2) access long integer data in a machine-independent fashion
shmop(2) shared memory operations
shmctl(2) shared memory control operations
shmop(2) shared memory operations
shmget(2) get shared memory segment identifier

Last change: 21 January 1990 693

INTRO(2)

694

shmop
shutdown
sigblock
sigmask
sigpause
sigpending
sigprocmask
sigsetmask
sigstack
sigsuspend
sigvec
socket
socketpair
sputl

stat

statfs
swapon
symlink
sync

syscall
sysconf

tell

truncate
umask
umount
uname
unlink
unmount
ustat

utimes
vadvise
vfork
vhangup
wait

wait3

waitd
waitpid
WEXITSTATUS
WIFEXITED
WIFSIGNALED
WIFSTOPPED
write

writev
WSTOPSIG
WTERMSIG

SYSTEM CALLS

shmop(2)
shutdown(2)
sigblock(2)
sigblock(2)
sigpause(2V)
sigpending(2V)
sigprocmask(2V)
sigsetmask(2)
sigstack(2)
sigpause(2V)
sigvec(2)
socket(2)
socketpair(2)
sputl(2)
stat(2V)
statfs(2)
swapon(2)
symlink(2)
sync(2)
syscall(2)
sysconf(2V)
Iseek(2V)
truncate(2)
umask(2V)
unmount(2V)
uname(2V)
unlink(2V)
unmount(2V)
ustat(2)
utimes(2)
vadvise(2)
vfork(2)
vhangup(2)
wait(2V)
wait(2V)
wait(2V)
wait(2V)
wait(2V)
wait(2V)
wait(2V)
wait(2V)
write(2V)
write(2V)
wait(2V)
wait(2V)

Last change: 21 January 1990

INTRO (2)
shared memory operations
shut down part of a full-duplex connection
block signals
block signals

automatically release blocked signals and wait for interrupt
examine pending signals

examine and change blocked signals

set current signal mask

set and/or get signal stack context

automatically release blocked signals and wait for interrupt
software signal facilities

create an endpoint for communication

create a pair of connected sockets

access long integer data in a machine-independent fashion
get file status

get file system statistics

add a swap device for interleaved paging/swapping

make symbolic link to a file

update super-block

indirect system call

query system related limits, values, options

move read/write pointer

set a file to a specified length

set file creation mode mask

remove a file system

get information about current system

remove directory entry

remove a file system

get file system statistics

set file times

give advice to paging system

spawn new process in a virtual memory efficient way
virtually ‘‘hangup’’ the current control terminal

wait for process to terminate or stop, examine returned statu
wait for process to terminate or stop, examine returned statu
wait for process to terminate or stop, examine returned statu
wait for process to terminate or stop, examine returned statu
wait for process to terminate or stop, examine returned statu
wait for process to terminate or stop, examine returned statu
wait for process to terminate or stop, examine returned statu
wait for process to terminate or stop, examine returned statu
write output

write output

wait for process to terminate or stop, examine returned statu
wait for process to terminate or stop, examine returned statu

Sun Release 4.1

ACCEPT(2) SYSTEM CALLS ACCEPT(2)

NAME
accept — accept a connection on a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int accept(s, addr, addrlen)
int s;

struct sockaddr *addr;

int *addrlen;

DESCRIPTION

The argument s is a socket that has been created with socket(2), bound to an address with bind(2), and is
listening for connections after a listen(2). accept() extracts the first connection on the queue of pending
connections, creates a new socket with the same properties of s and allocates a new file descriptor for the
socket. If no pending connections are present on the queue, and the socket is not marked as non-blocking,
accept() blocks the caller until a connection is present. If the socket is marked non-blocking and no pend-
ing connections are present on the queue, accept() returns an error as described below. The accepted
socket is used to read and write data to and from the socket which connected to this one; it is not used to
accept more connections. The original socket s remains open for accepting further connections.

The argument addr is a result parameter that is filled in with the address of the connecting entity, as known
to the communications layer. The exact format of the addr parameter is determined by the domain in
which the communication is occurring. The addrlen is a value-result parameter; it should initially contain
the amount of space pointed to by addr; on retumn it will contain the actual length (in bytes) of the address
returned. This call is used with connection-based socket types, currently with SOCK_STREAM.

It is possible to select(2) a socket for the purposes of doing an accept() by selecting it for read.

RETURN VALUES

accept() returns a non-negative descriptor for the accepted socket on success. On failure, it returns —1 and
sets errno to indicate the error.

ERRORS
EBADF The descriptor is invalid.
EFAULT The addr parameter is not in a writable part of the user address space.
ENOTSOCK The descriptor references a file, not a socket.

EOPNOTSUPP The referenced socket is not of type SOCK_STREAM.

EWOULDBLOCK The socket is marked non-blocking and no connections are present to be accepted.

SEE ALSO
bind(2), connect(2), listen(2), select(2), socket(2)

Sun Release 4.1 Last change: 21 January 1990 695

ACCESS (2V) SYSTEM CALLS ACCESS(2V)

NAME
access — determine accessibility of file

SYNOPSIS
#include <unistd.h>

int access(path, mode)

char *path;

int mode;
DESCRIPTION

path points to a path name naming a file. access() checks the named file for accessibility according to
mode, which is an inclusive or of the following bits:

R _OK test for read permission
W_OK test for write permission
X OK test for execute or search permission

The following value may also be supplied for mode:

F_OK test whether the directories leading to the file can be searched and the file
exists.

The real user ID and the supplementary group IDs (including the real group ID) are used in verifying per-
mission, so this call is useful to set-UID programs.

Notice that only access bits are checked. A directory may be indicated as writable by access(), but an
attempt to open it for writing will fail (although files may be created there); a file may look executable, but
execve() will fail unless it is in proper format.

RETURN VALUES
access() returns:

0 on success.
-1 on failure and sets errno to indicate the error.
ERRORS

EACCES Search permission is denied for a component of the path prefix of path.
The file access permissions do not permit the requested access to the file named by
path.

EFAULT path points outside the process’s allocated address space.

EINVAL An invalid value was specified for mode.

EIO An I/O error occurred while reading from or writing to the file system.

ELOOP Too many symbolic links were encountered in translating path.

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX]}.

A pathname component is longer than {NAME _MAX)} while
{_POSIX_NO_TRUNC} is in effect (see pathconf(2V)).

ENOENT The file named by path does not exist.

ENOTDIR A component of the path prefix of path is not a directory.

EROFS The file named by path is on a read-only file system and write access was
requested.

SYSTEM V ERRORS
In addtion to the above, the following may also occur:

ENOENT path points to an empty string.

696 Last change: 21 January 1990 Sun Release 4.1

ACCESS (2V) SYSTEM CALLS ACCESS (2V)

SEE ALSO
chmod(2V), stat(2V)

Sun Release 4.1 Last change: 21 January 1990 697

ACCT(2V) SYSTEM CALLS ACCT(2V)

NAME
acct — turn accounting on or off

SYNOPSIS
int acct (path)
char *path;

DESCRIPTION
acct() is used to enable or disable the process accounting. If process accounting is enabled, an accounting
record will be written on an accounting file for each process that terminates. Termination can be caused by
one of two things: an exit() call or a signal; see exit (2V) and sigvec(2). The effective user ID of the cal-
ling process must be super-user to use this call.
path points to a path name naming the accounting file. The accounting file format is given in acct(5).

The accounting routine is enabled if path is not a NULL pointer and no errors occur during the system call.
It is disabled if path is a NULL pointer and no errors occur during the system call.

If accounting is already turned on, and a successful acct() call is made with a non-NULL path, all subse-
quent accounting records will be written to the new accounting file.

SYSTEM V DESCRIPTION
If accounting is already turned on, it is an error to call acct() with a non-NULL path.

RETURN VALUES

acct() returns:
0 On SuUCCess.
-1 on failure and sets errno to indicate the error.
ERRORS
EACCES Search permission is denied for a component of the path prefix of path.
The file referred to by path is not a regular file.
EFAULT path points outside the process’s allocated address space.
EINVAL Support for accounting was not configured into the system.
EIO An I/O error occurred while reading from or writing to the file system.
ELOOP Too many symbolic links were encountered in translating the path name.

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX}.

A pathname component is longer than {NAME_MAX] (see sysconf(2V)) while
{_POSIX_NO_TRUNC} is in effect (see pathconf(2V)).

ENOENT The named file does not exist.
ENOTDIR A component of the path prefix of path is not a directory.
EPERM The caller is not the super-user.
EROFS The named file resides on a read-only file system.
SYSTEM V ERRORS
EBUSY path is non-NULL, and accounting is already turned on.
ENOENT path points to an empty string.
SEE ALSO

exit(2V), sigvec(2), acct(5), sa(8)

BUGS
No accounting records are produced for programs running when a crash occurs. In particular non-
terminating programs are never accounted for.

698 Last change: 21 January 1990 Sun Release 4.1

ACCT(2V) SYSTEM CALLS ACCT(2V)

NOTES
Accounting is automatically disabled when free space on the file system the accounting file resides on
drops below 2 percent; it is enabled when free space rises above 4 percent.

Sun Release 4.1 Last change: 21 January 1990 699

ADITIME (2) SYSTEM CALLS ADJTIME (2)

NAME

adjtime — correct the time to allow synchronization of the system clock

SYNOPSIS

#include <sys/time.h>

int adjtime(delta, olddelta)
struct timeval *delta;
struct timeval *olddelta;

DESCRIPTION

adjtime() adjusts the system’s notion of the current time, as returned by gettimeofday(2), advancing or
retarding it by the amount of time specified in the struct timeval (defined in <sys/time.h>) pointed (o by
delta.

The adjustment is effected by speeding up (if that amount of time is positive) or slowing down (if that
amount of time is negative) the system’s clock by some small percentage, generally a fraction of one per-
cent. Thus, the time is always a monotonically increasing function. A time correction from an earlier call
to adjtime() may not be finished when adjtime() is called again. If olddelta is not a NULL pointer, then
the structure it points to will contain, upon return, the number of microseconds still to be corrected from the
earlier call. If olddelta is a NULL pointer, the corresponding information will not be returned.

This call may be used in time servers that synchronize the clocks of computers in a local area network.
Such time servers would slow down the clocks of some machines and speed up the clocks of others to
bring them to the average network time.

Only the super-user may adjust the time of day.

The adjustment value will be silently rounded to the resolution of the system clock.

RETURN

A O return value indicates that the call succeeded. A —1 return value indicates an error occurred, and in this
case an error code is stored into the global variable errno.

ERRORS
EFAULT delta or olddelta points outside the process’s allocated address space.
olddelta points to a region of the process’ allocated address space that is not writable.
EPERM The process’s effective user ID is not that of the super-user.
SEE ALSO

700

date(1V), gettimeofday(2)

Last change: 21 January 1990 Sun Release 4.1

AUDIT (2) SYSTEM CALLS AUDIT (2)

NAME
audit — write a record to the audit log

SYNOPSIS
#include <sys/label.h>
#include <sys/audit.h>

int audit (record)
audit_record_t *record;
DESCRIPTION

The audit() system call is used to write a record to the system audit log file. The data pointed to by record
is written to the audit log file. The data should be a well-formed audit record as described by audit.log(5).
The kernel sets the time stamp value in the record and performs a minimal check on the data before writing
it to the audit log file.

Only the super-user may successfully execute this call.

RETURN VALUES
audit() returns:

0 on success.

-1 on failure and sets errno to indicate the error.

ERRORS
EFAULT record points outside the process’s allocated address space.

EINVAL The length specified in the audit record is too short, or more than MAXAUDITDATA.
EPERM The process’s effective user ID is not super-user.

SEE ALSO
auditsve(2), getauid(2), setuseraudit(2), audit_args(3), audit.log(5), auditd(8)

Sun Release 4.1 Last change: 21 January 1990 701

AUDITON(2) SYSTEM CALLS AUDITON(2)

NAME
auditon — manipulate auditing
SYNOPSIS

#include <sys/label.h>
#include <sys/audit.h>

int auditon (condition)
int condition;

DESCRIPTION
The auditon() system call sets system auditing to the requested condition if and only if the current state of
auditing allows that transition. Legitimate values for condition are:

AUC_UNSET on/off has not been decided yet
AUC_AUDITING auditing is to be done
AUC_NOAUDIT auditing is not to be done

The permitted transitions are:

e Any condition may be changed back to itself.

e AUC_UNSET may be changed to AUC_AUDITING or AUC_NOAUDIT.
e AUC_AUDITING may be changed to AUC_NOAUDIT.

e AUC_NOAUDIT may be changed to AUC_AUDITING.

Once changed, it is not possible to get back to AUC_UNSET.

Only the super-user may successfully execute this call.

RETURN VALUES
auditon() retumns the old audit condition value on success. On failure, it returns —1 and sets errno to indi-
cate the error.
ERRORS
EINVAL The condition specified is outside the range of valid values.
The current condition precludes the requested change.
EPERM Neither of the process’s effective or real user ID is super-user.
SEE ALSO

audit(2), setuseraudit(2)

702 Last change; 21 January 1990 Sun Release 4.1

AUDITSVC(2) SYSTEM CALLS AUDITSVC(2)

NAME
auditsvc — write audit records to specified file descriptor

SYNOPSIS
int auditsvc(fd, limit)
int fd;
int limit;

DESCRIPTION
The auditsve() system call specifies the audit log file to the kernel. The kernel writes audit records to this
file until an exceptional condition occurs and then the call returns. The parameter fd is a file descriptor that
identifies the audit file. Programs should open this file for writing before calling auditsve(). The parame-
ter limit specifies a value between 0 and 100, instructing auditsve() to return when the percentage of free
disk space on the audit filesystem drops below this limit. Thus, the invoking program can take action to
avoid running out of disk space. The auditsvc() system call does not return until one of the following con-
ditions occurs:

e The process receives a signal that is not blocked or ignored.

e An error is encountered writing to the audit log file.

e The minimum free space (as specified by limit), has been reached.

Only processes with a real or effective user ID of super-user may execute this call successfully.

RETURN VALUES
auditsvce() returns only on an error.

ERRORSEAGAIN The descriptor referred to a stream, was marked for System V-style non-blocking 1/0,

and no data could be written immediately.

EBADF fd is not a valid descriptor open for writing.

EBUSY A second process attempted to perform this call.
A second process attemnpted to perform this call.

EDQUOT The user’s quota of disk blocks on the file system containing the file has been exhausted.
Audit filesystem space is below the specified limit.

EFBIG An attempt was made to write a file that exceeds the process’s file size limit or the max-
imum file size.

EINTR The call is forced to terminate prematurely due to the arrival of a signal whose

SV_INTERRUPT bit in sv_flags is set (see sigvec(2)). signal(3V), in the System V
compatibility library, sets this bit for any signal it catches.

EINVAL Auditing is disabled (seec auditon(2)).
fd does not refer to a file of an appropriate type. Regular files are always appropriate.

EIO An I/O error occurred while reading from or writing to the file system.
ENOSPC There is no free space remaining on the file system containing the file.
ENXIO A hangup occurred on the stream being written to.
EPERM The process’s effective or real user ID is not super-user.
EWOULDBLOCK The file was marked for 4.2BSD-style non-blocking I/O, and no data could be written
immediately.
SEE ALSO

audit(2), auditon(2), sigvec(2), signal(3V), audit.log(5), auditd(8)

Sun Release 4.1 Last change: 21 January 1990 703

BIND (2) SYSTEM CALLS BIND (2)

NAME
bind — bind a name to a socket

SYNOPSIS
ftinclude <sys/types.h>
#include <sys/socket.h>

int bind(s, name, namelen)
int s;

struct sockaddr *name;
int namelen;

DESCRIPTION
bind() assigns a name to an unnamed socket. When a socket is created with socket(2) it exists in a name
space (address family) but has no name assigned. bind() requests that the name pointed to by name be
assigned to the socket.

RETURN VALUES
bind() returns:

0 on Success. .
-1 on failure and sets errno to indicate the error.
ERRORS

EACCES The requested address is protected, and the current user has inadequate permission
to access it.

EADDRINUSE The specified address is already in use.

EADDRNOTAVAIL The specified address is not available from the local machine.

EBADF s is not a valid descriptor.

EFAULT The name parameter is not in a valid part of the user address space.

EINVAL namelen is not the size of a valid address for the specified address family.
The socket is already bound to an address.

ENOTSOCK s is a descriptor for a file, not a socket.

The following errors are specific to binding names in the UNIX domain:

EACCES Search permission is denied for a component of the path prefix of the path name in
name.

EIO An /O error occurred while making the directory entry or allocating the inode.

EISDIR A null path name was specified.

ELOOP Too many symbolic links were encountered in translating the path name in name.

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX]}.

A pathname component is longer than {NAME_MAX]} (see sysconf(2V)) while
{_POSIX_NO_TRUNC} is in effect (see pathconf(2V)).

ENOENT A component of the path prefix of the path name in name does not exist.
ENOTDIR A component of the path prefix of the path name in name is not a directory.
EROFS The inode would reside on a read-only file system.

SEE ALSO

connect(2), getsockname(2), listen(2), socket(2), unlink(2V)

704 Last change: 21 January 1990 Sun Release 4.1

BIND (2) SYSTEM CALLS BIND (2)

NOTES
Binding a name in the UNIX domain creates a socket in the file system that must be deleted by the caller
when it is no longer nceded (using unlink(2V),

The rules used in name binding vary between communication domains. Consult the manual entries in sec-
tion 4 for detailed information.

Sun Release 4.1 Last change: 21 January 1990 705

BRK(2) SYSTEM CALLS BRK (2)

NAME

brk, sbrk — change data segment size

SYNOPSIS

#include <sys/types.h>

int brk(addr)
caddr_t addr;

caddr_t sbrk(incr)
intincr;

DESCRIPTION

brk() sets the system’s idea of the lowest data segment location not used by the program (called the break)
to addr (rounded up to the next multiple of the system’s page size).

In the alternate function sbrk(), incr more bytes are added to the program’s data space and a pointer to the
start of the new area is returned.

When a program begins execution using execve() the break is set at the highest location defined by the
program and data storage areas.

The getrlimit(2) system call may be used to determine the maximum permissible size of the data segment;
it will not be possible to set the break beyond the rlim_max value returned from a call to getrlimit(), that
is to say, “etext + rlim.rlim_max.” (See end(3) for the definition of etext().)

RETURN VALUES

brk() returns:
0 on suc<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>