
6sun®
• microsystems

SunOS Reference Manual

Part Numher: ~()O-3~Q7-1O

Revision A of 27 March, 1990

INTRO(2) SYSTEM CALLS INTRO(2)

NAME
intro - introduction to system services and error numbers

SYNOPSIS
#include <errno.h>

DESCRIPTION
This section describes all of the system calls.

A 2V section number means one or more of the following:

• The man page documents System V behavior only.

• The man page documents default SunOS behavior and System V behavior as it differs from the default
behavior. These System V differences are presented under SYSTEM V section headers.

• The man page documents behavior compliant with IEEE Std 1003.1-1988 (POSIX.l).

Compile programs for the System V environment using /nsr/Sbin/cc. Compile programs for the default
SunOS environment using /nsr/bin/cc. The following man pages describe the various environments pro­
vided by Sun: lint(l V), ansic(7V), bsd(7), posix(7V), sunos(7V), svidii(7V), svidiii(7V), xopen(7V).

Most of these calls have one or more error returns. An error condition is indicated by an otherwise impos­
sible return value. This is almost always '-1'; the individual descriptions specify the details. An error
code is also made available in the external variable errno. errno is not cleared on successful calls, sq it
should be tested only after an error has been indicated. Note: several system calls overload the meanings
of these error numbers, and the meanings must be interpreted according to the type and circumstances of
the call. See ERROR CODES below for a list of system error codes.

As with nonnal arguments, all return codes and values from functions are of type integer unless otherwise
noted.

The rest of this man page is organized as follows:

System limits, values and options.

System abstractions and services.

SYSTEM PARAMETERS

DEFINITIONS

STREAMS

SYSTEMVIPC

Modular communication between software layers (tty system, networking).

System V shared memory, semaphores, and messages.

ERROR CODES A list of system error codes with descriptions.

LIST OF SYSTEM CALLS A list of all system calls with brief descriptions.

SYSTEM PARAIYiETERS
Sections 2 and 3 support a naming convention for those system parameters that may change from one
object to another (for example, path name length may is 255 on a UPS file system but may be 14 on an
NFS file system exported by a System V based server). Typically, the system has to be queried (using
pathconf(2V), fpathconf(), or sysconf(2V» to retrieve the parameter of interest. The parameters have
conceptual names such as PATH_MAX. These names are defined in header files if and only if they are
invariant across all file systems and releases of the operating system, that is, very rarely. Because they may
be defined and/or available from the system calls, there have to be separate names for the parameters and
their values. The notation {PATH_MAX} denotes the value of the parameter PATH_MAX. Do not confuse
this with _PC_PATH_MAX, the name that is passed to the system call to retrieve the value:

maxpathlen = pathconf(" ." , _PC _PATH_MAX);

See pathconf(2V), and sysconf(2V) for further infonnation about these parameters.

Sun Release 4.1 Last change: 21 January 1990 681

INTRO(2) SYSTEM CALLS INTRO(2)

DEFINITIONS

682

Controlling Terminal
A terminal that is associated with a session. Each session may have at most one controlling tenninal; a ter­
minal may be the controlling terminal of at most one session. The controlling terminal is used to direct sig­
nals (such as interrupts and job control signals) to the appropriate processes by way of the tty's process
group. Controlling terminals are assigned when a session leader opens a terminal file that is not currently a
controlling terminal.

Descriptor
An integer assigned by the system when a file is referenced by open(2V), dup(2V), or pipe(2V) or a socket
is referenced by socket(2) or socketpair(2) that uniquely identifies an access path to that file or socket
from a given process or any of its children.

Directory
A directory is a special type of file that contains entries that are references to other files. Directory entries
are called links. By convention, a directory contains at least two links, '.' and' • .', referred to as dot and
dot-dot respectively. Dot refers to the directory itself and dot-dot refers to its parent directory.

Effective User ID, Effective Group ID, and Access Groups
Access to system resources is governed by three values: the effective user ID, the effective group ID, and
the supplementary group ID.

The effective user ID and effective group ID are initially the process's real user ID and real group ID
respectively. Either may be modified through execution of a set-user-ID or set-group-ID file (possibly by
one of its ancestors) (see execve(2V».

The supplementary group ID are an additional set of group lO's used only in determining resource accessi­
bility. Access checks are performed as described below in File Access Permissions.

File Access Permissions
Every file in the file system has a set of access permissions. These permissions are used in determining
whether a process may perform a requested operation on the file (such as opening a file for writing).
Access permissions are established at the time a file is created. They may be changed at some later time
through the chmod(2V) call.

File access is broken down according to whether a file may be: read, written, or executed. Directory files
use the execute permission to control if the directory may be searched.

File access permissions are interpreted by the system as they apply to three different classes of users: the
owner of the file, those users in the file's group, anyone else. Every file has an independent set of access
permissions for each of these classes. When an access check is made, the system decides if pennission
should be granted by checking the access information applicable to the caller.

Read, write, and execute/search permissions on a file are granted to a process if:

The process's effective user ID is that of the super-user.

The process's effective user ID matches the user ID of the owner of the file and the owner permis­
sions allow the access.

The process's effective user ID does not match the user ID of the owner of the file, and either the
process's effective group ID matches the group ill of the file, or the group ID of the file is in the
process's supplementary group IDs, and the group permissions allow the access.

Neither the effective user ID nor effective group ID and supplementary group IDs of the process
match the corresponding user ID and group ID of the file, but the permissions for "other users"
allow access.

Otherwise, permission is denied.

Last change: 21 January 1990 Sun Release 4.1

IN1RO(2) SYSTEM CALLS INTRO (2)

File Name

Names consisting of up to {NAME_MAX} characters may be used to name an ordinary file, special file, or
directory.

These characters may be selected from the set of all Ascn character excluding'D (null) and the Ascn code
for / (slash). (The parity bit, bit 8, must be 0.)

Note: it is generally unwise to use *, ?, [, or] as part of file names because of the special meaning attached
to these characters by the shell. See sh(l). Although permitted, it is advisable to avoid the use of unprint­
able characters in file names.

Parent Process ID

A new process is created by a currently active process fork (2V). The parent process 10 of a process is the
process ID of its creator.

Path Name and Path Prefix

A path name is a null-terminated character string starting with an optional slash (/), followed by zero or
more directory names separated by slashes, optionally followed by a file name. The total length of a path
name must be less than {PA TH _MAX} characters.

More precisely, a path name is a null-terminated character string constructed as follows:

<path-name >:: =<.file-name > I <path-prefix><.file-name> I /
<path-prefix>::=<rtprefix>I /<rtprefix>
<rtprefix>:: =<dirname >/ I <rtprefix><dirname>/

where <.file-name> is a string of 1 to {NAME_MAX} characters other than the ASCII slash and null, and
<dirname> is a string of 1 to {NAME_MAX} characters (other than the Ascn slash and null) that names a
directory.

If a path name begins with a slash, the search begins at the root directory. Otherwise, the search begins at
the current working directory.

A slash, by itself, names the root directory. A dot (.) names the current working directory.

A null path name also refers to the current directory. However, this is not true of all UNIX systems. (On
such systems, accidental use of a null path name in routines that do not check for it may corrupt the current
working directory.) For portable code, specify the current directory explicitly using'" ."', rather than ''''''.

Proces.4i Group ID

Each active process is a member of a process group that is identified by a positive integer called the process
group 10. This ID is the process ID of the group leader. This grouping permits the signaling of related
processes (see the description of killpg() on kill(2V») and the job control mechanisms of csh(1). Process
groups exist from their creation until the last member is reaped (that is, a parent issued a call to wait(2V».

ProcessID

Each active process in the system is uniquely identified by a positive integer called a process ID. The range
of this ID is from 0 to MAXPID (see <syslparam.h».

Real User ID and Real Group ID

Each user on the system is identified by a positive integer termed the real user ID.

Each user is also a member of one or more groups. One of these groups is distinguished from others and
used in implementing accounting facilities. The positive integer corresponding to this distinguished group
is termed the real group 10.

All processes have a real user ID and real group ID. These are initialized from the equivalent attributes of
the process that created it.

Sun Release 4.1 Last change: 21 January 1990 683

INTRO(2) SYSTEM CALLS INTRO(2)

684

Root Directory and Current Working Directory
Each process has associated with it a concept of a root directory and a current working directory for the
purpose of resolving path name searches. The root directory is used as the starting point for absolute path
name resolution. The current working directory is used as the starting point for relative path name resolu­
tion. A process's root directory need not be (but typically is) the root directory of the root file system.

Session
Each process is a member of a session. A session is associated with each controlling terminal in the sys­
tem, such as login shells and windows. Each process is created in the session of its parent. A process may
alter its session using setsid(2V) if it is not already a session leader. The system supports session IDs. A
session leader is a process having process ill equal to process group ill equal to session ID. Only a session
leader may acquire a controlling terminal. In SunOS Release 4.1, processes are created in sessions by
init(8) and inetd (8C). Sessions are also created for processes that disassociate themselves from a control­
ling terminal using

ioctl(fd, TIOCNOTTY, 0)

or

setpgrp(mypid, 0) For more information about sessions, see setsid(2V).

Signal
Signals are used for notification of asynchronous events. Signals may directed to processes, process
groups, and other combinations of processes. Signals may be sent by a process or by the operating system.
Some signals may be caught. There is typically a default behavior on receipt if they are not caught. For
more information about signals, see signal(3V), kilI(2V), sigvec(2), termio(4).

Sockets and Address Families
A socket is an endpoint for communication between processes, similar to the way a telephone is the end­
point of communication between humans. Each socket has queues for sending and receiving data.

Sockets are typed according to their communications properties. These properties include whether mes­
sages sent and received at a socket require the name of the partner, whether communication is reliable, the
format used in naming message recipients, etc.

Each instance of the system supports some collection of socket types; consult socket(2) for more informa­
tion about the types available and their properties.

Each instance of the system supports some number of sets of communications protocols. Each protocol set
supports addresses of a certain format. An Address Family is the set of addresses for a specific group of
protocols. Each socket has an address chosen from the address family in which the socket was created.

Special Processes
The processes with a process ID's of 0, 1, and 2 are special. Process 0 is the scheduler. Process 1 is the ini­
tialization process init, and is the ancestor of every other process in the system. It is used to control the
process structure. Process 2 is the paging daemon.

Super-user
A process is recognized as a super-user process and is granted special privileges if its effective user ID is o.

Tty Process Group
Each active process can be a member of a terminal group that is identified by a positive integer called the
tty process group ID. This grouping is used to arbitrate between multiple jobs contending for the same ter­
minal (see csh(I), and termio(4», to direct signals (tty and job control) to the appropriate process group,
and to terminate a group of related processes upon termination of one of the processes in the group (see
exit(2V) and sigvec(2».

Last change: 21 January 1990 Sun Release 4.1

INTRO(2) SYSTEM CALLS INTRO(2)

STREAMS

A set of kernel mechanisms that support the development of network services and data communication
drivers. It defines interface standards for character input/output within the kernel and between the kernel
and user level processes. The STREAMS mechanism is composed of utility routines, kernel facilities and a
set of data structures.

Stream
A stream is a full-duplex data path within the kernel between a user process and driver routines. The pri­
mary components are a stream head, a driver and zero or more modules between the stream head and
driver. A stream is analogous to a Shell pipeline except that data flow and processing are bidirectional.

Stream Head
In a stream, the stream head is the end of the stream that provides the interface between the stream and a
user process. The principle functions of the stream head are processing STREAMS-related system calls,
and passing data and information between a user process and the stream.

Driver
In a stream, the driver provides the interface between peripheral hardware and the stream. A driver can
also be a pseudo-driver, such as a multiplexor or emulator, and need not be associated with a hardware
device.

Module
A module is an entity containing processing routines for input and output data. It always exists in the mid­
dle of a stream, between the stream's head and a driver. A module is the STREAMS counterpart to the
commands in a Shell pipeline except that a module contains a pair of functions which allow independent
bidirectional (downstream and upstream) data flow and processing.

Downstream
In a stream, the direction from stream head to driver.

Upstream
In a stream, the direction from driver to stream head.

Message
In a stream, one or more blocks of data or information, with associated STREAMS control structures. Mes­
sages can be of several defined types, which identify the message contents. Messages are the only means of
transferring data and communicating within a stream.

Message Queue
In a stream, a linked list of messages awaiting processing by a module or driver.

Read Queue
In a stream, the message queue in a module or driver containing messages moving upstream.

Write Queue
In a stream, the message queue in a module or driver containing messages moving downstream.

Multiplexor
A multiplexor is a driver that allows STREAMS associated with several user processes to be connected to a
single driver, or several drivers to be connected to a single user process. STREAMS does not provide a
general multiplexing driver, but does provide the facilities for constructing them, and for connecting multi­
plexed configurations of STREAMS.

SYSTEMVIPC
The SunOS system supports the System V IPC namespace. For information about shared memory, sema­
phores and messages see msgctl(2), msgget(2), msgop(2), semctl(2) , semget(2), semop(2), shmctl(2),
shmget(2) and shmop(2).

Sun Release 4.1 Last change: 21 January 1990 685

INTRO(2) SYSTEM CALLS INTRO(2)

ERROR CODES

686

Each system call description attempts to list all possible error numbers. The following is a complete list of
the error numbers and their names as given in <errno.h>.

E2BIG 7 Arg list too long
An argument list longer than 1,048,576 bytes is presented to execve(2V) or a routine that called
execve().

EACCES 13 Permission denied
An attempt was made to access a file in a way forbidden by the protection system.

EADDRINUSE 48 Address already in use
Only one usage of each address is normally permitted.

EADDRNOTAVAIL 49 Can't assign requested address
Normally results from an attempt to create a socket with an address not on this machine.

EADV 83 Advertise error
An attempt was made to advertise a resource which has been advertised already, or to stop the
RFS while there are resources still advertised, or to force unmount a resource when it is still
advertised. This error is RFS specific.

EAFNOSUPPORT 47 Address family not supported by protocol family
An address incompatible with the requested protocol was used. For example, you should not
necessarily expect to be able to use PUP Internet addresses with ARPA Internet protocols.

EAGAIN 11 No more processes
A fork(2V) failed because the system's process table is full or the user is not allowed to create
any more processes, or a system call failed because of insufficient resources.

EALREADY 37 Operation already in progress
An operation was attempted on a non-blocking object that already had an operation in progress.

EBADF 9 Bad file number
Either a file descriptor refers to no open file, or a read (respectively, write) request is made to a file
that is open only for writing (respectively, reading).

EBADMSG 76 Not a data message
During a read(2V), getmsg(2), or ioctl(2) CRECVFD system call to a STREAMS device, some­
thing has come to the head of the queue that cannot be processed. That something depends on the
system call

read(2V) control information or a passed file descriptor.
getmsg(2) passed file descriptor.
ioctl(2) control or data information.

EBUSY 16 Device busy
An attempt was made to mount a file system that was already mounted or an attempt was made to
dismount a file system on which there is an active file (open file, mapped file, current directory, or
mounted-on directory).

ECHILD 10 No children
A wait(2V) was executed by a process that had no existing or unwaited-for child processes.

ECOMM 85 Communication error on send
An attempt was made to send messages to a remote machine when no virtual circuit could be
found. This error is RFS specific.

ECONNABORTED 53 Software caused connection abort
A connection abort was caused internal to your host machine.

ECONNREFUSED 61 Connection refused
No connection could be made because the target machine actively refused it. This usually results
from trying to connect to a service that is inactive on the foreign host.

Last change: 21 January 1990 Sun Release 4.1

INTRO(2) SYSTEM CALLS INTRO(2)

ECONNRESET 54 Connection reset by peer
A connection was forcibly closed by a peer. This normally results from the peer executing a shut­
down(2) call.

EDEADLK 78 Deadlock situation detected/avoided
An attempt was made to lock a system resource that would have resulted in a deadlock situation.

EDEST ADDRREQ 39 Destination address required
A required address was omitted from an operation on a socket.

ED OM 33 Math argument
The argument of a function in the math library (as described in section 3M) is out of the domain of
the function.

EDQUOT 69 Disc quota exceeded
A write() to an ordinary file, the creation of a directory or symbolic link, or the creation of a
directory entry failed because the user's quota of disk blocks was exhausted, or the allocation of
an inode for a newly created file failed because the user's quota of inodes was exhausted.

EEXIST 17 File exists
An existing file was mentioned in an inappropriate context, for example, link(2V).

EFAUL T 14 Bad address
The system encountered a hardware fault in attempting to access the arguments of a system call.

EFBIG 27 File too large
The size of a file exceeded the maximum file size (1,082,201,088 bytes).

EHOSTDOWN 64 Host is down
A socket operation failed because the destination host was down.

EHOSTUNREACH 65 Host is unreachable
A socket operation was attempted to an unreachable host.

EIDRM 77 Identifier removed
This error is returned to processes that resume execution due to the removal of an identifier.

EINPROGRESS 36 Operation now in progress
An operation that takes a long time to complete (such as a connect(2» was attempted on a non­
blocking object (see ioctl(2».

EINTR 4 Interrupted system call
An asynchronous signal (such as interrupt or quit) that the process has elected to catch occurred
during a system call. If execution is resumed after processing the signal, and the system call is not
restarted, it will appear as if the interrupted system call returned this error condition.

EINV AL 22 Invalid argument
A system call was made with an invalid argument; for example, dismounting a non-mounted file
system, mentioning an unknown signal in sigvec() or kill(), reading or writing a file for which
lseek() has generated a negative pointer, or some other argument inappropriate for the call. Also
set by math functions, see intro(3).

EIO 5 I/O error
Some physical I/O error occurred. This error may in some cases occur on a call following the one
to which it actually applies.

EISCONN 56 Socket is already connected
A connect() request was made on an already connected socket; or, a sendto() or sendmsg()
request on a connected socket specified a destination other than the connected party.

EISDIR 21 Is a directory
An attempt was made to write on a directory.

Sun Release 4.1 Last change: 21 January 1990 687

IN1RO(2) SYSTEM CALLS INTRO(2)

688

EISDIR 21 Is a directory
An attempt was made to write on a directory.

ELooP 62 Too many levels of symbolic links
A path name lookup involved more than 20 symbolic links.

EMFILE 24 Too many open files
A process tried to have more open files than the system allows a process to have. The customary
configuration limit is 64 per process.

EMLINK 31 Too many links
An attempt was made to make more than 32767 hard links to a file.

EMSGSIZE 40 Message too long
A message sent on a socket was larger than the internal message buffer.

EMUL TIHOP 87 Multihop attempted
An attempt was made to access remote resources which are not directly accessible. This error is
RFS specific.

ENAMETOOLONG 63 File name too long
A component of a path name exceeded 255 characters, or an entire path name exceeded 1024
characters.

ENETDOWN 50 Network is down
A socket operation encountered a dead network.

ENETRESET 52 Network dropped connection on reset
The host you were connected to crashed and rebooted.

ENETUNREACH 51 Network is unreachable
A socket operation was attempted to an unreachable network.

ENFILE 23 File table overflow
The system's table of open files is full, and temporarily no more open() calls can be accepted.

ENOBUFS 55 No buffer space available
An operation on a socket or pipe was not performed because the system lacked sufficient buffer
space.

ENODEV 19 No such device
An attempt was made to apply an inappropriate system call to a device (for example, an attempt to
read a write-only device) or an attempt was made to use a device not configured by the system.

ENOENT 2 No such file or directory
This error occurs when a file name is specified and the file should exist but does not, or when one
of the directories in a path name does not exist

ENOEXEC 8 Exec format error
A request is made to execute a file which, although it has the appropriate permissions, does not
start with a valid magic number (see a.out(5».

ENOLCK 79 No locks available
A system-imposed limit on the number of simultaneous file and record locks was reached and no
more were available at that time.

ENOLINK 82 Link has be severed
The link (virtual circuit) connecting to a remote machine is gone. This error is RFS specific.

Last change: 21 January 1990 Sun Release 4.1

INTRO(2) SYSTEM CALLS INTRO(2)

ENOMEM 12 Not enough memory
During an execve(2V), sbrk(), or brk(2), a program asks for more address space or swap space
than the system is able to supply, or a process size limit would be exceeded. A lack of swap space
is normally a temporary condition; however, a lack of address space is not a temporary condition.
The maximum size of the text, data, and stack segments is a system parameter. Soft limits may be
increased to their corresponding hard limits.

ENOMSG 75 No message of desired type
An attempt was made to receive a message of a type that does not exist on the specified message
queue; see msgop(2).

ENONET 80 Machine is not on the network
A attempt was made to advertise, unadvertise, mount, or un mount remote resources while the
machine has not done the proper startup to connect to the network. This error is Remote File
Sharing (RFS) specific.

ENOPROTOOPT 42 Option not supported by protocol
A bad option was specified in a setsockopt() or getsockopt(2) call.

ENOSPC 28 No space left on device
A write() to an ordinary file, the creation of a directory or symbolic link, or the creation of a
directory entry failed because no more disk blocks are available on the file system. or the alloca­
tion of an inode for a newly created file failed because no more inodes are available on the file
system.

ENOSR 74 Out of stream resources
During a STREAMS open(2V), either no STREAMS queues or no STREAMS head data structures
were available.

ENOSTR 72 Nota stream device
A putmsg(2) or getmsg(2) system call was attempted on a file descriptor that is not a STREAMS
device.

ENOSYS 90 Function not implemented
An attempt was made to use a function that is not available in this implementation.

ENOTBLK 15 Block device required
A file that is not a block device was mentioned where a block device was required. for example. in
mount(2V).

ENOTCONN 57 Socket is not connected
An request to send or receive data was disallowed because the socket is not connected.

ENOTDIR 20 Not a directory
A non-directory was specified where a directory is required, for example. in a path prefix or as an
argument to cbdir(2V).

EN01EMPTY 66 Directory not empty
An attempt was made to remove a directory with entries other than '&.' and '&.1.' by performing
a rmdir() system call or a rename() system call with that directory specified as the target direc­
tory.

ENOTSOCK 38 Socket operation on non-socket
Self-explanatory .

ENOTIY 25 Inappropriate ioctl for device
The code used in an ioctl() call is not supported by the object that the file descriptor in the call
refers to.

ENXIO 6 No such device or address

Sun Release 4.1

I/O on a special file refers to a subdevice that does not exist, or beyond the limits of the device. It
may also occur when, for example. a tape drive is not on-line or no disk pack is loaded on a drive.

Last change: 21 January 1990 689

INTRO(2) SYSTEM CALLS INTRO(2)

690

EOPNOTSUPP 45 Operation not supported on socket
For example, trying to accept a connection on a datagram socket.

EPERM 1 Not owner
Typically this error indicates an attempt to modify a file in some way forbidden except to its
owner or super-user. It is also returned for attempts by ordinary users to do things allowed only to
the super-user.

EPFNOSUPPORT 46 Protocol family not supported
The protocol family has not been configured into the system or no implementation for it exists.

EPIPE 32 Broken pipe
An attempt was made to write on a pipe or socket for which there is no process to read the data.
This condition normally generates a signal; the error is returned if the signal is caught or ignored.

EPROTO 86 Protocol error
Some protocol error occurred. This error is device specific, but is generally not related to a
hardware failure.

EPROTONOSUPPORT 43 Protocol not supported
The protocol has not been configured into the system or no implementation for it exists.

EPROTOTYPE 41 Protocol wrong type for socket
A protocol was specified that does not support the semantics of the socket type requested. For
example, you cannot use the ARPA Internet UDP protocol with type SOCK_STREAM.

ERANGE 34 Result too large
The value of a function in the math library (as described in section 3M) is unrepresentable within
machine precision.

EREMOTE 71 Too many levels of remote in path
An attempt was made to remotely mount a file system into a path that already has a remotely
mounted component.

EROFS 30 Read-only file system
An attempt to modify a file or directory was made on a file system mounted read-only.

ERREMOTE 81 Object is remote
An attempte was made to advertise a resource which is not on the local machine, or to
mount/unmount a device (or pathname) that is on a remote machine. This error is RFS specific.

ESHUTDOWN 58 Can't send after socket shutdown
A request to send data was disallowed because the socket had already been shut down with a pre­
vious shutdown(2) call.

ESOCKTNOSUPPORT 44 Socket type not supported
The support for the socket type has not been configured into the system or no implementation for
it exists.

ESPIPE 29 Illegal seek
An Iseek() was issued to a socket or pipe. This error may also be issued for other non-seekable
devices.

ESRCH 3 No such process
The process or process group whose number was given does not exist, or any such process is
already dead.

ESRMNT 84 Srmount error
An attempt was made to stop RFS while there are resources still mounted by remote machines.
This error is RFS specific.

Last change: 21 January 1990 Sun Release 4.1

IN1RO(2) SYSTEM CALLS INTRO(2)

ESTALE 70 Stale NFS file handle
An NFS client referenced a file that it had opened but that had since been deleted.

ETlME 73 Timer expired
The timer set for a STREAMS ioctl(2) call has expired. The cause of this error is device specific
and could indicate either a hardware or software failure, or perhaps a timeout value that is too
short for the specific operation. The status of the ioctl(2) operation is indeterminate.

ETlMEDOUT 60 Connection timed out
A connect request or an NFS request failed because the party to which the request was made did
not properly respond after a period of time. (The timeout period is dependent on the communica­
tion protocol.)

ETXTBSY 26 Text file busy
An attempt was made to execute a pure-procedure program that is currently open for writing, or
an attempt was made to open for writing a pure-procedure program that is being executed.

EUSERS 68 Too many users
An operation to read disk quota information for the user failed because the system quota table was
full.

EWOULDBLOCK 35 Operation would block
An operation that would cause a process to block was attempted on an object in non-blocking
mode (see ioctl(2)).

EXDEV 18 Cross-device link
A hard link to a file on another file system was attempted.

unused 0

SEE ALSO
brk(2), chdir(2V), chmod(2V), connect(2), dup(2V), execve(2V), exit(2V), fork(2V). getmsg(2), get­
sockopt(2), ioctl(2) , killpg(2), lin k(2V) , mount(2V), msgctl(2), msgget(2), m sgop (2) , open(2V),
pipe(2V), putmsg(2), read(2V), semctl(2), semget(2), semop(2), getsockopt(2), shmctl(2), shmget(2),
shmop(2), shutdown(2), sigvec(2), socket(2), socketpair(2), wait(2V), csh(l), sh(l), intro(3), perror(3)
termio(4), a.out(S)

LIST OF SYSTEM CALLS
Name Appears on Page Description

accept
access
acct
adjtime
async _daemon
audit
auditon
auditsvc
bind
brk
chdir
chmod
chown
chroot
close
connect
creat
dup
dup2

accept(2)
access(2V)
acct(2V)
adjtime(2)
nfssvc(2)
audit(2)
aud iton (2)
auditsvc(2)
bind(2)
brk(2)
chdir(2V)
chmod(2V)
chown(2V)
chroot(2)
close (2V)
connect(2)
creat(2V)
dup(2V)
dup(2V)

accept a connection on a socket
determine accessibility of file
turn accounting on or off
correct the time to allow synchronization of the system clock
NFS daemons
write a record to the audit log
manipulate auditing
write audit records to specified file descriptor
bind a name to a socket
change data segment size
change current working directory
change mode of file
change owner and group of a file
change root directory
delete a descriptor
initiate a connection on a socket
create a new file
duplicate a descriptor
duplicate a descriptor

Last chan~e: 21 Januarv 1990 691

INTRO(2) SYSTEM CALLS INTRO(2)

execve execve(2V) execute a file
exit exit(2V) terminate a process

fchmod chmod(2V) change mode of file
fchown chown(2V) change owner and group of a file
fcntI fcntl(2V) file control
flock flock(2) apply or remove an advisory lock on an open file
fork fork(2V) create a new process
fpathconf pathconf(2V) query file system related limits and options
fstat stat(2V) get file status
fstatfs statfs(2) get file system statistics
fsync fsync(2) synchronize a file's in-core state with that on disk
ftruncate truncate(2) set a file to a specified length
getauid getauid(2) get and set user audit identity
getdents getdents(2) gets directory entries in a filesystem independent format
getdirentries getdirentries(2) gets directory entries in a filesystem independent format
getdomainname getdomainname(2) get/set name of current domain
getdtablesize getdtablesize(2) get descriptor table size
getegid getgid(2V) get group identity
geteuid getuid(2V) get user identity
getgid getgid(2V) get group identity
getgroups getgroups(2V) get or set supplementary group IDs
gethostid gethostid(2) get unique identifier of current host
gethostname gethostname(2) get/set name of current host
getitimer getitimer(2) get/set value of interval timer
getmsg getmsg(2) get next message from a stream
getpagesize getpagesize(2) get system page size
getpeername getpeername(2) get name of connected peer
getpgrp getpgrp(2V) return or set the process group of a process
getpid getpid(2V) get process identification
getppid getpid(2V) get process identification
getpriority getpriority(2) get/set process nice value
getrlimit getrlimit(2) control maximum system resource consumption
getrusage getrusage(2) get information about resource utilization
getsockname getsockname(2) get socket name
getsockopt getsockopt(2) get and set options on sockets
gettimeofday gettimeofday(2) get or set the date and time
getuid getuid(2V) get user identity
ioetl ioctl(2) control device
kill kill(2V) send a signal to a process or a group of processes
killpg killpg(2) send signal to a process group
link link(2V) make a hard link to a file
listen listen(2) listen for connections on a socket
lseek lseek(2V) move read/write pointer
Istat stat(2V) get file status
metl mctl(2) memory management control
mincore mincore(2) determine residency of memory pages
mkdir mkdir(2V) make a directory file
mkfifo mknod(2V) make a special file
mknod mknod(2V) make a special file
mmap mmap(2) map pages of memory
mount mount(2V) mount file system
mprotect mprotect(2) set protection of memory mapping
msgctl msgctl(2) message control operations

692 Last change: 21 January 1990 Sun Release 4.1

INTRO(2) SYSTEM CALLS INTRO(2)

msgget msgget(2) get message queue
msgop m sgop (2) message operations
msgrcv msgop(2) message operations
msgsnd msgop(2) message operations
msync msync(2) synchronize memory with physical storage
munmap munmap(2) unmap pages of memory.
nfssvc nfssvc(2) NFS daemons
open open(2V) open or create a file for reading or writing
patbconf patbconf(2V) query file system related limits and options
pipe pipe(2V) create an interprocess communication channel
poll poll(2) I/O multiplexing
profit profil(2) execution time profile
ptrace ptrace(2) process trace
putmsg putmsg(2) send a message on a stream
quotactl quotactl(2) manipUlate disk quotas
read read(2V) read input
readlink readlink(2) read value of a symbolic link
ready read(2V) read input
reboot reboot(2) reboot system or halt processor
recv recv(2) receive a message from a socket
recvfrom recv(2) receive a message from a socket
recvmsg recv(2) receive a message from a socket
rename rename(2V) change the name of a file
rmdir rmdir(2V) remove a directory file
sbrk brk(2) change data segment size
select select (2) synchronous I/O multiplexing
semctl semctl(2) semaphore control operations
semget semget(2) get set of semaphores
semop semop(2) semaphore operations
send send(2) send a message from a socket
sendmsg send(2) send a message from a socket
sendto send(2) send a message from a socket
setaudit setuseraudit(2) set the audit classes for a specified user ID
setauid getauid(2) get and set user audit identity
setdomainname getdomainname(2) get/set name of current domain
setgroups getgroups(2V) get or set supplementary group IDs
setbostname gethostname(2) get/set name of current host
setitimer getitimer(2) get/set value of interval timer
setpgid setpgid(2V) set process group ID for job control
setpgrp getpgrp(2V) return or set the process group of a process
setpriority getpriority(2) get/set process nice value
setregid setregid(2) set real and effective group IDs
setreuid setreuid(2) set real and effective user IDs
setrlimit getrlimit(2) control maximum system resource consumption
setsid setsid(2V) create session and set process group ID
setsockopt getsockopt(2) get and set options on sockets
settimeofday gettimeofday(2) get or set the date and time
setuseraudit setuseraudit(2) set the audit classes for a specified user ID
sgetl sputl(2) access long integer data in a machine-independent fashion
sbmat shmop(2) shared memory operations
sbmctl shmctl(2) shared memory control operations
sbmdt shmop(2) shared memory operations
sbmget shmget(2) get shared memory segment identifier

Sun Release 4.1 Last change: 21 January 1990 693

INTRO(2) SYSTEM CALLS INTRO(2)

shmop shmop(2) shared memory operations
shutdown shutdown(2) shut down part of a full-duplex connection
sigblock sigblock(2) block signals
sigmask sigblock(2) block signals
sigpause sigpause(2V) automatically release blocked signals and wait for interrupt
sigpending sigpending(2V) examine pending signals
sigprocmask sigprocmask(2V) examine and change blocked signals
sigsetmask sigsetmask(2) set current signal mask
sigstack sigstack(2) set and/or get signal stack context
sigsuspend sigpause(2V) automatically release blocked signals and wait for interrupt
sigvec sigvec(2) software signal facilities
socket socket(2) create an endpoint for communication
socketpair socketpair(2) create a pair of connected sockets
sputl sputJ(2) access long integer data in a machine-independent fashion
stat stat(2V) get file status
statfs statfs(2) get file system statistics
swapon swapon(2) add a swap device for interleaved paging/swapping
symlink symlink(2) make symbolic link to a file
sync sync(2) update super-block
syscall syscall(2) indirect system call
sysconf sysconf(2V) query system related limits, values, options
tell lseek(2V) move read/write pointer
truncate truncate(2) set a file to a specified length
umask umask(2V) set file creation mode mask
umount unmount(2V) remove a file system
uname uname(2V) get information about current system
unlink unlink(2V) remove directory entry
unmount unmount(2V) remove a file system
ustat ustat(2) get file system statistics
utimes utimes(2) set file times
vadvise vad vise (2) give advice to paging system
vfork vfork(2) spawn new process in a virtual memory efficient way
vhangup vhangup(2) virtually "hangup" the current control terminal
wait wait(2V) wait for process to terminate or stop, examine returned statu
wait3 wait(2V) wait for process to terminate or stop, examine returned statu
wait4 wait(2V) wait for process to terminate or stop, examine returned statu
waitpid wait(2V) wait for process to terminate or stop, examine returned statu
WEXITSTATUS wait(2V) wait for process to terminate or stop, examine returned statu
WIFEXITED wait(2V) wait for process to terminate or stop, examine returned statu
WIFSIGNALED wait(2V) wait for process to terminate or stop, examine returned statu
WIFSTOPPED wait(2V) wait for process to terminate or stop, examine returned statu
write write(2V) write output
writev write(2V) write output
WSTOPSIG wait(2V) wait for process to terminate or stop, examine returned statu
WTERMSIG wait(2V) wait for process to terminate or stop, examine returned statu

694 Last change: 21 January 1990 Sun Release 4.1

ACCEPT(2) SYSTEM CALLS ACCEPT(2)

NAME
accept - accept a connection on a socket

SYNOPSIS
#include <sysltypes.h>
#include <syslsocket.h>

int accept(s, addr, addrlen)
int s;
struct sockaddr *addr;
int *addrlen;

DESCRIPTION
The argument s is a socket that has been created with socket(2), bound to an address with bind(2), and is
listening for connections after a listen(2). accept() extracts the first connection on the queue of pending
connections, creates a new socket with the same properties of s and allocates a new file descriptor for the
socket If no pending connections are present on the queue, and the socket is not marked as non-blocking,
accept() blocks the caller until a connection is present. If the socket is marked non-blocking and no pend­
ing connections are present on the queue, accept() returns an error as described below. The accepted
socket is used to read and write data to and from the socket which connected to this one; it is not used to
accept more connections. The original socket s remains open for accepting further connections.

The argument addr is a result parameter that is filled in with the address of the connecting entity, as known
to the communications layer. The exact format of the addr parameter is determined by the domain in
which the communication is occurring. The addrlen is a value-result parameter; it should initially contain
the amount of space pointed to by addr; on return it will contain the actual length (in bytes) of the address
returned. This call is used with connection-based socket types, currently with SOCK_STREAM.

It is possible to select(2) a socket for the purposes of doing an accept() by selecting it for read.

RETURN VALUES
accept() returns a non-negative descriptor for the accepted socket on success. On failure, it returns -1 and
sets errno to indicate the error.

ERRORS
EBADF

EFAULT

ENOTSOCK

EOPNOTSUPP

The descriptor is invalid.

The addr parameter is not in a writable part of the user address space.

The descriptor references a file, not a socket.

The referenced socket is not of type SOCK _STREAM.

EWOULDBLOCK The socket is marked non-blocking and no connections are present to be accepted.

SEE ALSO
bind(2), connect(2), Iisten(2), select(2), socket(2)

Sun Release 4.1 Last change: 21 January 1990 695

ACCESS (2V) SYSTEM CALLS ACCESS (2V)

NAME
access - determine accessibility of file

SYNOPSIS
#include <unistd.h>

int access(path, mode)
char *path;
int mode;

DESCRIPTION
path points to a path name naming a file. access() checks the named file for accessibility according to
mode, which is an inclusive or of the following bits:

R OK

WOK

test for read permission

test for write permission

X OK test for execute or search permission

The following value may also be supplied for mode:

F OK test whether the directories leading to the file can be searched and the file
exists.

The real user ID and the supplementary group IDs (including the real group ID) are used in verifying per­
mission, so this call is useful to set-UID programs.

Notice that only access bits are checked. A directory may be indicated as writable by access(), but an
attempt to open it for writing will fail (although files may be created there); a file may look executable, but
execve() will fail unless it is in proper format.

RETURN VALUES
access() returns:

o on success.

-1 on failure and sets errno to indicate the error.

ERRORS
EACCES

EFAULT

EINVAL

EIO

ELOOP

ENAMETOOLONG

ENOENT

ENOTDIR

EROFS

SYSTEM V ERRORS

Search permission is denied for a component of the path prefix of path.

The file access permissions do not permit the requested access to the file named by
path.

path points outside the process's allocated address space.

An invalid value was specified for mode.

An I/O error occurred while reading from or writing to the file system.

Too many symbolic links were encountered in translating path.

The length of the path argument exceeds {PATH_MAX}.

A pathname component is longer than {NAME_MAX} while
LPOSIX_NO_TRUNC} is in effect (see pathconf(2V)).

The file named by path does not exist.

A component of the path prefix of path is not a directory.

The file named by path is on a read-only file system and write access was
requested.

In addtion to the above, the following may also occur:

ENOENT path points to an empty string.

696 Last change: 21 January 1990 Sun Release 4.1

ACCESS (2V) SYSTEM CALLS ACCESS (2V)

SEE ALSO
chmod(2V), stat(2V)

Sun Release 4.1 Last change: 21 January 1990 697

ACCT(2V) SYSTEM CALLS ACCT(2V)

NAME
acct - tum accounting on or off

SYNOPSIS
int acct (path)
char *path;

DESCRIPTION
acct() is used to enable or disable the process accounting. If process accounting is enabled, an accounting
record will be written on an accounting file for each process that terminates. Termination can be caused by
one of two things: an exit() call or a signal; see exit (2V) and sigvec(2). The effective user ID of the cal­
ling process must be super-user to use this call.

path points to a path name naming the accounting file. The accounting file format is given in acct(5).

The accounting routine is enabled if path is not a NULL pointer and no errors occur during the system call.
It is disabled if path is a NULL pointer and no errors occur during the system call.

If accounting is already turned on, and a successful acct() call is made with a non-NULL path, all subse­
quent accounting records will be written to the new accounting file.

SYSTEM V DESCRIPTION
If accounting is already turned on, it is an error to call acct() with a non-NULL path.

RETURN VALUES
acct() returns:

o on success.

-Ion failure and sets errno to indicate the error.

ERRORS
EACCES

EFAULT

EINVAL

EIO

ELOOP

ENAMETOOLONG

ENOENT

ENOTDIR

EPERM

EROFS

SYSTEM V ERRORS
EBUSY

ENOENT

SEE ALSO

Search permission is denied for a component of the path prefix of path.

The file referred to by path is not a regular file.

path points outside the process's allocated address space.

Support for accounting was not configured into the system.

An I/O error occurred while reading from or writing to the file system.

Too many symbolic links were encountered in translating the path name.

The length of the path argument exceeds {PATH_MAX}.

A pathname component is longer than {NAME_MAX} (see sysconf(2V» while
LPOSIX_NO_TRUNC} is in effect (see pathconf(2V».

The named file does not exist.

A component of the path prefix of path is not a directory.

The caller is not the super-user.

The named file resides on a read-only file system.

path is non-NULL, and accounting is already turned on.

path points to an empty string.

exit(2V), sigvec(2), acct(5), sa(8)

BUGS

698

No accounting records are produced for programs running when a crash occurs. In particular non­
terminating programs are never accounted for.

Last change: 21 January 1990 Sun Release 4.1

ACCT(2V) SYSTEM CALLS ACCT(2V)

NOTES
Accounting is automatically disabled when free space on the file system the accounting file resides on
drops below 2 percent; it is enabled when free space rises above 4 percent

Sun Release 4.1 Last change: 21 January 1990 699

ADJTIME(2) SYSTEM CALLS ADJTIME(2)

NAME
adjtime - correct the time to allow synchronization of the system clock

SYNOPSIS
#include <sysltime.h>

int adjtime(delta, olddelta)
struct timeval *delta;
struct time val *olddelta;

DESCRIPTION
adjtimeO adjusts the system's notion of the current time, as returned by gettimeofday(2), advancing or
retarding it by the amount of time specified in the struct time val (defined in <sysltime.h» pointed to by
delta.

The adjustment is effected by speeding up (if that amount of time is positive) or slowing down (if that
amount of time is negative) the system's clock by some small percentage, generally a fraction of one per­
cent Thus, the time is always a monotonically increasing function. A time correction from an earlier call
to adjtime() may not be finished when adjtime() is called again. If olddelta is not a NULL pointer, then
the structure it points to will contain, upon return, the number of microseconds still to be corrected from the
earlier call. If olddelta is a NULL pointer, the corresponding information will not be returned.

This call may be used in time servers that synchronize the clocks of computers in a local area network.
Such time servers would slow down the clocks of some machines and speed up the clocks of others to
bring them to the average network time.

Only the super-user may adjust the time of day.

The adjustment value will be silently rounded to the resolution of the system clock.

RETURN
A 0 return value indicates that the call succeeded. A -1 return value indicates an error occurred, and in this
case an error code is stored into the global variable errno.

ERRORS
EFAULT

EPERM

SEE ALSO

delta or olddelta points outside the process's allocated address space.

olddelta points to a region of the process' allocated address space that is not writable.

The process's effective user ID is not that of the super-user.

date(1 V), gettimeofday(2)

700 Last change: 21 January 1990 Sun Release 4.l

AUDIT (2) SYSTEM CALLS AUDIT (2)

NAME
audit - write a record to the audit log

SYNOPSIS
#include <sys/labeI.h>
#include <sys/audit.h>

int audit (record)
audit_record_t *record;

DESCRIPTION
The audit() system call is used to write a record to the system audit log file. The data pointed to by record
is written to the audit log file. The data should be a well-formed audit record as described by audit.log(5).
The kernel sets the time stamp value in the record and performs a minimal check on the data before writing
it to the audit log file.

Only the super-user may successfully execute this call.

RETURN VALUES
audit() returns:

o on success.

-1 on failure and sets errno to indicate the error.

ERRORS
EFAULT

EINVAL

EPERM

SEE ALSO

record points outside the process's allocated address space.

The length specified in the audit record is too short, or more than MAXAUDITDAT A.

The process's effective user ill is not super-user.

auditsvc(2), getauid(2), setuseraudit(2), audit_args(3), audit.log(5), auditd(8)

Sun Release 4.1 Last change: 21 January 1990 701

AUDITON(2)

NAME
auditon - manipulate auditing

SYNOPSIS
#include <sysllabel.h>
#include <syslaudit.h>

int auditon (condition)
int condition;

DESCRIPTION

SYSTEM CALLS AUDITON(2)

The auditon() system call sets system auditing to the requested condition if and only if the current state of
auditing allows that transition. Legitimate values for condition are:

AUC _UNSET on/off has not been decided yet
AUC_AUDITING auditing is to be done
AUC NOAUDIT auditing is not to be done

The permitted transitions are:

• Any condition may be changed back to itself.

• AUC_UNSET may be changed to AUC_AUDITING or AUC_NOAUDIT.

• AUC_AUDITING may be changed to AUC_NOAUDIT.

• AUC_NOAUDIT may be changed to AUC_AUDITING.

Once changed, it is not possible to get back to AUC _UNSET.

Only the super-user may successfully execute this call.

RETURN VALUES
auditon() returns the old audit condition value on success. On failure, it returns -I and sets errno to indi­
cate the error.

ERRORS
EINVAL

EPERM

SEE ALSO

The condition specified is outside the range of valid values.

The current condition precludes the requested change.

Neither of the process's effective or real user ID is super-user.

audit(2), setuseraudit(2)

702 Last change: 21 January 1990 Sun Release 4.1

AUDITSVC (2) SYSTEM CALLS AUDITSVC(2)

NAME
auditsvc - write audit records to specified file descriptor

SYNOPSIS
int auditsvc(fd, limit)
int fd;
int limit;

DESCRIPTION
The auditsvc() system call specifies the audit log file to the kernel. The kernel writes audit records to this
file until an exceptional condition occurs and then the call returns. The parameter fd is a file descriptor that
identifies the audit file. Programs should open this file for writing before calling auditsvc(). The parame­
ter limit specifies a value between 0 and 100, instructing auditsvc() to return when the percentage of free
disk space on the audit filesystem drops below this limit. Thus, the invoking program can take action to
avoid running out of disk space. The auditsvc() system call does not return until one of the following con­
ditions occurs:

• The process receives a signal that is not blocked or ignored.

• An error is encountered writing to the audit log file.

• The minimum free space (as specified by limit), has been reached.

Only processes with a real or effective user ID of super-user may execute this call successfully.

RETURN VALUES
auditsvc() returns only on an error.

ERRORS
EAGAIN

EBADF

EBUSY

EDQUOT

EFBIG

EINTR

EINVAL

EIO

ENOS PC

ENXIO

The descriptor referred to a stream, was marked for System V-style non-blocking I/O,
and no data could be written immediately.

fd is not a valid descriptor open for writing.

A second process attempted to perform this call.

A second process attempted to perform this call.

The user's quota of disk blocks on the file system containing the file has been exhausted.

Audit filesystem space is below the specified limit.

An attempt was made to write a file that exceeds the process's file size limit or the max­
imum file size.

The call is forced to terminate prematurely due to the arrival of a signal whose
SV _INTERRUPT bit in sv _ flags is set (see sigvec(2». signal(3V), in the System V
compatibility library, sets this bit for any signal it catches.

Auditing is disabled (see auditon(2».

fd does not refer to a file of an appropriate type. Regular files are always appropriate.

An I/O error occurred while reading from or writing to the file system.

There is no free space remaining on the file system containing the file.

A hangup occurred on the stream being written to.

EPERM The process's effective or real user ID is not super-user.

EWOULDBLOCK The file was marked for 4.2BSD-style non-blocking I/O, and no data could be written
immediately.

SEE ALSO
audit(2), auditon(2), sigvec(2), signal(3V), audit.log(5), auditd(8)

Sun Release 4.1 Last change: 21 January 1990 703

BIND (2) SYSTEM CALLS BIND (2)

NAME
bind - bind a name to a socket

SYNOPSIS
#include <sysltypes.h>
#include <syslsocket.h>

int bind(s, name, namelen)
int s;
struct sockaddr *name;
int namelen;

DESCRIPTION
bind() assigns a name to an unnamed socket. When a socket is created with socket(2) it exists in a name
space (address family) but has no name assigned. bindO requests that the name pointed to by name be
assigned to the socket.

RETURN VALUES
bind() returns:

o on success.

-Ion failure and sets errno to indicate the error.

ERRORS
EACCES The requested address is protected, and the current user has inadequate permission

to access it

EADDRINUSE

EADDRNOTA VAIL

EBADF

EFAULT

EINVAL

ENOTSOCK

The specified address is already in use.

The specified address is not available from the local machine.

s is not a valid descriptor.

The name parameter is not in a valid part of the user address space.

namelen is not the size of a valid address for the specified address family.

The socket is already bound to an address.

s is a descriptor for a file, not a socket.

The following errors are specific to binding names in the UNIX domain:

EACCES Search permission is denied for a component of the path prefix of the path name in
name.

EIO

EISDIR

ELOOP

ENAMETOOLONG

ENOENT

ENOTDIR

EROFS

An I/O error occurred while making the directory entry or allocating the inode.

A null path name was specified.

Too many symbolic links were encountered in translating the path name in name.

The length of the path argument exceeds {PATH_MAX}.

A pathname component is longer than {NAME_MAX} (see sysconf(2V)) while
LPOSIX_NO_TRUNC} is in effect (see pathconf(2V)).

A component of the path prefix of the path name in name does not exist.

A component of the path prefix of the path name in name is not a directory.

The inode would reside on a read-only file system.

SEE ALSO
connect(2), getsockname(2), Iisten(2), socket(2), unlink(2V)

704 Last change: 21 January 1990 Sun Release 4.1

BIND(2) SYSTEM CALLS BIND (2)

NOTES
Binding a name in the UNIX domain creates a socket in the file system that must be deleted by the caller
when it is no longer needed (using unlink(2V),

The rules used in name binding "ary between communication domains. Consult the manual entries in sec­
tion 4 for detailed information.

Sun Release 4.1 Last change: 21 January 1990 705

BRK(2) SYSTEM CALLS BRK(2)

NAME
brk, sbrk - change data segment size

SYNOPSIS
#include <sysltypes.h>

int brk(addr)
caddr _ t addr;

caddr_t sbrk(incr)
intincr;

DESCRIPTION
brk() sets the system's idea of the lowest data segment location not used by the program (called the break)
to addr (rounded up to the next multiple of the system's page size).

In the alternate function sbrk(), incr more bytes are added to the program's data space and a pointer to the
start of the new area is returned.

When a program begins execution using execve() the break is set at the highest location defined by the
program and data storage areas.

The getrlimit(2) system call may be used to determine the maximum permissible size of the data segment;
it will not be possible to set the break beyond the rlim _max value returned from a call to getrlimit(), that
is to say, "etext + rlim.rlim_max." (See end(3) for the definition of etext().)

RETURN VALUES
brk() returns:

o on success.

-Ion failure and sets errno to indicate the error.

sbrkO returns the old break value on success. On failure, it returns (caddr _t) -1 and sets errno to indi­
cate the error.

ERRORS
brk() and sbrk() will fail and no additional memory will be allocated if one of the following occurs:

ENOMEM The data segment size limit, as set by setrlimit() (see getrlimit(2», would be exceeded.

The maximum possible size of a data segment (compiled into the system) would be
exceeded.

Insufficient space exists in the swap area to support the expansion.

Out of address space; the new break value would extend into an area of the address
space defined by some previously established mapping (see mmap(2».

SEE ALSO
execve(2V), mmap(2), getrlimit(2), malloc(3V), end(3)

WARNINGS

BUGS

706

Programs combining the brk() and sbrk() system calls and malloc() will not work. Many library routines
use malloc() internally, so use brk() and sbrk() only when you know that malloc() definitely will not be
used by any library routine.

Setting the break may fail due to a temporary lack of swap space. It is not possible to distinguish this from
a failure caused by exceeding the maximum size of the data segment without consulting getrlimit().

Last change: 21 January 1990 Sun Release 4.1

CHDIR(2V) SYSTEM CALLS

NAME
chdir - change current working directory

SYNOPSIS
int chdir(path)
char *path;

int fchdir(fd)
int fd;

DESCRIPTION

CHDIR(2V)

chdir() and fchdir() make the directory specified by path or fd the current working directory. Subsequent
references to pathnames not starting with'/, are relative to the new current working directory.

In order for a directory to become the current directory, a process must have execute (search) access to the
directory.

RETURN VALUES
chdir() returns:

o on success.

-1 on failure and sets errno to indicate the error.

ERRORS
EACCES

ENAMETOOLONG

Search permission is denied for a component of the pathname.

The length of the path argument exceeds { PATH_MAX} .

A pathname component is longer than {NAME_MAX} while

ENOENT

ENOTDIR

SYSTEM V ERRORS

{_POSIX_NO_TRVNC} is in effect (see pathconf(2V)).

The named directory does not exist.

A component of the path name is not a directory.

In addition to the above, the following may also occur:

ENOENT path points to an empty string.

WARNINGS
fchdir() is provided as a performance enhancement and is guaranteed to fail under certain conditions. In
particular, if auditing is active the call will never succeed, and EINV AL will be returned. Applications
which use this system call must be coded to detect this failure and switch to using chdir() from that point
on.

Sun Release 4.1 Last change: 21 January 1990 707

CHMOD(2V) SYSTEM CALLS CHMOD(2V)

NAME
chmod, fchmod - change mode of file

SYNOPSIS
#include <sys/stat.h>

int chmod(path, mode)
char *path;
mode_t mode;

int fchmod(fd, mode)
int fd, mode;

DESCRIPTION
chmod() sets the mode of the file referred to by path or the descriptor fd according to mode. mode is the
inclusive OR of the file mode bits (see stat(2V) for a description of these bits).

The effective user ID of the process must match the owner of the file or be super-user to change the mode
of a file.

If the effective user ID of the process is not super-user and the process attempts to set the set group ID bit
on a file owned by a group which is not in its supplementary group IDs, the S _ ISGID bit (set group ID on
execution) is cleared.

If the S_ISVTX (sticky) bit is set on a directory, an unprivileged user may not delete or rename files of
other users in that directory.

If a user other than the super-user writes to a file, the set user ID and set group ill bits are turned off. This
makes the system somewhat more secure by protecting set-user-ID (set-group-ID) files from remaining set­
user-ID (set-group-ID) if they are modified, at the expense of a degree of compatibility.

RETURN VALUES
chmod() returns:

o on success.

-1 on failure and sets errno to indicate the error.

ERRORS

708

chmod() will fail and the file mode will be unchanged if:

EACCES Search permission is denied for a component of the path prefix of path.

EFAULT

EINVAL

EIO

ELOOP

ENAMETOOLONG

ENOENT

ENOTDIR

EPERM

EROFS

fchmod() will fail if:

EBADF

path points outside the process's allocated address space.

fd refers to a socket, not to a file.

An I/O error occurred while reading from or writing to the file system.

Too many symbolic links were encountered in translating path.

The length of the path argument exceeds {PATH_MAX}.

A pathname component is longer than {NAME_MAX} while
LPOSIX_NO_TRUNC} is in effect (see pathconf(2V».

The file referred to by path does not exist.

A component of the path prefix of path is not a directory.

The effective user ID does not match the owner of the file and the effective user ID
is not the super-user.

The file referred to by path resides on a read-only file system.

The descriptor is not valid.

Last change: 21 January 1990 Sun Release 4.1

CHMOD(2V)

EIO

EPERM

EROFS

SYSTEM V ERRORS

SYSTEM CALLS CHMOD(2V)

An I/O error occurred while reading from or writing to the file system.

The effective user ID does not match the owner of the file and the effective user ID
is not the super-user.

The file referred to by fd resides on a read-only file system.

In addition to the above, the following may also occur:

ENOENT path points to a null pathname.

SEE ALSO
chown(2V), open(2V), stat(2V), sticky(8)

BUGS
S_ISVTX, the "sticky bit", is a misnomer, and is overloaded to mean different things for different file types.

Sun Release 4.1 Last change: 21 January 1990 709

CHOWN(2V) SYSTEM CALLS CHOWN(2V)

NAME
chown, fchown - change owner and group of a file

SYNOPSIS
int chown(path, owner, group)
char *path;
int owner;
int group;

int fcbown(fd, owner, group)
int fd;
int owner;
int group;

SYSTEM V SYNOPSIS
#include <sys/types.b>

int chown(path, owner, group)
char *path;
uid _towner;
gid _t group;

DESCRIPTION
The file that is named by path or referenced by fd has its owner and group changed as specified. Only the
super-user may change the owner of the file, because if users were able to give files away, they could
defeat the file-space accounting procedures (see NOTES). The owner of the file may change the group to a
group of which he is a member. The super-user may change the group arbitrarily.

fchown() is particularly useful when used in conjunction with the file locking primitives (see flock(2».

If owner or group is specified as -1, the corresponding 10 of the file is not changed.

If a process whose effective user 10 is not super-user successfully changes the group ID of a file, the set­
user-IO and set-group-ID bits of the file mode, S_ISUID and S_ISGID respectively (see stat(2V», will be
cleared.

If the final component of path is a symbolic link, the ownership and group of the symbolic link is changed,
not the ownership and group of the file or directory to which it points.

RETURN V ALVES
chown() and fcbown() return:

o on success.

-1 on failure and set errno to indicate the error.

ERRORS

710

chown() will fail and the file will be unchanged if:

EACCES Search permission is denied for a component of the path prefix of path.

EFAULT

EIO

ELOOP

ENAMETOOLONG

ENOENT

ENOTDIR

path points outside the process's allocated address space.

An I/O error occurred while reading from or writing to the file system.

Too many symbolic links were encountered in translating path.

The length of the path argument exceeds {PATH_MAX}.

A pathname component is longer than {NAME_MAX} (see sysconf(2V» while
LPOSIX_NO_TRUNC} is in effect (see pathconf(2V».

The file referred to by path does not exist.

A component of the path prefix of path is not a directory.

Last change: 21 January 1990 Sun Release 4.1

CHOWN(2V) SYSTEM CALLS CHOWN(2V)

EPERM The user 10 specified by owner is not the current owner 10 of the file.

The group 10 specified by group is not the current group 10 of the file and is not in
the process' supplementary group IDs, and the effective user 10 is not the super­
user.

EROFS The file referred to by path resides on a read-only file system.

fchown() will fail if:

EBADF fd does not refer to a valid descriptor.

EINV AL fd refers to a socket, not a file.

EIO An I/O error occurred while reading from or writing to the file system.

EPERM The user 10 specified by owner is not the current owner 10 of the file.

The group ID specified by group is not the current group 10 of the file and is not in
the supplementary group IDs, and the effective user 10 is not the super-user.

EROFS

SYSTEM V ERRORS

The file referred to by fd resides on a read-only file system.

In addition to the above, the following may also occur:

ENOENT path points to an empty string.

SEE ALSO

NOTES

chmod(2V), flock(2)

For chown() to behave as described above, LPOSIX_CHOWN_RESTRICTED} must be in effect (see
pathconf(2V»). LPOSIX_CHOWN_RESTRICfED} is always in effect on SunOS systems, but for portabil­
ity, applications should call pathconf() to determine whether LPOSIX_CHOWN_RESTRICTED} is in effect
for path.

If LPOSIX_CHOWN_RESTRICTED} is in effect for the file system on which the file referred to by path or
fd resides, only the super-user may change the owner of the file. Otherwise, processes with effective user
10 equal to the file owner or super-user may change the owner of the file.

Sun Release 4.1 Last change: 21 January 1990 711

CHROOT(2) SYSTEM CALLS CHROOT(2)

NAME
chroot - change root directory

SYNOPSIS
int chroot(dirname)
char *dirname;

int fchroot(fd)
int fd;

DESCRIPTION
chroot() and fchroot() cause a directory to become the root directory, the starting point for path names
beginning with 'I'. The current working directory is unaffected by this call. This root directory setting is
inherited across execve(2V) and by all children of this process created with fork (2V) calls.

In order for a directory to become the root directory a process must have execute (search) access to the
directory and either the effective user ID of the process must be super-user or the target directory must be
the system root or a loop-back mount of the system root (see lofs(4S». fchroot() is further restricted in
that while it is always possible to change to the system root using this call, it is not guaranteed to succeed in
any other case, even shouldfd be in all respects valid.

The dirname argument to chroot() points to a path name of a directory. The fd argument to fchroot() is
the open file descriptor of the directory which is to become the root.

The •• entry in the root directory is interpreted to mean the root directory itself. Thus, •• cannot be used to
access files outside the subtree rooted at the root directory. Instead, fchroot() can be used to set the root
back to a directory which was opened before the root directory was changed.

WARNINGS
The only use of fchroot() that is appropriate is to change back to the system root. While it may succeed in
some other cases, it is guaranteed to fail if auditing is enabled. Super-user processes are not exempt from
this limitation.

RETURN VALUES
chroot() returns:

o on success.

-1 on failure and sets errno to indicate the error.

ERRORS

712

chroot() will fail and the root directory will be unchanged if one or more of the following are true:

EACCES

EBADF

EFAULT

EINVAL

EIO

ELOOP

ENAMETOOLONG

ENOENT

Search permission is denied for a component of the path prefix of dirname .

Search permission is denied for the directory referred to by dirname.

The descriptor is not valid.

dirname points outside the process's allocated address space.

fchroot() attempted to change to a directory which is not the system root and
external circumstances, such as auditing, do not allow this.

An I/O error occurred while reading from or writing to the file system.

Too many symbolic links were encountered in translating dirname.

The length of the path argument exceeds {PATH_MAX}.

A pathname component is longer than {NAME_MAX} (see sysconf(2V» while
LPOSIX_NO_TRUNC} is in effect (see pathconf(2V».

The directory referred to by dirname does not exist.

Last change: 21 January 1990 Sun Release 4.1

CHROOT(2)

ENOTDIR

EPERM

SEE ALSO

SYSTEM CALLS

A component of the path prefix of dirname is not a directory.

The file referred to by dirname is not a directory.

The effective user ID is not super-user.

chdir(2V), execve(2V), fork(2V), lofs(4S)

Sun Release 4.1 Last change: 21 January 1990

CHROOT(2)

713

CLOSE (2V) SYSTEM CALLS CLOSE(2V)

NAME
close - delete a descriptor

SYNOPSIS
int close (fd)
int fd;

DESCRIPTION
close() deletes a descriptor from the per-process object reference table. If fd is the last reference to the
underlying object, then the object will be deactivated. For example, on the last close of a file the current
seek pointer associated with the file is lost. On the last close of a socket (see socket(2», associated naming
information and queued data are discarded. On the last close of a file holding an advisory lock applied by
Oock(2), the lock is released. (Record locks applied to the file by lockf(3), however, are released on any
call to close() regardless of whether fd is the last reference to the underlying object.)

close() does not unmap any mapped pages of the object referred to by fd (see mmap(), munmap(2».

A close of all of a process's descriptors is automatic on exit(), but since there is a limit on the number of
active descriptors per process, close() is necessary for programs that deal with many descriptors.

When a process forks (see fork(2v», all descriptors for the new child process reference the same objects as
they did in the parent before the fork. If a new process is then to be run using execve(2V), the process
would normally inherit these descriptors. Most of the descriptors can be rearranged with dup(2V) or
deleted with close() before the execve() is attempted, but if some of these descriptors will still be needed if
the execve() fails, it is necessary to arrange for them to be closed if the execve() succeeds. The fcntl(2V)
operation F _ SETFD can be used to arrange that a descriptor will be closed after a successful execve(), or to
restore the default behavior, which is to not close the descriptor.

If a STREAMS (see intro(2» file is closed, and the calling process had previously registered to receive a
SIGPOLL signal (see sigvec(2» for events associated with that file (see I_SETSIG in streamio(4», the cal­
ling process will be unregistered for events associated with the file. The last close() for a stream causes
that stream to be dismantled. If the descriptor is not marked for no-delay mode and there have been no sig­
nals posted for the stream, closeO waits up to 15 seconds, for each module and driver, for any output to
drain before dismantling the stream. If the descriptor is marked for no-delay mode or if there are any pend­
ing signals, close() does not wait for output to drain, and dismantles the stream immediately.

RETURN VALUES
close() returns:

o on success.

-Ion failure and sets errno to indicate the error.

ERRORS
EBADF

EINTR

SEE ALSO

fd is not an active descriptor.

A signal was caught before the close completed.

accept(2), dup(2V), execve(2V), fcntl(2V), fiock(2), intro(2), open(2V), pipe(2V), sigvec(2), socket(2),
socketpair(2), streamio(4)

714 Last change: 21 January 1990 Sun Release 4.1

CONNECT (2) SYSTEM CALLS CONNECT(2)

NAME
connect - initiate a connection on a socket

SYNOPSIS
#include <sysltypes.h>
#include <syslsocket.h>

int connect(s, name, namelen)
int s;
struct sockaddr *name;
int namelen;

DESCRIPTION
The parameter s is a socket If it is of type SOCK _ DGRAM, then this call specifies the peer with which the
socket is to be associated; this address is that to which datagrams are to be sent, and the only address from
which datagrams are to be received. If it is of type SOCK_STREAM, then this call attempts to make a con­
nection to another socket. The other socket is specified by name which is an address in the communica­
tions space of the socket Each communications space interprets the name parameter in its own way. Gen­
erally, stream sockets may successfully connectO only once; datagram sockets may use connectO multi­
ple times to change their association. Datagram sockets may dissolve the association by connecting to an
invalid address, such as a null address.

RETURN VALUES
connect() returns:

o on success.

-1 on failure and sets errno to indicate the error.

ERRORS
The call fails if:

EADDRINUSE

EADDRNOTA V AIL

EAFNOSUPPORT

EALREADY

EBADF

ECONNREFUSED

EFAULT

EINPROORESS

EINTR

EINVAL

EISCONN

ENETUNREACH

ENOTSOCK

ETIMEOOUT

Sun Release 4.1

The address is already in use.

The specified address is not available on the remote machine.

Addresses in the specified address family cannot be used with this socket.

The socket is non-blocking and a previous connection attempt has not yet been
completed.

s is not a valid descriptor.

The attempt to connect was forcefully rejected. The calling program should
close(2V) the socket descriptor, and issue another socket(2) call to obtain a new
descriptor before attempting another connect(2) call.

The name parameter specifies an area outside the process address space.

The socket is non-blocking and the connection cannot be completed immediately.
It is possible to select(2) for completion by selecting the socket for writing.

The connection attempt was interrupted before any data arrived by the delivery of
a signal.

name/en is not the size of a valid address for the specified address family.

The socket is already connected.

The network is not reachable from this host.

s is a descriptor for a file, not a socket.

Connection establishment timed out without establishing a connection.

Last change: 21 January 1990 715

CONNECT (2) SYSTEM CALLS CONNECT(2)

The following errors are specific to connecting names in the UNIX domain. These errors may not apply in
future versions of the UNIX IPC domain.

EACCES

ELOOP

EIO

ENAMETOOLONG

ENOENT

ENOTDIR

ENOTSOCK

EPROTOTYPE

Search permission is denied for a component of the path prefix of the path name in
name.

Too many symbolic links were encountered in translating the path name in name.

An I/O error occurred while reading from or writing to the file system.

The length of the path argument exceeds (PATH_MAX}.

A pathname component is longer than (NAME_MAX} (see sysconf(2V)) while
LPOSIX_NO_TRUNC} is in effect (see patbconf(2V».

A component of the path prefix of the path name in name does not exist.

The socket referred to by the path name in name does not exist.

A component of the path prefix of the path name in name is not a directory.

The file referred to by name is not a socket.

The file referred to by name is a socket of a type other than the type of s (e.g., s is
a SOCK_DGRAM socket, while name refers to a SOCK_STREAM socket).

SEE ALSO
accept(2), c1ose(2V), connect(2), getsockname(2), select(2), socket(2)

716 Last change: 21 January 1990 Sun Release 4.1

CREAT(2V) SYSTEM CALLS CREAT(2V)

NAME
creat - create a new file

SYNOPSIS
int creat(path, mode)
char .path;
int mode;

SYSTEM V SYNOPSIS
#include <syslstat.h>

int creat(path, mode)
char .path;
mode_t mode;

DESCRIPTION
This interface is made obsolete by open(2V), since,

creat(path, mode);

is equivalent to

open(path,O_WRONLY I O_CREAT I O_TRUNC, mode);

creat() creates a new ordinary file or prepares to rewrite an existing file named by the path name pointed to
by path. If the file did not exist, it is given the mode mode, as modified by the process's mode mask (see
umask(2V)). See stat(2V) for the construction of mode.

If the file exists, its mode and owner remain unchanged, but it is truncated to 0 length. Otherwise, the file's
owner ID is set to the effective user ID of the process, and upon successful completion, creat() marks for
update the st_atime, st_ctime, and st_mtime fields of the file (see stat(2V)) and the st_ctime and
st _ mtime fields of the parent directory.

The file's group ID is set to either:

• the effective group ID of the process, if the filesystem was not mounted with the BSD file-creation
semantics flag (see mount(2V)) and the set-gid bit of the parent directory is clear, or

• the group ID of the directory in which the file is created

The"low-order 12 bits of the file mode are set to the value of mode, modified as follows:

• All bits set in the process's file mode creation mask are cleared. See umask(2V).

• The "save text image after execution" (sticky) bit of the mode is cleared. See chmod(2V).

• The "set group ID on execution" bit of the mode is cleared if the effective user ID of the process is not
super-user and the process is not a member of the group of the created file.

Upon successful completion, the file descriptor is returned and the file is open for writing, even if the
access permissions of the file mode do not permit writing. The file pointer is set to the beginning of the
file. The file descriptor is set to remain open across execve(2V) system calls. See fcntl(2V).

If the file did not previously exist, upon successful completion, creat() marks for update the st_ ctime and
st_mtime fields of the file and the st_ctime and st_mtime fields of the parent directory.

RETURN VALUES
creat() returns a non-negative descriptor that only permits writing on success. On failure, it returns -1 and
sets errno to indicate the error.

ERRORS
EACCES

Sun Release 4.1

Search permission is denied for a component of the path prefix.

The file referred to by path does not exist and the directory in which it is to be
created is not writable.

The file referred to by path exists, but it is unwritable.

Last change: 21 January 1990 717

CREAT(2V) SYSTEM CALLS CREAT(2V)

EDQUOT

EFAULT

EINTR

EIO

EISDIR

ELOOP

EMFILE

ENAMETOOLONG

ENFILE

ENOENT

ENOS PC

ENOTDIR

ENXIO

The directory in which the entry for the new file is being placed cannot be
extended because the user's quota of disk blocks on the file system containing the
directory has been exhausted.

The user's quota of inodes on the file system on which the file is being created has
been exhausted.

path points outside the process's allocated address space.

The creat() operation was interrupted by a signal.

An I/O error occurred while making the directory entry or allocating the inode.

The file referred to by path is a directory.

Too many symbolic links were encountered in translating the pathname pointed to
by path.

There are already too many files open.

The length of the path argument exceeds { PATH_MAX} .

A pathname component is longer than {NAME_MAX} while
LPOSIX_NO_TRUNC} is in effect (see pathconf(2V)).

The system file table is full.

A component of the path prefix does not exist.

The directory in which the entry for the new file is being placed cannot be
extended because there is no space left on the file system containing the directory.

There are no free inodes on the file system on which the file is being created.

A component of the path prefix is not a directory.

The file is a character special or block special file, and the associated device does
not exist.

EOPNOTSUPP

EROFS

SYSTEM V ERRORS

The file was a socket (not currently implemented).

The file referred to by path resides, or would reside, on a read-only file system.

In addition to the above, the following may also occur:

ENOENT path points to an empty string.

SEE ALSO

NOTES

718

c1ose(2V), chmod(2V), execve(2V), fcntl(2V), flock(2), mount(2V), open(2V), write(2V), umask(2V)

The mode given is arbitrary; it need not allow writing. This feature has been used in the past by programs
to construct a simple exclusive locking mechanism. It is replaced by the 0 _EXCL open mode, or flock(2)
facility.

Last change: 21 January 1990 Sun Release 4.1

DUP(2V) SYSTEM CALLS DUP(2V)

NAME
dup, dup2 - duplicate a descriptor

SYNOPSIS
int dup(fd)
int fd;

int dup2(fdt, fd2)
int fdt, fd2;

DESCRIPTION
dupO duplicates an existing object descriptor. The argumentfd is a small non-negative integer index in
the per-process descriptor table. The value must be less than the size of the table, which is returned by
getdtablesize(2). The new descriptor returned by the call is the lowest numbered descriptor that is not
currentI y in use by the process.

With dup20,fd2 specifies the desired value of the new descriptor. If descriptor fd2 is already in use, it is
first deallocated as if it were closed by close(2V).

The new descriptor has the following in common with the original:

• It refers to the same object that the old descriptor referred to.

• It uses the same seek pointer as the old descriptor. (that is, both file descriptors share one seek pointer).

• It has the same access mode (read, write or read/write) as the old descriptor.

Thus if fd2 and fdl are duplicate references to an open file, read(2V), write(2V), and Iseek(2V) calls all
move a single seek pointer into the file, and append mode, non-blocking I/O and asynchronous I/O options
are shared between the references. If a separate seek pointer into the file is desired, a different object refer­
ence to the file must be obtained by issuing an additional open(2V) call. The close-on-exec flag on the new
file descriptor is unset.

The new file descriptor is set to remain open across exec system calls (see fcntl(2V).

RETURN V ALVES
dupe) and dup2() return a new descriptor on success. On failure, they return -1 and set errno to indicate
the error.

ERRORS
EBADF

EMFILE

SEE ALSO

fdl or fd2 is not a valid active descriptor.

Too many descriptors are active.

accept(2), close(2V), fcntl(2V), getdtablesize(2), Iseek(2V), open(2V), pipe(2V), read(2V), socket(2),
socketpair(2), write(2V)

Sun Release 4.1 Last change: 21 January 1990 719

EXECVE(2V) SYSTEM CALLS EXECVE(2V)

NAME
execve - execute a file

SYNOPSIS
int execve(path, argv, envp)
char *path, *argv[], *envp[];

DESCRIPTION

720

execve() transforms the calling process into a new process. The new process is constructed from an ordi­
nary file, whose name is pointed to by path, called the new process file. This file is either an executable
object file, or a file of data for an interpreter. An executable object file consists of an identifying header,
followed by pages of data representing the initial program (text) and initialized data pages. Additional
pages may be specified by the header to be initialized with zero data. See a.out(5).

An interpreter file begins with a line of the form 'I! interpreter [argl'. Only the first thirty-two characters
of this line are significant. When path refers to an interpreter file, execve() invokes the specified inter­
preter. If the optional arg is specified, it becomes the first argument to the interpreter, and the pathname to
which path points becomes the second argument. Otherwise, the pathname to which path points becomes
the first argument. The original arguments are shifted over to become the subsequent arguments. The
zeroth argument, normally the pathname to which path points, is left unchanged.

There can be no return from a successful execve() because the calling process image is lost. This is the
mechanism whereby different process images become active.

The argument argv is a pointer to a null-terminated array of character pointers to null-terminated character
strings. These strings constitute the argument list to be made available to the new process. By convention,
at least one argument must be present in this array, and the first element of this array should be the name of
the executed program (that is, the last component of path).

The argument envp is also a pointer to a null-terminated array of character pointers to null-terminated
strings. These strings pass information to the new process which are not directly arguments to the com­
mand (see environ(5V».

The number of bytes available for the new process's combined argument and environment lists (including
null terminators, pointers and alignment bytes) is {ARG_MAX} (see sysconf(2V». On SunOS systems,
{ARG_MAX} is currently one megabyte.

Descriptors open in the calling process remain open in the new process, except for those for which the
close-on-exec flag is set (see close(2V) and fcntl(2V». Descriptors which remain open are unaffected by
execve().

Signals set to the default action (SIG_DFL) in the calling process image are set to the default action in the
new process image. Signals set to be ignored (SIG_IGN) by the calling process image are ignored by the
new process image. Signals set to be caught by the calling process image are reset to the default action in
the new process image. Signals set to be blocked in the calling process image remain blocked in the new
process image, regardless of changes to the signal action. The signal stack is reset to be undefined (see
sigvec(2) for more information).

Each process has a real user 10 and group ID and an effective user ID and group ID. The real ID identifies
the person using the system; the effective ID determines their access privileges. execve() changes the
effective user or group ID to the owner or group of the executed file if the file has the "set-user-ID" or
"set-group-ID" modes. The real UID and GID are not affected. The effective user ID and effective group
ID of the new process image are saved as the saved set-user-ID and saved set-group-ID respectively, for use
by setuid(3V).

execve() sets the SEXECED flag for the new process image (see setpgid(2V».

The shared memory segments attached to the calling process will not be attached to the new process (see
shmop(2».

Last change: 21 January 1990 Sun Release 4.1

EXECVE(2V) SYSTEM CALLS EXECVE(2V)

Profiling is disabled for the new process; see profil(2).

Upon successful completion, execve() marks for update the st _ atime field of the file. execve() also marks
st _ atime for update if it fails, but is able find the process image file.

If execve() succeeds, the process image file is considered to have been opened (see open(2V». The
corresponding close (see close(2V» is considered to occur after the open, but before process tennination or
successful completion of a subsequent call to execve().

The new process also inherits the following attributes from the calling process:

attribute
process ill
parent process ID
process group ID
session membership
real user ill
real group 10
supplementary group IDs
time left until an alarm
supplementary group IDs
semadj values
working directory
root directory
controlling tenninal
trace flag
resource usages
interval timers
resource limits
file mode mask
process signal mask
pending signals
tms_utime, tms_stime,
tms _ cutime, tms _ cstime

see
getpid(2)
getpid(2)
getpgrp(2V), setpgid(2V)
setsid(2)
getuid(2)
getgid(2)
Intro(2)
alarm(3C)
getgroups(2)
sem op (2)
chdir(2)
chroot(2)
termio(4)
ptrace(2), request 0
getrusage(2)
getitimer(2)
getrlimit(2)
umask(2)
sigvec(2), sigprocmask(2V), sigsetmask(2)
sigpending(2)

times(3C)

When the executed program begins, it is called as follows:

main(argc, argv, envp)
int argc;
char *argv[], *envp[];

where argc is the number of elements in argv (the "arg count", not counting the NULL terminating pointer)
and argv points to the array of character pointers to the arguments themselves.

envp is a pointer to an array of strings that constitute the environment of the process. A pointer to this array
is also stored in the global variable environ. Each string consists of a name, an "=", and a null-terminated
value. The array of pointers is terminated by a NULL pointer. The shell sh(l) passes an environment entry
for each global shell variable defined when the program is called. See environ(5V) for some convention­
ally used names.

Note: Passing values for argc, argv, and envp to main() is optional.

RETURN VALUES
execve() returns to the calling process only on failure. It returns -1 and sets errno to indicate the error.

ERRORS
E2BIG

EACCES

Sun Release 4.1

The total number of bytes in the new process file's argument and environment lists
exceeds {ARG_MAX} (see sysconf(2V».

Search permission is denied for a component of the new process file's path prefix.

Last change: 21 January 1990 721

EXECVE(2V) SYSTEM CALLS EXECVE(2V)

EFAULT

EIO

ENAMETOOLONG

ELOOP

ENOENT

ENOEXEC

ENOMEM

The new process file is not an regular file.

Execute permission is denied for the new process file.

The new process file is not as long as indicated by the size values in its header.

path, argv, or envp points to an illegal address.

An I/O error occurred while reading from the file system.

The length of the path argument exceeds {PATH_MAX}.

A pathname component is longer than {NAME_MAX} (see sysconf(2V)) while
LPOSIX_NO_TRUNC} is in effect (see pathconf(2V)).

Too many symbolic links were encountered in translating path.

One or more components of the path prefix of the new process file does not exist.

The new process file does not exist.

The new process file has the appropriate access permission, but has an invalid
magic number in its header.

The new process file requires more virtual memory than is allowed by the imposed
maximum (getrlimit(2)).

ENOTDIR

SYSTEM V ERRORS

A component of the path prefix of the new process file is not a directory.

In addition to the above, the following may also occur:

ENOENT path points to a null pathname.

SEE ALSO
sh(1), chdir(2V), chroot(2), c1ose(2V), exit(2V), fcntl(2V), fork(2V), getgroups(2V), getitimer(2),
getpid(2V), getrlimit(2), getrusage(2), profil(2), ptrace(2), semop(2), getpgrp(2V), shmop(2),
sigvec(2), execl(3V), setuid(3V), termio(4), a.out(5), environ(5V)

WARNINGS

722

If a program is setuid() to a non-super-user, but is executed when the real user ID is super-user, then the
program has some of the powers of a super-user as well.

Last change: 21 January 1990 S un Release 4.1

EXIT (2V) SYSTEM CALLS EXIT(2V)

NAME
_exit - terminate a process

SYNOPSIS
void _ exit(status)
iot status;

DESCRIPTION
_ exit() terminates a process with the following consequences:

All of the descriptors open in the calling process are closed. This may entail delays, for example, waiting
for output to drain; a process in this state may not be killed, as it is already dying.

If the parent process of the calling process is executing a wait() or waitpid(), or is interested in the
SIGCHLD signal, then it is notified of the calling process's termination and the low-order eight bits of
status are made available to it (see wait(2V».

If the parent process of the calling process is not executing a wait() or waitpid(), status is saved for return
to the parent process whenever the parent process executes an appropriate subsequent wait() or waitpid().

The parent process ID of all of the calling process's existing child processes are also set to 1. This means
that the initialization process (see intro(2» inherits each of these processes as well. Any stopped children
are restarted with a hangup signal (SIGHUP).

If the process is a controlling process, SIGHUP is sent to each process in the foreground process group of
the controlling tenninal belonging to the calling process, and the controlling terminal associated with the
session is disassociated from the session, allowing it to be acquired by a new controlling process (see
setsid(2V».

If _exit() causes a process group to become orphaned, and if any member of the newly-orphaned process
group is stopped, then SIGHUP followed by SIGCONT is sent to each process in the newly-orphaned pro-

. cess group (see setpgid(2V».

Each attached shared memory segment is detached and the value of shm _ nattach in the data structure
associated with its shared memory identifier is decremented by 1.

For each semaphore for which the calling process has set a semadj value (see semop(2», that semadj value
is added to the semval of the specified semaphore.

If process accounting is enabled (see acct(2V», an accounting record is written to the accounting file.

Most C programs will call the library routine exit(3) which performs cleanup actions in the standard I/O
library before calling _ exit().

RETURN VALUES
_ exit() never returns.

SEE ALSO
iotro(2), acct(2V), fork(2V), semop(2), wait(2V), exit(3)

Sun Release 4.1 Last change: 21 January 1990 723

FCNTL(2V) SYSTEM CALLS FCNTL(2V)

NAME
fcnll - file control

SYNOPSIS
#include <sysltypes.h>
#include <unistd.h>
#include <fcntl.h>

int fcntl(fd, cmd, arg)
int fd, cmd, arg;

DESCRIPTION

724

fcntl() performs a variety of functions on open descriptors. The argument/d is an open descriptor used by
cmd as follows:

F DUPFD

F GETFD

F SETFD

F GETFL

F SETFL

F GETLK

F SETLK

Returns a new descriptor, which has the smallest value greater than or equal to arg. It
refers to the same object as the original descriptor, and has the same access mode (read,
write or read/write). The new descriptor shares descriptor status flags with/d, and if the
object was a file, the same file pointer .. It is also associated with a FD _ CLOEXEC
(close-on-exec) flag set to remain open across execve(2V) system calls.

Get the FD_CLOEXEC (close-on-exec) flag associated with/d. If the low-order bit is 0,
the file remains open after executing execve(), otherwise it is closed.

Set the FD _ CLOEXEC (close-on-exec) flag associated with/d to the low order bit of arg
(0 or 1 as above).

Note: this is a per-process and per-descriptor flag. Setting or clearing it for a particular
descriptor does not affect the flag on descriptors copied from it by dup(2V) or
F _DUPFD, nor does it affect the flag on other processes of that descriptor.

Get descriptor status flags (see fcntl(S) for definitions).

Set descriptor status flags (see fcntl(S) for definitions). The following flags are the only
ones whose values may change: O_APPEND, O_SYNC, and O_NDELAY, and the
FASYNC, FNDELA Y, and FNBIO flags defined in <fcntl.h>.

O_NDELAY and FNDELAY are identical.

Descriptor status flag values set by F _ SETFL affects descriptors copied using dup(2V),
F _ DUPFD or other processes.

Setting or clearing the FNDELAY flag on a descriptor causes an FIONBIO ioctl(2)
request to be performed on the object referred to by that descriptor. Setting or clearing
non-blocking mode, and setting or clearing the FASYNC flag on a descriptor causes an
FIOASYNC ioctl(2) request to be performed on the object referred to by that descriptor,
setting or clearing asynchronous mode. Thus, all descriptors referring to the object are
affected.

Get a description of the first lock which would block the lock specified by the flock
structure pointed to by arg (see the definition of struct flock below). If a lock exists,
The flock structure is overwritten with that lock's description. Otherwise, the structure
is passed back with the lock type set to F _UNLOCK and is otherwise unchanged.

Set or clear a file segment lock according to the flock structure pointed to by arg.
F _ SETLK is used to set shared (F _ RDLCK) or exclusive (F _ WRLCK) locks, or to
remove those locks (F _ UNLCK). If the specified lock cannot be applied, fcntl() fails
and returns immediately.

Last change: 21 January 1990 Sun Release 4.1

FCNTL(2V)

F SETLKW

F GETOWN

F SETOWN

F_RSETLK
F RSETLKW
F RGETLK

SYSTEM CALLS FCNTL(2V)

This cmd is the same as F _ SETLK except that if a shared or exclusive lock is blocked by
other locks, the process waits until the requested lock can be applied. If a signal that is
set to be caught (see signal(3V» is received while fcntl() is waiting for a region, the
call to fcntl() is interrupted. Upon return from the process's signal handler, fcntl() fails
and returns, and the requested lock is not applied.

Get the process ID or process group currently receiving SIGIO and SIGURG signals;
process groups are returned as negative values.

Set the process or process group to receive SIGIO and SIGURG signals. Process groups
are specified by supplying arg as negative, otherwise arg is interpreted as a process ID.

Are used by the network lock daemon, lockd(8C), to communicate with the NFS server
kernel to handle locks on the NFS files.

Record locking is done with either shared (F _ RDLCK), or exclusive (F _ WRLCK) locks. More than one
process may hold a shared lock on a particular file segment, but if one process holds an exclusive lock on
the segment, no other process may hold any lock on the segment until the exclusive lock is removed.

In order to claim a shared lock, a descriptor must be opened with read access. Descriptors for exclusive
locks must be opened with write access.

A shared lock may be changed to an exclusive lock, and vice versa, simply by specifying the appropriate
lock type with a F _ SETLK or F _ SETLKW cmd. Before the previous lock is released and the new lock
applied, any other processes already in line must gain and release their locks.

If cmd is F _ SETLKW and the requested lock cannot be claimed immediately (for instance, when another
process holds an exclusive lock that overlaps the current request) the calling process is blocked until the
lock may be acquired. These blocks may be interrupted by signals. Care should be taken to avoid
deadlocks caused by multiple processes all blocking the same records.

A shared or exclusive lock is either advisory or mandatory depending on the mode bits of the file contain­
ing the locked segment. The lock is mandatory if the set-GID bit (S_ISGID) is set and the group execute bit
(S_IXGRP) is clear (see stat(2V) for information about mode bits). Otherwise, the lock is advisory.

If a process holds a mandatory shared lock on a segment of a file, other processes may read from the seg­
ment, but write operations block until all locks are removed. If a process holds a mandatory exclusive lock
on a segment of a file, both read and write operations block until the lock is removed (see WARNINGS).

An advisory lock does not affect read and write access to the locked segment. Advisory locks may be used
by cooperating processes checking for locks using F _ GETLCK and voluntarily observing the indicated read
and write restrictions.

The record to be locked or unlocked is described by the flock structure defined in <fcntl.h> as follows:

struct flock {
short I_type; 1* F_RDLCK, F_WRLCK, or F_UNLCK *1
short t whence; 1* flag to choose starting offset *1
long tstart; 1* relative offset, in bytes *1
long IJen; 1* length, in bytes; 0 means lock to EOF */
pid_t Iyid; 1* returned with F_GETLK *1

};

The flock structure describes the type (I_type), starting offset (I_whence), relative offset (I_start), and size
(IJen) of the file segment to be affected. I_whence is set to SEEK_SET, SEEK_CUR, or SEEK_END (see
lseek(2V» to indicate that the relative offset is to be measured from the start of the file, current position, or
EOF, respectively. The process id field (Iyid) is only used with the F _ GETLK cmd to return the descrip­
tion of a lock held by another process. Note: do not confuse struct flock with the function flock(2). They
are unrelated.

Sun Release 4.1 Last change: 21 January 1990 725

FCNTL(2V) SYSTEM CALLS FCNTL(2V)

Locks may start or extend beyond the current EOF, but may not be negative relative to the beginning of the
file. Setting IJen to zero (0) extends the lock to EOF. If twhence is set to SEEK_SET and I_start and
IJen are set to zero (0), the entire file is locked. Changing or unlocking the subset of a locked segment
leaves the smaller segments at either end locked. Locking a segment already locked by the calling process
causes the old lock type to be removed and the new lock type to take affect. All locks associated with a file
for a given process are removed when the file is closed or the process terminates. Locks are not inherited
by the child process in a fork(2V) system call.

fcntl() record locks are implemented in the kernel for local locks, and throughout the network by the net­
work lock daemon (lockd(8C)) for remote locks on NFS files. If the file server crashes and has to be
rebooted, the lock daemon attempts to recover all locks that were associated with that server. If a lock can­
not be reclaimed, the process that held the lock is issued a SIGLOST signal.

In order to maintain consistency in the network case, data must not be cached on client machines. For this
reason, file buffering for an NFS file is turned off when the first lock is attempted on the file. Buffering
remains off as long as the file is open. Programs that do I/O buffering in the user address space, however,
may have inconsistent results. The standard I/O package, for instance, is a common source of unexpected
buffering.

SYSTEM V DESCRIPTION
o NDELAY and FNBIO are identical.

RETURN VALUES
On success, the value returned by fcntl() depends on cmd as follows:

F DUPFD

F GETFD

F GETFL

F GET OWN

other

A new descriptor.

Value of flag (only the low-order bit is defined).

Value of flags.

Value of descriptor owner.

Value other than -1.

On failure, fcntl() returns -1 and sets errno to indicate the error.

ERRORS

726

EACCES

EBADF

EDEADLK

EFAULT

EINTR

EINVAL

cmd is F _SETLK, the lock type (I_type) is F _RDLCK (shared lock), and the file segment
to be locked is already under an exclusive lock held by another process. This error is
also returned if the lock type is F _ WRLCK (exclusive lock) and the file segment is
already locked with a shared or exclusive lock.

Note: In future, fcntl() may generate EAGAIN under these conditions, so applications
testing for EACCES should also test for EAGAIN.

fd is not a valid open descriptor.

cmd is F _ SETLK or F _ SETLKW and the process does not have the appropriate read or
write permissions on the file.

cmd is F _ SETLKW, the lock is blocked by one from another process, and putting the
calling-process to sleep would cause a deadlock.

cmd is F _ GETLK, F _ SETLK, or F _ SETLKW and arg points to an invalid address.

cmd is F _ SETLKW and a signal interrupted the process while it was waiting for the lock
to be granted.

cmd is F _DUPFD and arg is negative or greater than the maximum allowable number
(see getdtablesize(2)).

cmd is F _ GETLK, F _ SETLK, or F _ SETLKW and arg points to invalid data.

Last change: 21 January 1990 Sun Release 4.1

FCNTL(2V) SYSTEM CALLS FCNTL(2V)

EMFILE

ENOLCK

cmd is F _DUPFD and the maximum number of open descriptors has been reached.

cmd is F _ SETLK or F _ SETLKW and there are no more file lock entries available.

SEE ALSO
close (2V), execve(2V), f1ock(2), fork(2V), getdtablesize(2), ioctl(2), opeo(2V), sigvec(2), lockf(3),
fcotl(5), lockd(8C)

WARNINGS

NOTES

BUGS

Mandatory record locks are dangerous. If a runaway or otherwise out-of-control process should hold a
mandatory lock on a file critical to the system and fail to release that lock, the entire system could hang or
crash. For this reason, mandatory record locks may be removed in a future SunOS release. Use advisory
record locking whenever possible.

Advisory locks allow cooperating processes to perform consistent operations on files, but do not guarantee
exclusive access. Files can be accessed without advisory files, but inconsistencies may result.

read(2V) and write(2V) system calls on files are affected by mandatory file and record locks (sec
chmod(2V».

File locks obtained by fcotl() do not interact with f1ock() locks. They do, however, work correctly with
the exclusive locks claimed by lockf(3).

F _ GETLK returns F _ UNLCK if the requesting process holds the specified lock. Thus, there is no way for a
process to determine if it is still holding a specific lock after catching a SIGLOST signal.

. In a network environment, the value of I yid returned by F _ GETLK is next to useless.

Sun Release 4.1 Last change: 21 January 1990 727

FLOCK(2) SYSTEM CALLS FLOCK (2)

NAME
flock - apply or remove an advisory lock on an open file

SYNOPSIS
#include <syslfile.h>

#define LOCK _ SH
#define LOCK_EX
#define LOCK_NB
#define LOCK_UN

int f1ock(fd, operation)
int fd, operation;

1
2
4
8

1* shared lock *1
1* exclusive lock *1
1* don't block when locking *1
1* unlock *1

DESCRIPTION

NOTES

Oock() applies or removes an advisory lock on the file associated with the file descriptor fd. A lock is
applied by specifying an operation parameter that is the inclusive OR of LOCK_SH or LOCK_EX and, pos­
sibly, LOCK_NB. To unlock an existing lock, the operation should be LOCK_UN.

Advisory locks allow cooperating processes to perform consistent operations on files, but do not guarantee
exclusive access (that is, processes may still access files without using advisory locks, possibly resulting in
inconsistencies) .

The locking mechanism allows two types of locks: shared locks and exclusive locks. More than one pro­
cess may hold a shared lock for a file at any given time, but multiple exclusive, or both shared and
exclusive, locks may not exist simultaneously on a file.

A shared lock may be upgraded to an exclusive lock, and vice versa, simply by specifying the appropriate
lock type; the previous lock will be released and the new lock applied (possibly after other processes have
gained and released the lock).

Requesting a lock on an object that is already locked normally causes the caller to block until the lock may
be acquired. If LOCK _NB is included in operation, then this will not happen; instead the call will fail and
the error EWOULDBLOCK will be returned.

Locks are on files, not file descriptors. That is, file descriptors duplicated through dup(2V) or fork(2V»
do not result in multiple instances of a lock, but rather multiple references to a single lock. If a process
holding a lock on a file forks and the child explicitly unlocks the file, the parent will lose its lock.

Processes blocked awaiting a lock may be awakened by signals.

RETURN VALUES
Oock() returns:

o on success.

-1 on failure and sets errno to indicate the error.

ERRORS
EBADF The argument fd is an invalid descriptor.

EOPNOTSUPP

EWOULDBLOCK

The argument fd refers to an object other than a file.

The file is locked and the LOCK_NB option was specified.

SEE ALSO

BUGS

728

c1ose(2V), dup(2V), execve(2V), fcntl(2V), fork(2V), open(2V), lockf(3), lockd(8C)

Locks obtained through the Oock() mechanism are known only within the system on which they were
placed. Thus, multiple clients may successfully acquire exclusive locks on the same remote file. If this
behavior is not explicitly desired, the fcntl(2V) or lockf(3) system calls should be used instead; these make
use of the services of the network lock manager (see lockd(8C».

Last change: 21 January 1990 Sun Release 4.1

FORK (2V) SYSTEM CALLS FORK(2V)

NAME
fork - create a new process

SYNOPSIS
int forkO

SYSTEM V SYNOPSIS
pid t forkO

DESCRIPTION
forkO creates a new process. The new process (child process) is an exact copy of the calling process
except for the following:

• The child process has a unique process ID. The child process ID also does not match any active process
groupID.

• The child process has a different parent process ill (the process ID of the parent process).

• The child process has its own copy of the parent's descriptors. These descriptors reference the same
underlying objects, so that, for instance, file pointers in file objects are shared between the child and the
parent, so that an Iseek(2V» on a descriptor in the child process can affect a subsequent read(2V) or
write(2V) by the parent. This descriptor copying is also used by the shell to establish standard input
and output for newly created processes as well as to set up pipes.

• The child process has its own copy of the parent's open directory streams (see directory(3V». Each
open directory stream in the child process shares directory stream positioning with the corresponding
directory stream of the parent.

• All semadj values are cleared; see semop(2).

• The child processes resource utilizations are set to 0; see getrlimit(2). The it_value and it_interval
values for the ITIMER_REAL timer are reset to 0; see getitimer(2).

• The child process's values of tms_utimeO, tms_stimeO, tms_cutime(), and tms_cstimeO (see
times(3V» are set to zero.

• File locks (see fcntl(2V» previously set by the parent are not inherited by the child.

• Pending alarms (see alarm(3V» are cleared for the child process.

• The set of signals pending for the child process is cleared (see sigvec(2».

RETURN VALUES
On success, fork() returns 0 to the child process and returns the process ID of the child process to the
parent process. On failure, fork() returns -1 to the parent process, sets errno to indicate the error, and no
child process is created.

ERRORS
fork() will fail and no child process will be created if one or more of the following are true:

EAGAIN

ENOMEM

SEE ALSO

The system-imposed limit on the total number of processes under execution would be
exceeded. This limit is determined when the system is generated.

The system-imposed limit on the total number of processes under execution by a single
user would be exceeded. This limit is determined when the system is generated.

There is insufficient swap space for the new process.

execve(2V), getitimer(2), getrlimit(2), Iseek(2V), read(2V), semop(2), wait(2V), write(2V)

Sun Release 4.1 Last change: 21 January 1990 729

FSYNC(2) SYSTEM CALLS

NAME
fsync - synchronize a file's in-core state with that on disk

SYNOPSIS
int fsync(fd)

int fd;

DESCRIPTION

FSYNC(2)

fsync() moves all modified data and attributes of fd to a permanent storage device: all in-core modified
copies of buffers for the associated file have been written to a disk when the call returns. Note: this is dif­
ferent than sync(2) which schedules disk I/O for all files (as though an fsync() had been done on all files)
but returns before the I/O completes.

fsync() should be used by programs which require a file to be in a known state; for example, a program
which contains a simple transaction facility might use it to ensure that all modifications to a file or files
caused by a transaction were recorded on disk.

RETURN VALUES
fsync() returns:

o on success.

-Ion failure and sets errno to indicate the error.

ERRORS
EBADF

EINVAL

EIO

SEE ALSO
cron(8), sync(2)

730

fd is not a valid descriptor.

fd refers to a socket, not a file.

An I/O error occurred while reading from or writing to the file system.

Last change: 21 January 1990 Sun Release 4.1

GETAUID(2) SYSTEM CALLS GETAUID(2)

NAME
getauid, setauid - get and set user audit identity

SYNOPSIS
int getauidO

int setauid(auid)
int auid;

DESCRIPTION
The getauid() system call returns the audit user ID for the current process. This value is initially set at
login time and inherited by all child processes. This value does not change when the reaVeffective user IDs
change, so it can be used to identify the logged-in user, even when running a setuid program. The audit
user 10 governs audit decisions for a process.

The setauid() system call sets the audit user ID for the current process. Only the super-user may success­
fully execute these calls.

RETURN VALUES
getauid() returns the audit user ID of the current process on success. On failure, it returns -1 and sets
errno to indicate the error.

setauid() returns:

o on success.

-1 on failure and sets errno to indicate the error.

ERRORS
EINVAL

EPERM

SEE ALSO

The parameter auid is not a valid UIO.

The process's effective user ID is not super-user.

getuid(2V), setuseraudit(2). audit(8)

Sun Release 4.1 Last change: 21 January 1990 731

GETDENTS (2) SYSTEM CALLS GETDENTS (2)

NAME
getdents - gets directory entries in a filesystem independent format

SYNOPSIS '
#include <sys/types.h>
#include <sys/dirent.h>

int getdents(fd, buf, nbytes)
int fd;
char *buf;
int nbytes;

DESCRIPTION
getdents() attempts to put directory entries from the directory referenced by the file descriptor fd into the
buffer pointed to by buf, in a filesystem independent format. Up to nbytes bytes of data will be transferred.

The data in the buffer is a series of dirent structures each containing the following entries:

otT t d_otT;
u_long d_fileno;
u short d_reclen;
u short d_namlen;
char d_name[MAXNAMLEN + 1]; 1* see below *1

The d_otT entry contains a value which is interpretable only by the filesystem that generated it. It may be
supplied as an offset to lseek(2V» to find the entry following the current one in a directory. The d _ fileno
entry is a number which is unique for each distinct file in the filesystem. Files that are linked by hard links
(see link(2V» have the same d_fileno. The d_reclen entry is the length, in bytes, of the directory record.
The d _name entry contains a null terminated file name. The d _ namlen entry specifies the length of the file
name. Thus the actual size of d _name may vary from 1 to MAXNAMLEN+ 1.

The structures are not necessarily tightly packed. The d_reclen entry may be used as an offset from the
beginning of a dirent structure to the next structure, if any.

Upon return, the actual number of bytes transferred is returned. The current position pointer associated
with fd is set to point to the directory entry following the last one returned. The pointer is not necessarily
incremented by the number of bytes returned by getdents(). If the value returned is zero, the end of the
directory has been reached. The current position pointer may be set and retrieved by lseek(2V). It is not
safe to set the current position pointer to any value other than a value previously returned by lseek(2V), or
the value of a d _ otT entry in a dirent structure returned by getdents(), or zero.

RETURN VALUES
getdents() returns the number of bytes actually transferred on success. On failure, it returns -1 and sets
errno to indicate the error.

ERRORS
EBADF

EFAULT

EINTR

EINVAL

ENOTDIR

EIO

SEE ALSO

fd is not a valid file descriptor open for reading.

buf points outside the allocated address space.

A read from a slow device was interrupted before any data arrived by the delivery of a
signal.

nbytes is not large enough for one directory entry.

The file referenced by fd is not a directory.

An I/O error occurred while reading from or writing to the file system.

link(2V), lseek(2V), open(2V), directory(3V)

732 Last change: 21 January 1990 Sun Release 4.1

GETDENTS (2) SYSTEM CALLS GETDENTS (2)

NOTES
It is strongly recommended, for portability reasons, that programs that deal with directory entries use the
directory(3V) interface rather than directly calling getdents().

Sun Release 4.1 Last change: 21 January 1990 733

GETDIRENTRIES (2) SYSTEM CALLS GETDIRENlRIES (2)

NAME
getdirentries - gets directory entries in a filesystem independent format

SYNOPSIS
int getdirentries(fd, buf, nbytes, basep)
int fd;
char *buf;
int nbytes;
long *basep;

DESCRIPTION
This system call is now obsolete. It is superseded by the getdents(2) system call, which returns directory
entries in a new format specified in <sys/dirent.h>. The file, <sys/dir.h>, has also been modified to use
the new directory entry format. Programs which currently call getdirentries() should be modified to use
the new system call and the new include file dirent.h or, preferably, to use the directory(3V) library rou­
tines. The getdirentries() system call is retained in the current SunOS release only for purposes of back­
wards binary compatibility and will be removed in a future major release.

getdirentries() attempts to put directory entries from the directory referenced by the file descriptor fd into
the buffer pointed to by buf, in a filesystem independent format. Up to nbytes bytes of data will be
transferred. nbytes must be greater than or equal to the block size associated with the file, see stat(2V).
Sizes less than this may cause errors on certain filesystems.

The data in the buffer is a series of structures each containing the following entries:

unsigned long d _ fileno;
unsigned short d _ reelen;
unsigned short d_namlen;
char d_name[MAXNAMELEN + 1]; 1* see below *1

The d _ fileno entry is a number which is unique for each distinct file in the filesystem. Files that are linked
by hard links (see link(2V» have the same d_fileno. The d_reelen entry is the length, in bytes, of the
directory record. The d _name entry contains a null terminated file name. The d _ namlen entry specifies
the length of the file name. Thus the actual size of d _name may vary from 2 to MAXNAMELEN+ 1.

The structures are not necessarily tightly packed. The d_reclen entry may be used as an offset from the
beginning of a direct structure to the next structure, if any.

Upon return, the actual number of bytes transferred is returned. The current position pointer associated
with fd is set to point to the next block of entries. The pointer is not necessarily incremented by the
number of bytes returned by getdirentries(). If the value returned is zero, the end of the directory has
been reached. The current position pointer may be set and retrieved by Iseek(2V). getdirentries() writes
the position of the block read into the location pointed to by basep. It is not safe to set the current position
pointer to any value other than a value previously returned by lseek(2V) or a value previously returned in
the location pointed to by basep or zero.

RETURN VALUES
getdirentries() returns the number of bytes actually transferred on success. On failure, it returns -1 and
sets errno to indicate the error.

ERRORS

734

EBADF

EFAULT

EINTR

EIO

fd is not a valid file descriptor open for reading.

Either buf or basep points outside the allocated address space.

A read from a slow device was interrupted before any data arrived by the delivery of a
signal.

An I/O error occurred while reading from or writing to the file system.

Last change: 21 January 1990 Sun Release 4.1

GETDIRENTRIES (2) SYSTEM CALLS GETDIRENTRIES (2)

SEE ALSO
getdents(2), Iink(2V), Iseek(2V), open(2V), stat(2V), directory(3V)

Sun Release 4.1 Last change: 21 January 1990 735

GETDOMAINNAME (2) SYSTEM CALLS GETDOMAINNAME (2)

NAME
getdomainname, setdomainname - get/set name of current domain

SYNOPSIS
int getdomainname(name, namelen)
char *name;
int namelen;

int setdomainname(name, namelen)
char *name;
int namelen;

DESCRIPTION
getdomainnameO returns the name of the domain for the current processor, as previously set by set­
domainname. The parameter name len specifies the size of the array pointed to by name. The returned
name is null-terminated unless insufficient space is provided.

setdomainname() sets the domain of the host machine to be name, which has length name len . This call is
restricted to the super-user and is normally used only when the system is bootstrapped.

The purpose of domains is to enable two distinct networks that may have host names in common to merge.
Each network would be distinguished by having a different domain name. At the current time, only the
Network Information Service (NIS) and sendmail(8) make use of domains.

RETURN VALUES
getdomainname() and setdomainname() return:

o on success.

-1 on failure and set errno to indicate the error.

ERRORS

NOTES

736

EFAULT The name parameter gave an invalid address.

In addition to the above, setdomainname() will fail if:

EPERM The caller was not the super-user.

Domain names are limited to 64 characters.

The Network Information Service (NIS) was fonnerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed.

Last change: 21 January 1990 Sun Release 4.1

GETDTABLESIZE (2)

NAME
getdtablesize - get descriptor table size

SYNOPSIS
getdtablesize()

DESCRIPTION

SYSTEM CALLS GETDTABLESIZE (2)

The call getdtablesizeO returns the current value of the soft limit component of the RLIMIT_NOFILE
resource limit. This resource limit governs the maximum value allowable as the index of a newly created
descriptor.

WARNINGS
getdtablesize is implemented as a system call only for binary compatibility with previous releases.

Because of possible intervening getrlimit(2) calls affecting RLIMIT_NOFILE~ repeated calls to getdta­
blesize() may return different values. Thus it is unwise to cache the return value in an effort to avoid sys­
tem call overhead~ unless it is known that such intervening calls do not occur.

SEE ALSO
close(2V)~ dup(2V)~ getrlimit(2)~ open(2V)

Sun Release 4.1 Last change: 21 January 1990 737

GETGID(2V)

NAME
getgid, getegid - get group identity

SYNOPSIS
int getgid()

int getegid()

SYSTEM V SYNOPSIS
#include <sysltypes.h>

gid _ t getgid()

gid _ t getegid()

DESCRIPTION

SYSTEM CALLS GETGID(2V)

getgid() returns the real group ID of the current process. getegid() returns the effective group ID of the
current process.

The GID is specified at login time by the group field in the letc/passwd database (see passwd(5».

The effective GID is more transient, and determines additional access permission during execution of a set­
OlD process, and it is for such processes that getegid() is most useful.

SEE ALSO
getuid(2V),setregid(2),setuid(3V)

738 Last change: 21 January 1990 Sun Release 4.1

GETGROUPS (2V) SYSTEM CALLS GETGROUPS (2V)

NAME
getgroups, setgroups - get or set supplementary group IDs

SYNOPSIS
int getgroups(gidsetlen, gidset)
int gidsetlen;
int gidset[];

int setgroups(ngroups, gidset)
int ngroups;
int gidset[];

SYSTEM V SYNOPSIS
#include <sysltypes.h>

int getgroups(gidsetlen, gidset)
int gidsetlen;
gid_t gidset[];

int setgroups(ngroupss gidset)
int ngroups;
gid_t gidset[];

DESCRIPTION
getgroups() gets the current supplementary group IDs of the user process and stores it in the array gidset.
The parameter gidsetlen indicates the number of entries that may be placed in gidset. getgroups() returns
the actual number of entries placed in the gidset array. No more than {NGROUPS_MAX} (see
sysconf(2V»), will ever be returned. If gidsetlen is 0, getgroups() returns the number of groups without
modifying the gidset array.

setgroups() sets the supplementary group IDs of the current user process according to the array gidset.
The parameter ngroups indicates the number of entries in the array and must be no more than
{NGROUPS_MAX} (see sysconf(2V).

Only the super-user may set new groups.

RETURN VALUES
On success, getgroups() returns the number of entries placed in the array pointed to by gidset. On failure,
it returns -I and sets errno to indicate the error.

setgroups() returns:

o on success.

-1 on failure and sets errno to indicate the error.

ERRORS
Either call fails if:

EFAULT The address specified for gidset is outside the process address space.

getgroups() fails if:

EINVAL The argument gidsetlen is smaller than the number of groups in the group set.

setgroups() fails if:

EPERM

SEE ALSO
initgrou ps(3)

Sun Release 4.1

The caller is not the super-user.

Last change: 21 January 1990 739

GETHOSTID (2) SYSTEM CALLS

NAME
getbostid - get unique identifier of current host

SYNOPSIS
gethostidO

DESCRIPTION

GETHOSTID (2)

gethostid() returns the 32-bit identifier for the current host, which should be unique across all hosts. On a
Sun workstation, this number is taken from the CPU board's ID PROM.

SEE ALSO
hostid(l)

740 Last change: 21 January 1990 Sun Release 4.1

GETHOSTNAME (2) SYSTEM CALLS

NAME
gethostname, sethostname - get/set name of current host

SYNOPSIS
iot gethostoame(oame, oamelen)
char *name;
iot oamelen;

iot sethostname(oame, namelen)
char *name;
iot oamelen;

DESCRIPTION

GETHOSlNAME(2)

gethostoameO returns the standard host name for the current processor, as previously set by sethost­
oame(). The parameter namelen specifies the size of the array pointed to by name. The returned name is
null-terminated unless insufficient space is provided.

sethostname() sets the name of the host machine to be name, which has length name len . This call is res­
tricted to the super-user and is normally used only when the system is bootstrapped.

RETURN VALUES
gethostoame() and sethostname() return:

o on success.

-Ion failure and set errno to indicate the error.

ERRORS
EFAULT The name or name len parameter gave an invalid address.

In addition to the above, sethostname() may set errno to:

EPERM

SEE ALSO
gethostid(2)

NOTES

The caller was not the super-user.

Host names are limited to MAXHOSTNAMELEN (from <sys/param.h» characters, currently 64.

Sun Release 4.1 Last change: 21 January 1990 741

GETITIMER (2) SYSTEM CALLS GETITIMER (2)

NAME
getitimer, setitimer - get/set value of interval timer

SYNOPSIS
#include <sysltime.h>

int getitimer (which, value)
int which;
struct itimerval *value;

int setitimer (which, value, ovalue)
intwhich;
struct itimerval *value, *ovalue;

DESCRIPTION
The system provides each process with three interval timers, defined in <sysltime.h>. The getitimer() call
stores the current value of the timer specified by which into the structure pointed to by value. The setiti·
mer() call sets the value of the timer specified by which to the value specified in the structure pointed to
by value, and if ovalue is not a NULL pointer, stores the previous value of the timer in the structure pointed
to by ovalue .

A timer value is defined by the itimerval structure, which includes the following members:

struct timevalit_interval;l* timer interval *1
struct timevalit_ value; 1* current value *1

If it_value is non-zero, it indicates the time to the next timer expiration. If it Jnterval is non-zero, it
specifies a value to be used in reloading it_value when the timer expires. Setting it_value to zero disables
a timer; however, it_value and itJnterval must still be initialized. Setting it_interval to zero causes a
timer to be disabled after its next expiration (assuming it_value is non-zero).

Time values smaller than the resolution of the system clock are rounded up to this resolution.

The three timers are:

ITIMER_ REAL

ITIMER VIRTUAL

Decrements in real time. A SIGALRM signal is delivered when this timer expires.

Decrements in process virtual time. It runs only when the process is executing. A
SIGVT ALRM signal is delivered when it expires.

Decrements both in process virtual time and when the system is running on behalf
of the process. It is designed to be used by interpreters in statistically profiling the
execution of interpreted programs. Each time the ITIMER_PROF timer expires,
the SIGPROF signal is delivered. Because this signal may interrupt in-progress
system calls, programs using this timer must be prepared to restart interrupted sys­
tem calls.

RETURN VALUES
getitimer() and setitimer() return:

o on success.

-1 on failure and set errno to indicate the error.

ERRORS
The possible errors are:

EFAULT The value or ovalue parameter specified a bad address.

EINV AL The value parameter specified a time that was too large to be handled.

SEE ALSO
sigvec(2), gettimeofday(2)

742 Last change: 21 January 1990 Sun Release 4.1

GETITIMER (2) SYSTEM CALLS GETITIMER (2)

NOTES
Three macros for manipulating time values are defined in <sysltime.h>. timerclear sets a time value to

zero, timerisset tests if a time value is non-zero, and timercmp compares two time values (beware that >=
and <= do not work with this macro).

Sun Release 4.1 Last change: 21 January 1990 743

GETMSG(2) SYSTEM CALLS GETMSG(2)

NAME
getmsg - get next message from a stream

SYNOPSIS
#include <stropts.h>

int getmsg(fd, ctlptr, dataptr, flags)
int fd;
struct strbur *ctlptr;
struct strbur *dataptr;
int *f1ags;

DESCRIPTION

744

getmsg() retrieves the contents of a message (see intro(2» located at the stream head read queue from a
STREAMS file, and places the contents into user specified buffer(s). The message must contain either a
data part, a control part or both. The data and control parts of the message are placed into separate buffers,
as described below. The semantics of each part is defined by the STREAMS module that generated the mes­
sage.

fd specifies a file descriptor referencing an open stream. ctlptr and dataptr each point to a strbuf structure
that contains the following members:

int maxlen;
int len;
char *buf;

1* maximum butTer length *1
1* length of data *1
1* ptr to buffer *1

where buf points to a buffer in which the data or control information is to be placed, and maxlen indicates
the maximum number of bytes this buffer can hold. On return, len contains the number of bytes of data or
control information actually received, or is 0 if there is a zero-length control or data part, or is -1 if no data
or control information is present in the message. flags may be set to the values 0 or RS_HIPRI and is used
as described below.

ctlptr is used to hold the control part from the message and dataptr is used to hold the data part from the
message. If ctlptr (or dataptr) is a NULL pointer or the maxlen field is -1, the control (or data) part of the
message is not processed and is left on the stream head read queue and len is set to -1. If the maxlen
field is set to 0 and there is a zero-length control (or data) part, that zero-length part is removed from the
read queue and len is set to O. If the maxlen field is set to 0 and there are more than zero bytes of control
(or data) information, that information is left on the read queue and len is set to o. If the maxlen field in
ctlptr or dataptr is less than, respectively, the control or data part of the message, maxlen bytes are
retrieved. In this case, the remainder of the message is left on the stream head read queue and a non-zero
return value is provided, as described below under RETURN V ALVES. If information is retrieved from a
priority message,flags is set to RS_HIPRI on return.

By default, getmsg() processes the first priority or non-priority message available on the stream head read
queue. However, a process may choose to retrieve only priority messages by setting flags to RS_IDPRI. In
this case, getmsg() will only process the next message if it is a priority message.

If 0 _NDELAY has not been set, getmsg() blocks until a message, of the type(s) specified by flags (priority
or either), is available on the stream head read queue. If O_NDELAY has been set and a message of the
specified type(s) is not present on the read queue, getmsg() fails and sets errno to EAGAIN.

If a hangup occurs on the stream from which messages are to be retrieved, getmsg() will continue to
operate normally, as described above, until the stream head read queue is empty. Thereafter, it will return
o in the len fields of ctlptr and dataptr.

Last change: 21 January 1990 Sun Release 4.1

GETMSG(2) SYSTEM CALLS GETMSG(2)

RETURN VALUES
getmsg() returns a non-negative value on success:

o A full message was read successfully.

MORECfL More control information is waiting for retrieval. Subsequent
getmsg() calls will retrieve the rest of the message . .

MOREDATA More data are waiting for retrieval. Subsequent getmsg() calls
will retrieve the rest of the message.

MORECfL I MOREDATA Both types of information remain.

On failure, getmsg() returns -1 and sets errno to indicate the error.

ERRORS
EAGAIN

EBADF

EBADMSG

EFAULT

EINTR

EINVAL

The O_NDELAY flag is set, and no messages are available.

fd is not a valid file descriptor open for reading.

The queued message to be read is not valid for getmsg().

ctlptr, dataptr, or flags points to a location outside the allocated address space.

A signal was caught during the getmsg() system call.

An illegal value was specified in flags .

The stream referenced by fd is linked under a multiplexor.

ENOSTR A stream is not associated withfd.

A getmsg() can also fail if a STREAMS error message had been received at the stream head before the call
to getmsg(). The error returned is the value contained in the STREAMS error message.

SEE ALSO
intro(2), poll(2), putmsg(2), read(2V), write(2V)

Sun Release 4.1 Last change: 21 January 1990 745

GETP AGESIZE (2)

NAME
getpagesize - get system page size

SYNOPSIS
iot getpagesize()

DESCRIPTION

SYSTEM CALLS GETP AGESIZE (2)

getpagesize() returns the number of bytes in a page. Page granularity is the granularity of many of the
memory management calls.

The page size is a system page size and may not be the same as the underlying hardware page size.

SEE ALSO
pagesize(1), brk(2)

746 Last change: 21 January 1990 Sun Release 4.l

GETPEERNAME(2) SYSTEM CALLS

NAME
getpeemame - get name of connected peer

SYNOPSIS
int getpeername(s, name, namelen)
int s;
struct sockaddr *name;
int *namelen;

DESCRIPTION

GETPEERNAME (2)

getpeername() returns the name of the peer connected to socket s. The int pointed to by the namelen
parameter should be initialized to indicate the amount of space pointed to by name. On return it contains
the actual size of the name returned (in bytes). The name is truncated if the buffer provided is too small.

DIAGNOSTICS
A 0 is returned if the call succeeds, -1 if it fails.

ERRORS
EBADF

EFAULT

ENOBUFS

ENOTCONN

ENOTSOCK

SEE ALSO

The argument s is not a valid descriptor.

The name parameter points to memory not in a valid part of the process address space.

Insufficient resources were available in the system to perform the operation.

The socket is not connected.

The argument s is a file, not a socket.

accept(2), bind(2), getsockname(2), socket(2)

Sun Release 4.1 Last change: 21 January 1990 747

GETPGRP (2V) SYSTEM CALLS GETPGRP (2V)

NAME
getpgrp, setpgrp - return or set the process group of a process

SYNOPSIS
int getpgrp(pid)
int pid;

int setpgrp(pid, pgrp)
int pgrp;
int pid;

SYSTEM V SYNOPSIS
int getpgrp()

int setpgrp()

DESCRIPTION
getpgrp() returns the process group of the process indicated by pid. If pid is zero, then the call applies to
the calling process.

Process groups are used for distribution of signals, and by terminals to arbitrate requests for their input.
Processes that have the same process group as the terminal run in the foreground and may read from the
terminal, while others block with a signal when they attempt to read.

This call is thus used by programs such as csb(l) to create process groups in implementing job control.
The TIOCGPGRP and TIOCSPGRP calls described in termio(4) are used to get/set the process group of
the control terminal.

setpgrp() sets the process group of the specified process, (Pid) to the process group specified by pgrp. If
pid is zero, then the call applies to the current (calling) process. If pgrp is zero and pid refers to the calling
process, setpgrp() behaves identically to setsid(2V).

If the effective user ID of the calling process is not super-user, then the process to be affected must have the
same effective user ID as that of the calling process or be a member of the same session as the calling pro­
cess.

SYSTEM V DESCRIPTION
getpgrp() returns the process group of the calling process.

setpgrp() behaves identically to setsid().

RETURN VALUES
getpgrp() returns the process group of the indicated process on success. On failure, it returns -1 and sets
errno to indicate the error.

setpgrp() returns:

o on success.

-1 on failure and sets errno to indicate the error.

SYSTEM V RETURN VALUES
getpgrp() returns the process group of the calling process on success.

ERRORS

748

setpgrp() fails, and the process group is not altered when one of the following occurs:

EACCES

EINVAL

The value of pid matches the process ID of a child process of the calling process and the
child process has successfully executed one of the exec() functions.

The value of pgrp is less than zero or is greater than MAXPID, the maximum process ID
as defined in <sys/param.h>.

Last change: 21 January 1990 Sun Release 4.1

GETPGRP (2V)

EPERM

ESRCH

SEE ALSO

SYSTEM CALLS GETPGRP (2V)

The process indicated by pid is a session leader.

The value of pid is valid but matches the process ID of a child process of the calling pro­
cess and the child process is not in the same session as the calling process.

The value of pgrp does not match the process ID of the process indicated by pid and
there is no process with a process group ID that matches the value of pgrp in the same
session as the calling process.

The requested process has a different effective user ID from that of the calling process
and is not a descendent of the calling process.

The calling process is already a process group leader

The process ID of the calling process equals the process group ID of a different process.

The value of pid does not match the process ID of the calling process or of a child pro­
cess of the calling process.

The requested process does not exist.

csh(I), intro(2), execve(2V), fork(2V), getpid(2V), getuid(2V), kill(2V), setpgid(2V), signal(3V), ter­
mio(4)

Sun Release 4.1 Last change: 21 January 1990 749

GETPID(2V) SYSTEM CALLS

NAME
getpid, getppid - get process identification

SYNOPSIS
int getpid()

int getppid()

SYSTEM V SYNOPSIS
#include <sysltypes.h>

pid_t getpid()

pid _ t getppid()

DESCRIPTION

GETPID(2V)

getpid() returns the process ID of the current process. Most often it is used to generate uniquely-named
temporary files.

getppid() returns the process ID of the parent of the current process.

SEE ALSO
gethostid(2)

750 Last change: 21 January 1990 Sun Release 4.1

GElPRIORITY (2) SYSTEM CALLS GElPRIORITY (2)

NAME
getpriority, setpriority - get/set process nice value

SYNOPSIS
#include <sysltime.h>
#include <syslresource.h>

int getpriority(which, who)
int which, who;

int setpriority(which, who, niceval)
int which, who, niceval;

DESCRIPTION
The nice value of a process, process group, or user, as indicated by which and who is obtained with the get­
priorityO call and set with the setpriority() call. Process nice values can range from -20 through 19.
The default nice value is 0; lower nice values cause more favorable scheduling.

which is one of PRIO _PROCESS, PRIO _PGRP, or PRIO _USER, and who is interpreted relative to which (a
process identifier for PRIO _PROCESS, process group identifier for PRIO _ PGRP, and a user ID for
PRIO_USER). A zero value of who denotes the current process, process group, or user.

The getpriority() call returns the lowest numerical nice value of any of the specified processes. The set­
priority() call sets the nice values of all of the specified processes to the value specified by niceval. If
niceval is less than -20, a value of -20 is used; if it is greater than 19, a value of 19 is used. Only the
super-user may use negative nice values.

RETURN VALUES
Since getpriority() can legitimately return the value -1, it is necessary to clear the external variable errno
prior to the call, then check it afterward to detennine if a -1 is an error or a legitimate value.

setpriority() returns:

o on success.

-1 on failure and sets errno to indicate the error.

ERRORS
getpriority() and setpriority() may set errno to:

EINVAL

ESRCH

which was not one of PRIO _PROCESS, PRIO _PGRP, or PRIO _USER.

No process was located using the which and who values specified.

In addition to the errors indicated above, setpriority() may fail with one of the following errors returned:

EACCES

EPERM

The call to setpriority() would have changed a process' nice value to a value lower than
its current value, and the effective user ID of the process executing the call was not that
of the super-user.

A process was located, but neither its effective nor real user ID matched the effective
user ID of the caller, and neither the effective nor the real user ID of the process execut­
ing setpriority() was super-user.

SEE ALSO

BUGS

nice(I), ps(l), fork(2V), nice(3v) renice(8)

It is not possible for the process executing setpriority() to lower any other process down to its current nice
value, without requiring super-user privileges.

These system calls are misnamed. They get and set the nice value, not the kernel scheduling priority.
nice(l) discusses the relationship between nice value and scheduling priority.

Sun Release 4.1 Last change: 21 January 1990 751

GETRLIMIT (2) SYSTEM CALLS GETRLIMIT (2)

NAME
getrlimit, setrlimit - control maximum system resource consumption

SYNOPSIS
#include <sysltime.h>
#include <syslresource.h>

int getrlimit(resource, rip)
int resource;
struct rlimit *rlp;

int setrlimit(resource, rip)
int resource;
struct rlimit *rlp;

DESCRIPTION

752

Limits on the consumption of system resources by the current process and each process it creates may be
obtained with the getrlimit() call, and set with the setrlimit() call.

The resource parameter is one of the following:

RLIMIT _CPU the maximum amount of cpu time (in seconds) to be used by each process.

RLIMIT FSIZE the largest size, in bytes, of any single file that may be created.

RLIMIT DATA

RLIMIT STACK

RLIMIT CORE

RLIMIT RSS

RLIMIT NOFILE

the maximum size, in bytes, of the data segment for a process; this defines how far
a program may extend its break with the shrk() (see hrk(2» system call.

the maximum size, in bytes, of the stack segment for a process; this defines how
far a program's stack segment may be extended automatically by the system.

the largest size, in bytes, of a core file that may be created.

the maximum size, in bytes, to which a process's resident set size may grow. This
imposes a limit on the amount of physical memory to be given to a process; if
memory is tight, the system will prefer to take memory from processes that are
exceeding their declared resident set size.

one more than the maximum value that the system may assign to a newly created
descriptor. This limit constrains the number of descriptors that a process may
create.

A resource limit is specified as a soft limit and a hard limit. When a soft limit is exceeded a process may
receive a signal (for example, if the cpu time is exceeded), but it will be allowed to continue execution until
it reaches the hard limit (or modifies its resource limit). The rlimit structure is used to specify the hard and
soft limits on a resource,

struct rlimit {
int
int

};

rlim_cur;
rlim_max;

1* current (soft) limit *1
1* hard limit *1

Only the super-user may raise the maximum limits. Other users may only alter rlim _cur within the range
from 0 to rlim _max or (irreversibly) lower rlim _max.

An "infinite" value for a limit is defined as RLIM _INFINITY (Ox7ffflllT).

Because this information is stored in the per-process information, this system call must be executed directly
by the shell if it is to affect all future processes created by the shell; limit is thus a built-in command to
csh(l).

Last change: 21 January 1990 Sun Release 4.1

GElRLIMIT (2) SYSTEM CALLS GETRLIMIT (2)

The system refuses to extend the data or stack space when the limits would be exceeded in the normal way:
a brk() or sbrk() call will fail if the data space limit is reached, or the process will be sent a SIGSEGV
when the stack limit is reached which will kill the process unless SIGSEGV is handled on a separate signal
stack (since the stack cannot be extended, there is no way to send a signa!!).

A file I/O operation that would create a file that is too large generates a signal SIGXFSZ; this normally ter­
minates the process, but may be caught. When the soft CPU time limit is exceeded, a signal SIGXCPU is
sent to the offending process.

RETURN VALUES
getrlimit() and setrlimit() return:

o on success.

-1 on failure and set errno to indicate the error.

ERRORS
EFAULT The address specified by rip was invalid.

EINV AL An invalid resource was specified.

In addition to the above, setrlimit() may set errno to:

The new rlim cur exceeds the new rlim max. - -EINVAL

EPERM The limit specified would have raised the maximum limit value, and the caller was not
the super-user.

SEE ALSO
csh(1), sh(I), brk(2), getdtablesize(2), quotactl(2)

BUGS
There should be limit and un limit commands in sh(l) as well as in csb(I).

Sun Release 4.1 Last change: 21 January 1990 753

GETRUSAGE (2) SYSTEM CALLS GETRUSAGE(2)

NAME
getrusage - get information about resource utilization

SYNOPSIS
#include <sysltime.h>
#include <syslresource.h>

iot getrusage(who, rusage)
iot who;
struct rusage *rusage;

DESCRIPTION

754

getrusage() returns information about the resources utilized by the current process, or all its terminated
child processes. The interpretation for some values reported, such as ru Jdrss, are dependent on the clock
tick interval. This interval is an implementation dependent value; for example, on Sun-3 sytems the clock
tick interval is 1/50 of a second, while on Sun-4 systems the clock tick interval is 1/100 of a second.

The who parameter is one of RUSAGE _SELF or RUSAGE_ CHILDREN. The buffer to which rusage points
will be filled in with the following structure:

struct rusage {

};

struct timeval ru _ utime;
struct timeval ru _ stime;
iot ru _ maxrss;
int ruJxrss;
int ruJdrss;
int ruJsrss;
int ru_mioflt;
int ru_majflt;
int ru_nswap;
int ruJnblock;
int ru _ oublock;
int ru_msgsnd;
int ru_msgrcv;
int ru _ osignals;
int ru_nvcsw;
int ru_nivcsw;

1* user time used *1
1* system time used *1
1* maximum resident set size *1
1* currently 0 *1
1* integral resident set size *1
1* currently 0 *1
1* page faults oot requiring physical I/O *1
1* page faults requiring physical I/O *1
1* swaps *1
1* block input operations *1
1* block output operations *1
1* messages sent *1
1* messages received *1
1* signals received *1
1* voluntary context switches *1
1* involuntary context switches *1

The fields are interpreted as follows:

ru utime

ru stime

ru maxrss

ru ixrss

ru idrss

The total amount of time spent executing in user mode. Time is given in seconds and
microseconds.

The total amount of time spent executing in system mode. Time is given in seconds and
microseconds.

The maximum resident set size. Size is given in pages (the size of a page, in bytes, is
given by the getpagesize(2) system call). Also, see WARNINGS.

Currently returns O.

An "integral" value indicating the amount of memory in use by a process while the pro­
cess is running. This value is the sum of the resident set sizes of the process running
when a clock tick occurs. The value is given in pages times clock ticks. Note: it does
not take sharing into account. Also, see WARNINGS.

Last change: 21 January 1990 Sun Release 4.1

GETRUSAGE (2)

ru isrss

ru minftt

ru_majftt

ru_nswap

ru inblock

ru oublock

ru_msgsnd

ru_msgrcv

ru _ nsignals

ru nvcsw

ru nivcsw

SYSTEM CALLS GETRUSAGE(2)

Currently returns O.

The number of page faults serviced which did not require any physical I/O activity.
Also, see WARNINGS.

The number of page faults serviced which required physical I/O activity. This could
include page ahead operations by the kernel. Also, see WARNINGS.

The number of times a process was swapped out of main memory.

The number of times the file system had to perform input in servicing a read(2V)
request.

The number of times the file system had to perform output in servicing a write(2V)
request.

The number of messages sent over sockets.

The number of messages received from sockets.

The number of signals delivered.

The number of times a context switch resulted due to a process voluntarily giving up the
processor before its time slice was completed (usually to await availability of a
resource).

The number of times a context switch resulted due to a higher priority process becoming
runnable or because the current process exceeded its time slice.

RETURN VALUES
getrusage() returns:

o on success.

-1 on failure and sets errno to indicate the error.

ERRORS
EFAULT The address specified by the rusage argument is not in a valid portion of the process's

address space.

EINVAL The who parameter is not a valid value.

SEE ALSO
gettimeofday(2), read(2V), wait(2V), write(2V)

WARNINGS
The numbers ru_inblock and ru_oublock account only for real I/O, and are approximate measures at best.
Data supplied by the caching mechanism is charged only to the first process to read and the last process to
write the data.

The way resident set size is calculated is an approximation, and could misrepresent the true resident set
size.

Page faults can be generated from a variety of sources and for a variety of reasons. The customary cause
for a page fault is a direct reference by the program to a page which is not in memory. Now, however, the
kernel can generate page faults on behalf of the user, for example, servicing read(2V) and write(2V) sys­
tem calls. Also, a page fault can be caused by an absent hardware translation to a page, even though the
page is in physical memory.

In addition to hardware detected page faults, the kernel may cause pseudo page faults in order to perform
some housekeeping. For example, the kernel may generate page faults, even if the pages exist in physical
memory, in order to lock down pages involved in a raw I/O request.

By definition, major page faults require physical I/O, while minor page faults do not require physical I/O.
For example, reclaiming the page from the free list would avoid I/O and generate a minor page fault. More
commonly, minor page faults occur during process startup as references to pages which are already in

Sun Release 4.1 Last change: 21 January 1990 755

GElRUSAGE(2) SYSTEM CALLS GETRUSAGE (2)

BUGS

756

memory. For example, if an address space faults on some Uhot" executable or shared library, this results in
a minor page fault for the address space. Also, anyone doing a read(2V) or write(2V) to something that is
in the page cache will get a minor page fault(s) as well.

There is no way to obtain information about a child process which has not yet terminated.

Last change: 21 January 1990 Sun Release 4.1

GETSOCKNAME (2) SYSTEM CALLS GETSOCKNAME (2)

NAME
getsockname - get socket name

SYNOPSIS
getsockname(s, name, namelen)
int s;
struct sockaddr *name;
int *namelen;

DESCRIPTION
getsockname() returns the current name for the specified socket The name len parameter should be initial­
ized to indicate the amount of space pointed to by name. On return it contains the actual size of the name
returned (in bytes).

DIAGNOSTICS
A 0 is returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless:

EBADF

EFAULT

ENOBUFS

ENOTSOCK

SEE ALSO

s is not a valid descriptor.

name points to memory not in a valid part of the process address space.

Insufficient resources were available in the system to perform the operation.

s is a file, not a socket

bind(2), getpeername(2), socket(2)

BUGS
Names bound to sockets in the UNIX domain are inaccessible; getsockname() returns a zero length name.

Sun Release 4.1 Last change: 21 January 1990 757

GETSOCKOPT (2) SYSTEM CALLS GETSOCKOPT (2)

NAME
getsockopt, setsockopt - get and set options on sockets

SYNOPSIS
#include <sysltypes.h>
#include <syslsocket.h>

int getsockopt(s, level, optname, optval, optJen)
int s, level, optname;
char *optval;
int *optJen;

int setsockopt(s, level, optname, optval, optlen)
int s, level, optname;
char *optval;
int optlen;

DESCRIPTION

758

getsockopt() and setsockopt() manipulate options associated with a socket. Options may exist at multiple
protocol levels; they are always present at the uppermost "socket" level.

When manipulating socket options the level at which the option resides and the name of the option must be
specified. To manipulate options at the "socket" level, level is specified as SOL_SOCKET. To manipulate
options at any other level the protocol number of the appropriate protocol controlling the option is supplied.
For example, to indicate that an option is to be interpreted by the TCP protocol, level should be set to the
protocol number of TCP; see getprotoent(3N).

The parameters optval and optlen are used to access option values for setsockopt(). For getsockopt() they
identify a buffer in which the value for the requested option(s) are to be returned. For getsockopt(), optlen
is a value-result parameter, initially containing the size of the buffer pointed to by optval, and modified on
return to indicate the actual size of the value returned. If no option value is to be supplied or returned,
optval may be supplied as O.

optname and any specified options are passed un interpreted to the appropriate protocol module for interpre­
tation. The include file <syslsocket.h> contains definitions for "socket" level options, described below.
Options at other protocol levels vary in format and name; consult the appropriate entries in section (4P).

Most socket-level options take an int parameter for optval. For setsockoptO, the parameter should be
non-zero to enable a boolean option, or zero if the option is to be disabled. SO _LINGER uses a struct
linger parameter, defined in <sys/socket.h>, which specifies the desired state of the option and the linger
interval (see below).

The following options are recognized at the socket level. Except as noted, each may be examined with get­
sockopt() and set with setsockopt().

SO DEBUG toggle recording of debugging information
SO REUSEADDR toggle local address reuse
SO KEEP ALIVE toggle keep connections alive
SO DONTROUTE toggle routing bypass for outgoing messages
SO LINGER linger on close if data present
SO BROADCAST toggle pennission to transmit broadcast messages
SO _ OOBINLINE toggle reception of out-of-band data in band
SO SNDBUF set buffer size for output
SO RCVBUF set buffer size for input
SO TYPE get the type of the socket (get only)
SO ERROR get and clear error on the socket (get only)

SO_DEBUG enables debugging in the underlying protocol modules. SO_REUSEADDR indicates that the
rules used in validating addresses supplied in a bind(2) call should allow reuse of local addresses.
SO _ KEEPALIVE enables the periodic transmission of messages on a connected socket. Should the

Last change: 21 January 1990 Sun Release 4.1

GETSOCKOPT (2) SYSTEM CALLS GETSOCKOPT (2)

connected party fail to respond to these messages, the connection is considered broken. A process attempt­
ing to write to the socket receives a SIGPIPE signal and the write operation returns an error. By default, a
process exits when it receives SIGPIPE. A read operation on the socket returns an error but does not gen­
erate SIGPIPE. If the process is waiting in select(2) when the connection is broken, select() returns true
for any read or write events selected for the socket SO _DONTROUTE indicates that outgoing messages
should bypass the standard routing facilities. Instead, messages are directed to the appropriate network
interface according to the network portion of the destination address.

SO_LINGER controls the action taken when unsent messags are queued on socket and a close(2V) is per­
formed. If the socket promises reliable delivery of data and SO_LINGER is set, the system will block the
process on the close() attempt until it is able to transmit the data or until it decides it is unable to deliver the
information (a timeout period, termed the linger interval, is specified in the setsockopt() call when
SO_LINGER is requested). If SO_LINGER is disabled and a closeO is issued, the system will process the
close in a manner that allows the process to continue as quickly as possible.

The option SO _BROADCAST requests permission to send broadcast datagrams on the socket. Broadcast
was a privileged operation in earlier versions of the system. With protocols that support out-of-band data,
the SO _ OOBINLINE option requests that out-of-band data be placed in the normal data input queue as
received; it will then be accessible with recv() or read() calls without the MSG _ OOB flag. so _ SNDBUF
and SO _ RCVBUF are options to adjust the normal buffer sizes allocated for output and input buffers,
respectively. The buffer size may be increased for high-volume connections, or may be decreased to limit
the possible backlog of incoming data. The system places an absolute limit on these values. Finally,
SO_TYPE and SO_ERROR are options used only with getsockoptO. SO_TYPE returns the type of the
socket, such as SOCK_STREAM; it is useful for servers that inherit sockets on startup. SO _ERROR returns
any pending error on the socket and clears the error status. It may be used to check for asynchronous
errors on connected datagram sockets or for other asynchronous errors.

RETURN VALUES
getsockopt() and setsockopt() return:

o
-1

ERRORS
EBADF

on success.

on failure and set errno to indicate the error.

s is not a valid descriptor.

EFAULT The address pointed to by optval is not in a valid part of the process address space.

ENOPROTOOPT The option is unknown at the level indicated.

ENOTSOCK s is a file, not a socket.

In addition to the above, getsockopt() may set errno to:

EFAULT opt len is not in a valid part of the process address space.

SEE ALSO
ioctl(2), socket(2), getprotoent(3N)

BUGS
Several of the socket options should be handled at lower levels of the system.

Sun Release 4.1 Last change: 21 January 1990 759

GETIIMEOFDA Y (2) SYSTEM CALLS GETTIMEOFDA Y (2)

NAME
gettimeofday, settimeofday - get or set the date and time

SYNOPSIS
#include <sysltime.h>

int gettimeofday(tp, tzp)
struct time val *tp;
struct time zone *tzp;

int settimeofday(tp, tzp)
struct time val *tp;
struct timezone *tzp;

DESCRIPTION

760

The system's notion of the current Greenwich time and the current time zone is obtained with the
gettimeofday() call, and set with the settimeofday() call. The current time is expressed in elapsed
seconds and microseconds since 00:00 GMT, January 1, 1970 (zero hour). The resolution of the system
clock is hardware dependent; the time may be updated continuously, or in "ticks."

tp points to a timeval structure, which includes the following members:

long tv_sec; 1* seconds since Jan. 1, 1970 *1
long tv _ usec; 1* and microseconds *1

If tp is a NULL pointer, the current time information is not returned or set

tzp points to a timezone() structure, which includes the following members:

int tz _ minuteswest; 1* of Greenwich *1
int tz_dsttime; 1* type of dst correction to apply *1

The timezone() structure indicates the local time zone (measured in minutes westward from Greenwich),
and a flag that indicates the type of Daylight Saving Time correction to apply. Note: this flag does not indi­
cate whether Daylight Saving Time is currently in effect.

Also note that the offset of the local time zone from GMT may change over time, as may the rules for Day­
light Saving Time correction. The localtime() routine (see ctime(3V» obtains this information from a file
rather than from gettimeofday(). Programs should use localtime() to convert dates and times; the
timezone() structure is filled in by gettimeofday() for backward compatibility with existing programs.

The flag indicating the type of Daylight Saving Time correction should have one of the following values
(as defined in <sysltime.h»:

o DST _NONE: Daylight Savings Time not observed
1 DST _USA: United States DST
2 DST_AUST: Australian DST
3 DST _ WET: Western European DST
4 DST _MET: Middle European DST
5 DST _ EET: Eastern European DST
6 DST _CAN: Canadian DST
7 DST _ GB: Great Britain and Eire DST
8 DST_RUM: Rumanian DST
9 DST _ TUR: Turkish DST
10 DST_AUSTALT: Australian-style DST with shift in 1986

If tzp is a NULL pointer, the time zone information is not returned or set.

Only the super-user may set the time of day or the time zone.

Last change: 21 January 1990 Sun Release 4.1

GETTIMEOFDA Y (2)

RETURN VALUES
gettimeofday() returns:

o on success.

SYSTEM CALLS

-1 on failure and sets errno to indicate the error.

ERRORS
EFAULT An argument address referenced invalid memory.

GETTIMEOFDAY (2)

EPERM A user other than the super-user attempted to set the time or time zone.

SEE ALSO
date(l V), adjtime(2), ctime(3V)

BUGS
Time is never correct enough to believe the microsecond values. There should a mechanism by which, at
least, local clusters of systems might synchronize their clocks to millisecond granularity.

Sun Release 4.1 Last change: 21 January 1990 761

GETUID(2V)

NAME
getuid, geteuid - get user identity

SYNOPSIS
int getuid()

int geteuid()

SYSTEM V SYNOPSIS
#include <sysltypes.h>

uid _ t getuid()

uid _ t geteuid()

DESCRIPTION

SYSTEM CALLS

getuid() returns the real user ID of the current process, geteuid() the effective user ID.

GETUID(2V)

The real user ID identifies the person who is logged in. The effective user ID gives the process different
permissions during execution of "set-user-ID" mode processes, which use getuidO to determine the real­
user-id of the process that invoked them.

SEE ALSO
getgid(2V),setreuid(2)

762 Last change: 21 January 1990 Sun Release 4.1

IOCTL(2) SYSTEM CALLS IOCTL(2)

NAME
ioctl - control device

SYNOPSIS
int ioctl(fd, request, arg)
int fd, request;
caddr_t arg;

DESCRIPTION
ioctl() performs a special function on the object referred to by the open descriptor fd. The set of functions
that may be performed depends on the object thatfd refers to. For example, many operating characteristics
of character special files (for instance, terminals) may be controlled with ioctl() requests. The writeups in
section 4 discuss how ioctl() applies to various objects.

The request codes for particular functions are specified in include files specific to objects or to families of
objects; the writeups in section 4 indicate which include files specify which requests.

For most ioctl() functions, arg is a pointer to data to be used by the function or to be filled in by the func­
tion. Other functions may ignore arg or may treat it directly as a data item; they may, for example, be
passed an int value.

RETURN VALUES
ioctl() returns 0 on success for most requests. Some specialized requests may return non-zero values on
success; see the description of the request in the man page for the object. On failure, ioctl() returns -1 and
sets errno to indicate the error.

ERRORS
EBADF

EFAULT

EINVAL

ENOTTY

fd is not a valid descriptor.

request requires a data transfer to or from a buffer pointed to by arg, but some part of
the buffer is outside the process's allocated space.

request or arg is not valid.

The specified request does not apply to the kind of object to which the descriptor fd
refers.

ioctl() will also fail if the object on which the function is being performed detects an error. In this case, an
error code specific to the object and the function will be returned.

SEE ALSO
execve(2V), fcntl(2V), filio(4), mtio(4), sockio(4), streamio(4), termio(4)

Sun Release 4.1 Last change: 21 January 1990 763

KILL (2V) SYSTEM CALLS KILL (2V)

NAME
kill - send a signal to a process or a group of processes

SYNOPSIS
#include <signal.h>

int kill(pid, sig)
int pid;
int sig;

SYSTEM V SYNOPSIS
#include <signal.h>

int kill(pid, sig)
pid_t pid;
int sig;

DESCRIPTION
kill() sends the signal sig to a process or a group of processes. The process or group of processes to which
the signal is to be sent is specified by pid. sig may be one of the signals specified in sigvec(2), or it may be
0, in which case error checking is performed but no signal is actually sent. This can be used to check the
validity of pid or the existence of process pid.

The real or effective user ill of the sending process must match the real or saved set-user ID of the receiv­
ing process, unless the effective user ID of the sending process is super-user. A single exception is the sig­
nal SIGCONT, which may always be sent to any member of the same session as the current process.

In the following discussion, "system processes" are processes, such as processes 0 and 2, that are not run­
ning a regular user program.

If pid is greater than zero, the signal is sent to the process whose process ill is equal to pid. pid may equal
1.

If pid is 0, the signal is sent to all processes, except system processes and process 1, whose process group
ID is equal to the process group ill of the sender; this is a variant of killpg(2).

If pid is -1 and the effective user ill of the sender is not super-user, the signal is sent to all processes,
except system processes, process 1, and the process sending the signal, whose real or saved set-user ID
matches the real or effective ID of the sender.

If pid is -1 and the effective user ill of the sender is super-user, the signal is sent to all processes except
system processes, process 1, and the process sending the signal.

If pid is negative but not -1, the signal is sent to all processes, except system processes, process 1, and the
process sending the signal, whose process group ill is equal to the absolute value of pid; this is a variant of
killpg(2).

Processes may send signals to themselves.

SYSTEM V DESCRIPTION
If a signal is sent to a group of processes (as with, if pid is 0 or negative), and if the process sending the
signal is a member of that group, the signal is sent to that process as well.

The signal SIGKILL cannot be sent to process 1.

RETURN VALUES
kill() returns:

o on success.

-1 on failure and sets errno to indicate the error.

764 Last change: 21 January 1990 Sun Release 4.1

KILL (2V) SYSTEM CALLS KILL(2V)

ERRORS
kill() will fail and no signal will be sent if any of the following occur:

EINV AL sig was not a valid signal number.

EPERM The effective user ID of the sending process was not super-user, and neither its real nor
effective user 1D matched the real or saved set-user ID of the receiving process.

ESRCH No process could be found corresponding to that specified by pid.

SYSTEM V ERRORS
kill() will also fail, and no signal will be sent, if the following occurs:

EINV AL sig is S1GKILL and pid is 1.

SEE ALSO
getpid(2V), killpg(2), getpgrp(2V), sigvec(2), termio(4)

Sun Release 4.1 Last change: 21 January 1990 765

KILLPG(2)

NAME
killpg - send signal to a process group

SYNOPSIS
int killpg(pgrp, sig)
int pgrp, sig;

DESCRIPTION

SYSTEM CALLS

killpg() sends the signal sig to the process group pgrp. See sigvec(2) for a list of signals.

KILLPG(2)

The real or effective user ID of the sending process must match the real or saved set-user ID of the receiv­
ing process, unless the effective user ID of the sending process is super-user. A single exception is the sig­
nal SIGCONT, which may always be sent to any descendant of the current process.

RETURN VALUES
killpg() returns:

o on success.

-1 on failure and sets errno to indicate the error.

ERRORS
killpg() will fail and no signal will be sent if any of the following occur:

EINV AL sig was not a valid signal number.

EPERM The effective user ID of the sending process was not super-user, and neither its real nor
effective user ID matched the real or saved set-user ID of one or more of the target
processes.

ESRCH No processes were found in the specified process group.

SEE ALSO
kill(2V), getpgrp(2V), sigvec(2)

766 Last change: 21 January 1990 Sun Release 4.1

LINK (2V) SYSTEM CALLS LINK(2V)

NAME
link - make a hard link to a file

SYNOPSIS
int Iink(pathl, path2)
char .pathl, .path2;

DESCRIPTION
path1 points to a patbname naming an existing file. path2 points to a pathname naming a new directory
entry to be created. Iink() atomically creates a new link for the existing file and increments the link count
of the file by one. {LINK_MAX} (see pathconf(2V») specifies the maximum allowed number of links to the
file.

With hard links, both files must be on the same file system. Both the old and the new link share equal
access and rights to the underlying object The super-user may make multiple links to a directory. Unless
the caller is the super-user, the file named by path] must not be a directory.

Upon successful completion, link() marks for update the st _ ctime field of the file. Also, the st _ ctime and
st _ mtime fields of the directory that contains the new entry are marked for update.

RETURN VALUES
link() returns:

o on success.

-1 on failure and sets errno to indicate the error.

ERRORS
link() will fail and no link will be created if one or more of the following are true:

EACCES

EDQUOT

EEXIST

EFAULT

EIO

ELOOP

EMLINK

ENAMETOOLONG

ENOENT

ENOS PC

ENOTDIR

Sun Release 4.1

Search permission is denied for a component of the path prefix pointed to by
path] or path2 .

The requested link requires writing in a directory for which write permission is
denied.

The directory in which the entry for the new link is being placed cannot be
extended because the user's quota of disk blocks on the file system containing the
directory has been exhausted.

The link referred to by path2 exists.

One of the path names specified is outside the process's allocated address space.

An I/O error occurred while reading from or writing to the file system to make the
directory entry.

Too many symbolic links were encountered in translating the pathname pointed to
by path1 or path2 .

The number of links to the file named by path1 would exceed {LINK_MAX} (see
pathconf(2V»).

The length of the path argument exceeds {PATH_MAX}.

A pathname component is longer than {NAME_MAX} while
LPOSIX_NO_TRUNC} is in effect (see pathconf(2V)).

A component of the path prefix pointed to by path1 or path2 does not exist

The file referred to by path1 does not exist.

The directory in which the entry for the new link is being placed cannot be
extended because there is no space left on the file system containing the directory.

A component of the path prefix of path1 or path2 is not a directory.

Last change: 21 January 1990 767

LINK (2V)

EPERM

EROFS

EXDEV

SYSTEM V ERRORS

SYSTEM CALLS LINK(2V)

The file named by path] is a directory and the effective user ID is not super-user.

The requested link requires writing in a directory on a read-only file system.

The link named by path2 and the file named by path] are on different file systems.

In addition to the above, the following may also occur:

ENOENT path] or path2 points to an empty string.

SEE ALSO
symlink(2), unlink(2V)

768 Last change: 21 January 1990 Sun Release 4.1

LISTEN (2) SYSTEM CALLS

NAME
listen - listen for connections on a socket

SYNOPSIS
int listen(s, bac~log)
int s, backlog;

DESCRIPTION

LISTEN (2)

To accept connections, a socket is first created with socket(2), a backlog for incoming connections is
specified with listen() and then the connections are accepted with accept(2). The listen() call applies only
to sockets of type SOCK_STREAM or SOCK_SEQPACKET.

The backlog parameter defines the maximum length the queue of pending connections may grow to. If a
connection request arrives with the queue full the client will receive an error with an indication of
ECONNREFUSED.

RETURN VALUES
listen() returns:

o on success.

-1 on failure and sets errno to indicate the error.

ERRORS
EBADF s is not a valid descriptor.

ENOTSOCK

EOPNOTSUPP

SEE ALSO

s is not a socket.

The socket is not of a type that supports listen().

accept(2), connect(2), socket(2)

BUGS
The backlog is currently limited (silently) to 5.

Sun Release 4.1 Last change: 21 January 1990 769

LSEEK(2V) SYSTEM CALLS LSEEK(2V)

NAME
lseek, tell - move read/write pointer

SYNOPSIS
#include <sys/types.h>
#include <unistd.h>

off_t lseek(fd, offset, whence)
int fd;
off _ t offset;
int whence;

long tell(fd)
int fd;

DESCRIPTION
lseek() sets the seek pointer associated with the open file or device referred to by the descriptor fd accord­
ing to the value supplied for whence. whence must be one of the following constants defined in
<unistd.h> :

SEEK_SET
SEEK_CUR
SEEK END

If whence is SEEK_SET, the seek pointer is set to offset bytes. If whence is SEEK _CUR, the seek pointer is
set to its current location plus offset. If whence is SEEK_END, the seek pointer is set to the size of the file
plus offset.

Some devices are incapable of seeking. The value of the seek pointer associated with such a device is
undefined.

The obsolete function tell(fd) is equivalent to Iseek(fd, OL, SEEK_CUR).

RETURN VALUES
On success, Iseek() returns the seek pointer location as measured in bytes from the beginning of the file.
On failure, it returns -1 and sets errno to indicate the error.

ERRORS
Iseek() will fail and the seek pointer will remain unchanged if:

EBADF

EINVAL

ESPIPE

fd is not an open file descriptor.

whence is not a proper value.

The seek operation would result in an illegal file offset value for the file (for example, a
negative file offset for a file other than a character special file).

fd is associated with a pipe or a socket.

SEE ALSO

NOTES

770

dup(2V), open(2V)

Seeking far beyond the end of a file, then writing, may create a gap or "hole", which occupies no physical
space and reads as zeros.

The constants L_SET, L_INCR, and L_XTND are provided as synonyms for SEEK_SET, SEEK_CUR, and
SEEK_END, respectively for backward compatibility but they will disappear in a future release. It is
unlikely that the underlying constants 0, 1 and 2 will ever change.

Last change: 21 January 1990 Sun Release 4.1

MCTL(2) SYSTEM CALLS MCTL(2)

NAME
mct! - memory management control

SYNOPSIS
#include <sys/types.h>
#include <sys/mman.h>

int mctl(addr, len, function, arg)
caddr_t addr;
size_t len;
int function;
void *arg;

DESCRIPTION
mctl() applies a variety of control functions over pages identified by the mappings established for the
address range [addr, addr + len). The function to be performed is identified by the argument function.
Legitimate functions are defined in <sys/mman.h> as follows.

MC LOCK

MC LOCKAS

MC SYNC

MC UNLOCK

MC UNLOCKAS

RETURN VALUES
mctl() returns:

Lock the pages in the range in memory. This function is used to support
mlock(3). See the mlock(3) description for semantics and usage. arg is ignored,
but must have the value O.

Lock the pages in the address space in memory. This function is used to support
mlockall(3). See the mlockall(3) description for semantics and usage. addr and
len are ignored but must be O. arg is an integer built from the flags:

#define MCL _CURRENT Ox! 1* lock current mappings *1
#define MCL_FUTURE Ox2 1* lock future mappings *1

Synchronize the pages in the range with their backing storage. Optionally invali­
date cache copies. This function is used to support msync(3). See the msync(3)
description for semantics and usage. arg is used to represent the flags argument to
msync(3).

Unlock the pages in the range. This function is used to support mlock(3). See the
mlock(3) description for semantics and usage. arg is ignored and must have the
value O.

Remove address space memory lock, and locks on all current mappings. This
function is used to support mlockall(3). addr and len must have the value O. arg
is ignored and must have the value O.

o on success.

-1 on failure and sets errno to indicate the error.

ERRORS
EAGAIN

EINVAL

ENOMEM

EPERM

Sun Release 4.1

function was MC_LOCK or MC_LOCKAS and some or all of the memory identified by
the operation could not be locked due to insufficient system resources.

addr was not a multiple of the page size as returned by getpagesize(2).

addr and/or len did not have the value 0 when MC_LOCKAS or MC_UNLOCKAS were
specified.

arg was not valid for the function specified.

Addresses in the range [addr, addr + len) are invalid for the address space of a process,
or specify one or more pages which are not mapped.

The process's effective user ID was not super-user and one of MC_LOCK,
MC_LOCKAS, MC_UNLOCK, or MC_UNLOCKAS was specified.

Last change: 21 January 1990 771

MCTL(2) SYSTEM CALLS MCTL(2)

SEE ALSO
madvise(3), mlock(3), mlockall(3), mmap(2), msync(3)

772 Last change: 21 January 1990 Sun Release 4.1

MINCORE(2) SYSTEM CALLS MINCORE(2)

NAME
mincore - determine residency of memory pages

SYNOPSIS
int mineore(addr, len, vee)
caddr _t addr; int len; result char *vec;

DESCRIPTION
mineore() returns the primary memory residency status of pages in the address space covered by mappings
in the range [addr~ addr + len). The status is returned as a char-per-page in the character array referenced
by *vee (which the system assumes to be large enough to encompass all the pages in the address range).
The least significant bit of each character is set to 1 to indicate that the referenced page is in primary
memory~ 0 if it is not. The settings of other bits in each character is undefined and may contain other infor­
mation in the future.

RETURN VALUES
mineore() returns:

o on success.

-1 on failure and sets errno to indicate the error.

ERRORS
mineore() will fail if:

EFAULT

EINVAL

ENOMEM

SEE ALSO
mmap(2)

Sun Release 4.1

A part of the buffer pointer to by vee is out-of-range or otherwise inaccessible.

addr is not a multiple of the page size as returned by getpagesize(2).

Addresses in the range [addr, addr + len) are invalid for the address space of a
process, or specify one or more pages which are not mapped.

Last change: 21 January 1990 773

MKDIR(2V) SYSTEM CALLS MKDIR(2V)

NAME
mkdir - make a directory file

SYNOPSIS
int mkdir(path, mode)
char .path;
int mode;

SYSTEM V SYNOPSIS
#include <sysltypes.h>
#include <syslstat.h>

int mkdir(path, mode)
char .path;
mode _ t mode;

DESCRIPTION
mkdir() creates a new directory file with name path. The mode mask of the new directory is initialized
from mode.

The low-order 9 bits of mode (the file access permissions) are modified such that all bits set in the process's
file mode creation mask are cleared (see umask(2V».

The set-GID bit of mode is ignored. The set-GID bit of the new file is inherited from that of the parent
directory.

The directory's owner ID is set to the process's effective user ID.

The directory's group ID is set to either:

• the effective group ID of the process, if the filesystem was not mounted with the BSD file­
creation semantics flag (see mount(2V» and the set-GID bit of the parent directory is clear, or

• the group ID of the directory in which the file is created.

Upon successful completion, mkdirO marks for update the st_atime, st_ctime, and st_mtime fields of the
directory (see stat(2V». The st_ctime and st_mtime fields of the directory's parent directory are also
marked for update.

RETURN VALUES
mkdir() returns:

o on success.

-1 on failure and sets errno to indicate the error.

ERRORS

774

mkdir() will fail and no directory will be created if:

EACCES

EDQUOT

EEXIST

EFAULT

Search permission is denied for a component of the path prefix of path.

Write permission is denied on the parent directory of the directory to be created.

The directory in which the entry for the new file is being placed cannot be
extended because the user's quota of disk blocks on the file system containing the
directory has been exhausted.

The new directory cannot be created because the user's quota of disk blocks on
the file system which will contain the directory has been exhausted.

The user's quota of inodes on the file system on which the file is being created has
been exhausted.

The file referred to by path exists.

path points outside the process's allocated address space.

Last change: 21 January 1990 Sun Release 4.1

MKDIR(2V)

EIO

ELOOP

EMLINK

ENAMETOOLONG

ENOENT

ENOS PC

ENOTDIR

EROFS

SYSTEM V ERRORS

SYSTEM CALLS MKDIR(2V)

An I/O error occurred while reading from or writing to the file system.

Too many symbolic links were encountered in translating path.

The link count of the parent directory would exceed {LINK_MAX} (see
pathconf(2V)).

The length of the path argument exceeds {PATH_MAX}.

A pathname component is longer than {NAME_MAX} while
LPOSIX_NO_TRVNC} is in effect (see pathconf(2V».

A component of the path prefix of path does not exist.

The directory in which the entry for the new file is being placed cannot be
extended because there is no space left on the file system containing the directory.

The new directory cannot be created because there is no space left on the file sys­
tem which will contain the directory.

There are no free inodes on the file system on which the file is being created.

A component of the path prefix of path is not a directory.

path The parent directory of the directory to be created resides on a read-only file
system.

In addition to the above, the following may also occur:

ENOENT path points to a null pathname.

SEE ALSO
chmod(2V), mount(2V), rmdir(2V), stat(2V), umask(2V)

Sun Release 4.1 Last change: 21 January 1990 775

MKNOD(2V) SYSTEM CALLS MKNOD(2V)

NAME
mknod, mkfifo - make a special file

SYNOPSIS
#include <sysltypes.h>
#include <syslstat.h>

int mknod(path, mode, dev)
char *path;
int mode, dev;

int mkfifo(path, mode)
char *path;
mode_t mode;

DESCRIPTION
mknodO creates a new file named by the path name pointed to by path. The mode of the new file (includ­
ing file type bits) is initialized from mode. The values of the file type bits which are permitted are:

#define S_IFCHR 0020000 1* character special */
#define S IFBLK 0060000 1* block special */
#define S IFREG 0100000 /* regular */
#define S IFIFO 0010000 /* FIFO special */

Values of mode other than those above are undefined and should not be used.

The access permissions of the mode are modified by the process's mode mask (see umask(2V».

The owner ID of the file is set to the effective user ID of the process. The group ID of the file is set to
either:

• the effective group ID of the process, if the filesystem was not mounted with the BSD file­
creation semantics flag (see mount(2V» and the set-gid bit of the parent directory is clear, or

• the group ill of the directory in which the file is created.

If mode indicates a block or character special file, dey is a configuration dependent specification of a char­
acter or block I/O device. If mode does not indicate a block special or character special device, dey is
ignored.

mknodO may be invoked only by the super-user for file types other than FIFO special.

mkfifoO creates a new FIFO special file named by the pathname pointed to by path. The access permis­
sions of the new FIFO are initialized from mode. The access permissions of mode are modified by the
process's file creation mask, see umask(2V). Bits in mode other than the access permissions are ignored.

The FIFO's owner ID is set to the process's effective user ID. The FIFO's group ID is set to the group ID of
the directory in which the FIFO is being created or to the process's effective group ID.

Upon successful completion, the mkfifo() function marks for update the st_atime, st_ctime, and st_mtime
fields of the file. Also, the st_ctime and st_mtime fields of the directory that contains the new entry are
marked for update.

RETURN VALUES
mknod() returns:

o on success.

-1 on failure and sets errno to indicate the error.

mkfifoO returns:

o on success.

-1 on failure and sets errno to indicate the error. No FIFO is created.

776 Last change: 21 January 1990 Sun Release 4.1

MKNOD(2V) SYSTEM CALLS MKNOD(2V)

ERRORS
mknod() fails and the file mode remains unchanged if:

EACCES Search permission is denied for a component of the path prefix of path.

EDQUOT

EDQUOT

EEXIST

EFAULT

EIO

EISDIR

ELOOP

ENAMETOOLONG

ENOENT

ENOS PC

ENOS PC

ENOTDIR

The directory in which the entry for the new file is being placed cannot be
extended because the user's quota of disk blocks on the file system containing the
directory has been exhausted.

The user's quota of inodes on the file system on which the node is being created
has been exhausted.

The file referred to by path exists.

path points outside the process's allocated address space.

An I/O error occurred while reading from or writing to the file system.

The specified mode would have created a directory.

Too many symbolic links were encountered in translating path.

The length of the path argument exceeds {PATH_MAX}.

A path name component is longer than {NAME_MAX} (see sysconf(2V» while
LPOSIX_NO_TRUNC} is in effect (see pathconf(2V».

A component of the path prefix of path does not exist.

The directory in which the entry for the new file is being placed cannot be
extended because there is no space left on the file system containing the directory.

There are no free inodes on the file system on which the file is being created.

A component of the path prefix of path is not a directory.

EPERM An attempt was made to create a file of type other than FIFO special and the
process's effective user ID is not super-user.

EROFS The file referred to by path resides on a read-only file system.

mkfifo() may set errno to:

EACCES

EEXIST

ENAMETOOLONG

A component of the path prefix denies search permission.

The named file already exists.

The length of the path string exceeds { PATH_MAX} .

A path name component is longer than {NAME_MAX} while

ENOENT

ENOS PC

ENOTDIR

EROFS

SEE ALSO

LPOSIX_NO_TRUNC} is in effect (see pathconf(2V».

A component of the path prefix does not exist.

path points to an empty string.

The directory that would contain the new file cannot be extended.

The file system is out of file allocation resources.

A component of the path prefix is not a directory.

The named file resides on a read-only file system.

chmod(2V), execve(2V), pipe(2V), stat(2V), umask(2V), write(2V)

Sun Release 4.1 Last change: 21 January 1990 777

MMAP(2) SYSTEM CALLS MMAP(2)

NAME
mmap - map pages of memory

SYNOPSIS
#include <sysltypes.h>
#include <syslmman.h>

caddr_t mmap(addr, len, prot, flags, fd, off)
caddr _ t addr;
size_t len;
int prot, flags, fd;
otT_t otT;

DESCRIPTION

778

mmapO establishes a mapping between the process's address space at an address pa for len bytes to the
memory object represented by fd at off for len bytes. The value of pa is an implementation-dependent
function of the parameter addr and values of flags, further described below. A successful mmap() call
returns pa as its result. The address ranges covered by [pa, pa + len) and [off, off + len) must be legitimate
for the possible (not necessarily current) address space of a process and the object in question, respectively.

The mapping established by mmap() replaces any previous mappings for the process's pages in the range
[pa, pa + len).

close(2V) does not unmap pages of the object referred to by a descriptor. Use munmap(2) to remove a
mapping.

The parameter prot determines whether read, write, execute, or some combination of accesses are permit­
ted to the pages being mapped. The protection options are defined in <sys/mman.h> as:

#define PROT READ Oxl 1* page can be read *1
#define PROT WRITE Ox2 1* page can be written *1
#define PROT EXEC Ox4 1* page can be executed *1
#define PROT NONE OxO 1* page can not be accessed *1

Not all implementations literally provide all possible combinations. PROT_WRITE is often implemented
as PROT_READIPROT_WRITE and PROT_EXEC as PROT_READ I PROT_EXEC. However, no imple­
mentation will permit a write to succeed where PROT_WRITE has not been set. The behavior of
PROT_WRITE can be influenced by setting MAP_PRIVATE in theflags parameter, described below.

The parameter flags provides other information about the handling of the mapped pages. The options are
defined in <syslmman.h> as:

#define MAP SHARED 1 1* Share changes *1
#define MAP PRIVATE 2 1* Changes are private *1
#define MAP TYPE Oxf 1* Mask for type of mapping *1
#define MAP FIXED OxlO 1* Interpret addr exactly *1

MAP_SHARED and MAP_PRIVATE describe the disposition of write references to the memory object. If
MAP_SHARED is specified, write references will change the memory object. If MAP_PRIVATE is
specified, the initial write reference will create a private copy of the memory object page and redirect the
mapping to the copy. The mapping type is retained across a fork(2V).

MAP_FIXED informs the system that the value of pa must be addr, exactly. The use of MAP_FIXED is
discouraged, as it may prevent an implementation from making the most effective use of system resources.

Last change: 21 January 1990 Sun Release 4.1

MMAP(2) SYSTEM CALLS MMAP(2)

When MAP_FIXED is not set, the system uses addr as a hint in an implementation-defined manner to arrive
at pa. The pa so chosen will be an area of the address space which the system deems suitable for a map­
ping of len bytes to the specified object All implementations interpret an addr value of zero as granting
the system complete freedom in selecting pa, subject to constraints described below. A non-zero value of
addr is taken to be a suggestion of a process address near which the mapping should be placed. When the
system selects a value for pa, it will never place a mapping at address 0, nor will it replace any extant map­
ping, nor map into areas considered part of the potential data or stack "segments".

The parameter off is constrained to be aligned and sized according to the value returned by getpagesize (2).
When MAP_FIXED is specified, the parameter addr must also meet these constraints. The system performs
mapping operations over whole pages. Thus, while the parameter len need not meet a size or alignment
constraint, the system will include in any mapping operation any partial page specified by the range [pa, pa
+ len).

mmap() allows [pa, pa + len) to extend beyond the end of the object, both at the time of the mmap() and
while the mapping persists, for example if the file was created just prior to the mmap() and has no con­
tents, or if the file is truncated. Any reference to addresses beyond the end of the object, however, will
result in the delivery of a SIGBUS signal.

The system will always zero-fill any partial page at the end of an object. Further, the system will never
write out any modified portions of the last page of an object which are beyond its end. References to whole
pages following the end of an object will result in a SIGBUS signal. SIGBUS may also be delivered on
various filesystem conditions, including quota exceeded errors.

If the process calls mlockaU(3) with the MCL_FUTURE flag, the pages mapped by all future calls to
mmap() will be locked in memory. In this case, if not enough memory could be locked, mmap() fails and
sets errno to EAGAIN.

RETURN VALUES
mmap() returns the address at which the mapping was placed (pa) on success. On failure, it returns -1
and sets errno to indicate the error.

ERRORS
EACCES

EAGAIN

EBADF

EINVAL

ENODEV

ENOMEM

ENXIO

SEE ALSO

fd was not open for read and PROT_READ or PROT_EXEC were specified.

fd was not open for write and PROT _WRITE was specified for a MAP_SHARED type
mapping.

Some or all of the mapping could not be locked in memory.

fd was not open.

The arguments addr (if MAP_FIXED was specified) and off were not multiples of the
page size as returned by getpagesize (2).

The MAP_TYPE field inflags was invalid (neither MAP_PRIVATE nor MAP_SHARED).

fd refered to an object for which mmap() is meaningless, such as a terminal.

MAP_FIXED was specified, and the range [addr, addr + len) exceeded that allowed for
the address space of a process.

MAP_FIXED was not specified and there was insufficient room in the address space to
effect the mapping.

Addresses in the range [off, off + len) are invalid for fd.

fork(2V), getpagesize(2), mprotect(2), munmap(2), mlockall(3)

Sun Release 4.1 Last change: 21 January 1990 779

MOUNT (2V) SYSTEM CALLS MOUNT (2V)

NAME
mount - mount file system

SYNOPSIS
#include <sys/mount.h>

int mount(type, dir, M_NEWTYPE I flags, data)
char *type;
char *dir;
int flags;
caddr_t data;

SYSTEM V SYNOPSIS
int mount(spec, dir, rdonly)
char *spec;
char *dir;
int rdonly;

DESCRIPTION

780

mount() attaches a file system to a directory. After a successful return, references to directory dir will
refer to the root directory on the newly mounted file system. dir is a pointer to a null-terminated string con­
taining a path name. dir must exist already, and must be a directory. Its old contents are inaccessible while
the file system is mounted.

mount() may be invoked only by the super-user.

Thejlags argument is constructed by the logical OR of the following bits (defined in <sys/mount.h»:

M RDONL Y mount filesystem read-only.

M NOSUID ignore set-uid bit on execution.

M NEWTYPE this flag must always be set.

M GRPID use BSD file-creation semantics (see open(2V».

M REMOUNT change options on an existing mount.

M NOSUB disallow mounts beneath this filesystem.

Physically write-protected and magnetic tape file systems must be mounted read-only or errors will occur
when access times are updated, whether or not any explicit write is attempted.

The type string indicates the type of the filesystem. data is a pointer to a structure which contains the type
specific arguments to mount. Below is a list of the filesystem types supported and the type specific argu­
ments to each:

4.2

"10"

struct ufs _ args {
cbar *fspec;

};

struct 10_ args {
cbar

};
*fsdir;

1* Block special file to mount *1

1* Patbname of directory to mount *1

"nfs"
#include
#include

<nfs/nfs.h>
<netinetlin.h>

struct nfs _ args {
struct sockaddr In *addr; 1* file server address *1
fllandle t *fll; 1* File handle to be mounted *1
int flags; 1* flags *1

Last change: 21 January 1990 Sun Release 4.1

MOUNT (2V) SYSTEM CALLS MOUNT (2V)

int wsize; 1* write size in bytes *1
int rsize; 1* read size in bytes *1
int timeo; 1* initial timeout in .1 sees *1
int retrans; 1* times to retry send *1
char *hostname; 1* server's hostname *1
int acregmin; 1* attr cache file min sees *1
int acregmax; 1* attr cache file max sees *1
int acdirmin; 1* attr cache dir min sees *1
int acdirmax; 1* attr cache dir max sees *1
char *netname; 1* server's netname *1

};

rfs
struct rfs _ args {

};

SYSTEM V DESCRIPTION

char *rmtfs
struct token {

int
char

} *token;

1* name of remote resource *1

t_id;l* token id *1
t_uname[64];I* domain.machine name *1
1* Identifier of remote machine *1

mount() requests that a file system contained on the block special file identified by spec be mounted on the
directory identified by dir. spec and dir point to path names. When mount() succeeds, subsequent refer­
ences to the file named by dir refer to the root directory on the mounted file system.

The M_RDONLY bit of rdonly is used to control write permission on the mounted file system. If the bit is
set, writing is not allowed. Otherwise, writing is permitted according to the access permissions of indivi­
dual files.

RETURN VALUES
mount() returns:

o on success.

-1 on failure and sets errno to indicate the error.

ERRORS
EACCES

EBUSY

EFAULT

ELOOP

ENAMETOOLONG

ENODEV

ENOENT

ENOTDIR

Search permission is denied for a component of the path prefix of dir.

Another process currently holds a reference to dir.

dir points outside the process's allocated address space.

Too many symbolic links were encountered in translating the path name of dir.

The length of the path argument exceeds { PATH_MAX} .

A path name component is longer than {NAME_MAX} (see sysconf(2V)) while
LPOSIX_NO_TRUNC} is in effect (see pathconf(2V)).

The file system type specified by type is not valid or is not configured into the sys­
tem.

A component of dir does not exist.

The file named by dir is not a directory.

EPERM The caller is not the super-user.

For a 4.2 file system, mount() fails when one of the following occurs:

EACCES Search permission is denied for a component of the path prefix of [spec.

Sun Release 4.1 Last change: 21 January 1990 781

MOUNT (2V)

EFAULT

EINVAL

EIO

ELOOP

EMFILE

ENAMETOOWNG

ENOENT

ENOMEM

ENOTBLK

ENOTDIR

ENXIO

SYSTEM V ERRORS
EBUSY

ENOENT

ENOTBLK

ENOTDIR

ENXIO

SEE ALSO

SYSTEM CALLS MOUNT(2V)

[spec points outside the process's allocated address space.

The super block for the file system had a bad magic number or an out of range
block size.

An I/O error occurred while reading from or writing to the file system.

Too many symbolic links were encountered in translating the path name of [spec .

No space remains in the mount table.

The length of the path argument exceeds {PATH_MAX}.

A pathname component is longer than {NAME_MAX} (see sysconf(2V») while
LPOSIX_NO_TRUNC} is in effect (see pathconf(2V».

A component of [spec does not exist.

Not enough memory was available to read the cylinder group information for the
file system.

[spec is not a block device.

A component of the path prefix of [spec is not a directory.

The major device number of [spec is out of range (this indicates no device driver
exists for the associated hardware).

The device referred to by spec is currently mounted.

There are no more mount table entries.

The file referred to by spec or dir does not exist.

spec is not a block special device.

A component of the path prefix of dir or spec is not a directory.

The device referred to by spec does not exist.

unmount(2V), open(2V), lofs(4S), fstab(5), mount(8)

BUGS
Some of the error codes need translation to more obvious messages.

782 Last change: 21 January 1990 Sun Release 4.1

MPROTECT (2) SYSTEM CALLS

NAME
mprotect - set protection of memory mapping

SYNOPSIS
#include <syslmman.h>

mprotect(addr, len, prot)
caddr _ t addr;
int len, prot;

DESCRIPTION

MPROTECT(2)

m protect() changes the access protections on the mappings specified by the range [addr, addr + len) to be
that specified by prot. Legitimate values for prot are the same as those permitted for mmap(2).

RETURN V ALVES
mprotect() returns:

o
-1

on success.

on failure and sets errno to indicate the error.

ERRORS
EACCES prot specifies a protection which violates the access permission the process has to the

underlying memory object.

EINVAL addr is not a multiple of the page size as returned by getpagesize(2).

ENOMEM Addresses in the range [addr, addr + len) are invalid for the address space of a process,
or specify one or more pages which are not mapped.

When mprotect() fails for reasons other than EINV AL, the protections on some of the pages in the range
[addr, addr + len) will have been changed. If the error occurs on some page at address addr2, then the
protections of all whole pages in the range [addr, addr2) have been modified.

SEE ALSO
getpagesize(2), mmap(2)

Sun Release 4.1 Last change: 21 January 1990 783

MSGCTL(2) SYSTEM CALLS MSGCTL(2)

NAME
msgctl- message control operations

SYNOPSIS
#include <sys/types.h>
#include <syS/ipc.h>
#include <sys/msg.h>

int msgctl (msqid, cmd, but)
int msqid, cmd;
struct msqid _ ds * bur;

DESCRIPTION

784

msgctlO provides a variety of message control operations as specified by cmd. The following cmds are
available:

IPC STAT

IPC SET

Place the current value of each member of the data structure associated with msqid into
the structure pointed to by buf. The contents of this structure are defined in intro(2).

Set the value of the following members of the data structure associated with msqid to the
corresponding value found in the structure pointed to by buf:

msgj>erm.uid
msgj>erm.gid
msgj>erm.mode 1* only low 9 bits *1
msg_qbytes

This cmd can only be executed by a process that has an effective user ID equal to either
that of super-user, or to the value of msgyerm.cuid or msgj>erm.uid in the data struc­
ture associated with msqid. Only super-user can raise the value of msg_qbytes.

IPC RMID Remove the message queue identifier specified by msqid from the system and destroy
the message queue and data structure associated with it. This cmd can only be executed
by a process that has an effective user ID equal to either that of super-user, or to the
value of msgyerm.cuid or msgj>erm.uid in the data structure associated with msqid.

In the msgop(2) and msgctl(2) system call descriptions, the permission required for an operation is given
as "[token]", where "token" is the type of permission needed interpreted as follows:

00400
00200
00060
00006

Read by user
Write by user
Read, Write by group
Read, Write by others

Read and Write permissions on a msqid are granted to a process if one or more of the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches msgj>erm.[c]uid in the data structure associated
with msqid and the appropriate bit of the "user" portion (0600) of msgj>erm.mode is set.

The effective user ID of the process does not match msgj>erm.[c]uid and the effective group ID
of the process matches msg_perm.[c]gid and the appropriate bit of the "group" portion (060) of
msgj>erm.mode is set.

The effective user ID of the process does not match msgj>erm.[c]uid and the effective group ID
of the process does not match msgj>erm.[c]gid and the appropriate bit of the "other" portion (06)
of msgj>erm.mode is set.

Otherwise, the corresponding permissions are denied.

Last change: 21 January 1990 Sun Release 4.1

MSGCTL(2)

RETURN VALUES
msgctl() returns:

SYSTEM CALLS MSGCTL(2)

o on success.

-1 on failure and sets errno to indicate the error.

ERRORS
EACCES

EFAULT

EINVAL

EPERM

SEE ALSO

cmd is equal to IPC_STAT and [READ] operation permission is denied to the calling pro­
cess (see intro(2)).

buf points to an illegal address.

msqid is not a valid message queue identifier.

cmd is not a valid command.

cmd is equal to IPC _ RMID or IPC _SET. The effective user ID of the calling process is
neither super-user, nor the value of msgyerm.cuid or msgyerm.uid in the data struc­
ture associated with msqid.

cmd is equal to IPC _SET, an attempt is being made to increase to the value of
msg_qbytes, and the effective user ID of the calling process is not equal to that of
super-user.

intro(2), msgget(2), msgop(2)

Sun Release 4.1 Last change: 21 January 1990 785

MSGGET(2) SYSTEM CALLS MSGGET(2)

NAME
msgget - get message queue

SYNOPSIS
#include <sysltypes.h>
#include <syslipc.h>
#include <syslmsg.h>

int msgget(key, msgfJg)
key_t key;
int msgfJg;

DESCRIPTION

786

msgget() returns the message queue identifier associated with key.

A message queue identifier and associated message queue and data structure (see intro(2» are created for
key() if one of the following is true:

• key is equal to IPC_PRIVATE.

• key does not already have a message queue identifier associated with it, and (msgflg & IPC _ CREAT) is
"true" .

Upon creation, the data structure associated with the new message queue identifier is initialized as follows:

• msgyerm.cuid, msgyerm.uid, msgyerm.cgid, and msgyerm.gid are set equal to the effective
user ID and effective group ID, respectively, of the calling process.

• The low-order 9 bits of msgyerm.mode are set equal to the low-order 9 bits of msgflg.

• msg_qnum, msg_lspid, msg_lrpid, msg_stime, and msg_rtime are set equal to O.

• msg_ ctime is set equal to the current time.

• msg_ qbytes is set equal to the system-wide standard value of the maximum number of bytes allowed
on a message queue.

A message queue identifier (msqid) is a unique positive integer created by a msgget(2) system call. Each
msqid has a message queue and a data structure associated with it. The data structure is referred to as
msqid _ ds() and contains the following members:

struct
ushort
ushort
ushort
ushort
time t
time t
time t

ipc yerm msgyerm;
msg_qnum;
msg_qbytes;
msg_lspid;
msg_lrpid;
msg_stime;
msg_rtime;
msg_ctime;

1* operation permission struct *1
1* number of msgs on q *1
1* max number of bytes on q *1
1* pid of last msgsnd operation *1
1* pid of last msgrcv operation *1
1* last msgsnd time *1
1* last msgrcv time *1
1* last change time *1
1* Times measured in secs since *1
1* 00:00:00 GMT, Jan. 1, 1970 *1

msgJerm() is an ipc_perm structure that specifies the message operation permission (see below). This
structure includes the following members:

ushort cuid; 1* creator user id *1
ushort cgid; 1* creator group id *1
ushort uid; 1* user id *1
ushort gid; 1* group id *1
ushort mode; 1* r/w permission *1

msg_ qnum is the number of messages currently on the queue. msg_ qbytes is the maximum number of
bytes allowed on the queue. msg_lspid is the process ID of the last process that performed a msgsnd
operation. msgJrpid is the process ID of the last process that performed a msgrcv operation. msg_ stime

Last change: 21 January 1990 Sun Release 4.1

MSGGET(2) SYSTEM CALLS MSGGET(2)

is the time of the last msgsnd operation, msg_rtime is the time of the last msgrcv operation, and
msg_ ctime is the time of the last msgctl(2) operation that changed a member of the above structure.

RETURN VALUES
msgget() returns A non-negative message queue identifier on success. On failure, it returns -1 and sets
errno to indicate the error.

ERRORS
EACCES

EEXIST

ENOENT

ENOS PC

SEE ALSO

A message queue identifier exists for key, but operation permission (see intro(2» as
specified by the low-order 9 bits of msgftg would not be granted.

A message queue identifier exists for key() but ((msgflg & IPC _ CREA T) & (msgftg &

IPC _ EXCL» is "true".

A message queue identifier does not exist for key() and (msgflg & IPC _ CREAT) is
"false" .

A message queue identifier is to be created but the system-imposed limit on the max­
imum number of allowed message queue identifiers system wide would be exceeded.

intro(2), msgctl(2), msgop(2)

Sun Release 4.1 Last change: 21 January 1990 787

MSGOP(2) SYSTEM CALLS MSGOP(2)

NAME
msgop, msgsnd, msgrcv - message operations

SYNOPSIS
#include <sys/types.h>
#include <syS/ipc.h>
#include <sys/msg.h>

int msgsnd(msqid, msgp, msgsz, msgfJg)
int msqid;
struct msgbuf *msgp;
int msgsz, msgfJg;

int msgrcv(msqid, msgp, msgsz, msgtyp, msgflg)
intmsqid;
struct msgbur *msgp;
int msgsz;
long msgtyp;
int msgfJg;

DESCRIPTION

788

msgsnd() is used to send a message to the queue associated with the message queue identifier specified by
msqid. [WRITE] (see msgctJ(2» msgp points to a structure containing the message. This structure is com­
posed of the following members:

long mtype;
char mtext[l];

1* message type *1
1* message text *1

mtype is a positive integer that can be used by the receiving process for message selection (see msgrcv()
below). mtext is any text of length msgsz bytes. msgsz can range from 0 to a system-imposed maximum.

msgflg specifies the action to be taken if one or more of the following are true:

• The number of bytes already on the queue is equal to msg_qbytes (see intro(2».

• The total number of messages on all queues system-wide is equal to the system-imposed limit.

These actions are as follows:

• If (msgfJg & IPC_NOWAIT) is "true", the message will not be sent and the calling process will return
immediately.

• If (msgOg & IPC_NOWAIT) is "false", the calling process will suspend execution until one of the fol­
lowing occurs:

• The condition responsible for the suspension no longer exists, in which case the message is sent.

• msqid is removed from the system (see msgctl(2». When this occurs, errno is set equal to EIDRM,
and a value of -1 is returned.

• The calling process receives a signal that is to be caught. In this case the message is not sent and
the calling process resumes execution in the manner prescribed in signal(3V).

Upon successful completion, the following actions are taken with respect to the data structure associated
with msqid (see intro(2».

• msg_qnum is incremented by 1.

• msg_lspid is set equal to the process ID of the calling process.

• msg_stime is set equal to the current time.

msgrcv() reads a message from the queue associated with the message queue identifier specified by msqid
and places it in the structure pointed to by msgp. [READ] This structure is composed of the following
members:

Last change: 21 January 1990 Sun Release 4.1

MSGOP(2)

long
char

mtype;
mtext[l];

SYSTEM CALLS

1* message type *1
1* message text *1

MSGOP(2)

mtype is the received message's type as specified by the sending process. mtext is the text of the message.
msgsz specifies the size in bytes of mtext. The received message is truncated to msgsz bytes if it is larger
than msgsz and (msgflg & MSG_NOERROR) is "true". The truncated part of the message is lost and no
indication of the truncation is given to the calling process.

msgtyp specifies the type of message requested as follows:

• If msgtyp is equal to 0, the first message on the queue is received.

• If msgtyp is greater than 0, the first message of type msgtyp is received.

• If msgtyp is less than 0, the first message of the lowest type that is less than or equal to the absolute
value of msgtyp is received.

msgflg specifies the action to be taken if a message of the desired type is not on the queue. These are as
follows:

• If (msgflg & IPC _NOW AIT) is "true", the calling process will return immediately with a return value of
-1 and errno set to ENOMSG.

• If (msgflg & IPC_NOWAIT) is "false", the calling process will suspend execution until one of the fol­
lowing occurs:

• A message of the desired type is placed on the queue.

• msqid is removed from the system. When this occurs, errno is set equal to EIDRM, and a
value of -1 is returned.

• The calling process receives a signal that is to be caught. In this case a message is not
received and the calling process resumes execution in the manner prescribed in signal(3V).

Upon successful completion, the following actions are taken with respect to the data structure associated
with msqid (see intro(2)).

• msg_qnum is decremented by 1.

• msg_lrpid is set equal to the process ID of the calling process.

• msg_rtime is set equal to the current time.

RETURN VALUES
msgsnd() returns:

o on success.

-1 on failure and sets errno to indicate the error.

msgrcv() returns the number of bytes actually placed into mtext on success. On failure, it returns -1 and
sets errno to indicate the error.

ERRORS
msgsnd() will fail and no message will be sent if one or more of the following are true:

EACCES

EAGAIN

EFAULT

EIDRM

EINTR

Sun Release 4.1

Operation permission is denied to the calling process (see intro(2)).

The message cannot be sent· for one of the reasons cited above and (msgflg &
IPC_NOWAIT) is "true".

msgp points to an illegal address.

The message queue referred to by msqid was removed from the system.

The call was interrupted by the delivery of a signal.

Last change: 21 January 1990 789

MSGOP(2) SYSTEM CALLS MSGOP(2)

EINVAL msqid is not a valid message queue identifier.

mtype is less than 1.

msgsz is less than zero or greater than the system-imposed limit.

msgrcv() will fail and no message will be received if one or more of the following are true:

E2BIG mtext is greater than msgsz and (msgflg & MSG_NOERROR) is "false".

EACCES Operation permission is denied to the calling process.

EFAULT msgp points to an illegal address.

EIDRM

EINTR

EINVAL

ENOMSG

The message queue referred to by msqid was removed from the system.

The call was interrupted by the delivery of a signal.

msqid is not a valid message queue identifier.

msgsz is less than O.

The queue does not contain a message of the desired type and (msgtyp &
IPC_NOWAIT) is "true".

SEE ALSO
intro(2), msgctl(2), msgget(2), signal(3V)

790 Last change: 21 January 1990 Sun Release 4.1

MSYNC(2) SYSTEM CALLS MSYNC(2)

NAME
msync - synchronize memory with physical storage

SYNOPSIS
#include <sys/mman.h>

int msync(addr, len, flags)
caddr _ t addr;
int len, flags;

DESCRIPTION
msync() writes all modified copies of pages over the range [addr, addr + len) to their permanent storage
locations. msync() optionally invalidates any copies so that further references to the pages will be
obtained by the system from their permanent storage locations.

Values for flags are defined in <sys/mman.h> as:

#define MS_ASYNC Ox! /* Return immediately *1
#define MS_INVALIDATE Ox2 1* Invalidate mappings *1

and are used to control the behavior of msync(). One or more flags may be specified in a single call.

MS_ASYNC returns msyncO immediately once all I/O operations are scheduled; nonnally, msyncO will
not return until all I/O operations are complete. MS _ INV ALIDATE invalidates all cached copies of data
from memory objects, requiring them to be re-obtained from the object's pennanent storage location upon
the next reference.

msync() should be used by programs which require a memory object to be in a known state, for example in
building transaction facilities.

RETURN VALUES
msync() returns:

o on success.

-1 on failure and sets errno to indicate the error.

ERRORS
EINVAL

EIO

ENOMEM

Sun Release 4.1

addr is not a multiple of the current page size.

len is negative.

One of the flags MS _ ASYNC or MS _INVALID is invalid.

An I/O error occurred while reading from or writing to the file system.

Addresses in the range [addr, addr + len) are outside the valid range for the address
space of a process.

Last change: 21 January 1990 791

MUNMAP(2)

NAME
munmap - unmap pages of memory.

SYNOPSIS
#include <sys/mman.h>

int munmap(addr, len)
caddr _ t addr;
int len;

DESCRIPTION

SYSTEM CALLS MUNMAP(2)

munmapO removes the mappings for pages in the range [addr, addr + len). Further references to these
pages will result in the delivery of a SIGSEGV signal to the process, unless these pages are considered part
of the "data" or "stack" segments.

brkO and mmapO often perform implicit munmap's.

RETURN VALUES
munmap() returns:

o on success.

-Ion failure and sets errno to indicate the error.

ERRORS
EINV AL addr is not a multiple of the page size as returned by getpagesize(2).

Addresses in the range [addr, addr + len) are outside the valid range for the address
space of a process.

SEE ALSO
brk(2), getpagesize(2), mmap(2)

792 Last change: 21 January 1990 Sun Release 4.1

NFSSYC(2) SYSTEM CALLS NFSSYC(2)

NAME
nfssvc, async_daemon - NFS daemons

SYNOPSIS
nfssvc (sock)
int sock;

async _ daemon()

DESCRIPTION
nfssvcO starts an NFS daemon listening on socket sock. The socket must be AF _INET, and
SOCK_DGRAM (protocol UDPIIP). The system call will return only if the socket is invalid.

async_daemon() implements the NFS daemon that handles asynchronous I/O for an NFS client. This sys­
tem call never returns.

Both system calls result in kernel-only processes with user memory discarded.

SEE ALSO
mountd(8C)

BUGS
There should be a way to dynamically create kernel-only processes instead of having to make system calls
from userland to sim ulate this.

Sun Release 4.1 Last change: 21 January 1990 793

OPEN (2V) SYSTEM CALLS OPEN (2V)

NAME
open - open or create a file for reading or writing

SYNOPSIS
#include <fcntl.h>

int open(path, ftags[, mode])
char *path;
int flags;
int mode;

SYSTEM V SYNOPSIS
#include <sysltypes.h>
#include <syslstat.h>
#include <fcntl.h>

int open(path, ftags[, mode])
char *path;
int flags;
mode_t mode;

DESCRIPTION

794

path points to the path name of a file. open() opens the named file for reading and/or writing, as specified
by the flags argument, and returns a descriptor for that file. The flags argument may indicate the file is to
be created if it does not already exist (by specifying the 0 _ CREAT flag), in which case the file is created
with mode mode as described in chmod(2V) and modified by the process' umask value (see umask(2V»).
If the path is an empty string, the kernel maps this empty pathname to '.', the current directory. flags
values are constructed by ORing flags from the following list (one and only one of the first three flags
below must be used):

o RDONLY Open for reading only.

o WRONLY

o RDWR

o NDELAY

Open for writing only.

Open for reading and writing.

When opening a FIFO (named pipe - see mknod(2V» with 0 RDONL Y or
O_WRONLY set:

If O_NDELAY is set:

An openO for reading-only returns without delay. An openO for writing-only
returns an error if no process currently has the file open for reading.

If 0 _NDELA Y is clear:

A call to open() for reading-only blocks until a process opens the file for writ­
ing. A call to open() for writing-only blocks until a process opens the file for
reading.

When opening a file associated with a communication line:

If 0 _NDELA Y is set:

A call to open() returns without waiting for carrier.

If 0 _NDELA Y is clear:

A call to open() blocks until carrier is present.

o _NOCTTY When this flag is set, and path refers to a tenninal device, open() prevents the terminal
device from becoming the controlling terminal for the process.

o NONBLOCK Same as O_NDELAY above.

Last change: 21 January 1990 Sun Release 4.1

OPEN (2V)

o SYNC

o APPEND

o CREAT

SYSTEM CALLS OPEN (2V)

When opening a regular file, this flag affects subsequent writes. If set, each write(2V)
will wait for both the file data and file status to be physically updated.

If set, the seek pointer will be set to the end of the file prior to each write.

If the file exists, this flag has no effect. Otherwise, the file is created, and the owner ID
of the file is set to the effective user ID of the process. The group ID of the file is set to
either:

• the effective group ID of the process, if the filesystem was not mounted with the BSD
file-creation semantics flag (see mount(2V» and the set-gid bit of the parent direc­
tory is clear, or

• the group ID of the directory in which the file is created.

The low-order 12 bits of the file mode are set to the value of mode, modified as follows
(see creat(2V»:

• All bits set in the file mode creation mask of the process are cleared. See
umask(2V).

• The "save text image after execution" bit of the mode is cleared. See chmod(2V).

• The "set group ID on execution" bit of the mode is cleared if the effective user ID of
the process is not super-user and the process is not a member of the group of the
created file.

o TRUNC If the file exists and is a regular file, and the file is successfully opened O_RDWR or
O_WRONLY, its length is truncated to zero and the mode and owner are unchanged.
O_TRUNC has no effect on FIFO special files or directories.

o EX CL If 0 _ EX CL and 0 _ CREA T are set, open() will fail if the file exists. This can be used to
implement a simple exclusive access locking mechanism.

The seek pointer used to mark the current position within the file is set to the beginning of the file.

The new descriptor is set to remain open across execve(2V) system calls; see c1ose(2V) and fcntl(2V).

There is a system enforced limit on the number of open file descriptors per process, whose value is returned
by the getdtablesize(2) call.

If 0_ CREAT is set and the file did not previously exist, upon successful completion, open() marks for
update the st_atime. st_ctime. and st_ mtime fields of the file and the st_ctime and st_mtime fields of the
parent directory.

If 0_ TRUNC is set and the file previously existed. upon successful completion. open() marks for update
the st ctime and st mtime fields of the file. - -

SYSTEM V DESCRIPTION
If path points to an empty string an error results.

The flags above behave as described. with the following exception:

If the O_NDELAY or O_NONBLOCK flag is set on a call to openO, the corresponding flag is set for that
file descriptor (see fcntl(2V» and subsequent reads and writes to that descriptor will not block (see
read(2V) and write(2V».

RETURN VALUES
open() returns a non-negative file descriptor on success. On failure, it returns -1 and sets errno to indicate
the error.

Sun Release 4.1 Last change: 21 January 1990 795

OPEN(2V)

ERRORS
EACCES

796

EDQUOT

EEXIST

EFAULT

ElNTR

EIO

EISDIR

ELOOP

EMFILE

ENAMETOOLONG

ENFILE

ENOENT

ENOS PC

ENOSR

ENOTDIR

ENXIO

EOPNOTSUPP

SYSTEM CALLS OPEN (2V)

Search permission is denied for a component of the path prefix of path.

The file referred to by path does not exist, 0 _ CREA T is specified, and the direc­
tory in which it is to be created does not permit writing.

0_ TRUNC is specified and write permission is denied for the file named by path.

The required permissions (for reading and/or writing) are denied for the file
named by path.

The file does not exist, 0 _ CREAT is specified, and the directory in which the entry
for the new file is being placed cannot be extended because the user's quota of
disk blocks on the file system containing the directory has been exhausted.

The file does not exist, 0_ CREAT is specified, and the user's quota of inodes on
the file system on which the file is being created has been exhausted.

0_ EXCL and 0_ CREAT were both specified and the file exists.

path points outside the process's allocated address space.

A signal was caught during the open() system call.

A hangup or error occurred during a STREAMS open().

An I/O error occurred while reading from or writing to the file system.

The named file is a directory, and the arguments specify it is to be opened for
writing.

Too many symbolic links were encountered in translating path.

The system limit for open file descriptors per process has already been reached.

The length of the path argument exceeds {PATH_MAX}.

A pathname component is longer than {NAME_MAX} while
LPOSIX_NO_TRUNC} is in effect (see pathconf(2V»).

The system file table is full.

0_ CREAT is not set and the named file does not exist.

A component of the path prefix of path does not exist.

The file does not exist, 0 _ CREAT is specified, and the directory in which the entry
for the new file is being placed cannot be extended because there is no space left
on the file system containing the directory.

The file does not exist, 0 _ CREAT is specified, and there are no free inodes on the
file system on which the file is being created.

A stream could not be allocated.

A component of the path prefix of path is not a directory.

o _NDELA Y is set, the named file is a FIFO, 0_ WRONLY is set, and no process
has the file open for reading.

The file is a character special or block special file, and the associated device does
not exist.

o _NONBLOCK is set, the named file is a FIFO, 0_ WRONLY is set, and no process
has the file open for reading.

A STREAMS module or driver open routine failed.

An attempt was made to open a socket (not currently implemented).

~t change: 21 January 1990 Sun Release 4.1

OPEN (2V)

EROFS

SYSTEM V ERRORS

SYSTEM CALLS OPEN(2V)

The named file does not exist, 0 _ CREAT is specified, and the file system on
which it is to be created is a read-only file system.

The named file resides on a read-only file system, and the file is to be opened for
writing.

In addition to the above, the following may also occur:

ENOENT path points to an empty string.

SEE ALSO
chmod(2V), c1ose(2V), creat(2V), dup(2V), fcntl(2V), getdtablesize(2), getm sg (2) , Iseek(2V),
mknod(2V), mount(2V), putmsg(2), read(2V), umask(2V) write(2V)

Sun Release 4.1 Last change: 21 January 1990 797

PATHCONF(2V) SYSTEM CALLS PATHCONF(2V)

NAME
pathconf, fpathconf - query file system related limits and options

SYNOPSIS
#include <unistd.h>

long pathconf(path, name)
char .path;
int name;

long fpathconr(fd, name)
int fd, name;

DESCRIPTION

798

pathconf() and rpathconf() provide a method for the application to determine the current value of a
configurable limit or option that is associated with a file or directory,

For pathconf(), path points to the pathname of a file or directory. For fpathconfO, fd is an open file
descriptor.

The convention used throughout sections 2 and 3 is that {LIMIT} means that LIMIT is something that can
change from file to file (due to multiple file systems on the same machine). The actual value for LIMIT is
typically not defined in any header file since it is not invariant. Instead, pathconf must be called to retrieve
the value. pathconr() understands a list of flags that are named similarly to the value being queried.

The following table lists the name and meaning of each conceptual limit.

Limit

{LINK_MAX}
{MAX_CANON}
{MAX_INPUT}
{NAME_MAX}
{PATH_MAX}
{PIPE_BUP}
LPOSIX_ CHOWN_RESTRICTED}

Meaning

Max links to an object.
Max tty input line size.
Max packet a tty can accept at once.
Max filename length.
Max pathname length.
Pipe buffer size.
If true only root can chownO files, oth­
erwise anyone may give away files.
If false filenames> (NAME_MAX} are
truncated, otherwise an error.
A char to use to disable tty special chars.

The following table lists the name of each limit, the flag passed to pathconf() to retrieve the value of each
variable, and some notes about usage.

Limit Pathconf Flag Notes

{LINK_MAX} -PC LINK MAX 1 - -
{MAX_CANON} PC MAX CANON 2 - - -
{MAX_INPUT} PC MAX INPUT - - - 2
{NAME_MAX} PC NAME MAX 3,4 - - -
{PATH_MAX} PC PATH MAX 4,5 - - -
{PIPE_BUP} -PC PIPE BUF 6
LPOSIX_CHOWN_RESTRICTED} PC CHOWN RESTRICTED - - - 7,8
LPOSIX_NO_TRVNC} PC NO TRUNC 3,4,8 - - -
LPOSIX_ VDISABLE} PC VDISABLE 2,8

The following notes apply to the entries in the preceding table.

1 If path or fd refers to a directory, the value returned applies to the directory itself.

2 The behavior is undefined if path or fd does not refer to a terminal file.

3 If path orfd refers to a directory, the value returned applies to the file names within the directory.

Last change: 21 January 1990 Sun Release 4.1

PATHCONF (2V) SYSTEM CALLS PATHCONF(2V)

4 The behavior is undefined if path or fd does not refer to a directory.

5 If path or fd refers to a directory, the value returned is the maximum length of a relative pathname
when the specified directory is the working directory.

6 If path refers to a FIFO, or fd refers to a pipe of FIFO, the value returned applies to the referenced
object itself. If path or fd refers to a directory, the value returned applies to any FIFOs that exist or
can be created within the directory. If path or fd refer to any other type of file, the behavior is
undefined.

7 If path or fd refer to a directory, the value returned applies to any files, other than directories, that
exist or can be created within the directory.

8 The option in question is a boolean; the return value is 0 or 1.

RETURN VALUES
On success, pathconf() and fpathconf() return the current variable value for the file or directory. On
failure, they return -1 and set errno to indicate the error.

If the variable corresponding to name has no limit for the path or file descriptor, pathconf() and fpath­
conf() return -1 without changing errno.

ERRORS
pathconf() and fpathconf() may set errno to:

EINV AL The value of name is invalid.

For each of the following conditions, if the condition is detected, pathconf() fails and sets errno to:

EACCES

EINVAL

ENAMETOOLONG

ENOENT

ENOTDIR

Search permission is denied for a component of the path prefix.

The implementation does not support an association of the variable name with the
specified file.

The length of the path argument exceeds {PATH_MAX}.

A pathname component is longer than {NAME_MAX} while {POSIX_NO_TRUNC}
is in effect

The named file does not exist

path points to an empty string.

A component of the path prefix is not a directory.

For each of the following conditions, if the condition is detected, fpathconf() fails and sets errno to:

EBADF

EINVAL

Sun Release 4.1

The fd argument is not a valid file descriptor.

The implementation does not support an association of the variable name with the
specified file.

Last change: 21 January 1990 799

PIPE (2V) SYSTEM CALLS PIPE (2V)

NAME
pipe - create an interprocess communication channel

SYNOPSIS
int pipe(fd)
int fd[2];

DESCRIPTION
The pipe() system call creates an I/O mechanism called a pipe and returns two file descriptors, fd[O] and
fd[l]. fd[O] is opened for reading andfd[1] is opened for writing. The O_NONBLOCK flag is clear on
both file descriptors (see open(2V». When the pipe is written using the descriptor fd[1] up to {PIPE_BUF}
(see sysconf(2V» bytes of data are buffered before the writing process is blocked. A read only file
descriptorfd[O] accesses the data written tofd[l] on a FIFO (first-in-first-out) basis.

The standard programming model is that after the pipe has been set up, two (or more) cooperating
processes (created by subsequent fork(2V) calls) will pass data through the pipe using read(2V) and
write(2V).

Read calls on an empty pipe (no buffered data) with only one end (all write file descriptors closed) returns
an EOF (end of file).

Pipes are really a special case of the socketpair(2) call and, in fact, are implemented as such in the system.

A SIGPIPE signal is generated if a write on a pipe with only one end is attempted.

Upon successful completion, pipeO marks for update the st_atime, st_ctime, and st_mtime fields of the
pipe.

RETURN VALUES
pipe() returns:

o on success.

-1 on failure and sets errno to indicate the error.

ERRORS
EFAULT

EMFILE

ENFILE

SEE ALSO

The array fd is in an invalid area of the process's address space.

Too many descriptors are active.

The system file table is full.

sh(I), fork(2V), read(2V), socketpair(2), write(2V)

BUGS
Should more than {PIPE_BUF} bytes be necessary in any pipe among a loop of processes, deadlock will
occur.

800 Last change: 21 January 1990 Sun Release 4.1

POLL(2) SYSTEM CALLS POLL (2)

NAME
poll-I/O multiplexing

SYNOPSIS
#include <poll.h>

int poll(fds, nfds, timeout)
struct pollfd *fds;
unsigned long nfds;
int timeout;

DESCRIPTION
poll() provides users with a mechanism for multiplexing input/output over a set of file descriptors (see
intro(2». poll() identifies those file descriptors on which a user can send or receive messages, or on which
certain events have occurred. A user can receive messages using read(2V) or getmsg(2) and can send
messages using write(2V) and putmsg(2). Certain ioctl(2) calls, such as I_RECVFD and I_SENDFD (see
streamio(4», can also be used to receive and send messages on streams.

fds specifies the file descriptors to be examined and the events of interest for each file descriptor. It is a
pointer to an array with one element for each open file descriptor of interest. The array's elements are
pollfd structures which contain the following members:

int fd; 1* file descriptor *1
short events;
short revents;

1* requested events *1
1* returned events *1

where fd specifies an open file descriptor and events and revents are bitmasks constructed by ~Ring any
combination of the following event flags:

POLLIN

POLLPRI

POLLOUT

POLLERR

If the file descriptor refers to a stream, a non-priority or file descriptor passing message
(see I_RECVFD) is present on the stream head read queue. This flag is set even if the
message is of zero length. If the file descriptor is not a stream, the file descriptor is read­
able. In revents, this flag is mutually exclusive with POLLPRI.

If the file descriptor is a stream, a priority message is present on the stream head read
queue. This flag is set even if the message is of zero length. If the file descriptor is not a
stream, some exceptional condition has occurred. In revents, this flag is mutually
exclusive with POLLIN.

If the file descriptor is a stream, the first downstream write queue in the stream is not
full. Priority control messages can be sent (see putmsg(2» at any time. If the file
descriptor is not a stream, it is writable.

If the file descriptor is a stream, an error message has arrived at the stream head. This
flag is only valid in the revents bitmask; it is not used in the events field.

POLLHUP If the file descriptor is a stream, a hangup has occurred on the stream. This event and
POLLOUT are mutually exclusive; a stream can never be writable if a hangup has
occurred. However, this event and POLLIN or POLLPRI are not mutually exclusive.
This flag is only valid in the revents bitmask; it is not used in the events field.

POLLNV AL The specified fd value does not specify an open file descriptor. This flag is only valid in
the revents field; it is not used in the events field.

For each element of the array pointed to by fds, poll() examines the given file descriptor for the event(s)
specified in events. The number of file descriptors to be examined is specified by nfds. If nfds exceeds the
system limit of open files (see getdtablesize(2», poll() will fail.

If the value fd is less than zero, events is ignored and revents is set to 0 in that entry on return from poll().

Sun Release 4.1 Last change: 21 January 1990 801

POLL(2) SYSTEM CALLS POLL (2)

The results of the poll() query are stored in the revents field in the pollfd structure. Bits are set in the
revents bitmask to indicate which of the requested events are true. If none are true, none of the specified
bits is set in revents when the poliO call returns. The event flags POLLHUP, POLLERR, and POLLNVAL
are always set in revents if the conditions they indicate are true; this occurs even though these flags were
not present in events.

If none of the defined events have occurred on any selected file descriptor, poll() waits at least timeout mil­
liseconds for an event to occur on any of the selected file descriptors. On a computer where millisecond
timing accuracy is not available, timeout is rounded up to the nearest legal value available on that system.
If the value timeout is 0, poliO returns immediately. If the value of timeout is -1, poliO blocks until a
requested event occurs or until the call is interrupted. poll() is not affected by the 0 _NDELA Y flag.

RETURN VALUES
poll() returns a non-negative value on success. A positive value indicates the total number of file descrip­
tors that has been selected (for instance, file descriptors for which the revents field is non-zero). 0 indi­
cates the call timed out and no file descriptors have been selected. On failure, poll() returns -1 and sets
errno to indicate the error.

ERRORS
EAGAIN Allocation of internal data structures failed, but the request should be attempted again.

Some argument points outside the allocated address space. EFAULT

EINTR

EINVAL

SEE ALSO

A signal was caught during the poll() system call.

The argument nfds is less than zero.

nfds is greater than the system limit of open files.

getdtablesize(2), getmsg(2), intro(2), ioctl(2), putmsg(2), read(2V), select(2), write(2V), streamio(4)

802 Last change: 21 January 1990 Sun Release 4.1

PROFIL(2) SYSTEM CALLS PROFIL(2)

NAME
profil- execution time profile

SYNOPSIS
int profil(buf, bufsiz, offset, scale)
short *buf;
int bufsiz;
void (*offset)O;
int scale;

DESCRIPTION
profil() enables run-time execution profiling, and reserves a buffer for maintaining raw profiling statistics.
buf points to an area of core of length bufsiz (in bytes). After the call to profil(), the user's program
counter (PC) is examined at each clock tick (10 milliseconds on Sun-4 systems, 20 milliseconds on Sun-3
systems); offset is subtracted from its value, and the result multiplied by scale. If the resulting number
corresponds to a word within the buffer, that word is incremented.

scale is interpreted as an unsigned, fixed-point fraction with binary point at the left: Oxffff gives a 1-10-1
mapping of pc values to words in buf; Ox7fff maps each pair of instruction words together. Ox2 maps all
instructions onto the beginning of buf(producing a non-interrupting core clock).

Profiling is turned off by giving a scale of 0 or 1. It is rendered ineffective by giving a bUfsiz of O.
Profiling is turned off when an execve() is executed, but remains on in child and parent both after a fork().
Profiling is turned off if an update in buf would cause a memory fault.

RETURN VALUES
profil() always succeeds and returns O.

SEE ALSO
gprof(l), getitimer(2), monitor(3)

Sun Release 4.1 Last change: 21 January 1990 803

PTRACE(2) SYSTEM CALLS PTRACE(2)

NAME
ptrace - process trace

SYNOPSIS
#include <signal.h>
#include <sys/ptrace.h>
#include <sys/wait.b>

ptrace(request, pid, addr, data [, addr2])
enum ptracereq request;
int pid;
char *addr;
int data;
char *addr2;

DESCRIPTION

804

ptrace() provides a means by which a process may control the execution of another process, and examine
and change its core image. Its primary use is for the implementation of breakpoint debugging. There are
five arguments whose interpretation depends on the request argument Generally, pid is the process ID of
the traced process. A process being traced behaves normally until it encounters some signal whether inter­
nally generated like "illegal instruction" or externally generated like "interrupt". See sigvec(2) for the list.
Then the traced process enters a stopped state and the tracing process is notified using wait(2V). When the
traced process is in the stopped state, its core image can be examined and modified using ptrace(). If
desired, another ptrace() request can then cause the traced process either to terminate or to continue, pos­
sibly ignoring the signal.

Note: several different values of the request argument can make ptrace() return data values - since -1 is
a possibly legitimate value, to differentiate between -1 as a legitimate value and -1 as an error code, you
should clear the errno global error code before doing a ptrace() call, and then check the value of errno
afterwards.

The value of the request argument determines the precise action of the call:

PTRACE_TRACEME
This request is the only one used by the traced process; it declares that the process is to be traced
by its parent. All the other arguments are ignored. Peculiar results will ensue if the parent does
not expect to trace the child.

PTRACE PEEKTEXT
PTRACE PEEKDATA

The word in the traced process's address space at addr is returned. If the instruction and data
spaces are separate (for example, historically on a PDP-l1), request PTRACE_PEEKTEXT indi­
cates instruction space while PTRACE_PEEKDATA indicates data space. Otherwise, either
request may be used, with equal results; addr must be a multiple of 4 on a Sun-4 system. The
child must be stopped. The input data and addr2 are ignored.

PTRACE PEEKUSER
The word of the system's per-process data area corresponding to addr is returned. addr must be a
valid offset within the kernel's per-process data pages. This space contains the registers and other
information about the process; its layout corresponds to the user structure in the system (see
<sys/user .h».

PTRACE POKETEXT
PTRACE_POKEDATA

The given data are written at the word in the process's address space corresponding to addr. addr
must be a multiple of 4 on a Sun-4 system. No useful value is returned. If the instruction and data
spaces are separate, request PTRACE_PEEKTEXT indicates instruction space while
PTRACE_PEEKDATA indicates data space. The PTRACE_POKETEXT request must be used to
write into a process's text space even if the instruction and data spaces are not separate.

Last change: 21 January 1990 S un Release 4.1

PTRACE(2) SYSTEM CALLS PTRACE(2)

PTRACE_POKEUSER
The process's system data are written, as it is read with request PTRACE_PEEKUSER. Only a
few locations can be written in this way: the general registers, the floating point and status regis­
ters, and certain bits of the processor status word.

PTRACE _ CONT
The data argument is taken as a signal number and the child's execution continues at location
addr as if it had incurred that signal. Normally the signal number will be either 0 to indicate that
the signal that caused the stop should be ignored, or that value fetched out of the process's image
indicating which signal caused the stop. If addr is (int *) 1 then execution continues from where it
stopped. addr must be a multiple of 4 on a Sun-4 system.

PTRACE_KILL
The traced process tenninates, with the same consequences as exit(2V).

PTRACE SINGLESTEP
Execution continues as in request PTRACE_ CONT; however, as soon as possible after execution
of at least one instruction, execution stops again. The signal number from the stop is SIGTRAP.
On Sun-3 and Sun386i systems, the status register T-bit is used and just one instruction is exe­
cuted. This is part of the mechanism for implementing breakpoints. On a Sun-4 system this will
return an error since there is no hardware assist for this feature. Instead, the user should insert
breakpoint traps in the debugged program with PTRACE_POKETEXT.

PTRACE_ATTACH
Attach to the process identified by the pid argument and begin tracing it. PTRACE ATTACH
causes a SIGSTOP to be sent to process pid. Process pid does not have to be a child of the reques­
tor, but the requestor must have permission to send process pid a signal and the effective user IDs
of the requesting process and process pid must match.

PTRACE DETACH
Detach the process being traced. Process pid is no longer being traced and continues its execu­
tion. The data argument is taken as a signal number and the process continues at location addr as
if it had incurred that signal.

PTRACE_ GETREGS
The traced process's registers are returned in a structure pointed to by the addr argument. The
registers include the general purpose registers, the program counter and the program status word.
The "regs" structure defined in <machine/reg.h> describes the data that are returned.

PTRACE_ SETREGS
The traced process's registers are written from a structure pointed to by the addr argument. The
registers include the general purpose registers, the program counter and the program status word.
The "regs" structure defined in reg.h describes the data that are set.

PTRACE GETFPREGS
(Sun-3, Sun-4 and Sun386i systems only) The traced process's FPP status is returned in a structure
pointed to by the addr argument The status includes the 68881 (80387 on Sun386i systems) float­
ing point registers and the control, status, and instruction address registers. The "fp_status"
structure defined in reg. describes the data that are returned. The fp_state structure defined in
<machine/fp.h> describes the data that are returned on a Sun386i system.

PTRACE SETFPREGS

Sun Release 4.1

(Sun-3, Sun-4 and Sun386i systems only) The traced process's FPP status is written from a struc­
ture pointed to by the addr argument. The status includes the FPP floating point registers and the
control, status, and instruction address registers. The "fp_status" structure defined in reg.h
describes the data that are set. The "fp_state" structure defined in fp.h describes the data that are
returned on a Sun386i system.

Last change: 21 January 1990 805

PTRACE(2) SYSTEM CALLS PlRACE(2)

806

PTRACE_GETFPAREGS
(a Sun-3 system with FPA only) The traced process's FPA registers are returned in a structure
pointed to by the addr argument. The "fpa_regs" structure defined in reg.h describes the data
that are returned.

PTRACE SETFPAREGS
(a Sun-3 system with FPA only) The traced process's FPA registers are written from a structure
pointed to by the addr argument. The "fpa_regs" structure defined in reg.h describes the data that
are set.

PTRACE_READTEXT
PTRACE_READDATA

Read data from the address space of the traced process. If the instruction and data spaces are
separate, request PTRACE _ READTEXT indicates instruction space while PTRACE _ READDAT A
indicates data space. The addr argument is the address within the traced process from where the
data are read, the data argument is the number of bytes to read, and the addr2 argument is the
address within the requesting process where the data are written.

PTRACE WRITETEXT
PTRACE WRITEDATA

Write data into the address space of the traced process. If the instruction and data spaces are
separate, request PTRACE _ READTEXT indicates instruction space while PTRACE _ READDAT A
indicates data space. The addr argument is the address within the traced process where the data
are written, the data argument is the number of bytes to write, and the addr2 argument is the
address within the requesting process from where the data are read.

PTRACE SETWRBKPT
(Sun386i systems only) Set a write breakpoint at location addr in the process being traced. When­
ever a write is directed to this location a breakpoint will occur and a SIGTRAP signal will be sent
to the process. The data argument specifies which debug register should be used for the address
of the breakpoint and must be in the range 0 through 3, inclusive. The addr2 argument specifies
the length of the operand in bytes, and must be one of 1, 2, or 4.

PTRACE SETACBKPT
(Sun386i systems only) Set an access breakpoint at location addr in the process being traced.
When location addr is read or written a breakpoint will occur and the process will be sent a
SIGTRAP signal. The data argument specifies which debug register should be used for the
address of the breakpoint and must be in the range 0 through 3, inclusive. The addr2 argument
specifies the length of the operand in bytes, and must be one of 1, 2, or 4.

PTRACE _ CLRBKPT
(Sun386i systems only) Clears all break points set with PTRACE SETACBKPT or
PTRACE SETWRBKPT.

PTRACE SYSCALL
Execution continues as in request PTRACE _ CONT; until the process makes a system call. The
process receives a SIGTRAP signal and stops. At this point the arguments to the system call may
be inspected in the process user structure using the PTRACE_PEEKUSER request. The system
call number is available in place of the 8th argument. Continuing with another
PTRACE_SYSCALL will stop the process again at the completion of the system call. At this point
the result of the system call and error value may be inspected in the process user structure.

PTRACE DUMPCORE
Dumps a core image of the traced process to a file. The name of the file is obtained from the addr
argument.

Last change: 21 January 1990 Sun Release 4.1

PTRACE(2) SYSTEM CALLS PTRACE(2)

As indicated, these calls (except for requests PTRACE_TRACEME, PTRACE_ATTACH and
PTRACE_DETACH) can be used only when the subject process has stopped. The waitO call is used to
determine when a process stops; in such a case the "termination" status returned by wait() has the value
WSTOPPED to indicate a stop rather than genuine termination.

To forestall possible fraud, ptrace() inhibits the setUID and setGID facilities on subsequent execve(2V)
calls. If a traced process calls execve(), it will stop before executing the first instruction of the new image,
showing signal SIGTRAP.

On the Sun, "word" also means a 32-bit integer.

RETURN V ALVES
On success, the value returned by ptrace() depends on request as follows:

PTRACE_PEEKTEXT
PTRACE PEEKDATA

PTRACE_ PEEKVSER

The word in the traced process's address space at addr.

The word of the system's per-process data area corresponding to
addr.

On failure, these requests return -1 and set errno to indicate the error.

For all other values of request, ptrace() returns:

o
-1

ERRORS
EIO

on success.

on failure and sets errno to indicate the error.

The request code is invalid.

EPERM

ESRCH

The given signal number is invalid.

The specified address is out of bounds.

The specified process cannot be traced.

The specified process does not exist.

request requires process pid to be traced by the current process and stopped, and process
pid is not being traced by the current process.

request requires process pid to be traced by the current process and stopped, and process
pid is not stopped.

SEE ALSO

BUGS

adb(1), intro(2), ioctl(2), sigvec(2), wait(2V)

ptrace() is unique and arcane; it should be replaced with a special file which can be opened and read and
written. The control functions could then be implemented with ioctl(2) calls on this file. This would be
simpler to understand and have much higher performance.

The requests PTRACE_TRACEME through PTRACE_SINGLESTEP are standard UNIX system ptrace()
requests. The requests PTRACE_ATTACH through PTRACE_DUMPCORE and the fifth argument, addr2,
are unique to SunOS.

The request PTRACE_ TRACEME should be able to specify signals which are to be treated normally and
not cause a stop. In this way, for example, programs with simulated floating point (which use "illegal
instruction" signals at a very high rate) could be efficiently debugged.

The error indication, -1, is a legitimate function value; errno, (see intro(2», can be used to clarify what it
means.

Sun Release 4.1 Last change: 21 January 1990 807

PUTMSG(2) SYSTEM CALLS PUTMSG(2)

NAME
putmsg - send a message on a stream

SYNOPSIS
#include <stropts.h>

jot putmsg(fd, ctlptr, d~taptr, flags)
jot rd;
struct strbuf *ctlptr;
struct strbuf *dataptr;
jot flags;

DESCRIPTION
putmsg() creates a message (see intro(2) from user specified buffer(s) and sends the message to a
STREAMS file. The message may contain either a data part, a control part or both. The data and control
parts to be sent are distinguished by placement in separate buffers, as described below. The semantics of
each part is defined by the STREAMS module that receives the message.

fd specifies a file descriptor referencing an open stream. ctlptr and dataptr each point to a strbuf structure
that contains the following members:

jot maxleo; 1* not used *1
iot len; 1* leogth or data *1
char *buf; 1* ptr to buffer *1

ctlptr points to the structure describing the control part, if any, to be included in the message. The bur field
in the strbuf structure points to the buffer where the control information resides, and the leo field indicates
the number of bytes to be sent. The maxleo field is not used in putmsgO (see getmsg(2)). In a similar
manner, dataptr specifies the data, if any, to be included in the message. flags may be set to the values 0 or
RS _ HIPRI and is used as described below.

To send the data part of a message, dataptr must not be a NULL pointer and the len field of dataptr must
have a value of 0 or greater. To send the control part of a message, the corresponding values must be set
for ctlptr. No data (control) part will be sent if either dataptr (ctlptr) is a NULL pointer or the len field of
dataptr (ctlptr) is set to -1.

If a control part is specified, and flags is set to RS _ mPRI, a priority message is sent. If flags is set to 0, a
non-priority message is sent. If no control part is specified, and flags is set to RS _ HIPRI, putmsg() fails and
sets errno to EINV AL. If no control part and no data part are specified, and flags is set to 0, no message is
sent, and 0 is returned.

For non-priority messages, putmsg() will block if the stream write queue is full due to internal flow con­
trol conditions. For priority messages, putmsg() does not block on this condition. For non-priority mes­
sages, putmsg() does not block when the write queue is full and 0 _NDELA Y is set. Instead, it fails and
sets errno to EAGAIN.

putmsg() also blocks, unless prevented by lack of internal resources, waiting for the availability of mes­
sage blocks in the stream, regardless of priority or whether 0 _NDELAY has been specified. No partial
message is sent.

RETURN VALUES
putmsg() returns:

o on success.

-1 on failure and sets errno to indicate the error.

ERRORS
EAGAIN

808

A non-priority message was specified, the 0 _NDELA Y flag is set and the stream write
queue is full due to internal flow control conditions.

Buffers could not be allocated for the message that was to be created.

Last change: 21 January 1990 Sun Release 4.1

PUTMSG(2)

EBADF

EFAULT

EINTR

EINVAL

ENOSTR

ENXIO

ERANGE

SYSTEM CALLS

/d is not a valid file descriptor open for writing.

ctlptr or dataptr points outside the allocated address space.

A signal was caught during the putmsg() system call.

An undefined value was specified inflags.

flags is set to RS_HIPRI and no control part was supplied.

The stream referenced by /d is linked below a multiplexor.

A stream is not associated with/d.

A hangup condition was generated downstream for the specified stream.

PUTMSG(2)

The size of the data part of the message does not fall within the range specified by the
maximum and minimum packet sizes of the topmost stream module.

The control part of the message is larger than the maximum configured size of the con­
trol part of a message.

The data part of the message is larger than the maximum configured size of the data part
of a message.

A putmsg() also fails if a STREAMS error message had been processed by the stream head before the call
to putmsg(). The error returned is the value contained in the STREAMS error message.

SEE ALSO
getmsg(2), intro(2), poll(2), read(2V), write(2V)

Sun Release 4.1 Last change: 21 January 1990 809

QUOT ACTL (2) SYSTEM CALLS QUOTACTL (2)

NAME
quotactl - manipulate disk quotas

SYNOPSIS
#include <ufslquota.h>

int quotactl(cmd, special, uid, addr)
int cmd;
char *special;
int uid;
caddr_t addr;

DESCRIPTION
The quotactl() call manipulates disk quotas. cmd indicates a command to be applied to the user ID uid.
special is a pointer to a null-terminated string containing the path name of the block special device for the
file system being manipulated. The block special device must be mounted as a UFS file system (see
mount(2V). addr is the address of an optional, command specific, data structure which is copied in or out
of the system. The interpretation of addr is given with each command below.

Q_ QUOT AON Turn on quotas for a file system. addr points to the path name of file containing the quo­
tas for the file system. The quota file must exist; it is normally created with the quota­
check(8) program. This call is restricted to the super-user.

Q_ QUOTAOFF Turn off quotas for a file system. addr and uid are ignored. This call is restricted to the
super-user.

Q_GETQUOTA Get disk quota limits and current usage for user uid. addr is a pointer to a dqblk struc­
ture (defined in <ufs/quota.h». Only the super-user may get the quotas of a user other
than himself.

Q_SETQVOTA Set disk quota limits and current usage for user uid. addr is a pointer to a dqblk struc­
ture (defined in quota.h). This call is restricted to the super-user.

Q_SETQLIM Set disk quota limits for user uid. addr is a pointer to a dqblk structure (defined in
quota.h). This call is restricted to the super-user.

Q_SYNC Update the on-disk copy of quota usages for a file system. If special is null then all file
systems with active quotas are sync' ed. addr and uid are ignored.

RETURN V ALVES
quotactl() returns:

o
-1

on success.

on failure and sets errno to indicate the error.

ERRORS
EFAULT

810

EINVAL

ENODEV

ENOENT

ENOTBLK

EPERM

ESRCH

EUSERS

addr or special are invalid.

The kernel has not been compiled with the QUOTA option.

cmd is invalid.

special is not a mounted UFS file system.

The file specified by special or addr does not exist.

special is not a block device.

The call is privileged and the caller was not the super-user.

No disc quota is found for the indicated user.

Quotas have not been turned on for this file system.

The quota table is full.

Last change: 21 January 1990 Sun Release 4.1

QUOT ACTL (2) SYSTEM CALLS QUOTACTL (2)

If cmd is Q_ QUOT AON quotactlO may set ermo to:

EACCES The quota file pointed to by addr exists but is not a regular file.

EBUSY

The quota file pointed to by addr exists but is not on the file system pointed to by spe­
cial.

Q_ QUOT AON attempted while another Q_ QUOTAON or Q_ QUOT AOFF is in progress.

SEE ALSO

BUGS

quota(I), getrlimit(2), mount(2V), quotacheck(8), quotaon(8)

There should be some way to integrate this call with the resource limit interface provided by setrlimit()
and getrlimit(2).

Incompatible with Melbourne quotas.

Sun Release 4.1 Last change: 21 January 1990 811

READ (2V) SYSTEM CALLS READ (2V)

NAME
read, readv - read input

SYNOPSIS
int read(rd, bur, nbyte)
int fd;
ehar *bur;
int nbyte;

#include <sys/types.h>
#include <sys/uio.h>

int readv(fd, iov, iovent)
int fd;
struct iovee *iov;
int iovent;

DESCRIPTION

812

read() attempts to read nbyte bytes of data from the object referenced by the descriptor fd into the buffer
pointed to by but. readv() perfonns the same action as read(), but scatters the input data into the iovcnt
buffers specified by the members of the iov array: iov[O],iov[1], ... , iov[iovcnt -1].

If nbyte is zero, read() takes no action and returns O. readvO, however, returns -1 and sets the global
variable errno (see ERRORS below).

For readv(), the iovee structure is defined as

struct iovee {
eaddr_tiov_base;
int iov _len;

};

Each iovee entry specifies the base address and length of an area in memory where data should be placed.
readv() will always fill an area completely before proceeding to the next.

On objects capable of seeking, the read() starts at a position given by the pointer associated with fd (see
Iseek(2V»). Upon return from read(), the pointer is incremented by the number of bytes actually read.

Objects that are not capable of seeking always read from the current position. The value of the pointer
associated with such an object is undefined.

Upon successful completion, readO and readvO return the number of bytes actually read and placed in
the buffer. The system guarantees to read the number of bytes requested if the descriptor references a nor­
mal file which has that many bytes left before the EOF (end of file), but in no other case.

If the process calling read() or readv() receives a signal before any data are read, the system call is res­
tarted unless the process explicitly set the signal to interrupt the call using sigvee() or sigaction() (see the
discussions of SV _INTERRUPT on sigvee(2) and SA_INTERRUPT on sigaetion(3V)). If read() or
readv() is interrupted by a signal after successfully reading some data, it returns the number of bytes read.

If nbyte is not zero and read() returns 0, then EOF has been reached. If readv() returns 0, then EOF has
been reached.

A read() or readv() from a STREAMS file (see intro(2)) can operate in three different modes: "byte­
stream" mode, "message-nondiscard" mode, and "message-discard" mode. The default is byte-stream
mode. This can be changed using the I_SRDOPT ioctl(2) request (see streamio(4)), and can be tested with
the I_GRDOPT ioctlO request. In byte-stream mode, readO and readvO will retrieve data from the
stream until as many bytes as were requested are transferred, or until there is no more data to be retrieved.
Byte-stream mode ignores message boundaries.

In STREAMS message-nondiscard mode, read() and readv() will retrieve data until as many bytes as were
requested are transferred, or until a message boundary is reached. If the read() or readv() does not
retrieve all the data in a message, the remaining data are left on the stream, and can be retrieved by the

Last change: 21 January 1990 Sun Release 4.1

READ (2V) SYSTEM CALLS READ (2V)

next read(), readv(), or getmsg(2) call. Message-discard mode also retrieves data until as many bytes as
were requested are transferred, or a message boundary is reached. However, unread data remaining in a
message after the read() or readv() returns are discarded, and are not available for a subsequent read(),
readv(), or getmsg().

When attempting to read from a descriptor associated with an empty pipe, socket, FIFO, or stream:

• If the object the descriptor is associated with is marked for 4.2BSD-style non-blocking I/O (with the
FIONBIO ioctl() request or a call to fcntl(2V) using the FNDELA Y flag from <sys/fiJe.h> or the
O_NDELAY flag from <fcntl.h> in the 4.2BSD environment), the read will return -1 and errno will be
set to EWOULDBLOCK.

• If the descriptor is marked for System V -style non-blocking I/O (using fcntl() with the FNBIO flag
from <syS/file.h> or the 0 _NDELA Y flag from <fcntl.h> in the System V environment), and does not
refer to a stream, the read will return O. Note: this is indistinguishable from EOF.

• If the descriptor is marked for POSIX-style non-blocking I/O (using fcntl() with the 0 _NONBLOCK
flag from <fcntl.h» and refers to a stream, the read will return -1 and errno will be set to EAGAIN.

• If neither the descriptor nor the object it refers to are marked for non-blocking I/O, the read will block
until data is available to be re~d or the object has been "disconnected". A pipe or FIFO is "discon­
nected" when no process has the object open for writing; a socket that was connected is "disconnected"
when the connection is broken; a stream is "disconnected" when a hangup condition occurs (for
instance, when carrier drops on a terminal).

If the descriptor or the object is marked for non-blocking I/O, and less data are available than are requested
by the read() or readv(), only the data that are available are returned, and the count indicates how many
bytes of data were actually read.

When reading from a STREAMS file, handling of zero-byte messages is determined by the current read
mode setting. In byte-stream mode, read() and readv() accept data until as many bytes as were requested
are transferred, or until there is no more data to read, or until a zero-byte message block is encountered.
read() and readv() then return the number of bytes read, and places the zero-byte message back on the
stream to be retrieved by the next read(), readv(), or getmsg(). In the two other modes, a zero-byte mes­
sage returns a value of 0 and the message is removed from the stream. When a zero-byte message is read
as the first message on a stream, a value of 0 is returned regardless of the read mode.

A read() or readv() from a STREAMS file can only process data messages. It cannot process any type of
protocol message and will fail if a protocol message is encountered at the stream head.

Upon successful completion, read() and readv() mark for update the st _ atime field of the file.

RETURN VALUES
read() and readv() return the number of bytes actually read on success. On failure, they return -1 and set
errno to indicate the error.

ERRORS
EAGAIN

EBADF

EBADMSG

EFAULT

EINTR

EINVAL

Sun Release 4.1

The descriptor referred to a stream, was marked for System V -style non-blocking
I/O, and no data were ready to be read.

d is not a valid file descriptor open for reading.

The message waiting to be read on a stream is not a data message.

buf points outside the allocated address space.

The process performing a read from a slow device received a signal before a.'lY
data arrived, and the signal was set to interrupt the system call.

The stream is linked below a multiplexor.

The pointer associated withfd was negative.

Last change: 21 January 1990 813

READ(2V) SYSTEM CALLS READ(2V)

EIO

EISDIR

EWOULDBLOCK

An I/O error occurred while reading from or writing to the file system.

The calling process is in a background process group and is attempting to read
from its controlling terminal and the process is ignoring or blocking SIGTTIN.

The calling process is in a background process group and is attempting to read
from its controlling terminal and the process is orphaned.

fd refers to a directory which is on a file system mounted using the NFS.

The file was marked for 4.2BSD-style non-blocking I/O, and no data were ready to

be read.

In addition to the above, readv() may set errno to:

EFAULT

EINVAL

Part of ioy points outside the process's allocated address space.

ioycnt was less than or equal to 0, or greater than 16.

One of the iov Jen values in the ioy array was negative.

The sum of the iov Jen values in the ioy array overflowed a 32-bit integer.

A read() or readv() from a STREAMS file will also fail if an error message is received at the stream head.
In this case, errno is set to the value returned in the error message. If a hangup occurs on the stream being
read, readO will continue to operate normally until the stream head read queue is empty. Thereafter, it
will return O.

SEE ALSO

814

dup(2V), fcntl(2V), getmsg(2), intro(2), ioctl (2) , Iseek(2V), open(2V), pipe(2V), select(2), socket(2),
socketpair(2), streamio(4), termio(4)

Last change: 21 January 1990 Sun Release 4.1

READLINK (2) SYSTEM CALLS READLINK (2)

NAME
readlink - read value of a symbolic link

SYNOPSIS
int readlink(path, bur, bufsiz)
char *path, *buf;
int bufsiz;

DESCRIPTION
readlink() places the contents of the symbolic link referred to by path in the buffer bufwhich has size buf­
siz. The contents of the link are not null terminated when returned.

RETURN VALUES
readlink() returns the number of characters placed in the buffer on success. On failure, it returns -1 and
sets errno to indicate the error.

ERRORS
readlink() will fail and the buffer will be unchanged if:

EACCES Search permission is denied for a component of the path prefix of path.

EFAULT

ELOOP

EINVAL

EIO

ENAMETOOLONG

ENOENT

SEE ALSO
stat(2V), symlink(2)

Sun Release 4.1

path or buf extends outside the process's allocated address space.

Too many symbolic links were encountered in translating path.

The named file is not a symbolic link.

An I/O error occurred while reading from or writing to the file system.

The length of the path argument exceeds {PATH_MAX}.

A pathname component is longer than {NAME_MAX} (see sysconf(2V» while
LPOSIX_NO_TRUNC} is in effect (see pathconf(2V».

The named file does not exist.

Last change: 21 January 1990 815

REBOOT(2) SYSTEM CALLS REBOOT (2)

NAME
reboot - reboot system or halt processor

SYNOPSIS
#include <sys/reboot.h>

reboot(howto, [bootargs])
int howto;
char *bootargs;

DESCRIPTION
reboot() reboots the system, and is invoked automatically in the event of unrecoverable system failures.
howto is a mask of options passed to the bootstrap program. The system call interface permits only
RB_HALT or RB_AUTOBOOT to be passed to the reboot program; the other flags are used in scripts stored
on the console storage media, or used in manual bootstrap procedures. When none of these options (for
instance RB_AUTOBOOT) is given, the system is rebooted from file Ivmunix in the root file system of unit
o of a disk chosen in a processor specific way. An automatic consistency check of the disks is then nor­
mally performed.

The bits of howto are:

RB HALT the processor is simply halted; no reboot takes place. RB _HALT should be used with
caution.

RB ASKNAME Interpreted by the bootstrap program itself, causing it to inquire as to what file should be
booted. Normally, the system is booted from the file Ivmunix without asking.

RB_SINGLE Normally, the reboot procedure involves an automatic disk consistency check and then
multi-user operations. RB_SINGLE prevents the consistency check, rather simply boot­
ing the system with a single-user shell on the console. RB_SINGLE is interpreted by the
init(8) program in the newly booted system.

RB DUMP A system core dump is performed before rebooting.

RB STRING The optional argument bootargs is passed to the bootstrap program. See boot(8S) for
details. This option overrides RB _SINGLE but the same effect can be achieved by
including -s as an option in bootargs.

Only the super-user may reboot() a machine.

RETURN VALUES
On success, reboot() does not return. On failure, it returns -1 and sets errno to indicate the error.

ERRORS
EPERM The caller is not the super-user.

FILES
Ivmunix

SEE ALSO
panic(8S), halt(8), init(8), intro(8), reboot(8)

816 Last change: 21 January 1990 Sun Release 4.1

RECV(2) SYSTEM CALLS RECV (2)

NAME
recv. recvfrom. recvmsg - receive a message from a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int recv(s, buf, len, flags)
int s;
char *buf;
int len, Hags;

int recvfrom(s, buf, len, flags, from, fromlen)
int s;
char *buf;
int len, Hags;
struct sockaddr *from;
int *fromlen;

int recvmsg(s, msg, flags)
int s;
struct msghdr *msg;
int Hags;

DESCRIPTION
s is a socket created with socket(2). recv(). recvfrorn(), and recvrnsg() are used to receive messages
from another socket. recv() may be used only on a connected socket (see connect(2». while recvfrorn()
and recvrnsg() may be used to receive data on a socket whether it is in a connected state or not.

If from is not a NULL pointer. the source address of the message is filled in. fromlen is a value-result
parameter. initialized to the size of the buffer associated with from. and modified on return to indicate the
actual size of the address stored there. The length of the message is returned. If a message is too long to fit
in the supplied buffer. excess bytes may be discarded depending on the type of socket the message is
received from (see socket(2».

If no messages are available at the socket. the receive call waits for a message to arrive. unless the socket is
non-blocking (see ioctl(2» in which case -1 is returned with the external variable errno set to
EWOULDBLOCK.

The select(2) call may be used to determine when more data arrive.

If the process calling recv(), recvfrorn() or recvmsg() receives a signal before any data are available. the
system call is restarted unless the calling process explicitly set the signal to interrupt these calls using
sigvecO or sigactionO (see the discussions of SV _INTERRUPT on sigvec(2). and SA_INTERRUPT on
sigaction(3V».

The flags parameter is formed by DRing one or more of the following:

MSG OOB

MSG PEEK

Sun Release 4.1

Read any "out-of-band" data present on the socket, rather than the regular "in-band"
data.

"Peek" at the data present on the socket; the data are returned. but not consumed. so that
a subsequent receive operation will see the same data.

Last change: 21 January 1990 817

RECV(2) SYSTEM CALLS RECV(2)

The recvmsg() call uses a msghdr structure to minimize the number of directly supplied parameters. This
structure is defined in <sys/socket.h>, and includes the following members:

caddr t msg_ name; 1* optional address *1
int - msg_namelen; 1* size of address *1
struct iovec *msg)ov; 1* scatter/gather array *1
int msg)ovlen; 1* # elements in msg)ov *1
caddr _ t msg_accrights; 1* access rights sent/received *1
int msg_accrightslen;

Here msg_ name and msg_ namelen specify the destination address if the socket is unconnected;
msg_name may be given as a NULL pointer if no names are desired or required. The msg_iov and
msg_iovlen describe the scatter-gather locations, as described in read(2V). A buffer to receive any access
rights sent along with the message is specified in msg_ accrights, which has length msg_ accrightslen.

RETURN VALUES
These calls return the number of bytes received, or -1 if an error occurred.

ERRORS
EBADF

EFAULT

EINTR

ENOTSOCK

EWOULDBLOCK

SEE ALSO

s is an invalid descriptor.

The data were specified to be received into a non-existent or protected part of the
process address space.

The calling process received a signal before any data were available to be
received, and the signal was set to interrupt the system call.

s is a descriptor for a file, not a socket.

The socket is marked non-blocking and the requested operation would block.

connect(2), fcntl(2V), getsockopt(2), ioctl(2), read(2V), select(2), send(2), socket(2)

818 Last change: 21 January 1990 Sun Release 4.1

RENAME (2V) SYSTEM CALLS RENAME(2V)

NAME
rename - change the name of a file

SYNOPSIS
int rename(pathl, path2)
char *pathl, *path2;

DESCRIPTION
rename() renames the link named path1 as path2. If path2 exists, then it is first removed. If path2 refers
to a directory, it must be an empty directory, and must not include path1 in its path prefix. Both path1 and
path2 must be of the same type (that is, both directories or both non-directories), and must reside on the
same file system. Write access permission is required for both the directory containing path1 and the direc­
tory containing path2. If a rename request relocates a directory in the hierarchy, write permission in the
directory to be moved is needed, since its entry for the parent directory (••) must be updated.

rename() guarantees that an instance of path2 will always exist, even if the system should crash in the
middle of the operation.

If the final component of path1 is a symbolic link, the symbolic link is renamed, not the file or directory to
which it points.

If the file referred to by path2 exists and the file's link count becomes zero when it is removed and no pro­
cess has the file open, the space occupied by the file is freed, and the file is no longer accessible. If one or
more processes have the file open when the last link is removed, the link is removed before rename()
returns, but the file's contents are not removed until all references to the file have been closed.

Upon successful completion, renameO marks for update the st_ctime and st_mtime fields of the parent
directory of each file.

RETURN VALUES
rename() returns:

o on success.

-Ion failure and sets errno to indicate the error.

ERRORS
rename() will fail and neither path1 nor path2 will be affected if:

EACCES Write access is denied for either path1 or path2 .

EBUSY

EDQUOT

EFAULT

EINVAL

EIO

EISDIR

ELOOP

Sun Release 4.1

A component of the path prefix of either path1 or path2 denies search permission.

The requested rename requires writing in a directory with access permissions that
deny write permission.

path2 is a directory and is the mount point for a mounted file system.

The directory in which the entry for the new name is being placed cannot be
extended because the user's quota of disk blocks on the file system containing the
directory has been exhausted.

Either or both of path1 or path2 point outside the process's allocated address
space.

path1 is a parent directory of path2 .

An attempt was made to rename'.' or' •• '.

An I/O error occurred while reading from or writing to the file system.

path2 points to a directory and path1 points to a file that is not a directory.

Too many symbolic links were encountered while translating either path1 or
path2.

Last change: 21 January 1990 819

RENAME (2V) SYSTEM CALLS RENAME(2V)

ENAMETOOLONG

ENOENT

ENOS PC

ENOTDIR

ENOTEMYfY

EROFS

EXDEV

The length of either path argument exceeds {PATH_MAX}.

A pathname component is longer than {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect (see pathconf(2V».

A component of the path prefix of either path] or path2 does not exist.

The file named by path] does not exist

The directory in which the entry for the new name is being placed cannot be
extended because there is no space left on the file system containing the directory.

A component of the path prefix of either path] or path2 is not a directory.

path] names a directory and path2 names a nondirectory file.

path2 is a directory and is not empty.

The requested rename requires writing in a directory on a read-only file system.

The link named by path2 and the file named by path] are on different logical dev­
ices (file systems).

SYSTEM V ERRORS
In addition to the above, the following may also occur:

ENOENT

SEE ALSO

path] or path2 points to an empty string.

open(2V)

WARNINGS

820

The system can deadlock if a loop in the file system graph is present. This loop takes the form of an entry
in directory a, say alfilel, being a hard link to directory b, and an entry in directory b, say b/file2, being a
hard link to directory a. When such a loop exists and two separate processes attempt to perform 'rename
alfilel b/file2' and 'rename b/file2 alfilel', respectively, the system may deadlock attempting to lock both
directories for modification. Hard links to directories should not be used. System administrators should
use symbolic links instead.

Last change: 21 January 1990 Sun Release 4.1

RMDIR(2V) SYSTEM CALLS RMDIR(2V)

NAME
rmdir - remove a directory file

SYNOPSIS
int rmdir(path)
char *path;

DESCRIPTION
rmdir() removes a directory file whose name is given by path. The directory must not have any entries
other than '.' and' •• '. The directory must not be the root directory or the current directory of the calling
process.

If the directory's link count becomes zero, and no process has the directory open, the space occupied by the
directory is freed and the directory is no longer accessible. If one or more processes have the directory
open when the last link is removed, the '.' and' •• '. entries, if present, are removed before rmdir() returns
and no new entries may be created in the directory, but the directory is not removed until all references to
the directory have been closed.

Upon successful completion, rmdir() marks for update the st_ctime and st_mtime fields of the parent
directory.

RETURN VALUES
rmdir() returns:

o on success.

-Ion failure and sets errno to indicate the error.

ERRORS
EACCES Search permission is denied for a component of the path prefix of path.

EACCES Write permission is denied for the parent directory of the directory to be removed.

EBUSY The directory to be removed is the mount point for a mounted file system, or is
being used by another process.

EFAULT path points outside the process's allocated address space.

EINV AL The directory referred to by path is the current directory, '.'.

EIO An I/O error occurred while reading from or writing to the file system.

ELOOP

ENAMETOOLONG

Too many symbolic links were encountered in translating path.

The length of the path argument exceeds {PATH_MAX}.

A pathname component is longer than {NAME_MAX} while

ENOENT

ENOTDIR

ENOTDIR

ENOTEMPfY

EROFS

SYSTEM V ERRORS

LPOSIX_NO_TRUNC} is in effect (see pathconf(2V».

The directory referred to by path does not exist.

A component of the path prefix of path is not a directory.

The file referred to by path is not a directory.

The directory referred to by path contains files other than '.' and ' .. '.

The directory to be removed resides on a read-only file system.

In addition to the above, the following may also occur:

ENOENT path points to a null pathname.

SEE ALSO
mkdir(2V), unlink(2V)

Sun Release 4.1 Last change: 21 January 1990 821

SELECf(2) SYSTEM CALLS SELECT (2)

NAME
select - synchronous I/O multiplexing

SYNOPSIS
#include <sysltypes.h>
#include <sysltime.h>

int select (width, readfds, writefds, exeeptfds, timeout)
int width;
fd_set *readfds, *writefds, *exeeptfds;
struct timeval *timeout;

FD _SET (fd, &fdset)
FD _ CLR (fd, &fdset)
FD _ISSET (fd, &fdset)
FD_ZERO (&fdset)
int fd;
fd_set fdset;

DESCRIPTION
seleet() examines the I/O descriptor sets whose addresses are passed in readfds, writefds, and exceptfds to
see if some of their descriptors are ready for reading, ready for writing, or have an exceptional condition
pending. width is the number of bits to be checked in each bit mask that represent a file descriptor; the
descriptors from 0 through width-1 in the descriptor sets are examined. Typically width has the value
returned by ulimit(3C) for the maximum number of file descriptors. On return, select() replaces the given
descriptor sets with subsets consisting of those descriptors that are ready for the requested operation. The
total number of ready descriptors in all the sets is returned.

The descriptor sets are stored as bit fields in arrays of integers. The following macros are provided for
manipulating such descriptor sets: FD_ZERO (&fdset) initializes a descriptor set fdset to the null set.
FD _ SET(fd, &fdset) includes a particular descriptor fd in fdset. FD _ CLR(fd, &fdset) removes fd from
fdset. FD _ISSET(fd, &fdset) is nonzero if fd is a member of fdset, zero otherwise. The behavior of these
macros is undefined if a descriptor value is less than zero or greater than or equal to FD _ SETSIZE, which is
normally at least equal to the maximum number of descriptors supported by the system.

If timeout is not a NULL pointer, it specifies a maximum interval to wait for the selection to complete. If
timeout is a NULL pointer, the select blocks indefinitely. To effect a poll, the timeout argument should be a
non-NULL pointer, pointing to a zero-valued timeval structure.

Any of readfds, writefds, and exceptfds may be given as NULL pointers if no descriptors are of interest.

Selecting true for reading on a socket descriptor upon which a listen(2) call has been performed indicates
that a subsequent aceept(2) calion that descriptor will not block.

RETURN VALUES
select() returns a non-negative value on success. A positive value indicates the number of ready descrip­
tors in the descriptor sets. 0 indicates that the time limit referred to by timeout expired. On failure,
select() returns -1, sets errno to indicate the error, and the descriptor sets are not changed.

ERRORS

822

EBADF

EFAULT

EINTR

EINVAL

One of the descriptor sets specified an invalid descriptor.

One of the pointers given in the call referred to a non-existent portion of the process'
address space.

A signal was delivered before any of the selected events occurred, or before the time
limit expired.

A component of the pointed-to time limit is outside the acceptable range: t_sec must be
between 0 and 108

, inclusive. t usee must be greater than or equal to 0, and less than
1~. -

Last change: 21 January 1990 Sun Release 4.1

SELECf(2) SYSTEM CALLS SELECf(2)

SEE ALSO

NOTES

BUGS

accept(2) , connect(2), fcntl(2V), ulimit(3C), gettimeofday(2), Iisten(2), read(2V), recv(2) , send(2),
write(2V)

Under rare circumstances, select() may indicate that a descriptor is ready for writing when in fact an
attempt to write would block. This can happen if system resources necessary for a write are exhausted or
otherwise unavailable. If an application deems it critical that writes to a file descriptor not block, it should
set the descriptor for non-blocking I/O using the F _SETFL request to fcntl(2V).

Although the provision of ulimit(3C) was intended to allow user programs to be written independent of the
kernel limit on the number of open files, the dimension of a sufficiently large bit field for select remains a
problem. The default size FD _ SETSIZE (currently 256) is somewhat larger than the current kernel limit to
the number of open files. However, in order to accommodate programs which might potentially use a
larger number of open files with select, it is possible to increase this size within a program by providing a
larger definition of FD _ SETSIZE before the inclusion of <sys/types.h>.

select() should probably return the time remaining from the original timeout, if any, by modifying the time
value in place. This may be implemented in future versions of the system. Thus, it is unwise to assume
that the timeout pointer will be unmodified by the select() call.

Sun Release 4.1 Last change: 21 January 1990 823

SEMCfL(2) SYSTEM CALLS SEMCTL(2)

NAME
semctl- semaphore control operations

SYNOPSIS
#include <sysltypes.h>
#include <syslipc.h>
#include <syslsem.h>

int semctl(semid, semnum, cmd, arg)
int semid, semnum, cmd;
union semun {

} arg;

val;
struct semid_ds *buf;
ushort *array;

DESCRIPTION

824

semctl() provides a variety of semaphore control operations as specified by cmd.

The following cmds are executed with respect to the semaphore specified by semid and semnum:

GETVAL Return the value of semval (see intro(2». [READ]

SETVAL

GETPID

GETNCNT

GETZCNT

Set the value of semval to arg.val. [ALTER] When this cmd is successfully executed,
the semadj value corresponding to the specified semaphore in all processes is cleared.

Return the value of sempid. [READ]

Return the value of semncnt. [READ]

Return the value of semzcnt. [READ]

The following cmd s return and set, respectively, every semval in the set of semaphores.

GETALL Place semvals into the array pointed to by arg.array. [READ]

SETALL Set semvals according to the array pointed to by arg.array. [ALTER] When this cmd is
successfully executed the semadj values corresponding to each specified semaphore in
all processes are cleared.

The following cmd s are also available:

IPC STAT

IPC SET

IPC RMID

Place the current value of each member of the data structure associated with semid into
the structure pointed to by arg.buf. The contents of this structure are defined in intro(2).
[READ]

Set the value of the following members of the data structure associated with semid to the
corresponding value found in the structure pointed to by arg .buf:

sem yerm.uid
sem yerm.gid
sem yerm.mode 1* only low 9 bits *1

This cmd can only be executed by a process that has an effective user ID equal to either
that of super-user, or to the value of sem yerm.cuid or sem yerm.uid in the data struc­
ture associated with semid.

Remove the semaphore identifier specified by semid from the system and destroy the set
of semaphores and data structure associated with it. This cmd can only be executed by a
process that has an effective user ID equal to either that of super-user, or to the value of
sem yerm.cuid or sem yerm.uid in the data structure associated with semid.

Last change: 21 January 1990 Sun Release 4.1

SEMCTL(2) SYSTEM CALLS SEMCTL(2)

In the semop(2) and semctl(2) system call descriptions, the permission required for an operation is given
as "[token]", where "token" is the type of permission needed interpreted as follows:

00400 Read by user
00200 Alter by user
00060 Read, Alter by group
00006 Read, Alter by others

Read and Alter permissions on a semid are granted to a process if one or more of the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches semyerm.[e]uid in the data structure associated
with semid and the appropriate bit of the "user" portion (0600) of sem Jerm.mode is set.

The effective user ID of the process does not match semyerm.[e]uid and the effective group ID
of the process matches sem Jerm.[e]gid and the appropriate bit of the "group" portion (060) of
semJerm.mode is set.

The effective user ID of the process does not match semyerm.[e]uid and the effective group ID
of the process does not match semJerm.[e]gid and the appropriate bit of the "other" portion (06)
of sem _perm.mode is set.

Otherwise, the corresponding permissions are denied.

RETURN VALUES
On success, the value returned by semetl() depends on cmd as follows:

GETVAL

GETPID

GETNCNT

GETZCNT

All others

The value of semval.

The value of sempid.

The value of semncnt .

The value of semzcnt.

o.
On failure, semetl() returns -1 and sets erroo to indicate the error.

ERRORS
EACCES

EFAULT

EINVAL

EPERM

ERANGE

SEE ALSO

Operation permission is denied to the calling process (see intro(2».

arg.bufpoints to an illegal address.

semid is not a valid semaphore identifier.

semnum is less than zero or greater than sem_osems.

cmd is not a valid command.

cmd is IPC _ RMID or IPC _SET and the effective user ID of the calling process is not
super-user.

cmd is IPC_RMID or IPC_SET and the effective user ID of the calling process is not the
value of sem _perm.euid or sem Jerm.uid in the data structure associated with semid.

cmd is SETV AL or SET ALL and the value to which semval is to be set is greater than the
system imposed maximum.

intro(2), semget(2), semop(2), ipcrm(I), ipes(l)

Sun Release 4.1 Last change: 21 January 1990 825

SEMGET(2) SYSTEM CALLS SEMGET(2)

NAME
semget - get set of semaphores

SYNOPSIS
#include <sysltypes.h>
#include <syslipc.h>
#include <syslsem.h>

int semget(key, nsems, semflg)
key_t key;
int nsems, semflg;

DESCRIPTION

826

semget() returns the semaphore identifier associated with key.

A semaphore identifier and associated data structure and set containing nsems semaphores (see intro(2»)
are created for key if one of the following are true:

• key is equal to IPC _ PRIV ATE.

• key does not already have a semaphore identifier associated with it, and (semflg & IPC _ CREAT) is
"true".

Upon creation, the data structure associated with the new semaphore identifier is initialized as follows:

• sem yerm.cuid, sem yerm.uid, sem yerm.cgid, and sem yerm.gid are set equal to the effective
user ID and effective group ID, respectively, of the calling process.

• The low-order 9 bits of sem yerm.mode are set equal to the low-order 9 bits of semflg.

• sem _nsems is set equal to the value of nsems.

• sem _ otime is set equal to 0 and sem _ ctime is set equal to the current time.

A semaphore identifier (semid) is a unique positive integer created by a semget(2) system call. Each semid
has a set of semaphores and a data structure associated with it. The data structure is referred to as
semid _ ds and contains the following members:

struct
ushort
time t
time t

ipc yerm sem yerm;
sem_nsems;
sem_otime;
sem_ctime;

1* operation permission struct *1
1* number of sems in set *1
1* last operation time *1
1* last change time *1
1* Times measured in secs since *1
1* 00:00:00 GMT, Jan. 1, 1970 *1

semyerm is an ipcyerm structure that specifies the semaphore operation permission (see below). This
structure includes the following members:

ushort cuid; 1* creator user id *1
ushort cgid; 1* creator group id *1
ushort uid; 1* user id *1
ushort gid; 1* group id *1
ushort mode; 1* ria permission *1

The value of sem_nsems is equal to the number of semaphores in the set. Each semaphore in the set is
referenced by a positive integer referred to as a sem _ num. sem _ num values run sequentially from 0 to the
value of sem _ nsems minus 1. sem _ otime is the time of the last semop(2) operation, and sem _ ctime is the
time of the last semctl(2) operation that changed a member of the above structure.

Last change: 21 January 1990 Sun Release 4.1

SEMGET(2) SYSTEM CALLS SEMGET(2)

A semaphore is a data structure that contains the following members:

ushort semval; 1* semaphore value *1
short sempid; 1* pid of last operation *1
ushort semnent; 1* # awaiting sernval > eval *1
ushort sernzent; 1* # awaiting sernval = 0 *1

sernval is a non-negative integer. sempid is equal to the process ID of the last process that performed a
semaphore operation on this semaphore. semnent is a count of the number of processes that are currently
suspended awaiting this semaphore's semval to become greater than its current value. semzent is a count
of the number of processes that are currently suspended awaiting this semaphore's semval to become zero.

RETURN VALUES
sernget() returns a non-negative semaphore identifier on success. On failure, it returns -1 and sets errno
to indicate the error.

ERRORS
EACCES

EEXIST

EINVAL

ENOENT

ENOS PC

SEE ALSO

A semaphore identifier exists for key, but operation permIssIon (see intro(2» as
specified by the low-order 9 bits of semfig would not be granted.

A semaphore identifier exists for key but ((semjig & IPC _ CREA T) and (semjig &
IPC_EXCL» is "true".

nsems is either less than or equal to zero or greater than the system-imposed limit.

A semaphore identifier exists for key, but the number of semaphores in the set associated
with it is less than nsems and nsems is not equal to zero.

A semaphore identifier does not exist for key and (semjig & IPC _ CREAT) is "false".

A semaphore identifier is to be created but the system-imposed limit on the maximum
number of allowed semaphore identifiers system wide would be exceeded.

A semaphore identifier is to be created but the system-imposed limit on the maximum
number of allowed semaphores system wide would be exceeded.

iperm(1), ipes(I), intro(2), sernctl(2), semop(2)

Sun Release 4.1 Last change: 21 January 1990 827

SEMOP(2) SYSTEM CALLS SEMOP(2)

NAME
semop - semaphore operations

SYNOPSIS
#include <sys/types.h>
#include <syS/ipc.h>
#include <sys/sem.h>

int semop(semid, sops, DSOpS)
int semid;
struct sembuf *sops;
int nsops;

DESCRIPTION

828

semop() is used to perform atomically an array of semaphore operations on the set of semaphores associ­
ated with the semaphore identifier specified by semid. sops is a pointer to the array of semaphore­
operation structures. nsops is the number of such structures in the array. The contents of each structure
includes the following members:

short sem_Dum; 1* semaphore number *1
short sem_op; 1* semaphore operation *1
short sem _fig; 1* operation flags *1

Each semaphore operation specified by sem _ op is performed on the corresponding semaphore specified by
semid and sem num.

sem _ op specifies one of three semaphore operations as follows:

If sem _ op is a negative integer, one of the following will occur: [ALTER] (see semctl(2»

• If semval (see intro(2» is greater than or equal to the absolute value of sem _ op(), the abso­
lute value of sem_opO is subtracted from semval. Also, if (sem_f1g & SEM_UNDO) is
"true", the absolute value of sem_op() is added to the calling process's semadj value (see
exit(2V» for the specified semaphore.

• If semval is less than the absolute value of sem _ op() and (sem _fig & IPC _NOW AIT) is
"true" , semop() will return immediately.

• If semval is less than the absolute value of sem _ op() and (sem _fig & IPC _NOW AIT) is
, 'false", semop() will increment the semncnt associated with the specified semaphore and
suspend execution of the calling process until one of the following conditions occur.

semval becomes greater than or equal to the absolute value of sem _ op(). When
this occurs, the value of semncnt associated with the specified semaphore is decre­
mented, the absolute value of sem _ op() is subtracted from semval and, if
(sem_flg & SEM_UNDO) is "true", the absolute value of sem_op() is added'to
the calling process's semadj value for the specified semaphore.

The semid for which the calling process is awaiting action is removed from the
system (see semctl(2». When this occurs, errno is set equal to EIDRM, and a
value of -1 is returned.

The calling process receives a signal that is to be caught. When this occurs, the
value of semncnt associated with the specified semaphore is decremented, and the
calling process resumes execution in the manner prescribed in signal(3V).

If sem _ op() is a positive integer, the value of sem _ op() is added to semval and, if (sem _fig &
SEM _UNDO) is "true", the value of sem _ op() is subtracted from the calling process's semadj
value for the specified semaphore. [ALTER]

Last change: 21 January 1990 Sun Release 4.1

SEMOP(2) SYSTEM CALLS SEMOP(2)

If sem _ op() is zero, one of the following will occur: [READ]

• If semval is zero, semop() will return immediately.

• If semval is not equal to zero and (sem _fig & IPC _NOW AIT) is "true", semop() will return
immediately.

• If semval is not equal to zero and (sem _ fig & IPC _NOW AIT) is "false", semop() will incre­
ment the semzcnt associated with the specified semaphore and suspend execution of the cal­
ling process until one of the following occurs:

• semval becomes zero, at which time the value of semzcnt associated with
the specified semaphore is decremented.

• The semid for which the calling process is awaiting action is removed from
the system. When this occlirs, errno is set equal to EIDRM, and a value of
-1 is returned.

• The calling process receives a signal that is to be caught. When this
occurs, the value of semzcnt associated with the specified semaphore is
decremented, and the calling process resumes execution in the manner
prescribed in signal(3V).

Upon successful completion, the value of sempid for each semaphore specified in the array pointed to by
sops is set equal to the process ID of the calling process.

RETURN VALUES
semop() returns:

o
-1

on success.

on failure and sets errno to indicate the error.

ERRORS
E2BIG

EACCES

EAGAIN

EFAULT

EFBIG

EIDRM

EINTR

EINVAL

ENOS PC

ERANGE

SEE ALSO

nsops is greater than the system-imposed maximum.

Operation permission is denied to the calling process (see intro(2».

The operation would result in suspension of the calling process but (sem _ fig &
IPC_NOWAIT) is "true".

sops points to an illegal address.

sem _ num is less than zero or greater than or equal to the number of semaphores in the
set associated with semid.

The set of semaphores referred to by msqid was removed from the system.

The call was interrupted by the delivery of a signal.

semid is not a valid semaphore identifier.

The number of individual semaphores for which the calling process requests a
SEM UNDO would exceed the limit.

The limit on the number of individual processes requesting an SEM _UNDO would be
exceeded.

An operation would cause a semval or sem£ldj value to overflow the system-imposed
limit.

ipcrm(1), ipcs(l), intro(2), execve(2V), exit(2V), fork(2V), semctl(2), semget(2), signal(3V)

Sun Release 4.1 Last change: 21 January 1990 829

SEND (2) SYSTEM CALLS SEND(2)

NAME
send, sendto, sendmsg - send a message from a socket

SYNOPSIS
#include <sysltypes.h>
#include <syslsocket.h>

int send(s, msg, len, Bags)
int s;
char *msg;
int len, 8ags;

int sendto(s, msg, len, Bags, to, tolen)
int s;
char *msg;
int len, Bags;
struct sockaddr *to;
int tolen;

int sendmsg(s, msg, Bags)
int s;
struct msghdr *msg;
int Bags;

DESCRIPTION
s is a socket created with socket(2). send(), sendto(), and sendmsg() are used to transmit a message to
another socket. send() may be used only when the socket is in a connected state, while sendto() and
sendmsg() may be used at any time.

The address of the target is given by to with tolen specifying its size. The length of the message is given by
len. If the message is too long to pass atomically through the underlying protocol, then the error
EMSGSIZE is returned, and the message is not transmitted.

No indication of failure to deliver is implicit in a send(). Return values of -1 indicate some locally
detected errors.

If no buffer space is available at the socket to hold the message to be transmitted, then send() normally
blocks, unless the socket has been placed in non-blocking I/O mode. The select(2) call may be used to
determine when it is possible to send more data.

If the process calling send(), sendmsg() or sendto() receives a signal before any data are buffered to be
sent, the system call is restarted unless the calling process explicitly set the signal to interrupt these calls
using sigvec() or sigaction() (see the discussions of SV _INTERRUPT on sigvec(2), and SA_INTERRUPT
on sigaction(3V»).

The flags parameter is formed by ~Ring one or more of the following:

MSG OOB Send "out-of-band" data on sockets that support this notion. The underlying pro­
tocol must also support "out-of-band" data. Currently, only SOCK_STREAM
sockets created in the AF _INET address family support out-of-band data.

MSG DONTROUTE The SO_DONTROUTE option is turned on for the duration of the operation. This
is usually used only by diagnostic or routing programs.

See recv(2) for a description of the msghdr structure.

RETURN VALUES

830

On success, these functions return the number of bytes sent. On failure, they return -1 and set errno to
indicate the error.

Last change: 21 January 1990 Sun Release 4.1

SEND(2)

ERRORS
EBADF

EFAULT

EINTR

EINVAL

EMSGSIZE

ENOBUFS

ENOBUFS

ENOTSOCK

EWOULDBLOCK

SEE ALSO

SYSTEM CALLS SEND(2)

s is an invalid descriptor.

The data was specified to be sent to a non-existent or protected part of the process
address space.

The calling process received a signal before any data could be buffered to be sent,
and the signal was set to interrupt the system call.

len is not the size of a valid address for the specified address family.

The socket requires that message be sent atomically, and the size of the message
to be sent made this impossible.

The system was unable to allocate an internal buffer. The operation may succeed
when buffers become available.

The output queue for a network interface was full. This generally indicates that
the interface has stopped sending, but may be caused by transient congestion.

s is a descriptor for a file, not a socket.

The socket is marked non-blocking and the requested operation would block.

connect(2), fcntl(2V), getsockopt(2), recv(2), select(2), socket(2), write(2V)

Sun Release 4.1 Last change: 21 January 1990 831

SETPGID (2V) SYSTEM CALLS SETPGID (2V)

NAME
setpgid - set process group ID for job control

SYNOPSIS
#include <sys/types.h>

int setpgid (pid, pgid)
pid _ t pid, pgid;

DESCRIPTION
setpgid() is used to either join an existing process group or create a new process group within the session
of the calling process (see NOTES). The process group ID of a session leader does not change. Upon suc­
cessful completion, the process group ID of the process with a process ID that matches pid is set to pgid.
As a special case, if pid is zero, the process ID of the calling process is used. Also, if pgid is zero, the pro­
cess ID of the process indicated by pid is used.

RETURN VALUES
setpgid() returns:

o on success.

-1 on failure and sets errno to indicate the error.

ERRORS
EACCES The value of pid matches the process ID of a child process of the calling process and the

child process has successfully executed one of the exec() functions.

EINVAL

EPERM

ESRCH

The value of pgid is less than zero or is greater than MAXPID, the maximum process ID
as defined in <syslparam.h>.

The process indicated by pid is a session leader. The value of pid is valid but matches
the process ID of a child process of the calling process and the child process is not in the
same session as the calling process. The value of pgid does not match the process ID of
the process indicated by pid and there is no process with a process group ID that matches
the value of pgid in the same session as the calling process.

pid does not match the PID of the calling process or the PID of a child of the calling pro­
cess.

SEE ALSO

NOTES

832

getpgrp(2V), execve(2V), setsid(2V), tcgetpgrp(3V)

For setpgidO to behave as described above, LPOSDCJOB_CONTROL} must be in effect (see
sysconf(2V». LPOSIX_JOB_CONTROL} is always in effect on SunOS systems, but for portability, appli­
cations should call sysconfO to determine whether LPOSIX_JOB_CONTROL} is in effect for the current
system.

Last change: 21 January 1990 Sun Release 4.1

SETREGID (2) SYSTEM CALLS SETREG 10 (2)

NAME
setregid - set real and effective group IDs

SYNOPSIS
int setregid(rgid, egid)
int rgid, egid;

DESCRIPTION
setregid() is used to set the real and effective group IDs of the calling process. If rgid is -1, the real GID is
not changed; if egid is -1, the effective GID is not changed. The real and effective GIDs may be set to dif­
ferent values in the same call.

If the effective user ID of the calling process is super-user, the real GID and the effective GID can be set to
any legal value.

If the effective user ID of the calling process is not super-user, either the real GID can be set to the saved
setGID from execve(2V), or the effective GID can either be set to the saved setGID or the real OlD. Note: if
a setGID process sets its effective OlD to its real OlD, it can still set its effective GID back to the saved set­
OlD.

In either case, if the real GID is being changed (that is, if rgid is not -1), or the effective OID is being
changed to a value not equal to the real OlD, the saved setGID is set equal to the new effective OlD.

RETURN VALUES
setregid() returns:

o on success.

-1 on failure and sets errno to indicate the error.

ERRORS
setregid() will fail and neither of the group IDs will be changed if:

EINV AL The value of rgid or egid is less than 0 or greater than USHRT _MAX (defined in
<sysllimits.h>).

EPERM

SEE ALSO

The calling process' effective UID is not the super-user and a change other than chang­
ing the real OlD to the saved setGID, or changing the effective GID to the real OlD or the
saved GID, was specified.

execve(2V), getgid(2V), setreuid(2), setuid(3V)

Sun Release 4.1 Last change: 21 January 1990 833

SETREUID (2) SYSTEM CALLS SETREUID (2)

NAME
setreuid - set real and effective user IDs

SYNOPSIS
int setreuid(ruid, euid)
int ruid, euid;

DESCRIPTION
setreuid() is used to set the real and effective user IDs of the calling process. If ruid is -1, the real user ID
is not changed; if euid is -1, the effective user ID is not changed. The real and effective user IDs may be
set to different values in the same call.

If the effective user ID of the calling process is super-user, the real user ID and the effective user ID can be
set to any legal value.

If the effective user ID of the calling process is not super-user, either the real user ID can be set to the effec­
tive user ID, or the effective user ID can either be set to the saved set-user ID from execve(2V) or the real
user ID. Note: if a set-UID process sets its effective user ID to its real user ID, it can still set its effective
user ID back to the saved set-user ID.

In either case, if the real user ID is being changed (that is, if ruid is not -1), or the effective user ID is being
changed to a value not equal to the real user ID, the saved set-user ID is set equal to the new effective user
ID.

RETURN VALUES
setreuid() returns:

o on success.

-1 on failure and sets errno to indicate the error.

ERRORS
setreuid() will fail and neither of the user IDs will be changed if:

EINVAL

EPERM

The value of ruid or euid is less than 0 or greater than USHRT_MAX (defined in
<syS/limits.h>).

The calling process' effective user ID is not the super-user and a change other than
changing the real user ID to the effective user ID, or changing the effective user ID to the
real user ID or the saved set-user ID, was specified.

SEE ALSO
execve(2V), getuid(2V), setregid(2), setuid(3V)

834 Last change: 21 January 1990 S un Release 4.1

SETSID(2V) SYSTEM CALLS SETSID(2V)

NAME
setsid - create session and set process group ID

SYNOPSIS
#include <sysltypes.h>

pid _ t setsid()

DESCRIPTION
If the calling process is not a process group leader. the setsid() function creates a new session. The calling
process is the session leader of this new session, the process group leader of a new process group, and has
no controlling tenninal. If the process had a controlling tenninal, setsid() breaks the association between
the process and that controlling tenninal. The process group ID of the calling process is set equal to the
process ill of the calling process. The calling process is the only process in the new process group and the
only process in the new session.

RETURN VALUES
setsid() returns the process group ID of the calling process on success. On failure. it returns -1 and sets
errno to indicate the error.

ERRORS
If any of the following conditions occur, setsid() returns -1 and sets errno to the corresponding value:

EPERM The calling process is already a process group leader.

The process ID of the calling process equals the process group ID of a different process.

SEE ALSO
execve(2V), exit(2V), fork(2V), getpid(2V), getpgrp(2V), kill(2V), setpgid(2V), sigaction(3V)

Sun Release 4.1 Last change: 21 January 1990 835

SETUSERAUDIT (2) SYSTEM CALLS SETUSERAUDIT (2)

NAME
setuseraudit, setaudit - set the audit classes for a specified user ID

SYNOPSIS
#include <sys/label.h>
#include <syslaudit.h>

iot setuseraudit(uid, state)
iot uid;
audit_state_t *state;

iot setaudit(state)
audit_state_t *state;

DESCRIPTION
The setuseraudit() system call sets the audit state for all processes whose audit user ID matches the
specified user ID. The parameter state specifies the audit classes to audit for both successful and unsuccess­
ful operations.

The setaudit() system call sets the audit state for the current process.

Only processes with the real or effective user ID of the super-user may successfully execute these calls.

RETURN VALUES
setuseraudit() and setaudit() return:

o on success.

-1 on failure and set errno to indicate the error.

ERRORS
EFAULT

EPERM

SEE ALSO

The state parameter points outside the processes' allocated address space.

The process' real or effective user ID is not super-user.

audit(2), audit_args(3), audit_control(5), audit.log(5)

836 Last change: 21 January 1990 Sun Release 4.1

SHMCTL(2) SYSTEM CALLS SHMCTL(2)

NAME
shmctl- shared memory control operations

SYNOPSIS
#include <sysltypes.h>
#include <syslipc.h>
#include <syslshm.h>

int shmctl (shmid, cmd, but)
int shmid, cmd;
struct shmid _ ds * bur;

DESCRIPTION
shmctl() provides a variety of shared memory control operations as specified by cmd. The following cmds
are available:

IPC SET

Place the current value of each member of the data structure associated with shmid into
the structure pointed to by bu!. The contents of this structure are defined in intro(2).
[READ]

Set the value of the following members of the data structure associated with shmid to the
corresponding value found in the structure pointed to by buf:

shm yerm.uid
shm yerm.gid
shm yerm.mode 1* only low 9 bits *1

This cmd can only be executed by a process that has an effective user ID equal to that of
super-user, or to the value of shmyerm.cuid or shmyerm.uid in the data structure
associated with shmid.

IPC RMID Remove the shared memory identifier specified by shmid from the system. If no
processes are currently mapped to the corresponding shared memory segment, then the
segment is removed and the associated resources are reclaimed. Otherwise, the segment
will persist, although shmget(2) will not be able to locate it, until it is no longer mapped
by any process. This cmd can only be executed by a process that has an effective user
ID equal to that of super-user, or to the value of shmyerm.cuid or shmyerm.uid in
the data structure associated with shmid.

In the shmop(2) and shmctl(2) system call descriptions, the permission required for an operation is given
as "[token]", where "token" is the type of permission needed interpreted as follows:

00400
00200
00060
00006

Read by user
W rite by user
Read, Write by group
Read, Write by others

Read and Write permissions on a shmid are granted to a process if one or more of the following are true:

Sun Release 4.1

The effective user ID of the process is super-user.

The effective user ID of the process matches shmyerm.[c]uid in the data structure associated
with shmid and the appropriate bit of the "user" portion (0600) of shm yerm.mode is set.

The effective user ID of the process does not match shmyerm.[c]uid and the effective group ID
of the process matches shmyerm.[c]gid and the appropriate bit of the "group" portion (060) of
shm yerm.mode is set.

Last change: 21 January 1990 837

SHMCTL(2) SYSTEM CALLS SHMCTL(2)

The effective user ID of the process does not match shmyerm.[c]uid and the effective group ID
of the process does not match shm yerm.[c]gid and the appropriate bit of the "other" portion (06)
of shm yerm.mode is set.

Otherwise, the corresponding permissions are denied.

RETURN VALUES
shmctl() returns:

o on success.

-1 on failure and sets errno to indicate the error.

ERRORS
EACCES

EFAULT

EINVAL

EPERM

SEE ALSO

cmd is equal to IPC_STAT and [READ] operation permission is denied to the calling
process (see intro(2)).

buf points to an illegal address.

shmid is not a valid shared memory identifier.

cmd is not a valid command.

cmd is equal to IPC _ RMID or IPC _SET and the effective user ID of the calling process is
not super-user or the value of shm yerm.cuid or shm yerm.uid in the data structure
associated with shmid.

ipcrm(I), ipcs(1), intro(2), shmget(2), shmop(2)

838 Last change: 21 January 1990 Sun Release 4.1

SHMGET(2) SYSTEM CALLS SHMGET(2)

NAME
shmget - get shared memory segment identifier

SYNOPSIS
#include <sysltypes.h>
#include <syslipc.h>
#include <syslshm.h>

int shmget(key, size, shmftg)
key_t key;
int size, shmftg;

DESCRIPTION
shmget() returns the shared memory identifier associated with key.

A shared memory identifier and associated data structure and shared memory segment of at least size bytes
(see intro(2» are created for key if one of the following are true:

• key is equal to IPC _ PRIV ATE.

• key does not already have a shared memory identifier associated with it, and (shmflg & IPC _ CREA T) is
"true" .

Upon creation, the data structure associated with the new shared memory identifier is initialized as follows:

• shmyerm.cuid, shmyerm.uid, shmyerm.cgid, and shmyerm.gid are set equal to the effective
user ID and effective group ID. respectively. of the calling process.

• The low-order 9 bits of shm -'perm.mode are set equal to the low-order 9 bits of shmfig.

• shm _ segsz is set equal to the value of size.

• shm Jpid. shm _ nattch, shm _ atime. and shm _ dtime are set equal to O.

• shm_ ctime is set equal to the current time.

A shared memory identifier (shmid) is a unique positive integer created by a shmget(2) system call. Each
shmid has a segment of memory (referred to as a shared memory segment) and a data structure associated
with it. The data structure is referred to as shmid_ds and contains the following members:

struct
int
ushort
ushort
short
time t
time t
time t

ipc yerm shm -'perm;
shm_segsz;
shm_cpid;
shmJpid;
shm _ nattch;
shm_atime;
shm_dtime;
shm_ctime;

1* operation permission struct *1
1* size of segment *1
1* creator pid *1
1* pid of last operation *1
1* number of current attaches *1
1* last attach time *1
1* last detach time *1
1* last change time *1
1* Times measured in secs since *1
1* 00:00:00 GMT, Jan. 1, 1970 *1

shmyerm is an ipcyerm structure that specifies the shared memory operation permission (see below).
This structure includes the following members:

ushort cuid; 1* creator user id *1
ushort cgid; 1* creator group id *1
ushort uid; 1* user id *1
ushort gid; 1* group id *1
ushort mode; 1* r/w permission *1

Sun Release 4.1 Last change: 21 January 1990 839

SHMGET(2) SYSTEM CALLS SHMGET(2)

shm_segsz specifies the size of the shared memory segment shm_cpid is the process ill of the process
that created the shared memory identifier. shm Jpid is the process ID of the last process that performed a
shmop(2) operation. shm _ nattch is the number of processes that currently have this segment attached.
shm _ atime is the time of the last shmat operation, shm _ dtime is the time of the last shmdt operation, and
shm _ ctime is the time of the last shmctl(2) operation that changed one of the members of the above struc­
ture.

RETURN VALUES
shmget() returns a non-negative shared memory identifier on success. On failure, it returns -1 and sets
errno to indicate the error.

ERRORS
EACCES

EEXIST

EINVAL

ENOENT

ENOMEM

ENOS PC

SEE ALSO

A shared memory identifier exists for key but operation permission (see intro(2)) as
specified by the low-order 9 bits of shmflg would not be granted.

A shared memory identifier exists for key but ((shmflg & IPC _ CREAT) && (shmflg &
IPC_EXCL)) is "true".

size is less than the system-imposed minimum or greater than the system-imposed max­
imum.

A shared memory identifier exists for key but the size of the segment associated with it is
less than size and size is not equal to zero.

A shared memory identifier does not exist for key and (shmflg & IPC _ CREAT) is
"false" .

A shared memory identifier and associated shared memory segment are to be created but
the amount of available physical memory is not sufficient to fill the request.

A shared memory identifier is to be created but the system-imposed limit on the max­
imum number of allowed shared memory identifiers system wide would be exceeded.

ipcrm(1), ipcs(1), intro(2), shmctl(2), shmop(2)

840 Last change: 21 January 1990 Sun Release 4.1

SHMOP(2) SYSTEM CALLS SHMOP(2)

NAME
shmop, shmat, shmdt - shared memory operations

SYNOPSIS
#include <sys/types.h>
#include <syS/ipc.h>
#include <sys/shm.tt>

char *shmat(shmid, shmaddr, shmflg)
iot shmid;
char *shmaddr;
int shmflg;

int shmdt(shmaddr)
char *shmaddr;

DESCRIPTION
shmat() maps the shared memory segment associated with the shared memory identifier specified by
shmid into the data segment of the calling process. Upon successful completion, the address of the mapped
segment is returned.

The shared memory segment is mapped at the address specified by one of the following criteria:

• If shmaddr is equal to zero, the segment is mapped at an address selected by the system. Ordinarily,
applications should invoke shmat() with shmaddr equal to zero so that the operating system may make
the best use of available resources.

• If shmaddr is not equal to zero and (shmflg & SHM_RND) is "true", the segment is mapped at the
address given by (shmaddr - (shmaddr modulus SHMLBA».

• If shmaddr is not equal to zero and (shmjlg & SHM_RND) is "false", the segment is mapped at the
address given by shmaddr.

The segment is mapped for reading if (shmflg & SHM_RDONLY) is "true" [READ], otherwise it is
mapped for reading and writing [READ/WRITE] (see shmctl(2».

shmdtO unmaps from the calling process's address space the shared memory segment that is mapped at
the address specified by shmaddr. The shared memory segment must have been mapped with a prior
shmat() function call. The segment and contents are retained until explicitly removed by means of the
IPC_RMID function (see shmctl(2».

RETURN VALUES
shmat() returns the data segment start address of the mapped shared memory segment. On failure, it
returns -1 and sets errno to indicate the error.

shmdt() returns:

o on success.

-1 on failure and sets errno to indicate the error.

ERRORS
shmat() will fail and not map the shared memory segment if one or more of the following are true:

EACCES Operation permission is denied to the calling process (see intro(2».

EINVAL

EMFILE

Sun Release 4.1

shmid is not a valid shared memory identifier.

shmaddr is not equal to zero, and the value of (shmaddr - (shmaddr modulus
SHMLBA» is an illegal address.

shmaddr is not equal to zero, (shmflg & SHM_RND) is "false", and the value of
shmaddr is an illegal address.

The number of shared memory segments mapped to the calling process would exceed
the system-imposed limit.

Last ch;mp'~' ').1 T:ml1~rv 1 QQO 0..11

SHMOP(2) SYSTEM CALLS SHMOP(2)

ENOMEM The available data space is not large enough to accommodate the shared memory seg­
ment.

shmdt() will fail and not unmap the shared memory segment if:

EINV AL shmaddr is not the data segment start address of a shared memory segment.

SEE ALSO
ipcrm(l), ipcs(l), intro(2), execve(2V), exit(2V), fork(2V), shmctl(2), shmget(2)

842 Last change: 21 January 1990 Sun Release 4.1

SHUTDOWN (2) SYSTEM CALLS

NAME
shutdown - shut down part of a full-duplex connection

SYNOPSIS
int shutdown(s, how)
int s, how;

DESCRIPTION

SHUTDOWN (2)

The shutdown() call causes all or part of a fu1l-duplex connection on the socket associated with s to be
shut down. If how is 0, then further receives will be disallowed. If how is 1, then further sends will be
disallowed. If how is 2, then further sends and receives will be disallowed.

RETURN VALUES
shutdown() returns:

o on success.

-1 on failure and sets errno to indicate the error.

ERRORS
EBADF

ENOTCONN

ENOTSOCK

SEE ALSO

s is not a valid descriptor.

The specified socket is not connected.

s is a file, not a socket.

ipcrm(1), ipcs(1), connect(2), socket(2)

BUGS
The how values should be defined constants.

Sun Release 4.1 Last change: 21 January 1990 843

SIGBLOCK (2) SYSTEM CALLS SIGBLOCK(2)

NAME
sigblock, sigmask - block signals

SYNOPSIS
#include <signal.h>

int sigblock(mask);
int mask;

int sigmask(signum)

DESCRIPTION
sigblock() adds the signals specified in mask to the set of signals currently being blocked from delivery. A
signal is blocked if the appropriate bit in mask is set The macro sigmask() is provided to construct the
signal mask for a given signum. sigblock() returns the previous signal mask, which may be restored using
sigsetmask(2}.

It is not possible to block SIGKILL or SIGSTOP. The system silently imposes this restriction.

RETURN VALUES
sigblock() returns the previous signal mask.

The sigmask() macro returns the mask for the given signal number.

SEE ALSO
kill(2V), sigsetmask(2), sigvec(2), signal(3V)

844 Last change: 21 January 1990 Sun Release 4.1

SIGPAUSE (2V) SYSTEM CALLS SIGPAUSE (2V)

NAME
sigpause, sigsuspend - automatically release blocked signals and wait for interrupt

SYNOPSIS
int sigpause(sigmask)
int sigmask;

#include <signal.h>

int sigsuspend(sigmaskp)
sigset_t *sigmaskp;

DESCRIPTION
sigpause() assigns sigmask to the set of masked signals and then waits for a signal to arrive; on return the
set of masked signals is restored. sigmask is usually 0 to indicate that no signals are now to be blocked.
sigpause() always terminates by being interrupted, returning EINTR.

In nonnal usage, a signal is blocked using sigblock(2), to begin a critical section, variables modified on the
occurrence of the signal are examined to detennine that there is no work to be done, and the process pauses
awaiting work by using sigpause() with the mask returned by sigblock().

sigsuspendO replaces the process's signal mask with the set of signals pointed to by sigmaskp and then
suspends the process until delivery of a signal whose action is either to execute a signal-catching function
or to terminate the process. If the action is to terminate the process, sigsuspend() does not return. If the
action is to execute a signal-catching function, sigsuspend() returns after the signal-catching function
returns, with the signal mask restored to the setting that existed prior to the sigsuspend() call. It is not pos­
sible to block those signals that cannot be ignored, as documented in <signal.h> this is enforced by the sys­
tem without indicating an error.

RETURN V ALVES
Since sigpause() and sigsuspend() suspend process execution indefinitely, there is no successful comple­
tion return value. On failure, these functions return -I and set errno to indicate the error.

ERRORS
EINTR

SEE ALSO

A signal is caught by the calling process and control is returned from the signal-catching
function.

sigblock(2), sigpending(2V), sigprocmask(2V), sigvec(2), pause(3V), sigaction(3V), signal(3V),
sigsetops(3V)

Sun Release 4.1 Last change: 21 January 1990 845

SIGPENDING (2V)

NAME
sigpending - examine pending signals

SYNOPSIS
#include <signal.h>

int sigpending(set)
sigset_t *set;

DESCRIPTION

SYSTEM CALLS SIGPENDING (2V)

sigpending() stores the set of signals that are blocked from delivery and pending for the calling process in
the space pointed to by set.

RETURN VALUES
sigpeodiog() returns:

o on success.

-1 on failure and sets errno to indicate the error.

SEE ALSO
sigprocmask(2V), sigvec(2), sigsetops(3V)

846 Last change: 21 January 1990 Sun Release 4.1

SIGPROCMASK (2V) SYSTEM CALLS SIGPROCMASK (2V)

NAME
sigprocmask - examine and change blocked signals

SYNOPSIS
#include <signal.h>

int sigprocmask(how, set, oset)
int how;
sigset_t *set, *oset;

DESCRIPTION
sigprocmaskO is used to examine or change (or both) the calling process's signal mask. If the value of set
is not NULL, it points to a set of signals to be used to change the currently blocked set.

The value of how indicates the manner in which the set is changed, and consists of one of the following
values, as defined in the header <signal.h>:

SIG BLOCK The resulting set is the union of the current set and the signal set pointed to by
set.

SIG UNBLOCK The resulting set is the intersection of the current set and the complement of the
signal set pointed to by set.

SIG _ SETMASK The resulting set is the signal set pointed to by set.

If oset is not NULL, the previous mask is stored in the space pointed to by oset. If the value of set is NULL,
the value of how is not significant and the process's signal mask is unchanged by this function call. Thus,
the call can be used to enquire about currently blocked signals.

If there are any pending unblocked signals after the call to sigprocmask(), at least one of those signals is
be delivered before sigprocmask() returns.

If it is not possible to block the SIGKILL and SIGSTOP signals. This is enforced by the system without
causing an error to be indicated.

If any of the SIGFPE, SIGKILL, or SIGSEGV signals are generated while they are blocked, the result is
undefined, unless the signal was generated by a call to kill(2V).

If sigprocmask() fails, the process's signal mask is not changed.

RETURN V ALVES
sigprocmask() returns:

o on success.

-1 on failure and sets errno to indicate the error.

ERRORS
EINVAL

SEE ALSO

The value of how is not equal to one of the defined values.

sigpause(2V), sigpending(2V), sigvec(2), sigaction(3V), sigsetops(3V)

Sun Release 4.1 Last change: 21 January 1990 847

SIGSETMASK (2)

NAME
sigsetmask - set current signal mask

SYNOPSIS
#include <signal.h>

int sigsetmask(mask)
int mask;

DESCRIPTION

SYSTEM CALLS SIGSETMASK (2)

sigsetmask() sets the set of signals currently being blocked from delivery according to mask. A signal is
blocked if the appropriate bit in mask is set. The macro sigblock(2) is provided to construct the mask for a
given signum.

The system silently disallows blocking SIGKILL and SIGSTOP.

RETURN VALUES
sigsetmask() returns the previous signal mask.

SEE ALSO
kill(2V), sigblock(2), sigpause(2V), sigvec(2), signal(3V)

848 Last change: 21 January 1990 S un Release 4.1

SIGST ACK (2) SYSTEM CALLS SIGST ACK (2)

NAME
sigstack - set and/or get signal stack context

SYNOPSIS
#include <signal.h>

int sigstack (ss, oss)
struct sigstack *ss, *oss;

DESCRIPTION
sigstack() allows users to define an alternate stack, called the "signal stack", on which signals are to be
processed. When a signal's action indicates its handler should execute on the signal stack (specified with a
sigvec(2) call), the system checks to see if the process is currently executing on that stack. If the process is
not currently executing on the signal stack, the system arranges a switch to the signal stack for the duration
of the signal handler's execution.

A signal stack is specified by a sigstack() structure, which includes the following members:

char
int

*ss_sp;
ss_onstack;

/* signal stack pointer */
/* current status */

ss_sp is the initial value to be assigned to the stack pointer when the system switches the process to the sig­
nal stack. Note that, on machines where the stack grows downwards in memory, this is not the address of
the beginning of the signal stack area. ss_onstack field is zero or non-zero depending on whether the pro­
cess is currently executing on the signal stack or not.

If ss is not a NULL pointer, sigstack() sets the signal stack state to the value in the sigstack() structure
pointed to by ss. Note: if ss _ onstack is non-zero, the system will think that the process is executing on the
signal stack. If ss is a NULL pointer, the signal stack state will be unchanged. If oss is not a NULL pointer,
the current signal stack state is stored in the sigstack() structure pointed to by oss.

RETURN V ALl JES
sigstack() returns:

o on success.

-1 on failure and sets errno to indicate the error.

ERRORS
sigstack() will fail and the signal stack context will remain unchanged if one of the following occurs.

EFAULT ss or oss points to memory that is not a valid part of the process address space.

SEE ALSO
sigvec(2), setjmp(3V), signal(3V)

NOTES
Signal stacks are not "grown" automatically, as is done for the normal stack. If the stack overflows
unpredictable results may occur.

Sun Release 4.1 Last change: 21 January 1990 849

SIGVEC(2) SYSTEM CALLS SIGVEC(2)

NAME
sigvec - software signal facilities

SYNOPSIS
#include <signaI.h>

int sigvec(sig, vec, ovec)
int sig;
struct sigvec *vec, *ovec;

DESCRIPTION

850

The system defines a set of signals that may be delivered to a process. Signal delivery resembles the
occurrence of a hardware interrupt: the signal is blocked from further occurrence, the current process con­
text is saved, and a new one is built. A process may specify a handler to which a signal is delivered, or
specify that a signal is to be blocked or ignored. A process may also specify that a default action is to be
taken by the system when a signal occurs. Normally, signal handlers execute on the current stack of the
process. This may be changed, on a per-handler basis, so that signals are taken on a special signal stack.

All signals have the same priority. Signal routines execute with the signal that caused their invocation
blocked, but other signals may yet occur. A global signal mask defines the set of signals currently blocked
from delivery to a process. The signal mask for a process is initialized from that of its parent (normally 0).
It may be changed with a sigblock(2) or sigsetmask(2) call, or when a signal is delivered to the process.

A process may also specify a set of flags for a signal that affect the delivery of that signal.

When a signal condition arises for a process, the signal is added to a set of signals pending for the process.
If the signal is not currently blocked by the process then it is delivered to the process. When a signal is
delivered, the current state of the process is saved, a new signal mask is calculated (as described below),
and the signal handler is invoked. The call to the handler is arranged so that if the signal handling routine
returns normally the process will resume execution in the context from before the signal's delivery. If the
process wishes to resume in a different context, then it must arrange to restore the previous context itself.

When a signal is delivered to a process a new signal mask is installed for the duration of the process' signal
handler (or until a sigblock() or sigsetmask() call is made). This mask is formed by taking the current
signal mask, adding the signal to be delivered, and ORing in the signal mask associated with the handler to
be invoked.

The action to be taken when the signal is delivered is specified by a sigvec structure, defined in <signaI.h>
as:

struct sigvec {

}

void (*sv _handler)O;
int sv _mask;
int sv _flags;

The following bits may be set in sv _flags:

#define SV _ ONST ACK OxOOOl
#define SV _INTERRUPT Ox0002
#define SV RESETHAND OxOO04

1* signal handler *1
1* signal mask to apply */
1* see signal options *1

1* take signal on signal stack *1
1* do not restart system on signal return */
1* reset signal handler to SIG _ DFL on signal *1

If the SV _ ONST ACK bit is set in the flags for that signal, the system will deliver the signal to the process on
the signal stack specified with sigstack(2), rather than delivering the signal on the current stack.

If vee is not a NULL pointer, sigvec() assigns the handler specified by sv _handler, the mask specified by
sv _mask, and the flags specified by sv _flags to the specified signal. If vec is a NULL pointer, sigvec() does
not change the handler, mask, or flags for the specified signal.

The mask specified in vec is not allowed to block SIGKILL or SIGSTOP. The system enforces this restric­
tion silently.

Last change: 21 January 1990 Sun Release 4.1

SIGVEC(2) SYSTEM CALLS SIGVEC(2)

If ovee is not a NULL pointer, the handler, mask, and flags in effect for the signal before the call to sigvec()
are returned to the user. A call to sigvec() with vee a NULL pointer and ovec not a NULL pointer can be
used to determine the handling information currently in effect for a signal without changing that informa­
tion.

The following is a list of all signals with names as in the include file <signal.h>:

SIGHUP 1 hangup
SIGINT 2 interrupt
SIGQUIT 3* quit
SIGILL 4* illegal instruction
SIGTRAP 5* trace trap
SIGABRT 6* abort (generated by abort(3) routine)
SIGEMT 7* emulator trap
SIGFPE 8* arithmetic exception
SIGKILL 9 kill (cannot be caught, blocked, or ignored)
SIGBUS 10* bus error
SIGSEGV 11 * segmentation violation
SIGSYS 12* bad argument to system call
SIGPIPE 13 write on a pipe or other socket with no one to read it
SIGALRM 14 alann clock
SIGTERM 15 software termination signal
SIGURG 16e urgent condition present on socket
SIGSTOP 17t stop (cannot be caught, blocked, or ignored)
SIGTSTP 18t stop signal generated from keyboard
SIGCONT 19. continue after stop
SIGCHLD 20. child status has changed
SIGTTIN 21 t background read attempted from control terminal
SIGTTOU 22t background write attempted to control terminal
SIGIO 23. I/O is possible on a descriptor (see fcntl(2V»
SIGXCPU 24 cpu time limit exceeded (see getrlimit(2»
SIGXFSZ 25 file size limit exceeded (see getrlimit(2»
SIGVTALRM 26 virtual time alarm (see getitimer(2»
SIGPROF 27 profiling timer alarm (see getitimer(2»
SIGWINCH 28. window changed (see termio(4) and win(4S»
SIGLOST 29* resource lost (see lockd(8C»
SIGUSRI 30 user-defined signal 1
SIGUSR2 31 user-defined signal 2

The starred signals in the list above cause a core image if not caught or ignored.

Once a signal handler is installed, it remains installed until another sigvec() call is made, or an execve(2V)
is performed, unless the SV _ RESETHAND bit is set in the flags for that signal. In that case, the value of the
handler for the caught signal is set to SIG_DFL before entering the signal-catching function, unless the sig­
nal is SIGILL or SIGTRAP. Also, if this bit is set, the bit for that signal in the signal mask will not be set;
unless the signal mask associated with that signal blocks that signal, further occurrences of that signal will
not be blocked. The SV _RESETHAND flag is not available in 4.2BSD, hence it should not be used if back­
ward compatibility is needed.

The default action for a signal may be reinstated by setting the signal's handler to SIG_DFL; this default is
termination except for signals marked with. or t. Signals marked with. are discarded if the action is
SIG_DFL; signals marked with t cause the process to stop. If the process is terminated, a "core image"
will be made in the current working directory of the receiving process if the signal is one for which an
asterisk appears in the above list and the following conditions are met:

• The effective user ID (EUID) and the real user ID (UID) of the receiving process are equal.

• The effective group ID (EGID) and the real group ill (GID) of the receiving process are equal.

C' •• _ n _1 ____ A ..

SIGVEC(2) SYSTEM CALLS SIGVEC(2)

CODES

• An ordinary file named core exists and is writable or can be created. If the file must be
created, it will have the following properties:

• a mode of 0666 modified by the file creation mask (see umask(2V))

• a file owner ID that is the same as the effective user ID of the receiving process.

• a file group ID that is the same as the file group ID of the current directory

If the handler for that signal is SIG_IGN, the signal is subsequently ignored, and pending instances of the
signal are discarded.

Note: the signals SIGKILL and SIGSTOP cannot be ignored.

If a caught signal occurs during certain system calls, the call is restarted by default. The call can be forced
to terminate prematurely with an EINTR error return by setting the SV _INTERRUPT bit in the flags for that
signal. SV _INTERRUPT is not available in 4.2BSD, hence it should not be used if backward compatibility
is needed. The affected system calls are read(2V) or write(2V) on a slow device (such as a terminal or
pipe or other socket, but not a file) and during a wait(2V).

After a fork(2V), or vfork(2) the child inherits all signals, the signal mask, the signal stack, and the
restart/interrupt and reset-signal-handler flags.

The execve(2V), call resets all caught signals to default action and resets all signals to be caught on the
user stack. Ignored signals remain ignored; the signal mask remains the same; signals that interrupt system
calls continue to do so.

The following defines the codes for signals which produce them. All of these symbols are defined in
signal.h:

Condition Signal Code
Sun codes:

Illegal instruction SIGILL ILL INSTR FAULT - -
Integer division by zero SIGFPE FPE INTDIV TRAP - -
IEEE floating pt inexact SIGFPE FPE FL TINEX TRAP - -
IEEE floating pt division by zero SIGFPE FPE FL TDIV TRAP - -
IEEE floating pt underflow SIGFPE FPE FL TUND TRAP - -
IEEE floating pt operand error SIGFPE FPE_FLTOPERR_TRAP
IEEE floating pt overflow SIGFPE FPE FLTOVF FAULT - -
Hardware bus error SIGBUS BUS_HWERR
Address alignment error SIGBUS BUS ALIGN
No mapping fault SIGSEGV SEGV NOMAP
Protection fault SIGSEGV SEGV PROT
Object error SIGSEGV SEGV _CODE(code)=SEGV _OBJERR
Object error number SIGSEGV SEGV _ ERRNO(code)

SPARC codes:
Privileged instruction violation SIGILL ILL _ PRIVINSTR _FAULT
Bad stack SIGILL ILL STACK
Trap #n (1 <= n <= 127) SIGILL ILL_TRAP _FAULT(n)
Integer overflow SIGFPE FPE_INTOVF _TRAP
Tag overflow SIGEMT EMT_TAG

MC680XO codes:
Privilege violation SIGILL ILL PRIVVIO FAULT - -
Coprocessor protocol error SIGILL ILL_INSTR_FAULT
Trap #n (1 <= n <= 14) SIGILL ILL TRAPn FAULT
A-line op code SIGEMT EMT_EMUIOIO
F-line op code SIGEMT EMT EMU1111
CHK or CHK2 instruction SIGFPE FPE CHKINST TRAP - -
TRAPV or TRAPcc or cpTRAPcc SIGFPE FPE _ TRAPV _TRAP

T .,."t "h",nn .. • ')1 T~nll~rv lQQO Sun Release 4.1

SIGVEC (2) SYSTEM CALLS SIGVEC(2)

ADDR

IEEE floating pt compare unordered SIG FPE FPE FL TBSUN TRAP - -
IEEE floating pt signaling NaN SIG FPE FPE FLTNAN TRAP - -

The addr signal handler parameter is defined as follows:

Signal Code Addr
Sun:

SIGILL
SIGEMT
SIGFPE
SIGBUS

Any
Any
Any
BUS HWERR

SIGSEGV Any
SPARC:

SIGBUS
MC680XO:

SIGBUS

BUS_ALIGN

BUS ALIGN

address of faulted instruction
address of faulted instruction
address of faulted instruction
address that caused fault
address that caused fault

address of faulted instruction

address that caused fault

The accuracy of addr is machine dependent. For example, certain machines may supply an address that is
on the same page as the address that caused the fault. If an appropriate addr cannot be computed it will be
set to SIG _NOADDR.

RETURN VALUES
sigvec() returns:

o on success.

-1 on failure and sets errno to indicate the error.

ERRORS
sigvec() will fail and no new signal handler will be installed if one of the following occurs:

EFAULT Either vee or ovec is not a NULL pointer and points to memory that is not a valid part of
the process address space.

EINVAL Sig is not a valid signal number.

An attempt was made to ignore or supply a handler for SIGKILL or SIGSTOP.

SEE ALSO

NOTES

execve(2V), fcntl(2V), fork(2V), getitimer(2), getrlimit(2), ioctl(2), kill(2V), ptrace(2), read(2V), sig­
block(2), sigpause(2V), sigsetmask(2), sigstack(2), umask(2V), vfork(2), wait(2V), write(2V),
setjmp(3V), signal(3V), streamio(4), termio(4), win(4S), lockd(8C)

SIGPOLL is a synonym for SIGIO. A SIGIO will be issued when a file descriptor corresponding to a
STREAMS (see intro(2» file has a "selectable" event pending. Unless that descriptor has been put into
asynchronous mode (see fcntl (2V), a process must specifically request that this signal be sent using the
I_SETSIG ioctl(2) call (see streamio(4». Otherwise, the process will never receive SIGPOLL.

The handler routine can be declared:

void handler(sig, code, scp, addr)
int sig, code;
struct sigcontext *scp;
char *addr;

Sun Release 4.1 Last change: 21 January 1990 853

SIGVEC(2) SYSTEM CALLS SIGVEC(2)

854

Here sig is the signal number; code is a parameter of certain signals that provides additional detail; scp is a
pointer to the sigcontext structure (defined in signal.b), used to restore the context from before the signal;
and addr is additional address information.

Programs that must be portable to UNIX systems other than 4.2BSD should use the signaJ(3V), interface
instead.

Last change: 21 January 1990 Sun Release 4.1

SOCKET(2) SYSTEM CALLS SOCKET (2)

NAME
socket - create an endpoint for communication

SYNOPSIS
#include <sysltypes.h>
#include <syslsocket.h>

int socket(domain, type, protocol)
int domain, type, protocol;

DESCRIPTION
socket() creates an endpoint for communication and returns a descriptor.

The domain parameter specifies a communications domain within which communication will take place;
this selects the protocol family which should be used. The protocol family generally is the same as the
address family for the addresses supplied in later operations on the socket. These families are defined in
the include file <syslsocket.h>. The currently understood formats are

PF UNIX

PF INET

PF IMPLINK

(UNIX system internal protocols).

(ARPA Internet protocols), and

(IMP "host at IMP" link layer).

The socket has the indicated type. which specifics the semantics of communication. Currently defined
types are:

SOCK STREAM
SOCK DGRAM
SOCK RAW
SOCK_SEQPACKET
SOCK RDM

A SOCK_STREAM type provides sequenced, reliable, two-way connection based byte streams. An out­
of-band data transmission mechanism may be supported. A SOCK_DGRAM socket supports datagrams
(connectionless, unreliable messages of a fixed (typically small) maximum length). A SOCK_SEQPACKET
socket may provide a sequenced. reliable, two-way connection-based data transmission path for datagrams
of fixed maximum length; a consumer may be required to read an entire packet with each read system call.
This facility is protocol specific. and presently not implemented for any protocol family. SOCK _ RA W
sockets provide access to internal network interfaces. The types SOCK_RAW. which is available only to
the super-user. and SOCK_RDM. for which no implementation currently exists. are not described here.

The protocol specifies a particular protocol to be used with the socket. Normally only a single protocol
exists to support a particular socket type within a given protocol family. However. it is possible that many
protocols may exist. in which case a particular protocol must be specified in this manner. The protocol
number to use is particular to the "communication domain" in which communication is to take place; see
protocoIs(5).

Sockets of type SOCK_STREAM are full-duplex byte streams, similar to pipes. A stream socket must be in
a connected state before any data may be sent or received on it. A connection to another socket is created
with a connect(2) call. Once connected. data may be transferred using read(2V) and write(2V) calls or
some variant of the send(2) and recv(2) calls. When a session has been completed a close(2V), may be
performed. Out-of-band data may also be transmitted as described in send(2) and received as described in
recv(2).

Sun Release 4.1 Last change: 21 January 1990 855

SOCKET (2) SYSTEM CALLS SOCKET (2)

The communications protocols used to implement a SOCK _STREAM insure that data is not lost or dupli­
cated. If a piece of data for which the peer protocol has buffer space cannot be successfully transmitted
within a reasonable length of time, then the connection is considered broken and calls will indicate an error
with -1 returns and with ETIMEDOUT as the specific code in the global variable errno. The protocols
optionally keep sockets "warm" by forcing transmissions roughly every minute in the absence of other
activity. An error is then indicated if no response can be elicited on an otherwise idle connection for a
extended period (for instance 5 minutes). A SIGPIPE signal is raised if a process sends on a broken
stream; this causes naive processes, which do not handle the signal, to exit.

SOCK_SEQPACKET sockets employ the same system calls as SOCK_STREAM sockets. The only differ­
ence is that read(2V) calls will return only the amount of data requested, and any remaining in the arriving
packet will be discarded.

SOCK _ DGRAM and SOCK _ RAW sockets allow sending of datagrams to correspondents named in send(2)
calls. Datagrams are generally received with recv(2), which returns the next datagram with its return
address.

An fcntl(2V) call can be used to specify a process group to receive a SIGURG signal when the out-of-band
data arrives. It may also enable non-blocking I/O and asynchronous notification of I/O events with SIGIO
signals.

The operation of sockets is controlled by socket level options. These options are defined in the file
socket.h. getsockopt(2) and setsockopt() are used to get and set options, respectively.

RETURN VALUES
socket() returns a non-negative descriptor on success. On failure, it returns -1 and sets errno to indicate
the error.

ERRORS
EACCES Permission to create a socket of the specified type and/or protocol is denied.

EMFILE The per-process descriptor table is full.

ENFILE The system file table is full.

ENOBUFS Insufficient buffer space is available. The socket cannot be created until sufficient
resources are freed.

EPROTONOSUPPORT The protocol type or the specified protocol is not supported within this domain.

EPROTOTYPE The protocol is the wrong type for the socket.

SEE ALSO

856

accept(2), bind(2), c1ose(2V), connect(2), fcntl(2V), getsockname(2), getsockopt(2), ioctl(2), Iisten(2),
read(2V), recv(2), select(2), send(2), shutdown(2), socketpair(2), write(2V), protocols(5)

Network Programming

Last change: 21 January 1990 Sun Release 4.1

SOCKElPAIR (2) SYSTEM CALLS SOCKETP AIR (2)

NAME
socketpair - create a pair of connected sockets

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int socketpair(d, type, protocol, sv)
int d, type, protocol;
int sv[2];

DESCRIPTION
The socketpair() system call creates an unnamed pair of connected sockets in the specified address family
d, of the specified type and using the optionally specified protocol. The descriptors used in referencing the
new sockets are returned in sv [0] and sv [1]. The two sockets are indistinguishable.

RETURN VALUES
socketpair() returns:

o on success.

-1 on failure and sets errno to indicate the error.

ERRORS
EAFNOSUPPORT The specified address family is not supported on this machine.

EFAULT The address sv does not specify a valid part of the process address space.

EMFILE Too many descriptors are in use by this process.

EOPNOSUPPORT The specified protocol does not support creation of socket pairs.

EPROTONOSUPPORT The specified protocol is not supported on this machine.

SEE ALSO
pipe(2V), read(2V), write(2V)

BUGS
This call is currently implemented only for the AF _UNIX address family.

Sun Release 4.1 Last change: 21 January 1990 857

STAT(2V) SYSTEM CALLS STAT(2V)

NAME
stat, Istat, fstat - get file status

SYNOPSIS
#include <sysltypes.h>
#include <syslstat.h>

int stat(path, buO
char *path;
struct stat *buf;

int lstat(path, buO
char *path;
struct stat *buf;

int fstat(fd, buO
int fd;
struct stat *buf;

DESCRIPTION

858

stat() obtains information about the file named by path. Read, write or execute permission of the named
file is not required, but all directories listed in the path name leading to the file must be searchable.

lstat() is like stat() except in the case where the named file is a symbolic link, in which case lstat()
returns information about the link, while stat() returns information about the file the link references.

fstatO obtains the same information about an open file referenced by the argument descriptor, such as
would be obtained by an open(2V) call.

buf is a pointer to a stat structure into which information is placed concerning the file. A stat structure
includes the following members:

dev t st_dev; 1* device file resides on *1
ino t st_ino; 1* the file serial number *1
mode t st_mode; 1* file mode *1
nlink t st_nlink; 1* number of hard links to the file *1
uid t st_uid; 1* user ID of owner *1
gid_t st_gid; 1* group ID of owner *1
dev t st_rdev; 1* the device identifier (special files only)*1
off t st_size; 1* total size of file, in bytes *1
time t st_atime; 1* file last access time *1
time t st mtime; 1* file last modify time *1
time t st=ctime; 1* file last status change time *1
long st_ blksize; 1* preferred blocksize for file system I/O*I
long st _blocks; 1* actual number of blocks allocated *1

st atime Time when file data was last accessed. This can also be set explicitly by utimes(2).
st_atime is not updated for directories searched during pathname resolution.

st mtime Time when file data was last modified. This can also be set explicitly by utimes(2). It is not
set by changes of owner, group, link count, or mode.

st ctime Time when file status was last changed. It is set both both by writing and changing the file
status information, such as changes of owner, group, link count, or mode.

The following macros test whether a file is of the specified type. The value m is the value of st _mode.
Each macro evaluates to a non-zero value if the test is true or to zero if the test is false.

S_ISDIR(m)

S_ISCHR(m)

S_ISBLK(m)

Test for directory file.

Test for character special file.

Test for block special file.

Last change: 21 January 1990 Sun Release 4.1

STAT(2V) SYSTEM CALLS STAT(2V)

S_ISREG(m)

S_ISLNK(m)

S _ISSOCK(m)

S_ISFIFO(m)

Test for regular file.

Test for a symbolic link.

Test for a socket.

Test for pipe or FIFO special file.

The status information word st_mode is bit-encoded using the following masks and bits:

S IRWXU Read, write, search (if a directory), or execute (otherwise) permissions mask for the
owner of the file.

S IRUSR

S IWUSR

S IXUSR

Read permission bit for the owner of the file.

Write permission bit for the owner of the file.

Search (if a directory) or execute (otherwise) permission bit for the
owner of the file.

S IRWXG Read, write, search (if directory), or execute (otherwise) permissions mask for the file
group class.

S IRGRP

S IWGRP

S IXGRP

Read permission bit for the file group class.

Write permission bit for the file group class.

Search (if a directory) or execute (otherwise) permission bit for the
file group class.

S IRWXO Read, write, search (if a directory), or execute (otherwise) permissions mask for the file
other class.

S ISUID

S IROTH

S IWOTH

S IXOTH

Read permission bit for the file other class.

Write permission bit for the file other class.

Search (if a directory) or execute (otherwise) permission bit for the
file other class.

Set user ID on execution. The process's effective user ID is set to that of the owner of
the file when the file is run as a program (see execve(2V». On a regular file, this bit
should be cleared on any write.

S ISGID Set group ID on execution. The process's effective group ill is set to that of the file
when the file is run as a program (see execve(2V». On a regular file, this bit should be
cleared on any write.

In addition, the following bits and masks are made available for backward compatibility:
#define S_IFMT 0170000 1* type of file *1
#define S IFIFO 0010000 1* FIFO special *1
#define S IFCHR 0020000 1* character special *1
#define S IFDIR 0040000 1* directory *1
#define S IFBLK 0060000 1* block special *1
#define S IFREG 0100000 1* regular file *1
#define S IFLNK 0120000 1* symbolic link *1
#define S IFSOCK 0140000 1* socket *1
#define S ISVTX 0001000 1* save swapped text even after use *1
#define S IREAD 0000400 1* read permission, owner *1
#define S IWRITE 0000200 1* write permission, owner *1
#define S IEXEC 0000100 1* executelsearch permission, owner *1

For more information on st_mode bits see chmod(2V).

Sun Release 4.1 Last change: 21 January 1990 859

STAT(2V) SYSTEM CALLS STAT(2V)

RETURN VALUES
stat(), Istat() and fstat() return:

o on success.

-1 on failure and set errno to indicate the error.

ERRORS
stat() and Istat() will fail if one or more of the following are true:

EACCES Search permission is denied for a component of the path prefix of path.

EFAULT buf or path points to an invalid address.

EIO

ELOOP

ENAMETOOLONG

ENOENT

An I/O error occurred while reading from or writing to the file system.

Too many symbolic links were encountered in translating path.

The length of the path argument exceeds {PATH_MAX}.n

A pathname component is longer than {NAME_MAX} while
LPOSIX_NO_TRVNC} is in effect (see pathconf(2V».

The file referred to by path does not exist.

ENOTDIR A component of the path prefix of path is not a directory.

fstat() will fail if one or more of the following are true:

EBADF fd is not a valid open file descriptor.

EFAULT buf points to an invalid address.

EIO

SYSTEM V ERRORS

An I/O error occurred while reading from or writing to the file system.

In addition to the above, the following may also occur:

ENOENT path points to an empty string.

WARNINGS
The st _ atime and st _ mtime fields of the stat() are not contiguous. Programs that depend on them being
contiguous (in calls to utimes(2) or utime(3V» will not work.

SEE ALSO

860

chmod(2V), chown(2V), Iink(2V), open(2V), read (2V) , readlink(2), rename(2V), truncate(2),
unlink(2V), utimes(2), write(2V)

Last change: 21 January 1990 Sun Release 4.1

STATFS(2) SYSTEM CALLS STATFS(2)

NAME
statfs, fstatfs - get file system statistics

SYNOPSIS
#include <sys/vfs.h>

int statfs(path, buO
char *path;
struct statfs * buf;

int fstatfs(fd, buO
int fd;
struct statfs * buf;

DESCRIPTION
statfs() returns information about a mounted file system. path is the path name of any file within the
mounted filesystem. buf is a pointer to a statfs() structure defined as follows:

typedef struct {
long val[2];

} fsid_t;

struct statfs {
long f _type; 1 * type of info, zero for now *1
long f _ bsize; 1* fundamental file system block size *1
long f_blocks; 1* total blocks in file system *1
long f_bfree; 1* free blocks *1
long f_bavail; 1* free blocks available to non-super-user *1
long f_files; 1* total file nodes in file system */
long f_ffree; 1* free file nodes in fs *1
fsid t f_fsid; 1* file system id */
long f_spare[7]; /* spare for later */

};

Fields that are undefined for a particular file system are set to -1. fstatfs() returns the same information
about an open file referenced by descriptor fd.

RETURN VALUES
statfs() and fstatfs() return:

o on success.

-1 on failure and set errno to indicate the error.

ERRORS
statfs() fails if one or more of the following are true:

EACCES

EFAULT

EIO

ELOOP

ENAMETOOLONG

Search permission is denied for a component of the path prefix of path.

buf or path points to an invalid address.

An I/O error occurred while reading from or writing to the file system.

Too many symbolic links were encountered in translating path.

The length of the path argument exceeds { PATH_MAX} .

A pathname component is longer than {NAME_MAX} (see sysconf(2V» while
LPOSIX_NO_TRUNC} is in effect (see pathconf(2V».

ENOENT

ENOTDIR

Sun Release 4.1

The file referred to by path does not exist.

A component of the path prefix of path is not a directory.

Last change: 21 January 1990 861

...

STATFS(2) SYSTEM CALLS STATFS(2)

BUGS

862

fstatfs() fails if one or more of the following are true:

EBADF

EFAULT

EIO

fd is not a valid open file descriptor.

bufpoints to an invalid address.

An I/O error occurred while reading from the file system.

The NFS revision 2 protocol does not pennit the number of free files to be provided to the client; thus,
when statfs() or fstatfs() are done on a file on an NFS file system, f _files and f _ ffree are always -1 .

Last change: 21 January 1990 Sun Release 4.1

SWAPON(2) SYSTEM CALLS SWAPON(2)

NAME
swapon - add a swap device for interleaved paging/swapping

SYNOPSIS
int swapon(special)
char *special;

DESCRIPTION
swapon() makes the block device special available to the system for allocation for paging and swapping.
The names of potentially available devices are known to the system and defined at system configuration
time. The size of the swap area on special is calculated at the time the device is first made available for
swapping.

RETURN VALUES
swapon() returns:

o on success.

-1 on failure and sets errno to indicate the error.

ERRORS
EACCES

EBUSY

EFAULT

EIO

ELOOP

ENAMETOOLONG

ENODEV

ENOENT

ENOTBLK

ENOTDIR

ENXIO

EPERM

SEE ALSO

Search permission is denied for a component of the path prefix of special.

The device referred to by special has already been made available for swapping.

special points outside the process's address space.

An I/O error occurred while reading from or writing to the file system.

An I/O error occurred while opening the swap device.

Too many symbolic links were encountered in translating special.

The length of the path argument exceeds {PATH_MAX}.

A pathname component is longer than {NAME_MAX} (see sysconf(2V» while
{_POSDCNO_TRUNC} is in effect (see pathconf(2V».

The device referred to by special was not configured into the system as a swap
device.

The device referred to by special does not exist.

The file referred to by special is not a block device.

A component of the path prefix of special is not a directory.

The major device number of the device referred to by special is out of range (this
indicates no device driver exists for the associated hardware).

The caller is not the super-user.

fstab(5), config(8), swapon(8)

BUGS
There is no way to stop swapping on a disk so that the pack may be dismounted.

This call will be upgraded in future versions of the system.

Sun Release 4.1 Last change: 21 January 1990 863

SYMLINK(2) SYSTEM CALLS SYMLINK(2)

NAME
symlink - make symbolic link to a file

SYNOPSIS
int symlink(namel, name2)
char *namel, *name2;

DESCRIPTION
A symbolic link name2 is created to name} (name2 is the name of the file created, name) is the string used
in creating the symbolic link). Either name may be an arbitrary path name; the files need not be on the
same file system.

The file that the symbolic link points to is used when an open(2V) operation is performed on the link. A
stat(2V), on a symbolic link returns the linked-to file, while an lstat() (refer to stat(2V» returns informa­
tion about the link itself. This can lead to surprising results when a symbolic link is made to a directory.
To avoid confusion in programs, the readlink(2) call can be used to read the contents of a symbolic link.

RETURN VALUES
symlink() returns:

o on success.

-1 on failure and sets errno to indicate the error.

ERRORS

864

The symbolic link is made unless one or more of the following are true:

EACCES

EDQUOT

EEXIST

EFAULT

EIO

ELOOP

ENAMETOOLONG

ENOENT

ENOS PC

ENOTDIR

EROFS

Search permission is denied for a component of the path prefix of name2 .

The directory in which the entry for the new symbolic link is being placed cannot
be extended because the user's quota of disk blocks on the file system containing
the directory has been exhausted.

The new symbolic link cannot be created because the user's quota of disk blocks
on the file system which will contain the link has been exhausted.

The user's quota of inodes on the file system on which the file is being created has
been exhausted.

The file referred to by name2 already exists.

name} or name2 points outside the process's allocated address space.

An I/O error occurred while reading from or writing to the file system.

Too many symbolic links were encountered in translating name2.

The length of the path argument exceeds {PATH_MAX}.

A pathname component is longer than {NAME_MAX} (see sysconf(2V» while
LPOSIX_NO_TRUNC} is in effect (see pathconf(2V».

A component of the path prefix of name2 does not exist.

The directory in which the entry for the new symbolic link is being placed cannot
be extended because there is no space left on the file system containing the direc­
tory.

The new symbolic link cannot be created because there is no space left on the file
system which will contain the link.

There are no free inodes on the file system on which the file is being created.

A component of the path prefix of name2 is not a directory.

The file name2 would reside on a read-only file system.

Last change: 21 January 1990 Sun Release 4.1

SYMLINK(2) SYSTEM CALLS SYMLINK(2)

SEE ALSO
In(l V), Iink(2V), readlink(2), unlink(2V)

Sun Release 4.1 Last change: 21 January 1990 865

SYNC(2)

NAME
sync - update super-block

SYNOPSIS

sync 0
DESCRIPTION

SYSTEM CALLS SYNC(2)

sync() writes out all information in core memory that should be on disk. This includes modified super
blocks, modified inodes, and delayed block I/O.

sync() should be used by programs that examine a file system, for example fsck(8), df(1 V), etc. sync() is
mandatory before a boot.

SEE ALSO
fsync(2), cron(8)

BUGS
The writing, although scheduled, is not necessarily complete upon return from sync().

866 Last change: 21 January 1990 Sun Release 4.1

SYSCALL(2) SYSTEM CALLS SYSCALL(2)

NAME
syscall - indirect system call

SYNOPSIS
#include <syslsyscall.h>

int syscall(number[, arg, ...])
intnumber;

DESCRIPTION
syscall() performs the system call whose assembly language interface has the specified number, and argu­
ments arg Symbolic constants for system calls can be found in the header file <sys/syscall.h>.

RETURN V ALVES
syscall() returns the return value of the system call specified by number.

SEE ALSO
intro(2), pipe(2V)

WARNINGS
There is no way to use syscall() to call functions such as pipe(2V), which return values that do not fit into
one hardware register.

Since many system calls are implemented as library wrappers around traps to the kernel, these calls may
not behave as documented when called from syscall(), which bypasses these wrappers. For these reasons,
using syscall() is not recommended.

Sun Release 4.1 Last change: 21 January 1990 867

SYSCONF (2V) SYSTEM CALLS SYSCONF(2V)

NAME
sysconf - query system related limits, values, options

SYNOPSIS
#include <unistd.h>

long sysconf(name)
int name;

DESCRIPTION
The sysconf() function provides a method for the application to detennine the current value of a
configurable system limit or option (variable). The value does not change during the lifetime of the calling
process.

The convention used throughout sections 2 and 3 is that {LIMIT} means that LIMIT is something that can
change from system to system and applications that want accurate values need to call sysconf(). These
values are things that have been historically available in header files such as <sys!param.h>.

The following lists the conceptual name and meaning of each variable.

Name

{ARO_MAX}
{CHILD_MAX}
{CLK_TCK}
{NOROUPS_MAX}
{OPEN_MAX}
{_POSIX_JOB_CONTROL}
{_POSIX_SA VED_IDS}

LPOSIX_ VERSION}

Meaning

Max combined size of argyl] & envp[].
Max processes allowed to any UID.
Ticks per second (clock_t).
Max simultaneous groups one may belong to.
Max open files per process.
Job control supported (boolean).
Saved ids (seteuid(» supported (boolean).
Version of the POSIX.l standard supported.

The following table lists the conceptual name of each variable and the flag passed to sysconf() to retrieve
the value of each variable.

Name

{ARO_MAX}
{CHILD~AX}

{CLK_TCK}
{NOROUPS_MAX}

{OPEN_MAX}

{_POSIX_JOB_CONTROL}
{_POSIX_SA VED _IDS}

{_POSIX_ VERSION}

Sysconf flag

SC ARG MAX - - -
SC CIDLD MAX - - -
SC CLK TCK - - -
SC NGROUPS MAX - - -
SC OPEN MAX - - -

_SC_JOB_CONTROL
SC SAVED IDS - - -

_ SC _ VERSION

RETURN VALUES
sysconf() returns the current variable value on success. On failure, it returns -1 and sets errno to indicate
the error.

ERRORS
EINVAL

868

The value of name is invalid.

Last change: 21 January 1990 Sun Release 4.1

TRUNCATE (2) SYSTEM CALLS TRUNCATE (2)

NAME
truncate, ftruncate - set a file to a specified length

SYNOPSIS
#include <sysltypes.h>

int truncate(path, length)
char .path;
off_t length;

int ftruncate(fd, length)
int fd;
off _t length;

DESCRIPTION
truncate() causes the file referred to by path (or for ftruncate() the object referred to by fd) to have a size
equal to length bytes. If the file was previously longer than length, the extra bytes are removed from the
file. If it was shorter. bytes between the old and new lengths are read as zeroes. With ftruncate(), the file
must be open for writing.

RETURN VALUES
truncate() returns:

o on success.

-Ion failure and sets errno to indicate the error.

ERRORS
truncate() may set errno to:

EACCES

EFAULT

EIO

EISDIR

ELOOP

ENAMETOOLONG

Search permission is denied for a component of the path prefix of path.

Write permission is denied for the file referred to by path.

path points outside the process's allocated address space.

An I/O error occurred while reading from or writing to the file system.

The file referred to by path is a directory.

Too many symbolic links were encountered in translating path.

The length of the path argument exceeds { PATH_MAX} .

A pathname component is longer than {NAME_MAX} (see sysconf(2V» while
LPOSIX_NO_TRUNC} is in effect (see pathconf(2V».

ENOENT

ENOTDIR

EROFS

The file referred to by path does not exist.

A component of the path prefix of path is not a directory.

The file referred to by path resides on a read-only file system.

ftruncate() may set errno to:

EINV AL fd is not a valid descriptor of a file open for writing.

fd refers to a socket, not to a file.

EIO An I/O error occurred while reading from or writing to the file system.

SEE ALSO
open(2V)

BUGS
These calls should be generalized to allow ranges of bytes in a file to be discarded.

Sun Release 4.1 Last change: 21 January 1990 869

UMASK(2V)

NAME
umask - set file creation mode mask

SYNOPSIS
#include <sys/stat.h>

int umask(mask)
int mask;

SYSTEM V SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>

mode_t umask(mask)
mode_t mask;

DESCRIPTION

SYSTEM CALLS UMASK(2V)

umaskO sets the process's file creation mask to mask and returns the previous value of the mask. The
low-order 9 bits of mask are used whenever a file is created, clearing corresponding bits in the file access
permissions. (see stat(2V». This clearing restricts the default access to a file.

The mask is inherited by child processes.

RETURN VALUES
umask() returns the previous value of the file creation mask.

SEE ALSO
chmod(2V), mknod(2V), open(2V)

870 Last change: 21 January 1990 Sun Release 4.1

UNAME(2V) SYSTEM CALLS UNAME(2V)

NAME
uname - get information about current system

SYNOPSIS
#include <sys/utsname.h>

int uname (name)
struct utsname *name;

DESCRIPTION
uname() stores infonnation identifying the current operating system in the structure pointed to by name.

uname() uses the structure defined in <sys/utsname.h>, the members of which are:

struct utsname {
char sysname[9];
char nodename[9];
char nodeext[65-9];
char release[9];
char version[9];
char machine[9];

}

uname() places a null-terminated character string naming the current operating system in the character
array sysname; this string is "SunOS" on Sun systems. nodename is set to the name that the system is
known by on a communications network; this is the same value as is returned by gethostname(2). release
and version are set to values that further identify the operating system. machine is set to a standard name
that identifies the hardware on which the SunOS system is running. This is the same as the value dIsplayed
byarch(I).

RETURN VALUES
uname() returns:

o on success.

-1 on failure.

SEE ALSO

NOTES

arch(I), uname(I), gethostname(2)

nodeext is provided for backwards compatability with previous SunOS Releases and provides space for
node names longer than eight bytes. Applications should not use nodeext. To be maximally portable,
applications that want to copy the node name to another string should use strlen(nodename) rather than
the constant 9 or sizeof(nodename) as the size of the target string.

System administrators should note that systems with node names longer than eight bytes do not conform to
IEEE Std 1003.1-1988, System V Interface Definition (Issue 2), or X/Open Portability Guide (Issue 2)
requirements.

Sun Release 4.1 Last change: 21 January 1990 871

UNLINK (2V) SYSTEM CALLS UNLINK (2V)

NAME
unlink - remove directory entry

SYNOPSIS
int unlink(path)
char *path;

DESCRIPTION
unlink() removes the directory entry named by the path name pointed to by path and decrements the link
count of the file referred to by that entry. If this entry was the last link to the file, and no process has the
file open, then all resources associated with the file are reclaimed. If, however, the file was open in any
process, the actual resource reclamation is delayed until it is closed, even though the directory entry has
disappeared.

If path refers to a directory, the effective user-ID of the calling process must be super-user.

Upon successful completion, unlink() marks for update the st_ctime and st_mtime fields of the parent
directory. Also, if the file's link count is not zero, the st _ ctime field of the file is marked for update.

RETURN VALUES
unlink() returns:

o on success.

-1 on failure and sets errno to indicate the error.

ERRORS
EACCES Search permission is denied for a component of the path prefix of path.

EBUSY

EFAULT

EINVAL

EIO

ELOOP

ENAMETOOLONG

ENOENT

ENOTDIR

EPERM

Write permission is denied for the directory containing the link to be removed.

The entry to be unlinked is the mount point for a mounted file system.

path points outside the process's allocated address space.

The file referred to by path is the current directory, '.'.

An 1/0 error occurred while reading from or writing to the file system.

Too many symbolic links were encountered in translating path.

The length of the path argument exceeds {PATH_MAX}.

A pathname component is longer than {NAME_MAX} while
LPOSIX_NO_TRUNC} is in effect (see pathconf(2V».

The file referred to by path does not exist.

A component of the path prefix of path is not a directory.

The file referred to by path is a directory and the effective user ID of the process is
not the super-user.

EROFS

SYSTEM V ERRORS

The file referred to by path resides on a read-only file system.

In addition to the above, the following may also occur:

ENOENT path points to an empty string.

SEE ALSO

NOTES

872

close(2V), link(2V), rmdir(2V)

Applications should use rmdir(2V) to remove directories. Although root may use unlink() on directories,
all users may use rmdirO.

Last change: 21 January 1990 Sun Release 4.1

UNMOUNT(2V) SYSTEM CALLS UNMOUNT(2V)

NAME
unmount, umount - remove a file system

SYNOPSIS
int unmount(name)
char *name;

SYSTEM V SYNOPSIS
int umount(special)
char *special;

DESCRIPTION
unmount() announces to the system that the directory name is no longer to refer to the root of a mounted
file system. The directory name reverts to its ordinary interpretation.

Only the super-user may call unmount().

SYSTEM V DESCRIPTION
umount() reqests that a previously mounted file system contained on the block special device referred to
by special be unmounted. special points to a path name. After the file system is unmounted, the directory
on which it was mounted reverts to its ordinary interpretation.

Only the super-user may call umount().

Note: Unlike the path name argument to unmount() which refers to the directory on which the file system
is mounted, special refers to the block special device containing the mounted file system itself.

RETURN VALUES
unmount() returns:

o on success.

-Ion failure and sets errno to indicate the error.

SYSTEM V RETURN VALUES
umount() returns:

o on success.

-Ion failure and sets errno to indicate the error.

ERRORS
EACCES

EBUSY

EFAULT

EINVAL

EIO

ELOOP

ENAMETOOLONG

ENOENT

ENOTDIR

EPERM

SYSTEM V ERRORS
EINVAL

ENOENT

Sun Release 4.1

Search permission is denied for a component of the path prefix.

A process is holding a reference to a file located on the file system.

name points outside the process's allocated address space.

name is not the root of a mounted file system.

An I/O error occurred while reading from or writing to the file system.

Too many symbolic links were encountered in translating the path name.

The length of the path argument exceeds {PATH_MAX}.

A pathname component is longer than {NAME_MAX} (see sysconf(2V)) while
LPOSIX_NO_TRUNC} is in effect (see pathconf(2V)).

name does not exist.

A component of the path prefix of name is not a directory.

The caller is not the super-user.

The device referred to by special is not mounted.

The named file does not exist.

Last change: 21 January 1990 873

UNMOUNT(2V)

ENOTBLK

ENOTDIR

ENXIO

SEE ALSO
mount(2V), mount(8)

BUGS

SYSTEM CALLS

special does not refer to a block special file.

A component of the path prefix of special is not a directory.

The device referred to by special does not exist

UNMOUNT (2V)

The error codes are in a state of disarray; too many errors appear to the caller as one value.

874 Last change: 21 January 1990 Sun Release 4.1

USTAT(2)

NAME
ustat - get file system statistics

SYNOPSIS
#include <sys/types.h>
#include <ustat.h>

int ustat(dev, but)
dev_t dey;
struct ustat *buf;

DESCRIPTION

SYSTEM CALLS US TAT (2)

ustat() returns information about a mounted file system. dey is a device number identifying a device con­
taining a mounted file system. This is normally the value returned in the st_dev field of a stat structure
when a stat(), fstat(), or Istat() call is made on a file on that file system. buf is a pointer to a ustat struc­
ture that includes the following elements:

daddr t f_tfree;
ino t f _tinode;
char f _fname[6];
char f_fpack[6];

1* Total blocks available to non-super-user *1
1* Number of free files *1
1* Filsys name *1
1* Filsys pack name *1

The f _fname and f _fpack fields are always set to a null string. Other fields that are undefined for a partic­
ular file system are set to -1.

RETURN VALUES
ustat() returns:

o on success.

-1 on failure and sets errno to indicate the error.

ERRORS
EFAULT

EINVAL

EIO

SEE ALSO
stat(2V), statfs(2)

BUGS

bufpoints to an invalid address.

dey is not the device number of a device containing a mounted file system.

An I/O error occurred while reading from or writing to the file system.

The NFS revision 2 protocol does not permit the number of free files to be provided to the client; thus,
when ustat() is done on an NFS file system, f _tinode is always -1.

Sun Release 4.1 Last change: 21 January 1990 875

UTIMES(2) SYSTEM CALLS UTIMES(2)

NAME
utimes - set file times

SYNOPSIS
#include <sys/types.h>

int utimes(ftle, tvp)
char *file;
struct timeval *tvp;

DESCRIPTION
utimes() sets the access and modification times of the file named by file.

If tvp is NULL, the access and modification times are set to the current time. A process must be the owner
of the file or have write permission for the file to use utimes() in this manner.

If tvp is not NULL, it is assumed to point to an array of two timeval structures. The access time is set to the
value of the first member, and the modification time is set to the value of the second member. Only the
owner of the file or the super-user may use utimes() in this manner.

In either case, the inode-changed time of the file is set to the current time.

RETURN VALUES
utimes() returns:

o on success.

-1 on failure and sets errno to indicate the error.

ERRORS
EACCES Search permission is denied for a component of the path prefix of file.

EACCES The effective user ID of the process is not super-user and not the owner of the file, write
permission is denied for the file, and tvp is NULL.

EFAULT file or tvp points outside the process's allocated address space.

EIO An I/O error occurred while reading from or writing to the file system.

ELOOP

ENOENT

ENOTDIR

EPERM

Too many symbolic links were encountered in translating file .

The file referred to by file does not exist.

A component of the path prefix of file is not a directory.

The effective user ID of the process is not super-user and not the owner of the file, and
tvp is not NULL.

EROFS

SEE ALSO
stat(2V)

The file system containing the file is mounted read-only.

876 Last change: 21 January 1990 Sun Release 4.1

VADVISE(2) SYSTEM CALLS VADVISE(2)

NAME
vadvise - give advice to paging system

SYNOPSIS
#include <sys/vadvise.h>

vadvise(param)
int param;

DESCRIPTION

BUGS

vadvise() is used to inform the system that process paging behavior merits special consideration. Parame­
ters to vadvise() are defined in the file <sys/vadvise.h>. Currently, two calls to vadvise() are imple­
mented.

vadvise(VA_ANOM);

advises that the paging behavior is not likely to be well handled by the system's default algorithm, since
reference information that is collected over macroscopic intervals (for instance, 10-20 seconds) will not
serve to indicate future page references. The system in this case will choose to replace pages with little
emphasis placed on recent usage, and more emphasis on referenceless circular behavior. It is essential that
processes which have very random paging behavior (such as LISP during garbage collection of very large
address spaces) call vadvise, as otherwise the system has great difficulty dealing with their page­
consumptive demands.

vadvise(VA_NORM);

restores default paging replacement behavior after a call to

vadvise(VA_ANOM);

The current implementation of vadvise() will go away soon, being replaced by a per-page vadvise() facil­
ity.

Sun Release 4.1 Last change: 21 January 1990 877

VFORK(2) SYSTEM CALLS VFORK(2)

NAME
vfork - spawn new process in a virtual memory efficient way

SYNOPSIS
#include <vfork.h>

int vfork()

DESCRIPTION
vfork() can be used to create new processes without fully copying the address space of the old process,
which is horrendously inefficient in a paged environment. It is useful when the purpose of fork(2V),
would have been to create a new system context for an execve(2V). vfork() differs from fork() in that the
child borrows the parent's memory and thread of control until a call to execve(2V), or an exit (either by a
call to exit(2V) or abnonnally.) The parent process is suspended while the child is using its resources.

vforkO returns 0 in the child's context and (later) the process ID (PID) of the child in the parent's context.

vfork() can normally be used just like fork. It does not work, however, to return while running in the
child's context from the procedure which called vfork() since the eventual return from vfork() would then
return to a no longer existent stack frame. Be careful, also, to call _ exit() rather than exit() if you cannot
execve, since exit() will flush and close standard I/O channels, and thereby mess up the parent processes
standard I/O data structures. (Even with fork() it is wrong to call exit() since buffered data would then be
flushed twice.)

On Sun-4 machines, the parent inherits the values of local and incoming argument registers from the child.
Since this violates the usual data flow properties of procedure calls, the file <vfork.h> must be included in
programs that are compiled using global optimization.

RETURN VALUES
On success, vfork() returns 0 to the child process and returns the process ID of the child process to the
parent process. On failure, vfork() returns -1 to the parent process, sets errno to indicate the error, and no
child process is created.

SEE ALSO

BUGS

878

execve(2V), exit(2V), fork(2V), ioctl(2), sigvec(2), wait(2V)

This system call will be eliminated in a future release. System implementation changes are making the
efficiency gain of vfork() over fork(2V) smaller. The memory sharing semantics of vfork() can be
obtained through other mechanisms.

To avoid a possible deadlock situation, processes that are children in the middle of a vfork() are never sent
SIGTTOU or SIGTTIN signals; rather, output or ioctls are allowed and input attempts result in an EOF indi­
cation.

Last change: 21 January 1990 Sun Release 4.1

VHANGUP(2) SYSTEM CALLS

NAME
vhangup - virtually "hangup" the current control terminal

SYNOPSIS
vbangupO

DESCRIPTION

VHANGUP(2)

vbangupO is used by the initialization process init(8) (among others) to arrange that users are given
"clean" terminals at login, by revoking access of the previous users' processes to the terminal. To affect
this, vbangup() searches the system tables for references to the control terminal of the invoking process,
revoking access permissions on each instance of the terminal that it finds. Further attempts to access the
terminal by the affected processes will yield I/O errors (EBADF). Finally, a SIGHUP (hangup signal) is
sent to the process group of the control terminal.

SEE ALSO
init(8)

BUGS
Access to the control terminal using /dev/tty is still possible.

This call should be replaced by an automatic mechanism that takes place on process exit.

Sun Release 4.1 Last change: 21 January 1990 879

WAIT(2V) SYSTEM CALLS WAIT(2V)

NAME
wait, wait3, wait4, waitpid, WIFSTOPPED, WIFSIGNALED, WlFEXITED, WEXITSTATUS, WTERM­
SIG, WSTOPSIG - wait for process to terminate or stop, examine returned status

SYNOPSIS
#include <sys/wait.b>

int wait(statusp)
int *statusp;

int waitpid(pid, statusp, options)
int pid;
int *statusp;
int options;

#include <sys/time.h>
#include <sys/resource.h>

int wait3(statusp, options, rusage)
int *statusp;
int options;
struct rusage *rusage;

int wait4(pid, statusp, options, rusage)
int pid;
int *statusp;
int options;
struct rusage *rusage;

WIFSTOPPED(status)
int status;

WIFSIGNALED(status)
int status;

WIFEXITED(status)
int status

WEXITST ATUS(status)
int status

WTERMSIG(status)
int status

WSTOPSIG(status)
int status

SYSTEM V SYNOPSIS
#include <sys/types.h>
#include <sys/wait.h>

880

pid _ t wait(statusp)
int *statusp;

pid_t waitpid(pid, statusp, options)
pid_t pid;
int *statusp;
int options;

Last change: 21 January 1990 Sun Release 4.1

WAIT(2V) SYSTEM CALLS WAIT(2V)

DESCRIPTION
wait() delays its caller until a signal is received or one of its child processes terminates or stops due to trac­
ing. If any child has died or stopped due to tracing and this has not been reported using wait(), return is
immediate, returning the process ID and exit status of one of those children. If that child had died, it is dis­
carded. If there are no children, return is immediate with the value -1 returned. If there are only running
or stopped but reported children, the calling process is blocked.

If statusp is not a NULL pointer, then on return from a successful wait() call the status of the child process
whose process ID is the return value of wait() is stored in the location pointed to by statusp. It indicates
the cause of termination and other information about the terminated process in the following manner:

• If the first byte (the low-order 8 bits) are equal to 0177, the child process has stopped. The
next byte contains the number of the signal that caused the process to stop. See ptrace(2) and
sigvec(2).

• If the first byte (the low-order 8 bits) are non-zero and are not equal to 0177, the child process
terminated due to a signal. The low-order 7 bits contain the number of the signal that ter­
minated the process. In addition, if the low-order seventh bit (that is,.bit 0200) is set, a "core
image" of the process was produced (see sigvec(2».

• Otherwise, the child process terminated due to a call to exit(2V). The next byte contains the
low-order 8 bits of the argument that the child process passed to exit().

waitpid() behaves identically to wait() if pid has a value of -1 and options has a value of zero. Other­
wise, the behavior of waitpid() is modified by the values of pid and options as follows:

pid specifies a set of child processes for which status is requested. waitpid() only returns the status of a
child process from this set.

• If pid is equal to -1, status is requested for any child process. In this repect, waitpid() is then
equivalent to wait().

• If pid is greater than zero, it specifies the process ID of a single child process for which status
is requested.

• If pid is equal to zero, status is requested for any child process whose process group ID is
equal to that of the calling process.

• If pid is less than -1, status is requested for any child process whose process group ID is equal
to the absolute value of pid.

options is constructed from the bitwise inclusive OR of zero or more of the following flags, defined in the
header <sys/wait.h>:

WNOHANG
waitpid() does not suspend execution of the calling process if status is not immediately
available for one of the child processes specified by pid.

WUNTRACED
The status of any child processes specified by pid that are stopped, and whose status has
not yet been reported since they stopped, are also reported to the requesting process.

wait3() is an alternate interface that allows both non-blocking status collection and the collection of the
status of children stopped by any means. The status parameter is defined as above. The options parameter
is used to indicate the call should not block if there are no processes that have status to report
(WNOHANG), and/or that children of the current process that are stopped due to a SIGTTIN, SIGTTOU,
SIGTSTP, or SIGSTOP signal are eligible to have their status reported as well (WUNTRACED). A ter­
minated child is discarded after it reports status, and a stopped process will not report its status more than
once. If rusage is not a NULL pointer, a summary of the resources used by the terminated process and all
its children is returned. (This information is currently not available for stopped processes.)

Sun Release 4.1 Last change: 21 January 1990 881

WAIT (2V) SYSTEM CALLS WAIT (2V)

When the WNOHANG option is specified and no processes have status to report, wait3() returns O. The
WNOHANG and WUNTRACED options may be combined by ORing the two values.

wait4() is another alternate interface. With a pid argument of 0, it is equivalent to wait3(). If pid has a
nonzero value, then wait4() returns status only for the indicated process ID, but not for any other child
processes.

WIFSTOPPED, WIFSIGNALED, WlFEXITED, WEXITSTATUS, WTERMSIG, and WSTOPSIG are macros
that take an argument status, of type 'int', as returned by wait(), wait3(), or wait4(). WIFSTOPPED
evaluates to true (1) when the process for which the wait() call was made is stopped, or to false (0) other­
wise. If WIFSTOPPED(status) is non-zero, WSTOPSIG evaluates to the number of the signal that caused
the child process to stop. WIFSIGNALED evaluates to true when the process was terminated with a signal.
If WIFSIGNALED(status) is non-zero, WTERMSIG evaluates to the number of the signal that caused the
termination of the child process. WIFEXITED evaluates to true when the process exited by using an
exit(2V) call. If WlFEXITED(status) is non-zero, WEXITST ATUS evaluates to the low-order byte of the
argument that the child process passed to _exitO (see exit(2V» or exit(3), or the value the child process
returned from main() (see execve(2V».

If the information stored at the location pointed to by statusp was stored there by a call to waitpid() that
specified the WUNTRACED flag, exactly one of the macros WIFEXITED(*statusp),
WIFSIGNALED(*statusp), and WIFSTOPPED(*statusp) will evaluate to a non-zero value. If the informa­
tion stored at the location pointed to by statusp was stored there by a call to waitpid() that did not specify
the WUNTRACED flag or by a call to wait() , exactly one of the macros WIFEXITED(*statusp) and
WIFSIGNALED(*statusp) will evaluate to a non-zero value.

If a parent process terminates witout waiting for all of its child processes to terminate, the remaining child
processes are assigned the parent process ID of 1, corresponding to init(8).

RETURN VALUES
If wait() or waitpid() returns due to a stopped or terminated child process, the process ID of the child is
returned to the calling process. Otherwise, a value of -1 is returned and errno is set to indicate the error.

If wait() or waitpid() return due to the delivery of a signal to the calling process, a value of -1 is returned
and errno is set to EINTR. Ifwaitpid() function was invoked with WNOHANG set in options, it has at least
one child process specified by pid for which status is not available, and status is not available for any pro­
cess specified by pid, a value of zero is returned. Otherwise, a value of -1 is returned, and errno is set to
indicate the error.

wait3() and wait4() return 0 if WNOHANG is specified and there are no stopped or exited children, and
return the process ID of the child process if they return due to a stopped or terminated child process. Other­
wise, they return a value of -1 and set errno to indicate the error.

ERRORS

882

wait(), wait3(), or wait4() will fail and return immediately if one or more of the following are true:

ECHILD The calling process has no existing unwaited-for child processes.

EFAULT statusp or rusage points to an illegal address.

EINTR The function was interrupted by a signal. The value of the location pointed to by statusp
is undefined.

waitpid() may set errno to:

ECHILD The process or process group specified by pid does not exist or is not a child of the cal­
ling process.

EINTR

EINVAL

The function was interrupted by a signal. The value of the location pointed to by statusp
is undefined.

The value of options is not valid.

Last change: 21 January 1990 Sun Release 4.1

WAIT (2V) SYSTEM CALLS WAIT (2V)

waitO, waitJO, and wait40 will terminate prematurely, return -1, and set errno to: EINTR upon the
arrival of a signal whose SV _INTERRUPT bit in its flags field is set (see sigvec(2) and siginterrupt(3V».
signal(3V), in the System V compatibility library, sets this bit for any signal it catches.

SEE ALSO

NOTES

exit(2V), fork(2V), getrusage(2), ptrace(2), sigvec(2), pause(3V), siginterrupt(3V), signal(3V),
times(3V)

If a parent process tenninates without waiting on its children, the initialization process (process ID = 1)
inherits the children.

wait(), wait3(), and wait4() are automatically restarted when a process receives a signal while awaiting
termination of a child process, unless the SV _INTERRUPT bit is set in the flags for that signal.

Previous SunOS releases used union wait *statusp and union wait status in place of int *statusp and
intstatus. The union contained a member w _status that could be treated in the same way as status.

Other members of the wait union could be used to extract this information more conveniently:

• If the w_stopval member had the value WSTOPPED, the child process had stopped; the value
of the w _stopsig member was the signal that stopped the process.

• If the w _ termsig member was non-zero, the child process terminated due to a signal; the value
of the w_termsig member was the number of the signal that terminated the process. If the
w _ coredump member was non-zero, a core dump was produced.

• Otherwise, the child process terminated due to a call to exit(). The value of the w _retcode
member was the low-order 8 bits of the argument that the child process passed to exit().

union wait is obsolete in light of the new specifications provided by IEEE Std 1003.1-1988 and endorsed
by SVID89 and XPG3. SunOS Release 4.1 supports union wait for backward compatibility, but it will
disappear in a future release.

Sun Release 4.1 Last change: 21 January 1990 883

WRITE (2V) SYSTEM CALLS WRITE (2V)

NAME
write, writev - write output

SYNOPSIS
int write(fd, buf, nbyte)
int fd;
char *buf;
int nbyte;

#include <sysltypes.h>
#include <sys/uio.h>

int writev(fd, iov, iovcnt)
int fd;
struct iovec *iov;
int iovcnt;

SYSTEM V SYNOPSIS
int write(fd, buf, nbyte)
int fd;
char *buf;
unsigned nbyte;

DESCRIPTION

884

write() attempts to write nbyte bytes of data to the object referenced by the descriptor fd from the buffer
pointed to by buf. writev() performs the same action, but gathers the output data from the iovcnt buffers
specified by the members of the iov array: iov[O],iov[1], ... , iov[iovcnt -1]. If nbyte is zero, write() takes
no action and returns O. writev(), however, returns -1 and sets the global variable errno (see ERRORS
below).

For writev(), the iovec structure is defined as

struct iovec {
caddr_t iov_base;
int iov _len;

};

Each iovec entry specifies the base address and length of an area in memory from which data should be
written. writev() always writes a complete area before proceeding to the next

On objects capable of seeking, the write() starts at a position given by the seek pointer associated with fd,
(see Iseek(2V)). Upon return from write(), the seek pointer is incremented by the number of bytes actu­
ally written.

Objects that are not capable of seeking always write from the current position. The value of the seek
pointer associated with such an object is undefined.

If the 0 _APPEND flag of the file status flags is set, the seek pointer is set to the end of the file prior to each
write.

If the process calling write() or writev() receives a signal before any data are written, the system call is
restarted, unless the process explicitly set the signal to interrupt the call using sigvec() or sigaction() (see
the discussions of SV _INTERRUPT on sigvec(2) and SA_INTERRUPT on sigaction(3V». If write() or
writev() is interrupted by a signal after successfully writing some data, it returns the number of bytes writ­
ten.

For regular files, if the 0_ SYNC flag of the file status flags is set, write() does not return until both the file
data and file status have been physically updated. This function is for special applications that require extra
reliability at the cost of performance. For block special files, if 0_ SYNC is set, the write() does not return
until the data has been physically updated.

Last change: 21 January 1990 Sun Release 4.1

WRITE (2V) SYSTEM CALLS WRITE (2V)

If the real user is not the super-user, then write() clears the set-user-id bit on a file. This prevents penetra­
tion of system security by a user who "captures" a writable set-user-id file owned by the super-user.

For STREAMS (see intro(2» files, the operation of writeO and writev() are determined by the values of
the minimum and maximum packet sizes accepted by the stream. These values are contained in the top­
most stream module. Unless the user pushes (see I_PUSH in streamio(4» the topmost module, these
values can not be set or tested from user level. If the total number of bytes to be written falls within the
packet size range, that many bytes are written. If the total number of bytes to be written does not fall
within the range and the minimum packet size value is zero, write() and writev() break the data to be
written into maximum packet size segments prior to sending the data downstream (the last segment may
contain less than the maximum packet size). If the total number of bytes to be written does not fall within
the range and the minimum value is non-zero, write() and writev() fail and set errno to ERANGE. Writing
a zero-length buffer (the total number of bytes to be written is zero) sends zero bytes with zero returned.

When a descriptor or the object it refers to is marked for non-blocking I/O, and the descriptor refers to an
object subject to flow control, such as a socket, a pipe (or FIFO), or a stream, writeO and writevO may
write fewer bytes than requested; the return value must be noted, and the remainder of the operation should
be retried when possible. If such an object's buffers are full, so that it cannot accept any data, then:

• If the object to which the descriptor refers is marked for non-blocking I/O using the FIONBIO
request to ioctl(2), or by using fcntl(2V) to set the FNDELAY or 0 _NDELAY flag (defined in
<syS/fcntl.h>), write() returns -1 and sets errno to EWOULDBLOCK.

Upon successful completion, write() marks for update the st_ctime and st_mtime fields of the file.

SYSTEM V DESCRIPTION
write() and writev() behave as described above, except:

When a descriptor or the object it refers to is marked for non-blocking I/O. and the descriptor refers to an
object subject to flow control. such as a socket, a pipe (or FIFO), or a stream, writeO and writevO may
write fewer bytes than requested; the return value must be noted, and the remainder of the operation should
be retried when possible. If such an object's buffers are full, so that it cannot accept any data, then:

• If the descriptor is marked for non-blocking I/O by using fcntl() to set the FNBIO or
0_ NDELA Y flag (defined in <sys/fcntl.h». and does not refer to a stream. the write() returns
O. If the descriptor is marked for non-blocking I/O. and refers to a stream. write() returns -1
and sets errno to EAGAIN.

• If the descriptor is marked for non-blocking I/O using fcntl() to set the FNONBLOCK or
O_NONBLOCK flag (defined in <syslfcntl.h», writeO requests for {PIPE_BUF} (see
pathconf(2V» or fewer bytes either succeed completely and return nbyte, or return -1 and set
errno to EAGAIN. A write() request for greater than {PIPE_BUF} bytes either transfers what it
can and returns the number of bytes written. or transfers no data and returns -1 and sets errno
to EAGAIN. If a write() request is greater than {PIPE_BUF} bytes and all data previously writ­
ten to the pipe has been read. write() transfers at least {PIPE_BUF} bytes.

RETURN VALUES
write() and writev() return the number of bytes actually written on success. On failure. they return -1
and set errno to indicate the error.

ERRORS
write() and writev() fail and the seek pointer remains unchanged if one or more of the following are true:

EBADF

EDQUOT

EFAULT

Sun Release 4.1

fd is not a valid descriptor open for writing.

The user's quota of disk blocks on the file system containing the file has been
exhausted.

Part of iov or data to be written to the file points outside the process's allocated
address space.

Last change: 21 January 1990 885

I

WRITE (2V) SYSTEM CALLS WRlTE(2V)

EFBIG

EINTR

EINVAL

EIO

ENOS PC

ENXIO

EPIPE

ERANGE

EWOULDBLOCK

An attempt was made to write a file that exceeds the process's file size limit or the
maximum file size.

The process performing a write received a signal before any data were written,
and the signal was set to interrupt the system call.

The stream is linked below a multiplexor.

The seek pointer assoc'iated withfd was negative.

An I/O error occurred while reading from or writing to the file system.

The process is in a background process group and is attempting to write to its con­
trolling terminal, TOSTOP is set, the process is neither ignoring nor blocking
SIGTTOU, and the process group of the process is orphaned.

There is no free space remaining on the file system containing the file.

A hang up occurred on the stream being written to.

An attempt is made to write to a pipe that is not open for reading by any process
(or to a socket of type SOCK_STREAM that is connected to a peer socket.) Note:
an attempted write of this kind also causes you to receive a SIGPIPE signal from
the kernel. If you've not made a special provision to catch or ignore this signal,
then your process dies.

fd refers to a stream, the total number of bytes to be written is outside the
minimum and maximum write range, and the minimum value is non-zero.

The file was marked for non-blocking I/O, and no data could be written immedi­
ately.

In addition to the above, writev() may set errno to:

EINVAL iovcnt was less than or equal to 0, or greater than 16.

One of the iov Jen values in the iov array was negative.

The sum of the iov Jen values in the iovarray overflowed a 32-bit integer.

A write to a STREAMS file can fail if an error message has been received at the stream head. In this case,
errno is set to the value included in the error message.

SYSTEM V ERRORS
write() fails and sets errno as described above, except:

EAGAIN The descriptor referred to a stream, was marked for non-blocking I/O, and no data
could be written immediately.

The 0 _ NONBLOCK flag is set for the file descriptor and write() would block.

SEE ALSO
dup(2V), fcntl(2V), intro(2), ioctl(2), Iseek(2V), open(2V), pipe(2V), select (2) , sigvec(2), signal(3V)

886 Last change: 21 January 1990 Sun Release 4.1

INTRO(3) C LIBRARY FUNCTIONS INTRO(3)

NAME
intro - introduction to user-level library functions

DESCRIPTION

FILES

Section 3 describes user-level library routines. In this release, most user-library routines are listed in
alphabetical order regardless of their subsection headings. (This eliminates having to search through
several subsections of the manual.) However, due to their special-purpose nature, the routines from the fol­
lowing libraries are broken out into the indicated subsections:

• The Lightweight Processes Library, in subsection 3L.

• The Mathematical Library, in subsection 3M.

• The RPC Services Library, in subsection 3R.

A 3V section number means one or more of the following:

• The man page documents System V behavior only.

• The man page documents default SunOS behavior, and System V behavior as it differs from the default
behavior. These System V differences are presented under SYSTEM V section headers.

• The man page documents behavior compliant with IEEE Std 1003.1-1988 (POSIX.l).

The System V Library was formerly documented in a separate manual section. These man pages have
been merged into the main portion of section 3. These man pages describe functions that may differ from
the default SunOS functions. To use them, compile programs with lusrlSbinlee instead of lusrlbin/ee.

Section 3 also documents the library interfaces for X/Open Portability Guide, Issue 2 (XPG2) compatibility.
Where these interfaces differ from the System V versions, the differences are noted. To use the XPG2 com­
patibility library interfaces, compile programs with lusr/xpg2binlee.

The libraries provide many different "standard" environments. These environments (including two that are
not yet fully supported) are described on ansie(7V), bsd(7), posix(7V), suoos(7), svidii(7V), svidiii(7V),
and xopeo(7V).

The main C library, lusrllib/libe.a, contains many of the functions described in this section, along with
entry points for the system calls described in Section 2. This library also includes the Internet networking
routines listed under the 3N subsection heading, and routines provided for compatibility with other UNIX
operating systems, listed under 3C. Functions associated with the "standard I/O library" are listed under
3S.

User-level routines for access to data structures within the kernel and other processes are listed under 3K.
To use these functions, compile programs with the -Ikvm option for the C compiler, ee(1 V).

Math library functions are listed under 3M. To use them, compile programs with the -1m ee(1 V) option.

Various specialized libraries, the routines they contain, and the compiler options needed to link with them,
are listed under 3X.

lusr/lib/libc.a
lusr/lib/lib* .a
lusr/lib/lib* .a
lusrlSbinlee

C Library (2, 3, 3N and 3C)
other "standard" C libraries
special-purpose C libraries

SEE ALSO
cc(1 V), Id(1), nm(I), intro(2)

Sun Release 4.1 Last change: 21 October 1987 887

INTRO(3)

LIST OF LIBRARY FUNCTIONS
Name

888

a641
abort
abs
addexportent
addmoteot
aioeaocel
aioread
aiowait
aiowrite
alarm
alloca
alpbasort
arc
asctime
assert
atof
atoi
atol
audit_args
audit text
autb _destroy
autbdes create
autbdes _getucred
autbnooe create
autbuoix _create
autbuoix create default - -
bcmp
bcopy
biodresvport
bsearcb
bstring
byteorder
bzero
calloe
callrpc
catclose
catgetmsg
catgets
catopen
cbc_crypt
cfgetispeed
cfgetospeed
cfree
cfsetispeed
cfsetospeed
circle
clear err
clot broadcast
clot call
clot control

C LIBRARY FUNCTIONS INTRO(3)

Appears on Page

a64I(3)
abort(3)
abs(3)
exporteot(3)
getmoteot(3)
aioeancel(3)
aioread(3)
aiowait(3)
aioread(3)
alarm(3V)
malloc(3V)
scaodir(3)
plot(3X)
ctime(3V)
assert(3V)
strtod(3)
strtol(3)
strtol(3)
audit_args(3)
audit_args(3)
rpc _clot _ auth(3N)
secure _ rpc(3N)
secure _ rpc(3N)
rpc _clot _ auth(3N)
rpc _clot _ auth(3N)
rpc_clot_auth(3N)
bstriog(3)
bstriog(3)
biodresvport(3N)
bsearcb(3)
bstriog(3)
byteorder(3N)
bstriog(3)
malloc(3V)
rpc _clot _ calls(3N)
catopeo(3C)
catgets(3C)
catgets(3C)
catopeo(3C)
des _ crypt(3)
termios(3V)
termios(3V)
malloc(3V)
termios(3V)
termios(3V)
plot(3X)
ferror(3V)
rpc _ clnt _ calls(3N)
rpc _clot _ calls (3N)
rpc _ clnt _ create(3N)

Descriptioo

convert between long integer and base-64 ASCII string
generate a fault
integer absolute value
get exported file system information
get file system descriptor file entry
cancel an asynchronous operation
asynchronous I/O operations
wait for completion of asynchronous I/O operation
asynchronous I/O operations
schedule signal after specified time
memory allocator
scan a directory
graphics interface
convert date and time
program verification
convert string to double-precision number
convert string to integer
convert string to integer
produce text audit message
produce text audit message
library routines for client side RPC authentication
library routines for secure remote procedure calls
library routines for secure remote procedure calls
library routines for client side RPC authentication
library routines for client side RPC authentication
library routines for client side RPC authentication
bit and byte string operations
bit and byte string operations
bind a socket to a privileged IP port
binary search a sorted table
bit and byte string operations
convert values between host and network byte order
bit and byte string operations
memory allocator
library routines for client side calls
open/close a message catalog
get message from a message catalog
get message from a message catalog
open/close a message catalog
fast DES encryption
terminal control functions
terminal control functions
memory allocator
terminal control functions
terminal control functions
graphics interface
stream status inquiries
library routines for client side calls
library routines for client side calls
library routines creating and manipulating CLIENT handles

Last change: 21 October 1987 Sun Release 4.1

INTRO(3)

clot_create
clot_create_vers
clot_destroy
clot_rreeres
clot _geterr
clnt~createerror

clot~erroo

clot~error

clot _ spcreateerror
clot _ sperroo
clot_sperror
clntraw create
clottcp _create
clotudp _ bufcreate
clock
closedir
close log
closepl
coot
coov
crypt
ctermid
ctime
ctype
curses
cuserid
dbm
dbm clearerr
dbm close
dbm_delete
dbm error
dbm_fetch
dbm _ firstkey
dbm _ nextkey
dbm_opeo
dbm store
dbmclose
dbminit
decimal to double
decimal to extended
decimal_to _single
delete
des_crypt
des _ setparity
directory
dlclose
dlerror
dlopen
dlsym
do_comp
do_expaod
double to decimal
draod48

Sun Release 4.1

C LIBRARY FUNCTIONS INTRO(3)

rpc _clot _ create(3N)
rpc _clot _ create(3N)
rpc _clot _ create(3N)
rpc _clot _ calls(3N)
rpc _clot _ calls (3N)
rpc _clot _ create(3N)
rpc _clot _ calls(3N)
rpc _clot _ calls(3N)
rpc _clot _ create(3N)
rpc _clot _ calls (3N)
rpc _clot _ calls (3N)
rpc _clot _ create(3N)
rpc _clot _ create(3N)
rpc _clot _ create(3N)
clock (3 C)
directory (3V)
syslog(3)
plot(3X)
plot(3X)
ctype(3V)
crypt(3)
ctermid(3V)
ctime(3V)
ctype(3V)
curses(3V)
cuserid(3V)
dbm(3X)
ndbm(3)
ndbm(3)
ndbm(3)
ndbm(3)
ndbm(3)
ndbm(3)
ndbm(3)
ndbm(3)
ndbm(3)
dbm(3X)
dbm(3X)
decimal_to _ floating(3)
decimal_to _ floating(3)
decimal_to _ floating(3)
dbm (3 X)
des_crypt(3)
des _ crypt(3)
directory(3V)
dlopeo(3X)
dlopeo(3X)
dlopeo(3X)
dlopeo(3X)
resolver(3)
resolver(3)
floatiog_ to _ decimal(3)
draod48(3)

library routines creating and manipulating CLIENT handles
library routines creating and manipulating CLIENT handles
library routines creating and manipulating CLIENT handles
library routines for client side calls
library routines for client side calls
library routines creating and manipulating CLIENT handles
library routines for client side calls
library routines for client side calls
library routines creating and manipulating CLIENT handles
library routines for client side calls
library routines for client side calls
library routines creating and manipulating CLIENT handles
library routines creating and manipulating CLIENT handles
library routines creating and manipulating CLIENT handles
report CPU time used
directory operations
control system log
graphics interface
graphics interface
character classification and conversion macros and functions
password and data encryption
generate filename for terminal
convert date and time
character classification and conversion macros and functions
System V terminal screen handling and optimization package
get character login name of the user
data base subroutines
data base subroutines
data base subroutines
data base subroutines
data base subroutines
data base subroutines
data base subroutines
data base subroutines
data base subroutines
data base subroutines
data base subroutines
data base subroutines
convert decimal record to floating-point value
convert decimal record to floating-point value
convert decimal record to floating-point value
data base subroutines
fast DES encryption
fast DES encryption
directory operations
simple programmatic interface to the dynamic linker
simple programmatic interface to the dynamic linker
simple programmatic interface to the dynamic linker
simple programmatic interface to the dynamic linker
resolver routines
resol ver routines
convert floating-point value to decimal record
generate uniformly distributed pseudo-random numbers

Last change: 21 October 1987 889

INTRO(3) C LIBRARY FUNCTIONS INTRO(3)

dysize ctime(3V) convert date and time
ecb_crypt des _ crypt(3) fast DES encryption
econvert econvert(3) output conversion
ecvt econvert(3) output conversion
edata end(3) last locations in program
encrypt crypt(3) password and data encryption
end end(3) last locations in program
endac getacinfo(3) get audit control file infonnation
endexportent exportent(3) get exported file system information
endfsent getfsent(3) get file system descriptor file entry
en dgraent getgraent(3) get group adjunct file entry
endgrent getgrent(3V) get group file entry
endhostent gethostent(3N) get network host entry
endmntent getmntent(3) get file system descriptor file entry
endnetent getnetent(3N) get network entry
endnetgrent getnetgrent(3N) get network group entry
endprotoent getprotoent(3N) get protocol entry
endpwaent getpwaent(3) get password adjunct file entry
endpwent getpwent(3V) get password file entry
endrpcent getrpcent(3N) get RPC entry
endservent getservent(3N) get service entry
endttyent getttyent(3) get ttytab file entry
endusershell getusershell(3) get legal user shells
erand48 drand48(3) generate uniformly distributed pseudo-random numbers
erase plot(3X) graphics interface
errno perror(3) system error messages
etext end(3) last locations in program
ether aton ethers(3N) Ethernet address mapping operations
ether hostton ethers(3N) Ethernet address mapping operations
ether line ethers(3N) Ethernet address mapping operations
ether ntoa ethers(3N) Ethernet address mapping operations
ether ntohost ethers(3N) Ethernet address mapping operations
ethers ethers(3N) Ethernet address mapping operations
execl execl(3V) execute a file
execle execl(3V) execute a file
execlp execl(3V) execute a file
execv execl(3V) execute a file
execvp execl(3V) execute a file
exit exit(3) terminate a process after perfonning cleanup
exportent exportent(3) get exported file system information
extended to decimal floating_to _ decimal(3) convert floating-point value to decimal record
fclose fclose(3V) close or flush a stream
fconvert econvert(3) output conversion
fcvt econvert(3) output conversion
fdopen fopen(3V) open a stream
feof ferror(3V) stream status inquiries
ferror ferror(3V) stream status inquiries
fetch dbm(3X) data base subroutines
fflush fclose(3V) close or flush a stream
ITs bstring(3) bit and byte string operations
fgetc getc(3V) get character or integer from stream
fgetgraent getgraent(3) get group adjunct file entry
fgetgrent getgrent(3V) get group file entry

890 Last change: 21 October 1987 Sun Release 4.1

INTRO(3)

fgetpwaent
fgetpwent
fgets
file to decimal
fileno
firstkey
ftoatingpoint
fopen
fprintf
fputc
fputs
fread
free
freopen
fscanf
fseek
ftell
ftime
ftok
ftw
func to decimal
fwrite
gcd
gconvert
gcvt
get _ myaddress
getacdir
getacftg
getacinfo
getacmin
getauditftagsbin
getauditftagschar
getc
getchar
getcwd
getenv
getexportent
getexportopt
getfauditftags
getfsent
getfsfile
getfsspec
getfstype
getgraent
getgranam
getgrent
getgrgid
getgrnam
gethostbyaddr
gethostbyname
gethostent
getlogin
getmntent

Sun Release 4.1

C LIBRARY FUNCTIONS INTRO(3)

getpwaent(3)
getpwent(3V)
gets(3S)
string_to _ decimal(3)
ferror(3V)
dbm(3X)
ftoatingpoint(3)
fopen(3V)
printf(3V)
putc(3S)
puts(3S)
fread(3S)
malloc(3V)
fopen(3V)
scanf(3V)
fseek(3S)
fseek(3S)
time(3V)
ftok(3)
ftw(3)
string_to _ decimal(3)
fread(3S)
mp(3X)
econvert(3)
econvert(3)
secure _ rpc(3N)
getacinfo(3)
getacinfo(3)
getacinfo(3)
getacinfo(3)
getauditftags(3)
getauditftags(3)
getc(3V)
getc(3V)
getcwd(3V)
getenv(3V)
exportent(3)
exportent(3)
getfauditftags(3)
getfsent(3)
getfsent(3)
getfsent(3)
getfsent(3)
getgraent(3)
getgraent(3)
getgrent(3V)
getgrent(3V)
getgrent(3V)
gethostent(3N)
gethostent(3N)
gethostent(3N)
getlogin(3 V)
getmntent(3)

get password adjunct file entry
get password file entry
get a string from a stream
parse characters into decimal record

. stream status inquiries
data base subroutines
IEEE floating point definitions
open a stream
fonnatted output conversion
put character or word on a stream
put a string on a stream
buffered binary input/output
memory allocator
open a stream
fonnatted input conversion
reposition a stream
reposition a stream
get date and time
standard interprocess communication package
walk a file tree
parse characters into decimal record
buffered binary input/output
multiple precision integer arithmetic
output conversion
output conversion
library routines for secure remote procedure calls
get audit control file information
get audit control file information
get audit control file information
get audit control file information
convert audit flag specifications
convert audit flag specifications
get character or integer from stream
get character or integer from stream
get pathname of current working directory
return value for environment name
get exported file system information
get exported file system information
generates the process audit state
get file system descriptor file entry
get file system descriptor file entry
get file system descriptor file entry
get file system descriptor file entry
get group adjunct file entry
get group adjunct file entry
get group file entry
get group file entry
get group file entry
get network host entry
get network host entry
get network host entry
get login name
get file system descriptor file entry

Last change: 21 October 1987 891

INTRO(3)

892

getnetbyaddr
getnetbyname
getnetent
getnetgrent
getnetname
getopt
getpass
getprotobyname
getprotobynumber
getprotoent
getpublickey
getpw
getpwaent
getpwanam
getpwent
getpwnam
getpwuid
getrpcbyname
getrpcbynumber
getrpcent
gets
getsecretkey
getservbyname
getservbyport
getservent
getsubopt
gettext
getttyent
getttynam
getusershell
getw
getwd
gmtime
grpauth
gsignal
gtty
hasmntopt
hcreate
hdestroy
host2netname
hsearch
htonl
htons
index
inet
inet addr
inet Inaof
inet makeaddr
inet netof
inet network
inet ntoa
initgroups
initstate

C LIBRARY FUNCTIONS INTRO(3)

getnetent(3N)
getnetent(3N)
getnetent(3N)
getnetgrent(3N)
secure _rpc(3N)
getopt(3)
getpass(3V)
getprotoent(3N)
getprotoent(3N)
getprotoent(3N)
pubJickey(3R)
getpw(3)
getpwaent(3)
getpwaent(3)
getpwent(3V)
getpwent(3V)
getpwent(3V)
getrpcent(3N)
getrpcent(3N)
getrpcent(3N)
gets(3S)
pubJickey(3R)
getservent(3N)
getservent(3N)
getservent(3N)
getsubopt(3)
gettext(3)
getttyent(3)
getttyent(3)
getusershell(3)
getc(3V)
getwd(3)
ctime(3V)
pwdauth(3)
ssignal(3)
stty(3C)
getmntent(3)
hsearch(3)
hsearch(3)
secure _ rpc(3N)
hsearch(3)
byteorder(3N)
byteorder(3N)
string(3)
inet(3N)
inet(3N)
inet(3N)
inet(3N)
inet(3N)
inet(3N)
inet(3N)
initgroups(3)
random(3)

get network entry
get network entry
get network entry
get network group entry
library routines for secure remote procedure calls
get option letter from argument vector
read a password
get protocol entry
get protocol entry
get protocol entry
get public or secret key
get name from uid
get password adjunct file entry
get password adjunct file entry
get password file entry
get password file entry
get password file entry
get RPC entry
get RPC entry
get RPC entry
get a string from a stream
get public or secret key
get servic~ entry
get service entry
get service entry
parse sub options from a string.
retrieve a message string, get and set text domain
get ttytab file entry
get ttytab file entry
get legal user shells
get character or integer from stream
get current working directory pathname
convert date and time
password authentication routines
software signals
set and get terminal state
get file system descriptor file entry
manage hash search tables
manage hash search tables
library routines for secure remote procedure calls
manage hash search tables
convert values between host and network byte order
convert values between host and network byte order
string operations
Internet address manipulation
Internet address manipulation
Internet address manipulation
Internet address manipulation
Internet address manipulation
Internet address manipulation
Internet address manipulation
initialize supplementary group IDs
better random number generator

Last change: 21 October 1987 Sun Release 4.1

INTRO(3) C LIBRARY FUNCTIONS INTRO(3)

innetgr getnetgrent(3N) get network group entry
insque insque(3) insert/remove element from a queue
isalnum ctype(3V) character classification and conversion macros and functions
isalpha ctype(3V) character classification and conversion macros and functions
isascii ctype(3V) character classification and conversion macros and functions
isatty ttyname(3V) find name of a tenninal
iscntrl ctype(3V) character classification and conversion macros and functions
isdigit ctype(3V) character classification and conversion macros and functions
isgraph ctype(3V) character classification and conversion macros and functions
islower ctype(3V) character classification and conversion macros and functions
isprint ctype(3V) character classification and conversion macros and functions
ispunct ctype(3V) character classification and conversion macros and functions
issecure issecure(3) indicates whether system is running secure
isspace ctype(3V) character classification and conversion macros and functions
isupper ctype(3V) character classification and conversion macros and functions
isxdigit ctype(3V) character classification and conversion macros and functions
itom mp(3X) multiple precision integer arithmetic
jrand48 drand48(3) generate uniformly distributed pseudo-random numbers
key _ decryptsession secure _ rpc(3N) library routines for secure remote procedure calls
key _ encryptsession secure _ rpc(3N) library routines for secure remote procedure calls
key_gendes secure _ rpc(3N) library routines for secure remote procedure calls
key _ setsecret secure _ rpc(3N) library routines for secure remote procedure calls
kvm close kvm_ open(3K) specify a kernel to examine
kvm_getcmd kvm _getu(3K) get the u-area or invocation arguments for a process
kvm _getproc kvm _ nextproc(3K) read system process structures
kvm_getu kvm _getu(3K) get the u-area or invocation arguments for a process
kvm _ nextproc kvm _nextproc(3K) read system process structures
kvm ntist kvm _ ntist(3K) get entries from kernel symbol table
kvm_open kvm _ open(3K) specify a kernel to examine
kvm_read kvm _read(3K) copy data to or from a kernel image or running system
kvm_setproc kvm _ nextproc(3K) read system process structures
kvm write kvm _read(3K) copy data to or from a kernel image or running system
13tol 13tol(3C) convert between 3-byte integers and long integers
l64a a64I(3) convert between long integer and base-64 ASCII string
label plot(3X) graphics interface
Icong48 drand48 (3) generate uniformly distributed pseudo-random numbers
Idaclose Idclose(3X) close a COFF file
Idahread Idahread(3X) read the archive header of a member of a COFF archive file
Idaopen Idopen(3X) open a COFF file for reading
Idclose Idclose(3X) close a COFF file
Idfcn Idfcn(3) common object file access routines
Idtbread Idfhread(3X) read the file header of a COFF file
Idgetname Idgetname(3X) retrieve symbol name for COFF file symbol table entry
Idlinit Idlread(3X) manipulate line number entries of a COFF file function
Idtitem Idlread(3X) manipulate line number entries of a COFF file function
Idlread Idlread(3X) manipulate line number entries of a COFF file function
Idlseek Idlseek(3X) seek to line number entries of a section of a COFF file
Idnlseek Idlseek(3X) seek to line number entries of a section of a COFF file
Idnrseek Idrseek(3X) seek to relocation entries of a section of a COFF file
Idnshread Idshread(3X) read an indexed/named section header of a COFF file
Idnsseek Idsseek(3X) seek to an indexed/named section of a COFF file
Idohseek Idohseek(3X) seek to the optional file header of a COFF file
Idopen Idopen(3X) open a COFF file for reading

Sun Release 4.1 Last change: 21 October 1987 893

INTRO(3) C LIBRARY FUNCTIONS INTRO(3)

Idrseek Idrseek(3X) seek to relocation entries of a section of a COFF file
Idshread Idshread(3X) read an indexed/named section header of a COFF file
Idsseek Idsseek(3X) seek to an indexed/named section of a COFF file
Idtbindex Idtbindex(3X) compute the index of a symbol table entry of a COFF file
Idtbread Idtbread(3X) read an indexed symbol table entry of a COFF file
Idtbseek Idtbseek(3X) seek to the symbol table of a COFF file
lfind lsearcb(3) linear search and update
line plot(3X) graphics interface
Iinemod plot(3X) graphics interface
localdtconv localdtconv(3) get date and time formatting conventions
localeconv localeconv(3) get numeric and monetary formatting conventions
localtime ctime(3V) convert date and time
lockf lockf(3) record locking on files
longjmp setjmp(3V) non-local goto
Irand48 drand48(3) generate uniformly distributed pseudo-random numbers
lsearch lsearcb(3) linear search and update
ltol3 I3tol(3C) convert between 3-byte integers and long integers
madd mp(3X) multiple precision integer arithmetic
madvise madvise(3) provide advice to VM system
malloc malloc(3V) memory allocator
malloc _debug malloc(3V) memory allocator
malloc _ verify malloc(3V) memory allocator
mallocmap malloc(3V) memory allocator
mblen mblen(3) multibyte character handling
mbstowcs mblen(3) multibyte character handling
mbtowc mblen(3) multibyte character handling
mcmp mp(3X) multiple precision integer arithmetic
mdiv mp(3X) multiple precision integer arithmetic
memalign malloc(3V) memory allocator
memccpy memory (3) memory operations
memcbr memory(3) memory operations
memcmp memory(3) memory operations
memcpy memory(3) memory operations
memory memory(3) memory operations
memset memory(3) memory operations
mfree mp(3X) multiple precision integer arithmetic
min mp(3X) multiple precision integer arithmetic
mkstemp mktemp(3) make a unique file name
mktemp mktemp(3) make a unique file name
mlock mlock(3) lock (or unlock) pages in memory
mlockall mlockall(3) lock (or unlock) address space
moncontrol monitor(3) prepare execution profile
monitor monitor(3) prepare execution profile
monstartup monitor(3) prepare execution profile
mout mp(3X) multiple precision integer arithmetic
move plot(3X) graphics interface
mp mp(3X) multiple precision integer arithmetic
mrand48 drand48(3) generate uniformly distributed pseudo-random numbers
msub mp(3X) multiple precision integer arithmetic
msync msync(3) synchronize memory with physical storage
mtox mp(3X) multiple precision integer arithmetic
mult mp(3X) multiple precision integer arithmetic
munlock mlock(3) lock (or unlock) pages in memory

894 Last change: 21 October 1987 Sun Release 4.1

INTRO(3) C LIBRARY FUNCTIONS INTRO(3)

munlockall mlockalJ(3) lock (or unlock) address space
ndbm ndbm(3) data base subroutines
netname2host secure _rpc(3N) library routines for secure remote procedure calls
netname2user secure _ rpc(3N) library routines for secure remote procedure calls
nextkey dbm(3X) data base subroutines
nice nice(3V) change nice value of a process
nl init setJocale(3V) set international environment
nl_langinfo nl_langinfo(3C) language information
nUst nlist(3V) get entries from symbol table
nrand48 drand48(3) generate uniformly distributed pseudo-random numbers
ntohl byteorder(3N) convert values between host and network byte order
ntohs byteorder(3N) convert values between host and network byte order
on exit on_exit(3) name termination handler
opendir directory(3V) directory operations
open log syslog(3) control system log
openpl plot(3X) graphics interface
optarg getopt(3) get option letter from argument vector
optind getopt(3) get option letter from argument vector
passwd2des xcrypt(3R) hex encryption and utility routines
pause pause(3V) stop until signal
pclose popen(3S) open or close a pipe (for I/O) from or to a process
perror perror(3) system error messages
plock plock(3) lock process, text, or data segment in memory
plot plot(3X) graphics interface
point plot(3X) graphics interface
popen popen(3S) open or close a pipe (for I/O) from or to a process
pow mp(3X) multiple precision integer arithmetic
printf printf(3V) formatted output conversion
prof prof(3) profile within a function
psignal psignal(3) system signal messages
pubUckey publickey(3R) get public or secret key
putc putc(3S) put character or word on a stream
putchar putc(3S) put character or word on a stream
putenv putenv(3) change or add value to environment
putpwent putpwent(3) write password file entry
puts puts(3S) put a string on a stream
putw putc(3S) put character or word on a stream
pwdauth pwdauth(3) password authentication routines
qsort qsort(3) quicker sort
rand rand(3V) simple random number generator
random random(3) better random number generator
rcmd rcmd(3N) routines for returning a stream to a remote command
re_comp regex(3) regular expression handler
re exec regex(3) regular expression handler
readdir directory (3 V) directory operations
realloc malloc(3V) memory allocator
realpath realpath(3) return the canonicalized absolute pathname
regex regex(3) regular expression handler
regexp regexp(3) regular expression compile and match routines
registerrpc rpc _ svc _ calls(3N) library routines for registerring servers
remexportent exportent(3) get exported file system information
remque insque(3) insert/remove element from a queue
res init resolver(3) resolver routines

Sun Release 4.1 Last change: 21 October 1987 895

INTRO(3) C LIBRARY FUNCTIONS INTRO(3)

res _ mkquery resolver(3) resolver routines
res_send resolver(3) resolver routines
resolver resolver(3) resolver routines
rewind fseek(3S) reposition a stream
rewinddir directory (3 V) directory operations
rexec rexec(3N) return stream to a remote command
rindex string(3) string operations
rpe rpe(3N) library routines for remote procedure calls
rpe _ createrr rpe _ clnt _ create(3N) library routines creating and manipulating CLIENT handle:
rpow mp(3X) multiple precision integer arithmetic
rresvport remd(3N) routines for returning a stream to a remote command
rtime rtime(3N) get remote time
ruserok rcmd(3N) routines for returning a stream to a remote command
scandir scandir(3) scan a directory
scanf scanf(3V) formatted input conversion
seconvert econvert(3) output conversion
seed48 drand48(3) generate uniformly distributed pseudo-random numbers
seekdir directory(3V) directory operations
setae getacinfo(3) get audit control file infonnation
setbuf setbuf(3V) assign buffering to a stream
setbuft'er setbuf(3V) assign buffering to a stream
setegid setuid(3V) set user and group ID
seteuid setuid(3V) set user and group ID
setexportent exportent(3) get exported file system information
setfsent getfsent(3) get file system descriptor file entry
setgid setuid(3V) set user and group ID
setgraent getgraent(3) get group adjunct file entry
setgrent getgrent(3V) get group file entry
sethostent gethostent(3N) get network host entry
setjrnp setjmp(3V) non-local goto
setkey crypt(3) password and data encryption
setlinebuf setbuf(3V) assign buffering to a stream
setlocale setlocale(3V) set international environment
setlogmask syslog(3) control system log
setmntent getmntent(3) get file system descriptor file entry
setnetent getnetent(3N) get network entry
setnetgrent getnetgrent(3N) get network group entry
setprotoent getprotoent(3N) get protocol entry
setpwaent getpwaent(3) get password adjunct file entry
setpwent getpwent(3V) get password file entry
setpwfile getpwent(3V) get password file entry
setrgid setuid(3V) set user and group ID
setrpcent getrpcent(3N) get RPC entry
setruid setuid(3V) set user and group ID
setservent getservent(3N) get service entry
setstate random (3) better random number generator
setttyent getttyent(3) get ttytab file entry
setuid setuid(3V) set user and group ID
setusershell getusershell(3) get legal user shells
setvbuf setbuf(3V) assign buffering to a stream
sfconvert econvert(3) output conversion
sgconvert econvert(3) output conversion
sigaction sigaction(3V) examine and change signal action

896 Last change: 21 October 1987 Sun Release 4.1

IN1RO(3)

sigaddset
sigdelset
sigemptyset
sigfillset
sigfpe
siginterropt
sigismember
siglongjmp
signal
sigsetjmp
sigsetops
single_to _decimal
sleep
space
sprintf
srand48
srand
srandom
sscanf
ssignal
stdio
store
strcasecmp
strcat
strchr
strcmp
strcoll
strcpy
strcspn
strdop
strftime
strin g_ to_decimal
strlen
strncasecmp
strncat
strncmp
strncpy
strpbrk
strptime
strrchr
strspn
strstr
strtod
strtok
strtol
strxfrm
stty
svc _destroy
svc fds
svc fdset
svc _freeargs
svc _getargs
svc Jetcaller

Sun Release 4.1

C LIBRARY FUNCTIONS INTRO(3)

sigsetops(3V)
sigsetops(3V)
sigsetops(3V)
sigsetops(3 V)
sigfpe(3)
siginterropt(3V)
sigsetops(3V)
setjmp(3V)
signal(3V)
setjmp(3V)
sigsetops(3V)
floating_to _ decimal(3)
sleep(3V)
plot(3X)
printf(3V)
drand48(3)
rand(3V)
random(3)
scanf(3V)
ssignal(3)
stdio(3V)
dbm(3X)
string(3)
string(3)
string(3)
string(3)
strcoll(3)
string(3)
string(3)
string(3)
ctime(3V)
string_to _ decimal(3)
string(3)
string(3)
string(3)
string(3)
string(3)
string(3)
ctime(3V)
string(3)
string(3)
string(3)
strtod(3)
string(3)
strtol(3)
strcoll(3)
stty(3C)
rpc_svc_create(3N)
rpc_svc_reg(3N)
rpc _ svc _reg(3N)
rpc _ svc _reg(3N)
rpc _ svc _ reg(3N)
rpc_svc_reg(3N)

manipulate signal sets
manipulate signal sets
manipulate signal sets
manipulate signal sets
signal handling for specific SIGFPE codes
allow signals to interrupt system calls
manipUlate signal sets
non-local goto
simplified software signal facilities
non-local goto
manipUlate signal sets
convert floating-point value to decimal record
suspend execution for interval
graphics interface
formatted output conversion
generate uniformly distributed pseudo-random numbers
simple random number generator
better random number generator
formatted input conversion
software signals
standard buffered input/output package
data base subroutines
string operations
string operations
string operations
string operations
compare or transform strings using collating information
string operations
string operations
string operations
convert date and time
parse characters into decimal record
string operations
string operations
string operations
string operations
string operations
string operations
convert date and time
string operations
string operations
string operations
convert string to double-precision number
string operations
convert string to integer
compare or transform strings using collating information
set and get terminal state
library routines for dealing with the creation of server handles
library routines for RPC servers
library routines for RPC servers
library routines for RPC servers
library routines for RPC servers
library routines for RPC servers

Last change: 21 October 1987 897

INTRO(3)

898

svcJetreq
svc _getreqset
svc _register
svc run
svc _ sendreply
svc _ unregister
svcerr auth
svcerr decode
svcerr _ noproc
svcerr _ noprog
svcerr Jrogvers
svcerr_systemBerr
svcerr weakauth
svcfd create
svcraw create
svctcp _create
svcudp _ bufcreate
swab
sys _ siglist
syslog
system
t_accept
t alloc
t bind
t close
t connect
terror
t_free
t_getinfo
t_getstate
t listen
t look
t_open
t_optmgmBt
t rcv
t rcvconnect
t rcvdis
t rcvrel
t rcvudata
t rcvuderr
t snd
t snddis
t sndrel
t sndudata
t_sync
t unbind
tcdrain
tcHow
tcHush
tcgetattr
tcgetpgrp
tcsendbreak
tcsetattr

C LIBRARY FUNCTIONS INTRO(3)

rpc _ svc _reg(3N)
rpc _ svc _ reg(3N)
rpc_svc_calIs(3N)
rpc _ svc _ reg(3N)
rpc_svc_reg(3N)
rpc_svc_cal~(3N)

rpc _ svc _ err(3N)
rpc _ svc _ err(3N)
rpc _ svc _ err(3N)
rpc _ svc _ err(3N)
rpc _ svc _ err(3N)
rpc _ svc _ err(3N)
rpc_svc_err(3N)
rpc_svc_create(3~

rpc_svc_create(3~

rpc_svc_create(3~

rpc_svc_create(3~

swab(3)
psignal(3)
syslog(3)
systemB(3)
t_accept(3N)
t_alloc(3N)
t_bind(3~
t _ c1ose(3N)
t _ connect(3N)
t _ error(3N)
t_free(3N)
t _getinfo(3N)
t _getstate(3N)
tJisten(3N)
t_look(3N)
t_open(3N)
t_opwgmt(3N)
t_rcv(3N)
t _ rcvconnect(3N)
t_rcvdis(3N)
t_rcvrel(3N)
t_rcvudata(3N)
t _ rcvuderr(3N)
t_snd(3N)
t _ snddis(3N)
t_sndrel(3N)
t _ sndudata(3N)
t_sync(3~

t_unbind(3N)
termios(3V)
termios(3V)
termios(3V)
termios(3V)
tcgetpgrp(3V)
termios(3V)
termios(3V)

library routines for RPC servers
library routines for RPC servers
library routines for registerring servers
library routines for RPC servers
library routines for RPC servers
library routines for registerring servers
library routines for server side remote procedure call errors
library routines for server side remote procedure call errors
library routines for server side remote procedure call errors
library routines for server side remote procedure call errors
library routines for server side remote procedure call errors
library routines for server side remote procedure call errors
library routines for server side remote procedure call errors
library routines for dealing with the creation of server handle
library routines for dealing with the creation of server handle
library routines for dealing with the creation of server handle
library routines for dealing with the creation of server handle
swap bytes
system signal messages
control system log
issue a shell command
accept a connect request
allocate a library structure
bind an address to a transport endpoint
close a transport endpoint
establish a connection with another transport user
produce error message
free a library structure
get protocol-specific service information
get the current state
listen for a connect request
look at the current event on a transport endpoint
establish a transport endpoint
manage options for a transport endpoint
receive normal or expedited data sent over a connection
receive the confirmation from a connect request
retrieve infonnation from disconnect
acknowledge receipt of an orderly release indication
receive a data unit
recei ve a unit data error indication
send nonnal or expedited data over a connection
send user-initiated disconnect request
initiate an orderly release
send a data unit
synchronize transport library
disable a transport endpoint
terminal control functions
terminal control functions
terminal control functions
terminal control functions
get, set foreground process group ID
terminal control functions
terminal control functions

Last change: 21 October 1987 Sun Release 4.1

INTRO(3)

tcsetpgrp
tdelete
telldir
tempnam
termcap
termios
textdomain
tfind
tgetent
tgetfiag
tgetnum
tgetstr
tgoto
time
timegm
timelocal
times
timezone
tmpfile
tmpnam
toascii
tolower
toupper
tputs
tsearch
ttyname
ttyslot
twalk
tzset
tzsetwall
ualarm
uUmit
ungetc
user2netname
usleep
utime
valloc
values
varargs
vfprintf
vlimit
vprintf
vsprintf
vsyslog
vtimes
wcstombs
wctomb
xcrypt
xdecrypt
xdr
xdr _accepted _reply
xdr_array
xdr _ authunix yarms

Sun Release 4.1

C LIBRARY FUNCTIONS INTRO(3)

tcgetpgrp(3V)
tsearch(3)
directory(3V)
tmpnam(3S)
termcap(3X)
termios(3V)
gettext(3)
tsearch(3)
termcap(3X)
termcap(3X)
termcap(3X)
termcap(3X)
termcap(3X)
time(3V)
ctime(3V)
ctime(3V)
times(3V)
timezone(3C)
tmpfile(3S)
tmpnam(3S)
ctype(3V)
ctype(3V)
ctype(3V)
termcap(3X)
tsearch(3)
ttyname(3 V)
ttyslot(3V)
tsearch(3)
ctime(3V)
ctime(3V)
ualarm(3)
ulimit(3C)
ungetc(3S)
secure _ rpc(3N)
usleep(3)
utime(3V)
malloc(3V)
values(3)
varargs(3)
vprintf(3V)
vlimit(3C)
vprintf(3V)
vprintf(3V)
vsyslog(3)
vtimes(3C)
mblen(3)
mblen(3)
xcrypt(3R)
xcrypt(3R)
xdr(3N)
rpc _ xdr(3N)
xdr _ complex(3N)
rpc _ xdr(3N)

get, set foreground process group ID
manage binary search trees
directory operations
create a name for a temporary file
terminal independent operation routines
terminal control functions
retrieve a message string, get and set text domain
manage binary search trees
terminal independent operation routines
terminal independent operation routines
terminal independent operation routines
terminal independent operation routines
terminal independent operation routines
get date and time
convert date and time
convert date and time
get process times
get time zone name given offset from GMT
create a temporary file
create a name for a temporary file
character classification and conversion macros and functions
character classification and conversion macros and functions
character classification and conversion macros and functions
terminal independent operation routines
manage binary search trees
find name of a terminal
find the slot in the utmp file of the current process
manage binary search trees
convert date and time
convert date and time
schedule signal after interval in microseconds
get and set user limits
push character back into input stream
library routines for secure remote procedure calls
suspend execution for interval in microseconds
set file times
memory allocator
machine-dependent values
handle variable argument list
print formatted output of a varargs argument list
control maximum system resource consumption
print formatted output of a varargs argument list
print formatted output of a varargs argument list
log message with a varargs argument list
get information about resource utilization
multibyte character handling
multibyte character handling
hex encryption and utility routines
hex encryption and utility routines
library routines for external data representation
XDR library routines for remote procedure calls
library routines for translating complex data types
XDR library routines for remote procedure calls

Last change: 21 October 1987 899

INTRO(3)

900

xdr bool
xdr_bytes
xdr callhdr
xdr _ callmsg
xdr char
xdr _destroy
xdr double
xdr enum
xdr float
xdr free
xdr_getpos
xdr inline
xdr int
xdr_long
xdr_opaque
xdr_opaque_auth
xdryamp
xdr ymaplist
xdr yointer
xdr reference
xdr _rejected_reply
xdr _ replymsg
xdr_setpos
xdr short
xdr_string
xdr u char
xdr u int
xdr_u_long
xdr u short
xdr union
xdr vector
xdr void
xdr _ wrapstring
xdrmem create
xdrrec create
xdrrec endofrecord
xdrrec eof
xdrrec _readbytes
xdrrec_skiprecord
xdrstdio _create
xencrypt
xprt _register
xprt _ un register
xtom
yp_all
yp_bind
yp_first
yp _get_default_domain
yp_master
yp_match
yp_oext
yp_order
yp_unbind

C LIBRARY FUNCTIONS INTRO(3)

xdr _simple(3N)
xdr _ complex(3N)
rpc _xdr(3N)
rpc _ xdr(3N)
xdr_simple(3N)
xdr _ create(3N)
xdr _ simple(3N)
xdr _ simple(3N)
xdr _ simple(3N)
xdr _simple(3N)
xdr _admin(3N)
xdr _ admin(3N)
xdr _ simple(3N)
xdr _simple(3N)
xdr _ complex(3N)
rpc _xdr(3N)
portmap(3N)
portmap(3N)
xdr _ complex(3N)
xdr _ complex(3N)
rpc _xdr(3N)
rpc _ xdr(3N)
xdr _ admin(3N)
xdr _ sim ple(3N)
xdr _ complex(3N)
xdr _simple(3N)
xdr _ sim ple(3N)
xdr _simple(3N)
xdr _ simple(3N)
xdr _ complex(3N)
xdr _ complex(3N)
xdr _simple(3N)
xdr _ complex(3N)
xdr _ create(3N)
xdr _ create(3N)
xdr _ admin(3N)
xdr _ admin(3N)
xdr _ admin(3N)
xdr _ admin(3N)
xdr _ create(3N)
xcrypt(3R)
rpc _svc _ calls(3N)
rpc _ svc _ calls(3N)
mp(3X)
ypclnt(3N)
ypclnt(3N)
ypclnt(3N)
ypclnt(3N)
ypclnt(3N)
ypclnt(3N)
ypclnt(3N)
ypclnt(3N)
ypclnt(3N)

library routines for translating simple data types
library routines for translating complex data types
XDR library routines for remote procedure calls
XDR library routines for remote procedure calls
library routines for translating simple data types
library routines for XDR stream creation
library routines for translating simple data types
library routines for translating simple data types
library routines for translating simple data types
library routines for translating simple data types
library routines for management of the XDR stream
library routines for management of the XDR stream
library routines for translating simple data types
library routines for translating simple data types
library routines for translating complex data types
XDR library routines for remote procedure calls
library routines for RPC bind service
library routines for RPC bind service
library routines for translating complex data types
library routines for translating complex data types
XDR library routines for remote procedure calls
XDR library routines for remote procedure calls
library routines for management of the XDR stream
library routines for translating simple data types
library routines for translating complex data types
library routines for translating simple data types
library routines for translating simple data types
library routines for translating simple data types
library routines for translating simple data types
library routines for translating complex data types
library routines for translating complex data types
library routines for translating simple data types
library routines for translating complex data types
library routines for XDR stream creation
library routines for XDR stream creation
library routines for management of the XDR stream
library routines for management of the XDR stream
library routines for management of the XDR stream
library routines for management of the XDR stream
library routines for XDR stream creation
hex encryption and utility routines
library routines for registerring servers
library routines for registerring servers
multiple precision integer arithmetic
NIS client interface
NIS client interface
NIS client interface
NIS client interface
NIS client interface
NIS client interface
NIS client interface
NIS client interface
NIS client interface

Last change: 21 October 1987 Sun Release 4.1

INTRO(3)

yp_update
ypclnt
yperr _string
ypprot_err

Sun Release 4.1

C LIBRARY FUNCTIONS

ypupdate(3N)
ypclnt(3N)
ypclnt(3N)
ypclnt(3N)

changes NIS information
NIS client interface
NIS client interface
NIS client interface

Last change: 21 October 1987

INTRO(3)

901

A64L(3) C LIBRARY FUNCTIONS A64L(3)

NAME
a641, 164a - convert between long integer and base-64 ASCII string

SYNOPSIS
long a641(s)
char *s;

char *164aO)
long I;

DESCRIPTION

BUGS

902

These functions are used to maintain numbers stored in base-64 ASCII characters. This is a notation by
which long integers can be represented by up to six characters; each character represents a "digit" in a
radix -64 notation.

The characters used to represent "digits" are '.' for 0, 'I' for I, 0 through 9 for 2-11, A through Z for
12-37, and a through z for 38-63.

a641() takes a pointer to a null-terminated base-64 representation and returns a corresponding long value.
If the string pointed to by s contains more than six characters, a641() will use the first six.

l64a() takes a long argument and returns a pointer to the corresponding base-64 representation. If the
argument is 0, 164a() returns a pointer to a null string.

The value returned by 164a() is a pointer into a static buffer, the contents of which are overwritten by each
call.

Last change: 6 October 1987 Sun Release 4.1

ABORT(3)

NAME
abort - generate a fault

SYNOPSIS
abort()

DESCRIPTION

C LIBRARY FUNCTIONS ABORT(3)

abort() first closes all open files if possible, then sends an lOT signal to the process. This signal usually
results in termination with a core dump, which may be used for debugging.

It is possible for abort() to return control if SIGIOT is caught or ignored, in which case the value returned
is that of the kill(2V) system call.

SEE ALSO
adb(1), exit(2V), kill(2V), signal(3V)

DIAGNOSTICS
If SIGIOT is neither caught nor ignored, and the current directory is writable, a core dump is produced and
the message 'abort - core dumped' is written by the shell.

Sun Release 4.1 Last change: 6 October 1987 903

ABS(3)

NAME
abs - integer absolute value

SYNOPSIS
abs(i)
int i;

DESCRIPTION

C LIBRARY FUNCTIONS

abs() returns the absolute value of its integer operand.

SEE ALSO
ieee _ functions(3M) for fabs()

BUGS

ABS (3)

Applying the abs() function to the most negative integer generates a result which is the most negative
integer. That is, abs(Ox80000000) returns Ox80000000 as a result.

904 Last change: 6 October 1987 Sun Release 4.1

AIOCANCEL (3) C LIBRARY FUNCTIONS AIOCANCEL (3)

NAME
aiocancel - cancel an asynchronous operation

SYNOPSIS
#include <syslasynch.h>

int aiocancel(resultp)
aio _result _ t *resultp;

DESCRIPTION
aiocancel() cancels the asynchronous operation associated with the result buffer pointed to by resultp. It
may not be possible to immediately cancel an operation which is in progress and in this case, aiocancel()
will not wait to cancel it

Upon successful completion, aiocancel() will return 0 and the requested operation will be canceled. The
application will not receive the SIGIO completion signal for an asynchronous operation which is success­
fully canceled.

RETURN VALUES
aiocancel() returns:

o on success.

-1 on failure and sets errno to indicate the error.

ERRORS
aiocancel() will fail if any of the following are true:

EACCES The parameter resultp does not correspond to an outstanding asynchronous operation.

EFAULT

SEE ALSO

The operation could not be cancelled.

The parameter resultp points to an address that is outside of the address space of the
requesting process.

aioread(3), aiowait(3)

Sun Release 4.1 Last change: 21 January 1990 905

AIOREAD(3) C LIBRARY FUNCTIONS AIOREAD(3)

NAME
aioread, aiowrite - asynchronous I/O operations

SYNOPSIS
#include <sys/asynch.h>

int aioread(fd, bufp, bufs, offset, whence, resultp)
int fd;
char *bufp;
int bufs;
int offset;
intwhence;
aio_result_t *resultp;

int aiowrite(fd, bufp, bufs, offset, whence, resultp)
int fd;
char *bufp;
int bufs;
int offset;
intwhence;
aio_result_t *resultp;

DESCRIPTION

906

aioread() initiates one asynchronous read(2V) and returns control to the calling program. The read()
continues concurrently with other activity of the process. An attempt is made to read bufs bytes of data
from the object referenced by the descriptor fd into the buffer pointed to by bUfp.

aiowrite() initiates one asynchronous write(2V) and returns control to the calling program. The write()
continues concurrently with other activity of the process. An attempt is made to write bufs bytes of data
from the buffer pointed to by bufp to the object referenced by the descriptor fd.

On objects capable of seeking, the I/O operation starts at the position specified by whence and offset.
These parameters have the same meaning as the corresponding parameters to the lseek(2V) function. On
objects not capable of seeking the I/O operation always start from the current position and the parameters
whence and offset are ignored. The seek pointer for objects capable of seeking is not updated by aioread()
or aiowrite(). Sequential asynchronous operations on these devices must be managed by the application
using the whence and offset parameters.

The result of the asynchronous operation is stored in the structure pointed to by resultp:
int aio_return; 1* return value of read() or write() *1
int aio_errno; 1* value of errno for read() or write() *1

Upon completion of the operation both aiD _return and aio _ errno are set to reflect the result of the opera­
tion. AIO_INPROORESS is not a value used by the system so the client may detect a change in state by ini­
tializing aiD _return to this value.

Notification of the completion of an asynchronous I/O operation may be obtained synchronously through
the aiowait(3) function, or asynchronously through the signal mechanism. Asynchronous notification is
accomplished by generating the SIGIO signal. The delivery of this instance of the SIGIO signal is reliable
in that a signal delivered while the handler is executing is not lost. If the client ensures that aiowait(3)
returns nothing (using a polling timeout) before returning from the signal handler, no asynchronous I/O
notifications are lost. The aiowait(3) function is the only way to dequeue an asynchronous notification.
Note: SIGIO may have several meanings simultaneously: for example, that a descriptor generated SIGIO
and an asynchronous operation completed. Further, issuing an asynchronous request successfully guaran­
tees that space exists to queue the completion notification.

c1ose(2V), exit(2V) and execve(2V) will block until all pending asynchronous I/O operations can be can­
celled by the system.

Last change: 21 January 1990 Sun Release 4.1

AIOREAD(3) C LIBRARY FUNCTIONS AIOREAD(3)

It is an error to use the same result buffer in more than one outstanding request These structures may only
be reused after the system has completed the operation.

RETURN VALUES
aioread() and aiowrite() return:

o on success.

-1 on failure and set errno to indicate the error.

ERRORS
EBADF

EFAULT

EINVAL

EPROCLIM

SEE ALSO

fd is not a valid file descriptor open for reading.

At least one of bufp or resultp points to an address out side the address space of the
requesting process.

The parameter resultp is currently being used by an outstanding asynchronous request.

The number of asynchronous requests that the system can handle at anyone time has
been exceeded

close (2V), execve(2V), exit (2V) , Iseek(2V), open(2V), read(2V), sigvec(2), write(2V), aiocancel(3),
aiowait(3)

Sun Release 4.1 Last change: 21 January 1990 907

AIOWAIT(3) C LIBRARY FUNCTIONS AIOWAIT(3)

NAME
aiowait - wait for completion of asynchronous I/O operation

SYNOPSIS
#include <sys/asynch.h>
#include <sys/time.h>

aio_result_t *aiowait(timeout)
struct timeval *timeout;

DESCRIPTION

NOTES

aiowait() suspends the calling process until one of its outstanding asynchronous I/O operations completes.
This provides a synchronous method of notification.

If timeout is a non-zero pointer, it specifies a maximum interval to wait for the completion of an asynchro­
nous I/O operation. If timeout is a zero pointer, then aiowaitO blocks indefinitely. To effect a poll, the
timeout parameter should be non-zero, pointing to a zero-valued timeval structure. The timeval structure is
defined in <syS/time.h> as:

struct time val {

};

long tv_sec;
long tv _usec;

1* seconds
1* and microseconds

aiowait() is the only way to dequeue an asynchronous notification. It may be used either inside a SIGIO
signal handler or in the main program. Note: one SIGIO signal may represent several queued events.

RETURN VALUES
On success, aiowait() returns a pointer to the result structure used when the completed asynchronous I/O
operation was requested. On failure, it returns -1 and sets errno to indicate the error. aiowait() returns 0
if the time limit expires.

ERRORS
EFAULT

EINTR

EINVAL

SEE ALSO

timeout points to an address outside the address space of the requesting process.

A signal was delivered before an asynchronous I/O operation completed.

The time limit expired.

There are no outstanding asynchronous I/O requests.

aiocancel(3), aioread(3)

908 Last change: 21 January 1990 Sun Release 4.1

ALARM (3V) C LIBRARY FUNCTIONS ALARM (3V)

NAME
alann - schedule signal after specified time

SYNOPSIS
unsigned int aJarm(seconds)
unsigned int seconds;

DESCRIPTION
aJarm() sends the signal SIGALRM (see sigvec(2», to the invoking process after seconds seconds. Unless
caught or ignored, the signal terminates the process.

aJarm() requests are not stacked; successive calls reset the alarm clock. If the argument is 0, any aJarm()
request is canceled. Because of scheduling delays, resumption of execution of when the signal is caught
may be delayed an arbitrary amount. The longest specifiable delay time is 2147483647 seconds.

The return value is the amount of time previously remaining in the alarm clock.

SEE ALSO
sigpause(2V), sigvec(2), signaJ(3V), sJeep(3V), uaJarm(3), usJeep(3)

WARNINGS
alarm() is slightly incompatible with the default version of sleep(3V). The alarm signal is not sent when
one would expect for programs that wait one second of clock time between successive calls to sleep().
Each sJeep() call postpones the alann signal that would have been sent during the requested sleep period
for one second. Use System V sleep(3V) to avoid this delay.

Sun Release 4.1 Last change: 6 October 1989 909

ASSERT(3V)

NAME
assert - program verification

SYNOPSIS
#include <assert.h>

assert(expression)

DESCRIPTION

C LIBRARY FUNCTIONS ASSERT(3V)

assert() is a macro that indicates expression is expected to be true at this point in the program. If expres­
sion is false (0), it displays a diagnostic message on the standard output and exits (see exit(2V»). Compil­
ing with the cc(1 V) option -DNDEBUG, or placing the preprocessor control statement

#define NDEBUG

before the "#include <assert.h>" statement effectively deletes assert() from the program.

SYSTEM V DESCRIPTION
The System V version of assert() calls abort(3) rather than exit().

SEE ALSO
cc(1 V), exit(2V), abort(3)

DIAGNOSTICS
Assertion failed: file J line n

The expression passed to the assert() statement at line n of source file f was false.

SYSTEM V DIAGNOSTICS
Assertion failed: expression, fileJ, line n

The expression passed to the assert() statement at line n of source file f was false.

910 Last change: 6 October 1989 Sun Release 4.1

C LIBRARY FUNCTIONS

NAME
audicargs, audictext - produce text audit message

SYNOPSIS
#include <sys/label.h>
#include <sys/audit.h>

audit_args(event, argc, argv)
int event;
int argc;
char * *argv;

audit_text(event, error, retval, argc, argv)
int event;
int error;
int retval;
int argc;
char **argv;

DESCRIPTION
These functions provide text interfaces to the audit(2) system call. In both calls, the event parameter
identifies the event class of the action, and argc is the number of strings found in the vector argv. The
error parameter is used to determine the failure or success of the audited operation. A negative value is
always audited. A zero value is audited as a successful event. A positive value is audited as an event
failure. The retval parameter is the return value or exit code that the invoking program will have.

audit_argsO is equivalent to audit_textO with error and retval parameters of-1.

SEE ALSO
audit(2)

Sun Release 4.1 Last change: 6 October 1987 911

BINDRESVPORT (3N) NETWORK FUNCTIONS

NAME
bindresvport - bind a socket to a privileged IP port

SYNOPSIS
#include <sys/types.h>
#include <netinetlin.h>

int bindresvport(sd, sin)
int sd;
struct sockaddr _in *sin;

DESCRIPTION

BINDRESVPORT (3N)

bindresvport() is used to bind a socket descriptor to a privileged IP port, that is, a port number in the range
0-1023. The routine returns 0 if it is successful, otherwise -1 is returned and errno set to reflect the cause
of the error. This routine differs with rresvport (see rcmd(3N)) in that this works for any IP socket,
whereas rresvport() only works for TCP.

Only root can bind to a privileged port; this call will fail for any other users.

SEE ALSO
rcmd(3N)

912 Last change: 22 november 1987 Sun Release 4.1

BSEARCH(3) C LIBRARY FUNCTIONS BSEARCH(3)

NAME
bsearch - binary search a sorted table

SYNOPSIS
#include <search.h>

char *bsearch «char *) key, (char *) base, nel, sizeof(*key), com par)
unsigned nel;
int (*compar)();

DESCRIPTION
bsearchO is a binary search routine generalized from Knuth (6.2.1) Algorithm B. It returns a pointer into
a table indicating where a datum may be found. The table must be previously sorted in increasing order
according to a provided comparison function. key points to a datum instance to be sought in the table.
base points to the element at the base of the table. nel is the number of elements in the table. compar is the
name of the comparison function, which is called with two arguments that point to the elements being com­
pared. The function must return an integer less than, equal to, or greater than zero as accordingly the first
argument is to be considered less than, equal to, or greater than the second.

EXAMPLE
The example below searches a table containing pointers to nodes consisting of a string and its length. The
table is ordered alphabetically on the string in the node pointed to by each entry.

This code fragment reads in strings and either finds the corresponding node, in which case it prints out the
string and its length, or it prints an error message.

Sun Release 4.1 Last change: 6 October 1987 913

BSEARCH(3) C LIBRARY FUNCTIONS BSEARCH(3)

NOTES

#include <stdio.h>
#include <search.h>
#define T ABSIZE 1000
struct node { 1* these are stored in the table *1

char *string;
int length;

};
struct node table[T ABSIZE]; 1* table to be searched *1

{

}

1*

*1
int

struct node *node Jtr, node;
int node_compare(); 1* routine to compare 2 nodes *1
char str_space[20]; 1* space to read string into *1

node.string = str _space;
while (scanf(" %s" , node.string) != EOF) {

}

node ytr = (struct node *)bsearch« char *)(&node),
(char *)table, TABSIZE,
sizeof(struct node), node_compare);

if (node Jtr != NULL) {

} else {

}

(void)printf(ttstring = %20s, length = %d\n",
node ytr->string, node ytr->Iength);

(void)printf("not found: %s\n", node.string);

This routine compares two nodes based on an
alphabetical ordering of the string field.

node _ compare(nodel, node2)
struct node *nodel, *node2;
{

return strcmp(nodel->string, node2->string);
}

The pointers to the key and the element at the base of the table should be of type pointer-to-element, and
cast to type pointer-to-character.

The comparison function need not compare every byte, so arbitrary data may be contained in the elements
in addition to the values being compared.

Although declared as type pointer-to-character, the value returned should be cast into type pointer-to­
element.

SEE ALSO
hsearch(3), lsearch(3), qsort(3), tsearch(3)

914 Last change: 6 October 1987 Sun Release 4.1

BSEARCH(3) C LIBRARY FUNCTIONS BSEARCH(3)

DIAGNOSTICS
A NULL pointer is returned if the key cannot be found in the table.

Sun Release 4.1 Last change: 6 October 1987 915

BSTRING(3) C LIBRARY FUNCTIONS BSTRING(3)

NAME
bstring, bcopy, bcmp, bzero, ffs - bit and byte string operations

SYNOPSIS
void
bcopy(bl, b2, length)
char *bl, *b2;
int length;

int bcmp(bl, b2, length)
char *bl, *b2;
int length;

void
bzero(b, length)
char *b;
int length;

int ffs(i)
int i;

DESCRIPTION

NOTES

The functions bcopy, bemp, and bzero() operate on variable length strings of bytes. They do not check
for null bytes as the routines in string(3) do.

bcopy() copies length bytes from string bl to the string b2. Overlapping strings are handled correctly.

bcmp() compares byte string bl against byte string b2, returning zero if they are identical, non-zero other­
wise. Both strings are assumed to be length bytes long. bemp() of length zero bytes always returns zero.

bzero() places length 0 bytes in the string b.

ffs() finds the first bit set in the argument passed it and returns the index of that bit. Bits are numbered
starting at 1 from the right. A return value of zero indicates that the value passed is zero.

The bcmp() and beopy() routines take parameters backwards from stremp() and strcpy().

SEE ALSO
string(3)

916 Last change: 23 November 1987 Sun Release 4.1

BYTEORDER(3N) NETWORK FUNCTIONS BYTEORDER (3N)

NAME
byteorder, htonl, htons, ntohl, ntohs - convert values between host and network byte order

SYNOPSIS
#include <sysltypes.h>
#include <netinetlin.h>

netlong = htonl(hostlong);
u _long netlong, hostlong;

netshort = htons(hostshort);
u _short netshort, hostshort;

hostlong = ntohl(netlong);
u _long hostlong, netlong;

hostshort = ntohs(netshort);
u _short hostshort, netshort;

DESCRIPTION
These routines convert 16 and 32 bit quantities between network byte order and host byte order. On Sun-2,
Sun-3 and Sun-4 systems, these routines are defined as NULL macros in the include file <netinetlin.h>. On
Sun386i systems, these routines are functional since its host byte order is different from network byte
order.

These routines are most often used in conjunction with Internet addresses and ports as returned by
gethostent(3N) and getservent(3N).

SEE ALSO
gethostent(3N), getservent(3N)

Sun Release 4.1 Last change: 18 February 1988 917

CATGETS (3C) COMPATIBILITY FUNCTIONS CATGETS (3C)

NAl\IE
catgets, catgetmsg - get message from a message catalog

SYNOPSIS
#include <nl_types.h>

char *catgets(catd, set_num, msg_num, s)
nl_ catd catd;
int set_ num, msg_num;
char *s;

char *catgetmsg(catd, set _ num, msg_ num, bur, buffen)
nl_ catd catd;
int set_num;
int msg_ num;
int buOen;

DESCRIPTION
catgets() reads the message msg_ num, in set set _ num, from the message catalog identified by catd. catd is
a catalog descriptor returned from an earlier call to catopen(3C). s points to a default message string
which will be returned by catgets() if the identified message catalog is not currently available. The
message-text is contained in an internal buffer area and should be copied by the application if it is to be
saved or re-used after further calls to catgets().

catgetmsg() attempts to read up to buflen -1 bytes of a message string into the area pointed to by buf.
buflen is an integer value containing the size in bytes of buf. The return string is always terminated with a
null byte.

RETURN VALUES
On success, catgets() returns a pointer to an internal buffer area containing the null-terminated message
string. catgets() returns a pointer to s if it fails because the message catalog specified by catd is not
currently available. Otherwise, catgets() returns a pointer to an empty string if the message catalog is
available but does not contain the specified message.

On success, catgetmsg() returns a pointer to the message string in bu[. If catd is invalid or if set_num or
msg_num is not in the message catalog, catgetmsg() returns a pointer to an empty string.

SEE ALSO
catopen(3C), locale(5)

918 Last change: 22 January 1990 Sun Release 4.1

CATOPEN (3C) COMPATIBILITY FUNCTIONS CATOPEN (3C)

NAME
catopen, catclose - open/close a message catalog

SYNOPSIS
#include <nl_types.h>

nl_ catd catopen(name, oflag)
char *name;
int oflag;

int catclose(catd)
nl_catd catd;

DESCRIPTION
catopen() opens a message catalog and returns a catalog descriptor. name specifies the name of the mes­
sage catalog to be opened. If name contains a 'f' then name specifies a pathname for the message catalog.
Otherwise, the environment variable NLSPATH is used with name substituted for %N (see locale(5». If
NLSPATH does not exist in the environment, or if a message catalog cannot be opened in any of the paths
specified by NLSPATH, the letdlocale/LC_MESSAGESllocale directory is searched for a message catalog
with filename name, followed by the lusrlshare/lib/locale/LC _ MESSAGESllocaie directory. In both cases
locale stands for the current setting of the LC_MESSAGES category of locale.

oflag is reserved for future use and should be set to 0 (zero). The results of setting this field to any other
value are undefined.

catclose() closes the message catalog identified by catd. It invalidates any following references to the
message catalog defined by catd.

RETURN VALUES
catopen() returns a message catalog descriptor on success. On failure, it returns -I.

catclose() returns:

o on success.

-1 on failure.

SEE ALSO
catgets(3C),locale(5)

NOTES
Using catopen() and catclose() in conjunction with gettext() or textdomain() (see gettext(3» is
undefined.

Sun Release 4.1 Last change: 22 January 1990 919

CLOCK (3C) COMPATIBILITY FUNCTIONS CLOCK(3C)

NAME
clock - report CPU time used

SYNOPSIS
long clock ()

DESCRIPTION
clock() returns the amount of CPU time (in microseconds) used since the first call to clock. The time
reported is the sum of the user and system times of the calling process and its tenninated child processes
for which it has executed wait(2V) or system(3).

The resolution of the clock is 16.667 milliseconds.

SEE ALSO

BUGS

920

wait(2V). system(3). times(3V)

The value returned by clock() is defined in microseconds for compatibility with systems that have CPU
clocks with much higher resolution. Because of this, the value returned will wrap around after accumulat­
ing only 2147 seconds of CPU time (about 36 minutes).

Last change: 6 October 1987 Sun Release 4.1

CRYPT(3) C LIBRARY FUNCTIONS CRYPT(3)

NAME
crypt, _crypt, setkey, encrypt - password and data encryption

SYNOPSIS
char *crypt(key, salt)
char *key, *salt;

char * _crypt(key, salt)
char *key, *salt;

setkey(key)
char *key;

encrypt(block, ed8ag)
char *block;

DESCRIPTION
crypt() is the password encryption routine, based on the NBS Data Encryption Standard, with variations
intended (among other things) to frustrate use of hardware implementations of the DES for key search.

The first argument to crypt() is normally a user's typed password. The second is a 2-character string
chosen from the set [a-zA-ZO-9./l. Unless it starts with '##' or '#$', the salt string is used to perturb the
DES algorithm in one of 4096 different ways, after which the password is used as the key to encrypt repeat­
edly a constant string. The returned value points to the encrypted password, in the same alphabet as the
salt. The first two characters are the salt itself.

If the salt string starts with '##', pwdauth(3) is called. If pwdauth returns TRUE, the salt is returned from
crypt. Otherwise, NULL is returned. If the salt string starts with '#$', grpauth (see pwdauth(3)) is called.
If grpauth returns TRUE, the salt is returned from crypt. Otherwise, NULL is returned. If there is a valid
reason not to have this authentication happen, calling _crypt avoids authentication.

The setkey and encrypt entries provide (rather primitive) access to the DES algorithm. The argument of set­
key is a character array of length 64 containing only the characters with numerical value 0 and 1. If this
string is divided into groups of 8, the low-order bit in each group is ignored; this gives a 56-bit key which is
set into the machine. This is the key that will be used with the above mentioned algorithm to encrypt or
decrypt the string block with the function encrypt.

The argument to the encrypt entry is a character array of length 64 containing only the characters with
numerical value 0 and 1. The argument array is modified in place to a similar array representing the bits of
the argument after having been subjected to the DES algorithm using the key set by setkey. If edflag is zero,
the argument is encrypted; if non-zero, it is decrypted.

SEE ALSO
login(1), passwd(I), getpass(3V), pwdauth(3), passwd(5)

BUGS
The return value points to static data whose content is overwritten by each call.

Sun Release 4.1 Last change: 6 October 1987 921

CTERMID (3V) C LIBRARY FUNCTIONS CTERMID (3V)

NAME
ctennid - generate filename for teoninal

SYNOPSIS
#include <stdio.h>
char *ctermid (s)
char *s;

DESCRIPTION
ctermid() generates the pathname of the controlling terminal for the current process, and stores it in a
string.

If s is a NULL pointer, the string is stored in an internal static area, the contents of which are overwritten at
the next call to ctermid(), and the address of which is returned. Otherwise, s is assumed to point to a char­
acter array of at least L _ ctermid elements; the path name is placed in this array and the value of s is
returned. The constant L ctermid is defined in <stdio.h> header file.

ctermid() returns a pointer to a null string if it fails, or if the pathname that would refer to the controlling
terminal cannot be deteonined.

SEE ALSO
ttyname(3V)

NOTES

922

The difference between ctermid() and ttyname(3V) is that ttyname() must be passed a file descriptor and
returns the actual name of the teoninal associated with that file descriptor, while ctermid() returns a string
(/dev/tty) that will refer to the teoninal if used as a file name. Thus ttyname() is useful only if the process
already has at least one file open to a terminal. ctermid() is useful largely for making code portable to

(non-UNIX) systems where the current terminal is referred to by a name other than /dev/tty.

Last change: 5 October 1989 Sun Release 4.1

CTIME(3V) C LIBRARY FUNCTIONS CTIME(3V)

NAME
ctime, asctime, dysize, gmtime, local time, strftime, strptime, timegm, timelocal, tzset, tzsetwall - convert
date and time

SYNOPSIS
#include <time.h>

char *ctime(clock)
time_t *clock;

char *asctime(tm)
struct tm *tm;

iot dysize(y)
iot y;

struct tm *gmtime(clock)
time_t *clock;

struct tm *Iocaltime(clock)
time_t *clock;

iot strftime(buf, bufsize, fmt, tm)
char *buf;
iot bufsize;
char *fmt;
struct tm *tm;

char *strptime(buf, fmt, tm)
char *buf;
char *fmt;
struct tm *tm;

time _t timegm(tm)
struct tm *tm;

time _t timelocal(tm)
struct tm *tm;

void tzset()

void tzsetwall()

SYSTEM V SYNOPSIS
In addition to the routines above, the following variables are available:

extern long timezooe;

extern int daylight;

extern char *tzname[2];

DESCRIPTION
ctime() converts a long integer, pointed to by clock, to a 26-character string of the form produced by asc­
time(). It first breaks down clock to a tm structure by calling localtime(), and then calls asctime() to con­
vert that tm structure to a string.

asctime() converts a time value contained in a tm structure to a 26-character string of the form:

Suo Sep 1601:03:52 1973\0\0

Each field has a constant width. asctime() returns a pointer to the string.

dysize() returns the number of days in the argument year, either 365 or 366. localtime() and gmtime()
return pointers to structures containing the time, broken down into various cGmponents of that time
represented in a particular time zone. localtime() breaks down a time specified by the value pointed to by

Sun Release 4.1 Last change: 5 October 1989 923

CTIME(3V) C LIBRARY FUNCTIONS CTIME(3V)

924

the clock argument, correcting for the time zone and any time zone adjustments (such as Daylight Savings
Time). Before doing so, localtimeO calls tzsetO (if tzsetO has not been called in the current process).
gmtime() breaks down a time specified by the value pointed to by the clock argument into GMT, which is
the time the system uses.

strftime() converts a time value contained in the tm structure pointed to by tm to a character string in a
format specified by fmt. The character string is placed into the array pointed to by bUf, which is assumed
to contain room for at least buflen characters. If the result contains no more than buflen characters,
strftime() returns the number of characters produced (not including the terminating null character). Other­
wise, it returns zero and the contents of the array are indeterminate. fmt is a character string that consists of
field descriptors and text characters, reminiscent of printf(3V). Each field descriptor consists of a % char­
acter followd by another character that specifies the replacement for the field descriptor. All other charac­
ters are copied from Imt into the result. The following field descriptors are supported:

%% same as %

%a day of week, using locale's abbreviated weekday names

% A day of week, using locale's full weekday names

%b
%h month, using locale's abbreviated month names

%B month, using locale's full month names

%c date and time as %x %X

%C date and time, in locale's long-format date and time representation

%d day of month (01-31)

%D date as %m/%d/%y

%e day of month (1-31; single digits are preceded by a blank)

% H hour (00-23)

%1 hour (00-12)

%j day number of year (001-366)

%k hour (0-23; single digits are preceded by a blank)

% I hour (1-12; single digits are preceded by a blank)

%m month number (01-12)

% M minute (00-59)

%n same as \n

%p locale's equivalent of AM or PM, whichever is appropriate

%r time as %I:%M:%S %p

%R time as %H:%M

%S seconds (00-59)

%t same as \t

%T time as %H:%M:%S

%U week number of year (01-52), Sunday is the first day of the week

%w day of week; Sunday is day 0

%W week number of year (01-52), Monday is the first day of the week

% x date, using locale's date format

% X time, using locale's time format

Last change: 5 October 1989 Sun Release 4.1

CTIME(3V) C LIBRARY FUNCTIONS CTIME(3V)

% y year within century (00-99)

% Y year, including century (fore example, 1988)

% Z time zone abbreviation

The difference between % U and % W lies in which day is counted as the first day of the week. Week
number 01 is the first week with four or more January days in it.

strptime() converts the character string pointed to by buf to a time value, which is stored in the tm struc­
ture pointed to by tm, using the format specified by fmt. A pointer to the character following the last char­
acter in the string pointed to by buf is returned. fmt is a character string that consists of field descriptors
and text characters, reminiscent of scanf(3v). Each field descriptor consists of a % character followd by
another character that specifies the replacement for the field descriptor. All other characters are copied
fromfmt into the result. The following field descriptors are supported:

%% same as %

%a
%A day of week, using locale's weekday names; either the abbreviated or full name may be

specified

%b
%B
%h month, using locale's month names; either the abbreviated or full name may be specified

%c date and time as %x %X

%C date and time, in locale's long-format date and time representation

%d
%e day of month (1-31; leading zeroes are permitted but not required)

%D date as %m/%d/%y

%H
% k hour (0-23; leading zeroes are permitted but not required)

%1
% I hour (0-12; leading zeroes are permitted but not required)

%j day number of year (001-366)

%m month number (1-12; leading zeroes are permitted but not required)

%M minute (0-59; leading zeroes are permitted but not required)

%p locale's equivalent of AM or PM

%r time as %I:%M:%S %p

%R time as %H:%M

%S seconds (0-59; leading zeroes are pennitted but not required)

%T time as %H:%M:%S

% x date, using locale's date format

% X time, using locale's time format

%y year within century (0-99; leading zeroes are permitted but not required)

% Y year, including century (for example, 1988)

Case is ignored when matching items such as month or weekday names. The %M, %S, %y, and % Y
fields are optional; if they would be matched by white space, the match is suppressed and the appropriate
field of the tm structure pointed to by tm is left unchanged. If any of the format items %d, %e, %H, %k,
%1, %1, %m, %M, %S, %y, or % Y are matched, but the string that matches them is followed by white

Sun Release 4.1 Last change: 5 October 1989 925

CTIME(3V) C LIBRARY FUNCTIONS CTIME(3V)

space, all subsequent items in the format string are skipped up to white space or the end of the format. The
net result is that, for example, the format %m/%d/%y can be matched by the string 12/31; the tm_mon
and tm _ mday fields of the tm structure pointed to by tm will be set to 11 and 31, respectively, while the
tm year field will be unchanged.

timelocal() and timegm() convert the time specified by the value pointed to by the tm argument to a time
value that represents that time expressed as the number of seconds since Jan. 1, 1970, 00:00, Greenwich
Mean Time. timelocal() converts a tm structure that represents local time, correcting for the time zone
and any time zone adjustments (such as Daylight Savings Time). Before doing so, timelocal() calls
tzset() (if tzset() has not been called in the current process). timegm() converts a tm structure that
represents GMT.

tzset() uses the value of the environment variable TZ to set time conversion information used by local­
time(). If TZ is absent from the environment, the an available approximation to local wall clock time is
used by localtime(). IfTZ appears in the environment but its value is a null string, Greenwich Mean Time
is used; if TZ appears and begins with a slash, it is used as the absolute pathname of the tzfilejormat (see
tzfile(5» file from which to read the time conversion information; ifTZ appears and begins with a character
other than a slash, it is used as a pathname relative to a system time conversion information directory.

tzsetwall() sets things up so that localtime() returns the best available approximation of local wall clock
time.

Declarations of all the functions and externals, and the tm structure, are in the <time.h> header file. The
structure (of type) tm structure includes the following fields:

int tm _sec; 1* seconds (0 - 59) *1
int tm_min; 1* minutes (0 - 59) *1
int tm _hour; 1* hours (0 - 23) */
int tm _ mday; 1* day of month (1 - 31) *1
int tm_moD; 1* month of year (0 - 11) */
int tm _year; 1* year - 1900 *1
int tm _ wday; 1* day of week (Sunday = 0) *1
int tm yday; 1* day of year (0 - 365) *1
int tm _isdst; 1* 1 if DST in effect *1
char *tm_zone; 1* abbreviation of timezone name *1
10Dg tm _gmtoff; 1* offset from GMT in seconds *1

tm Jsdst is non-zero if Daylight Savings Time is in effect. tm _zone points to a string that is the name used
for the local time zone at the time being converted. tm_gmtoff is the offset (in seconds) of the time
represented from GMT, with positive values indicating East of Greenwich.

SYSTEM V DESCRIPTION

926

The external long variable timezone contains the difference, in seconds, between GMT and local standard
time (in PST, timezone is 8*60*60). If this difference is not a constant, time zone will contain the value of
the offset on January 1, 1970 at 00:00 GMT. Since this is not necessarily the same as the value at some par­
ticular time, the time in question should be converted to a tm structure using localtime() and the
tm _gmtoff field of that structure should be used. The external variable daylight is non-zero if and only if
Daylight Savings Time would be in effect within the current time zone at some time; it does not indicate
whether Daylight Savings Time is currently in effect.

Last change: 5 October 1989 Sun Release 4.1

CTIME(3V) C LIBRARY FUNCTIONS CTIME(3V)

FILES

The external variable tzname is an array of two char * pointers. The first pointer points to a character
string that is the name of the current time zone when Daylight Savings Time is not in effect; the second
one, if Daylight Savings Time conversion should be applied, points to a character string that is the name of
the current time zone when Daylight Savings Time is in effect. These strings are updated by localtime()
whenever a time is converted. If Daylight Savings Time is in effect at the time being converted, the second
pointer is set to point to the name of the current time zone at that time, otherwise the first pointer is so set.

timezone, daylight, and tzname are retained for compatibility with existing programs.

lusrlshare/lib/zoneinfo standard time conversion information directory
lusrlshare/liblzoneinfo/localtime local time zone file

SEE ALSO

BUGS
gettimeofday(2), getenv(3V), time(3V), environ(5V), tzfiJe(5)

The return values point to static data, whose contents are overwritten by each call. The tm zone field of a
returned tm structure points to a static array of characters, which will also be overwritten at the next call
(and by calls to tzset() or tzsetwall()).

Sun Release 4.1 Last change: 5 October 1989 927

CTYPE(3V) C LIBRARY FUNCTIONS CTYPE(3V)

NAME
ctype, conv, isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct, isprint, iscntrl, isascii,
isgraph, toupper, tolower, toascii - character classification and conversion macros and functions

SYNOPSIS
#include <ctype.h>

isalpba(c)

DESCRIPTION

928

Character Classification Macros
These macros classify character-coded integer values according to the rules of the coded character set
defined by the character type information in the program's locale (category LC_CTYPE). On program
startup the LC_CTYPE category of locale is equivalent to the "C" locale.

In the "c" locale, or in a locale where the character type information is not defined, characters are
classified according to the rules of the US-Ascn 7 -bit coded character set. The control characters are those
below 040 (and the single byte 0177) (DEL). See ascii(7).

In all cases that argument is an int, the value of which must be representable as an unsigned char or must
equal the value of the macro EOF. If the argument has any other value, the behavior is undefined.

Each is a predicate returning nonzero for true, zero for false. isascii() is defined on all integer values.

isalpba(c) c is a letter.

c is an upper case letter.

c is a lower case letter.

c is a digit [0-9].

c is a hexadecimal digit [0-9], [A-FJ, or [a-f].

c is an alphanumeric character, that is, c is a letter or a digit.

isupper(c)

islower(c)

isdigit(c)

isxdigit(c)

isalnum(c)

isspace(c)

ispunct(c)

isprint(c)

iscntrI(c)

isascii(c)

isgrapb(c)

c is a SPACE, TAB, RETURN, NEWLINE, FORMFEED, or vertical tab character.

c is a punctuation character (neither control nor alphanumeric).

c is a printing character.

c is a delete character or ordinary control character.

c is an Ascn character, code less than 0200.

c is a visible graphic character.

Character Conversion Macros
toascii(c)

Masks c with the correct value so that c is guaranteed to be an Ascn character in the range 0
through Ox7f. Will not perform mapping from a non-AS en coded character set into Asen.

Character Conversion Functions
These functions perform simple conversions on single characters. They replace the previous macro
definitions which did not extend to support variant settings of the LC _ CTYPE locale category.

toupper(c) Converts c to its upper-case equivalent. This function works correctly for all
coded character sets and all characters within such sets selected by a valid setting
of the LC _ CTYPE locale category.

Last change: 11 January 1990 Sun Release 4.1

CTYPE(3V)

tolower(c)

C LIBRARY FUNCTIONS CTYPE(3V)

Converts c to its lower-case equivalent. This function works correctly for all
coded character sets and all characters within such sets selected by a valid setting
of the LC _ CTYPE locale category.

If the argument to any of these macros is not in the domain of the functiont the result is undefined.

SYSTEM V DESCRIPTION
Character Conversion Macros

The macros _toupperO and _tolowerO are faster than the equivalent functions (toupperO and
tolower(» but only work properly on a restricted range of characterst and will not work on a LC _ CTYPE
category other than the default "C" (ASCll).

These macros perform simple conversions on single characters.

_toupper(c) converts c to its upper-case equivalent. Note: This only works where c is known
to be a lower-case character to start with (presumably checked using islower(».

_ tolower(c)

SEE ALSO

converts c to its lower-case equivalent. Note: This only works where c is known
to be a upper-case character to start with (presumably checked using isupper(».

setlocale(3V)t ascii(7)t iso_8859 _1(7)

Sun Release 4.1 Last change: 11 January 1990 929

CURSES (3V) C LIBRARY FUNCTIONS

NAME
curses - System V terminal screen handling and optimization package

SYNOPSIS
The curses manual page is organized as follows:

In SYNOPSIS

• compiling information

• summary of parameters used by curses routines

In SYSTEM V SYNOPSIS:

• compiling information

In DESCRIPTION and SYSTEM V DESCRIPTION:

• An overview of how curses routines should be used

In ROUTINES, descriptions of curses routines are grouped under the appropriate topics:

• Overall Screen Manipulation

• Window and Pad Manipulation

• Output

• Input

• Output Options Setting

• Input Options Setting

• Environment Queries

• Low-level Curses Access

• Miscellaneous

• Use of curser

CURSES (3V)

In SYSTEM V ROUTINES, descriptions of curses routines are grouped under the appropriate topics:

930

• Overall Screen Manipulation

• Window and Pad Manipulation

• Output

• Input

• Output Options Setting

• Input Options Setting

• Environment Queries

• Soft Labels

• Low-level Curses Access

• Terminfo-Level Manipulations

• Termcap Emulation

• Miscellaneous

• Use of curser

Then come sections on:

• SYSTEM V ATTRIBUTES

• SYSTEM V FUNCITON KEYS

Last change: 21 January 1990 Sun Release 4.1

CURSES (3V) C LIBRARY FUNCTIONS CURSES (3V)

• liNE GRAPHICS

cc [flags] files -Icurses -Jtermcap [libraries]

#include <curses.h> (automatically includes <stdio.h> and <unctl.h>.)

The parameters in the following list are not global variables. This is a summary of the parameters used by
the curses library routines. All routines return the int values ERR or OK unless otherwise noted. Routines
that return pointers always return NULL on error. ERR, OK , and NULL are all defined in <curses.h>.)
Routines that return integers are not listed in the parameter list below.

boolbf

char **area,*boolnames[], *boolcodes[], *boolfnames[], *bp
char *cap, *capname, codename[2], erasechar, *filename, *fmt
char * keyname, killchar, * label, * longname
char *name, *numnames[), *numcodes[], *numfnames[]
char *slk _label, *str, *strnames[], *strcodes[], *strfnames[)
char *term, *tgetstr, *tigetstr, *tgoto, *tparm, *type

chtype attrs, ch, horch, vertch

FILE *infd, *outfd

int begin_x, begin J, begline, bot, c, col, count
int dmaxcol, dmaxrow, dmincol, dminrow, *errret, tildes
int (*init(»), labfmt, labnum, line
int ms, ncols, new, newcol, newrow, nlines, numlines
int oldcol, oldrow, overlay
int pI, p2, p9, pmincol, pminrow, (*putc(»), row
int smaxcol, smaxrow, smincol, sminrow, start
int tenths, top, visibility, x, Y

SCREEN *new, *newterm, *set_term

TERMINAL *cur _term, *nterm, *oterm

va Jist varglist

WINDOW *curscr, *dstwin, *initscr, *newpad, *newwin, *orig

WINDOW *pad, *srcwin, *stdscr, *subpad, *subwin, *win

SYSTEM V SYNOPSIS
lusr/5binlcc [flag . ..] file ... -Icurses [library . ..]

#include <curses.h> (automatically includes <stdio.h>, <termio.h>, and <unctrl.h».

DESCRIPTION
These routines give the user a method of updating screens with reasonable optimization. They keep an
image of the current screen, and the user sets up an image of a new one. Then the refresh() tells the rou­
tines to make the current screen look like the new one. In order to initialize the routines, the routine
initscr() must be called before any of the other routines that deal with windows and screens are used. The
routine endwin() should be called before exiting.

SYSTEM V DESCRIPTION
The curses routines give the user a terminal-independent method of updating screens with reasonable
optimization.

In order to initialize the routines, the routine initscr() or newterm() must be called before any of the other
routines that deal with windows and screens are used. Three exceptions are noted where they apply. The
routine endwin() must be called before exiting. To get character-at-a-time input without echoing, (most
interactive, screen oriented programs want this) after calling initscr() you should call 'cbreak (); noecho
();' Most programs would additionally call 'nonl 0; intrfiush(stdscr, FALSE); keypad(stdscr, TRUE);'.

Sun Release 4.1 Last change: 21 January 1990 931

CURSES (3V) C LIBRARY FUNCTIONS CURSES (3V)

Before a curses program is run, a terminal's TAB stops should be set and its initialization strings, if
defined, must be output. This can be done by executing the tset command in your .profile or .Iogin file.
For further details, see tset(1) and the Tabs and Initialization subsection of terminfo(5V).

The curses library contains routines that manipulate data structures called windows that can be thought of
as two-dimensional arrays of characters representing all or part of a terminal screen. A default window
called stdscr is supplied, which is the size of the terminal screen. Others may be created with newwin().
Windows are referred to by variables declared as WINDOW *; the type WINDOW is defined in <curses.h>
to be a C structure. These data structures are manipulated with routines described below, among which the
most basic are move() and addch(). More general versions of these routines are included with names
beginning with w, allowing you to specify a window. The routines not beginning with w usually affect
stdscr. Then refresh() is called, telling the routines to make the user's terminal screen look like stdscr.
The characters in a window are actually of type chtype, so that other information about the character may
also be stored with each character.

Special windows called pads may also be manipulated. These are windows that are not constrained to the
size of the screen and whose contents need not be displayed completely. See the description of newpad()
under Window and Pad Manipulation for more information.

In addition to drawing characters on the screen, video attributes may be included that cause the characters
to show up in modes such as underlined or in reverse video on terminals that support such display enhance­
ments. Line drawing characters may be specified to be output. On input, curses is also able to translate
arrow and function keys that transmit escape sequences into single values. The video attributes, line draw­
ing characters, and input values use names, defined in <curses.h>, such as A_REVERSE, ACS_HLINE, and
KEY_LEFT.

curses also defines the WINDOW * variable, curser, which is used only for certain low-level operations
like clearing and redrawing a garbaged screen. curser can be used in only a few routines. If the window
argument to c1earok() is curscr, the next call to wrefresh() with any window will clear and repaint the
screen from scratch. If the window argument to wrefresh() is curser, the screen in immediately cleared
and repainted from scratch. This is how most programs would implement a "repaint-screen" function.
More information on using curser is provided where its use is appropriate.

The environment variables LINES and COLUMNS may be set to override curses's idea of how large a
screen is.

If the environment variable TERMINFO is defined, any program using curses will check for a local termi­
nal definition before checking in the standard place. For example, if the environment variable TERM is set
to sun, then the compiled terminal definition is found in lusrlshare/lib/terminfo/s/sun. The s is copied
from the first letter of sun to avoid creation of huge directories.) However, if TERMINFO is set to
$HOME/myterms, curses will first check $HOME/myterms/s/sun, and, if that fails, will then check
lusrlsharellib/terminfo/s/sun. This is useful for developing experimental definitions or when write per­
mission on lusrlshare/lib/terminfo is not available.

The integer variables LINES and COLS are defined in <curses.h>, and will be filled in by initscr() with
the size of the screen. For more information, see the subsection Terminfo-Level Manipulations. The
constants TRUE and FALSE have the values 1 and 0, respectively. The constants ERR and OK are returned
by routines to indicate whether the routine successfully completed. These constants are also defined in
<curses.h> .

ROUTINES

932

Many of the following routines have two or more versions. The routines prefixed with w require a window
argument. The routines prefixed with p require a pad argument. Those without a prefix generally use
stdscr.

Last change: 21 January 1990 Sun Release 4.1

CURSES (3V) C LIBRARY FUNCTIONS CURSES (3V)

The routines prefixed with mv require y and x coordinates to move to before performing the appropriate
action. The mv routines imply a call to move() before the call to the other routine. The window argument
is always specified before the coordinates. y always refers to the row (of the window), and x always refers
to the column. The upper left comer is always (0,0), not (1,1). The routines prefixed with mvw take both a
window argument and y and x coordinates.

In each case, win is the window affected and pad is the pad affected. (win and pad are always of type
WINDOW *.) Option-setting routines require a boolean flag bl with the value TRUE or FALSE. (bl is
always of type bool.) The types WINDOW, bool, and chtype are defined in <curses.h> (see SYNOPSIS
for a summary of what types all variables are).

All routines return either the integer ERR or the integer OK, unless otherwise noted. Routines that return
pointers always return NULL on error.

Overall Screen Manipulation
WINDOW *initscr()

endwin()

The first routine called should almost always be initscr(). The exceptions are
slk Jnit(), filter(), and ripoffline(). This will determine the terminal type and
initialize all curses data structures. initscr() also arranges that the first call to
refresh() will clear the screen. If errors occur, initscr() will write an appropriate
error message to standard error and exit; otherwise, a pointer to stdscr is returned.
If the program wants an indication of error conditions, newterm() should be used
instead of initscr(). initscr() should only be called once per application.

A program should always call endwin() before exiting or escaping frem curses
mode temporarily, to do a shell escape or system(3) call, for example. This rou­
tine will restore termio(4) modes, move the cursor to the lower left corner of the
screen and reset the terminal into the proper non-visual mode. To resume after a
temporary escape, call wrefresh() or doupdate().

Window and Pad Manipulation
refresh()

wrefresh (win) These routines (or prefresh(), pnoutrefresh(), wnoutrefresh(), or doupdate(»
must be called to write output to the terminal, as most other routines merely mani­
pulate data structures. wrefresh() copies the named window to the physical ter­
minal screen, taking into account what is already there in order to minimize the
amount of information that's sent to the terminal (called optimization). refresh()
does the same thing, except it uses stdscr as a default window. Unless leaveok()
has been enabled, the physical cursor of the terminal is left at the location of the
window's cursor. The number of characters output to the terminal is returned.

Note: refresh() is a macro.

WINDOW *newwin (nlines. ncols. beginy. begin_x)

mvwin (win. y. x)

Create and return a pointer to a new window with the given number of lines (or
rows), nlines, and columns, ncols. The upper left corner of the window is at line
beginy, column begin~. If either nlines or ncols is 0, they will be set to the
value of lines-beginy and cols-begin_x. A new full-screen window is created
by calling newwin(O,O,O,O).

Move the window so that the upper left comer will be at position (y, x). If the
move would cause the window to be off the screen, it is an error and the window
is not moved.

WINDOW *subwin (orig. nUnes. ncols. beginy. begin_x)

Sun Release 4.1

Create and return a pointer to a new window with the given number of lines (or
rows), nUnes, and columns, ncols. The window is at position (beginy. begin_x)
on the screen. This position is relative to the screen, and not to the window orig.
The window is made in the middle of the window orig, so that changes made to

Last change: 21 January 1990 933

CURSES (3V) C LIBRARY FUNCTIONS CURSES (3V)

934

delwin (win)

Output

one window will affect both windows. When using this routine, often it will be
necessary to call touchwin() or touchline() on orig before calling wrefresh.

Delete the named window, freeing up all memory associated with it. In the case
of overlapping windows, subwindows should be deleted before the main window.

These routines are used to "draw" text on windows.

addch (ch)

waddch (win, ch)

mvaddch (y, x, ch)

mvwaddch (win, y, x, ch)

addstr (str)

The character ch is put into the window at the current cursor position of the win­
dow and the position of the window cursor is advanced. Its function is similar to

that of putchar() (see putc(3s». At the right margin, an automatic newline is
perfonned. At the bottom of the scrolling region, if scrollok() is enabled, the
scrolling region will be scrolled up one line.

If ch is a TAB, NEWLINE, or backspace, the cursor will be moved appropriately
within the window. A NEWLINE also does a c1rtoeol() before moving. TAB
characters are considered to be at every eighth column. If ch is another control
character, it will be drawn in the CfRL-X notation. (Calling winch() after adding
a control character will not return the control character, but instead will return the
representation of the control character.)

Video attributes can be combined with a character by or-ing them into the parame­
ter. This will result in these attributes also being set. The intent here is that text,
including attributes, can be copied from one place to another using inch() and
addch(). See standout(), below.

Note: ch is actually of type chtype, not a character.

Note: addch(), mvaddch(), and mvwaddch() are macros.

waddstr (win, str)

mvwaddstr (win, y, x, str)

mvaddstr (y, x, str)

box (win, vertch, horch)

erase()

we rase (win)

These routines write all the characters of the null-terminated character string str
on the given window. This is equivalent to calling waddchO once for each char­
acter in the string.

Note: addstr(), mvaddstr(), and mvwaddstr() are macros.

A box is drawn around the edge of the window, win. vertch and horch are the
characters the box is to be drawn with. If vertch and horch are 0, then appropriate
default characters, ACS _ VLINE and ACS _ HLINE, will be used.

Note: vertch and horch are actually of type chtype, not characters.

These routines copy blanks to every position in the window.

Note: erase() is a macro.

Last change: 21 January 1990 Sun Release 4.1

CURSES (3V)

c1ear()

wclear (win)

c1rtobot()

wclrtobot (win)

c1rtoeol()

wclrtoeol (win)

delch()

wdelch (win)

mvdelch (y, x)

C LIBRARY FUNCTIONS CURSES(3V)

These routines are like erase() and werase(), but they also call c1earok(), arrang­
ing that the screen will be cleared completely on the next call to wrefresh() for
that window, and repainted from scratch.

Note: c1ear() is a macro.

All lines below the cursor in this window are erased. Also, the current line to the
right of the cursor, inclusive, is erased.

Note: c1rtobot() is a macro.

The current line to the right of the cursor, inclusive, is erased.

Note: c1rtoeol() is a macro.

mvwdelch (win, y, x) The character under the cursor in the window is deleted. All characters to the
right on the same line are moved to the left one position and the last character on
the line is filled with a blank. The cursor position does not change (after moving
to (y, x), if specified). This does not imply use of the hardware "delete-character"
feature.

deleteln()

wdeleteln (win)

getyx (win, y, x)

insch (ch)

Note: delch(), mvdelch(), and mvwdelch() are macros.

The line under the cursor in the window is deleted. All lines below the current
line are moved up one line. The bottom line of the window is cleared. The cursor
position does not change. This does not imply use of the hardware "delete-line"
feature.

Note: deleteln() is a macro.

The cursor position of the window is placed in the two integer variables y and x.
This is implemented as a macro, so no '&' is necessary before the variables.

winsch (win, ch)

mvwinsch (win, y, x, ch)

mvinsch (y, x, ch)

insertln()

winsertln (win)

Sun Release 4.1

The character ch is inserted before the character under the cursor. All characters
to the right are moved one SPACE to the right, possibly losing the rightmost char­
acter of the line. The cursor position does not change (after moving to (y, x), if
specified). This does not imply use of the hardware "insert-character" feature.

Note: ch is actually of type chtype, not a character.

Note: insch(), mvinsch(), and mvwinsch() are macros.

A blank line is inserted above the current line and the bottom line is lost. This
does not imply use of the hardware "insert-line" feature.

Note: insertln() is a macro.

Last change: 21 January 1990 935

CURSES (3V) C LIBRARY FUNCTIONS CURSES (3V)

936

move (y,x)

wmove (win, y, x) The cursor associated with the window is moved to line (row) y, column x. This
does not move the physical cursor of the tenninal until refresh() is called. The
position specified is relative to the upper left comer of the window, which is (0,
0).

Note: move() is a macro.

overlay (srcwin, dstwin)

overwrite (srcwin, dstwin)

printw ifmt [, arg . .. J)

These routines overlay srcwin on top of dstwin; that is, all text in srcwin is copied
into dstwin. scrwin and dstwin need not be the same size; only text where the two
windows overlap is copied. The difference is that overlay() is non-destructive
(blanks are not copied), while overwrite() is destructive.

wprintw (win,fmt [, arg ...])

mvprintw (y, x,fmt [, arg . ..])

mvwprintw (win, y, x,fmt [, arg . .. J)

scroll (win)

touch win (win)

These routines are analogous to printf(3V). The string that would be output by
printf(3V) is instead output using waddstr() on the given window.

The window is scrolled up one line. This involves moving the lines in the window
data structure. As an optimization, if the window is stdscr and the scrolling
region is the entire window, the physical screen will be scrolled at the same time.

touch line (win, start, count)

Input
getch()

wgetch (win)

mvgetch (y, x)

Throwaway all optimization infonnation about which parts of the window have
been touched, by pretending that the entire window has been drawn on. This is
sometimes necessary when using overlapping windows, since a change to one
window will affect the other window, but the records of which lines have been
changed in the other window will not reflect the change. touchline() only pre­
tends that count lines have been changed, beginning with line start.

mvwgetch (win, y, x) A character is read from the tenninal associated with the window. In NODELAY
mode, if there is no input waiting, the value ERR is returned. In DELAY mode, the
program will hang until the system passes text through to the program. Depending
on the setting of cbreakO, this will be after one character (CBREAK mode), or
after the first newline (NOCBREAK mode). In HALF-DELAY mode, the program
will hang until a character is typed or the specified timeout has been reached.
Unless noecho() has been set, the character will also be echoed into the desig­
nated window. No refreshO will occur between the moveO and the getch()
done within the routines mvgetch() and mvwgetch().

When using getch(), wgetch(), mvgetch(), or mvwgetch(), do not set both NOC­
BREAK mode (nocbreakO) and ECHO mode (echoO) at the same time. Depend­
ing on the state of the tenninal driver when each character is typed, the program
may produce undesirable results.

Last change: 21 January 1990 Sun Release 4.1

CURSES (3V)

getstr (sIr)

C LIBRARY FUNCTIONS CURSES (3V)

If keypad (win, TRUE) has been called, and a function key is pressed, the token
for that function key will be returned instead of the raw characters. See keypad()
under Input Options Setting. Possible function keys are defined in <curses.h>
with integers beginning with 0401, whose names begin with KEY _. If a character
is received that could be the beginning of a function key (such as escape), curses
will set a timer. If the remainder of the sequence is not received within the desig­
nated time, the character will be passed through, otherwise the function key value
will be returned. For this reason, on many terminals, there will be a delay after a
user presses the escape key before the escape is returned to the program. Use by a
programmer of the escape key for a single character routine is discouraged. Also
see notimeout() below.

Note: getch(), mvgetch(), and mvwgetch() are macros.

wgetstr (win, SIr)

mvgetstr (y, x, SIr)

mvwgetstr (win, y, x, SIr)

inch()

winch (win)

mvinch (y, x)

mvwinch (win, y, x)

scanw (jmt[,arg ...])

A series of calls to getch() is made, until a newline, carriage return, or enter key
is received. The resulting value is placed in the area pointed at by the character
pointer sIr. The user's erase and kill characters are interpreted. As in mvgetch(),
no refresh () is done between the move() and getstr() within the routines
mvgetstr() and mvwgetstr().

Note: getstr(), mvgetstr(), and mvwgetstr() are macros.

The character, of type chtype, at the current position in the named window is
returned. If any attributes are set for that position, their values will be OR'ed into
the value returned. The predefined constants A_ CHARTEXT and
A_ATTRIBUTES, defined in <curses.h>, can be used with the C logical AND (&)
operator to extract the character or attributes alone.

Note: inch(), winch(), mvinch(), and mvwinch() are macros.

wscanw (win,fml L arg ... n
mvscanw (y, x,fml L arg ... n
mvwscanw (win, y, x,fmt L arg . ..])

Output Options Setting

These routines correspond to scanf(3V), as do their arguments and return values.
wgetstr() is called on the window, and the resulting line is used as input for the
scan.

These routines set options within curses that deal with output. All options are initially FALSE, unless oth­
erwise stated. It is not necessary to turn these options off before calling endwin().

clearok (win, bf) If enabled (bf is TRUE), the next call to wrefresh() with this window will clear
the screen completely and redraw the entire screen from scratch. This is useful
when the contents of the screen are uncertain, or in some cases for a more pleas­
ing visual effect.

Sun Release 4.1 Last change: 21 January 1990 937

CURSES (3V) C LIBRARY FUNCTIONS CURSES (3V)

938

idlok (win, bf)

leaveok (win, bf)

scrollok (win, bf)

010

oonl()

Input Options Setting

If enabled (bf is TRUE), curses will consider using the hardware "insert/delete­
line" feature of terminals so equipped. If disabled (bf is FALSE), curses will very
seldom use this feature. The "insert/delete-character" feature is always con­
sidered. This option should be enabled only if your application needs
"insert/delete-line", for example, for a screen editor. It is disabled by default
because "insert/delete-line" tends to be visually annoying when used in applica­
tions where it is not really needed. If "insert/delete-line" cannot be used, curses
will redraw the changed portions of all lines.

Normally, the hardware cursor is left at the location of the window cursor being
refreshed. This option allows the cursor to be left wherever the update happens to
leave it. It is useful for applications where the cursor is not used, since it reduces
the need for cursor motions. If possible, the cursor is made invisible when this
option is enabled.

This option controls what happens when the cursor of a window is moved off the
edge of the window or scrolling region, either from a newline on the bottom line,
or typing the last character of the last line. If disabled (bf is FALSE), the cursor is
left on the bottom line at the location where the offending character was entered.
If enabled (bfis TRUE), wrefresh() is called on the window, and then the physi­
cal terminal and window are scrolled up one line. Note: in order to get the physi­
cal scrolling effect on the terminal, it is also necessary to call idlok().

These routines control whether NEWLINE is translated into RETURN and
LINEFEED on output, and whether RETURN is translated into NEWLINE on input.
Initially, the translations do occur. By disabling these translations using nonlO,
curses is able to make better use of the linefeed capability, resulting in faster cur­
sor motion.

These routines set options within curses that deal with input. The options involve using ioctl(2) and there­
fore interact with curses routines. It is not necessary to tum these options off before calling endwin().

For more information on these options, refer to Programming Utilities and Libraries.

cbreak()

nocbreak()

echo()

noecho()

These two routines put the terminal into and out of CBREAK mode, respectively.
In CBREAK mode, characters typed by the user are immediately available to the
program and erase/kill character processing is not performed. When in NOC­
BREAK mode, the tty driver will buffer characters typed until a NEWLINE or
RETURN is typed. Interrupt and flow-control characters are unaffected by this
mode (see termio(4». Initially the terminal mayor may not be in CBREAK mode,
as it is inherited, therefore, a program should call cbreak() or nocbreak() expli­
citly. Most interactive programs using curses will set CBREAK mode.

Note: cbreak() overrides raw(). See getch() under Input for a discussion of
how these routines interact with echo() and noecho().

These routines control whether characters typed by the user are echoed by getch()
as they are typed. Echoing by the tty driver is always disabled, but initially
getchO is in ECHO mode, so characters typed are echoed. Authors of most
interactive programs prefer to do their own echoing in a controlled area of the
screen, or not to echo at all, so they disable echoing by calling noecho(). See
getch() under Input for a discussion of how these routines interact with cbreak()
and nocbreak().

Last change: 21 January 1990 Sun Release 4.1

CURSES (3V)

raw()

noraw()

Environment Queries
baudrate()

char erasechar()

char killchar()

char * longname()

Low-Level curses Access

C LIBRARY FUNCTIONS CURSES (3V)

The terminal is placed into or out of RAW mode. RAW mode is similar to
CBREAK mode, in that characters typed are immediately passed through to the
user program. The differences are that in RAW mode, the interrupt, quit, suspend,
and flow control characters are passed through uninterpreted, instead of generating
a signal. RAW mode also causes 8-bit input and output. The behavior of the
BREAK key depends on other bits in the terminal driver that are not set by curses.

Returns the output speed of the terminal. The number returned is in bits per
second, for example, 9600, and is an integer.

The user's current erase character is returned.

The user's current line-kill character is returned.

This routine returns a pointer to a static area containing a verbose description of
the current terminal. The maximum length of a verbose description is 128 charac­
ters. It is defined only after the call to initscr() or newterm(). The area is
overwritten by each call to newtermO and is not restored by set_termO, so the
value should be saved between calls to newterm() if longname() is going to be
used with multiple terminals.

The following routines give low-level access to various curses functionality. These routines typically
would be used inside of library routines.

resetty()

savetty()

Miscellaneous
unctrl (c)

flusok(win,booif)

These routines save and restore the state of the terminal modes. savetty() saves
the current state of the terminal in a buffer and resetty() restores the state to what
it was at the last call to savetty().

This macro expands to a character string which is a printable representation of the
character c. Control characters are displayed in the AX notation. Printing charac­
ters are displayed as is.

unctrlO is a macro, defined in <unctrl.h>, which is automatically included by
<curses.h>.

set flush-on-refresh flag for win

getcap(name) get terminal capability name

touchoverlap(winl,win2)
mark overlap of winl on win2 as changed

Use of curser
The special window curscr can be used in only a few routines. If the window argument to clearok() is
curscr, the next call to wrefresh() with any window will cause the screen to be cleared and repainted from
scratch. If the window argument to wrefresh() is curscr, the screen is immediately cleared and repainted
from scratch. This is how most programs would implement a "repaint-screen" routine. The source win­
dow argument to overlay(), overwrite(), and copywin may be curser, in which case the current contents
of the virtual terminal screen will be accessed.

Obsolete Calls
Various routines are provided to maintain compatibility in programs written for older versions of the curses
library. These routines are all emulated as indicated below.

Sun Release 4.1 Last change: 21 January 1990 939

CURSES (3V) C LIBRARY FUNCTIONS CURSES (3V)

crmode()

gettmode()

nocrmode()

Replaced by cbreak().

Ano-op.

Replaced by nocbreak().

SYSTEM V ROUTINES

940

The above routines are available as described except for f1usok(), getcap() and touchoverlap() which are
not available.

In addition, the following routines are available:

Overall Screen Manipulation
isendwin() Returns TRUE if endwin() has been called without any subsequent calls to

wrefresh().

SCREEN *newterm(type, outfd, infd)
A program that outputs to more than one terminal must use newterm() for each
terminal instead of initscr(). A program that wants an indication of error condi­
tions, so that it may continue to run in a line-oriented mode if the terminal cannot
support a screen-oriented program, must also use this routine. newterm() should
be called once for each terminal. It returns a variable of type SCREEN* that
should be saved as a reference to that terminal. The arguments are the type of the
terminal to be used in place of the environment variable TERM; outfd, a stdio(3V)
file pointer for output to the terminal; and infd, another file pointer for input from
the terminal. When it is done running, the program must also call endwin() for
each terminal being used. If newterm() is called more than once for the same tef­
minaI, the first terminal referred to must be the last one for which endwin() is
called.

SCREEN *set _term (new)
This routine is used to switch between different terminals. The screen reference
new becomes the new current terminal. A pointer to the screen of the previous
terminal is returned by the routine. This is the only routine that manipulates
SCREEN pointers; all other routines affect only the current terminal.

Window and Pad Manipulation
wnoutrefresh (win)

doupdate() These two routines allow multiple updates to the physical terminal screen with
more efficiency than wrefresh() alone. How this is accomplished is described in
the next paragraph.

curses keeps two data structures representing the terminal screen: a physical tef­

minal screen, describing what is actually on the screen, and a virtual terminal
screen, describing what the programmer wants to have on the screen. wrefresh()
works by first calling wnoutrefresh(), which copies the named window to the vir­
tual screen, and then by calling doupdate(), which compares the virtual screen to
the physical screen and does the actual update. If the programmer wishes to out­
put several windows at once, a series of calls to wrefresh() will result in alternat­
ing calls to wnoutrefresh() and doupdate(), causing several bursts of output to
the screen. By first calling wnoutrefresh() for each window, it is then possible to
call doupdate() once, resulting in only one burst of output, with probably fewer
total characters transmitted and certainly less processor time used.

WINDOW *newpad (nlines, ncols)
Create and return a pointer to a new pad data structure with the given number of
lines (or rows), nlines, and columns, ncols. A pad is a window that is not res­
tricted by the screen size and is not necessarily associated with a particular part of
the screen. Pads can be used when a large window is needed, and only a part of

Last change: 21 January 1990 Sun Release 4.1

CURSES (3V) C LIBRARY FUNCTIONS CURSES (3V)

the window will be on the screen at one time. Automatic refreshes of pads (for
example, from scrolling or echoing of input) do not occur. It is not legal to call
wrefresh() with a pad as an argument; the routines prefresh() or pnoutrefresh()
should be called instead. Note: these routines require additional parameters to
specify the part of the pad to be displayed and the location on the screen to be
used for display.

WINDOW *subpad (orig, nlines, ncols, beginy, begin_x)
Create and return a pointer to a subwindow within a pad with the given number of
lines (or rows), nlines, and columns, ncols. Unlike subwin(), which uses screen
coordinates, the window is at position (beginy, begin_x) on the pad. The win­
dow is made in the middle of the window orig, so that changes made to one win­
dow will affect both windows. When using this routine, often it will be necessary
to call touchwin() or touchline() on orig before calling prefresh().

prefresh (pad, pminrow, pmincol , sminrow, smincol, smaxrow, smaxcol)

pnoutrefresh (pad, pminrow, pmincol , sminrow, smincol , smaxrow, smaxcol)

These routines are analogous to

Output

wrefresh() and wnoutrefresh() except that pads, instead of windows, are
involved. The additional parameters are needed to indicate what part of the pad
and screen are involved. pminrow and pmincol specify the upper left comer, in
the pad, of the rectangle to be displayed. sminrow, smincol, smaxrow, and smax­
col specify the edges, on the screen, of the rectangle to be displayed in. The lower
right comer in the pad of the rectangle to be displayed is calculated from the
screen coordinates, since the rectangles must be the same size. Both rectangles
must be entirely contained within their respective structures. Negative values of
pminrow, pmincol, sminrow, or smincol are treated as if they were zero.

These routines are used to "draw" text on windows.

echochar (ch)

wechochar (win, ch)

pechochar (pad, ch)

Sun Release 4.1

These routines are functionally equivalent to a call to addch (ch) followed by a
call to refresh(), a call to waddch (win, ch) followed by a call to wrefresh (win),
or a call to waddch (pad, ch) followed by a call to prefresh (pad). The
knowledge that only a single character is being output is taken into consideration
and, for non-control characters, a considerable performance gain can be seen by
using these routines instead of their equivalents. In the case of pechochar(), the
last location of the pad on the screen is reused for the arguments to prefresh().

Note: ch is actually of type chtype, not a character.

Note: echochar() is a macro.

Last change: 21 January 1990 941

CURSES (3V) C LIBRARY FUNCTIONS CURSES (3V)

942

attroff (attrs)

wattroff (win, attrs)

attron (attrs)

wattron (win, attrs)

attrset (attrs)

wattrset (win, attrs)

beep()

8ash()

delay_output (ms)

getbegyx (win, y, x)

These routines are used to signal the terminal user. beep() will sound the audible
alarm on the terminal, if possible, and if not, will flash the screen (visible bell), if
that is possible. 8ash() will flash the screen, and if that is not possible, will sound
the audible signal. If neither signal is possible, nothing will happen. Nearly all
terminals have an audible signal (bell or beep) but only some can flash the screen.

Insert a ms millisecond pause in the output. It is not recommended that this rou­
tine be used extensively, because padding characters are used rather than a proces­
sor pause.

getmaxyx (win, y, x) Like getyx(), these routines store the current beginning coordinates and size of
the specified window.

Note: getbegyx() and getmaxyx() are macros.

copywin (srcwin, dstwin, sminrow, smincol, dminrow, dmincol, dmaxrow, dmaxcol, overlay)
This routine provides a finer grain of control over the overlay() and overwrite()
routines. Like in the prefresh() routine, a rectangle is specified in the destination
window, (dminrow, dmincol) and (dmaxrow, dmaxcol), and the upper-left-comer
coordinates of the source window, (sminrow, smincol). If the argument overlay is
true, then copying is non-destructive, as in overlay().

vwprintw (win,fmt, varglist)

Input
8ushinp()

ungetch (c)

This routine corresponds to vprintf(3V). It performs a wprintw() using a vari­
able argument list. The third argument is a va Jist, a pointer to a list of argu­
ments, as defined in <varargs.h>. See the vprintf(3V) and varargs(3) manual
pages for a detailed description on how to use variable argument lists.

Throws away any typeahead that has been typed by the user and has not yet been
read by the program.

Place c back onto the input queue to be returned by the next call to wgetch().

vwscanw (win,fmt, ap) This routine is similar to vwprintwO above in that performs a wscanwO using a
variable argument list. The third argument is a va_list, a pointer to a list of argu­
ments, as defined in <varargs.h>. See the vprintf(3V) and varargs(3) manual
pages for a detailed description on how to use variable argument lists.

Output Options Setting
These routines set options within curses that deal with output. All options are initially FALSE, unless oth­
erwise stated. It is not necessary to tum these options off before calling endwinO.

setscrreg (top, bot)

wsetscrreg (win, top, bot)
These routines allow the user to set a software scrolling region in a window. top
and bot are the line numbers of the top and bottom margin of the scrolling region.
Line 0 is the top line of the window. If this option and scrollok() are enabled, an

Last change: 21 January 1990 Sun Release 4.1

CURSES (3V)

Input Options Setting

C LIBRARY FUNCTIONS CURSES (3V)

attempt to move off the bottom margin line will cause all lines in the scrolling
region to scroll up one line. Note: this has nothing to do with use of a physical
scrolling region capability in the terminal, like that in the DEC VT100. Only the
text of the window is scrolled; if idIok() is enabled and the terminal has either a
scrolling region or "insert/delete-line" capability, they will probably be used by
the output routines.

Note: setscrreg() and wsetscrreg() are macros.

These routines set options within curses that deal with input. The options involve using ioctl(2) and there­
fore interact with curses routines. It is not necessary to turn these options off before calling endwin().

For more information on these options, refer to Programming Utilities and Libraries.

haIfdeIay (tenths) Half-delay mode is similar to CBREAK mode in that characters typed by the user
are immediately available to the program. However, after blocking for tenths
tenths of seconds, ERR will be returned if nothing has been typed. tenths must be
a number between 1 and 255. Usc nocbreak() to leave half-delay mode.

intrflush (win. bf)

keypad (win. bj)

meta (win. bj)

nodelay (win. bj)

notimeout (win. bj)

typeahead (fildes)

Sun Release 4.1

If this option is enabled, when an interrupt key is pressed on the keyboard (inter­
rupt, break, quit) all output in the tty driver queue will be flushed, giving the effect
of faster response to the interrupt, but causing curses to have the wrong idea of
what is on the screen. Disabling the option prevents the flush. The default for the
option is inherited from the tty driver settings. The window argument is ignored.

This option enables the keypad of the user's terminal. If enabled, the user can
press a function key (such as an arrow key) and wgetchO will return a single
value representing the function key, as in KEY_LEFT. If disabled, curses will not
treat function keys specially and the program would have to interpret the escape
sequences itself. If the keypad in the terminal can be turned on (made to transmit)
and off (made to work locally), turning on this option will cause the terminal
keypad to be turned on when wgetch() is called.

If enabled, characters returned by wgetch() are transmitted with all 8 bits, instead
of with the highest bit stripped. In order for meta() to work correctly, the km
(has_meta_key) capability has to be specified in the terminal's terminfo(5V)
entry.

This option causes wgetchO to be a non-blocking call. If no input is ready,
wgetch() will return ERR. If disabled, wgetch() will hang until a key is pressed.

While interpreting an input escape sequence, wgetch() will set a timer while wait­
ing for the next character. If notimeout (win. TRUE) is called, then wgetchO
will not set a timer. The purpose of the timeout is to differentiate between
sequences received from a function key and those typed by a user.

curses does "line-breakout optimization" by looking for typeahead periodically
while updating the screen. If input is found, and it is coming from a tty, the
current update will be postponed until refresh() or doupdate() is called again.
This allows faster response to commands typed in advance. Normally, the file
descriptor for the input FILE pointer passed to newterm(), or stdin in the case that
initscr() was used, will be used to do this typeahead checking. The typeahead()
routine specifies that the file descriptor fildes is to be used to check for typeahead
instead. If fildes is -1, then no typeahead checking will be done.

Note:fildes is a file descriptor, not a <stdio.h> FILE pointer.

Last change: 21 January 1990 943

CURSES (3V) C LIBRARY FUNCTIONS CURSES (3V)

944

Environment Queries
has)c()

has)IO

Soft Labels

True if the terminal has insert- and delete-character capabilities.

True if the terminal has insert- and delete-line capabilities, or can simulate them
using scrolling regions. This might be used to check to see if it would be
appropriate to tum on physical scrolling using scrolIok().

If desired, curses will manipulate the set of soft function-key labels that exist on many terminals. For
those terminals that do not have soft labels," if you want to simulate them, curses will take over the bottom
line of stdscr, reducing the size of stdscr and the variable LINES. curses standardizes on 8 labels of 8
characters each.

slk)nit (labfmt) In order to use soft labels, this routine must be called before initscr() or
newterrn() is called. If initscr() winds up using a line from stdscr to emulate the
soft labels, then labfmt determines how the labels are arranged on the screen. Set­
ting labfmt to 0 indicates that the labels are to be arranged in a 3-2-3 arrangement;
1 asks for a 4-4 arrangement.

slk set (labnum, label, labfmt)

slk _refresh()

slk _ noutrefresh()

labnum is the label number, from 1 to 8. label is the string to be put on the label.
up to 8 characters in length. A null string or a NULL pointer will put up a blank
label. labfmt is one of 0, 1 or 2, to indicate whether the label is to be left-justified.
centered, or right-justified within the label.

These routines correspond to the routines wrefresh() and wnoutrefresh(). Most
applications would use slk _ noutrefresh() because a wrefresh() will most likely
soon follow.

char *slk_label (labnum)

slk _ c1ear()

slk _restore()

slk_ touch()

Low-Level curses Access

The current label for label number labnum, with leading and trailing blanks
stripped, is returned.

The soft labels are cleared from the screen.

The soft labels are restored to the screen after a slk _ c1ear().

All of the soft labels are forced to be output the next time a sIk _ noutrefresh() is
performed.

The following routines give low-level access to various curses functionality. These routines typically
would be used inside of library routines.

defJProg_rnode()

reset yrog_ rnode()

reset_sheltrnode()

Save the current terminal modes as the "program" (in curses) or "shell" (not in
curses) state for use by the reset yrog_ rnode() and reset _ sbell_ rnode() routines.
This is done automatically by initscr().

Restore the terminal to "program" (in curses) or "shell" (out of curses) state.
These are done automatically by endwin() and doupdate() after an endwin(), so
they normally would not be called.

Last change: 21 January 1990 Sun Release 4.1

CURSES (3V)

getsyx (y, x)

setsyx (y, x)

ripofftine (line, init)

C LIBRARY FUNCTIONS CURSES (3V)

The current coordinates of the virtual screen cursor are returned in y and x. Like
getyx(), the variables y and x do not take an & before them. If leaveok() is
currently TRUE, then -1, -1 will be returned. If lines may have been removed
from the top of the screen using ripoffline() and the values are to be used beyond
just passing them on to setsyx(), the value y+stdscr-> Joffset should be used for
those other uses.

Note: getsyx() is a macro.

The virtual screen cursor is set to y, x. If y and x are both -1, then leaveok() will
be set. The two routines getsyx() and setsyx() are designed to be used by a
library routine that manipulates curses windows but does not want to mess up the
current position of the program's cursor. The library routine would call getsyx()
at the beginning, do its manipulation of its own windows, do a wnoutrefresh() on
its windows, call setsyx(), and then call doupdate().

This routine provides access to the same facility that slk Jnit() uses to reduce the
size of the screen. ripofftine() must be called before initscr() or newterm() is
called. If line is positive, a line will be removed from the top of stdscr; if nega­
tive, a line will be removed from the bottom. When this is done inside initscr(),
the routine init is called with two arguments: a window pointer to the I-line win­
dow that has been allocated and an integer with the number of columns in the win­
dow. Inside this initialization routine, the integer variables LINES and COLS
(defined in <curses.h» are not guaranteed to be accurate and wrefresh() or
doupdate() must not be called. It is allowable to call wnoutrefresh() during the
initialization routine.

ripofftine() can be called up to five times before calling initscr() or newterm ().

scr _dump (filename) The current contents of the virtual screen are written to the file filename.

scr_restore (filename) The virtual screen is set to the contents offilename, which must have been written
using scr _ dump(). The next call to doupdate() will restore the screen to what it
looked like in the dump file.

scr _init (filename)

curs_set (visibility)

draino (ms)

The contents of filename are read in and used to initialize the curses data struc­
tures about what the terminal currently has on its screen. If the data is determined
to be valid, curses will base its next update of the screen on this information
rather than clearing the screen and starting from scratch. scr JnitO would be
used after initscrO or a system(3) call to share the screen with another process
that has done a scr _ dumpO after its endwinO call. The data will be declared
invalid if the time-stamp of the tty is old or the terminfo(5V) capability nrrmc is
true.

The cursor is set to invisible, normal, or very visible for visibility equal to 0, 1 or
2.

Wait until the output has drained enough that it will only take ms more mil­
liseconds to drain completely.

garbagedlines (win, begline, numlines)

Sun Release 4.1

This routine indicates to curses that a screen line is garbaged and should be
thrown away before having anything written over the top of it. It could be used
for programs such as editors that want a command to redraw just a single line.
Such a command could be used in cases where there is a noisy communications
line and redrawing the entire screen would be subject to even more communica­
tion noise. Just redrawing the single line gives some semblance of hope that it
would show up unblemished. The current location of the window is used to deter­
mine which lines are to be redrawn.

Last change: 21 January 1990 945

CURSES (3V) C LIBRARY FUNCTIONS CURSES (3V)

946

napms (ms) Sleep for ms milliseconds.

Terminfo-Level Manipulations
These low-level routines must be called by programs that need to deal directly with the terminfo(5V) data­
base to handle certain terminal capabilities, such as programming function keys. For all other functional­
ity, curses routines are more suitable and their use is recommended.

Initially, setupterm() should be called. Note: setupterm() is automatically called by initscr() and
newterm(). This will define the set of terminal-dependent variables defined in the terminfo(5V) database.
The terminfo(5V) variables lines and columns (see terminfo(5V» are initialized by setuptermO as fol­
lows: if the environment variables LINES and COLUMNS exist, their values are used. If the above
environment variables do not exist, and the window sizes in rows and columns as returned by the
TIOCGWINSZ ioetl are non-zero, those sizes are used. Otherwise, the values for lines and columns
specified in the terminfo(5V) database are used.

The header files <curses.h> and <term.h> should be included, in this order, to get the definitions for these
strings, numbers, and flags. Parameterized strings should be passed through tparm() to instantiate them.
All terminfo(5V) strings (including the output of tparm() should be printed with tputs() or putp().
Before exiting, reset_shell_modeO should be called to restore the tty modes. Programs that use cursor
addressing should output enter_ca_mode upon startup and should output exit_ca_mode before exiting
(see terminfo(5V». Programs desiring shell escapes should call reset_shell_modeO and output
exit_c3_mode before the shell is called and should output enter_ca_mode and call resetyrog_modeO
after returning from the shell. Note: this is different from the curses routines (see endwin(».

setupterm (term,fildes, errret)
Reads in the terminfo(5V) database, initializing the terminfo(5V) structures, but
does not set up the output virtualization structures used by curses. The terminal
type is in the character string term; if term is NULL, the environment variable
TERM will be used. All output is to the file descriptor fildes. If errret is not
NULL, then setupterm() will return OK or ERR and store a status value in the
integer pointed to by errret. A status of 1 in errret is normal, 0 means that the ter­
minal could not be found, and -1 means that the terminfo(5V) database could not
be found. If errret is NULL, setupterm() will print an error message upon finding
an error and exit. Thus, the simplest call is 'setupterm «char *)0, 1, (int *)0)"
which uses all the defaults.

The terminfo(5V) boolean, numeric and string variables are stored in a structure
of type TERMINAL. After setuptermO returns successfully, the variable
cur _term (of type TERMINAL *) is initialized with all of the information that the
terminfo(5V) boolean, numeric and string variables refer to. The pointer may be
saved before calling setupterm() again. Further calls to setupterm() will allo­
cate new space rather than reuse the space pointed to by cur _term.

set_curterm (nterm) nterm is of type TERMINAL * . set_curtermO sets the variable cur _term to
nterm, and makes all of the terminfo(5V) boolean, numeric and string variables
use the values from nterm.

detcurterm (oterm) oterm is of type TERMINAL *. del_curtermO frees the space pointed to by
oterm and makes it available for further use. If oterm is the same as cur _term,
then references to any of the terminfo(5V) boolean, numeric and string variables
thereafter may refer to invalid memory locations until another setupterm() has
been called.

restartterm (term,fildes, errret)
Like setupterm() after a memory restore.

char *tparm (str,pl'P2' .. . ,Pg)

Instantiate the string str with parms p.. A pointer is returned to the result of str
with the parameters applied. 1

Last change: 21 January 1990 S un Release 4.1

CURSES (3V) C LIBRARY FUNCTIONS CURSES (3V)

tputs (str, count, putc) Apply padding to the string str and output it. str must be a terminfo(5V) string
variable or the return value from tparm(), tgetstr(), tigetstr() or tgoto(). count
is the number of lines affected, or 1 if not applicable. putchar() is a putc(3s)-like
routine to which the characters are passed, one at a time.

putp (str) A routine that calls tputs() (str, 1, putc(3s).

vidputs (attrs, putc) Output a string that puts the terminal in the video attribute mode attrs, which is
any combination of the attributes listed below. The characters are passed to the
putc(3s)-like routine putc(3s).

vidattr (attrs) Like vidputsO, except that it outputs through putc(3s).

tigetflag (capname) The value -1 is returned if capname is not a boolean capability.

tigetnum (capname) The value -2 is returned if capname is not a numeric capability.

tigetstr (capname) The value (char *) -1 is returned if capname is not a string capability.

Termcap Emulation
These routines are included as a conversion aid for programs that use the termcap(3X) library. Their
parameters are the same and the routines are emulated using the terminfo(5V) database.

tgetent (bp, name) Look up termcap entry for name. The emulation ignores the buffer pointer bp.

tgetflag (codename)

tgetnum (codes)

Get the boolean entry for codename.

Get numeric entry for codename.

char *tgetstr (codename, area)
Return the string entry for codename. If area is not NULL, then also store it in the
buffer pointed to by area and advance area. tputs() should be used to output the
returned string.

char *tgoto (cap, col, row)
Instantiate the parameters into the given capability. The output from this routine
is to be passed to tputs().

tputs (str, affcnt, putc) See tputsO above, under Terminfo-Level Manipulations.

Miscellaneous
char *keyname (c)

filter()

Use of curser

A character string corresponding to the key c is returned.

This routine is one of the few that is to be called before initscr() or newterm() is
called. It arranges things so that curses thinks that there is a I-line screen. curses
will not use any terminal capabilities that assume that they know what line on the
screen the cursor is on.

The special window curscr can be used in only a few routines. If the window argument to clearok() is
curscr, the next call to wrefresh() with any window will cause the screen to be cleared and repainted from
scratch. If the window argument to wrefresh() is curser, the screen is immediately cleared and repainted
from scratch. This is how most programs would implement a "repaint-screen" routine. The source win­
dow argument to overlay(), overwrite(), and copywin may be curser, in which case the current contents
of the virtual terminal screen will be accessed.

Obsolete Calls
Various routines are provided to maintain compatibility in programs written for older versions of the curses
library. These routines are all emulated as indicated below.

ermode()

fixterm()

nocrmode()

Sun Release 4.1

Replaced by cbreak().

Replaced by reset_prog_ mode().

Replaced by nocbreak().

Last change: 21 January 1990 947

CURSES (3V) C LIBRARY FUNCTIONS CURSES (3V)

resetterm()

saveterm()

setterm()

Replaced by reset_ sbelI_ mode().

Replaced by def yrog_ mode().

Replaced by setupterm().

SYSTEM V ATTRmUTES
The following video attributes, defined in <curses.b>, can be passed to the routines attronO, attroffO,
and attrset(), or OR'ed with the characters passed to addcbO.

A_STANDOUT Terminal's best highlighting mode
A_UNDERLINE Underlining
A_REVERSE Reverse video
A_BL~ Blirucing
A_DIM Half bright
A_BOLD Extra bright or bold
A_ALTCHARSET Alternate character set

A_CHARTEXT
A_ATTRIBUTES
A_NORMAL

Bit-mask to extract character (described under wincb)
Bit-mask to extract attributes (described under wincb)
Bit mask to reset all attributes off
(for example: 'attrset (A_NORMAL)'

SYSTEM V FUNCTION KEYS

948

The following function keys, defined in <curses.b>, might be returned by getcb() if keypad() has been
enabled. Note: not all of these may be supported on a particular terminal if the terminal does not transmit a
unique code when the key is pressed or the definition for the key is not present in the terminfo(5V) data­
base.

Name

KEY_BREAK
KEY_DOWN
KEY_UP
KEY_LEFf
KEY_RIGHT
KEY_HOME
KEY_BACKSPACE
KEY_FO
KEY_F(n)
KEY_DL
KEY_IL
KEY_DC
KEY_IC
KEY_EIC
KEY_CLEAR
KEY_EOS
KEY_EOL
KEY_SF
KEY_SR
KEY_NPAGE
KEY_PPAGE
KEY_STAB
KEY_crAB
KEY_CATAB
KEY_ENTER
KEY_SRESET

Value

0401
0402
0403
0404
0405
0406
0407
0410
(KEY _FO+(n»
0510
0511
0512
0513
0514
0515
0516
0517
0520
0521
0522
0523
0524
0525
0526
0527
0530

Key name

break key (unreliable)
The four arrow keys ...

Home key (upward+left arrow)
backspace (unreliable)
Function keys. Space for 64 keys is reserved.
Formula for f .
Delete line n
Insert line
Delete character
Insert char or enter insert mode
Exit insert char mode
Clear screen
Clear to end of screen
Clear to end of line
Scroll 1 line forward
Scroll 1 line backwards (reverse)
Next page
Previous page
Set TAB
Clear TAB
Clear all TAB characters
Enter or send
soft (partial) reset

Last change: 21 January 1990 Sun Release 4.1

CURSES (3V) C LIBRARY FUNCTIONS CURSES (3V)

KEY_RESET 0531 reset or hard reset
KEY_PRINT 0532 print or copy
KEY_LL 0533 home down or bottom (lower left)

keypad is arranged like this:
Al up A3
left B2 right
Cl down C3

KEY_AI 0534 Upper left of keypad
KEY_A3 0535 Upper right of keypad
KEY_B2 0536 Center of keypad
KEY_CI 0537 Lower left of keypad
KEY_C3 0540 Lower right of keypad
KEY_BTAB 0541 Back TAB key
KEY_BEG 0542 beg(inning) key
KEY_CANCEL 0543 cancel key
KEY_CLOSE 0544 close key
KEY_COMMAND 0545 cmd (command) key
KEY_COPY 0546 copy key
KEY_CREATE 0547 create key
KEY_END 0550 end key
KEY_EXIT 0551 exit key
KEY_FIND 0552 find key
KEY_HELP 0553 help key
KEY_MARK 0554 mark key
KEY_MESSAGE 0555 message key
KEY_MOVE 0556 move key
KEY_NEXT 0557 next object key
KEY_OPEN 0560 open key
KEY_OPTIONS 0561 options key
KEY_PREVIOUS 0562 previous object key
KEY_REDO 0563 redo key
KEY_REFERENCE 0564 ref(erence) key
KEY_REFRESH 0565 refresh key
KEY_REPLACE 0566 replace key
KEY_RESTART 0567 restart key
KEY_RESUME 0570 resume key
KEY_SAVE 0571 save key
KEY.;..SBEG 0572 shifted beginning key
KEY_SCANCEL 0573 shifted cancel key
KEY_SCOMMAND 0574 shifted command key
KEY_SCOPY 0575 shifted copy key
KEY _SCREA TE 0576 shifted create key
KEY_SDC 0577 shifted delete char key
KEY_SDL 0600 shifted delete line key
KEY_SELECT 0601 select key
KEY_SEND 0602 shifted end key
KEY_SEOL 0603 shifted clear line key
KEY_SEXIT 0604 shifted exit key
KEY_SFIND 0605 shifted find key
KEY_SHELP 0606 shifted help key
KEY_SHOME 0607 shifted home key
KEY_SIC 0610 shifted input key
KEY_SLEFf 0611 shifted left arrow key

Sun Release 4.1 Last change: 21 January 1990 949

CURSES (3V) C LIBRARY FUNCTIONS CURSES(3V)

KEY_SMESSAGE 0612 shifted message key
KEY_SMOVE 0613 shifted move key
KEY_SNEXT 0614 shifted next key
KEY_SOmONS 0615 shifted options key
KEY _SPREVIOUS 0616 shifted prev key
KEY_SPRINT 0617 shifted print key
KEY_SREDO 0620 shifted redo key
KEY_SREPLACE 0621 shifted replace key
KEY_SRIGHT 0622 shifted right arrow
KEY_SRSUME 0623 shifted resume key
KEY_SSAVE 0624 shifted save key
KEY _SSUSPEND 0625 shifted suspend key
KEY_SUNDO 0626 shifted undo key
KEY_SUSPEND 0627 suspend key
KEY_UNDO 0630 undo key

LINE GRAPIDCS
The following variables may be used to add line-drawing characters to the screen with waddce. When
defined for the terminal, the variable will have the A _ AL TCHARSET bit turned on. Otherwise, the default
character listed below will be stored in the variable. The names were chosen to be consistent with the DEC
VT100 nomenclature.

N arne Default

ACS_ULCORNER +
ACS_LLCORNER +
ACS_URCORNER +
ACS_LRCORNER +
ACS_RTEE +
ACS_LTEE +
ACS_BTEE +
ACS_TTEE +
ACS_HLINE
ACS_VLINE

ACS_PLUS +
ACS_Sl
ACS_S9

ACS_DIAMOND +
ACS_CKBOARD
ACS_DEGREE
ACS _PLMINUS #
ACS_BULLET 0

ACS_LARROW <
ACS_RARROW >
ACS_DARROW v
ACS_UARROW
ACS_BOARD #
ACS_LANTERN #
ACS_BLOCK #

Glyph Description

upper left comer
lower left comer
upper right comer
lower right comer
right tee (-i)
left tee (~)
bottom tee (1)
top tee (T)
horizontal line
vertical line
plus
scan line 1
scan line 9
diamond
checker board (stipple)
degree symbol
plus/minus
bullet
arrow pointing left
arrow pointing right
arrow pointing down
arrow pointing up
board of squares
lantern symbol
solid square block

RETURN VALUES
Unless otherwise noted in the preceding routine descriptions, all routines retum:

OK on success.

ERR on failure.

950 Last change: 21 January 1990 Sun Release 4.1

CURSES (3V) C LIBRARY FUNCTIONS CURSES (3V)

SYSTEM V RETURN VALUES

FILES

All macros return the value of their w version, except setscrreg(), wsetscrreg(), getsyx(), getyx(), get­
begy(), getmaxyx(), which return no useful value.

Routines that return pointers always return (type *) NULL on failure.

.Iogin

.profile

SYSTEM V FILES
lusrlsbare/lib/terminfo

SEE ALSO
cc(l V), Id(l), ioctl(2) , getenv(3V), plot(3X), printf(3V), putc(3S), scanf(3V), stdio(3V), system(3),
varargs(3), vprintf(3V), termio(4), tty(4), term(5V), termcap(5), terminfo(5V), tic(8V)

SYSTEM V WARNINGS
The plotting library plot(3X) and the curses library curses(3V) both use the names erase() and move().
The curses versions are macros. If you need both libraries, put the plot(3X) code in a different source file
than the curses(3V) code, and/or '#undef move' and '#Undef erase' in the plot(3X) code.

Between the time a call to initscr() and endwin() has been issued, use only the routines in the curses
library to generate output. Using system calls or the "standard I/O package" (see stdio(3V» for output
during that time can cause unpredictable results.

Sun Release 4.1 Last change: 21 January 1990 951

CUSERID (3V) C LIBRARY FUNCTIONS CUSERID(3V)

NAME
cuserid - get character login name of the user

SYNOPSIS
#include <stdio.h>

char *cuserid(s)
char *s;

DESCRIPTION
cuserid() returns a pointer to a string representing the login name under which the owner of the current
process is logged in. If s is a NULL pointer, this string is placed in an internal static area, the address of
which is returned. Otherwise, s is assumed to point to an array of at least L _ cuserid characters; the
representation is left in this array. The constant L _ cuserid is defined in the <stdio.h> header file.

SEE ALSO
cc(l V), Jd(I), getJogin(3V), getpwent(3V)

RETURN VALUES

NOTES

952

cuserid() returns a pointer to the login name on success. On failure, cuserid() returns NULL, and if s is
not NULL, places a null character ('\0') at s[O].

The internal static area to which cuserid() writes when s is NULL will be overwritten by a subsequent call
to getpwnam() (see getpwent(3V».

A compatibility problem has been identified with the cuserid() function. The traditional version of this
library routine in SunOS Release 3.2 and later releases and all System V releases calls the getlogin() func­
tion, and if it fails uses the getpwuid() function to try to return a name associated with the real user ID
associated with the calling process. POSIX.l requires that the cuserid() function try to return a name asso­
ciated with the effective user ID associated with the calling process. Although this usually yields the same
results, use of set-uid programs may yield different results.

A binding interpretation has been issued by IEEE saying that·the POSIX.l functionality has to be provided
for compliance with POSIX.1. However, balloting on the first update to POSIX.l, Pl003.1a, has led to the
removal of the cuserid() function from the standard. (This is the state in the second recirculation ballot of
Pl003.1a dated 11 December 1989.) The objections leading to this resolution had both users and imple­
mentors arguing for the historical version and for the version specified by POSIX.l. The only way to reach
consensus appears to be to remove the function from the standard.

To further complicate the issue, System V Release 4.0 has kept the traditional version of cuserid(). XPG3
specifies the POSIX.l version of cuserid(), but the test suite for conformance to XPG3 promises to accept
either implementation. Both of these are anticipating the final approval of Pl003.1a as a standard with the
cuserid() function removed. Since we also expect the cuserid() function to be dropped from the standard
when Pl003.1a is approved, SunOS Release 4.1 provides the traditional cuseridO function in the C library.
However, for users that need the version specified by POSIX.l, it is provided in a POSIX library available in
the System V environment. This library can be accessed by specifying -Jposix on the cc(l V) or Jd(l) com­
mand line.

Last change: 21 January 1990 Sun Release 4.1

DBM(3X) MISCELLANEOUS LffiRARY FUNCTIONS DBM(3X)

NAME
dbm, dbminit, dbmclose, fetch, store, delete, firstkey, nextkey - data base subroutines

SYNOPSIS
#include <dbm.h>

typedef struct {
char *dptr;
int dsize;

} datum;

dbminit(fiIe)
char *file;

dbmclose()

datum fetch(key)
datum key;

store(key, content)
datum key, content;

delete(key)
datum key;

datum firstkey()

datum nextkey(key)
datum key;

DESCRIPTION
Note: the dbm() library has been superceded by ndbm(3), and is now implemented using ndbm().

These functions maintain key!content pairs in a data base. The functions will handle very large (a billion
blocks) databases and will access a keyed item in one or two file system accesses. The functions are
obtained with the loader option -Idbm.

key s and contents are described by the datum typedef. A datum specifies a string of dsize bytes pointed to
by dptr. Arbitrary binary data, as well as normal ASCII strings, are allowed. The data base is stored in two
files. One file is a directory containing a bit map and has .dir as its suffix. The second file contains all data
and has .pag as its suffix.

Before a database can be accessed, it must be opened by dbminit. At the time of this call, the files file .dir
and file .pag must exist. (An empty database is created by creating zero-length .dir and .pag files.)

A database may be closed by calling dbmclose. You must close a database before opening a new one.

Once open, the data stored under a key is accessed by fetch () and data is placed under a key by store. A
key (and its associated contents) is deleted by delete. A linear pass through all keys in a database may be
made, in an (apparently) random order, by use of firstkey() and nextkey. firstkeyO will return the first
key in the database. With any key nextkey() will return the next key in the database. This code will
traverse the data base:

for (key = firstkeyO; key.dptr != NULL; key = nextkey(key»

SEE ALSO
ar(1V), cat(IV), cp(1), tar(1), ndbm(3)

DIAGNOSTICS
All functions that return an int indicate errors with negative values. A zero return indicates no error. Rou­
tines that return a datum indicate errors with a NULL (0) dptr.

Sun Release 4.1 Last change: 24 November 1987 953

DBM(3X) MISCELLANEOUS LffiRARY FUNCfIONS DBM(3X)

BUGS

954

The .pag file will contain holes so that its apparent size is about four times its actual content. Older ver­
sions of the UNIX operating system may create real file blocks for these holes when touched. These files
cannot be copied by normal means (cp(I), cat(1 V), tar(1), ar(1 V» without filling in the holes.

dptr pointers returned by these subroutines point into static storage that is changed by subsequent calls.

The sum of the sizes of a key/content pair must not exceed the internal block size (currently 1024 bytes).
Moreover all key/content pairs that hash together must fit on a single block. store() will return an error in
the event that a disk block fills with inseparable data.

delete() does not physically reclaim file space, although it does make it available for reuse.

The order of keys presented by firstkey() and nextkey() depends on a hashing function, not on anything
interesting.

There are no interlocks and no reliable cache flushing; thus concurrent updating and reading is risky.

Last change: 24 November 1987 Sun Release 4.1

NAME

C LIBRARY FUNCTIONS

decimal_to_single, decimal_to_double, decimaCto_extended - convert decimal record to floating-point
value

SYNOPSIS
#include <Ooatingpoint.h>

void decimal_to_single(px, pm, pd, ps)
single *px;
decimal_mode *pm;
decimal_record *pd;
fp _exception_field _type *ps;

void decimat to _ double(px, pm, pd, ps)
double *px;
decimal_mode *pm;
decimal_record *pd;
fp _exception_field _type *ps;

void decimal_to_extended(px, pm, pd, ps)
extended *px ;
decimal_mode *pm;
decimal_record *pd;
fp_exception_field_type *ps;

DESCRIPTION
The decimatto_Ooating() functions convert the decimal record at *pd into a floating-point value at *px,
observing the modes specified in *pm and setting exceptions in *ps. If there are no IEEE exceptions, *ps
will be zero.

pd->sign and pd->fpclass are always taken into account. pd->exponent and pd->ds are used when pd­
>fpclass is fp _normal or fp _subnormal. In these cases pd->ds must contain one or more ascii digits fol­
lowed by a null character. *px is set to a correctly rounded approximation to

(pd->sign)*(pd->ds)* 10* * (pd->exponent)

Thus if pd-> exponent == -2 and pd->ds == "1234", *px will get 12.34 rounded to storage precision. pd­
>ds cannot have more than DECIMAL_STRING_LENGTH-l significant digits because one character is
used to terminate the string with a null character. If pd-> more /= 0 on input then additional nonzero digits
follow those in pd->ds; fp _inexact is set accordingly on output in *ps.

*px is correctly rounded according to the IEEE rounding modes in pm->rd. *ps is set to containfp _inexact,
fp _underflow, or fp _overflow if any of these arise.

pd->ndigits,pm->df, andpm->ndigits are not used.

strtod(3), scanf(3V), fscanfO, and sscanfO all use decimal_to_doubleO.

SEE ALSO
scanf(3V), strtod(3)

Sun Release 4.1 Last change: 23 October 1987 955

C LIBRARY FUNCTIONS

NAME
des_crypt, ecb_crypt, cbc_crypt, des_setparity - fast DES encryption

SYNOPSIS
#include <des _ crypt.h>

int ecb_crypt(key, data, datalen, mode)
char *key;
char *data;
unsigned datalen;
unsigned mode;

int cbc_crypt(key, data, datalen, mode, ivec)
char *key;
char *data;
unsigned datalen;
unsigned mode;
char *ivec;

void des_setparity(key)
char *key;

DESCRIPTION
ecb _ crypt() and cbc _ crypt() implement the NBS DES (Data Encryption Standard). These routines are
faster and more general purpose than crypt(3). They also are able to utilize DES hardware if it is available.
ecb_crypt() encrypts in ECB (Electronic Code Book) mode, which encrypts blocks of data independently.
cbc _ crypt() encrypts in CBC (Cipher Block Chaining) mode, which chains together successive blocks.
CBC mode protects against insertions, deletions and substitutions of blocks. Also, regularities in the clear
text will not appear in the cipher text.

Here is how to use these routines. The first parameter, key, is the 8-byte encryption key with parity. To set
the key's parity, which for DES is in the low bit of each byte, use des_setparity. The second parameter,
data, contains the data to be encrypted or decrypted. The third parameter, datalen, is the length in bytes of
data, which must be a multiple of 8. The fourth parameter, mode, is formed by OR'ing together some
things. For the encryption direction 'or' in either DES_ENCRYPT or DES_DECRYPf. For software versus
hardware encryption, 'or' in either DES_HW or DES_SW. If DES_HW is specified, and there is no hardware,
then the encryption is performed in software and the routine returns DESERR_NOHWDEVICE. For
cbc _crypt, the parameter ivec is the 8-byte initialization vector for the chaining. It is updated to the next
initialization vector upon return.

SEE ALSO
des(1), crypt(3)

DIAGNOSTICS
DES ERR_NONE No error.
DESERR_NOHWDEVICE

Encryption succeeded, but done in software instead of the requested hardware.
DESERR_HWERR An error occurred in the hardware or driver.
DESERR_BADPARAM Bad parameter to routine.

Given a result status stat, the macro DES_FAILED(stat) is false only for the first two statuses.

RESTRICTIONS
These routines are not available for export outside the U.S.

956 Last change: 6 October 1987 Sun Release 4.1

DIRECTORY (3V) C LIBRARY FUNCTIONS DIRECTORY (3V)

NAME
directory, opendir, readdir, telldir, seekdir, rewinddir, closedir - directory operations

SYNOPSIS
#include <dirent.h>

DIR *opendir(dirname)
char *dirname;

struct dirent *readdir(dirp)
DIR *dirp;

long telldir(dirp)
DIR *dirp;

void seekdir(dirp, loc)
DIR *dirp;
long loc;

void rewinddir(dirp)
DIR *dirp;

int c1osedir(dirp)
DIR *dirp;

SYSTEM V SYNOPSIS
For XPG2 conformance, use:

#include <sysldirent.h>

DESCRIPTION
opendir() opens the directory named by dirname and associates a directory stream with it. opendir()
returns a pointer to be used to identify the directory stream in subsequent operations. A NULL pointer is
returned if dirname cannot be accessed or is not a directory, or if it cannot maUoc(3V) enough memory to
hold the whole thing.

readdir() returns a pointer to the next directory entry~ It returns NULL upon reaching the end of the direc­
tory or detecting an invalid seekdir() operation.

telldir() returns the current location associated with the named directory stream.

seekdir() sets the position of the next readdir() operation on the directory stream. The new position
reverts to the one associated with the directory stream when the telldir() operation was performed. Values
returned by telldir() are good only for the lifetime of the DIR pointer from which they are derived. If the
directory is closed and then reopened, the telldir() value may be invalidated due to undetected directory
compaction. It is safe to use a previous telldir() value immediately after a call to opendir() and before
any calls to readdir.

rewinddir() resets the position of the named directory stream to the beginning of the directory. I also
causes the directory stream to refer to the current state of the corresponding directory, as a call to open­
dir() would have done.

c1osedir() closes the named directory stream and frees the structure associated with the DIR pointer.

Sun Release 4.1 Last change: 24 January 1990 957

DIRECTORY (3V) C LIBRARY FUNCTIONS DIRECTORY (3V)

RETURN V ALVES
opendir() returns a pointer to an object of type DIR on success. On failure, it returns NULL and sets errno
to indicate the error.

readdir() returns a pointer to an object of type struct dirent on success. On failure, it returns NULL and
sets errno to indicate the error. When the end of the directory is encountered, readdir() returns NULL and
leaves errno unchanged.

c1osedir() returns:

o on success.

-1 on failure and sets errno to indicate the error.

telldir() returns the current location associated with the specified directory stream.

ERRORS
If any of the following conditions occur, opendir() sets errno to:

EACCES

ENAMETOOLONG

ENOENT

Search permission is denied for a component of dirname .

Read permission is denied for dirname.

The length of dirname exceeds {PATH_MAX}.

A path name component is longer than {NAME_MAX} (see sysconf(2V)) while
LPOSIX_NO_TRUNC} is in effect (see pathconf(2V».

The named directory does not exist.

ENOTDIR A component of dirname is not a directory.

for each of the following conditions, when the condition is detected, opendir() sets errno to one of the fol­
lowing:

EMFILE Too many file descriptors are currently open for the process.

ENFILE Too many file descriptors are currently open in the system.

For each of the following conditions, when the condition is detected, readdir() sets errno to the following:

EBADF dirp does not refer to an open directory stream.

For each of the following conditions, when the condition is detected, c1osedir() sets errno to the follow­
ing:

EBADF

SYSTEM V ERRORS

dirp does not refer to an open directory stream.

In addition to the above, opendir() may set errno to the following:

ENOENT dirname points to an empty string.

EXAMPLES

958

Sample code which searchs a directory for entry "name" is:

dirp = opendir(n .n);
for (dp = readdir(dirp); dp != NULL; dp = readdir(dirp»

if (!strcmp(dp->d _name, name» {
c10sedir (dirp);
return FOUND;

}

c10sedir (dirp);
return NOT_FOUND;

Last change: 24 January 1990 Sun Release 4.1

DIRECTORY (3V) C LIBRARY FUNCTIONS DIRECTORY (3V)

SEE ALSO

NOTES

close(2V), Iseek(2V), open(2V), read(2V), getwd(3), malloc(3V), dir(5)

The directory library routines now use a new include file, <dirent.h>. This replaces the file, <sys/dir.h>,
used in previous releases. Furthermore, with the use of this new file, the readdir() routine returns direc­
tory entries whose structure is named struct dirent rather than struct direct as before. The file <sys/dir.h>
is retained in the current SunOS release for purposes of backwards source code compatibility; programs
which use the directory() library and <sys/dir .h> will continue to compile and run without source code
modifications. However, existing programs should convert to the use of the new include file, <dirent.h>,
as <sysldir.h> will be removed in a future major release.

The X/Open Portability Guide. issue 2 (XPG2) requires <sysldirent.h> rather than <dirent.h>.
/usr/xpg2include/sysldirent.h is functionally equivalent to lusr/include/dirent.h. In future SunOS
releases, X/Open conformance will require <dirent.h>.

Sun Release 4.1 Last change: 24 January 1990 959

DLOPEN(3X) MISCELLANEOUS LmRARY FUNCfIONS DLOPEN(3X)

NAME
dlopen, dlsym, dlerror, dlclose - simple programmatic interface to the dynamic linker

SYNOPSIS
#include <dlfcn.h>

void *dlopen(path, mode)
char *path; int mode;

void *dlsym(handle, symbol)
void *handle; char *symbol;

char *dlerror()

int dlclose(handle);
void *handle;

DESCRIPTION
These functions provide a simple programmatic interface to the services of the dynamic link-editor.
Operations are provided to add a new shared object to an program's address space, obtain the address bind­
ings of symbols defined by such objects, and to remove such objects when their use is no longer required.

dlopen() provides access to the shared object in path, returning a descriptor that can be used for later
references to the object in calls to dIsym() and dlclose(). If path was not in the address space prior to the
call to dlopen(), then it will be placed in the address space, and if it defines a function with the name _init
that function will be called by dlopen(). If, however, path has already been placed in the address space in
a previous call to dlopen(), then it will not be added a second time, although a count of dlopen() opera­
tions on path will be maintained. mode is an integer containing flags describing options to be applied to the
opening and loading process - it is reserved for future expansion and must always have the value 1. A
null pointer supplied for path is interpreted as a reference to the "main" executable of the process. If dlo­
penO fails, it will return a null pointer.

dlsym() returns the address binding of the symbol described in the null-terminated character string symbol
as it occurs in the shared object identified by handle. The symbols exported by objects added to the
address space by dlopen() can be accessed only through calls to dlsym(), such symbols do not supersede
any definition of those symbols already present in the address space when the object is loaded, nor are they
available to satisfy "normal" dynamic linking references. dlsym() returns a null pointer if the symbol can
not be found. A null pointer supplied as the value of handle is interpreted as a reference to the executable
from which the call to dlsym() is being made - thus a shared object can reference its own symbols.

dlerror returns a null-terminated character string describing the last error that occurred during a dlopen(),
dlsym(), or dlclose(). If no such error has occurred, then dlerror() will return a null pointer. At each call
to dlerror(), the "last error" indication will be reset, thus in the case of two calls to dlerror(), and where
the second call follows the first immediately, the second call will always return a null pointer.

dlclose() deletes a reference to the shared object referenced by handle. If the reference count drops to 0,
then if the object referenced by handle defines a function Jt.ni, that function will be called, the object
removed from the address space, and handle destroyed. If dlclose() is successful, it will return a value of
O. A failing call to dlclose() will return a non-zero value.

The object-intrinsic functions _init and Jt.ni are called with no arguments and treated as though their types
were void.

These functions are obtained by specifying -Idl as an option to Id(l).

SEE ALSO
Id(l), Iink(5)

960 Last change: 24 September 1989 Sun Release 4.1

DRAND48(3) C LIBRARY FUNCTIONS DRAND48(3)

NAME
drand48, erand48, lrand48, nrand48, mrand48, jrand48, srand48, seed48, lcong48 - generate uniformly dis­
tributed pseudo-random numbers

SYNOPSIS
double drand48()

double erand48(xsubi)
unsigned short xsubi[3];

long Irand48()

long nrand48(xsubi)
unsigned short xsubi[3];

long mrand48()

long jrand48(xsubi)
unsigned short xsubi[3];

void srand48(seedval)
long seedval;

unsigned short *seed48(seed16v)
unsigned short seed16v[3];

void Icong48(param)
unsigned short param[7];

DESCRIPTION
This family of functions generates pseudo-random numbers using the well-known linear congruential algo­
rithm and 48-bit integer arithmetic.

drand48() and erand48() return non-negative double-precision floating-point values uniformly distributed
over the interval [0.0, 1.0).

Irand48() and nrand48() return non-negative long integers uniformly distributed over the interval [0, 231
).

mrand48() and jrand48() return signed long integers uniformly distributed over the interval [_231 ,231).

srand48(), seed48(), and lcong48() are initialization entry points, one of which should be invoked before
either drand48(), Irand48(), or mrand48() is called. Although it is not recommended practice, constant
default initializer values will be supplied automatically if drand48(), Irand48(), or mrand48() is called
without a prior call to an initialization entry point. erand48(), nrand48(), and jrand48() do not require
an initialization entry point to be called first.

All the routines work by generating a sequence of 48-bit integer values, Xi, according to the linear
congruential formula

X,,+l = (ax" + C)mod m n ~O.

The parameter m = 248
; hence 48-bit integer arithmetic is performed. Unless Icong48() has been invoked,

the multiplier value a and the addend value c are given by

a = 5DEECE66D 16 = 273673163155 8

C = B 16 = 13 8.

The value returned by any of the functions drand48(), erand48(), lrand48(), nrand48(), mrand48(), or
jrand48() is computed by first generating the next 48-bit Xi in the sequence. Then the appropriate number
of bits, according to the type of data item to be returned, are copied from the high-order (leftmost) bits of
Xi and transformed into the returned value.

drand48(), lrand48(), and mrand48() store the last 48-bit Xi generated in an internal buffer; that is why
they must be initialized prior to being invoked. The functions erand48(), nrand48(), and jrand48()
require the calling program to provide storage for the successive Xi values in the array specified as an

Sun Release 4.1 Last change: 31 January 1990 961

DRAND48(3) C LIBRARY FUNCTIONS DRAND48(3)

argument when the functions are invoked. That is why these routines do not have to be initialized; the cal­
ling program merely has to place the desired initial value of Xi into the array and pass it as an argument
By using different arguments, functions erand48(), nrand48(), and jrand48() allow separate modules of
a large program to generate several independent streams of pseudo-random numbers, that is, the sequence
of numbers in each stream will not depend upon how many times the routines have been called to generate
numbers for the other streams.

The initializer function srand48() sets the high-order 32 bits of Xi to the 32 bits contained in its argument
The low-order 16 bits of Xi are set to the arbitrary value 330E16.

The initializer function seed48() sets the value of Xi to the 48-bit value specified in the argument array. In
addition, the previous value of Xi is copied into a 48-bit internal buffer, used only by seed48(), and a
pointer to this buffer is the value returned by seed48(). This returned pointer, which can just be ignored if
not needed, is useful if a program is to be restarted from a given point at some future time - use the
pointer to get at and store the last Xi value, and then use this value to reinitialize via seed48() when the
program is restarted.

The initialization function lcong48() allows the user to specify the initial Xi, the multiplier value a, and the
addend value c. Argument array elements param [0-2] specify Xi' param [3-5] specify the multiplier a, and
param[6] specifies the 16-bit addend c. After Icong48() has been called, a subsequent call to either
srand48() or seed48() will restore the "standard" multiplier and addend values, a and c, specified on the
previous page.

SEE ALSO
rand(3V)

962 Last change: 31 January 1990 Sun Release 4.1

ECONVERT (3) C LIBRARY FUNCTIONS ECONVERT (3)

NAME
econvert, fconvert, gconvert, seconvert, sfconvert, sgconvert, ecvt, fcvt, gcvt - output conversion

SYNOPSIS
#include <fioatingpoint.h>

char *econvert(value, ndigit, decpt, sign, bul)
double value;
int ndigit, *decpt, *sign;
char *buf;

char *fconvert(value, ndigit, decpt, sign, bul)
double value;
int ndigit, *decpt, *sign;
char *buf;

char *gconvert(value, ndigit, trailing, bul)
double value;
int ndigit;
int trailing;
char *buf;

char *seconvert(value, ndigit, decpt, sign, bul)
single *value;
int ndigit, *decpt, *sign;
char *buf;

char *sfconvert(value, ndigit, decpt, sign, bul)
single *value;
int ndigit, *decpt, *sign;
char *buf;

char *sgconvert(value, ndigit, trailing, bul)
single *value;
int ndigit;
int trailing;
char *buf;

char *ecvt(value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *fcvt(value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *gcvt(value, ndigit, but)
double value;
int ndigit;
char *buf;

DESCRIPTION
econvert() converts the value to a null-tenninated string of ndigit Ascn digits in but and returns a pointer
to bu[. buf should contain at least ndigit+ 1 characters. The position of the radix character relative to the
beginning of the string is stored indirectly through deept. Thus but == "314" and *deept == 1 corresponds
to the numerical value 3.14, while but == "314" and *decpt == -1 corresponds to the numerical value
.0314. If the sign of the result is negative, the word pointed to by sign is nonzero; otherwise it is zero. The
least significant digit is rounded.

Sun Release 4.1 Last change: 5 October 1989 963

ECONVERT(3) C LIBRARY FUNCTIONS ECONVERT (3)

fconvert works much like econvert~ except that the correct digit has been rounded as if for
sprintf(%w.nf) output with n=ndigit digits to the right of the radix character. ndigit can be negative to

indicate rounding to the left of the radix character. The return value is a pointer to buf. buf should contain
at least 310+max(O,ndigit) characters to accomodate any double-precision value.

gconvert() converts the value to a null-terminated Ascn string in buf and returns a pointer to buf. It pro­
duces ndigit significant digits in fixed-decimal format, like sprintf(%w.nf), if possible, and otherwise in
floating-decimal format, like sprintf(%w.ne); in either case buf is ready for printing, with sign and
exponent. The result corresponds to that obtained by

(void) sprintf(buf, "%w.ng", value);

If trailing= O~ trailing zeros and a trailing point are suppressed, as in sprintf(%g). If trailing!= 0, trailing
zeros and a trailing point are retained, as in sprintf(%#g).

seconvert, sfconvert, and sgconvert() are single-precision versions of these functions, and are more
efficient than the corresponding double-precision versions. A pointer rather than the value itself is passed
to avoid C's usual conversion of single-precision arguments to double.

ecvt() and fcvt() are obsolete versions of econvert() and fconvert() that create a string in a static data
area, overwritten by each call, and return values that point to that static data. These functions are therefore
not reentrant.

gcvt() is an obsolete version of gconvert() that always suppresses trailing zeros and point.

IEEE Infinities and NaNs are treated similarly by these functions. "NaN" is returned for NaN, and "Inf"
or "InfinityH for Infinity. The longer form is produced when ndigit >= 8.

The radix character is determined by the current setting of the program's locale (category LC_NUMERIC).
In the "C" locale or if the locale is undefined, the readix character defaults to a period'.'.

SEE ALSO
printf(3V)

964 Last change: 5 October 1989 Sun Release 4.1

END(3) C LIBRARY FUNCTIONS END(3)

NAME
end, etext, edata - last locations in program

SYNOPSIS
extern end;
extern etext;
extern edata;

DESCRIPTION
These names refer neither to routines nor to locations with interesting contents. The address of etext is the
first address above the program text, edata above the initialized data region, and end() above the uninitial­
ized data region.

When execution begins, the program break (the first location beyond the data) coincides with end, but it is
reset by the routines brk(2), malloc(3V), standard input/output (stdio(3V», the profile (-p) option of
cc(l V), and so on. Thus, the current value of the program break should be determined by sbrk(O) (see
brk(2».

SEE ALSO
ce(l V), brk(2), malloc(3V), stdio(3V)

Sun Release 4.1 Last change: 30 January 1988 965

ETHERS (3N) NETWORK FUNCTIONS ETHERS (3N)

NAME
ethers, ether_ntoa, ether_aton, ether_ntohost, ether_hostton, ether_line - Ethernet address mapping opera­
tions

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
#include <net/if.h>
#include <netinet/in.h>
#include <netinet/if ether.h>

char *
ether _ ntoa(e)
struct ether _ addr *e;

struct ether_addr *ether_aton(s)
char *s;

ether _ ntohost(hostname, e)
char *hostname;
struct ether _addr *e;

ether _hostton(hostname, e)
char *hostname;
struct ether _ addr *e;

ether)ine(l, e, hostname)
char *1;
struct ether _addr *e;
char *hostname;

DESCRIPTION

FILES

These routines are useful for mapping 48 bit Ethernet numbers to their ASCII representations or their
corresponding host names, and vice versa.

The function ether _ ntoa() converts a 48 bit Ethernet number pointed to by e to its standard ACSII
representation; it returns a pointer to the Ascn string. The representation is of the form: x:x:x:x:x:x where
x is a hexadecimal number between 0 and ff. The function ether _ aton() converts an Ascn string in the
standard representation back to a 48 bit Ethernet number; the function returns NULL if the string cannot be
scanned successfully.

The function ether _ ntohost() maps an Ethernet number (pointed to bye) to its associated hostname. The
string pointed to by hostname must be long enough to hold the hostname and a null character. The func­
tion returns zero upon success and non-zero upon failure. Inversely, the function ether _ hostton() maps a
hostname string to its corresponding Ethernet number; the function modifies the Ethernet number pointed
to bye. The function also returns zero upon success and non-zero upon failure.

The function ether _Iine() scans a line (pointed to by I) and sets the hostname and the Ethernet number
(pointed to bye). The string pointed to by hostname must be long enough to hold the hostname and a null
character. The function returns zero upon success and non-zero upon failure. The format of the scanned
line is described by ethers(5).

letc/ethers (or the Network Information Service (NIS) maps ethers.byaddr and
ethers.byname)

SEE ALSO
ethers(5)

966 Last change: 16 February 1988 Sun Release 4.1

ETHERS (3N) NETWORK FUNCTIONS ETHERS (3N)

NOTES
The Network Information Service (NIS) was fonnerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed.

Sun Release 4.1 Last change: 16 February 1988 %7

EXECL(3V) C LIBRARY FUNCTIONS EXECL(3V)

NAME
execl, execv, exec1e, execlp, execvp - execute a file

SYNOPSIS
int execl(path, argO [, argl,. .. ,argn] (char *)0)
char *patb, *argO, *argl, ..• , *argn;

int execv(path, argv)
char *path, *argv[];

int execle(path, argO [,argl, ... ,argn] (char *)0, envp)
char *patb, *argO, *argl, •.• , *argn, *envp[];

int execlp(file, argO [, argl, ... ,argo] (char *)0)
char *fiIe, *argO, *argl, .•• , *argn;

int execvp(file, argv)
char *fiIe, *argv[];

extern char **environ;

DESCRIPTION

968

These routines provide various interfaces to the execve() system call. Refer to execve(2V) for a descrip­
tion of their properties; only brief descriptions are provided here.

exec() in all its forms overlays the calling process with the named file, then transfers to the entry point of
the core image of the file. There can be no return from a successful exec(); the calling core image is lost.

The filename argument is a pointer to the name of the file to be executed. The pointers arg [0], arg [1] ...
address null-terminated strings. Conventionally arg [0] is the name of the file.

Two interfaces are available. execl() is useful when a known file with known arguments is being called;
the arguments to execl() are the character strings constituting the file and the arguments; the first argument
is conventionally the same as the file name (or its last component). A (char *)0 argument must end the
argument list. The cast to type char * insures portability.

The execv() version is useful when the number of arguments is unknown in advance; the arguments to
execv() are the name of the file to be executed and a vector of strings containing the arguments. The last
argument string must be followed by a 0 pointer.

When a C program is executed, it is called as follows:

main(argc, argv, envp)
int argc;
char **argv, **envp;

where argc is the argument count and argv is an array of character pointers to the arguments themselves.
As indicated, argc is conventionally at least one and the first member of the array points to a string contain­
ing the name of the file.

argv is directly usable in another execv() because argv [argc] is O.

envp is a pointer to an array of strings that constitute the environment of the process. Each string consists
of a name, an '=', and a null-terminated value. The array of pointers is terminated by a NULL pointer. The
shell sh(l) passes an environment entry for each global shell variable defined when the program is called.
See environ(5V) for some conventionally used names. The C run-time start-off routine places a copy of
envp in the global cell environ, which is used by execv() and execl() to pass the environment to any sub­
programs executed by the current program.

execlp() and execvp() are called with the same arguments as execl() and execv(), but duplicate the shell's
actions in searching for an executable file in a list of directories. The directory list is obtained from the
environment.

Last change: 21 January 1990 Sun Release 4.1

EXECL(3V) C LIBRARY FUNCTIONS EXECL(3V)

RETURN VALUES
These functions return to the calling process only on failure. They return -1 and set errno to indicate the
error if path or file cannot be found, if it is not executable, if it does not start with a valid magic number
(see a.out(5», if maximum memory is exceeded, or if the arguments require too much space. Even for the
super-user, at least one of the execute-permission bits must be set for a file to be executed.

ERRORS
If any of the following conditions occur, these functions will return and set errno to one of the following:

E2BIG

EACCES

ENAMETOOLONG

ENOENT

The number of bytes used by the new process image's argument list and environ­
ment list is greater than {ARG_MAX} bytes (see sysconf(2V».

Search permission is denied for a directory listed in the new process image file's
path prefix.

The new process image file denies execution permission.

The new process image file is not a regular file.

The length of the path or file, or an element of the environment variable PATH
prefixed to a file, exceeds {PATH_MAX}.

A pathname component is longer than {NAME_MAX} while
LPOSIX_NO_TRUNC} is in effect for that file (see pathconf(2V».

One or more components of the new process image file's pathname do not exist.

ENOTDIR A component of the new process image file's path prefix is not a directory.

if the following condition occurs, execl(), execv(), and execle() set errno to:

ENOEXEC The new process image file has the appropriate access permission, but is not in the
proper format.

If the following condition is detected, the exec functions set errno to:

ENOMEM The new process image requires more memory than there is swap space available.

On Sun-3 systems, the new process image requires more than 231 bytes.

SYSTEM V ERRORS
In addition to the above, if the following condition occurs, the exec functions set errno to:

ENOENT path or file points to a null pathname.

FILES
lusr/binlsh shell, invoked if command file found by execlp() or execvp()

SEE ALSO
csh(I), sh(l), execve(2V), fork(2V), pathconf(2V), sysconf(2V), a.ont(5), environ(5V)

Programming Utilities and Libraries

Sun Release 4.1 Last change: 21 January 1990 969

EXIT (3) C LIBRARY FUNCTIONS

NAME
exit - terminate a process after performing cleanup

SYNOPSIS
void
exit(status)
iot status;

DESCRIPTION

EXIT (3)

exit() terminates a process by calling exit(2V) after calling any termination handlers named by calls to
00_ exit. Normally, this is just the Standard 1/0 library function _cleanup. exit() never returns.

SEE ALSO
exit(2V), iotro(3), on _ exit(3)

970 Last change: 6 October 1987 Sun Release 4.1

EXPORTENT (3) C LIBRARY FUNCTIONS EXPORTENT(3)

NAME
exportent, getexportent, setexportent. addexportent. remexportent, endexportent. getexportopt - get
exported file system information

SYNOPSIS
#include <stdio.h>
#include <exportent.h>

FILE *setexportent()

struct exportent *getexportent(filep)
FILE *filep;

int addexportent(filep, dirname, options)
FILE *filep;
char *dirname;
char *options;

int remexportent(filep, dirname)
FILE *filep;
char *dirname;

char *getexportopt(xent, opt)
struct exportent *xent;
char *opt;

void endexportent(filep)
FILE *filep;

DESCRIPTION

FILES

These routines access the exported filesystem information in letc/xtab.

setexportent() opens the export information file and returns a file pointer to use with getexportent,
addexportent, remexportent. and endexportent. getexportent() reads the next line from filep and
returns a pointer to an object with the following structure containing the broken-out fields of a line in the
file,/etc/xtab The fields have meanings described in exports(5).

#define ACCESS_OPT "access" 1* machines that can mount fs *1
#define ROOT_OPT "root" 1* machines with root access offs *1
#define RO _OPT "ro" 1* export read-only *1
#define ANON_OPT "anon" 1* uid for anonymous requests *1
#define SECURE_OPT "secure" 1* require secure NFS for access *1
#define WINDOW_OPT "window" 1* expiration window for credential *1

struct exportent {

};

char *xent _ dirname;
char *xent _options;

1* directory (or file) to export *1
1* options, as above *1

addexportent() adds the exportent() to the end of the open file filep. It returns 0 if successful and -Ion
failure. remexportent() removes the indicated entry from the list. It also returns 0 on success and -Ion
failure. getexportopt() scans the xent_options field of the exportentO structure for a substring that
matches opt. It returns the string value of opt, or NULL if the option is not found.

endexportent() closes the file.

letc/exports
letc/xtab

Sun Release 4.1 Last change: 4 January 1987 971

EXPORTENT (3) C LIBRARY FUNCTIONS EXPORTENT (3)

SEE ALSO
exports(5), exportfs(8)

DIAGNOSTICS
NULL pointer (0) returned on EOF or error.

BUGS
The returned exportent() structure points to static information that is overwritten in each call.

972 Last change: 4 January 1987 Sun Release 4.1

FCLOSE(3V) C LIBRARY FUNCTIONS FCLOSE(3V)

NAME
fclose, fflush - close or flush a stream

SYNOPSIS
#include <stdio.h>

fclose(stream)
FILE *stream;

fflush(stream)
FILE *stream;

DESCRIPTION
fclose() writes out any buffered data for the named stream, and closes the named stream. Buffers allocated
by the standard input/output system are freed.

fclose() is performed automatically for all open files upon calling exit(3).

fflush() writes any unwritten data for an output stream or an update stream in which the most recent opera­
tion was not input to be delivered to the host environment to the file; otherwise it is ignored. The named
stream remains open.

SYSTEM V DESCRIPTION
When fftush() is called on a stream opened for reading, any unread data buffered in the stream is invali­
dated. When fftushO is called on a stream opened for reading, if the file is not already at EOF, and the file
is one capable of seeking, the file offset of the underlying open file description is adjusted so the next
operation on the open file description deals with the byte after the last byte read from or written to the
stream being flushed.

RETURN VALUES
fclose() and fflush() return:

o on success.

EOF if any error (such as trying to write to a file that has not been opened for writing) was detected.

SEE ALSO
close(2V), exit(3), fopen(3V), setbuf(3V)

Sun Release 4.1 Last change: 22 January 1990 973

FERROR(3V) C LIBRARY FUNCTIONS FERROR(3V)

NAME
ferror, feof, clearerr, fileno - stream status inquiries

SYNOPSIS
#include <stdio.h>

ferror(stream)
FILE *stream;

feof(stream)
FILE *stream;

clearerr(stream)
FILE *stream;

fileno(stream)
FILE *stream;

DESCRIPTION
ferror() returns non-zero when an error has occurred reading from or writing to the named stream, other­
wise zero. Unless cleared by clearerr(), the error indication lasts until the stream is closed.

feof() returns non-zero when EOF has previously been detected reading the named input stream, otherwise
zero. Unless cleared by c1earerr(), the EOF indication lasts until the stream is closed.

clearerr() resets the error indication and EOF indication to zero on the named stream.

fileno() returns the integer file descriptor associated with the stream (see open(2V».

SYSTEM V DESCRIPTION
feof() returns non-zero when EOF has previously been detected reading the named input stream, otherwise
zero. Unless cleared by clearerr(), the EOF indication lasts until the stream is closed, however, operations
which attempt to read from the stream will ignore the current state of the EOF indication and attempt to
read from the file descriptor associated with the stream.

SEE ALSO
open(2V), fopen(3V)

NOTES
These functions are defined in the C library and are also defined as macros in <stdio.h>.

974 Last change: 5 October 1989 Sun Release 4.l

NAME

C LIBRARY FUNCTIONS

single_to_decimal, double_to_decimal, extended_to_decimal - convert floating-point value to decimal
record

SYNOPSIS
#include <Ooatingpoint.h>

void single_to_decimal(px, pm, pd, ps)
single *px ;
decimal_mode *pm;
decimal_record *pd;
fp _exception_field _type *ps;

void double_to_decimal(px, pm, pd, ps)
double *px;
decimal_mode *pm;
decimal_record *pd;
fp _exception_field _type *ps;

void extended_to_decimal(px, pm, pd, ps)
extended *px ;
decimal_mode *pm;
decimal_record *pd;
fp _exception_field _type *ps;

DESCRIPTION
The ftoating_to_decimaIO functions convert the floating-point value at *px into a decimal record at *pd,
observing the modes specified in *pm and setting exceptions in *ps. If there are no IEEE exceptions, *ps
will be zero.

If *px is zero, infinity, or NaN, then only pd->sign and pd->fpclass are set. Otherwise pd->exponent and
pd->ds are also set so that

(pd->sign)*(pd->ds)*10**(pd->exponent)

is a correctly rounded approximation to *px. pd->ds has at least one and no more than
DECIMAL_STRING_LENGTH-l significant digits because one character is used to terminate the string
with a null character.

pd->ds is correctly rounded according to the IEEE rounding modes in pm->rd. *ps hasfp _inexact set if the
result was inexact, and has fp _overflow set if the string result does not fit in pd->ds because of the limita­
tion DECIMAL_STRING_LENGTH.

If pm->df == floatingJorm, then pd->ds always contains pm->ndigits significant digits. Thus if *px ==
12.34 andpm->ndigits == 8, thenpd->ds will contain 12340000 andpd->exponent will contain-6.

If pm->df == fixedJorm and pm->ndigits >= 0, then pd->ds always contains pm->ndigits after the point
and as many digits as necessary before the point. Since the latter is not known in advance, the total number
of digits required is returned in pd->ndigits; if that number >= DECIMAL_STRING_LENGTH, then ds is
undefined. pd->exponent always gets -pm->ndigits. Thus if *px == 12.34 and pm->ndigits == 1, then
pd->ds gets 123,pd->exponent gets -1, andpd->ndigits gets 3.

If pm->df == fixedJorm and pm->ndigits < 0, then pm->ds always contains -pm->ndigits trailing zeros;
in other words, rounding occurs -pm->ndigits to the left of the decimal point, but the digits rounded away
are retained as zeros. The total number of digits required is in pd->ndigits. pd->exponent always gets 0.
Thus if *px == 12.34 and pm->ndigits == -1, then pd->ds gets 10, pd->exponent gets 0, and pd->ndigits
gets 2.

Sun Release 4.1 Last change: 23 October 1987 975

C LIBRARY FUNCTIONS

pd-> more is not used.

econvert(), rconvert() and gconvert() (see econvert(3», and printf() and sprintf() (see printf(3V» all
use double_to_decimaIO.

SEE ALSO
econvert(3), printr(3V)

976 Last change: 23 October 1987 Sun Release 4.1

FLOATINGPOINT (3) C LIBRARY FUNCTIONS FLOA TINGPOINT (3)

NAME
floatingpoint - IEEE floating point definitions

SYNOPSIS
#include <syslieeefp.h>
#include <f1oatingpoint.h>

DESCRIPTION
This file defines constants, types, variables, and functions used to implement standard floating point accord­
ing to ANSI/IEEE Std 754-1985. The variables and functions are implemented in Jibc.a. The included file
<syslieeefp.h> defines certain types of interest to the kernel.

IEEE Rounding Modes:

fp _direction_type

fp _direction

fp Jrecision_ type

fp Jrecision

SIGFPE handling:

The type of the IEEE rounding direction mode. Note: the order of enumeration
varies according to hardware.

The IEEE rounding direction mode currently in force. This is a global variable
that is intended to reflect the hardware state, so it should only be written indirectly
through a function like ieee_flags (" set" ," direction" , •••) that also sets the
hardware state.

The type of the IEEE rounding precision mode, which only applies on systems that
support extended precision such as Sun-3 systems with 68881 'so

The IEEE rounding precision mode currently in force. This is a global variable
that is intended to reflect the hardware state on systems with extended precision,
so it should only be written indirectly through a function like
ieee_f1ags(ttset" ,"precision", •••).

sigfpe_code_type The type of a SIGFPE code.

sigfpe_handler_type The type of a user-definable SIGFPE exception handler called to handle a particu­
lar SIGFPE code.

SIGFPE_DEFAULT A macro indicating the default SIGFPE exception handling, namely to perform the
exception handling specified by calls to ieee _ handler(3M), if any, and otherwise
to dump core using abort(3).

SIGFPE IGNORE A macro indicating an alternate SIGFPE exception handling, namely to ignore and
continue execution.

SIGFPE ABORT A macro indicating an alternate SIGFPE exception handling, namely to abort with
a core dump.

IEEE Exception Handling:

N_IEEE_EXCEPTION The number of distinctIEEE floating-point exceptions.

fp_exception_type The type of the N_IEEE_EXCEPTION exceptions. Each exception is given a bit
number.

fp _exception _field _type

fp _accrued _exceptions

Sun Release 4.1

The type intended to hold at least N_IEEE_EXCEPTION bits corresponding to the
IEEE exceptions numbered by fp_exception_type. Thus fp_inexact corresponds
to the least significant bit and fp Jnvalid to the fifth least significant bit. Note:
some operations may set more than one exception.

The IEEE exceptions between the time this global variable was last cleared, and
the last time a function like ieee _ f1ags(" get" ," exception" , •••) was called to

update the variable by obtaining the hardware state.

Last change: 21 October 1987 977

FLOATINGPOINT (3) C LIBRARY FUNCTIONS FLOA TINGPOINT (3)

ieee_handlers An array of user-specifiable signal handlers for use by the standard SIGFPE
handler for IEEE arithmetic-related SIGFPE codes. Since IEEE trapping modes
correspond to hardware modes, elements of this array should only be modified
with a function like ieee _ handler(3M) that performs the appropriate hardware
mode update. If no sigfpe _handler has been declared for a particular IEEE­
related SIGFPE code, then the related ieee_handlers will be invoked.

IEEE Formats and Classification:

single ;extended

fp _class_type

IEEE Base Conversion:

Definitions of IEEE formats.

An enumeration of the various classes of IEEE values and symbols.

The functions described under floating_to_decimal(3) and decimal_to_floating(3) not only
satisfy the IEEE Standard, but also the stricter requirements of correct rounding for all arguments.

DEC~AL_STRING_LENGTH

decimal_string

decimal record

decimal form

The length of a decimal_string.

The digit buffer in a decimal_record.

The canonical form for representing an unpacked decimal floating-point number.

The type used to specify fixed or floating binary to decimal conversion.

decimal mode A struct that contains specifications for conversion between binary and decimal.

decimal_string_form An enumeration of possible valid character strings representing floating-point
numbers, infinities, or NaNs.

SEE ALSO
abort(3), decimal_to _ floating(3), econvert(3), floating_to _ decimal(3), ieee _ flags(3M),
ieee _ handler(3M), sigfpe(3), string_to _ decimal(3), strtod(3)

978 Last change: 21 October 1987 Sun Release 4.1

FOPEN(3V) C LIBRARY FUNCTIONS FOPEN(3V)

NAME
fopen, freopen, fdopen - open a stream

SYNOPSIS
#include <stdio.h>

FILE *fopen(fiIename, type)
char *filename, *type;

FILE *freopen(fiIename, type, stream)
char *filename, *type;
FILE *stream;

FILE *fdopen(fd, type)
int fd;
char *type;

DESCRIPTION
fopen() opens the file named by filename and associates a stream with it. If the open succeeds, fopen()
returns a pointer to be used to identify the stream in subsequent operations.

filename points to a character string that contains the name of the file to be opened.

type is a character string having one of the following values:

r open for reading

w truncate or create for writing

a append: open for writing at end of file, or create for writing

r+ open for update (reading and writing)

w+ truncate or create for update

a+ append; open or create for update at EOF

freopen() opens the file named by filename and associates the stream pointed to by stream with it. The
type argument is used just as in fopen. The original stream is closed, regardless of whether the open ulti­
mately succeeds. If the open succeeds, freopen() returns the original value of stream.

freopen() is typically used to attach the preopened streams associated with stdin, stdont, and stderr to
other files.

fdopen() associates a stream with the file descriptor fd. File descriptors are obtained from calls like
open(2V), dup(2V), creat(2V), or pipe(2V), which open files but do not return streams. Streams are
necessary input for many of the Section 3S library routines. The type of the stream must agree with the
access permissions of the open file.

When a file is opened for update, both input and output may be done on the resulting stream. However,
output may not be directly followed by input without an intervening fseek(3S) or rewind(), and input may
not be directly followed by output without an intervening fseek(), rewind(), or an input operation which
encounters EOP.

When a file is opened for update, both input and output may be done on the resulting stream. However,
output may not be directly followed by input without an intervening fseek() or rewind(), and input may
not be directly followed by output without an intervening fseek(), rewind(), or an input operation which
encounters end-of-file.

Sun Release 4.1 Last change: 21 January 1990 979

FOPEN(3V) C LIBRARY FUNCTIONS FOPEN(3V)

SYSTEM V DESCRIPTION
When a file is opened for append (that is, when type is a or a+), it is impossible to overwrite information
already in the file. fseek() may be used to reposition the file pointer to any position in the file, but when
output is written to the file, the current file pointer is disregarded. All output is written at the end of the file
and causes the file pointer to be repositioned at the end of the output If two separate processes open the
same file for append, each process may write freely to the file without fear of destroying output being writ­
ten by the other. The output from the two processes will be intermixed in the file in the order in which it is
written.

RETURN VALUES
On success, fopen(), freopen(), and fdopen() return a pointer to FILE which identifies the opened stream.
On failure, they return NULL.

SEE ALSO

BUGS

980

open(2V), pipe(2V), fclose(3V), fseek(3S)

In order to support the same number of open files that the system does, fopen() must allocate additional
memory for data structures using calloc() after 64 files have been opened. This confuses some programs
which use their own memory allocators.

Last change: 21 January 1990 Sun Release 4.1

FREAD(3S) STANDARD I/O FUNCTIONS FREAD(3S)

NAME
fread, fwrite - buffered binary input/output

SYNOPSIS
#include <stdio.h>

int rread (ptr, size, nitems, stream)
char *ptr;
int size;
int nitems;
FILE *stream;

int rwrite (ptr, size, nitems, stream)
char *ptr;
int size;
int nitems;
FILE *stream;

DESCRIPTION
fread() reads, into a block pointed to by ptr, nitems items of data from the named input stream stream,
where an item of data is a sequence of bytes (not necessarily terminated by a null byte) of length size. It
returns the number of items actually read. fread() stops reading if an end-of-file or error condition is
encountered while reading from stream, or if nitems items have been read. fread() leaves the file pointer
in stream, if defined, pointing to the byte following the last byte read if there is one. fread() does not
change the contents of the file referred to by stream .

fwrite() writes at most nitems items of data from the block pointed to by ptr to the named output stream
stream. It returns the number of items actually written. fwrite() stops writing when it has written nitems
items of data or if an error condition is encountered on stream. fwrite() does not change the contents of
the block pointed to by ptr.

If size or nitems is non-positive, no characters are read or written and 0 is returned by both fread() and
fwrite().

SEE ALSO
read(2V), write(2V), fopen(3V), getc(3V), gets(3S), putc(3S), puts(3S), printf(3V), scanf(3V)

DIAGNOSTICS
fread() and fwrite() return 0 upon end of file or error.

Sun Release 4.1 Last change: 7 September 1988 981

FSEEK(3S) STANDARD I/O FUNCTIONS FSEEK(3S)

NAME
fseek, ftell, rewind - reposition a stream

SYNOPSIS
#include <stdio.h>

fseek(stream, offset, ptrname)
FILE *stream;
long offset;

long ftell(stream)
FILE *stream;

rewind(stream)
FILE *stream;

DESCRIPTION
fseek() sets the position of the next input or output operation on the stream. The new position is at the
signed distance offset bytes from the beginning. the current position, or the end of the file, according as
ptrname has the value 0, 1, or 2.

rewind(stream) is equivalent to rseek(stream, OL, 0), except that no value is returned.

fseek() and rewind() undo any effects of ungetc(3S).

After rseek() or rewind(), the next operation on a file opened for update may be either input or output.

ftell() returns the offset of the current byte relative to the beginning of the file associated with the named
stream.

SEE ALSO
Iseek(2V), fopen(3V), popen(3S), ungetc(3S)

DIAGNOSTICS
fseek() returns -1 for improper seeks, otherwise zero. An improper seek can be, for example, an fseek()
done on a file associated with a non-seekable device, such as a tty or a pipe; in particular, rseek() may not
be used on a terminal, or on a file opened using popen(3S).

WARNING

982

Although on the UNIX system an offset returned by ftell() is measured in bytes, and it is permissible to
seek to positions relative to that offset, portability to a (non-UNIX) system requires that an offset be used by
fseek() directly. Arithmetic may not meaningfully be performed on such an offset, which is not neces­
sarily measured in bytes.

Last change: 6 October 1987 Sun Release 4.1

FfOK(3) C LIBRARY FUNCTIONS FfOK(3)

NAME
ftok - standard interprocess communication package

SYNOPSIS
#include <sysltypes.h>
#include <syslipc.h>

key_t ftok(path, id)
char *path;
char id;

DESCRIPTION
All interprocess communication facilities require the user to supply a key to be used by the msgget(2),
semget(2), and shmget(2) system calls to obtain interprocess communication identifiers. One suggested
method for forming a key is to use the ftok() subroutine described below. Another way to compose keys is
to include the project 10 in the most significant byte and to use the remaining portion as a sequence
number. There are many other ways to form keys, but it is necessary for each system to define standards
for forming them. If some standard is not adhered to, it will be possible for unrelated processes to uninten­
tionally interfere with each other's operation. Therefore, it is strongly suggested that the most significant
byte of a key in some sense refer to a project so that keys do not conflict across a given system.

ftok() returns a key based on path and ID that is usable in sllbsequent msgget, semget, and shmget() sys­
tem calls. path must be the path name of an existing file that is accessible to the process. ID is a character
which uniquely identifies a project. Note: ftok() will return the same key for linked files when called with
the same ID and that it will return different keys when called with the same file name but different IDs.

SEE ALSO
intro(2), msgget(2), semget(2), shmget(2)

DIAGNOSTICS
ftok() returns (key _ t) -1 if path does not exist or if it is not accessible to the process.

WARNING
If the file whose path is passed to ftok() is removed when keys still refer to the file, future calls to ftok()
with the same path and ID will return an error. If the same file is recreated, then ftok() is likely to return a
different key than it did the original time it was called.

Sun Release 4.1 Last change: 6 October 1987 983

FTW(3) C LIBRARY FUNCTIONS FfW(3)

NAME
ftw - walk a file tree

SYNOPSIS

#include <ftw.h>

int ftw(patb, fn, depth)
char *patb;
int (*fn)();
int depth;

DESCRIPTION
ftw() recursively descends the directory hierarchy rooted in path. For each object in the hierarchy, ftw()
calls In, passing it a pointer to a null-terminated character sUing containing the name of the object, a
pointer to a stat() structure (see stat(2V» containing information about the object, and an integer. Possi­
ble values of the integer, defined in the <ftw.h> header file, are FIW _F for a file, FfW _0 for a directory,
FTW _ONR for a directory that cannot be read, and FTW _NS for an object for which stat() could not suc­
cessfully be executed. If the integer is FTW _ONR, descendants of that directory will not be processed. If
the integer is FTW _NS, the stat() structure will contain garbage. An example of an object that would cause
FTW _NS to be passed to In would be a file in a directory with read but without execute (search) permission.

ftw() visits a directory before visiting any of its descendants.

The tree traversal continues until the tree is exhausted, an invocation of In returns a nonzero value, or some
error is detected within ftw() (such as an I/O error). If the tree is exhausted, ftw() returns zero. If In
returns a nonzero value, ftw() stops its tree traversal and returns whatever value was returned by In. If
ftw() detects an error, it returns -1, and sets the error type in errno.

ftw() uses one file descriptor for each level in the tree. The depth argument limits the number of file
descriptors so used. If depth is zero or negative, the effect is the same as if it were 1. depth must not be
greater than the number of file descriptors currently available for use. ftw() will run more quickly if depth
is at least as large as the number of levels in the tree.

SEE ALSO

BUGS

984

stat(2V), malloc(3V)

Because ftw() is recursive, it is possible for it to terminate with a memory fault when applied to very deep
file structures.

It could be made to run faster and use less storage on deep structures at the cost of considerable complex­
ity.

ftw() uses malloc(3V) to allocate dynamic storage during its operation. If ftw() is forcibly terminated,
such as by longjmp() being executed by In or an interrupt routine. ftw() will not have a chance to free that
storage, so it will remain permanently allocated. A safe way to handle interrupts is to store the fact that an
interrupt has occurred, and arrange to have In return a nonzero value at its next invocation.

Last change: 22 November 1987 Sun Release 4.1

GETACINFO (3) C LIBRARY FUNCTIONS GETACINFO (3)

NAME
getaeinfo, getacdir, getacflg, getacmin, setae, endac - get audit control file information

SYNOPSIS
int getacdir(dir, len)
char *dir;
int len;

int getacmin(min _ val)
int *min _val;

int getacflg(auditstring, len)
char *auditstring;
int len;

void setac()

void endac()

DESCRIPTION
When first called, getacdir() provides information about the first audit directory in the audit_control file;
thereafter, it returns the next directory in the file. Successive calls list all the directories listed in
audit _ control(5) The parameter len specifies the length of the buffer dir . On return, dir points to the direc­
tory entry.

getacmin() reads the minimum value from the audit_control file and returns the value in min_val. The
minimum value specifies how full the file system to which the audit files are being written can get before
the script audit_warn is invoked.

getacflg() reads the system audit value from the audit_control file and returns the value in auditstring.
The parameter len specifies the length of the buffer auditstring.

Calling setae rewinds the audit_control file to allow repeated searches.

Calling endae closes the audit_control file when processing is complete.

RETURN VALUES
getacdir(), getacflg() and getacmin() return:

o on success.

-2 on failure and set errno to indicate the error.

getacmin() and getacflg() return:

1 on EOF.

getacdir() returns:

-1 on EOF.

2 if the directory search had to start from the beginning because one of the other functions was
called between calls to getacdir().

These functions return:

- 3 if the directory entry format in the audit_control file is incorrect.

getacdir() and getacflg() return:

-3 if the input buffer is too short to accommodate the record.

SEE ALSO
audit _ control(5)

Sun Release 4.1 Last change: 21 January 1990 985

GETAUDITFLAGS (3) C LIBRARY FUNCTIONS GETAUDI1FLAGS (3)

NAME
getauditflagsbin, getauditflagschar - convert audit flag specifications

SYNOPSIS
#include <sysllabeI.h>
#include <syslaudit.h>
#include <syslauevents.h>

int getauditflagsbin(auditstring, masks)
char *auditstring;
audit_state _ t *masks;

int getauditflagschar(auditstring, masks, verbose)
char *auditstring;
audit_state_t *masks;
int verbose;

DESCRIPTION
getauditflagsbin() converts the character representation of audit values pointed to by auditstring into
audit_state_t fields pointed to by masks. These fields indicate which events are to be audited when they
succeed and which are to be audited when they fail. The character string syntax is described in
audit _ control(5).

getauditflagschar() converts the audit_state _ t fields pointed to by masks into a string pointed to by audit­
string. If verbose is zero, the short (2-character) flag names are used. If verbose is non-zero, the long flag
names are used. auditstring should be large enough to contain the Ascn representation of the events.

auditstring contains a series of event names, each one identifying a single audit class, separated by com­
mas. The audit_state_t fields pointed to by masks correspond to binary values defined in audit.h.

DIAGNOSTICS
-1 is returned on error and 0 on success.

SEE ALSO
audit.log(5), audit _ control(5)

BUGS
This is not a very extensible interface.

986 Last change: 6 October 1987 Sun Release 4.1

GETC(3V) C LIBRARY FUNCTIONS GETC(3V)

NAME
getc, getchar, fgetc, getw - get character or integer from stream

SYNOPSIS
#include <stdio.h>

int getc(stream)
FILE * stream;

int getchar()

int fgetc(stream)
FILE *stream;

int getw(stream)
FILE *stream;

DESCRIPTION
getc() returns the next character (that is, byte) from the named input stream, as an integer. It also moves
the file pointer, if defined, ahead one character in stream. getchar() is defined as getc(stdin). getc() and
getchar() are macros.

fgetc() behaves like getc(), but is a function rather than a macro. fgetc() runs more slowly than getc(),
but it takes less space per invocation and its name can be passed as an argument to a function.

getw() returns the next C int (word) from the named input stream. getw() increments the associated file
pointer, if defined, to point to the next word. The size of a word is the size of an integer and varies from
machine to machine. getw() assumes no special alignment in the file.

RETURN VALUES
On success, getc(), getchar() and fgetc() return the next character from the named input stream as an
integer. On failure, or on EOF, they return EOF. The EOF condition is remembered, even on a terminal, and
all subsequent operations which attempt to read from the stream will return EOF until the condition is
cleared with c1earerr() (see ferror(3V).

getwO returns the next C int from the named input stream on success. On failure, or on EOF, it returns
EOF, but since EOF is a valid integer, use ferror(3V) to detect getw() errors.

SYSTEM V RETURN VALUES
On failure, or on EOF, these functions return EOF. The EOF condition is remembered, even on a terminal,
however, operations which attempt to read from the stream will ignore the current state of the EOF indica­
tion and attempt to read from the file descriptor associated with the stream.

SEE ALSO
ferror(3V), fopen(3V), fread(3S), gets(3S), putc(3S), scanf(3V), ungetc(3S)

WARNINGS

BUGS

If the integer value returned by getc(), getchar(), or fgetc() is stored into a character variable and then
compared against the integer constant EOF, the comparison may never succeed, because sign-extension of a
character on widening to integer is machine-dependent.

Because it is implemented as a macro, getc() treats a stream argument with side effects incorrectly. In par­
ticular, getc(*f++) does not work sensibly. fgetc() should be used instead.

Because of possible differences in word length and byte ordering, files written using putw() are machine­
dependent, and may not be readable using getw() on a different processor.

Sun Release 4.1 Last change: 21 January 1990 987

GETCWD(3V) C LIBRARY FUNCTIONS GETCWD(3V)

NAME
getcwd - get pathname of current working directory

SYNOPSIS
char *getcwd(buf, size)
char *buf;
int size;

DESCRIPTION
getcwd() returns a pointer to the current directory pathname. The value of size must be at least two greater
than the length of the pathname to be returned.

If buf is a NULL pointer, getcwd() will obtain size bytes of space using malloc(3V). In this case, the
pointer returned by getcwd() may be used as the argument in a subsequent call to free().

The function is implemented by using popen(3S) to pipe the output of the pWd(l) command into the
specified string space.

RETURN VALUES
getcwd() returns a pointer to the current directory pathname on success. If size is not large enough, or if
an error occurs in a lower-level function, getcwd() returns NULL and sets errno to indicate the error.

ERRORS
EINV AL size is less than or equal to zero.

ERANGE size is greater than zero, but is smaller than the length of the pathname plus 1.

If the following condition is detected, getcwd() sets errno to:

EACCES

EXAMPLES

Read or search permission is denied for a component of the pathname.

char *cwd, *getcwd();

if «cwd = getcwd«char *)NULL, 64» == NULL) {
perror (" pwd");
exit (1);

}
printf(" %s\n", cwd);

SEE ALSO

BUGS

988

pwd(I), getwd(3), malloc(3V), popen(3S)

Since this function uses popen() to create a pipe to the pwd command, it is slower than getwd() and gives
poorer error diagnostics. getcwd() is provided only for compatibility with other UNIX operating systems.

Last change: 21 January 1990 Sun Release 4.1

GETENV(3V) C LIBRARY FUNCTIONS

NAME
getenv - return value for environment name

SYNOPSIS
#include <stdlib.h>

char *getenv(name)
char *name;

DESCRIPTION

GETENV(3V)

getenv() searches the environment list (see environ(5V» for a string of the form name=value, and returns
a pointer to the string value if such a string is present. Otherwise, getenv() returns NULL.

RETURN VALUES
On success, getenv() returns a pointer to a string containing the value for the specified name. If the
specified name cannot be found, it returns NULL.

SEE ALSO
environ(5V), execve(2V), putenv(3)

Sun Release 4.1 Last change: 21 January 1990 989

GETFAUDITFLAGS (3) C LIBRARY FUNCTIONS GETFAUDITFLAGS (3)

NAME
getfauditflags - generates the process audit state

SYNOPSIS
#include <sys/types.b>
#include <sys/audit.b>
#include <sys/labeI.b>

void getfauditftags(usremasks, usrdmasks, iastmasks)
audit_state_t *usremasks;
audit_state_t *usrdmasks;
audit_state_t *Iastmasks;

DESCRIPTION
getfauditflags generates the process audit state from the user audit value as input to getfauditflags and the
system audit value as specified in the audit_control file. getfauditflags obtains the system audit value by
calling getacflg. The user audit value, pointed to by usremasks and usrdmasks is passed into
getfauditflags.

usremasks points to audit_state_t fields which contains two values. The first value defines which events
are always to be audited when they succeed. The second value defines which events are always to be
audited when they fail.

usrdmasks also points to audit_state_t fields which contains two values. The first value defines which
events are never to be audited when they succeed. The second value defines which events are never to be
audited when they fail.

The structures pointed to by usremasks and usrdmasks may be obtained from the passwd.adjunct file by
calling getpwaent() which returns a pointer to a strucure containing all passwd.adjunct fields for a user.

lastmasks points to audit_state _ t as well. The first value defines which events are to be audited when they
succeed and the second value defines which events are to be audited when they fail.

Both usremasks and usrdmasks override the values in the system audit values.

DIAGNOSTICS
-1 is returned on error and 0 on success.

SEE ALSO
getauditflags(3), getacinfo(3), audit.log(S), audit _ controt(S)

990 Last change: 7 September 1988 Sun Release 4.1

GElFSENT (3) C LIBRARY FUNCTIONS GElFSENT (3)

NAME
getfsent, getfsspec, getfsfile, getfstype, setfsent, endfsent - get file system descriptor file entry

SYNOPSIS
#include <rstab.h>

struct fstab *getrsent()

struct fstab *getfsspec(spec)
char *spec;

struct fstab *getfsfile(file)
char *file;

struct fstab *getrstype(type)
char *type;

int setfsent()

int endrsent()

DESCRIPTION

FILES

These routines are included for compatibility with 4.2 BSD; they have been superseded by the
getmntent(3) library routines.

getfsent, getfsspec, getfstype, and getfsfile each return a pointer to an object with the following structure
containing the broken-out fields of a line in the file system description file, <fstab.h>.

struct fstab {
char *fs_spec;
char *rs_file;
char *fs_type;
int rs_freq;
int rsyassno;

};

The fields have meanings described in rstab(5).

getfsent() reads the next line of the file, opening the file if necessary.

getrsent() opens and rewinds the file.

end/sent closes the file.

getjsspec and getfsfile sequentially search from the beginning of the file until a matching special file name
or file system file name is found, or until EOF is encountered. getfstype does likewise, matching on the file
system type field.

letclrstab

SEE ALSO
rstab(5)

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

BUGS
The return value points to static information which is overwritten in each call.

Sun Release 4.1 Last change: 6 October 1987 991

GETGRAENT (3) C LIBRARY FUNCTIONS GETGRAENT (3)

NAME
getgraent, getgranam, setgraent, endgraent, fgetgraent - get group adjunct file entry

SYNOPSIS
#include <stdio.h>
#include <grpadj.h>

struct group_adjunct *getgraent()

struct group_adjunct *getgranam(name)
char *name;

struct group_adjunct *fgetgraent(f)
FILE *f;

void setgraent()

void endgraent()

DESCRIPTION

FILES

getgraent() and getgranam() each return pointers to an object with the following structure containing the
broken-out fields of a line in the group adjunct file. Each line contains a group _adjunct structure, defined
in the <grpadj.h> header file.

struct group_adjunct {

};

char *gra_ name;
char *graJasswd;

1* the name of the group *1
1* the encrypted group password *1

When first called, getgraent() returns a pointer to a group_adjunct structure corresponding to the first line
in the file. Thereafter, it returns a pointer to the next group_adjunct structure in the file. So successive
calls may be used to traverse the entire file.

For locating a particular group, getgranam() searches through the file until it finds group filename, then
returns a pointer to that structure.

A call to getgraent() rewinds the group adjunct file to allow repeated searches. A call to endgraent()
closes the group adjunct file when processing is complete.

Because read access is required on letclsecurity/group.adjunct, getgraent() and getgranam() will fail
unless the calling process has effective UID of root.

letclsecurity/group.adjunct
Ivar/ypl domainname 1 group.adjunct

SEE ALSO
getlogin(3V), getgrent(3V), getpwaent(3), getpwent(3V), ypserv(8)

DIAGNOSTICS
A NULL pointer is returned on end-of-file or error.

BUGS
All information is contained in a static area, so it must be copied if it is to be saved.

992 Last change: 7 September 1988 Sun Release 4.1

GETGRENT (3V) C LIBRARY FUNCTIONS GETGRENT (3V)

NAME
getgrent, getgrgid, getgrnam, setgrent, endgrent, fgetgrent - get group file entry

SYNOPSIS
#include <grp.h>

struct group *getgrent()

struct group *getgrgid(gid)
int gid;

struct group *getgrnam(name)
char *name;

void setgrent()

void endgrent()

struct group *fgetgrent(f)
FILE *f;

DESCRIPTION
getgrent(), getgrgid() and getgrnam() each return pointers to an object with the following structure con­
taining the fields of a line in the group file. Each line contains a "group" structure, defined in <grp.h>.

struct group {
char

};

char
gid_t
char

*gr_name;
*gr yasswd;
gr_gid;
**gr_mem;

1* name of the group *1
1* encrypted password of the group *1
1* numerical group ID *1
1* null-terminated array of pointers to the

individual member names *1

getgrent() when first called returns a pointer to the first group structure in the file; thereafter, it returns a
pointer to the next group structure in the file; so, successive calls may be used to search the entire file. get­
grgid() searches from the beginning of the file until a numerical group ID matching gid is found and
returns a pointer to the particular structure in which it was found. getgrnam() searches from the beginning
of the file until a group name matching name is found and returns a pointer to the particular structure in
which it was found. If an end-of-file or an error is encountered on reading, these functions return a NULL
pointer.

A call to setgrent() has the effect of rewinding the group file to allow repeated searches. endgrent() may
be called to close the group file when processing is complete.

fgetgrent() returns a pointer to the next group structure in the stream!, which must refer to an open file in
the same format as the group file letc/group.

RETURN VALUES

FILES

getgrent(), getgrgid(), and getgrnam() return a pointer to struct group on success. On EOF or error,
they return NULL.

letc/group

SEE ALSO

BUGS

getlogin(3V), getpwent(3V), group(5), ypserv(8)

All information is contained in a static area, so it must be copied if it is to be saved.

Unlike the corresponding routines for passwords (see getpwent(3v», which always search the entire file,
these routines start searching from the current file location.

Sun Release 4.1 Last change: 21 January 1990 993

GETGRENT (3V) C LIBRARY FUNCTIONS GETGRENT (3V)

WARNING
The above routines use the standard I/O library, which increases the size of programs not otherwise using
standard I/O more than might be expected.

994 Last change: 21 January 1990 Sun Release 4.1

GETHOSTENT (3N) NE1WORK FUNCTIONS GETHOSTENT (3N)

NAME
gethostent, gethostbyaddr, gethostbyname, sethostent, endhostent - get network host entry

SYNOPSIS
#include <sysltypes.h>
#include <sys/socket.h>
#include <netdb.h>

struct hostent *gethostent()

struct hostent *gethostbyname(name)
char *name;

struct hostent *gethostbyaddr(addr, len, type)
char *addr;
int len, type;

sethostent(stayopen)
int stayopen
endhostent()

DESCRIPTION

FILES

gethostent, gethostbyname, and gethostbyaddr() each return a pointer to an object with the following
structure containing the broken-out fields of a line in the network host data base, letdhosts. In the case of
gethostbyaddr(), addr is a pointer to the binary format address of length len (not a character string).

struct hostent {
char *h_name;
char **h_aliases;
int h _ addrtype;
int h _length;
char * * h _ addr _list;

};

1* official name of host *1
1* alias list *1
1* address type *1
1* length of address *1
1* list of addresses from name server *1

The members of this structure are:

h name

h aliases

h_addrtype

hJength

h addr list - -

Official name of the host.

A zero terminated array of alternate names for the host.

The type of address being returned; currently always AF _ INET.

The length, in bytes, of the address.

A pointer to a list of network addresses for the named host. Host addresses are
returned in network byte order.

gethostent() reads the next line of the file, opening the file if necessary.

sethostent() opens and rewinds the file. If the stay open flag is non-zero, the host data base will not be
closed after each call to gethostentO (either directly, or indirectly through one of the other "gethost"
calls).

endhostent() closes the file.

gethostbyname() and gethostbyaddr() sequentially search from the beginning of the file until a matching
host name or host address is found, or until end-of-file is encountered. Host addresses are supplied in net­
work order.

letc/hosts

SEE ALSO
hosts(5). ypserv(8)

Sun Release 4.1 Last change: 7 September 1988 995

GETHOSTENT (3N) NETWORK FUNCTIONS GETHOSTENT (3N)

DIAGNOSTICS
A NULL pointer is returned on end-of-file or error.

BUGS
All information is contained in a static area so it must be copied if it is to be saved. Only the Internet
address format is currently understood.

996 Last change: 7 September 1988 Sun Release 4.1

GETLOGIN (3V) C LIBRARY FUNCTIONS GETLOGIN(3V)

NAME
getlogin - get login name

SYNOPSIS
char * getlogin()

DESCRIPTION

FILES

getlogin() returns a pointer to the login name as found in /etc/utmp. It may be used in conjunction with
getpwnam() to locate the correct password file entry when the same user ID is shared by several login
names.

If getlogin() is called within a process that is not attached to a terminal, or if there is no entry in /etc/utmp
for the process's tenninal, it returns a NULL pointer. The correct procedure for determining the login name
is to call cuserid(), or to call getlogin() and, if it fails, to call getpwuid(getuid(».

/etc/utmp

SEE ALSO
cuserid(3v), getpwent(3v), utmp(5V)

RETURN VALUES
getlogin() returns a pointer to the login name on success. If the name is not found, it returns NULL.

BUGS
The return values point to static data whose content is overwritten by each call.

getlogin() does not work for processes running under a pty (for example, emacs shell buffers, or shell
tools) unless the program "fakes" the login name in the /etc/utmp file.

Sun Release 4.1 Last change: 21 January 1990 997

GETMNTENT (3) C LIBRARY FUNCTIONS GETMNTENT (3)

NAME
getmntent, setmntent, addmntent, endmntent, hasmntopt - get file system descriptor file entry

SYNOPSIS
#include <stdio.h>
#include <mntent.h>

FILE *setmntent(filep, type)
char *fiIep;
char *type;

struct mntent * getmntent(filep)
FILE *filep;

int addmntent(filep, mnt)
FILE *filep;
struct mntent *mnt;

char *hasmntopt(mnt, opt)
struct mntent *mnt;
char *opt;

int endmntent(filep)
FILE *filep;

DESCRIPTION

FILES

These routines replace the getfsent() routines for accessing the file system description file letclfstab. They
are also used to access the mounted file system description file letclmtab.

setmntent() opens a file system description file and returns a file pointer which can then be used with
getmntent, addmntent, or endmntent. The type argument is the same as in fopen(3V). getmntent()
reads the next line from filep and returns a pointer to an object with the following structure containing the
broken-out fields of a line in the file system description file, <mntenth>. On failure, getmntent() returns
the NULL pointer. The fields have meanings described in fstab(5).

struct mntent{

};

char *mnt_fsname;
char *mnt_dir;
char *mnt_type;
char *mnt_opts;
int mnt_freq;
int mntyassno;

1* name of mounted file system *1
1* file system path prefix *1
1* MNTTYPE * *1
1* MNTOPT* *1
1* dump frequency, in days *1
1* pass number on parallel fsck *1

addmntent() adds the mntent structure mnt to the end of the open file filep. addmntent() returns 0 on
success, 1 on failure. Note: filep has to be opened for writing if this is to work. hasmntopt() scans the
mnt _opts field of the mntent structure mnt for a substring that matches opt. It returns the address of the
substring if a match is found, 0 otherwise. endmntent() closes the file. It always returns 1, so should be
treated as type void.

letclfstab
letclmtab

SEE ALSO
fopen(3V), getfsent(3), rstab(5)

DIAGNOSTICS
NULL pointer (0) returned on EOF or error.

998 Last change: 26 February 1988 Sun Release 4.1

GETMNTENT (3) C LIBRARY FUNCTIONS GETMNTENT (3)

BUGS
The returned moteot structure points to static infonnation that is overwritten in each call.

Sun Release 4.1 Last change: 26 February 1988 999

GETNETENT (3N) NE1WORK FUNCTIONS GETNETENT (3N)

NAME
getnetent, getnetbyaddr, getnetbyname, setnetent, endnetent - get network entry

SYNOPSIS
#include <netdb.h>

struct netent *getnetent()

struct netent *getnetbyname(name)
char *name;

struct netent *getnetbyaddr(net, type)
long net;
int type;

setnetent (stayopen)
int stayopen;

endnetent()

DESCRIPTION

FILES

getnetent, getnetbyname, and getnetbyaddr() each return a pointer to an object with the following struc­
ture containing the broken-out fields of a line in the network data base, letc/networks.

struct

};

netent {
char
char
int
long

*n_name;
**n_aliases;
n _addrtype;
n_net;

1* official name of net *1
1* alias list *1
1* net number type *1
1* net number *1

The members of this structure are:

n name

n_aliases

n_addrtype

The official name of the network.

A zero terminated list of alternate names for the network.

The type of the network number returned; currently only AF _!NET.

n net The network number. Network numbers are returned in machine byte order.

getnetent() reads the next line of the file, opening the file if necessary.

setnetent() opens and rewinds the file. If the stayopen flag is non-zero, the net data base will not be closed
after each call to setnetent() (either directly, or indirectly through one of the other "getnet" calls).

endnetent() closes the file.

getnetbyname() and getnetbyaddr() sequentially search from the beginning of the file until a matching
net name or net address and type is found, or until end-of-file is encountered. Network numbers are sup­
plied in host order.

letc/networks

SEE ALSO
networks(5), ypserv(8)

DIAGNOSTICS

BUGS

1000

A NULL pointer is returned on end-of-file or error.

All information is contained in a static area so it must be copied if it is to be saved.

Only Internet network numbers are currently understood.

Last change: 14 December 1987 Sun Release 4.1

GE1NETGRENT (3N) NETWORK FUNCTIONS GE1NETGRENT (3N)

NAME
getnetgrent, setnetgrent, endnetgrent, innetgr - get network: group entry

SYNOPSIS
getnetgrent(machinep, userp, domainp)
char **machinep, **userp, **domainp;

setnetgrent(netgroup)
char *netgroup

endnetgrent()

innetgr(netgroup, machine, user, domain)
char *netgroup, *machine, *user, *domain;

DESCRIPTION

FILES

getnetgrent() returns the next member of a network group. After the call, machinep will contain a pointer
to a string containing the name of the machine part of the network group member, and similarly for userp
and domainp. If any of machinep, userp or domainp is returned as a NULL pointer, it signifies a wild card.
getnetgrent() will usemalloc(3V) to allocate space for the name. This space is released when a endnet­
grent() call is made. getnetgrent() returns 1 if it succeeded in obtaining another member of the network
group, 0 if it has reached the end of the group.

getnetgrent() establishes the network group from which getnetgrent() will obtain members, and also res­
tarts calls to getnetgrent() from the beginning of the list. If the previous setnetgrent() call was to a dif­
ferent network group, a endnetgrent() call is implied. endnetgrent() frees the space allocated during the
getnetgrent() calls. innetgr returns 1 or 0, depending on whether netgroup contains the machine, user,
domain triple as a member. Any of the three strings machine, user, or domain can be NULL, in which case
it signifies a wild card.

letdnetgroup

WARNINGS

NOTES

The Network Information Service (NIS) must be running when using getnetgrent(), since it only inspects
the NIS netgroup map, never the local files.

The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed.

Sun Release 4.1 Last change: 14 December 1987 1001

GETOPT(3) C LIBRARY FUNCTIONS GETOPT(3)

NAME
getopt, optarg, optind - get option letter from argument vector

SYNOPSIS
int getopt(argc, argv, optstring)
int argc;
char * *argv;
char *optstring;

extern char *optarg;
extern int optind, opterr;

DESCRIPTION
getopt() returns the next option letter in argv that matches a letter in optstring. optstring must contain the
option letters the command using getopt() will recognize; if a letter is followed by a colon, the option is
expected to have an argument, or group of arguments, which must be separated from it by white space.

optarg is set to point to the start of the option argument on return from getopt.

getopt() places in optind the argv index of the next argument to be processed. optind is external and is
initialized to 1 before the first call to getopt.

When all options have been processed (that is, up to the first non-option argument), getopt() returns -1.
The special option "-" may be used to delimit the end of the options; when it is encountered, -1 will be
returned, and "-" will be skipped.

DIAGNOSTICS
getopt() prints an error message on the standard error and returns a question mark (?) when it encounters
an option letter not included in optstring or no option-argument after an option that expects one. This error
message may be disabled by setting opterr to O.

EXAMPLE

1002

The following code fragment shows how one might process the arguments for a command that can take the
mutually exclusive options a and b, and the option 0, which requires an option argument:

main(argc, argv)
int argc;
char **argv;
{

int c;
extern char *optarg;
extern int optind;

while « c = getopt(argc, argv, "abo:"» ! = -1)
switch (c) {
case 'a':

if (bfig)
errfig++;

else
afig++;

break;
case 'b':

if (afig)
errfig++;

else
bproc ();

break;

Last change: 6 October 1987 Sun Release 4.1

GETOPT(3)

}

SEE ALSO
getopts(l)

WARNING

C LIBRARY FUNCTIONS

case '0':
ofile = optarg;
break;

case '?':
errfig++;

}
if (errfig) {

}

(void)fprintf(stderr, "usage: ... ");
exit (2);

for (; optind < argc; optind++) {
if (access(argv[optind], 4» {

GETOPT(3)

Changing the value of the variable optind, or calling getopt() with different values of argv, may lead to
unexpected results.

Sun Release 4.1 Last change: 6 October 1987 1003

GETP ASS (3V)

NAME
getpass - read a password

SYNOPSIS
char *getpass(prompt)
char *prompt;

DESCRIPTION

C LIBRARY FUNCTIONS GETPASS(3V)

getpass() reads up to a NEWLINE or EOF from the file Idevltty, or if that cannot be opened, from the stan­
dard input, after prompting with the null-terminated string prompt and disabling echoing. A pointer is
returned to a null-terminated string of at most 8 characters. An interrupt will terminate input and send an
interrupt signal to the calling program before returning.

SYSTEM V DESCRIPTION
If Idev/tty cannot be opened, getpass() returns a NULL pointer. It does not read the standard input.

FILES
Idev/tty

SEE ALSO
crypt(3)

NOTES
The above routine uses <stdio.h>, which increases the size of programs not otherwise using standard I/O,
more than might be expected.

BUGS
The return value points to static data whose content is overwritten by each call.

1004 Last change: 6 October 1989 Sun Release 4.1

GETPROTOENT (3N) NETWORK FUNCTIONS GETPROTOENT (3N)

NAME
getprotoent, getprotobynumber, getprotobyname, setprotoent, endprotoent - get protocol entry

SYNOPSIS
#include <netdb.h>

struct protoent *getprotoent()

struct protoent *getprotobyname(name)
char *name;

struct protoent *getprotobynumber(proto)
int proto;

setprotoent(stayopen)
int stayopen;

endprotoent()

DESCRIPTION

FILES

getprotoent, getprotobyname, and getprotobynumber() each return a pointer to an object with the fol­
lowing structure containing the broken-out fields of a line in the network protocol data base, letdprotocols.

struct protoent {
char *p_name;
char **p_aliases;
int p yroto;

};

The members of this structure are:

1* official name of protocol *1
1* alias list *1
1* protocol number *1

p name
p aliases
pyroto

The official name of the protocol.
A zero terminated list of alternate names for the protocol.
The protocol number.

getprotoent() reads the next line of the file, opening the file if necessary.

setprotoent() opens and rewinds the file. If the stayopen flag is non-zero, the net data base will not be
closed after each call to getprotoent() (either directly, or indirectly through one of the other "getproto"
calls).

endprotoent() closes the file.

getprotobyname() and getprotobynumber() sequentially search from the beginning of the file until a
matching protocol name or protocol number is found, or until end-of-file is encountered.

letdprotocols

SEE ALSO
protocols(5), ypserv(8)

DIAGNOSTICS
A NULL pointer is returned on end-of-file or error.

BUGS
All information is contained in a static area so it must be copied if it is to be saved. Only the Internet pro­
tocols are currently understood.

Sun Release 4.1 Last change: 14 December 1987 1005

GETPW(3)

NAME
getpw - get name from uid

SYNOPSIS
getpw(uid, buO
char *buf;

DESCRIPTION

C LIBRARY FUNCTIONS

getpw() is obsoleted by getpwent(3V).

GETPW(3)

getpw() searches the password file for the (numerical) uid, and fills in buf with the corresponding line; it
returns non-zero if uid could not be found. The line is null-terminated.

FILES
letclpasswd

SEE ALSO
getpwent(3V), passwd(5)

DIAGNOSTICS
Non-zero return on error.

1006 Last change: 6 October 1987 Sun Release 4.1

GETPWAENT(3) C LIBRARY FUNCTIONS GETPW AENT (3)

NAME
getpwaent, getpwanam, setpwaent, endpwaent, fgetpwaent - get password adjunct file entry

SYNOPSIS
#include <sys/types.h>
#include <syS/label.h>
#include <sys/audit.h>
#include <pwdadj.h>

struct passwd _adjunct * getpwaent()

struct passwd _adjunct * getpwanam (name)
char *name;

struct passwd _adjunct *fgetpwaent(O
FILE *f;

void setpwaent()

void endpwaent()

DESCRIPTION

FILES

Both getpwaent() and getpwanam() return a pointer to an object with the following structure containing
the broken-out fields of a line in the password adjunct file. Each line in the file contains a passwd _adjunct
structure, declared in the <pwdadj.h> header file:

struct passwd _adjunct {

};

char *pwa_name;
char *pwa yasswd;
blabel t pwa_minimum;
blabel t pwa_maximum;
blabel t pwa def;
audit_state _ t pwa _au_always;
audit_state_t pwa_au_never;
int pwa_ version;

When first called, getpwaen t() returns a pointer to a passwd _adjunct structure describing data from the
first line in the file. Thereafter, it returns a pointer to a passwd _adjunct structure describing data from the
next line in the file. So successive calls can be used to search the entire file.

getpwanam() searches from the beginning of the file until it finds a login name matching name, then
returns a pointer to the particular structure in which it was found.

Calling setpwaent() rewinds the password adjunct file to allow repeated searches. Calling endpwaent()
closes the password adjunct file when processing is complete.

Because read access is required on /etc/security/passwd.adjunct, getpwaent() and getpwanam() will fail
unless the calling process has effective UID of root.

/etc/security/passwd.adjunct
/var/yp/ domainname /passwd.adjunct.byname

DIAGNOSTICS
A NULL pointer is returned on end-of-file or error.

SEE ALSO
getpwent(3V), getgrent(3V), passwd.adjunct(5), ypserv(8)

Sun Release 4.1 Last change: 7 September 1988 1007

GETPW AENT (3) C LIBRARY FUNCTIONS GETPW AENT (3)

BUGS
All information is contained in a static area, so it must be copied if it is to be saved.

1008 Last change: 7 September 1988 Sun Release 4.1

GETPWENT (3V) C LIBRARY FUNCTIONS GETPWENT(3V)

NAME
getpwent, getpwuid, getpwnam, setpwent, endpwent, setpwfile, fgetpwent - get password file entry

SYNOPSIS
#include <pwd.b>

struct passwd * getpwent()

struct passwd *getpwuid(uid)
uid_t uid;

struct passwd *getpwnam(name)
char *name;

void setpwent()

void endpwent()

int setpwfile(name)
char *name;

struct passwd *fgetpwent(f)
FILE *f;

DESCRIPTION
getpwent(), getpwuid() and getpwnam() each return a pointer to an object with the following structure
containing the fields of a line in the password file. Each line in the file contains a passwd structure,
declared in the <pwd.h> header file:

struct passwd {
char *pw _name;
char *pwyasswd;
uid t pw_uid;
gid t pw_gid;
int pw _quota;
char *pw _comment;
char *pw _gecos;
char *pw_dir;
char *pw _shell;

};
struct passwd *getpwent(), *getpwuid(), *getpwnam();

The fields pw _quota and pw _comment are unused; the others have meanings described in passwd(5).
When first called, getpwent() returns a pointer to the first passwd structure in the file; thereafter, it returns
a pointer to the next passwd structure in the file; so successive calls can be used to search the entire file.
getpwuid() searches from the beginning of the file until a numerical user ID matching uid is found and
returns a pointer to the particular structure in which it was found. getpwnam() searches from the begin­
ning of the file until a login name matching name is found, and returns a pointer to the particular structure
in which it was found. If an end-of-file or an error is encountered on reading, these functions return a
NULL pointer.

A call to setpwent() has the effect of rewinding the password file to allow repeated searches. endpwent()
may be called to close the password file when processing is complete.

setpwfile() changes the default password file to name thus allowing alternate password files to be used.
Note: it does not close the previous file. If this is desired, endpwent() should be called prior to it.
setpwfileO will fail if it is called before a call to one of getpwentO, getpwuidO, setpwentO, or
getpwnam() , or if it is called before a call to one of these functions and after a call to endpwent().

fgetpwent() returns a pointer to the next passwd structure in the stream I, which matches the format of the
password file letdpasswd.

Sun Release 4.1 Last change: 21 January 1990 1009

GETPWENT (3V) C LIBRARY FUNCTIONS GETPWENT (3V)

SYSTEM V DESCRIPTION
struct passwd is declared in pwd.h as:

struct passwd {

};

char *pw_name;
char
uid_t
gid_t
char
char
char
char
char

*pwyasswd;
pw_uid;
pw_gid;
*pw_age;
*pw _comment;
*pw_gecos;
*pw_dir;
*pw_shell;

The field pw _age is used to hold a value for "password aging" on some systems; "password aging" is not
supported on Sun systems.

RETURN VALUES

FILES

getpwent(), getpwuid(), and getpwnam() return a pointer to struct passwd on success. On EOF or error,
or if the requested entry is not found, they return NULL.

setpwfile() returns:

1 on success.

o on failure.

letc/passwd
Ivar/yp/domainnamelpasswd.byname
Ivar/ypl domainname Ipasswd.byuid

SEE ALSO

NOTES

BUGS

1010

getgrent(3V), issecure(3), getJogin(3V), passwd(5), ypserv(8)

The above routines use the standard I/O library, which increases the size of programs not otherwise using
standard I/O more than might be expected.

setpwfile() and fgetpwent() are obsolete and should not be used, because when the system is running in
secure mode (see issecure(3», the password file only contains part of the information needed for a user
database entry.

All information is contained in a static area which is overwritten by subsequent calls to these functions, so
it must be copied if it is to be saved.

Last change: 21 January 1990 Sun Release 4.1

GETRPCENT (3N) NETWORK FUNCTIONS GETRPCENT (3N)

NAME
getrpcent, getrpcbyname, getrpcbynumber, endrpcent, setrpcent - get RPC entry

SYNOPSIS
#include <netdb.h>

struct rpcent *getrpcent()

struct rpcent *getrpcbyname(name)
char *name;

struct rpcent *getrpcbynumber(number)
int number;

setrpcent (stayopen)
int stayopen

endrpcent ()

DESCRIPTION

FILES

getrpcent, getrpcbyname, and getrpcbynumber() each return a pointer to an object with the following
structure containing the broken-out fields of a line in the rpc program number data base, letc/rpc.

struct rpcent {
char *r _name;
char * *r _aliases;
long r _number;

};

The members of this structure are:

1* name of server for this rpc program *1
1* alias list *1
1* rpc program number *1

r name The name of the server for this rpc program.
r aliases A zero terminated list of alternate names for the rpc program.
r number The rpc program number for this service.

getrpcent() reads the next line of the file, opening the file if necessary.

setrpcent() opens and rewinds the file. If the stayopen flag is non-zero, the net data base will not be
closed after each call to getrpcent() (either directly, or indirectly through one of the other "getrpc" calls).

endrpcent closes the file.

getrpcbyname() and getrpcbynumber() sequentially search from the beginning of the file until a match­
ing rpc program name or program number is found, or until end-of-file is encountered.

letc/rpc

SEE ALSO
rpc(5), rpcinfo(8C), ypserv(8)

DIAGNOSTICS
A NULL pointer is returned on EOF or error.

BUGS
All information is contained in a static area so it must be copied if it is to be saved.

Sun Release 4.1 Last change: 14 December 1987 1011

GETS (3S) STANDARD I/O FUNCTIONS GETS (3S)

NAME
gets, fgets - get a string from a stream

SYNOPSIS
#include <stdio.h>

char *gets(s)
char *s;

char *fgets(s, n, stream)
char *s;
FILE *stream;

DESCRIPTION
gets() reads characters from the standard input stream, stdin, into the array pointed to by s, until a NEW­
LINE character is read or an EOF condition is encountered. The NEWLINE character is discarded and the
string is terminated with a null character. gets() returns its argument.

fgetsO reads characters from the stream into the array pointed to by s, until n-l characters are read, a
NEWLINE character is read and transferred to s, or an EOF condition is encountered. The string is then ter­
minated with a null character. fgets() returns its first argument

SEE ALSO

BUGS

pnts(3S), getc(3V), scanf(3V), fread(3S), ferror(3V)

If the input to gets () or fgets () contains a null character, the null terminates the input, and all subsequent
data will be lost

DIAGNOSTICS

1012

If EOF is encountered and no characters have been read, no characters are transferred to s and a NULL
pointer is returned. If a read error occurs, such as trying to use these functions on a file that has not been
opened for reading, a NULL pointer is returned. Otherwise s is returned.

Last change: 1 August 1988 Sun Release 4.1

GETSERVENT (3N) NETWORK FUNCTIONS GETSERVENT (3N)

NAME
getservent, getservbyport, getservbyname, setservent, endservent - get service entry

SYNOPSIS
#include <netdb.h>

struct servent *getservent()

struct servent *getservbyname(name, proto)
char *name, *proto;

struct servent *getservbyport(port, proto)
int port; char *proto;

setservent(stayopen)
int stayopen;

endservent()

DESCRIPTION

FILES

getservent, getservbyname, and getservbyport each return a pointer to an object with the following struc­
ture containing the broken-out fields of a line in the network services data base,/etc/services.

struct servent {
char *s_name;
char **s_aliases;
int sJlort;
char *s Jlroto;

};

The members of this structure are:

1* official name of service *1
1* alias list *1
1* port service resides at *1
1* protocol to use *1

s name The official name of the service.
s aliases A zero terminated list of alternate names for the service.
syort The port number at which the service resides. Port numbers are returned

in network short byte order.
s yroto The name of the protocol to use when contacting the service.

getservent() reads the next line of the file, opening the file if necessary.

getservent() opens and rewinds the file. If the stayopen flag is non-zero, the net data base will not be
closed after each call to getservent() (either directly, or indirectly through one of the other "getserv"
calls).

endservent() closes the file.

getservbyname() and getservbyport() sequentially search from the beginning of the file until a matching
protocol name or port number is found, or until end-of-file is encountered. If a protocol name is also sup­
plied (non-NULL), searches must also match the protocol.

letc/services

SEE ALSO
getprotoent(3N), services(5), ypserv(8)

DIAGNOSTICS

BUGS

A NULL pointer is returned on end-of-file or error.

All information is contained in a static area so it must be copied if it is to be saved. Expecting port
numbers to fit in a 32 bit quantity is probably naive.

Sun Release 4.1 Last change: 14 December 1987 1013

GETSUBOPT (3) C LIBRARY FUNCTIONS GETSUBOPT (3)

NAME
getsubopt - parse sub options from a string.

SYNOPSIS
int getsubopt(optionp, tokens, valuep)
char * *optionp;
char *tokens[];
char **valuep;

DESCRIPTION
getsubopt() is a function to parse suboptions in a flag argument that was initially parsed by getopt(3).
These suboptions are separated by commas and may consist of either a single token, or a token-value pair
separated by an equal sign. Since commas delimit suboptions in the option string they are not allowed to be
part of the suboption or the value of a suboption. An example command that uses this syntax is mount(8),
which allows you to specify mount parameters with the -0 switch as follows :

pepper % mount -0 rw,hard,bg,wsize=1024 speed:/usr lusr
In this example there are four suboptions: 'rw', 'hard', 'bg', and 'wsize', the last of which has an associ­
ated value of 1024.

getsubopt() takes the address of a pointer to the option string, a vector of possible tokens, and the address
of a value string pointer. It returns the index of the token that matched the suboption in the input string or
-1 if there was no match. If the option string at *optionp contains only one subobtion, getsubopt() updates
*optionp to point to the NUL at the end of the string, otherwise it isolates the suboption by replacing the
comma seperator with a NUL, and updates *optionp to point to the start of the next suboption. If the
suboption has an associated value, getsubopt() updates *valuep to point to the value's first character. Oth­
erwise it sets *valuep to NULL.

The token vector is organized as a series of pointers to null-terminated strings. The end of the token vector
is identified by a NULL pointer.

When getsubopt() returns, if *valuep is not NULL, then the sUboption processed included a value. The
calling program may use this information to determine if the presence or lack of a value for this subobtion
is an error.

Additionally, when getsubopt() fails to match the suboption with the tokens in the tokens array, the calling
program should decide if this is an error, or if the unrecognized option should be passed on to another pro­
gram.

DIAGNOSTICS
getsubopt() returns -1 when the token it is scanning is not in the token vector. The variable addressed by
valuep contains a pointer to the first character of the token that was not recognized rather than a pointer to a
value for that token.

The variable addressed by optionp points to the next option to be parsed, or a NUL character if there are no
more options.

EXAMPLE

1014

The following code fragment shows how you might process options to the mount(8) command using get­
subopt(3).

char *myopts[] = {
#define READONLY 0

"ro",
#define READWRITE 1

"rw" ,
#define WRITE SIZE 2

"wsize" ,
#define READ SIZE 3

"rsize" ,
NULL };

Last change: 6 October 1987 Sun Release 4.1

GETSUBOPT (3) C LIBRARY FUNCTIONS

main(argc, argv)

{

Sun Release 4.1

int argc;
char **argv;

int sc, c, errflag;
char *options, *value;
extern char *optarg;
extern Int optind;

while«c = getopt(argc, argv, "abf:o:"» != -1) {
switch (c) {
case 'a': 1* process a option *1

break;
case 'b': 1* process b option *1

break;
case'r:

case '?':

case '0':

ofile = optarg;
break;

errftag++;
break;

options = optarg;
while (*options != '\0') {

switch(getsubopt(&options,myopts,&value) {
case READ ONLY : 1* process ro option *1

break;

}

break;

case READ WRITE : 1* process rw option *1
break;

case WRITESIZE : 1* process wsize option *1
if (value == NULL) {

error_no _argO;
errftag++;

} else
write_size = atoi(value);

break;
case READ SIZE : 1* process rsize option *1

if (value == NULL) {

default:

}

} else

break;

error_no _argO;
errftag++;

read_size = atoi(value);

1* process unknown token *1
error_bad _token(value);
errOag++;
break;

Last change: 6 October 1987

GETSUBOPT (3)

1015

GETSUBOPT (3) C LIBRARY FUNCTIONS

}

}

if (errOag) {
1* print Usage instructions etc. *1

}

for (; optind<argc; optind++) {
1* process remaining arguments *1

}

}

SEE ALSO
getopt(3)

NOTES
During parsing, commas in the option input string are changed to nulls.

White space in tokens or token-value pairs must be protected from the shell by quotes.

1016 Last change: 6 October 1987

GETSUBOPT (3)

Sun Release 4.1

GETIEXT(3) C LIBRARY FUNCTIONS GETTEXT(3)

NAME
gettext, textdomain - retrieve a message string, get and set text domain

SYNOPSIS
char *gettext(msgtag)
char *msgtag;

char *textdomain(domainname)
char *domainname;

DESCRIPTION
gettext() returns a pointer to a null-terminated string (target string). msgtag is a string used at run-time to
select the target string from the current domain of the active pool of messages. The length and contents of
strings returned by gettext() are undetermined until called at run-time. The string returned by gettext()
cannot be modified by the caller, but may be overwritten by a subsequent call to gettextO. The
LC _MESSAGES locale category setting determines the locale of strings that gettext() returns.

The calling process can dynamically change the choice of locale for strings returned by gettext() by invok­
ing the setlocale(3V) function with the correct category and the required locale. If setlocale() is not called
or is called with an invalid value, gettextO defaults to the "C" locale. The default name for the current
domain is the empty string.

gettext() first attempts to resolve the target string from the active domain and locale of the message pool.
The current locale and domain are determined by the combination of both the LC_MESSAGES category of
locale and the current domain setting.

If the target string cannot be found by using the current locale and domain then msgtag and current domain
are applied to the implementation-defined default locale (this default locale could contain any language). If
the default locale does not also contain the target string then the msgtag and current domain will be applied
to the "C" locale of the message pool. If the target string still cannot be found then gettext() will return
msgtag.

Any of the following conditions will result in a message not being found in the string archive:

• Non-existent archive selected after setlocale() or textdomain() was called.

• Non-existent archive in the "C" environment if setlocale() was not called.

• Non-existent or deleted entry in the archive.

textdomain() sets the current domain to domainname. Subsequent calls to gettext() refer to this domain.
If domainname is NULL, textdomain() returns the name of the current domain without changing it.

The setting of domain made by the last successful textdomain() call remains valid across any number of
subsequent calls to setlocale().

RETURN V ALVES
gettext() returns a pointer to the null-terminated target string on success. On failure, gettext() returns
msgtag.

textdomain() returns a pointer to the name of the current domain. If the domain has not been set prior to
this call, textdomain() returns a pointer to an empty string. textdomain() returns NULL if:

Sun Release 4.1

• domainname contains an invalid character.

• domainname is longer than LINE_MAX bytes in length.

• If, at the time of the call to textdomain(), the combination of current locale and domainname
creates a domain that does not exist at run-time. Note: in this case textdomain() may have
been called prior to a successful setlocale(3V) call, but textdomain() will always check
against current locale setting.

Last change: 22 January 1990 1017

GETIEXT(3) C LIBRARY FUNCTIONS GETIEXT(3)

EXAMPLES
The following produces 'Hit Return\n' in a locale that is invalid or is valid and contains the same target
string as the key:

printf(gettext("Hit Return\n");

On a system whose default language is French, and whose process has the LC_MESSAGES category
validly set, the following might print: 'Bonjour':

setlocale(LC_MESSAGES, "");
textdomain("Morning");
printf(gettext("Welcome");

If the LC_MESSAGES category was invalidly set and the default (LC_DEFAULT) is set to English, the last
example above might print 'Good morning'. If the default is not set or is also invalid, the example would
print 'Welcome'.

SEE ALSO
setlocale(3V), installtxt(8)

1018 Last change: 22 January 1990 Sun Release 4.1

GETITYENT (3) C LIBRARY FUNCTIONS GETITYENT (3)

NAME
getttyent, getttynam, setttyent, endttyent - get ttytab file entry

SYNOPSIS
#include <ttyent.h>

struct ttyent *getttyent()

struct ttyent *getttynam(name)
char *name;

setttyent()

endttyent()

DESCRIPTION
getttyent() and getttynam() each return a pointer to an object with the following structure containing the
broken-out fields of a line from the tty description file.

struct

};

ttyent {
char
char
char
int
char
char

*ty_name;
*ty_getty;
*ty_type;
ty_status;
*ty _window;
*ty _comment;

1* terminal device name *1
1* command to execute, usually getty *1
1* terminal type for termcap (3X) *1
1* status flags (see below for defines) *1
1* command to start up window manager *1
1* usually the location of the terminal *1

#define TTY_ON Ox! 1* enable logins (startup getty) *1
1* allow root to login *1 #define TTY_SECURE Ox2

ty_name

ty_getty

is the name of the character-special file in the directory Idev. For various
reasons, it must reside in the directory Idev.

is the command (usually getty(8» which is invoked by init to initialize
tty line characteristics. In fact, any arbitrary command can be used; a
typical use is to initiate a terminal emulator in a window system.

is the name of the default terminal type connected to this tty line. This is
typically a name from the termcap(5) data base. The environment vari­
able TERM is initialized with this name by getty(8) or login(1).

is a mask of bit fields which indicate various actions to be allowed on this
tty line. The following is a description of each flag.

TTY ON
Enables logins (that is, init(8) will start the specified
"getty" command on this entry).

TTY SECURE
Allows root to login on this terminal. Note: TTY_ON
must be included for this to be useful.

is the command to execute for a window system associated with the line.
The window system will be started before the command specified in the
ty _getty entry is executed. If none is specified, this will be NULL.

is the trailing comment field, if any; a leading delimiter and white space
will be removed.

getttyent() reads the next line from the ttytab file, opening the file if necessary; setttyent() rewinds the
file; endttyent() closes it.

Sun Release 4.1 Last change: 6 October 1987 1019

GETITYENT (3) C LIBRARY FUNCTIONS GETTTYENT (3)

getttynam() searches from the beginning of the file until a matching name is found (or until EOP is
encountered).

FILES
letc/ttytab

SEE ALSO
login(1), ttyslot(3V), gettytab(5), ttytab(5), termcap(5), getty(8), init(8)

DIAGNOSTICS
NULL pointer (0) returned on EOP or error.

BUGS
All information is contained in a static area so it must be copied if it is to be saved.

1020 Last change: 6 October 1987 Sun Release 4.1

GETUSERSHELL(3) C LIBRARY FUNCTIONS GETUSERSHELL (3)

NAME
getusershell, setusershell, endusershell- get legal user shells

SYNOPSIS
char * getusershell()

setusershell()

endusershell()

DESCRIPTION

FILES

getusershell() returns a pointer to a legal user shell as defined by the system manager in the file /etc/shells.
If /etc/shells does not exist, the four locations of the two standard system shells /binlsh, Ibinlcsh,
/usr/binlsh and /usr/binlcsh are returned.

getusershell() reads the next line (opening the file if necessary); setusershell() rewinds the file; enduser­
shell() closes it.

/etc/shells
/binlsh
/binlcsh
/usr/binlsh
/usr/binlcsh

DIAGNOSTICS
The routine getusershell() returns a NULL pointer (0) on EOF or error.

BUGS
All information is contained in a static area so it must be copied if it is to be saved.

Sun Release 4.1 Last change: 6 October 1987 1021

GETWD(3) C LIBRARY FUNCTIONS

NAME
getwd - get current working directory pathname

SYNOPSIS
#include <syslparam.h>

char *getwd(pathname)
char pathname[MAXPATHLEN];

DESCRIPTION

GETWD(3)

getwd() copies the absolute pathname of the current working directory to pathname and returns a pointer
to the result.

DIAGNOSTICS
getwd() returns zero and places a message in pathname if an error occurs.

1022 Last change: 18 January 1988 Sun Release 4.1

HSEARCH(3) C LIBRARY FUNCTIONS HSEARCH(3)

NAME
hsearch, hcreate, hdestroy - manage hash search tables

SYNOPSIS
#include <search.h>

ENTRY *hsearch (item, action)
ENTRY item;
ACTION action;

int hcreate (nel)
unsigned nel;

void hdestroy ()

DESCRIPTION

NOTES

hsearch() is a hash-table search routine generalized from Knuth (6.4) Algorithm D. It returns a pointer
into a hash table indicating the location at which an entry can be found. item is a structure of type ENTRY
(defined in the <search.h> header file) containing two pointers: item.key points to the comparison key, and
item.data points to any other data to be associated with that key. (pointers to types other than character
should be cast to pointer-to-character.) action is a member of an enumeration type ACTION indicating the
disposition of the entry if it cannot be found in the table. ENTER indicates that the item should be inserted
in the table at an appropriate point. FIND indicates that no entry should be made. Unsuccessful resolution
is indicated by the return of a NULL pointer.

hcreate() allocates sufficient space for the table, and must be called before hsearch() is used. nel is an
estimate of the maximum number of entries that the table will contain. This number may be adjusted
upward by the algorithm in order to obtain certain mathematically favorable circumstances.

hdestroy() destroys the search table, and may be followed by another call to hcreate.

hsearch() uses open addressing with a multiplicative hash function.

EXAMPLE
The following example will read in strings followed by two numbers and store them in a hash table, dis­
carding duplicates. It will then read in strings and find the matching entry in the hash table and print it out.

#include <stdio.h>
#include <search.h>
struct info { 1* this is the info stored in the table *1

1* other than the key. *1
};

#define

int age, room;

NUM EMPL 5000 1* # of elements in search table *1
main()
{

1* space to store strings *1
char string_ space[NUM _ EMPL* 20];
1* space to store employee info *1
struct info info_space[NUM_EMPL];
1* next avail space in string_space *1
char *str ytr = string_space;
1* next avail space in info_space *1
struct info *infoytr = info_space;
ENTRY item, *foundJtem, *hsearch();
1* name to look for in table *1
char name_to _ find[30];
int i = 0;
1* create table *1

T ~I;lt ('h~nO"P· 7 C;:pntp.m hP.r 1 QRR 1023

HSEARCH(3)

SEE ALSO

C LIBRARY FUNCTIONS

(void) hcreate(NUM _ EMPL);
while (scanf(" %s%d%d", strytr, &infoytr->age,

& info ytr->room) !=
EOF && i++ <
NUM_EMPL) {

ENTER);
}

1* put info in structure, and structure in .item *1
item.key = str Jltr;
item.data = (char *)infoytr;
str ytr += strlen(str Jltr) + 1;
infoytr++;
1* put item into table *1
(void) hsearch(item,

1* access table *1
item.key = name_to _find;
while (scanf(It %stt, item.key) != EOF) {

if «found _item = hsearch(item,
FIND» != NULL) {

}
}

1* if item is in the table *1
(void)printf(ttfound %s, age = %d, room = %d\nlt,

found _item->key,
«struct info *)found)tem->data)->age,
«struct info *)found_item->data)->room);

} else {

}

(void)printf(ttno such employee % s\n " ,
name_to_find);

bsearch(3), Isearch(3), malloc(3V), string(3), tsearch(3)

DIAGNOSTICS

HSEARCH(3)

hsearch() returns a NULL pointer if either the action is FIND and the item could not be found or the
action is ENTER and the table is full.

hcreate() returns zero if it cannot allocate sufficient space for the table.

WARNING
hsearch() and hcreate() use malloc(3V) to allocate space.

BUGS
Only one hash search table may be active at any given time.

1024 Last change: 7 September 1988 Sun Release 4.1

INET(3N) NETWORK FUNCTIONS INET(3N)

NAME
inet inecaddr, inecnetwork, inecmakeaddr, inet_lnaof, inecnetof, inecntoa - Internet address mani­
pulation

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
#include <netinetlin.h>
#include <arpalineth>

unsigned long
inet _ addr(cp)
char *cp;

inet _ network(cp)
char *cp!

struct in addr
inet_makeaddr(net, Ina)
int net, Ina;

inet _Inaof(in)
struct in _ addr in;

inet _ netof(in)
struct in _ addr in;

char *
inet_ntoa(in)
struct in_addr in;

DESCRIPTION
The routines inet_addrO and inet_networkO each interpret character strings representing numbers
expressed in the Internet standard '.' notation, returning numbers suitable for use as Internet addresses
and Internet network numbers, respectively. The routine ioet _ makeaddr() takes an Internet network
number and a local network address and constructs an Internet address from it. The routines
ioet _ oetof() and ioet Jnaof() break apart Internet host addresses, returning the network number and
local network address part, respectively.

The routine ioet _ ntoa() returns a pointer to a string in the base 256 notation ' 'd.d.d.d' , described
below.

All Internet address are returned in network order (bytes ordered from left to right). All network
numbers and local address parts are returned as machine format integer values.

INTERNET ADDRESSES
Values specified using the '.' notation take one of the following forms:

a.h.c.d
a.h.c
a.h
a

When four parts are specified, each is interpreted as a byte of data and assigned, from left to right, to
the four bytes of an Internet address. Note: when an Internet address is viewed as a 32-bit integer
quantity on Sun386i systems, the bytes referred to above appear as d.c.b.a. That is, Sun386i bytes are
ordered from right to left.

When a three part address is specified, the last part is interpreted as a 16-bit quantity and placed in
the right most two bytes of the network address. This makes the three part address format convenient
for specifying Class B network addresses as "128.net.host".

Sun Release 4.1 Last change: 18 February 1988 1025

INET(3N) NETWORK FUNCTIONS INET(3N)

When a two part address is supplied, the last part is interpreted as a 24-bit quantity and placed in the
right most three bytes of the network address. This makes the two part address format convenient for
specifying Class A netw.ork addresses as "net.host".

When only one part is given, the value is stored directly in the network address without any byte rear­
rangement.

All numbers supplied as "parts" in a '.' notation may be decimal, octal, or hexadecimal, as specified
in the C language (that is, a leading Ox or ox implies hexadecimal; otherwise, a leading 0 implies
octal; otherwise, the number is interpreted as decimal).

SEE ALSO
gethosteot(3N), getoeteot(3N), hosts(5), networks(5),

DIAGNOSTICS

BUGS

1026

The value -1 is returned by ioet_addrO and ioet_oetworkO for malformed requests.

The problem of host byte ordering versus network byte ordering is confusing. A simple way to
specify Class C network addresses in a manner similar to that for Class B and Class A is needed.

The return value from ioet _ otoa() points to static infonnation which is overwritten in each call.

Last change: 18 February 1988 Sun Release 4.1

INITGROUPS (3) C LIBRARY FUNCTIONS

NAME
initgroups - initialize supplementary group IDs

SYNOPSIS
initgroups(name, basegid)
char *name;
int basegid;

DESCRIPTION

INITGROUPS (3)

initgroupsO reads through the group file and sets up, using the setgroups call (see getgroups(2V)),
the supplementary group IDs for the user specified in name. The basegid is automatically included in
the supplementary group IDs. Typically this value is given as the group number from the password
file.

FILES
letc/group

SEE ALSO
getgroups(2V), getgrent(3V)

DIAGNOSTICS
initgroupsO returns -I if it was not invoked by the super-user.

BUGS
initgroupsO uses the routines based on getgrent(3V). If the invoking program uses any of these rou­
tines, the group structure will be overwritten in the call to initgroups.

Sun Release 4.1 Last change: 6 October 1987 1027

INS QUE (3) C LIBRARY FUNCTIONS

NAME
insque, rem que - insert/remove element from a queue

SYNOPSIS
struct qelem {

};

struct qelem *q-'orw;
struct qelem *'L back;
char 'L datal];

insque(elem, pred)
struct qelem *elem, *pred;

remque(elem)
struct qelem *elem;

DESCRIPTION

INS QUE (3)

insque() and remque() manipulate queues built from doubly linked lists. Each element in the queue
must be in the form of "struct qelem". insqueO inserts elem in a queue immediately after pred;
remque() removes an entry -elem from a queue.

1028 Last change: 6 October 1987 Sun Release 4.1

ISSECURE (3) C LIBRARY FUNCTIONS

NAME
issecure - indicates whether system is running secure

SYNOPSIS
int issecure()

DESCRIPTION

ISSECURE (3)

This function tells whether the system has been configured to run in secure mode. It returns 0 if the
system is not running secure, and non-zero if the system is running secure.

Sun Release 4.1 Last change: 6 October 1987 1029

KERNEL VM LIBRARY FUNCTIONS

NAME
kvm....getu, kvm....getcmd - get the u-area or invocation arguments for a process

SYNOPSIS
#include <kvm.h>
#include <syslparam.h>
#include <sysluser .h>
#include <syslproc.h>

struct user *kvrn_getu(kd, proc)
kvm_t *kd;
struct proc *proc;

int kvmJetcmd(kd, proc, u, arg, env)
kvm_t *kd;
struct proc *proc;
struct user *u;
char ***arg;
char ***env;

DESCRIPTION
kvm _getu() reads the u-area of the process specified by proc to an area of static storage associated with kd
and returns a pointer to it. Subsequent calls to kvm _getu() will overwrite this static area.

kd is a pointer to a kernel identifier returned by kvm _ open(3K). proc is a pointer to a copy (in the current
process' address space) of a proc structure (obtained, for instance, by a prior kvm _ nextproc(3K) call).

kvm _getcmd() constructs a list of string pointers that represent the command arguments and environment
that were used to initiate the process specified by proc .

kd is a pointer to a kernel identifier returned by kvrn _ open(3K). u is a pointer to a copy (in the current pro­
cess' address space) of a user structure (obtained, for instance, by a prior kvm _getu() call). If arg is not
NULL, then the command line arguments are formed into a null-terminated array of string pointers. The
address of the first such pointer is returned in arg. If env is not NULL, then the environment is formed into
a null-terminated array of string pointers. The address of the first of these is returned in env.

The pointers returned in arg and env refer to data allocated by malloc(3V) and should be freed (by a call to
free (see malloc(3V» when no longer needed. Both the string pointers and the strings themselves are deal­
located when freed.

Since the environment and command line arguments may have been modified by the user process, there is
no guarantee that it will be possible to reconstruct the original command at all. Thus, kvm _getcmd() will
make the best attempt possible, returning -1 if the user process data is unrecognizable.

RETURN VALUES
On success, kvm _getu() returns a pointer to a copy of the u-area of the process specified by proc. On
failure, it returns NULL.

kvm _getcmd() returns:

o on success.

-1 on failure.

SEE ALSO
execve(2V), kvm _nextproc(3K), kvm _ open(3K), kvm _read (3K), malloc(3V)

1030 Last change: 21 January 1990 Sun Release 4.1

NOTES

KERNEL VM LIBRARY FUNCTIONS

If kvrn _getcrnd() returns -1, the caller still has the option of using the command line fragment that is
stored in the u-area.

Sun Release 4.1 Last change: 21 January 1990 1031

KVM_NEXTPROC(3K) KERNEL VM LIBRARY FUNCTIONS KVM_NEXTPROC (3K)

NAME
kvm--&etproc, kvm_nextproc, kvrn_setproc - read system process structures

SYNOPSIS
#include <kvm.h>
#include <sys/pararn.h>
#include <sys/tirne.h>
#include <sys/proc.h>

struct proc *kvrn _getproc(kd, pid)
kvrn_t *kd;
int pid;

struct proc * kvm _ nextproc(kd)
kvrn_t *kd;

int kvrn _ setproc(kd)
kvrn_t *kd;

DESCRIPTION
kvrn _oextproc() may be used to sequentially read all of the system process structures from the kernel
identified by kd (see kvrn_opeo(3K». Each call to kvm_oextprocO returns a pointer to the static
memory area that contains a copy of the next valid process table entry. There is no guarantee that the
data will remain valid across calls to kvrn _ nextprocO, kvm _ setproc() , or kvrn _getprocO. There­
fore, if the process structure must be saved, it should be copied to non-volatile storage.

For performance reasons, many implementations will cache a set of system process structures. Since
the system state is liable to change between calls to kvm _ nextproc(), and since the cache may con­
tain obsolete information, there is no guarantee that every process structure returned refers to an active
process, nor is it certain that all processes will be reported.

kvrn _setproc() rewinds the process list, enabling kvrn _ nextproc() to rescan from the beginning of the
system process table. kvm_setproc() will always flush the process structure cache, allowing an appli­
cation to re-scan the process table of a running system.

kvrn _getproc() locates the proc structure of the process specified by pid and returns a pointer to it.
kvrn _getproc() does not interact with the process table pointer manipulated by kvrn _ nextproc, how­
ever, the restrictions regarding the validity of the data still apply.

RETURN VALUES
On success, kvrn _nextproc() returns a pointer to a copy of the next valid process table entry. On
failure, it returns NULL.

On success, kvm_getproc() returns a pointer to the proc structure of the process specified by pid.
On failure, it returns NULL.

kvrn _ setproc() returns:

o on success.

-1 on failure.

SEE ALSO
kvrn _getu(3K), kvrn _ open(3K), kvm _ read(3K)

1032 Last change: 21 January 1990 Sun Release 4.1

KERNEL VM LIBRARY FUNCTIONS

NAME
kvm_nlist - get entries from kernel symbol table

SYNOPSIS
#ioclude <kvm.h>
#ioclude <olist.h>

int kvrn _ nlist(kd, nl)
kvm_t *kd;
struct nUst *01;

DESCRIPTION
kvm _ nlist() examines the symbol table from the kernel image identified by kd (see kvrn _ opeo(3K»
and selectively extracts a list of values and puts them in the array of nlist() structures pointed to by
nl. The name list pointed to by nl() consists of an array of structures containing names, types and
values. The n _name field of each such structure is taken to be a pointer to a character string
representing a symbol name. The list is terminated by an entry with a NULL pointer (or a pointer to a
null string) in the n _name field For each entry in nl, if the named symbol is present in the kernel
symbol table, its value and type are placed in the n _value and n _type fields. If a symbol cannot be
located, the corresponding n _type field of nl() is set to zero.

RETURN VALUES
On success, kvm _ nlist() returns the number of symbols that were not located in the symbol table. On
failure, it returns -1 and sets all of the n _type fields in members of the array pointed to by 01 to zero.

SEE ALSO
kvm _ opeo(3K), kvm _read(3K), nlist(3V), a.out(5)

Sun Release 4.1 Last change: 21 January 1990 1033

KERNEL VM LIBRARY FUNCTIONS

NAME
kvm_open, kvm_close - specify a kernel to examine

SYNOPSIS
#include <kvm.h>
#include <fcntl.h>

kvm_t *kvm_open(namelist, corefile, swapfile, flag, errstr)
char *namelist, *corefile, *swapfile;
int flag;
char *errstr;

int kvm _ close(kd)
kvm_t *kd;

DESCRIPTION
kvm _ open() initializes a set of file descriptors to be used in subsequent calls to kernel VM routines. It
returns a pointer to a kernel identifier that must be used as the kd argument in subsequent kernel VM func­
tion calls.

The name list argument specifies an un stripped executable file whose symbol table will be used to locate
various offsets in corefile. If name list is NULL, the symbol table of the currently running kernel is used to
determine offsets in the core image. In this case, it is up to the implementation to select an appropriate way
to resolve symbolic references (for instance, using /vrnunix as a default name list file).

corefile specifies a file that contains an image of physical memory, for instance, a kernel crash dump file
(see savecore(8» or the special device /dev/mem. If corefile is NULL, the currently running kernel is
accessed (using /dev/mem and Idev/kmem).

swapfile specifies a file that represents the swap device. If both corefile and swapfile are NULL, the swap
device of the "currently running kernel" is accessed. Otherwise, if swapfile is NULL, kvm _ openO may
succeed but subsequent kvm _getu(3K) function calls may fail if the desired information is swapped out.

flag is used to specify read or write access for corefile and may have one of the following values:

o RDONLY open for reading

o RDWR open for reading and writing

errstr is used to control error reporting. If it is a NULL pointer, no error messages will be printed. If it is
non-NULL, it is assumed to be the address of a string that will be used to prefix error messages generated
by kvm_open. Errors are printed to stderr. A useful value to supply for errstr would be argv[O]. This
has the effect of printing the process name in front of any error messages.

kvm _ close() closes all file descriptors that were associated with kd. These files are also closed on exit(2v)
and execve(2V). kvm _ close() also resets the proc pointer associated with kvm _ nextproc(3K) and ft ushes
any cached kernel data.

RETURN VALUES

1034

kmv _openO returns a non-NULL value suitable for use with subsequent kernel VM function calls. On
failure, it returns NULL and no files are opened.

kvm _ close() returns:

o on success.

-Ion failure.

Last change: 21 January 1990 Sun Release 4.1

FILES
Ivrnunix
/dev/kmem
Idev/mem
/dev/drum

SEE ALSO

KERNEL VM LIBRARY FUNCTIONS

execve(2V). exit(2v). kvrn _getu(3K). kvrn _ nextproc(3K), kvm _ nlist(3K). kvm _read(3K). savecore(8)

Sun Release 4.1 Last change: 21 January 1990 1035

KERNEL VM LIBRARY FUNCTIONS

NAME
kvm_read, kvm_ write - copy data to or from a kernel image or running system

SYNOPSIS
#include <kvm.h>

int kvm _read(kd, ad dr, buf, nbytes)
kvm_t *kd;
unsigned long addr;
char *buf;
unsigned nbytes;

int kvm_write(kd, addr, buf, nbytes)
kvm_t *kd;
unsigned long addr;
char *buf;
unsigned nbytes;

DESCRIPTION
kvm _read () transfers data from the kernel image specified by kd (see kvm _ open(3K» to the address
space of the process. nbytes bytes of data are copied from the kernel virtual address given by addr to
the buffer pointed to by buf.

kvm_write() is like kvm_readO, except that the direction of data transfer is reversed. In order to
use this function, the kvm _ open(3K) call that returned kd must have specified write access. If a user
virtual address is given, it is resolved in the address space of the process specified in the most recent
kvm _getu(3K) call.

RETURN VALUES
On success, kvrn _read () and kvm _ write() return the number of bytes actually transferred. On
failure, they return -1.

SEE ALSO
kvm _getu(3K), kvm _ nlist(3K), kvm _ open(3K)

1036 Last change: 24 January 1990 Sun Release 4.1

L3TOL(3C) COMPATIBILITY FUNCTIONS

NAME
13tol, hoB - convert between 3-byte integers and long integers

SYNOPSIS
#include <stdlih.h>
void I3tol (Ip, cp, n)
long *Ip;
const char *cp;
int n;

void ltol3 (cp, Ip, n)
char *cp;
const long * Ip;
int n;

DESCRIPTION

L3TOL(3C)

13tol() converts a list of n three-byte integers packed into a character string pointed to by cp .into a
list of long integers pointed to by /p.

ltoI3() performs the reverse conversion from long integers (/p) to three-byte integers (cp).

These functions are useful for filesystem maintenance where the block numbers are three bytes long.

SEE ALSO
fs(5)

WARNINGS
Because of possible differences in byte ordering, the numerical values of the long integers are
machine-dependent

Sun Release 4.1 Last change: 7 September 1989 1037

LDAHREAD(3X) MISCELLANEOUS LIBRARY FUNCTIONS LDAHREAD (3X)

NAME
ldahread - read the archive header of a member of a COFF archive file

SYNOPSIS
#include <stdio.h>
#include <ar .h>
#include <filehdr .h>
#include <ldrcn.h>

int Idahread (ldptr, arhead)
LDFILE *ldptr;
ARCHDR *arhead;

AVAILABILITY
Available only on Sun 386i systems running a SunOS 4.0.x release or earlier. Not a SunOS 4.1
release feature.

DESCRIPTION
If TYPE(ldptr) is the archive file magic number, Idahread reads the archive header of the COFF file
currently associated with ldptr into the area of memory beginning at arhead.

Idahread returns SUCCESS or FAILURE. Idahread will fail if TYPE(ldptr) does not represent an
archive file, or if it cannot read the archive header.

The program must be loaded with the object file access routine library lib Id.a.

SEE ALSO
Idclose(3X), Idrcn(3), Idopen(3X), intro(5)

1038 Last change: 19 February 1988 Sun Release 4.1

LDCLOSE (3X) MISCELLANEOUS LffiRARY FUNCfIONS LDCLOSE (3X)

NAME
ldclose, ldaclose - close a COFF file

SYNOPSIS
#include <stdio.h>
#include <filehdr .h>
#include <Idfcn.h>

int Idclose (ldptr)
LDFILE *Idptr;

int Idaclose (ldptr)
LDFILE *Idptr;

A V AILABILITY
Available only on Sun 386i systems running a SunOS 4.0.x release or earlier. Not a SunOS 4.1
release feature.

DESCRIPTION
Idopen(3X) and Idclose() are designed to provide uniform access to both simple COFF object files and
COFF object files that are members of archive files. Thus an archive of COFF files can be processed
as if it were a series of simple COFF files.

If TYPE(ldptr) does not represent an archive file. Idclose() will close the file and free the memory
allocated to the LDFILE structure associated with ldptr. If TYPE(ldptr) is the magic number of an
archive file. and if there are any more files in the archive. IdcloseO will reinitialize OFFSET(ldptr) to
the file address of the next archive member and return FAILURE. The LDFILE structure is prepared
for a subsequent Idopen(3X). In all other cases. Idclose() returns SUCCESS.

Idaclose() closes the file and frees the memory allocated to the LDFILE structure associated with ldptr
regardless of the value of TYPE(ldptr). IdacioseO always returns SUCCESS. The function is often
used in conjunction with ldaopen.

The program must be loaded with the object file access routine library libld.a.

intro(5) describes INCDIR and LIBDIR.

SEE ALSO
fclose(3V), Idrcn(3). Idopen(3X), intro(5)

Sun Release 4.1 Last change: 19 February 1988 1039

LDFCN(3) C LIBRARY FUNCTIONS LDFCN(3)

NAME
ldfcn - common object file access routines

SYNOPSIS
#include <stdio.h>
#include <filehdr .h>
#include <Idfen.h>

AV AILABll..ITY
Available only on Sun 386i systems running a SunOS 4.0.x release or earlier. Not a SunOS 4.1
release feature.

DESCRIPTION

1040

These routines are for reading COFF object files and archives containing COFF object files. Although
the calling program must know the detailed structure of the parts of the object file that it processes,
the routines effectively insulate the calling program from knowledge of the overall structure of the
object file.

The interface between the calling program and the object file access routines is based on the defined
type LDFILE, defined as struct Idfile, declared in the header file Idfen.h. The primary purpose of this
structure is to provide uniform access to both simple object files and to object files that are members
of an archive file.

The function Idopen(3X) allocates and initializes the LDFILE structure and returns a pointer to the
structure to the calling program. The fields of the LDFILE structure may be accessed individually
through macros defined in Idfen.h and contain the following information:

LDFILE * ldptr;

TYPE(ldptr) The file magic number used to distinguish between archive members and simple
object files.

IOPTR(ldptr) The file pointer returned by fopen and used by the standard input/output functions.

OFFSET(ldptr) The file address of the beginning of the object file; the offset is non-zero if the
object file is a member of an archive file.

HEADER(ldptr) The file header structure of the object file.

The object file access functions themselves may be divided into four categories:

(1) Functions that open or close an object file

Idopen(3X) and Idaopen() (see Idopen(3X»
open a common object file

Idclose(3X) and Idaclose() (see Idclose(3X»
close a common object file

(2) Functions that read header or symbol table information

Idahread(3X)
read the archive header of a member of an archive file

Idfbread(3X)
read the file header of a common object file

Idshread(3X) and IdnshreadO (see Idshread(3X»
read a section header of a common object file

Idtbread(3X)
read a symbol table entry of a common object file

Idgetname(3X)
retrieve a symbol name from a symbol table entry or from the string table

Last change: 19 February 1988 Sun Release 4.1

LDFCN(3) C LIBRARY FUNCTIONS LDFCN(3)

(3) Functions that position an object file at (seek to) the start of the section, relocation, or
line number information for a particular section.

Idohseek(3X)
seek to the optional file header of a common object file

Idsseek(3X) and Idnsseek() (see Idsseek(3X»
seek to a section of a common object file

Idrseek(3X) and Idnrseek() (see Idrseek(3X»
seek to the relocation information for a section of a common object file

Idlseek(3X) and Idnlseek() (see Idlseek(3X»
seek to the line number information for a section of a common object file

Idtbseek(3X)
seek to the symbol table of a common object file

(4) The unction Idtbindex(3X), which returns the index of a particular common object file
symbol table entry.

These functions are described in detail on their respective manual pages.

All the functions except Idopen(3X), Idgetname(3X), Idtbindex(3X) return either SUCCESS or
FAILURE, both constants defined in Idfcn.h. Idopen(3X) and IdaopenO (see Idopen(3X» both return
pointers to an LDFILE structure.

Additional access to an object file is provided through a set of macros defined in Idfcn.h. These mac­
ros parallel the standard input/output file reading and manipulating functions, translating a reference of
the LDFILE structure into a reference to its file descriptor field.

The following macros are provided:

GETC(ldptr)
FGETC(ldptr)
GETW(ldptr)
UNGETC(c,ldptr)
FGETS(s, n, ldptr)
FREAD«char *) ptr, sizeof (*ptr), nitems, ldptr)
FSEEK(ldptr, offset, ptrname)
FfELL(ldptr)
REWIND(ldptr)
FEOF(ldptr)
FERROR(ldptr)
FILENO(ldptr)
SETBUF(ldptr, but)
STROFFSET(ldptr)

The STROFFSET macro calculates the address of the string table. See the manual entries for the
corresponding standard input/output library functions for details on the use of the rest of the macros.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO
fseek(3S), Idahread(3X), Idclose(3X), Idgetname(3X), Idfbread(3X), Idlread(3X), Idlseek(3X),
Idohseek(3X), Idopen(3X), Idrseek(3X), Idlseek(3X), Idshread(3X), Idtbindex(3X), Idtbread(3X),
Idtbseek(3X), stdio(3V), intro(5)

WARNING
The macro FSEEK defined in the header file Idfcn.h translates into a call to the standard input/output
function fseek(3S). FSEEK should not be used to seek from the end of an archive file since the end
of an archive file may not be the same as the end of one of its object file members.

Sun Release 4.1 Last change: 19 February 1988 1041

LDFHREAD(3X) MISCELLANEOUS LffiRARY FUNCfIONS LDFHREAD (3X)

NAME
ldfhread - read the file header of a COFF file

SYNOPSIS
#include <stdio.h>
#include <filehdr .h>
#include <Idfcn.h>

int Idtbread (Idptr, filehead)
LDFILE *Idptr;
FILHDR *filehead;

AVAILABILITY
Available only on Sun 386i systems running a SunOS 4.0.x release or earlier. Not a SunOS 4.1
release feature.

DESCRIPTION
Idtbread() reads the file header of the COFF file currently associated with ldptr into the area of
memory beginning at file head.

Idtbread() returns SUCCESS or FAILURE. Idtbread() will fail if it cannot read the file header.

In most cases the use of Idtbread() can be avoided by using the macro HEADER(ldptr) defined in
Idfcn.h (see Idfcn(3». The information in any field, fieldname, of the file header may be accessed
using HEADER(ldptr).fieldname.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO
Idclose(3X), Idfcn(3), Idopen(3X)

1042 Last change: 19 February 1988 Sun Release 4.1

LDGETNAME (3X) MISCELLANEOUS LffiRARY FUNCTIONS LDGElNAME(3X)

NAME
ldgetname - retrieve symbol name for COFF file symbol table entry

SYNOPSIS
#include <stdio.h>
#include <filehdr .h>
#include <syms.h>
#include <Idfcn.h>

char *Idgetname (ldptr, symbol)
LDFILE *Idptr;
SYMENT *symbol;

A V AILABILITY

Available only on Sun 386i systems running a SunOS 4.0.x release or earlier. Not a SunOS 4.1
release feature.

DESCRIPTION
Idgetname() returns a pointer to the name associated with symbol as a string. The string is contained
in a static buffer local to Idgetname() that is overwritten by each call to Idgetname(), and therefore
must be copied by the caller if the name is to be saved.

Idgetname() can be used to retrieve names from object files without any backward compatibility prob­
lems. IdgetnameO will return NULL (defined in stdio.h) for an object file if the name cannot be
retrieved. This situation can occur:

• if the "string table" cannot be found,

• if not enough memory can be allocated for the string table,

• if the string table appears not to be a string table (for example, if an auxiliary entry is handed to
IdgetnameO that looks like a reference to a name in a nonexistent string table), or

• if the name's offset into the string table is past the end of the string table.

Typically, Idgetname() will be called immediately after a successful call to Idtbread() to retrieve the
name associated with the symbol table entry filled by Idtbread().

The program must be loaded with the object file access routine library libld.a.

SEE ALSO
Idclose(3X) , Idfcn(3), Idopen(3X), Idtbread(3X), Idtbseek(3X)

Sun Release 4.1 Last change: 19 February 1988 1043

LDLREAD (3X) MISCELLANEOUS LffiRARY FUNCfIONS LDLREAD (3X)

NAME
Idlread, Idlinit, Idlitem - manipulate line number entries of a COFF file function

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <linenum.h>
#include <Idfen.h>

int Idlread(ldptr, fenindx, linenum, linent)
LDFILE *Idptr;
long fenindx;
unsigned short linenum;
LINENO *linent;

int Idlinit(ldptr, fenindx)
LDFILE *Idptr;
long fenindx;

int Idlitem(ldptr, linenum, linent)
LDFILE *Idptr;
unsigned short linenum;
LINENO *linent;

AVAILABILITY
Available only on Sun 386i systems running a SunOS 4.0.x release or earlier. Not a SunOS 4.1
release feature.

DESCRIPTION
Idlread() searches the line number entries of the COFF file currently associated with ldptr. ldlread()
begins its search with the line number entry for the beginning of a function and confines its search to
the line numbers associated with a single function. The function is identified by fcnindx, the index of
its entry in the object file symbol table. Idlread() reads the entry with the smallest line number equal
to or greater than linenum into the memory beginning at linent.

IdlinitO and Idlitem() together perform exactly the same function as IdlreadO. After an initial call
to ldlread() or ldlinit(), Idlitem() may be used to retrieve a series of line number entries associated
with a single function. ldlinit() simply locates the line number entries for the function identified by
fcnindx. Idlitem() finds and reads the entry with the smallest line number equal to or greater than line­
num into the memory beginning at linent().

IdlreadO, IdlinitO, and IdlitemO each return either SUCCESS or FAILURE. IdlreadO will fail if
there are no line number entries in the object file, if fcnindx does not index a function entry in the
symbol table, or if it finds no line number equal to or greater than linenum. Idlinit() will fail if there
are no line number entries in the object file or if fcnindx does not index a function entry in the sym­
bol table. Idlitem() will fail if it finds no line number equal to or greater than linenum.

The programs must be loaded with the object file access routine library libld.a.

SEE ALSO
Idclose(3X), Idfen(3), Idopen(3X), Idtbindex(3X)

1044 Last change: 19 February 1988 Sun Release 4.1

LDLSEEK (3X) MISCELLANEOUS LffiRARY FUNCTIONS LDLSEEK (3X)

NAME
ldlseek, ldnlseek - seek to line number entries of a section of a COFF file

SYNOPSIS
#include <stdio.h>
#include <filehdr .h>
#include <Idfcn.h>

int Idlseek (Idptr, sectindx)
LDFILE *Idptr;
unsigned short sectindx;

int Idnlseek (ldptr, sectname)
LDFILE *Idptr;
char *sectname;

A V AILABILITY
Available only on Sun 386i systems running a SunOS 4.0.x release or earlier. Not a SunOS 4.1
release feature.

DESCRIPTION
IdlseekO seeks to the line number entries of the section specified by sectindx of the COFF file
currently associated with ldptr.

Idnlseek() seeks to the line number entries of the section specified by sectname.

IdlseekO and IdnlseekO return SUCCESS or FAILURE. IdlseekO will fail if sectindx is greater than
the number of sections in the object file; Idnlseek() will fail if there is no section name corresponding
with *sectname. Either function will fail if the specified section has no line number entries or if it
cannot seek to the specified line number entries.

Note that the first section has an index of one.

The program must be loaded with the object file access routine library Iibld.a.

SEE ALSO
Idclose(3X), Idfcn(3), Idopen(3X), Idshread(3X)

Sun Release 4.1 Last change: 19 February 1988 1045

LDOHSEEK (3X) MISCELLANEOUS LIBRARY FUNCTIONS LDOHSEEK (3X)

NAME
ldohseek - seek to the optional file header of a COFF file

SYNOPSIS
#include <stdio.h>
#include <filehdr .h>
#include <Idfcn.h>

int Idohseek (Idptr)
LDFILE *ldptr;

AVAILABILITY
Available only on Sun 386i systems running a SunOS 4.0.x release or earlier. Not a SunOS 4.1
release feature.

DESCRIPTION
Idohseek() seeks to the optional file header of the COFF file currently associated with ldptr.

Idohsee() returns SUCCESS or FAILURE. Idohseek() will fail if the object file has no optional header
or if it cannot seek to the optional header.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO
Idclose(3X), Idfcn(3), Idopen(3X), Idfbread(3X)

1046 Last change: 19 February 1988 Sun Release 4.1

LDOPEN(3X) MISCELLANEOUS LffiRARY FUNCfIONS LDOPEN(3X)

NAME
Idopen, ldaopen - open a COFF file for reading

SYNOPSIS
#include <stdio.h>
#include <filehdr .h>
#include <Idfcn.h>

LDFILE *Idopen (filename, Idptr)
char *filename;
LDFILE *Idptr;

LDFILE *Idaopen (filename, oldptr)
char *filename;
LDFILE *oldptr;

A V AILABILITY
Available only on Sun 386i systems running a SunOS 4.0.x release or earlier. Not a SunOS 4.1 release
feature.

DESCRIPTION
Idopen() and Idclose(3X) are designed to provide uniform access to both simple object files and object
files that are members of archive files. Thus an archive of COFF files can be processed as if it were a series
of simple COFF files.

If ldptr has the value NULL, then ldopen() will open filename and allocate and initialize the LDFILE struc­
ture, and return a pointer to the structure to the calling program.

If ldptr is valid and if TYPE(ldptr) is the archive magic number, IdopenO will reinitialize the LDFILE
structure for the next archive member of filename.

Idopen() and Idclose(3X) are designed to work in concert. ldclose will return FAILURE only when
TYPE(idptr) is the archive magic number and there is another file in the archive to be processed. Only
then should Idopen() be called with the current value of ldptr. In all other cases, in particular whenever a
new filename is opened, Idopen() should be called with a NULL ldptr argument.

The following is a prototype for the use of ldopen() and Idclose(3X).

1* for each filename to be processed *1

Idptr = NULL;
do
{

if ((ldptr = ldopen(filename, ldptr» != NULL)
{

}

1* check magic number *1
1* process the file *1

} while (ldclose(ldptr) == FAILURE);

If the value of oldptr is not NULL, ldaopen() will open filename anew and allocate and initialize a new
LDFILE structure, copying the TYPE, OFFSET, and HEADER fields from oldptr. ldaopen() returns a
pointer to the new LDFILE structure. This new pointer is independent of the old pointer, o ldp tr . The two
pointers may be used concurrently to read separate parts of the object file. For example, one pointer may
be used to step sequentially through the relocation information, while the other is used to read indexed
symbol table entries.

Sun Release 4.1 Last change: 19 February 1988 1047

LDOPEN(3X) MISCELLANEOUS LffiRARY FUNCfIONS LOOPEN(3X)

Both Idopen() and Idaopen() open filename for reading. Both functions return NULL if filename cannot be
opened, or if memory for the LDFILE structure cannot be allocated. A successful open does not insure that
the given file is a COFF file or an archived object file.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO
fopen(3V), Idclose(3X), Idfcn(3)

1048 Last change: 19 February 1988 Sun Release 4.1

LDRSEEK (3X) MISCELLANEOUS LIBRARY FUNCTIONS LDRSEEK (3X)

NAME
ldrseek, ldnrseek - seek to relocation entries of a section of a COFF file

SYNOPSIS
#include <stdio.h>
#include <filehdr .h>
#include ddfcn.h>

int Idrseek (Idptr, sectindx)
LDFILE * Idptr;
unsigned short sectindx;

int Idnrseek (Idptr, sectname)
LDFILE *Idptr;
char *sectname;

AVAILABILITY
Available only on Sun 386i systems running a SunOS 4.0.x release or earlier. Not a SunOS 4.1
release feature.

DESCRIPTION
Idrseek() seeks to the relocation entries of the section specified by sectindx of the COFF file currently
associated with ldptr.

Idnrseek() seeks to the relocation entries of the section specified by sectname.

Idrseek() and Idnrseek() return SUCCESS or FAILURE. Idrseek() will fail if sectindx is greater than
the number of sections in the object file; Idnrseek() will fail if there is no section name corresponding
with sectname. Either function will fail if the specified section has no relocation entries or if it cannot
seek to the specified relocation entries.

Note: the first section has an index of one.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO
Idclose(3X), Idfcn(3), Idopen(3X), Idshread(3X)

Sun Release 4.1 Last change: 19 February 1988 1049

LDSHREAD (3X) MISCELLANEOUS LffiRARY FUNCTIONS LDSHREAD (3X)

NAME
ldshread, ldnshread - read an indexed/named section header of a COFF file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <scnhdr .h>
#include <ldfcn.h>

int Idshread (Idptr, sectindx, secthead)
LDFILE *Idptr;
unsigned short sectindx;
SCNHDR *secthead;

int Idnshread (Idptr, sectname, secthead)
LDFILE *ldptr;
char *sectname;
SCNHDR *secthead;

AVAILABILITY
Available only on Sun 386i systems running a SunOS 4.0.x release or earlier. Not a SunOS 4.1
release feature.

DESCRIPTION
Idshread() reads the section header specified by sectindx of the COFF file currently associated with
ldptr into the area of memory beginning at secthead.

Idnshread() reads the section header specified by sectname into the area of memory beginning at sect­
head.

Idshread() and Idnshread() return SUCCESS or FAILURE. Idshread() will fail if sectindx is greater
than the number of sections in the object file; Idnshread() will fail if there is no section name
corresponding with sectname. Either function will fail if it cannot read the specified section header.

Note: the first section header has an index of one.

The program must be loaded with the object file access routine library Iibld.a.

SEE ALSO
Idclose(3X), Idfcn(3), Idopen(3X)

1050 Last change: 19 February 1988 Sun Release 4.1

LDSSEEK (3X) MISCELLANEOUS LIBRARY FUNCfIONS LDSSEEK (3X)

NAME
ldsseek, ldnsseek - seek to an indexed/named section of a COFF file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <Idfcn.h>

int Idsseek (Idptr, sectindx)
LDFILE *Idptr;
unsigned short sectindx;

int Idnsseek (Idptr, sectname)
LDFILE *Idptr;
char *sectname;

A V AILABILITY
Available only on Sun 386i systems running a SunOS 4.0.x release or earlier. Not a SunOS 4.1
release feature.

DESCRIPTION
Idsseek() seeks to the section specified by sectindx of the COFF file currently associated with ldptr.

Idnsseek() seeks to the section specified by sectname.

IdsseekO and IdnsseekO return SUCCESS or FAILURE. IdsseekO will fail if sectindx is greater than
the number of sections in the object file; Idnsseek() will fail if there is no section name corresponding
with sectname. Either function will fail if there is no section data for the specified section or if it
cannot seek to the specified section.

Note: the first section has an index of one.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO
Idclose(3X), Idfcn(3), Idopen(3X), Idshread(3X)

Sun Release 4.1 Last change: 19 February 1988 1051

LDTBINDEX (3X) MISCELLANEOUS LffiRARY FUNCTIONS LDTBINDEX (3X)

NAME
ldtbindex - compute the index of a symbol table entry of a COFF file

SYNOPSIS
#include <stdio.h>
#include dilehdr .h>
#include <syms.h>
#include <Idfcn.h>

long Idtbindex (ldptr)
LDFILE * Idptr;

A V AILABILITY
Available only on Sun 386i systems running a SunOS 4.0.x release or earlier. Not a SunOS 4.1
release feature.

DESCRIPTION
Idtbindex() returns the (long) index of the symbol table entry at the current position of the COFF file
associated with [dptr.

The index returned by Idtbindex() may be used in subsequent calls to Idtbread(3X). However, since
Idtbindex () returns the index of the symbol table entry that begins at the current position of the
object file, if Idtbindex() is called immediately after a particular symbol table entry has been read, it
will return the index of the next entry.

Idtbindex() will fail if there are no symbols in the object file, or if the object file is not positioned at
the beginning of a symbol table entry.

Note that the first symbol in the symbol table has an index of zero.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO
Idclose(3X), Idfcn(3), Idopen(3X), Idtbread(3X), Idtbseek(3X)

1052 Last change: 19 February 1988 Sun Release 4.1

LDTBREAD (3X) MISCELLANEOUS LffiRARY FUNCfIONS LDTBREAD (3X)

NAME
Idtbread - read an indexed symbol table entry of a COFF file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <syms.h>
#include <Idfcn.h>

int Idtbread (Idptr, symindex, symbol)
LDFILE *Idptr;
long symindex;
SYMENT *symbol;

A V AILABILITY
Available only on Sun 386i systems running a SunOS 4.0.x release or earlier. Not a SunOS 4.1
release feature.

DESCRIPTION
Idtbread() reads the symbol table entry specified by symindex of the COFF file currently associated
with ldptr into the area of memory beginning at symbol.

Idtbread() returns SUCCESS or FAILURE. Idtbread() will fail if symindex is greater than or equal to
the number of symbols in the object file, or if it cannot read the specified symbol table entry.

Note: the first symbol in the symbol table has an index of zero.

The program must be loaded with the object file access routine library Iibld.a.

SEE ALSO
Idclose(3X) , Idfcn(3), Idopen(3X), Idtbseek(3X), Idgetname(3X)

Sun Release 4.1 Last change: 19 February 1988 1053

LDTBSEEK (3X) MISCELLANEOUS LffiRARY FUNCTIONS

NAME
ldtbseek - seek to the symbol table of a COFF file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <Idfcn.h>

int Idtbseek (ldptr)
LDFILE *Idptr;

AVAILABILITY

LDTBSEEK (3X)

Available only on Sun 386i systems running a SunOS 4.0.x release or earlier. Not a SunOS 4.1
release feature.

DESCRIPTION
Idtbseek() seeks to the symbol table of the COFF file currently associated with ldptr.

Idtbseek() returns SUCCESS or FAILURE. Idtbseek() will fail if the symbol table has been stripped
from the object file, or if it cannot seek to the symbol table.

The program must be loaded with the object file access routine library libId.a.

SEE ALSO
Idclose(3X), Idfcn(3), Idopen(3X), Idtbread(3X)

1054 Last change: 19 February 1988 Sun Release 4.1

LOCALDTCONV (3) C LIBRARY FUNCTIONS LOCALDTCONV (3)

NAME
localdtconv - get date and time formatting conventions

SYNOPSIS
#include <locale.h>

struct dtconv *localdtconv()

DESCRIPTION
localdtconv() returns a pointer to a structure of type struct dtconv containing values appropriate for
the formatting of dates and times according to the rules of the current locale.

The members include the following:

char *abbrev _month _ names[12]
The abbreviated names of the months; for example, the abbreviated name for January is
abbrev _month _names[O] and the abbreviated name for December is
abbrev _month _ names[11].

char *month_names[12]
The full names of the months; for example, the full name for January is month _ names[O] .
and the full name for December is month _ names[11].

char *abbrev _weekday _ names[7]
The abbreviated names of the weekdays; for example, the abbreviated name for Sunday is
abbrev _weekday _ names[O] and the abbreviated name for Saturday is
abbrev _weekday _ names[6].

char *weekday _ names[7]
The full names of the weekdays; for example, the full name for Sunday is
weekday_names[O] and the full name for Saturday is weekday_names[6].

char *time format
The standard format for times, using the format specifiers supported by strftime() and
strptime() (see ctime(3V».

char *sdate _format
The standard short format for dates, using the format specifiers supported by ctime (3V).

char *dtime format
The standard short format for dates and times together, using the format specifiers supported
by ctime(3V).

char *am _string
The string representing AM.

char *pm_string
The string representing PM.

char *ldate format
The standard long format for dates, using the format specifiers supported by ctime(3V).

The values for the members in the C locale are:

Sun Release 4.1

abbrev month names - -
month names

abbrev _weekday_names

weekday_names

time format

Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec

January, February, March, April, May, June, July, August,
September, October, November, December

Sun, Mon, Tue, Wed, Thu, Fri, Sat

Sunday, Monday, Tuesday, Wednesday, Thursday, Friday,
Saturday

%H:%M:%S

Last change: 15 June 1988 1055

LOCALDTCONV (3)

FILES

sdate format

dtime _format

am_string

pm_string

Idate format

/usr/share/lib/localelLc _TIME

C LIBRARY FUNCTIONS

%m/%d/%y

%a %b %e %T %Z %Y

AM

PM

%A, %B %e, %Y

LOCALDTCONV (3)

standard locale information directory for category LC _TIME
SEE ALSO

ctime(3V), setlocale(3V)

1056 Last change: 15 June 1988 Sun Release 4.1

LOCALECONV (3) C LIBRARY FUNCTIONS LOCALECONV (3)

NAME
localeconv - get numeric and monetary fonnatting conventions

SYNOPSIS
#include <limits.h>
#include <Iocale.h>

struct Iconv *Iocaleconv()

DESCRIPTION
localeconv() returns a pointer to a structure of type struct Iconv containing values appropriate for the for­
matting of numeric quantities (monetary and otherwise) according to the rules of the current locale.

The members of the structure with type (char *) are strings; if a string has the value nn, the value is not
available in the current locale or has zero length. The members with type char are nonnegative numbers; if
any of them have the value CHAR_MAX the value is not available in the current locale. The Iconv struc­
ture is defined in <locale.h> as follows:

struct Iconv {
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char

};

*decimal Jloint;
* thousands _ sep;
*"grouping;
*int_curr _symbol;
*currency _symbol;
*mon _ decimalJloint;
*mon _thousands _ sep;
*mon _grouping;
* positive _sign;
*negative_sign;
int _frac _digits;
frac _digits;
p _ cs yrecedes;
p_sep_by_space;
n _ cs yrecedes;
n _sep _by_space;
p_signJlosn;
n _sign Jlosn;

1* decimal point character *1
1* thousands separator character *1
1* grouping of digits *1
1* international currency symbol *1
1* local currency symbol *1
1* monetary decimal point character */
1* monetary thousands separator */
1* monetary grouping of digits */
1* monetary credit symbol */
1* monetary debit symbol *1
1* inti monetary number of fractional digits */
1* monetary number of fractional digits *1
1* true if currency symbol precedes credit *1
1* true if space separates c.s. from credit */
/* true if currency symbol precedes debit *1
1* true if space separates c.s. from debit *1
1* position of sign for credit *1
1* position of sign for debit */

The fields of this structure represent:

decimal Jloint
The decimal-point character used to fonnat non-monetary quantities.

thousands _sep
The character used to separate groups of digits to the left of the decimal-point character in format­
ted non-monetary quantities.

grouping
A string whose elements indicate the size of each group of digits in fonnatted non-monetary quan­
tities.

int_curr _symbol
The international currency symbol applicable to the current locale, left-justified within a four­
character SPACE-padded field. The character sequences are those specified in: ISO 4217 Codes for
the Representation of Currency and Funds.

currency_symbol
The local currency symbol applicable to the current locale.

Sun Release 4.1 Last change: 22 January 1990 1057

LOCALECONV (3) C LIBRARY FUNCTIONS LOCALECONV (3)

1058

mon _ decimalJloint
The decimal-point used to format monetary quantities.

mon _thousands _ sep
The character used to separate groups of digits to the left of the decimal-point character in format­
ted monetary quantities.

mon _grouping
A string whose elements indicate the size of each group of digits in formatted monetary quantities.

positive _sign
The string used to indicate a nonnegative-valued formatted monetary quantity.

negative_sign
The string used to indicate a negative-valued formatted monetary quantity.

int _frac _digits
The number of fractional digits (those after the decimal-point) to be displayed in an internationally
formatted monetary quantity.

frac _digits
The number of fractional digits (those to the right of the decimal-point) to be displayed in a for­
matted monetary quantity.

p _ cs Jrecedes
1 if the currency_symbol precedes the value for a nonnegative formatted monetary quantity; 0 if
the currency_symbol succeeds the value for a nonnegative formatted monetary quantity.

p_sep_by_space
1 if the currency_symbol is separated by a SPACE from the value for a nonnegative formatted
monetary quantity; 0 if the currency_symbol is not separated by a SPACE from the value for a
nonnegative formatted monetary quantity.

n _ cs Jrecedes
1 if the currency_symbol precedes the value for a negative formatted monetary quantity; 0 if the
currency_symbol succeeds the value for a negative formatted monetary quantity.

n_sep_by_space
1 if the currency_symbol is separated by a SPACE from the value for a negative formatted mone­
tary quantity; 0 if the currency_symbol is not separated by a SPACE from the value for a negative
formatted monetary quantity.

p _sign Jlosn
A value indicating the positioning of the positive_sign for a nonnegative formatted monetary
quantity.

n_signJosn
A value indicating the positioning of the negative_sign for a negative formatted monetary quan­
tity.

The elements of grouping and mon _grouping are interpreted as follows:

CHAR MAX No further grouping is to be performed.

o The previous element is to be repeatedly used for the remainder of the digits.

other The value is the number of digits that comprise the current group. The next ele­
ment is examined to determine the size of the next group of digits to the left of
the current group.

The values ofp_signJlosn and n_signJosn are interpreted as follows:

o Parentheses surround the quantity and currency_symbol.

1 The sign string precedes the quantity and currency_symbol.

Last change: 22 January 1990 Sun Release 4.1

LOCALECONV (3) C LIBRARY FUNCTIONS

2 The sign string succeeds the quantity and currency _ sym bol.

3 The sign string immediately precedes the currency_symbol.

4 The sign string immediately succeds the currency_symbol.

The values for the members in the C locale are:

field value
decimalyoint " "
thousands _ sep ""
grouping ""
int _ curr _ sym bol ""
currency_symbol ""
moo _ decimalyoint ""
moo_thousands _ sep ""
moo_grouping ""
positive _sign ""
negative_sign ""
int _frac _digits CHAR MAX
frac _digits CHAR MAX
P _ cs yrecedes CHAR MAX
P _ sep _ by _space CHAR MAX
n _cs yrecedes CHAR MAX
n _sep _by_space CHAR MAX
P _sign _posn CHAR MAX
n_signyosn CHAR MAX

RETURN VALUES

FILES

localeconv() returns a pointer to struct Iconv (see NOTES).

lusrlshare/lib/localelLC _MONETARY
standard locale information directory for category LC _MONET ARY

lusrlshare/lib/localelLC _NUMERIC
standard locale information directory for category LC _NUMERIC

SEE ALSO
printf(3V), scanf(3V), setlocale(3V)

NOTES

LOCALECONV (3)

localeconv() does not modify the struct Iconv to which it returns a pointer, but subsequent calls to
setJocale(3V) with categories LC_ALL, LC_MONETARY, or LC_NUMERIC may overwrite the contents of
the structure.

Sun Release 4.1 Last change: 22 January 1990 1059

LOCKF(3) C LIBRARY FUNCTIONS LOCKF(3)

NAME
lockf - record locking on files

SYNOPSIS
#include <unistd.h>

int lockf(fd, cmd, size)
int fd, cmd;
long size;

DESCRIPTION

1060

lockf() places, removes, and tests for exclusive locks on sections of files. These locks are either
advisory or mandatory depending on the mode bits of the file. The lock is mandatory if the set-OlD
bit (S_ISGID) is set and the group execute bit (S_IXGRP) is clear (see stat(2V) for information about
mode bits). Otherwise, the lock is advisory.

If a process holds a mandatory exclusive lock on a segment of a file, both read and write operations
block until the lock is removed (see WARNINGS).

An advisory lock does not affect read and write access to the locked segment. Advisory locks may be
used by cooperating processes checking for locks using F _ GETLCK and voluntarily observing the indi­
cated read and write restrictions.

A locking call on an already locked file section fails, returning an error value or putting the call to
sleep until that file section is unlocked. All the locks on a process are removed when that process ter­
minates. See fcntl(2V) for more information about record locking.

fd is an open file descriptor. It must have O_WRONLY or O_RDWR permission for a successful lock­
ing call.

cmd is a control value which specifies the action to be taken. The accepted values for cmd are
defined in <unistd.h> as follows:

#define F ULOCK 0 1* Unlock a previously locked section *1
#define F _LOCK 1 1* Lock a section for exclusive use *1
#define F _TLOCK 2 1* Test and lock a section (non-blocking) *1
#define F _TEST 3 1* Test section for other process' locks *1

F _TEST returns -I and sets err no to EACCES if a lock by another process already exists on the
specified section. Otherwise, it returns O. F _LOCK and F _ TLOCK lock available file sections.
F _ ULOCK removes locks from file sections.

All other values of cmd are reserved for future applications and, until implemented, return an error.

size is the number of contiguous bytes to be locked or unlocked. The resource to be locked starts at
the current offset in the file and extends forward size bytes if size is positive, and extends backward
size bytes (the preceding bytes up to but not including the current offset) if size is negative. If size is
zero, the section from the current offset through the largest file offset is locked (that is, from the
current offset through the present or any future EOF). An area need not be allocated to the file to be
locked, such a lock may exist after the EOF.

Sections locked with F _LOCK or F _ TLOCK may contain all or part of an already locked section.
They may also be partially or completely contained by an already locked section. Where these over­
lapping or adjacent locked sections occur, they are combined into a single section. If the table of
active locks is full, a lock request requiring an additional table entry fails and an error value is
returned.

F _LOCK and F _ TLOCK differ only in their response to requests for unavailable resources. If a sec­
tion is already locked, F _LOCK directs the calling process to sleep until the resource is available,
F_TLOCK directs the function to return -I and set errno to EACCES (see ERRORS).

Last change: 21 January 1990 Sun Release 4.1

LOCKF(3) C LIBRARY FUNCTIONS LOCKF(3)

When a F _ ULOCK request releases part of a section with overlapping locks, the remaining section or
sections retain the lock. If F _ ULOCK removes the center of a locked section, the two separate locked
sections remain, but an additional element is required in the table of active locks. If this table is full,
errno is set to ENOLCK and the requested section is not released.

The danger of a deadlock exists when a process controlling a locked resource is put to sleep by
requesting an unavailable resource. To avoid this danger, lockf() and fcntl() scan for this conflict
before putting a locked resource to sleep. If a deadlock would result, an error value is returned.

The sleep process can be interrupted with any signal. alarm(3V) may be used to provide a timeout
facility where needed.

RETURN VALUES
lockf() returns:

o on success.

-1 on failure and sets errno to indicate the error.

ERRORS
EACCES cmd is F _ TLOCK or F _TEST and the section is already locked by another process.

Note: In future, lockf() may generate EAGAIN under these conditions, so applica­
tions testing for EACCES should also test for EAGAIN.

EBADF

EDEADLK

EINTR

ENOLCK

fd is not a valid open descriptor.

cmd is F _LOCK or F _ TLOCK and the process does not have write permission on the
file.

cmd is F _LOCK and a deadlock would occur.

cmd is F _LOCK and a signal interrupted the process while it was waiting to com­
plete the lock.

cmd is F _LOCK, F _ TLOCK, or F _ ULOCK and there are no more file lock entries
available.

SEE ALSO
chmod(2V), fcntl(2V), flock(2), fork(2V), alarm(3V), lockd(8C)

WARNINGS

NOTES

BUGS

Mandatory record locks are dangerous. If a runaway or otherwise out-of-control process should hold a
mandatory lock on a file critical to the system and fail to release that lock, the entire system could
hang or crash. For this reason, mandatory record locks may be removed in a future SunOS release.n
Use advisory record locking whenever possible.

A child process does not inherit locks from its parent on fork(2V).

lockf() locks do not interact in any way with locks granted by flock(), but are compatible with locks
granted by fcntl().

Sun Release 4.1 Last change: 21 January 1990 1061

LSEARCH(3) C LIBRARY FUNCTIONS LSEARCH(3)

NAME
lsearch, lfind - linear search and update

SYNOPSIS
#include <stdio.h>
#include <search.h>

char *Isearch (key, base, nelp, width, compar)
char *key;
char *base;
unsigned int *nelp;
unsigned int width;
int (*compar)O;

char*lfind (key, base, nelp, width, compar)
char *key;
char *base;
unsigned int *nelp;
unsigned int width;
int (*compar)();

DESCRIPTION

NOTES

lsearchO is a linear search routine generalized from Knuth (6.1) Algorithm S. It returns a pointer
into a table indicating where a datum may be found. If the datum does not occur, it is added at the
end of the table. key points to the datum to be sought in the table. base points to the first element in
the table. nelp points to an integer containing the current number of elements in the table. The
integer is incremented if the datum is added to the table. compar is the name of the comparison func­
tion which the user must supply (strcmp(), for example). It is called with two arguments that point
to the elements being compared. The function must return zero if the elements are equal and non-zero
otherwise.

lfind() is the same as lsearch() except that if the datum is not found, it is not added to the table.
Instead, a NULL pointer is returned.

The pointers to the key and the element at the base of the table should be of type pointer-to-element,
and cast to type pointer-to-character.

The comparison function need not compare every byte, so arbitrary data may be contained in the ele­
ments in addition to the values being compared.

Although declared as type pointer-to-character, the value returned should be cast into type pointer-to­
element.

EXAMPLE

1062

This fragment will read in ~ TABSIZE strings of length ~ ELSIZE and store them in a table, eliminat­
ing duplicates.

#include <stdio.h>
#include <search.h>
#define
TABSIZE 50
#define
ELSIZE 120

char line[ELSIZE], tab[TABSIZE][ELSIZE], *lsearch();
unsigned nel = 0;
int strcmp();

while (fgetsOine,
ELSIZE, stdin) != NULL &&

Last change: 6 October 1987 Sun Release 4J

LSEARCH(3) C LIBRARY FUNCTIONS LSEARCH(3)

nel < T ABSIZE)
(void) lsearch(line, (char *)tab, &nel, ELSIZE, strcmp);

SEE ALSO
bsearch(3), hsearch(3), tsearch(3)

DIAGNOSTICS
If the searched for datum is found, both lsearch() and lfind() return a pointer to it. Otherwise,
lfind() returns NULL and lsearch() returns a pointer to the newly added element.

BUGS
Undefined results can occur if there is not enough room in the table to add a new item.

Sun Release 4.1 Last change: 6 October 1987 1063

MADVISE(3) C LIBRARY FUNCTIONS MADVISE(3)

NAME
madvise - provide advice to VM system

SYNOPSIS
#include <sys/types.h>
#include <sys/mman.h>

int madvise(addr, len, advice)
caddr _ t addr;
size_t len;
int advice;

DESCRIPTION
madviseO advises the kernel that a region of user mapped memory in the range [addr, addr + len)
will be accessed following a type of pattern. The kernel uses this information to optimize the pro­
cedure for manipulating and maintaining the resources associated with the specified mapping range.

Values for advice are defined in <sys/mman.h> as:

#define MADV _NORMAL OxO 1* No further special treatment *1
#define MADV _RANDOM Ox! 1* Expect random page references *1
#define MADV _SEQUENTIAL Ox2/* Expect sequential page references *1
#define MADV _ WILLNEED Ox3 1* Will need these pages *1
#define MADV _DONTNEED Ox4 1* Don't need these pages *1

MADV NORMAL
The default system characteristic where accessing memory within the address range causes the
system to read data from the mapped file. The kernel reads all data from files into pages
which are retained for a period of time as a "cache". System pages can be a scarce resource,
so the kernel steals pages from other mappings when needed. This is a likely occurrence but
only adversely affects system performance if a large amount of memory is accessed.

MADV RANDOM
Tells the kernel to read in a minimum amount 'of data from a mapped file when doing any
single particular access. Normally when an address of a mapped file is accessed, the system
tries to read in as much data from the file as reasonable, in anticipation of other accesses
within a certain locality.

MADV _SEQUENTIAL
Tells the system that addresses in this range are likely to only be accessed once, so the sys­
tem will free the resources used to map the address range as quickly as possible. This is
used in the cat{l V) and cp(l) utilities.

MADV WILLNEED
Tells the system that a certain address range is definitely needed, so the kernel will read the
specified range into memory immediately. This might be beneficial to programs who want to

minimize the time it takes to access memory the first time since the kernel would need to

read in from the file.

MADV DONTNEED
Tells the kernel that the specified address range is no longer needed, so the system immedi­
ately frees the resources associated with the address range.

madvise() should be used by programs that have specific knowledge of their access patterns over a
memory object (for example, a mapped file) and wish to increase system performance.

RETURN VALUES
madvise() returns:

o on success.

-1 on failure and sets errno to indicate the error.

1064 Last change: 21 January 1990 Sun Release 4.1

MADVISE(3)

ERRORS
EINVAL

EIO

ENOMEM

SEE ALSO

C LIBRARY FUNCTIONS

addr is not a multiple of the page size as returned by getpagesize(2).

The length of the specified address range is less than or equal to O.

advice was invalid.

MADVISE(3)

An I/O error occurred while reading from or writing to the file system.

Addresses in the range [addr, addr + len) are outside the valid range for the address
space of a process, or specify one or more pages that are not mapped.

mctl(2), mmap(2)

Sun Release 4.1 Last change: 21 January 1990 1065

MALLOC(3V) C LIBRARY FUNCTIONS MALLOC(3V)

NAME
malloc, free, realloc, calloc, cfree, memalign, valloc, m alloc map, mallopt, mallinfo, malloc_debug,
malloc_ verify, alloca - memory allocator

SYNOPSIS
#include <malloc.h>

char *malloc(size)
unsigned size;

int free(ptr)
char *ptr;

char *realloc(ptr, size)
char *ptr;
unsigned size;

char *calloc(nelem, elsize)
unsigned nelem, elsize;

int cfree(ptr)
char *ptr;

char *memalign(alignment, size)
unsigned alignment;
unsigned size;

char *vaIloc(size)
unsigned size;

void mallocmap()

int mallopt(cmd, value)
int cmd, value;

struct mallinfo mallinfo()

#include <alJoca.h>

char *alloca(size)
int size;

SYSTEM V SYNOPSIS
#include <malloc.h>

1066

void *malloc(size)
size_t size;

void free(ptr)
void *ptr;

void *realloc(ptr, size)
void *ptr;
size_t size;

void *calloc(nelem, elsize)
size_t nelem;
size_t elsize;

void *memalign(alignment, size)
size _ t alignment;
size_t size;

void *valloc(size)
size_t size;

Last change: 24 January 1990 Sun Release 4.1

MALLOC(3V) C LIBRARY FUNCTIONS MALLOC(3V)

The XPG2 versions of the functions listed in this section are declared as they are in SYNOPSIS above,
except free(), which is declared as:

void free(ptr)
char *ptr;

DESCRIPTION
These routines provide a general-purpose memory allocation package. They maintain a table of free blocks
for efficient allocation and coalescing of free storage. When there is no suitable space already free, the
allocation routines call sbrk() (see brk(2» to get more memory from the system.

Each of the allocation routines returns a pointer to space suitably aligned for storage of any type of object.
Each returns a NULL pointer if the request cannot be completed (see DIAGNOSTICS).

malloc()' returns a pointer to a block of at least size bytes, which is appropriately aligned.

free() releases a previously allocated block. Its argument is a pointer to a block previously allocated by
malloc(), calloc(), realloc(), malloc(), or memalign().

realloc() changes the size of the block referenced by ptr to size bytes and returns a pointer to the (possibly
moved) block. The contents will be unchanged up to the lesser of the new and old sizes. If unable to honor
a reallocation request, realloc() leaves its first argument unaltered. For backwards compatibility, realloc()
accepts a pointer to a block freed since the most recent call to malloc(), calloc(), realloc(), valloc(), or
memalign().Note:usingrealloc()withablockfreedbeforethemostrecentcalltomalloc().calloc(),
realloc(), valloc(), or memalign() is an error.

calJoc() uses malloc() to allocate space for an array of nelem elements of size elsize, initializes the space
to zeros, and returns a pointer to the initialized block. The block can be freed with free() or cfree().

memalign() allocates size bytes on a specified alignment boundary, and returns a pointer to the allocated
block. The value of the returned address is guaranteed to be an even multiple of alignment. Note: the
value of alignment must be a power of two, and must be greater than or equal to the size of a word.

valloc(size) is equivalent to memalign(getpagesize(), size).

mallocmap() prints a map of the heap to the standard output. mallocmap() prints each block's address,
size (in bytes) and status (free or busy). A block must have a size that is no larger than the current extent
of the heap.

mallopt() allows quick allocation of small blocks of memory. mallopt() tells subsequent calls to malloc()
to allocate holding blocks containing small blocks. Under this small block algorithm, a request to malloc()
for a small block of memory returns a pointer to one of the pre-allocated small blocks. Different holding
blocks are created as needed for different sizes of small blocks.

cmd may be one of the following values, defined in <malloc.h>:

M_MXFAST Set the maximum size of blocks to be allocated using the small block algorithm (max­
fast) to value. The algorithm allocates all blocks smaller than maxfast in large groups
and then doles them out very quickly. Initially, maxfast is 0 and the small block algo­
rithm is disabled.

M NLBLKS

M_GRAIN

Sun Release 4.1

Set the number of small blocks in a holding block (numlblks) to value. The holding
blocks each contain numlblks blocks. numlblks must be greater than 1. The default value
for numlblks is 100.

Set the granularity for small block requests (grain) to value. The sizes of all blocks
smaller than maxfast are rounded up to the nearest multiple of grain. grain must be
greater than O. The default value of grain is the smallest number of bytes which wili
allow alignment of any data type. When grain is set, value is rounded up to a multiple
of this default.

Last change: 24 January 1990 1067

MALLOC(3V) C LIBRARY FUNCTIONS MALLOC(3V)

M KEEP Preserve data in a freed block until the next maIloc(), realloc(), or calloc(). This
option is provided only for compatibility with the old version of malloc() and is not
recommended.

mallopt() may be called repeatedly, but may not be called after the first small block is allocated.

malIinfo() can be used during program development to determine the best settings for the parameters set
by mallopt(). Do not call mallinfo() until after a call to malloc(). mallinfo() provides infonnation
describing space usage. It returns a mallinfo structure, defined in <maIloc.h> as:

struct mallinfo {

};

int arena;
int ordblks;
int smblks;
int hblks;
int hblkhd;
int usmblks;
int fsmblks;
int uordblks;
int fordblks;
int keepcost;

1* total space in arena *1
1* number of ordinary blocks *1
1* number of small blocks *1
1* number of holding blocks *1
1* space in holding block headers *1
1* space in small blocks in use *1
1* space in free small blocks *1
1* space in ordinary blocks in use *1
1* space in free ordinary blocks *1
1* cost of enabling keep option *1

int mxfast; 1* max size of small blocks *1
int nlblks; 1* number of small blocks in a holding block *1
int grain; 1* small block rounding factor *1
int uordbytes; 1* space (including overhead) allocated in ord. blks *1
int allocated; 1* number of ordinary blocks allocated *1
int treeoverhead; 1* bytes used in maintaining the free tree *1

alloca() allocates size bytes of space in the stack frame of the caller, and returns a pointer to the allocated
block. This temporary space is automatically freed when the caller returns. Note that if the allocated block
is beyond the current stack limit, the resulting behavior is undefined.

malloc(), realloc(), memalign() and valloc() return a non-NULL pointer if size is 0, and calloc() returns a
non-NULL pointer if nelem or elsize is 0, but these pointers should not be dereferenced.

Note: Always cast the value returned by malloc(), realloc(), calloc(), memalign().valloc() or alloca().

SYSTEM V DESCRIPTION
The XPG2 versions of malloc(), realloc(), memalign() and valloc() return NULL if size is O. The XPG2
version of calloc() returns NULL if nelem or elsize is O.

RETURN VALUES

1068

On success, malloc(), calloc(), realloc(), memalign().valloc() and alloca() return a pointer to space
suitably aligned for storage of any type of object. On failure, they return NULL.

free() and cfree() return:

1 on success.

o on failure and set errno to indicate the error.

mallopt() returns 0 on success. If mallopt() is called after the allocation of a small block, or if cmd or
value is invalid, it returns a non-zero value.

mallinfo() returns a struct mallinfo.

Last change: 24 January 1990 Sun Release 4.1

MALLOC(3V) C LIBRARY FUNCTIONS MALLOC(3V)

SYSTEM V RETURN V ALVES
If size is 0, the XPG2 versions of malloc(), realloc(), memalign() and valloc() return NULL.

If nelem or elsize is 0, the XPG2 version of calloc() returns NULL.

free() does not return a value.

ERRORS

FILES

malloc(), calloc(), realloc(), valloc(), memalign(), cfree(), and free() will each fail if one or more of
the following are true:

EINVAL

ENOMEM

An invalid argument was specified.

The value of ptr passed to free(), cfree(), or realloc() was not a pointer to a block pre­
viously allocated by malloc(), calloc(), realloc(), valloc(), or memalign().

The allocation heap is found to have been corrupted. More detailed information may be
obtained by enabling range checks using malloc_debugO.

size bytes of memory could not be allocated.

lusr/lib/debug/malloc.o diagnostic versions of malloc() routines.
lusr/lib/debug/mallocmap.o routines to print a map of the heap.

SEE ALSO
csh(l), Id(l), brk(2), getrlimit(2), sigvec(2), sigstack(2)

Stephenson, C.J., Fast Fits, in Proceedings of the ACM 9th Symposium on Operating Systems, SIGOPS
Operating Systems Review, vol. 17, no. 5, October 1983.
Core Wars, in Scientific American, May 1984.

DIAGNOSTICS
More detailed diagnostics can be made available to programs using malloc(), caUoc(), realloc(), valloc(),
memalign().cfree().andfree().byincluding a special relocatable object file at link time (see FILES).
This file also provides routines for control of error handling and diagnosis, as defined below. Note: these
routines are not defined in the standard library.

int malloc _ debug(level)
int level;

int malloc _ verify()

malloc _ debug() sets the level of error diagnosis and reporting during subsequent calls to malloc(), cal­
loc(), realloc(), valloc(), memalign(), cfree(), and free(). The value of level is interpreted as follows:

Level 0 malloc(), calloc(), realloc(), valloc(), memalign(), cfree(), and free() behave
the same as in the standard library.

Levell

Level 2

The routines abort with a message to the standard error if errors are detected in
arguments or in the heap. If a bad block is encountered, its address and size are
included in the message.

Same as levell, except that the entire heap is examined on every call to the above
routines.

malloc _ debug() returns the previous error diagnostic level. The default level is 1.

malloc _ verify() attempts to determine if the heap has been corrupted. It scans all blocks in the heap (both
free and allocated) looking for strange addresses or absurd sizes, and also checks for inconsistencies in the
free space table. malloc _ verify() returns 1 if all checks pass without error, and otherwise returns O. The
checks can take a significant amount of time, so it should not be used indiscriminately.

WARNINGS
alloca() is machine-, compiler-, and most of all, system-dependent. Its use is strongly discouraged. See
getrlimit(2), sigvec(2), sigstack(2), csh(I), and Id(I).

T ~~t ('h~mrp.· ?4 T~nl1~TV 1 <)<)0 1069

MALLOC(3V) C LIBRARY FUNCTIONS MALLOC(3V)

NOTES
Because malloc(), realloc(), memalign() and valloc() return a non-NULL pointer if size is 0, and calloc()
returns a non-NULL pointer if nelem or elsize is 0, a zero size need not be treated as a special case if it
should be passed to these functions unpredictably. Also, the pointer returned by these functions may be
passed to subsequent invocations of realloc().

SYSTEM V NOTES

BUGS

1070

The XPG2 versions of the allocation routines return NULL when passed a zero size (see SYSTEM V
DESCRIPTION above).

Since realloc() accepts a pointer to a block freed since the last call to malloc(), calloc(), realloc(), val­
loc(), or memalign(), a degradation of performance results. The semantics of free() should be changed so
that the contents of a previously freed block are undefined.

Last change: 24 January 1990 Sun Release 4.1

MBLEN(3) C LIBRARY FUNCTIONS MBLEN(3)

NAME
mblen, mbstowcs, mbtowc, wcstombs, wctomb - multibyte character handling

SYNOPSIS
#include <stdlib.h>

int mblen(s, n)
char *s;
size_t n;

size_t mbstowcs(s, pwcs, n)
char *s;
wchar_t *pwcs;
size_t n;

int mbtowc(pwc, s, n)
wchar_t *pwc;
char *s;
size_t n;

int wcstombs(s, pwcs, n)
char *s;
wchar _ t *pwcs;
size_t D;

int wctom b(s, wchar)
char *s;
wchar _ t wcar;

DESCRIPTION
The behavior of these functions is affected by the LC _ CTYPE category of the program's locale. For a
stat-dependent encoding, each function is placed into its initial state by a call for which its character pointer
argument, s, is a NULL pointer. Subsequent calls with s as other than a NULL pointer cause the internal
stste of the function to be altered as necessary. A call with a s as a NULL pointer causes these functions to
return a nonzero value if encodings have state dependency, and zero otherwise. After the LC _ CTYPE
category is changed, the shift state of these functions is indeterminate.

If s is not a NULL pointer, these functions work as follows:

mblen()
Determines the number of bytes comprising the multibyte character pointed to by s.

mbstowcs()
Converts a sequence of multibyte characters that begins in the initial shift state from the array
pointed to by s into a sequence of corresponding codes and stores no more than n codes into the
array pointed to by pwcs. No multibyte characters that follow a null character (which is converted
into a code with value zero) will be examined or converted. Each multibyte character is converted
as if by a call to mbtowc(), except that the shift state of mbtowc() is not affected.

No more than n elements will be modified in the array pointed to by pwcs. If copying takes place
between objects that overlap, the behavior is undefined.

mbtowc()

Sun Release 4.1

Determines the number of bytes that comprise the multibyte character pointed to by s. mbtowc()
then determines the code for value of type wchar _ t that corresponds to that multibyte character.
The value of the code corresponding to the null caharacter is zero. If the multibyte character is
valid and pwc is not a null pointer, mbtowc() stores the code in the object pointed to by pwc. At
most n bytes of the array pointed to by s will be examined.

Last change: 21 January 1990 1071

MBLEN(3) C LIBRARY FUNCTIONS MBLEN(3)

wcstowcs()
Converts a sequence of codes that correspond to multibyte characters from the array pointed to by
pwcs into a sequence of multibyte characters that begins in the initial shift state and stores these
multibyte characters into the array pointed to by s, stopping if a multibyte character would exceed
the limit of n total bytes or if a null character is stored. Each code is converted as if by a call to
wctomb(), except that the shift state of wctomb() is not affected.

wctomb()
Determines the number of bytes needed to represent the multibyte character corresponding to the
code whose value is wchar (including any change in shift state). wctomb() stores the multibyte
character representation in the array object pointed to by s (if s is not a null pointer). At most,
MB _ CUR_MAX characters are stored. If the value of wchar is zero, wctom b() is left in the initial
shift state.

RETURN VALUES

1072

If s is a null pointer, mblen(), mbtowc(), and wctomb() return a nonzero or zero value, if multibyte char­
acter encodings, respectively, do or do not have state dependent encodings.

If s is not a null pointer, mblen() and mbtowc() either return 0 (if s points to the null character), or return
the number of bytes that comprise the converted multibyte character (if the next n or fewer bytes form a
valid multibyte character), or return -1 (if they do not form a valid multibyte character).

In no case will the value returned by mbtowcO be greater than n or the value of the MB_CUR_MAX
macro. If s is not a null pointer, wctomb() returns -1 (if the value does not correspond to a valid multibyte
character), or returns the number of bytes that comprise the multibyte character corresponding to wchar.

If an invalid multibyte character is encountered, mbstowcsO and wcstombsO return (size_t) -1. Other­
wise, they return the number of bytes modified, not including a terminating null character, if any.

Last change: 21 January 1990 Sun Release 4.1

MEMORY (3) C LIBRARY FUNCTIONS MEMORY(3)

NAME
memory, memccpy, memchr, memcmp, memcpy, memset - memory operations

SYNOPSIS
#include <memory.h>

char *memccpy(sl, s2, c, n)
char *sl, *s2;
int c, n;

char *memchr(s, c, n)
char *s;
int c, n;

int memcmp(sl, s2, n)
char *sl, *s2;
int n;

char *memcpy(sl, s2, n)
char *sl, *s2;
int n;

char *memset(s, c, n)
char *s;
int c, n;

DESCRIPTION

NOTES

BUGS

These functions operate as efficiently as possible on memory areas (arrays of characters bounded by a
count, not terminated by a null character). They do not check for the overflow of any receiving
memory area.

memccpy() copies characters from memory area s2 into sl, stopping after the first occurrence of
character c has been copied, or after n characters have been copied, whichever comes first. It returns
a pointer to the character after the copy of c in sl , or a NULL pointer if c was not found in the first n
characters of s2.

memchr() returns a pointer to the first occurrence of character c in the first n characters of memory
area s, or a NULL pointer if c does not occur.

memcmp() compares its arguments, looking at the first n characters only, and returns an integer less
than, equal to, or greater than 0, according as sl is lexicographically less than, equal to, or greater
than s2.

memcpy() copies n characters from memory area s2 to sl. It returns sl .

memset() sets the first n characters in memory area s to the value of character c. It returns s.

For user convenience, all these functions are declared in the <memory.h> header file.

memcmp() uses native character comparison, which is signed on some machines and unsigned on
other machines. Thus the sign of the value returned when one of the characters has its high-order bit
set is implementation-dependent.

Character movement is performed differently in different implementations. Thus overlapping moves
may yield surprises.

Sun Release 4.1 Last change: 6 October 1987 1073

MKTEMP(3) C LIBRARY FUNCTIONS MKTEMP(3)

NAME
mktemp. mkstemp - make a unique file name

SYNOPSIS
char *mktemp(template)
char *template;

mkstemp(template)
char *template;

DESCRIPTION
mktemp() creates a unique file name. typically in a temporary filesystem. by replacing template with
a unique file name. and returns the address of template. The string in template should contain a file
name with six trailing Xs; mktemp() replaces the Xs with a letter and the current process ID. The
letter will be chosen so that the resulting name does not duplicate an existing file. mkstemp() makes
the same replacement to the template but returns a file descriptor for the template file open for reading
and writing. mkstemp() avoids the race between testing whether the file exists and opening it for
use.

Notes:

• mktemp() and mkstemp() actually change the template string which you pass; this means that you
cannot use the same template string more than once - you need a fresh template for every unique
file you want to open .

• When mktempO or mkstempO are creating a new unique filename they check for the prior
existence of a file with that name. This means that if you are creating more than one unique
filename. it is bad practice to use the same root template for multiple invocations of mktemp() or
mkstemp().

SEE ALSO
getpid(2V). open(2V). tmpfile(3S). tmpnam(3S)

DIAGNOSTICS

BUGS

1074

mkstemp() returns an open file descriptor upon success. It returns -1 if no suitable file could be
created.

mktemp() assigns the null string to template when it cannot create a unique name.

It is possible to run out of letters.

Last change: 6 September 1989 Sun Release 4.1

MLOCK(3) C LIBRARY FUNCTIONS MLOCK(3)

NAME
mlock, munlock - lock (or unlock) pages in memory

SYNOPSIS
#include <sys/types.h>
int mlock(addr, len) caddr_t addr; size_t len;

int munlock(addr, len)
caddr _ t addr;
size_t len;

DESCRIPTION
mlockO uses the mappings established for the address range [addr, add, + len) to identify memory
object pages to be locked in memory. If the page identified by a mapping changes, such as occurs
when a copy of a writable MAP _PRIVATE page is made upon the first store, the lock will be
transferred to the newly copied private page.

munlockO removes locks established with mlockO.

A given page may be locked multiple times by executing an mlock() through different mappings.
That is, if two different processes lock the same page then the page will remain locked until both
processes remove their locks. However, within a given mapping, page locks do not nest - multiple
mlock() operations on the same address in the same process will all be removed with a single mun­
lock(). Of course, a page locked in one process and mapped in another (or visible through a different
mapping in the locking process) is still locked in memory. This fact can be used to create applica­
tions that do nothing other than lock important data in memory, thereby avoiding page I/O faults on
references from other processes in the system.

If the mapping through which an mlock() has been performed is removed, an munlock() is implicitly
performed. An munlock() is also performed implicitly when a page is deleted through file removal or
truncation.

Locks established with mlock() are not inherited by a child process after a fork(2V).

Due to the impact on system resources, the use of mlock() and munlock() is restricted to the super­
user. Attempts to mlock() more memory than a system-specific limit will fail.

RETURN VALUES
mlock() and munlock() return:

o on success.

-1 on failure and set errno to indicate the error.

ERRORS
EAGAIN

EINVAL

ENOMEM

EPERM

SEE ALSO

(mlockO only.) Some or all of the memory identified by the range [addr, add, +
len) could not be locked due to insufficient system resources.

add, is not a multiple of the page size as returned by getpagesize(2).

Addresses in the range [addr, add, + len) are invalid for the address space of a pro­
cess, or specify one or more pages which are not mapped.

The process's effective user ID is not super-user.

fork(2V), mctl(2), mlockall(3), mmap(2), munmap(2)

Sun Release 4.1 Last change: 21 January 1990 1075

MLOCKALL (3) C LIBRARY FUNCTIONS MLOCKALL (3)

NAME
mlockall, munlockall - lock (or unlock) address space

SYNOPSIS
#include <sys/mman.h>

int mlockalJ(flags)
int Bags;

int munlockall()

DESCRIPTION
mlockallO locks all pages mapped by an address space in memory. The value of flags determines
whether the pages to be locked are simply those currently mapped by the address space, those that
will be mapped in the future, or both. flags is built from the options defined in <sys/mman.h> as:

#define MCL_CURRENT Ox! 1* lock current mappings *1
#define MCL_FUTURE Ox2 1* lock future mappings *1

If MCL_FUTURE is specified to mlockallO , then as mappings are added to the address space (or
existing mappings are replaced) they will also be locked, provided sufficient memory is available.

Mappings locked via mlockall() with any option may be explicitly unlocked with a munlock() call.

munlockall() removes address space locks and locks on mappings in the address space.

All conditions and constraints on the use of locked memory as exist for mlock() apply to mlockall() •

RETURN VALUES
mlockall() and munlockall() return:

o on success.

-1 on failure and set errno to indicate the error.

ERRORS
EAGAIN (mlockall() only.) Some or all of the memory in the address space could not be

locked due to sufficient resources.

EJNVAL

EPERM

SEE ALSO

flags contains values other than MCL_CURRENT and MCL_FUTURE.

The process's effective user ID is not super-user.

mctl(2), mlock(3), mmap(2)

1076 Last change: 21 January 1990 Sun Release 4.1

MONITOR(3) C LIBRARY FUNCTIONS MONITOR (3)

NAME
monitor, monstartup, moncontrol - prepare execution profile

SYNOPSIS
#include <a.out.h>

monitor(lowpc, high pc, buffer, bufsize, nfunc)
int (*lowpc)O, (*highpc)O;
short buffer[];

monstartup(Iowpc, highpc)
int (*lowpc)O, (*highpc)O;

moncontrol(mode)

DESCRIPTION
There are two different forms of monitoring available. An executable program created by 'cc -p'
automatically includes calls for the prof(1) monitor, and includes an initial call with default parameters
to its start-up routine monstartup. In this case, monitorO need not be called explicitly, except to
gain fine control over profil(2) buffer allocation. An executable program created by 'cc -pg'
automatically includes calls for the gprof(l) monitor.

monstartup() is a high-level interface to profil(2). lowpc and highpc specify the address range that is
to be sampled; the lowest address sampled is that of lowpc and the highest is just below highpc.
monstartup() allocates space using sbrk (see brk(2» and passes it to monitor() (as described below)
to record a histogram of program-counter values, and calls to certain functions. Only calls to func­
tions compiled with 'cc -p' are recorded.

On Sun-2, Sun-3, and Sun-4 systems, an entire program can be profiled with:

extern etext();

monstartup(N_TXTOFF(O), etext);

On Sun386i systems, the equivalent code sequence is:

extern etext();
extern _ start();

monstartup(_start, etext);

etext lies just above all the program text, see eod(3).

To stop execution monitoring and post results to the file moo.out, use:

monitor(O);

prof(l) can then be used to examine the results.

moncontrolO is used to selectively control profiling within a program. This works with both prof(l)
and gprof(I). Profiling begins when the program starts. To stop the collection of profiling statistics,
use:

moncootrol(O)

To resume the collection of statistics, use:

moncootrol(l)

This allows you to measure the cost of particular functions. Note: an output file is be produced upon
program exit, regardless of the state of moncontrol.

mooitor() is a low level interface to profil(2). lowpc and highpc are the addresses of two functions;
buffer is the address of a (user supplied) array of bufsize short integers. At most nfunc call counts can
be kept.

Sun Release 4.1 Last change: 18 February 1988 1077

MONITOR (3) C LIBRARY FUNCTIONS MONITOR (3)

FILES

For the results to be significant, especially where there are small, heavily used routines, it is suggested
that the buffer be no more than a few times smaller than the range of locations sampled. monitor()
divides the buffer into space to record the histogram of program counter samples over the range lowpc
to high pc , and space to record call counts of functions compiled with the ce -po

To profile the entire program on Sun-2, Sun-3, and Sun-4 systems using the low-level interface to
profiI(2), it is sufficient to use

extern etext();

monitor(N_TXTOFF(O), etext, buf, bufsize, nfuoe);
On Sun386i systems, the equivalent calls are:

extern etext();
extern _startO;

mooitor{_start, etext, buf, bufsize, of un c);

mon.out

SEE ALSO
ce(1 V), prof(I), gprof{I), brk(2), profil(2), end(3)

1078 Last change: 18 February 1988 Sun Release 4.1

MP(3X) MISCELLANEOUS LffiRARY FUNCfIONS MP(3X)

NAME
mp, madd, msub, mult, mdiv, mcmp, min, mout, pow, gcd, rpow, itom, xtom, mtox, mfree - multiple
precision integer arithmetic

SYNOPSIS
#include <mp.h>

madd(a, b, c)
MINT *a, *b, *c;

msub(a, b, c)
MINT *a, *b, *c;

mult(a, b, c)
MINT *a, *b, *c;

mdiv(a, b, q, r)
MINT *a, *b, *q, *r;

mcmp(a,b)
MINT *a, *b;

min(a)
MINT *a;

mout(a)
MINT *a;

pow(a, b, c, d)
MINT *a, *b, *c, *d;

gcd(a, b, c)
MINT *a, *b, *c;

rpow(a, n, b)
MINT *a, *b;
short D;

msqrt(a, b, r)
MINT *a, *b, *r;

sdiv(a, n, q, r)
MINT *a, *q;
short D, *r;

MINT *itom(n)
short D;

MINT *xtom(s)
char *s;

char *mtox(a)
MINT *a;

void mfree(a)
MINT *a;

DESCRIPTION
These routines perform arithmetic on integers of arbitrary length. The integers are stored using the
defined type MINT. Pointers to a MINT should be initialized using the function itom(), which sets the
initial value to n. Alternatively, xtom() may be used to initialize a MINT from a string of hexade­
cimal digits. mfree() may be used to release the storage allocated by the itom() and xtom() rou­
tines.

Sun Release 4.1 Last change: 7 September 1989 1079

MP(3X) MISCELLANEOUS LffiRARY FUNCfIONS MP(3X)

madd(), msub() and mult() assign to their third arguments the sum, difference, and product, respec­
tively, of their first two arguments. mdivO assigns the quotient and remainder, respectively, to its
third and fourth arguments. sdiv() is like mdiv() except that the divisor is an ordinary integer.
msqrt produces the square root and remainder of its first argument. mcmp() compares the values of
its arguments and returns 0 if the two values are equal, a value greater than 0 if the first argument is
greater than the second, and a value less than 0 if the second argument is greater than the first rpow
raises a to the nth power and assigns this value to b. powO raises a to the bth power, reduces the
result modulo c and assigns this value to d. minO and moutO do decimal input and output gcdO
finds the greatest common divisor of the first two arguments, returning it in the third argument
mtox() provides the inverse of xtom(). To release the storage allocated by mtox(), use free() (see
malloc(3V)).

Use the -Imp loader option to obtain access to these functions.

DIAGNOSTICS
Illegal operations and running out of memory produce messages and core images.

FILES
lusr/lib/libm p.a

SEE ALSO
malloc(3V)

1080 Last change: 7 September 1989 Sun Release 4.1

MSYNC(3) C LIBRARY FUNCTIONS MSYNC(3)

NAME
msync - synchronize memory with physical storage

SYNOPSIS
#include <sys/types.h>
#include <sys/mman.h>

int msync(addr, len, flags)
caddr_t addr; size_t len; int flags;

DESCRIPTION
msync() writes all modified copies of pages over the range [addr, addr + len) to their permanent
storage locations. msync() optionally invalidates any copies so that further references to the pages
will be obtained by the system from their permanent storage locations.

Values for flags are defined in <syslmman.h> as:

#define MS_ASYNC Ox! 1* Return immediately *1
#define MS_INVALIDATE Ox2 1* Invalidate mappings *1

and are used to control the behavior of msync(). One or more flags may be specified in a single call.

MS _ASYNC returns immediately once all I/O operations are scheduled; normally, msync() will not
return until all I/O operations are complete. MS _ INV ALIDATE invalidates all cached copies of data
from memory objects, requiring them to be re-obtained from the object's permanent storage location
upon the next reference.

msyncO should be used by programs that require a memory object to be in a known state, for exam­
ple in building transaction facilities.

RETURN VALUES
msync() returns:

o on success.

-1 on failure and sets errno to indicate the error.

ERRORS
EINV AL addr is not a multiple of the page size as returned by getpagesize(2).

flags is not some combination of MS_ASYNC or MS_INVALIDATE.

An I/O error occurred while reading from or writing to the file system. EIO

ENOMEM Addresses in the range [addr, addr + len) are outside the valid range for the address
space of a process, or specify one or more pages that are not mapped.

EPERM MS_INVALIDATE was specified and one or more of the pages is locked in memory.

SEE ALSO
mctl(2), mmap(2)

Sun Release 4.1 Last change: 21 January 1990 1081

NDBM(3) C LIBRARY FUNCTIONS NDBM(3)

NAME
ndbm, dbm_open, dbm_close, dbm_fetch, dbm_store, dbm_delete, dbm_firstkey, dbm_nextkey,
dbm_error, dbm_clearerr - data base subroutines

SYNOPSIS
#include <ndbm.h>

typedef struct {
char *dptr;
int dsize;
} datum;

DBM *dbm_open(file, flags, mode)
char *file;
int flags, mode;

void dbm_close (db)
DBM *db;

datum dbm_fetch(db, key)
DBM *db;
datum key;

int dbm_store(db, key, content, flags)
DBM *db;
datum key, content;
int flags;

int dbm_delete(db, key)
DBM *db;
datum key;

datum dbm _ firstkey(db)
DBM *db;

datum dbm_nextkey(db)
DBM *db;

int dbm_error(db)
DBM *db;

int dbm_clearerr(db)
DBM *db;

DESCRIPTION

1082

These functions maintain key/content pairs in a data base. The functions will handle very large (a bil­
lion blocks) databases and will access a keyed item in one or two file system accesses. This package
replaces the earlier dbm(3X) library, which managed only a single database.

keys and contents are described by the datum typedef. A datum specifies a string of dsize bytes
pointed to by dptr. Arbitrary binary data, as well as normal Ascn strings, are allowed. The data
base is stored in two files. One file is a directory containing a bit map and has .dir as its suffix. The
second file contains all data and has .pag as its suffix.

Before a database can be accessed, it must be opened by dbm _open. This will open and/or create the
files file.dir and jile.pag depending on the flags parameter (see open(2V».

A database is closed by calling dbm _close.

Once open, the data stored under a key is accessed by dbm _fetch() and data is placed under a key by
dbm_store. The flags field can be either DBM_INSERT or DBM_REPLACE. DBM_INSERT will only
insert new entries into the database and will not change an existing entry with the same key.
DBM_REPLACE will replace an existing entry if it has the same key. A key (and its associated

Last change: 24 November 1987 Sun Release 4.1

NDBM(3) C LIBRARY FUNCTIONS NDBM(3)

contents) is deleted by dbm_delete. A linear pass through all keys in a database may be made, in an
(apparently) random order, by use of dbm_firstkeyO and dbm_nextkey. dbm_firstkey() will return
the first key in the database. dbm _ nextkey() will return the next key in the database. This code will
traverse the data base:

for (key = dbm_firstkey(db); key.dptr != NULL; key = dbm_nextkey(db»

dbm _ errore) returns non-zero when an error has occurred reading or writing the database.
dbm _ clearerr() resets the error condition on the named database.

SEE ALSO
ar(1 V), cat(l V), cp(l), tar(l), open(2V), dbm(3X)

DIAGNOSTICS

BUGS

All functions that return an int indicate errors with negative values. A zero return indicates no error.
Routines that return a datum indicate errors with a NULL (0) dptr. If dbm _store called with a flags
value of DBM _INSERT finds an existing entry with the same key it returns 1.

The .pag file will contain holes so that its apparent size is about four times its actual content. Older
versions of the UNIX operating system may create real file blocks for these holes when touched.
These files cannot be copied by normal means (ep(l), eat(l V), tar(l), ar(l V» without filling in the
holes.

dptr pointers returned by these subroutines point into static storage that is changed by subsequent calls.

The sum of the sizes of a key/content pair must not exceed the internal block size (currently 4096
bytes). Moreover all key/content pairs that hash together must fit on a single block. dbm_store()
will return an error in the event that a disk block fills with inseparable data.

dbm _ delete() does not physically reclaim file space, although it does make it available for reuse.

The order of keys presented by dbm _ firstkey() and dbm _nextkey() depends on a hashing function,
not on anything interesting.

There are no interlocks and no reliable cache flushing; thus concurrent updating and reading is risky.

Sun Release 4.1 Last change: 24 November 1987 1083

NICE (3V) C LIBRARY FUNCTIONS NICE (3V)

NAME
nice - change nice value of a process

SYNOPSIS
int nice (incr)

DESCRIPTION
The nice value of the process is changed by incr. Positive nice values get less service than normal.
See nice(l) for a discussion of the relationship of nice value and scheduling priority.

A nice value of 10 is recommended to users who wish to execute long-running programs without
undue impact on system performance.

Negative increments are illegal, except when specified by the super-user. The nice value is limited to

the range -20 (most urgent) to 19 (least). Requests for values above or below these limits result in
the nice value being set to the corresponding limit.

The nice value of a process is passed to a child process by fork(2V). For a privileged process to

return to normal nice value from an unknown state, nice() should be called successively with argu­
ments -40 (goes to nice value -20 because of truncation), 20 (to get to 0), then 0 (to maintain compa­
tibility with previous versions of this call).

SYSTEM V DESCRIPTION
The maximum allowed value for incr is 40 (least urgent).

RETURN VALUES
nice() returns:

o on success.

-Ion failure and sets errno to indicate the error.

SYSTEM V RETURN VALUES
nice() returns the new nice value on success. On failure, it returns -1 and sets errno to indicate the
error.

ERRORS
The nice value is not changed if:

EACCES

SYSTEM V ERRORS

The value of incr specified was negative, and the effective user ID is not super-user.

The nice value is not changed if:

EPERM

SEE ALSO

The value of incr specified was negative, or greater than 40, and the effective user
ID is not super-user.

nice(1), fork(2V), getpriority(2), pstat(8), renice(8)

1084 Last change: 21 January 1990 Sun Release 4.1

NL_LANGINFO (3C) COMPATIBILITY FUNCTIONS

NAME
nClanginfo - language information

SYNOPSIS
#include <nt types.h>
#include <Ianginfo.h>

char *nIJanginfo(item)
nl_item item;

DESCRIPTION
nl_langinfo() returns a pointer to a null-terminated string containing information relevant to a particu­
lar language or cultural area defined in the program's locale. The manifest constant names and values
of item are defined in <Ianginfo.h> • For example:

nl_langinfo(ABDA Y _1);

would return a pointer to the string 'Dom' if the identified language was Portuguese, and 'Sun' if the
identified language was English.

RETURN VALUES
In a locale where langinfo data is not defined, nl_langinfoO returns a pointer to the corresponding
string in the ftC ft locale. In all locales nl Janginfo() returns a pointer to an empty string if item con­
tains an invalid setting.

SEE ALSO
setiocale(3V), environ(5V)

Sun Release 4.1 Last change: 22 January 1990 1085

NLIST(3V) C LIBRARY FUNCTIONS NLIST(3V)

NAME
nlist - get entries from symbol table

SYNOPSIS
#include <nlist.h>

int nlist(filename, nl)
char *filename;
struct nUst *nl;

DESCRIPTION
nlist() examines the symbol table from the executable image whose name is pointed to by filename,
and selectively extracts a list of values and puts them in the array of nlist() structures pointed to by
nl. The name list pointed to by nl consists of an array of structures containing names, types and
values. The n _name field of each such structure is taken to be a pointer to a character string
representing a symbol name. The list is terminated by an entry with a NULL pointer (or a pointer to a
null string) in the n _name field. For each entry in nl, if the named symbol is present in the execut­
able image's symbol table, its value and type are placed in the n_value and n_type fields. If a symbol
cannot be located, the corresponding n _ type field of nl is set to zero.

RETURN VALUES
On success, nlist() returns the number of symbols that were not located in the symbol table. On
failure, it returns -1 and sets all of the n _type fields in members of the array pointed to by nl to zero.

SYSTEM V RETURN VALUES
nlist() returns 0 on success.

SEE ALSO

NOTES

1086

a.out(5), coff(5)

On Sun-2, Sun-3, and Sun-4 systems, type entries are set to 0 if the file cannot be read or if it does
not contain a valid name list.

On Sun386i systems, the type entries may be zero even when the name list succeeded, but the value
entries will be zero only when the file cannot be read or does not contain a valid name list. There­
fore, on Sun386i systems, the value entry can be used to determine whether the command succeeded.

Last change: 21 January 1990 Sun Release 4.1

C LIBRARY FUNCTIONS

NAME
on_exit - name termination handler

SYNOPSIS
int on _ exit(procp, arg)
void (*procp)O;
caddr _ t arg;

DESCRIPTION
on_exitO names a routine to be called after a program calls exit(3) or returns normally, and before its
process terminates. The routine named is called as

(* procp)(status, arg);
where status is the argument with which exitO was called, or zero if main returns. Typically, arg is
the address of an argument vector to (*procp), but may be an integer value. Several calls may be
made to on_exit, specifying several termination handlers. The order in which they are called is the
reverse of that in which they were given to on _exit.

SEE ALSO
gprof(l), tcov(l), exit(3)

DIAGNOSTICS

NOTES

on _ exit() returns zero normally, or nonzero if the procedure name could not be stored.

This call is specific to the SunOS operating system and should not be used if portability is a concern.

Standard I/O exit processing is always done last.

Sun Release 4.1 Last change: 7 September 1988 1087

PAUSE (3V)

NAME
pause - stop until signal

SYNOPSIS
int pause()

DESCRIPTION

C LIBRARY FUNCTIONS PAUSE (3V)

pauseO never returns normally. It is used to give up control while waiting for a signal from kill(2V)
or an interval timer, see getitimer(2). Upon termination of a signal handler started during a pause,
pauseO will return.

RETURN VALUES
When it returns, pause() returns -1.

ERRORS
When it returns, pause() sets errno to:

EINTR A signal is caught by the calling process and control is returned from the signal­
catching function.

SEE ALSO
kilI(2V), getitimer(2), seiect(2), sigpause(2V)

1088 Last change: 21 January 1990 Sun Release 4.1

PERROR(3) C LIBRARY FUNCTIONS PERROR(3)

NAME
perror, errno - system error messages

SYNOPSIS
void perror(s)
char *s;

#include <errno.h>

int sys _ nerr;
char *sys _ errlist[];
int errno;

DESCRIPTION
perror() produces a short error message on the standard error describing the last error encountered
during a call to a system or library function. If s is not a NULL pointer and does not point to a null
string, the string it points to is printed, followed by a colon, followed by a space, followed by the
message and a NEWLINE. If s is a NULL pointer or points to a null string, just the message is printed,
followed by a NEWLINE. To be of most use, the argument string should include the name of the pro­
gram that incurred the error. The error number is taken from the external variable errno (see
intro(2)), which is set when errors occur but not cleared when non-erroneous calls are made.

To simplify variant formatting of messages, the vector of message strings sys _ err list is provided;
errno can be used as an index in this table to get the message string without the newline. sys _ nerr is
the number of messages provided for in the table; it should be checked because new error codes may
be added to the system before they are added to the table.

SEE ALSO
intro(2), psignal(3)

Sun Release 4.1 Last change: 6 December 1988 1089

PLOCK(3) C LIBRARY FUNCTIONS PLOCK(3)

NAME
plock - lock process, text, or data segment in memory

SYNOPSIS
#include <sys/lock.h>

int plock(op)
int op;

DESCRIPTION
plock() allows the calling process to lock its text segment (text lock), its data segment (data lock), or
both its text and data segments (process lock) into memory. Locked segments are immune to all rou­
tine swapping. plock() also allows these segments to be unlocked. The effective user ID of the cal­
ling process must be super-user to use this call. op specifies the following:

PROCLOCK lock text and data segments into memory (process lock)

TXTLOCK

DATLOCK

UNLOCK

lock text segment into memory (text lock)

lock data segment into memory (data lock)

remove locks

RETURN VALUES
plock() returns:

o on success.

-1

ERRORS
EAGAIN

EINVAL

EPERM

SEE ALSO

on failure and sets errno to indicate the error.

Not enough memory.

op is equal to PROCLOCK and a process lock, a text lock, or a data lock already
exists on the calling process.

op is equal to TXTLOCK and a text lock, or a process lock already exists on the
calling process.

op is equal to DATLOCK and a data lock, or a process lock already exists on the
calling process.

op is equal to UNLOCK and no type of lock exists on the calling process.

The effective user ID of the calling process is not super-user.

execve(2V), exit(2V), fork(2V)

1090 Last change: 21 January 1990 SlIn Release 4.1

PLOT(3X) MISCELLANEOUS LffiRARY FUNCfIONS PLOT(3X)

NAME
plot, openpl, erase, label, line, circle, arc, move, cont, point, linemod, space, closepl- graphics interface

SYNOPSIS
openpl()

erase()

label(s)
char s[];

line(x1, y1, x2, y2)

circle(x, y, r)

arc(x, y, xO, yO, xl, y1)

move(x, y)

cont(x, y)

point(x, y)

Iinemod(s)
char s[];

space(xO, yO, xl, y1)

closepl()

A V AILABILITY
These routines are available with the Graphics software installation option. Refer to Installing SunOS 4.1
for information on how to install optional software.

DESCRIPTION
LP These subroutines generate graphic output in a relatively device-independent manner. See plot(5) for a
description of their effect. openpl() must be used before any of the others to open the device for writing.
closepl() flushes the output.

String arguments to label() and Iinemod() are null-terminated and do not contain NEWLINE characters.

Various flavors of these functions exist for different output devices. They are obtained by the following
Id(l) options:

-I plot

-1300

-1300s

-1450

-14014

-Iplotaed

-Iplotbg

-Iplotdumb

-Iplotgigi

-lplot2648

-lplot7221

-Iplotimagen

Sun Release 4.1

device-independent graphics stream on standard output for plot(1G) filters

aSI 300 terminal

aSI 300S terminal

aSI 450 terminal

Tektronix 4014 terminal

AED 512 color graphics terminal

BBN bitgraph graphics terminal

Dumb terminals without cursor addressing or line printers

DEC Gigi terminals

Hewlett Packard 2648 graphics terminal

Hewlett Packard 7221 graphics terminal

Imagen laser printer (default 240 dots-per-inch resolution).

Last change: 6 October 1987 1091

PLOT(3X)

FILES
lusr/liblIibplot.a
lusr/lib/lib300.a
lusr/lib/lib300s.a
lusr/lib/lib4S0.a
lusr/lib/lib4014.a
lusr/liblIibplotaed.a
lusr/liblIibplotbg.a
lusrlIiblIibplotdum b.a
lusr/liblIibplotgigi.a
lusr/liblIibplot2648.a
lusr/liblIibplot7221.a
lusr/liblIibplotimagen.a

SEE ALSO

MISCELLANEOUS LffiRARY FUNCTIONS

graph(lG), Id(I), plot(lG), plot(5)

1092 Last change: 6 October 1987

PLOT(3X)

Sun Release 4.1

POPEN(3S) STANDARD I/O FUNCTIONS POPEN(3S)

NAME
popen, pelose - open or close a pipe (for I/O) from or to a process

SYNOPSIS
#include <stdio.h>

FILE *popen(command, type)
char *command, *type;

pclose(stream)
FILE *stream;

DESCRIPTION
The arguments to popen() are pointers to null-terminated strings containing, respectively, a shell com­
mand line and an I/O mode, either r for reading or w for writing. popen() creates a pipe between
the calling process and the command to be executed. The value returned is a stream pointer such that
one can write to the standard input of the command, if the I/O mode is w, by writing to the file
stream; and one can read from the standard output of the command, if the I/O mode is r, by reading
from the file stream.

A stream opened by popen() should be closed by pclose(), which waits for the associated process to
terminate and returns the exit status of the command.

Because open files are shared, a type r command may be used as an input filter, reading its standard
input (which is also the standard output of the process doing the popen(» and providing filtered input
on the stream, and a type w command may be used as an output filter, reading a stream of output
written to the stream process doing the popen() and further filtering it and writing it to its standard
output (which is also the standard input of the process doing the popen(».
popenO always calls sh(l), never csh(l).

SEE ALSO
csh(I), sh(I), pipe(2V), wait(2V), fclose(3V), fopen(3V), system(3)

DIAGNOSTICS

BUGS

popen() returns a NULL pointer if the pipe or process cannot be created, or if it cannot allocate as
much memory as it needs.

pcloseO returns -1 if stream is not associated with a 'popened' command.

If the original and 'popened' processes concurrently read or write a common file, neither should use
buffered I/O, because the buffering gets all mixed up. Similar problems with an output filter may be
forestalled by careful buffer flushing, for instance, with fflush(); see fclose(3V).

Sun Release 4.1 Last change: 6 October 1987 1093

PORTMAP(3N) NETWORK FUNCTIONS PORTMAP(3N)

NAME
pmap....getmaps, pmap....getport, pmap_rmtcall, pmap_set, pmap_unset, xdr_pamp, xdr_pmaplist - library
routines for RPC bind service

DESCRIPTION
These routines allow client C programs to make procedure calls to the RPC binder service. port­
map(1) maintains a list of mappings between programs and their universal addresses.

Routines

1094

#include <rpc/rpc.h>

struct pmaplist * pmap _getmaps(addr)
struct sockaddr _ in *addr;

Return a list of the current RPC program-to-address mappings on the host located at IF
address *addr. This routine returns NULL if the remote portmap service could not be con­
tacted. The command 'rpcinfo -p' uses this routine (see rpcinfo(8C».

u_short pmap_getport(addr, prognum, versnum, protocol)
struct sockaddr _in *addr;
u_long prognum, versnum, protocol;

Return the port number on which waits a service that supports program number prognum,
version versnum, and speaks the transport protocol protocol. The address is returned in addr,
which should be preallocated. The value of protocol can be either IPPROTO _ UDP or
IPPROTO_TCP. A return value of zero means that the mapping does not exist or that the
RPC system failed to contact the remote portmap service. In the latter case, the global vari­
able rpc_createer (see rpc_clnt_create(3N» contains the RPC status. If the requested version
number is not registered, but at least a version number is registered for the given program
number, the call returns a port number. Note: pmap_getportO returns the port number in
host byte order. Some other network routines may require the port number in network byte
order. For example, if the port number is used as part of the sockaddr In structure, then it
should be converted to network byte order using htons(3N).

enum clnt_stat pmap_rmtcall(addr, prognum, versnum, procnum, inproc, in, outproc, out, timeout, portp)
struct sockaddr In *addr;
u Jong prognum, versnum, procnum;
char *in, *out;
xdrproc_t inproc, outproc;
struct timeval timeout;
u_long *portp;

Request that the portmap on the host at IF address *addr make an RPC on the behalf of the
caller to a procedure on that host. *portp is modified to the program's port number if the
procedure succeeds. The definitions of other parameters are discussed in caUrpc() and
c1nt_callO (see rpc_c1nt_calls(3N».

Warning: If the requested remote procedure is not registered with the remote portmap then
no error response is returned and the call times out. Also, no authentication is done.

bool_t pmap_set(prognum, versnum, protocol, port)
u_long prognum, versnum;
int protocol;
u _short port;

Registers a mapping between the triple [prognum ,versnum ,protocol] and port on the local
machine's portmap service. The value of protocol can be either IPPROTO_UDP or
IPPROTO_TCP. This routine returns TRUE if it succeeds, FALSE otherwise. It is called by
servers to register themselves with the local portmap. Automatically done by svc _ register().

Last change: 20 January 1990 Sun Release 4.1

PORTMAP (3N) NETWORK FUNCTIONS PORTMAP (3N)

boot t pmap _ unset(prognum, versnum)
u_long prognum, versnum;

Deregisters all mappings between the triple [prognum,versnum,*l and ports on the local
machine's portmap service. It is called by servers to deregister themselves with the local
portmap. This routine returns TRUE if it succeeds, FALSE otherwise.

bool_ t xdr ymap(xdrs, regp)
XDR *xdrs;
struct pmap *regp;

Used for creating parameters to various portmap procedures, externally. This routine is use­
ful for users who wish to generate these parameters without using the pmap interface. This
routine returns TRUE if it succeeds, FALSE otherwise.

boot t xdr ymaplist(xdrs, rp)
XDR *xdrs;
struct pmaplist **rp;

SEE ALSO

Used for creating a list of port mappings, externally. This routine is useful for users who
wish to generate these parameters without using the pmap interface. This routine returns
TRUE if it succeeds, FALSE otherwise.

rpc(3N), portmap(8C), rpcinfo(8C)

Sun Release 4.1 Last change: 20 January 1990 1095

PRIN1F(3V) C LIBRARY FUNCTIONS PRINTF(3V)

NAME
printf, fprintf, sprintf - formatted output conversion

SYNOPSIS
#include <stdio.h>

int printf(format [, arg ...])
char *format;

int fprintf(stream, format [, arg ...])
FILE *stream;
char *format;

char *sprintf(s, format [, arg ...])
char *s, *format;

SYSTEM V SYNOPSIS
The routines above are available as shown, except:

int sprintf(s, format [, arg ...])
char *s, *format;

The following are provided for XPG2 compatibility:

#define nJ '-printf printf
#define nJ_fprintf fprintf
#define nJ_sprintf sprintf

DESCRIPTION

1096

printf() places output on the standard output stream stdout. fprintf() places output on the named output
stream. sprintf() places "output", followed by the null character (\0), in consecutive bytes starting at *s;
it is the user's responsibility to ensure that enough storage is available.

Each of these functions converts, formats, and prints its args under control of the format. The format is a
character string which contains two types of objects: plain characters, which are simply copied to the out­
put stream, and conversion specifications, each of which causes conversion and printing of zero or more
args. The results are undefined if there are insufficient args for the format. If the format is exhausted
while args remain, the excess args are simply ignored.

Each conversion specification is introduced by either the % character or by the character sequence
%digit$, after which the following appear in sequence:

• Zero or more flags, which modify the meaning of the conversion specification.

• An optional decimal digit string specifying a minimum field width. If the converted value has
fewer characters than the field width, it will be padded on the left (or right, if the I eft­
adjustment flag '-', described below, has been given) to the field width. The padding is with
blanks unless the field width digit string starts with a zero, in which case the padding is with
zeros.

• A precision that gives the minimum number of digits to appear for the d, i, 0, u, x, or X
conversions, the number of digits to appear after the decimal point for the e, E, and f conver­
sions, the maximum number of significant digits for the g and G conversion, or the maximum
number of characters to be printed from a string in s conversion. The precision takes the form
of a period (.) followed by a decimal digit string; a null digit string is treated as zero. Padding
specified by the precision overrides the padding specified by the field width.

• An optional I (ell) specifying that a following d, i, 0, U, x, or X conversion character applies to
a long integer arg. An I before any other conversion character is ignored.

• A character that indicates the type of conversion to be applied.

Last change: 21 January 1990 Sun Release 4.1

PRINTF(3V) C LIBRARY FUNCTIONS PRINTF(3V)

A field width or precision or both may be indicated by an asterisk (*) instead of a digit string. In this case,
an integer arg supplies the field width or precision. The arg that is actually converted is not fetched until
the conversion letter is seen, so the args specifying field width or precision must appear before the arg (if
any) to be converted. A negative field width argument is taken as a '-' flag followed by a positive field
width. If the precision argument is negative, it will be changed to zero.

The flag characters and their meanings are:
The result of the conversion will be left-justified within the field.

+ The result of a signed conversion will always begin with a sign (+ or -).
blank If the first character of a signed conversion is not a sign, a blank will be prefixed to the result.

This implies that if the blank and + flags both appear, the blank flag will be ignored.
This flag specifies that the value is to be converted to an "alternate form". For c, d, i, S, and u

conversions, the flag has no effect. For 0 conversion, it increases the precision to force the first
digit of the result to be a zero. For x or X conversion, a non-zero result will have Ox or OX
prefixed to it. For e, E, f, g, and G conversions, the result will always contain a decimal point,
even if no digits follow the point (normally, a decimal point appears in the result of these
conversions only if a digit follows it). For g and G conversions, trailing zeroes will not be
removed from the result (which they normally are).

The conversion characters and their meanings are:

d,i,o,p,u,x,X
The integer arg is converted to signed decimal (d or i), unsigned octal (0), unsigned decimal
(u), or unsigned hexadecimal notation (x, p, and X), respectively; the letters abcdef are used
for x and p conversion and the letters ABeD EF for X conversion. The precision specifies the
minimum number of digits to appear; if the value being converted can be represented in fewer
digits, it will be expanded with leading zeroes. For compatibility with older versions, padding
with leading zeroes may alternatively be specified by prepending a zero to the field width.
This does not imply an octal value for the field width. The default precision is 1. The result of
converting a zero value with a precision of zero is a null string.

f The float or double arg is converted to decimal notation in the style "[-]ddd.ddd" where the
number of digits after the decimal point is equal to the precision specification. If the precision
is missing, 6 digits are given; if the precision is explicitly 0, no digits and no decimal point are
printed.

e,E The float or double arg is converted in the style "[-]d.ddde±ddd," where there is one digit
before the decimal point and the number of digits after it is equal to the precision; when the
precision is missing, 6 digits are produced; if the precision is zero, no decimal point appears.
The E format code will produce a number with E instead of e introducing the exponent. The
exponent always contains at least two digits.

g,G The float or double arg is printed in style fore (or in style E in the case of a G format code),
with the precision specifying the number of significant digits. The style used depends on the
value converted: style e or E will be used only if the exponent resulting from the conversion is
less than -4 or greater than the precision. Trailing zeroes are removed from the result; a
decimal point appears only if it is followed by a digit.

The e, E, f, g, and G formats print IEEE indeterminate values (infinity or not-a-number) as "Infinity" or
"NaN" respectively.

c
S

Sun Release 4.1

The character arg is printed.
The arg is taken to be a string (character pointer) and characters from the string are printed
until a null character (\0) is encountered or until the number of characters indicated by the pre­
cision specification is reached. If the precision is missing, it is taken to be infinite, so all char­
acters up to the first null character are printed. A NULL value for arg will yield undefined
results.

Last change: 21 January 1990 1097

PRINTF(3V) C LIBRARY FUNCTIONS PRINTF(3V)

n The argument arg is a pointer to an integer into which is written the number of characters writ-
ten to the output so far by this call to one of the printf() functions. No argument is converted.

% Print a %; no argument is converted.

In no case does a non-existent or small field width cause truncation of a field; if the result of a conversion is
wider than the field width, the field is simply expanded to contain the conversion result. Padding takes
place only if the specified field width exceeds the actual width. Characters generated by printf() and
fprintf() are printed as if putc(3S) had been called.

All forms of the printf() functions allow for the insertion of a language dependent radix character in the
output string. The radix character is defined by the program's locale (category LC_NUMERIC). In the
"C" locale, or in a locale where the radix character is not defined, the radix character defaults to '.'.

Conversions can be applied to the nth argument in the argument list, rather than the next unused argument.
In this case, the conversion character % is replaced by the sequence %digit$, where digit is a decimal
integer n in the range [1,9], giving the position of the argument in the argument list. This feature provides
for the definition of format strings that select arguments in an order appropriate to specific languages.

In format strings containing the % digit $ form of a conversion specification, a field width or precision may
be indicated by the sequence *digit$, where digit is a decimal integer in the range [1,9] giving the position
in the argument list of an integer arg containing the field width or precision.

The format string can contain either numbered argument specifications (that is, %digit$ and *digit$), or
unnumbered argument specifications (that is % and *), but not both. The results of mixing numbered and
unnumbered specifications is undefined. When numbered argument specifications are used, specifying the
nth argument requires that all the leading arguments, from the first to the (n-1)th be specified in the format
string.

SYSTEM V DESCRIPTION
XPG2 requires that nlyrintf, nl_fprintf and ntsprintf be defined as printf, fprintf and sprintf, respec­
tively for backward compatibility

RETURN VALUES
On success, printf() and fprintf() return the number of characters transmitted, excluding the null charac­
ter. On failure, they return EOF.

sprintf() returns s.

SYSTEM V RETURN VALUES
On success, sprintf() returns the number of characters transmitted, excluding the null character. On
failure, it returns EOF.

EXAMPLES

1098

printf(format, weekday, month, day, hour, min);

In American usage,/ormat could be a pointer to the string:

"%s, %s %d, %d:%.2d\n"

producing the message:

Sunday, July 3,10:02

Whereas for German usage,jormat could be a pointer to the string:

"% 1$s, %3$<1. %2$s, %4$<1: %S$.2d\n"

producing the message:

Sonntag, 3.Juli, 10:02

To print 1t to 5 decimal places:

printf("pi = %.Sf', 4 * atan(l. 0»;

Last change: 21 January 1990 Sun Release 4.1

PRINTF(3V) C LIBRARY FUNCTIONS PRINTF(3V)

SEE ALSO
econvert(3), putc(3S), scanf(3V), setlocale(3V), varargs(3), vprintf(3V)

BUGS
Very wide fields (> 128 characters) fail.

Sun Release 4.1 Last change: 21 January 1990 1099

PROF(3) C LIBRARY FUNCTIONS PROF(3)

NAME
prof - profile within a function

SYNOPSIS
#define MARK
#include <prof.h>

void MARK (name)

DESCRIPTION
MARK introduces a mark called name that is treated the same as a function entry point. Execution of
the mark adds to a counter for that mark, and program-counter time spent is accounted to the immedi­
ately preceding mark or to the function if there are no preceding marks within the active function.

name may be any combination of up to six letters, numbers or underscores. Each name in a single
compilation must be unique, but may be the same as any ordinary program symbol.

For marks to be effective, the symbol MARK must be defined before the header file <prof.h> is
included. This may be defined by a preprocessor directive as in the synopsis, or by a command line
argument, such as:

cc -p -DMARK foo.c

If MARK is not defined, the MARK (name) statements may be left in the source files containing them
and will be ignored.

EXAMPLE
In this example, marks can be used to determine how much time is spent in each loop. Unless this
example is compiled with MARK defined on the command line, the marks are ignored.

#include <prof.h>
func()
{

int i, j;

MARK (lOOp!);
for (i = 0; i < 2000; i++) {

}
MARK (Ioop2);
for (j = 0; j < 2000; j++) {

}
}

SEE ALSO
prof(l), profil(2), monitor(3)

IU)() Last change: 6 October 1987 Sun Release 4.1

PSIGNAL(3) C LIBRARY FUNCTIONS PSIGNAL(3)

NAME
psignal, sys_siglist - system signal messages

SYNOPSIS
psignal(sig, s)
unsigned sig;
char *s;

char *sys_siglist[];

DESCRIPTION
psignal() produces a short message on the standard error file describing the indicated signal. First the
argument string s is printed, then a colon, then the name of the signal and a NEWLINE. Most usefully,
the argument string is the name of the program which incurred the signal. The signal number should
be from among those found in <signal.h>.

To simplify variant formatting of signal names, the vector of message strings sys _ siglist() is provided;
the signal number can be used as an index in this table to get the signal name without the newline.
The define NSIG defined in <signal.h> is the number of messages provided for in the table; it should
be checked because new signals may be added to the system before they are added to the table.

SEE ALSO
perror(3), signal(3V)

Sun Release 4.1 Last change: 22 November 1987 1101

PUTC(3S) STANDARD I/O FUNCTIONS PUTC(3S)

NAME
putc, putchar, fputc, putw - put character or word on a stream

SYNOPSIS
#include <stdio.h>

int putc(c, stream)
char c;
FILE *stream;

int putchar(c)
char c;

int fputc(c, stream)
char c;
FILE *stream;

int putw(w, stream)
int w;
FILE *stream;

DESCRIPTION
putc() writes the character c onto the standard I/O output stream stream (at the position where the file
pointer, if defined, is pointing). It returns the character written.

putchar(c) is defined as putc(c, stdout). putcO and putcharO are macros.

fputc() behaves like putc{), but is a function rather than a macro. fputc{) runs more slowly than
putcO, but it takes less space per invocation and its name can be passed as an argument to a func­
tion.

putwO writes the C int (word) w to the standard I/O output stream stream (at the position of the file
pointer, if defined). The size of a word is the size of an integer and varies from machine to machine.
putw() neither assumes nor causes special alignment in the file.

Output streams are by default buffered if the output refers to a file and line-buffered if the output
refers to a terminal. When an output stream is unbuffered, information is queued for writing on the
destination file or terminal as soon as written; when it is buffered, many characters are saved up and
written as a block. When it is line-buffered, each line of output is queued for writing on the destina­
tion terminal as soon as the line is completed (that is, as soon as a NEWLINE character is written or
terminal input is requested). setbuf(3V), setbufl'er(), or setvbuf() may be used to change the
stream's buffering strategy.

SEE ALSO
fclose(3V), ferror(3V), fopen(3V), fread(3S), getc(3V), printf(3V), puts(3S), setbuf(3V)

DIAGNOSTICS

BUGS

1102

On success, putc(), fputc(), and putchar() return the value that was written. On error, those func­
tions return the constant EOF. putw() returns ferror(stream), so that it returns 0 on success and 1 on
failure.

Because it is implemented as a macro, putcO treats a stream argument with side effects improperly.
In particular, putc(c, *f++); does not work sensibly. fputcO should be used instead.

Errors can occur long after the call to putc().

Because of possible differences in word length and byte ordering, files written using putw() are
machine-dependent, and may not be read using getw{) on a different processor.

Last change: 10 October 1987 Sun Release 4.1

PUTENV(3) C LIBRARY FUNCTIONS PUTENV(3)

NAME
putenv - change or add value to environment

SYNOPSIS
int putenv(string)
char *string;

DESCRIPTION
string points to a string of the form 'name=value' putenvO makes the value of the environment vari­
able name equal to value by altering an existing variable or creating a new one. In either case, the
string pointed to by string becomes part of the environment, so altering the string will change the
environment. The space used by string is no longer used once a new string-defining name is passed
to putenv().

SEE ALSO
execve(2V), getenv(3V), malloc(3V), environ(5V)

DIAGNOSTICS
putenv() returns non-zero if it was unable to obtain enough space using malloc(3V) for an expanded
environment, otherwise zero.

WARNINGS
putenv() manipulates the environment pointed to by environ, and can be used in conjunction with
getenv(). However, envp (the third argument to main) is not changed.

This routine uses malloc(3V) to enlarge the environment.

After putenv() is called, environmental variables are not in alphabetical order.

A potential error is to call putenv() with an automatic variable as the argument, then exit the calling
function while string is still part of the environment.

Sun Release 4.1 Last change: 21 February 1989 1103

PUTPWENT (3) C LIBRARY FUNCTIONS PUTPWENT (3)

NAME
putpwent - write password file entry

SYNOPSIS
#include <pwd.h>

int putpwent(p, f)
struct passwd *p;
FILE *f;

DESCRIPTION

FILES

putpwent() is the inverse of getpwent(3V). Given a pointer to a passwd structure created by
getpwent() (or getpwuid() or getpwnam), putpwent() writes a line on the stream I, which matches
the format of lines in the password file letc/passwd.

letc/passwd

SEE ALSO
getpwent(3V)

DIAGNOSTICS
putpwent() returns non-zero if an error was detected during its operation, otherwise zero.

WARNING

BUGS

NOTES

1104

The above routine uses <stdio.h>, which increases the size of programs, not otherwise using standard
I/O, more than might be expected.

This routine is of limited utility, since most password files are maintained as Network Information Ser­
vice (NIS) files, and cannot be updated with this routine.

The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The func­
tionality of the two remains the same; only the name has changed.

Last change: 6 October 1987 Sun Release 4.1

PUTS(3S) STANDARD I/O FUNCTIONS

NAME
puts, fputs - put a string on a stream

SYNOPSIS
#include <stdio.h>

puts(s)
char *s;

fputs(s, stream)
char *s;
FILE *stream;

DESCRIPTION

PUTS (3S)

putsO writes the null-terminated string pointed to by s, followed by a NEWLINE character, to the
standard output stream stdout.

fputs() writes the null-terminated string pointed to by s to the named output stream.

Neither function writes the terminal null character.

DIAGNOSTICS
Both routines return EOF on error. This will happen if the routines try to write on a file that has not
been opened for writing.

NOTES
puts() appends a NEWLINE while fputs() does not.

SEE ALSO
ferror(3V), fopen(3V), fread(3S), printf(3V), putc(3S)

Sun Release 4.1 Last change: 6 October 1987 1105

PWDAUTH(3) C LIBRARY FUNCTIONS PWDAUTH(3)

NAME
pwdauth, grpauth - password authentication routines

SYNOPSIS
int pwdauth(user, password)
char *user;
char *password;

int grpautb(group, password)
char *group;
char *password;

DESCRIPTION

FILES

pwdauth() and grpauth() determine whether the given guess at a password is valid for the given
user or group. If the password is valid, the functions return O.

A password is valid if the password when encrypted matches the encrypted password in the appropri­
ate file. For pwdauth(), if the password.adjunct file exists, the encrypted password will be in either
the local or the Network Information Service (NIS) version of that file. Otherwise, either the local or
NIS passwd file will be used. For grpauth(), the group.adjunct file (if it exists) or the group file
(otherwise) will be checked on the local machine and then using the NIS service. In all cases, the
local files will be checked before the NIS files. Also, if the adjunct files exist, the main file will never
be used for authentication even if they include encrypted passwords.

Both pwdauth() and grpauth() interface to the authentication daemon, rpc.pwdauthd, to do the
checking of the adjunct files. This daemon must be running on any system that provides password
authentication.

letclpasswd
letclgroup

SEE ALSO

NOTES

1106

getgraent(3), getgrent(3V), getpwaent(3), getpwent(3V), pwdauthd(8C)

The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The func­
tionality of the two remains the same; only the name has changed.

Last change: 14 December 1987 Sun Release 4.1

QSORT(3) C LIBRARY FUNCTIONS QSORT(3)

NAME
qsort - quicker sort

SYNOPSIS
qsort(base, nel, width, compar)
char *base;
int (*compar)();

DESCRIPTION

NOTES

qsort() is an implementation of the quicker-sort algorithm. It sorts a table of data in place.

base points to the element at the base of the table. nel is the number of elements in the table. width
is the size, in bytes, of each element in the table. compar is the name of the comparison function,
which is called with two arguments that point to the elements being compared. As the function must
return an integer less than, equal to, or greater than zero, so must the first argument to be considered
be less than, equal to, or greater than the second.

The pointer to the base of the table should be of type pointer-to-element, and cast to type pointer-to­
character.

The comparison function need not compare every byte, so arbitrary data may be contained in the ele­
ments in addition to the values being compared.

The order in the output of two items which compare as equal is unpredictable.

SEE ALSO
sort(1 V), bsearch(3), Isearch(3), string(3)

EXAMPLE
The following program sorts a simple array:

static int intcompare(iJ)

Sun Release 4.1

int *i, *j;
{

}

main()
{

}

return(*i - *j);

int a[10];
int i;

a[O] = 9;
a[1] = 8;
a[2] = 7;
a[3] = 6;
a[4] = S;
a[S] = 4;
a[6] = 3;
a[7] = 2;
a[8] = 1;
a[9] = 0;

qsort(a,10,sizeof(int),intcompare)

for (i=0; kl0; i++) printf(tt %d" ,ali]);
printf(tt\ntt

);

Last change: 16 February 1988 1107

RAND (3V) C LIBRARY FUNCTIONS RAND (3V)

NAME
rand, srand - simple random number generator

SYNOPSIS
srand(seed)
int seed;

rand 0
DESCRIPTION

rand() uses a multiplicative congruential random number generator with period 232 to return succes­
sive pseudo-random numbers in the range from 0 to 231_1.

srand() can be called at any time to reset the random-number generator to a random starting point.
The generator is initially seeded with a value of 1.

SYSTEM V DESCRIPTION
randO returns successive pseudo-random numbers in the range from 0 to 215_1.

SEE ALSO

NOTES

BUGS

1108

drand48(3), random(3)

The spectral properties of rand() leave a great deal to be desired. drand48(3) and random(3) pro­
vide much better, though more elaborate, random-number generators.

The low bits of the numbers generated are not very random; use the middle bits. In particular the
lowest bit alternates between 0 and 1.

Last change: 6 October 1989 Sun Release 4.1

RANDOM(3} C LIBRARY FUNCTIONS RANDOM(3}

NAME
random, srandom, initstate, setstate - better random number generator; routines for changing generators

SYNOPSIS
long random()

srandom(seed)
int seed;

char *initstate(seed, state, n)
unsigned seed;
char *state;
int n;

char *setstate(state)
char *state;

DESCRIPTION
random() uses a non-linear additive feedback random number generator employing a default table of
size 31 long integers to return successive pseudo-random numbers in the range from 0 to 231_1. The
period of this random number generator is very large, approximately 16x(231 _1}.

random/srandom have (almost) the same calling sequence and initialization properties as rand/srand.
The difference is that rand(3V} produces a much less random sequence - in fact, the low dozen bits
generated by rand go through a cyclic pattern. All the bits generated by random() are usable. For
example,

random()&Ol

will produce a random binary value.

Unlike srand, srandom() does not return the old seed; the reason for this is that the amount of state
information used is much more than a single word. (Two other routines are provided to deal with
restarting/changing random number generators). Like rand(3V}, however, random() will by default
produce a sequence of numbers that can be duplicated by calling srandom() with 1 as the seed.

The initstate() routine allows a state array, passed in as an argument, to be initialized for future use.
The size of the state array (in bytes) is used by initstate() to decide how sophisticated a random
number generator it should use - the more state, the better the random numbers will be. (Current
"optimal" values for the amount of state information are 8, 32, 64, 128, and 256 bytes; other amounts
will be rounded down to the nearest known amount. Using less than 8 bytes will cause an error).
The seed for the initialization (which specifies a starting point for the random number sequence, and
provides for restarting at the same point) is also an argument. initstate() returns a pointer to the pre­
vious state information array.

Once a state has been initialized, the setstate() routine provides for rapid switching between states.
setstate() returns a pointer to the previous state array; its argument state array is used for further ran­
dom number generation until the next call to initstate() or setstate().

Once a state array has been initialized, it may be restarted at a different point either by calling init­
state() (with the desired seed, the state array, and its size) or by calling both setstate() (with the state
array) and srandom() (with the desired seed). The advantage of calling both setstate() and sran­
dom() is that the size of the state array does not have to be remembered after it is initialized.

With 256 bytes of state information, the period of the random number generator is greater than 269
,

which should be sufficient for most purposes.

SEE ALSO
rand(3V}

Sun Release 4.1 Last change: 6 October 1987 1109

RANDOM(3)

EXAMPLES

DIAGNOSTICS

C LIBRARY FUNCTIONS

1* Initialize and array and pass it in to initstate. *1

static long statel[32] = {

mainO
{

}

3,
Ox9a319039, Ox32d9c024, 0x9b663182, OxSdalf342,
Ox744geS6b, OxbebldbbO,OxabScS918, Ox946554fd,
Ox8c2e680f, Oxeb3d799f, Oxbl1eeOb7, Ox2d436b86,
Oxda672e2a, OxlS88ca88, Oxe36973Sd, Ox904f3Sn,
Oxd71S8fd6, Ox6fa6fOSl, Ox616e6b96, Oxac94efdc,
Oxde3b81eO, Oxdroa6tbS, Oxfi03bc02, Ox48f340tb,
Ox36413f93, Oxc622c298, OxfSa42ab8, Ox8a88d77b,
OxfSad9dOe, Ox8999220b, Ox27tb47b9
};

unsigned seed;
int n;

seed = 1;
n = 128;
initstate(seed, (char *) statel, n);

setstate(state 1);
printf(" %d\n" ,randomO);

RANDOM (3)

If initstate() is called with less than 8 bytes of state information, or if setstate() detects that the state
information has been garbled, error messages are printed on the standard error output.

WARNINGS

BUGS

.1110

initstate() casts state to (long *), so state must be long-aligned. If it is not long-aligned, on some
architectures the program will dump core.

random() is only 2/3 as fast as rand(3V).

Last change: 6 October 1987 Sun Release 4.1

RCMD(3N) NETWORK FUNCTIONS RCMD(3N)

NAME
rcmd, rresvport, ruserok - routines for returning a stream to a remote command

SYNOPSIS
int rcmd(ahost, inport, locuser, rem user, cmd, fd2p)
char **ahost;
unsigned short inport;
char *Iocuser, *remuser, *cmd;
int *fd2p

int rresvport(port)
int *port;

ruserok(rhost, super-user, ruser, luser)
char *rhost;
int super-user;
char *ruser, *Iuser;

DESCRIPTION

FILES

rcmdO is a routine used by the super-user to execute a command on a remote machine using an
authentication scheme based on reserved port numbers. rresvport() is a routine which returns a
descriptor to a socket with an address in the privileged port space. ruserok() is a routine used by
servers to authenticate clients requesting service with rcmd. All three functions are present in the
same file and are used by the rshd(8C) server (among others).

rcmd() looks up the host *ahost using gethostbyname (see gethostent(3N), returning -1 if the host
does not exist. Otherwise *ahost is set to the standard name of the host and a connection is esta­
blished to a server residing at the well-known Internet port inport.

If the connection succeeds, a socket in the Internet domain of type SOCK _STREAM is returned to the
caller, and given to the remote command as its standard input (file descriptor 0) and standard output
(file descriptor 1). If fd2p is non-zero, then an auxiliary channel to a control process will be set up,
and a descriptor for it will be placed in *fd2p. The control process will return diagnostic output from
the command (file descriptor 2) on this channel, and will also accept bytes on this channel as signal
numbers, to be forwarded to the process group of the command. If fd2p is 0, then the standard error
(file descriptor 2) of the remote command will be made the same as its standard output and no provi­
sion is made for sending arbitrary signals to the remote process, although you may be able to get its
attention by using out-of-band data.

The protocol is described in detail in rshd(8C).

The rresvport() routine is used to obtain a socket with a privileged address bound to it. This socket
is suitable for use by rcmd() and several other routines. Privileged Internet ports are those in the
range 0 to 1023. Only the super-user is allowed to bind an address of this sort to a socket.

ruserok() takes a remote host's name, as returned by a gethostbyaddr (see gethostent(3N) routine,
two user names and a flag indicating whether the local user's name is that of the super-user. It then
checks the files /etc/hosts.equiv and, possibly, .rhosts in the local user's home directory to see if the
request for service is allowed. A 0 is returned if the machine name is listed in the /etc/hosts.equiv
file, or the host and remote user name are found in the .rhosts file; otherwise ruserok() returns -1.
If the super-user flag is 1, the checking of the /etc/hosts.equiv file is bypassed.

/etc/hosts.equiv
.rhosts

SEE ALSO
rlogin(IC), rsh(lC), intro(2), gethostent(3N), rexec(3N), rexecd(8C), rlogind(8C), rshd(8C)

Sun Release 4.1 Last change: 22 November 1987 1111

RCMD(3N) NETWORK FUNCTIONS RCMD(3N)

DIAGNOSTICS

1112

rcmd() returns a valid socket descriptor on success. It returns -Ion error and prints a diagnostic
message on the standard error.

rresvport() returns a valid, bound socket descriptor on success. It returns -Ion error with the global
value errno set according to the reason for failure. The error code EAGAIN is overloaded to mean
"All network ports in use."

Last change: 22 November 1987 Sun Release 4.1

REALPATH(3) C LIBRARY FUNCTIONS REALPATH (3)

NAME
realpath - return the canonicalized absolute pathname

SYNOPSIS
#include <sys/param.h>

char *realpath(path, resolved yath)
char *path;
char resolved yath[MAXPATHLEN];

DESCRIPTION
realpath() expands all symbolic links and resolves references to '1,/', '1.,/' and extra '/' characters in
the null terminated string named by path and stores the canonicalized absolute pathname in the buffer
named by resolvedyath. The resulting path will have no symbolic links components, nor any '1,/' or
'1.,/' components.

RETURN VALUES
realpath() returns a pointer to the resolved yath on success. On failure, it returns NULL, sets errno
to indicate the error, and places in resolved yath the absolute pathname of the path component which
could not be resolved.

ERRORS
EACCES

EFAULT

ELooP

EINVAL

EIO

ENAMETooLONG

ENOENT

SEE ALSO
readlink(2), getwd(3)

WARNINGS

Search permission is denied for a component of the path prefix of path.

resolved yath extends outside the process's allocated address space.

Too many symbolic links were encountered in translating path.

path or resolved yath was NULL.

An I/O error occurred while reading from or writing to the file system.

The length of the path argument exceeds {PATH_MAX}.

A pathname component is longer than {NAME_MAX} (see sysconf(2V) while
LPOSDCNO_TRUNC} is in effect (see pathconf(2V).

The named file does not exist.

It indirectly invokes the readlink(2) system call and getwd(3) library call (for relative path names),
and hence inherits the possibility of hanging due to inaccessible file system resources.

Sun Release 4.1 Last change: 21 January 1990 1113

REGEX(3) C LIBRARY FUNCTIONS REGEX(3)

NAME
regex, re_comp, re_exec - regular. expression handler

SYNOPSIS
char *re_comp(s)
char *s;

re_exec(s)
char *s;

DESCRIPTION
re _ comp() compiles a string into an internal form suitable for pattern matching. re _ exec() checks the
argument string against the last string passed to re_comp().

re _ comp() returns a NULL pointer if the string s was compiled successfully; otherwise a string con­
taining an error message is returned. If re _ comp() is passed 0 or a null string, it returns without
changing the currently compiled regular expression.

re _ exec() returns 1 if the string s matches the last compiled regular expression, 0 if the string s failed
to match the last compiled regular expression, and -1 if the compiled regular expression was invalid
(indicating an internal error).

The strings passed to both re _ comp() and re _ exec() may have trailing or embedded NEWLINE char­
acters; they are terminated by null characters. The regular expressions recognized are described in the
manual entry for ed(I), given the above difference.

SEE ALSO
ed(1), ex(I), grep(1 V)

DIAGNOSTICS

1114

re _ exec() returns -1 for an internal error.

re _ comp() returns one of the following strings if an error occurs:

No previous regular expression

Regular expression too long

unmatched \(

missing]

too many \(\) pairs

unmatched \)

Last change: 6 October 1987 Sun Release 4.1

REGEXP(3) C LIBRARY FUNCTIONS REGEXP(3)

NAME
regexp - regular expression compile and match routines

SYNOPSIS
#define INIT <declarations>
#define GETC() <getc code>
#define PEEKC() <peekc code>
#define UNGETC(c) <ungetc code>
#define RETURN(pointer) <return code>
#define ERROR(vaI) <error code>

#include <regexp.h>

char *compile(instring, expbur, endbuf, eof)
char *instring, *expbuf, *endbuf;
int eor;

int step(string, expbuf)
char *string, *expbuf;

extern char *Iocl, *loc2, *Iocs;

extern int eircr, sed, nbra;

DESCRIPTION
This page describes general-purpose regular expression matching routines.

The interface to this file is unpleasantly complex. Programs that include this file must have the fol­
lowing five macros declared before the '#include <regexp.h>' statement. These macros are used by
the compile routine.

GETC()

PEEKC()

UNGETC(c)

RETURN(pointer)

ERRORS
ERROR(val)

Sun Release 4.1

Return the value of the next character in the regular expression pattern. Suc­
cessive calls to GETCO should return successive characters of the regular
expression.

Return the next character in the regular expression. Successive calls to
PEEKC() should return the same character, which should also be the next
character returned by GETC().

Returns the argument c by the next call to GETC() or PEEKC(). No more
that one character of pushback is ever needed and this character is guaranteed
to be the last character read by GETC(). The value of the macro UNGETC(c)
is always ignored.

This macro is used on normal exit of the compile routine. The value of the
argument pointer is a pointer to the character after the last character of the
compiled regular expression. This is useful to programs that have memory
allocation to manage.

This is the abnormal return from the compile() routine. The argument val is
an error number (see table below for meanings). This call should never
return.

ERROR
11
16
25
36
41
42
43

MEANING
Range endpoint too large.
Bad number.
"\ digit" out of range.
Illegal or missing delimiter.
No remembered search string.
\(\) imbalance.
Too many \(.

Last change: 21 January 1990 1115

REGEXP(3) C LIBRARY FUNCTIONS REGEXP(3)

1116

44 More than 2 numbers given in \{ \}.
45 } expected after \.
46 First number exceeds second in \{ \}.
49 [] imbalance.
50 Regular expression too long.

The syntax of the eompile() routine is as follows:

eompile(instring, expbuf, endbuf, eot)

The first parameter instring is never used explicitly by the eompile() routine but is useful for pro­
grams that pass down different pointers to input characters. It is sometimes used in the INIT()
declaration (see below). Programs that call functions to input characters or have characters in an
external array can pass down a value of «char *) 0) for this parameter.

The next parameter expbuf is a character pointer. It points to the place where the compiled regular
expression will be placed.

The parameter endbuf is one more than the highest address where the compiled regular expression
may be placed. If the compiled expression cannot fit in (endbuf-expbuf) bytes, a call to ERROR(50)
is made.

The parameter eof is the character that marks the end of the regular expression. For example, in. an
editor like ed(1), this character would usually a 'I'.

Each program that includes this file must have a #define statement for INIT(). This definition will be
placed right after the declaration for the function eompileO and '{' (opening curly brace). It is used
for dependent declarations and initializations. Most often it is used to set a register variable to point
the beginning of the regular expression so that this register variable can be used in the declarations for
GETC(), PEEKC(), and UNGETC(). Otherwise it can be used to declare external variables that might
be used by GETC(), PEEKC(), and UNGETC(). See the example below of the declarations taken
from grep(l V).

There are other functions in this file that perform actual regular expression matching, one of which is
the function stepO. The call to stepO is as follows:

step(string, expbuf)

The first parameter to stepO is a pointer to a string of characters to be checked for a match. This
string should be null-terminated

The second parameter expbuf is the compiled regular expression that was obtained by a call of the
function compile.

The function step() returns non-zero if the given string matches the regular expression, and zero if the
expressions do not match. If there is a match, two external character pointers are set as a side effect
to the call to step(). The variable set in step() is locl. This is a pointer to the first character that
matched the regular expression. The variable loc2, which is set by the function advanee(), points to
the character after the last character that matches the regular expression. Thus if the regular expres­
sion matches the entire line, loel will point to the first character of string and loe2 will point to the
null character at the end of string.

step() uses the external variable eiref which is set by eompile() if the regular expression begins with
,A, . If this is set then step() will try to match the regular expression to the beginning of the string
only. If more than one regular expression is to be compiled before the first is executed the value of
eiref should be saved for each compiled expression and eircf should be set to that saved value before
each call to step().

The function advanee() is called from step() with the same arguments as step (). The purpose of
step() is to step through the string argument and call advanee() until advanee() returns non-zero
indicating a match or until the end of string is reached. If one wants to constrain string to the begin­
ning of the line in all cases, stepO need not be called; simply call advaneeO.

Last change: 21 January 1990 Sun Release 4.1

REGEXP(3) C LIBRARY FUNCTIONS REGEXP(3)

When advance() encounters a * or \{ \} sequence in the regular expression, it will advance its pointer
to the string to be matched as far as possible and will recursively call itself trying to match the rest of
the string to the rest of the regular expression. As long as there is no match, advance() will back up
along the string until it finds a match or reaches the point in the string that initially matched the * or
\{ \}. It is sometimes desirable to stop this backing up before the initial point in the string is reached.
If the external character pointer locs is equal to the point in the string at sometime during the backing
up process, advance() will break out of the loop that backs up and will return zero. This could be
used by an editor like ed(1) or sed(1 V) for substitutions done globally (not just the first occurrence,
but the whole line) so, for example, expressions like sly*lIg do not loop forever.

The additional external variables sed and nbra are used for special purposes.

EXAMPLES
The following is an example of how the regular expression macros and calls could look in a command
like grep(1 V):

SEE ALSO

#define INIT register char *sp = instring;
#define GETCO (*sP++)
#define PEEKCO (*sp)
#define UNGETC(c) (-sp)
#define RETURN(c) return;
#define ERROR(e) regerr()

#include <regexp.h>

(void) compile(*argv, expbuf, &expbuf[ESIZE], '\0');

if (step(linebuf, expbuf)
succeed ();

ed(I), grep(1 V), sed(1 V)

BUGS
The handling of ciref is difficult

Sun Release 4.1 Last change: 21 January 1990 1117

RESOLVER (3) C LIBRARY FUNCTIONS RESOLVER (3)

NAME
resolver, res_mkquery, res_send, res_init, do_comp, dn_expand - resolver routines

SYNOPSIS
#include <sys/types.h>
#include <netinetlio.h>
#include <arpainameser .h>
#include <resolv.h>

res_mkquery(op, dname, class, type, data, datalen, newrr, bur, bullen)
int op;
char *dname;
int class, type;
char *data;
int dataIen;
struct rrec .*newrr;
char *bur;
int bullen;

res_send(msg, msglen, answer, anslen)
char *msg;
int msglen;
char *answer;
int anslen;

res_init()

do_comp(exp_dn, comp_dn, length, dnptrs, lastdnptr)
u_char *exp_dn, *comp_dn;
int length;
u_char **doptrs, **Iastdnptr;

dn_ expand(msg, msglen, comp _ dn, exp _do, length)
u_char *msg, *eomorig, *comp_do, exp_dn;
int length;

DESCRIPTION

1118

These routines are used for making, sending and interpreting packets to Internet domain name servers.
You can link a program with the resolver library using the -Iresolv argument on the linking command
line.

Global information that is used by the resolver routines is kept in the variable _res. Most of the
values have reasonable defaults and can be ignored. Options are a simple bit mask and are OR' ed in
to enable. Options stored in _res.options are defined in <resolv.h> and are as follows.

RES INIT

RES DEBUG

RES AAONLY

RES USEVC

RES STAYOPEN

RES IGNTC

RES RECURSE

True if the initial name server address and default domain name are initialized
(that is, resJnit() has been called).

Print debugging messages.

Accept authoritative answers only. res _ send() continues until it finds an
authoritative answer or finds an error. Currently this is not implemented.

Use TCP connections for queries instead of UDP.

Used with RES_USEVC to keep the TCP connection open between queries.
This is useful only in programs that regularly do many queries. UDP should
be the normal mode used.

Unused currently (ignore truncation errors, that is, do not retry with TCP).

Set the recursion desired bit in queries. This is the default. res_seodO does
not do iterative queries and expects the name server to handle recursion.

Last change: 30 June 1989 Sun Release 4.1

RESOLVER (3) C LIBRARY FUNCTIONS RESOLVER (3)

FILES

RES DEFNAMES

RES DNSRCH

Append the default domain name to single label queries. This is the default

Search up the domain tree from the default domain, in all but the top level.
This is the default.

res_initO reads the initialization file to get the default domain name and the Internet addresses of the
initial name servers. If no nameserver line exists, the host running the resolver is tried.
res _mkquery() makes a standard query message and places it in buf. res _ mkquery() returns the
size of the query or -1 if the query is larger than buflen. op is usually QUERY but can be any of the
query types defined in <nameser.h>. dname is the domain name. If dname consists of a single label
and the RES_DEFNAMES flag is enabled (the default), dname is appended with the current domain
name. The current domain name is defined in a system file and can be overridden by the environment
variable LOCALDOMAIN. newrr is currently unused but is intended for making update messages.

res_sendO sends a query to name servers and returns an answer. It calls resJnitO if RES_INIT is
not set, send the query to the local name server, and handle timeouts and retries. The length of the
message is returned or -1 if there were errors.

dn _ expand() Expands the compressed domain name comp _dn to a full domain name. Expanded
names are converted to upper case. msg is a pointer to the beginning of the message, exp _ dn is a
pointer to a buffer of size length for the result. The size of compressed name is returned or -1 if
there was an error.

dn _ comp() Compresses the domain name exp _ dn and stores it in comp _ dn. The size of the
compressed name is returned or -1 if there were errors. length is the size of the array pointed to by
comp _dn. dnptrs is a list of pointers to previously compressed names in the current message. The
first pointer points to the beginning of the message and the list ends with NULL. lastdnptr is a pointer
to the end of the array pointed to dnptrs. A side effect is to update the list of pointers for labels
inserted into the message by dn_compO as the name is compressed. If dnptr is NULL, do not try to
compress names. If lastdnptr is NULL, do not update the list.

I etclresolv .conf
lusr/lib/libresolv.a

see resolv.conf(5)

SEE ALSO
resolv.conf(5). named(8C)

System and Network Administration

NOTES
lusr/lib/libresolv.a is necessary for compiling programs.

Sun Release 4.1 Last change: 30 June 1989 1119

REXEC(3N) NETWORK FUNCTIONS REXEC(3N)

NAME
rexec - return stream to a remote command

SYNOPSIS
rem = rexec(ahost, in port, I user, passwd, cmd, fd2p);
char **ahost;
u_short inport;
char *user, *passwd, *cmd;
int *fd2p;

DESCRIPTION
rexec() looks up the host *ahost using gethostbyname() (see gethostent(3N)), returning -1 if the
host does not exist. Otherwise *ahost is set to the standard name of the host. If a username and
password are both specified, then these are used to authenticate to the foreign host; otherwise the
environment and then the user's .netrc file in his home directory are searched for appropriate informa­
tion. If all this fails, the user is prompted for the information.

The port inport specifies which well-known DARPA Internet port to use for the connection; it will
normally be the value returned from the call 'getservbyname("exec", "tcp")' (see getservent(3N).
The protocol for connection is described in detail in rexecd(8C).

If the call succeeds, a socket of type SOCK_STREAM is returned to the caller, and given to the
remote command as its standard input and standard output. If fd2p is non-zero, then a auxiliary chan­
nel to a control process will be setup, and a descriptor for it will be placed in *fd2p. The control
process will return diagnostic output from the command (unit 2) on this channel, and will also accept
bytes on this channel as signal numbers, to be forwarded to the process group of the command. If
fd2p is 0, then the standard error (unit 2 of the remote command) will be made the same as its stan­
dard output and no provision is made for sending arbitrary signals to the remote process, although you
may be able to get its attention by using out-of-band data.

SEE ALSO
gethostent(3N), getservent(3N), rcmd(3N), rexecd(8C)

BUGS
There is no way to specify options to the socket() call that rexec() makes.

1120 Last change: 18 November 1987 Sun Release 4.1

RPC(3N) NETWORK FUNCTIONS RPC(3N)

NAME
rpc - library routines for remote procedure calls

SYNOPSIS AND DESCRIPTION
RPC routines allow C programs to make procedure calls on other machines across the network. First,
the client calls a procedure to send a request to the server. Upon receipt of the request, the server
calls a dispatch routine to perform the requested service, and then sends back a reply. Finally, the
procedure call returns to the client

All RPC routines require the header <rpc/rpc.h> to be included.

The RPC routines have been grouped by usage on the following man pages.

portmap(3N) Library routines for the RPC bind service, portmap(8C). The routines docu-

rpc _clot _ auth(3N)

mented on this page include:
pmap _getmaps()
pmap _getport()
pmap_rmtcall()
pmap_set()
pmap _ uoset()
xdrJ)map()
xdr J)mapJist()

Library routines for client side remote procedure call authentication. The rou­
tines documented on this page include:

auth _ destroy()
authoooe _ create()
authuoix _ create()
authuoix _create _ default()

Library routines for client side calls. The routines documented on this page
include:

callrpc()
clot _ broadcast()
clot _ call()
c1ot_freeres()
clot _geterr()
clot J)erroo()
clot J)error()
clot _ sperroo()
clot _ sperror()

rpc _clot _ create(3N) Library routines for dealing with the creation and manipulation of CLIENT
handles. The routines documented on this page include:

clot _ cootroJ()
c1ot_create()
clot_create_vers()
clot _ destroy()
clot J)createerror()
clotravv_create()
clot_spcreateerror()
c10ttcp _ create()
c10tudp _ bufcreate()
c10tudp _ create()
rpc _ createrr()

Sun Release 4.1 Last change: 20 January 1990 1121

RPC(3N) NETWORK FUNCTIONS RPC(3N)

Library routines for registerring servers. The routines documented on this
page include:

registerrpc()
svc _ register()
svc _ unregister()
xprt _ register()
xprt _ unregister()

rpc _ svc _ create(3N) Library routines for dealing with the creation of server side handles. The rou-

1122

tines documented on this page include:
svc _ destroy()
svcfd _ create()
svcravv_create()
svctcp _ create()
svcudp _ bufcreate()

Library routines for server side remote procedure call errors. The routines
documented on this page include:

svcerr_auth()
svcerr _ decode()
svcerr _ noproc()
svcerr _ noprog()
svcerr--progvers()
svcerr_systenmerr()
svcerr _ vveakauth()

Library routines for RPC servers. The routines documented on this page
include:

svc_fdsO
svc _fdset()
svc _freeargs()
svc _getargs()
svc _getcalIer()
svc _getreq()
svc _getreqset()
svc_run()
svc _ sendreply()

XDR library routines for remote procedure calls. The routines documented on
this page include:

xdr _accepted _ reply()
xdr _ authunix yarnms()
xdr _ callhdr()
xdr _ callnmsg()
xdr_opaque_auth()
xdr _rejected _reply()
xdr _replynmsg()

Last change: 20 January 1990 Sun Release 4.1

RPC(3N)

secure _ rpc(3N)

SEE ALSO

NETWORK FUNCTIONS RPC (3N)

Library routines for secure remote procedure calls. The routines documented
on this page include:

authdes _ create()
authdes _getucred()
get _ mayaddress()
getnetname()
host2netname()
key _ decryptsession()
key _ encryptsession()
key _gendes()
key _ setsecret()
netname2host()
netname2user()
user2netname()

portmap(3N), rpc_clnt_auth(3N)' rpc_clnt_calls(3N), rpc_clnt_create(3N), rpc_svc_calls(3N),
rpc_svc_create(3N), rpc_svc_err(3N), rpc_svc_reg(3N), rpc_xdr(3N), secure_rpc(3N), xdr(3N),
puhlickey(5), portmap(8C), keyserv(8C)

Network Programming

Sun Release 4.1 Last change: 20 January 1990 1123

NAME

NETWORK FUNCTIONS

auth_destroy, authnone_create, authunix_create, authunix_create_default - library routines for client side
remote procedure call authentication

DESCRIPTION
RPC routines allow C programs to make procedure calls on other machines across the network. First, the
client calls a procedure to send a request to the server. Upon receipt of the request, the server calls a
dispatch routine to perform the requested service, and then sends back a reply. Finally, the procedure call
returns to the client.

RPC allows various authentication types. Currently, it supports AUTH_NONE, AUTH_UNIX, AUTH_DES.
For routines relating to the AUTH _DES type, see secure _ rpc(3N).

These routines are called after creating the CUENT handle. The client's authentication information is
passed to the server when the RPC call is made.

Routines
The following routines require that the header <rpc.h>. be included. The AUTH data structure is defined
in the RPC/XDR Library Definitions of the Network Programming.

#include <rpc/rpc.h>

void auth _ destroy(auth)
AUTH *auth;

Destroy the authentication information associated with auth. Destruction usually involves deallo­
cation of private data structures. The use of auth is undefined after calling auth_destroy().

AUTH * authnone _ create()

Create and return an RPC authentication handle that passes no usable authentication information
with each remote procedure call. This is the default authentication used by RPC.

AUTH * authunix _ create(host, uid, gid, grouplen, gidlistp)
char *host;
int uid, gid, grouplen, *gidlistp;

Create and return an RPC authentication handle that contains authentication information. The
parameter host is the name of the machine on which the information was created; uid is the user's
user ID; gid is the user's current group ID; grouplen and gidlistp refer to a counted array of groups
to which the user belongs. Warning: It is not very difficult to impersonate a user.

AUTH * authunix_create_default()

Call authunix _ create() with the appropriate parameters.

SEE ALSO
rpc(3N), rpc_clnt_create(3N), rpc_clnt_caUs(3N)

1124 Last change: 20 January 1990 S un Release 4.1

NAME

NETWORK FUNCTIONS

callrpc, clncbroadcast, clnccall, clncfreeres, c1nt~eterr, clncperrno, clnCperror, c1ncsperrno,
c1ncsperror - library routines for client side calls

DESCRIPTION
RPC routines allow C programs to make procedure calls on other machines across the network. First, the
client calls a procedure to send a request to the server. Upon receipt of the request, the server calls a
dispatch routine to perform the requested service, and then sends back a reply. Finally, the procedure call
returns to the client

The clot _ call(), callrpc() and c1nt _ broadcast() routines handle the client side of the procedure call. The
remaining routines deal with error handling in the case of errors.

Routines
The CLIENT data structure is defined in the RPC/XDR Library Definition of the Network Programming.

#include <rpdrpc.h>

int callrpc(host, prognum, versnum, procnum, inproc, in, outproc, out)
char *host;
u_long prognum, versoum, procnum;
char *in;
xdrproc_t inproc;
char *out;
xdrproc_toutproc;

Call the remote procedure associated with prognum, versnum, and procnum on the machine, host.
The parameter in is the address of the procedure's argument, and out is the address of where to
place the result; inproc is an XDR function used to encode the procedure's parameters, and
outproc is an XDR function used to decode the procedure's results. This routine returns 0 if it
succeeds, or the value of enum clnt_stat cast to an integer if it fails. Use clotyerrnoO to
translate failure statuses into messages.

Warning: Calling remote procedures with this routine uses UDP/IP as the transport; see
c1ntudp_createO on rpc_c1nt_create(3N) for restrictions. You do not have control of timeouts
or authentication using this routine.

enum c1nt_stat c1nt_broadcast(prognum, versnum, procnum, inproc, in, outproc, out, each result)
u_long prognum, versnum, procnum;
char *in;
xdrproc_t inproc;
char *out;
xdrproc_toutproc;
boot t eachresult;

Sun Release 4.1

Like callrpc(), except the call message is broadcast to all locally connected broadcast nets. Each
time the caller receives a response, this routine calls eachresult(), whose form is:

int eachresult(out, addr)
char *out;
struct sockaddr _in *addr;

where out is the same as out passed to c1nt_ broadcast(), except that the remote procedure's out­
put is decoded there; addr points to the address of the machine that sent the results. If
eachresult() returns 0 c1nt _ broadcast() waits for more replies; otherwise it returns with
appropriate status. If eachresult() is NULL, c1nt _ broadcast() returns without waiting for any
replies.

Last change: 20 January 1990 1125

1126

NETWORK FUNCTIONS

Note: c1ot_broadcast() uses AUTH_UNIX style of authentication.

Warning: Broadcast packets are limited in size to the maximum transfer unit of the data link. For
Ethernet, the callers argument size should not exceed 1400 bytes.

eoum clot_stat c1ot_caJl(c1ot, procoum, ioproc, io, outproc, out, timeout)
CLIENT *c1ot;
u_loog procoum;
xdrproc_tinproc,outproc;
char *in, *out;
struct timeval timeout;

Call the remote procedure procnum associated with the client handle, clnt, which is obtained with
an RPC client creation routine such as clot _ create() (see rpc _ clot_ create(3N). The parameter in
is the address of the procedure's argument, and out is the address of where to place the result;
inproc is an XDR function used to encode the procedure's parameters in XDR, and outproc is used
to decode the procedure's results; timeout is the time allowed for a response from the server.

bool_t clot_freeres(clot, outproc, out)
CLIENT *c1ot;
xdrproc_toutproc;
char *out;

Free any data allocated by the RPC/XDR system when it decoded the results of an RPC call. The
parameter out is the address of the results, and outproc is the XDR routine describing the results.
This routine returns TRUE if the results were successfully freed, and FALSE otherwise. Note: This
is equivalent to doing xdr _free(outproc, out) (see xdr _simple(3N).

void clnt _geterr(clot, errp)
CLIENT *clot;
struct rpc_err *errp;

Copy the error structure out of the client handle to the structure at address errp. errp should point
to preallocated space.

void clot yerrno(stat)
eoum clot_stat stat;

Print a message to the standard error corresponding to the condition indicated by stat. A NEW­
LINE is appended at the end of the message. Used after callrpc() or clnt_broadcast().

void clotyerror(clot, str)
CLIENT *clot;
char *str;

Print a message to the standard error indicating why an RPC call failed; clnt is the handle used to
do the call. The message is prepended with string s and a colon. A NEWLINE is appended at the
end of the message. Used after clot_call().

char *clot_sperrno(stat)
eoum clot_stat stat;

Take the same arguments as clotyerroo(), but instead of sending a message to the standard error
indicating why an RPC failed, return a pointer to a string which contains the message.
clot _ sperroo() does not append a NEWLINE at the end of the message.

clnt _sperroo() is used instead of clot yerroo() if the program does not have a standard error (as
a program running as a server quite likely does not), or if the programmer does not want the mes­
sage to be output with priotf(3V), or if a message format different than that supported by
clot _perrno() is to be used.

Last change: 20 January 1990 Sun Release 4.1

char *c1ot_sperror(c1ot, str)
CLIENT *c1ot;
char *str;

NETWORK FUNCTIONS

Like c1otyerror(), except that (like c1ot_sperroo(» it returns a string instead of printing to the
standard error. Unlike clot yerror(), it does not append the message with a NEWLINE.

Note: c1nt_sperror() returns pointer to a static buffer that is overwritten on each call.

SEE ALSO
printf(3V), rpc(3N), rpc_c1nt_3uth(3N), rpc_c1nt_create(3N), xdr_simple(3N)

Sun Release 4.1 Last change: 20 January 1990 1127

NAME

NETWORK FUNCTIONS

clnccontrol, clnccreate, clnccreate_ vers, clncdestroy, clncpcreateerror, clntraw _create,
clnt_spcreateerror, clnttcp_create, clntudp_bufcreate, rpc_createrr - library routines for dealing with
creation and manipulation of CLIENT handles

DESCRIPTION

1128

RPC routines allow C programs to make procedure calls on other machines across the network. First,
the client calls a procedure to send a request to the server. Upon receipt of the request, the server
calls a dispatch routine to perform the requested service, and then sends back a reply. Finally, the
procedure call returns to the client

The CLIENT data structure is defined in the RPC/XDR Library Definition of the Network Program­
ming.

#ioclude <rpc/rpc.b>

boott c1ot_cootrol(clot, request, info)
CLIENT *c1nt;
int request;
cbar *iofo;

Change or retrieve various information about a client object request indicates the type of
operation, and info is a pointer to the information. For both UDP and TCP, the supported
values of request and their argument types and what they do are:
CLSET_TIMEOUT struct timeval set total timeout
CLGET _TIMEOUT struct timeval get total timeout
CLGET _FD int get associated socket
CLSET_FD_CLOSE void close socket on clot_destroyO
CLSET_FD_NCLOSE void leave socket open 00 clot_destroy()

Note: If you set the timeout using c1nt_control(), the timeout parameter passed to clot_callO
(see rpc_c1nt_caUs(3N) will be ignored in all future calls.
CLGET_SERVER_ADDR struct sockaddr_in get server's address

The following operations are valid for UDP only:
CLSET _RETRY_TIMEOUT struct timeval

struct timeval
set the retry timeout
get the retry timeout

The retry timeout is the time that UDP RPC waits for the server to reply before retransmitting
the request.

This routine returns TRUE on success, and FALSE on failure.

CLIENT * clot _ create (host, progoum, versoum, protocol)
char *host;
u)ong prognum, versnum;
cbar *protocol;

Generic client creation routine for program prognum and version versnum. host identifies the
name of the remote host where the server is located. protocol indicates which kind of tran­
sport protocol to use. The currently supported values for this field are "udp" and "tcp".
Default timeouts are set, but they can be modified using clnt_controIO. If successful it
returns a client handle, otherwise it returns NULL.

Last change: 20 January 1990 Sun Release 4.1

NETWORK FUNCTIONS

Warning: Using UDP has its shortcomings. Since UDP-based RPC messages can only hold up
to 8 Kbytes of encoded data, this transport cannot be used for procedures that take arguments
or return results larger than 8 Kbytes. Use TCP instead.

Note: If the requested version number versnum is not registered with the portmap(8C) service
on host, but at least a version number for the given program number is registered,
clot _ create() returns a handle. The version mismatch will be discovered by a clot _ call()
later (see rpc_clot_calls(3N».

CLIENT * clot_create _ vers(host, prognum, vers _ outp, vers Jow, vers _high, protocol)
char *host;
u_loog progoum;
u_loog *vers_outp;
u_loog versJow, vers_high;
char *protocoi;

This is a generic client creation routine which also checks for the version available. host
identifies the name of the remote host where the server is located. protocol indicates which
kind of transport protocol to use. The currently supported values for this field are "udp" and
"tcp". If the routine is successful it returns a client handle created for the highest version
between vers_low and vers_high that is supported by the server. vers_outp is set to this value.
That is, after a successful return vers_low <= *vers_outp <= vers_high. If no version
between vers _low and vers _high is supported by the server then the routine fails and returns
NULL. Default timeouts are set, but can be modified using c1ot_controIO.

Note: c1ot_createO returns a valid client handle even if the particular version number sup­
plied to c1nt_createO is not registered with the portmap service. This mismatch will be
discovered by a c1nt_caIlO later (see rpc_c1ot_caUs(3N». However, clnt_create_ versO does
this for you and returns a valid handle only if a version within the range supplied is sup­
ported by the server.

void clnt_destroy(clnt)
CLIENT *clot;

Destroy the client's RPC handle. Destruction usually involves deallocation of private data
structures, including clnt itself. Use of clnt is undefined after calling c1ot_destroyO. If the
RPC library opened the associated socket, or CLSET _ FD _CLOSE was set using clnt _ control().
clot _ destroy() closes the socket.

void clot ycreateerror(str)
char *str;

Print a message to the standard error indicating why a client handle could not be created.
The message is prepended with string s and a colon. Used when routines such as
c1nt _ create(), c10traw _ create(), c10ttcp _ create(), or c1ntudp _ create() fails.

CLIENT * c1ntraw _ create(prognum, versnum)
u_long prognum, versnum;

Sun Release 4.1

Create an RPC client for the remote program prognum, version versnum. The transport used
to pass messages to the service is actually a buffer within the process's address space, so the
corresponding RPC server should live in the same address space; also see svcraw _ create()
(see rpc_svc_create(3N». This allows simulation of RPC and getting RPC overheads, such as
round trip times, without any kernel interference. If successful it returns a client handle, other­
wise it returns NULL.

Last change: 20 January 1990 1129

1130

char * c1nt_spcreateerror(str)
char *str;

NETWORK FUNCTIONS

Like c1nt ycreateerror(), except that it returns a string instead of printing to the standard
error. It, however, does not append the message with a NEWLINE.

Note: c1nt _ spcreateerror() returns a pointer to a static buffer that is overwritten on each call.

CLIENT * clnltcp_create(addr, prognum, versnum, sockp, sendsz, recvsz)
struct sockaddr _in *addr;
u _long prognum, versnum;
int *sockp;
u _int sendsz, recvsz;

Create a client handle for the remote program prognum, version versnum; the client uses
TCP/IP as a transport. The remote program is located at Internet address addr. If
addr->sin Jort is zero, it is set to the port on which the remote program is listening (the
remote portmap service is consulted for this information). The parameter sockp is a pointer
to a socket; if it is RPC _ANYSOCK, then a new socket is opened and sockp is updated.
Since TCP-based RPC uses buffered I/O, the user may specify the size of the send and receive
buffers with the parameters sendsz and recvsz; values of zero choose defaults. If successful it
returns a client handle, otherwise it returns NULL.

Warning: If addr->sinyort is zero and the requested version number versnum is not
registered with the remote portmap service, it returns a handle if at least a version number for
the given program number is registered. The version mismatch will be discovered by a
c1nt_caUO later (see rpc_c1nt_calls(3N)).

CLIENT * c1ntudp _ burcreate(addr, prognum, versnum, wait, sockp, sendsz, recvsz)
struct sockaddr In *addr;
u_long prognum, versnum;
struct time val wait;
int *sockp;
u _int sendsz;
u_int recvsz;

Create a client handle for the remote program prognum, on versnum; the client uses UDP/IP
as the transport. The remote program is located at the Internet address addr. If
addr->sin Jort is zero, it is set to port on which the remote program is listening on (the
remote portmap service is consulted for this information). The parameter sockp is a pointer
to a socket; if it is RPC _ ANYSOCK, then a new socket is opened and sockp is updated. The
UDP transport resends the call message in intervals of wait time until a response is received
or until the call times out. The total time for the call to time out is specified by c1nt _ call()
(see rpc_c1nt_calls(3N)). If successful it returns a client handle, otherwise it returns NULL.

The user can specify the maximum packet size for sending and receiving by using sendsz and
recvsz arguments for UDP-based RPC messages.

Warning: If addr->sinyort is zero and the requested version number versnum is not
registered with the remote portmap service, it returns a handle if at least a version number for
the given program number is registered. The version mismatch is discovered by a c1nt_caIlO
later (see rpc_c1nt_calls(3N)).

Last change: 20 January 1990 Sun Release 4.1

NETWORK FUNCTIONS

CLIENT * clntudp_create(addr, prognum, versnum, wait, sockp)
struct sockaddr_in *addr;
uJong prognum, versnum;
struct time val wait;
int *sockp;

Create a client handle for the remote program prognum, version versnum; the client uses
UDP/IP as the transport. The remote program is located at the Internet address addr. If­
addr->sin Jort is zero, then it is set to actual port that the remote program is listening on
(the remote portmap service is consulted for this information). The parameter sockp is a
pointer to a socket; if it is RPC _ ANYSOCK, a new socket is opened and sockp is updated.
The UDP transport resends the call message in intervals of wait time until a response is
received or until the call times out. The total time for the call to time out is specified by
clnt_callO (see rpc_clnt_calls(3N)). If successful it returns a client handle, otherwise it
returns NULL.

Warning: Since UDP-based RPC messages can only hold up to 8 Kbytes of encoded data, this
transport cannot be used for procedures that take arguments or results larger than 8 Kbytes.
TCP should be used instead.

Warning: If addr->sinyort is zero and the requested version number versnum is not
registered with the remote portmap service, it returns a handle if any version number for the
given program number is registered. The version mismatch is be discovered by a clnt_callO
later (see rpc_clnt_calls(3N)).

struct rpc _ createerr rpc _ createerr;

SEE ALSO

A global variable whose value is set by any RPC client handle creation routine that fails. It is
used by the routine clntycreateerrorO to print the reason for the failure.

portmap(3N), rpc(3N), rpc _ clnt _ auth(3N), rpc _ clnt _ calls(3N), rpc _ svc _ create(3N)

Sun Release 4.1 Last change: 20 January 1990 1131

NAME

NETWORK FUNCTIONS

registerrpc, svc_register, svc_unregister, xprcregister, xprcunregister - library routines for registerring
servers

DESCRIPTION
These routines are a part of the RPC library which allows the RPC servers to register themselves with
portmap(8C), and it associates the given program and version number with the dispatch function.

Routines

1132

The SVCXPRT data structure is defined in the RPC/XDR Library Definition of the Network Program­
ming.

#include <rpc/rpc.h>

int registerrpc(prognum, versnum, procnum, procname, inproc, outproc)
u_long prognum, versnum, procnum;
char *(*procname) 0 ;
xdrproc_t inproc, outproc;

Register procedure procname with the RPC service package. If a request arrives for program
prognum, version versnum, and procedure procnum, procname is called with a pointer to its
parameter; progname must be a procedure that returns a pointer to its static result; inproc is
used to decode the parameters while outproc is used to encode the results. This routine
returns 0 if the registration succeeded, -1 otherwise.

Warning: Remote procedures registered in this form are accessed using the UDP/IP transport;
see svcudp _ create() on rpc _ svc _ create(3N) for restrictions. This routine should not be used
more than once for the same program and version number.

bool_t svc_register(xprt, prognum, versnum, dispatch, protocol)
SVCXPRT *xprt;
u Jong prognum, versnum;
void (*dispatch) 0;
u _long protocol;

Associates prognum and versnum with the service dispatch procedure, dispatch. If protocol is
zero, the service is not registered with the portmap service. If protocol is non-zero, a map­
ping of the triple [prognum, versnum, protocol] to xprt->xp Jlort is established with the
local portmap service (generally protocol is zero, IPPROTO _ UDP or IPPROTO _ TCP). The
procedure dispatch has the following form:

dispatch(request, xprt)
struct svc_req *request;
SVCXPRT *xprt;

The svc_registerO routine returns TRUE if it succeeds, and FALSE otherwise.

void svc _ unregister(prognum, versnum)
u_long prognum, versnum;

Remove all mapping of the pair [prognum,versnum] to dispatch routines, and of the triple
[prognum,versnum,*] to port number.

void xprt_register(xprt)
SVCXPRT *xprt;

After RPC service transport handles are created, they should register themselves with the RPC
service package. This routine modifies the global variable svc _fds. Service implementors
usually do not need this routine.

Last change: 20 January 199.0 Sun Release 4.1

NETWORK FUNCTIONS

void xprt_unregister(xprt)
SVCXPRT *xprt;

SEE ALSO

Before an RPC service transport handle is destroyed, it should unregister itself with the RPC
service package. This routine modifies the global variable svc _fds. Service implementors
usually do not need this routine directly.

portmap(3N), rpc(3N), rpc _ svc _ err(3N), rpc _svc _ create(3N), rpc _ svc _reg(3N), portmap(8C)

Sun Release 4.1 Last change: 20 January 1990 1133

NAME

NETWORK FUNCTIONS

svc_destroy, svcfd_create, svcraw_create, svctcp_create, svcudp_bufcreate - library routines for dealing
with the creation of server handles

DESCRIPTION

1134

RPC routines allow C programs to make procedure calls on other machines across the network. First,
the client calls a procedure to send a request to the server. Upon receipt of the request, the server
calls a dispatch routine to perform the requested service, and then sends back a reply. Finally, the
procedure call returns to the client

The SVCXPRT data structure is defined in the RPC/XDR Library Definitions of the Network Program­
ming.

#include <rpc/rpc.h>

void svc _ destroy(xprt)
SVCXPRT *xprt;

Destroy the RPC service transport handle, xprt. Destruction usually involves deallocation of
private data structures, including xprt itself. Use of xprt is undefined after calling this routine.

SVCXPRT * svcfd _ create(fd, sendsz, recvsz)
int fd;
u _int sendsz;
u _int recvsz;

Create a service on top of any open and bound descriptor and return the handle to it Typi­
cally, this descriptor is a connected socket for a stream protocol such as TCP. sendsz and
recvsz indicate sizes for the send and receive buffers. If they are zero, a reasonable default is
chosen. It returns NULL if it fails.

SVCXPRT * svcraw _ create()

This routine creates a RPC service transport, to which it returns a pointer. The transport is a
buffer within the process's address space, so the corresponding RPC client must live in the
same address space; see clntraw_createO on rpc_c1nt_create(3N). This routine allows
simulation of RPC and getting RPC overheads (such as round trip times), without any kernel
interference. This routine returns NULL if it fails.

SVCXPRT * svctcp _ create(sock, sendsz, recvsz)
int sock;
uJnt sendsz, recvsz;

This routine creates a TCP/IP-based RPC service transport, to which it returns a pointer. The
transport is associated with the socket sock. If sock is RPC_ANYSOCK, then a new socket is
created. If the socket is not bound to a local TCP port, then this routine binds it to an arbi­
trary port. Upon completion, xprt->xp_sock is the transport's socket descriptor, and
xprt->xp yort is the port number on which· it is listening. This routine returns NULL if it
fails. Since TCP-based RPC uses buffered I/O, users may specify the size of buffers with
sendsz and recvsz; values of zero choose defaults.

Last change: 20 January 1990 Sun Release 4.1

NETWORK FUNCTIONS

SVCXPRT * svcudp _ bufcreate(sock, sendsz, recvsz)
int sock;
u_int sendsz, recvsz;

SEE ALSO

This routine creates a UDP/IP-based RPC service transport, to which it returns a pointer. The
transport is associated with the socket sock. If sock is RPC _ ANYSOCK , then a new socket
is created. If the socket is not bound to a local UDP port, then this routine binds it to an
arbitrary port. Upon completion, xprt->xp_sock is the service's socket descriptor, and
xprt->xp yort is the service's port number. This routine returns NULL if it fails.

The user specifies the maximum packet size for sending and receiving UDP-based RPC mes­
sages by using the sendsz and recvsz parameters.

rpc(3N), rpc_clnt_create(3N), rpc_svc_calls(3N), rpc_svc_err(3N), rpc_svc_reg(3N), portmap(8C)

Sun Release 4.1 Last change: 20 January 1990 1135

NAME

NETWORK FUNCTIONS

svcerr_auth, svcerr_decode, svcerr_noproc, svcerr_noprog, svcerr-progvers, svcercsystemerr,
svcerr_ weakauth - library routines for server side remote procedure call errors

DESCRIPTION
RPC routines allow C programs to make procedure calls on other machines across the network. First,
the client calls a procedure to send a request to the server. Upon receipt of the request, the server
calls a dispatch routine to perform the requested service, and then sends back a reply. Finally, the
procedure call returns to the client.

These routines can be called by the server side dispatch function if there is any error in the transaction
with the client.

Routines

1136

The SVCXPRT data structure is defined in the RPC/XDR Library Definitions of the Network Program­
ming.

#include <rpc/rpc.h>

void svcerr_auth(xprt, why)
SVCXPRT *xprt;
en urn auth _stat why;

Called by a service dispatch routine that refuses to perform a remote procedure call due to an
authentication error.

void svcerr _ decode(xprt)
SVCXPRT *xprt;

Called by a service dispatch routine that cannot successfully decode the remote parameters.
See svc ~etargs() in rpc _svc _ reg(3N).

void svcerr _ noproc(xprt)
SVCXPRT *xprt;

Called by a service dispatch routine that does not implement the procedure number that the
caller requests.

void svcerr _ noprog(xprt)
SVCXPRT *xprt;

Called when the desired program is not registered with the RPC package. Service imp lemen­
tors usually do not need this routine.

void svcerr yrogvers(xprt)
SVCXPRT *xprt;

Called when the desired version of a program is not registered with the RPC package. Service
implementors usually do not need this routine.

void svcerr _ systernerr(xprt)
SVCXPRT *xprt;

Called by a service dispatch routine when it detects a system error not covered by any partic­
ular protocol. For example, if a service can no longer allocate storage, it may call this rou­
tine.

Last change: 20 January 1990 Sun Release 4.1

NETWORK FUNCTIONS

void svcerr _ weakauth(xprt)
SVCXPRT *xprt;

SEE ALSO

Called by a service dispatch routine that refuses to perform a remote procedure call due to
insufficient authentication parameters. The routine calls svcerr _ auth(xprt,
AUT" _ TOOWEAK).

rpc(3N), rpc _svc _ calls(3N), rpc _ svc _ create(3N), rpc _ svc _reg(3N)

Sun Release 4.1 Last change: 20 January 1990 1137

NAME

NETWORK FUNCTIONS

svc_fds, svc_fdset, svc_freeargs, svc~etargs, svc~etcaller, svc~etreq, svc~etreqset, svc~etcaller,
'svc_run, svc_sendreply - library routines for RPC servers

DESCRIPTION
RPC routines allow C programs to make procedure calls on other machines across the network. First,
the client calls a procedure to send a request to the server. Upon receipt of the request, the server
calls a dispatch routine to perform the requested service, and then sends back a reply. Finally, the
procedure call returns to the client.

These routines are associated with the server side of the RPC mechanism. Some of them are called by
the server side dispatch function, while others (such as svc_runO) are called when the server is ini­
tiated.

Routines

1138

The SVCXPRT data structure is defined in the RPC/XDR Library Definitions of the Network Program­
ming.

#include <rpc/rpc.h>

int svc _fds;

Similar to svc _fdset, but limited to 32 descriptors. This interface is obsoleted by svc _fdset.

fd_set svc_fdset;

A global variable reflecting the RPC server's read file descriptor bit mask; it is suitable as a
parameter to the select() system call. This is only of interest if a service implementor does
not call svc _run(), but rather does their own asynchronous event processing. This variable is
read-only (do not pass its address to select()!), yet it may change after calls to
svc ~etreqset() or any creation routines.

bool_t svc_freeargs(xprt, inproc, in)
SVCXPRT *xprt;
xdrproc_t inproc;
char *in;

Free any data allocated by the RPC/XDR system when it decoded the arguments to a service
procedure using svc_getargsO. This routine returns TRUE if the results were successfully
freed, and FALSE otherwise.

bool_t svc_getargs(xprt, inproc, in)
SVCXPRT *xprt;
xdrproc_t inproc;
char *in;

Decode the arguments of an RPC request associated with the RPC service transport handle,
xprt. The parameter in is the address where the arguments will be placed; inproc is the XDR
routine used to decode the arguments. This routine returns TRUE if decoding succeeds, and
FALSE otherwise.

struct sockaddr In * svc _getcaller(xprt)
SVCXPRT *xprt;

The approved way of getting the network address of the caller of a procedure associated with
the RPC service transport handle, xprt.

Last change: 20 January 1990 Sun Release 4.1

NETWORK FUNCTIONS

void svc_getreq(rdfds)
int rdfds;

Similar to svc _getreqset(), but limited to 32 descriptors. This interface is obsoleted by
svc ~etreqset().

void svc _getreqset(rdfdsp)
fd_set *rdfdsp;

This routine is only of interest if a service implementor does not use svc_runO, but instead
implements custom asynchronous event processing. It is called when the select() system call
has determined that an RPC request has arrived on some RPC socket(s) ; rdfdsp is the resul­
tant read file descriptor bit mask. The routine returns when all sockets associated with the
value of rdfdsp have been serviced.

void svc_runO

Normally, this routine only returns in the case of some errors. It waits for RPC requests to
arrive, and calls the appropriate service procedure using svc _getreq() when one arrives. This
procedure is usually waiting for a select() system call to return.

bool_t svc_sendreply(xprt, outproc, out)
SVCXPRT *xprt;
xdrproc_t outproc;
char *out;

SEE ALSO

Called by an RPC service's dispatch routine to send the results of a remote procedure call.
The parameter xprt is the request's associated transport handle; outproc is the XDR routine
which is used to encode the results; and out is the address of the results. This routine returns
TRUE if it succeeds, FALSE otherwise.

select(2), rpc(3N), rpc_svc_calls(3N), rpc_svc_create(3N), rpc_svc_err(3N)

Sun Release 4.1 Last change: 20 January 1990 1139

NETWORK FUNCTIONS

NAME
xdr_accepte<Creply, xdr_authunix.J>anns, xdr_callhdr, xdr_callmsg, xdr_opaque_autb,
xdr_rejecte<Creply, xdr_replymsg - XDR library routines for remote procedure calls

DESCRIPTION
These routines are used for describing the RPC messages in XDR language. They should normally be
used by those who do not want to use the RPC package.

Routines

1140

The XDR data structure is defined in the RPC/XDR Library Definitions of the Network Programming.

#include <rpc/rpc.h>

bool_t xdr_accepted_reply(xdrs, arp)
XDR *xdrs;
struct accepted_reply *arp;

Used for encoding RPC reply messages. It encodes the status of the RPC call in the XDR
language format and in the case of success, it encodes the call results as well. This routine is
useful for users who wish to generate RPC-style messages without using the RPC package.
This routine returns TRUE if it succeeds, FALSE otherwise.

bool_ t xdr _ authunix yarms(xdrs, aup)
XDR *xdrs;
struct authunix yarms *aup;

Used for describing UNIX credentials. It encludes machine name, user ID, group ID list, etc.
This routine is useful for users who wish to generate these credentials without using the RPC
authentication package. This routine returns TRUE if it succeeds, FALSE otherwise.

void xdr _ callhdr(xdrs, chdrp)
XDR *xdrs;
struct rpc_msg *chdrp;

Used for describing RPC call header messages. It encodes the static part of the call message
header in the XDR language format. It includes information such as transaction ID, RPC ver­
sion number, program number, and version number. This routine is useful for users who wish
to generate RPC-style messages without using the RPC package.

boot t xdr _ callmsg(xdrs, cmsgp)
XDR *xdrs;
struct rpc_msg *cmsgp;

Used for describing RPC call messages. It includes all the RPC call information such as tran­
saction ID, RPC version number, program number, version number, authentication information,
etc. This routine is useful for users who wish to generate RPC-style messages without using
the RPC package. This routine returns TRUE if it succeeds, FALSE otherwise.

boot t xdr _opaque _ auth(xdrs, ap)
XDR *xdrs;
struct opaque _ auth * ap;

Used for describing RPC authentication information messages. This routine is useful for users
who wish to generate RPC-style messages without using the RPC package. This routine
returns TRUE if it succeeds, FALSE otherwise.

Last change: 20 January 1990 Sun Release 4.1

NETWORK FUNCTIONS

boot t xdr _rejected _reply(xdrs, rrp)
XDR *xdrs;
struct rejected_reply *rrp;

Used for describing RPC reply messages. It encodes the rejected RPC message in the XDR
language format. The message is rejected either because of version number mismatch or
because of authentication errors. This routine is useful for users who wish to generate RPC­
style messages without using the RPC package. This routine returns TRUE if it succeeds,
FALSE otherwise.

bool_t xdr_replymsg(xdrs, rmsgp)
XDR *xdrs;
struct rpc_msg *rmsgp;

SEE ALSO
rpc(3N)

Sun Release 4.1

Used for describing RPC reply messages. It encodes the RPC reply message in the XDR
language format. This reply could be an acceptance, rejection, or NULL. This routine is use­
ful for users who wish to generate RPC style messages without using the RPC package. This
routine returns TRUE if it succeeds, FALSE otherwise.

Last change: 20 January 1990 1141

RTIME(3N) NETWORK FUNCTIONS RTIME(3N)

NAME
rtime - get remote time

SYNOPSIS
#include <sys/types.h>
#include <sys/time.h>
#include <netinetlin.h>

int rtime(addrp, timep, timeout)
struct sockaddr_in *addrp;
struct timeval *timep;
struct timeval *timeout;

DESCRIPTION

1142

rtime() consults the Internet Time Server at the address pointed to by addrp and returns the remote
time in the timeval struct pointed to by timep. Normally, the UDP protocol is used when consulting
the Time Server. The timeout parameter specifies how long the routine should wait before giving up
when waiting for a reply. If timeout is specified as NULL, however, the routine will instead use TCP
and block until a reply is received from the time server.

The routine returns 0 if it is successful. Otherwise, it returns -1 and errno is set to reflect the cause
of the error.

Last change: 22 November 1987 Sun Release 4.1

SCANDIR(3) C LIBRARY FUNCTIONS SCANDIR(3)

NAME
scandir, alphasort - scan a directory

SYNOPSIS
#include <sys/types.h>
#include <sys/dir.h>

scandir(dirname, &namelist, select, com par)
char *dirname;
struct direct **namelist;
int (*select)();
int (*compar)();

alphasort(dl, d2)
struct direct **dl, **d2;

DESCRIPTION
scandir() reads the directory dirname and builds an array of pointers to directory entries using
maUoc(3V). The second parameter is a pointer to an array of structure pointers. The third parameter
is a pointer to a routine which is called with a pointer to a directory entry and should return a non
zero value if the directory entry should be included in the array. If this pointer is NULL, then all the
directory entries will be included. The last argument is a pointer to a routine which is passed to
qsort(3) to sort the completed array. If this pointer is NULL, the array is not sorted. alphasort() is a
routine which will sort the array alphabetically.

scandir() returns the number of entries in the array and a pointer to the array through the parameter
namelist.

SEE ALSO
directory(3V), malloc(3V), qsort(3)

DIAGNOSTICS
Returns -1 if the directory cannot be opened for reading or if malloc(3V) cannot allocate enough
memory to hold all the data structures.

Sun Release 4.1 Last change: 6 October 1987 1143

SCANF(3V) C LIBRARY FUNCTIONS SCANF(3V)

NAME
scanf, fscanf, sscanf - formatted input conversion

SYNOPSIS
#include <stdio.h>

int scanf(format [, pointer ...])
char *format;

int fscanf(stream, format [, pointer ...])
FILE *stream;
char *format;

int sscanf(s, format [, pointer ...])
char *s, *format;

SYSTEM V SYNOPSIS
The following are provided for XPG2 compatibility:

#define nl scanfscanf
#define nl fscanf fscanf
#define nl sscanf sscanf

DESCRIPTION

1144

scanf() reads from the standard input stream stdin. fscanf() reads from the named input stream. sscanf()
reads from the character string s. Each function reads characters, interprets them according to a format,
and stores the results in its arguments. Each expects, as arguments, a control string format, described
below, and a set of pointer arguments indicating where the converted input should be stored. The results
are undefined in there are insufficient args for the format. If the format is exhausted while args remain,
the excess args are simply ignored.

The control string usually contains conversion specifications, which are used to direct interpretation of
input sequences. The control string may contain:

• White-space characters (SPACE, TAB, or NEWLINE) which, except in two cases described
below, cause input to be read up to the next non-white-space character.

• An ordinary character (not' % '), which must match the next character of the input stream.
• Conversion specifications, consisting of the character '%' or the character sequence %digit$,

an optional assignment suppressing character '*', an optional numerical maximum field width,
an optional I (ell) or h indicating the size of the receiving variable, and a conversion code.

Conversion specifications are introduced by the character % or the character sequence %digit$. A conver­
sion specification directs the conversion of the next input field; the result is placed in the variable pointed to
by the corresponding argument, unless assignment suppression was indicated by '*'. The suppression of
assignment provides a way of describing an input field which is to be skipped. An input field is defined as
a string of non-space characters; it extends to the next inappropriate character or until the field width, if
specified, is exhausted. For all descriptors except "[" and "c", white space leading an input field is
ignored.

The conversion character indicates the interpretation of the input field; the corresponding pointer argument
must usually be of a restricted type. For a suppressed field, no pointer argument is given. The following
conversion characters are legal:

% A single % is expected in the input at this point; no assignment is done.
d A decimal integer is expected; the corresponding argument should be an integer pointer.
u An unsigned decimal integer is expected; the corresponding argument should be an

unsigned integer pointer.
o An octal integer is expected; the corresponding argument should be an integer pointer.
x A hexadecimal integer is expected; the corresponding argument should be an integer

pointer.

Last change: 21 January 1990 Sun Release 4.1

SCANF(3V) C LIBRARY FUNCTIONS SCANF(3V)

An integer is expected; the corresponding argument should be an integer pointer. It will
store the value of the next input item interpreted according to C conventions: a leading
"0" implies octal; a leading "Ox" implies hexadecimal; otherwise, decimal.

n Stores in an integer argument the total number of characters (including white space) that
have been scanned so far since the function call. No input is consumed.

e,f,g A floating point number is expected; the next field is converted accordingly and stored
through the corresponding argument, which should be a pointer to afloat. The input for­
mat for floating point numbers is as described for string_to _ decimal(3), with
fortran_conventions zero.

s A character string is expected; the corresponding argument should be a character pointer
pointing to an array of characters large enough to accept the string and a terminating \0,
which will be added automatically. The input field is terminated by a white space char­
acter.

c A character is expected; the corresponding argument should be a character pointer. The
normal skip over white space is suppressed in this case; to read the next non-space char­
acter, use % Is. If a field width is given, the corresponding argument should refer to a
character array, and the indicated number of characters is read.
Indicates string data; the normal skip over leading white space is suppressed. The left
bracket is followed by a set of characters, which we will call the scanset, and a right
bracket; the input field is the maximal sequence of input characters consisting entirely of
characters in the scanset. The circumflex ("), when it appears as the first character in the
scanset, serves as a complement operator and redefines the scanset as the set of all char­
acters not contained in the remainder of the scanset string. There are some conventions
used in the construction of the scanset. A range of characters may be represented by the
construct first-last, thus [0123456789] may be expressed [0-9]. Using this convention,
first must be lexically less than or equal to last, or else the dash will stand for itself. The
dash will also stand for itself whenever it is the first or the last character in the scanset.
To include the right square bracket as an element of the scan set, it must appear as the first
character (possibly preceded by a circumflex) of the scanset, and in this case it will not
be syntactically interpreted as the closing bracket. The corresponding argument must
point to a character array large enough to hold the data field and the terminating \0, which
will be added automatically. At least one character must match for this conversion to be
considered successful.

The conversion characters d, u, 0, x, and i may be preceded by I or h to indicate that a pointer to long or to
short rather than to int is in the argument list. Similarly, the conversion characters e, f, and g may be pre­
ceded by I to indicate that a pointer to double rather than to float is in the argument list. The I or h
modifier is ignored for other conversion characters.

Avoid this common error: because printf(3V) does not require that the lengths of conversion descriptors
and actual parameters match, coders sometimes are careless with the seanf() functions. But converting %f
to &double or %If to &float does not work; the results are quite incorrect.

seanf() conversion terminates at EOF, at the end of the control string, or when an input character conflicts
with the control string. In the latter case, the offending character is left unread in the input stream.

seanf() returns the number of successfully matched and assigned input items; this number can be zero in
the event of an early conflict between an input character and the control string. The constant EOF is
returned upon end of input. Note: this is different from 0, which means that no conversion was done; if
conversion was intended, it was frustrated by an inappropriate character in the input.

If the input ends before the first conflict or conversion, EOF is returned. If the input ends after the first
conflict or conversion, the number of successfully matched items is returned.

Sun Release 4.1 Last change: 21 January 1990 1145

SCANF(3V) C LIBRARY FUNCTIONS SCANF(3V)

Conversions can be applied to the nth argument in the argument list, rather than the next unused argument.
In this case, the conversion character % (see below) is replaced by the sequence %digit$, where digit is a
decimal integer n in the range [1,9], giving the position of the argument in the argument list. This feature
provides for the definition of fonnat strings that select arguments in an order appropriate to specific
languages.

The fonnat string can contain either fonn of a conversion specification, that is % or %digit$, although the
two fonns cannot be mixed within a single fonnat string.

All fonns of the scanf() functions allow for the detection of a language dependent radix character in the
input string. The radix character is defined by the program's locale (category LC_NVMERIC). In the "e"
locale, or in a locale where the radix character is not defined, the radix character defaults to '.'.

SYSTEM V DESCRIPTION
FORMFEED is allowed as a white space character in control strings.

XPG2 requires that nJ_scanf, nJ_fscanf and nl_sscanr be defined as scanf, fscanf and sscanf, respectively
for backward compatibility.

RETURN VALUES
If any items are converted, scanf(), fscanf() and sscanf() return the number of items converted success­
fully. This number may smaller than the number of items requested. If no items are converted, these func­
tions return O. scanf(), fscanf() and sscanf() return EOF on end of input.

EXAMPLES
The call:

int i, n; float x; char name[50];
n = scanf("%d%f%s", &i, &x, name);

with the input line:
2S S4.32E-l thompson

will assign to n the value 3, to i the value 25, to x the value 5.432, and name will contain thompson\O. Or:

int i, j; float X; char name[50];
(void) scanf("%i%2d%f%*d %[0-9]", &j, &i, &x, name);

with input:

011 56789 0123 56a72

will assign 9 to j, S6 to i, 789.0 to x, skip 0123, and place the string 56\0 in name. The next call to
getchar() (see getc(3V» will return a. Or:

int i, j, s, e; char name[SO];
(void) scanf("%i %i %n%s%n", &i, &j, &s, name, &e);

with input:

Oxll Oxy johnson

will assign 17 to i, 0 to j, 6 to s, will place the string xy\O in name, and will assign 8 to e. Thus, the length
of name is e - s = 2. The next call to getchar() (see getc(3V» will return a SPACE.

SEE ALSO
getc(3V), printf(3V), setiocale(3V), stdio(3V), string_to _ decimal(3), strtol(3)

1146 Last change: 21 January 1990 Sun Release 4.1

SCANF(3V) C LIBRARY FUNCTIONS SCANF(3V)

WARNINGS
Trailing white space (including a NEWLINE) is left unread unless matched in the control string.

BUGS
The success of literal matches and suppressed assignments is not directly detenninable.

Sun Release 4.1 Last change: 21 January 1990 1147

NAME

NETWORK FUNCTIONS SECURE_RPC (3N)

authdes_create, authdes~etucred, gecmyaddress, getnetname, host2netname, key _decryptsession,
key _encryptsession, key ~endes, key _setsecret, netname2host, netname2user, user2netname - library
routines for secure remote procedure calls

DESCRIPTION
RPC routines allow C programs to make procedure calls on other machines across the network. First,
the client calls a procedure to send a request to the server. Upon receipt of the request, the server
calls a dispatch routine to perform the requested service, and then sends back a reply. Finally, the
procedure call returns to the client

RPC allows various authentication flavors The authdes _getucred() and authdes _ create() routines
implement the DES authentication flavor. See rpc_clnt_auth(3N) for routines relating to the
AUTH_NONE and AUTH_ UNIX authentication types.

Note: Both the client and server should have their keys in the publickey(5) database. Also,
the keyserver daemon keyserv(8C) must be running on both the client and server hosts for
the DES authentication system to work.

Routines

1148

#include <rpc/rpc.h>

AUTH * authdes_create(netname, window, syncaddr, deskeyp)
char *netname;
unsigned window;
struct sockaddr In *syncaddr;
des_block *deskeyp;

authdes _ create() is an interface to the RPC secure authentication system, known as DES
authentication.

Used on the client side, authdes_create() returns an authentication handle that enables the
use of the secure authentication system. The first parameter netname is the network name of
the owner of the server process. This field usually represents a host derived from the utility
routine host2netname(), but could also represent a user name using user2netname(). The
second field is window on the validity of the client credential, given in seconds. A small
window is more secure than a large one, but choosing too small of a window will increase
the frequency of resynchronizations because of clock drift The third parameter syncaddr is
optional. If it is NULL, then the authentication system will assume that the local clock is
always in sync with the server's clock, and will not attempt to synchronize with the server. If
an address is supplied then the system will use it for consulting the remote time service
whenever resynchronization is required. This parameter is usually the address of the RPC

server itself. The final parameter deskeyp is also optional. If it is NULL, then the authentica­
tion system will generate a random DES key to be used for the encryption of credentials. If
deskeyp is supplied then it is used instead.

int authdes_getucred(adc, uidp, gidp, gidlenp, gidlistp)
struct authdes_cred *adc;
short *uidp;
short *gidp;
short *gidlenp;
int *gidlistp;

authdes_getucredO, is a DES authentication routine used by the server for converting a DES
credential, which is operating system independent, into a UNIX credential. uidp points to the
user ID of the user associated with adc; gidp refers to the user's current group ID; gidlistp
refers to an array of groups to which the user belongs and gidlenp has the count of the
entries in this array.

Last change: 20 January 1990 Sun Release 4.1

NETWORK FUNCTIONS SECURE_RPC (3N)

This routine differs from the utility routine netname2user() in that authdes _getucred() pulls
its information from a cache, and does not have to do a NIS name service lookup every time
it is called to get its information. Returns 1 if it succeeds and 0 if it fails.

void get _myaddress(addr)
struct sockaddr In *addr;

Return the machine's IP address in addr. The port number is always set to
htons(PMAPPORT).

int getnetname(netname)
char netname[MAXNETNAMELEN];

Return the unique, operating-system independent netname of the caller in the fixed-length
array netname. Returns 1 if it succeeds and 0 if it fails.

int host2netname(netname, host, domain)
char netname[MAXNETNAMELEN];
char *host;
char *domain;

Convert from a domain-specific hostname to an operating-system independent netname. This
routine is normally used to get the netname of the server. which is then used to get an
authentication handle by calling authdes_createO. This routine should be used if the owner
of the server process is the machine that is, the user with effective user ID zero. Returns 1 if
it succeeds and 0 if it fails. This routine is the inverse of netname2host().

int key _ decryptsession(netname, deskeyp)
char *netname;
des_block *deskeyp;

An interface routine to the keyserver daemon, which is associated with RPC's secure authenti­
cation system (DES authentication). User programs rarely need to call it, or its associated
routines key_encryptsessionO, key_gendesO and key_setsecretO. System commands such
as login and the RPC library are the main clients of these four routines.

key _ decryptsession() takes the netname of a server and a DES key, and decrypts the key by
using the public key of the server and the secret key associated with the effective user ID of
the calling process. Returns 0 if it succeeds and -1 if it fails. This routine is the inverse of
key _ encryptsession().

int key _ encryptsession(netname, deskeyp)
char *netname;
des_block *deskeyp;

A key server interface routine. It takes the netname of the server and a des key, and encrypts
it using the public key of the server and the secret key associated with the effective user ID
of the calling process. Returns 0 if it succeeds and -1 if it fails. This routine is the inverse
of key _ decryptsession().

int key _gendes(deskeyp)
des_block *deskeyp;

Sun Release 4.1

A keyserver interface routine. It is used to ask the keyserver for a secure conversation key.
Choosing one at "random" is usually not good enough, because the common ways of choos­
ing random numbers, such as using the current time, are very easy to guess. Returns 0 if it
succeeds and -1 if it fails.

Last change: 20 January 1990 1149

int key _ setsecret(keyp)
char *keyp;

NETWORK FUNCTIONS SECURE_RPC (3N)

A key server interface routine. It is used to set the secret key for the effective user ID of the
calling process. Returns 0 if it succeeds and -1 if it fails.

int netname2host(netname, host, hostlen)
char *netname;
char *host;
int hostlen;

Convert an operating-system independent netname to a domain-specific hostname. hostlen
specifies the size of the array pointed to by host. It returns 1 if it succeeds and 0 if it fails.
This routine is the inverse of host2netname().

int netname2user(netname, uidp, gidp, gidlenp, gidlistp)
char *name;
int *uidp;
int *gidp;
int *gidlenp;
int *gidlistp;

Convert an operating-system independent netname to a domain-specific user ID. uidp points to
the user ID of the user; gidp refers to the user's current group ID; gidlistp refers to an array
of groups to which the user belongs and gidlenp has the count of the entries in this array. It
returns 1 if it succeeds and 0 if it fails. This routine is the inverse of user2netname().

int user2netname(netname, uid, domain)
char name[MAXNETNAMELEN);
int uid;
char *domain;

Convert a domain-specific usemame to an operating-system independent netname. uid is the
user ID of the owner of the server process. This routine is normally used to get the netname
of the server, which is then used to get an authentication handle by calling authdes_createO.
Returns 1 if it succeeds and 0 if it fails. This routine is the inverse of netname2user().

SEE ALSO
login(1), chkey(I), rpc(3N), rpc_clnt_auth(3N), publickey(5), keyserv(8C), newkey(8)

1150 Last change: 20 January 1990 Sun Release 4.1

SETBUF(3V) C LIBRARY FUNCTIONS SETBUF(3V)

NAME
setbuf, setbuffer, setlinebuf, setvbuf - assign buffering to a stream

SYNOPSIS
#include <stdio.h>

void setbuf(stream, but)
FILE * stream ;
char *buf;

void setbutTer(stream, buf, size)
FILE *stream;
char *buf;
int size;

int setlinebuf(stream) FILE *stream;

int setvbuf(stream, buf, type, size)
FILE *stream;
char *buf;
int type, size;

DESCRIPTION
The three types of buffering available are unbuffered, block buffered, and line buffered. When an
output stream is unbuffered, information appears on the destination file or terminal as soon as written;
when it is block buffered many characters are saved up and written as a block; when it is line buf­
fered characters are saved up until a NEWLINE is encountered or input is read from stdin. fftush()
(see fclose(3V») may be used to force the block out early. A buffer is obtained from malloc(3V)
upon the first getc(3V) or putc(3S) on the file. By default, output to a terminal is line buffered,
except for output to the standard stream stderr which is unbuffered. All other input/output is fully
buffered.

setbuf() can be used after a stream has been opened but before it is read or written. It causes the
array pointed to by buf to be used instead of an automatically allocated buffer. If buf is the NULL
pointer, input/output will be completely unbuffered. A manifest constant BUFSIZ, defined in the
<stdio.h> header file, tells how big an array is needed:

char buf[BUFSIZ];

setbutTer(), an alternate form of setbuf(), can be used after a stream has been opened but before it is
read or written. It uses the character array buf whose size is determined by the size argument instead
of an automatically allocated buffer. If buf is the NULL pointer, input/output will be completely
unbuffered.

setvbuf() can be used after a stream has been opened but before it is read or written. type determines
how stream will be buffered. Legal values for type (defined in <stdio.h» are:

IOFBF fully buffers the input/output.

IOLBF

IONBF

line buffers the output; the buffer will be flushed when a NEWLINE is written, the
buffer is full, or input is requested.

completely unbuffers the input/output.

If buf is not the NULL pointer, the array it points to will be used for buffering, instead of an automati­
cally allocated buffer. size specifies the size of the buffer to be used.

setlinebuf() is used to change the buffering on a stream from block buffered or unbuffered to line
buffered. Unlike setbuf(), setbutTer(), and setvbuf(), it can be used at any time that the file descrip­
tor is active.

Sun Release 4.1 Last change: 21 January 1990 1151

SETBUF(3V) C LIBRARY FUNCI10NS SETBUF(3V)

A file can be changed from unbuffered or line buffered to block buffered by using freopen() (see
fopen(3V». A file can be changed from block buffered or line buffered to unbuffered by using freo­
pen() followed by setbuf() with a buffer argument of NUlL.

SYSTEM V DESCRIPTION
If buf is not NULL and stream refers to a tenninal device, setbuf() sets stream for line buffered
input/output.

RETURN V ALVES
setlinebuf() returns no useful value.

setvbuf() returns 0 on success. If an illegal value for type or size is provided, setvbuf() returns a
non-zero value. setvbuf()

SEE ALSO

NOTES

1152

fclose(3V), fopen(3V), fread(3S), getc(3V), malloc(3V), printf(3V), putc(3S), puts(3S)

A common source of error is allocating buffer space as an "automatic" variable in a code block, and
then failing to close the stream in the same block.

Last change: 21 January 1990 Sun Release 4.1

SETJMP(3V) C LIBRARY FUNCTIONS SETJMP(3V)

NAME
setjmp, longjmp, sigsetjmp, siglongjmp - non-local goto

SYNOPSIS
#include <setjmp.h>

int setjmp(env)
jmp_buf env;

void longjmp(env, val)
jmp_buf env;
int val;

int _setjmp(env)
jmp _ buf env;

void Jongjmp(env, val)
jmp _ buf env;
int val;

int sigsetjmp(env, savemask)
sigjmp_buf env;
int savemask;

void siglongjmp(env, val)
sigjmp_buf env;
int val;

DESCRIPTION
setjmp() and longjmp() are useful for dealing with errors and interrupts encountered in a low-level
subroutine of a program.

The macro setjmp() saves its stack environment in env for later use by longjmp(). A normal call to
setjmp() returns zero. setjmp() also saves the register environment. If a longjmp() call will be
made, the routine which called setjmp() should not return until after the longjmp() has returned con­
trol (see below).

longjmp() restores the environment saved by the last call of setjmp, and then returns in such a way
that execution continues as if the call of setjmp() had just returned the value val to the function that
invoked setjmp(); however, if val were zero, execution would continue as if the call of setjmp() had
returned one. This ensures that a "return" from setjmpO caused by a call to longjmpO can be dis­
tinguished from a regular return from setjmpO. The calling function must not itself have returned in
the interim, otherwise longjmp() will be returning control to a possibly non-existent environment. All
memory-bound data have values as of the time longjrnpO was called. The CPU and floating-point
data registers are restored to the values they had at the time that setjmp() was called. But, because
the register storage class is only a hint to the C compiler, variables declared as register variables may
not necessarily be assigned to machine registers, so their values are unpredictable after a longjmp().
This is especially a problem for programmers trying to write machine-independent C routines.

setjmp() and longjmp() save and restore the signal mask (see sigsetmask(2)), while _setjmpO and
_Iongjmp() manipulate only the C stack and registers. If the savemask flag to sigsetjmp() is non­
zero, the signal mask is saved, and a subsequent siglongjmp() using the same env will restore the sig­
nal mask. If the save mask flag is zero, the signal mask is not saved, and a subsequent siglongjmpO
using the same env will not restore the signal mask. In all other ways, _setjmp() and sigsetjmp()
function in the same way that setjmpO does, and JongjmpO and siglongjmpO function in the same
way that longjmp() does.

None of these functions save or restore any floating-point status or control registers, in particular the
MC68881 fpsr, fper, or fpiar, the Sun-3 FPA fpamode or fpastatus, and the Sun-4 %fsr. See
ieee _ 8ags(3M) to save and restore floating-point status or control information.

Sun Release 4.1 Last change: 5 October 1989 1153

SETJMP(3V) C LIBRARY FUNCTIONS SETJMP(3V)

SYSTEM V DESCRIPTION
setjmp() and longjmp() manipulate only the C stack and registers; they do not save or restore the
signal mask. _setjmpO behaves identically to setjmpO, and _longjmpO behaves identically to

longjmp().

EXAMPLE
The following code fragment indicates the flow of control of the setjmp() and longjmp() combina­
tion:

function declaration

jmp_buf my_environment;

if (setjmp (my_environment)) {

} else {

}

1* register variables have unpredictable values *1
code after the return from longjmp

1* do not modify register vars in this leg of code *1
this is the return from setjmp

SEE ALSO

BUGS

1154

cc(l V), sigsetmask(2), sigvec(2), ieee _flags(3M), signal(3V), setjmp(3V)

setjmp() does not save the current notion of whether the process is executing on the signal stack.
The result is that a longjmp() to some place on the signal stack leaves the signal stack state incorrect.

On Sun-2 and Sun-3 systems setjmp() also saves the register environment. Therefore, all data that
are bound to registers are restored to the values they had at the time that setjmp() was called. All
memory-bound data have values as of the time 10ngjmpO was called. However, because the register
storage class is only a hint to the C compiler, variables declared as register variables may not neces­
sarily be assigned to machine registers, so their values are unpredictable after a longjmp(). When
using compiler options that specify automatic register allocation (see cc(l V)), the compiler will not
attempt to assign variables to registers in routines that call setjmp().

Last change: 5 October 1989 Sun Release 4.1

SETLOCALE (3V) C LIBRARY FUNCTIONS SETLOCALE (3V)

NAME
setlocale, nCinit - set international environment

SYNOPSIS
#include docale.h>

char *setlocale(category, locale)
int category;
char * locale;

int nl_init(lang)
char *lang;

DESCRIPTION
setlocale() selects the appropriate piece of the program's locale as specified by category, and may be
used to change or query the program's international environment. The entire locale may be changed
by calling setlocale() with category set to LC _ALL. The other possible values for category query or
change only a part of the program's complete international locale:

LC CTYPE
Affects the behavior of the character classification and conversion functions. See ctype(3V),
and mblen(3).

LC COLLATE
Affects the behavior of the string collation functions strcoU (3) and strxfrm(3V).

LC TIME
Affects the behavior of the time conversion functions. See printf(3V), scanf(3V), strtod(3),
and ctime(3V) for strftime(), strptime(), and ctime().

LC NUMERIC
Affects the radix character for the formatted input/output functions and the string conversion
functions, gcvt(3V), printf(3V), strtod(3), gconvert(), sgconvert() (see econvert(3»,
file_to_decimaIO, and func_to_decimaIO (see string_to_decimal(3». Also affects the non­
monetary formatting information returned by the localeconv() function.

LC MONETARY
Affects the monetary formatting information returned by the localeconv() function.

LC MESSAGES
Affects the behavior of functions that present messages, namely gettext(), and textdomain().

The locale argument is a pointer to a character string containing the required setting of category. The
following preset values of locale are defined for all settings of category:

"C" Specifies the minimal environment for C translation. If setiocaleO is not invoked, the "C"
locale is the default. Operational behavior within the "C" locale is defined separately for
each interface function.

At program startup, the equivalent of:

""

Sun Release 4.1

In this case, setlocale() will first check the value of the .corresponding environment variable
(for example, LC _ CTYPE for the LC _ CTYPE category) and if valid (that is, points to the
name of a valid locale), setlocale() sets the specified category of the international environ­
ment to that value and returns the string corresponding to the locale set (that is, the value of
the environment variable, not "tt). If the value is invalid, setlocale() returns a NULL pointer
and the international environment is not changed by this call.

If the environment variable corresponding to the specified category is not set or is set to the
empty string, setlocale() will examine the LANG environment variable. If both the LANG
environment variable, and the environment variable corresponding to the specified category
are not set or are set to the empty string, then the LC _default environment variable is exam­
ined. If this contains a valid setting, then the category is set to the value of LC _default. If

Last chanQ:e: 21 Januarv 1990 1155

SETLOCALE (3V) C LIBRARY FUNCTIONS SETLOCALE (3V)

the LANG environment variable is set and valid this will set the category to the corresponding
value of LANG. If LC_default is not set, then setlocaleO returns that category to the default
"C" locale.

To set all categories in the international environment, setlocale() is invoked in the following manner:

setlocale (LC _ALL, "");

To satisfy this request, setlocale() first checks all the relevant environment variables LC _ CTYPE,
LC_COLLATE, LC_TIME, LC_NUMERIC, LC_MONETARY, LC_MESSAGES. If anyone of these
relevant environment variables is invalid, this call to setlocale() will return a NULL pointer, and the
international environment will not be changed. If all the relevant environment variables are valid, set­
locale() sets the international environment to reflect the values of the environment variables. The
categories are set in the following order:

LC CTYPE
LC COLLATE
LC TIME
LC NUMERIC
LC MONETARY
LC MESSAGES

Using this scheme, the categories corresponding to the environment variables will override the value of
the LANG and LC_default environment variables for a particular category.

nlJnitO is equivalent to

setiocale(LC _ALL, "");

and is supplied for compatibility with X/Open XPG2.

RETURN VALUES

FILES

1156

If a valid string is given for the locale parameter, and the selection can be honored, setlocale() returns
the string associated with the specified category for the new locale. If the selection cannot be
honored, setlocale() returns a null pointer and the program's locale is not changed.

A NULL pointer for locale causes setlocale() to return the string associated with the category for the
program's current locale; the program's locale is not changed. The string contains information relating
to each piece part of the whole international environment. This inquiry can fail by returning a null
pointer if any category is invalid.

The string returned by such a setlocale() call is such that a subsequent call with the string and its
associated category will restore that part of the program's locale. The string returned by:

ptr = setlocale(LC_ALL, (char *) 0);

is such that in a subsequent call:

setiocale(LC _ALL, ptr);

will reset each and every category to the state when the string was first returned. The string returned
must not be modified by the program, but will be overwritten by a subsequent call to setlocale().

letc/localellocalel category
locale is the directory that contains numerous files (categories), each relating
to a single category of a valid locale as selected by category argument to set­
localeO. Generally this is classed as a private directory. This directory is
searched by setlocale(), prior to searching:

lusrlsharellib/localellocalel category
locale is the directory that contains numerous files (categories), each relating
to a single category of a valid locale as selected by category argument to set­
locale(). Generally this data is classed as global and sharable.

Last change: 21 January 1990 Sun Release 4.1

SETLOCALE (3V) C LIBRARY FUNCTIONS SElLOCALE (3V)

DIAGNOSTICS
setlocaJe() returns a null pointer if a relevant environment variable has an invalid setting. setJocaJe()
also returns a null pointer if category is invalid.

Sun Release 4.1 Last change: 21 January 1990 1157

SETUID(3V) C LIBRARY FUNCTIONS SETUID(3V)

NAME
setuid, seteuid, setruid, setgid, setegid, setrgid - set user and group ID

SYNOPSIS
#include <sys/types.b>

int setuid(uid)
uid_t uid;

int seteuid(euid)
uid_t euid;

int setruid(ruid)
uid_t ruid;

int setgid(gid)
gid_t gid;

int setegid(egid)
gid_t egid;

int setrgid(rgid)
gid_t rgid;

DESCRIPTION
setuid() (setgid(» sets both the real and effective user ID (group ID) of the current process as
specified by uid (gid) (see NOTES).

seteuid() (setegid(» sets the effective user ID (group ID) of the current process.

setruid() (setrgid(» sets the real user ID (group ID) of the current process.

These calls are only permitted to the super-user or if the argument is the real or effective user (group)
ID of the calling process.

SYSTEM V DESCRIPTION
If the effective user ID of the calling process is not super-user, but if its real user (group) ID is equal
to uid (gid), or if the saved set-user (group) ID from execve(2V) is equal to uid (gid), then the effec­
tive user (group) ID is set to uid (gid).

RETURN VALUES
These functions return:

o on success.

-1 on failure and set errno to indicate the error as for setreuid(2) (setregid(2».

ERRORS
EINVAL

EPERM

The value of uid (gid) is invalid (less than 0 or greater than 65535).

The process does not have super-user privileges and uid (gid) does not matches nei­
ther the real user (group) ID of the process nor the saved set-user-ID (set-group-ID)
of the process.

SEE ALSO

NOTES

1158

execve(2V), getgid(2V), getuid(2V), setregid(2), setreuid(2)

For setuid() to behave as described above, LPOSIX_SAVED_IDS} must be in effect (see sysconf(2V».
LPOSIX_SA VED _IDS} is always in effect on SunOS systems, but for portability, applications should
call sysconf() to determine whether LPOSIX_SA VED _IDS} is in effect for the current system.

Last change: 21 January 1990 Sun Release 4.1

SIGACTION (3V) C LIBRARY FUNCTIONS SIGACTION (3V)

NAME
sigaction - examine and change signal action

SYNOPSIS
#include <signal.h>

int sigaction(sig, act, oact)
int sig;
struct sigaction *act, *oact;

DESCRIPTION
sigactionO allows the calling process to examine and specify (or both) the action to be associated
with a specific signal. sig specifies the signal. Acceptable values are defined in <signal.h>.

The structure sigaction(), used to describe an action to be taken, is defined in the header <signal.h>
as follows:

struct sigaction {

};

void (*sa_handler)O;
sigset_t sa_mask;

1* SIG _ DFL, SIG _ IGN, or pointer to a function *1
1* Additional signals to be blocked during

execution of signal-catching function *1
1* Special flags to affect behavior of signal */

If act is not NULL, it points to a structure specifying the action to be associated with the specified
signal. If oact is not NULL, the action previously associated with the signal is stored in the location
pointed to by the oact. If act is NULL, signal handling is unchanged by this function. Thus, the call
can be used to enquire about the current handling of a given signal. The sa _handler field of the
sigaction structure identifies the action to be associated with the specified signal. If the sa_handler
field specifies a signal-catching function, the sa _mask field identifies a set of signals that shall be
added to the process's signal mask before the signal-catching function mask is invoked. The SIGKILL
and SIGSTOP signals shall not be added to the signal mask using this mechanism; this restriction shall
be enforced by the system without causing an error to be indicated.

The sa_flags field can be used to modify the behavior of the specified signal. The following flag bit,
defined in the header <signal.h>, can be set in sa_flags:

#define SA _ ONST ACK OxOOOl 1* take signal on signal stack *1
#define SA_INTERRUPT Ox0002 1* do not restart system on signal return */
#define SA_RESETHAND Ox0004 1* reset handler to SIG_DFL when signal taken *1
#define SA _NOCLDSTOP OxOO08 1* don't send a SIGCHLD on child stop */

If sig is SIGCHILD and the SA _NOCLDSTOP flag is not set in sa_flags, and the implementation sup­
ports the SIGCIDLD signal, a SIGCHILD signal shall be generated for the calling process whenever
any of its child processes stop. If sig is SIGCHILD and the SA_NOCLDSTOP flag is set in sa_flags,
the implementation shall not generate a SIGCHILD signal in this way.

If the SA_ONSTACK bit is set in the flags for that signal, the system will deliver the signal to the pro­
cess on the signal stack specified with sigstack(2), rather than delivering the signal on the current
stack.

If a caught signal occurs during certain system calls, the call is restarted by default. The call can be
forced to terminate prematurely with an EINTR error return by setting the SA_INTERRUPT bit in the
flags for that signal. SA_INTERRUPT is not available in 4.2BSD, hence it should not be used if back­
ward compatibility is needed. The affected system calls are read(2V) or write(2V) on a slow device
(such as a terminal or pipe or other socket, but not a file) and during a wait(2V).

Once a signal handler is installed, it remains installed until another sigvec() call is made, or an
execve(2V) is performed, unless the SA _ RESETHAND bit is set in the flags for that signal. In that
case, the value of the handler for the caught signal is set to SI G _ D FL before entering the signal­
catching function, unless the signal is SIGILL or SIGTRAP. Also, if this bit is set, the bit for that

Sun Release 4.1 Last change: 21 January 1990 1159

SIGACTION (3V) C LIBRARY FUNCTIONS SIGACTION (3V)

signal in the signal mask will not be set; unless the signal mask associated with that signal blocks that sig­
nal, further occurrences of that signal will not be blocked. The SA _ RESETHAND flag is not available in
4.2BSD, hence it should not be used if backward compatibility is needed.

When a signal is caught by a signal-catching function installed by sigaction() a new signal mask is
calculated and installed for the duration of the signal-catching function (or until a call to either sig­
procmaskO or sigsuspendO). This mask is formed by taking the union of the current signal mask
and the value of the sa _mask for the signal being delivered, and then including the signal being
delivered. If and when the user's signal handler returns normally, the original signal mask is restored.

Once an action is installed for a specific signal, it remains installed until another action is explicitly
requested (by another call to sigaction()), or until one of the exec functions is called.

If the previous action for sig had been established by signal() defined in the C standard, the values of
the fields returned in the structure pointed to by the oact are unspecified, and in particular
oact->sv _handler is not necessarily the same value passed to signal(). However, if a pointer to the
same structure or a copy thereof is passed to a subsequent call to sigaction() using act, handling of
the signal shall be as if the original call to signal() were repeated.

If sigaction() fails, no new signal handler is installed.

RETURN VALUES
sigaction() returns:

o
-1

ERRORS
EINVAL

SEE ALSO

on success.

on failure and sets errno to indicate the error.

sig is an invalid or unsupported signal number.

An attempt was made to catch a signal that cannot be ignored. See <signal.h>.

kill(2V), sigpause(2V), sigprocmask(2V), signal(3V), sigsetops(3V)

1160 Last change: 21 January 1990 Sun Release 4.1

SIGFPE(3) C LIBRARY FUNCTIONS SIGFPE(3)

NAME
sigfpe - signal handling for specific SIGFPE codes

SYNOPSIS
#include <signal.h>

#include <Ooatingpoint.h>

sigfpe _handler _type sigfpe(code, hdl)
sigfpe _ code _type code;
sigfpe _handler _type hdl;

DESCRIPTION
This function allows signal handling to be specified for particular SIGFPE codes. A call to sigfpeO
defines a new handler hdl for a particular SIGFPE code and returns the old handler as the value of the
function sigfpe() • Normally handlers are specified as pointers to functions; the special cases
SIGFPE_IGNORE, SIGFPE_ABORT, and SIGFPE_DEFAULT allow ignoring, specifying core dump
using abort(3), or default handling respectively.

For these IEEE-related codes:
FPE _ FL TINEX _TRAP fp_inexact - floating inexact result
FPE_FLTDIV _TRAP fp_division - floating division by zero
FPE _ FL TUND _TRAP fp_underflow - floating underflow
FPE_FLTOVF _TRAP fp_overflow - floating overflow
FPE_FLTBSUN_TRAP fp_invalid - branch or set on unordered
FPE_FLTOPERR_TRAP fp_invalid - floating operand error
FPE_FLTNAN_TRAP fp_invalid - floating Not-A-Number

default handling is defined to be to call the handler specified to ieee _ handler(3M).

For all other SIGFPE codes, default handling is to core dump using abort(3).

The compilation option -tTpa causes fpa recomputation to replace the default abort action for code
FPE_FPA_ERROR. Note: SIGFPE_DEFAULT will restore abort rather than FPA recomputation for this
code.

Three steps are required to intercept an IEEE-related SIGFPE code with sigfpe():

1) Set up a handler with sigfpeO.

2) Enable the relevant IEEE trapping capability in the hardware, perhaps by using
assembly-language instructions.

3) Perform a floating-point operation that generates the intended IEEE exception.

Unlike ieee _handler(3M), sigfpe() never changes floating-point hardware mode bits affecting IEEE
trapping. No IEEE-related SIGFPE signals will be generated unless those hardware mode bits are
enabled.

SIGFPE signals can be handled using sigvec(2), signal(3V), sigfpe(3), or ieee _ handler(3M). In a par­
ticular program, to avoid confusion, use only one of these interfaces to handle SIGFPE signals.

Sun Release 4.1 Last change: 21 October 1987 1161

SIGFPE(3) C LIBRARY FUNCTIONS

EXAMPLE
A user-specified signal handler might look like this:
void sample handler(sig, code, scp, addr)

int Slg ; /* sig == SIGFPE always */
int code;
struct sigcontext *scp ;
char *addr ;
{

/*
Sample user-written sigfpe code handler.
Prints a message and continues.
struct sigcontext is defined in <signal.h>.

*/

SIGFPE(3)

printf(" ieee exception code %x occurred at pc %X \n" ,code,scp->scyc);
}

and it might be set up like this:
extern void sample _ handler();
main()
{

sigfpe _handler_type hdl, old _ handlerl, old _ handler2;

* save current overflow and invalid handlers; set the new
* overflow handler to sample _ handler() and set the new
* invalid handler to SIGFPE _ABORT (abort on invalid)
*/

hdl = (sigfpe_handler_type) sample_handler;
oldJIandlerl = sigfpe(FPE_FLTOVF _TRAP, hdl);
0ld_handler2 = sigfpe(FPE_FLTOPERR_TRAP, SIGFPE_ABORT);

/*

}

* restore old overflow and invalid handlers
*1

sigfpe(FPE _ FLTOVF _TRAP, old _ handlerl);
sigfpe(FPE_ FLTOPERR _TRAP, old _ handler2);

SEE ALSO
sigvec(2), abort(3), f1oatingpoint(3), ieee _ handler(3M), signal(3V)

DIAGNOSTICS
sigfpeO returns BADSIG if code is not zero or a defined SIGFPE code.

1162 Last change: 21 October 1987 Sun Release 4.1

SIGINTERRUPf (3V) C LIBRARY FUNCTIONS SIGINTERRUPf (3V)

NAME
siginterrupt - allow signals to interrupt system calls

SYNOPSIS
int siginterrupt(sig, flag)
int sig, flag;

DESCRIPTION

NOTES

siginterrupt() is used to change the system call restart behavior when a system call is interrupted by
the specified signal. If the flag is false (0), then system calls will be restarted if they are interrupted
by the specified signal and no data has been transferred yet System call restart is the default
behavior on 4.2BSD, and on SunOS in the 4.2 environment, when the signal (3V) routine is used.

If the flag is true (1), then restarting of system calls is disabled. If a system call is interrupted by the
specified signal and no data has been transferred, the system call will return -1 with errno set to
EINTR. Interrupted system calls that have started transferring data will return the amount of data actu­
ally transferred. System call interrupt is the signal behavior found on older version of the UNIX
operating systems, such as 4.1BSD and System V UNIX. It is the default behavior on SunOS in the
System V environment when the signal() routine is used; therefore, this routine is useful in that
environment only if a signal that a sigvec(2) specified should restart system calls is to be changed not
to restart them.

Note: the new 4.2BSD signal handling semantics are not altered in any other way. Most notably, sig­
nal handlers always remain installed until explicitly changed by a subsequent sigvec() call, and the
signal mask operates as documented in sigvec(), unless the SV _ RESETHAND bit has been used to
specify that the pre-4.2BSD signal behavior is to be used. Programs may switch between restartable
and interruptible system call operation as often as desired in the execution of a program.

Issuing a siginterrupt() call during the execution of a signal handler will cause the new action to take
place on the next signal to be caught.

This library routine uses an extension of the sigvec(2) system call that is not available in 4.2BSD,
hence it should not be used if backward compatibility is needed.

RETURN VALUES
siginterrupt() returns:

o on success.

-1 if an invalid signal number was supplied.

SEE ALSO
sigblock(2), sigpause(2V), sigsetmask(2), sigvec(2), signal(3V)

Sun Release 4.1 Last change: 21 January 1990 1163

SIGNAL (3V) C LIBRARY FUNCTIONS SIGNAL(3V)

NAME
signal - simplified software signal facilities

SYNOPSIS
#include <signaI.h>

void (*signal(sig, func»O
void (*func)O;

DESCRIPTION

1164

signal() is a simplified interface to the more general sigvec(2) facility. Programs that use signal() in
preference to sigvec() are more likely to be portable to all systems.

A signal is generated by some abnormal event, initiated by a user at a terminal (quit, interrupt, stop),
by a program error (bus error, etc.), by request of another program (kill), or when a process is stopped
because it wishes to access its control terminal while in the background (see termio(4». Signals are
optionally generated when a process resumes after being stopped, when the status of child processes
changes, or when input is ready at the control terminal. Most signals cause termination of the receiv­
ing process if no action is taken; some signals instead cause the process receiving them to be stopped,
or are simply discarded if the process has not requested otherwise. Except for the SIGKILL and SIG­
STOP signals. the signal() call allows signals either to be ignored or to interrupt to a specified loca­
tion. The following is a list of all signals with names as in the include file <signaI.h>:

SIGHUP 1 hangup
SIGINT 2 interrupt
SIGQUIT 3* quit
SIGILL 4* illegal instruction
SIGTRAP 5* trace trap
SIGABRT 6* abort (generated by abort(3) routine)
SIGEMT 7* emulator trap
SIG FPE 8* arithmetic exception
SIGKILL 9 kill (cannot be caught, blocked, or ignored)
SIGBUS 10* bus error
SIGSEGV 11*
SIGSYS 12*
SIGPIPE 13
SIGALRM 14
SIGTERM 15
SIGURG 16e
SIGSTOP 17t
SIGTSTP 18t
SIGCONT 19.
SIGCHLD 20-
SIGTTIN 21t
SIGTTOU 22t
SIGIO 23.
SIGXCPU 24
SIGXFSZ 25
SIGVTALRM 26
SIGPROF 27
SIGWINCH 28.
SIGLOST 29*
SIGUSRI 30
SIGUSR2 31

segmentation violation
bad argument to system call
write on a pipe or other socket with no one to read it
alarm clock
software termination signal
urgent condition present on socket
stop (cannot be caught, blocked, or ignored)
stop signal generated from keyboard
continue after stop
child status has changed
background read attempted from control terminal
background write attempted to control terminal
I/O is possible on a descriptor (see fcntl(2V»
cpu time limit exceeded (see getrlimit(2»
file size limit exceeded (see getrlimit(2»
virtual time alarm (see getitimer(2»
profiling timer alarm (see getitimer(2»
window changed (see termio(4) and win(4S»
resource lost (see lockd(8C»
user-defined signal 1
user-defined signal 2

Last change: 21 January 1990 Sun Release 4.1

SIGNAL (3V) C LIBRARY FUNCTIONS SIGNAL(3V)

The starred signals in the list above cause a core image if not caught or ignored.

If June is SIG_DFL, the default action for signal sig is reinstated; this default is termination (with a
core image for starred signals) except for signals marked with. or t. Signals marked with. are dis­
carded if the action is SIG _ DFL; signals marked with t cause the process to stop. If June is SIG _IGN
the signal is subsequently ignored and pending instances of the signal are discarded. Otherwise, when
the signal occurs further occurrences of the signal are automatically blocked and June is called.

A return from the function unblocks the handled signal and continues the process at the point it was
interrupted. Unlike previous signal facilities, the handler June remains installed after a signal has
been delivered.

If a caught signal occurs during certain system calls, terminating the call prematurely, the call is
automatically restarted. In particular this can occur during a read(2V) or write(2V) on a slow device
(such as a terminal; but not a file) and during a wait(2V).

The value of signalO is the previous (or initial) value of june for the particular signal.

After a fork(2V) or vfork(2) the child inherits all signals. An execve(2V) resets all caught signals to
the default action; ignored signals remain ignored.

SYSTEM V DESCRIPTION
If June is SIG _IGN the signal is subsequently ignored and pending instances of the signal are dis­
carded. Otherwise, when the signal occurs, June is called. Further occurrences of the signal are not
automatically blocked. The value of June for the caught signal is reset to SIG _ DFL before June is
called, unless the signal is SIGILL or SIGTRAP.

A return from the function continues the process at the point at which it was interrupted. The handler
June does not remain installed after a signal has been delivered.

If a caught signal occurs during certain system calls, causing the call to terminate prematurely, the call
is interrupted. In particular this can occur during a read(2V) or write(2V) on a slow device (such as
a terminal; but not a file) and during a wait(2V). After the signal catching function returns, the inter­
rupted system call may return a -1 to the calling process with errno set to EINTR.

RETURN VALUES
signal() returns the previous action on success. On failure, it returns -1 and sets errno to indicate
the error.

ERRORS
signal() will fail and no action will take place if one of the following occurs:

EINVAL sig was not a valid signal number.

An attempt was made to ignore or supply a handler for SIGKILL or SIGSTOP.

SEE ALSO

NOTES

kill(l) , execve(2V), fork(2V), getitimer (2) , getrlimit(2), kill(2V), ptrace(2), read(2V), sigblock(2),
sigpause(2V), sigsetmask(2), sigstack(2), sigvec(2), vfork(2), wait(2V), write(2V), setjmp(3V), ter­
mio(4)

The handler routine can be declared:

void handler(sig, code, scp, addr)
int sig, code;
struct sigcontext *scp;
char *addr;

Here sig is the signal number; eode is a parameter of certain signals that provides additional detail;
sep is a pointer to the sigcontext structure (defined in <signal.h», used to restore the context from
before the signal; and addr is additional address information. See sigvec(2) for more details.

Sun Release 4.1 Last change: 21 January 1990 1165

SIGSETOPS (3V) C LIBRARY FUNCTIONS SIGSETOPS (3V)

NAME
sigsetops, sigaddset, sigdelset, sigfillset, sigemptyset, sigismember - manipulate signal sets

SYNOPSIS
#include <signal.h>

int sigaddset(set, signo)
sigset _ t * set;
int signo;

int sigdelset(set, signo)
sigset_t *set;
int signo;

int sigfillset(set)
sigset_t *set;

int sigemptyset(set)
sigset_t *set;

int sigismember(set, signo)
sigset_t *set
int signo;

DESCRIPTION
The sigsetops primitives manipulate sets of signals. They operate on data objects addressable by the appli­
cation. They do not operate on any set of signals known to the system, such as the set blocked from
delivery to a process or the set pending for a process.

sigaddset() and sigdelset() respectively add and delete the individual signal specified by the value of
signo from the signal set pointed to by set.

sigemptyset() initializes the signal set pointed to by set such that all signals defined in this standard are
excluded.

sigfillset() initializes the signal set pointed to by set such that all signals defined in this standard are
included.

Applications shall call either sigemptyset() or sigfillset() at least once for each object of type sigset_t
prior to any other use of that object. If such an object is not initialized in this way, but is nonetheless sup­
plied as an argument to any of sigaddsetO, sigdelsetO, sigismember(), sigactionO, sigprocmaskO, sig­
pending(), or sigsuspend() the results are undefined.

sigismember() tests whether the signal specified by the value of signo is a member of the set pointed to by
set.

RETURN VALUES
sigismember() returns:

1 if the specified signal is a member of set.

o if the specified signal is not a member of set.

-1 if an error is detected, and sets errno to indicate the error.

The other functions return:

o on success.

-1 on failure and set errno to indicate the error.

ERRORS

1166

For each of the following conditions, if the condition is detected, sigaddset(), sigdelset(), and sig­
ismember() set errno to:

ElNVAL signo is an invalid or unsupported signal number.

Last change: 21 January 1990 Sun Release 4.1

SIGSETOPS (3V) C LIBRARY FUNCTIONS SIGSETOPS (3V)

SEE ALSO
sigaction(3V), sigpending(2V), sigprocmask(2V)

Sun Release 4.1 Last change: 21 January 1990 1167

SLEEP(3V) C LIBRARY FUNCTIONS SLEEP(3V)

NAME
sleep - suspend execution for interval

SYNOPSIS
int sleep(seconds)
unsigned seconds;

SYSTEM V SYNOPSIS
unsigned sleep(seconds)
unsigned seconds;

DESCRIPTION
sleep() suspends the current process from execution for the number of seconds specified by the argu­
ment The actual suspension time may be an arbitrary amount longer because of other activity in the
system.

sleep() is implemented by setting an interval timer and pausing until it expires. The previous state of
this timer is saved and restored. If the sleep time exceeds the time to the expiration of the previous
value of the timer, the process sleeps only until the timer would have expired, and the signal which
occurs with the expiration of the timer is sent one second later.

SYSTEM V DESCRIPTION
sleep() suspends the current process from execution until either the number of real time seconds
specified by seconds have elapsed or a signal is delivered to the calling process and its action is to
invoke a signal-catching function or to terminate the process. The suspension time may be an arbi­
trary amount longer than requested because of other activity in the system. The value returned by
sleep() will be the "unslept" amount (the requested time minus the time actually slept) in case the
caller had an alarm set to go off earlier than the end of the requested sleep() time, or premature
arousal due to another caught signal.

RETURN VALUES
sleep() returns no useful value.

SYSTEM V RETURN VALUES
If sleep() returns because the requested time has elapsed, it returns O. If sleep() returns due to the
delivery of a signal, it returns the "un slept" amount in seconds.

SEE ALSO

NOTES

getitimer(2), sigpause(2V), usleep(3)

SIGALRM should not be blocked or ignored during a call to sleep(). Only a prior call to alarm(3V)
should generate SIGALRM for the calling process during a call to sleepO. A signal-catching function
should not interrupt a call to sleep() to call siglongjmp() or longjrnp() to restore an environment
saved prior to the sleep() call.

WARNINGS

1168

sleep() is slightly incompatible with alarm(3V). Programs that do not execute for at least one second
of clock time between successive calls to sleep() indefinitely delay the alarm signal. Use System V
sleep(). Each sleep(3V) call postpones the alarm signal that would have been sent during the
requested sleep period to occur one second later.

Last change: 21 January 1990 Sun Release 4.1

SPUTL(3V) C LIBRARY FUNCTIONS SPUTL(3V)

NAME
sputl, sgetl - access long integer data in a machine-independent fashion

SYNOPSIS
void sputl(value, buffer)
long value;
char *buffer;

long sgetl(buffer)
char *buffer;

DESCRIPTION
sputiO takes the four bytes of the long integer values and places them in memory starting at the
address pointed to by buffer. The ordering of the bytes is the same across all machines.

sgetl() retrieves the four bytes in memory starting at the address pointed to by buffer and returns the
long integer value in the byte ordering of the host machine.

The combination of sputl() and sgetl() provides a machine-independent way of storing long numeric
data in a file in binary form without conversion to characters.

Sun Release 4.1 Last change: 16 June 1988 1169

SSIGNAL(3) C LIBRARY FUNCTIONS SSIGNAL(3)

NAME
ssignal, gsignal - software signals

SYNOPSIS
#include <signal.b>

int (*ssignal (sig, action»()
int sig, (*action)();

int gsignal (sig)
int sig;

DESCRIPTION
ssignal() and ssignal() implement a software facility similar to signal(3V).

Software signals made available to users are associated with integers in the inclusive range 1 through
15. A call to ssignalO associates a procedure, action, with the software signal sig; the software signal,
sig, is raised by a call to ssignal(). Raising a software signal causes the action established for that
signal to be taken.

The first argument to ssignal() is a number identifying the type of signal for which an action is to be
established. The second argument defines the action; it is either the name of a (user-defined) action
function or one of the manifest constants SIG_DFL (default)or SIG_IGN (ignore). ssignalO returns
the action previously established for that signal type; if no action has been established or the signal
number is illegal, ssignalO returns SIG_DFL.

ssignal() raises the signal identified by its argument, sig:

If an action function has been established for sig, then that action is reset to SIG _ DFL and the
action function is entered with argument sig. ssignal() returns the value returned to it by the
action function.

If the action for sig is SIG_IGN, ssignalO returns the value 1 and takes no other action.

If the action for sig is SIG_DFL, ssignalO returns the value a and takes no other action.

If sig has an illegal value or no action was ever specified for sig, ssignal() returns the value 0
and takes no other action.

SEE ALSO
signal(3V)

1170 Last change: 6 October 1987 Sun Release 4.1

STDIO(3V) C LIBRARY FUNCTIONS STDIO(3V)

NAME
stdio - standard buffered input/output package

SYNOPSIS
#include <stdio.h>

FILE *stdin;
FILE *stdout;
FILE *stderr;

DESCRIPTION
The functions described in section 3S constitute a user-level I/O buffering scheme. The in-line macros
getc(3V) and putc(3S) handle characters quickly. The macros getcharO (see getc(3V» and
putcbar() (see putc(3S», and the higher level routines fgetc(), getw() (see getc(3V», gets(3S),
fgets() (see gets(3S», scanf(3V), fscanf() (see scanf(3V», fread(3S), fputc(), putw() (see putc(3S»,
puts(3S), fputs() (see puts(3S», printf(3V), fprintf() (see printf(3V», fwrite() (see fread(3S» all
use or act as if they use getc() and putc(). They can be freely intermixed.

A file with associated buffering is called a stream, and is declared to be a pointer to a defined type
FILE. fopen(3V) creates certain descriptive data for a stream and returns a pointer to designate the
stream in all further transactions. Normally, there are three open streams with constant pointers
declared in the <stdio.h> include file and associated with the standard open files:

stdin standard input file
stdout standard output file
stderr standard error file

A constant NULL (0) designates a nonexistent pointer.

An integer constant EOF (-1) is returned upon EOF or error by most integer functions that deal with
streams (see the individual descriptions for details).

Any module that uses this package must include the header file of pertinent macro definitions, as fol­
lows:

#include <stdio.h>

The functions and constants mentioned in sections labeled 3S of this manual are declared in that
header file and need no further declaration. The constants and the following 'functions' are imple­
mented as macros; redeclaration of these names is perilous: getc(), getchar(), putc(), putchar(),
feof(), ferror(), fileno(), and c1earerr().

Output streams, with the exception of the standard error stream stderr, are by default buffered if the
output refers to a file and line-buffered if the output refers to a terminal. The standard error output
stream stderr is by default unbuffered, but use of fopen() will cause it to become buffered or line­
buffered. When an output stream is unbuffered, information is written to the destination file or termi­
nal as soon as it is output to the stream; when it is buffered, many characters are saved up and written
as a block. When it is line-buffered, each line of output is written to the destination file or terminal
as soon as the line is completed (that is, as soon as a NEWLINE character is output or, if the output
stream is stdout or stderr, as soon as input is read from stdin). setbuf(3V), setbufferO. setline­
bufO, or setvbufO (see setbuf(3V» can be used to change the stream's buffering strategy.

SYSTEM V DESCRIPTION
When an output stream is line-buffered, each line of output is written to the destination file or terminal
as soon as the line is completed (that is, as soon as a NEWLINE character is output or as soon as input
is read from a line-buffered stream).

Output saved up on all line-buffered streams is written when input is read from any line-buffered
stream. Input read from a stream that is not line-buffered does not flush output on line-buffered
streams.

Sun Release 4.1 Last change: 21 January 1990 1171

STDIO(3V) C LIBRARY FUNCTIONS STDIO(3V)

RETURN VALUES
The value EOF is returned uniformly to indicate that a FILE pointer has not been initialized with
fopenO, input (output) has been attempted on an output (input) stream, or a FILE pointer designates
corrupt or otherwise unintelligible FILE data.

SEE ALSO

NOTES

BUGS

1172

open(2V), close(2V), iseek(2V), pipe(2V), read (2V), write(2V), ctermid(3V), cuserid(3V),
fclose(3V), ferror(3V), fopen(3V), fread(3S), fseek(3S), getc(3V), gets(3S), popen(3S), printf(3V),
putc(3S). puts(3S). scanf(3V), setbuf(3V). system(3), tmpfiie(3S), tmpnam(3S). ungetc(3S)

The line buffering of output to terminals is almost always transparent, but may cause confusion or
malfunctioning of programs which use standard I/O routines but use read(2V) to read from the stan­
dard input, as calls to read() do not cause output to line-buffered streams to be ft ushed.

In cases where a large amount of computation is done after printing part of a line on an output termi­
nal, it is necessary to call fflushO (see fclose(3V» on the standard output before performing the com­
putation so that the output will appear.

The standard buffered functions do not interact well with certain other library and system functions,
especially vfork(2).

Last change: 21 January 1990 Sun Release 4.1

STRCOLL(3) C LIBRARY FUNCTIONS STRCOLL(3)

NAME
strcoll, sttxfnn - compare or transform strings using collating information

SYNOPSIS
#include <string.h>

int strcoll(sl, s2)
char *sl;
char *s2;

size_t strxfrm(sl, s2, n)
char *sl;
char *s2;
size_t n;

DESCRIPTION
strcoll() compares the string pointed to by sl to the string pointed to by s2. These strings are inter­
preted as appropriate to the LC _ COLLATE category of the current locale.

strxfrm() transforms the string pointed to by s2 and places the resulting string into the array pointed
to by sl. The transformation is such that if string() is applied to two transformed strings, it returns a
value greater than, equal to, or less than zero, corresponding to the result of the strcoll() function
applied to the same two original strings. No more than n characters are placed into the resulting array
pointed to by sl, including the tenninating null character. If n is zero, sl is permitted to be a null
pointer. If copying takes place between objects that overlap, the behavior is undefined.

RETURN VALUES
On success, strcoll() returns an integer greater than, equal to or less than zero, respectively, if the
string pointed to by sl is greater than, equal to or less than the string pointed to by s2 when both arc
interpreted as appropriate to the current locale. On failure, strcoll() sets errno to indicate the error,
but returns no special value.

strxfrm() returns the length of the transformed string, not including the terminating null character. If
the value returned is n or more, the contents of the array pointed to by sl are indeterminate. On
failure, strxfrm() returns (size_t)-I, and sets errno to indicate the error.

ERRORS
EINVAL

SEE ALSO
string(3)

Sun Release 4.1

sl or s2 contain characters outside the domain of the collating sequence.

Last change: 21 January 1990 1173

STRING(3) C LIBRARY FUNCTIONS STRING(3)

NAME
strcat, strncat, strdup, strcmp, strncmp, strcasecmp, strncasecmp, strcpy, strncpy, strlen, strchr, strrchr,
strpbrk, strspn, strcspn, strstr, strtok, index, rindex - string operations

SYNOPSIS

1174

#include <string.h>

char *strcat(sl, s2)
char *sl, *s2;

char *strncat(sl, s2, n)
char *sl, *s2;
int n;

char *strdup(sl)
char *sl;

int strcmp(sl, s2)
char *sl, *s2;

int strncmp(sl, s2, n)
char *sl, *s2;
int n;

int strcasecmp(sl, s2) char *sl, *s2;

int strncasecmp(sl, s2, n)
char *sl, *s2;
int n;

char *strcpy(sl, s2)
char *sl, *s2;

char *strncpy(sl, s2, n)
char *sl, *s2;
int n;

int strlen(s)
char *s;

char *strchr(s, c)
char *s;
int c;

char *strrchr(s, c)
char *s;
int c;

char *strpbrk(sl, s2)
char *sl, *s2;

int strspn(sl, s2)
char *sl, *s2;

int strcspn(sl, s2)
char *sl, *s2;

char *strstr(sl, s2)
char *sl, *s2;

char *strtok(sl, s2)
char *sl, *s2;

Last change: 6 October 1987 Sun Release 4.1

STRING (3)

#include <strings.h>

char *index(s, c)
char *s, c;

char *rindex(s, c)
char *s, C;

DESCRIPTION

C LIBRARY FUNCTIONS STRING (3)

These functions operate on null-terminated strings. They do not check for overflow of any receiving string.

strcat() appends a copy of string s2 to the end of string sl. strncat() appends at most n characters. Each
returns a pointer to the null-terminated result.

strcmp() compares its arguments and returns an integer greater than, equal to, or less than 0, according as
sl is lexicographically greater than, equal to, or less than s2. strncmp() makes the same comparison but
compares at most n characters. Two additional routines strcasecmp() and strncasecmp() compare the
strings and ignore differences in case. These routines assume the ASCII character set when equating lower
and upper case characters.

strdup() returns a pointer to a new string which is a duplicate of the string pointed to by sl. The space for
the new string is obtained using malloc(3V). If the new string cannot be created, a NULL pointer is
returned.

strcpy() copies string s2 to sl until the null character has been copied. strncpy() copies string s2 to sl
until either the null character has been copied or n characters have been copied. If the length of s2 is less
than n, strncpy() pads sl with null characters. If the length of s2 is n or greater, sl will not be null­
terminated. Both functions return sl .

strlen() returns the number of characters in s, not including the null-terminating character.

strchr() (strrchar(» returns a pointer to the first (last) occurrence of character c in string s, or a NULL
pointer if c does not occur in the string. The null character terminating a string is considered to be part of
the string.

indexO (rindexO) returns a pointer to the first (last) occurrence of character c in string s, or a NULL
pointer if c does not occur in the string. These functions are identical to strchr() (strchr(» and merely
have different names.

strpbrk() returns a pointer to the first occurrence in string sl of any character from string s2, or a NULL
pointer if no character from s2 exists in sl .

strspn() (strcspn(» returns the length of the initial segment of string sl which consists entirely of charac­
ters from (not from) string s2.

strstr() returns a pointer to the first occurrence of the pattern string s2 in sl. For example, if sl is "string
thing" and s2 is "ing", strstr() returns" ing thing". If s2 does not occur in sl , strstr() returns NULL.

strtok() considers the string sl to consist of a sequence of zero or more text tokens separated by spans of
one or more characters from the separator string s2. The first call (with pointer sl specified) returns a
pointer to the first character of the first token, and will have written a null character into sl immediately
following the returned token. The function keeps track of its position in the string between separate calls,
so that subsequent calls (which must be made with the first argument a NULL pointer) will work through
the string sl immediately following that token. In this way subsequent calls will work through the string sl
until no tokens remain. The separator string s2 may be different from call to call. When no token remains
in sl , a NULL pointer is returned.

Sun Release 4.1 Last change: 6 October 1987 1175

STRING (3) C LIBRARY FUNCTIONS STRING(3)

NOTES
For user convenience, all these functions, except for index() and rindex(), are declared in the optional
<string.h> header file. All these functions, including index() and rindex() but excluding strchr(),
strrchr(), strpbrk(), strspn(), strcspn(), and strtok() are declared in the optional <strings.h> include
file; these headers are set this way for backward compatibility.

SEE ALSO
malloc(3V), bstring(3)

WARNINGS

1176

strcmp() and strncmp() use native character comparison, which is signed on the Sun, but may be
unsigned on other machines. Thus the sign of the value returned when one of the characters has its high­
order bit set is implementation-dependent.

strcasecmp() and strncasecmp() use native character comparison as above and assume the ASCII charac­
ter set.

On the Sun processor, as well as on many other machines, you can not use a NULL pointer to indicate a null
string. A NULL pointer is an error and results in an abort of the program. If you wish to indicate a null
string, you must have a pointer that points to an explicit null string. On some implementations of the C
language on some machines, a NULL pointer, if dereferenced, would yield a null string; this highly non­
portable trick was used in some programs. Programmers using a NULL pointer to represent an empty string
should be aware of this portability issue; even on machines where dereferencing a NULL pointer does not
cause an abort of the program, it does not necessarily yield a null string.

Character movement is performed differently in different implementations. Thus overlapping moves may
yield surPrises.

Last change: 6 October 1987 Sun Release 4.1

C LIBRARY FUNCTIONS S1RING_TO _DECIMAL (3)

NAME
string_to_decimal, file_to_decimal, func_to_decimal- parse characters into decimal record

SYNOPSIS
#include dloatingpoint.h>
#include <stdio.h>

void string_to _ decimal(pc,nmax,fortran _ conventions,pd,pform,pechar)
char **pc;
int nmax;
int fortran_conventions;
decimal_record *pd;
enum decimal_string_form *pform;
char * *pechar;

void file_to _ decimal(pc,nmax,fortran _ conventions,pd,pform,pechar ,pf,pnread)
char **pc;
int nmax;
int fortran_conventions;
decimal_record *pd;
enum decimal_string_form *pform;
char **pechar;
FILE *pf;
int *pnread;

void func _to _ decimal(pc,nmax,fortran _ conventions,pd,pform,pechar ,pget,pnread,punget)
char **pc;
int nmax;
int fortran_conventions;
decimal_record *pd;
enum decimal_string_form *pform;
char * *pechar;
int (*pget)();
int *pnread;
int (*punget)();

DESCRIPTION
The char_to _ decimal() functions parse a numeric token from at most nmax characters in a string * * pc or
file *pf or function (*pget)() into a decimal record *pd, classifying the form of the string in *pform and
*pechar. The accepted syntax is intended to be sufficiently flexible to accomodate many languages:

whites pace value

or

whites pace sign value

where whites pace is any number of characters defined by iss pace in <ctype.h>, sign is either of [+-], and
value can be number, nan, or info inf can be INF (inf Jorm) or INFINITY (infinity Jorm) without regard to
case. nan can be NAN (nan Jorm) or NAN(nstring) (nanstringJorm) without regard to case; nstring is any
string of characters not containing ')' or the null character; nstring is copied to pd->ds and, currently, not
used subsequently. number consists of

significant

or

significant efield

Sun Release 4.1 Last change: 21 January 1988 1177

1178

C LIBRARY FUNCTIONS

where significant must contain one or more digits and may contain one point; possible forms are

digits
digits.
. digits
digits .digits

efield consists of

echar digits

or

echar sign digits

(intJorm)
(intdot Jorm)
(dotfrac Jorm)
(intdotfrac Jorm)

where echar is one of [Ee], and digits contains one or more digits.

When fortran_conventions is nonzero, additional input forms are accepted according to various Fortran
conventions:
o no Fortran conventions
I Fortran list-directed input conventions
2 Fortran formatted input conventions, ignore blanks (BN)
3 Fortran formatted input conventions, blanks are zeros (BZ)

When fortran_conventions is nonzero, echar may also be one of [Dd] , and efield may also have the form

sign digits.

When fortran _ conventions>= 2, blanks may appear in the digits strings for the integer, fraction, and
exponent fields and may appear between echar and the exponent sign and after the infinity and NaN forms.
If fortran _ conventions= 2, the blanks are ignored. When fortran _ conventions== 3, the blanks that appear
in digits strings are interpreted as zeros, and other blanks are ignored.

When fortran_conventions is zero, the current locale's decimal point character is used as the decimal point;
when fortran_conventions is nonzero, the period is used as the decimal point.

The form of the accepted decimal string is placed in *peform. If an efield is recognized, *pechar is set to
point to the echar.

On input, *pc points to the beginning of a character string buffer of length >= nmax. On output, *pc points
to a character in that buffer, one past the last accepted character. string_to_decimaIO gets its characters
from the buffer; file_to_decimaIO gets its characters from *pfand records them in the buffer, and places a
null after the last character read. func_to_decimaIO gets its characters from an int function (*pget)O.

The scan continues until no more characters could possibly fit the acceptable syntax or until nmax charac­
ters have been scanned. If the nmax limit is not reached then at least one extra character will usually be
scanned that is not part of the accepted syntax. file_to _ decimal() and func _ to _ decimal() set *pnread to
the number of characters read from the file; if greater than nmax, some characters were lost. If no charac­
ters were lost, file_to _ decimal() and func _ to _ decimal() attempt to push back, with ungetc(3S) or
(*punget) 0, as many as possible of the excess characters read, adjusting *pnread accordingly. If all unget
calls are successful, then **pc will be a null character. No push back will be attempted if (*punget) () is
NULL.

Last change: 21 January 1988 Sun Release 4.1

C LIBRARY FUNCTIONS

Typical declarations for *pget() and *punget() are:

int xget()
{ ... }
int (*pget)() = xget;
int xunget(c)
char c ;
{ ... }
int (*punget)() = xunget;

If no valid number was detected, pd ->fpclass is set to fp _signaling, * pc is unchanged, and * pform is set to
invalid form.

atof() and strtod(3) use string_to _ decimal(). scanf(3V) uses file_to _ decimal().

SEE ALSO
ctype(3V), localeconv(3), scanf(3V), setlocale(3V), strtod(3), ungetc(3S)

Sun Release 4.1 Last change: 21 January 1988 1179

STRTOD(3) C LIBRARY FUNCTIONS STRTOD(3)

NAME
strtod, atof - convert string to double-precision number

SYNOPSIS
double strtod(str, ptr)
char *str, **ptr;

double atof(str)
char *str;

DESCRIPTION
strtod() returns as a double-precision floating-point number the value represented by the character
string pointed to by str. The string is scanned up to the first unrecognized character, using
string_to_decimal(3), with fortran_conventions set to O.

If the value of ptr is not (char **)NULL, a pointer to the character terminating the scan is returned in
the location pointed to by ptr. If no number can be formed, *ptr is set to str, and for historical com­
patibility, 0.0 is returned, although a NaN would better match the IEEE Floating-Point Standard's
intent.

The radix character is defined by the program's locale (category LC_NUMERIC). In the "c" locale,
or in a locale where the radix character is not defined. the radix character defaults to a period '.'.

atof(str) is equivalent to strtod(str, (char **)NULL). Thus, when atof(str) returns 0.0 there is no
way to determine whether str contained a valid numerical string representing 0.0 or an invalid numeri­
cal string.

SEE ALSO
scanf(3V), string_to _ decimal(3)

DIAGNOSTICS

1180

Exponent overflow and underflow produce the results specified by the IEEE Standard. In addition,
errno is set to ERANGE.

Last change: 5 October 1989 Sun Release 4.1

STRTOL(3) C LIBRARY FUNCTIONS STRTOL(3)

NAME
strtol, atol, atoi - convert string to integer

SYNOPSIS
long strtol(str, ptr, base)
char *str, **ptr;
int base;

long atol(str)
char *str;

int atoi(str)
char *str;

DESCRIPTION
strtol() returns as a long integer the value represented by the character string pointed to by sIr. The
string is scanned up to the first character inconsistent with the base. Leading "white-space" charac­
ters (as defined by isspace() in ctype(3V» are ignored.

If the value of plr is not (char * *)NULL, a pointer to the character terminating the scan is returned in
the location pointed to by ptr. If no integer can be formed, that location is set to sIr, and zero is
returned.

If base is positive (and not greater than 36), it is used as the base for conversion. After an optional
leading sign, leading zeros are ignored, and "Ox" or "OX" is ignored if base is 16.

If base is zero, the string itself determines the base thusly: after an optional leading sign a leading
zero indicates octal conversion, and a leading "Ox" or "OX" hexadecimal conversion. Otherwise,
decimal conversion is used.

Truncation from long to int can, of course, take place upon assignment or by an explicit cast.

atol(slr) is equivalent to strtol(str, (char * *)NULL, 10).

atoi(str) is equivalent to (int) strtol(str, (char **)NULL, 10).

SEE ALSO
ctype(3V), scanf(3V), strtod(3)

BUGS
Overflow conditions are ignored.

Sun Release 4.1 Last change: 6 October 1987 1181

STTY(3C) COMPATIBILITY FUNCTIONS STIY(3C)

NAME
stty, gtty - set and get terminal state

SYNOPSIS
#include <sgtty.h>

stty(rd, but)
int rd;
struct sgttyb * bur;

gtty(rd, but)
int fd;
struct sgttyb * bur;

DESCRIPTION
Note: this interface is obsoleted by ioctl(2).

stty() sets the state of the terminal associated with fd. stty() retrieves the state of the terminal asso­
ciated with fd. To set the state of a terminal the call must have write permission.

The stty() call is actually

ioctl(fd, TIOCSETP, but)

while the gtty() call is

ioctl(rd, TIOCGETP, but)

See ioctl(2) and ttcompat(4M) for an explanation.

DIAGNOSTICS
If the call is successful 0 is returned, otherwise -1 is returned and the global variable errno contains
the reason for the failure.

SEE ALSO
ioctl(2), ttcompat(4M)

1182 Last change: 22 November 1987 Sun Release 4.1

SWAB(3)

NAME
swab - swap bytes

SYNOPSIS
void
swab(from, to, nbytes)
char *from, *to;

DESCRIPTION

C LIBRARY FUNCTIONS SWAB (3)

swab() copies nbytes bytes pointed to by from to the position pointed to by to, exchanging adjacent
even and odd bytes. It is useful for carrying binary data between high-ender machines (mM 360' s,
MC68000's, etc) and low-end machines (such as Sun386i systems).

nbytes should be even and positive. If nbytes is odd and positive, swab() uses nbytes - 1 instead. If
nbytes is negative, swab() does nothing.

The from and to addresses should not overlap in portable programs.

Sun Release 4.1 Last change: 6 October 1987 1183

SYSLOG(3) C LIBRARY FUNCTIONS SYSLOG(3)

NAME
syslog, openlog, closelog, setlogmask - control system log

SYNOPSIS
#include <syslog.h>

openlog(ident, logopt, facility)
char *ident;

syslog(priority, message, parameters ••.)
char *message;

c1oselog()

setlogmask(maskpri)

DESCRIPTION

1184

syslog() passes message to syslogd(8), which logs it in an appropriate system log, writes it to the sys­
tem console, forwards it to a list of users, or forwards it to the syslogd on another host over the net­
work. The message is tagged with a priority of priority. The message looks like a printf(3V) string
except that %m is replaced by the current error message (collected from errno). A trailing NEWUNE
is added if needed.

Priorities are encoded as a facility and a level. The facility describes the part of the system generating
the message. The level is select~,d from an ordered list

LOG EMERG

LOG ALERT

LOG CRIT

LOG ERR

LOG WARNING

LOG NOTICE

LOG INFO

LOG DEBUG

A panic condition. This is normally broadcast to all users.

A condition that should be corrected immediately, such as a corrupted
system database.

Critical conditions, such as hard device errors.

Errors.

Warning messages.

Conditions that are not error conditions, but that may require special
handling.

Informational messages.

Messages that contain information normally of use only when debug-
ging a program.

If special processing is needed, openlog() can be called to initialize the log file. The parameter ident
is a string that is prepended to every message. logopt is a bit field indicating logging options.
Current values for logopt are:

LOG PID

LOG CONS

LOG NDELAY

LOG NOWAIT

Log the process ID with each message. This is useful for identifying
specific daemon processes (for daemons that fork).

Write messages to the system console if they cannot be sent to sys­
logd. This option is safe to use in daemon processes that have no
controlling terminal, since syslog() forks before opening the console.

Open the connection to syslogd immediately. Normally the open is
delayed until the first message is logged. This is useful for programs
that need to manage the order in which file descriptors are allocated.

Do not wait for child processes that have been forked to log messages
onto the console. This option should be used by processes that enable
notification of child termination using SIGCHLD, since syslog() may
otherwise block waiting for a child whose exit status has already been
collected.

Last change: 22 November 1987 Sun Release 4.1

SYSLOG(3) C LIBRARY FUNCTIONS SYSLOG(3)

The facility parameter encodes a default facility to be assigned to all messages that do not have an
explicit facility already encoded:

LOG KERN Messages generated by the kernel. These cannot be generated by any
user processes.

LOG USER

LOG MAIL

LOG DAEMON

LOG AUTH

LOG LPR

LOG NEWS

LOG UUCP

LOG CRON

LOG LOCAL0--7

Messages generated by random user processes. This is the default
facility identifier if none is specified.

The mail system.

System daemons, such as ftpd(8C), routed(8C), etc.

The authorization system: login(1), su(1 V), getty(8), etc.

The line printer spooling system: Ipr(l), Ipc(8), Ipd(8), etc.

Reserved for the USENET network news system.

Reserved for the UUCP system; it does not currently use syslog.

The cron/at facility; crontab(1), at(l), cron(8), etc.

Reserved for local use.

closelog() can be used to close the log file.

setlogmask() sets the log priority mask to maskpri and returns the previous mask. Calls to syslog()
with a priority not set in maskpri are rejected. The mask for an individual priority pri is calculated by
the macro LOG _ MASK(prt); the mask for all priorities up to and including toppri is given by the
macro LOG _ UPTO(toppri). The default allows all priorities to be logged.

EXAMPLES
This call logs a message at priority LOG _ALERT:

syslog(LOG_ALERT, "who: internal error 23");

The FrP daemon ftpd would make this call to openlog() to indicate that all messages it logs should
have an identifying string of ftpd, should be treated by syslogd as other messages from system dae­
mons are, should include the process ID of the process logging the message:

openlog("ftpd", LOG_PID, LOG_DAEMON);

Then it would make the following call to setlogmask() to indicate that messages at priorities from
LOG _ EMERG through LOG_ERR should be logged, but that no messages at any other priority should
be logged:

setiogmask(LOG _ UPTO(LOG_ERR»;

Then, to log a message at priority LOG_INFO, it would make the following call to syslog:

syslog(LOG_INFO, "Connection from host %d", CallingHost);

A locally-written utility could use the following call to syslog() to log a message at priority
LOG_INFO to be treated by syslogd as other messages to the facility LOG_LOCAL2 are:

syslog(LOG_INFOILOG_LOCAL2, "error: %m");

SEE ALSO
at(1), crontab(1), logger(l), login(l), Ipr(l), su(1 V), printf(3V), syslog.conf(5), cron(8), ftpd(8C),
getty(8), Ipc(8), Ipd(8), routed(8C), syslogd(8)

Sun Release 4.1 Last change: 22 November 1987 1185

SYSTEM (3) C LIBRARY FUNCTIONS SYSTEM(3)

NAME
system - issue a shell command

SYNOPSIS
system(string)
char *string;

DESCRIPTION
systemO gives the string to sh(l) as input, just as if the string had been typed as a command from a
terminal. The current process performs a wait(2V) system call, and waits until the shell terminates.
system() then returns the exit status returned by wait(2V). Unless the shell was interrupted by a sig­
nal, its termination status is contained in the 8 bits higher up from the low-order 8 bits of the value
returned by wait().

SEE ALSO
sh(l), execve(2V), wait(2V), popen(3S)

DIAGNOSTICS
Exit status 127 (may be displayed as "32512") indicates the shell could not be executed.

1186 Last change: 22 January 1988 Sun Release 4.1

NE1WORK FUNCTIONS

NAME
caccept - accept a connect request

SYNOPSIS
#include <tiuser .h>

int t _ accept(fd, resfd, call)
int fd;
int resfd;
struct t_call *call;

DESCRIPTION
t _accept() is issued by a transport user to accept a connect request. fd identifies the local transport
endpoint where the connect indication arrived, resfd specifies the local transport endpoint where the
connection is to be established, and call contains information required by the transport provider to
complete the connection. call points to a t _call structure which contains the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

The netbuf structure contains the following members:

unsigned int maxlen;
unsigned int len;
char *buf;

buf points to a user input and/or output buffer. len generally specifies the number of bytes contained
in the buffer. If the structure is used for both input and output, the transport function will replace the
user value of len on return. maxlen generally has significance only when buf is used to receive output
from the transport function. In this case, it specifies the physical size of the buffer, and the maximum
value of len that can be set by the function. If maxlen is not large enough to hold the returned infor­
mation, a TBUFOVFLW error will generally result. However, certain functions may return part of the
data and not generate an error. In call, addr is the address of the caller, opt indicates any protocol­
specific parameters associated with the connection, udata points to any user data to be returned to the
caller, and sequence is the value returned by t_listen(3N) that uniquely associates the response with a
previously received connect indication.

A transport user may accept a connection on either the same, or on a different, local transport end­
point than the one on which the connect indication arrived. If the same endpoint is specified (resfd =
fd), the connection can be accepted unless the following condition is true: The user has received other
indications on that endpoint but has not responded to them (with t_acceptO or t_snddis(3N)). For
this condition, t _ accept() will fail and set t _ errno to TBADF.

If a different transport endpoint is specified (resfd != fd), the endpoint must be bound to a protocol
address and must be in the T_IDLE state (see t_getstate(3N)) before the t_acceptO is issued.

For both types of endpoints, t _ accept() will fail and set t _ errno to TLOOK if there are indications
(such as a connect or disconnect) waiting to be received on that endpoint.

The values of parameters specified by opt and the syntax of those values are protocol specific. The
udata field enables the called transport user to send user data to the caller and the amount of user data
must not exceed the limits supported by the transport provider as returned by t_open(3N) or
t_getinfo(3N). If the len field of udata is zero, no data will be sent to the caller.

RETURN VALUES
t _ accept() returns:

o on success.

-I on failure and sets t errno to indicate the error.

Sun Release 4.1 Last change: 21 January 1990 1187

ERRORS
TACCES

TBADDATA

TBADF

TBADOPT

TBADSEQ

TLOOK

TNOTSUPPORT

TOUTS TATE

TSYSERR

SEE ALSO

NETWORK FUNCTIONS

The user does not have permission to accept a connection on the responding
transport endpoint.

The user does not have permission to use the specified options.

The amount of user data specified was not within the bounds allowed by the
transport provider.

The specified file descriptor does not refer to a transport endpoint.

The user is illegally accepting a connection on the same transport endpoint on
which the connect indication arrived.

The specified options were in an incorrect fonnat or contained illegal informa­
tion.

An invalid sequence number was specified.

An asynchronous event has occurred on the transport endpoint referenced by
fd and requires immediate attention.

This function is not supported by the underlying transport provider.

The function was issued in the wrong sequence on the transport endpoint
referenced by fd.

The transport endpoint referred to by resfd is not in the T JDLE state.

The function failed due to a system error and set errno to indicate the error.

intro(3), t_connect(3N), t_getstate(3N), t_listen(3N), t_open(3N), t_rcvconnect(3N)

Network Programming

1188 Last change: 21 January 1990 Sun Release 4.1

NETWORK FUNCTIONS

NAME
calloc - allocate a library structure

SYNOPSIS
#include <tiuser .h>

char *t_alloc(fd, struct_type, fields)
int fd;
int struct_type;
int fields;

DESCRIPTION
t _ alloc() dynamically allocates memory for the various transport function argument structures as
specified below. t _ alloc() allocates memory for the specified structure and for buffers referenced by
the structure.

The structure to allocate is specified by struct _type, and can be one of the following (each of of these
structures may be used as an argument to one or more transport functions):

T BIND struct t bind - -
T CALL
T OPTMGMT
T DIS
T UNITDATA
T UDERROR
T INFO

struct t call
struct t_optmgmt
struct t discon
struct t unitdata
struct t uderr
struct t info

Each of the above structures, except T_INFO, contains at least one field of type 'struct netbuf'. The
maxlen, len, and but members of the netbuf structure are described in t_accept(3N). For each field
of this type, the user may specify that the buffer for that field should be allocated as well. The fields
argument specifies this option, where the argument is the bitwise-OR of any of the following:

T ADDR The addr field of the t_bind, t_call, t_unitdata, or t_uderr structures.
T OPT The opt field of the t_optmgmt, t_call, t_unitdata, or t_uderr structures.
T UDATA The udata field of the t_call, t_discon, or t_unitdata structures.
T ALL All relevant fields of the given structure.

For each field specified in fields, t_alloc() allocates memory for the buffer associated with the field,
and initializes the but pointer and maxlen field accordingly. The length of the buffer allocated is
based on the same size information returned to the user on t_open(3N) and t_getinfo(3N). Thus, fd
must refer to the transport endpoint through which the newly allocated structure is passed, so that the
appropriate size information can be accessed. If the size value associated with any specified field is
-lor -2 (see t_open(3N) or t_getinfo(3N», t_allocO is unable to determine the size of the buffer to

allocate and fails, setting t_ errno to TSYSERR and errno to EINV AL . For any field not specified in
fields, but is set to NULL and maxlen is set to zero.

Use of t _ alloc() to allocate structures helps ensure the compatibility of user programs with future
releases of the transport interface.

RETURN VALUES
On success, t_allocO returns a pointer to the type of structure specified by struct_type. On failure, it
returns NULL and sets t errno to indicate the error.

ERRORS
TBADF The specified file descriptor does not refer to a transport endpoint.

TSYSERR The function failed due to a system error and set errno to indicate the error.

Sun Release 4.1 Last change: 21 January 1990 1189

NETWORK FUNCTIONS

SEE ALSO
intro(3), t_free(3N), t_getinfo(3N), t_open(3N)

Network Programming

1190 Last change: 21 January 1990 Sun Release 4.1

NETWORK FUNCTIONS

NAME
cbind - bind an address to a transport endpoint

SYNOPSIS
#include <tiuser .h>

int t_ bind(fd, req, ret)
int fd;
struct t_bind *req;
struct t_ bind *ret;

DESCRIPTION
t _ bind() associates a protocol address with the transport endpoint specified by fd and activates that
transport endpoint. In connection mode, the transport provider may begin accepting or requesting con­
nections on the transport endpoint. In connectionless mode, the transport user may send or receive
data units through the transport endpoint.

The req and ret arguments point to a t_ bindO structure containing the following members:
struct netbuf addr;
unsigned qlen;

The maxlen, len, and buf members of the netbuf structure are described in t_accept(3N). The addr
field of the t_ bindO structure specifies a protocol address and the qlen field is used to indicate the
maximum number of outstanding connect indications.

req is used to request that an address, represented by the netbuf structure, be bound to the given tran­
sport endpoint. len specifies the number of bytes in the address and buf points to the address buffer.
maxlen has no meaning for the req argument. On return, ret contains the address that the transport
provider actually bound to the transport endpoint; this may be different from the address specified by
the user in req. In ret, the user specifies maxlen which is the maximum size of the address buffer
and buf which points to the buffer where the address is to be placed. On return, len specifies the
number of bytes in the bound address and buf points to the bound address. If maxlen is not large
enough to hold the returned address, an error will result.

If the requested address is not available, or if no address is specified in req (the len field of addr in
req is 0) the transport provider will assign an appropriate address to be bound, and will return that
address in the addr field of ret. The user can compare the addresses in req and ret to determine
whether the transport provider bound the transport endpoint to a different address than that requested.

req may be NULL if the user does not wish to specify an address to be bound. Here, the value of
qlen is assumed to be 0, and the transport provider must assign an address to the transport endpoint.
Similarly, ret may be NULL if the user does not care what address was bound by the transport pro­
vider and is not interested in the negotiated value of qlen. It is valid to set req and ret to NULL for
the same call, in which case the transport provider chooses the address to bind to the transport end­
point and does not return that information to the user.

The qlen field has meaning only when initializing a connection-mode service. It specifies the number
of outstanding connect indications the transport provider should support for the given transport end­
point. An outstanding connect indication is one that has been passed to the transport user by the tran­
sport provider. A value of qlen greater than 0 is only meaningful when issued by a passive transport
user that expects other users to call it. The value of qlen will be negotiated by the transport provider
and may be changed if the transport provider cannot support the specified number of outstanding con­
nect indications. On return, the qlen field in ret will contain the negotiated value.

t_bindO allows more than one transport endpoint to be bound to the same protocol address (however,
the transport provider must support this capability also), but binding more than one protocol address to
the same transport endpoint is not allowed. If a user binds more than one transport endpoint to the
same protocol address, only one endpoint can be used to listen for connect indications associated with
that protocol address. In other words, only one t _ bind() for a given protocol address may specify a
value of qlen greater than O. In this way, the transport provider can identify which transport endpoint

T ~~t ('h~nCTP· ') 1 T!lnll~rv 1 QQ() 11 Q1

NETWORK FUNCTIONS

should be notified of an incoming connect indication. If a user attempts to bind a protocol address to a
second transport endpoint with a value of qlen greater than 0, the transport provider will assign another
address to be bound to that endpoint IT a user accepts a connection on the transport endpoint that is
being used as the listening endpoint, the bound protocol address will be found to be busy for the dura­
tion of that connection. No other transport endpoints may be bound for listening while that initial
listening endpoint is in the data transfer phase. This will prevent more than one transport endpoint
bound to the same protocol address from accepting connect indications.

RETURN VALUES
t_ hind() returns:

o on success.

-1 on failure and sets t errno to indicate the error.

ERRORS
TACCES

TBADADDR

TBADF

TBUFOVFLW

TNOADDR

TOUTSTATE

TSYSERR

SEE ALSO

The user does not have permission to use the specified address.

The specified protocol address was in an incorrect format or contained illegal
information.

The specified file descriptor does not refer to a transport endpoint

The number of bytes allowed for an incoming argument is not sufficient to
store the value of that argument. The transport provider's state will change to
T_IDLE and the information to be returned in ret will be discarded.

The transport provider could not allocate an address.

The function was issued in the wrong sequence.

The function failed due to a system error and set err no to indicate the error.

intro(3), t_open(3N), t_optmgmt(3N), t_unhind(3N)

Network Programming

1192 Last change: 21 January 1990 Sun Release 4.1

NETWORK FUNCTIONS

NAME
cclose - close a transport endpoint

SYNOPSIS
#include <tiuser .h>

int t _ close(fd)
int fd;

DESCRIPTION
t _ close() infonns the transport provider that the user is finished with the transport endpoint specified
by fd, and frees any local library resources associated with the endpoint. In addition, t_c1oseO closes
the file associated with the transport endpoint.

t_close() should be called from the T_UNBND state (see t_getstate(3N». However, t_c1oseO does
not check state information, so it may be called from any state to close a transport endpoint If this
occurs, the local library resources associated with the endpoint will be freed automatically. In addi­
tion, close(2V) will be issued for that file descriptor; the close will be abortive if no other process has
that file open, and will break any transport connection that may be associated with that endpoint.

RETURN VALUES
t _ close() returns:

o on success.

-1 on failure and sets t errno to indicate the error.

ERRORS
TBADF The specified file descriptor does not refer to a transport endpoint

SEE ALSO
close(2V), t _getstate(3N), t _ open(3N), t _ unhind(3N)

Network Programming

Sun Release 4.1 Last change: 21 January 1990 1193

NETWORK FUNCTIONS

NAME
Cconnect - establish a connection with another transport user

SYNOPSIS
#include <tiuser .h>

int t_connect(fd, sndcall, rcvcall)
int fd;
struct t_call *sndcall;
struct t_call *rcvcall;

DESCRIPTION

1194

t_connect() enables a transport user to request a connection to the specified destination transport user. fd
identifies the local transport endpoint where communication will be established, while sndcall and rcvcall
point to a t _ call() structure which contains the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

sndcall specifies information needed by the transport provider to establish a connection and rcvcall
specifies information that is associated with the newly established connection.

The malden, len, and bufmembers of the netbuf structure are described in t_3ccept(3N). In sndcall, addr
specifies the protocol address of the destination transport user, opt presents any protocol-specific informa­
tion that might be needed by the transport provider, udata points to optional user data that may be passed to
the destination transport user during connection establishment, and sequence has no meaning for this func­
tion.

On return in rcvcall, addr returns the protocol address associated with the responding transport endpoint,
opt presents any protocol-specific information associated with the connection, udata points to optional user
data that may be returned by the destination transport user during connection establishment, and sequence
has no meaning for this function.

opt implies no structure on the options that may be passed to the transport provider. The transport provider
is free to specify the structure of any options passed to it. These options are specific to the underlying pro­
tocol of the transport provider. The user may choose not to negotiate protocol options by setting the len
field of opt to O. In this case, the transport provider may use default options.

udata enables the caller to pass user data to the destination transport user and receive user data from the
destination user during connection establishment. However, the amount of user data must not exceed the
limits supported by the transport provider as returned by t_open(3N) or t_getinfo(3N). If the len field of
udata is 0 in sndcall, no data will be sent to the destination transport user.

On return, the addr, opt, and udata fields of rcvcall will be updated to reflect values associated with the
connection. Thus, the maxlen field of each argument must be set before issuing this function to indicate the
maximum size of the buffer for each. However, rcvcall may be NULL in which case no information is
given to the user on return from t _ connect().

By default, t_connectO executes in synchronous mode, and will wait for the destination user's response
before returning control to the local user. A successful return (a return value of 0) indicates that the
requested connection has been established. However, if T_NDELAY is set (using t_openO or fcntl) ,
t _ connect() executes in asynchronous mode. In this case, the call will not wait for the remote user's
response, but will return control immediately to the local user and return -1 with t _ errno set to TNODATA
to indicate that the connection has not yet been established. In this way, the function simply initiates the
connection establishment procedure by sending a connect request to the destination transport user.

Last change: 21 January 1990 Sun Release 4.1

NETWORK FUNCTIONS

RETURN VALUES
t _ connect() returns:

o on success.

-1 on failure and sets t_errno to indicate the error.

ERRORS
TACCES

TBADADDR

TBADDATA

TBADF

TBADOPT

TBUFOVFLW

TLOOK

TNODATA

TNOTSUPPORT

TOUTS TATE

TSYSERR

SEE ALSO

The user does not have permission to use the specified address or options.

The specified protocol address was in an incorrect format or contained illegal
information.

The amount of user data specified was not within the bounds allowed by the tran­
sport provider.

The specified file descriptor does not refer to a transport endpoint.

The specified protocol options were in an incorrect format or contained illegal
information.

The number of bytes allocated for an incoming argument is not sufficient to store
the value of that argument. If executed in synchronous mode, the transport
provider's state, as seen by the user, changes to T_DATAXFER and the connect
indication information to be returned in rcvcall is discarded.

An asynchronous event has occurred on this transport endpoint and requires
immediate attention.

T _NDELA Y was set, so the function successfully initiated the connection estab­
lishment procedure, but did not wait for a response from the remote user.

This function is not supported by the underlying transport provider.

The function was issued in the wrong sequence.

The function failed due to a system error and set errno to indicate the error.

intro(3), t_3ccept(3N), t_getinfo(3N), t_listen(3N), t_open(3N), t_optrngrnt(3N), t_rcvconnect(3N)

Network Programming

Sun Release 4.1 Last change: 21 January 1990 1195

NETWORK FUNCTIONS

NAME
cerror - produce error message

SYNOPSIS
#include <tiuser .h>

void t _ error(errmsg)
char *errmsg;

extern int t _ errno;
extern char *t _ errlist[];
extern int t _ nerr;

DESCRIPTION
t_errorO produces a message on the standard error output which describes the last error received dur­
ing a call to a transport function. The argument string errmsg is a user-supplied error message that
gives context to the error. t_error() prints the user-supplied error message followed by a colon and a
standard error message for the current error defined in t _ errno. To simplify variant formatting of
messages, the array of message strings t _ errlist is provided; t _ errno can be used as an index in this
table to get the message string without the NEWLINE. t _ nerr is the largest message number provided
for in the t errlist table.

t_errno is only set when an error occurs and is not cleared on successful calls.

EXAMPLE
If a t_ connect(3N) function fails on transport endpoint fd2 because a bad address was given, the fol­
lowing call might follow the failure:

t_error (nt_connect failed on fd2n);

The diagnostic message to be printed would look like:

t _connect failed on fd2: Incorrect transport address format

where 'Incorrect transport address format' identifies the specific error that occurred, and 't_connect
failed on fd2' tells the user which function failed on which transport endpoint.

SEE ALSO
Network Programming

1196 Last change: 21 January 1990 Sun Release 4.1

NETWORK FUNCTIONS

NAME
cfree - free a library structure

SYNOPSIS
#include <tiuser.h>

int t_free(ptr, struct_type)
char *ptr;
int struct_type;

DESCRIPTION
t_free() frees memory previously allocated by t_ alloc(3N). This function will free memory for the
specified structure, and will also free memory for buffers referenced by the structure.

ptr points to one of the six structure types described for t _ alloc(3N), and struct _type identifies the type
of that structure which can be one of the following:

T BIND struct t bind - -
T_CALL
T OPTMGMT
T DIS
T UNITDATA
T UDERROR
T INFO

struct t call
struct t_optmgmt
struct t discon
struct t unitdata
struct t uderr
struct t info

where each of these structures is used as an argument to one or more transport functions.

t _free() checks the addr, opt, and udata fields of the given structure (as appropriate), and frees the
buffers pointed to by the buf field of the netbuf (see intro(3)) structure. The maxlen, len, and buf
members of the netbuf structure are described in t_accept(3N). If buf is NULL, t_freeO will not
attempt to free memory. After all buffers are freed, t _free () will free the memory associated· with the
structure pointed to by ptr.

Undefined results will occur if ptr or any of the but pointers points to a block of memory that was not
previously allocated by t_ alloc(3N).

RETURN VALUES
t _ free() returns:

o on success.

-1 on failure and sets t _ errno to indicate the error.

ERRORS
TSYSERR The function failed due to a system error and set errno to indicate the error.

SEE ALSO
intro(3), t_alloc(3N)

Network Programming

Sun Release 4.1 Last change: 21 January 1990 1197

NETWORK FUNCTIONS

NAME
cgetinfo - get protocol-specific service information

SYNOPSIS
#include <tiuser.h>

int t_getinfo(fd, info)
int fd;
struct t_info *info;

DESCRIPTION

FIELDS

1198

t_getinfo() returns the current characteristics of the underlying transport protocol associated with file
descriptor fd. The info structure is used to return the same information returned by t_open(3N).
t _getinfo() enables a transport user to access this information during any phase of communication.

This argument points to a t_info structure which contains the following members:
long addr; 1* max size of the transport protocol address *1
long options; 1* max number of bytes of protocol-specific options *1
long tsdu; 1* max size of a transport service data unit (TSDU) *1
long etsdu; 1* max size of an expedited transport service data unit (ETSDU) *1
long connect; 1* max amount of data allowed on connection establishment

functions *1
long discon; 1* max amount of data allowed on t _snddis and t _7cvdis functions *1
long servtype; 1* service type supported by the transport provider *1

The values of the fields have the following meanings:

addr A value greater than or equal to zero indicates the maximum size of a transport pro­
tocol address; a value of -1 specifies that there is no limit on the address size; and a
value of -2 specifies that the transport provider does not provide user access to tran­
sport protocol addresses.

options

tsdu

etsdu

connect

A value greater than or equal to zero indicates the maximum number of bytes of
protocol-specific options supported by the provider; a value of -1 specifies that there
is no limit on the option size; and a value of -2 specifies that the transport provider
does not support user-settable options.

A value greater than zero specifies the maximum size of a transport service data unit
(TSDU); a value of zero specifies that the transport provider does not support the con­
cept of TSDU, although it does support the sending of a data stream with no logical
boundaries preserved across a connection; a value of -1 specifies that there is no
limit on the size of a TSDU; and a value of -2 specifies that the transfer of normal
data is not supported by the transport provider.

A value greater than zero specifies the maximum size of an expedited transport ser­
vice data unit (ETSDU); a value of zero specifies that the transport provider does not
support the concept of ETSDU, although it does support the sending of an expedited
data stream with no logical boundaries preserved across a connection; a value of -1
specifies that there is no limit on the size of an ETSDU; and a value of -2 specifies
that the transfer of expedited data is not supported by the transport provider.

A value greater than or equal to zero specifies the maximum amount of data that may
be associated with connection establishment functions; a value of -1 specifies that
there is no limit on the amount of data sent during connection establishment; and a
value of -2 specifies that the transport provider does not allow data to be sent with
connection establishment functions.

Last change: 21 January 1990 Sun Release 4.1

discon

servtype

NETWORK FUNCTIONS

A value greater than or equal to zero specifies the maximum amount of data that may
be associated with the t_snddis(3N) and t_rcvdis(3N) functions; a value of -1
specifies that there is no limit on the amount of data sent with these abortive release
functions; and a value of -2 specifies that the transport provider does not allow data
to be sent with the abortive release functions.

This field specifies the service type supported by the transport provider, as described
below.

If a transport user is concerned with protocol independence, the above sizes may be accessed to deter­
mine how large the buffers must be to hold each piece of information. Alternatively, the t_alloc(3N)
function may be used to allocate these buffers. An error will result if a transport user exceeds the
allowed data size on any function. The value of each field may change as a result of option negotia­
tion, and t _getinfo() enables a user to retrieve the current characteristics.

RETURN VALUES
The servtype field of info may specify one of the following values on return:

T COTS The transport provider supports a connection-mode service but does not sup­
port the optional orderly release facility.

T COTS ORD - -

T CLTS

RETURN VALUES

The transport provider supports a connection-mode service with the optional
orderly release facility.

The transport provider supports a connectionless-mode service. For this ser­
vice type, t _ open(3N) will return -2 for the etsdu, connect, and discon fields.

t _getinfo() returns 0 on success and -Ion failure.

ERRORS
TBADF

TSYSERR

SEE ALSO
t_open(3N)

The specified file descriptor does not refer to a transport endpoint.

The function failed due to a system error and set errno to indicate the error.

Network Programming

Sun Release 4.1 Last change: 21 January 1990 1199

T_GETSTATE (3N) NETWORK FUNCTIONS T_GETSTA TE (3N)

NAME
cgetstate - get the current state

SYNOPSIS
#include <tiuser.h>

int t _getstate(fd)
int fd;

DESCRIPTION
t _getstate() returns the current state of the provider associated with the transport endpoint specified by
fd.

If the provider is undergoing a state transition when t Jetstate() is called. the function will fail.
t _getstate() returns the current state on successful completion and -Ion failure and t _ errno is set to
indicate the error. The current state may be one of the following:

T UNBND unbound
T IDLE idle
T OUTCON
T INCON
T DATAXFER
T OUTREL
T INREL

outgoing connection pending
incoming connection pending
data transfer
outgoing orderly release (waiting for an orderly release indication)
incoming orderly release (waiting for an orderly release request)

RETURN VALUES
t _getstate() returns:

o on success.

-1 on failure and sets t errno to indicate the error.

ERRORS
TBADF

TSTATECHNG

TSYSERR

SEE ALSO
t_open(3N)

Network Programming

1200

The specified file descriptor does not refer to a transport endpoint.

The transport provider is undergoing a state change.

The function failed due to a system error and set errno to indicate the error.

Last change: 21 January 1990 Sun Release 4.1

NETWORK FUNCTIONS

NAME
clisten - listen for a connect request

SYNOPSIS
#include <tiuser .h>

int t_listen(fd, call)
int fd;
struct t_call *call;

DESCRIPTION
t_listenO listens for a connect request from a calling transport user. fd identifies the local transport
endpoint where connect indications arrive, and on return, call contains information describing the con­
nect indication. call points to a t _ call() structure which contains the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

The maxlen, len, and buf members of the netbuf structure are described in t _ accept(3N). In call,
addr returns the protocol address of the calling transport user, opt returns protocol-specific parameters
associated with the connect request, udata returns any user data sent by the caller on the connect
request, and sequence is a number that uniquely identifies the returned connect indication. The value
of sequence enables the user to listen for multiple connect indications before responding to any of
them.

Since this function returns values for the addr, opt, and udata fields of call, the maxlen field of each
must be set before issuing the t_listenO to indicate the maximum size of the buffer for each.

By default, t_listenO executes in synchronous mode and waits for a connect indication to arrive
before returning to the user. However, if T_NDELAY is set (using t_open(3N) or fcn tI 0) , t_listenO
executes asynchronously, reducing to a poU(2) for existing connect indications. If none are available,
it returns -1 and sets t _ errno to TNODATA.

RETURN VALUES
t _listen () returns:

o on success.

-1 on failure and sets t errno to indicate the error.

ERRORS
TBADF

TBUFOVFLW

TLOOK

TNODATA

TNOTSUPPORT

TSYSERR

Sun Release 4.1

The specified file descriptor does not refer to a transport endpoint.

The number of bytes allocated for an incoming argument is not sufficient to
store the value of that argument. The provider's state, as seen by the user,
changes to T_INCON and the connect indication information to be returned in
call is discarded.

An asynchronous event has occurred on this transport endpoint and requires
immediate attention.

T_NDELAY was set, but no connect indications had been queued.

This function is not supported by the underlying transport provider.

The function failed due to a system error and set errno to indicate the error.

Last change: 21 January 1990 1201

NETWORK FUNCTIONS

SEE ALSO
intro(3}, t_3ccept(3N), t_hind(3N), t_connect(3N), t_open(3N), t_rcvconnect(3N)

Network Programming

1202 Last change: 21 January 1990 Sun Release 4.1

NETWORK FUNCTIONS

NAME
Clook - look at the current event on a transport endpoint

SYNOPSIS
#include <tiuser.h>

int t_look(fd)
int fd;

DESCRIPTION
t_lookO returns the current event on the transport endpoint specified by [d. This function enables a
transport provider to notify a transport user of an asynchronous event when the user is issuing func­
tions in synchronous mode. Certain events require immediate notification of the user and are indicated
by a specific error, TLOOK, on the current or next function to be executed.

This function also enables a transport user to poll(2) a transport endpoint periodically for asynchro­
nous events.

RETURN VALUES
Upon success, t _Iook() returns a value that indicates which of the allowable events has occurred, or
returns zero if no event exists. One of the following events is returned:

T LISTEN
T CONNECT
T DATA
T EXDATA
T DISCONNECT
TERROR
T UDERR
T ORDREL

Connection indication received
Connect confirmation received
Normal data received
Expedited data received
Disconnect received
Fatal error indication
Datagram error indication
Orderly release indication

On failure, -1 is returned and t _ errno is set to indicate the error.

ERRORS
TBADF

TSYSERR

SEE ALSO
t_open(3N)

The specified file descriptor does not refer to a transport endpoint.

The function failed due to a system error and set errno to indicate the error.

Network Programming

Sun Release 4.1 Last change: 21 January 1990 1203

NETWORK FUNCTIONS

NAME
copen - establish a transport endpoint

SYNOPSIS
#include <tiuser .h>

int t _ open(path, oOag, info)
char *path;
int oOag;
struct t _info *info;

DESCRIPTION

1204

t_openO must be called as the first step in the initialization of a transport endpoint. It establishes a
transport endpoint by opening a file that identifies a particular transport provider (such as a transport
protocol) and returning a file descriptor that identifies that endpoint. For example, opening the file
/dev/tcp identifies an OSI connection-oriented transport layer protocol as the transport provider.
Currently, /dev/tcp is the only transport protocol available to t_ open().

path points to the pathname of the file to open, and oflag identifies any open flags (as in open(2V».
t _ open() returns a file descriptor that will be used by all subsequent functions to identify the particu­
lar local transport endpoint.

This function also returns various default characteristics of the underlying transport protocol by setting
fields in the t_info structure pointed to by info. t_info is defined in <nettliltiuser.h> as:

struct t _info {

};

long addr;
long options;
long tsdu;
long etsdu;
long connect;
long discon;
long servtype;

1* size of protocol address */
1* size of protocol options *1
1* size of max transport service data unit */
1* size of max expedited tsdu *1
1* max data for connection primitives */
1* max data for disconnect primitives *1
1* provider service type *1

The fields of this structure have the following values:

addr A value greater than or equal to zero indicates the maximum size of a transport pro­
tocol address; a value of -1 specifies that there is no limit on the address size; and a
value of -2 specifies that the transport provider does not provide user access to tran­
sport protocol addresses.

options

tsdu

etdsu

A value greater than or equal to zero indicates the maximum number of bytes of
protocol-specific options supported by the provider; a value of -1 specifies that there
is no limit on the option size; and a value of -2 specifies that the transport provider
does not support user-settable options.

A value greater than zero specifies the maximum size of a transport service data unit
(TSDU); a value of zero specifies that the transport provider does not support the
concept of TSDU, although it does support the sending of a data stream with no logi­
cal boundaries preserved across a connection; a value of -1 specifies that there is no
limit on the size of a TSDU; and a value of -2 specifies that the transfer of normal
data is not supported by the transport provider.

A value greater than zero specifies the maximum size of an expedited transport ser­
vice data unit (ETSDU); a value of zero specifies that the transport provider does not
support the concept of ETSDU, although it does support the sending of an expedited
data stream with no logical boundaries preserved across a connection; a value of -1
specifies that there is no limit on the size of an ETSDU; and a value of -2 specifies
that the transfer of expedited data is not supported by the transport provider.

Last change: 21 January 1990 Sun Release 4.1

connect

discon

servtype

NETWORK FUNCTIONS

A value greater than or equal to zero specifies the maximum amount of data that
may be associated with connection establishment functions; a value of -1 specifies
that there is no limit on the amount of data sent during connection establishment;
and a value of -2 specifies that the transport provider does not allow data to be sent
with connection establishment functions.

A value greater than or equal to zero specifies the maximum amount of data that
may be associated with the t_snddis(3N) and t_rcvdis(3N) functions; a value of -1
specifies that there is no limit on the amount of data sent with these abortive release
functions; and a value of -2 specifies that the transport provider does not allow data
to be sent with the abortive release functions.

This field specifies the service type supported by the transport provider.

The servtype field of info may specify one of the following values on return:

T COTS The transport provider supports a connection-mode service but does not support the
optional orderly release facility.

T _COTS _ ORD The transport provider supports a connection-mode service with the optional orderly
release facility.

T CLTS The transport provider supports a connectionless-mode service. For this service type,
t_openO will return -2 for etsdu, connect, and discon.

A single transport endpoint may support only one of the above services at one time.

If info is set to NULL by the transport user, no protocol information is returned by t_openO.

If a transport user is concerned with protocol independence, the above sizes may be accessed to deter­
mine how large the buffers must be to hold each piece of information. Alternatively, the t_alloc(3N)
function may be used to allocate these buffers. An error will result if a transport user exceeds the
allowed data size on any function.

RETURN VALUES
t _ open() returns a non-negative file descriptor on success. On failure, it returns -1 and sets t errno
to indicate the error.

ERRORS
TSYSERR The function failed due to a system error and set errno to indicate the error.

SEE ALSO
open(2V), tcp(4P)

Network Programming

Sun Release 4.1 Last change: 21 January 1990 1205

NETWORK FUNCTIONS

NAME
coptmgmt - manage options for a transport endpoint

SYNOPSIS
#include <tiuser .h>

int t_optmgmt(fd, req, ret)
int fd;
struct t_optmgmt *req;
struct t_ optmgmt *ret;

DESCRIPTION
t _ optmgmt() enables a transport user to retrieve, verify, or negotiate protocol options with the transport
provider. fd identifies a bound transport endpoint.

The req and ret arguments point to a t _ optmgmt() structure containing the following members:
struct netbuf opt;
long flags;

The opt field identifies protocol options and the flags field is used to specify the action to take with those
options.

The options are represented by a netbuff structure in a manner similar to the address in t_ bind(3N). The
maxlen, len, and bufmembers of the netbuf structure are described in t_accept(3N). req is used to request
a specific action of the provider and to send options to the provider. len specifies the number of bytes in
the options, bufpoints to the options buffer, and maxlen has no meaning for the req argument. The tran­
sport provider may return options and flag values to the user through ret. For ret, maxlen specifies the
maximum size of the options buffer and buf points to the buffer where the options are to be placed. On
return, len specifies the number of bytes of options returned. maxlen has no meaning for the req argument,
but must be set in the ret argument to specify the maximum number of bytes the options buffer can hold.
The actual structure and content of the options is imposed by the transport provider.

The flags field of req can specify one of the following actions:

T NEGOTIATE Enables the user to negotiate the values of the options specified in req with the
transport provider. The provider will evaluate the requested options and negotiate
the values, returning the negotiated values through ret.

T CHECK

T DEFAULT

Enables the user to verify whether the options specified in req are supported by
the transport provider. On return, the flags field of ret will have either
T _SUCCESS or T _FAILURE set to indicate to the user whether the options are
supported. These flags are only meaningful for the T _ CHECK request.

Enables a user to retrieve the default options supported by the transport provider
into the opt field of ret. In req, the len field of opt must be zero and the buf field
may be NULL.

If issued as part of the connectionless-mode service, t _ optmgmt() may block due to flow control con­
straints. t_optmgmt() will not complete until the transport provider has processed all previously sent data
units.

RETURN VALUES
t_optmgmtO returns:

o on success.

-1 on failure and sets t errno to indicate the error.

1206 Last change: 21 January 1990 Sun Release 4.1

ERRORS
TACCES

TBADF

TBADFLAG

TBADOPT

TBUFOVFLW

TOUTSTATE

TSYSERR

SEE ALSO

NETWORK FUNCTIONS

The user does not have permission to negotiate the specified options.

The specified file descriptor does not refer to a transport endpoint.

An invalid flag was specified.

The specified protocol options were in an incorrect format or contained illegal
infonnation.

The number of bytes allowed for an incoming argument is not sufficient to store
the value of that argument. The information to be returned in ret will be dis­
carded.

The function was issued in the wrong sequence.

The function failed due to a system error and set errno to indicate the error.

intro(3), t_getinfo(3N), t_open(3N)

Network Programming

Sun Release 4.1 Last change: 21 January 1990 1207

NETWORK FUNCTIONS

NAME
crcv - receive normal or expedited data sent over a connection

SYNOPSIS
int t_rcv(fd, buf, nbytes, flags)

int fd;
char *buf;
unsigned nbytes;
int *f1ags;

DESCRIPTION
t_rcvO receives either normal or expedited data. fd identifies the local transport endpoint through
which data will arrive, buf points to a receive buffer where user data will be placed, and nbytes
specifies the size of the receive buffer. flags may be set on return from t_rcvO and specifies optional
flags as described below.

By default, t_rcvO operates in synchronous mode and will wait for data to arrive if none is currently
available. However, if T_NDELAY is set (using t_open(3N) or fcntlO), t_rcvO will execute in asyn­
chronous mode and will fail if no data is available. See TNODAT A below.

On return from the call, if T _MORE is set in flags this indicates that there is more data and the
current transport service data unit (TSDU) or expedited transport service data unit (ETSDU) must be
received in multiple t_rcvO calls. Each t_rcvO with the T_MORE flag set indicates that another
t_rcvO must follow immediately to get more data for the current TSDU. The end of the TSDU is
identified by the return of a t_rcvO call with the T_MORE flag not set. If the transport provider does
not support the concept of a TSDU as indicated in the info argument on return from t _ open(3N) or
t_getinfo(3N), the T_MORE flag is not meaningful and should be ignored.

On return, the data returned is expedited data if T _EXPEDITED is set in flags. If the number of bytes
of expedited data exceeds nbytes, t_rcvO will set T_EXPEDITED and T_MORE on return from the
initial call. Subsequent calls to retrieve the remaining ETSDU will not have T_EXPEDITED set on
return. The end of the ETSDU is identified by the return of a t_rcvO call with the T_MORE flag not
set.

If expedited data arrives after part of a TSDU has been retrieved, receipt of the remainder of the TSDU
will be suspended until the ETSDU has been processed. Only after the full ETSDU has been retrieved
(T _MORE not set) will the remainder of the TSDU be available to the user.

RETURN VALUES
On success, t_rcvO returns the number of bytes received. On failure, it returns -1.

ERRORS
TBADF

TLOOK

TNODATA

TNOTSUPPORT

TSYSERR

SEE ALSO
t_open(3N), t_snd(3N)

Network Programming

1208

The specified file descriptor does not refer to a transport endpoint.

An asynchronous event has occurred on this transport endpoint and requires
immediate attention.

T _NDELA Y was set, but no data is currently available from the transport pro­
vider.

This function is not supported by the underlying transport provider.

The function failed due to a system error and set errno to indicate the error.

Last change: 21 January 1990 Sun Release 4.1

T_RCVCONNECT(3N) NETWORK FUNCTIONS T_RCVCONNECT(3N)

NAME
crcvconnect - receive the confirmation from a connect request

SYNOPSIS
#include <tiuser.h>

int t_rcvconnect(fd, call)
int fd;
struct t_call *call;

DESCRIPTION
t_rcvconnect allows a calling transport user to get the status of a previous connect request. It can be
used in conjunction with t_connect(3N) to establish a connection in asynchronous mode.

fd identifies the local transport endpoint where communication is established. call contains information
associated with the newly established connection call points to a t _call structure that contains informa­
tion associated with the new connection, and is defined in <nettliltiuser .h> as:

struct t _call {

};

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

The maxlen, len, and buf members of the netbuf structure are described in t _ accept(3N). In the t call
structure, addr returns the protocol address associated with the responding transport endpoint, opt
presents protocol-specific information associated with the connection, udata points to optional user data
that may be returned by the destination transport user during connection establishment, and sequence
has no meaning for this function.

The maxlen field of each argument must be set before issuing this function to indicate the maximum
buffer size. However, call may be NULL, in which case no information is given to the user on return
from t_rcvconnect(). By default, t_rcvconnect() executes synchronously and waits for the connec­
tion before returning. On return, the addr, opt, and udata fields reflect values associated with the
connection.

If O_NDELAY is set (using t_open(3N) or fcntIO), t_rcvconnectO executes asynchronously, reducing
to a poll(2) request for existing connect confirmations. If none are available, t_rcvconnectO fails and
returns immediately without waiting for the connection to be established. See TNODATA below.
t_rcvconnectO must be re-issued at a later time to complete the connection establishment phase and
retrieve the information returned in call.

RETURN VALUES
t _rcvconnect() returns:

o on success.

-1 on failure and sets t errno to indicate the error.

ERRORS
TBADF

TBUFOVFLW

TNODATA

TLOOK

Sun Release 4.1

The specified file descriptor does not refer to a transport endpoint.

The bytes allocated for an incoming argument is sufficient to store the value
of that argument and the connect information to be returned in call is dis­
carded. The transport provider's state, as seen by the user, will be changed to

DATAXFER.

o _NDELA Y was set, but a connect confirmation has not yet arrived.

An asynchronous event has occurred on this transport connection and requires
immediate attention.

Last change: 21 January 1990 1209

T_RCVCONNECT(3N)

TNOTSUPPORT

TSYSERR

SEE ALSO

NETWORK FUNCTIONS T_RCVCONNECT(3N)

This function is not supported by the underlying transport provider.

T:.e function failed due to a system error and set errno to indicate the error.

poll(2), intro(3), t_3ccept(3N), t_bind(3N), t_connect(3N), t_listen(3N), t_open(3N)

Network Programming

1210 Last change: 21 January 1990 Sun Release 4.1

NETWORK FUNCTIONS

NAME
crcvdis - retrieve information from disconnect

SYNOPSIS
#include <tiuser .h>

t_rcvdis(fd, discon)
int fd;
struct t_discon *discon;

DESCRIPTION
t_rcvdisO is used to identify the cause of a disconnect, and to retrieve any user data sent with the
disconnect. fd identifies the local transport endpoint where the connection existed, and discon points
to a t discon structure defined in <nettliltiuser.> as:

struct t _ discon {
struct netbuf udata; 1* user data *1
int reason;
int sequence;

1* reason code */
1* sequence number */

};

The maxlen, len, and buf members of the netbuf structure are described in t_accept(3N). reason
specifies the reason for the disconnect through a protocol-dependent reason code, udata identifies any
user data that was sent with the disconnect, and sequence may identify an outstanding connect indica­
tion with which the disconnect is associated. sequence is only meaningful when t_rcvdisO is issued
by a passive transport user who has executed one or more t_listen(3N) functions and is processing the
resulting connect indications. If a disconnect indication occurs, sequence can be used to identify
which of the outstanding connect indications is associated with the disconnect.

If a user does not care if there is incoming data and does not need to know the value of reason or
sequence, disc on may be NULL and any user data associated with the disconnect will be discarded.
However, if a user has retrieved more than one outstanding connect indication (using t_listen(3N) and
discon is NULL, the user will be unable to identify with which connect indication the disconnect is
associated.

RETURN VALUES
t_rcvdisO returns:

o on success.

-1 on failure and sets t err no to indicate the error.

ERRORS
TBADF

TBUFOVFLW

TNODIS

TNOTSUPPORT

TSYSERR

SEE ALSO

The specified file descriptor does not refer to a transport endpoint.

The number of bytes allocated for incoming data is not sufficient to store the
data. The provider's state, as seen by the user, will change to T_IDLE and the
disconnect indication information to be returned in discon will be discarded.

No disconnect indication currently exists on the specified transport endpoint.

This function is not supported by the underlying transport provider.

The function failed due to a system error and set errno to iRdicate the error.

intro(3), t_connect(3N), t_listen(3N), t_open(3N), t_snddis(3N)

Network Programming

Sun Release 4.1 Last change: 21 January 1990 1211

NETWORK FUNCTIONS

NAME
crcvrel - acknowledge receipt of an orderly release indication

SYNOPSIS
#include <tiuser .h>

int t_rcvrel(fd)
int fd;

DESCRIPTION
t rcvel() acknowledges receipt of an orderly release indication. fd identifies the local transport end­
point where the connection exists. Mter receipt of this indication, the user may not attempt to receive
more data because such an attempt will block forever. However, the user may continue to send data
over the connection if t _ sndrel(3N) has not been issued by the user.

t_rcvrelO is an optional service of the transport provider, and is only supported if the transport pro­
vider returned service type T_COTS_ORD on t_open(3N) or t_getinfo(3N).

RETURN VALUES
t_rcvrel() returns:

o on success.

-1 on failure and sets t _ errno to indicate the error.

ERRORS
TBADF

TLOOK

TNOREL

TNOTSUPPORT

TSYSERR

SEE ALSO

The specified file descriptor does not refer to a transport endpoint.

An asynchronous event has occurred on this transport endpoint and requires
immediate attention.

No orderly release indication currently exists on the specified transport end­
point.

This function is not supported by the underlying transport provider.

The function failed due to a system error and set errno to indicate the error.

t_open(3N), t_sndrel(3N)

Network Programming

1212 Last change: 21 January 1990 Sun Release 4.1

NE1WORK FUNCTIONS T_RCVUDATA(3N)

NAME
crcvudata - receive a data unit

SYNOPSIS
#include <tiuser .h>

int t_rcvudata(fd, unitdata, Bags)
int fd;
struct t_unitdata *unitdata;
int *Bags;

DESCRIPTION
t _ rcvudata() is used in connectionless mode to receive a data unit from another transport user. fd
identifies the local transport endpoint through which data will be received, unitdata holds information
associated with the received data unit, and flags is set on return to indicate that the complete data unit
was not received. unitdata points to a t _ unitdata structure defined in <nettliltiuser .h> as:

struct t _ unitdata {

};

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;

1* address
1* options
1* user data

The maxien, len, and buf members of the netbuf structure are described in t_accept(3N). The maxlen
field of addr, opt, and udata must be set before issuing t_rcvudataO to indicate the maximum size of
the buffer for each.

On return from this call, addr specifies the protocol address of the sending user, opt identifies
protocol-specific options that were associated with this data unit, and udata specifies the user data that
was received.

By default, t_rcvudataO operates in synchronous mode and will wait for a data unit to arrive if none
is currently available. However, if O_NDELAY is set (using t_open(3N) or fcntlO), t_rcvudataO
will execute in asynchronous mode and will fail if no data units are available.

If the buffer defined in the udata field of unitdata is not large enough to hold the current data unit,
the buffer will be filled and T _MORE will be set in flags on return to indicate that another
t_rcvudataO should be issued to retrieve the rest of the data unit. Subsequent t_rcvudataO call(s)
will return zero for the length of the address and options until the full data unit has been received.

RETURN VALUES
t _ rcvudata() returns:

o on success.

-1 on failure and sets t errno to indicate the error.

ERRORS
TBADF The specified file descriptor does not refer to a transport endpoint.

TBUFOVFLW

TLOOK

TNODATA

TNOTSUPPORT

TSYSERR

Sun Release 4.1

The number of bytes allocated for the incoming protocol address or options is
not sufficient to store the infonnation. The unit data infonnation to be
returned in unitdata will be discarded.

An asynchronous event has occurred on this transport endpoint and requires
immediate attention.

T _NDELA Y was set, but no data units are currently available from the tran­
sport provider.

This function is not supported by the underlying transport provider.

The function failed due to a system error and set errno to indicate the error.

Last change: 21 January 1990 1213

NETWORK FUNCTIONS T_RCVUDATA(3N)

SEE ALSO
intro(3), t_rcvuderr(3N), t_sndudata(3N)

NAME
crcvuderr - receive a unit data error indication

SYNOPSIS
#include <tiuser .h>

int t_rcvuderr(fd, uderr)
int fd;
struct t_uderr *uderr;

DESCRIPTION
t rcvuderr() is used in connectionless mode to receive information concerning an error on a previ­
o~sly sent data unit, and should only be issued following a unit data error indication. It informs the
transport user that a data unit with a specific destination address and protocol options produced an
error. fd identifies the local transport endpoint through which the error report will be received, and
uderr points to a t_uderrO structure defined in <nettliltiuser.h> as:

struct t _ uderr {

};

struct netbuf addr;
struct netbuf opt;
long error;

1* address
1* options
1* error code

The maxlen, len, and but members of the netbuf structure are described in t_3ccept(3N). The maxlen
field of addr and opt must be set before issuing this function to indicate the maximum size of the
buffer for each.

On return from this call, the addr structure specifies the destination protocol address of the erroneous
data unit, the opt structure identifies protocol-specific options that were associated with the data unit,
and error specifies a protocol-dependent error code.

If the user does not care to identify the data unit that produced an error, uderr may be set to NULL
and t_rcvuderr() will simply clear the error indication without reporting any information to the user.

RETURN VALUES
t_rcvuderr() returns:

o on success.

-1 on failure and sets t errno to indicate the error.

ERRORS
TBADF

TBUFOVFLW

TNOTSUPPORT

TNOUDERR

TSYSERR

SEE ALSO

The specified file descriptor does not refer to a transport endpoint.

The number of bytes allocated for the incoming protocol address or options is
not sufficient to store the information. The unit data error information to be
returned in uderr will be discarded.

This function is not supported by the underlying transport provider.

No unit data error indication currently exists on the specified transport end­
point.

The function failed due to a system error and set errno to indicate the error.

intro(3), t_rcvudata(3N), t_sndudata(3N)

Network Programming

1214 Last change: 21 January 1990 Sun Release 4.1

NETWORK FUNCTIONS

NAME
t_snd - send normal or expedited data over a connection

SYNOPSIS
#include <tiuser .h>

int t_snd(fd, buf, nbytes, flags)
int fd;
char *buf;
unsigned nbytes;
int flags;

DESCRIPTION
t _ snd() sends either normal or expedited data. fd identifies the local transport endpoint over which
data should be sent, buf points to the user data, nbytes specifies the number of user data bytes to be
sent, and flags specifies any optional flags described below.

By default, t_sndO operates synchronously and may wait if flow control restrictions prevents data
acceptance by the local transport provider when the call is made. However, if O_NDELAY is set
(using t_open(3N) or fcntlO), t_sndO executes asynchronously, and fails immediately if there are
flow control restrictions.

On success, t_sndO returns the byte total accepted by the transport provider. This normally equals
the bytes total specified in nbytes. If 0 _NDELA Y is set, it is possible that the transport provider will
accept only part of the data. In this case, t_sndO will set T_MORE for the data that was sent (see
below) and returns a value less than nbytes. If nbytes is zero, no data is passed to the provider;
t_snd() returns zero.

If T_EXPEDITED is set in flags, the data is sent as expedited data, subject to the interpretations of the
transport provider.

T _MORE indicates to the transport provider that the transport service data unit (TSDU), or expedited
transport service data unit (ETSDU), is being sent through multiple t _ snd() calls. In these calls, the
T_MORE flag indicates another t_sndO is to follow; the end of TSDU (or ETSDU) is identified by a
t_sndO call without the T_MORE flag. T_MORE allows the sender to break up large logical data
units, while preserving their boundaries at the other end. The flag does not imply how the data is
packaged for transfer below the transport interface. If the transport provider does not support the con­
cept of a TSDU as indicated in the info argument on return from t_open(3N) or t_getinfo(3N), the
T_MORE flag is meaningless.

The size of each TSDU or ETSDU must not exceed the transport provider limits as returned by
t_open(3N) or t_getinfo(3N). Failure to comply results in protocol error EPROTO. See TSYSERR
below.

If t_sndO is issued from the T_IDLE state, the provider may silently discard the data. If t_sndO is
issued from any state other than T_DATAXFER or T_IDLE the provider generates a EPROTO error.

RETURN VALUES
On success, t_sndO returns the number of bytes accepted by the transport provider. On failure, it
returns -1 and sets t _ errno to indicate the error.

ERRORS
TBADF

TFLOW

TNOTSUPPORT

TSYSERR

Sun Release 4.1

The specified file descriptor does not refer to a transport endpoint.

o _NDELA Y was set, but the flow control mechanism prevented the transport
provider from accepting data at this time.

This function is not supported by the underlying transport provider.

The function failed due to a system error and set errno to indicate the error.

Last change: 21 January 1990 1215

NETWORK FUNCTIONS

SEE ALSO
t_open(3N), t_rcv(3N)

Network Programming

1216 Last change: 21 January 1990 Sun Release 4.1

NETWORK FUNCTIONS

NAME
csnddis - send user-initiated disconnect request

SYNOPSIS
#include <tiuser .h>

int t_snddis(fd, call)
int fd;
struct t_call *call;

DESCRIPTION
t_snddisO is used to initiate an abortive release on an already established connection or to reject a connect
request. fd identifies the local transport endpoint of the connection, and call specifies information associ­
ated with the abortive release. call points to a t_call() structure which is defined in <nettlie/tiuser.h> as:

struct t _call {

};

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

1* address
1* options
1* user data
1* sequence number

The maxlen, len, and bz.if members of the netbuf structure are described in t_accept(3N). The values in
call have different semantics, depending on the context of the call to t_snddisO. When rejecting a connect
request, call must be non-NULL and contain a valid value of sequence to uniquely identify the rejected con­
nect indication to the transport provider. The addr and opt fields of call are ignored. In all other cases, call
need only be used when data is being sent with the disconnect request. The addr, opt, and sequence fields
of the t _ call() structure are ignored. If the user does not wish to send data to the remote user, the value of
call may be NULL. udata specifies the user data to be sent to the remote user. The amount of user data
must not exceed the limits supported by the transport provider as returned by t_open(3N) or t_getinfo(3N).
If the len field of udata is zero, no data will be sent to the remote user.

RETURN VALUES
t _ snddis() returns:

o on success.

-1 on failure and sets t errno to indicate the error.

ERRORS
TBADDATA

TBADF

TBADSEQ

TLOOK

TNOTSUPPORT

TOUTSTATE

TSYSERR

Sun Release 4.1

The amount of user data specified was not within the bounds allowed by the tran­
sport provider. The transport provider's outgoing queue will be flushed, so data
may be lost.

The specified file descriptor does not refer to a transport endpoint.

An invalid sequence number was specified. The transport provider's outgoing
queue will be flushed, so data may be lost.

A NULL call structure was specified when rejecting a connect request. The tran­
sport provider's outgoing queue will be flushed, so data may be lost.

An asynchronous event has occurred on this transport endpoint and requires
immediate attention.

This function is not supported by the underlying transport provider.

The function was issued in the wrong sequence. The transport provider's outgo­
ing queue may be flushed, so data may be lost.

The function failed due to a system error and set errno to indicate the error.

Last change: 21 January 1990 1217

NETWORK FUNCTIONS

SEE ALSO
intro(3), t_connect(3N), t_getinfo(3N), t_listen(3N), t_open(3N)

Network Programming

1218 Last change: 21 January 1990 Sun Release 4.1

NETWORK FUNCTIONS

NAME
t_sndrel - initiate an orderly release

SYNOPSIS
#include <tiuser .h>

int t _ sndrel(fd)
int fd;

DESCRIPTION
t _ sndrel() initiates an orderly release of a transport connection and indicates to the transport provider
that the transport user has no more data to send. fd identifies the local transport endpoint where the
connection exists. After issuing t_sndrelO t the user may not send any more data over the connection.
However, a user may continue to receive data if an orderly release indication has been received.

t_sndrelO is an optional service of the transport provider t and is only supported if the transport pro­
vider returned service type T _COTS _ ORD on t _ open(3N) or t _getinfo(3N).

RETURN VALUES
t _ sndrel() returns:

o on success.

-1 on failure and sets t _ errno to indicate the error.

ERRORS
TBADF

TFLOW

TNOTSUPPORT

TSYSERR

SEE ALSO

The specified file descriptor does not refer to a transport endpoint.

o _NDELA Y was sett but the flow control mechanism prevented the transport
provider from accepting the function at this time.

This function is not supported by the underlying transport provider.

The function failed due to a system error and set errno to indicate the error.

t_open(3N), t_rcvrel(3N)

Network Programming

Sun Release 4.1 Last change: 21 January 1990 1219

T_SNDUDATA(3N) NETWORK FUNCTIONS T_SNDUDATA(3N)

NAME
csndudata - send a data unit

SYNOPSIS
#include <tiuser .h>

int t _ sndudata(fd, unitdata)
int fd;
struct t_unitdata *unitdata;

DESCRIPTION
t_sndudataO is used in connectionless mode to send a data unit to another transport user. fd identifies the
local transport endpoint through which data will be sent, and unitdata points to a t_unitdata structure
defined in <nettliltiuser .h> as:

struct t_unitdata {

};

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;

1* address
1* options
1* user data

The maxlen, len, and bujmembers of the netbujstructure are described in t_accept(3N). In unitdata, addr
specifies the protocol address of the destination user, opt identifies protocol-specific options that the user
wants associated with this request, and udata specifies the user data to be sent. The user may choose not to
specify what protocol options are associated with the transfer by setting the len field of opt to 0. In this
case, the provider may use default options.

If the len field of udata is 0, no data unit will be passed to the transport provider; t_sndudata() will not
send zero-length data units.

By default, t_sndudata() operates in synchronous mode and may wait if flow control restrictions prevent
the data from being accepted by the local transport provider at the time the call is made. However, if
T_NDELAY is set (using t_open(3N) or fcntlO), t_sndudataO will execute in asynchronous mode and
will fail under such conditions.

If t_sndudataO is issued from an invalid state, or if the amount of data specified in udata exceeds the
TSDU size as returned by t_openO or t_getinfo(3N), the provider will generate an EPROTO protocol error.
See TSYSERR below.

RETURN VALUES
t _ sndudata() returns:

° on success.

-Ion failure and sets t errno to indicate the error.

ERRORS
TBADF

TFLOW

TNOTSUPPORT

TSYSERR

SEE ALSO

The specified file descriptor does not refer to a transport endpoint.

T _NDELA Y was set, but the flow control mechanism prevented the transport pro­
vider from accepting data at this time.

This function is not supported by the underlying transport provider.

The function failed due to a system error and set errno to indicate the error.

intro(3), t_rcvudata(3N), t_rcvuderr(3N)

Network Programming

1220 Last change: 21 January 1990 S un Release 4.1

NETWORK FUNCTIONS

NAME
csync - synchronize transport library

SYNOPSIS
#include <tiuser .h>

int t_sync(fd)
int fd;

DESCRIPTION
For the transport endpoint specified by fd, t _ sync() synchronizes the data structures managed by the
transport library with information from the underlying transport provider. In doing so, it can convert a
raw file descriptor (obtained using open(2V), dup(2V), or as a result of a fork(2V) and execve(2V»
to an initialized transport endpoint, assuming that file descriptor referenced a transport provider.
t _ sync() also allows two cooperating processes to synchronize their interaction with a transport pro­
vider.

For example, if a process forks a new process and issues an exec, the new process must issue a
t_syncO to build the private library data structure associated with a transport endpoint and to syn­
chronize the data structure with the relevant provider information.

It is important to rem em ber that the transport provider treats all users of a transport endpoint as a sin­
gle user. If multiple processes are using the same endpoint, they should coordinate their activities so
as not to violate the state of the provider. t_syncO returns the current state of the provider to the
user, thereby enabling the user to verify the state before taking further action. This coordination is
only valid among cooperating processes; it is possible that a process or an incoming event could
change the provider's state after a t _ sync() is issued.

If the provider is undergoing a state transition when t_syncO is called, the function will fail.

RETURN VALUES
t_syncO returns -Ion failure. Upon success, the state of the transport provider is returned; it may be
one of the following:

T IDLE idle

T OUTCON outgoing connection pending

T INeON incoming connection pending

T DATAXFER data transfer

T OUTREL outgoing orderly release (waiting for an orderly release indication)

T INREL incoming orderly release (waiting for an orderly release request)

T UNBND unbound

ERRORS
TBADF The specified file descriptor is a valid open file descriptor but does not refer to

a transport endpoint.

TSTATECHNG

TSYSERR

SEE ALSO

The transport provider is undergoing a state change.

The function failed due to a system error and set errno to indicate the error.

dup(2V), execve(2V), fork(2V), open(2V)

Network Programming

Sun Release 4.1 Last change: 21 January 1990 1221

NETWORK FUNCTIONS

NAME
cunbind - disable a transport endpoint

SYNOPSIS
#include <tiuser .h>

int t _ unbind(fd)
int fd;

DESCRIPTION
t_unbindO disables the transport endpoint specified by fd which was previously bound by t_bind(3N).
On completion of this call, no further data or events destined for this transport endpoint will be
accepted by the transport provider.

RETURN VALUES
t _ unbind() returns:

o on success.

-1 on failure and sets t errno to indicate the error.

ERRORS
TBADF

TLOOK

TOUTSTATE

TSYSERR

SEE ALSO
t_bind(3N)

Network Programming

1222

The specified file descriptor does not refer to a transport endpoint

An asynchronous event has occurred on this transport endpoint

The function was issued in the wrong sequence.

The function failed due to a system error and set errno to indicate the error.

Last change: 21 January 1990 Sun Release 4.1

TCGETPGRP (3V) C LIBRARY FUNCTIONS TCGETPGRP (3V)

NAME
tcgetpgrp, tcsetpgrp - get, set foreground process group ID

SYNOPSIS
#include <sysltypes.h>

pid_t tcgetpgrp(fd)
int fd;

int tcsetpgrp(fd, pgrp Jd)
int fd;
pid_t pgrp_id;

DESCRIPTION
tcgetpgrp() returns the value of the process group ID of the foreground process group associated with the
terminal (see NOTES). tcgetpgrp() is allowed from a process that is a member of a background process
group; however, the information may be subsequently changed by a process that is a member of a fore­
ground process group.

If the process has a controlling terminal, tcsetpgrp() sets the foreground process group ID associated with
the terminal to pgrp_id. The file associated withfd must be the controlling terminal and must be currently
associated with the session of the calling process. The value of pgrp _id must match a process group ID of a
process in the same session as the calling process.

RETURN VALUES
On success, tcgetpgrp() returns the process group ID of the foreground process group associated with the
terminal. On failure, it returns -1 and sets errno to indicate the error.

tcsetpgrp() returns:

o on success.

-Ion failure and sets errno to indicate the error.

ERRORS
If any of the following conditions occur, tcgetpgrp() sets errno to:

EBADF

ENOSYS

ENOTIY

fd is not a valid file descriptor.

tcgetpgrp() is not supported in this implementation.

The calling process does not have a controlling terminal.

The file is not the controlling terminal.

If any of the following conditions occur, tcsetpgrp() sets errno to:

EBADF fd is not a valid file descriptor.

EINVAL

ENOTIY

The value of pgrp _id is not a valid process group ID.

The calling process does not have a controlling terminal.

The file is not the controlling terminal.

EPERM

The controlling terminal is no longer associated with the session of the calling process.

The value of pgrp _id is a valid process group ill, but does not match the process group
ID of a process in the same session as the calling process.

SEE ALSO
setpgid(2V), setsid(2V)

Sun Release 4.1 Last change: 21 January 1990 1223

TCGETPGRP (3V) C LIBRARY FUNCTIONS TCGETPGRP(3V)

NOTES

1224

For tcgetpgrp() and tcsetpgrp() to behave as described above, LPOSDCJOB_CONTROL} must be in
effect (see sysconf(2V». {_POSIX_JOB_CONTROL} is always in effect on SunOS systems, but for porta­
bility, applications should call sysconfO to determine whether LPOSIX_JOB_CONTROL} is in effect for
the current system.

If LPOSIX_JOB_CONTROL} is not defined on a system conforming to IEEE Std 1003.1-1988 either
tcgetpgrp() and tcsetpgrp() behave as described above, or tcgetpgrp() and tcsetpgrp() fail.

Last change: 21 January 1990 Sun Release 4.1

TERMCAP (3X) MISCELLANEOUS LffiRARY FUNCI'IONS TERMCAP(3X)

NAME
termcap, tgetent, tgetnum, tgetfiag, tgetstr, tgoto, tputs - terminal independent operation routines

SYNOPSIS
char PC;
char *BC;
char *UP;
short ospeed;

tgetent(bp, name)
char *bp, *name;

tgetnum (id)
char *id;

tgetftag (id)
char *id;

char *
tgetstr(id, area)
char *id, **area;

char *
tgoto(cm, destcol, destline)
char *cm;

tputs(cp, affcnt, outc)
register char *cp;
int affcnt;
int (*outc)();

DESCRIPTION
These functions extract and use capabilities from the terminal capability data base termcap(5). These
are low level routines; see curses(3V) for a higher level package.

tgetentO extracts the entry for terminal name into the bp buffer, with the current size of the tty (usu­
ally a window). This allows pre-SunWindows programs to run in a window of arbitrary size. bp
should be a character buffer of size 1024 and must be retained through all subsequent calls to tget­
num(), tgetOag(), and tgetstr(). tgetent() returns -1 if it cannot open the termcap() file, 0 if the
terminal name given does not have an entry, and 1 if all goes well. It will look in the environment
for a TERM CAP variable. If found, and the value does not begin with a slash, and the terminal type
name is the same as the environment string TERM, the TERMCAP string is used instead of reading
the termcap file. If it does begin with a slash, the string is used as a path name rather than
letcltermcap. This can speed up entry into programs that call tgetent, as well as to help debug new
terminal descriptions or to make one for your terminal if you cannot write the file letc/termcap.
Note: if the window size changes, the "lines" and "columns" entries in bp are no longer correct.
See the SunView Programmer's Guide for details regarding [how to handle] this.

tgetnumO gets the numeric value of capability ID, returning -1 if is not given for the terminal.
tgetftag() returns 1 if the specified capability is present in the terminal's entry, 0 if it is not. tgetstr()
gets the string value of capability ID, placing it in the buffer at area, advancing the area pointer. It
decodes the abbreviations for this field described in termcap(5), except for cursor addressing and pad­
ding information. tgetstr() returns the string pointer if successful. Otherwise it returns zero.

Sun Release 4.1 Last change: 6 October 1987 1225

1ERMCAP(3X) MISCELLANEOUS LffiRARY FUNCTIONS TERMCAP(3X)

FILES

tgoto() returns a cursor addressing string decoded from em to go to column desteol in line destline.
It uses the external variables UP (from the up capability) and BC (if be is given rather than bs) if
necessary to avoid placing \n, AD or A@ in the returned string. (Programs which call tgoto() should
be sure to turn off the XT ABS bit(s),sinee tgoto() may now output a tab. Note: programs using
termeap() should in general turn off XT ABS anyway since some tenninals use AI (CTRL-I) for other
functions, such as nondestructive space.) If a % sequence is given which is not understood, then
tgoto() returns oops.
tputs() decodes the leading padding infonnation of the string ep; affent gives the number of lines
affected by the operation, or 1 if this is not applicable, oute is a routine which is called with each
character in turn. The external variable ospeed should contain the encoded output speed of the termi­
nal as described in tty(4). The external variable PC should contain a pad character to be used (from
the pc capability) if a NULL ("@) is inappropriate.

lusr/libllibtermcap.a -ltenncap library
letcltermC3p data base

SEE ALSO
ex(1), curses(3V), tty(4), termeap(5)

1226 Last change: 6 October 1987 Sun Release 4.1

1ERMIOS (3V) C LIBRARY FUNCTIONS 1ERMIOS (3V)

NAME
termios, tcgetattr, tcsetattr, tcsendbreak, tcdrain, tcftush, tcftow, cfgetospeed, cfgetispeed, cfsetispeed,
cfsetospeed - get and set terminal attributes, line control, get and set baud rate, get and set terminal fore­
ground process group ID

SYNOPSIS
#include <termios.h>
#include <unistd.h>

int tcgetattr(fd, termiosj»
int fd;
struct termios *termiosj>;

int tcsetattr(fd, optional_actions, term ios j»
int fd;
int optional_actions;
struct termios *termios j>;

int tcsendbreak(fd, duration)
int fd;
int duration;

int tcdrain(fd)
int fd;

int tcflush(fd, queue_selector)
int fd;
int queue_selector;

int tcflow(fd, action)
int fd;
int action;

speed_t cfgetospeed(termios_p)
struct termios *termios j>;

int cfsetospeed(termios j>, speed)
struct termios *termiosj>;
speed _ t speed;

speed _t cfgetispeed(termiosj»
struct termios *termiosj>;

int cfsetispeed(termiosj>, speed)
struct termios *termiosj>;
speed _t speed;

#include <sys/types.h>
#include <termios.h>

DESCRIPTION
The termios functions describe a general terminal interface that is provided to control asynchronous com­
munications ports. A more detailed overview of the terminal interface can be found in termio(4). That
section also describes an ioctl() interface that can be used to access the same functionality. However, the
function interface described here is the preferred user interface.

Many of the functions described here have a termios Jl argument that is a pointer to a termios structure.
This structure contains the following members:

Sun Release 4.1 Last change: 21 January 1990 1227

TERMIOS(3V) C LIBRARY FUNCTIONS TERMIOS (3V)

1228

tc8ag_t
tc8ag_t
tc8ag_t
tc8ag_t
cc t

cJ8ag;
c_oflag;
c_cflag;
c)flag;
c_cc[NCCS];

1* input modes *1
1* output modes *1
1* control modes *1
1* local modes *1
1* control chars *1

These structure members are described in detail in termio(4).

tcgetattr() gets the parameters associated with the object referred by fd and stores them in the termios
structure referenced by termiosy. This function may be invoked from a background process; however,
the teoninal attributes may be subsequently changed by a foreground process.

tcsetattr() sets the parameters associated with the terminal (unless support is required from the underlying
hardware that is not available) from the termios structure referred to by termios y as follows:

• If optional_actions is TCSANOW, the change occurs immediately.

• If optional_actions is TCSADRAIN, the change occurs after all output written to fd has been
transmitted. This function should be used when changing parameters that affect output.

• If optional_actions is TCSAFLUSH, the change occurs after all output written to the object
referred by fd has been transmitted, and all input that has been received but not read will be
discarded before the change is made.

The symbolic constants for the values of optional_actions are defined in <sys/termios.h>.

If the terminal is using asynchronous serial data transmission, tcsendbreak() transmits a continuous
stream of zero-valued bits for a specific duration. If duration is zero, it transmits zero-valued bits for at
least 0.25 seconds, and not more that 0.5 seconds. If duration is not zero, it sends zero-valued bits for
duration *N seconds, where N is at least 0.25, and not more than 0.5.

If the terminal is not using asynchronous serial data transmission, tcsendbreak() returns without taking
any action.

tcdrain() waits until all output written to the object referred to by fd has been transmitted.

tcflush() discards data written to the object referred to by fd but not transmitted, or data received but not
read, depending on the value of queue _selector:

• If queue _selector is TCIFLUSH, it flushes data received but not read.

• If queue _selector is TCOFLUSH, it flushes data written but not transmitted.

• If queue _selector is TCIOFLUSH, it flushes both data received but not read, and data written
but not transmitted.

The symbolic constants for the values of queue _selector and action are defined in termios.h.

The default on open of a terminal file is that neither its input nor its output is suspended.

tcflow() suspends transmission or reception of data on the object referred to by fd, depending on the value
of actions:

• If action is TCOOFF, it suspends output.

• If action is TCOON, it restarts suspended output.

• If action is TCIOFF, the system transmits a STOP character, which stops the terminal device
from transmitting data to the system. (See termio(4).)

• If action is TCION, the system transmits a START character, which starts the terminal device
transmitting data to the system. (See termio(4).)

The baud rate functions are provided for getting and setting the values of the input and output baud rates in
the termios structure. The effects on the terminal device described below do not become effective until
tcsetattr() is successfully called.

Last change: 21 January 1990 Sun Release 4.1

TERMIOS (3V) C LIBRARY FUNCTIONS TERMIOS (3V)

The input and output baud rates are stored in the termios structure. The values shown in the table are sup­
ported. The names in this table are defined in termios.h

Name Description Name
BO Hang up
B50 50 baud
875 75 baud
BII0 110 baud
8134 134.5 baud
8150 150 baud
B200 200 baud
8300 300 baud

B600
BI200
81800
82400
B4800
B9600
B19200
B38400

Description

600 baud
1200 baud
1800 baud
2400 baud
4800 baud
9600 baud

19200 baud
38400 baud

cfgetospeed() returns the output baud rate stored in the termios structure pointed to by termios'y.

cfsetospeed() sets the output baud rate stored in the termios structure pointed to by termios'y to speed.
The zero baud rate, BO, is used to terminate the connection. If BO is specified, the modem control lines
shall no longer be asserted. Normally, this will disconnect the line.

If the input baud rate is set to zero, the input baud rate will be specified by the value of the output baud
rate.

cfgetispeed() returns the input baud rate stored in the termios structure.

cfsetispeed() sets the input baud rate stored in the termios structure to speed.

RETURN VALUES
cfgetispeed() returns the input baud rate stored in the termios structure.

cfgetospeed() returns the output baud rate stored in the termios structure.

cfsetispeed() and cfsetospeed() return:

o on success.

-1 on failure and sets errno to indicate the error.

All other functions return:

o on success.

-1 on failure and set errno to indicate the error.

ERRORS
EBADF

ENOTIY

The fd argument is not a valid file descriptor.

The file associated withfd is not a terminal.

tcsetattr() may set errno to:

EINVAL The optional_actions argument is not a proper value.

An attempt was made to change an attribute represented in the termios structure to an
unsupported value.

tcsendbreak() may set errno to:

EINV AL The device does not support tcsendbreak().

tcdrain() may set errno to:

EINTR A signal interrupted tcdrain().

EINVAL The device does not support tcdrain().

tcflush() may set errno to:

EINV AL The device does not support tcflush().

The queue _selector argument is not a proper value.

Sun Release 4.1 Last change: 21 January 1990 1229

TERMIOS (3V) C LIBRARY FUNCTIONS

tc8ow() may set errno to:

EINV AL The device does not support tc8ow().

The action argument is not a proper value.

tcsetattr() may set errno to:

There is insufficient memory available to copy in the arguments.

fd is not a valid descriptor.

TERM lOS (3V)

EAGAIN

EBADF

EFAULT Some part of the structure pointed to by termios'y is outside the process's allocated
address space.

EINVAL

EIO

ENOTTY

ENXIO

optional_actions is not valid.

The calling process is a background process.

fd does not refer to a terminal device.

The terminal referred to by fd is hung up.

cfsetispeed() and cfsetospeed() may set errno to:

EINV AL speed is greater than B38400 or less than O.

SEE ALSO
setpgid(2V), setsid(2V), termio(4)

1230 Last change: 21 January 1990 Sun Release 4.1

TIME (3V) C LIBRARY FUNCTIONS

NAME
time, ftime - get date and time

SYNOPSIS
#include <sys/types.h>
#include <sys/time.h>

time_t time(tloc)
time _ t *t1oc;

#include <sys/timeb.h>

int ftime(tp)
struct timeb *tp;

DESCRIPTION
timeO returns the time since ()():oo:()() GMT, Jan. 1, 1970, measured in seconds.

If tloe is non-NULL, the return value is also stored in the location to which tloe points.

ftimeO fills in a structure pointed to by tp, as defined in <sysitimeb.h>:
struct timeb
{

};

time _t time;
unsigned short millitm;
short time zone ;
short dstflag;

TIME(3V)

The structure contains the time since the epoch in seconds, up to 1000 milliseconds of more-precise
interval, the local time zone (measured in minutes of time westward from Greenwich), and a flag that,
if nonzero, indicates that Daylight Saving time applies locally during the appropriate part of the year.

RETURN VALUES
timeO returns the value of time on success. On failure, it returns (time_t) -1.

On success, ftime() returns no useful value. On failure, it returns -1.

SEE ALSO
date(l V), gettimeofday(2), ctime(3V)

Sun Release 4.1 Last change: 21 January 1990 1231

TIMES (3V) C LIBRARY FUNCTIONS TIMES (3V)

NAME
times - get process times

SYNOPSIS
#include <sys/types.h>
#include <sys/times.h>

int times(buffer)
struct tms *buffer;

SYSTEM V SYNOPSIS
clock _t times(buffer)
struct tms *buffer;

DESCRIPTION
This interface is obsoleted by getrusage(2).

times() returns time-accounting infonnation for the current process and for the tenninated child
processes of the current process. All times are in 11HZ seconds, where HZ is 60.

buffer points to the following structure:
struct tms {

};

c1ock_t tms_utime;
c1ock_t tms_stime;
c1ock_t tms_cutime;
c1ock_t tms_cstime;

1* user time *1
1* system time *1
1* user time, children *1
1* system time, children *1

This information comes from the calling process and each of its terminated child processes for which
it has executed a wait(2V).

tms _ utime is the CPU time used while executing instructions in the user space of the calling process.

tms_stime is the CPU time used by the system on behalf of the calling process.

tms_cutime is the sum of the tms_utimes and tms_cutimes of the child processes.

tms _ cstime is the sum of the tms _ stimes and tms _ cstimes of the child processes.

RETURN VALUES
times() returns:

o on success.

-Ion failure.

SYSTEM V RETURN VALUES
Upon successful completion, times() returns the elapsed real time, in 60ths of a second, since an arbi­
trary point in the past. This point does not change from one invocation of times() to another within
the same process. On failure, timesO returns (clock _t) -1.

SEE ALSO
time(1 V), getrusage(2), wait(2V), time(3V)

1232 Last change: 21 January 1990 Sun Release 4.1

TIMEZONE (3C) COMPATIBILITY FUNCTIONS TIMEZONE (3C)

NAME
timezone - get time zone name given offset from GMT

SYNOPSIS
char *timezone(zone, dst)

DESCRIPTION
timezone() attempts to return the name of the time zone associated with its first argument, which is
measured in minutes westward from Greenwich. If the second argument is 0, the standard name is
used, otherwise the Daylight Savings Time version. If the required name does not appear in a table
built into the routine, the difference from GMT is produced; for instance, in Afghanistan
'timezone(-(60*4+30), 0)' is appropriate because it is 4:30 ahead of GMT and the string GMT+4:30 is
produced.

Note: the offset westward from Greenwich and an indication of whether Daylight Savings Time is in
effect may not be sufficient to determine the name of the time zone, as the name may differ between
different locations in the same time zone. Instead of using timezone() to determine the name of the
time zone for a given time, that time should be converted to a 'struct tm' using localtime() (see
ctime(3V» and the tm_zone field of that structure should be used. timezone() is retained for compa­
tibility with existing programs.

SEE ALSO
ctime(3V)

Sun Release 4.1 Last change: 6 October 1987 1233

TMPFILE (3S) STANDARD I/O FUNCTIONS

NAME
tmpfile - create a temporary file

SYNOPSIS
#include <stdio.b>

FILE *tmpfile()

DESCRIPTION

TMPFILE (3S)

tmpfile() creates a temporary file using a name generated by tmpnam(3S), and returns a correspond­
ing FILE pointer. If the file cannot be opened, an error message is printed using perror(3), and a
NULL pointer is returned. The file will automatically be deleted when the process using it terminates.
The file is opened for update ("w+").

SEE ALSO
creat(2V), unlink(2V), fopen(3V), mktemp(3), perror(3), tmpnam(3S)

1234 Last change: 6 October 1987 Sun Release 4.1

TMPNAM(3S) STANDARD I/O FUNCTIONS TMPNAM(3S)

NAME
tmpnam, tempnam - create a name for a temporary file

SYNOPSIS
#include <stdio.h>

char *tmpnam (s)
char *s;

char *tempnam (dir, pfx)
char *dir, *pfx;

DESCRIPTION

NOTES

These functions generate file names that can safely be used for a temporary file.

tmpnamO always generates a file name using the path-prefix defined as P _tmpdir in the <stdio.h>
header file. If s is NULL, tmpnam() leaves its result in an internal static area and returns a pointer to
that area. The next call to tmpnam() will destroy the contents of the area. If s is not NULL, it is
assumed to be the address of an array of at least L _ tmpnam bytes, where L _ tmpnam is a constant
defined in <stdio.h>; tmpnam() places its result in that array and returns s.

tempnam() allows the user to control the choice of a directory. The argument dir points to the name
of the directory in which the file is to be created. If dir is NULL or points to a string which is not a
name for an appropriate directory, the path-prefix defined as P _tmpdir in the <stdio.h> header file is
used. If that directory is not accessible, Itmp will be used as a last resort. This entire sequence can
be up-staged by providing an environment variable TMPDIR in the user's environment, whose value is
the name of the desired temporary-file directory.

Many applications prefer their temporary files to have certain favorite initial letter sequences in their
names. Use the pfx argument for this. This argument may be NULL or point to a string of up to five
characters to be used as the first few characters of the temporary-file name.

tempnam() uses malloc() to get space for the constructed file name, and returns a pointer to this
area. Thus, any pointer value returned from tempnam() may serve as an argument to free (see
malloc(3V». If tempnam() cannot return the expected result for any reason, that is, malloc() failed,
or none of the above mentioned attempts to find an appropriate directory was successful, a NULL
pointer will be returned.

These functions generate a different file name each time they are called.

Files created using these functions and either fopen() or creat() are temporary only in the sense that
they reside in a directory intended for temporary use, and their names are unique. It is the user's
responsibility to use unlink(2V) to remove the file when its use is ended.

SEE ALSO

BUGS

creat(2V), unlink(2V), fopen(3V), malloc(3V), mktemp(3), tmpfile(3S)

If called more than 17,576 times in a single process, these functions will start recycling previously
used names.

Between the time a file name is created and the file is opened, it is possible for some other process to
create a file with the same name. This can never happen if that other process is using these functions
or mktempO, and the file names are chosen so as to render duplication by other means unlikely.

Sun Release 4.1 Last change: 1 February 1988 1235

TSEARCH(3) C LIBRARY FUNCTIONS TSEARCH(3)

NAME
tsearch, tfind, tdelete, twalk - manage binary search trees

SYNOPSIS
#include <search.h>

char *tsearch«char *) key, (char **) rootp, com par)
int (*compar)();

char *tfind«char *) key, (char **) rootp, com par)
int (*compar)();

char *tdelete«char *) key, (char **) rootp, compar)
int (*compar)();

void twalk«char *) root, action)
void (*action)();

DESCRIPTION
tsearch(), tfind(), tdelete(), and twalk() are routines for manipulating binary search trees. They are
generalized from Knuth (6.2.2) Algorithms T and D. All comparisons are done with a user-supplied
routine. This routine is called with two arguments, the pointers to the elements being compared. It
returns an integer less than, equal to, or greater than 0, according to whether the first argument is to
be considered less than, equal to or greater than the second argument. The comparison function need
not compare every byte, so arbitrary data may be contained in the elements in addition to the values
being compared.

tsearch() is used to build and access the tree. key is a pointer to a datum to be accessed or stored.
If there is a datum in the tree equal to *key (the value pointed to by key), a pointer to this found
datum is returned. Otherwise, *key is inserted, and a pointer to it returned. Only pointers are copied,
so the calling routine must store the data. rootp points to a variable that points to the root of the tree.
A NULL value for the variable pointed to by rootp denotes an empty tree; in this case, the variable
will be set to point to the datum which will be at the root of the new tree.

Like tsearch(), tfind() will search for a datum in the tree, returning a pointer to it if found. How­
ever, if it is not found, tfindO will return a NULL pointer. The arguments for tfindO are the same as
for tsearch().

tdelete() deletes a node from a binary search tree. The arguments are the same as for tsearch().
The variable pointed to by rootp will be changed if the deleted node was the root of the tree.
tdelete() returns a pointer to the parent of the deleted node, or a NULL pointer if the node is not
found.

twalk() traverses a binary search tree. root is the root of the tree to be traversed. (Any node in a
tree may be used as the root for a walk below that node.) action is the name of a routine to be
invoked at each node. This routine is, in tum, called with three arguments. The first argument is the
address of the node being visited. The second argument is a value from an enumeration data type
typedef enum { preorder, postorder, endorder, leaf} VISIT; (defined in the <search.h> header file),
depending on whether this is the first, second or third time that the node has been visited (during a
depth-first, left-to-right traversal of the tree), or whether the node is a leaf. The third argument is the
level of the node in the tree, with the root being level zero.

The pointers to the key and the root of the tree should be of type pointer-to-element, and cast to type
pointer-to-pointer-to-character. Similarly, although declared as type pointer-to-character, the value
returned should be cast into type pointer-to-element.

EXAMPLES

1236

The following code reads in strings and stores structures containing a pointer to each string and a
count of its length. It then walks the tree, printing out the stored strings and their lengths in alphabet­
icalorder.

Last change: 6 October 1987 Sun Release 4.1

TSEARCH(3)

Sun Release 4.1

C LIBRARY FUNCTIONS TSEARCH(3)

#include <search.h>
#include <stdio.h>

void twalkO;
char *tsearch();

struct node { 1* pointers to these are stored in the tree *1

};

char *string;
int count;

#define MAXNODES 12
#define MAXSTRING 100
#define MlNSTRING 3 1* char, newline, eos *1

char string_space[MAXSTRING];
struct node node_space[MAXNODES];
struct node *root = NULL;

1* space to store strings *1
1* nodes to store *1
1* this points to the root */

main()
{

}

char *strptr = string_space;
int maxstrlen = MAXSTRING;
struct node *nodeptr = node_space;
int node_compare();
void print_node();
struct node **found;
int length;

while (fgets(strptr, maxstrlen, stdin) != NULL) {
1* remove the trailing newline */

}

length = strlen(strptr);
strptr[length-1] = 0;
1* set node */
nodeptr->string = strptr;
/* locate node into the tree *1
found = (struct node * *)

tsearch«char *) nodeptr, (char **) &root, node_compare);
1* bump the count *1
(*found)->count++;

if (*found == nodeptr) {

}

1* node was inserted, so get a new one *1
strptr += length;
maxstrlen -= length;
if (maxstrlen < MINSTRING)

break;
if (++nodeptr >= &node_space[MAXNODESD

break;

twalk« char *)root, print_node);

Last change: 6 October 1987 1237

TSEARCH(3) C LIBRARY FUNCTIONS TSEARCH(3)

1*

*1

This routine compares two nodes, based on an
alphabetical ordering of the string field.

int node _ compare(nodel, node2)
struct node *nodel, *node2;

{
return strcmp(nodel->string, node2->string);

}

1* Print out nodes in alphabetical order *1
1* ARGSUSED2*1
void
print node(node, order, level)

struct node * * node;
VISIT order;

{

}

int level;

if (order == postorder II order == leaf) {

}

(void) printf("string = %20s, count = %dO,
(*node)->string, (*node)->count);

SEE ALSO
bsearch(3), hsearch(3), Isearch(3)

DIAGNOSTICS
A NULL pointer is returned by tsearch() if there is not enough space available to create a new node.

A NULL pointer is returned by tsearch(), tfindO and tdelete() if rootp is NULL on entry.

If the datum is found, both tsearch() and tfind() return a pointer to it. If not, tfind() returns NULL,
and tsearch() returns a pointer to the inserted item.

WARNINGS

BUGS

1238

The root argument to twalk() is one level of indirection less than the rootp arguments to tsearch()
and tdelete().

There are two nomenclatures used to refer to the order in which tree nodes are visited. tsearch()
uses preorder, postorder and endorder to respectively refer to visting a node before any of its children,
after its left child and before its right, and after both its children. The alternate nomenclature uses
preorder, inorder and postorder to refer to the same visits, which could result in some confusion over
the meaning of postorder.

If the calling function alters the pointer to the root, results are unpredictable.

Last change: 6 October 1987 Sun Release 4.1

TIYNAME (3V) C LIBRARY FUNCTIONS

NAME
ttyname, isatty - find name of a terminal

SYNOPSIS
char *ttyname(fd)
int fd;

int isatty(fd)
int fd;

DESCRIPTION

TTYNAME (3V)

ttyname() returns a pointer to the null-terminated path name of the terminal device associated with
file descriptor fd.

isatty() returns 1 if fd is associated with a terminal device, 0 otherwise.

FILES
!dev!*

SEE ALSO
ctermid(3V), ioctl(2), ttytab(5)

RETURN VALUES
On success, ttyname() returns a pointer to the terminal device. If fd does not describe a terminal
device in directory Idev, ttyname() returns NULL.

isatty() returns 1 if fd is associated with a terminal device. It returns 0 otherwise.

BUGS
The return value points to static data which are overwritten by each call.

Sun Release 4.1 Last change: 21 January 1990 1239

TTY SLOT (3V) C LIBRARY FUNCTIONS TTYSLOT(3V)

NAME
ttyslot - find the slot in the utmp file of the current process

SYNOPSIS
iot ttyslot()

DESCRIPTION
ttyslotO returns the index of the current user's entry in letc/utmp. This is accomplished by actually
scanning the file letc/ttytab for the name of the terminal associated with the standard input, the stan­
dard output, or the error output (0, 1 or 2).

RETURN VALUES
On success, ttyslot() returns the index of the current user's entry in letc/utmp. If an error was
encountered while searching for the terminal name or if none of the above file descriptors is associ­
ated with a terminal device, ttyslot() returns O.

SYSTEM V RETURN VALUES

FILES

1240

If an error was encountered while searching for the terminal name or if none of the above file descrip­
tors is associated with a terminal device, ttyslotO returns -l.

I etc/ttytab
letc/utmp

Last change: 21 January 1990 Sun Release 4.1

UALARM(3) C LIBRARY FUNCTIONS UALARM(3)

NAME
ualarm - schedule signal after interval in microseconds

SYNOPSIS
unsigned ualarm(value, interval)
unsigned value;
unsigned interval;

DESCRIPTION
This is a simplified interrace to setitimer() (see getitimer(2».

ualarm() sends signal SIGALRM, see signal(3V), to the invoking process in a number of
microseconds given by the value argument. Unless caught or ignored, the signal terminates the pro­
cess.

If the interval argument is non-zero, the SIGALRM signal will be sent to the process every interval
microseconds after the timer expires (for instance, after value microseconds have passed).

Because of scheduling delays, resumption of execution of when the signal is caught may be delayed
an arbitrary amount. The longest specifiable delay time is 2147483647 microseconds.

The return value is the amount of time previously remaining in the alarm clock.

SEE ALSO
getitimer(2), sigpause(2V), sigvec(2), alarm(3V), signal(3V), sleep(3V), usleep(3)

Sun Release 4.1 Last change: 6 October 1987 1241

ULIMIT(3C) COMPATIBILITY FUNCTIONS ULIMIT(3C)

NAME
ulimit - get and set user limits

SYNOPSIS
long ulimit(cmd, newlimit)
int cmd;
long newlimit;

DESCRIPTION
This function is included for System V compatibility.

This routine provides for control over process limits. The cmd values available are:

1 Get the process's file size limit. The limit is in units of 512-byte blocks and is inher­
ited by child processes. Files of any size can be read.

2 Set the process's file size limit to the value of newlimit. Any process may decrease this
limit, but only a process with an effective user ID of super-user may increase the limit.
ulimit() will fail and the limit will be unchanged if a process with an effective user ID
other than the super-user attempts to increase its file size limit.

3 Get the maximum possible break value. See brk(2).

4 Get the size of the process' file descriptor table, as returned by getdtablesize(2).

RETURN VALUE
Upon successful completion, a non-negative value is returned. Otherwise a value of -1 is returned
and errno is set to indicate the error.

ERRORS
EPERM

SEE ALSO

A user other than the super-user attempted to increase the file size limit.

brk(2), getdtablesize(2), getrlimit(2), write(2V)

1242 Last change: 21 January 1990 Sun Release 4.1

UNGETC(3S) STANDARD I/O FUNCTIONS

NAME
ungetc - push character back into input stream

SYNOPSIS
#include <stdio.h>

ungetc(c, stream)
FILE *stream;

DESCRIPTION

UNGETC(3S)

ungetcO pushes the character c back onto an input stream. That character will be returned by the
next getc() calIon that stream. ungetc() returns c. and leaves the file stream unchanged.

One character of pushback is guaranteed provided something has been read from the stream and the
stream is actually buffered. In the case that stream is stdin, one character may be pushed back onto
the buffer without a previous read statement.

If c equals EOF, ungetcO does nothing to the buffer and returns EOF.

An fseek(3S) erases all memory of pushed back characters.

SEE ALSO
fseek(3S), getc(3V), setbuf(3V)

DIAGNOSTICS
ungetc() returns EOF if it cannot push a character back.

Sun Release 4.1 Last change: 18 November 1987 1243

USLEEP(3) C LIBRARY FUNCTIONS USLEEP(3)

NAME
usleep - suspend execution for interval in microseconds

SYNOPSIS
usJeep(useconds)
unsigned useconds;

DESCRIPTION
Suspend the current process for the number of microseconds specified by the argument. The actual
suspension time may be an arbitrary amount longer because of other activity in the system, or because
of the time spent in processing the call.

The routine is implemented by setting an interval timer and pausing until it occurs. The previous state
of this timer is saved and restored. If the sleep time exceeds the time to the expiration of the previ­
ous timer, the process sleeps only until the signal would have occurred, and the signal is sent a short
time later.

This routine is implemented using setitimer() (see getitimer(2»; it requires eight system calls each
time it is invoked. A similar but less compatible function can be obtained with a single select(2); it
would not restart after signals, but would not interfere with other uses of setitimer.

SEE ALSO
getitimer(2), sigpause(2V), aJarm(3V), sleep(3V), uaJarm(3)

1244 Last change: 6 October 1987 Sun Release 4.1

UTIME(3V) C LIBRARY FUNCTIONS UTlME(3V)

NAME
utime - set file times

SYNOPSIS
#include <utime.h>

int utime(path, times)
char *path;
struct utimbuf *times;

DESCRIPTION
utime() sets the access and modification times of the file named by path.

If times is NULL, the access and modification times are set to the current time. The effective user ID
(UID) of the calling process must match the owner of the file or the process must have write permis­
sion for the file to use utime() in this manner.

If times is not NULL, it is assumed to point to a utimbur structure, defined in <utime.h> as:

struct utimbuf {

};

time t actime; 1* set the access time *1
time_t modtime; 1* set the modification time *1

The access time is set to the value of the first member, and the modification time is set to the value of
the second member. The times contained in this structure are measured in seconds since 00:00:00
GMT Jan 1, 1970. Only the owner of the file or the super-user may use utimeO in this manner.

Upon successful completion, utime() marks for update the st _ ctime field of the file.

RETURN VALUES
utime() returns:

o on success.

-1 on failure and sets errno to indicate the error.

ERRORS
EACCES

EACCES

EFAULT

EIO

ELOOP

ENAMETOOLONG

ENOENT

ENOTDIR

EPERM

EROFS

SYSTEM V ERRORS

Search permission is denied for a component of the path prefix of path.

The effective user ID is not super-user and not the owner of the file, write per­
mission is denied for the file, and times is NULL.

path or times points outside the process's allocated address space.

An 1/0 error occurred while reading from or writing to the file system.

Too many symbolic links were encountered in translating path.

The length of path exceeds {PATH_MAX}.

A pathname component is longer than {NAME_MAX} while
LPOSIX_NO_TRUNC} is in effect (see pathconf(2V)).

The file referred to by path does not exist.

A component of the path prefix of path is not a directory.

The effective user ID of the process is not super-user and not the owner of the
file, and times is not NULL.

The file system containing the file is mounted read-only.

In addition to the above, the following may also occur:

ENOENT path points to an empty string.

Sun Release 4.1 Last change: 21 January 1990 1245

UTIME(3V) C LIBRARY FUNCTIONS UTIME(3V)

SEE ALSO
pathconf(2V), stat (2V) , utimes(2)

1246 Last change: 21 January 1990 SUD Release 4.1

VALUES (3) C LIBRARY FUNCTIONS VALUES (3)

NAME
values - machine-dependent values

SYNOPSIS
#include <values.h>

DESCRIPTION
This file contains a set of manifest constants, conditionally defined for particular processor architec­
tures.

The mOdel assumed for integers is binary representation (one's or two's complement), where the sign
is represented by the value of the high-order bit.

BITS(type)

HIBITS

HIBITL

HIBID

MAXSHORT

MAXLONG

MAXINT

MAXFLOAT

LN_MAXFLOAT

MAXDOUBLE

LN_MAXDOUBLE

MINFLOAT

LN_MINFLOAT

MINDOUBLE

LN_MINDOUBLE

FSIGNIF

DSIGNIF

SEE ALSO
intro(3), intro(3M)

Sun Release 4.1

The number of bits in a specified type (for instance, int).

The value of a short integer with only the high-order bit set (in most imple­
mentations, Ox 8(00).

The value of a long integer with only the high-order bit set (in most imple­
mentations, Ox80000000).

The value of a regular integer with only the high-order bit set (usually the
same as HIBITS or HIBITL).

The maximum value of a signed short integer (in most implementations,
Ox7FFF == 32767).

The maximum value of a signed long integer (in most implementations,
Ox7FFFFFFF == 2147483647).

The maximum value of a signed regular integer (usually the same as MAX­
SHORT or MAXLONG).

The maximum value of a single-precision floating-point number, and its natural
logarithm.

The maximum value of a double-precision floating-point number, and its
natural logarithm.

The minimum positive value of a single-precision floating-point number, and
its natural logarithm.

The minimum positive value of a double-precision floating-point number, and
its natural logarithm.

The number of significant bits in the mantissa of a single-precision floating­
point number.

The number of significant bits in the mantissa of a double-precision floating­
point number.

Last change: 6 October 1987 1247

VARARGS(3) C LIBRARY FUNCTIONS VARARGS(3)

NAME
varargs - handle variable argument list

SYNOPSIS
#include <varargs.h>

function(va_alist) va_del

va Jist pvar;

va _ start(pvar);

f = va_arg(pvar, type);

va _ end(pvar);

DESCRIPTION

1248

This set of macros provides a means of writing portable procedures that accept variable argument lists.
Routines having variable argument lists (such as printf(3V» but do not use varargs() are inherently
nonportable, since different machines use different argument passing conventions. Routines with vari­
able arguments lists must use varargs() functions in order to run correctly on Sun-4 systems.

va _ alist() is used in a function header to declare a variable argument list.

va_dclO is a declaration for va_alistO. No semicolon should follow va_dclO.

va _Iist() is a type defined for the variable used to traverse the list. One such variable must always be
declared.

va _start(pvar) is called to initialize pvar to the beginning of the list.

va _ arg(pvar, type) will return the next argument in the list pointed to by pvar. The parameter type is
a type name such that the type of a pointer to an object that has the specified type can be obtained
simply by appending a * to type. If type disagrees with the type of the actual next argument (as pro­
moted according to the default argument promotions), the behavior is undefined.

In standard C, arguments that are char or short are converted to int and should be accessed as int,
arguments that are unsigned char or unsigned short are converted to unsigned int and should be
accessed as unsigned int, and arguments that are float are converted to double and should be
accessed as double. Different types can be mixed, but it is up to the routine to know what type of
argument is expected, since it cannot be determined at runtime.

va _ end(pvar) is used to finish up.

Multiple traversals, each bracketed by va_startO ... va_endO, are possible.

va _ alist() must encompass the entire arguments list. This insures that a #define statement can be
used to redefine or expand its value.

The argument list (or its remainder) can be passed to another function using a pointer to a variable of
type va _ Iist() - in which case a call to va _ arg() in the subroutine advances the argument-list pointer
with respect to the caller as well.

Last change: 19 December 1988 Sun Release 4.1

VARARGS(3) C LIBRARY FUNCTIONS VARARGS(3)

EXAMPLE
This example is a possible implementation of execl(3V).

#include <varargs.h>
#define MAXARGS 100

1* execl is called by
* execl(file, argl, arg2, ... , (char *)0);
*1
execl (va _ alist)
va dcl
{

}

va}ist ap;
char *file;
char *args[MAXARGS];
int argno = 0;

va_start (ap);
file = va_arg(ap, char *);
while «args[argno++] = va_arg(ap, char *» != (char *)0)

,
va_end (ap);
return execv(file, args);

SEE ALSO

BUGS

execl(3V), printf(3V)

It is up to the calling routine to specify how many arguments there are, since it is not possible to
determine this from the stack frame. For example, execl() is passed a zero pointer to signal the end
of the list printf() can tell how many arguments are supposed to be there by the format.

The macros va _ start() and va _ end() may be arbitrarily complex; for example, va _ start() might con­
tain an opening brace, which is closed by a matching brace in va _ end(). Thus, they should only be
used where they could be placed within a single complex statement.

Sun Release 4.1 Last change: 19 December 1988 1249

VLIMIT(3C) COMPATIBILITY FUNCTIONS VLIMIT(3C)

NAME
vlimit - control maximum system resource consumption

SYNOPSIS
#include <sys/vlimit.h>

vIimit(resource, value) int resource, value;

DESCRIPTION
This facility is superseded by getrlimit(2).

Limits the consumption by the current process and each process it creates to not individually exceed
value on the specified resource. If value is specified as -1, then the current limit is returned and the
limit is unchanged. The resources which are currently controllable are:

LIM NORAISE

LIM CPU

LIM FSIZE

LIM DATA

LIM STACK

LIM CORE

LIM MAXRSS

A pseudo-limit; if set non-zero then the limits may not be raised. Only the
super-user may remove the noraise restriction.

the maximum number of CPU-seconds to be used by each process

the largest single file which can be created

the maximum growth of the data+stack region using sbrkO (see brk(2»
beyond the end of the program text

the maximum size of the automatically-extended stack region

the size of the largest core dump that will be created.

a soft limit for the amount of physical memory (in bytes) to be given to the
program. If memory is tight, the system will prefer to take memory from
processes which are exceeding their declared LIM _ MAXRSS.

Because this information is stored in the per-process information this system call must be executed
directly by the shell if it is to affect all future processes created by the shell; limit is thus a built-in
command to csh(l).

The system refuses to extend the data or stack space when the limits would be exceeded in the normal
way; a break call fails if the data space limit is reached, or the process is killed when the stack limit
is reached (since the stack cannot be extended, there is no way to send a signal!).

A file I/O operation which would create a file which is too large will cause a signal SIGXFSZ to be
generated, this normally terminates the process, but may be caught. When the cpu time limit is
exceeded, a signal SIGXCPU is sent to the offending process; to allow it time to process the signal it
is given 5 seconds grace by raising the CPU time limit.

SEE ALSO

BUGS

1250

csh(1), sh(1), brk(2)

If LIM_NORAISE is set, then no grace should be given when the CPU time limit is exceeded.

There should be limit and un limit commands in sh(l) as well as in csh(I).

Last change: 6 October 1987 Sun Release 4.1

VPRINTF(3V) C LIBRARY FUNCTIONS

NAME
vprintf, vfprintf, vsprintf - print formatted output of a varargs argument list

SYNOPSIS·
#include <stdio.h>
#include <varargs.h>

int vprintf(format, ap)
char *format;
va_list ap;

int vfprintf(stream, format, ap)
FILE *stream;
char *format;
va_list ap;

char *vsprintf(s, format, ap)
char *s, *format;
va_list ap;

SYSTEM V SYNOPSIS
int vsprintf(s, format, ap)
char *s, *format;
va_list ap;

DESCRIPTION

VPRINTF (3V)

vprintf(), vfprintf(), and vsprintf() are the same as printf(3V), fprintf(), and sprintf() (see
printf(3V» respectively, except that instead of being called with a variable number of arguments, they
are called with an argument list as defined by varargs(3).

RETURN VALUES
On success, vprintf() and vfprintf() return the number of characters transmitted, excluding the null
character. On failure, they return EOF.

vsprintf() returns s.

SYSTEM V RETURN VALUES
vsprintf() returns the number of characters transmitted, excluding the null character.

EXAMPLES
The following demonstrates how vfprintf() could be used to write an error routine.

#inelude <stdio.h>

Sun Release 4.1

#include <varargs.h>

/* error should be called like:
* error(function_name, format, argl, arg2 ...);
* Note: function name and format cannot be declared
* separately because of the definition of varargs.
*/

/*V ARARGSO*/
void
error (va_alist)

va del
{

va Jist args;
char *fmt;

va start(args);
- /* print name of function causing error */

Last change: 21 January 1990 1251

VPRINTF (3V)

}

SEE ALSO

C LIBRARY FUNCTIONS

(void) fprintf(stderr, "ERROR in %s: ", va_arg(args, char *»;
fmt = va _arg(args, char *);

/* print out remainder of message */
(void) vfprintf(stderr, fmt, args);
va_end(args);
(void) abort();

printf(3V), varargs(3)

1252 Last change: 21 January 1990

VPRINTF (3V)

Sun Release 4.1

VSYSLOO(3) C LIBRARY FUNCTIONS

NAME
vsyslog - log message with a varargs argument list

SYNOPSIS
#include <syslog.h>
#include <varargs.h>

int vsyslog(priority, message, ap)
char *message;
vaJist ap;

DESCRIPTION

VSYSLOG(3)

vsyslog() is the same as syslog(3) except that instead of being called with a variable number of argu­
ments, it is called with an argument list as defined by varargs(3).

EXAMPLE
The following demonstrates how vsyslog() could be used to write an error routine.

#include <syslog.h>

SEE ALSO

#include <varargs.h>

1* error should be called like:
* error(pri, function_name, format, argl, arg2 ...);
* Note that pri, function_name, and format cannot be declared
* separately because of the definition of varargs.
*1

I*v ARARGSO*I
void
error (va _ alist)

va_dcl;
{

}

va Jist args;
int pri;
char *message;

va_start(args);
pri = va_arg(args, int);

1* log name of function causing error *1
(void) syslog(pri, "ERROR in %s", va_arg(args, char *»;
message = va_arg(args, char *);

1* log remainder of message *1
(void) vsyslog(pri, fmt, args);
va_end(args);
(void) abort();

syslog(3), varargs(3)

Sun Release 4.1 Last change: 10 October 1987 1253

VTIMES(3C) COMPATIBILITY FUNCTIONS VTIMES(3C)

NAME
vtimes - get infonnation about resource utilization

SYNOPSIS
vtimes(par _ vm, ch _ vm)
struct vtimes *par _ vm, *ch _ vm;

DESCRIPTION
Note: this facility is superseded by getrusage(2).

vtimes() returns accounting information for the current process and for the terminated child processes
of the current process. Either par _vm or ch_vm or both may be 0, in which case only the information
for the pointers which are non-zero is returned.

After the call, each buffer contains infonnation as defined by the contents of the include file
<sys/vtimes.h>:

struct vtimes {
int vm_utime; 1* user time (*HZ) *1
int vm _ stime; 1* system time (* HZ) *1
1* divide next two by utime+stime to get averages *1
unsigned vm_idsrss; 1* integral of d+s rss *1
unsigned vm Jxrss; 1* integral of text rss *1
int vm _ maxrss; 1* maximum rss *1
int vm _ majflt; 1* major page faults *1
int vm _ minflt; 1* minor page faults *1
int vm_nswap; 1* number of swaps *1
int vm Jnblk; 1* block reads *1
int vm _ oublk; 1* block writes */

};

The vm_utime and vm_stime fields give the user and system time respectively in 60ths of a second
(or 50ths if that is the frequency of wall current in your locality.) The vm _idrss and vm Jxrss meas­
ure memory usage. They are computed by integrating the number of memory pages in use each over
cpu time. They are reported as though computed discretely, adding the current memory usage (in 512
byte pages) each time the clock ticks. If a process used 5 core pages over 1 cpu-second for its data
and stack, then vm_idsrss would have the value 5*60, where vm_utime+vm_stime would be the 60.
vm Jdsrss integrates data and stack segment usage, while VOl _ ixrss integrates text segment usage.
vm _maxrss reports the maximum instantaneous sum of the text+data+stack core-resident page count.

The vm _majftt field gives the number of page faults which resulted in disk activity; the vm _ minftt
field gives the number of page faults incurred in simulation of reference bits; vm _ nswap is the
number of swaps which occurred. The number of file system input/output events are reported in
vm Jnblk and VOl _ oublk These numbers account only for real I/O; data supplied by the caching
mechanism is charged only to the first process to read or write the data.

SEE ALSO
getrusage(2), wait(2V)

1254 Last change: 6 October 1987 Sun Release 4.1

XDR(3N) NETWORK FUNCTIONS XDR(3N)

NAME
xdr - library routines for external data representation

SYNOPSIS AND DESCRIPTION
XDR routines allow C programmers to describe arbitrary data structures in a machine-independent
fashion. Data for remote procedure calls (RPC) are encoded and decoded using these routines. See
rpc(3N).

All XDR routines require the header <rpc/xdr .h> to be included.

The XDR routines have been grouped by usage on the following man pages.

xdr _ admin(3N) Library routines for managing the XDR stream. The routines documented on

xdr _ complex(3N)

xdr _ create(3N)

Sun Release 4.1

this page include:
xdr _getp os ()
xdr Jnline()
xdrrec _ endofrecord()
xdrrec _ eof()
xdrrec _readbytes()
xdrrec _ skiprecord()
xdr _ setpos()

Library routines for translating complex data types into their external data
representation. The routines documented on this page include:

xdr _ array()
xdr _ bytes()
xdr _ opaque()
xdr Jointer()
xdr _reference()
xdr _ string()
xdr _ union()
xdr _ vector()
xdr _ wrapstring()

Library routines for creating XDR streams. The routines documented on this
page include:

xdr _ destroy()
xdrmem _ create()
xdrrec _ create()
xdrstdio _ create()

Library routines for translating simple data types into their external data
representation. The routines documented on this page include:

xdr_bool()
xdr_char()
xdr _ double()
xdr_enum()
xdr_ftoatO
xdr_free()
xdr_int()
xdrJong()
xdr _ short()
xdr_u_char()
xdr _ u _int()
xdr _ u _Iong()
xdr _ u _ short()
xdr_void()

Last change: 16 February 1988 1255

XDR(3N) NETWORK FUNCTIONS XDR(3N)

SEE ALSO
rpc(3N), xdr _ admin(3N), xdr _ complex(3N), xdr _ create(3N), xdr _ simple(3N)

Network Programming

1256 Last change: 16 February 1988 Sun Release 4.1

NAME

NETWORK FUNCTIONS

xdr~etpos, xdr_inline, xdrrec_endofrecord, xdrrec_eof, xdrrec_readbytes, xdrrec_skiprecord, xdr_setpos
- library routines for management of the XDR stream

DESCRIPTION
XDR library routines allow C programmers to describe arbitrary data structures in a machine­
independent fashion. Protocols such as remote procedure calls (RPC) use these routines to describe the
format of the data.

These routines deal specifically with the management of the XDR stream.

Routines
The xnR data structure is defined in the RPC/XDR Library Definitions of the Network Programming.

#include <rpc/xdr .h>

u _int xdr _getpos(xdrs)
xnR *xdrs;

Invoke the get-position routine associated with the XDR stream, xdrs. The routine returns an
unsigned integer, which indicates the position of the XDR byte stream. A desirable feature of
XDR streams is that simple arithmetic works with this number, although the XDR stream
instances need not guarantee this.

long * xdr JnIine(xdrs, len)
XDR *xdrs;
int len;

Invoke the in-line routine associated with the XDR stream, xlirs. The routine returns a pointer
to a contiguous piece of the stream's buffer; len is the byte length of the desired buffer.
Note: A pointer is cast to long *.

Warning: xdr JnIineO may return NULL if it cannot allocate a contiguous piece of a buffer.
Therefore the behavior may vary among stream instances; it exists for the sake of efficiency.

bool_t xdrrec_endofrecord(xdrs, sendnow)
XDR *xdrs;
int sendnow;

This routine can be invoked only on streams created by xdrrec _ create() (see
xdr _ create(3N). The data in the output buffer is marked as a completed record, and the
output buffer is optionally written out if sendnow is non-zero. This routine returns TRUE if it
succeeds, FALSE otherwise.

bool_t xdrrec_eof(xdrs)
XDR *xdrs;
int empty;

This routine can be invoked only on streams created by xdrrec _ create() (see
xdr _ create(3N). After consuming the rest of the current record in the stream, this routine
returns TRUE if the stream has no more input, FALSE otherwise.

int xdrrec_readbytes(xdrs, addr, nbytes)
xnR *xdrs;
caddr_t addr;
u_int nbytes;

Sun Release 4.1

This routine can be invoked only on streams created by xdrrec _ create() (see
xdr _ create(3N). It attempts to read nbytes bytes from the XDR stream into the buffer
pointed to by addr. On success it returns the number of bytes read. Returns -Ion failure. A
return value of 0 indicates an end of record.

Last change: 20 January 1990 1257

boot t xdrrec _ skiprecord(xdrs)
xnR *xdrs;

NETWORK FUNCTIONS

This routine can be invoked only on streams created by xdrrec _ create() (see
xdr_create(3N»). It tells the XDR implementation that the rest of the current record in the
stream's input buffer should be discarded. This routine returns TRUE if it succeeds, FALSE

otherwise.

boot t xdr _ setpos(xdrs, pos)
xnR *xdrs;
u_int pos;

Invoke the set position routine associated with the XDR stream xdrs. The parameter pos is a
position value obtained from xdr _getpos(). This routine returns 1 if the XDR stream could
be repositioned, and 0 otherwise.

Warning: It is difficult to reposition some types of XDR streams, so this routine may fail with
one type of stream and succeed with another.

SEE ALSO
xdr(3N), xdr_complex(3N), xdr_create(3N), xdr_simple(3N)

1258 Last change: 20 January 1990 Sun Release 4.1

XDR_COMPLEX(3N) NETWORK FUNCTIONS XDR_COMPLEX(3N)

NAME
xdr_array, xdr_bytes, xdr_opaque, xdr_pointer, xdr_reference, xdr_string, xdr_union, xdr_vector,
xdr_wrapstring - library routines for translating complex data types

DESCRIPTION
XDR library routines allow C programmers to describe complex data structures in a machine­
independent fashion. Protocols such as remote procedure calls (RPC) use these routines to describe the
fonnat of the data.

Routines
The XDR data structure is defined in the RPC/XDR Library Definitions of the Network Programming.

#include <rpc/xdr .h>

bool_t xdr_array(xdrs, arrp, sizep, maxsize, elsize, elproc)
XDR *xdrs;
char * * arrp;
u_int *sizep, maxsize, elsize;
xdrproc _ t elproc;

A filter primitive that translates between a variable-length array and its corresponding external
representations. The parameter arrp is the address of the pointer to the array, while sizep is
the address of the element count of the array. This value is used by the filter while encoding
and is set by it while decoding; the routine fails if the element count exceeds maxsize. The
parameter elsize is the sizeof each of the array's elements, and elproc is an XDR filter that
translates between the array elements' C form, and their external representation. This routine
returns TRUE if it succeeds, FALSE otherwise.

bool_t xdr_bytes(xdrs, arrp, sizep, maxsize)
XDR *xdrs;
char * *arrp;
u _int *sizep, maxsize;

A filter primitive that translates between an array of bytes and its external representation. It
treats the array of bytes as opaque data. The parameter arrp is the address of the array of
bytes. While decoding if *arrp is NULL, then the necessary storage is allocated to hold the
array. This storage can be freed by using xdr_free() (see xdr_simple(3N)). sizep is the
pointer to the actual length specifier for the array. This value is used by the filter while
encoding and is set by it when decoding. maxsize is the maximum length of the array. The
routine fails if the actual length of the array is greater than maxsize This routine returns TRUE
if it succeeds, FALSE otherwise.

bool_t xdr_opaque(xdrs, cp, cnt)
XDR *xdrs;
char *cp;
u_int cnt;

Sun Release 4.1

A filter primitive that translates between fixed size opaque data and its external representation.
The parameter cp is the address of the opaque object, and ent is its size in bytes. This rou­
tine returns TRUE if it succeeds, FALSE otherwise.

Last change: 20 January 1990 1259

XDR_COMPLEX(3N) NETWORK FUNCTIONS XDR_COMPLEX(3N)

1260

bool_t xdryointer(xdrs, objpp, objsize, objproc)
XDR *xdrs;
char **objpp;
u_int objsize;
xdrproc_t objproc;

Like xdr _referenceO except that it serializes NULL pointers, whereas xdr _referenceO does
not. Thus, xdr yointer() can represent recursive data structures, such as binary trees or
linked lists. The parameter objpp is the address of the pointer; objsize is the sizeoJ the struc­
ture that *objpp points to; and objproc is an XDR procedure that filters the structure between
its C form and its external representation. This routine returns TRUE if it succeeds, FALSE
otherwise.

bool_t xdr_reference(xdrs, pp, size, proc)
XDR *xdrs;
char **pp;
u_int size;
xdrproc_t proc;

A primitive that provides pointer chasing within structures. The parameter pp is the address
of the pointer; size is the sizeoJ the structure that *pp points to; and proc is an XDR procedure
that filters the structure between its C form and its external representation. This routine
returns TRUE if it succeeds, FALSE otherwise.

Warning: This routine does not understand NULL pointers. Use xdr yointer() instead.

bool_ t xdr _ string(xdrs, strp, maxsize)
XDR *xdrs;
char * *strp;
uJnt maxsize;

A filter primitive that translates between C strings and their corresponding external representa­
tions. The routine fails if the string being translated is longer than maxsize. strp is the
address of the pointer to the string. While decoding if *strp is NULL, then the necessary
storage is allocated to hold this null-terminated string and *strp is set to point to this. This
storage can be freed by using xdr _freeO (see xdr _ sirnple(3N». This routine returns TRUE if
it succeeds, FALSE otherwise.

bool_t xdr_union(xdrs, dscmp, unp, choices, defaultarm)
XDR *xdrs;
int *dscmp;
char *unp;
struct xdr _ discrim * choices;
bool_t (*defaultarm) 0; 1* may be NULL *1

A filter primitive that translates between a discriminated C union and its corresponding exter­
nal representation. It first translates the discriminant of the union located at dscmp. This
discriminant is always an enum _ t. Next the union located at unp is translated. The parame­
ter choices is a pointer to an array of xdr _ discrim structures. Each structure contains an
ordered pair of [value ,proc]. If the union's discriminant is equal to any of the values, then
the associated proc is called to translate the union. The end of the xdr _ discrim structure
array is denoted by a NULL pointer. If the discriminant is not found in the choices array,
then the deJaultarm procedure is called (if it is not NULL). This routine returns TRUE if it
succeeds, FALSE otherwise.

Last change: 20 January 1990 Sun Release 4.1

XDR_COMPLEX(3N) NETWORK FUNCTIONS XDR_COMPLEX(3N)

bool_ t xdr _ vector(xdrs, arrp, size, elsize, elproc)
XDR *xdrs;
char *arrp;
u Jot size, elsize;
xdrproc _ t elproc;

A filter primitive that translates between fixed-length arrays and their corresponding external
representations. The parameter arrp is the address of the array, while size is the element
count of the array. The parameter elsize is the sizeD! each of the array's elements, and elproc
is an XDR filter that translates between the array elements' C form, and their external
representation. This routine returns TRUE if it succeeds, FALSE otherwise.

bool_t xdr _ wrapstring(xdrs, strp)
XDR *xdrs;
char * *strp;

SEE ALSO

A primitive that calls xdr _string(xdrs, strp, MAXUNSIGNED); where MAXUNSIGNED is
the maximum value of an unsigned integer. xdr _ wrapstring() is handy because the RPC
package passes a maximum of two XDR routines as parameters, and xdr_stringO, one of the
most frequently used primitives, requires three. strp is the address of the pointer to the string.
While decoding if *strp is NULL, then the necessary storage is allocated to hold the nu11-
terminated string and *strp is set to point to this. This storage can be freed by using
xdr_freeO (see xdr_simple(3N». This routine returns TRUE if it succeeds, FALSE otherwise.

xdr(3N), xdr _admin(3N), xdr _ create (3N), xdr _simple(3N)

Sun Release 4.1 Last change: 20 January 1990 1261

NAME

NETWORK FUNCTIONS

xdr_destroy, xdrmem_create, xdrrec_create, xdrstdio_create - library routines for external data
representation stream creation

DESCRIPTION
XDR library routines allow C programmers to describe arbitrary data structures in a machine­
independent fashion. Protocols such as remote procedure calls (RPC) use these routines to describe the
format of the data.

These routines deal with the creation of XDR streams. XDR streams have to be created before any
data can be translated into XDR format.

Routines

1262

The XDR, CLIENT, and SVCXPRT data structures are defined in the RPC/XDR Library Definitions of
the Network Programming.

#include <rpc/xdr .h>

void xdr _ destroy(xdrs)
XDR *xdrs;

Invoke the destroy routine associated with the XDR stream, xdrs. Destruction usually involves
freeing private data structures associated with the stream. Using xdrs after invoking
xdr _ destroy() is undefined.

void xdrmem _ create(xdrs, addr, size, op)
XDR *xdrs;
char *addr;
u_int size;
enum xdr_op op;

This routine initializes the XDR stream object pointed to by xdrs. The stream's data is writ­
ten to, or read from, a chunk of memory at location addr whose length is no more than size
bytes long. size should be a multiple of 4. The op determines the direction of the XDR
stream (either XDR_ENCODE, XDR_DECODE, or XDR_FREE).

void xdrrec _ create(xdrs, sendsz, recvsz, handle, readit, writeit)
XDR *xdrs;
uJnt sendsz, recvsz;
char *handle;
int (*readit) (), (*writeit) ();

This routine initializes the XDR stream object pointed to by xdrs. The stream's data is writ­
ten to a buffer of size sendsz; a value of zero indicates the system should use a suitable
default. The stream's data is read from a buffer of size recvsz; it too can be set to a suitable
default by passing a zero value. When a stream's output buffer is full, writeit is called.
Similarly, when a stream's input buffer is empty, readit is called. The behavior of these two
routines is similar to read(2V) and write(2V), except that handle is passed to the former rou­
tines as the first parameter. Note: The XDR stream's op field must be set by the caller.
sendsz and recvsz should be multiples of 4.

Warning: This XDR stream implements an intermediate record stream. Therefore there are
additional bytes in the stream to provide record boundary information.

Last change: 20 January 1990 Sun Release 4.1

NETWORK FUNCTIONS

void xdrstdio _ create(xdrs, fiJep, op)
XDR *xdrs;
FILE *filep;
enum xdr_op op;

SEE ALSO

This routine initializes the XDR stream object pointed to by xdrs. The XDR stream data is
written to, or read from, the Standard I/O stream filep. The parameter op determines the
direction of the XDR stream (either XDR_ENCODE, XDR_DECODE, or XDR_FREE).

Warning: The destroy routine associated with such XDR streams calls fflushO on the file
stream, but never fclose(3V).

read(2V), write(2V), fclose(3V), xdr(3N), xdr_admin(3N), xdr_compJex(3N), xdr_simpJe(3N)

Sun Release 4.1 Last change: 20 January 1990 1263

NAME

NETWORK FUNCTIONS XDR_SIMPLE (3N)

xdr_bool, xdr_char, xdr_double, xdr_enum, xdr_ftoat, xdr_free, xdr_int, xdr_Iong, xdr_short,
xdr_u_char, xdr_u_int, xdr_u_Iong, xdr_u_short, xdr_void - library routines for translating simple data
types

DESCRIPTION
XDR library routines allow C programmers to describe simple data structures in a machine-independent
fashion. Protocols such as remote procedure calls (RPC) use these routines to describe the format of
the data.

These routines require the creation of XDR streams (see xdr _ create (3N)).

Routines

1264

The XDR data structure is defined in the RPC/XDR Library Definitions of the Network Programming.

#include <rpc/xdr .h>

bool_ t xdr _ bool(xdrs, bp)
XDR *xdrs;
bool_t *bp;

A filter primitive that translates between a boolean (C integer) and its external representation.
When encoding data, this filter produces values of either one or zero. This routine returns
TRUE if it succeeds, FALSE otherwise.

boot t xdr _ char(xdrs, cp)
XDR *xdrs;
char *cp;

A filter primitive that translates between a C character and its external representation. This
routine returns TRUE if it succeeds, FALSE otherwise.

Note: Encoded characters are not packed, and occupy 4 bytes each. For arrays of characters,
it is worthwhile to consider xdr _ bytes(), xdr _ opaque() or xdr _ string() , see
xdr _ complex(3N).

bool_t xdr_double(xdrs, dp)
XDR *xdrs;
double *dp;

A filter primitive that translates between a C double preCISIOn number and its external
representation. This routine returns TRUE if it succeeds. FALSE otherwise.

boott xdr_enum(xdrs, ep)
XDR *xdrs;
enum_t *ep;

A filter primitive that translates between a C enum (actually integer) and its external
representation. This routine returns TRUE if it succeeds. FALSE otherwise.

boot t xdr _ 80at(xdrs, fp)
XDR *xdrs;
80at *fp;

A filter primitive that translates between a C 80at and its external representation. This rou­
tine returns TRUE if it succeeds, FALSE otherwise.

Last change: 20 January 1990 Sun Release 4.1

void xdr_free(proc, objp)
xdrproc_t proc;
char *objp;

NETWORK FUNCTIONS

Generic freeing routine. The first argument is the XDR routine for the object being freed. The
second argument is a pointer to the object itself. Note: The pointer passed to this routine is
not freed, but what it points to is freed, recursively such that objects pointed to are also freed
for example, linked lists.

bool_t xdr _int(xdrs, ip)
XDR *xdrs;
int *ip;

A filter primitive that translates between a C integer and its external representation. This
routine returns TRUE if it succeeds, FALSE otherwise.

bool_ t xdr _Iong(xdrs, Ip)
XDR *xdrs;
long *Ip;

A filter primitive that translates between a C long integer and its external representation. This
routine returns TRUE if it succeeds, FALSE otherwise.

bool_ t xdr _ short(xdrs, sp)
XDR *xdrs;
short *sp;

A filter primitive that translates between a C short integer and its external representation.
This routine returns TRUE if it succeeds, FALSE otherwise.

bool_t xdr_u_char(xdrs, ucp)
XDR *xdrs;
unsigned char *ucp;

A filter primitive that translates between an unsigned C character and its external representa­
tion. This routine returns TRUE if it succeeds, FALSE otherwise.

bool_t xdr_u_int(xdrs, up)
XDR *xdrs;
unsigned *up;

A filter primitive that translates between a C unsigned integer and its external representation.
This routine returns TRUE if it succeeds, FALSE otherwise.

bool_t xdr_u_Iong(xdrs, ulp)
XDR *xdrs;
unsigned long *ulp;

A filter primitive that translates between a C unsigned long integer and its external represen­
tation. This routine returns TRUE if it succeeds, FALSE otherwise.

boot t xdr _ u _ short(xdrs, usp)
XDR *xdrs;
unsigned short *usp;

A filter primitive that translates between a C unsigned short integer and its external represen-
tation. This routine returns TRUE if it succeeds, FALSE otherwise. .

bool_t xdr _ void()

Sun Release 4.1

This routine always returns TRUE. It may be passed to RPC routines that require a function
parameter, where nothing is to be done.

Last change: 20 January 1990 1265

NETWORK FUNCTIONS

SEE ALSO
xdr(3N), xdr _ admin(3N), xdr _ complex(3N), xdr _ create(3N)

1266 Last change: 20 January 1990 Sun Release 4.1

YPCLNT(3N) NETWORK FUNCTIONS YPCLNT(3N)

NAME
ypclnt, yp~eCdefaulCdomain, yp_bind, yp_unbind, yp_match, yp_first, yp_next, yp_all, yp_order,
yp_master, yperr_string, ypprocerr - NIS client interface

SYNOPSIS AND DESCRIPTION
This package of functions provides an interface to the Network Information Service (NIS). The pack­
age can be loaded from the standard library, lusrlIiblIibc.a. Refer to ypfiles(5) and ypserv(8) for an
overview of the NIS name service, including the definitions of map and domain, and a description of
the various servers, databases, and commands that comprise the NIS services.

All input parameters names begin with in. Output parameters begin with out. Output parameters of
type char ** should be addresses of uninitialized character pointers. Memory is allocated by the NIS
client package using malloc(3V), and may be freed if the user code has no continuing need for it.
For each outkey and outval, two extra bytes of memory are allocated at the end that contain NEWLINE
and the null character, respectively, but these two bytes are not reflected in outkeylen or outvallen.
indo main and inmap strings must not be empty and must be null-terminated. String parameters which
are accompanied by a count parameter may not be NULL, but may point to null strings, with the count
parameter indicating this. Counted strings need not be null-terminated.

All functions in this package of type int return 0 if they succeed, and a failure code (YPERR ~)
otherwise. Failure codes are described under DIAGNOSTICS below.

yp _bind (indomain);
char *indomain;

void

To use the NIS services, the client process must be "bound" to a NIS server that serves the
appropriate domain using yp _ bind(). Binding need not be done explicitly by user code; this
is done automatically whenever a NIS lookup function is called. yp _ bind() can be called
directly for processes that make use of a backup strategy (for example, a local file) in cases
when NIS services are not available.

yp _unbind (indomain)
char *indomain;

Sun Release 4.1

Each binding allocates (uses up) one client process socket descriptor; each bound domain
costs one socket descriptor. However, multiple requests to the same domain use that same
descriptor. yp _ unbindO is available at the client interface for processes that explicitly
manage their socket descriptors while accessing multiple domains. The call to yp _ unbind()
make the domain unbound, and free all per-process and per-node resources used to bind it

If an RPC failure results upon use of a binding, that domain will be unbound automatically.
At that point, the ypclnt layer will retry forever or until the operation succeeds, provided that
ypbind is running, and either

a) the client process cannot bind a server for the proper domain, or

b) RPC requests to the server fail.

If an error is not RPC-related, or if ypbind is not running, or if a bound ypserv process
returns any answer (success or failure), the ypclnt layer will return control to the user code,
either with an error code, or a success code and any results.

Last change: 22 January 1988 1267

YPCLNT(3N) NETWORK FUNCTIONS YPCLNT(3N)

1268

yp _get_default_domain (outdomain);
char **outdomain;

The NIS lookup calls require a map name and a domain name, at minimum. It is assumed
that the client process knows the name of the map of interest. Client processes should fetch
the node's default domain by calling yp_get_default_domainO, and use the returned out­
domain as the indomain parameter to successive NIS calls.

yp_match(indomain, inmap, inkey, inkeylen, outval, outvallen)
char *indomain;
char *inmap;
char *inkey;
int inkeylen;
char **outval;
int *outvallen;

yp _ match() returns the value associated with a passed key. This key must be exact; no pat­
tern matching is available.

yp_first(indomain, inmap, outkey, outkeylen, outval, outvallen)
char *indomain;
char *inmap;
char **outkey;
int *outkeylen;
char **outval;
int *outvallen;

yp _ first() returns the first key-value pair from the named map in the named domain.

yp_next(indomain, inmap, in key, inkeylen, outkey, outkeylen, outval, outvallen);
char *indomain;
char *inmap;
char *inkey;
int inkeylen;
char **outkey;
int *outkeylen;
char **outval;
int *outvallen;

yp _ next() returns the next key-value pair in a named map. The inkey parameter should be
the outkey returned from an initial call to yp _ firs to (to get the second key-value pair) or the
one returned from the nth call to yp_nextO (to get the nth + second key-value pair).

The concept of first (and, for that matter, of next) is particular to the structure of the NIS map
being processing; there is no relation in retrieval order to either the lexical order within any
original (non-NIS) data base, or to any obvious numerical sorting order on the keys, values, or
key-value pairs. The only ordering guarantee made is that if the yp _ first() function is called
on a particular map, and then the yp _ next() function is repeatedly called on the same map at
the same server until the call fails with a reason of YPERR_NOMORE, every entry in the data
base will be seen exactly once. Further, if the same sequence of operations is performed on
the same map at the same server, the entries will be seen in the same order.

Last change: 22 January 1988 Sun Release 4.1

YPCLNT(3N) NETWORK FUNCTIONS YPCLNT(3N)

Under conditions of heavy server load or server failure. it is possible for the domain to
become unbound. then bound once again (perhaps to a different server) while a client is run­
ning. This can cause a break in one of the enumeration rules; specific entries may be seen
twice by the client. or not at all. This approach protects the client from error messages that
would otherwise be returned in the midst of the enumeration. The next paragraph describes a
better solution to enumerating all entries in a map.

yp_all(indomain, inmap, incallback);
char *indomain;
char *inmap;
struct ypall_ callback *incallback;

Sun Release 4.1

yp_all() provides a way to transfer an entire map from server to client in a single request
using TCP (rather than UDP as with other functions in this package). The entire transaction
take place as a single RPC request and response. You can use yp _ alI() just like any other
NIS procedure. identify the map in the normal manner. and supply the name of a function
which will be called to process each key-value pair within the map. You return from the call
to yp _all() only when the transaction is completed (successfully or unsuccessfully). or your
foreach function decides that it does not want to see any more key-value pairs.

The third parameter to yp _ all() is
struct ypall_callback *incallback {
int (*foreach)();
char *data;
};

The function foreach is called
foreach(instatus, inkey, inkeylen, in val, iovallen, indata);
int instatus;
char *inkey;
int in key leo ;
char *inval;
int invalleo;
char *indata;

The instatus parameter will hold one of the return status values defined in
<rpcsvdyp yrot.h> - either YP _TRUE or an error code. See ypprot _ err(). below. for a
function which converts a NIS protocol error code to a ypclnt layer error code.

The key and value parameters are somewhat different than defined in the synopsis section
above. First. the memory pointed to by the inkey and inval parameters is private to the
yp_allO function. and is overwritten with the arrival of each new key-value pair. It is the
responsibility of the foreach function to do something useful with the contents of that
memory. but it does not own the memory itself. Key and value objects presented to the
foreach function look exactly as they do in the server's map - if they were not NEWLINE­
terminated or null-tenninated in the map, they will not be here either.

The indata parameter is the contents of the incallback->data element passed to yp _ all().
The data element of the callback structure may be used to share state information between
the foreach function and the mainline code. Its use is optional, and no part of the NIS client
package inspects its contents - cast it to something useful. or ignore it as you see fit.

The foreach function is a Boolean. It should return zero to indicate that it wants to be called
again for further received key-value pairs. or non-zero to stop the flow of key-value pairs. If
foreach returns a non-zero value. it is not called again; the functional value of yp _ all() is
then O.

Last change: 22 January 1988 1269

YPCLNT(3N) NETWORK FUNCTIONS YPCLNT(3N)

FILES

yp _ order(indomain, inmap, outorder);
char *indomain;
char *inmap;
int *outorder;

yp _ order() returns the order number for a map.

yp_master(indomain, inmap, outname);
char *indomain;
char *inmap;
char **outname;

yp _ master() returns the machine name of the master NIS server for a map.

char *yperr _ string(incode)
int incode;

yperr _stringO returns a pointer to an error message string that is null-terminated but contains
no period or NEWLlNE.

ypprot_err (incode)
unsigned int incode;

ypprot _ err() takes a NIS protocol error code as input, and returns a ypclnt layer error code,
which may be used in turn as an input to yperr _ string().

<rpcsvc/ypclnt.h>
<rpcsvc/yp yrot.h>
lusr/lib/libc.a

SEE ALSO
malloc(3V), ypupdate(3N), ypfiles(5), ypserv(8)

DIAGNOSTICS

1270

All integer functions return 0 if the requested operation is successful, or one of the following errors if
the operation fails.

#define YPERR BADARGS
1 1* args to function are bad *1

#define YPERR _ RPC
2 1* RPC failure - domain has been unbound *1

#define YPERR DOMAIN
3 1* can't bind to server on this domain *1

#define YPERR MAP
4 1* no such map in server's domain *1

#define YPERR KEY
5 1* no such key in map *1

#define YPERR _ YPERR
6 1* internal yp server or client error *1

#define YPERR_RESRC
7 1* resource allocation failure *1

#define YPERR_NOMORE
8 1* no more records in map database *1

#define YPERR PMAP
9 1* can't communicate with portmapper *1

#define YPERR YPBIND

Last change: 22 January 1988 Sun Release 4.1

YPCLNT(3N) NETWORK FUNCTIONS YPCLNT(3N)

NOTES

10 1* can't communicate with ypbind *1

#define YPERR _ YPSERV
11 1* can't communicate with ypserv *1

#define YPERR _NODOM
12 1* local domain name not set *1

#define YPERR _ BADDBtR
13 1* yp database is bad *1

#define YPERR _ VERStR
14 1* yp version mismatch *1

#define YPERR _ACCESS
15 1* access violation *1

#define YPERR _BUSY
16 1* database busy *1

The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The func­
tionality of the two remains the same; only the name has changed. The name YeHow Pages is a
registered trademark in the United Kingdom of British Telecommunications pIc. and may not be used
without permission.

Sun Release 4.1 Last change: 22 January 1988 1271

YPUPDATE(3N) NETWORK FUNCTIONS YPUPDA TE (3N)

NAME
yp_update - changes NIS infonnation

SYNOPSIS
#include <rpcsvc/ypclnt.h>

yp_update(domain, map, ypop, key, keylen, data, datalen)
char *domain;
char *map;
unsigned ypop
char *key;
int keylen;
char *data;
int datalen;

DESCRIPTION
yp_updateO is used to make changes to the Network Information Service (NIS) database. The syntax
is the same as that of yp _ match() (see ypclnt(3N» except for the extra parameter ypop which may
take on one of four values. If it is YPOP _ CHANGE then the data associated with the key will be
changed to the new value. If the key is not found in the database, then yp _ update() returns
YPERR_KEY. If ypop has the value YPOP _INSERT then the key-value pair will be inserted into the
database. The error YPERR_KEY is returned if the key already exists in the database. To store an
item into the database without concern for whether it exists already or not, pass ypop as
YPOP _STORE and no error will be returned if the key already or does not exist. To delete an entry,
the value of ypop should be YPOP _DELETE.

This routine depends upon secure RPC, and will not work unless the network is running secure RPC.

SEE ALSO
I ypclnt(3N)

NOTES

1272

System and Network Administration

The Network Infonnation Service (NIS) was formerly known as Sun Yellow Pages (YP). The func­
tionality of the two remains the same; only the name has changed. The name Yellow Pages is a
registered trademark in the United Kingdom of British Telecommunications pIc, and may not be used
without permission.

Last change: 6 October 1987 Sun Release 4.1

INTRO(3L) LIGHTWEIGHT PROCESSES LIBRARY INTRO(3L)

NAME
intro - introduction to the lightweight process library (L WP)

DESCRIPTION
The lightweight process library (LWP) provides a mechanism to support multiple threads of control that
share a single address space. Under SunOS, the address space is derived from a single forked ("heavy­
weight") process. Each thread has its own stack segment (specified when the thread is created) so that it
can access local variables and make procedure calls independently of other threads. The collection of
threads sharing an address space is called a pod. Under SunOS, threads share all of the resources of the
heavyweight process that contains the pod, including descriptors and signal handlers.

The LWP provides a means for creating and destroying threads, message exchange between threads, mani­
pulating condition variables and monitors, handling synchronous exceptions. mapping asynchronous events
into messages, mapping synchronous events into exceptions, arranging for special per-thread context, mul­
tiplexing the clock for timeouts. and scheduling threads both preemptively and non-preemptively.

The LWP system exists as a library of routines (lusrllib/liblwp.a) linked in (-lIwp) with a client program
which should #include the file <Iwp/lwp.h>. main is transparently converted into a lightweight process as
soon as it attempts to use any LWP primitives.

When an object created by a L WP primitive is destroyed. every attempt is made to clean up after it. For
example. if a thread dies. all threads blocked on sends to or receives from that thread are unblocked, and all
monitor locks held by the dead thread are released.

Because there is no kernel support for threads at present, system calls effectively block the entire pod. By
linking in the non-blocking I/O library (-Inbio) ahead of the LWP library, you can alleviate this problem
for those system calls that can issue a signal when a system call would be profitable to try. This library
(which redefines some system calls) uses asynchronous I/O and events (for example, SIGCHLD and
SIGIO) to make blocking less painful. The system calls remapped by the nbio library are: open(2V),
socket(2), pipe(2V), close(2V). read(2V), write(2V), send(2). recv(2), accept(2), connect(2), select (2)
and wait(2V).

RETURN VALUES

FILES

LWP primitives return non-negative integers on success. On errors, they return -1. See Iwpyerror(3L)
for details on error handling.

lusrllib/lib Iwp.a
lusrllib/libnbio.a

SEE ALSO
accept(2), close(2V), connect(2), open(2V), pipe(2V), read(2V), recv(2), select(2), send(2), socket(2),
wait(2V) write(2V)
Lightweight Processes in the System Services Overview

INDEX
The following are the primitives currently supported, grouped roughly by function.

Thread Creation
Iwp _ self(tid)
Iwp _getstate(tid, statvec)
Iwp _ setregs(tid, rnachstate)
Iwp _getregs(tid, rnachstate)
Iwpying(tid)
Iwp _ create(tid, pc, prio, flags, stack, nargs, argl, .•• , argn)
Iwp _ destroy(tid)
Iwp_enumerate(vec, rnaxsize)
pod _ setexit(status)
pod _getexit()
pod _ exit(status)
SAMETHREAD(tl, t2)

T .:l~t ch:mQ"e~ 21 Jannarv 1990 1273

INTRO(3L) LIGHTWEIGHT PROCESSES LIBRARY

Thread ScheduUng
pod _ setmaxpri(maxprio)
pod _getmaxpri()
pod _getmaxsize()
Iwp _resched(prio)
Iwp_setpri(tid, prio)
Iwp _ sleep(timeout)
Iwp _ suspend(tid)
Iwp _resume(tid)
Iwp Jield(tid)
Iwp Join(tid)

Error Handling
Iwp _geterr()
Iwp yerror(s)
Iwp _ errstr()

Messages
msg_send(tid, argbuf, argsize, resbuf, ressize)
msg_recv(tid, argbuf, argsize, resbuf, ressize, timeout)
MSG _ RECV ALL(tid, argbuf, argsize, resbuf, ressize, timeout)
msg_reply(tid)
msg_ enumsend(vec, maxsize)
msg_ enumrecv(vec, maxsize)

Event Mapping (Agents)
agt_ create(agt, event, memory)
agt_enumerate(vec, maxsize)
agt_trap(event)

Thread Synchronization: Monitors
mon _ create(mid)
mon _ destroy(mid)
mon _ enter(mid)
mon _ exit(mid)
mon_enumerate(vec, maxsize)
mon_waiters (mid, owner, vec, maxsize)
mon _ cond _ enter(mid)
mon _ break(mid)
MONITOR(mid)
SAMEMON(ml, m2)

Thread Synchronization: Condition Variables
cv _ create(cv, mid)
cv _ destroy(cv)
cv _ wait(cv)
cv _ notify(cv)
cv _ send(cv, tid)
cv _ broadcast(cv)
cv _ enumerate(vec, maxsize)
cv _ waiters(cv, vec, maxsize)
SAMECV(cl, c2)

Exception Handling

1274

exc _ handle(pattern, func, arg)
exc _ unhandle()
(*exc _ bound(pattern, arg»()
exc _ notify(pattern)
exc _raise(pattern)

Last change: 21 January 1990

INTRO(3L)

S un Release 4.1

INTRO(3L) LIGHTWEIGHT PROCESSES LIBRARY INTRO(3L)

exc _on _ exit(func, arg)
exc _ uniqpatt()

Special Context Handling
Iwp_ctxinit(tid, cookie)
Iwp _ ctxremove(tid, cookie)
Iwp _ ctxset(save, restore, ctxsize, optimise)
Iwp_ctxmemget(mem, tid, ctx)
Iwp _ ctxmemset(mem, tid, ctx)
Iwp _fpset(tid)
Iwp _Iibcset(tid)

Stack Management
CHECK(Iocation, result)

BUGS

Iwp _ setstkcache(minsize, numstks)
Iwp _ newstk()
Iwp_datastk(data, size, addr)
Iwp_stkcswset(tid, limit)
Iwp _ checkstkset(tid, limit)
STKTOP(s)

There is no language support available from C.
There is no kernel support yet. Thus system calls in different threads cannot execute in parallel.
Killing a process that uses the non-blocking I/O library may leave objects (such as its standard input) in a
non-blocking state. This could cause confusion to the shell.

LIST OF LWP LIBRARY FUNCTIONS
Name

agt_create
agt _enumerate
agt_trap
CHECK
cv broadcast
cv create
cv_destroy
cv enumerate
cv_notify
cv send
cv wait
cv waiters
exc bound
exc handle
exc_notify
exc on exit
exc raise
exc unhandle
exc _ uniqpatt
Iwp _ checkstkset
Iwp_create
Iwp _ ctxinit
Iwp _ ctxmemget
Iwp _ ctxmemset
Iwp _ ctxremove
Iwp_ctxset
Iwp _ datastk

Sun Release 4.1

Appears on Page

agt _ create (3L)
agt _ create (3L)
agt _ create (3L)
Iwp _ newstk(3L)
cv _ create (3L)
cv _ create(3L)
cv _ create(3L)
cv _ create (3L)
cv _ create(3L)
cv _ create (3L)
cv _ create(3L)
cv _ create(3L)
exc _ handle(3L)
exc _ bandle(3L)
exc _ bandle(3L)
exc _ bandle(3L)
exc _ bandle(3L)
exc _bandle(3L)
exc _ bandle(3L)
Iwp _ newstk(3L)
Iwp_create(3L)
Iwp _ ctxinit(3L)
Iwp _ ctxinit(3L)
Iwp _ ctxinit(3L)
Iwp _ ctxinit(3L)
Iwp _ ctxinit(3L)
Iwp _ newstk(3L)

Description

map L WP events into messages
map LWP events into messages
map L WP events into messages
LWP stack management
manage L WP condition variables
manage L WP condition variables
manage L WP condition variables
manage L WP condition variables
manage L WP condition variables
manage L WP condition variables
manage L WP condition variables
manage L WP condition variables
L WP exception handling
L WP exception handling
L WP exception handling
L WP exception handling
L WP exception handling
L WP exception handling
L WP exception handling
L WP stack management
LWP thread creation and destruction primitives
special L WP context operations
special L WP context operations
special L WP context operations
special L WP context operations
special L WP context operations
L WP stack management

Last change: 21 January 1990 1275

INTRO(3L)

1276

Iwp _destroy
Iwp _ eoumerate
Iwp_errstr
Iwp_fpset
Iwp_geterr
Iwp _getregs
Iwp _getstate
Iwp.Joio
Iwp _Iibcset
Iwp_oewstk
Iwpyerror
Iwpyiog
Iwp _rescbed
Iwp_resume
Iwp_self
Iwp_setpri
Iwp _ setregs
Iwp _setstkcache
Iwp_sleep
Iwp _ stkcswset
Iwp _ suspeod
IwpJield
MINSTACKSZ
moo break
moo cood eoter - -
moo create
moo_destroy
moo eoter
moo eoumerate
moo exit
moo waiters
MONITOR
msg_ eoumrecv
msg_ eoumseod
msg_recv
MSG RECVALL
m sg_re ply
msg_seod
pod exit
pod _getexit
pod _getmaxpri
pod _getmaxsize
pod setexit
pod _ setmaxpri
SAMECV
SAMEMON
SAMETHREAD
STKTOP

LIGHTWEIGHT PROCESSES LIBRARY INTRO(3L)

Iwp _ create(3L)
Iwp _ status(3L)
Iwp yerror(3L)
Iwp _ ctxioit(3L)
Iwp yerror(3L)
Iwp _status(3L)
Iwp _status(3L)
Iwp Jield(3L)
Iwp _ ctxinit(3L)
Iwp _ newstk(3L)
Iwp yerror(3L)
Iwp _ status(3L)
Iwp Jield(3L)
Iwp Jield(3L)
Iwp_status(3L)
Iwp Jield(3L)
Iwp _ status(3L)
Iwp _ newstk(3L)
Iwp Jield(3L)
Iwp _ newstk(3L)
Iwp Jield(3L)
Iwp Jield(3L)
Iwp _ newstk(3L)
moo _ create(3L)
moo _ create(3L)
mon _ create(3L)
moo _ create(3L)
moo _ create(3L)
moo_create(3L)
mon _ create(3L)
moo _ create(3L)
moo _ create(3L)
msg_send(3L)
msg_seod(3L)
msg_seod(3L)
msg_ seod(3L)
msg_ send(3L)
msg_seod(3L)
Iwp_create(3L)
Iwp _ create(3L)
pod _getmaxpri(3L)
pod _getmaxpri(3L)
Iwp_create(3L)
pod _getmaxpri(3L)
cv _ create(3L)
moo _ create(3L)
Iwp_create(3L)
Iwp _ newstk(3L)

L WP thread creation and destruction primitives
L WP status information
L WP error handling
special L WP context operations
L WP error handling
L WP status information
L WP status information
control L WP scheduling
special L WP context operations
LWP stack management
L WP error handling
L WP status information
control L WP scheduling
control L WP scheduling
L WP status information
control L WP scheduling
L WP status information
L WP stack management
control L WP scheduling
L WP stack management
control L WP scheduling
control L WP scheduling
LWP stack management
L WP routines to manage critical sections
L WP routines to manage critical sections
L WP routines to manage critical sections
L WP routines to manage critical sections
L WP routines to manage critical sections
L WP routines to manage critical sections
L WP routines to manage critical sections
L WP routines to manage critical sections
L WP routines to manage critical sections
LWP send and receive messages
L WP send and receive messages
L WP send and receive messages
L WP send and receive messages
LWP send and receive messages
L WP send and receive messages
L WP thread creation and destruction primitives
LWP thread creation and destruction primitives
control L WP scheduling priority
control L WP scheduling priority
L WP thread creation and destruction primitives
control L WP scheduling priority
manage LWP condition variables
L WP routines to manage critical sections
L WP thread creation and destruction primitives
L WP stack management

Last change: 21 January 1990 Sun Release 4.1

LIGHTWEIGHT PROCESSES LffiRARY

NAME
agccreate, agcenumerate, agctrap - map L WP events into messages

SYNOPSIS
#include <lwp/lwp.h>

thread_t agt_create(agt, event, memory)
thread_t *agt;
int event;
caddr _ t memory;

int agt_enumerate(vec, maxsize)
thread _ t vec[];
int maxsize;

int agt_trap(event)
int event;

DESCRIPTION
Agents are entItles that act like threads sending messages when an asynchronous event occurs.
agt _ create() creates an object called an agent which maps the asynchronous event event into messages
that can be received with msg_recv() (see msg_send(3L». agt stores the handle on this object. event is a
UNIX signal number.

agt_trapO causes the event, event, to generate an exception (see exc_handle(3L». Once initialized using
agt_createO or agt_trap(), an event can not be remapped to a different style of handling. If traps are
enabled, an event will cause the termination of the thread running at the time of the trap if the trap excep­
tion is not handled. If an exception handler is in place, an exception will be raised. If an agent exists for
the event, the event is mapped into a message for the agent. If neither agent nor trap mapping is enabled,
the default signal action (SIG_DFL) is applied to the pod. Use of standard UNIX signal handling facilities
will defeat the event mapping mechanism.

The message sent by the agent (in the argument buffer) will look like any other message with the sender
being the agent. The receive buffer is NULL. A message is always sent by an agent to the thread which
created the agent.

All messages sent by an agent contain an eventinfo _ t. This structure indicates the thread running at the
time the interrupt happened, and the particular event that occurred. Some agent messages contain more
information if the particular event warrants it. In this case, a struct containing an eventinfo _t as its first
element is passed as the argument buffer. Definitions of these structures are contained in <lwp/lwp.h>.

An agent appears to the owning thread just like another thread. It must therefore have some memory for
holding its message, as the sender and receiver must belong to the same address space. memory is the
space an agent will use to store its message. Typically, this is on the stack of the thread that created the
agent. It must be of the correct size for the kind of event being created (most events need something to
store an eventinfo_t. SIGCHLD events need room for a sigchldev _t.)

You should reply to an agent (using msg_reply() (see msg_send(3L» as you would reply to a thread.
Although agents do not ordinarily lose events, the next agent message will not be delivered until a reply is
sent to the agent. Thus, an agent appears to the client as an ordinary thread sending messages. An agent
will only lose events if the total number of unreplied-to events in a pod exceeds AGENTMEMORY.

Iwp _ destroy() is used to destroy an agent. All agents created by a thread automatically disappear when
that thread dies. agt_enumerateO fills in a list with the ID's of all existing agents and returns the total
number of agents. This primitive uses maxsize to avoid exceeding the capacity of the list. If the number of
agents is greater than maxsize, only maxsize agents ID's are filled in vee. If maxsize is zero,
agt _ enumerate() returns the total number of agents.

Sun Release 4.1 Last change: 21 January 1990 1277

LIGHTWEIGHT PROCESSES LIBRARY

The special event LASTRITES is caused by the tennination of a thread. An agent for LASTRITES will be
infonned about every thread that terminates, regardless of cause. The eventinro _code element of this
agent will contain the stack argument that the dead thread was created with. Note: by allocating adjacent
space above the thread stack, this argument can be used to point to private information about a thread. The
eventinro victimid element will contain the id of the dead thread.

RETURN VALUES
agt_createO and agt_trapO return:

o on success.

-1 on failure.

agt_enumerate() returns the total number of agents.

ERRORS
agt _ trap() will fail if one or more of the following are true:

LE_INUSE Agent in use for this event.

LE_INV ALIDARG Event specified does not exist.

agt_create() will fail if one or more of the following are true:

LE_INUSE Trap mapping in use for this event.

Attempt to create agent for non-existent event.

SEE ALSO

BUGS

exc_handle(3L), msg_send(3L)

Signal handlers always take the SIG _ DFL action when no agent manages the event.

If a descriptor used by a parent of the pod (such as its standard input) is marked non-blocking by a thread,
it should be reset when the pod terminates to prevent the parent from receiving EWOULDBLOCK errors on
the descriptor. There is no way to prevent this from happening if a pod is terminated with extreme preju­
dice (for instance, using SIGKILL).

If an agent reports that a descriptor has I/O available, there may be more than one occurrence of I/O avail­
able from that descriptor. Thus, being informed that SIGIO has occurred on socket s may mean that there
are several messages waiting to be received from s. Clients should be careful to clean out all I/O from a
descriptor before going back to sleep.

All system calls should be protected with loops testing for EINTR (and monitors if multiple threads can try
to use system calls concurrently). An Iwp_sleepO could result in a hidden clock interrupt for example.

WARNINGS

1278

agt_trap() should not be used for asynchronous events. If an unsuspecting thread which has no exception
handler is running at the time of a trapped event, it will be terminated.

Clients should not normally handle signals themselves since the agent mechanism assumes it is the only
entity handling signals.

Last change: 21 January 1990 Sun Release 4.1

NAME

LIGHTWEIGHT PROCESSES LIBRARY CV _CREATE (3L)

cv_create, cv_destroy, cv_wait, cv_notify, cv_broadcast, cv_send, cv_enumerate, cv_waiters, SAMECV -
manage L WP condition variables

SYNOPSIS
#include <Iwp/lwp.h>

cv _ t cv _ create(cv, mid)
cv_t *cv;
mon_tmid;

int cv _destroy(cv)
cv_t cv;

int cv _ wait(cv)
cv_t cv;

int cv _ notify(cv)
cv_t cv;

int cv _ send(cv, tid)
cv_t cv;
Iwp_t tid

int cv _ broadcast(cv)
cv_t cv;

int cv enumerate(vec, maxsize)
cv_t v~c[]; 1* will contain list of all conditions *1
int maxsize; 1* maximum size of vec *1

int cv _ waiters(cv, vec, maxsize)
cv t cv; 1* condition variable being interrogated *1
thi="ead_t vec[]; 1* which threads are blocked on cv *1
int maxsize; 1* maximum size of vec *1

SAMECV(cl, c2)

DESCRIPTION
Condition variables are useful for synchronization within monitors. By waiting on a condition variable, the
currently-held monitor (a condition variable must always be used within a monitor) is released atomically
and the invoking thread is suspended. When monitors are nested, monitor locks other than the current one
are retained by the thread. At some later point, a different thread may awaken the waiting thread by issuing
a notification on the condition variable. When the notification occurs, the waiting thread will queue to
reacquire the monitor it gave up. It is possible to have different condition variables operating within the
same monitor to allow selectivity in waking up threads.

cv _ create() creates a new condition variable (returned in cv) which is bound to the monitor specified by
mid. It is illegal to access (using cv _ wait(), cv _ notify(), cv _ send() or cv _ broadcast(») a condition vari­
able from a monitor other than the one it is bound to. cv _ destroy() removes a condition variable.

cv _ wait() blocks the current thread and releases the monitor lock associated with the condition (which
must also be the monitor lock most recently acquired by the thread). Other monitor locks held by the
thread are not affected. The blocked thread is enqueued by its scheduling priority on the condition.

cv _notify() awakens at most one thread blocked on the condition variable and causes the awakened thread
to queue for access to the monitor released at the time it waited on the condition. It can be dangerous to
use cv _ notify() if there is a possibility that the thread being awakened is one of several threads that are
waiting on a condition variable and the awakened thread may not be the one intended. In this case, use of
cv _ broadcast() is recommended.

Sun Release 4.1 Last change: 21 January 1990 1279

CV _CREA 1E (3L) LIGHTWEIGHT PROCESSES LIBRARY CV _CREA1E(3L)

cv _ broadcast() is the same as cv _ notify() except that all threads blocked on the condition variable are
awakened. cv_notifyO and cv_broadcastO do nothing if no thread is waiting on the condition. For both
cv _ notify() and cv _ broadcast(), the currently held monitor must agree with the one bound to the condi­
tion by cv _ ereate().

ev _ send() is like ev _ notify() except that the particular thread tid is awakened. If this thread is not
currently blocked on the condition, ev _send() reports an error.

ev _ enumerate() lists the ID of all of the condition variables. The value returned is the total number of
condition variables. The vector supplied is filled in with the ID's of condition variables. ev _ waiters() lists
the ID's of the threads blocked on the condition variable ev and returns the number of threads blocked on
ev. For both ev _ enumerate() and ev _ waiters(), maxsize is used to avoid exceeding the capacity of the
list vee. If the number of entries to be filled is greater than maxsize, only maxsize entries are filled in vee.
It is legal in both of these primitives to specify a maxsize of O.

SAMECV is a convenient predicate used to compare two condition variables for equality.

RETURN VALUES
ev_create(), ev_destroy(), ev _send(), ev _wait(), ev_notify() and ev _broadcast() return:

o on success.

-Ion failure and set errno to indicate the error.

ev _ enumerate() returns the total number of condition variables.

ev _ waiters() returns the number of threads blocked on a condition variable.

ERRORS
ev _ destroy() will fail if one or more of the following is true:

LE_INVSE Attempt to destroy condition variable being waited on by a thread.

Attempt to destroy non-existent condition variable.

ev _ wait() will fail if one or more of the following is true:

LE_NONEXIST Attempt to wait on non-existent condition variable.

LE_NOTOWNED Attempt to wait on a condition without possessing the correct monitor lock.

ev _notify() will fail if one or more of the following is true:

LE_NONEXIST Attempt to notify non-existent condition variable.

LE_NOTOWNED Attempt to notify condition variable without possessing the correct monitor.

ev _ send() will fail if one or more of the following is true:

LE_NONEXIST Attempt to awaken non-existent condition variable.

LE_NOTOWNED

LE_NOWAIT

Attempt to awaken condition variable without possessing the correct monitor lock.

The specified thread is not currently blocked on the condition.

ev _ broadeast() will fail if one or more of the following is true:

LE_NONEXIST Attempt to broadcast non-existent condition variable.

LE_NOTOWNED

SEE ALSO

Attempt to broadcast condition without possessing the correct monitor lock.

mon _ ereate(3L)

1280 Last change: 21 January 1990 Sun Release 4.1

NAME

LIGHTWEIGHT PROCESSES LIBRARY EXC_HANDLE (3L)

exc_handle, exc_unhandle, exc_bound, exc_notify, exc_raise, exc_on_exit, exc_uniqpatt - LWP exception
handling

SYNOPSIS
#include <Iwp/lwp.h>

int exc _handle(pattern, func, arg)
int pattern;
caddr_t (*func)();
caddr _ t arg;

int exc _ raise(pattern)
int pattern;

int exc _ unhandle()

caddr _ t (*exc _bound (pattern, arg»()
int pattern;
caddr _ t *arg;

int exc _ notify(pattern)
int pattern;

int exc _ on _ exit(func, arg)
void (*func)O;
caddr_t arg;

int exc _ uniqpatt()

DESCRIPTION
These primitives can be used to manage exceptional conditions in a thread. Basically, raising an exception
is a more general form of non-local goto or longjmp, but the invocation is pattern-based. It is also possible
to notify an exception handler whereby a function supplied by the exception handler is invoked and control
is returned to the raiser of the exception. Finally, one can establish a handler which is always invoked
upon procedure exit, regardless of whether the procedure exits using a return or an exception raised to a
handler established prior to the invocation of the exiting procedure.

exc _ handle() is used to establish an exception handler. exc _ handle() returns 0 to indicate that a handler
has been established. A return of -1 indicates an error in trying to establish the exception handler. If it
returns something else, an exception has occurred and any procedure calls deeper than the one containing
the handler have disappeared. All exception handlers established by a procedure are automatically dis­
carded when the procedure terminates.

exc_handleO binds a pattern to the handler, where a pattern is an integer, and two patterns match if their
values are equal. When an exception is raised with exc_raiseO, the most recent handler that has esta­
blished a matching pattern will catch the exception. A special pattern (CATCHALL) is provided which
matches any exc _ raise() pattern. This is useful for handlers which know that there is no chance the
resources allocated in a routine can be reclaimed by previous routines in the call chain.

The other two arguments to exc_handleO are a function and an argument to that function. exc_boundO
retrieves these arguments from an exc _ han~le() call made by the specified thread. By using exc _ bound()
to retrieve and call a function bound by the exception handler, a procedure can raise a notification excep­
tion which allows control to return to the raiser of the exception after the exception is handled.

Sun Release 4.1 Last change: 21 January 1990 1281

LIGHTWEIGHT PROCESSES LIBRARY EXC_HANDLE (3L)

exc_raise() allows the caller to transfer control (do a non-local goto) to the matching exc_handle(). This
matching exception handler is destroyed after the control transfer. At this time, it behaves as if
exc _ bandle() returns with the pattern from exc _raise() as the return value. Note: June of exc _ bandle() is
not called using exc _raise() - it is only there for notification exceptions. Because the exception handler
returns the pattern that invoked it, it is possible for a handler that matches the CATCHALL pattern to reraise
the exact exception it caught by using exc _raise() on the caught pattern. It is illegal to handle or raise the
pattern 0 or the pattern -1. Handlers are searched for pattern matches in the reverse execution order that
they are set (Le., the most recently established handler is searched first).

exc _ unhandle() destroys the most recently established exception handler set by the current thread. It is an
error to destroy an exit-handler set up by exc_on_exitO. When a procedure exits, all handlers and exit
handlers set in the procedure are automatically deallocated.

exc _ notify() is a convenient way to use exc _bound. The function which is bound to pattern is retrieved.
If the function is not NULL, the function is called with the associated argument and the result is returned. If
the function is NULL, exc _raise(pattern) is returned.

exc _on _ exit() specifies an exit procedure and argument to be passed to the exit procedure, which is called
when the procedure which sets an exit handler using exc _on _ exit() exits. The exit procedures (more than
one may be set) will be called regardless if the setting procedure is exited using a return or an exc_raise().
Because the exit procedure is called as if the handling procedure had returned, the argument passed to it
should not contain addresses on the handler's stack. However, any value returned by the procedure which
established the exit procedure is preserved no matter what the exit procedure returns. This primitive is
used in the MONITOR macro to enforce the monitor discipline on procedures.

Some signals can be considered to be synchronous traps. They are usually the starred (*) signals in the
signal(3V) man pages. These are: SIGSYS, SIGBUS, SIGEMT, SIGFPE, SIGILL, SIGTRAP, SIGSEGV. If
an event is marked as a trap using agt_trapO (see agt_create(3L» the event will generate exceptions
instead of agent messages. This mapping is per-pod, not per-thread. A thread which handles the signal
number of one of these as the pattern for exc _ handle() will catch such a signal as an exception. The
exception will be raised as an exc _ notify() so either escape or notification style exceptions can be used,
depending on what the matching exc _ handle() provides. If the exception is not handled, the thread will
terminate. Note: it can be dangerous to supply an exception handler to treat stack overflow since the
client's stack is used in raising the exception.

exc _ uniqpatt() returns an exception pattern that is not any of the pre-defined patterns (any of the synchro­
nous exceptions or -lor CATCHALL). Each call to exc_uniqpattO results in a different pattern. If
exc_uniqpattO cannot guarantee uniqueness, -1 is returned instead the first time this happens. Subse­
quent calls after this error result in patterns which may be duplicates.

RETURN VALUES

1282

exc _ uniqpatt() returns a unique pattern on success. The first time it fails, exc _ uniqpatt() returns -1.

exc _ handle() returns:

o on success.

-1 on failure. When exc _ handle() returns because of a matching call to exc _raise(), it returns the
pattern raised by exc _raise().

On success, exc _raise() transfers control to the matching exc _ bandle() and does not return. On failure, it
returns -1.

exc _ unhandle() returns:

o on success.

-1 on failure.

exc _ bound() returns a pointer to a function on success. On failure, it returns NULL.

Last change: 21 January 1990 Sun Release 4.1

LIGHTWEIGHT PROCESSES LffiRARY EXC_HANDLE (3L)

On success, exc _ notify() returns the return value of a function, or transfers control to a matching
exc _ handle() and does not return. On failure, it returns -1.

exc _on _ exit() returns O.

ERRORS

BUGS

exc _ unhandle() will fail if one or more of the following is true:

LE_NONEXIST Attempt to remove a non-existent handler.

Attempt to remove an exit handler.

exc_raise() will fail if one or more of the following is true:

LE_INVALIDARG Attempt to raise an illegal pattern (-lor 0).

LE_NONEXIST No context found to raise an exception to.

exc _ handle() will fail if one or more of the following is true:

LE_INV ALIDARG Attempt to handle an illegal pattern (-lor 0).

exc _ uniqpatt() will fail if one or more of the following is true:

LE_REUSE Possible reuse of existing object. agt_create(3L), signal(3V)

The stack may not contain useful information after an exception has been caught so post-exception debug­
ging can be difficult. The reason for this is that a given handler may call procedures that trash the stack
before reraising an exception.

The distinction between traps and interrupts can be problematical.

The environment restored on exc _raiseO consists of the registers at the time of the exc _ handleO. As a
result, modifications to register variables between the times of exc _handle () and exc _raise() will not be
seen. This problem does not occur in the sun4 implementation.

WARNINGS
exc _on _ exit() passes a simple type as an argument to the exit routine. If you need to pass a complex type,
such as thread _ t, mon _ t, or cv _ t, pass a pointer to the object instead.

Sun Release 4.1 Last change: 21 January 1990 1283

NAME

LIGHTWEIGHT PROCESSES LIBRARY L WP _CREATE (3L)

lwp_create, lwp_destroy, SAMETHREAD, po(Csetexit, po<tgetexit, pod_exit - L WP thread creation and
destruction primitives

SYNOPSIS
#include <iwp/lwp.h>
#include <Iwp/stackdep.h>

int Iwp _ create(tid, fune, prio, flags, stack, nargs, argl, ••• , argn)
thread_t *tid;
void (*fune)();
int prio;
int flags;
stkalign _ t *stack;
int nargs;
int argl, ••• , argo;

int Iwp _ destroy(tid)
thread_t tid;

void pod _setexit(status)
int status;

int pod _getexit(status)
int status;

void pod _ exit(status)
int status

SAMETHREAD(tl, t2)

DESCRIPTION

1284

Iwp _ create() creates a lightweight process which starts at address June and has stack segment stack. If
stack is NULL, the thread is created in a suspended state (see below) and no stack or pc is bound to the
thread. prio is the scheduling priority of the thread (higher priorities are favored by the scheduler). The
identity of the new thread is filled in the reference parameter tid. flags describes some options on the new
thread. LWPSUSPEND creates the thread in suspended state (see IWPJield(3L». LWPNOLASTRITES
will disable the LASTRITES agent message when the thread dies. The default (0) is to create the thread in
running state with LASTRITES reporting enabled. LWPSERVER indicates that a thread is only viable as
long as non-LWPSERVER threads are alive. The pod will terminate if the only living threads are marked
LWPSERVER and blocked on a lwp resource (for instance, waiting for a message to be sent). nargs is the
number (0 or more) of simple-type (int) arguments supplied to the thread.

The first time a lwp primitive is used, the lwp library automatically converts the caller (i.e., main) into a
thread with the highest available scheduling priority (see pod_getmaxpri(3L». The identity of this thread
can be retrieved using Iwp_self (see Iwp_status(3L». This thread has the nonnal SunOS stack given to

any forked process.

Scheduling is, by default, non-preemptive within a priority, and within a priority, threads enter the run
queue on a FIFO basis (that is, whenever a thread becomes eligible to run, it goes to the end of the run
queue of its particular priority). Thus, a thread continues to run until it voluntarily relinquishes control or
an event (including thread creation) occurs to enable a higher priority thread. Some primitives may cause
the current thread to block, in which case the unblocked thread with the highest priority runs next. When
several threads are created with the same priority, they are queued for execution in the order of creation.
This order may not be preserved as threads yield and block within a priority. If an agent owned by a thread
with a higher priority is invoked, that thread will preempt the currently running one.

There is no concept of ancestry in threads: the creator of a thread has no special relation to the thread it
created. When all threads have died, the pod terminates.

Last change: 21 January 1990 Sun Release 4.1

LIGHTWEIGHT PROCESSES LffiRARY L WP _ CREATE (3L)

Iwp _ destroy() is a way to explicitly terminate a thread or agent (instead of having an executing thread
"fall though", which also terminates the thread). tid specifies the id of the thread or agent to be terminated.
If tid is SELF, the invoking thread is destroyed. Upon termination, the resources (messages, monitor locks,
agents) owned by the thread are released, in some cases resulting in another thread being notified of the
death of its peer (by having a blocking primitive become unblocked with an error indication). A thread
may tenninate itself explicitly, although self-destruction is automatic when it returns from the procedure
specified in the Iwp _ create() primitive.

pod _ setexit() sets the exit status for a pod. This value will be returned to the parent process of the pod
when the pod dies (default is 0). exit(3) terminates the current thread, using the argument supplied to exit
to set the current value of the exit status. on _ exit(3) establishes an action that will be taken when the entire
pod terminates. pod _ exit() is available to terminate the pod immediately with the final actions established
by on_exit. If you wish to tenninate the pod immediately, pod _ exit() or exit(2V) should be used.

pod _getexit() returns the current value of the pod's exit status.

SAMETHREAD() is a convenient predicate used to compare two threads for equality.

RETURN VALUES
Iwp _ create(), and Iwp _ destroy() return:

o on success.

-1 on failure.

pod _getexit() returns the current exit status of the pod.

ERRORS
Iwp _ create() will fail if one or more of the following are true:

LE_ILLPRIO Illegal priority.

LE_INV ALIDARG Too many arguments (> 512).

LE_NOROOM Unable to allocate memory for thread context.

Iwp _ destroy() will fail if one or more of the following are true:

LE_NONEXIST Attempt to destroy a thread or agent that does not exist.

SEE ALSO
exit(2V), exit(3), IWPJield(3L), on_exit(3), pod_getmaxpri(3L)

WARNINGS
Some special threads may be created silently by the lwp library. These include an idle thread that runs
when no other activity is going on, and a reaper thread that frees stacks allocated by Iwp _ newstk. These
special threads will show up in status calls. A pod will terminate if these special threads are the only ones
extant.

Sun Release 4.1 Last change: 21 January 1990 1285

NAME

LIGHTWEIGHT PROCESSES LffiRARY L WP _CTXINIT (3L)

lwp_ctxinit, lwp_ctxremove, lwp_ctxset, lwp_ctxmemget, lwp_ctxmemset, lwp_fpset, Iwp_Iibcset - spe­
cial L WP context operations

SYNOPSIS
#include <Iwp/lwp.h>

int Iwp _ ctxset(save, restore, ctxsize, optimize)
void (*save)(/* caddr_t ctx, thread_t old, thread_t new */);
void (*restore)(/* caddr_t ctx' thread_t old, thr-ead_t new */);
unsigned int ctxsize;
int optimize;

int Iwp _ ctxinit(tid, cookie)
thread _ t tid; 1* thread with special contexts *1
int cookie; 1* type of context *1

int Iwp_ctxremove(tid, cookie)
thread _ t tid;
int cookie;

int Iwp _ ctxmemget(mem, tid, ctx)
caddr_t mem;
thread _ t tid;
int ctx;

int Iwp _ ctxmemset(mem, tid, ctx)
caddr_t mem;
thread _ t tid;
int ctx;

int Iwp _fpset(tid)
thread _ t tid;

int Iwp_libcset(tid)
thread _ t tid;

1* thread utilizing floating point hardware *1

1* thread utilizing errno *1

DESCRIPTION

1286

Normally on a context switch, only machine registers are saved!restored to provide each thread its own vir­
tual machine. However, there are other hardware and software resources which can be multiplexed in this
way. For example, floating point registers can be used by several threads in a pod. As another example,
the global value errno in the standard C library may be used by all threads making system calls.

To accommodate the variety of contexts that a thread may need without requiring all threads to pay for
unneeded switching overhead, Iwp _ ctxinit() is provided. This primitive allows a client to specify that a
given thread requires certain context to be saved and restored across context switches (by default just the
machine registers are switched). More than one special context may be given to a thread.

To use Iwp _ ctxinit(), it is first necessary to define a special context. Iwp _ ctxset() specifies save and
restore routines, as well as the size of the context that will be used to hold the switchable state. The save
routine will automatically be invoked when an active thread is blocked and the restore routine will be
invoked when a blocked thread is restarted. These routines will be passed a pointer to a buffer (initialized
to all O's) of size ctxsize which is allocated by the L WP library and used to hold the volatile state. In addi­
tion, the identity of the thread whose special context is being saved (old) and the identity of the thread
being restarted (new) are passed in to the save and restore routines. lwp _ ctxset() returns a cookie used by
subsequent lwp _ ctxinit() calls to refer to the kind of context just defined. If the optimize flag is TRUE, a
special context switch action will not be invoked unless the thread resuming execution differs from the last
thread to use the special context and also uses the special context If the optimize flag is FALSE, the save
routine will always be invoked immediately when the thread using this context is scheduled out and the
restore routine will be invoked immediately when a new thread using this context is scheduled in. Note

Last change: 21 January 1990 Sun Release 4.1

LIGHTWEIGHT PROCESSES LffiRARY L WP _CTXINIT (3L)

that an unoptimized special context is protected from threads which do not use the special context but
which do affect the context state. Iwp _ ctxremove() can be used to remove a special context installed by
Iwp _ ctxinit().

Because context switching is done by the scheduler on behalf of a thread, it is an error to use an L WP prim­
itive in an action done at context switch time. Also, the stack used by the save and restore routines belongs
to the scheduler, so care should be taken not to use lots of stack space. As a result of these restrictions,
only knowledgeable users should write their own special context switching routines.

Iwp_ctxmemgetO and Iwp_ctxmemsetO are used to retrieve and set (respectively) the memory associ­
ated with a given special context (ctx) and a given thread (tid). mem is the address of client memory that
will hold the context information being retrieved or set. Note that the special context save and restore rou­
tines may be NULL, so pure data may be associated with a given thread using these primitives.

Several kinds of special contexts are predefined. To allow a thread to share floating point hardware with
other threads, the Iwp _ fpset() primitive is available. The floating-point hardware bound at compile-time is
selected automatically. To multiplex the global variable errno, Iwp JibcsetO is used to have errno
become part of the context of thread tid.

Special contexts can be used to assist in managing stacks. See lwp_newstk(3L) for details.

RETURN VALUES
On success, Iwp_ctxsetO returns a cookie to be used by subsequent calls to Iwp_ctxinitO. If unable to
define the context, it returns -1.

ERRORS
Iwp _ ctxinit() will fail if one or more of the following are true:

LE_INUSE This special context already set for this thread.

Iwp _ ctxremove() will fail if one or more of the following are true:

LE_NONEXIST The specified context is not set for this thread.

lwp _ ctxset() will fail if one or more of the following are true:

LE_NOROOM Unable to allocate memory to define special context.

SEE ALSO
lwp _ newstk(3L)

BUGS
The floating point contexts should be initialized implicitly for those threads that use floating point.

Sun Release 4.1 Last change: 21 January 1990 1287

NAME

LIGHTWEIGHT PROCESSES LIBRARY L WP _NEWSTK (3L)

lwp_checkstkset, lwp_stkcswset, CHECK, lwp_setstkcache, lwp_newstk, lwp_datastk, STKTOP - LWP
stack management

SYNOPSIS
#include <Iwp/lwp.h>
#include <Iwp/check.h>
#include <Iwp/lwpmachdep.h>
#include <Iwp/stackdep.h>

CHECK (location , result)

int Iwp_checkstkset(tid, limit)
thread_t tid;
caddr _ t limit;

int Iwp_stkcswset(tid, limit)
thread_t tid;
caddr _ t limit;

int Iwp _ setstkcache(minstksz, numstks)
int minstksz;
int numstks;

stkalign _ t * Iwp _ newstk()

stkalign_t *Iwp_datastk(data, size, addr)
caddr_t data;
int size;
caddr _ t *addr;

STKTOP(s)

DESCRIPTION

1288

Stacks are problematical with lightweight processes. What is desired is that stacks for each thread are red­
zone protected so that one thread's stack does not unexpectedly grow into the stack of another. In addition,
stacks should be of infinite length, grown as needed. The process stack is a maximum-sized segment (see
getrlimit(2).) This stack is redzone protected, and you can even try to extend it beyond its initial max­
imum size in some cases. With SunOS 4..x, it is possible to efficiently allocate large stacks that have red
zone protection, and the LWP library provides some support for this. For those systems that do not have
flexible memory management, the LWP library provides assistance in dealing with the problems of main­
taining multiple stacks.

The stack used by main() is the same stack that the system allocates for a process on fork(2V). For allo­
cating other thread stacks, the client is free to use any statically or dynamically allocated memory (using
memory from mainO's stack is subject to the stack resource limit for any process created by forkO). In
addition, the LASTRITES agent message is available to free allocated resources when a thread dies. The
size of any stack should be at least MINST ACKSZ * sizeof (stkalign _ t), because the L WP library will use
the client stack to execute primitives. For very fast dynamically allocated stacks, a stack cacheing mechan­
ism is available. Iwp _setstkcache() allocates a cache of stacks. Each time the cache is empty, it is filled
with numstks new stacks, each containing at least minstksz bytes. minstksz will automatically be aug­
mented to take into account the stack needs of the L WP library. Iwp _ newstk() returns a cached stack that
is suitable for use in an Iwp_createO call. Iwp_setstkcacheO must be called (once) prior to any use of
Iwp _ newstk. If running under SunOS 4.x, the stacks allocated by Iwp _ newstk() will be red-zone pro­
tected (an attempt to reference below the stack bottom will result in a SIGSEGV event).

Threads created with stacks from Iwp _ newstk() should not use the NOLASTRITES flag. If they do,
cached stacks will not be returned to the cache when a thread dies.

Last change: 21 January 1990 Sun Release 4.1

LIGHTWEIGHT PROCESSES LffiRARY L WP _NEWSTK (3L)

Iwp _ datastk() also returns a red-zone protected stack like lwp _newstk() does. It copies any amount of
data (subject to the size limitations imposed by Iwp _setstkcache) onto the stack above the stack top that it
returns. data points to information of size bytes to be copied. The exact location where the data is stored is
returned in the reference parameter addr. Because lwp_createO only passes simple types to the newly­
created thread, Iwp _ datastk() is useful to pass a more complex argument: Call lwp _ datastk() to get an
initialized stack, and pass the address of the data structure (addr) as an argument to the new thread.

A reaper thread running at the maximum pod priority is created by lwp_setstkcache. It's action may be
delayed by other threads running at that priority, so it is suggested that the maximum pod priority not be
used for client-created threads when Iwp _ newstk() is being used. Altering the maximum pod priority with
pod _ setmaxpri() will have the side effect of increasing the reaper thread priority as well.

The stack address passed to Iwp_createO represents the top of the stack: the LWP library will not use any
addresses at or above it Thus, it is safe to store information above the stack top if there is room there.

For stacks that are not protected with hardware redzones, some protection is still possible. For any thread
tid with stack boundary limit made part of a special context with Iwp _ checkstkset(), the CHECK macro
may be used. This macro, if used at the beginning of each procedure (and before local storage is initialized
(it is all right to declare locals though», will check that the stack limit has not been violated. If it has, the
non-local location will be set to result and the procedure will return. CHECK is not perfect, as it is possi­
ble to call a procedure with many arguments after CHECK validates the stack, only to have these argu­
ments clobber the stack before the new procedure is entered.

Iwp _stkcswset() checks at context-switch time the stack belonging to thread tid for passing stack boundary
limit. In addition, a checksum at the bottom of the stack is validated to ensure that the stack did not tem­
porarily grow beyond its limit. This is automated and more efficient than using CHECK, but by the time a
context switch occurs, it's too late to do much but abort(3) if the stack was clobbered.

To portably use statically allocated stacks, the macros in <lwp/stackdep.b> should be used. Declare a
stack s to be an array of stkalign _ t, and pass the stack to Iwp _ create() as STKTOP(s).

RETURN VALUES
lwp _ checkstkset() and lwp _ stkcswset() return O.

lwp _ setstkcache() returns the actual size of the stacks allocated in the cache.

lwp _ newstk() and lwp _ datastk() return a valid new stack address on success. On failure, they return O.

SEE ALSO
getrlimit(2), abort(3)

WARNINGS

BUGS

lwp_datastk() should not be directly used in a lwp_create() call since C does not guarantee the order in
which arguments to a function are evaluated.

C should provide support for heap-allocated stacks at procedure entry time. The hardware should be
segment-based to eliminate the problem altogether.

Sun Release 4.1 Last change: 21 January 1990 1289

LIGHTWEIGHT PROCESSES LIBRARY

NAME
Iwp~eterr, Iwp...,Perror, Iwp_errstr - L WP error handling

SYNOPSIS
#include <Iwp/lwp.h>
#include <iwp/lwperror.h>

Iwp_err_tlwp_geterr();

void
Iwp yerror(s)
char *s;

char **Iwp_errstr();

DESCRIPTION
When a primitive fails (returns -I), Iwp_geterrO can be used to obtain the identity of the error (which is
part of the context for each Iwp). Iwp yerror() can be used to print an error message on the standard error
file (analogous to perror(3» when a Iwp primitive returns an error indication. Iwpyerror() uses the
same mechanism as Iwp _geterr() to obtain the last error. Iwp _ errstr returns a pointer to the (NULL­
terminated) list of error messages.

Iwp_libcset (see Iwp_ctxinit(3L» allows errno from the standard C library reflect a per-thread value
rather than a per-pod value.

SEE ALSO
Iwp _ ctxinit(3L), perror(3)

1290 Last change: 22 November 1987 Sun Release 4.1

LIGH1WEIGHT PROCESSES LIBRARY LWP_STATUS (3L)

NAME
lwp_self, lwp_ping, lwp_enumerate, lwp-&etstate, lwp_setregs, lWP-&etregs - L WP status information

SYNOPSIS
#include <Iwp/lwp.h>
#include <Iwp/lwpmachdep.h>

int
Iwp enumerate(vec, maxsize)
thread_t vec[]; /* list of id's to be filled in */
int maxsize;

int
Iwp ying(tid)
thread_t tid;

int

/* number of elements in vec */

Iwp _getregs(tid, machstate)
thread _ t tid;
machstate _ t *machstate;

int
Iwp _ setregs(tid, machstate)
thread _ t tid;
machstate _ t *machstate;

int
Iwp _getstate(tid, statvec)
thread_t tid;
statvec _ t *statvec;

int
Iwp_self(tid)
thread_t *tid;

DESCRIPTION
Iwp _ self() returns the 10 of the current thread in tid. This is the only way to retrieve the identity of main.

Iwp_enumerate() fills in a list with the ID's of all existing threads and returns the total number of threads.
This primitive will use maxsize to avoid exceeding the capacity of the list. If the number of threads is
greater than maxsize, only maxsize thread ID's are filled in vee. If maxsize is zero, Iwp_enumerateO just
returns the total number of threads.

Iwp _getstate() is used to retrieve the context of a given thread. It is possible to see what object (thread,
monitor, etc.) if any that thread is blocked on, and the scheduling priority of the thread.

Iwp ying returns 0 (no error) if the thread tid exists. Otherwise, -1 is returned.

Iwp_setregs sets the machine-dependent context (i.e., registers) of a thread. The next time the thread is
scheduled in, this context is installed. Consult Iwpmacbdep.h for the details. Iwp _getregs retrieves the
machine-dependent context. Note: the registers may not be meaningful unless the thread in question is
blocked or suspended because the state of the registers as of the most recent context switch is returned.

RETURNS
Upon successful completion, Iwp _self and Iwp _getstate() return 0, -Ion error.

Iwp _ enumerate() returns the total number of threads.

Iwp ying returns 0 if the specified thread exists, else -1.

ERRORS
lwp _getstatea() , lwp ying() , and lwp _ setstate() will fail if one or more of the following is true:

LE_NONEXIST Attempt to get the status of a non-existent thread.

Last chanQ:e: 21 Januarv 1990 1291

NAME

LIGHTWEIGHT PROCESSES LIBRARY LWP _YIELD (3L)

lwp-yield, lwp_suspend, lwp_resume, lwpjoin, lwp_setpri, lwp_resched, lwp_sleep - control L WP
scheduling

SYNOPSIS
#include <Iwp/lwp.h>

iot Iwp Jield(tid)
thread _ t tid;

iot Iwp _ sleep(timeout)
struet time val *timeout;

iot Iwp_resched(prio)
iot prio;

iot Iwp_setpri(tid, prio)
thread_t tid;
iot prio;

iot Iwp_suspeod(tid)
thread_t tid;

iot Iwp_resume(tid)
thread_t tid;

iot IWPJoin(tid)
thread _ t tid;

DESCRIPTION

NOTES

1292

Iwp Jield() allows the currently running thread to voluntarily relinquish control to another thread with the
same scheduling priority. If tid is SELF, the next thread in the same priority queue of the yielding thread
will run and the current thread will go the end of the scheduling queue. Otherwise, it is the ID of the thread
to run next, and the current thread will take second place in the scheduling queue.

Iwp _ sleep() blocks the thread executing this primitive for at least the time specified by timeout.

Scheduling of threads is, by default, preemptive (higher priorities preempt lower ones) across priorities and
non-preemptive within a priority. Iwp_resched() moves the front thread for a given priority to the end of
the scheduling queue. Thus, to achieve a preemptive round-robin scheduling discipline, a high priority
thread can periodically wake up and shuffle the queue of threads at a lower priority. Iwp _ rescbed() does
not affect threads which are blocked. If the priority of the rescheduled thread is the same as that of the
caller, the effect is the same as Iwp Jield().

Iwp_setpri() is used to alter (raise or lower) the scheduling priority of the specified thread. If tid is SELF,
the priority of the invoking thread is set. Note: if the priority of the affected thread becomes greater than
that of the caller and the affected thread is not blocked, the caller will not run next. Iwp _ setpri() can be
used on either blocked or unblocked threads.

Iwp Joio() blocks the thread issuing the join until the thread tid terminates. More than one thread may join
tid.

Iwp _ suspeod() makes the specified thread ineligible to run. If tid is SELF, the caller is itself suspended.
Iwp_resumeO undoes the effect of Iwp_suspeodO. If a blocked thread is suspended, it will not run until
it has been unblocked as well as explicitly made eligible to run using Iwp_resumeO. By suspending a
thread, one can safely examine it without worrying that its execution-time state will change.

When scheduling preemptively, be sure to use monitors to protect shared data structures such as those used
by the standard I/O library.

Last change: 21 January 1990 Sun Release 4.1

LWP _YIELD (3L) LIGHTWEIGHT PROCESSES LIBRARY LWP_YIELD(3L)

RETURN VALUES
lwpyield(), lwp_sleep(), lwp_rescbed(), lWPJoin(), lwp_suspend() and lwp_resume() return:

o on success.

-1 on failure.

lwp _ setpri() returns the previous priority on success. On failure, it returns -1.

ERRORS
lwp yield() will fail if one or more of the following is true:

LE_ILLPRIO Attempt to yield to thread with different priority.

LE_INV ALIDARG Attempt to yield to a blocked thread.

LE_NONEXIST Attempt to yield to a non-existent thread.

lwp _ sleep () will fail if one or more of the following is true:

LE_INV ALIDARG Illegal timeout specified.

lwp _rescbed() will fail if one or more of the following is true:

LE_ILLPRIO The priority queue specified contains no threads to reschedule.

LE_INV ALIDARG Attempt to reschedule thread at priority greater than that of the caller.

Iwp _ setpri() will fail if one or more of the following is true:

LE_INV ALIDARG The priority specified is beyond the maximum available to the pod.

LE_NONEXIST Attempt to set priority of a non-existent thread.

lwp Join() will fail if one or more of the following are true:

LE_NONEXIST Attempt to join a thread that does not exist.

Iwp _ suspend() will fail if one or more of the following is true:

LE_NONEXIST Attempt to suspend a non-existent thread.

Iwp _resume() will fail if one or more of the following is true:

LE_NONEXIST Attempt to resume a non-existent thread.

Sun Release 4.1 Last change: 21 January 1990 1293

NAME

LIGHTWEIGHT PROCESSES LffiRARY

mon_create, mon_destroy, mon_enter, mon_exit, m on_enumerate , mon_waiters, mon_cond_enter,
mon_break, MONITOR, SAMEMON - L WP routines to manage critical sections

SYNOPSIS
#include <Iwp/lwp.h>

int mon _ create(mid)
mon_t *mid;

int mon _ destroy(mid)
mon_tmid;

int mon _ enter(mid)
mon_tmid;

int mon_exit(mid)
mon_tmid;

int mon enumerate(vec, maxsize)
mon_t vec[]; 1* list of all monitors *1
int maxsize; 1* max size of vec *1

int mon waiters(mid, owner, vee, maxsize)
mon t mid; 1* monitor in question *1
thread t *owner; 1* which thread owns the monitor *1
thread=t vec[]; 1* list of blocked threads *1
int maxsize; 1* max size of vec *1

int mon_cond_enter(mid)
mon_tmid;

int mon _ break(mid)
mon_tmid;

void MONITOR(mid)
mon_tmid;

int SAMEMON(ml, m2)
mon_tml;
mon_tm2;

DESCRIPTION

1294

Monitors are used to synchronize access to common resources. Although it is possible (on a uniprocessor)
to use knowledge of how scheduling priorities work to serialize access to a resource, monitors (and condi­
tion variables) provide a general tool to provide the necessary synchronization.

mon_createO creates a new monitor and returns its identity in mid. mon_destroyO destroys a monitor,
as well as any conditions bound to it (see cv _ create(3L». Because the lifetime of a monitor can transcend
the lifetime of the LWP that created it, monitor destruction is not automatic upon L WP destruction.

mon _ enter() blocks the calling thread (if the monitor is in use) until the monitor becomes free by being
exited or by waiting on a condition (see cv _ create (3L». Threads unable to gain entry into the monitor are
queued for monitor service by the priority of the thread requesting monitor access, FCFS within apriority.
Monitor calls may nest. If, while holding monitor Ml a request for monitor M2 is made, Ml will be held
until M2 can be acquired.

mon _ cond _ enter() will enter the monitor only if the monitor is not busy. Otherwise, an error is returned.

mon _ enter() and mon _ cond _ enter() will allow a thread which already has the monitor to reenter the
monitor. In this case, the nesting level of monitor entries is returned. Thus, the first time a monitor is
entered, mon _ enter() returns O. The next time the monitor is entered, mon _ enter() returns 1.
mon _ exit() frees the current monitor and allows the next thread blocked on the monitor (if any) to enter

Last change: 21 January 1990 Sun Release 4.1

MON_CREATE(3L) LIGHTWEIGHT PROCESSES LIBRARY

the monitor. However, if a monitor is entered more than once, moo_exitO returns the previous monitor
nesting level without freeing the monitor to other threads. Thus, if the monitor was not reentered,
moo _ exit() returns O.

moo _ eoumerate() lists all the monitors in the system. The vector supplied is filled in with the ID's of the
monitors. maxsize is used to avoid exceeding the capacity of the list. If the number of monitors is greater
than maxsize, only maxsize monitor ID's are filled in vee.

mon _ waiters() puts the thread that currently owns the monitor in owner and all threads blocked on the
monitor in vee (subject to the maxsize limitation), and returns the number of waiting threads.

mon _ break() forces the release of a monitor lock not necessarily held by the invoking thread. This
enables the next thread blocked on the monitor to enter it

MONITOR is a macro that can be used at the start of a procedure to indicate that the procedure is a moni­
tor. It uses the exception handling mechanism to ensure that the monitor is exited automatically when the
procedure exits. Ordinarily, this single macro replaces paired moo _ enter()- moo _ exit() calls in a monitor
procedure.

The SAMEMON macro is a convenient predicate used to compare two monitors for equality.

Monitor locks are released automatically when the LWP holding them dies. This may have implications for
the validity of the monitor invariant (a condition that is always true outside of the monitor) if a thread unex­
pectedly terminates.

RETURN VALUES
mon _ create() returns the ID of a new monitor.

mOD _ destroy() returns:

o on success.

-1 on failure.

moo _ eoter() returns the nesting level of the monitor.

moo _ exit() returns the previous nesting level on success. On failure, it returns -1.

moo _ eoumerate() returns the total number of monitors.

moo _ waiters() returns the number of threads waiting for the monitor.

moo _ cood _ eoter() returns the nesting level of the monitor if the monitor is not busy. If the monitor is
busy, it returns -1.

moo _ break() returns:

o on success.

-1 on failure.

The macro SAMEMON() returns 1 if the monitors specified by ml and m2 are equal. It returns 0 other­
wise.

ERRORS
moo _ break() will fail if one or more of the following are true:

Attempt to break lock on non-existent monitor.

LE_NOTOWNED Attempt to break a monitor lock that is not set.

moo _ cood _ enter() will fail if one or more of the following are true:

LE_INUSE The requested monitor is being used by another thread.

Attempt to destroy non-existent monitor.

Sun Release 4.1 Last change: 21 January 1990 1295

LIGHTWEIGHT PROCESSES LIBRARY

mOD _ destroy() will fail if one or more of the following are true:

LE_INUSE Attempt to destroy a monitor that has threads blocked on it.

LE_NONEXIST Attempt to destroy non-existent monitor.

mOD _ exit() will fail if one or more of the following are true:

LE_INV ALIDARG Attempt to exit a monitor that the thread does not own.

LE_NONEXIST

SEE ALSO

Attempt to exit non-existent monitor.

cv _ create (3L)

BUGS
There should be language support to enforce the monitor enter-exit discipline.

1296 Last change: 21 January 1990 Sun Release 4.1

NAME

LIGHTWEIGHT PROCESSES LffiRARY

ms~send, msg_recv, msg_reply, MSG_RECVALL, msg_enumsend, msg_enumrecv - LWP send and
receive messages

SYNOPSIS
#include <Iwp/lwp.h>

int msg_send(dest, arg, argsize, res, ressize)
thread t dest; 1* destination thread *1
caddr t arg; 1* argument butTer *1
int argsize; 1* size of argument butTer *1
caddr t res; 1* result butTer *1
int ressize; 1* size of result butTer *1

int msg_recv(sender, arg, argsize, res, ressize, timeout)
thread t *sender; 1* value-result: sending thread or agent *1
caddr t *arg; 1* argument buffer *1
int *ai="gsize; 1* argument size *1
caddr _t *res; 1* result butTer *1
int *ressize; 1* result size *1
struct time val *timeout; 1* POLL, INFINITY, else timeout *1

int msg reply(sender)
thread] sender;l* agent id or thread id *1

int msg_enumsend(vec, maxsize)
thread_t vec[]; 1* list of blocked senders *1
int maxsize;

int msg enumrecv(vec, maxsize)
thread _t vec[]; 1* list of blocked receivers *1
int maxsize;

int MSG _ RECV ALL(sender, arg, argsize, res, ressize, timeout)
thread _ t *sender;
caddr _t *arg;
int *argsize;
caddr _ t *res;
int *ressize;
struct timeval *timeout;

DESCRIPTION
Each thread queues messages addressed to it as they arrive. Threads may either specify that a particular
sender's message is to be received next, or that any sender's message may be received next.

msg_send() specifies a message buffer and a reply buffer, and initiates one half of a rendezvous with the
receiver. The sender will block until the receiver replies using msg_reply(). msg_recv() initiates the
other half of a rendezvous and blocks the invoking thread until a corresponding msg_ send() is received.
When unblocked by msg_sendO, the receiver may read the message and generate a reply by filling in the
reply buffer and issuing msg_reply(). msg_reply() unblocks the sender. Once a reply is sent, the
receiver should no longer access either the message or reply buffer.

In msg_send(), argsize specifies the size in bytes of the argument buffer argbuJ, which is intended to be a
read-only (to the receiver) buffer. ressize specifies the size in bytes of the result buffer resbuJ, which is
intended to be a write-only (to the receiver) buffer. dest is the thread that is the target of the send.

Sun Release 4.1 Last change: 21 January 1990 1297

LIGHTWEIGHT PROCESSES LffiRARY

msg_recv() blocks the receiver until:

• A message from the agent or thread bound to sender has been sent to the receiver or,

• sender points to a THREADNULL-valued variable and any message has been sent to the receiver from a
thread or agent, or,

• After the time specified by timeout elapses and no message is received.

If timeout is POLL, msg_recv() returns immediately, returning success if the message expected has
arrived; otherwise an error is returned. If timeout is INFINITY, msg_recvO blocks forever or until the
expected message arrives. If timeout is any other value msg_recv() blocks for the time specified by
timeout or until the expected message arrives, whichever comes first. When msg_recv() returns, sender is
filled in with the identity of the sending thread or agent, and the buffer addresses and sizes specified by the
matching send are stored in arg, argsize, res, and ressize.

msg_ enumsend() and msg_ enumrecv() are used to list all of the threads blocked on sends (awaiting a
reply) and receives (awaiting a send), respectively. The value returned is the number of such blocked
threads. The vector supplied by the client is filled in (subject to the maxsize limitation) with the ID's of the
blocked threads. maxsize is used to avoid exceeding the capacity of the list. If the number of threads
blocked on sends or receives is greater than maxsize, only maxsize thread ID's are filled in vee. If maxsize
is 0, just the total number of blocked threads is returned.

sender in msg_recv() is a reference parameter. If you wish to receive from any sender, be sure to reinitial­
ize the thread sender points to as THREADNVLL before each use (do not use the address of THREAD NULL
for the sender). Alternatively, use the MSG _ RECV ALL() macro. This macro has the same parameters as
msg_recv(), but ensures that the sender is properly initialized to allow receipt from any sender.
MSG _ RECV ALL() returns the result from msg_recv.

RETURN V ALVES
msg_ send(), msg_recv(), MSG _RECV ALL() and msg_reply() return:

o on success.

-1 on failure.

msg_ enumsend() returns the number of threads blocked on msg_ send().

msg_enumrecv() returns the number of threads blocked on msg_recv().

ERRORS
msg_recv() will fail if one or more of the following is true:

LE_INV ALIDARG An illegal timeout was specified.

The sender address is that of THREADNULL.

LE_NONEXIST The specified thread or agent does not exist.

LE_TIMEOUT Timed out before message arrived.

msg_reply() will fail if one or more of the following is true:

LE_NONEXIST Attempt to reply to a sender that does not exist or has terminated.

LE_NOWAIT Attempt to reply to a sender that is not expecting a reply.

msg_ send() will fail if one or more of the following is true:

LE_INV ALIDARG Attempt to send a message to yourself.

The specified destination thread does not exist or has terminated.

1298 Last change: 21 January 1990 Sun Release 4.1

POD_GETMAXPRI (3L) LIGHTWEIGHT PROCESSES LffiRARY POD _GETMAXPRI (3L)

NAME
po<tgetmaxpri, pod--&etmaxsize, IxxCsetmaxpri - control L WP scheduling priority

SYNOPSIS
int pod _getmaxpri()

int pod _getmaxsize()

int pod_setmaxpri(maxprio)
int maxprio;

DESCRIPTION
The LWP library is self-initializing: the first time you use a primitive that requires threads to be supported,
main is automatically converted into a thread. A pod will terminate when all client-created lightweight
threads (including the thread bound to main) are dead.

By default, only a single priority (MINPRIO) is available. However, by using pod_setmaxpri(), you can
make an arbitrary number (up to the limit imposed by the implementation) of priorities available. The
main thread will receive the highest available scheduling priority at the time of initialization. By using
pod_setmaxpri() before any other LWP primitives, you can ensure that main will receive the same priority
as the argument to pod _ setmaxpri(). pod _ setmaxpri() can be called repeatedly, as long as the number of
scheduling priorities (maxprio) increases with each call.

pod _getmaxpri() returns the current number of available priorities. Priorities are numbered from 1
(MINPRIO) to MAXPRIO.

The implementation-dependent maximum number of priorities available can be retrieved using
pod_getmaxsize(). This value will never be less than 255.

RETURN VALUES
pod_getmaxpri() returns the number of priority levels set by the most recent call to pod_setmaxpri().

pod _getmaxsize() returns the maximum number of priorities your system supports.

pod _ setmaxpri() returns:

o on success.

-1 on failure.

ERRORS
pod _ setmaxpri() will fail if one or more of the following are true:

LE_INV ALIDARG Attempt to allocate more priorities than supported.

LE_NOROOM No internal memory left to create pod.

Sun Release 4.1 Last change: 6 October 1987 1299

I

INTRO(3M) MATHEMATICAL LIBRARY INTRO(3M)

NAME
intro - introduction to mathematical library functions and constants

SYNOPSIS
#include <syslieeefp.h>

#include <floatingpoint.h>

#include <math.h>

DESCRIPTION
The include file <math.h> contains declarations of all the functions described in Section 3M that are
implemented in the math library, libm. C programs should be linked with the -1m option in order to use
this library.

<syslieeefp.h> and <floatingpoint.h> define certain types and constants used for libm exception handling,
conforming to ANSIJIEEE Std 754-1985, the IEEE Standardfor Binary Floating-Point Arithmetic.

ACKNOWLEDGEMENT
The Sun version of Iibm is based upon and developed from ideas embodied and codes contained in 4.3
BSD, which may not be compatible with earlier BSD or UNIX implementations.

IEEE ENVIRONMENT
The IEEE Standard specifies modes for rounding direction, precision, and exception trapping, and status
reflecting accrued exceptions. These modes and status constitute the IEEE run-time environment. On Sun-
2 and Sun-3 systems without 68881 floating-point co-processors, only the default rounding direction to
nearest is available, only the default non-stop exception handling is available, and accrued exception bits
are not maintained.

IEEE EXCEPTION HANDLING
The IEEE Standard specifies exception handling for aint, ceil, floor, irint, remainder, rint, and sqrt, and
suggests appropriate exception handling for fp _class, copysign, fabs, finite, fmod, isinf, isnan, i1ogb,
Idexp, 10gb, nextafter, scalb, scalbn and signbit, but does not specify exception handling for the other
Iibm functions.

For these other unspecified functions the spirit of the IEEE Standard is generally followed in Iibm by han­
dling invalid operand, singularity (division by zero), overflow, and underflow exceptions, as much as possi­
ble, in the same way they are handled for the fundamental floating-point operations such as addition and
multiplication.

These unspecified functions are usually not quite correctly rounded, may not observe the optional rounding
directions, and may not set the inexact exception correctly.

SYSTEM V EXCEPTION HANDLING
The System V Interface Definition (SVID) specifies exception handling for some Iibm functions: jO(), jl(),
jnO, yOO, yl(), ynO, expO, logO, loglOO, powO, sqrt(), hypotO, IgammaO, sinbO, coshO, sinO,
cos(), tan(), asin(), acos{), and atan2(). See matherr(3M) for a discussion of the extent to which Sun's
implementation of libm follows the SVID when it is consistent with the IEEE Standard and with hardware
efficiency.

LIST OF MATH LIBRARY FUNCTIONS
Name

acos

Appears on Page

bessel(3M)
frexp(3M)
byperbolic(3M)
ieee _functions(3M)
ieee _ test(3M)
ieee _ values(3M)
trig(3M)
trig(3M)

Description

Bessel functions
floating-point analysis
hyperbolic functions
IEEE classification
IEEE tests for compliance
returns double-precision IEEE infinity
trigonometric functions
trigonometric functions

Sun Release 4.1 Last change: 20 January 1988 1301

INTRO(3M) MATHEMATICAL LIBRARY INTRO(3M)

acosh hyperbolic(3M) hyperbolic functions
aint rint(3M) round to integral value in floating-point or integer format
anint rint(3M) round to integral value in floating-point or integer format
annuity exp(3M) exponential, logarithm, power
asin trig(3M) trigonometric functions
asinh hyperbolic(3M) hyperbolic functions
atan trig(3M) trigonometric functions
atan2 trig(3M) trigonometric functions
atanh hyperbolic(3M) hyperbolic functions
cbrt sqrt(3M) cube root, square root
ceil rint(3M) round to integral value in floating-point or integer format
compound exp(3M) exponential, logarithm, power
copysign ieee _ functions(3M) miscellaneous functions for IEEE arithmetic
cos trig(3M) trigonometric functions
cosh hyperbolic(3M) hyperbolic functions
erf erf(3M) error functions
erfc erf(3M) error functions
exp exp(3M) exponential, logarithm, power
exp2 exp(3M) exponential, logarithm, power
explO exp(3M) exponential, logarithm, power
expml exp(3M) exponential, logarithm, power
fabs ieee _functions(3M) miscellaneous functions for IEEE arithmetic
finite ieee _ functions(3M) miscellaneous functions for IEEE arithmetic
floor rint(3M) round to integral value in floating-point or integer format
fmod ieee _functions(3M) miscellaneous functions for IEEE arithmetic
fp_c1ass it!ee _functions(3M) miscellaneous functions for IEEE arithmetic
frexp frexp(3M) traditional UNIX functions
HUGE ieee _ values(3M) functions that return extreme values of IEEE arithmetic
HUGE VAL ieee _ values(3M) functions that return extreme values of IEEE arithmetic
hypot hypot(3M) Euclidean distance
ieee_flags ieee _f1ags(3M) mode and status function for IEEE standard arithmetic
ieee_functions ieee _functions(3M) miscellaneous functions for IEEE arithmetic
ieee handler ieee _ handler(3M) IEEE exception trap handler function
ieee test ieee _ test(3M) IEEE test functions for verifying standard compliance
ieee values ieee _ values(3M) functions that return extreme values of IEEE arithmetic
ilogb ieee _functions(3M) miscellaneous functions for IEEE arithmetic
infinity ieee _ values(3M) functions that return extreme values of IEEE arithmetic
irint rint(3M) round to integral value in floating-point or integer format
isinf ieee _functions(3M) miscellaneous functions for IEEE arithmetic
isnan ieee _functions(3M) miscellaneous functions for IEEE arithmetic
isnormal ieee _ functions(3M) miscellaneous functions for IEEE arithmetic
issubnormal ieee _functions(3M) miscellaneous functions for IEEE arithmetic
iszero ieee _functions(3M) miscellaneous functions for IEEE arithmetic
jO bessel(3M) Bessel functions
jl besseJ(3M) Bessel functions
jn besseJ(3M) Bessel functions
Idexp frexp(3M) traditional UNIX functions
Igamma Igamma(3M) log gamma function
log exp(3M) exponential, logarithm, power
log2 exp(3M) exponential, logarithm, power
loglO exp(3M) exponential, logarithm, power
loglp exp(3M) exponential, logarithm, power
10gb ieee _ test(3M) IEEE test functions for verifying standard compliance

1302 Last change: 20 January 1988 Sun Release 4.1

IN1RO(3M) MATHEMATICAL LIBRARY INTRO(3M)

matherr matherr(3M) math library exception-handling function
max normal ieee _ values(3M) functions that return extreme values of IEEE arithmetic
max subnormal ieee _ values(3M) functions that return extreme values of IEEE arithmetic
min normal ieee _ values(3M) functions that return extreme values of IEEE arithmetic
min subnormal ieee _ values(3M) functions that return extreme values of IEEE arithmetic
modr frexp(3M) traditional UNIX functions
nextafter ieee _runctions(3M) miscellaneous functions for IEEE arithmetic
nint rint(3M) round to integral value in floating-point or integer format
pow exp(3M) exponential, logarithm, power
quiet nan ieee _ values(3M) functions that return extreme values of IEEE arithmetic
remainder ieee _functions(3M) miscellaneous functions for IEEE arithmetic
rint rint(3M) round to integral value in floating-point or integer format
scalb ieee_test(3M) IEEE test functions for verifying standard compliance
scalbn ieee _functions(3M) miscellaneous functions for IEEE arithmetic
signaling_nan ieee _ values(3M) functions that return extreme values of IEEE arithmetic
signbit ieee _ functions(3M) miscellaneous functions for IEEE arithmetic
significant ieee_test(3M) IEEE test functions for verifying standard compliance
sin trig(3M) trigonometric functions
single -precision single yrecision(3M) single-precision access to libm functions
sinh hyperbolic(3M) hyperbolic functions
sqrt sqrt(3M) cube root, square root
tan trig(3M) trigonometric functions
tanh hyperbolic(3M) hyperbolic functions
yO bessel(3M) Bessel functions
yl bessel(3M) Bessel functions
yn bessel(3M) Bessel functions

Sun Release 4.1 Last change: 20 January 1988 1303

BESSEL(3M) MATHEMATICAL LIBRARY

NAME
jO, jl,jn, yO, yl, yn - Bessel functions

SYNOPSIS
#include <math.h>

double jO(x)
double x;

double jl(x)
double X;

double jn(n, x)
double x;
int n;

double yO(x)
double x;

double yl(x)
double X;

double yn(n, x)
double X;
int D;

DESCRIPTION

BESSEL(3M)

These functions calculate Bessel functions of the first and second kinds for real arguments and integer ord­
ers.

SEE ALSO
exp(3M)

DIAGNOSTICS
The functions yO, yl, and yn have logarithmic singularities at the origin, so they treat zero and negative
arguments the way log does, as described in exp(3M). Such arguments are unexceptional for jO,jl, andjn.

1304 Last change: 6 October 1987 Sun Release 4.1

ERF(3M)

NAME
erf, erfc - error functions

SYNOPSIS
#include <math.h>

double erf(x)
double x;

double erfc(x)
double x;

DESCRIPTION

MATHEMATICAL LIBRARY

erf(x) returns the error function of x; where erf(x):= (2/-V1t) J~ exp(-t2) dt

ERF(3M)

erfc(x) returns 1.G-erf (x), computed however by other methods that avoid cancellation for large x.

Sun Release 4.1 Last change: 20 October 1987 1305

EXP(3M) MATHEMATICAL LIBRARY EXP(3M)

NAME
exp, expml, exp2, expl0, log, 10glp, 10g2, logl0, pow, compound, annuity - exponential, logarithm,
power

SYNOPSIS
#include <math.h>

double exp(x)
double x;

double expml(x)
double x;

double exp2(x)
double x;

double explO(x)
double X;

double log(x)
double X;

double loglp(x)
double X;

double log2(x)
double X;

double 10glO(x)
double X;

double pow(x, y)
double X, y;

double compound(r, n)
double r, n;

double annuity(r, n)
double r, n;

DESCRIPTION

1306

exp() returns the exponential function e* * x.

expml0 returns e**x-l accurately even for tiny x.

exp2() and explO() return 2**x and lO**x respectively.

log() returns the natural logarithm of x.

10glpO returns 10g(l+x) accurately even for tiny x.

log20 and 10glOO return the logarithm to base ~ and 10 respectively.

pow() returns x**y. pow(x ,0.0) is 1 for all x, in conformance with 4.3BSD, as discussed in the Numerical
Computation Guide.

compound() and annuity() are functions important in financial computations of the effect of interest at
periodic rate rover n periods. compound(r, n) computes (1 +r)**n, the compound interest factor. Given
an initial principal PO, its value after n periods is just Po = PO * compound(r, n). annuity(r, n) computes
(1 - (1 +r)**-n)lr, the present value of annuity factor. Given an initial principal PO, the equivalent
periodic payment is just p = PO I annuity(r, n). compound() and annuity() are computed using loglp()
and expml() to avoid gratuitous inaccuracy for small-magnitude r. compound() and annuity() are not
defined for r <= -1.

Last change: 24 March 1988 Sun Release 4.1

EXP(3M) MATHEMATICAL LIBRARY EXP(3M)

Thus a principal amount PO placed at 5% annual interest compounded quarterly for 30 years would yield

P30 = PO * compound(.0514,30.0 * 4)

while a conventional fixed-rate 30-year home loan of amount PO at 10% annual interest would be amor­
tized by monthly payments in the amount

p = PO 1 annuity(.10/12, 30.0 * 12)

SEE ALSO
matherr(3M)

DIAGNOSTICS
All these functions handle exceptional arguments in the spirit of ANSI/lEEE Std 754-1985. Thus for x ==
±O, log(x) is -00 with a division by zero exception; for x < 0, including -00, log(x) is a quiet NaN with an
invalid operation exception; for x = +00 or a quiet NaN, log(x) is x without exception; for x a signaling
NaN, log(x) is a quiet NaN with an invalid operation exception; for x = 1, log(x) is 0 without exception;
for any other positive x, log(x) is a normalized number with an inexact exception.

In addition, expO, exp20, expl00, logO, log20, loglOO and powO may also set errno and call
matherr(3M).

Sun Release 4.1 Last change: 24 March 1988 1307

FREXP(3M) MATHEMATICAL LIBRARY FREXP(3M)

NAME
frexp, modf, ldexp - traditional UNIX functions

SYNOPSIS
#include <math.h>

double frexp(value, eptr)
double value;
int *eptr;

double Idexp(x,n)
double X;
into;

double modf(value, iptr)
double value, *iptr;

DESCRIPTION
These functions are provided for compatibility with other UNIX system implementations. They are not
used internally in Iibm or Jibe. Better ways to accomplish similar ends may be found in
ieee_funetions(3M) and rint(3M).

Idexp(x,n) returns x * 2**n computed by exponent manipulation rather than by actually performing an
exponentiation or a multiplication. Note: Idexp(x,n) differs from sealbn(x,n), defined in
ieee_funetions(3M), only that in the event of IEEE overflow and underflow, Idexp(x,n) sets errno to
ERANGE.

Every non-zero number can be written uniquely as x * 2**n, where the significant x is in the range 05 <=
Ixl < 1.0 and the exponent n is an integer. The function frexp() returns the significant of a double value as
a double quantity, x, and stores the exponent n, indirectly through eptr. If value == 0, both results returned
by frexp() are 0.

modf() returns the fractional part of value and stores the integral part indirectly through iptr. Thus the
argument value and the returned values modf() and *iptr satisfy

(* iptr + mod/) == value

and both results have the same sign as value. The definition of modf() varies among UNIX system imple­
mentations, so avoid modf() in portable code.

The results of frexp() and modf() are not defined when value is an IEEE infinity or NaN.

SEE ALSO
ieee _funetions(3M), rint(3M)

1308 Last change: 21 January 1988 Sun Release 4.1

HYPERBOLIC (3M) MATHEMATICAL LIBRARY HYPERBOLIC (3M)

NAME
sinh, cosh, tanh, asinh, acosh, atanh - hyperbolic functions

SYNOPSIS
#include <math.h>

double sinh(x)
double X;

double cosh(x)
double X;

double tanh (x)
double X;

double asinh(x)
double X;

double acosh(x)
double X;

double atanh(x)
double X;

DESCRIPTION
These functions compute the designated direct and inverse hyperbolic functions for real arguments. They
inherit much of their roundoff error from expml() and loglp, described in exp(3M).

DIAGNOSTICS
These functions handle exceptional arguments in the spirit of ANSI/lEEE Std 754-1985. Thus sinhO and
cosh() return ±oo on overflow, acosh() returns a NaN if its argument is less than 1, and atanh() returns a
NaN if its argument has absolute value greater than 1. In addition, sinh,cosh, and tanh() may also set
errno and call matherr(3M).

SEE ALSO
exp(3M), matherr(3M)

Sun Release 4.1 Last change: 22 november 1987 1309

HYPOT(3M) MATHEMATICAL LIBRARY HYPOT(3M)

NAME
hypot - Euclidean distance

SYNOPSIS
#include <math.h>

double hypot(x, y)
double x, y;

DESCRIPTION
hypot() returns

sqrt(x*x + y*y) ,

taking precautions against unwarranted IEEE exceptions. On IEEE overflow, hypot() may also set errno
and call matherr(3M). hypot(±oo, y) is +00 for any y, even a NaN, and is exceptional only for a signaling
NaN.

hypot(x,y) and atan2(y~) (see trig(3M» convert rectangular coordinates (x,y) to polar (r,e); hypot()
computes r, the modulus or radius.

SEE ALSO
trig(3M), matherr(3M)

1310 Last change: 22 November 1987 Sun Release 4.1

MATHEMATICAL LIBRARY

NAME
ieee_flags - mode and status function for IEEE standard arithmetic

SYNOPSIS
#include <syS/ieeefp.h>

int ieee _ flags(action, mode, in, out)
char *action, *mode, *in, **out;

DESCRIPTION
This function provides easy access to the modes and status required to fully exploit ANSI/lEEE Std
754-1985 arithmetic in a C program. All arguments are pointers to strings. Results arising from invalid
arguments and invalid combinations are undefined for efficiency.

There are four types of action: get, set, clear and clearall. There are three valid settings for mode, two
corresponding to modes of IEEE arithmetic:

direction

precision

current rounding direction mode

current rounding precision mode

and one corresponding to status of IEEE arithmetic:

exception accrued exception-occurred status

There are fourteen types of in and out:

nearest

tozero

negative

positive

extended

double

single

inexact

division

underftow

overftow

invalid

all

common

round toward nearest

round toward zero

round toward negative infinity

round toward positive infinity

division by zero exception

all five exceptions above

invalid, overflow, and division exceptions

Note: all and common only make sense with set or clear.

For clearall, ieee _ ftags() returns 0 and restores all default modes and status. Nothing will be assigned to
out. Thus

char *mode, *out, *in;
ieee _ ftags(" clearall" , mode, in, &out);

set rounding direction to nearest, rounding precision to extended, and all accrued exception-occurred
status to zero.

Sun Release 4.1 Last change: 16 May 1989 1311

1312

MATHEMATICAL LIBRARY

For clear, ieee _ 8ags() returns 0 and restores the default mode or status. Nothing will be assigned to out.
Thus

char *out, *in;
ieee _ flags(tt clear", "direction", in, &out); ... set rounding direction to round to nearest.

For set, ieee _ 8ags() returns 0 if the action is successful and 1 if the corresponding required status or mode
is not available (for instance, not supported in hardware). Nothing will be assigned to out. Thus

char *out, *in;
ieee_flags (" set", "direction", "tozero", &out); set rounding direction to round toward zero;

For get, we have the following cases:

Case 1: mode is direction. In that case, out returns one of the four strings nearest, tozero, positive, nega­
tive, and ieee _ Oags() returns a value corresponding to out according to the enum fp _direction _type
defined in <syslieeefp.h>.

Case 2: mode is precision. In that case, out returns one of the three strings extended, double and single,
and ieee _ flags() returns a value corresponding to out according to the enum fp yrecision _type defined in
<syslieeefp.h> .

Case 3: mode is exception. In that case, out returns

not available if information on exception is not available.

no exception if no accrued exception.

the accrued exception that has the highest priority according to the following list:

the exception named by in
invalid
over80w
division
underflow
inexact

In this case ieee_flagsO returns a five or six bit value where each bit (see enum fp_exception_type in
<syslieeefp.h» corresponds to an exception-occurred accrued status flag: 0 = off, 1 = on. The bit
corresponding to a particular exception varies among architectures (see <syS/ieeefp.h».

Example:

char *out; int k, ieee _ flags();
ieee _ flags(" clear", "exception", "all", &out); 1* clear all accrued exceptions *1

code that generates three exceptions: overflow, invalid, inexact

k = ieee_flags(" get" , "exception", "overflow", &out);

then out is overftow, and on a Sun-3, k is 25.

Last change: 16 May 1989 Sun Release 4.1

IEEE_FUNCTIONS (3M) MATHEMATICAL LIBRARY IEEE_FUNCTIONS (3M)

NAME
ieee_functions, fp_class, finite, ilogb, isinf, isnan, isnormal, issubnormal, iszero, signbit, copysign, fabs,
fmod, nextafter, remainder, scalbn - appendix and related miscellaneous functions for IEEE arithmetic

SYNOPSIS
#include <math.h>
#include <stdio.h>

enum fp_c1ass_type fp_c1ass(x)
double X;

int finite(x)
double x;

int ilogb(x)
double x;

int isinf(x)
double X;

int isnan(x)
double X;

int isnormal(x)
double X;

int issubnormal(x)
double x;

int iszero(x)
double x;

int signbit(x)
double x;

void ieee _retrospective(f)
FILE *f;

void nonstandard _ arithmeticO

void standard _ arithmetic()

double copysign(x,y)
double x, y;

double fabs(x)
double x;

double fmod(x,y)
double x, y;

double nextafter(x,y)
double X, y;

double remainder(x,y)
double x, y;

double scalbn(x,n)
double X; int n;

Sun Release 4.1 Last change: 18 August 1988 1313

IEEE_FUNCTIONS (3M) MATHEMATICAL LIBRARY IEEE_FUNCTIONS (3M)

DESCRIPTION
Most of these functions provide capabilities required by ANSI/IEEE Std 754-1985 or suggested in its appen­
dix.

fp_c1ass(x) corresponds to the IEEE's classO and classifies x as zero, subnormal, normal, 00, or quiet or
signaling NaN. <f1oatingpoint.h> defines enum fp_c1ass_type. The following functions return 0 if the
indicated condition is not satisfied:

finite(x) returns 1 if x is zero, subnormal or normal
isinf(x) returns 1 if x is 00

isnan(x) returns 1 if x is NaN
isnormal(x) returns 1 if x is normal
issubnormal(x) returns 1 if x is subnormal
iszero(x) returns 1 if x is zero
signbit(x) returns 1 if x' s sign bit is set

i1ogb(x) returns the unbiased exponent of x in integer format i1ogb(±oo) = +MAXINT and ilogb(O) =
-MAXINT; <values.h> defines MAXINT as the largest int. ilogb(x) never generates an exception. When x
is subnormal, i1ogb(x) returns an exponent computed as if x were first normalized.

ieee _retrospective(f) prints a message to the FILE f listing all IEEE accrued exception-occurred bits
currently on, unless no such bits are on or the only one on is "inexact". It's intended to be used at the end
of a program to indicate whether some IEEE floating-point exceptions occurred that might have affected the
result.

standard _ arithmeticO and nonstandard _ arithmeticO are meaningful on systems that provide an alterna­
tive faster mode of floating-point arithmetic that does not conform to the default IEEE Standard. Nonstan­
dard modes vary among implementations; nonstandard mode may, for instance, result in setting subnormal
results to zero or in treating subnormal operands as zero, or both, or something else.
standard_arithmeticO reverts to the default standard mode. On systems that provide only one mode,
these functions have no effect.

copysign(x,y) returns x with y's sign bit.

fabs(x) returns the absolute value of x.

nextafter(x,y) returns the next machine representable number from x in the direction y.

remainder(x, y) and fmod(x, y) return a remainder of x with respect to y; that is, the result r is one of the
numbers that differ from x by an integral multiple of y. Thus (x - r)ly is an integral value, even though it
might exceed MAXINT if it were explicitly computed as an int. Both functions return one of the two such r
smallest in magnitude. remainder(x, y) is the operation specified in ANSI/IEEE Std 754-1985; the result of
fmod(x, y) may differ from remainderO's result by ±y. The magnitude of remainder's result can not
exceed half that of y; its sign might not agree with either x or y. The magnitude of fmod()' s result is less
than that of y; its sign agrees with that of x. Neither function can generate an exception as long as both
arguments are normal or subnormal. remainder(x, 0), fmod(x, 0), remainder(oo, y), and fmod(oo, y) are
invalid operations that produce a NaN.

scalbo(x, n) returns x* 2**0 computed by exponent manipulation rather than by actually performing an
exponentiation or a multiplication. Thus

1 ~ scalbn(fabs(x),-ilogb(x» < 2

for every x except 0, 00, and NaN.

SEE ALSO
f1oatingpoint(3), ieee _f1ags(3M), matherr(3M)

1314 Last change: 18 August 1988 Sun Release 4.1

IEEE_HANDLER (3M) MATHEMATICAL LIBRARY IEEE_HANDLER (3M)

NAME
ieee_handler - IEEE exception trap handler function

SYNOPSIS
#include <Ooatingpoint.h>

int ieee _ handler(action,exception,hdl)
char action[), exception[);
sigfpe _handler _type hdl;

DESCRIPTION
This function provides easy exception handling to exploit ANSI/lEEE Std 754-1985 arithmetic in a C pro­
gram. The first two arguments are pointers to strings. Results arising from invalid arguments and invalid
combinations are undefined for efficiency.

There are three types of action: get, set, and clear. There are five types of exception:
inexact
division
underOow
overOow
invalid
all
common

· .. division by zero exception

· .. all five exceptions above
· .. invalid. overflow. and division exceptions

Note: all and common only make sense with set or clear.

hdl contains the address of a signal-handling routine. <Ooatingpoint.h> defines sigfpe _handler _type.

get will return the location of the current handler routine for exception cast to an int. set will set the rou­
tine pointed at by hdl to be the handler routine and at the same time enable the trap on exception, except
when hdl = SIGFPE_DEFAULT or SIGFPE_IGNORE; then ieee_handler() will disable the trap on
exception. When hdl == SIGFPE_ABORT, any trap on exception will dump core using abort(3). clear all
disables trapping on all five exceptions.

Two steps are required to intercept an IEEE-related SIG FPE code with ieee _handler:

1) Set up a handler with ieee_handler.

2) Perfonn a floating-point operation that generates the intended IEEE exception.

Unlike sigfpe(3), ieee _ handler() also adjusts floating-point hardware mode bits affecting IEEE trapping.
For clear, set SIGFPE _DEFAULT, or set SIGFPE _IGNORE, the hardware trap is disabled. For any other
set , the hardware trap is enabled.

SIGFPE signals can be handled using sigvec(2), signal(3V), sigfpe(3), or ieee_handler(3M). In a particu­
lar program, to avoid confusion. use only one of these interfaces to handle SIGFPE signals.

DIAGNOSTICS
ieee _ handler() normally returns 0 for set. 1 will be returned if the action is not available (for instance. not
supported in hardware). For get, the address of the current handler is returned. cast to an int.

Sun Release 4.1 Last change: IS May 1989 1315

IEEE_HANDLER (3M) MATHEMATICAL LIBRARY IEEE_HANDLER (3M)

EXAMPLE
A user-specified signal handler might look like this:

void sample_handler(sig, code, sep, addr)
int sig; /* sig == SIGFPE always */
int code;
struct sigcontext *scp;
char *addr;
{

}

* Sample user-written sigfpe code handler.
* Prints a message and continues.
* struct sigcontext is defined in <signal.h>.
*/

printf(" ieee exception code %x occurred at pc % X \n" , code, scp->sc yc);

and it might be set up like this:

extern void sample_handlerO;
main()
{

}

sigfpe _handler _type hdl, old_handler 1, old _ handler2;
/*
* save current overflow and invalid handlers
*/

old_handlerl = (sigfpe_handler_type) ieee_handler("get", "overflow", old_handlerl);
0ld_handler2 = (sigfpe_handler _type) ieee_handler(" get" , "invalid", 0Id_handler2);
/*
* set new overflow handler to sample_handler() and set new
* invalid handler to SIGFPE_ABORT (abort on invalid)
*/

hdl = (sigfpe _handler_type) sample_handler;
if (ieee_handler(" set" , "overflow", hdl) != 0)

printf(" ieee_handler can't set overflow \n");
if (ieee_handler("set", "invalid", SIGFPE_ABORT) != 0)

printf("ieee_handier can't set invalid \0");

/*
* restore old overflow and invalid handlers
*/

ieee _ handler("set", "overflow", old _ handlerl);
ieee_handler("set", "invalid", 0Id_handler2);

SEE ALSO
sigvec(2), abort(3), floatingpoint(3), sigfpe(3), signal(3V)

1316 Last change: 15 May 1989 Sun Release 4.1

MATHEMATICAL LIBRARY IEEE_TEST (3M)

NAME
ieee_test, 10gb, scalb, significant - IEEE test functions for verifying standard compliance

SYNOPSIS
#include <math.h>

double logb(x)
double X;

double scalb(x,y)
double X; double y;

double significant(x)
double X;

DESCRIPTION

FILES

These functions allow users to verify compliance to ANSI/IEEE Std 754-1985 by running certain test vec­
tors distributed by the University of California. Their use is not otherwise recommended; instead use
scalbn(x,n) and ilogb(x) described in ieee_functions(3M). See the Numerical Computation Guide for
details.

logb(x) returns the unbiased exponent of x in floating-point format, for exercising the 10gb(L) test vector.
logb(±oo) = +00; logb(O) = -00 with a division by zero exception. logb(x) differs from ilogb(x) in returning
a result in floating-point rather than integer format, in sometimes signaling IEEE exceptions, and in not nor­
malizing subnormal x.

scalb(x,(double)n) returns x * 2**n computed by exponent manipulation rather than by actually perform­
ing an exponentiation or a multiplication, for exercising the scalb(S) test vector. Thus

OS scalb(fabs(x),-logb(x» < 2
for every x except 0, 00 and NaN. scalb(x,y) is not defined when y is not an integral value. scalb(x,y)
differs from scalbn(x,n) in that the second argument is in floating-point rather than integer format.

significant(x) computes just
scalb(x, (double) -ilogb(x»,

for exercising the fraction-part(F) test vector.

lusr/lib/libm.a

SEE ALSO
8oatingpoint(3), ieee _ values(3M), ieee _functions(3M), matherr(3M)

Sun Release 4.1 Last change: 21 January 1988 1317

NAME

MATHEMATICAL LIBRARY IEEE_ VALUES (3M)

ieee_values, min_subnormal, max_subnormal, min_normal, max_normal, infinity, quiecnan,
signaling_nan, HUGE, HUGE_ VAL - functions that return extreme values of IEEE arithmetic

SYNOPSIS
#include <math.h>

double min _subnormal()

double max _ subnormal()

double min _ normal()

double max _ normal()

double infinity()

double quiet_ nan(n)
long n;

double signaling_ nan(n)
long n;

#define HUGE (infinity(»

#define HUGE_VAL (infinity(»

DESCRIPTION

FILES

These functions return special values associated with ANSI/IEEE Std 754-1985 double-precision ftoating­
point arithmetic: the smallest and largest positive subnormal numbers, the smallest and largest positive nor­
malized numbers, positive infinity, and a quiet and signaling NaN. The long parameters n to quiet_nan(n)
and signaling_ nan(n) are presently unused but are reserved for future use to specify the significant of the
returned NaN.

None of these functions are affected by IEEE rounding or trapping modes or generate any IEEE exceptions.

The macro HUGE returns +00 in accordance with previous SunOS releases. The macro HUGE VAL returns
+00 in accordance with the System V Interface Definition.

lusr/lib/libm.a

SEE ALSO
ieee _functions(3M)

1318 Last change: 6 October 1987 Sun Release 4.1

LGAMMA(3M)

NAME
Igamma - log gamma function

SYNOPSIS
#include <math.h>

extern int signgam;

double Igamma(x)
double x;

DESCRIPTION
Igamma() returns

where

for x >0 and

for x < 1.

MATHEMATICAL LIBRARY

In Ir(x)1

r(x) = fotX-1e -tdt

r(x) = 1t/(r(l-x) sin(1tx»

The external integer signgam returns the sign of r(x).

IDIOSYNCRASIES

LGAMMA(3M)

Do not use the expression signgam*exp(lgamma(x» to compute 'g := r(x)'. Instead compute IgammaO
first:

Ig = Igamma(x); g = signgam*exp(lg);

only after Igamma() has returned can signgam be correct. Note: r(x) must overflow when x is large
enough, underflow when -x is large enough, and generate a division by zero exception at the singularities x
a nonpositive integer. In addition, Igamma() may also set errno and call matherr(3M).

SEE ALSO
matherr(3M)

Sun Release 4.1 Last change: 22 November 1987 1319

MATHERR(3M) MATHEMATICAL LIBRARY MATHERR(3M)

NAME
matherr - math library exception-handling function

SYNOPSIS
#include <math.h>

int matherr(exc)
struct exception *exc;

DESCRIPTION

1320

The SVID (System V Interface Definition) specifies that certain libm functions call matherr() when excep­
tions are detected. Users may define their own mechanisms for handling exceptions, by including a func­
tion named matherr() in their programs. matherr() is of the form described above. When an exception
occurs, a pointer to the exception structure exc will be passed to the user-supplied matherr() function.
This structure, which is defined in the <math.h> header file, is as follows:

struct exception {

};

int type;
char *name;
double argl, arg2, retval;

The element type is an integer describing the type of exception that has occurred, from the following list of
constants (defined in the header file):

DOMAIN argument domain exception
SING argument singularity
OVERFLOW overflow range exception
UNDERFLOW underflow range exception

The element name points to a string containing the name of the function that incurred the exception. The
elements argl and arg2 are the arguments with which the function was invoked. retval is set to the default
value that will be returned by the function unless the user's matherr() sets it to a different value.

If the user's matherr() function returns non-zero, no exception message will be printed, and errno will
not be set.

If matherr() is not supplied by the user, the default matherr exception-handling mechanisms, summarized
in the table below, will be invoked upon exception:

DOMAIN==fp Jnvalid
An IEEE NaN is usually returned, errno is set to EOOM, and a message is printed on standard
error. pow(O.O,O.O) and atan2(0.0,0.0) return numerical default results but set errno and print the
message.

SIN G==fp _division
An IEEE 00 of appropriate sign is returned, errno is set to EDOM, and a message is printed on stan­
dard error.

OVERFLOW==fp _overflow
In the default rounding direction, an IEEE 00 of appropriate sign is returned. In optional rounding
directions, ±MAXDOUBLE, the largest finite double-precision number, is sometimes returned
instead of ±oo. errno is set to ERANGE.

UNDERFLOW==fp _underflow
An appropriately-signed zero, subnormal number, or smallest normalized number is returned, and
errno is set to ERANGE.

The facilities provided by matherr() are not available in situations such as compiling on a Sun-3 system
with lusr/lib/f68881I1ibm.i1 or lusr/lib/ffpallibm.i1, in which case some libm functions are converted to
atomic hardware operations. In these cases setting errno and calling matherr() are not worth the adverse
performance impact, but regular ANSI/lEEE Std 754-1985 exception handling remains available. In any

Last change: 16 August 1989 Sun Release 4.1

MATHERR(3M) MATHEMATICAL LIBRARY MATHERR(3M)

case errno is not a reliable error indicator in that it may be unexpectedly set by a function in a handler for
an asynchronous signal.

DEFAULT ERROR HANDLING PROCEDURES

Types of Errors
<math.h> type ooMAlN SING OVERFWW

errno EooM EOOM ERANGE

IEEE Exception Invalid Operation Division by Zero Overflow

<floatingpoint.h> type fp_invalid fp_division fp_overflow

ACOS,ASIN: M,NaN - -
AT AN2(O,O): M, ±D.O or ±7t - -
BESSEL:
yO, yl, yn (x < 0)
yO, yl, yn (x = 0)

COSH, SINH:

EXP:

HYPOT:

LGAMMA:

Loo, LooIO:
(x < 0)
(x =0)

POW:
usual cases
(x < 0) ** (y not an integer)
0** 0
0** (y < 0)

SQRT:

M
NaN

00

IEEE Overflow
IEEE Underflow

1t

M,NaN - -
- M -00 -,
- - IEEE Overflow

- - IEEE Overflow

- - IEEE Overflow

- M,+oo IEEE Overflow

M,NaN - -
- M -00 -,

- - IEEE Overflow
M,NaN - -
M,I.0 - -

- M,±oo -
M,NaN - -

ABBREVIATIONS

Message is printed (EooM exception).
IEEE NaN result and invalid operation exception.
IEEE 00 result and division-by-zero exception.
IEEE Overflow result and exception.
IEEE Underflow result and exception.
Closest machine-representable approximation to pi.

UNDERFLOW

ERANGE

Underflow

fp_underflow

-
-

-
-
-

IEEE Underflow

-
-

-
-

IEEE Underflow
-
-
-
-

The interaction of IEEE arithmetic and matherr() is not defined when executing under IEEE rounding
modes other than the default round to nearest: matherr() may not be called on overflow or underflow, and
the Sun-provided matherr() may return results that differ from those in this table.

Sun Release 4.1 Last change: 16 August 1989 1321

MATHERR(3M) MATHEMATICAL LIBRARY

EXAMPLE

1322

#include <math.h>

int
matherr(x)
register struct exception *x;
{

}

switch (x->type) {
case

DOMA1N:
,* change sqrt to return sqrt(-argl), not NaN *,
if (!strcmp(x->name, "sqrt"» {

x->retval = sqrt(-x->argl);
return (0); 1* print message and set errno *1

} 1* fall througb *1
case

}

SING:
,* all other domain or sing exceptions, print message and abort *,
fprintf(stderr, "domain exception in %s\n", x->name);
abort();
break;

return (0); 1* all other exceptions, execute default procedure *1

Last change: 16 August 1989

MATHERR(3M)

Sun Release 4.1

RINT(3M) MATHEMATICAL LIBRARY RINT(3M)

NAME
aint, anint, ceil, floor, rint, irint, nint - round to integral value in floating-point or integer format

SYNOPSIS
#include <math.h>

double aint(x)
double X;

double anint(x)
double X;

double ceil(x)
double X;

double f1oor(x)
double X;

double rint(x)
double X;

int irint(x)
double X;

int nint(x)
double X;

DESCRIPTION
aint(), anint(), ceil(), f1oor(), and rint() convert a double value into an integral value in double format.
They vary in how they choose the result when the argument is not already an integral value. Here an
"integral value" means a value of a mathematical integer, which however might be too large to fit in a par­
ticular computer's int format. All sufficiently large values in a particular floating-point format are already
integral; in IEEE double-precision format, that means all values >= 2**52. Zeros, infinities, and quiet
NaNs are treated as integral values by these functions, which always preserve their argument's sign.

aint() returns the integral value between x and 0, nearest x. This corresponds to IEEE rounding toward
zero and to the Fortran generic intrinsic function aint().

anint() returns the nearest integral value to x, except halfway cases are rounded to the integral value larger
in magnitude. This corresponds to the Fortran generic intrinsic function anint().

ceil() returns the least integral value greater than or equal to x. This corresponds to IEEE rounding toward
positive infinity.

f1oorO returns the greatest integral value less than or equal to x. This corresponds to IEEE rounding
toward negative infinity.

rint() rounds x to an integral value according to the current IEEE rounding direction.

irint() converts x into int format according to the current IEEE rounding direction.

nint() converts x into int format rounding to the nearest int value, except halfway cases are rounded to the
int value larger in magnitude. This corresponds to the Fortran generic intrinsic function nint().

Sun Release 4.1 Last change: 15 October 1987 1323

SINGLE_PRECISION (3M) MATHEMATICAL LIBRARY

NAME
single-precision - single-precision access to libm functions

SYNOPSIS

1324

#include <math.h>

FLOATFUNCTIONTYPE r_acos_ (x)
FLOATFUNCTIONTYPE r_acospi_ (x)
FLOATFUNCTIONTYPE r _acosh _ (x)
FLOATFUNCTIONTYPE r_aint_ (x)
FLOATFUNCTIONTYPE r_anint_ (x)
FLOATFUNCTIONTYPE r_annuity_ (x)
FLOATFUNCTIONTYPE r_asin_ (x)
FLOATFUNCTIONTYPE r _ asinpt (x)
FLOATFUNCTIONTYPE r _ asinh _ (x)
FLOATFUNCTIONTYPE r_atan_ (x)
FLOATFUNCTIONTYPE r_atanpi_ (x)
FLOATFUNCTIONTYPE r _atanh _ (x)
FLOATFUNCTIONTYPE r_atan2_ (x,y)
FLOATFUNCTIONTYPE r_atan2Pt (x,y)
FLOATFUNCTIONTYPE r_cbrt_ (x)
FLOATFUNCTIONTYPE r_ceil_ (x)
enum fp_class_type ir_fp_class_ (x)
FLOATFUNCTIONTYPE r_compound_ (x,y)
FLOATFUNCTIONTYPE r_copysign_ (x,y)
FLOATFUNCTIONTYPE r _cos _ (x)
FLOATFUNCTIONTYPE r _ cospi_ (x)
FLOATFUNCTIONTYPE r_cosh_ (x)
FLOATFUNCTIONTYPE r _ erf _ (x)
FLOATFUNCTIONTYPE r _ erfc _ (x)
FLOATFUNCTIONTYPE r _ exp _ (x)
FLOATFUNCTIONTYPE r_expml_ (x)
FLOATFUNCTIONTYPE r_exp2_ (x)
FLOATFUNCTIONTYPE r_explO_ (x)
FLOATFUNCTIONTYPE r_fabs_ (x)
int ir_finite_ (x)
FLOATFUNCTIONTYPE r_floor_ (x)
FLOATFUNCTIONTYPE r_fmod_ (x,y)
FLOATFUNCTIONTYPE r_hypot_ (x,y)
int ir _ ilogb _ (x)
int ir _ irint_ (x)
int ir Jsinf _ (x)
int ir _ isnan _ (x)
int ir _ isnorma,- (x)
int ir _ issubnorma'- (x)
int ir _ iszero _ (x)
int ir_nint_ (x)
FLOATFUNCTIONTYPE r Jnfinity _ ()
FLOATFUNCTIONTYPE rJO_ (x)
FLOATFUNCTIONTYPE rJl_ (x)
FLOATFUNCTIONTYPE rJn_ (n,x)
FLOATFUNCTIONTYPE r_lgamma_ (x)
FLOATFUNCTIONTYPE r_logb_ (x)
FLOATFUNCTIONTYPE r _Iog_ (x)
FLOATFUNCTIONTYPE rJoglp_ (x)

Last change: 24 March 1988 Sun Release 4.1

SINGLE_PRECISION (3M) MATHEMATICAL LIBRARY

FLOATFUNCTIONTYPE rJog2_ (x)
FLOATFUNCTIONTYPE rJogl0_ (x)
FLOATFUNCTIONTYPE r_max_normal_ ()
FLOATFUNCTIONTYPE r_max_subnormal_ 0
FLOATFUNCTIONTYPE r_min_normal_ 0
FLOATFUNCTIONTYPE r_min_subnormal_ 0
FLOATFUNCTIONTYPE r _ nextafter _ (x,y)
FLOATFUNCTIONTYPE ryow_ (x,y)
FLOATFUNCTIONTYPE r_quiet_nan_ (n)
FLOATFUNCTIONTYPE r _remainder _ (x,y)
FLOATFUNCTIONTYPE r _rint_ (x)
FLOATFUNCTIONTYPE r _ scalb _ (x,y)
FLOATFUNCTIONTYPE r _scalbn _ (x,n)
FLOATFUNCTIONTYPE r _signaling_nan _ (n)
int ir _signbit_ (x)
FLOATFUNCTIONTYPE r_significant_ (x)
FLOATFUNCTIONTYPE r _sin _ (x)
FLOATFUNCTIONTYPE r _ sinpi_ (x)
void r _ sincos _ (x,s,c)
void r _ sincospi _ (x,s,c)
FLOATFUNCTIONTYPE r_sinh_ (x)
FLOATFUNCTIONTYPE r_sqrt_ (x)
FLOATFUNCTIONTYPE r_tan_ (x)
FLOATFUNCTIONTYPE r_tanpi_ (x)
FLOATFUNCTIONTYPE r_tanh_ (x)
FLOATFUNCTIONTYPE r yO _ (x)
FLOATFUNCTIONTYPE r yl_ (x)
FLOATFUNCTIONTYPE r yD _ (n,x)

80at *x, *y, *s, *c
int *n

DESCRIPTION

SINGLE_PRECISION (3M)

These functions are single-precision versions of certain Iibm functions. Primarily for use by Fortran pro­
grammers, these functions may also be used in other languages. The single-precision floating-point results
are deviously declared to avoid C's automatic type conversion to double.

FILES
/usr/lib/libm.a

Sun Release 4.1 Last change: 24 March 1988 1325

SQRT(3M)

NAME
sqrt, cbrt - cube root, square root

SYNOPSIS
#include <math.h>

double cbrt(x)
double x;

double sqrt(x)
double x;

DESCRIPTION

MATHEMATICAL LIBRARY SQRT(3M)

sqrt(x) returns the square root of x, correctly rounded according to ANSI/lEEE 754-1985. In addition,
sqrt() may also set errno and call matherr(3M}.

cbrt(x) returns the cube root of x. cbrt() is accurate to within 0.7 uips.

SEE ALSO
matherr(3M)

1326 Last change: 22 November 1987 Sun Release 4.1

TRIG (3M) MATHEMATICAL LIBRARY TRIG (3M)

NAME
sin, cos, tan, asin, acos, atan, atan2 - trigonometric functions

SYNOPSIS
#include <math.h>

double sin (x)
double X;

double cos(x)
double X;

void sincos(x, s, c)
double X, *s, *c;

double tan(x)
double X;

double asin(x)
double X;

double acos(x)
double X;

double atan(x)
double x;

double atan2(y, x)
double y, X;

double sinpi(x)
double X;

double cospi(x)
double X;

void sincospi(x, s, c)
double x, *s, *c;

double tanpi(x)
double X;

double asinpi(x)
double X;

double acospi(x)
double X;

double atanpi(x)
double X;

double atan2pi(y, x)
double y, X;

DESCRIPTION
sinO, cosO, sincosO, and tanO return trigonometric functions of radian arguments. The values of tri­
gonometric functions of arguments exceeding rc/4 in magnitude are affected by the precision of the approx­
imation to rc/2 used to reduce those arguments to the range -x/4 to rc/4. Argument reduction may occur in
hardware or software; if in software, the variable fp j>i defined in <math.h> allows changing that preci­
sion at run time. Trigonometric argument reduction is discussed in the Numerical Computation Guide.
Note: sincos(x,s,c) allows simultaneous computation of *s = sin (x) and *c = cos(x).

asin() returns the arc· sin in the range -rc/2 to rc/2.

Sun Release 4.1 Last change: 28 March 1988 1327

II

TRIG (3M) MATHEMATICAL LIBRARY TRIG (3M)

acos() returns the arc cosine in the range ° to x.

atan() returns the arc tangent of x in the range -x/2 to x!2.

atan2(y,x) and hypot(x,y) (see hypot(3M» convert rectangular coordinates (x,y) to polar (r,9); atan2()
computes 9, the argument or phase, by computing an arc tangent of y Ix in the range -1t to 1t.

atan2(O.O,O.O) is ±O.O or ±X, in conformance with 4.3BSD, as discussed in the Numerical Computation
Guide.

sinpiO, cospiO, and tanpiO avoid range-reduction issues because their definition sinpi(x)==sin(x*x)
permits range reduction that is fast and exact for all x. The corresponding inverse functions compute
asinpi(x) = = asin(x)/x. Similarlyatan2pi(y,x)==atan2(y,x)ht.

DIAGNOSTICS
These functions handle exceptional arguments in the spirit of ANSI/IEEE Std 754-1985. sin(±oo), cos(±oo),
tan(±oo), or asin(x) or acos(x) with ttl>l, return NaN; sinpi(x) et. al. are similar. In addition, asinO,
acos(), and atan2() may also set errno and call matherr(3M).

SEE ALSO
hypot(3M), matherr(3M)

1328 Last change: 28 March 1988 Sun Release 4.1

IN1RO(3R) RPC SERVICES LIBRARY INTRO(3R)

NAME
intro - introduction to RPC service library functions and protocols

DESCRIPTION
These functions constitute the RPC service library. Most of these describe RPC protocols. The PROTOCOL
section describes how to access the protocol description file. This file may be compiled with rpcgen(l) to
produce data definitions and XDR routines. Procompiled versions of header files sometimes exist as
<rpcsvcJ*.h> and precompiled XDR routines and programming interfaces to the protocols sometimes exist
in lihrpcsvc. Warning: some of these header files and XDR routines were hand-written because they
existed before rpcgen. They do not correspond to their protocol description file. In order to get the link
editor to load this library, use the -Irpcsvc option of cc(1 V). Information about the availability of pro­
gramming interfaces to these protocols is available under PROORAMMING section of each manual page.

Some routines in the Iibrpcsvc library do not correspond to protocols, but are useful utilities for RPC pro­
gramming. These are distinguished by the presence of the SYNOPSIS section instead of the usual PROTO­
COL section.

LIST OF STANDARD RPC SERVICES
Name

bootparam
ether
getpublickey
getrpcport
getsecretkey
ipaUoc
klmyrot
mount
nlmyrot
passwd2des
pnp
publickey
rex
rnusers
rquota
rstat
rusers
rwall
sm_inter
spray
xcrypt
xdecrypt
xencrypt
yp
yppasswd

Sun Release 4.1

Appears on Page

bootparam(3R)
ether(3R)
publickey(3R)
getrpcport(3R)
publickey(3R)
ipalloc(3R)
kim yrot(3R)
mount(3R)
nlm yrot(3R)
xcrypt(3R)
pnp(3R)
publickey(3R)
rex(3R)
rnusers(3R)
rquota(3R)
rstat(3R)
rnusers(3R)
rwall(3R)
sm Jnter(3R)
spray(3R)
xcrypt(3R)
xcrypt(3R)
xcrypt(3R)
yp(3R)
yppasswd(3R)

Description

bootparam protocol
monitor traffic on the Ethernet
get public or secret key
get RPC port number
get public or secret key
determine or temporarily allocate IP address
protocol between kernel and local lock manager
keep track of remotely mounted filesystems
protocol between local and remote network lock managers
hex encryption and utility routines
automatic network installation
get public or secret key
remote execution protocol
return information about users on remote machines
implement quotas on remote machines
get performance data from remote kernel
return information about users on remote machines
write to specified remote machines
status monitor protocol
scatter data in order to check the network
hex encryption and utility routines
hex encryption and utility routines
hex encryption and utility routines
NIS protocol
update user password in NIS

Last change: 4 September 1987 1329

BOOTPARAM(3R)

NAME
bootparam - bootparam protocol

PROTOCOL

RPC SERVICES LIBRARY

/usr/include/rpcsvc/bootparam yrot.x

DESCRIPTION

BOOTPARAM(3R)

The bootparam protocol is used for providing information to the diskless clients necessary for booting.

PROGRAMMING
#include <rpcsvc/bootparam.h>

XDR Routines
The following XDR routines are available in librpcsvc:

xdr _ bp _ whoami _ arg
xdr _ bp _ whoami _res
xdr _ bp _getfile _ arg
xdr _ bp _getfile _res

SEE ALSO
bootparams(5), bootparamd(8)

1330 Last change: 6 October 1987 Sun Release 4.1

ETHER (3R) RPC SERVICES LIBRARY

NAME
ether - monitor traffic on the Ethernet

PROTOCOL
/usr/include/rpcsvc/ether.x

DESCRIPTION
The ether protocol is used for monitoring traffic on the ethemet

PROGRAMMING
#include <rpcsvc/ether .h>
The following XDR routines are available in Iibrpcsvc:

xdr etherstat
xdr etheraddrs
xdr etherhtable
xdr etherhmem
xdr addrmask

SEE ALSO
traffic(1C), etherfind(8C), etherd(8C)

Sun Release 4.1 Last change: 6 October 1987

ETHER (3R)

1331

GETRPCPORT (3R) RPC SERVICES LIBRARY GETRPCPORT (3R)

NAME
getrpcport - get RPC port number

SYNOPSIS
int getrpcport(host, prognum, versnum, proto)
char *host;
int prognum, versnum, proto;

DESCRIPTION

1332

getrpcport() returns the port number for version versnum of the RPC program prognum running on host
and using protocol proto. It returns 0 if it cannot contact the portmapper, or if prognum is not registered.
If prognum is registered but not with version versnum, it will still return a port number (for some version of
the program) indicating that the program is indeed registered. The version mismatch will be detected upon
the first call to the service.

Last change: 6 October 1987 Sun Release 4.1

IPALLOC (3R) RPC SERVICES LIBRARY IP ALLOC (3R)

NAME
ipalloc - determine or temporarily allocate IP address

PROTOCOL
lusr/include/rpcsvc/ipalloc.x

AVAILABILITY
Available only on Sun 386i systems running a SunOS 4.0.x release or earlier. Not a SunOS 4.1 release
feature.

DESCRIPTION
ipaUoc() is the protocol for allocating the IP address that a system should use.

PROGRAMMING
#include <rpcsvc/ipalloc.h>

The following RPC calls are available in version 2 of this protocol:

NULLPROC
This is a standard null entry, used to ping a service to measure overhead or to discover servers.

IP ALLOC
Returns an IP address corresponding to a given Ethernet address, if possible. This RPC must be
called using DES authentication, from a client authorized to allocate IP addresses. A cache of allo­
cated addresses is maintained.

The first action taken on receipt of this RPC is to verify that no existing mapping between the eth­
eraddr and the netnum exists in the Network Infonnation Service (NIS) database. If one is found,
then that is returned. Otherwise, an internal cache is checked, and if an entry is found there for the
given etheraddr on the right network, that entry is used. If no address was found either in the NIS
database or in the cache, a new one may be allocated and returned, and the ip _success status is
returned.

If an unusable entry was found in the cache, this RPC returns ip _failure status.

IP TONAME
Used to determine whether a given IP address is known to the NIS service, since NIS allows a
delay between the posting of an address and its availability in some locations on the network.

IP FREE
This RPC is used to delete ipaddr entries from the cache when they are no longer needed there. It
requires the same protections as the IP _ALLOC RPC.

SEE ALSO

NOTES

ipallocd(8C), pnpboot(8C)

The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed.

Sun Release 4.1 Last change: 2 February 1988 1333

RPC SERVICES LIBRARY

NAME
klm_prot - protocol between kernel and local lock manager

PROTOCOL
lusr/includelklm yrot.x

DESCRIPTION
The protocol is used for communication between kernel and local lock manager.

PROGRAMMING
#include <rpcsvclklm yrot.h>

XDR Routines
The following XDR routines are available in librpcsvc:

xdr _kim _ testargs
xdr _kim _ testrply
xdr _kim _Iockargs
xdr _kim _ unlockargs
xdr kim stat

SEE ALSO
lockd(8C)

1334 Last change: 6 October 1987 Sun Release 4.1

MOUNT(3R) RPC SERVICES LIBRARY MOUNT (3R)

NAME
mount - keep track of remotely mounted filesystems

PROTOCOL
lusr/include/rpcsvc/mount.x

DESCRIPTION
The mount protocol is separate from, but related to, the NFS protocol. It provides all of the operating sys­
tem specific services to get the NFS off the ground - looking up path names, validating user identity, and
checking access pennissions. Clients use the mount protocol to get the first file handle. which allows them
entry into a remote filesystem.

The mount protocol is kept separate from the NFS protocol to make it easy to plug in new access checking
and validation methods without changing the NFS server protocol.

Note: the protocol definition implies stateful servers because the server maintains a list of client's mount
requests. The mount list infonnation is not critical for the correct functioning of either the client or the
server. It is intended for advisory use only, for example, to warn people when a server is going down.

PROGRAMMING
#include <rpcsvc/mount.h>

The following XDR routines are available in Iibrpcsvc:
xdr _ exportbody
xdr _exports
xdr tbandle
xdr tbstatus
xdr_groups
xdr _ mountbody
xdr mountlist
xdryath

SEE ALSO
mount(8), mountd(8C). showmount(8)

NFS Protocol Spec. in Network Programming

Sun Release 4.1 Last change: 6 October 1987 1335

RPC SERVICES LIBRARY

NAME
nlm_prot - protocol between local and remote network lock managers

PROTOCOL
lusr/include/rpcsvc/nlm .Jlrot.x

DESCRIPTION
The network lock manager protocol is used for communication between local and remote lock managers.

PROGRAMMING
#include <rpcsvc/n1m yrot.h>

XDR Routines
The following XDR routines are available in librpcsvc:

xdr _ nlm _ testargs
xdr _ nlm _ testres
xdr _nlm _Iockargs
xdr _ nlm _ cancargs
xdr _ nlm _ unlockargs
xdr nlm res

SEE ALSO
lockd(8C)

1336 Last change: 6 October 1987 Sun Release 4.1

PNP(3R) RPC SERVICES LIBRARY PNP(3R)

NAME
pnp - automatic network installation

PROTOCOL
lusr/include/rpcsvc/pnprpc.x

A V AILABILITY
Available only on Sun 386i systems running a SunOS 4.0.x release or earlier. Not a SunOS 4.1 release
feature.

DESCRIPTION
pnp() is used during unattended network installation, and routine booting, of Sun386i systems on a
Sun386i network. Each network cable (subnetwork or full network) must have at least one pnpd(8C)
server running on it to support PNP.

PROGRAMMING
#include <rpcsvc/pnprpc.h>

The following RPC calls are available in version 2 of the PNP protocol:

NULLPROC
Finds a PNP daemon on the local network. Used with clntudp _ broadcast(), often to measure net­
work overhead.

PNP WHOAMI
Used early in the boot process to acquire network configuration information about a system, or to
determine that a system is not known by the network.

PNP _ACQUIRE
Used to acquire a server willing to configure a new system after a PNP _ WHOAMI request fails.
This RPC is typically broadcast; any successful reply may be used.

PNP SETUP
Requests a network configuration from a PNP daemon that has responded to a previous
PNP _ACQUIRE RPC.

PNP POLL
After a PNP _SETUP request, if the status is in Yfogress, the procedure is to wait 20 seconds, and
issue a PNP _POLL request, and then check the status again. Once the status is success, the system
will be configured for the network. Entries in the yp database may be added or old ones deleted,
and file storage may be assigned, according to the architecture and boot type.

If the server misses 5 PNP _POLL requests, it will assume that the client system crashed and back out of the
procedure. Similarly, if the client system does not receive responses from the server for
PNP _MISSEDPOLLS consecutive requests, it should assume the server crashed and begin its PNP sequence
again.

SEE ALSO
pnpboot(8C), pnpd(8C)

Sun Release 4.1 Last change: 2 February 1988 1337

PUBLICKEY (3R) RPC SERVICES LIBRARY PUBLICKEY (3R)

NAME
publickey, getpublickey, getsecretkey - get public or secret key

SYNOPSIS
#include <rpc/rpc.h>
#include <rpc/key yrot.h>

getpublickey(netname, publickey)
char netname[MAXNETNAMELEN+l];
char publickey[HEXKEYBYTES+ 1];

getsecretkey(netname, secretkey, passwd)
char netname[MAXNETNAMELEN+l];
char secretkey[HEXKEYBYTES+ 1];
char *passwd;

DESCRIPTION
These routines are used to get public and secret keys from the yP database. getsecretkey() has an extra
argument, passwd, which is used to decrypt the encrypted secret key stored in the database. Both routines
return 1 if they are successful in finding the key, 0 otherwise. The keys are returned as NULL-terminated,
hexadecimal strings. If the password supplied to getsecretkey() fails to decrypt the secret key, the routine
will return 1 but the secretkey argument will be a NULL string.

SEE ALSO
publickey(5)

RPC Programmer's Manual in Network Programming

1338 Last change: 20 January 1990 Sun Release 4.1

REX(3R)

NAME
rex - remote execution protocol

PROTOCOL
lusr/include/rpcsvc/rex.x

DESCRIPTION

RPC SERVICES LIBRARY REX(3R)

This server will execute commands remotely. The working directory and environment of the command
can be specified, and the standard input and output of the command can be arbitrarily redirected. An
option is provided for interactive I/O for programs that expect to be running on terminals. Note: this ser­
vice is only provided with the TCP transport.

PROGRAMMING
#include <syslioctl.h>
#include <rpcsvc/rex.h> 1* not compiled with rpgen *1

The following XDR routines are available in librpcsvc:

SEE ALSO

xdr _rex _ start()
xdr _rex _resuJt()
xdr _rex _ ttymode()
xdr _rex _ ttysize()

on(IC), rexd(8C)

Sun Release 4.1 Last change: 6 October 1987 1339

RNUSERS (3R) RPC SERVICES LIBRARY

NAME
rnusers, rusers - return infonnation about users on remote machines

PROTOCOL
lusr/include/rpcsvc/rnusers.x

DESCRIPTION

RNUSERS (3R)

rnusers() returns the number of users logged on to host (-1 if it cannot detennine that number). rusers()
fills the utmpidlearr structure with data about host, and returns 0 if successful.

PROGRAMMING
#include <rpcsvc/rusers.h>
rnusers(host)
char *host
rusers(host, up)
char *host
struct utmpidlearr *up;

The following XDR routines are also available:
xdr _ utmpidle
xdr _ utmpidlearr

SEE ALSO
rusers(IC)

1340 Last change: 6 October 1987 Sun Release 4.1

RQUOTA(3R) RPC SERVICES LIBRARY

NAME
rquota - implement quotas on iemote machines

PROTOCOL
lusr/include/rpcsvc/rquota.x

DESCRIPTION

RQUOTA(3R)

The rquota() protocol inquires about quotas on remote machines. It is used in conjunction with NFS, since
NFS itself does not implement quotas.

PROGRAMMING
#include <rpcsvc/rquota.h>

The following XDR routines are available in librpcsvc:
xdr _getquota _ arg
xdr _getquota _ rslt
xdr_rquota

SEE ALSO
quota(I), quotactl(2)

Sun Release 4.1 Last change: 6 October 1987 1341

RSTAT(3R) RPC SERVICES LIBRARY

NAME
rstat - get performance data from remote kernel

PROTOCOL
/usr/include/rpcsvc/rstat.x

DESCRIPTION

RSTAT(3R)

The rstat() protocol is used to gather statistics from remote kernel. Statistics are available on items such
as paging, swapping and cpu utilization.

PROGRAMMING
#include <rpcsvc/rstat.h>

havedisk(host)
char *host;

rstat(host, statp)
char *host;
struct statstime *statp;

havedisk() returns 1 if host has a disk, 0 if it does not, and -1 if this cannot be determined. rstat() fills in
the statstime structure for host, and returns 0 if it was successful.

The following XDR routines are available in librpcsvc:
xdr statstime
xdr statsswtch
xdr stats

SEE ALSO
perfmeter(I), rup(IC), rstatd(8C)

1342 Last change: 6 October 1987 Sun Release 4.1

RWALL(3R) RPC SERVICES LIBRARY

NAME
rwall - write to specified remote machines

SYNOPSIS
#include <rpcsvc/rwall.h>

rwall(host, msg);
char *host, *msg;

DESCRIPTION
host prints the string msg to all its users. It returns 0 if successful.

RPC INFO
program number:

procs:

WALLPROG

W ALLPROC WALL
Takes string as argument (wrapstring), returns no arguments.
Executes wall on remote host with string.

versions:
RSTATVERS ORIG

SEE ALSO
rwall(IC), rwalld(8C), shutdown(8)

Sun Release 4.1 Last change: 6 October 1987

RWALL(3R)

1343

NAME

PROTO~II
DESCRII

PROGRA

XDR

SEE ALS

1344

YPPASSWD (3R) RPC SERVICES LIBRARY ypp

NAME
yppasswd - update user password in NIS

PROTOCOL
/usr/include/rpcsvc/yppasswd.x

DESCRIPTION
The yppasswdO protocol is used to change a user's password entry in the Network Infon
(NIS) password database.

If oldpass is indeed the old user password, this routine replaces the password entry with nel-1
o if successful.

PROGRAMMING
#include <rpcsvc/yppasswd.h>

yppasswd(oldpass, newpw)
char *oldpass
struct passwd *newpw;

SEE ALSO

NOTES

1348

yppasswd(I), yppasswdd(8C)

The Network Information Service (NIS) was fonnerly known as Sun Yellow Pages (YP). TI
of the two remains the same; only the name has changed. The name Yellow Pages is a f(

mark in the United Kingdom of British Telecommunications plc t and may not be used WithOl

Last change: 14 December 1987

SPRAY (3R) RPC SERVICES LIBRARY

NAME
spray - scatter data in order to check the network

PROTOCOL
lusr/include/rpcsvc/spray.x

DESCRIPTION
The spray protocol sends packets to a given machine to test the speed and reliability of it.

PROGRAMMING
#include <rpcsvc/spray.h>

The following XDR routines are available in librpcsvc:
xdr _ sprayarr
xdr _ spraycumul

SEE ALSO
spray(8C), sprayd(8C)

Sun Release 4.1 Last change: 6 October 1987

SPRAY (3R)

1345

XCRYPT(3R) RPC SERVICES LIBRARY XCRYPT(3R)

NAME
xcrypt, xencrypt, xdecrypt, passwd2des - hex encryption and utility routines

SYNOPSIS
xencrypt(data, key)
char *data;
char *key;

xdecrypt(data, key)
char *data;
char *key;

passwd2des(pass, key)
char *pass;
char *key;

DESCRIPTION
The routines xencrypt and xdecrypt take null-tenninated hexadecimal strings as arguments, and encrypt
them using the 8-byte key as input to the DES algorithm. The input strings must have a length that is a mul­
tiple on 16 hex digits (64 bits is the DES block size).

passwd2des converts a password, of arbitrary length, into an 8-byte DES key, with odd-parity set in the low
bit of each byte. The high-order bit of each input byte is ignored.

These routines are used by the DES authentication subsystem for encrypting and decrypting the secret keys
stored in the publickey database.

SEE ALSO
des _ crypt(3), publickey(5)

1346 Last change: 6 October 1987 Sun Release 4.1

YP(3R)

NAME
yp - NIS protocol

PROTOCOL
lusr/include/rpcsvc/yp.x

DESCRIPTION

RPC SERVICES LIBRARY YP(3R)

The Network Information Service (NIS) is used for the administration of network-wide databases. The ser­
vice is composed mainly of two programs: YPBINDPROG for finding a NIS server and YPPROG for
accessing the NIS databases.

PROGRAMMING
Refer to ypclnt(3N) for information on the programmatic interface to NIS servers and databases.

SEE ALSO

NOTES

ypclnt(3N), yppasswd(3R)

The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed. The name Yellow Pages is a registered trade­
mark in the United Kingdom of British Telecommunications pic, and may not be used without permission.

Sun Release 4.1 Last change: 6 October 1987 1347

I

YPPASSWD(3R) RPC SERVICES LIBRARY YPPASSWD (3R)

NAME
yppasswd - update user password in NIS

PROTOCOL
lusr/include/rpcsvc/yppasswd.x

DESCRIPTION
The yppasswdO protocol is used to change a user's password entry in the Network Information Service
(NIS) password database.

If oldpass is indeed the old user password, this routine replaces the password entry with newpw. It returns
o if successful.

PROGRAMMING
#include <rpcsvc/yppasswd.h>

yppasswd(oldpass, newpw)
char *oldpass
struct passwd *oewpw;

SEE ALSO

NOTES

1348

yppasswd(1), yppasswdd(8C)

The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed. The name Yellow Pages is a registered trade­
mark in the United Kingdom of British Telecommunications pIc, and may not be used without permission.

Last change: 14 December 1987 Sun Release 4.1

INTRO(4) DEVICES AND NETWORK INTERFACES INTRO(4)

NAME
intro - introduction to device drivers, protocols, and network interfaces

DESCRIPTION
This section describes device drivers, high-speed network interfaces, and protocols available under SunOS.
The system provides drivers for a variety of hardware devices, such as disks, magnetic tapes, serial com­
munication lines, mice and frame buffers, as well as virtual devices such as pseudo-terminals and windows.
SunOS provides hardware support and a network interface for the IO-Megabit Ethernet, along with inter­
faces for the IP protocol family and a STREAMS-based Network Interface Tap (NIT) facility.

In addition to describing device drivers that are supported by the 4.3BSD operating system, this section
contains subsections that describe:

• SunOS-specific device drivers, under '4S'.

• Protocol families, under '4F'.

• Protocols and raw interfaces, under '4P'.

• STREAMS modules, under '4M' .

• Network interfaces, under' 4N' .

Configuration
The SunOS kernel can be configured to include or omit many of the device drivers described in this section.
The CONFIG section of the manual page gives the line(s) to include in the kernel configuration file for each
machine architecture on which a device is supported. If no specific architectures are indicated, the
configuration syntax applies to all Sun systems.

The GENERIC kernel is the default configuration for SunOS. It contains all of the optional drivers for a
given machine architecture. See config(8), for details on configuring a new SunOS kernel.

The manual page for a device driver may also include a DIAGNOSTICS section, listing error messages that
the driver might produce. Normally, these messages are logged to the appropriate system log using the
kernel's standard message-buffering mechanism (see syslogd(8)); they may also appear on the system con­
sole.

Ioctls
Various special functions, such as querying or altering the operating characteristics of a device, are per­
formed by supplying appropriate parameters to the ioctl(2) system call. These parameters are often
referred to as "ioctIs." loctls for a specific device are presented in the manual page for that device. loctIs
that pertain to a class of devices are listed in a manual page with a name that suggests the class of device,
and ending in 'io', such as mtio(4) for magnetic tape devices, or dkio(4S) for disk controllers. In addition,
some ioctls operate directly on higher-level objects such as files, terminals, sockets, and streams:

• loctls that operate directly on files, file descriptors, and sockets are described in filio(4). Note: the
fcntl(2V) system call is the primary method for operating on file descriptors as such, rather than on the
underlying files. Also note that the setsockopt system call (see getsockopt(2)) is the primary method
for operating on sockets as such, rather than on the underlying protocol or network interface. loctls for
a specific network interface are documented in the manual page for that interface.

• loctls for terminals, including pseudo-terminals, are described in termio(4). This manual page includes
information about both the BSD termios structure, as well as the System V termio structure.

• loctls for STREAMS are described in streamio(4).

Devices Always Present
Device drivers present in every kernel include:

• The paging device; see drum(4).

• Drivers for accessing physical, virtual, and I/O space in memory; see mem(4S).

• The data sink; see nulI(4).

Sun Release 4.1 Last change: 5 October 1989 1349

INTRO(4) DEVICES AND NETWORK INTERFACES INTRO(4)

Terminals and Serial Communications Devices
Serial communication lines are normally supported by the tenninal driver, see tty(4). This driver manages
serial lines provided by communications drivers, such as those described in mti(4S) and zs(4S). The tenni­
nal driver also handles serial lines provided by virtual terminals, such as the Sun console monitor described
in console(4S), and true pseudo-terminals, described in pty(4).

Disk Devices
Drivers for the following disk controllers provide standard block and raw interfaces under SunGS;

• SCSI controllers, in sd(4S),

• Xylogics 450 and 451 SMD controllers, in xy(4S),

• Xylogics 7053 SMD controllers, in xd(4S).

Ioctls to query or set a disk's geometry and partitioning are described in dkio(4S).

Magnetic Tape Devices
Magnetic tape devices supported by SunGS include those described in ar(4S), tm(4S), st(4S), and xt(4S).
Ioctls for all tape-device drivers are described in mtio(4S).

Frame Buffers
Frame buffer devices include color frame buffers described in the cg*(4S) manual pages, monochrome
frame buffers described in the bw*(4S) manual pages, graphics processor interfaces described in the
gp*(4S) manual pages, and an indirect device for the console frame buffer described in tb(4S). Ioctls for
all frame-buffer devices are described in tbio(4S).

Miscellaneous Devices
Miscellaneous devices include the console keyboard described in kbd(4S), the console mouse described in
mouse(4S), window devices described in win(4S), and the DES encryption-chip interface described in
des(4S).

Network-Interface Devices
SunGS supports the 10-Megabit Ethernet as its primary network interface; see ie(4S) and Je(4S) for details.
However, a software loopback interface, 10(4) is also supported. General properties of these network inter­
faces are described in if(4N), along with the ioctls that operate on them.

Support fo~ network routing is described in routing(4N).

Protocols and Protocol Families

1350

SunGS supports both socket-based and STREAMS-based network communications. The Internet protocol
family, described in inet(4F), is the primary protocol family primary supported by SunGS, although the
system can support a number of others. The raw interface provides low-level services, such as packet frag­
mentation and reassembly, routing, addressing, and basic transport for socket -based implementations.
Facilities for communicating using an Internet-family protocol are generally accessed by specifying the
AF _ INET address family when binding a socket; see socket(2) for details.

Major protocols in the Internet family include:

• The Internet Protocol (IP) itself, which supports the universal datagram format, as described in ip(4P).
This is the default protocol for SOCK_RAW type sockets within the AF _ INET domain.

• The Transmission Control Protocol (TCP); see tcp(4P). This is the default protocol for SOCK_STREAM
type sockets.

• The User Datagram Protocol (UDP); see udp(4P). This is the default protocol for SOCK_DGRAM type
sockets.

• The Address Resolution Protocol (ARP); see arp(4P).

• The Internet Control Message Protocol (ICMP); see icmp(4P).

Last change: 5 October 1989 Sun Release 4.1

INTRO(4) DEVICES AND NETWORK INTERFACES INTRO(4)

The Network Interface Tap (NIT) protocol, described in nit(4P), is a STREAMS-based facility for accessing
the network at the link level.

SEE ALSO
fcntl(2V), getsockopt(2), ioctl(2) , socket(2), ar(4S), arp(4P), dkio(4S). drum(4), fb(4S), fbio(4S),
filio(4), icmp(4P), if(4N), inet(4F). ip(4P), kbd(4S), le(4S), 10(4), mem(4S), mti(4S). mtio(4), nit(4P),
nulI(4), pty(4), routing(4N). sd(4S). st(4S) streamio(4), tcp(4P), termio(4). tm(4S). tty (4) , udp(4P),
win(4S), xd(4S), xy(4S), zs(4S)

LIST OF DEVICES, INTERFACES AND PROTOCOLS
Name Appears on Page

aim mcp(4S)
ar ar(4S)
arp arp(4P)
atbus mem(4S)
audio audio(4)
bwtwo bwtwo(4S)
cdromio cdromio(4S)
cgeight cgeight(4S)
cgfour cgfour(4S)
cgnine cgnine(4S)
cgsix cgsix(4S)
cgthree cgthree(4S)
cgtwo cgtwo(4S)
console console(4S)
db db(4M)
des des(4S)
dkio dkio(4S)
drum drum(4)
eeprom mem(4S)
fb fb(4S)
fbio fbio(4S)
fd fd(4S)

Description

ALM-2 Asynchronous Line Multiplexer
Archive 1/4 inch Streaming Tape Drive
Address Resolution Protocol
main memory and bus I/O space
telephone quality audio device
black and white memory frame buffer
CDROM control operations
24-bit color memory frame buffer
Sun-3 color memory frame buffer
24-bit VME color memory frame buffer
accelerated 8-bit color frame buffer
8-bit color memory frame buffer
color graphics interface
console driver and terminal emulator
SunDials STREAMS module
DES encryption chip interface
generic disk control operations
paging device
main memory and bus I/O space
driver for Sun console frame buffer
frame buffer control operations
Disk driver for Hoppy Disk Controllers

•

filio
fpa

filio(4)
fpa(4S)

ioctls that operate directly on files, file descriptors, and sockets
Sun-3 floating-point accelerator

gpone
icmp
ie
if
inet
ip
kb
kbd
kmem
Idterm
Ie
10
lofs
mcp
mem
mouse
ms
mti
mtio

Sun Release 4.1

gpone(4S)
icmp(4P)
ie(4S)
if(4N)
inet(4F)
ip(4P)
kb(4M)
kbd(4S)
mem(4S)
Idterm(4M)
le(4S)
10(4N)
lofs(4S)
mcp(4S)
mem(4S)
mouse(4S)
ms(4M)
mti(4S)
mtio(4)

graphics processor
Internet Control Message Protocol
Intel 10 Mb/s Ethernet interface
general properties of network interfaces
Internet protocol family
Internet Protocol
Sun keyboard STREAMS module
S un keyboard
main memory and bus I/O space
standard terminal STREAMS module
LANCE 10Mb/s Ethernet interface
software loopback network interface
loopback virtual file system
MCP Multiprotocol Communications Processor
main memory and bus I/O space
Sun mouse
Sun mouse STREAMS module
Systech MTI-800/1600 multi-terminal interface
general magnetic tape interface

Last change: 5 October 1989 1351

INTRO(4) DEVICES AND NETWORK INTERFACES INTRO(4)

NFS nfs(4P) network file system
nit nit(4P) Network Interface Tap
nit buf nit_buf(4M) STREAMS NIT buffering module
nit if nitJf(4M) STREAMS NIT device interface module
nif""pf nitJlf(4M) STREAMS NIT packet filtering module
null null(4) data sink
open prom openprom(4S) PROM monitor configuration interface
pp pp(4) Centronics-compatible parallel printer port
pty pty(4) pseudo-terminal driver
rfs rfs(4) remote file sharing service
root root(4S) pseudo-driver for Sun386i root disk
routing routing(4N) system supporting for local network packet routing
sbus mem(4S) main memory and bus I/O space
sd sd(4S) driver for SCSI disk devices
sockio sockio(4) ioctls that operate directly on sockets
sr sr(4S) driver for CORaM SCSI controller
st st(4S) driver for SCSI tape devices
streamio streamio(4) STREAMS ioctl commands
taac taac(4S) Sun applications accelerator
tcp tcp(4P) Internet Transmission Control Protocol
tcptli tcptli(4P) TLI-Conforming TCP Stream-Head
termio termio(4) general terminal interface
tfs tfs(4S) translucent file service
tm tm(4S) Tapemaster 1/2 inch tape controller
tmpfs tmpfs(4S) memory based filesystem
ttcompat ttcompat(4M) V7 and 4BSO STREAMS compatibility module
tty tty(4) controlling terminal interface
udp udp(4P) Internet User Datagram Protocol
unix unix(4F) UNIX domain protocol family
vd vd(4) loadable modules interface
vme16d16 mem(4S) main memory and bus I/O space
vme16d32 mem(4S) main memory and bus I/O space
vme24d16 mem(4S) main memory and bus I/O space
vme24d32 mem(4S) main memory and bus I/O space
vme32d16 mem(4S) main memory and bus I/O space
vme32d32 mem(4S) main memory and bus I/O space
vpc vpc(4S) Systech VPC-2200 Versatec printer/plotter
win win(4S) Sun window system
xd xd(4S) Disk driver for Xylogics 7053 SMO Disk Controller
xt xt(4S) Xylogics 472 1(2 inch tape controller
xy xy(4S) Disk driver for Xylogics 450 and 451 SMO Disk Controllel
zero mem(4S) main memory and bus I/O space
zero zero(4S) source of zeroes
zs zs(4S) Zilog 8530 SCC serial communications driver

1352 Last change: 5 October 1989 Sun Release 4.1

AR(4S) DEVICES AND NETWORK INTERFACES AR(4S)

NAME
ar - Archive 1/4 inch Streaming Tape Drive

A V AILABILITY

Sun-3 and Sun-4 systems only.

DESCRIPTION

FILES

The Archive tape controller is a Sun 'QIC-II' interface to an Archive streaming tape drive. It provides a
standard tape interface to the device, see mtio(4), with some deficiencies listed under BUGS below.

The maximum blocksize for the raw device is limited only by available memory.

Idev/rar*
Idev/nrar* non-rewinding

SEE ALSO
mtio(4)

DIAGNOSTICS

BUGS

ar*: would not initialize

ar*: already open
The tape can be opened by only one process at a time

ar*: no such drive

ar*: no cartridge in drive

ar*: cartridge is write protected

ar: interrupt from unitialized controller %x

ar*: many retries, consider retiring this

ar*: %b error at block #

ar*: % b error at block #

ar: giving up on Rdy, try

The tape cannot reverse direction so the BSF and BSR ioctls are not supported.

The FSR ioctl is not supported.

The system will hang if the tape is removed while running.

When using the raw device, the number of bytes in any given transfer must be a multiple of 512 bytes. If it
is not, the device driver returns an error.

The driver will only write an EOF mark on close if the last operation was a write, without regard for the
mode used when opening the file. This delete empty files on a raw tape copy operation.

Sun Release 4.1 Last change: 18 February 1988 1353

ARP(4P) PROTOCOLS ARP(4P)

NAME
arp - Address Resolution Protocol

CONFIG
pseudo-device ether

SYNOPSIS
#include <sys/socket.h>
#include <net/if _ arp.h>
#include <netinet/in.h>

s = socket(AF_INET, SOCK_DGRAM, 0);

DESCRIPTION

USAGE

1354

ARP is a protocol used to dynamically map between Internet Protocol (IF) and 10Mb/s Ethernet addresses.
It is used by all the 10Mb/s Ethernet interface drivers. It is not specific to the Internet Protocol or to the
10Mb/s Ethernet, but this implementation currently supports only that combination.

ARP caches IF-to-Ethernet address mappings. When an interface requests a mapping for an address not in
the cache, ARP queues the message which requires the mapping and broadcasts a message on the associ­
ated network requesting the address mapping. If a response is provided, the new mapping is cached and
any pending message is transmitted. ARP will queue at most one packet while waiting for a mapping
request to be responded to; only the most recently "transmitted" packet is kept.

To facilitate communications with systems which do not use ARP, ioctl() requests are provided to enter
and delete entries in the IP-to-Ethernet tables.

#include <sys/sockio.h>
#include <syS/socket.h>
#include <net/if.h>
#include <net/if _ arp.h>
struct arpreq arpreq;
ioctl(s, SIOCSARP, (caddr _t)&arpreq);
ioctl(s, SIOCGARP, (caddr_t)&arpreq);
ioctl(s, SIOCDARP, (caddr _ t)&arpreq);

Each ioctl() takes the same structure as an argument. SIOCSARP sets an ARP entry, SIOCGARP gets an
ARP entry, and SIOCDARP deletes an ARP entry. These ioctlO requests may be applied to any socket
descriptor s, but only by the super-user. The arpreq structure contains:

1*
* ARP ioctl request
*1

struct arpreq {

};

struct sockaddr arp ya;
struct sockaddr arp _ ha;
int arp_flags;

1* arp _flags field values *1

1* protocol address *1
1* hardware address *1
1* flags *1

#define ATF _COM Ox2 1* completed entry (arp _ ha valid) *1
#define ATF_PERM Ox4 1* permanent entry *1
#define ATF _ PUBL Ox8 1* publish (respond for other host) *1
#define ATF USETRAILERS OxlO 1* send trailer packets to host *1

The address family for the arp ya sockaddr must· be AF _ INET; for the arp _ ha sockaddr it must be
AF _UNSPEC. The only flag bits which may be written are ATF _PERM, ATF _PUBL and
ATF _ USETRAILERS. ATF _PERM makes the entry permanent if the ioctl() call succeeds. The peculiar
nature of the ARP tables may cause the ioctl() to fail if more than 6 (permanent) IP addresses hash to the
same slot. ATF _PUBL specifies that the ARP code should respond to ARP requests for the indicated host

Last change: 24 January 1990 Sun Release 4.1

ARP(4P) PROTOCOLS ARP(4P)

coming from other machines. This allows a host to act as an "ARP server" which may be useful in con­
vincing an ARP-only machine to talk to a non-ARP machine.

ARP is also used to negotiate the use of trailer IP encapsulations; trailers are an alternate encapsulation used
to allow efficient packet alignment for large packets despite variable-sized headers. Hosts which wish to
receive trailer encapsulations so indicate by sending gratuitous ARP translation replies along with replies to
IP requests; they are also sent in reply to IP translation replies. The negotiation is thus fully symmetrical, in
that either or both hosts may request trailers. The A TF _ USETRAILERS flag is used to record the receipt of
such a reply, and enables the transmission of trailer packets to that host.

ARP watches passively for hosts impersonating the local host (that is, a host which responds to an ARP
mapping request for the local host's address).

SEE ALSO
ec(4S), ie(4S), inet(4F), arp(8C), ifconfig(8C)

Plummer, Dave, "An Ethernet Address Resolution Protocol -or- Converting Network Protocol Addresses
to 48.bit Ethernet Addresses for Transmission on Ethernet Hardware," RFC 826, Network Information
Center, SRI International, Menlo Park, Calif., November 1982. (Sun 800-1059-10)

Leffler, Sam, and Michael Karels, "Trailer Encapsulations ," RFC 893, Network Information Center, SRI
International, Menlo Park, Calif., April 1984.

DIAGNOSTICS

BUGS

duplicateIP address!! sent from ethernet address: %x:%x:%x:%x:%x:%x.
ARP has discovered another host on the local network which responds to mapping requests for its
own Internet address.

ARP packets on the Ethernet use only 42 bytes of data, however, the smallest legal Ethernet packet is 60
bytes (not including CRC). Some systems may not enforce the minimum packet size, others will.

Sun Release 4.1 Last change: 24 January 1990 1355

AUDIO (4) DEVICES AND NETWORK INTERFACES AUDIO (4)

NAME
audio - telephone quality audio device

CONFIG
device-driver audio

A V AILABILITY
This device is available with SPARCstation 1 systems only.

DESCRIPTION
The audio device plays and records a single channel of sound using the AM79C30A Digital Subscriber
Controller chip. The chip has a built-in analog to digital converter (AOC) and digital to analog converter
(DAC) that can drive either the built-in speaker or an external headphone jack, selectable under software
control. Digital audio data is sampled at a rate of 8000 samples per second with 12-bit precision, though
the data is compressed, using u-Iaw encoding, to 8-bit samples. The resulting audio data quality is
equivalent to that of standard telephone service.

The audio driver is implemented as a STREAMS device. In order to record audio input, applications
open(2V) the Idev/audio device and read data from it using the read(2V) system call. Similarly, sound
data is queued to the audio output port by using the write(2V) system call.

Opening the Audio Device
The audio device is treated as an exclusive resource: only one process may typically open the device at a
time. However, two processes may simultaneously access the device if one opens it read-only and the
other opens it write-only.

When a process cannot open Idev/audio because the requested access mode is busy:
• if the 0 _ NDELA Y flag is set in the open() flags argument, then opeo() returns -1 immedi­

ately, with errno set to EBUSY.
• if 0 _NDELAY is not set, then opeo() hangs until the device is available or a signal is delivered

to the process, in which case open() returns -1 with errno set to EINTR.

Since the audio device grants exclusive read or write access to a single process at a time, long-lived audio
applications may choose to close the device when they enter an idle state, reopening it when required. The
play.waiting and record. waiting flags in the audio information structure (see below) provide an indication
that another process has requested access to the device. This information is advisory only; background
audio output processes, for example, may choose to relinquish the audio device whenever another process
requests write access.

Recording Audio Data

1356

The read() system call copies data from the system buffers to the application. Ordinarily, read() blocks
until the user buffer is filled. The FIONREAD ioctl (see filio(4» may be used to determine the amount of
data that may be read without blocking. The device may alternatively be set to a non-blocking mode, in
which case readO completes immediately, but may return fewer bytes than requested. Refer to the
read(2V) manual page for a complete description of this behavior.

When the audio device is opened with read access, the device driver immediately starts buffering audio
input data. Since this consumes system resources, processes that do not record audio data should open the
device write-only (0_ WRONL V).

The transfer of input data to STREAMS buffers may be paused (or resumed) by using the AUDIO _SETINFO
ioctl to set (or clear) the record.pause flag in the audio information structure (see below). All unread input
data in the STREAMS queue may be discarded by using the I_FLUSH STREAMS ioctl (see streamio(4».

Input data accumulates in STREAMS buffers at a rate of 8000 bytes per second. If the application that con­
sumes the data cannot keep up with this data rate, the STREAMS queue may become full. When this
occurs, the record. error flag is set in the audio information structure and input sampling ceases until there
is room in the input queue for additional data. In such cases, the input data stream contains a discontinuity.
For this reason, audio recording applications should open the audio device when they are prepared to begin
reading data, rather than at the start of extensive initialization.

Last change: 19 December 1989 Sun Release 4.1

AUDIO (4) DEVICES AND NETWORK INTERFACES AUDIO (4)

Playing Audio Data
The write() system call copies data from an applications buffer to the STREAMS output queue. Ordinarily,
write() blocks until the entire user buffer is transferred. The device may alternatively be set to a non­
blocking mode, in which case write() completes immediately, but may have transferred fewer bytes than
requested (see write(2V».

Although write() returns when the data is successfully queued, the actual completion of audio output may
take considerably longer. The AUDIO _DRAIN ioctl may be issued to allow an application to block until all
of the queued output data has been played. Alternatively, a process may request asynchronous notification
of output completion by writing a zero-length buffer (end-of-file record) to the output stream. When such a
buffer has been processed, the play.eo/flag in the audio information structure (see below) is incremented.

The final close() of the file descriptor hangs until audio output has drained. If a signal interrupts the
c1ose() , or if the process exits without closing the device, any remaining data queued for audio output is
flushed and the device is closed immediately.

The conversion of output data may be paused (or resumed) by using the AUDIO _SETINFO ioctl to set (or
clear) the play.pause flag in the audio information structure. Queued output data may be discarded by
using the I_FLUSH STREAMS ioctl.

Output data is played from the STREAMS buffers at a rate of 8()()() bytes per second. If the output queue
becomes empty, the play.error flag is set in the audio information structure and output ceases until addi­
tional data is written.

Asynchronous 110
The 1_ SETSIG STREAMS ioctl may be used to enable asynchronous notification, via the SIGPOLL signal,
of input and output ready conditions. This, in conjunction with non-blocking read() and write() requests,
is normally sufficient for applications to maintain an audio stream in the background. Alternatively, asyn­
chronous reads and writes may be initiated using the aioread(3) functions.

Audio Data Encoding
The data samples processed by the audio device are encoded in 8 bits. The high-order bit is a sign bit: 1
represents positive data and 0 represents negative data. The low-order 7 bits represent signal magnitude
and are inverted (l 's complement). The magnitude is encoded according to a u-Iaw transfer function; such
an encoding provides an improved signal-to-noise ratio at low amplitude levels. In order to achieve best
results, the audio recording gain should be set so that typical amplitude levels lie within approximately
tbree-fourths of the full dynamic range.

Audio Control Pseudo-Device
It is sometimes convenient to have an application, such as a volume control panel, modify certain charac­
teristics of the audio device while it is being used by an unrelated process. The /dev/audioctl minor device
is provided for this purpose. Any number of processes may open Idev/audioctl simultaneously. However,
read() and write() system calls are ignored by /dev/audioctl. The AUDIO _ GETINFO and
AUDIO_SETINFO ioctl commands may be issued to /dev/audioctl in order to determine the status or alter
the behavior of /dev/audio.

Audio Status Change Notification
Applications that open the audio control pseudo-device may request asynchronous notification of changes
in the state of the audio device by setting the S_MSG flag in an I_SETSIG STREAMS ioctl. Such processes
receive a SIGPOLL signal when any of the following events occurs:

• An AUDIO _SETINFO ioctl has altered the device state.
• An input overflow or output underflow has occurred.
• An end-of-file record (zero-length buffer) has been processed on output
• An open() or c1ose() of /dev/audio has altered the device state.

Sun Release 4.1 Last change: 19 December 1989 1357

AUDIO (4) DEVICES AND NETWORK INTERFACES AUDIO (4)

Audio Information Structure

1358

The state of the audio device may be polled or modified using the AUDIO_GETINFO and
AUDIO_SETINFO ioet) commands. These commands operate on the audio_info structure, defined in
<sunlaudioio.h> as follows:

1* Data encoding values, used below in the encoding field *1
#define AUDIO _ENCODING _ ULA W (1) 1* u-Iaw encoding *1
#define AUDIO_ENCODING_ALA W (2) 1* A-law encoding *1

1* These ranges apply to record, play, and monitor gain values *1
#define AUDIO_MIN_GAIN (0) 1* minimum gain value *1
#define AUDIO _MAX_GAIN (255) 1* maximum gain value *1

1* Audio 110 channel status, used below in the audio info structure *1
struct audio yrinfo { -

1* The following values describe the audio data encoding *1
unsigned sample rate; 1* samples per second *1
unsigned channels; 1* number of interleaved channels *1
unsigned precision; 1* number of bits per sample *1
unsigned encoding; 1* data encoding method *1

1* The following values control audio device configuration *1
unsigned gain; 1* gain level *1
unsigned port; 1* selected 1/0 port *1

1* The following values describe the current device state *1
unsigned samples; 1* number of samples converted *1
unsigned eof; 1* End Of File counter (play only) *1
unsigned char pause; 1* non-zero if paused, zero to resume *1
unsigned char error; 1* non-zero if overflowlunderflow *1
unsigned char waiting; 1* non-zero if a process wants access *1

1* The following values are read-only device state flags *1
unsigned char open; 1* non-zero if open access granted *1
unsigned char active; 1* non-zero if 1/0 active *1

};

1* This structure is used in AUDIO GETINFO and AUDIO SETINFO ioctI commands *1
typedef struct audio info {- -

struct audio yrinfo record; 1* input status information *1
struct audio yrinfo play; 1* output status information *1
unsigned monitor_gain; 1* input to output mix *1

} audio_info _ t;

The play.gain and record. gain fields specify the output and input volume levels. A value of
AUDIO _MAX_GAIN indicates maximum gain. The device also allows input data to be monitored by mix­
ing audio input onto the output channel. The monitor _gain field controls the level of this feedback path.
The play.port field controls the output path for the audio device. It may be set to either AUDIO _SPEAKER
or AUDIO_HEADPHONE to direct output to the built-in speaker or the headphone jack, respectively.

The play.pause and record.pause flags may be used to. pause and resume the transfer of data between the
audio device and the STREAMS buffers. The play.error and record.error flags indicate that data underflow
or overflow has occurred. The play.active and record. active flags indicate that data transfer is currently
active in the corresponding direction.

The play.open and record.open flags indicate that the device is currently open with the corresponding
access permission. The play. waiting and record. waiting flags provide an indication that a process may be
waiting to access the device. These flags are set automatically when a process blocks on open(), though
they may also be set using the AUDIO_SETINFO ioct) command. They are cleared only when a process
relinquishes access by closing the device.

Last change: 19 December 1989 Sun Release 4.1

AUDIO (4) DEVICES AND NETWORK INTERFACES AUDIO (4)

The play.samples and record.samples fields are initialized, at open(), to zero and increment each time a
data sample is copied to or from the associated STREAMS queue. Applications that keep track of the
number of samples read or written may use these fields to determine exactly how many samples remain in
the STREAMS buffers. The play.eo! field increments whenever a zero-length output buffer is synchro­
nously processed. Applications may use this field to detect the completion of particular segments of audio
output.

The sample_rate, channels, precision, and encoding fields report the audio data format in use by the dev­
ice. For now, these values are read-only; however, future audio device implementations may support more
than one data encoding format, in which case applications might be able to modify these fields.

Filio and STREAMS IOCTLS
All of the filio(4) and streamio(4) ioctl commands may be issued for the Idev/audio device. Because the
Idev/audioctl device has its own STREAMS queues, most of these commands neither modify nor report the
state of Idev/audio if issued for the Idev/audioctl device. The I_SETSIG ioctl may be issued for
Idev/audioctl to enable the notification of audio status changes, as described above.

Audio IOCTLS
The audio device additionally supports the following ioctl commands:

AUDIO_DRAIN
The argument is ignored. This command suspends the calling process until the output STREAMS
queue is empty, or until a signal is delivered to the calling process. It may only be issued for the
Idev/audio device. An implicit AUDIO _DRAIN is performed on the final close() of Idev/audio.

AUDIO GETINFO
The argument is a pointer to an audio_info structure. This command may be issued for either
Idev/audio or Idev/audioctl. The current state of the Idev/audio device is returned in the struc­
ture.

AUDIO SETINFO

Sun Release 4.1

The argument is a pointer to an audio Jnfo structure. This command may be issued for either
Idev/audio or Idev/audioctl. This command configures the audio device according to the struc­
ture supplied and overwrites the structure with the new state of the device. [Note: The
play .samples, record. samples , play .error, record. error , and play .eo! fields are modified to reflect
the state of the device when the AUDIO _ SETINFO was issued. This allows programs to atomi­
cally modify these fields while retrieving the previous value.]

Certain fields in the information structure, such as the pause flags, are treated as read-only when
Idev/audio is not open with the corresponding access permission. Other fields, such as the gain
levels and encoding information, may have a restricted set of acceptable values. Applications that
attempt to modify such fields should check the returned values to be sure that the corresponding
change took effect.

Once set, the following values persist through subsequent open() and close() calls of the device:
play.gain, record.gain, monitor_gain, play.port, and record.port. All other state is reset when the
corresponding I/O stream of Idev/audio is closed.

The audioJnfo structure may be initialized through the use of the AUDIO_INITINFO macro.
This macro sets all fields in the structure to values that are ignored by the AUDIO_SETINFO com­
mand. For instance, the following code switches the output port from the built-in speaker to the
headphone jack without modifying any other audio parameters:

audio info t info;

AUDIO INITINFO(&info);
info.plaY.port = AUDIO_HEADPHONE;
err = ioctl(audio_fd, AUDIO _SETINFO, &info);

This technique is preferred over using a sequence of AUDIO GETINFO followed by
AUDIO SETINFO.

Last change: 19 December 1989 1359

AUDIO (4) DEVICES AND NETWORK INTERFACES AUDIO (4)

Unsupported Device Control Features

FILES

The AM79C30A chip is capable of a performing a number of functions that are not currently supported by
the device driver, many of which were designed primarily for telephony applications. For example, the
chip can generate ringer tones and has a number of specialized filtering capabilities that are designed to
compensate for different types of external speakers and microphones.

Ordinarily, applications do not need to access these capabilities and, further, altering the chip's characteris­
tics may interfere with its normal behavior. However, knowledgeable applications may use the unsup­
ported AUDIO GET REG and AUDIOSETREG ioctl commands to read and write the chip registers directly.
The description of this interface may be found in <sbusdev/audio _79C30.h>. Note: these commands are
supplied for prototyping purposes only and may become obsolete in a future release of the audio driver.

Idev/audio
Idev/audioctl
lusr/demo/SOUND

SEE ALSO

BUGS

ioctl(2), poll(2), read(2V), write(2V), aioread(3), filio(4), streamio(4)

AMD data sheet for the AM79C30A Digital Subscriber Controller, Publication number 09893.

Due to afeature of the STREAMS implementation, programs that are terminated or exit without closing the
audio device may hang for a short period while audio output drains. In general, programs that produce
audio output should catch the SIGINT signal and flush the output stream before exiting.

The current driver implementation does not support the A-law encoding mode of the AM79C30A chip.
Future implementations may permit the AUDIO _SETINFO ioctl to modify the play. encoding and
record.encoding fields of the device information structure to enable this mode.

FUTURE DIRECTIONS

1360

Workstation audio resources should be managed by a networked audio server, in the same way that the
video monitor is manipulated by a window system server. For the time being, we encourage you to write
your programs in a modular fashion, isolating the audio device-specific functions, so that they may be
easily ported to such an environment.

Last change: 19 December 1989 Sun Release 4.1

BWTWO(4S) DEVICES AND NETWORK INTERFACES BWTWO(4S)

NAME
bwtwo - black and white memory frame buffer

CONFIG - SUN-3, SUN-3x SYSTEMS
device bwtwoO at obmem 1 csr OxffOOOOOO priority 4
device bwtwoO at obmem 2 csr OxlOOOOO priority 4
device bwtwoO at obmem 3 csr OxffOOOOOO priority 4
device bwtwoO at obmem 4 csr OxffOOOOOO
device bwtwoO at obmem 7 csr OxffOOOOOO priority 4
device bwtwoO at obmem ? csr Ox50300000 priority 4

The first synopsis line given above is used to generate a kernel for Sun-3n5, Sun-3/140 or Sun-3/160 sys­
tems; the second, for a Sun-3/50 system; the third, for a Sun-3/260 system; the fourth, for a Sun-3/110 sys­
tem; the fifth, for a Sun-3/60 system; and the sixth for Sun-3/80 and Sun-3/470 systems.

CONFIG - SUN-4 SYSTEMS
device bwtwoO at obio 1 csr OxfdOOOOOO priority 4
device bwtwoO at obio 2 csr Oxtb300000 priority 4
device bwtwoO at obio 3 csr Oxtb300000 priority 4
device bwtwoO at obio 4 csr Oxtb300000 priority 4

The first synopsis line given above should be used to generate a kernel for a Sun-4/260 or Sun-4/280 sys­
tem; the second, for a Sun-4/110 system; the third for a Sun-4/330 system; and the fourth for a Sun-4/460
system.

CONFIG - SPARCstation 1 SYSTEMS
device-driver bwtwo

CONFIG - Sun386i SYSTEM
device bwtwoO at obmem ? csr OxA0200000

DESCRIPTION

FILES

The bwtwo interface provides access to Sun monochrome memory frame buffers. It supports the ioctls
described in tbio(4S).

If flags Oxl is specified, frame buffer write operations are buffered through regular high-speed RAM. This
"copy memory" mode of operation speeds frame buffer accesses, but consumes an extra 128K bytes of
memory. Only Sun-3n5, Sun-3/140, and Sun-3/160 systems support copy memory; on other systems a
warning message is printed and the flag is ignored.

Reading or writing to the frame buffer is not allowed - you must use the mmap(2) system call to map the
board into your address space.

/dev/bwtwo[O-9] device files

SEE ALSO
mmap(2), cgfour(4S), tb(4S), tbio(4S)

BUGS
Use of vertical-retrace interrupts is not supported.

Sun Release 4.1 Last change: 1 September 1989 1361

CDROMIO (4S) DEVICES AND NETWORK INTERFACES CDROMIO (4S)

NAME
cdromio - CDROM control operations

DESCRIPTION

1362

The Sun CDROM device driver supports a set of ioctl(2) commands for audio operations and CDROM
specific operations. It also supports the dkio(4S) operations - generic disk control operation for all Sun
disk drivers. See dkio(4S) Basic to these cdromio ioctlO requests are the definitions in
<scsiltargets/srdef.h> or <sundev/srreg.h>

1*
* CDROM I/O controls type definitions
*1

1* definition of play audio msf structure *1
struct cdrom _ msf {

unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char

};

cdmsf_minO;
cdmsf _secO;
cdmsf _frameO;
cdmsf_min1;
cdmsf_sec1;
cdmsf _frame1;

1* starting minute *1
1* starting second *1
1* starting frame *1
1* ending minute *1
1* ending second *1
1* ending frame *1

1* definition of play audio track/index structure *1
struct cdrom _ ti {

unsigned char
unsigned char
unsigned char
unsigned char

};

cdti_trkO;
cdtiJndO;
cdti_trk1;
cdti_ind1;

1* starting track *1
1* starting index *1
1* ending track *1
1* ending index *1

1* definition of read toe header structure *1
struct cdrom _ tochdr {

};

unsigned char cdth_trkO;
unsigned char cdth_trk1;

1* definition of read toe entry structure *1
struct cdrom _ tocentry {

};

unsigned char cdte_track;
unsigned char cdte adr
unsigned char cdte ctrl
unsigned char cdte_format;
union {

struct {

} msf;

unsigned char
unsigned char
unsigned char

int Iba;
} cdte_addr;
unsigned char cdte_datamode;

1* starting track *1
1* ending track *1

:4;
:4;

minute;
second;
frame;

Last change: 20 September 1989 Sun Release 4.1

CDROMIO (4S) DEVICES AND NETWORK INTERFACES

1*
* Bitmask for CDROM data track in the cdte _ ctrl field
* A track is either data or audio.
*1

#define CDROM_DATA_TRACK Ox04

1*
* CDROM address format definition, for use with struct cdrom _ tocentry
*1

#define CDROM _ LBA Ox01
#define CDROM _ MSF Ox02

1*
* For CDROMREADTOCENTRY, set the cdte_track to CDROM_LEADOUT to get
* the information for the lead out track.
*1

#define CDROM_LEADOUT OxAA

struct cdrom _ subchnl {
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
union {

struct {

} msf;

cdsc _format;
cdsc _ audiostatus;
cdsc_adr: 4;
cdsc_ctrl: 4;
cdsc_trk;
cdsc_ind;

unsigned char
unsigned char
unsigned char

minute;
second;
frame;

int Iba;

};

1*

} cdsc_absaddr;
union {

struct {

} msf;

unsigned char
unsigned char
unsigned char

int Iba;
} cdsc _ reladdr;

minute;
second;
frame;

* Definition for audio status returned from Read Sub-channel
*1

#define CDROM_AUDIO_INVALID OxOO 1* audio status not supported *1
#define CDROM_AUDIO _PLAY Ox11 1* audio play operation in progress *1
#define CDR OM_AUDIO_PAUSED Ox12 1* audio play operation paused *1

CDROMIO (4S)

#define CDR OM_AUDIO_COMPLETED Ox13 1* audio play successfully completed *1
#define CDROM _AUDIO_ERROR Ox14 1* audio play stopped due to error *1
#define CDROM_AUDIO _NO _STATUS Ox15 1* no current audio status to return *1

Sun Release 4.1 Last change: 20 September 1989 1363

CDROMIO (4S) DEVICES AND NETWORK INTERFACES CDROMIO (4S)

1364

1* definition of audio volume control structure *1
struct cdrom _ volctrl {

};

unsigned char cdvc_chnIO;
unsigned char cdvc_chnl1;
unsigned char cdvc _ chnl2;
unsigned char cdvc _ chnl3;

struct cdrom _read {
int cdread_lba;

};

caddr _ t cdread _ bufaddr;
int cd read _ buflen;

#define CDROM_MODEl_SIZE 2048
#define CDROM_MODE2_SIZE 2336

1*
* CDROM I/O control commands
*1

#define CDROMPAUSE _IO(c, 10) 1* Pause Audio Operation *1

#define CDROMRESUME _IO(c, 11) 1* Resume paused Audio Operation *1

#define CDROMPLA YMSF _ IOW(c, 12, struct cdrom _ msf) 1* Play Audio MSF *1

#define CDROMPLAYTRKIND _IOW(c, 13, struct cdrom_ti) 1* Play Audio Trklind *1

#define CDROMREADTOCHDR _IOR(c, 103, struct cdrom_tochdr) 1* Read TOe hdr *1

#define CDROMREADTOCENTRY _IOWR(c, 104, struct cdrom_tocentry) 1* Read TOe *1

#define CDROMSTOP _IO(c, 105) 1* Stop the cdrom drive *1

#define CDROMSTART _IO(C, 106) 1* Start the cdrom drive *1

#define CDROMEJECT _IO(C, 107) 1* Ejects the cdrom caddy *1

#define CDROMVOLCTRL _IOW(c, 14, struct cdrom_volctrl) 1* volume control *1

#define CDROMSUBCHNL _IOWR(c, 108, struct cdrom_subchnl) 1* read subchannel *1

#define CDROMREADMODE2 _IOW(C, 110, struct cdrom_read) 1* mode 2 *1

#define CDROMREADMODEI _IOW(c, 111, struct cdrom_read) 1* mode 1 *1

The CDROMPAUSE ioctl() pauses the current audio play operation and the CDROMRESUME ioctl()
resumes the paused audio play operation. The CDROMST ART ioctl() spins up the disc and seeks to the
last address requested, while the CDROMSTOP ioctl() spins down the disc and the CDROMEJECT ioctl()
ejects the caddy with the disc. All of the above ioctl() calls only take a file descriptor and a command as
arguments. They have the form:

ioctl(fd, cmd)
int
int

fd;
cmd;

Last change: 20 September 1989 Sun Release 4.1

CDROMIO (4S) DEVICES AND NETWORK INTERFACES CDROMIO (4S)

The rest of the ioctl() calls have the form:
ioctl(fd, cmd, ptr)

int fd;
int cmd;
char *ptr;

where ptr is a pointer to a struct or an integer.

The CDROMPLA YMSF ioctl() command requests the drive to output the audio signals staring at the
specified starting address and continue the audio play until the specified ending address is detected. The
address is in MSF (minute, second, frame) fonnat. The third argument of the function call is a pointer to
the type struct cdrom_msf.

The CDROMPLAYTRKIND ioctlO command is similar to CDROMPLAYMSF. The starting and ending
address is in track/index format. The third argument of the function call is a pointer to the type struct
cdrom ti.

The CDROMREADTOCHDR ioctl() command returns the header of the TOC (table of contents). The
header consists of the starting tracking number and the ending track number of the disc. These two
numbers are returned through a pointer of struct cdrom_tochdr. While the disc can start at any number,
all tracks between the first and last tracks are in contiguous ascending order. A related ioctl() command is
CDROMREADTOCENTRY. This command returns the information of a specified track. The third argu­
ment of the function call is a pointer to the type struct cdrom _ tocentry. The caller need to supply the
track number and the address format. This command will return a 4-bit adr field, a 4-bit ctrl field, the
starting address in MSF fonnat or LBA fonnat, and the data mode if the track is a data track. The ctrl field
specifies whether the track is data or audio. To get infonnation for the lead-out area, supply the ioctl()
command with the track field set to CDROM_LEADOUT (OxAA).

The CDROMVOLCTRL ioctl() command controls the audio output level. The SCSI command allows the
control of up to 4 channels. The current implementation of the supported CDROM drive only uses channel
o and channelL The valid values of volume control are between OXOO and OxFF, with a value of OxFF
indicating maximum volume. The third argument of the function call is a pointer to struct cdrom _ volctrl
which contains the output volume values.

The CDROMSUBCHNL ioctl() command reads the Q sub-channel data of the current block. The sub­
channel data includes track number, index number, absolute CDROM address, track relative CDROM
address, control data and audio status. All information is returned through a pointer to struct
cdrom _ subchnl. The caller needs to supply the address fonnat for the returned address.

The CDROMREADMODE2 and CDROMREADMODEI ioctl() commands are only available on SPARCsta­
tion 1 systems.

Finally, on SPARCstation 1 systems only, the driver supports the user SCSI command interface. By issuing
the ioctl() command, USCSICMD, The caller can supply any SCSI-2 commands that the CDR OM drive
supports. The caller has to provide all the parameters in the SCSI command block, as well as other infor­
mation such as the user buffer address and buffer length. See the definitions in c::scsilimpl/uscsi.h>. The
ioctl() call has the form:

ioctl(fd, cmd, ptr)
int fd;
int cmd;
char *ptr;

Sun Release 4.1 Last change: 20 September 1989 1365

CDROMIO (4S) DEVICES AND NETWORK INTERFACES CDROMIO (4S)

FILES

where ptr is a pointer to the type:
struct uscsi _ scmd {

caddr_t uscsi_cdb;
int uscstcdblen;
caddr_t uscsi_bufaddr;
int uscsi_buflen;
unsigned char uscsi _status;
int uscsi_ flags;

};

uscsi_cdb is a pointer to the SCSI command block. Group 0 cdb's are 6 bytes long while the other groups
are 10 bytes or 12 bytes. uscsi_cdblen is the length of the cdb. uscsi_bufaddr is the pointer to the user
buffer for parameter passing or data input/output. buflen is the length of the user buffer. uscsi_f1ags are
the execution flags for SCSI input/output. The possible flags are USCSI_SILENT, USCSI_DIAGNOSE,
USCSI_ISOLATE, USCSI_READ, and USCSI_WRITE.

/usr/include/scsiltargets/srdef.h
/usr/include/scsilimpJ/uscsi.h
/usr/include/sundev/srreg.h

SEE ALSO

BUGS

1366

ioctl(2), dkio(4S), sr(4S)

The interface to this device is preliminary and subject to change in future releases. You are encouraged to
write your programs in a modular fashion so that you can easily incorporate future changes.

Last change: 20 September 1989 Sun Release 4.1

CGEIGHT (4S) DEVICES AND NETWORK INTERFACES CGEIGHT (4S)

NAME
cgeight - 24-bit color memory frame buffer

CONFIG - SUN-3 AND SUN-4 SYSTEMS
device cgeightO at obmem 7 csr Oxff300000 priority 4
device cgeightO at obio 4 csr Oxfb300000 priority 4

The first synopsis line should be used to generate a kernel for the Sun-3/60; the second synopsis for a Sun-
4/110 or Sun-4/150 system.

CONFIG - SUN-3x SYSTEM
device cgeightO at obio ? csr Ox50300000 priority 4

DESCRIPTION

FILES

The cgeight is a 24-bit color memory frame buffer with a monochrome overlay plane and an overlay
enable plane implemented optionally on the Sun-4/110, Sun-4/150, Sun-3/60, Sun-3/470 and Sun-3/80 sys­
tem models. It provides the standard frame buffer interface as defined in fbio(4S).

In addition to the ioctls described under tbio(4S), the cgeight interface responds to two cgeight-specific
colormap ioctls, FBIOPUTCMAP and FBIOGETCMAP. FBIOPUTCMAP returns no information other than
success/failure using the ioctl return value. FBIOGETCMAP returns its information in the arrays pointed to
by the red, green, and blue members of its tbcmap structure argument; fbcmap is defined in <sunltbio.h>
as:

struct fbcmap {
int

};

int
unsigned char
unsigned char
unsigned char

index;
count;
*red;
*green;
*blue;

1* first element (0 origin) *1
1* number of elements *1
1* red color map elements *1
1* green color map elements */
1* blue color map elements *1

The driver uses color board vertical-retrace interrupts to load the colormap.

The systems have an overlay plane colormap, which is accessed by encoding the plane group into the index
value with the PIX_GROUP macro (see <pixrectlprylanegroups.h».

When using the mmap system call to map in the cgeight frame buffer. The device looks like:
DACBASE: Ox200000 -> Brooktree Ramdac 16 bytes

Ox202000 -> P4 Regiter 4 bytes
OVLBASE: Ox210000 -> Overlay Plane 1152x900x1

/dev/cgeightO
<sunlfbio.h>

Ox230000 -> Overlay Enable Planea 1152x900x1
Ox250000 -> 24-bit Frame Buffera 1152x900x32

<pixrectlpr ylanegroups.h>

SEE ALSO
mmap(2), fbio(4S)

Sun Release 4.1 Last change: 21 June 1988 1367

CGFOUR(4S) DEVICES AND NETWORK INTERFACES CGFOUR(4S)

NAME
cgfour - Sun-3 color memory frame buffer

CONFIG - SUN-3 SYSTEMS
device cgfourO at obmem 4 csr OxffOOOOOO priority 4
device cgfourO at obmem 7 csr OxfT300000 priority 4

The first synopsis line given should be used to generate a kernel for the Sun-3/110 system; and the second,
for a Sun-3/60 system.

CONFIG - SUN-3x SYSTEMS
device cgfourO at obmem ? csr Ox50300000 priority 4

CONFIG - SUN-4 SYSTEMS
device cgfourO at obio 2 csr Oxfb300000 priority 4
device cgfourO at obio 3 csr Oxfb300000 priority 4
device cgfourO at obio 4 csr Oxfb300000 priority 4

The first synopsis line given should be used to generate a kernel for the Sun-4/110 system; the second, for a
Sun-4/330 system; and the third for a Sun-4/460 system.

DESCRIPTION

FILES

The cgfour is a color memory frame buffer with a monochrome overlay plane and an overlay enable plane
implemented on the Sun-3/110 system and some Sun-3/60 system models. It provides the standard frame
buffer interface as defined in fbio(4S).

In addition to the ioctls described under fbio(4S), the cgfour interface responds to two cgfour-specific
colormap ioctls, FBIOPUTCMAP and FBIOGETCMAP. FBIOPUTCMAP returns no information other than
success/failure using the ioctl return value. FBIOGETCMAP returns its information in the arrays pointed to
by the red, green, and blue members of its fbcmap structure argument; fbcmap is defined in <sunlfbio.h>
as:

struct fbcmap {
int

};

int
unsigned char
unsigned char
unsigned char

index;
count;
*red;
*green;
*blue;

1* first element (0 origin) *1
1* number of elements *1
1* red color map elements *1
1* green color map elements *1
1* blue color map elements *1

The driver uses color board vertical-retrace interrupts to load the colormap.

The Sun-3/60 system has an overlay plane colormap, which is accessed by encoding the plane group into
the index value with the PIX_GROUP macro (see <pixrect/pr ylanegroups.h».

Idev/cgfourO

SEE ALSO
mmap(2), tbio(4S)

1368 Last change: 9 October 1987 Sun Release 4.1

CGNINE(4S) DEVICES AND NETWORK INTERFACES CGNINE(4S)

NAME
cgnine - 24-bit VME color memory frame buffer

CONFIGURATION
device cgnineO at vme32d32 ? csr Ox08000000 priority 4 vector cgnineintr Oxaa

DESCRIPTION

FILES

cgnine is a 24-bit double-buffered VME-based color frame buffer. It provides the standard frame buffer
interface defined in fbio(4S), and and can be paired with the GP2 graphics accelerator board using
gpconfig(8).

cgnine has two bits of overlay planes, each of which is a I-bit deep frame buffer that overlays the 24-bit
plane group. When either bit of the two overlay planes is non-zero, the pixel shows the color of the over­
lay plane. If both bits are zero, the color frame buffer underneath is visible.

The 24-bit frame buffer pixel is organized as one longword (32 bits) per pixel. The pixel format is defined
in <pixrect/pixrect.h> as follows:

union fbunit {
unsigned int
struct {

packed; 1* whole-sale deal *1

};

unsigned int
unsigned int
unsigned int
unsigned int
}

A:8;
B:8;
G:8;
R:S;

channel;

1* unused, for now *1
1* blue channel *1
1* green channel *1
1* red channel *1

1* access per channel *1

When the board is in double-buffer mode, the low 4 bits of each channel are ignored when written to,
which yields 12-bit double-buffering.

The higher bit of the overlay planes ranges from offset 0 to 128K (Ox2()()()()) bytes. The lower bit ranges
from 128K to 256K bytes. The 4MB (Ox400000) of the 24-bit deep pixels begins at 256K. The addresses
of the control registers start at the next page after the 24-bit deep pixels.

/dev/cgnineO
Idev/gponeOa
/dev/fb

device special file
cgnine bound with GP2
default frame buffer

SEE ALSO
mmap(2), fbio(4S), gpone(4S) gpconfig(S)

Sun Release 4.1 Last change: 21 May 1989 1369

CGSIX(4S) DEVICES AND NETWORK INTERFACES

NAME
cgsix - accelerated 8-bit color frame buffer

CONFIG - SUN-3, SUN-3x, SUN-4 SYSTEMS
device cgsixO at obmem ? csr OxffOOOOOO priority 4
device cgsixO at obmem ? csr Ox50000000 priority 4
device cgsixO at obio ? csr OxtbOOOOOO priority 4

CGSIX(4S)

The first synopsis line given should be used for Sun-3/60 systems, the second for Sun-3x systems, and the
third for Sun-4 systems.

CONFIG - SPARCstation 1 SYSTEMS
device-driver cgsix

DESCRIPTION
The cgsix is a low-end graphics accelerator designed to enhance vector and polygon drawing performance.
It has an 8-bit color frame buffer and provides the standard frame buffer interface as defined in tbio(4S).

The cgsix has registers and memory that may be mapped with mmap(2), using the offsets defined in
<sundev/cg6reg.h>.

FILES
/dev/cgsixO

SEE ALSO
mmap(2), tbio(4S)

1370 Last change: 1 September 1989 Sun Release 4.1

CGTHREE (4S) DEVICES AND NETWORK INTERFACES

NAME
cgthree - 8-bit color memory frame buffer

CONFIG - SPARCstation 1 SYSTEMS
device-driver cgthree

CONFIG - Sun386i SYSTEM
device cgthreeO at obmem ? csr OxA0400000

A V AlLABILITY
SPARCstation 1 and Sun386i systems only.

DESCRIPTION

CGTHREE (4S)

cgthree is a color memory frame buffer. It provides the standard frame buffer interface as defined in
tbio(4S).

FILES
/dev/cgthree[O-9]

SEE ALSO
mmap(2), tbio(4S)

Sun Release 4.1 Last change: 1 May 1989 1371

CGTWO(4S) DEVICES AND NETWORK INTERFACES

NAME
cgtwo - color graphics interface

CONFIG - SUN-3, SUN-3x, SUN-4 SYSTEMS
cgtwoO at vme24d16 ? csr Ox400000 priority 4 vector cgtwointr Oxa8

DESCRIPTION

CGTWO(4S)

The cgtwo interface provides access to the color graphics controller board, which is normally supplied with
a 19" 66 Hz non-interlaced color monitor. It provides the standard frame buffer interface as defined in
tbio(4S).

The hardware consumes 4 megabytes of VME bus address space. The board starts at standard address
Ox400000. The board must be configured for interrupt level 4.

FILES
/dev/cgtwo[O-9]

SEE ALSO
mmap(2), tbio(4S)

1372 Last change: 9 October 1987 Sun Release 4.1

CLONE (4) DEVICES AND NETWORK INTERFACES CLONE (4)

NAME
clone - open any minor device on a STREAMS driver

DESCRIPTION
clone is a STREAMS software driver that finds and opens an unused minor device on another STREAMS
driver. The minor device passed to clone during the open operation is interpreted as the major device
number of another STREAMS driver for which an unused minor device is to be obtained. Each such open
results in a separate stream to a previously unused minor device.

The clone driver supports only an open(2V) function. This open function performs all of the necessary
work so that subsequent system calls (including close(2V» require no further involvement of the clone
driver.

ERRORS
clone generates an ENXIO error, without opening the device, if the minor device number provided does not
correspond to a valid major device, or if the driver indicated is not a STREAMS driver.

WARNINGS
Multiple opens of the same minor device are not supported through the clone interface. Executing
stat(2V) on the file system node for a cloned device yields a different result than does executing fstat using
a file descriptor obtained from opening that node.

SEE ALSO
close(2V), open(2V), stat(2V)

Sun Release 4.1 Last change: 24 November 1987 1373

CONSOLE (4S) DEVICES AND NETWORK INTERFACES CONSOLE (4S)

NAME
console - console driver and terminal emulator for the Sun workstation

CONFIG
None; included in standard system.

SYNOPSIS
#include <fcntl.h>
#include <sys/termios.h>
open(ft Idev/console" , mode);

DESCRIPTION

IOCTLS

console is an indirect driver for the Sun console terminal. On a Sun workstation, this driver refers to the
workstation console driver, which implements a standard UNIX system terminal. On a Sun server without a
keyboard or a frame buffer, this driver refers to the CPU serial port driver (zs(4S»; a terminal is normally
connected to this port.

The workstation console does not support any of the termio(4) device control functions specified by flags
in the c_cflag word of the termios structure or by the IGNBRK, IGNPAR, PARMRK, or INPCK flags in the
cJflag word of the termios structure, as these functions apply only to asynchronous serial ports. All other
termio(4) functions must be performed by STREAMS modules pushed atop the driver; when a slave device
is opened, the Idterm(4M) and ttcompat(4M) STREAMS modules are automatically pushed on top of the
stream, providing the standard termio(4) interface.

The workstation console driver calls the PROM resident monitor to output data to the console frame buffer.
Keystrokes from the CPU serial port to which the keyboard is connected are routed through the keyboard
STREAMS module (kb(4M» and treated as input.

When the Sun window system win(4S) is active, console input is directed through the window system
rather than being treated as input by the workstation console driver.

An ioetl TIOCCONS can be applied to pseudo-terminals (pty(4» to route output that would normally
appear on the console to the pseudo-terminal instead. Thus, the window system does a TIOCCONS on a
pseudo-terminal so that the system will route console output to the window to which that pseudo-terminal
is connected, rather than routing output through the PROM monitor to the screen, since routing output
through the PROM monitor destroys the integrity of the screen. Note: when you use TIOCCONS in this
way, the console input is routed from the pseudo-terminal as well.

If a TIOCCONS is performed on Idev/console, or the pseudo-terminal to which console output is being
routed is closed, output to the console will again be routed to the workstation console driver.

ANSI STANDARD TERMINAL EMULATION

1374

The Sun Workstation's PROM monitor provides routines that emulates a standard ANSI X3.64 terminal.

Note: the VT100 also follows the ANSI X3.64 standard but both the Sun and the VT100 have nonstandard
extensions to the ANSI X3.64 standard. The Sun terminal emulator and the VT100 are not compatible in
any true sense.

The Sun console displays 34 lines of 80 ASCII characters per line, with scrolling, (x, y) cursor addressabil­
ity, and a number of other control functions.

The Sun console displays a non-blinking block cursor which marks the current line and character position
on the screen. ASCII characters between Ox20 (space) and Ox7E (tilde) inclusive are printing characters -
when one is written to the Sun console (and is not part of an escape sequence), it is displayed at the current
cursor position and the cursor moves one position to the right on the current line. If the cursor is already at
the right edge of the screen, it moves to the first character position on the next line. If the cursor is already
at the right edge of the screen on the bottom line, the Line-feed function is performed (see CTRL-J below),
which scrolls the screen up by one or more lines or wraps around, before moving the cursor to the first
character position on the next line.

Last change: 20 November 1987 Sun Release 4.1

CONSOLE (4S) DEVICES AND NETWORK INTERFACES CONSOLE (4S)

Control Sequence Syntax

The Sun console defines a number of control sequences which may occur in its input. When such a
sequence is written to the Sun console, it is not displayed on the screen, but effects some control function
as described below, for example, moves the cursor or sets a display mode.

Some of the control sequences consist of a single character. The notation
CfRL-X

for some character X , represents a control character.

Other ANSI control sequences are of the form
ESC [paramschar

Spaces are included only for readability; these characters must occur in the given sequence without the
intervening spaces.

ESC
[

represents the ASCII escape character (ESC, CfRL-[, OxlB).
The next character is a left square bracket '[' (Ox5B).

params are a sequence of zero or more decimal numbers made up of digits between 0 and 9, separated by
semicolons.

char represents a function character, which is different for each control sequence.

Some examples of syntactically valid escape sequences are (again, ESC represent the single Ascn character
'Escape'):

ESC[m
ESC[7m
ESC [33;54H
ESC [123;456;0;;3;B

select graphic rendition with default parameter
select graphic rendition with reverse image
set cursor position
move cursor down

Syntactically valid ANSI escape sequences which are not currently interpreted by the Sun console are
ignored. Control characters which are not currently interpreted by the Sun console are also ignored.

Each control function requires a specified number of parameters, as noted below. If fewer parameters are
supplied, the remaining parameters default to 1, except as noted in the descriptions below.

If more than the required number of parameters is supplied, only the last n are used, where n is the number
required by that particular command character. Also, parameters which are omitted or set to zero are reset
to the default value of 1 (except as noted below).

Consider, for example, the command character M which requires one parameter. ESC[;M and ESC[OM
and ESC[M and ESC[23;15;32;IM are all equivalent to ESC[lM and provide a parameter value of 1. Note:
ESC[;5M (interpreted as 'ESC[5M') is not equivalent to ESC[5;M (interpreted as 'ESC[5;IM') which is
ultimately interpreted as 'ESC [1 M').

In the syntax descriptions below, parameters are represented as '#' or '#1;#2'.

ANSI Control Functions

The following paragraphs specify the ANSI control functions implemented by the Sun console. Each
description gives:

Sun Release 4.1

• the control sequence syntax

• the hex equivalent of control characters where applicable

• the control function name and ANSI or Sun abbreviation (if any).

• description of parameters required, if any

• description of the control function

• for functions which set a mode, the initial setting of the mode. The initial settings can be
restored with the SUNRESEf escape sequence.

Last change: 20 November 1987 1375

CONSOLE (4S) DEVICES AND NETWORK INTERFACES CONSOLE (4S)

1376

Control Character Functions

CTRL-G (Ox7) Bell (BEL)
The Sun Workstation Model 100 and l00U is not equipped with an audible bell. It 'rings the bell'
by flashing the entire screen. The window system flashes the window.

CfRL-H (Ox8) Backspace (BS)
The cursor moves one position to the left on the current line. If it is already at the left edge of the
screen, nothing happens.

CfRL-I (Ox9) Tab (TAB)
The cursor moves right on the current line to the next tab stop. The tab stops are fixed at every
multiple of 8 columns. If the cursor is already at the right edge of the screen, nothing happens;
otherwise the cursor moves right a minimum of one and a maximum of eight character positions.

CfRL-J (OxA) Line-feed (LF)
The cursor moves down one line, remaining at the same character position on the line. If the cur­
sor is already at the bottom line, the screen either scrolls up or "wraps around" depending on the
setting of an internal variable S (initially 1) which can be changed by the ESC[r control sequence.
If S is greater than zero, the entire screen (including the cursor) is scrolled up by S lines before
executing the line-feed. The top S lines scroll off the screen and are lost. S new blank lines scroll
onto the bottom of the screen. After scrolling, the line-feed is executed by moving the cursor
down one line.

If S is zero, 'wrap-around' mode is entered. 'ESC [1 r' exits back to scroll mode. If a line-feed
occurs on the bottom line in wrap mode, the cursor goes to the same character position in the top
line of the screen. When any line-feed occurs, the line that the cursor moves to is cleared. This
means that no scrolling occurs. Wrap-around mode is not implemented in the window system.

The screen scrolls as fast as possible depending on how much data is backed up waiting to be
printed. Whenever a scroll must take place and the console is in normal scroll mode ('ESC [1 r'),
it scans the rest of the data awaiting printing to see how many line-feeds occur in it. This scan
stops when any control character from the set {VT, FF, SO, SI, DLE, DCI, DC2, DC3, DC4, NAK,
SYN, ETB, CAN, EM, SUB, ESC, FS, GS, RS, US} is found. At that point, the screen is scrolled by
N lines (N ~ 1) and processing continues. The scanned text is still processed normally to fill in the
newly created lines. This results in much faster scrolling with scrolling as long as no escape codes
or other control characters are intermixed with the text.

See also the discussion of the 'Set scrolling' (ESC[r) control function below.

CfRL-K (OxB) Reverse Line-feed
The cursor moves up one line, remaining at the same character position on the line. If the cursor
is already at the top line, nothing happens.

CfRL-L (OxC) Form-feed (FF)
The cursor is positioned to the Home position (upper-left comer) and the entire screen is cleared.

CfRL-M (OxD) Return (CR)
The cursor moves to the leftmost character position on the current line.

Escape Sequence Functions

CfRL-[(Ox 1 B) Escape (ESC)
This is the escape character. Escape initiates a multi-character control sequence.

ESC [#@ Insert Character (ICH)
Takes one parameter, # (default 1). Inserts # spaces at the current cursor position. The tail of the
current line starting at the current cursor position inclusive is shifted to the right by # character
positions to make room for the spaces. The rightmost # character positions shift off the line and
are lost. The position of the cursor is unchanged.

Last change: 20 November 1987 Sun Release 4.1

CONSOLE (4S) DEVICES AND NETWORK INTERFACES CONSOLE (4S)

ESC[#A Cursor Up (CUU)
Takes one parameter, # (default 1). Moves the cursor up # lines. If the cursor is fewer than #
lines from the top of the screen, moves the cursor to the topmost line on the screen. The character
position of the cursor on the line is unchanged.

ESC[#B Cursor Down (CUD)
Takes one parameter, # (default 1). Moves the cursor down # lines. If the cursor is fewer than #
lines from the bottom of the screen, move the cursor to the last line on the screen. The character
position of the cursor on the line is unchanged.

ESC [#C Cursor Forward (CUF)
Takes one parameter, # (default 1). Moves the cursor to the right by # character positions on the
current line. If the cursor is fewer than # positions from the right edge of the screen, moves the
cursor to the rightmost position on the current line.

ESC[#D Cursor Backward (CUB)
Takes one parameter, # (default 1). Moves the cursor to the left by # character positions on the
current line. If the cursor is fewer than # positions from the left edge of the screen, moves the cur­
sor to the leftmost position on the current line.

ESC[#E Cursor Next Line (CNL)
Takes one parameter, # (default 1). Positions the cursor at the leftmost character position on the
#-th line below the current line. If the current line is less than # lines from the bottom of the
screen, positions the cursor at the leftmost character position on the bottom line.

ESC [# 1 ;#2f Horizontal And Vertical Position (HVP)
or

ESC [#I;#2H Cursor Position (CUP)
Takes two parameters, #1 and #2 (default 1, 1). Moves the cursor to the #2-th character position
on the # I-th line. Character positions are numbered from 1 at the left edge of the screen; line
positions are numbered from 1 at the top of the screen. Hence, if both parameters are omitted, the
default action moves the cursor to the home position (upper left comer). If only one parameter is
supplied, the cursor moves to column 1 of the specified line.

ESC[J Erase in Display (ED)
Takes no parameters. Erases from the current cursor position inclusive to the end of the screen.
In other words, erases from the current cursor position inclusive to the end of the current line and
all lines below the current line. The cursor position is unchanged.

ESC [K Erase in Line (EL)
Takes no parameters. Erases from the current cursor position inclusive to the end of the current
line. The cursor position is unchanged.

ESC[#L Insert Line (IL)
Takes one parameter, # (default 1). Makes room for # new lines starting at the current line by
scrolling down by # lines the portion of the screen from the current line inclusive to the bottom.
The # new lines at the cursor are filled with spaces; the bottom # lines shift off the bottom of the
screen and are lost. The position of the cursor on the screen is unchanged.

ESC[#M Delete Line (DL)
Takes one parameter, # (default 1). Deletes # lines beginning with the current line. The portion
of the screen from the current line inclusive to the bottom is scrolled upward by # lines. The #
new lines scrolling onto the bottom of the screen are filled with spaces; the # old lines beginning at
the cursor line are deleted. The position of the cursor on the screen is unchanged.

ESC [#P Delete Character (DCH)

Sun Release 4.1

Takes one parameter, # (default 1). Deletes # characters starting with the current cursor position.
Shifts to the left by # character positions the tail of the current line from the current cursor posi­
tion inclusive to the end of the line. Blanks are shifted into the rightmost # character positions.
The position of the cursor on the screen is unchanged.

Last change: 20 November 1987 1377

CONSOLE (4S) DEVICES AND NETWORK INlERFACES CONSOLE (4S)

ESC [#m Select Graphic Rendition (SGR)
Takes one parameter, # (default 0). Note: unlike most escape sequences, the parameter defaults to
zero if omitted. Invokes the graphic rendition specified by the parameter. All following printing
characters in the data stream are rendered according to the parameter until the next occurrence of
this escape sequence in the data stream. Currently only two graphic renditions are defined:

o Normal rendition.

7 Negative (reverse) image.

Negative image displays characters as white-on-black if the screen mode is currently black-on
white, and vice-versa. Any non-zero value of # is currently equivalent to 7 and selects the nega­
tive image rendition.

ESC [p Black On White (SUNBOW)
Takes no parameters. Sets the screen mode to black-on-white. If the screen mode is already
black-on-white, has no effect. In this mode spaces display as solid white, other characters as
black-on-white. The cursor is a solid black block. Characters displayed in negative image rendi­
tion (see 'Select Graphic Rendition' above) is white-on-black in this mode. This is the initial set­
ting of the screen mode on reset.

ESC[q White On Black (SUNWOB)
Takes no parameters. Sets the screen mode to white-on-black. If the screen mode is already
white-on-black, has no effect. In this mode spaces display as solid black, other characters as
white-on-black. The cursor is a solid white block. Characters displayed in negative image rendi­
tion (see 'Select Graphic Rendition' above) is black-on-white in this mode. The initial setting of
the screen mode on reset is the alternative mode, black on white.

ESC [#r Set scrolling (SUNSCRL)
Takes one parameter, # (default 0). Sets to # an internal register which determines how many
lines the screen scrolls up when a line-feed function is performed with the cursor on the bottom
line. A parameter of 2 or 3 introduces a small amount of "jump" when a scroll occurs. A param­
eter of 34 clears the screen rather than scrolling. The initial setting is 1 on reset.

A parameter of zero initiates "wrap mode" instead of scrolling. In wrap mode, if a linefeed
occurs on the bottom line, the cursor goes to the same character position in the top line of the
screen. When any linefeed occurs, the line that the cursor moves to is cleared. This means that no
scrolling ever occurs. 'ESC [1 r' exits back to scroll mode.

For more information, see the description of the Line-feed (CTRL-J) control function above.

ESC [s Reset terminal emulator (SUNRESET)
Takes no parameters. Resets all modes to default, restores current font from PROM. Screen and
cursor position are

4014 TERMINAL EMULATION

FILES

The PROM monitor for Sun models 100U and 150U provides the Sun Workstation with the capability to
emulate a subset of the Tektronix 4014 terminal. This feature does not exist in other Sun PROMs and will
be removed from models 100U and 150U in future Sun releases. tektool(l) provides Tektronix 4014 ter­
minal emulation and should be used instead of relying on the capabilities of the PROM monitor.

/dev/console

SEE ALSO

1378

tektool(l) kb(4M), Idterm(4M), pty(4), termio(4), ttcompat(4M), win(4S), zs(4S)

ANSI Standard X3.64, "Additional Controls for Use with ASCII", Secretariat: CBEMA, 1828 L St., N.W.,
Washington, D.C. 20036.

Last change: 20 November 1987 Sun Release 4.1

CONSOLE (4S) DEVICES AND NETWORK INTERFACES CONSOLE (4S)

BUGS
TIOCCONS should be restricted to the owner of Idev/console.

Sun Release 4.1 Last change: 20 November 1987 1379

DB(4M) DEVICES AND NETWORK IN1ERFACES DB(4M)

NAME
db - SunDials STREAMS module

CONFIG
pseudo-device db

SYNOPSIS
#include <syslstream.h>
#include <sundev/vuid _ event.h>
#include <sundev/dbio.h>
#include <sysltime.h>
#include <syslioctl.h>
open(" Idev/dialbox" , 0_ RDWR);
ioctl(fd, I_PUSH, "db");

DESCRIPTION

IOCTLS

FILES

The db STREAMS module processes the byte streams generated by the SunDials dial box. The dial box
generates a stream of bytes that encode the identity of the dials and the amount by which they are turned.

Each dial sample in the byte stream consists of three bytes. The first byte identifies which dial was turned
and the next two bytes return the delta in signed binary format. When bound to an application using the
window system, Virtual User Input Device events are generated. An event from a dial is constrained to lie
between Ox80 and Ox87.

A stream with db pushed into it can emit firm_events as specified by the protocol of a VUID. db under­
stands the VUIDSFORMAT and VUIDGFORMAT ioctls (see reference below), as defined in
lusr/includelsundev/dbio.h and lusr/includelsundev/vuid _ event.h. All other ioctl() requests are passed
downstream. db sets the parameters of a serial port when it is opened. No termios(4) ioctl() requests
should be performed on a db STREAMS module, as db expects the device parameters to remain as it set
them.

VUIDSFORMAT
VUIDGFORMAT These are standard Virtual User Input Device ioctls. See SunView System

Programmer's Guide for a description of their operation.

lusr/include/sundevl dbio.h
lusr/include/sundev/vuid event.h
lusr/include/sys/ioctl.h
lusr/include/sys/stream.h
lusr/include/sys/time.h

SEE ALSO

BUGS

termios(4), dialtest(6), dbconfig(8)

Sun View System Programmer's Guide,
SunDials Programmers Guide

VUIDSADDR and VUIDGADDR are not supported.

WARNING
The SunDials dial box must be used with a serial port.

1380 Last change: 24 January 1990 Sun Release 4.1

DES(4S) DEVICES AND NETWORK INTERFACES DES(4S)

NAME
des - DES encryption chip interface

CONFIG - SUN-3 SYSTEM
device desO at obio ? csr OxlcOOOO

CONFIG - SUN-3x SYSTEM
device desO at obio ? csr Ox66002000

CONFIG - SUN-4 SYSTEM
device desO at obio ? csr OxfeOOOOOO

SYNOPSIS
#include <sys/des.h>

DESCRIPTION

IOCTLS

FILES

The des driver provides a high level interface to the AmZ8068 Data Ciphering Processor, a hardware
implementation of the NBS Data Encryption Standard.

The high level interface provided by this driver is hardware independent and could be shared by future
drivers in other systems.

The interface allows access to two modes of the DES algorithm: Electronic Code Book (ECB) and Cipher
Block Chaining (CBC). All access to the DES driver is through ioctl(2) calls rather than through reads and
writes; all encryption is done in-place in the user's buffers.

The ioctls provided are:

DESIOCBLOCK
This call encrypts/decrypts an entire buffer of data, whose address and length are passed in the
'struct desparams' addressed by the argument. The length must be a multiple of 8 bytes.

DESIOCQUICK

Idev/des

This call encrypts/decrypts a small amount of data quickly. The data is limited to
DES _ QUICKLEN bytes, and must be a multiple of 8 bytes. Rather than being addresses, the data is
passed directly in the 'struct desparams' argument.

SEE ALSO
des(l), des_crypt(3)

Federal Information Processing Standards Publication 46

AmZ8068 DCP Product Description, Advanced Micro Devices

Sun Release 4.1 Last change: 9 October 1987 1381

DKIO(4S) DEVICES AND NETWORK INTERFACES

NAME
dkio - generic disk control operations

DESCRIPTION

DKIO(4S)

All Sun disk drivers support a set of ioctl(2) requests for disk formatting and labeling operations. Basic to
these ioctl() requests are the definitions in lusr/includelsunldkio.h:

1382

* Structures and definitions for disk I/O control commands
*1
1* Controller and disk identification *1
struct dk Jnfo {

};

int dkt ctlr;
short dki _unit;
short dki _ ctype;
short dkt 8ags;

1* controller types *1
#define DKC _UNKNOWN
#define DKC _ DSD5215
#define DKC_XY450
#define DKC _ ACB4000
#define DKC _MD21
#define DKC _ XD7053
#define DKC_CSS
#define DKC _NEC765
#define DKC_INTEL82072
1* 8ags *1

o
5
6
7
8
11
12
13
14

1* controller address *1
1* unit (slave) address *1
1* controller type *1
1* 8ags *1

1* Hoppy on Sun386i *1

#define DKI_BADl44 OxOl 1* use DEC std 144 bad sector fwding *1
#define DKI _MAPTRK Ox02 1* controller does track mapping *1
#define DKI _ FMTTRK Ox04 1* formats only full track at a time *1
#define DKI FMTVOL Ox08 1* formats only full volume at a time *1
1* Definition of a disk's geometry *1
struct dk _geom {

unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short

};

dkg_ncyl;
dkg_acyl;
dkg_bcyl;
dkg_nhead;
dkg_bhead;
dkg_nsect;
dkg_ intrlv;
dkg_gapl;
dkg_gap2;
dkg_apc;
dkg_ extra [9] ;

1* Partition map (part of dk _label) *1
struct dk_map {

1* # of data cylinders *1
1* # of alternate cylinders *1
1* cyloffset (for fixed head area) *1
1* # of heads *1
1* head offset (for Larks, etc.) *1
1* # of sectors per track *1
1* interleave factor *1
1* gap 1 size *1
1* gap 2 size *1
1* alternates per cyl (SCSI only) *1
1* for compatible expansion *1

long dkl_cylno;
long dkl_ nblk;

1* starting cylinder *1
1* number of blocks *1

};

Last change: 24 January 1990 Sun Release 4.1

DKIO(4S) DEVICES AND NETWORK INTERFACES DKIO(4S)

FILES

1* Floppy characteristics *1
struct fdk _char {

u char medium;
int transfer_rate;

1* medium type (scsi floppy only) *1
1* transfer rate *1

int ncyl;
int nhead;
int sec_size;
int secptrack;
int steps;

};

1* number of cylinders *1
1* number of heads *1
1* sector size *1
1* sectors per track *1
1* number of steps per *1

1* Used by FDKGETCHANGE, returned state of the sense disk change bit. *1
#define FDKGC _HISTORY Ox01 1* disk has changed since last call *1
#define FDKGC _CURRENT Ox02 1* current state of disk change *1
1* disk I/O control commands *1
#define DKIOCINFO _IOR(d, 8, struct dkJnfo)
#define DKIOCGGEOM _IOR(d, 2, struct dk_geom)
#define DKIOCSGEOM _IOW(d, 3, struct dk_geom)
#define DKIOCGPART _IOR(d, 4, struct dk_map)
#define DKIOCSPART _IOW(d, 5, struct dk_map)
#define DKIOCWCHK _IOWR(d, 115, int)
1* floppy I/O control commands *1
#define FDKIOGCHAR _IOR(d, 114, struct fdk_char)
#define FDKEJECT _IO(d,112)
#define FDKGETCHANGE _ IOR(d, 111, int)

1* Get info *1
1* Get geometry *1
1* Set geometry *1
1* Get partition info *1
1* Set partition info *1
1* Toggle write check *1

1* Get floppy characteristics *1
1* Eject floppy *1
1* Get disk change status *1

The DKIOCINFO ioctl returns a dk Jnfo structure which tells the type of the controller and attributes about
how bad-block processing is done on the controller. The DKIOCGPART and DKIOCSPART get and set
the controller's current notion of the partition table for the disk (without changing the partition table on the
disk itself), while the DKIOCGGEOM and DKIOCSGEOM ioctls do similar things for the per-drive
geometry information. The DKIOCWCHK enables or disables a disk's write check capabilities. The
FDKIOGCHAR ioctl returns an fdk_ char structure which gives the characteristics of the floppy diskette.
The FDKEJECT ioctl ejects the floppy diskette. The FDKGETCHANGE returns the status of the diskette
changed signal from the floppy interface.

lusr/includelsunldkio.h

SEE ALSO
fd(4S), ip(4P), sd(4S), xd(4S), xy(4S), dkctl(8)

Sun Release 4.1 Last change: 24 January 1990 1383

DRUM (4) DEVICES AND NETWORK IN1ERFACES DRUM (4)

NAME
drum - paging device

CONFIG
None; included with standard system.

SYNOPSIS
#include <fcntl.h>

open("/dev/drum", mode);

DESCRIPTION

FILES

BUGS

1384

This file refers to the paging device in use by the system. This may actually be a sulxlevice of one of the
disk drivers, but in a system with paging interleaved across multiple disk drives it provides an indirect
driver for the multiple drives.

/dev/drum

Reads from the drum are not allowed across the interleaving boundaries. Since these only occur every
.5Mbytes or so, and since the system never allocates blocks across the boundary, this is usually not a prob­
lem.

Last change: 24 November 1987 Sun Release 4.1

FB(4S) DEVICES AND NETWORK INTERFACES FB (4S)

NAME
tb - driver for Sun console frame buffer

CONFIG
None; included in standard system.

DESCRIPTION

FILES

The tb driver provides indirect access to a Sun frame buffer. It is an indirect driver for the Sun workstation
console's frame buffer. At boot time, the workstation's frame buffer device is determined from informa­
tion from the PROM monitor and set to be the one that tb will indirect to. The device driver for the
console's frame buffer must be configured into the kernel so that this indirect driver can access it.

The idea behind this driver is that user programs can open a known device, query its characteristics and
access it in a device dependent way, depending on the type. tb redirects open(2V), c1ose(2V), ioctl(2), and
mmap(2) calls to the real frame buffer. All Sun frame buffers support the same general interface; see
tbio(4S).

Idev/tb

SEE ALSO
close(2V), ioctl(2), mmap(2), open(2V), tbio(4S)

Sun Release 4.1 Last change: 24 January 1990 1385

FBIO(4S) DEVICES AND NETWORK INTERFACES FBIO(4S)

NAME
ibio - frame buffer control operations

DESCRIPTION
All Sun frame buffers support the same general interface that is defined by <sun/fbio.h>. Each responds to
an FBIOGTYPE ioctl(2) request which returns information in a fbtype structure.

Each device has an FBTYPE which is used by higher-level software to detennine how to perfonn graphics
functions. Each device is used by opening it, doing an FBIOGTYPE ioctl() to see which frame buffer type
is present, and thereby selecting the appropriate device-management routines.

Full-fledged frame buffers (that is, those that run SunViewl) implement an FBIOGPIXRECT ioctlO
request, which returns a pixrect This call is made only from inside the kernel. The returned pixrect is
used by win(4S) for cursor tracking and colormap loading.

FBIOSVIDEO and FBIOGVIDEO are general-purpose ioctl() reuqests for controlling possible video
features of frame buffers. These ioctl() requests either set or return the value of a flags integer. At this
point, only the FBVIDEO_ON option is available, controlled by FBIOSVIDEO. FBIOGVIDEO returns the
current video state.

The FBIOSATTR and FBIOGATTR ioctlO requests allow access to special features of newer frame
buffers. They use the fbsattr and fbgattr structures.

Some color frame buffers support the FBIOPUTCMAP and FBIOGETCMAP ioctl() reuqests, which pro­
vide access to the colormap. They use the fbcmap structure.

SEE ALSO

BUGS

1386

ioctl(2), mmap(2), bw*(4S), cg*(4S), gp*(4S), fb(4S), win(4S)

The FBIOSATTR and FBIOGATTR ioctl() requests are only supportect by frame buffers which emulate
older frame buffer types. For example, cgfour(4S) frame buffers emulate bwtwo(4S) frame buffers. If a
frame buffer is emulating another frame buffer, FBIOGTYPE returns the emulated type. To get the real
type, use FBIOG ATTR.

Last change: 1 May 1989 Sun Release 4.1

FD(4S) DEVICES AND NETWORK INTERFACES FD(4S)

NAME
fd - disk driver for Floppy Disk Controllers

CONFIG - Sun386i SYSTEMS
controller fdcO at atmem ? csr OxlOOO dmachan 2 irq 6 priority 2
disk fdO at fdcO drive 0 flags 0

CONFIG - SUN-3/80 SYSTEMS
controller fdcO at obio ? csr Ox6eOOOOOO priority 6 vector fdintr Ox5c
disk fdO at fdcO drive 0 flags 0

CONFIG - SPARCstation 1 SYSTEMS
device-driver fd

A V AILABILITY
Sun386i, Sun-3/80, and SPARCstation 1 systems only.

DESCRIPTION
The fd driver provides an interface to floppy disks using the Intel 82072 disk controller on Sun386i, Sun-
3/80 and SPARCstation 1 systems.

The minor device number in files that use the floppy interface encodes the unit number as well as the parti­
tion. The bits of the minor device number are defined as rrruuppp where r=reserved, u=unit, and
p=partition. The unit number selects a particular floppy drive for the controller. The partition number
picks one of eight partitions [a-h].

When the floppy is first opened the driver looks for a label in logical block 0 of the diskette. If a label is
found, the geometry and partition information from the label will be used on each access thereafter. The
driver first assumes high density characteristics when it tries to read the label. If the read fails it will try the
read again using low density characteristics. If both attempts to read the label fail, the open will fail. Use
the FNDELA Y flag when opening an unformatted diskette as a signal to the driver that it should not attempt
to access the diskette. If block 0 is read successfully, but a label is not found, the open will fail for the
block interface. Using the raw interface, the open will succeed even if the diskette is unlabeled. Default
geometry and partitioning are assumed if the diskette is unlabeled.

The default partitions are:

a -> O,N-l

b ->N-l,N

c -> O,N
where N is the number of cylinders on the diskette.

The fd driver supports both block and raw interfaces. The block files access the disk using the system's
normal buffering mechanism and may be read and written without regard to physical disk records. There is
also a "raw" interface that provides for direct transmission between the disk and the user's read or write
buffer. A single read(2V) or write(2V) call usually results in one I/O operation; therefore raw I/O is con­
siderably more efficient when many words are transmitted. The names of the raw files conventionally
begin with an extra or'.

FILES - Sun386i SYSTEMS
1.44 MB Floppy Disk Drives:

Idev/fdOa block file
Idev/fdOc block file
Idev/rfdOa raw file
Idev/rfdOc raw file

Sun Release 4.1 Last change: 24 January 1990 1387

FD(4S) DEVICES AND NETWORK INTERFACES FD(4S)

720 K Floppy Disk Drives:

/dev/fdIOa block file
/dev/fdIOc block file
/dev/rfdIOa raw file
/dev/rfdIOc raw file

FILES - SUN-3/S0 and SPARCstation 1 SYSTEMS
Note: the fd driver on Sun-3/80 and SPARCstation 1 systems auto-senses the density of the floppy.

/dev/fdO[a-c] block file
/dev/fdO block file (same as /dev/fdOc)
/dev/rfdO[a-c] raw file
/dev/rfdO raw file (same as /dev/rfdOc)

SEE ALSO
read(2V), write(2V), dkio(4S)

DIAGNOSTICS - Sun3S6i SYSTEMS
fd dry %d, trk %d: %s

A command such as read or write encountered a format-related error condition. The value of %s
is derived from the error number given by the controller, indicating the nature of the error. The
track number is relative to the beginning of the partition involved.

fd dry %d, blk %d: %s
A command such as read or write encountered an error condition related to I/O. The value of %s
is derived from the error number returned by the controller and indicates the nature of the error.
The block number is relative to the start of the partition involved.

fd controller: %s
An error occurred in the controller. The value of %s is derived from the status returned by the
controller and specifies the error encountered.

fd(%d):%s please insert
I/O was attempted while the floppy drive door was not latched. The value of %s indicates which
disk was expected to be in the drive.

DIAGNOSTICS - SUN-3/S0 and SPARCstation 1 SYSTEMS

NOTES

1388

fd%d: %s failed (%x %x %x)
The command, %s, failed after several retries on drive %d. The three hex values in parenthesis
are the contents of status register 0, status register 1, and status register 2 of the Intel 82072
Floppy Disk Controller on completion of the command as documented in the data sheet for that
part. This error message is usually followed by one of the following, interpreting the bits of the
status register:

fd % d: not writable
fd%d: erc error
fd % d: overrun/underrun
fd%d: bad format
fd%d: timeout

Floppy diskettes have 18 sectors per track, and can cross a track (though not a cylinder) boundary without
los sing data, so when using dd(l) to or from a diskette, you should specify bs=18k or multiples thereof.

Last change: 24 January 1990 Sun Release 4.1

FILIO(4) DEVICES AND NETWORK INTERFACES FILIO(4)

NAME
filio - ioctls that operate directly on files, file descriptors, and sockets

SYNOPSIS
#include <syslfilio.h>

DESCRIPTION
The IOCTL's listed in this manual page apply directly to files, file descriptors, and sockets, independent of
any underlying device or protocol.

Note: the fcntl(2V) system call is the primary method for operating on file descriptors as such, rather than
on the underlying files.

IOCTLS for File Descriptors
FIOCLEX The argument is ignored. Set the close-on-exec flag for the file descriptor passed

to ioetl. This flag is also manipulated by the F _ SETFD command of fcntl(2V).

FIONCLEX

IOCTLs for Files
FIONREAD

FIONBIO

FIOASYNC

FIOSETOWN

FIOGETOWN

SEE ALSO

The argument is ignored. Clear the close-on-exec flag for the file descriptor
passed to ioetl.

The argument is a pointer to a long. Set the value of that long to the number of
immediately readable characters from whatever the descriptor passed to ioctl
refers to. This works for files, pipes, sockets, and terminals.

The argument is a pointer to an int. Set or clear non-blocking I/O. If the value of
that int is a I (one) the descriptor is set for non-blocking I/O. If the value of that
int is a 0 (zero) the descriptor is cleared for non-blocking I/O.

The argument is a pointer to an int. Set or clear asynchronous I/O. If the value of
that int is a I (one) the descriptor is set for asynchronous I/O. If the value of that
int is a 0 (zero) the descriptor is cleared for asynchronous I/O.

The argument is a pointer to an int. Set the process-group ID that will subse­
quently receive SIGIO or SIGURG signals for the object referred to by the
descriptor passed to ioetl to the value of that int.

The argument is a pointer to an int. Set the value of that int to the process-group
ID that is receiving SIGIO or SIGURG signals for the object referred to by the
descriptor passed to ioctl.

ioctl(2), fcntl(2V), getsockopt(2), soekio(4)

Sun Release 4.1 Last change: 23 November 1987 1389

FPA(4S) DEVICES AND NETWORK INTERFACES FPA(4S)

NAME
fpa - Sun-3/Sun-3x floating-point accelerator

CONFIG - SUN-3/SUN-3X SYSTEMS
device fpaO at virtual ? csr OxeOOOOOOO

SYNOPSIS
#include <sundev/fpareg.h>
open("/dev/fpa", flags);

DESCRIPTION

IOCTLS

FPA and FPA+ are compatible floating point accelerators available on certain Sun-3 and Sun-3x systems.
They provide hardware contexts for simultaneous use by up to 32 processes. The same fpa device driver
manages e~ther FPA or FPA+ hardware.

Processes access the device using open(2V) and c1ose(2V) system calls, and the FPA is automatically
mapped into the process' address space by SunOS. This is normally provided transparently at compile time
by a compiler option, such as the -ffpa option to cc(1 V).

The valid ioctl(2) system calls are used only by diagnostics and by system administration programs, such
as fpa _ download(8).

FPA ACCESS OFF - -

FPA ACCESS ON - -

FPA FAIL

FPA GET DATAREGS

FPA INIT DONE

FPA LOAD OFF - -

FPA LOAD ON - -

Clear FPA_ACCESS_BIT in FPA state register to disable access to constants
RAM using FPA load pointer.

Set FPA_ACCESS_BIT in FPA state register to enable access to constants
RAM using FPA load pointer.

Disable the FP A.

Return the contents of 8 FPA registers.

Called when downloading is complete. Allows multiple users to access the
FPA.

Set FP A_LOAD _ BIT in FP A state register to disable access to microstore or
map RAM via FPA load pointer.

Set FPA_LOAD_BIT in FPA state register to enable access to microstore or
map RAM using FPA load pointer.

The following two ioctlO requests are for diagnostic use only. fpa must be compiled with
FPA_DIAGNOSTICS_ONLY defined to enable these two calls.

FPA WRITE STATE - -
FPA WRITE HCP - -

Overwrite the FPA state register.

Write to the hard clear pipe register.

ERRORS

1390

The following error messages are returned by open system calls only.

EBUSY All 32 FPA contexts are being used.

EEXIST The current process has already opened Idev/fpa.

EIO

ENETDOWN

ENOENT

ENXIO

Downloading has not completed, so only 1 root process can have the FPA open at a time.

FPA is disabled.

68881 chip does not exist.

FP A board does not exist.

The following error messages are returned by ioctl system calls only.

EINVAL Invalid ioctl. This may occur if diagnostic only ioctls, FP A_WRITE _ STATE or
FPA_ WRITE_HCP, are used with a driver which didn't compile in those calls.

Last change: 31 January 1990 Sun Release 4.1

FPA(4S)

FILES

EPERM

EPIPE

/dev/fpa

SEE ALSO

DEVICES AND NETWORK INTERFACES

All ioctl calls except for FP A_GET _ DAT AREGS require root execution level.

The FPA pipe is not clear.

device file for both FPA and FPA+.

cc(1V), close(2V), ioctl(2), open(2V) fpa_download(8), fparel(8), fpaversion(8)

DIAGNOSTICS

FPA(4S)

If hardware problems are detected then all processes with /dev/fpa open are killed, and future opens of
/dev/fpa are disabled.

Sun Release 4.1 Last change: 31 January 1990 1391

GPONE(4S) DEVICES AND NETWORK INTERFACES GPONE(4S)

NAME
gpone - graphics processor

CONFIG - SUN-3, SUN-3x, SUN-4 SYSTEMS
device gponeO at vme24d16 ? csr Ox210000
device gponeO at vme24d32 ? csr Ox240000

#GPorGP+
#GP2

DESCRIPTION

IOCTLS

1392

The gpone interface provides access to the optional Graphics Processor Board (GP).

The hardware consumes 64 kilobytes of VME bus address space. The GP board starts at standard address
Ox210000 and must be configured for interrupt level 4.

The graphics processor responds to a number of ioctl calls as described here. One of the calls uses a
gplfbinfo structure that looks like this:

struct gpltbinfo {
int

};

int
int
int
caddr t
int

The ioctl call looks like this:
ioctl(file, request, argp)
int file, request;

fb _ vmeaddr;
fb _ hwwidth;
fb _ hwheight;
addrdeJta;
fb _ ropaddr;
fbunit;

1* physical color board address *1
1* fb board width *1
1* fb board height *1
1* phys addr diff between fb and gp *1
1* cg2 va thru kernelmap *1
1* fb unit to use for a,b,c,d *1

argp is defined differently for each GP ioctl request and is specified in the descriptions below.

The following ioctl commands provide for transferring data between the graphics processor and color
boards and processes.

GPlIO PUT INFO
Passes information about the frame buffer into driver. argp points to a struct gplfbinfo which is
passed to the driver.

GPlIO GET STATIC BLOCK - - -
Hands out a static block from the GP. argp points to an int which is returned from the driver.

GPlIO _FREE_STATIC _BLOCK
Frees a static block from the GP. argp points to an int which is passed to the driver.

GPlIO GET GBUFFER STATE - - -
. Checks to see if there is a buffer present on the GP. argp points to an int which is returned from
the driver.

GPlIO CHK GP
Restarts the GP if necessary. argp points to an int which is passed to the driver.

GPlIO GET RESTART COUNT - - -
Returns the number of restarts of a GP since power on. Needed to differentiate SIGXCPU calls in
user processes. argp points to an int which is returned from the driver.

GPlIO REDIRECT DEVFB - -
Configures Idev/fb to talk to a graphics processor device. argp points to an int which is passed to
the driver.

GPlIO _GET _ REQDEV
Returns the requested minor device. argp points to a dey _ t which is returned from the driver.

GPlIO GET TRUMINORDEV

Last change: 9 October 1987 Sun Release 4.1

GPONE(4S) DEVICES AND NETWORK INTERFACES GPONE(4S)

Returns the true minor device. argp points to a char which is returned from the driver.

The graphics processor driver also responds to the FBIOGTYPE, ioctl which a program can use to inquire
as to the characteristics of the display device, the FBIOGINFO, ioctl for passing generic information, and
the FBIOGPIXRECT ioctl so that Sun Windows can run on it. See tbio(4S).

FILES
Idev/fb
Idev/gpone[O-3][abcd]

SEE ALSO
fbio(4S), mmap(2), gpconfig(8)

SunCGI Reference Manual

DIAGNOSTICS
The Graphics Processor has been restarted. You may see display garbage as a result.

Sun Release 4.1 Last change: 9 October 1987 1393

ICMP(4P) PROTOCOLS ICMP(4P)

NAME
icmp - Internet Control Message Protocol

SYNOPSIS
#include <syslsocket.h:>
#include <netinetlin.h:>
#include <netinetlip _icmp.h:>

s = socket(AF_INET, SOCK_RAW, proto);

DESCRIPTION
ICMP is the error and control message protocol used by the Internet protocol family. It is used by the ker­
nel to handle and report errors in protocol processing. It may also be accessed through a "raw socket" for
network monitoring and diagnostic functions. The protocol number for ICMP, used in the proto parameter
to the socket call, can be obtained from getprotobyname (see getprotoent(3N». ICMP sockets are con­
nectionless, and are nonnally used with the sendto and recvfrom calls, though the connect(2) call may also
be used to fix the destination for future packets (in which case the read(2V) or recv(2) and write(2V) or
send(2) system calls may be used).

Outgoing packets automatically have an Internet Protocol (IP) header prepended to them. Incoming pack­
ets are provided to the holder of a raw socket with the IP header and options intact.

ICMP is an unreliable datagram protocol layered above IP. It is used internally by the protcol code for vari­
ous purposes including routing, fault isolation, and congestion control. Receipt of an ICMP "redirect" mes­
sage will add a new entry in the routing table, or modify an existing one. ICMP messages are routinely sent
by the protocol code. Received ICMP messages may be reflected back to users of higher-level protocols
such as TCP or UDP as error returns from system calls. A copy of all ICMP message received by the system
is provided using the ICMP raw socket.

ERRORS
A socket operation may fail with one of the following errors returned:

EISCONN

ENOTCONN

ENOBUFS

EADDRNOTAVAIL

when trying to establish a connection on a socket which already has one, or when
trying to send a datagram with the destination address specified and the socket is
already connected;

when trying to send a datagram, but no destination address is specified, and the
socket hasn't been connected;

when the system runs out of memory for an internal data structure;

when an attempt is made to create a socket with a network address for which no
network interface exists.

SEE ALSO

BUGS

1394

connect(2), read(2V), recv(2), send(2), write(2V), getprotoent(3N), inet(4F), ip(4P), routing(4N)

Postel, Jon, Internet Control Message Protocol- DARPA Internet Program Protocol Specification, RFC
792, Network Information Center, SRI International, Menlo Park, Calif., September 1981. (Sun 800-1064-
01)

Replies to ICMP "echo" messages which are source routed are not sent back using inverted source routes,
but rather go back through the normal routing mechanisms.

Last change: 24 November 1987 Sun Release 4.1

IE(4S) DEVICES AND NETWORK INTERFACES IE (4S)

NAME
ie - Intel 10 Mb/s Ethernet interface

CONFIG - SUN-4 SYSTEM
device ieO at obio ? csr Ox6000000 priority 3
device iel at vme24d16 ? csr Oxe88000 priority 3 vector ieintr Ox7S
device ie2 at vme24d16 ? csr Ox31ff02 priority 3 vector ieintr Ox76
device ie3 at vme24d16 ? csr Ox35ff02 priority 3 vector ieintr Ox77

CONFIG - SUN-3x SYSTEM
device ieO at obio? csr Ox65000000 priority 3
device iel at vme24d16 ? csr Oxe88000 priority 3 vector ieintr Ox75
device ie2 at vme24d32 ? csr Ox31ff02 priority 3 vector ieintr Ox76
device ie3 at vme24d32 ? csr Ox35ff02 priority 3 vector ieintr Ox77

CONFIG - SUN-3 SYSTEM
device ieO at obio ? csr OxcOOOO priority 3
device iel at vme24d16 ? csr Oxe88000 priority 3 vector ieintr Ox75
device ie2 at vme24d32 ? csr Ox31ff02 priority 3 vector ieintr Ox76
device ie3 at vme24d32 ? csr Ox35ff02 priority 3 vector ieintr Ox77

CONFIG - SUN-3E SYSTEM
device ieO at vme24d16 ? csr Ox31ff02 priority 3 vector ieintr Ox74

CONFIG - SUN386i SYSTEM
device ieO at obmem ? csr OxDOOOOOOO irq 21 priority 3

DESCRIPTION
The ie interface provides access to a 10 Mb/s Ethernet network through a controller using the Intel 82586
LAN Coprocessor chip. For a general description of network interfaces see if(4N).

ieO specifies a CPU-hoard-resident interface, except on a Sun-3E where ieO is the Sun-3/E Ethernet expan­
sion board. iel specifies a Multibus Intel Ethernet interface for use with a VME adapter. ie2 and ie3
specify SunNet Ethernet/VME Controllers, also known as a Sun-3/E Ethernet expansion boards.

SEE ALSO
if(4N),le(4S)

DIAGNOSTICS
There are too many driver messages to list them all individually here. Some of the more common mes­
sages and their meanings follow.

ie%d: Ethernet jammed
Network activity has become so intense that sixteen successive transmission attempts failed, and
the 82586 gave up on the current packet. Another possible cause of this message is a noise source
somewhere in the network, such as a loose transceiver connection.

ie%d: no carrier
The 82586 has lost input to its carrier detect pin while trying to transmit a packet, causing the
packet to be dropped. Possible causes include an open circuit somewhere in the network and
noise on the carrier detect line from the transceiver.

ie%d: lost interrupt: resetting
The driver and 82586 chip have lost synchronization with each other. The driver recovers by
resetting itself and the chip.

ie%d: iebark reset

Sun Release 4.1

The 82586 failed to complete a watchdog timeout command in the allotted time. The driver
recovers by resetting itself and the chip.

Last change: 28 December 1989 1395

IE (4S)

1396

DEVICES AND NETWORK INTERFACES IE (4S)

ie%d: WARNING: requeuing
The driver has run out of resources while getting a packet ready to transmit. The packet is put
back on the output queue for retransmission after more resources become available.

ie%d: panic: scb overwritten
The driver has discovered that memory that should remain unchanged after initialization has
become corrupted. This error usually is a symptom of a bad 82586 chip.

ie%d: giant packet
Provided that all stations on the Ethernet are operating according to the Ethernet specification, this
error "should never happen," since the driver allocates its receive buffers to be large enough to
hold packets of the largest permitted size. The most likely cause of this message is that some
other station on the net is transmitting packets whose lengths exceed the maximum permitted for
Ethernet.

Last change: 28 December 1989 Sun Release 4.1

IF(4N) DEVICES AND NETWORK INTERFACES IF(4N)

NAME
if - general properties of network interfaces

DESCRIPTION
Each network interface in a system corresponds to a path through which messages may be sent and
received. A network interface usually has a hardware device associated with it, though certain interfaces
such as the loopback interface, 10(4), do not

At boot time, each interface with underlying hardware support makes itself known to the system during the
autoconfiguration process. Once the interface has acquired its address, it is expected to install a routing
table entry so that messages can be routed through it. Most interfaces require some part of their address
specified with an SIOCSIF ADDR IOCTL before they will allow traffic to flow through them. On interfaces
where the network-link layer address mapping is static, only the network number is taken from the ioctl;
the remainder is found in a hardware specific manner. On interfaces which provide dynamic network-link
layer address mapping facilities (for example, 10Mb/s Ethernets using arp(4P)), the entire address
specified in the ioetl is used.

The following ioctl calls may be used to manipulate network interfaces. Unless specified otherwise, the
request takes an ifreq structure as its parameter. This structure has the form

struct ifreq {
char ifr_name[16]; 1* name of interface (e.g. tlecOn) *1
union {

struct sockaddr ifru _addr;
struct sockaddr ifru_dstaddr;
short ifru _flags;

} ifr_ifru;
#define ifr addr
#define ifr dstaddr
#define ifr _flags

ifr ifru.ifru addr 1* address *1 - -
ifr _ifru.ifru _ dstaddr 1* other end of p-to-p link *1
ifr _ ifru.ifru _flags 1* flags * I

};

SIOCSIFADDR

SIOCGIFADDR

SIOCSIFDST ADDR

SIOCGIFDSTADDR

SIOCSIFFLAGS

SIOCGIFFLAGS

SIOCGIFCONF

Sun Release 4.1

Set interface address. Following the address assignment, the "initialization" rou­
tine for the interface is called.

Get interface address.

Set point to point address for interface.

Get point to point address for interface.

Set interface flags field. If the interface is marked down, any processes currently
routing packets through the interface are notified.

Get interface flags.

Get interface configuration list. This request takes an ifconf structure (see below)
as a value-result parameter. The ifc_len field should be initially set to the size of
the buffer pointed to by ifc _bur. On return it will contain the length, in bytes, of
the configuration list.

Last change: 9 October 1987 1397

IF(4N)

SIOCADDMULTI

SIOCDELMULTI

SIOCSPROMISC

SEE ALSO
arp(4P),lo(4)

1398

DEVICES AND NETWORK INTERFACES

1*
* Structure used in SIOCGIFCONF request.
* Used to retrieve interface configuration
* for machine (useful for programs which
* must know all networks accessible).
*1
struct ifconf {

int ifcJen; 1* size of associated buffer *1
union {

caddr _ t ifcu _ buf;
struct ifreq *ifcu_req;

} ifc_ifcu;
ifc buf ifc ifcu.ifcu buf 1* buffer address *1 - - -

IF(4N)

#define
#define ifc _req ifc Jfcu.ifcu _req 1* array of structures returned *1
};

Enable a multicast address for the interface. A maximum of 64 multicast
addresses may be enabled for any given interface.

Disable a previously set multicast address.

Toggle promiscuous mode.

Last change: 9 October 1987 Sun Release 4.1

INET(4F) PROTOCOL FAMILIES INET(4F)

NAME
inet - Internet protocol family

SYNOPSIS
options INET

#include <sysltypes.h>
#include <netinetlin.h>

DESCRIPTION
The Internet protocol family implements a collection of protocols which are centered around the Internet
Protocol (IP) and which share a common address format. The Internet family provides protocol support for
the SOCK_STREAM, SOCK _ DGRAM, and SOCK_RAW socket types.

PROTOCOLS
The Internet protocol family is comprised of the Internet Protocol (IP), the Address Resolution Protocol
(ARP), the Internet Control Message Protocol (ICMP), the Transmission Control Protocol (TCP), and the
User Datagram Protocol (UDP).

TCP is used to support the SOCK_STREAM abstraction while UDP is used to support the SOCK_DGRAM
abstraction; see tcp(4P) and udp(4P). A raw interface to W is available by creating an Internet socket of
type SOCK_RAW; see ip(4P). ICMP is used by the kernel to handle and report errors in protocol process­
ing. It is also accessible to user programs; see icmp(4P). ARP is used to translate 32-bit IP addresses into
48-bit Ethernet addresses; see arp(4P).

The 32-bit IP address is divided into network number and host number parts. It is frequency-encoded; the
most-significant bit is zero in Class A addresses, in which the high-order 8 bits are the network number.
Class B addresses have their high order two bits set to 10 and use the high-order 16 bits as the network
number field. Class C addresses have a 24-bit network number part of which the high order three bits are
110. Sites with a cluster of local networks may chose to use a single network number for the cluster; this is
done by using subnet addressing. The local (host) portion of the address is further subdivided into subnet
number and host number parts. Within a subnet, each subnet appears to be an individual network; exter­
nally, the entire cluster appears to be a single, uniform network requiring only a single routing entry. Sub­
net addressing is enabled and examined by the following ioctl(2) commands on a datagram socket in the
Internet domain; they have the same form as the SIOCIFADDR command (see intro(4».

SIO CSIFNETM ASK Set interface network mask. The network mask defines the network part of the
address; if it contains more of the address than the address type would indicate,
then subnets are in use.

SIOCGIFNETMASK Get interface network mask.

ADDRESSING
IP addresses are four byte quantities, stored in network byte order (on Sun386i systems these are word and
byte reversed).

Sockets in the Internet protocol family use the following addressing structure:
struct sockaddr In {

};

short sin_family;
u _short sin J>ort;
struct in _ addr sin _ addr;
char sin _ zero[8];

Library routines are provided to manipulate structures of this form; see intro(3).

The sin _ addr field of the sockaddr _in structure specifies a local or remote IP address. Each network inter­
face has its own unique IP address. The special value INADDR_ANY may be used in this field to effect
"wildcard" matching. Given in a bind(2) call, this value leaves the local IP address of the socket
unspecified, so that the socket will receive connections or messages directed at any of the valid IP
addresses of the system. This can prove useful when a process neither knows nor cares what the local IP

Sun Release 4.1 Last change: 18 February 1988 1399

INET(4F) PROTOCOL FAMILIES INET(4F)

address is or when a process wishes to receive requests using all of its network interfaces. The
sockaddrJn structure given in the bind(2) call must specify an in_addr value of either IPADDR_ANY or
one of the system's valid IP addresses. Requests to bind any other address will elicit the error EADDRNO­
T A V AIL. When a connect(2) call is made for a socket that has a wildcard local address, the system sets the
sin _addr field of the socket to the IP address of the network interface that the packets for that connection
are routed via.

The sin .]lort field of the sockaddr _in structure specifies a port number used by TCP or UDP. The local
port address specified in a bind(2) call is restricted to be greater than IPPORT_RESERVED (defined in
<netinetlin.h» unless the creating process is running as the super-user, providing a space of protected port
numbers. In addition, the local port address must not be in use by any socket of same address family and
type. Requests to bind sockets to port numbers being used by other sockets return the error EADDRINUSE.
If the local port address is specified as 0, then the system picks a unique port address greater than
IPPORT_RESERVED. A unique local port address is also picked when a socket which is not bound is used
in a connect(2) or send(2) call. This allows programs which do not care which local port number is used
to set up TCP connections by simply calling socket(2) and then connect(2), and to send UDP datagrams
with a socket(2) call followed by a send(2) call.

Although this implementation restricts sockets to unique local port numbers, TCP allows multiple simul­
taneous connections involving the same local port number so long as the remote IP addresses or port
numbers are different for each connection. Programs may explicitly override the socket restriction by set­
ting the SO_REUSEADDR socket option with setsockopt (see getsockopt(2».

SEE ALSO
bind(2), connect(2), getsockopt(2), ioctl(2), send(2), socket(2), intro(3), byteorder(3N),
gethostent(3N). getnetent(3N), getprotoent(3N), getservent(3N), inet(3N). intro(4). arp(4P). icmp(4P),
ip(4P) tcp(4P), udp(4P)

Network Information Center, DDN Protocol Handbook (3 vols.). Network Information Center, SRI Interna­
tional, Menlo Park, Calif., 1985.
A 4.2BSD Interprocess Communication Primer

WARNING

1400

The Internet protocol support is subject to change as the Internet protocols develop. Users should not
depend on details of the current implementation, but rather the services exported.

Last change: 18 February 1988 Sun Release 4.1

IP(4P) PROTOCOLS IP(4P)

NAME
ip - Internet Protocol

SYNOPSIS
#include <syslsocket.h>
#include <netinetlin.h>

s = socket(AF_INET, SOCK_RAW, proto);

DESCRIPTION
IP is the internetwork datagram delivery protocol that is central to the Internet protocol family. Programs
may use IP through higher-level protocols such as the Transmission Control Protocol (TCP) or the User
Datagram Protocol (UDP), or may interface directly using a "raw socket." See tcp(4P) and udp(4P). The
protocol options defined in the IP specification may be set in outgoing datagrams.

Raw IP sockets are connectionless and are normally used with the sendto and recvfrom calls, (see send(2)
and recv(2» although the connect(2) call may also be used to fix the destination for future datagrams (in
which case the read(2V) or recv(2) and write(2V) or send(2) calls may be used). If proto is zero, the
default protocol, IPPROTO _ RA W, is used. If proto is non-zero, that protocol number will be set in outgo­
ing datagrams and will be used to filter incoming datagrams. An IP header will be generated and
prepended to each outgoing datagram; Received datagrams are returned with the IP header and options
intact.

A single socket option, IP _OPTIONS, is supported at the IP level. This socket option may be used to set IP
options to be included in each outgoing datagram. IP options to be sent are set with setsockopt (see get­
sockopt(2». The getsockopt(2) call returns the IP options set in the last setsockopt call. IP options on
received datagrams are visible to user programs only using raw IP sockets. The format of IP options given
in setsockopt matches those defined in the IP specification with one exception: the list of addresses for the
source routing options must include the first-hop gateway at the beginning of the list of gateways. The
first-hop gateway address will be extracted from the option list and the size adjusted accordingly before
use. IP options may be used with any socket type in the Internet family.

At the socket level, the socket option SO _DONTROUTE may be applied. This option forces datagrams
being sent to bypass the routing step in output. Normally, IP selects a network interface to send the
datagram via, and possibly an intennediate gateway, based on an entry in the routing table. See
routing(4N). When SO_DONTROUTE is set, the datagram will be sent via the interface whose network
number or full IP address matches the destination address. If no interface matches, the error ENETUNRCH
will be returned.

Datagrams flow through the IP layer in two directions: from the network ip to user processes and from user
processes down to the network. Using this orientation, IP is layered above the network interface drivers
and below the transport protocols such as UDP and TCP. The Internet Control Message Protocol (ICMP) is
logically a part ofIP. See icmp(4P).

IP provides for a checksum of the header part, but not the data part of the datagram. The checksum value
is computed and set in the process of sending datagrams and checked when receiving datagrams. IP header
checksumming may be disabled for debugging purposes by patching the kernel variable ipcksum to have
the value zero.

IP options in received datagrams are processed in the IP layer according to the protocol specification.
Currently recognized IP options include: security, loose source and record route (LSRR), strict source and
rec@rd route (SSRR), record route, stream identifier, and internet timestamp.

The IP layer will normally forward received datagrams that are not addressed to it. Forwarding is under the
control of the kernel variable ipforwarding: if ipforwarding is zero, IP datagrams will not be forwarded; if
ipforwarding is one, IP datagrams will be forwarded. ipforwarding is usually set to one only in machines
with more than one network interface (internetwork routers). This kernel variable can be patched to enable
or disable forwarding.

Sun Release 4.1 Last change: 9 October 1987 1401

JP(4P) PROTOCOLS IP(4P)

The IF layer will send an ICMP message back to the source host in many cases when it receives a datagram
that can not be handled. A "time exceeded" ICMP message will be sent if the "time to live" field in the IP
header drops to zero in the process of forwarding a datagram. A "destination unreachable" message will
be sent if a datagram can not be forwarded because there is no route to the final destination, or if it can not
be fragmented. If the datagram is addressed to the local host but is destined for a protocol that is not sup­
ported or a port that is not in use, a destination unreachable message will also be sent. The IF layer may
send an ICMP "source quench" message if it is receiving datagrams too quickly. ICMP messages are only
sent for the first fragment of a fragmented datagram and are never returned in response to errors in other
ICMP messages.

The IP layer supports fragmentation and reassembly. Datagrams are fragmented on output if the datagram
is larger than the maximum transmission unit (MTU) of the network interface. Fragments of received
datagrams are dropped from the reassembly queues if the complete datagram is not reconstructed within a
short time period.

Errors in sending discovered at the network interface driver layer are passed by IP back up to the user pro­
cess.

ERRORS
A socket operation may fail with one of the following errors returned:

EACCESS

EISCONN

EMS GSIZE

ENETUNREACH

ENOTCONN

ENOBUFS

when specifying an IP broadcast destination address if the caller is not the super­
user;

when trying to establish a connection on a socket which already has one, or when
trying to send a datagram with the destination address specified and the socket is
already connected;

when sending datagram that is too large for an interface, but is not allowed be
fragmented (such as broadcasts);

when trying to establish a connection or send a datagram, if there is no matching
entry in the routing table, or if an ICMP "destination unreachable" message is
received.

when trying to send a datagram, but no destination address is specified, and the
socket hasn't been connected;

when the system runs out of memory for fragmentation buffers or other internal
data structure;

EADDRNOTA V AIL when an attempt is made to create a socket with a local address that matches no
network interface, or when specifying an IP broadcast destination address and the
network interface does not support broadcast;

The following errors may occur when setting or getting IP options:

EINVAL

EINVAL

An unknown socket option name was given.

The IP option field was improperly formed; an option field was shorter than the
minimum value or longer than the option buffer provided.

SEE ALSO

1402

connect(2), getsockopt(2), read(2V), recv(2), send(2), write(2V), icmp(4P), inet(4F) routing(4N},
tcp(4P), udp(4P)

Postel, Jon, "Internet Protocol - DARPA Internet Program Protocol Specification," RFC 791, Network
Information Center, SRI International, Menlo Park, Calif., September 1981. (Sun 800-1063-01)

Last change: 9 October 1987 Sun Release 4.1

IP(4P)

BUGS

PROTOCOLS IP(4P)

Raw sockets should receive ICMP error packets relating to the protocol; currently such packets are simply
discarded.

Users of higher-level protocols such as TCP and UDP should be able to see received IP options.

Sun Release 4.1 Last change: 9 October 1987 1403

KB(4M) DEVICES AND NETWORK INTERFACES KB(4M)

NAME
kb - Sun keyboard S1REAMS module

CONFIG
pseudo-device kbnumber

SYNOPSIS
#include <sys/types.h>
#include <sys/stream.h>
#include <sys/stropts.h>
#include <sundev/vuid event.h>
#include <sundev/kbio.h>
#include <sundev/kbd.h>

ioctl(fd, I_PUSH, "kb");

DESCRIPTION
The kb STREAMS module processes byte streams generated by Sun keyboards attached to a CPU serial or
parallel port. Definitions for altering keyboard translation, and reading events from the keyboard, are in
<sundevlkbio.h> and <sundevlkbd.h>. number specifies the maximum number of keyboards supported
by the system.

kb recognizes which keys have been typed using a set of tables for each known type of keyboard. Each
translation table is an array of 128 16-bit words (unsigned shorts). If an entry in the table is less than
Oxl00, it is treated as an ISO 8859/1 character. Higher values indicate special characters that invoke more
complicated actions.

Keyboard Translation Mode
The keyboard can be in one of the following translation modes:

TR NONE Keyboard translation is turned off and up/down key codes are
reported.

TR ASCn ISO 8859/1 codes are reported.

TR EVENT

TR UNTRANS EVENT - -

firm_events are reported (see SunView Programmer's Guide).

firm _events containing unencoded key station codes are reported
for all input events within the window system.

Keyboard Translation-Table Entries

1404

All instances of the kb module share seven translation tables used to convert raw keystation codes to event
values. The tables are:

Unshifted

Shifted

Caps Lock

AltGraph

NumLock

Controlled

Key Up

Used when a key is depressed and no shifts are in effect.

Used when a key is depressed and a Shift key is being held down.

Used when a key is depressed and Caps Lock is in effect.

Used when a key is depressed and the Alt Graph key is being held down.

Used when a key is depressed and Num Lock is in effect.

Used when a key is depressed and the Control key is being held down
(regardless of whether a Shift key or the Alt Graph is being held down, or
whether Caps Lock or Num Lock is in effect).

Used when a key is released.

Each key on the keyboard has a "key station" code which is a number from 0 to 127. This number is used
as an index into the translation table that is currently in effect. If the corresponding entry in that translation
table is a value from 0 to 255, this value is treated as an ISO 8859/1 character, and that character is the
result of the translation.

Last change: 30 November 1989 Sun Release 4.1

KB (4M) DEVICES AND NETWORK INTERFACES KB(4M)

If the entry is a value above 255, it is a "special" entry. Special entry values are classified according to the
value of the high-order bits. The high-order value for each class is defined as a constant, as shown in the
list below. The value of the low-order bits, when added to this constant, distinguishes between keys within
each class:

SHIFf KEYS Oxl00

BUCKYBITS Ox200

FUNNY Ox300

Sun Release 4.1

A shift key. The value of the particular shift key is added to determine which shift
mask to apply:

CAPSLOCK 0 "Caps Lock" key.

SHIff LOCK 1

LEFfSHIFf2

RIGHTSHIFf 3

LEFfCfRL4

RIGHTCfRL5

ALTGRAPH9

ALT 10

NUMLOCK 11

"Shift Lock" key.

Left-hand "Shift" key.

Right-hand "Shift" key.

Left-hand (or only) "Control" key.

Right-hand "Control" key.

"Alt Graph" key.

"Alternate" key on the Sun-3 keyboard, or "Alt" key on
the Sun-4 keyboard.

"Num Lock" key.

Used to toggle mode-key-up/down status without altering the value of an accom­
panying ISO 8859/1 character. The actual bit-position value, minus 7, is added.

MET ABIT 0 The "Meta" key was pressed along with the key. This is
the only user-accessible bucky bit. It is ORed in as the
Ox80 bit; since this bit is a legitimate bit in a character,
the only way to distinguish between, for example, OxAO
as MET A+0x20 and OxAO as an 8-bit character is to
watch for "MET A key up" and "MET A key down" events
and keep track of whether the META key was down.

SYSTEMBIT 1 The "System" key was pressed. This is a place holder to
indicate which key is the system-abort key.

Performs various functions depending on the value of the low 4 bits:

NOP Ox300 Does nothing.

OOPS Ox301

HOLEOx302

NOSCROLL Ox303

CTRLS Ox304

CfRLQOx305

RESET Ox306

ERROR Ox307

IDLE Ox308

COMPOSE Ox309

Exists, but is undefined.

There is no key in this position on the keyboard, and the
position-code should not be used.

Alternately sends CfRL-S and CfRL-Q characters.

Sends CfRL-S character and toggles NOSCROLL key.

Sends CTRL-Q character and toggles NOSCROLL key.

Keyboard reset.

The keyboard driver detected an internal error.

The keyboard is idle (no keys down).

This key is the COMPOSE key; the next two keys should
comprise a two-character "COMPOSE key" sequence.

Last change: 30 November 1989 1405

KB(4M) DEVICES AND NETWORK INTERFACES KB(4M)

1406

STRING Ox500

FUNCKEYS Ox600

NONLOx30A Used only in the Num Lock table; indicates that this key
is not affected by the Num Lock state, so that the transla­
tion table to use to translate this key should be the one
that would have been used had Num Lock not been in
effect

Ox30B - Ox30F Reserved for nonparameterized functions.

This key is a "floating accent" or "dead" key. When this key is pressed, the next
key generates an event for an accented character; for example, "floating accent
grave" followed by the "a" key generates an event with the ISO 8859/1 code for
the "a with grave accent" character. The low-order bits indicate which accent; the
codes for the individual "floating accents" are as follows:

FA_UMLAUTOx400 umlaut

FA_CFLEX Ox401 circumflex

FA_TILDE Ox402

FA_CEDILLA Ox403

tilde

cedilla

FA_ACUTE Ox404 acute accent

FA_GRA VE Ox405 grave accent

The low-order bits index a table of strings. When a key with a STRING entry is
depressed, the characters in the null-terminated string for that key are sent, charac­
ter by character. The maximum length is defined as:

KT AB_STRLEN 10

Individual string numbers are defined as:

HOMEARROW OxOO
UPARROW OxO 1
DOWNARROW Ox02
LEFT ARROW Ox03
RIGHTARROW Ox04

String numbers Ox05 - OxOF are available for custom entries.

Function keys. The next-to-Iowest 4 bits indicate the group of function keys:

LEFTFUNC Ox600
RIGHTFUNC Ox610
TOPFUNC Ox620
BOTTOMFUNC Ox630

The low 4 bits indicate the function key number within the group:

LF(n)
RF(n)
TF(n)
BF(n)

(LEFTFUNC+(n)-1)
(RIGHTFUNC+(n)-1)
(TOPFUNC+(n)-I)
(BOTTOMFUNC+(n)-1)

There are 64 keys reserved for function keys. The actual positions may not be on left/right/top!bottom of
the keyboard, although they usually are.

PADKEYS Ox700
This key is a "numeric keypad key." These entries should appear only in the Num Lock transla­
tion table; when Num Lock is in effect, these events will be generated by pressing keys on the
right-hand keypad. The low-order bits indicate which key; the codes for the individual keys are as
follows:

Last change: 30 November 1989 Sun Release 4.1

KB(4M) DEVICES AND NETWORK INTERFACES KB(4M)

PADEQUAL Ox700 "=" key

PADSLASH Ox701 "f' key

P ADST AR Ox702 "*" key

PADMINUS Ox703 "-" key

PADSEP Ox704 "," key

PAD? Ox705 "7" key

PAD80x706 "8" key

PAD90x707 "9" key

PADPLUS Ox708 "+" key

PAD4 Ox709 "4" key

PADS Ox70A "5" key

PAD60x70B "6" key

PAD! Ox7OC "I" key

PAD20x70D "2" key

PAD30x70E "3" key

PADD Ox70F "0" key

PADDOT Ox7IO "." key

PADENTER Ox7II "Enter" key

In TR _ASCII mode, when a function key is pressed, the following escape sequence is sent:
ESC[0 9z

where ESC is a single escape character and "0 ... 9" indicates the decimal representation of the function-key
value. For example, function key Rl sends the sequence:

ESC[208z
because the decimal value of RF(I) is 208. In TR _EVENT mode, if there is a VUID event code for the func­
tion key in question, an event with that event code is generated; otherwise, individual events for the charac­
ters of the escape sequence are generated.

Keyboard Compatibility Mode

IOCTLS

kb is in "compatibility mode" when it starts up. In this mode, when the keyboard is in the TR _EVENT
translation mode, ISO 8859/1 characters from the "upper half' of the character set (that is, characters with
the 8th bit set) are presented as events with codes in the ISO _FIRST range (as defined in
<sundev/vuid _ event.h». The event code is ISO_FIRST plus the character value. This is for backwards
compatibility with older versions of the keyboard driver. If compatibility mode is turned off, ISO 8859/1
characters are presented as events with codes equal to the character code.

The following ioctl() requests set and retrieve the current translation mode of a keyboard:

KIOCTRANS The argument is a pointer to an int. The translation mode is set to the value in the int
pointed to by the argument.

KIOCGTRANS The argument is a pointer to an int. The current translation mode is stored in the int
pointed to by the argument.

ioctl() requests for changing and retrieving entries from the keyboard translation table use the kiockeymap
structure:

Sun Release 4.1 Last change: 30 November 1989 1407

KB(4M) DEVICES AND NETWORK INTERFACES KB(4M)

1408

struct kiockeymap {
int kio_tablemask;

#define KIOCABORTI -1
#define KIOCABORT2 -2

u_char kio_station;
u_short kio_entry;

1* Translation table (one of: 0, CAPSMASK,
SIDFTMASK, CTRLMASK, UPMASK,
ALTGRAPHMASK, NUMLOCKMASK) *1

1* Special "mask": abort! keystation *1
1* Special "mask": abort2 keystation *1
1* Physical keyboard key station (0-127) *1
1* Translation table station's entry *1

};

KIOCSKEY

KIOCGKEY

char kio _string[10]; 1* Value for STRING entries (null terminated) *1

The argument is a pointer to a kiockeymap structure. The translation table entry
referred to by the values in that structure is changed.

kio _tablemask specifies which of the five translation tables contains the entry to be
modified:

UPMASK OxOO80 "Key Up" translation table.

NUMLOCKMASK Ox0800
"Num Lock" translation table.

CTRLMASK OxOO30 "Controlled" translation table.

ALTGRAPHMASK Ox0200
"Alt Graph" translation table.

SHIff MASK OxOOOE "Shifted" translation table.

CAPSMASK OxOOOI "Caps Lock" translation table.

(No shift keys pressed or locked)
"Unshifted" translation table.

kio _station specifies the keystation code for the entry to be modified. The value of
kio _entry is stored in the entry in question. If kio _entry is between STRING and
STRING+15, the string contained in kio_string is copied to the appropriate string table
entry. This call may return EINV AL if there are invalid arguments.

There are a couple special values of kio _ tablemask that affect the two step "break to the
PROM monitor" sequence. The usual sequence is SETUP-a or Ll-a. If
kio _ tablemask is KIOCABORTI then the value of kio _station is set to be the first keys­
tation in the sequence. If kio_tablemask is KIOCABORT2 then the value of
kio _station is set to be the second keystation in the sequence.

The argument is a pointer to a kiockeymap structure. The current value of the keyboard
translation table entry specified by kio _ tablemask and kio _station is stored in the struc­
ture pointed to by the argument. This call may return EINV AL if there are invalid argu­
ments.

KIOCTYPE The argument is a pointer to an into A code indicating the type of the keyboard is stored
in the int pointed to by the argument:

KB KLUNK Micro Switch 103S032-2
KB VT100 Keytronics VT100 compatible
KB SUN2 Sun-2 keyboard
KB SUN3 Sun-3 keyboard
KB SUN4 Sun-4 keyboard
KB Ascn Ascn terminal masquerading as keyboard

-1 is stored in the int pointed to by the argument if the keyboard type is unknown.

KIOCLA YOUT The argument is a pointer to an int. On a Sun-4 keyboard, the layout code specified by
the keyboard's DIP switches is stored in the int pointed to by the argument.

Last change: 30 November 1989 Sun Release 4.1

KB(4M)

KIOCCMD

KIOCSLED

KIOCGLED

DEVICES AND NETWORK INTERFACES KB(4M)

The argument is a pointer to an int. The command specified by the value of the int
pointed to by the argument is sent to the keyboard. The commands that can be sent are:

Commands to the Sun-2, Sun-3, and Sun-4 keyboard:
KBD _ CMD _RESET Reset keyboard as if power-up.
KBD _ CMD _BELL Turn on the bell.
KBD CMD NOBELL Turn off the bell

Commands to the Sun-3 and Sun-4 keyboard:
KBD _ CMD _CLICK Turn on the click annunciator.
KBD _ CMD _NOCLICK Turn off the click annunciator.

Inappropriate commands for particular keyboard types are ignored. Since there is no
reliable way to get the state of the bell or click (because we cannot query the keyboard,
and also because a process could do writes to the appropriate serial driver - thus going
around this ioctlO request) we do not provide an equivalent ioctiO to query its state.

The argument is a pointer to an char. On the Sun-4 keyboard, the LEDs are set to the
value specified in that char. The values for the four LEDs are:

LED _ CAPS_LOCK "Caps Lock" light.
LED COMPOSE "Compose" light.
LED_SCROLL_LOCK "Scroll Lock" light.
LED NUM LOCK "Num Lock" light.

The argument is a pointer to a char. The current state of the LEDs is stored in the char
pointed to by the argument.

KIOCSCOMPAT The argument is a pointer to an int. "Compatibility mode" is turned on if the int has a
value of 1, and is turned off if the int has a value of O.

KIOCGCOMP AT The argument is a pointer to an int. The current state of "compatibility mode" is stored
in the int pointed to by the argument.

KIOCGDIRECT These ioctl() requests are supported for compatibility with the system keyboard device
Idev/kbd. KIOCSDIRECT has no effect, and KIOCGDIRECT always returns 1.

SEE ALSO
c1ick(l), loadkeys(l), kbd(4S), termio(4), win(4S), keytables(5)

SunView Programmer's Guide (describes firm_event format)

Sun Release 4.1 Last change: 30 November 1989 1409

KBD(4S) DEVICES AND NETWORK INTERFACES KBD(4S)

NAME
kbd - Sun keyboard

CONFIG
None; included in standard system.

DESCRIPTION

IOCTLS

FILES

The kbd device provides access to the Sun Workstation keyboard. When opened, it provides access to the
standard keyboard device for the workstation (attached either to a CPU serial or paraUel port). It is a multi­
plexing driver; a stream referring to the standard keyboard device, with the kb(4M) and ttcompat(4M)
STREAMS modules pushed on top of that device, is linked below it Normally, this device passes input to
the "workstation console" driver, which is linked above a special minor device of kbd, so that keystrokes
appear as input on /dev/console; the KIOCSDIRECT ioctl must be used to direct input towards or away
from the /dev/kbd device.

KIOCSDIRECT The argument is a pointer to an into If the value in the int pointed to by the argument is
1, subsequent keystrokes typed on the system keyboard will sent to /dev/kbd; if it is 0,
subsequent keystrokes will be sent to the "workstation console" device. When the last
process that has /dev/kbd open closes it, if keystrokes had been sent to /dev/kbd they
are redirected back to the "workstation console" device.

KIOCGDIRECT The argument is a pointer to an into If keystrokes are currently being sent to /dev/kbd, 1
is stored in the int pointed to by the argument; if keystrokes are currently being sent to
the "workstation console" device, ° is stored there.

/dev/kbd

SEE ALSO
console(4S), kb(4M), ttcompat(4M), win(4S), zs(4S)

1410 Last change: 24 November 1987 Sun Release 4.1

LDTERM(4M) DEVICES AND NETWORK INTERFACES LDTERM(4M)

NAME
ldterm - standard terminal STREAMS module

CONFIG
None; included by default

SYNOPSIS
#include <sysltypes.h>
#include <syslstream.h>
#include <syslstropts.h>

ioctl(fd, I_PUSH, "Idterm tt
);

DESCRIPTION
Idterm is a STREAMS module that provides most of the termio(4) terminal interface. This module does
not perform the low-level device control functions specified by flags in the c _ cftag word of the termios
structure or by the IGNBRK, IGNP AR, P ARMRK, or INPCK flags in the c _ iftag word of the termios struc­
ture; those functions must be performed by the driver or by modules pushed below the Idterm module. All
other termio functions are performed by Idterm; some of them, however, require the cooperation of the
driver or modules pushed below Idterm, and may not be performed in some cases. These include the
IXOFF flag in the c Jftag word and the delays specified in the c _ ofJag word.

Read-side Behavior
Various types of STREAMS messages are processed as follows:

M BREAK When this message is received, either an interrupt signal is generated, or the message is
treated as if it were an M_DATA message containing a single ASCII NUL character, depend­
ing on the state of the BRKINT flag.

M DATA These messages are normally processed using the standard termio input processing. If the
ICANON flag is set, a single input record ("line") is accumulated in an internal buffer, and
sent upstream when a line-terminating character is received. If the ICANON flag is not set,
other input processing is performed and the processed data is passed upstream.

If output is to be stopped or started as a result of the arrival of characters, M_STOP and
M_START messages are sent downstream, respectively. If the IXOFF flag is set, and input
is to be stopped or started as a result of flow-control considerations, M _ STOPI and
M_STARTI messages are sent downstream, respectively.

M_DATA messages are sent downstream, as necessary, to perform echoing.

If a signal is to be generated, a M _FLUSH message with a flag byte of FLUSHR is placed on
the read queue, and if the signal is also to flush output a M_FLUSH message with a flag byte
of FLUSHW is sent downstream.

M CTL If the first byte of the message is MC_NOCANON, the input processing normally performed
on M _DAT A messages is disabled, and those messages are passed upstream unmodified; this
is for the use of modules or drivers that perform their own input processing, such as a
pseudo-terminal in TIOCREMOTE mode connected to a program that performs this process­
ing. If the first byte of the message is MC _DOCANON, the input processing is enabled.
Otherwise, the message is ignored; in any case, the message is passed upstream.

M FLUSH The read queue of the module is flushed of all its data messages, and all data in the record
being accumulated is also flushed. The message is passed upstream.

M HANGUP Data is flushed as it is for a M_FLUSH message, and M_FLUSH messages with a flag byte of
FLUSHRW are sent upstream and downstream. Then an M_PCSIG message is sent
upstream with a signal of SIGCONT, followed by the M _ HANGUP message.

M IOCACK The data contained within the message, which is to be returned to the process, is augmented
if necessary, and the message is passed upstream.

Sun Release 4.1 Last change: 24 January 1990 1411

LDTERM(4M) DEVICES AND NETWORK IN1ERFACES LDTERM(4M)

All other messages are passed upstream unchanged.

Write-side behavior

IOCTLS

Various types of STREAMS messages are processed as follows:

M FLUSH The write queue of the module is flushed of all its data messages, and the message is passed
downstream.

M_IOCTL The function to be performed for this ioctl() request by the Idterm module is performed,
and the message is passed downstream in most cases. The TCFLSH and TCXONC ioctl()
requests can be performed entirely in this module, so the reply is sent upstream and the mes­
sage is not passed downstream.

M DATA If the OPOST flag is set, or both the XCASE and ICANON flags are set, output processing is
performed and the processed message is passed downstream, along with any M_DELAY
messages generated. Otherwise, the message is passed downstream without change.

All other messages are passed downstream unchanged.

The following ioctl() requests are processed by the Idterm module. All others are passed downstream.

TCGETS
TCGETA

TCSETS
TCSETSW
TCSETSF
TCSETA
TCSETAW
TCSETAF

TCFLSH

TCXONC

The message is passed downstream; if an acknowledgment is seen, the data provided by
the driver and modules downstream is· augmented and the acknowledgement is passed
upstream.

The parameters that control the behavior of the Idterm module are changed. If a mode
change requires options at the stream head to be changed, a M_SETOPT message is sent
upstream. If the ICANON flag is turned on or off, the read mode at the stream head is
changed to message-nondiscard or byte-stream mode, respectively. If it is turned on, the
vmin and vtime values at the stream head are set to 1 and 0, respectively; if it is turned
on, they are' set to the values specified by the ioctl() request. The vrnin and vtime
values are also set if ICANON is off and the values are changed by the ioctl() request. If
the TOSTOP flag is turned on or off, the tostop mode at the stream head is turned on or
off, respectively.

If the argument is 0, an M_FLUSH message with a flag byte of FLUSHR is sent down­
stream and placed on the read queue. If the argument is 1, the write queue is flushed of
all its data messages and aM_FLUSH message with a flag byte of FLUSHW is sent
upstream and downstream. If the argument is 2, the write queue is flushed of all its data
messages and a M _FLUSH message with a flag byte of FLUSHRW is sent downstream
and placed on the read queue.

If the argument is 0, and output is not already stopped, an M_STOP message is sent
downstream. If the argument is 1, and output is Stopped, an M_START message is sent
downstream. If the argument is 2, and input is not already stopped, an M _ STOPI mes­
sage is sent downstream. If the argument is 3, and input is stopped, an M _ ST ARTI mes­
sage is sent downstream.

SEE ALSO
console(4S), mcp(4S), mti(4S), pty(4), termio(4), ttcompat(4M), zs(4S)

1412 Last change: 24 January 1990 Sun Release 4.1

IE(4S) DEVICES AND NETWORK INTERFACES IE (4S)

NAME
ie - Intel 10 Mb/s Ethernet interface

CONFIG - SUN-4 SYSTEM
device ieO at obio? csr Oxf6000000 priority 3
device iet at vme24d16 ? csr Oxe88000 priority 3 vector ieintr Ox7S
device ie2 at vme24d16 ? csr Ox31ff02 priority 3 vector ieintr Ox76
device ie3 at vme24d16 ? csr Ox3Sff02 priority 3 vector ieintr Ox77

CONFIG - SUN-3x SYSTEM
device ieO at obio ? csr Ox6S000000 priority 3
device iel at vme24d16 ? csr Oxe88000 priority 3 vector ieintr Ox7S

CONFIG - SUN-3 SYSTEM
device ieO at obio? csr OxcOOOO priority 3
device iel at vme24d16 ? csr Oxe88000 priority 3 vector ieintr Ox7S
device ie2 at vme24d32 ? csr Ox31ff02 priority 3 vector ieintr Ox76
device ie3 at vme24d32 ? csr Ox3Sff02 priority 3 vector ieintr Ox77

CONFIG - SUN-3E SYSTEM
device ieO at vme24d16 ? csr Ox31ff02 priority 3 vector ieintr Ox74

CONFIG - SUN386i SYSTEM
device ieO at obmem ? csr OxDOOOOOOO irq 21 priority 3

DESCRIPTION
The ie interface provides access to a 10 Mb/s Ethernet network through a controller using the Intel 82586
LAN Coprocessor chip. For a general description of network interfaces see ifC 4N).

ieO specifies a CPU-board-resident interface, except on a Sun-3E where ieO is the Sun-31E Ethernet expan­
sion board. iel specifies a Multibus Intel Ethernet interface for use with a VME adapter. ie2 and ie3
specify SunNet Ethemet/VME Controllers, also known as a Sun-3/E Ethernet expansion boards.

SEE ALSO
if(4N),le(4S)

DIAGNOSTICS
There are 100 many driver messages to list them all individually here. Some of the more common mes­
sages and their meanings follow.

ie%d: Ethernet jammed
Network activity has become so intense that sixteen successive transmission attempts failed, and
the 82586 gave up on the current packet. Another possible cause of this message is a noise source
somewhere in the network, such as a loose transceiver connection.

ie % d: no carrier
The 82586 has lost input to its carrier detect pin while trying to transmit a packet, causing the
packet to be dropped. Possible causes include an open circuit somewhere in the network and
noise on the carrier detect line from the transceiver.

ie%d: lost interrupt: resetting
The driver and 82586 chip have lost synchronization with each other. The driver recovers by
resetting itself and the chip.

ie%d: iebark reset

Sun Release 4.1

The 82586 failed to complete a watchdog timeout command in the allotted time. The driver
recovers by resetting itself and the chip.

Last change: 28 December 1989 1413

IE(4S)

1414

DEVICES AND NETWORK INTERFACES IE (4S)

ie%d: WARNING: requeuing
The driver has run out of resources while getting a packet ready to transmit. The packet is put
back on the output queue for retransmission after more resources become available.

ie%d: panic: scb overwritten
The driver has discovered that memory that should remain unchanged after initialization has
become corrupted. This error usually is a symptom of a bad 82586 chip.

ie % d: giant packet
Provided that all stations on the Ethernet are operating according to the Ethernet specification, this
error "should never happen," since the driver allocates its receive buffers to be large enough to

hold packets of the largest pennitted size. The most likely cause of this message is that some
other station on the net is transmitting packets whose lengths exceed the maximum permitted for
Ethernet.

Last change: 28 December 1989 Sun Release 4.1

LO(4N) DEVICES AND NETWORK INTERFACES LO(4N)

NAME
10 - software loopback network interface

SYNOPSIS
pseudo-device loop

DESCRIPTION
The loop device is a software loopback network interface; see if(4N) for a general description of network
interfaces.

The loop interface is used for performance analysis and software testing, and to provide guaranteed access
to Internet protocols on machines with no local network interfaces. A typical application is the
comsat(8C) server which accepts notification of mail delivery through a particular port on the loopback
interface.

By default, the loopback interface is accessible at Internet address 127.0.0.1 (non-standard); this address
may be changed with the SIOCSIF ADDR ioctl.

SEE ALSO
if(4N), inet(4F), comsat(8C)

DIAGNOSTICS

BUGS

lo%d: can't handle af%d
The interface was handed a message with addresses formatted in an unsuitable address family;
the packet was dropped.

It should handle all address and protocol families. An approved network address should be reserved for
this interface.

Sun Release 4.1 Last change: 9 October 1987 1415

LOFS(4S) DEVICES AND NETWORK INTERFACES LOFS(4S)

NAME
lofs - loopback virtual file system

CONFIG
options LOFS

SYNOPSIS
#include <syslmount.h>
mount(MOUNT_LOFS, virtual, Bags, dir);

DESCRIPTION
The loopback file system device allows new, virtual file systems to be created, which provide access to
existing files using alternate pathnames. Once the virtual file system is created, other file systems can be
mounted within it without affecting the original file system. File systems that are subsequently mounted
onto the original file system, however, are visible to the virtual file system, unless or until the correspond­
ing mount point in the virtual file system is covered by a file system mounted there.

virtual is the mount point for the virtual file system. dir is the pathname of the existing file system. flags is
either 0 or M_RDONLY. The M_RDONLY flag forces all accesses in the new name space to be read-only;
without it, accesses are the same as for the underlying file system. All other mount(2V) flags are
preserved from the underlying file systems.

A loopback mount of '/' onto Itmp/newroot allows the entire file system hierarchy to appear as if it were
duplicated under Itmp/newroot, including any file systems mounted from remote NFS servers. All files
would then be accessible either from a pathname relative to '/', or from a pathname relative to
Itmp/newroot until such time as a file system is mounted in Itmp/newroot, or any of its subdirectories.

Loopback mounts of '/' can be performed in conjunction with the chroot(2) system call, to provide a com­
plete virtual file system to a process or family of processes.

Recursive traversal of loopback mount points is not allowed; after the loopback mount of Itmp/newroot,
the file Itmp/newrootltmp/newroot does not contain yet another file system hierarchy; rather, it appears
just as Itmp/newroot did before the loopback mount was performed (say, as an empty directory).

The standard RC files perform first 4.2 mounts, then nfs mounts, during booting. On Sun386i systems, 10
(loopback) mounts are performed just after 4.2 mounts. letc/fstab files depending on alternate mount ord­
ers at boot time will fail to work as expected. Manual modification of letc/rc.local will be needed to make
such mount orders work.

WARNINGS
Loopback mounts must be used with care; the potential for confusing users and applications is enormous.
A loopback mount entry in letclfstab must be placed after the mount points of both directories it depends
on. This is most easily accomplished by making the loopback mount entry the last in letclfstab, though see
mount(8) for further warnings.

SEE ALSO

BUGS

1416

chroot(2), mount(2V), fstab(5), mount(8)

Because only directories can be mounted or mounted on, the structure of a virtual file system can only be
modified at directories.

Last change: 18 May 1989 Sun Release 4.1

MCP(4S) DEVICES AND NETWORK INTERFACES MCP(4S)

NAME
mcp, alm - Sun MCP Multiprotocol Communications Processor/ALM-2 Asynchronous Line Multiplexer

CONFIG - SUN-3, SUN-4 SYSTEMS
MCP

device mcpO at vme32d32 ? csr OxlOOOOOO flags Oxlffff priority 4 vector mcpintr Ox8b
device mcpl at vme32d32 ? csr OxlOlOOOO flags Oxlffff priority 4 vector mcpintr Ox8a
device mcp2 at vme32d32 ? csr Oxl020000 flags Oxlffff priority 4 vector mcpintr Ox89
device mcp3 at vme32d32 ? csr Oxl030000 flags Oxlffff priority 4 vector mcpintr Ox88

ALM-2
pseudo-device mcpa64

CONFIG - SUN-3x SYSTEMS
MCP

device mcpO at vme32d32 ? csr OxlOOOOOO flags Oxlffff priority 4 vector mcpintr Ox8b
device mcpl at vme32d32 ? csr OxlOlOOOO flags Oxlffff priority 4 vector mcpintr Ox8a
device mcp2 at vme32d32 ? csr Oxl020000 flags Oxlffff priority 4 vector mcpintr Ox89
device mcp3 at vme32d32 ? csr Oxl030000 flags OxlfffT priority 4 vector mcpintr Ox88
device mcp4 at vme32d32 ? csr Oxl040000 flags Oxlffff priority 4 vector mcpintr OxaO
device mcpS at vme32d32 ? csr OxlOSOOOO flags OxlflTf priority 4 vector mcpintr Oxal
device mcp6 at vme32d32 ? csr Oxl060000 flags OxlfffT priority 4 vector mcpintr Oxa2
device mcp7 at vme32d32 ? csr Oxl070000 flags OxlfffT priority 4 vector mcpintr Oxa3

ALM-2
pseudo-device mcpa64

SYNOPSIS
#include <fcntl.h>
#include <sys/termios.h>
open(" Idev/ttyxy" , mode);
open (" Idev/ttydn " ,mode);
open("/dev/cuan", mode);

DESCRIPTION (MCP)
The Sun MCP (Multiprotocol Communications Processor) supports up to four synchronous serial lines in
conjunction with SunLink™ Multiple Communication Protocol products.

DESCRIPTION (ALM-2)
The Sun ALM-2 Asynchronous Line Multiplexer provides 16 asynchronous serial communication lines
with modem control and one Centronics-compatible parallel printer port.

Each port supports those termio(4) device control functions specified by flags in the c _ cflag word of the
termios structure and by the IGNBRK, IGNPAR, PARMRK, or INPCK flags in the cJflag word of the ter­
mios structure are performed by the mcp driver. All other termio(4) functions must be performed by
STREAMS modules pushed atop the driver; when a device is opened, the Idterm(4M) and ttcompat(4M)
STREAMS modules are automatically pushed on top of the stream, providing the standard termio(4) inter­
face.

Bit i of flags may be specified to say that a line is not properly connected, and that the line i should be
treated as hard-wired with carrier always present. Thus specifying flags Ox0004 in the specification of
mcpO would treat line Idev/ttyh2 in this way.

Minor device numbers in the range 0 - 63 correspond directly to the normal tty lines and are named
Idev/ttyXY, where X represents the physical board as one of the characters h, i, j, or k, and Y is the line
number on the board as a single hexadecimal digit. (Thus the first line on the first board is Idev/ttyhO, and
the sixteenth line on the third board is /dev/ttyjf.)

Sun Release 4.1 Last change: 31 October 1988 1417

MCP(4S) DEVICES AND NETWORK INTERFACES MCP(4S)

To allow a single tty line to be connected to a modem and used for both incoming and outgoing calls, a
special feature, controlled by the minor device number, has been added. Minor device numbers in the
range 128 - 191 correspond to the same physical lines as those above (that is, the same line as the minor
device number minus 128).

A dial-in line has a minor device in the range 0 - 63 and is conventionally renamed /dev/Uydn, where n is
a number indicating which dial-in line it is (so that /dev/UydO is the first dial-in line), and the dial-out line
corresponding to that dial-in line has a minor device number 128 greater than the minor device number of
the dial-in line and is conventionally named /dev/cuan, where n is the number of the dial-in line.

The Idev/cuan lines are special in that they can be opened even when there is no carrier on the line. Once
a /dev/cuan line is opened, the corresponding tty line cannot be opened until the /dev/cuan line is closed; a
blocking open will wait until the /dev/cuan line is closed (which will drop Data Terminal Ready, after
which Carrier Detect will usually drop as well) and carrier is detected again, and a non-blocking open will
return an error. Also, if the /dev/Uydn line has been opened successfully (usually only when carrier is
recognized on the modem) the corresponding /dev/cuan line cannot be opened. This allows a modem to be
attached to e.g. Idev/ttydO (renamed from Idev/ttyhO) and used for dialin (by enabling the line for login in
/etdttytab) and also used for dialout (by tip(1C) or uucp(IC» as /dev/cuaO when no one is logged in on
the line. Note: the bit in the flags word in the configuration file (see above) must be zero for this line,
which enables hardware carrier detection.

IOCTLS
The standard set of termio ioctI() calls are supported by the ALM-2.

If the CRTSCTS flag in the c _ cflag is set, output will be generated only if crs is high; if crs is low, output
will be frozen. If the CRTSCTS flag is clear, the state of crs has no effect. Breaks can be generated by
the TCSBRK, TIOCSBRK, and TIOCCBRK ioctlO calls. The modem control lines TIOCM_CAR,
TIOCM_CTS, TIOCM_RTS, and TIOCM_DTR are provided.

The input and output line speeds may be set to any of the speeds supported by termio. The speeds cannot
be set independently; when the output speed is set, the input speed is set to the same speed.

ERRORS
An open() on a /dev/tty* or a /dev/cu* device will fail if:

ENXIO

EBUSY

EBUSY

EINTR

The unit being opened does not exist.

The dial-out device is being opened and the dial-in device is already open, or the dial-in
device is being opened with a no-delay open and the dial-out device is already open.

The unit has been marked as exclusive-use by another process with a TIOCEXCL ioctl()
call.

The open was interrupted by the delivery of a signal.

DESCRIPTION (PRINTER PORT)
The printer port is Centronics-compatible and is suitable for most common parallel printers. Devices
attached to this interface are normally handled by the line printer spooling system, and should not be
accessed directly by the user.

Minor device numbers in the range 64 - 67 access the printer port, and the recommended naming is
/dev/mcpp[O.3].

IOCTLS

1418

Various control flags and status bits may be fetched and set on an MCP printer port. The following flags
and status bits are supported; they are defined in sundev/mcpcmd.h:

MCPRIGNSLCT Ox02
MCPRDIAG
MCPRVMEINT
MCPRINTPE
MCPRINTSLCf

Ox04
Ox08
Oxl0
Ox20

Last change: 31 October 1988

set if interface ignoring SLCT - on open
set if printer is in self-test mode
set if VME bus interrupts enabled
print message when out of paper
print message when printer offline

Sun Release 4.1

MCP(4S) DEVICES AND NETWORK INTERFACES MCP(4S)

MCPRPE Ox40

MCPRSLCT Ox80

set if device ready, cleared if device
out of paper
set if device online (Centronics SLCT
asserted)

The flags MCPRINTSLCT, MCPRINTPE, and MCPRDIAG may be changed; the other bits are status bits
and may not be changed.

The ioctl() calls supported by MCP printer ports are listed below.

MCPIOGPR The argument is a pointer to an unsigned char. The printer flags and status bits are
stored in the unsigned char pointed to by the argument.

MCPIOSPR The argument is a pointer to an unsigned char. The printer flags are set from the
unsigned char pointed to by the argument.

ERRORS

FILES

Normally, the interface only reports the status of the device when attempting an open(2V) call. An open()
on a Idev/mcpp* device will fail if:

ENXIO The unit being opened does not exist.

EIO The device is offline or out of paper.

Bit 17 of the configuration flags may be specified to say that the interface should ignore Centronics SLCT­
and RDY/PE- when attempting to open the device, but this is normally useful only for configuration and
troubleshooting: if the SLCT - and RDY lines are not asserted during an actual data transfer (as with a
write(2V) call), no data is transferred.

/dev/mcpp[O-3]
Idev/tty[h-k][O-9a-f]
Idev/ttyd[O-9a-f]
Idev/cua[O-9a-f]

parallel printer port
hardwired tty lines
dialin tty lines
dialout tty lines

SEE ALSO
tip(IC), uucp(lC), mti(4S), termio(4), Idterm(4M), ttcompat(4M), zs(4S), ttysoftcar(8)

DIAGNOSTICS

BUGS

Most of these diagnostics "should never happen;" their occurrence usually indicates problems elsewhere
in the system as well.

mcpan: silo overflow.
More than n characters (n very large) have been received by the mcp hardware without being read
by the software.

port n supports RS449 interface
Probably an incorrect jumper configuration. Consult the hardware manual.

mcp port n receive buffer error
The mcp encountered an error concerning the synchronous receive buffer.

Printer on mcppn is out of paper
Printer on mcppn paper ok
Printer on mcppn is offline
Printer on mcppn online

Assorted printer diagnostics, if enabled as discussed above.

Note: pin 4 is used for hardware flow control on ALM-2 ports 0 through 3. These two pins should not be
tied together on the ALM end.

Sun Release 4.1 Last change: 31 October 1988 1419

MEM(4S) DEVICES AND NETWORK IN1ERFACES MEM(4S)

NAME

CONFIG

mem, kmem, zero, vmel6d16, vrne24d16, vrne32d16, vmel6d32, vme24d32, vme32d32, eeprom, atbus,
sbus - main memory and bus I/O space

None; included with standard system.

DESCRIPTION
These devices are special files that map memory and bus I/O space. They may be read, written, seeked and
(except for kmem) memory-mapped. See read(2V), write(2V), mmap(2), and directory(3V).

All Systems
mem is a special file that is an image of the physical memory of the computer. It may be used, for exam­
ple, to examine (and even to patch) the system.

kmem is a special file that is an image of the kernel virtual memory of the system.

zero is a special file which is a source of private zero pages.

eeprom is a special file that is an image of the EEPROM or NVRAM.

Sun-3 and Sun-4 Systems VMEbus
vme16d16 (also known as vmel6) is a special file that is an image of VMEbus 16-bit addresses with 16-bit
data. vme16 address space extends from 0 to 64K.

vme24d16 (also known as vme24) is a special file that is an image of VMEbus 24-bit addresses with 16-bit
data. vme24 address space extends from 0 to 16 Megabytes. The VME 16-bit address space overlaps the
top 64K of the 24-bit address space.

vme32d16 is a special file that is an image ofVMEbus 32-bit addresses with 16-bit data.

vme16d32 is a special file that is an image ofVMEbus 16-bit addresses with 32-bit data.

vme24d32 is a special file that is an image of VMEbus 24-bit addresses with 32-bit data.

vme32d32 (also known as vme32) is a special file that is an image of VMEbus 32-bit addresses with 32-bit
data. vme32 address space extends from 0 to 4 Gigabytes. The VME 24-bit address space overlaps the top
16 Megabytes of the 32-bit address space.

SPARCstation 1 Systems
The sbus is represented by a series of entries each of which is an image of a single sbus slot. The entries
are named sbusn, where n is the slot number in hexadecimal. The number of sbus slots and the address
range within each slot may vary between implementations.

Sun386i Systems

FILES

1420

atbus is a special file that is an image of the AT bus space. It extends from 0 to 16 Megabytes.

/dev/mem
/dev/kmem
/dev/zero
/dev/vmel6d16
Idev/vme16
Idev/vme24d 16
Idev/vme24
Idev/vme32d16
/dev/vmel6d32
Idev/vme24d32
/dev/vme32d32
Idev/vme32
Idev/eeprom
/dev/atbus
/dev/sbus[O-3]

Last chan£e: 5 September 1989 Sun Release 4.1

MEM(4S) DEVICES AND NETWORK INTERFACES MEM(4S)

SEE ALSO
mmap(2), read(2V), write(2V), directory(3V)

Sun Release 4.1 Last change: 5 September 1989 1421

MOUSE (4S) DEVICES AND NETWORK INTERFACES MOUSE (4S)

NAME
mouse - Sun mouse

CONFIG
None; included in standard system.

DESCRIPTION
The mouse indirect device provides access to the Sun Workstation mouse. When opened, it redirects
operations to the standard mouse device for the workstation (attached either to a CPU serial or parallel
port), and pushes the ms(4M) and ttcompat(4M) STREAMS modules on top of that device.

FILES
/dev/mouse

SEE ALSO
ms(4M), ttcompat(4M), win(4S), zs(4S)

1422 Last change: 20 November 1987 Sun Release 4.1

MS(4M) DEVICES AND NETWORK INTERFACES MS(4M)

NAME
ms - Sun mouse STREAMS module

CONFIG
pseudo-devicemsn

SYNOPSIS
#include <sysltypes.h>
#include <sysltime.h>
#include <syslstream.h>
#include <syslstropts.h>
#include <sundev/vuid event.h>
#include <sundev/msio.h>
ioctl(fd, I_PUSH, "rns");

DESCRIPTION

IOCTLS

The rns STREAMS module processes byte streams generated by mice attached to a CPU serial or parallel
port. When this module is pushed onto a stream, it sends a TCSETSF ioetl downstream, setting the baud
rate to 1200 baud and the character size to 8 bits, and enabling the receiver. All other flag words are
cleared. It assumes only that the terrnios(3V) functions provided by the zs(4S) driver are supported; no
other functions need be supported.

The mouse is expected to generate a stream of bytes encoding mouse motions and changes in the state of
the buttons.

Each mouse sample in the byte stream consists of three bytes: the first byte gives the button state with
value Ox871-but, where but is the low three bits giving the mouse buttons, where a 0 (zero) bit means that a
button is pressed, and a 1 (one) bit means a button is not pressed. Thus if the left button is down the value
of this sample is Ox83, while if the right button is down the byte is Ox86.

The next two bytes of each sample give the x and y deltas of this sample as signed bytes. The mouse uses a
lower-left coordinate system, so moves to the right on the screen yield positive x values and moves down
the screen yield negative y values.

The beginning of a sample is identifiable because the delta's are constrained to not have values in the range
Ox80-0x87.

A stream with ms pushed onto it can be used as a device that emits firm_events as specified by the protocol
of a Virtual User Input Device. It understands VillDSFORMAT, VUIDGFORMAT, VillDSADDR and
VillDGADDR ioctls (see reference below).

ms responds to the following ioetls, as defined in <sundev/rnsio.h> and <sundev/vuid _ event.h>. All
other ioetl s are passed downstream. As rns sets the parameters of the serial port when it is opened, no
terrnios(3V) ioetl s should be performed on a stream with rns on it, as rns expects the device parameters to
remain as it set them.

The MSIOGETPARMS and MSIOSETPARMS calls use a structure of type Ms_parrns, which is a structure
defined in <sundev/rnsio.h>:

typedef struct {
int jitter_thresh;
int speed_law;
int speed Jirnit;
} Ms_parrns;

Sun Release 4.1 Last change: 6 December 1989 1423

MS(4M) DEVICES AND NETWORK INTERFACES MS(4M)

jitter _thresh is the "jitter threshold" of the mouse. Motions of fewer than jitter _thresh units along both
axes that occur in less than 1/12 second are treated as "jitter" and ignored. Thus, if the mouse moves
fewer than jitter _thresh units and then moves back to its original position in less than 1/12 of a second, the
motion is considered to be "noise" and ignored. If it moves fewer thanjitter _thresh units and continues to
move so that it has not returned to its original position after 1/12 of a second, the motion is considered to be
real and is reported.

speedJaw indicates whether extremely large motions are to be ignored. If it is 1, a "speed limit" is
applied to mouse motions; motions along either axis of more than speed _limit units are discarded.

Note: these parameters are global; if they are set for any mouse on a workstation, they apply to any other
mice attached to that workstation as well.

VUIDSFORMAT
VUIDGFORMAT
VUIDSADDR
VUIDGADDR

MSIOGETPARMS

MSIOSETPARMS

These are standard Virtual User Input Device ioetls. See SunView System
Programmer's Guide for a description of their operation.

The argument is a pointer to a Ms yarms. The current mouse parameters are
stored in that structure.

The argument is a pointer to a ms yarms. The current mouse parameters are set
from the values in that structure.

SEE ALSO
mouse(4S), termios(3V), win(4S), zs(4S)

Sun View System Programmer's Guide

1424 Last change: 6 December 1989 Sun Release 4.1

MTI(4S) DEVICES AND NETWORK INTERFACES MTI(4S)

NAME
mti - Systech MTI-800/1600 multi-terminal interface

CONFIG - SUN-3, SUN-3x, SUN-4 SYSTEMS
device mtiO at vme16d16 ? csr Ox620 flags OxfflT priority 4 vector mtiintr Ox88
device mtil at vme16d16 ? csr Ox640 flags OxfflT priority 4 vector mtiintr Ox89
device mti2 at vme16d16 ? csr Ox660 flags OxfflT priority 4 vector mtiintr Ox8a
device mti3 at vme16d16 ? csr Ox680 flags Oxffff priority 4 vector mtiintr Ox8b

SYNOPSIS
#include <fcntl.h>
#include <sysltermios.h>
open(tt /dev/ttyxy" , mode);
open(tt /dev/ttydntt, mode);
open(tt /dev/cuan", mode);

DESCRIPTION
The Systech MTI card provides 8 (MTI-800) or 16 (MTI-1600) serial communication lines with modem
control. Each port supports those termio(4) device control functions specified by flags in the c _ cflag word
of the termios structure and by the IGNBRK, IGNPAR, PARMRK, or INPCK flags in the c_iflag word of
the termios structure are perfonned by the mti driver. All other termio(4) functions must be performed by
STREAMS modules pushed on top of the driver; when a device is opened, the Idterm(4M) and
ttcompat(4M) STREAMS modules are automatically pushed on top of the stream, providing the standard
termio(4) interface.

Bit i of flags may be specified to say that a line is not properly connected, and that the line i should be
treated as hard-wired with carrier always present. Thus specifying flags Ox0004 in the specification of
mtiO would treat line /dev/tty02 in this way.

Minor device numbers in the range 0 - 63 correspond directly to the normal tty lines and are named
/dev/ttyXY, where X is the physical board number (0 - 3), and Y is the line number on the board as a single
hexadecimal digit. Thus the first line on the first board is /dev/ttyOO, and the sixteenth line on the third
board is /dev/tty2f.

To allow a single tty line to be connected to a modem and used for both incoming and outgoing calls, a
special feature, controlled by the minor device number, has been added. Minor device numbers in the
range 128 - 191 correspond to the same physical lines as those above (that is, the same line as the minor
device number minus 128).

A dial-in line has a minor device in the range 0 - 63 and is conventionally renamed /dev/ttydn, where n is
a number indicating which dial-in line it is (so that /dev/ttydO is the first dial-in line), and the dial-out line
corresponding to that dial-in line has a minor device number 128 greater than the minor device number of
the dial-in line and is conventionally named /dev/cuan, where n is the number of the dial-in line.

The /dev/cuan lines are special in that they can be opened even when there is no carrier on the line. Once
a /dev/cuan line is opened, the corresponding tty line can not be opened until the /dev/cuan line is closed; a
blocking open will wait until the /dev/cuan line is closed (which will drop Data Terminal Ready, after
which Carrier Detect will usually drop as well) and carrier is detected again, and a non-blocking open will
return an error. Also, if the /dev/ttydn line has been opened successfully (usually only when carrier is
recognized on the modem) the corresponding /dev/cuan line can not be opened. This allows a modem to
be attached to for example, /dev/ttydO (renamed from /dev/ttyOO) and used for dial-in (by enabling the line
for login in /etc/ttytab) and also used for dial-out (by tip(IC) or uucp(lC» as /dev/cuaO when no one is
logged in on the line. Note: the bit in the flags word in the configuration file (see above) must be zero for
this line, which enables hardware carrier detection.

Sun Release 4.1 Last change: 26 February 1988 1425

MTI(4S) DEVICES AND NETWORK INTERFACES MTI(4S)

WIRING

IOCTLS

The Systech requires the CTS modem control signal to operate. If the device does not supply CTS then RTS
should be jumpered to CTS at the distribution panel (short pins 4 to 5). Also, the CD (carrier detect) line
does not work properly. When connecting a modem, the modem's CD line should be wired to DSR, which
the software will treat as carrier detect.

The standard set of termio ioctl() calls are supported by mti.

The state of the CRTSCTS flag in the c_cflag word has no effect; no ~utput will be generated unless CTS is
high. Breaks can be generated by the TCSBRK, TIOCSBRK, and TIOCCBRK ioctl() calls. The modem
control lines TIOCM _CAR, TIOCM _ CTS, TIOCM _ RTS, and TIOCM _ DTR are provided; however, as
described above, the DSR line is treated as CD and the CD line is ignored.

The input and output line speeds may be set to any of the speeds supported by termio. The speeds cannot
be set independently; when the output speed is set, the input speed is set to the same speed. The baud rates
B200 and B38400 are not supported by the hardware; B200 selects 2000 baud, and B38400 selects 7200
baud.

ERRORS

FILES

An open() will fail if:

ENXIO The unit being opened does not exist.

EBUSY

EBUSY

ElNTR

The dial-out device is being opened and the dial-in device is already open, or the dial-in
device is being opened with a no-delay open and the dial-out device is already open.

The unit has been marked as exclusive-use by another process with a TIOCEXCL ioctl()
call.

The open was interrupted by the delivery of a signal.

/dev/tty[0-3][0-9a-f]
/dev/ttyd[0-9a-f]
/dev/cua[O-9a-f]

hardwired tty lines
dial-in tty lines
dial-out tty lines

SEE ALSO
tip(lC), uucp(lC), mcp(4S), termio(4), Idterm(4M), ttcompat(4M), zs(4S), ttysoftcar(8)

DIAGNOSTICS

1426

Most of these diagnostics "should never happen" and their occurrence usually indicates problems else­
where in the system.

mtin, n: silo overflow.
More than 512 characters have been received by the mti hardware without being read by the
software. Extremely unlikely to occur.

mtin: read error code <n>. Probable hardware fault
The mti returned the indicated error code. See the MTI manual.

mtin: DMA output error.
The mti encountered an error while trying to do DMA output.

mtin: impossible response n.
The mti returned an error it could not understand.

Last change: 26 February 1988 S un Release 4.1

MTIO(4) DEVICES AND NETWORK INTERFACES MTIO(4)

NAME
mtio - general magnetic tape interface

SYNOPSIS
#include <sysltypes.b>
#include <syslioctl.b>
#include <syslmtio.b>

DESCRIPTION
lfl". 1/4" and 8 mm magnetic tape drives all share the same general character device interface.

There are two types of tape records: data records and end-of-file (EOF) records. EOF records are also
known as tape marks and file marks. A record is separated by interrecord (or tape) gaps on a tape.

End-of-recorded-media (EOM) is indicated by two EOF marks on Ifl" tape; by one on 1/4" and 8 mm car­
tridge tapes.

1/2" Reel Tape
Data bytes are recorded in parallel onto the 9-track tape. The number of bytes in a physical record varies
between 1 and 65535 bytes.

The recording formats available (check specific tape drive) are 800 BPI. 1600 BPI. and 6250 BPI. and data
compression. Actual storage capacity is a function of the recording format and the length of the tape reel.
For example. using a 2400 foot tape. 20 MB can be stored using 800 BPI. 40 MB using 1600 BPI. 140 MB
using 6250 BPI. or up to 700 MB using data compression.

1/4" Cartridge Tape
Data is recorded serially onto 1/4" cartridge tape. The number of bytes per record is determined by the
physical record size of the device. The I/O request size must be a multiple of the physical record size of
the device. For QIC-ll. QIC-24. and QIC-150 tape drives the block size is 512 bytes.

The records are recorded on tracks in a serpentine motion. As one track is completed. the drive switches to
the next and begins writing in the opposite direction. eliminating the wasted motion of rewinding. Each
file. including the last. ends with one file mark.

Storage capacity is based on the number of tracks the drive is capable of recording. For example. 4-track
drives can only record 20 MB of data on a 450 foot tape; 9-track drives can record up to 45 MB of data on
a tape of the same length. QIC-ll is the only tape format available for 4-track tape drives. In contrast.
9-track tape drives can use either QIC-24 or QIC-l1. Storage capacity is not appreciably affected by using
either format. QIC-24 is preferable to QIC-ll because it records a reference signal to mark the position of
the first track on the tape. and each block has a unique block number.

The QIC-150 tape drives require DC-6150 (or equivalent) tape cartridges for writing. However. they can
read other tape cartridges in QIC-ll, QIC-24, QIC-120. or QIC-150 tape formats.

8 mm Cartridge Tape
Data is recorded serially onto 8 mm helical scan cartridge tape. The number of bytes in a physical record
varies between 1 and 65535 bytes. Currently one density is available.

Read Operation
read(2V) reads the next record on the tape. The record size is passed back as the number of bytes read,
provided it is no greater than the number requested. When a tape mark is read. a zero byte count is
returned; another read will fetch the first record of the next tape file. Two successive reads returning zero
byte counts indicate the EOM. No further reading should be performed past the EOM.

Fixed-length I/O tape devices require the number of bytes read to be a multiple of the physical record size.
For example. 1/4" cartridge tape devices only read multiples of 512 bytes. If the blocking factor is greater
than 64512 bytes (minphys limit). fixed-length I/O tape devices read multiple records.

Tape devices which support variable-length JJO operations. such as 1/2" and 8mm tape, may read a range
of 1 to 65535 bytes. If the record size exceeds 65535 bytes. the driver reads multiple records to satisfy the
request. These multiple records are limited to 65534 bytes.

Sun Release 4.1 Last change: 19 December 1989 1427

MTIO (4) DEVICES AND NETWORK INTERFACES MTIO(4)

Write Operation
write(2V) writes the next record on the tape. The record has the same length as the given buffer.

Writing is allowed on 1/4" tape at either the beginning of tape or after the last written file on the tape.

Writing is not so restricted on 1/2" and 8 mm cartridge tape. Care should be used when appending files
onto 1/l." reel tape devices, since an extra file mark is appended after the last file to mark the EOM. This
extra file mark must be overwritten to prevent the creation of a null file. To facilitate write append opera­
tions, a space to the EOM ioctl is provided. Care should be taken when overwriting records; the erase head
is just forward of the write head and any following records will also be erased.

Fixed-length I/O tape devices require the number of bytes written to be a multiple of the physical record
size. For example, 1/4" cartridge tape devices only write multiples of 512 bytes. Fixed-length I/O tape
devices write multiple records if the blocking factor is greater than 64512 bytes (minphys limit). These
multiple writes are limited to 64512 bytes. For example, if a write request is issued for 65536 bytes using a
1/4" cartridge tape, two writes are issued; the first for 64512 bytes and the second for 1024 bytes.

Tape devices which support variable-length I/O operations, such as 1/l." and 8mm tape, may write a range
of 1 to 65535 bytes. If the record size exceeds 65535 bytes, the driver writes multiple records to satisfy the
request. These multiple records are limited to 65534 bytes. As an example, if a write request for 65540
bytes is issued using 1/2" reel tape, two records are written; one for 65534 bytes followed by one for 6
bytes.

EOT handling on write is different among the various devices; see the appropriate device manual page.
Reading past EOT is transparent to the user.

Seeks are ignored in tape I/O.

Close Operation
Magnetic tapes are rewound when closed, except when the "no-rewind" devices have been specified. The
names of no-rewind device files use the letter n as the beginning of the final component. The no-rewind
version of /dev/rmtO is /dev/nrmtO.

If data was written, a file mark is automatically written by the driver upon close. If the rewinding device
was specified, the tape will be rewound after the file mark is written. If the user wrote a file mark prior to

closing, then no file mark is written upon close. If a file positioning ioctl, like rewind, is issued after writ­
ing, a file mark is written before repositioning the tape.

Note: for 1/2" reel tape devices, two file marks are written to mark the EOM before rewinding or perform­
ing a file positioning ioctl. If the user wrote a file mark before closing a 1/2" reel tape device, the driver
will always write a file mark before closing to insure that the end of recorded media is marked properly. If
the non-rewinding xt device was specified, two file marks are written and the tape is left positioned
between the two so that the second one is overwritten on a subsequent open(2V) and write(2V). For per­
formance reasons, the st driver postpones writing the second tape mark until just before a file positioning
ioctl is issued (for example, rewind). This means that the user must not manually rewind the tape because
the tape will be missing the second tape mark which marks EOM.

If no data was written and the driver was opened for WRITE-ONLY access, a file mark is written thus creat­
ing a null file.

loctls

1428

Not all devices support all ioctls. The driver returns an ENOTTY error on unsupported ioctls.

The following structure definitions for magnetic tape ioctl commands are from <syslmtio.h>:

/* structure for MTIOCTOP - magnetic tape operation command */
struct mtop {

};

short mt_ op;
daddr_tmt_count;

/* operation */
/* number of operations */

Last change: 19 December 1989 Sun Release 4.1

MTIO(4) DEVICES AND NETWORK INTERFACES

The following ioctls are supported:

MTWEOF
MTFSF
MTBSF
MTFSR
MTBSR
MTREW
MTOFFL
MTNOP
MTRETEN
MTERASE
MTEOM
MTNBSF

write an end-of-file record
forward space over file mark
backward space over file mark (I{2", 8 mm only)
forward space to inter-record gap
backward space to inter-record gap
rewind
rewind and take the drive offline
no operation, sets status only
retension the tape (cartridge tape only)
erase the entire tape and rewind
position to EOM
backward space file to beginning of file

1* structure for MTIOCGET - magnetic tape get status command *1
struct m tget {

short mt_type; 1* type of magtape device *1

1* the following two registers are device dependent *1
short mt_dsreg; 1* "drive status" register *1
short mt_erreg; 1* "error" register *1

1* optional error info. *1
daddr _ t mt_resid;
daddr _ t mt _ fileno;
daddr _tmt_blkno;
u_short mt_flags;
short mt_bf;

};

1* residual count *1
1* file number of current position *1
1* block number of current position *1

1* optimum blocking factor *1

MTIO(4)

When spacing forward over a record (either data or EOF), the tape head is positioned in the tape gap
between the record just skipped and the next record. When spacing forward over file marks (EOF records),
the tape head is positioned in the tape gap between the next EOF record and the record that follows it.

When spacing backward over a record (either data or EOF), the tape head is positioned in the tape gap
immediately preceding the tape record where the tape head is currently positioned. When spacing back­
ward over file marks (EOF records), the tape head is positioned in the tape gap preceding the EOF. Thus the
next read would fetch the EOF.

Note, the following features are unique to the st driver: record skipping does not go past a file mark; file
skipping does not go past the EOM. Both the st and xt drivers stop upon encountering EOF during a record
skipping command, but leave the tape positioned differently. For example, after an MTFSR <huge
number> command the st driver leaves the tape positioned before the EOF. After the same command, the xt
driver leaves the tapes positioned after the EOF. Consequently on the next read, the xt driver fetches the
first record of the next file whereas the st driver fetches the EOF. A related st feature is that EOFs remain
pending until the tape is closed. For example, a program which first reads all the records of a file up to and
including the EOF and then performs an MTFSF command will leave the tape positioned just after that
same EOF, rather than skipping the next file.

The M1NBSF and MTFSF operations are inverses. Thus, an MTFSF "-I" is equivalent to an M1NBSF
"I". An MTNBSF "0" is the same as MTFSF "0"; both position the tape device to the beginning of the
current file.

MTBSF moves the tape backwards by file marks. The tape position will end on the beginning of tape side
of the desired file mark.

Sun Release 4.1 Last change: 19 December 1989 1429

MTIO(4) DEVICES AND NETWORK INTERFACES MTIO(4)

MTBSR and MTFSR operations perfonn much like space file operations, except that they move by records
instead of files. Variable-length I/O devices (1/2" reel, for example) space actual records; fixed-length I/O
devices space physical records (blocks). 1/4" cartridge tape, for example, spaces 512 byte physical
records. The status ioctl residual count contains the number of files or records not skipped.

MTOFFL rewinds and, if appropriate, takes the device offline by unloading the tape. The tape must be
inserted before the tape device can be used again.

MTRETEN The retension ioctl only applies to 1/4" cartridge tape devices. It is used to restore tape tension
improving the tape's soft error rate after extensive start-stop operations or long-term storage.

MTERASE rewinds the tape, erases it completely, and returns to the beginning of tape.

MTEOM positions the tape at a location just after the last file written on the tape. For 1/4" cartridge and 8
mm tape, this is after the last file mark on the tape. For 1{l" reel tape, this is just after the first file mark but
before the second (and last) file mark on the tape. Additional files can then be appended onto the tape from
tha~ point.

Note the difference between MTBSF (backspace over file mark) and MTNBSF (backspace file to begin­
ning of file). The former moves the tape backward until it crosses an EOF mark,leaving the tape positioned
before the file mark. The latter leaves the tape positioned after the file mark. Hence, "MTNBSF n" is
equivalent to "MTBSF (n+ 1)" followed by "MTFSF 1". 1/4" cartridge tape devices do not support
MTBSF.

The MTIOCGET get status ioctl call returns the drive id (mt _type), sense key error (mt _erreg), file number
(mt Jlleno), optimum blocking factor (mt _ bl) and record number (mt _ blkno) of the last error. The residual
count (mt _resid) is set to the number of bytes not transferred or files/records not spaced. The flags word
(mt Jiags) contains information such as whether the device is SCSI, whether it is a reel device and whether
the device supports absolute file positioning.

EXAMPLES

1430

Suppose you have written 3 files to the non-rewinding 1/2" tape device, Idev/nrmtO, and that you want to
go back and dd(l) the second file off the tape. The commands to do this are:

mt -r Idev/nrmtO bsr 3
mt -r Idev/nrmtO fsf 1
dd if=/dev/nrmtO

To accomplish the same tape positioning in a C program, followed by a get status ioct1:

struct mtop mt_command;

or

struct mtget mt_status;

mt_command.mt_op = MTBSF;
mt_command.mt_count == 3;
ioctl(rd, MTIOCTOP, &mt_command);
mt_command.mt_op = MTFSF;
mt _ command.mt _count = 1;
ioctl(fd, MTIOCTOP, &mt_command);
ioctl(fd, MTIOCGET, (char *)&mt_status);

struct mtop mt_command;
struct mtget mt_status;

mt_command.mt_op = MTNBSF;
mt_command.mt_count = 2;
ioctl(rd, MTIOCTOP, &mt_command);
ioctl(fd, MTIOCGET, (char *)&mt_status);

Last change: 19 December 1989 Sun Release 4.1

MTIO(4)

FILES
Idev/rmt*
Idev/rst*
Idev/rar*
Idev/nrmt*
Idev/nrst*
Idev/nrar*

SEE ALSO

DEVICES AND NETWORK INTERFACES

dd(I), mt(l), tar(l), read(2V), write(2V), ar(4S), st(4S), tm(4S), xt(4S)

114 Inch Tape Drive Tutorial

WARNINGS

MTIO(4)

Avoid the use of device files Idev/rmt4 and Idev/rmt12, as they are going away in a future release.

Sun Release 4.1 Last change: 19 December 1989 1431

NFS(4P) PROTOCOLS NFS(4P)

NAME
nfs, NFS - network file system

CONFIG
options NFS

DESCRIPTION
The Network File System, or NFS, allows a client workstation to perform transparent file access over the
network. Using it, a client workstation can operate on files that reside on a variety of servers, server archi­
tectures and across a variety of operating systems. Client file access calls are converted to NFS protocol
requests, and are sent to the server system over the network. The server receives the request, performs the
actual file system operation, and sends a response back to the client.

The Network File System operates in a stateless fashion using remote procedure (RPC) calls built on top of
external data representation (XDR) protocol. These protocols are documented in Network Programming
The RPC protocol provides for version and authentication parameters to be exchanged for security over the
network.

A server can grant access to a specific filesystem to certain clients by adding an entry for that filesystem to
the server's fetc/exports file and running exportfs(8).

A client gains access to that filesystem with the mount(2V) system call, which requests a file handle for the
filesystem itself. Once the filesystem is mounted by the client, the server issues a file handle to the client
for each file (or directory) the client accesses or creates. If the file is somehow removed on the server side,
the file handle becomes stale (dissociated with a known file).

A server may also be a client with respect to filesystems it has mounted over the network, but its clients
cannot gain access to those filesystems. Instead, the client must mount a filesystem directly from the server
on which it resides.

The user ID and group 10 mappings must be the same between client and server. However, the server maps
uid 0 (the super-user) to uid -2 before performing access checks for a client. This inhibits super-user
privileges on remote filesystems. This may be changed by use of the "anon" export option. See
exportfs(8).

NFS-related routines and structure definitions are described in Network Programming.

ERRORS

FILES

Generally physical disk I/O errors detected at the server are returned to the client for action. If the server is
down or inaccessible, the client will see the console message:

NFS server host not responding still trying.
Depending on whether the file system has been mounted "hard" or "soft" (see mount(8)), the client will
either continue (forever) to resend the request until it receives an acknowledgement from the server, or
return an error to user-level. For hard mounts, this means the server can crash or power down and come
back up without any special action required by the client. If the "intr" mount option was not specified, a
client process requesting I/O will block and remain insensitive to signals, sleeping inside the kernel at PRI­
BIO until the request is satisfied.

f etc/exports

SEE ALSO
mount(2V), exports(5), fstab(5), fstab(5), exportfs(8), mount(8), nfsd(8), sticky(8)

Network Programming

1432 Last change: 24 November 1987 Sun Release 4.1

NFS(4P) PROTOCOLS NFS(4P)

BUGS
When a file that is opened by a client is unlinked (by the server), a file with a name of the form .nfsXXX
(where XXX is a number) is created by the client. When the open file is closed, the .nfsXXX file is removed.
If the client crashes before the file can be closed, the .nfsXXX file is not removed.

NFS servers usually mark their clients' swap files specially to avoid being required to sync their inodes to
disk before returning from writes. See sticky(8).

Sun Release 4.1 Last change: 24 November 1987 1433

NIT (4P) PROTOCOLS NIT (4P)

NAME
nit - Network Interface Tap

CONFIG
pseudo-device clone
pseudo-device snit
pseudo-device pf
pseudo-device nbuf

SYNOPSIS
#include <syS/file.h>
#include <syS/ioctl.h>
#include <net/nit Jlf.h>
#include <net/nit buf.h>

fd = open(1t Idev/nit", mode);
ioctl(fd, I_PUSH, "pf');
ioctl(fd, I_PUSH, Itnbuf');

DESCRIPTION
NIT (the Network Interface Tap) is a facility composed of several STREAMS modules and drivers. These
components collectively provide facilities for constructing applications that require link-level network
access. Examples of such applications include rarpd(8C), which is a user-level implementation of the
Reverse ARP protocol, and etherfind(8C), which is a network monitoring and trouble-shooting program.

NIT consists of several components that are summarized below. See their Reference Manual entries for
detailed information about their specification and operation.

nit}f(4M) This component is a STREAMS device driver that interacts directly with the system's Ether­
net drivers. After opening an instance of this device it must be bound to a specific Ethernet
interface before becoming usable. Subsequently, nit_if transcribes packets arriving on the
interface to the read side of its associated stream and delivers messages reaching it on the
write side of its stream to the raw packet output code for transmission over the interface.

nityf(4M) This module provides packet-filtering services, allowing uninteresting incoming packets to
be discarded with minimal loss of efficiency. It passes through unaltered all outgoing mes­
sages (those on the stream's write side).

nit _ buf(4 M) This module buffers incoming messages into larger aggregates, thereby reducing the over-
head incurred by repeated read(2V) system calls.

NIT clients mix and match these components, based on their particular requirements. For example, the
reverse ARP daemon concerns itself only with packets of a specific type and deals with low traffic volumes.
Thus, it uses nitJf for access to the network and nityf to filter out all incoming packets except reverse
ARP packets, but omits the nit_buf buffering module since traffic is not high enough to justify the addi­
tional complexity of unpacking buffered packets. On the other hand, the etherd(8C) program, which col­
lects Ethernet statistics for traffic(lC) to display, must examine every packet on the network. Therefore, it
omits the nitJlf module, since there is nothing it wishes to screen out, and includes the nit_ buf module,
since most networks have very heavy aggregate packet traffic.

EXAMPLES

1434

The following code fragments outline how to program against parts of the NIT interface. For the sake of
brevity, all error-handling code has been elided.

initdevice comes from etherfind and sets up its input stream configuration.

initdevice(if _flags, snap len, chunksize)
u _long if_flags,

snaplen,
chunksize;

Last change: 29 December 1987 Sun Release 4.1

NIT (4P)

{

}

Sun Release 4.1

struct strioctl
struct ifreq
struct timeval

si;
ifr;
timeout;

PROTOCOLS

1* Arrange to get discrete messages from the stream. *1
ioctl(if_fd, I_SRDOPf, (char *)RMSGD);

si.ic_timout = INFfIM;

1* Push and configure the buffering module. *1
ioctl(if_fd, I_PUSH, "nbur');

timeout.tv _sec = 1;
timeout.tv _usee = 0;
si.ic _ cmd = NIOCSTIME;
si.ic _len = sizeof timeout;
si.ic_dp = (char *)&timeout;
ioctl(if_fd, I_STR, (char *)&si);

si.ic_cmd = NIOCSCHUNK;
sUc_len = sizeof chunksize;
si.ic_dp = (char *)&chunksize;
ioctl(ifJd, I_STR, (char *)&si);

1* Configure the nit device, binding it to the proper
underlying interface, setting the snapshot length,
and setting nit_If-level flags. *1

strncpy(ifr.ifr_name, device, sizeof ifr.ifr_name);
ifr .ifr _name [sizeof ifr .ifr _name - 1] = '\0';
stic _ cmd = NI OCBIND;
si.ic Jen = sizeof ifr;
si.ic_dp = (char *)𝔦
ioctl(ifJd, I_STR, (char *)&si);

if (snap len > 0) {

}

si.ic _ cmd = NIOCSSNAP;
si.ic _len = sizeof snaplen;
si.ic_dp = (char *)&snaplen;
ioctl(if_fd, I_STR, (char *)&si);

if (if_flags!= 0) {
si.ic_cmd = NIOCSFLAGS;
si.ic_Ien = sizeof if_flags;
si.ic_dp = (char *)&if_flags;
ioctl(if_fd, I_STR, (char *)&si);

1* Flush the read queue, to get rid of anything that accumulated
before the device reached its final configuration. *1

ioctl(if_fd, I_FLUSH, (char *)FLUSHR);

Last change: 29 December 1987

NIT (4P)

1435

NIT (4P) PROTOCOLS NIT(4P)

1436

Here is the skeleton of the packet reading loop from etherfind. It illustrates how to cope with dismantling
the headers the various NIT components glue on.

while «cc = read(if_fd, buf, chunksize» >= 0) {

}

register u_char *bp = buf,
*bufstop = buf + cc;

1* Loop through each message in the chunk. *1
while (bp < bufstop) {

}

register u_char *cp = bp;
struct nit_bufbdr *hdrp;
struct time val
uJong
uJong

*tvp = NULL;
drops = 0;
pktlen;

1* Extract information from the successive objects
embedded in the current message. Which ones we
have depends on how we set up the stream (and
therefore on what command line flags were set).

If snaplen is positive then the packet was truncated
before the buffering module saw it, so we must
obtain its length from the nitJf-level nitJflen
header. Otherwise the value in *hdrp suffices. *1

hdrp = (struct nit_bufhdr *)cp;
cp += sizeof *hdrp;
if (tfJag) {

}

struct nit if time *ntp;

ntp = (struct nitJftime *)cp;
cp += sizeof *ntp;

tvp = &ntp->nh_timestamp;

if (d8ag) {
struct nitJfdrops *ndp;

ndp = (struct nitJfdrops *)cp;
cp += sizeof *ndp;

drops = ndp->nh _drops;

if (snaplen > 0) {

}

else

struct nit iflen *nlp;

nip = (struct nit_iflen *)cp;
cp += sizeof *nlp;

pktlen = nlp->nh yktlen;

pktlen = hdrp->nhb_msglen;

sp = (struct sample *)cp;
bp += hdrp->nhb _totlen;

1* Process the packet. *1

Last change: 29 December 1987 Sun Release 4.1

NIT (4P) PROTOCOLS NIT (4P)

FILES
/dev/nit clone device instance referring to nit}f

SEE ALSO
traffic(IC), read(2V), nit}f(4M)t nityf(4M)t nit_buf(4M), etherd(8C)t etherfind(8C)t rarpd(8C)

Sun Release 4.1 Last change: 29 December 1987 1437

DEVICES AND NETWORK INTERFACES

NAME
nit_buf - STREAMS NIT buffering module

CONFIG
pseudo-device nbur

SYNOPSIS
#include <syslioctl.h>
#include <netlnit_ bur.h>
ioctl(rd, I_PUSH, Unbur');

DESCRIPTION
nit_bur is a STREAMS module that buffers incoming messages, thereby reducing the number of system
calls and associated overhead required to read and process them. Although designed to be used in conjunc­
tion with the other components of NIT (see nit(4P», nit_bur is a general-purpose module and can be used
anywhere STREAMS input buffering is required.

Read-side Behavior
nit_bur collects incoming M_DATA and M_PROTO messages into chunks, passing each chunk upward
when either the chunk becomes full or the current read timeout expires. When a message arrives, it is pro­
cessed in two steps. First, the message is prepared for inclusion in a chunk, and then it is added to the
current chunk. The following paragraphs discuss each step in turn.

Upon receiving a message from below, nit_bur immediately converts all leading M_PROTO blocks in the
message to M _ DAT A blocks, altering only the message type field and leaving the contents alone. It then
prepends a header to the converted message. This header is defined as follows.

struct nit _ bufhdr {

};

u _int nhb _ msglen;
u_int nhb_totlen;

The first field of this header gives the length in bytes of the converted message. The second field gives the
distance in bytes from the start of the message in the current chunk (described below) to the start of the
next message in the chunk; the value reflects any padding necessary to insure correct data alignment for the
host machine and includes the length of the header itself.

After preparing a message, nit_bur attempts to add it to the end of the current chunk, using the chunk size
and timeout values to govern the addition. (The chunk size and timeout values are set and inspected using
the ioctl calls described below.) If adding the new message would make the current chunk grow larger
than the chunk size, nit_bur closes off the current chunk, passing it up to the next module in line, and starts
a new chunk, seeding it with a zero-length message. If adding the message would still make the current
chunk overflow, the module passes it upward in an over-size chunk of its own. Otherwise, the module con­
catenates the message to the end of the current chunk.

To ensure that messages do not languish forever in an accumulating chunk, nit_bur maintains a read
timeout. Whenever this timeout expires, the module closes off the current chunk, regardless of its length,
and passes it upward; if no incoming messages have arrived, the chunk passed upward will have zero
length. Whenever the module passes a chunk upward, it restarts the timeout period. These two rules insure
that nit_bur minimizes the number of chunks it produces during periods of intense message activity and
that it periodically disposes of all messages during slack intervals.

nit_bur handles other message types as follows. Upon receiving an M_FLUSH message specifying that the
read queue be flushed, the module does so, clearing the currently accumulating chunk as well, and passes
the message on to the module or driver above. It passes all other messages through unaltered to its upper
neighbor.

Write-side Behavior

1438

nit_bur intercepts M_IOCTL messages for the ioctls described below. Upon receiving an M_FLUSH mes­
sage specifying that the write queue be flushed, the module does so and passes the message on to the
module or driver below. The module passes all other messages through unaltered to its lower neighbor.

Last change: 29 December 1987 Sun Release 4.1

IOCTLS

DEVICES AND NETWORK INlERFACES

nit_bufresponds to the following ioctls.

NIOCSTIME Set the read timeout value to the value referred to by the struct timeval pointer given as
argument. Setting the timeout value to zero has the side-effect of forcing the chunk size to
zero as well, so that the module will pass all incoming messages upward immediately
upon arrival.

NIOCGTIME Return the read timeout in the struct timeval pointed to by the argument. If the timeout
has been cleared with the NIOCCTIME ioctl, return with an ERANGE error.

NIOCCTIME Clear the read timeout, effectively setting its value to infinity.

NIOCSCHUNK Set the chunk size to the value referred to by the u _int pointer given as argument.

NIOCGCHUNK Return the chunk size in the u _int pointed to by the argument.

WARNING
The module name "nbuf" used in the system configuration file and as argument to the I_PUSH ioetl is pro­
visional and subject to change.

SEE ALSO
nit(4P), nitJf(4M), nityf(4M)

Sun Release 4.1 Last change: 29 December 1987 1439

DEVICES AND NETWORK INTERFACES

NAME
nieif - STREAMS NIT device interface module

CONFIG
pseudo-device snit

SYNOPSIS
#include <syS/fiIe.h>
open(" Idev/nit", mode);

DESCRIPTION
nit_if is a STREAMS pseudo-device driver that provides STREAMS access to network interfaces. It is
designed to be used in conjunction with the other components of NIT (see nit(4P)), but can be used by itself
as a raw STREAMS network interface.

nit_if is an exclusive-open device that is intended to be opened indirectly through the clone device;
Idev/nit is a suitable instance of the clone device. Before the stream resulting from opening an instance of
nit Jf may be used to read or write packets, it must first be bound to a specific network interface, using the
NIOCSBIND ioctl described below.

Read-side Behavior
nit Jf copies leading prefixes of selected packets from its associated network interface and passes them up
the stream. If the NI_PROMISC flag is set, it passes along all packets; otherwise it passes along only pack­
ets addressed to the underlying interface.

The amount of data copied from a given packet depends on the current snapshot length, which is set with
the NIOCSSNAP ioctl described below.

Before passing each packet prefix upward, nit Jf optionally prepends one or more headers, as controlled by
the state of the flag bits set with the NIOCSFLAGS ioctl. The driver collects headers into M _PROTO mes­
sage blocks, with the headers guaranteed to be completely contained in a single message block, whereas
the packet itself goes into one or more M_DATA message blocks.

Write-side Behavior

IOCTLS

1440

nitJf accepts packets from the module above it in the stream and relays them to the associated network
interface for transmission. Packets must be formatted with the destination address in a leading M _PROTO
message block, followed by the packet itself, complete with link-level header, in a sequence of M_DATA
message blocks. The destination address must be expressed as a 'struct sockaddr' whose saJamily field
is AF _ UNSPEC and whose sa_data field is a copy of the link-level header. (See sys/socket.h for the
definition of this structure.) If the packet does not conform to this format, an M_ERROR message with
EINV AL will be sent upstream.

nitJfprocesses M_IOCTL messages as described below. Upon receiving an M_FLUSH message specify­
ing that the write queue be flushed, nit_if does so and transfers the message to the read side of the stream.
It discards all other messages.

nitJfresponds to the following ioctls, as defined in net/nitJf.h. It generates an M_IOCNAK message for
all others, returning this message to the invoker along the read side of the stream.

SIOCGIFADDR

SIOCADDMULTI

SIOCDELMULTI

NIOCBIND

nit_if passes these ioctls on to the underlying interface's driver and returns its
response in a 'struct ifreq' instance, as defined in net/if.h. (See the description of
this ioctl in if(4N) for more details.)

This ioctl attaches the stream represented by its first argument to the network
interface designated by its third argument, which should be a pointer to an ifreq
structure whose ifr _name field names the desired interface. See net/if.h for the
definition of this structure.

Last change: 29 December 1987 Sun Release 4.1

FILES

NIOCSSNAP

NIOCGSNAP

NIOeSFLAGS

NIOeGFLAGS

Idev/nit
net/nit if.h

SEE ALSO

DEVICES AND NETWORK INTERFACES

Set the current snapshot length to the value given in the u _long pointed to by the
ioetl's final argument. nitJf interprets a snapshot length value of zero as meaning
infinity, so that it will copy all selected packets in their entirety. It constrains posi­
tive snapshot lengths to be at least the length of an Ethernet header, so that it will
pass at least the link-level header of all selected packets to its upstream neighbor.

Returns the current snapshot length for this device instance in the u _long pointed
to by the ioetl's final argument.

nit Jf recognizes the following flag bits, which must be given in the u Jong
pointed to by the ioetl's final argument. This set may be augmented in future
releases. All but the NI_PROMISe bit control the addition of headers that precede
the packet body. These headers appear in the order given below, with the last­
mentioned enabled header adjacent to the packet body.

NI PROMIse Requests that the underlying interface be set into promis­
cuous mode' and that all packets that the interface
receives be passed up through the stream. nit_if only
honors this bit for the super-user.

NI TIMESTAMP Prepend to each selected packet a header containing the
packet arrival time expressed as a 'struct timeval'.

NI DROPS Prepend to each selected packet a header containing the
cumulative number of packets that this instance of nit_if
has dropped because of flow control requirements or
resource exhaustion. The header value is expressed as a
u _long. Note: it accounts only for events occurring
within nitJf, and does not count packets dropped at the
network interface level or by upstream modules.

NI LEN Prepend to each selected packet a header containing the
packet's original length (including link-level header), as
it was before being trimmed to the snapshot length. The
header value is expressed as au_long.

Returns the current state of the flag bits for this device instance in the u_long
pointed to by the ioetl' s final argument.

clone device instance referring to nit_if device
header file containing definitions for the ioetls and packet headers described
above.

clone(4), nit(4P), nit_buf(4M), nityf(4M)

Sun Release 4.1 Last change: 29 December 1987 1441

DEVICES AND NETWORK INTERFACES

NAME
nicpf - STREAMS NIT packet filtering module

CONFIG
pseudo-device pf

SYNOPSIS
#include <syslioctl.h>
#include <net/nit yf.h>

ioctl(fd, I_PUSH, "pr');

DESCRIPTION
nityfis a STREAMS module that subjects messages arriving on its read queue to a packet filter and passes
only those messages that the filter accepts on to its upstream neighbor. Such filtering can be very useful for
user-level protocol implementations and for networking monitoring programs that wish to view only
specific types of events.

Read-side Behavior
nityfapplies the current packet filter to all M_DATA and M_PROTO messages arriving on its read queue.
The module prepares these messages for examination by first skipping over all leading M_PROTO message
blocks to arrive at the beginning of the message's data portion. If there is no data portion, nityf accepts
the message and passes it along to its upstream neighbor. Otherwise, the module ensures that the part of
the message's data that the packet filter might examine lies in contiguous memory, calling the pullupmsg
utility routine if necessary to force contiguity. (Note: this action destroys any sharing relationships that the
subject message might have had with other messages.) Finally, it applies the packet filter to the message's
data, passing the entire message upstream to the next module if the filter accepts, and discarding the mes­
sage otherwise. See PACKET FILTERS below for details on how the filter works.

If there is no packet filter yet in effect, the module acts as if the filter exists but does nothing, implying that
all incoming messages are accepted. IOCTLS below describes how to associate a packet filter with an
instance of nit yf.

nityf handles other message types as follows. Upon receiving an M_FLUSH message specifying that the
read queue be flushed, the module does so, and passes the message on to its upstream neighbor. It passes
all other messages through unaltered to its upper neighbor.

Write-side Behavior

IOCTLS

1442

nityf intercepts M_IOCTL messages for the ioctl described below. Upon receiving an M_FLUSH mes­
sage specifying that the write queue be flushed, the module does so and passes the message on to the
module or driver below. The module passes all other messages through unaltered to its lower neighbor.

nit yf responds to the following ioctl.

NIOCSETF This ioctl directs the module to replace its current packet filter, if any, with the filter
specified by the 'struct packetfilt' pointer named by its final argument. This structure is
defined in <netlpacketfilt.h> as

struct packetfilt {

};

u_char Pf_Priority; 1* priority of filter *1
u char Pf _ FilterLen; 1* # of cmds in list *1
u short Pf _ Filter[ENMAXFIL TERS];

1* filter command list *1

Last change: 24 January 1990 Sun Release 4.1

DEVICES AND NETWORK INTERFACES

The PI_Priority field is included only for compatibility with other packet filter implementa­
tions and is otherwise ignored. The packet filter itself is specified in the PI_Filter array as a
sequence of two-byte commands, with the P!_FilterLen field giving the number of com­
mands in the sequence. This implementation restricts the maximum number of commands
in a filter (ENMAXFILTERS) to 40. The next section describes the available commands and
their semantics.

PACKET FILTERS
A packet filter consists of the filter command list length (in units of u _shorts), and the filter command list
itself. (The priority field mentioned above is ignored in this implementation.) Each filter command list
specifies a sequence of actions that operate on an internal stack of u _shorts ("shortwords"). Each short­
word of the command list specifies one of the actions ENF _PUSHLIT, ENF _PUSHZERO, or
ENF _PUSHWORD+n, which respectively push the next shortword of the command list, zero, or shortword n
of the subject message on the stack, and a binary operator from the set { ENF _EQ, ENF _NEQ, ENF _L T,
ENF _LE, ENF _GT, ENF _GE, ENF _AND, ENF _OR, ENF _XOR } which then operates on the top two elements
of the stack and replaces them with its result. When both an action and operator are specified in the same
shortword, the action is performed followed by the operation.

The binary operator can also be from the set { ENF _COR, ENF _CAND, ENF _CNOR, ENF _CNAND }. These
are "short-circuit" operators, in that they terminate the execution of the filter immediately if the condition
they are checking for is found, and continue otherwise. All pop two elements from the stack and compare
them for equality; ENF _CAND returns false if the result is false; ENF _COR returns true if the result is true;
ENF _CNAND returns true if the result is false; ENF _CNOR returns false if the result is true. Unlike the
other binary operators, these four do not leave a result on the stack, even if they continue.

The short-circuit operators should be used when possible, to reduce the amount of time spent evaluating
filters. When they are used, you should also arrange the order of the tests so that the filter will succeed or
fail as soon as possible; for example, checking the IP destination field of a UDP packet is more likely to
indicate failure than the packet type field.

The special action ENF _NOPUSH and the special operator ENF _NOP can be used to only perform the binary
operation or to only push a value on the stack. Since both are (conveniently) defined to be zero, indicating
only an action actually specifies the action followed by ENF_NOP, and indicating only an operation actually
specifies ENF _NOPUSH followed by the operation.

After executing the filter command list, a non-zero value (true) left on top of the stack (or an empty stack)
causes the incoming packet to be accepted and a zero value (false) causes the packet to be rejected. (If the
filter exits as the result of a short-circuit operator, the top-of-stack value is ignored.) Specifying an
undefined operation or action in the command list or performing an illegal operation or action (such as
pushing a shortword offset past the end of the packet or executing a binary operator with fewer than two
shortwords on the stack) causes a filter to reject the packet.

EXAMPLES
The reverse ARP daemon program (rarpd(8C)) uses code similar to the following fragment to construct a
filter that rejects all but RARP packets. That is, is accepts only packets whose Ethernet type field has the
value ETHERTYPE_REV ARP.

Sun Release 4.1

struct ether_header eh; 1* used only for offset values *1
struct packetfilt pf;
register u_short *fwp = pf.Pf_Filter;
u _short offset;

1*
* Set up filter. Offset is the displacement of the Ethernet
* type field from the beginning of the packet in units of
* u shorts.
*1

Last change: 24 January 1990 1443

DEVICES AND NETWORK INTERFACES

offset = «uJnt) &eh.ether_type - (u_int) &eh.ether_dhost) / sizeof (u_short);
*fwp++ = ENF _PUSHWORD + offset;
*fwp++ = ENF _PUSHLIT;
*fwp++ = htons(ETHERTYPE _REV ARP);
*fwp++ = ENF _EQ;
pf.Pf_FilterLen = fwp - &pf.Pf_Filter[O];

This filter can be abbreviated by taking advantage of the ability to combine actions and operations:

*fwp++ = ENF_PUSHWORD + offset;
*fwp++ = ENF_PUSHLIT I ENF_EQ;
*fwp++ = btons(ETHERTYPE _REV ARP);

WARNINGS
The module name 'pf' used in the system configuration file and as argument to the I_PUSH ioetl is provi­
sional and subject to change.

The PI_Priority field of the paeketfilt structure is likely to be removed.

SEE ALSO
inet(4F), nit(4P), nit_buf(4M), nitJf(4M)

1444 Last change: 24 January 1990 S un Release 4.1

NULL(4) DEVICES AND NETWORK INTERFACES

NAME
null - data sink

CONFIG
None; included with standard system.

SYNOPSIS
#include <fcntl.h>

open(" Idev/null", mode);

DESCRIPTION
Data written on the null special file is discarded.

Reads from the null special file always return an end-of-file indication.

FILES
Idev/null

Sun Release 4.1 Last change: 24 November 1987

NULL (4)

1445

OPENPROM (4S) DEVICES AND NETWORK INTERFACES OPENPROM (4S)

NAME
openprom - PROM monitor configuration interface

CONFIG
pseudo-device openeepr

SYNOPSIS
#include <fcntl.h>
#include <sysitypes.h>
#include <sundev/openpromio.h>
open ("/dev/openprom " , mode);

A V AILABILITY
SP ARCstation 1 systems only.

DESCRIPTION

10CTLS

As with other Sun systems, configuration options are stored in an EEPROM or NVRAM on a
SPARCstation 1 system. However, unlike other Sun systems, the encoding of these options is private to the
PROM monitor. The openprom device provides an interface to the PROM monitor allowing a user program
to query and set these configuration options through the use of ioctl(2) requests. These requests are defined
in <sundev/openpromio.h>:

struct openpromio {
u int oprom_size;
char oprom_array[I];

};

#define OPROMMAXPARAM

#define OPROMGETOPT
#define OPROMSETOPT
#define OPROMNXTOPT

1024

_10(0,1)
_10(0,2)
_10(0,3)

1* real size of following array *1
1* For property names and values *1
1* NB: Adjacent, Null terminated *1

1* max size of array *1

For all ioctl() requests, the third parameter is a pointer to a 'struct openpromio'. All property names and
values are null-terminated strings; the value of a numeric option is its ASCII representation.

The OPROMGETOPT ioctl takes the null-terminated name of a property in the oprom _array and returns its
null-terminated value (overlaying its name). oprom _size should be set to the size of oprom _array; on
return it will contain the size of the returned value. If the named property does not exist, or if there is not
enough space to hold its value, then oprom _size will be set to zero. See BUGS below.

The OPROMSETOPT ioctl takes two adjacent strings in oprom _array; the null-terminated property name
followed by the null-terminated value.

The OPROMNXTOPT ioctl is used to retrieve properties sequentially. The null-terminated name of a pro­
perty is placed into oprom _array and on return it is replaced with the null-terminated name of the next pro­
perty in the sequence, with oprom _size set to its length. A null string on input means return the name of
the first property; an oprom _size of zero on output means there are no more properties.

ERRORS

FILES

EINVAL

ENOMEM

The size value was invalid, or (for OPROMSETOPT) the property does not exist.

The kernel could not allocate space to copy the user's structure

/dev/openprom PROM monitor configuration interface

SEE ALSO
mem(4S), eeprom(8S), monitor(8S)

1446 Last change: 19 May 1989 Sun Release 4.1

OPENPROM (4S) DEVICES AND NETWORK INTERFACES OPENPROM (4S)

BUGS
There should be separate return values for non-existent properties as opposed to not enough space for the
value.

An attempt to set a property to an illegal value results in the PROM setting it to some legal value, with no
error being returned. An OPROMGETOPT should be perfonned after an OPROMSETOPT to verify that
the set worked.

The driver should be more consistent in its treatment of errors and edge conditions.

Sun Release 4.1 Last change: 19 May 1989 1447

PP(4) DEVICES AND NETWORK INTERFACES

NAME
pp - Centronics-compatible parallel printer port

CONFIG - Sun3861 SYSTEMS
device ppO at obio ? csr Ox378 irq 15 priority 2

CONFIG - SUN-3x SYSTEMS
device ppO at obio ? csr Ox6fOOOOOO priority 1

This synopsis line should be used to generate a kernel for Sun-3!80 systems only.

A V AILABILITY
Sun386i and Sun-3/80 systems only.

DESCRIPTION

PP(4)

This device driver provides an interface to the Sun386i and Sun-3/80 systems' on-board Centronics­
compatible parallel printer port. It supports most standard PC printers with Centronics interfaces.

FILES
/dev/ppO

DIAGNOSTICS

1448

pp*: printer not online
pp*: printer out of paper

Last change: 19 February 1988 Sun Release 4.1

PTY(4) DEVICES AND NETWORK INTERFACES PTY (4)

NAME
pty - pseudo-terminal driver

CONFIG
pseudo-device ptyn

SYNOPSIS
#include c::fcntl.h>
#include c::sysltermios.h>
open("/dev/ttypn", mode);
open ("/dev/ptypn" ,mode);

DESCRIPTION

IOCTLS

The pty driver provides support for a pair of devices collectively known as a pseudo-terminal. The two
devices comprising a pseudo-terminal are known as a controller and a slave. The slave device distin­
guishes between the BO baud rate and other baud rates specified in the c _ cflag word of the termios struc­
ture, and the CLOCAL flag in that word. It does not support any of the other termio(4) device control
functions specified by flags in the c_cflag word of the termios structure and by the IGNBRK, IGNPAR,
PARMRK, or INPCK flags in the c _iflag word of the termios structure, as these functions apply only to
asynchronous serial ports. All other termio(4) functions must be performed by STREAMS modules pushed
atop the driver; when a slave device is opened, the Idterm(4M) and ttcompat(4M) STREAMS modules are
automatically pushed on top of the stream, providing the standard termio(4) interface.

Instead of having a hardware interface and associated hardware that supports the terminal functions, the
functions are implemented by another process manipulating the controller device of the pseudo-terminal.

The controller and the slave devices of the pseudo-terminal are tightly connected. Any data written on the
controller device is given to the slave device as input, as though it had been received from a hardware
interface. Any data written on the slave terminal can be read from the controller device (rather than being
transmitted from a UART).

In configuring, if no optional "count" is given in the specification, 16 pseudo-terminal pairs are
configured.

The standard set of termio ioctls are supported by the slave device. None of the bits in the c _ cflag word
have any effect on the pseudo-terminal, except that if the baud rate is set to BO, it will appear to the process
on the controller device as if the last process on the slave device had closed the line; thus, setting the baud
rate to BO has the effect of "hanging up" the pseudo-terminal, just as it has the effect of "hanging up" a
real terminal.

There is no notion of "parity" on a pseudo-terminal, so none of the flags in the c _iflag word that control
the processing of parity errors have any effect. Similarly, there is no notion of a "break", so none of the
flags that control the processing of breaks, and none of the ioctls that generate breaks, have any effect.

Input flow control is automatically performed; a process that attempts to write to the controller device will
be blocked if too much unconsumed data is buffered on the slave device. The input flow control provided
by the IXOFF flag in the c_iflag word is not supported.

The delays specified in the c _ oflag word are not supported.

As there are no modems involved in a pseudo-terminal, the ioctls that return or alter the state of modem
control lines are silently ignored.

On S un systems, an additional ioctl is provided:

TIOCCONS
The argument is ignored. All output that would normally be sent to the console (either from pro­
grams writing to Idev/console or from kernel printouts) is redirected so that it is written to the
pseudo-terminal instead.

Sun Release 4.1 Last change: 26 February 1988 1449

PTY(4)

1450

DEVICES AND NETWORK INTERFACES PTY(4)

A few special ioctls are provided on the controller devices of pseudo-terminals to provide the functionality
needed by applications programs to emulate real hardware interfaces:

TIOCSTOP
The argument is ignored. Output to the pseudo-terminal is suspended, as if a STOP character had
been typed.

TIOCSTART
The argument is ignored. Output to the pseudo-temiinal is restarted, as if a START character had
been typed.

TIOCPKT
The argument is a pointer to an into If the value of the int is non-zero, packet mode is enabled; if
the value of the int is zero, packet mode is disabled. When a pseudo-terminal is in packet mode,
each subsequent read(2V) from the controller device will return data written on the slave device
preceded by a zero byte (symbolically defined as TIOCPKT _ DAT A), or a single byte reflecting
control status information. In the latter case, the byte is an inclusive-or of zero or more of the bits:

TIOCPKT FLUSHREAD
whenever the read queue for the terminal is flushed.

TIOCPKT FLUSHWRITE
whenever the write queue for the terminal is flushed.

TIOCPKT STOP whenever output to the terminal is stopped using "S.

TIOCPKT_START whenever output to the terminal is restarted.

TIOCPKT_DOSTOP whenever XON/XOFF flow control is enabled after being disabled; it is
considered "enabled" when the IXON flag in the c_iflag word is set, the
VSTOP member of the c _ cc array is "S and the VST ART member of the
c_cc array is "Q.

TIOCPKT _NOSTOP whenever XON/XOFF flow control is disabled after being enabled.

This mode is used by rlogin(lC) and rlogind(8C) to implement a remote-echoed, locally "S(Q
flow-controlled remote login with proper back-flushing of output when interrupts occur; it can be
used by other similar programs.

TIOCREMOTE
The argument is a pointer to an into If the value of the int is non-zero, remote mode is enabled; if
the value of the int is zero, remote mode is disabled. This mode can be enabled or disabled
independently of packet mode. When a pseudo-tenninal is in remote mode, input to the slave dev­
ice of the pseudo-terminal is flow controlled and not input edited (regardless of the mode the slave
side of the pseudo-terminal). Each write to the controller device produces a record boundary for
the process reading the slave device. In normal usage, a write of data is like the data typed as a
line on the tenninal; a write of 0 bytes is like typing an EOF character. Note: this means that a
process writing to a pseudo-tenninal controller in remote mode must keep track of line boun­
daries, and write only one line at a time to the controller. If, for example, it were to buffer up
several NEWLINE characters and write them to the controller with one write(), it would appear to
a process reading from the slave as if a single line containing several NEWLINE characters had
been typed (as if, for example, a user had typed the LNEXT character before typing all but the last
of those NEWLINE characters). Remote mode can be used when doing remote line editing in a
window manager, or whenever flow controlled input is required.

The ioctls TIOCGWINSZ, TIOCSWINSZ, and, on Sun systems, TIOCCONS, can be perfonned on the con­
troller device of a pseudo-terminal; they have the same effect as when performed on the slave device.

Last change: 26 February 1988 Sun Release 4.1

PTY(4)

FILES
Idev/pty[p-s][O-9a-f]
Idev/tty[p-s][O-9a-f]
Idev/console

SEE ALSO

DEVICES AND NETWORK IN1ERFACES

pseudo-terminal controller devices
pseudo-terminal slave devices

rlogin(1C), termio(4), Idterm(4M), ttcompat(4M), rlogind(8C)

BUGS
It is apparently not possible to send an EOT by writing zero bytes in TIOCREMOTE mode.

Sun Release 4.1 Last change: 26 February 1988

PTY(4)

1451

RFS(4) DEVICES AND NETWORK INTERFACES RFS(4)

NAME
rfs, RFS - remote file sharing

CONFIGURATION
options RFS
options VFSST A TS

A V AILABILITY
Available only with the RFS software installation option. Refer to Installing SunOS 4.1 for infonnation on
how to install optional software.

DESCRIPTION

FILES

The Remote File Sharing service, or RFS, allows transparent resource sharing among hosts on a network.
A resource can be a directory, the files contained in that directory, subdirectories, devices, and even named
pipes. Resources are advertised as a local directory using the name services. Hosts can then mount these
resources, and use them as they would a local file system. The host advertising the resource is a file server,
the hosts mounting the resource are clients.

All file servers and clients on a network belong to an RFS domain, and are administered by the same RFS
name server. A domain consists of the following:

• A primary name server

• Possibly one or more secondary name servers

• File servers

• Clients
The name server maintains a list of advertised resources, and passwords in use. The name server also pro-
vides name-to-resource mapping. This allows a client to mount an advertised resource by the resource
name, without needing to know the name of the file server or the pathname of the directory.

lusr/nserve/rfmaster hosts providing domain name service

SEE ALSO

1452

clone(4), nit_buf(4M), nitym(4M), tcptli(4P), timod(4), tirdwr(4), rfadmin(8), rfstart(8), rfudae­
mon(8), rmntstat(8)

System and Network Administration

Last change: 25 January 1990 Sun Release 4.1

ROOT(4S) DEVICES AND NETWORK INTERFACES ROOT (4S)

NAME
root - pseudo-driver for Sun386i root disk

CONFIG
pseudo-device rootdev

A V AILABILITY
Available only on Sun 386i systems running a SunOS 4.0.x release or earlier. Not a SunOS 4.1 release
feature.

DESCRIPTION

FILES

The root pseudo-driver provides indirect, device-independent access to the root disk on a diskful Sun
workstation. The root disk is the disk where the mounted root partition resides - typically the disk from
which the system was booted.

The intent of the root device is to allow uniform access to the partitions on the root disk, regardless of the
disk's controller type or unit number. For example, the following version of letc/fstab will work for any
disk (assuming the disk has the standard partitions and filesystems):

Idev/roota I 4.2 rw 11
Idev/rootg lusr 4.2 ro 1 2
Idev/rooth lexport 4.2 rw 13

When the root device is opened, the open and all subsequent operations on that device (read(2V),
write(2V), ioctl(2), c1ose(2V») are redirected to the real disk. Therefore, all device-dependent operations
on a particular disk are still accessible via the root device (see dkio(4S).

Idev/root[a-h]
Idev/rroot[a-h]

block partitions
raw partitions

SEE ALSO
fstab(5), sd(4S), open(2V), dkio(4S)

Sun Release 4.1 Last change: 19 February 1988 1453

ROUTING (4N) DEVICES AND NETWORK IN1ERFACES ROUTING (4N)

NAME
routing - system supporting for local network packet routing

DESCRIPTION

FILES

The network facilities provided general packet routing, leaving routing table maintenance to applications
processes.

A simple set of data structures comprise a "routing table" used in selecting the appropriate network inter­
face when transmitting packets. This table contains a single entry for each route to a specific network or
host A user process, the routing daemon, maintains this data base with the aid of two socket specific
ioctl(2) commands, SIOCADDRT and SIOCDELRT. The commands allow the addition and deletion of a
single routing table entry, respectively. Routing table manipulations may only be carried out by super-user.

A routing table entry has the following form, as defined in <netlroute.h>:
strud rtentry {

};

uJong rt_hash;
strud sockaddr rt _ dst;
strud sockaddr rt _gateway;
short rt_ flags;
short rt_refcnt;
u_long rt_use;
strud ifnet *rt_ifp;

with rt Jiags defined from:
#define RTF_UP Ox!
#define RTF _ GATEWAY Ox2
#define RTF HOST Ox4

1* route usable *1
1* destination is a gateway *1
1* host entry (net otherwise) *1

Routing table entries come in three flavors: for a specific host, for all hosts on a specific network, for any
destination not matched by entries of the first two types (a wildcard route). When the system is booted,
each network interface autoconfigured installs a routing table entry when it wishes to have packets sent
through it. Normally the interface specifies the route through it is a "direct" connection to the destination
host or network. If the route is direct, the transport layer of a protocol family usually requests the packet
be sent to the same host specified in the packet. Otherwise, the interface may be requested to address the
packet to an entity different from the eventual recipient (that is, the packet is forwarded).

Routing table entries installed by a user process may not specify the hash, reference count, use, or interface
fields; these are filled in by the routing routines. If a route is in use when it is deleted (rt _refent is non­
zero), the resources associated with it will not be reclaimed until all references to it are removed.

The routing code returns EEXIST if requested to duplicate an existing entry, ESRCH if requested to delete a
non-existent entry, or ENOBUFS if insufficient resources were available to install a new route.

User processes read the routing tables through the Idev/kmem device.

The rt _use field contains the number of packets sent along the route. This value is used to select among
multiple routes to the same destination. When multiple routes to the same destination exist, the least used
route is selected.

A wildcard routing entry is specified with a zero destination address value. Wildcard routes are used only
when the system fails to find a route to the destination host and network. The combination of wildcard
routes and routing redirects can provide an economical mechanism for routing traffic.

Idev/kmem

SEE ALSO
ioctl(2), route(8C), routed(8C)

1454 Last change: 9 October 1987 Sun Release 4.1

SD(4S) DEVICES AND NETWORK INTERFACES SD(4S)

NAME
sd - driver for SCS I disk devices

CONFIG - SUN-3, SUN-3x, and SUN-4 SYSTEMS
controller siO at vrne24d16 ? csr Ox200000 priority 2 vector siintr Ox40
controller siO at obio? csr Ox140000 priority 2
disk sdO at siO drive 0 Hags 0
disk sdl at siO drive 1 Hags 0
disk sd2 at siO drive 8 Hags 0
disk sd3 at siO drive 9 Hags 0
disk sd4 at siO drive 16 Hags 0
disk sd6 at siO drive 24 Hags 0

controller scO at vrne24d16 ? csr Ox200000 priority 2 vector scintr Ox40
disk sdO at scO drive 0 flags 0
disk sdl at scO drive 1 Hags 0
disk sd2 at scO drive 8 flags 0
disk sd3 at scO drive 9 flags 0
disk sd4 at scO drive 16 flags 0
disk sd6 at scO drive 24 flags 0

The first two controller lines above specify the first and second SCSI host adapters for Sun-3, Sun-3x, and
Sun-4 VME systems. The third controller line specifies the first and only SCSI host adapter on Sun-3/50
and Sun-3/60 systems.

The four lines following the controller specification lines define the available disk devices, sdO - sd6.

The flags field is used to specify the SCSI device type to the host adapter. flags must be set to 0 to identify
disk devices.

The drive value is calculated using the fonnula:
8 * target + lun

where target is the SCSI target, and lun is the SCSI logical unit number.

The next configuration block, following siO and sit above, describes the configuration for the older scO host
adapter. It uses the same configuration description as the siO host adapter.

CONFIG - SPARCsystem 330 and SUN-3/80 SYSTEMS
controller smO at obio ? csr OxfaOOOOOO priority 2
disk sdO at smO drive 0 flags 0
disk sd1 at smO drive 1 flags 0
disk sd2 at smO drive 8 flags 0
disk sd3 at smO drive 9 flags 0
disk sd4 at smO drive 16 flags 0
disk sd6 at smO drive 24 flags 0

The SPARCsystem 330 and Sun-3/80 use an on-board SCSI host adapter, smO. It follows the same rules as
described above for the Sun-3, Sun-3x, and Sun-4 section.

CONFIG - SUN-4IllO SYSTEM
controller swO at obio 2 csr OxaOOOOOO priority 2
disksdO at swO drive 0 flags 0
disk sdl at swO drive 1 flags 0
disk sd2 at swO drive 8 flags 0
disk sd3 at swO drive 9 flags 0
disk sd4 at swO drive 16 flags 0
disk sd6 at swO drive 24 flags 0

Sun Release 4.1 Last-change: 24 January 1990 1455

SD(4S) DEVICES AND NETWORK INTERFACES SD(4S)

The Sun-4/110 uses an on-board SCSI host adapter, swO. It follows the same rules as described above for
the Sun-3, and Sun-4 section.

CONFIG - SUN-3/E SYSTEM
controller seO at vme24d16 ? csr Ox300000 priority 2 vector se _intr Ox40
disk sdO at seO drive 0 flags 0
disk sdl at seO drive 1 flags 0
disk sd2 at seO drive 8 flags 0
disk sd3 at seO drive 9 flags 0

The Sun-3/E uses a VME-based SCSI host adapter, seO. It follows the same rules as described above for the
Sun-3 and Sun-4 section.

CONFIG - Sun386i
controller wdsO at obmem ? csr OxFBOOOOOO dmachan 7 irq 16 priority 2
disk sdO at wdsO drive 0 flags 0
disk sdl at wdsO drive 8 flags 0
disk sd2 at wdsO drive 16 flags 0

The Sun386i configuration follows the same rules described above under the Sun-3 and Sun-4
configuration section. configuration section.

CONFIG - SPARCstation 1 SYSTEMS
device-driver esp
scsibusO at esp
disk sdO at scsibusO target 3 lun 0
disk sdl at scsibusO target llun 0
disk sd2 at scsibusO target 21un 0
disk sd3 at scsibusO target 0 lun 0

The SPARCstation 1 configuration files specify a device driver (esp), and a SCSI bus attached to that device
driver, and then disks on that SCSI bus at the SCSI Target and Logical Unit addresses are specified.

DESCRIPTION
Files with minor device numbers 0 through 7 refer to various portions of drive O. The standard device
names begin with "sd" followed by the drive number and then a letter a-h for partitions 0-7 respectively.
The character? stands here for a drive number in the range 0-6.

The block-files access the disk using the system's normal buffering mechanism and are read and written
without regard to physical disk records. There is also a "raw" interface that provides for direct transmis­
sion between the disk and the user's read or write buffer. A single read or write call usually results in one
I/O operation; raw I/O is therefore considerably more efficient when many bytes are transmitted. The
names of the raw files conventionally begin with an extra 'r.'

I/O requests (such as Iseek (2V») to the SCSI disk must have an offset that is a multiple of 512 bytes
(DEV _BSIZE), or the driver returns an EINV AL error. If the transfer length is not a multiple of 512 bytes,
the transfer count is rounded up by the driver.

Disk Support

1456

This driver handles the Adaptec ACB-4000 disk controller for ST-506 drives, the Emulex MD21 disk con­
troller for ESDI drives, and embedded, CCS-compatible SCSI disk drives.

On Sun386i and SPARCstation 1 systems, this driver supports the CDC Wren III half-height, and Wren IV
full-height SCSI disk drives.

The type of disk drive is determined using the SCSI inquiry command and reading the volume label stored
on block 0 of the drive. The volume label describes the disk geometry and partitioning; it must be present
or the disk cannot be mounted by the system.

Last change: 24 January 1990 Sun Release 4.1

SD(4S)

FILES

DEVICES AND NETWORK INTERFACES SD(4S)

The sd?a partition is normally used for the root file system on a disk, the sd?b partition as a paging area
(e.g. swap), and the sd?c partition for pack-pack copying. sd?c normally maps the entire disk and may
also be used as the mount point for secondary disks in the system. The rest of the disk is normally the sd?g
partition. For the primary disk, the user file system is located here.

/dev/sd[O-6][a-h]
/dev/rsd[O-6][a-h]

block files
raw files

SEE ALSO
dkio(4S), directory(3V), Iseek(2V), read(2V), write(2V)

Product Specification for Wren IV SCSI Model 94171
Product Specification for Wren III SCSI Model 94161
Product Specification for Wren III SCSI Model 94211
Emulex MD21 Disk Controller Programmer Reference Manual
Adaptec ACB-4000 Disk Controller OEM Manual

DIAGNOSTICS
sd?: sdtimer: VO request timeout

A tape I/O operation has taken too long to complete. A device or host adapter failure may
have occurred.

sd?: sdtimer: can't abort request
The driver is unable to find the request in the disconnect queue to notify the device driver that
it has failed.

sd?: no space for inquiry data
sd?: no space for disk label

sd?: <%s>

The driver was unable to get enough space for temporary storage. The driver is unable to open
the disk device.

The driver has found a SCSI disk device and opened it for the first time. The disk label is
displayed to notify the user.

sd?: SCSI bus failure
A host adapter error was detected. The system may need to be rebooted.

sd?: single sector I/O failed
The driver attempted to recover from a transfer by writing each sector, one at a time, and
failed. The disk needs to be reformatted to map out the new defect causing this error.

sd?: retry failed
sd?: rezero failed

A disk operation failed. The driver first tries to recover by retrying the command, if that fails,
the driver rezeros the heads to cylinder 0 and repeats the retries. A failure of either the retry or
rezero operations results in these warning messages; the error recovery operation continues
until the retry count is exhausted. At that time a hard error is posted.

sd?: request sense failed
The driver was attempting to determine the cause of an I/O failure and was unable to get more
information. This implies that the disk device may have failed.

sd?: warning, abs. block %d has failed %d times
The driver is warning the user that the specified block has failed repeatedly.

Sun Release 4.1 Last change: 24 January 1990 1457

SD(4S) DEVICES AND NETWORK INTERFACES SD(4S)

sd?: block %d needs mapping
sd?: reassigning defective abs. block %d

The specified block has failed repeatedly and may soon become an unrecoverable failure. If
the driver does not map out the specified block automatically, it is recommend that the user
correct the problem.

sd?· reassign block failed
The driver attempted to map out a block having excessive soft errors and failed. The user
needs to run fonnat and repair the disk.

sd?%c: cmd how blk %d (reI. blk %d)
sense key(Ox%x): %s, error code(Ox%x): %s

An I/O operation (cmd), encountered an error condition at absolute block (blk %d), partition
(sd?%c:), or relative block (reI. block%d). The error recovery operation (how) indicates
whether it retry' ed, restored, or failed. The sense key and error code of the error are
displayed for diagnostic purposes. The absolute blk of the the error is used for mapping out
the defective block. The reI. blk is the block (sector) in error, relative to the beginning of the
partition involved. This is useful for using icheck(8) to repair a damaged file structure on the
disk.

SPARCstation 1 Diagnostics

BUGS

1458

The diagnostics for SPARCstation 1 are much like as above. Below are some additional diagnostics you
might see on a SPARCstation 1:

sd?: SCSI transport failed: reason 'xxxx': {retryinglgiving up}
The host adapter has failed to transport a command to the target for the reason stated. The
driver will either retry the command or, ultimately, give up.

sd?: disk not responding to selection
The target disk isn't responding. You may have accidently kicked a power cord loose.

sd?: disk ok
The target disk is now responding again.

sd?: disk offline
The driver has decided that the target disk is no longer there.

These disk drivers assume that you don't have removable media drives, and also that in order to operate
normally, a valid Sun disk label must be in sector zero.

A logical block size of 512 bytes is assumed (and enforced on SPARCstation 1).

Last change: 24 January 1990 S un Release 4.1

SOCKIO(4) DEVICES AND NETWORK INTERFACES SOCKIO(4)

NAME
sockio - ioctls that operate directly on sockets

SYNOPSIS
#include <syslsockio.h>

DESCRIPTION
The IOCTL's listed in this manual page apply directly to sockets, independent of any underlying protocol.
Note: the setsockopt system call (see getsoekopt(2») is the primary method for operating on sockets as
such, rather than on the underlying protocol or network interface. ioetls for a specific network interface or
protocol are documented in the manual page for that interface or protocol.

SIOCSPGRP

SIOCGPGRP

SIOCCATMARK

SEE ALSO

The argument is a pointer to an into Set the process-group ID that will subse­
quently receive SIGIO or SIGURG signals for the socket referred to by the
descriptor passed to ioetl to the value of that int.

The argument is a pointer to an int. Set the value of that int to the process-group
ID that is receiving SIGIO or SIGURG signals for the socket referred to by the
descriptor passed to ioetl.

The argument is a pointer to an int. Set the value of that int to 1 if the read
pointer for the socket referred to by the descriptor passed to ioetl points to a mark
in the data stream for an out-of-band message, and to 0 if it does not point to a
mark.

ioctl(2), getsoekopt(2), filio(4)

Sun Release 4.1 Last change: 23 November 1987 1459

SR(4S) DEVICES AND NETWORK INTERFACES SR(4S)

NAME
sr - driver for CDROM SCSI controller

CONFIG - SPARCstation 1 and SPARCserver
disk srO at sesibusO target 6 lun 0

CONFIG - SUN-4/330 SYSTEMS
disk srO at smO drive 060 flags 2

CONFIG - SUN-4 SYSTEMS
disk srO at seO drive 060 flags 2
disk srO at siO drive 060 flags 2

A V AILABILITY
SPARCstation 1, SPARCserver 1, and Sun-4/330 systems only.

DESCRIPTION
CDROM is a removable read-only direct-access device connected to the system's SCSI bus. CDROM drives
are designed to work with any disc that meets the Sony-Philips "red-book" or "yellow-book" documents.
They can read CDROM data discs, digital audio discs (Audio CD's) or combined-mode discs (that is, some
tracks are audio, some tracks are data). A CDROM disc is singled sided containing approximately 540
mega-bytes of data or 74 minutes of audio.

The CDROM drive controller is set up as SCSI target 6. There is only a single logically unit number O.
Therefore, the minor device number is always O.

Since all the other SCSI target ids has been reserved by the system, the system only supports one CDR OM
drive. The device names are Idev/srO for block device and Idev/rsrO for character device.

The device driver supports open(2V), read (2V) , close(2V) function calls through its block device and
character device interface. In addition, it supports ioctl function call through the character device interface.
When the device is first opened, the CDROM drive's eject button will be disabled (which prevents the
manual removal of the disc) until the last close(2V) is called.

CDROM Drive Support

FILES

This driver supports the SONY CDU-8012 CDROM drive controller and other CDROM drives which has the
same SCSI command set as the SONY CDU-8012. The type of CDROM drive is determined using the SCSI
inquiry command.

There is no volume label stored on the CDROM. The disc geometry and paritioning information is always
the same. If the CDROM is in ISO 9660 or High Sierra Disk format, it can be mounted as a file system.

Idev/srO
Idev/rsrO

block files
raw files

SEE ALSO
edromio(4S), fstab(5), mount(8)

1460 Last change: 1 July 1989 Sun Release 4.1

ST(4S) DEVICES AND NETWORK INTERFACES ST(4S)

NAME
st - driver for SCSI tape devices

CONFIG - SUN-3, SUN-3x, SUN4 SYSTEMS
controller siO at vme24d16 ? esr Ox200000 priority 2 vector siintr Ox40
controller sit at vme24d16 ? esr Ox204000 priority 2 vector siintr Ox41
controller siO at obio ? esr Ox140000 priority 2
tape stO at siO drive 32 flags 1
tape stl at siO drive 40 flags 1
tape st2 at sit drive 32 flags 1
tape st3 at sit drive 40 flags 1

controller scO at vme24d16 ? csr Ox200000 priority 2 vector scintr Ox40
tape stO at seO drive 32 flags 1
tape stl at scO drive 40 flags 1

The first two controller lines above specify the first and second SCSI host adapters for Sun-3, Sun-3x, and
Sun-4 VME systems. The third controller line specifies the first and only SCSI host adapter on Sun-3/50
and Sun-3/60 systems.

Following the controller specification lines are four lines which define the available tape devices, stO-st3.
The first two tape devices, stO and stl, are on the first controller, siO. The next two tape devices, st2 and
st3, are on the second controller, sit.

The flags field is used to specify the SCSI device type to the host adapter. The flags field must be set to 1 to
identify tape devices.

The drive value is calculated using the fonnula:
8 * target + lun

where target is the SCSI target, and lun is the SCSI logical unit number.

The next configuration block, following siO and sit above, describes the older seO host adapter
configuration. It follows the same configuration description as the siO host adapter.

CONFIG - SPARCsystem 330, SUN-3/80 SYSTEMS
controller smO at obio ? csr OxfaOOOOOO priority 2
tape stO at smO drive 32 flags 1
tape stl at smO drive 40 flags 1

The SPARCsystem 330 and Sun-3/80 use an on-board SCSI host adapter, smO, which follows the rules
described above in the Sun-3, Sun-3x, and Sun-4 section.

CONFIG - SUN-4/110 SYSTEM
controller swO at obio 2 csr OxaOOOOOO priority 2
tape stO at swO drive 32 flags 1
tape stl at swO drive 40 flags 1

The Sun-4/110 uses an on-board SCSI host adapter, swO, which follows the rules described above in the
Sun-3, Sun-3x, and Sun-4 section.

CONFIG - SUN-3/E SYSTEM
controller seO at vme24d16 ? csr Ox300000 priority 2 vector se _intr Ox40
tape stO at seO drive 32 flags 1
tape stl at seO drive 40 flags 1

The Sun-3/E uses a VME-bascd SCSI host adapter, seO, which follows the rules described above for Sun-3,
Sun-3x, and Sun-4 systems.

Sun Release 4.1 Last change: 24 January 1990 1461

ST(4S) DEVICES AND NETWORK INTERFACES ST(4S)

CONFIG - Sun386i
controller wdsO at obmem ? csr OxFBOOOOOO dmachan 7 irq 16 priority 2
tape stO at wdsO drive 32 flags 1

The Sun386i configuration follows the rules described above in the Sun-3, Sun-3x, and Sun-4 configuration
section.

CONFIG - SPARCstation 1 SYSTEM
device-driver esp
scsibusO at esp
tape stO at scsibusO target 4 lun 0
tape stl at scsibusO target 5 lun 1

The SPARCstation 1 configuration files specify a device driver (esp), and a SCSI bus attached to that device
driver, and then tapes on that SCSI bus at the SCSI Target and Logical Unit addresses are specified.

DESCRIPTION
The st device driver is an interface to various SCSI tape devices. Supported 1/4-inch cartridge devices
include the Archive Viper QIC-150 streaming tape drive, the Emulex MT-02 tape controller, and the Sys­
gen SC4000 (except on SPARCstation 1) tape controller. st provides a standard interface to these various
devices, see mtio(4) for details.

The driver can be opened with either rewind on close (/dev/rst*) or no rewind on close (/dev/nrst*)
options. A maximum of four tape formats per device are supported (see FILES below). The tape format is
specified using the device name. The four rewind on close formats for stO, for example, are Idev/rstO,
Idev/rst8, Idev/rstl6, and Idev/rst24.

Read Operation

1462

Fixed-length I/O tape devices require the number of bytes read or written to be a multiple of the physical
record size. For example, 1/4-inch cartridge tape devices only read or write multiples of 512 bytes.

Fixed-length tape devices read or write multiple records if the blocking factor is greater than 64512 bytes
(minphys limit). These multiple writes are limited to 64512 bytes. For example, if a write request is issued
for 65536 bytes using a l/4-inch cartridge tape, two writes are issued; the first for 64512 bytes and the
second for 1024 bytes.

Tape devices, which support variable-length I/O operations, such as 1/2-inch reel tape, may read or write a
range of 1 to 65535 bytes. If the record size exceeds 65535 bytes, the driver reads or writes multiple
records to satisfy the request. These multiple records are limited to 65534 bytes. As an example, if a write
request for 65540 bytes is issued using l/2-inch reel tape, two records are written; one for 65534 bytes fol­
lowed by one for 6 bytes.

If the driver is opened for reading in a different format than the tape is written in, the driver overrides the
user selected format. For example, if a l/4-inch cartridge tape is written in QIC-24 format and opened for
reading in QIC-ll, the driver will detect a read failure on the first read and automatically switch to QIC-24
to recover the data.

Note: If the Idev/*st[0-3] format is used, no indication is given that the driver has overridden the user
selected format. Other formats issue a warning message to inform the user of an overridden format selec­
tion. Some devices automatically perform this function and do not require driver support (l/2-inch reel
and QIC-150 tape drives for example).

If a file mark is encountered during reading, no error is reported but the number of bytes transferred is zero.
The next read operation reads into the next file.

End of media is indicated by two successive zero transfer counts. No further reading should be performed
past the end of recorded media.

If the read request size is 2048 bytes, the tape driver behaves as a disk device and honors seek positioning
requests (see lseek(2». If a file mark is crossed during a read operation, this function is disabled.

Last change: 24 January 1990 Sun Release 4.1

ST(4S) DEVICES AND NETWORK INTERFACES ST(4S)

Write Operation
Writing is allowed at either the beginning of tape or after the last written file on the tape. Writing from the
beginning of tape is performed in the user-specified format. The original tape format is used for appending
onto previously written tapes. A warning message is issued if the driver has to override the user-specified
format.

Care should be used when appending files onto I/2-inch reel tape devices, since an extra file mark is
appended after the last file to mark the end of recorded media. In other words, the last file on the tape ends
with two file marks instead of one. This extra file mark must be overwritten to prevent the creation of a
null file. To facilitate write append operations, a space to the end of recorded media ioctl() is provided to
eliminate this problem by having the driver perform the positioning operation.

If the end of tape is encountered during writing, no error is reported but the number of bytes transferred is
zero and no further writing is allowed. Trailer records may be written by first writing a file mark followed
by the trailer records. It is important that these trailer records be kept as short as possible to prevent data
loss.

Close Operation

IOCTLS

If data was written, a file mark is automatically written by the driver upon close. If the rewinding device
name is used, the tape will be rewound after the file mark is written. If the user wrote a file mark prior to
closing, then no file mark is written upon close. If a file positioning ioctl(), like rewind, is issued after
writing, a file mark is written before repositioning the tape.

Note: For I/2-inch reel tape devices, two file marks are written to mark the end of recorded media before
rewinding or performing a file positioning ioctl().Iftheuserwrote mark before closing a l/2-inch reel tape
device, the driver will always write a file mark before closing to insure that the end of recorded media is
marked properly.

If no data was written and the driver was opened for WRITE-ONLY access, a file mark is written thus creat­
ing a null file.

The following ioetls are supported: forwardspace record, forwardspace file, backspace record, backspace
file, backspace file mark, rewind, write file mark, offline, erase, retension, space to EOM, and get status.

The backspace file and forwardspace file tape operations are inverses. Thus, a forwardspace "-1" file is
equivalent to a backspace" 1" file. A backspace "0" file is the same as forwardspace "0" file; both position
the tape device to the beginning of the current file.

Backspace file mark moves the tape backwards by file marks. The tape position will end on the beginning
of tape side of the desired file mark. Devices which do not support this function, such as l/4-inch car­
tridge tape, return an ENXIO error.

Backspace record and forwardspace record operations perform much like space file operations, except that
they move by records instead of files. Variable-length I/O devices (I/2-inch reel, for example) space actual
records; fixed-length I/O devices space physical records (blocks). I/4-inch cartridge tape, for example,
spaces 512 byte physical records. The status ioctl residue count contains the number of files or records not
skipped. Record skipping does not go past a file mark; file skipping does not go past the end of recorded
media.

Spacing to the end of recorded media positions the tape at a location just after the last file written on the
tape. For l/4-inch cartridge tape, this is after the last file mark on the tape. For I/2-inch reel tape, this is
just after the first file mark but before the second (and last) file mark on the tape. Additional files can then
be appended onto the tape from that point.

The offline ioctl rewinds and, if appropriate, takes the device offline by unloading the tape. Tape must be
inserted before the tape device can be used again.

The erase ioetl rewinds the tape, erases it completely, and returns to the beginning of tape.

Sun Release 4.1 Last change: 24 January 1990 1463

ST(4S) DEVICES AND NETWORK INTERFACES ST(4S)

The retension ioctl only applies to l/4-inch cartridge tape devices. It is used to restore tape tension
improving the tape's soft error rate after extensive start-stop operations or long-term storage. Devices
which do not support this function, such as 1/2-inch reel tape, return an ENXIO error.

The get status ioctl call returns the drive id (mt_type), sense key error (mt_erreg), file number (mcfileno),
and record number (mCblkno) of the last error. The residue count (mcresid) is set to the number of bytes
not transferred or files/records not spaced.

Note: The error status is reset by the get status ioctl call or the next read, write, or other ioctl operation. If
no error has occurred (sense key is zero), the current file and record position are returned.

ERRORS

FILES

EACCES

EBUSY

EIO

EINVAL

ENXIO

The driver is opened for write access and the tape is write protected, or an attempt is made
to write on a write protected tape. For writing with QIC-ISO tape drives, this error is also
reported if the wrong tape media is used for writing.

The tape device is already in use.

During opening, the tape device is not ready because either no tape is in the drive, or the
drive is not on-line. Once open, this error is returned if the requested I/O transfer could not
be completed.

The number of bytes read or written is not a multiple of the physical record size (fixed­
length tape devices only).

During opening, the tape device does not exist. On ioctl functions, this indicates that the
tape device does not support the ioctl function.

For QIC-ISO tape devices (Archive Viper):
/dev/rst[O-3] QIC-ISO Format
/dev/rst[8-11] QIC-ISO Format
Idev/rst[16-20] QIC-ISO Format
/dev/rst[24-28] QIC-ISO Format
Idev/nrst[O-3] non-rewinding QIC-ISO Format
Idev/nrst[8-11] non-rewinding QIC-ISO Format
/dev/nrst[16-19] non-rewinding QIC-ISO Format
/dev/nrst[24-27] non-rewinding QIC-ISO Format

For QIC-24 tape devices (Emulex MT -02 and Sysgen SC4000):
Idev/rst[O-3] QIC-ll Format
/dev/rst[8-11] QIC-24 Format
Idev/rst[16-20] QIC-24 Format
/dev/rst[24-28] QIC-24 Format
/dev/nrst[O-3] non-rewinding QIC-II Format
Idev/nrst[8-11] non-rewinding QIC-24 Format
Idev/nrst[16-19] non-rewinding QIC-24 Format
/dev/nrst[24-27] non-rewinding QIC-24 Format

Note: The QIC-24 format is preferred over QIC-II for Sun-3, Sun-3x, Sun-4, and Sun386i systems.

SEE ALSO

1464

mt(l), tar(l), mtio(4), dump(8), restore(8)

Archive Viper QIC-150 Tape Drive Product Specification
Emulex MT-02 Intelligent Tape Controller Product Specification
Sysgen SC4000 Intelligent Tape Controller Product Specification

Last change: 24 January 1990 Sun Release 4.1

ST(4S) DEVICES AND NETWORK INTERFACES ST(4S)

DIAGNOSTICS
st?: sttimer: I/O request timeout

A tape I/O operation has taken too long to complete. A device or host adapter failure may have
occurred.

st?: sttimer: can't abort request
The driver is unable to find the request in the disconnect que to notify the device driver that it
has failed. A SCSI bus reset is issued to recover from this error.

st?: unknown SCSI device found
The SCSI device is not a tape device; it is some other type of SCSI device.

st?: warning, unknown tape drive found
The driver does not recognize the tape device. Only the default tape density is used; block size
is set to the value specified by the tape drive.

st?: tape is write protected
The tape is write protected.

st?: wrong tape media for writing
For QIC-150 tape drives, this indicates that the user is trying to write on a DC-300XL (or
equivalent) tape. Only DC-6150 (or equivalent) tapes can be used for writing.
Note: DC-6150 was formerly known as DC-600XTD.

st?: warning, rewinding tape
The driver is rewinding tape in order to set the tape format.

st?: warning, using alternate tape format
The driver is overriding the user-selected tape format and using the previously used format.

st?: warning, tape rewound
For Sysgen tape controllers, the tape may be rewound as a result of getting sense data.

st?: format change failed
The tape drive rejected the mode select command to change the tape format.

st?: file mark write failed
The driver was unable to write a file mark.

st?: warning, The tape may be wearing out or the head may need cleaning.
st?: read retries= %d, file= %d, block= %d
st?: write retries= %d, file= %d, block= %d

The number of allowable soft errors has been exceeded for this tape. Either the tape heads
need cleaning or the tape is wearing out. If the tape is wearing out, continued usage of it is not
recommended.

st?: illegal command
The SCSI command just issued was illegal. This message can result from issuing an inap­
propriate command, such as trying to write over previously written files on the tape. On
foreign tape devices, this can also be caused by selecting the wrong tape format.

st?: error: sense key(Ox%x): %s, error code(Ox%x): %s
An error has occurred. The sense key message and error code are displayed for diagnostic
purposes.

st?: stread: not modulo %d block size
st?: stwrite: not modulo %d block size

The read or write request size must be a multiple of the %d physical block size.

st?: file positioning error
st?: block positioning error

The driver was unable to position the tape to the desired file or block (record). This is prob­
ably caused by a damaged tape.

Last chan~e: 24 Januarv 1990 1465

ST(4S)

BUGS

1466

DEVICES AND NETWORK INTERFACES ST(4S)

st?: SCSI transport failed: reason 'xxxx': {retryinglgiving up}
The host adapter has failed to transport a command to the target for the reason stated. The
driver will either retry the command or, ultimately, give up (SPARCstation 1) only.

Foreign tape devices which do not return a BUSY status during tape loading prevent user commands from
being held until the device is ready. The user must delay issuing any tape operations until the tape device
is ready. This is not a problem for Sun supplied tape devices.

Foreign tape devices which do not report a blank check error at the end of recorded media cause file posi­
tioning operations to fail. Some tape drives for example, mistakenly report media error instead of blank
check error.

"Cooked" mode for read and write operations is not supported.

Systems using the older scO host adapter or the Sysgen SC4000 tape controller, prevent disk I/O over the
SCSI bus while the tape is in use (during a rewind for example). This problem is caused by the fact that
they do not support disconnect/reconnect to free the SCSI bus. Newer tape devices, like the the Emulex
MT-02, and host adapters, like siO, eliminate this problem.

Some older systems may not support the QIC-24 format, and may complain (or exhibit erratic behavior)
when the user attempts to use this format.

SPARCstation 1 does not support the Sysgen SC4000 tape controller, nor does it support 1/2" variable
record length operations, record space operations, or implied seeking.

Last change: 24 January 1990 Sun Release 4.1

STREAMIO (4) DEVICES AND NETWORK INTERFACES STREAMIO (4)

NAME
streamio - STREAMS ioctl commands

SYNOPSIS
#include <stropts.h>
int ioctl (fd, command, arg)
int fd, command;

DESCRIPTION
STREAMS (see intro(2)) ioctl commands are a subset of ioctl(2) commands that perform a variety of con­
trol functions on STREAMS. The arguments command and arg are passed to the file designated by fd and
are interpreted by the stream head. Certain combinations of these arguments may be passed to a module or
driver in the stream.

fd is an open file descriptor that refers to a stream. command determines the control function to be per­
formed as described below. arg represents additional information that is needed by this command. The
type of arg depends upon the command, but it is generally an integer or a pointer to a command-specific
data structure.

IOCTLS

Since these STREAMS commands are a subset of ioctl, they are subject to the errors described there. In
addition to those errors, the call will fail with errno set to EINV AL, without processing a control function, if
the stream referenced by fd is linked below a multiplexor, or if command is not a valid value for a stream.

Also, as described in ioctl, STREAMS modules and drivers can detect errors. In this case, the module or
driver sends an error message to the stream head containing an error value. Subsequent system calls will
fail with errno set to this value.

The following ioctl commands, with error values indicated, are applicable to all STREAMS files:

I PUSH

I POP

I LOOK

Pushes the module whose name is pointed to by arg onto the top of the current
stream, just below the stream head. It then calls the open routine of the newly­
pushed module.

I_PUSH will fail if one of the following occurs:

EINVAL

EFAULT

ENXIO

The module name is invalid.

arg points outside the allocated address space.

The open routine of the new module failed.

ENXIO A hangup is received on the stream referred to by fd.

Removes the module just below the stream head of the stream pointed to by fd.
arg should be 0 in an I_POP request.

I_POP will fail if one of the following occurs:

EINVAL

ENXIO

No module is present on stream.

A hangup is received on the stream referred to by fd.

Retrieves the name of the module just below the stream head of the stream
pointed to by fd, and places it in a null-terminated character string pointed at by
arg. The buffer pointed to by arg should be at least FMNAMESZ+ 1 bytes long.
An '#include <sys/conf.h>' declaration is required.

I_LOOK will fail if one of the following occurs:

EFAULT arg points outside the allocated address space of the pro­
cess.

EINVAL No module is present on stream.

Sun Release 4.1 Last change: 24 November 1987 1467

STREAMIO (4)

I SETSIG

I GETSIG

1468

DEVICES AND NETWORK IN1ERFACES STREAMIO (4)

This request flushes all input and/or output queues, depending on the value of arg.
Legal arg values are:

FLUSHR Flush read queues.

FLUSHW Flush write queues.

FLUSHRW Flush read and write queues.

I_FLUSH will fail if one of the following occurs:

EAGAIN No buffers could be allocated for the fI ush message.

EINVAL

ENXIO

The value of arg is invalid.

A hangup is received on the stream referred to by Id.
Informs the stream head that the user wishes the kernel to issue the SIGPOLL sig­
nal (see sigvec(2») when a particular event has occurred on the stream associated
with/d. I_SETSIG supports an asynchronous processing capability in STREAMS.
The value of arg is a bitmask that specifies the events for which the user should be
signaled. It is the bitwise-OR of any combination of the following constants:

S INPUT

S HIPRI

S OUTPUT

S MSG

A non-priority message has arrived on a stream head
read queue, and no other messages existed on that queue
before this message was placed there. This is set even if
the message is of zero length.

A priority message is present on the stream head read
queue. This is set even if the message is of zero length.

The write queue just below the stream head is no longer
full. This notifies the user that there is room on the queue
for sending (or writing) data downstream.

A STREAMS signal message that contains the SIGPOLL
signal has reached the front of the stream head read
queue.

A user process may choose to be signaled only of priority messages by setting the
arg bitmask to the value S _ HIPRI.

Processes that wish to receive SIGPOLL signals must explicitly register to receive
them using I_SETSIG. If several processes register to receive this signal for the
same event on the same stream, each process will be signaled when the event
occurs.

If the value of arg is zero, the calling process will be unregistered and will not
receive further SIGPOLL signals.

1_ SETSIG will fail if one of the following occurs:

EINV AL The value of arg is invalid or arg is zero and the process
is not registered to receive the SIGPOLL signal.

EAGAIN A data structure could not be allocated to store the signal
request.

Returns the events for which the calling process is currently registered to be sent a
SIGPOLL signal. The events are returned as a bitmask pointed to by arg, where
the events are those specified in the description ofI_SETSIG above.

Last change: 24 November 1987 Sun Release 4.1

STREAMIO (4)

I FIND

I PEEK

I SRDOPT

I GRDOPT

Sun Release 4.1

DEVICES AND NETWORK IN1ERFACES STREAMIO (4)

1_ GETSIG will fail if one of the following occurs:

EINV AL The process is not registered to receive the SIGPOLL sig­
nal.

EFAULT arg points outside the allocated address space of the pro-
cess.

This request compares the names of all modules currently present in the stream to
the name pointed to by arg, and returns 1 if the named module is present in the
stream. It returns 0 if the named module is not present.

I_FIND will fail if one of the following occurs:

EFAULT arg points outside the allocated address space of the pro-
cess.

EINVAL arg does not point to a valid module name.

This request allows a user to retrieve the information in the first message on the
stream head read queue without taking the message off the queue. arg points to a
strpeek structure which contains the following members:

struct strbuf ctlbuf;
struct strbuf databuf;
long flags;

The maxlen field in the ctlbuf and databuf strbuf structures (see getmsg(2)) must
be set to the number of bytes of control information and/or data information,
respectively, to retrieve. If the user sets flags to RS_IDPRI, I_PEEK will only
look for a priority message on the stream head read queue.

I_PEEK returns 1 if a message was retrieved, and returns 0 if no message was
found on the stream head read queue, or if the RS _IDPRI flag was set in flag s and
a priority message was not present on the stream head read queue. It does not
wait for a message to arrive. On return, ctlbuf specifies information in the control
buffer, databuf specifies information in the data buffer, and flags contains the
value 0 or RS _ HIPRI.

I_PEEK will fail if one of the following occurs:

EFAULT arg points, or the buffer area specified in ctlbuf or data­
bujis, outside the allocated address space of the process.

Sets the read mode using the value of the argument arg. Legal arg values are:

RNORM

RMSGD

Byte-stream mode, the default.

Message-discard mode.

RMSGN Message-nondiscard mode.

Read modes are described in read(2V).

I_SRDOPT will fail if one of the following occurs:

EINV AL arg is not one of the above legal values.

Returns the current read mode setting in an int pointed to by the argument arg.
Read modes are described in read(2V).

1_ GRDOPT will fail if one of the following occurs:

EFAULT arg points outside the allocated address space of the pro­
cess.

Last change: 24 November 1987 1469

STREAMIO (4)

I NREAD

I FDINSERT

1470

DEVICES AND NETWORK INTERFACES STREAMIO (4)

Counts the number of data bytes in data blocks in the first message on the stream
head read queue, and places this value in the location pointed to by arg. The
return value for the command is the number of messages on the stream head read
queue. For example, if zero is returned in arg, but the ioctl return value is greater
than zero, this indicates that a zero-length message is next on the queue.

I _NREAD will fail if one of the following occurs:

EFAULT arg points outside the allocated address space of the pro-
cess.

creates a message from user specified buffer(s), adds information about another
stream and sends the message downstream. The message contains a control part
and an optional data part. The data and control parts to be sent are distinguished
by placement in separate buffers, as described below.

arg points to a strfdinsert structure which contains the following members:

struct strbuf
struct strbuf
long
int
int

ctlbuf;
databuf;
flags;
fd;
offset;

The len field in the ctlbuf strbuJ structure (see putmsg(2)) must be set to the size
of a pointer plus the number of bytes of control information to be sent with the
message. fd specifies the file descriptor of the other stream and offset, which must
be word-aligned, specifies the number of bytes beyond the beginning of the con­
trol buffer where 1_ FDINSERT will store a pointer to the fd stream's driver read
queue structure. The len field in the databuf strbuf structure must be set to the
number of bytes of data information to be sent with the message or zero if no data
part is to be sent.

flags specifies the type of message to be created. A non-priority message is
created if flags is set to 0, and a priority message is created if flags is set to
RS_HIPRI. For non-priority messages, I_FDINSERT will block if the stream write
queue is full due to internal flow control conditions. For priority messages,
I_FDINSERT does not block on this condition. For non-priority messages,
I_FDINSERT does not block when the write queue is full and 0 _NDELAY is set.
Instead, it fails and sets errno to EAGAIN.

1_ FDINSERT also blocks, unless prevented by lack of internal resources, waiting
for the availability of message blocks in the stream, regardless of priority or
whether 0 _NDELA Y has been specified. No partial message is sent.

I_FDINSERT will fail if one of the following occurs:

EAGAIN A non-priority message was specified, the 0 _NDELA Y
flag is set, and the stream write queue is full due to inter­
nal flow control conditions.

EAGAIN

EFAULT

Buffers could not be allocated for the message that was
to be created.

arg points, or the buffer area specified in ctlbuf or data­
bujis, outside the allocated address space of the process.

Last change: 24 November 1987 Sun Release 4.1

STREAMIO (4)

I STR

Sun Release 4.1

DEVICES AND NETWORK INTERFACES STREAMIO (4)

EINVAL fd in the strfdinsert structure is not a valid, open stream
file descriptor; the size of a pointer plus offset is greater
than the len field for the buffer specified through ctlptr;
offset does not specify a properly-aligned location in the
data buffer; an undefined value is pointed to by flags.

ENXIO A hangup is received on the stream referred to by fd.

ERANGE The len field for the buffer specified through databuf
does not fall within the range specified by the maximum
and minimum packet sizes of the topmost stream module,
or the len field for the buffer specified through databufis
larger than the maximum configured size of the data part
of a message, or the len field for the buffer specified
through etlbuf is larger than the maximum configured
size of the control part of a message.

Constructs an internal STREAMS ioctl message from the data pointed to by arg,
and sends that message downstream.

This mechanism is provided to permit a process to specify timeouts and variable­
sized amounts of data when sending an ioctl request to downstream modules and
drivers. It allows information to be sent with the ioetl, and will return to the user
any information sent upstream by the downstream recipient. 1_ STR blocks until
the system responds with either a positive or negative acknowledgement message,
or until the request "times out" after some period of time. If the request times
out, it fails with errno set to ETIME.

At most, one 1_ STR can be active on a stream. Further 1_ STR calls will block
until the active I_STR completes at the stream head. The default timeout interval
for these requests is 15 seconds. The 0 _NDELA Y (see open(2V» flag has no
effect on this call.

To send requests downstream, arg must point to a strioetl structure which contains
the following members:

int ic _ cmd; 1* downstream command *1
int ic_timout; 1* ACKINAK timeout *1
int ic _len; 1* length of data arg *1
char *ic_dp; 1* ptr to data arg *1

ic cmd is the internal ioctl command intended for a downstream module or driver
and ic _timout is the number of seconds (-1 = infinite, 0 = use default, >0 = as
specified) an 1_ STR request will wait for acknowledgement before timing out.
ic _len is the number of bytes in the data argument and ic _dp is a pointer to the
data argument. The ic _len field has two uses: on input, it contains the length of
the data argument passed in, and on return from the command, it contains the
number of bytes being returned to the user (the buffer pointed to by ic_dp should
be large enough to contain the maximum amount of data that any module or the
driver in the stream can return).

The stream head will convert the information pointed to by the strioctl structure to
an internal ioctl command message and send it downstream.

I_STR will fail if one of the following occurs:

EAGAIN Buffers could not be allocated for the ioctl message.

Last change: 24 November 1987 1471

STREAMIO (4)

I SENDFD

I RECVFD

1472

DEVICES AND NETWORK INTERFACES STREAMIO (4)

EFAULT

EINVAL

ENXIO

ETIME

arg points, or the buffer area specified by ic_dp and
ic _len (separately for data sent and data returned) is, out­
side the allocated address space of the process.

ic Jen is less than 0 or ie_len is larger than the maximum
configured size of the data part of a message or ic _timout
is less than -1.

A hangup is received on the stream referred to by fd.

A downstream ioetl timed out before acknowledgement
was received.

An 1_ STR can also fail while waiting for an acknowledgement if a message indi­
cating an error or a hangup is received at the stream head. In addition, an error
code can be returned in the positive or negative acknowledgement message, in the
event the ioet) command sent downstream fails. For these cases, 1_ STR will fail
with errno set to the value in the message.

Requests the stream associated withfd to send a message, containing a file pointer,
to the stream head at the other end of a stream pipe. The file pointer corresponds
to arg, which must be an integer file descriptor.

I_SENDFD converts arg into the corresponding system file pointer. It allocates a
message block and inserts the file pointer in the block. The user id and group id
associated with the sending process are also inserted. This message is placed
directly on the read queue (see intro(2» of the stream head at the other end of the
stream pipe to which it is connected.

I_SENDFD will fail if one of the following occurs:

EAGAIN The sending stream is unable to allocate a message block
to contain the file pointer.

EAGAIN

EBADF

EINVAL

ENXIO

The read queue of the receiving stream head is full and
cannot accept the message sent by I_SENDFD.

arg is not a valid, open file descriptor.

fd is not connected to a stream pipe.

A hangup is received on the stream referred to by fd.

Retrieves the file descriptor associated with the message sent by an I_SENDFD
ioet) over a stream pipe. arg is a pointer to a data buffer large enough to hold an
strrecvfd data structure containing the following members:

int fd;
unsigned short uid;
unsigned short gid;
ehar 611[8];

fd is an integer file descriptor. uid and gid are the user ID and group ID, respec­
tively, of the sending stream.

If 0 _NDELA Y is not set (see open(2V», 1_ RECVFD will block until a message is
present at the stream head. If 0 _NDELA Y is set, 1_ RECVFD will fail with errno
set to EAGAIN if no message is present at the stream head.

If the message at the stream head is a message sent by an I_SENDFD, a new user
file descriptor is allocated for the file pointer contained in the message. The new
file descriptor is placed in the fd field of the strrecvfd structure. The structure is
copied into the user data buffer pointed to by arg.

Last change: 24 November 1987 Sun Release 4.1

STREAMIO (4) DEVICES AND NETWORK INTERFACES S1REAMIO (4)

1_ RECVFD will fail if one of the following occurs:

EAGAIN A message was not present at the stream head read
queue, and the 0_ NDELA Y flag is set.

EBADMSG

EFAULT

EM FILE

ENXIO

The message at the stream head read queue was not a
message containing a passed file descriptor.

arg points outside the allocated address space of the pro­
cess.

Too many descriptors are active.

A hangup is received on the stream referred to by fd.

The following four commands are used for connecting and disconnecting multiplexed STREAMS

configurations.

I LINK

I UNLINK

Sun Release 4.1

Connects two streams, where fd is the file descriptor of the stream connected to
the multiplexing driver, and arg is the file descriptor of the stream connected to
another driver. The stream designated by arg gets connected below the multiplex­
ing driver. I_LINK causes the multiplexing driver to send an acknowledgement
message to the stream head regarding the linking operation. This call returns a
multiplexor ID number (an identifier used to disconnect the multiplexor, see
I_UNLINK) on success, and a -Ion failure.

I_LINK will fail if one of the following occurs:

ENXIO A hangup is received on the stream referred to by fd .

ETIME

EAGAIN

EBADF

EINVAL

EINVAL

EINVAL

The ioetl timed out before an acknowledgement was
received.

Storage could not be allocated to perform the I_LINK.

arg is not a valid, open file descriptor.

The stream referred to by fd does not support multiplex-
ing.

arg is not a stream, or is already linked under a multi­
plexor.

The specified link operation would cause a "cycle" in the
resulting configuration; that is, if a given stream head is
linked into a multiplexing configuration in more than one
place.

An I_LINK can also fail while waiting for the multiplexing driver to acknowledge
the link request, if a message indicating an error or a hangup is received at the
stream head of fd. In addition, an error code can be returned in the positive or
negative acknowledgement message. For these cases, I_LINK will fail with errno
set to the value in the message.

Disconnects the two streams specified by fd and arg. fd is the file descriptor of the
stream connected to the multiplexing driver. arg is the multiplexor ID number that
was returned by the ioctl I_LINK command when a stream was linked below the
multiplexing driver. If arg is -1, then all streams which were linked to fd are
disconnected. As in I_LINK, this command requires the multiplexing driver to
acknowledge the unlink.

I_UNLINK will fail if one of the following occurs:

ENXIO A hangup is received on the stream referred to by fd.

Last change: 24 November 1987 1473

STREAMIO(4) DEVICES AND NETWORK INTERFACES STREAMIO (4)

ETIME

EAGAIN

EINVAL

The ioctl timed out before an acknowledgement was
received.

Buffers could not be allocated for the acknowledgement
message.

The multiplexor ID number was invalid.

An I_UNLINK can also fail while waiting for the multiplexing driver to ack­
nowledge the link request, if a message indicating an error or a hangup is received
at the stream head of fd. In addition, an error code can be returned in the positive
or negative acknowledgement message. For these cases, I_UNLINK will fail with
errno set to the value in the message.

SEE ALSO

1474

close (2V), rcntl(2V), getmsg(2), intro(2), ioctl(2), open(2V), poJl(2), putmsg(2), read (2V) , sigvec(2),
write (2V)

STREAMS Programmer's Guide
STREAMS Primer

Last change: 24 November 1987 Sun Release 4.1

TAAC(4S) DEVICES AND NETWORK INTERFACES TAAC(4S)

NAME
taac - Sun applications accelerator

CONFIG
taacO at vme32d32? csr Ox28000000

CONFIG - SUN-3/SUN-4 SYSTEMS
device taacO at vme32d32 1 csr Ox28000000
device taacO at vrne32d32 2 csr Oxf8000000
device taacO at vrne32d32 3 csr Ox28000000
The first line should be used to generate a kernel for Sun-3/160, Sun-3/260, Sun-4/260, Sun-4/370 and
Sun-4/460 systems. The second line should be used to generate a kernel for Sun-4/110 systems; and the
last line should be used to generate a kernel for S un-4/33 0 systems.

CONFIG - SUN-4/1S0 SYSTEMS
device taacO at vrne32d32 2 csr Oxf8000000

A V AILABILITY
TAAC-l can only be used in Sun VME-bus packages with 4 or more full size (9U) slots.

DESCRIPTION
The taac interface supports the optional TAAC-l Applications Accelerator. This add-on device is com­
posed of a very-long-instruction-word computation engine, coupled with an 8MB memory array. This
memory area can be used as a frame buffer or as storage for large data sets.

the Sun-4/150 VME address space is limited to 28 bits. The TAAC-l must be reconfigured to work in this
package. See Configuration Procedures fro the TMC-l Application Accelerator Board Set.

Programs can be downloaded for execution on the T AAC-l directly, they can be executed by the host pro­
cessor, or the host processor and the TAAC-l engine can be used in combination. See the TAAC-l User's
Guide for detailed information on accessing the T AAC-l from the host. This manual also describes the C
compiler, the programming tools, and the support libraries for the T AAC-l.

Programs on the host processor gain access to the TAAC-l registers and memory by using rnrnap(2).

SEE ALSO
mmap(2)

TAAC-l Application Accelerator: User Guide
Configuration Procedures for the TAAC-l Application Accelerator Board Set

Sun Release 4.1 Last change: 6 December 1989 1475

TCP(4P) PROTOCOLS TCP(4P)

NAME
tcp - Internet Transmission Control Protocol

SYNOPSIS
#include <syslsocket.h>
#include <netinet/in.h>

s = socket{AF_INET, SOCK_STREAM, 0);

DESCRIPTION

1476

TCP is the virtual circuit protocol of the Internet protocol family. It provides reliable, flow-controlled, in
order, two-way transmission of data. It is a byte-stream protocol used to support the SOCK_STREAM
abstraction. TCP is layered above the Internet Protocol (IP), the Internet protocol family's unreliable inter­
network datagram delivery protocol.

TCP uses IP's host-level addressing and adds its own per-host collection of "port addresses". The endpoints
of a TCP connection are identified by the combination of an IP address and a TCP port number. Although
other protocols, such as the User Datagram Protocol (UDP), may use the same host and port address format,
the port space of these protocols is distinct. See inet(4F) for details on the common aspects of addressing
in the Internet protocol family.

Sockets utilizing TCP are either "active" or "passive". Active sockets initiate connections to passive sock­
ets. Both types of sockets must have their local IP address and TCP port number bound with the bind(2)
system call after the socket is created. By default, TCP sockets are active. A passive socket is created by
calling the Iisten(2) system call after binding the socket with bind. This establishes a queueing parameter
for the passive socket. After this, connections to the passive socket can be received with the accept(2) sys­
tem call. Active sockets use the connect(2) call after binding to initiate connections.

By using the special value INADDR_ANY, the local IP address can be left unspecified in the bind call by
either active or passive TCP sockets. This feature is usually used if the local address is either unknown or
irrelevant. If left unspecified, the local IP address will be bound at connection time to the address of the
network interface used to service the connection.

Once a connection has been established, data can be exchanged using the read(2V) and write(2V) system
calls.

TCP supports one socket option which is set with setsockopt and tested with getsockopt(2). Under most
circumstances, TCP sends data when it is presented. When outstanding data has not yet been ack­
nowledged, it gathers small amounts of output to be sent in a single packet once an acknowledgement is
received. For a small number of clients, such as window systems that send a stream of mouse events which
receive no replies, this packetization may cause significant delays. Therefore, TCP provides a boolean
option, TCP _NODELAY (defined in <netinetltcp.h», to defeat this algorithm. The option level for the set­
sockopt call is the protocol number for TCP, available from getprotobyname (see getprotoent(3N)).

Options at the IP level may be used with TCP; see ip(4P).

TCP provides an urgent data mechanism, which may be invoked using the out-of-band provisions of
send(2). The caller may mark one byte as "urgent" with the MSG _ OOB flag to send(2). This causes an
"urgent pointer" pointing to this byte to be set in the TCP stream. The receiver on the other side of the
stream is notified of the urgent data by a SIGURG signal. The SIOCATMARK ioctl returns a value indicat­
ing whether the stream is at the urgent mark. Because the system never returns data across the urgent mark
in a single read(2V) call, it is possible to advance to the urgent data in a simple loop which reads data, test­
ing the socket with the SIOCATMARK ioctl, until it reaches the mark.

Incoming connection requests that include an IP source route option are noted, and the reverse source route
is used in responding.

Last change: 24 November 1987 Sun Release 4.1

TCP(4P) PROTOCOLS TCP(4P)

TCP assumes the datagram service it is layered above is unreliable. A checksum over all data helps TCP
implement reliability. Using a window-based flow control mechanism that makes use of positive ack­
nowledgements, sequence numbers, and a retransmission strategy, TCP can usually recover when
datagrams are damaged, delayed, duplicated or delivered out of order by the underlying communication
medium.

If the local TCP receives no acknowledgements from its peer for a period of time, as would be the case if
the remote machine crashed, the connection is closed and an error is returned to the user. If the remote
machine reboots or otherwise loses state information about a TCP connection, the connection is aborted and
an error is returned to the user.

ERRORS
A socket operation may fail if:

EISCONN

ETIMEDOUT

ECONNRESET

ECONNREFUSED

EADDRINUSE

EADDRNOTA VAIL

EACCES

ENOBUFS

A connect operation was attempted on a socket on which a connect operation had
already been performed.

A connection was dropped due to excessive retransmissions.

The remote peer forced the connection to be closed (usually because the remote
machine has lost state information about the connection due to a crash).

The remote peer actively refused connection establishment (usually because no
process is listening to the port).

A bind operation was attempted on a socket with a network address/port pair that
has already been bound to another socket.

A bind operation was attempted on a socket with a network address for which no
network interface exists.

A bind operation was attempted with a "reserved" port number and the effective
user ID of the process was not super-user.

The system ran out of memory for internal data structures.

SEE ALSO

BUGS

accept(2), bind(2), connect(2), getsockopt(2), listen(2), read(2V), send(2), write(2V), getprotoent(3N),
inet(4F), ip(4P)

Postel, Jon, Transmission Control Protocol - DARPA Internet Program Protocol Specification, RFC 793,
Network Information Center, SRI International, Menlo Park, Calif., September 1981.

SIOCSHIWAT and SIOCGHIWAT ioctl's to set and get the high water mark for the socket queue, and so
that it can be changed from 2048 bytes to be larger or smaller, have been defined (in <syS/ioctl.h» but not
implemented.

Sun Release 4.1 Last change: 24 November 1987 1477

TCPTLI(4P) PROTOCOLS TCPTLI(4P)

NAME
tcptIi - TLI-Conforming TCP Stream-Head

CONFIG
pseudo-device clone

pseudo-device tcptli32

SYNOPSIS
#include <fcntl.h>
#include <nettliltiuser .h>

tfd = t_open(ttIdev/tcp" ,O_RDWR, tinfo);
struct t Jnfo *tinfo;

DESCRIPTION
TCPTLI provides access to TCP service via the Transport Library Interface (TLI). Prior to this release, TCP
access was only possible via the socket programming interface. Programmers have the choice of using
either the socket or TLI programming interface for their application.

TCPTLI is implemented in STREAMS conforming to the Transport Provider Interface (TPI) specification
as a TCP Transport Provider to a TLI application. It utilizes the existing underlying socket and TCP sup­
port in the SunOS kernel to communicate over the network. It is also a clone driver, see clone(4) for more
characteristics pertaining to a clone STREAMS driver.

The notion of an address is the same as the socket address (struct sockaddr_in) defined in <netinet/in.h>.
TCPTLI maintains transport state information for each outstanding connection and the current state of the
provider may be retrieved via the t _getstate(3N) call. See t _getstate(3N) for a list of possible states.

A server usually starts up with the t_open(3N) call followed by t_hind(3N) to bind an address that it
listens for incoming connection. It may call t ..Jisten(3N) to retrieve an indication of a connect request from
another transport user, and then calls t_accept(3N) if it is willing to provide its service. TLI allows a server
to accept connection on the same file descriptor it is listening on, or a different file descriptor (as in the
sense of socket's accept(2)).

A client usually calls t_open(3N) and followed by a call to t_hind(3N). Then it calls t_connect(3N) to the
address of a server advertized for providing service. Once the connection is established, it may use
t_rcv(3N) and t_snd(3N) to receive and send data. The routine t_close(3N) is used to terminate the con­
nection.

TLI ERRORS

1478

An TLI operation may fail if one of the following error conditions is encountered. They are returned by the
TLI user level library .

TBADADDR Incorrect/invalid address format supplied by the user.

TBAOOPT

TACCESS

TBADF

TNOADDR

TOUTSTATE

TBADSEQ

TSYSERR

TLOOK

TBADDATA

TBUFOVFLW

Incorrect option.

No permission.

Illegal transport file descriptor.

Could not allocate address

The transport is in an. incorrect state.

Incorrect sequence number.

A system error, i.e. below the transport level (see list below) is encountered.

An event requires attention.

Illegal amount of data

Buffer not large enough.

Last change: 2 December 1989 Sun Release 4.1

TCPTLI(4P) PROTOCOLS TCPTLI(4P)

TFLOW

TNODATA

TNODIS

TNOUDERR

TBADFLAG

TNOREL

TNOTSUPPORT

TSTATECHNG

Flow control problem.

No data.

No discon_ind is found on the queue.

Unit data not found.

Bad flags.

No orderly release request found on queue.

Protocol/primitive is not supported.

State is in the process of changing.

SYSTEM ERRORS
The following errors are returned by TCPTLI. However they may be translated to the above TLI errors by
the user level library (lihnsl).

ENXIO Invalid device or address, out of range.

EBUSY

ENOMEM

EPROTO

EWOULDBLOCK

EACCES

ENOBUFS

Request device is busy or not ready.

Not enough memory for transmitting data, non fatal.

The operation encountered an underlying protocol. error (TCP).

The operation would block as normally the file descriptors are set with non­
blocking flag.

Permission denied.

The system ran out of memory for internal (network) data structures.

SEE ALSO

BUGS

accept(2), t_open(3N), t_close(3N), t_accept(3N), t_getstate(3N), t_hind(3N), t_connect(3N),
t_fcv(3N), t_snd(3N), t_alloc(3N), t_unhind(3N), t_getinfo(3N)

Only TCP (i.e. connection oriented) protocol is supported, no UDP. The maximum network connection is
32 by default. A new kernel has to be configured if an increase of such limit is desired: by changing the
entry pseudo-device tcptli32 in the kernel config file to tcptli64.

Sun Release 4.1 Last change: 2 December 1989 1479

TERMIO(4) DEVICES AND NETWORK INTERFACES TERMIO(4)

NAME
termio - general terminal interface

SYNOPSIS
#include <sysitermios.h>

DESCRIPTION
Asynchronous communications ports, pseudo-terminals, and the special interface accessed by /dev/tty all
use the same general interface, no matter what hardware (if any) is involved. The remainder of this section
discusses the common features of this interface.

Opening a Terminal Device File
When a terminal file is opened, the process normally waits until a connection is established. In practice,
users' programs seldom open these files; they are opened by geUy(8) and become a user's standard input,
output, and error files. The state of the software carrier flag will effect the ability to open a line.

Sessions
Processes are now grouped by session, then process group, then process id. Each session is associated with
one "login" session (windows count as logins). A process creates a session by calling setsid(2V), which
will put the process in a new session as its only member and as the session leader of that session.

Process Groups
A terminal may have a distinguished process group associated with it. This distinguished process group
plays a special role in handling signal-generating input characters, as discussed below in the Special Char­
acters section below. The terminal's process group can can be set only to process groups that are members
of the terminal's session.

A command interpreter, such as csh(1), that supports "job control" can allocate the terminal to different
jobs, or process groups, by placing related processes in a single process group and associating this process
group with the terminal. A terminal's associated process group may be set or examined by a process with
sufficient privileges. The terminal interface aids in this allocation by restricting access to the terminal by
processes that are not in the current process group; see Job Access Control below.

Orphaned Process Groups
An orphaned process group is a process group that has no parent, in a different process group, and in the
same session. In other words, there is no process that can handle job control signals for the process group.

The Controlling Terminal

1480

A terminal may belong to a process as its controlling terminal. If a process that is a session leader, and
that does not have a controlling terminal, opens a terminal file not already associated with a session, the ter­
minal associated with that terminal file becomes the controlling terminal for that process, and the terminal's
distinguished process group is set to the process group of that process. (Currently, this also happens if a
process that does not have a controlling terminal and is not a member of a process group opens a terminal.
In this case, if the terminal is not associated with a session, a new session is created with a process group ID
equal to the process ID of the process in question, and the terminal is assigned to that session. The process
is made a member of the terminal's process group.)

If a process does not wish to acquire the terminal as a controlling terminal (as is the case with many dae­
mons that open /dev/console), the process should or 0 _NOCTTY into the second argument to open(2V).

The controlling terminal is inherited by a child process during a fork(2V). A process relinquishes its con­
trol terminal when it changes its process group using setsid(2V), when it trys to change back to process
group 0 via a setpgrp(2V) with arguments (mypid, 0). or when it issues a TIOCNOTTY ioctl(2) call on a
file descriptor created by opening the file /dev/tty. Both of the last two cases cause a setsid(2V) to be
called on the process' behalf. This is an attempt to allow old binaries (that couldn't have known about
setsid(2V») to still acquire controlling terminals. It doesn't always work, see setsid(8V) for a workaround
for those cases.

Last change: 15 January 1990 Sun Release 4.1

TERMIO(4) DEVICES AND NETWORK INTERFACES TERMIO(4)

When a session leader that has a controlling terminal terminates, the distinguished process group of the
controlling terminal is set to zero (indicating no distinguished process group). This allows the terminal to
be acquired as a controlling terminal by a new session leader.

Closing a Terminal Device File
When a terminal device file is closed, the process closing the file waits until all output is drained; all pend­
ing input is then fl ushed, and finally a disconnect is performed. If HUPCL is set, the existing connection is
severed (by hanging up the phone line, if appropriate).

Job Access Control
If a process is in the (non-zero) distinguished process group of its controlling terminal (if this is true, the
process is said to be a foreground process), then read(2V) operations are allowed as described below in
Input Processing and Reading Characters. If a process is not in the (non-zero) distinguished process
group of its controlling terminal (if this is true, the process is said to be a background process), then any
attempts to read from that terminal will typically send that process' process group a SIGTTIN signal. If the
process is ignoring SIGTTIN, has SIGTTIN blocked, is a member of an orphaned process group, or is in the
middle of process creation using vfork(2), the read will return -1 and set errno to EIO, and the SIGTTIN
signal will not be sent. The SIGTTIN signal will normally stop the members of that process group.

When the TOSTOP bit is set in the c _lfIag field, attempts by a background process to write to its controlling
terminal will typically send that process' process group a SIGTTOU signal. If the process is ignoring
SIGTTOU, has SIGTTOU blocked, or is in the middle of process creation using vfork(), the process will be
allowed to write to the terminal and the SIGTTOU signal will not be sent. If the process is orphaned, the
write will return -1 and set errno to EIO, and the SIGTTOU signal will not be sent. SIGTTOU signal will
normally stop the members of that process group. Certain ioctlO calls that set terminal parameters are
treated in this same fashion, except that TOSTOP is not checked; the effect is identical to that of terminal
writes when TO STOP is set See IOCTLS.

Input Processing and Reading Characters
A terminal associated with one of these files ordinarily operates in full-duplex mode. Characters may be
typed at any time, even while output is occurring, and are only lost when the system's character input
buffers become completely full, which is rare, or when the user has accumulated the maximum allowed
number of input characters that have not yet been read by some program. This limit is available is
{MAX_CANON} characters (see pathconf(2V». If the IMAXBEL mode has not been selected, all the
saved characters are thrown away without notice when the input limit is reached; if the IMAXBEL mode
has been selected, the driver refuses to accept any further input, and echoes a bell (ASCII BEL).

Two general kinds of input processing are available, determined by whether the terminal device file is in
canonical mode or non-canonical mode (see ICANON in the Local Modes section).

The style of input processing can also be very different when the terminal is put in non-blocking I/O mode;
see read(2V). In this case, reads from the terminal will never block.

It is possible to simulate terminal input using the TIOCSTI ioctl() call, which takes, as its third argument,
the address of a character. The system pretends that this character was typed on the argument terminal,
which must be the process' controlling terminal unless the process' effective user ID is super-user.

Canonical Mode Input Processing
In canonical mode input processing, terminal input is processed in units of lines. A line is delimited by a
NEWLINE (ASCII LF) character, an EOF (by default, an ASCII EaT) character, or one of two user-specified
end-of-line characters, EOL and EOL2. This means that a read() will not complete until an entire line has
been typed or a signal has been received. Also, no matter how many characters are requested in the read
call, at most one line will be returned. It is not, however, necessary to read a whole line at once; any
number of characters may be requested in a read, even one, without losing information.

Erase and kill processing occurs during input. The ERASE character (by default, the character DEL) erases
the last character typed in the current input line. The WERASE character (by default, the character CTRL­
W) erases the last "word" typed in the current input line (but not any preceding SPACE or TAB characters).
A "word" is defined as a sequence of non-blank characters, with TAB characters counted as blanks.

Sun Release 4.1 Last change: 15 January 1990 1481

TERMIO(4) DEVICES AND NETWORK INTERFACES TERMIO(4)

Neither ERASE nor WERASE will erase beyond the beginning of the line. The KILL character (by default,
the character CTRL-U) kills (deletes) the entire current input line, and optionally outputs a NEWLINE char­
acter. All these characters operate on a key-stroke basis, independently of any backspacing or tabbing that
may have been done.

The REPRINT character (the character CfRL-R) prints a NEWLINE followed by all characters that have not
been read. Reprinting also occurs automatically if characters that would normally be erased from the
screen are fouled by program output The characters are reprinted as if they were being echoed; as a
consequence, if ECHO is not set, they are not printed.

The ERASE and KILL characters may be entered literally by preceding them with the escape character (\).
In this case the escape character is not read. The ERASE and KILL characters may be changed.

Non-Canonical Mode Input ProceS,iting
In non-canonical mode input processing, input characters are not assembled into lines, and erase and kill
processing does not occur. The MIN and TIME values are used to determine how to process the characters
received.

MIN represents the minimum number of characters that should be received when the read is satisfied (when
the characters are returned to the user). TIME is a timer of 0.10 second granularity that is used to timeout
bursty and short term data transmissions. The four possible values for MIN and TIME and their interac­
tions are described below.

Case A: MIN> 0, TIME> 0
In this case TIME serves as an intercharacter timer and is activated after the first character is received.
Since it is an intercharacter timer, it is reset after a character is received. The interaction between MIN and
TIME is as follows: as soon as one character is received, the intercharacter timer is started. If MIN charac­
ters are received before the intercharacter timer expires (remember that the timer is reset upon receipt of
each character), the read is satisfied. If the timer expires before MIN characters are received, the characters
received to that point are returned to the user. Note: if MIN expires at least one character will be returned
because the timer would not have been enabled unless a character was received. In this case (MIN > 0,
TIME> 0) the read will sleep until the MIN and TIME mechanisms are activated by the receipt of the first
character.

Case B: MIN> 0, TIME = 0
In this case, since the value of TIME is zero, the timer plays no role and only MIN is significant. A pend­
ing read is not satisfied until MIN characters are received (the pending read will sleep until MIN characters
are received). A program that uses this case to read record-based terminal I/O may block indefinitely in the
read operation.

Case C: MIN = 0, TIME> 0

In this case, since MIN = 0, TIME no longer represents an intercharacter timer. It now serves as a read
timer that is activated as soon as a read() is done. A read is satisfied as soon as a single character is
received or the read timer expires. Note: in this case if the timer expires, no character will be returned. If
the timer does not expire, the only way the read can be satisfied is if a character is received. In this case
the read will not block indefinitely waiting for a character - if no character is received within TIME*.IO
seconds after the read is initiated, the read will return with zero characters.

Case D: MIN = 0, TIME = 0
In this case return is immediate. The minimum of either the number of characters requested or the number
of characters currently available will be returned without waiting for more characters to be input.

Comparison of the Different Cases of MIN, TIME Interaction
Some points to note about MIN and TIME:

1482

• In the following explanations one may notice that the interactions of MIN and TIME are not sym­
metric. For example, when MIN > 0 and TIME = 0, TIME has no effect. However, in the oppo­
site case where MIN = 0 and TIME > 0, both MIN and TIME play a role in that MIN is satisfied
with the receipt of a single character.

Last change: 15 January 1990 Sun Release 4.1

TERMIO(4) DEVICES AND NETWORK INTERFACES TERMIO(4)

• Also note that in case A (MIN> 0, TIME> 0), TIME represents an intercharacter timer while in
case C (TIME = 0, TIME> 0) TIME represents a read timer.

These two points highlight the dual purpose of the MINITIME feature. Cases A and B, where MIN > 0,
exist to handle burst mode activity (for example, file transfer programs) where a program would like to
process at least MIN characters at a time. In case A, the intercharacter timer is activated by a user as a
safety measure; while in case B, it is turned off.

Cases C and D exist to handle single character timed transfers. These cases are readily adaptable to
screen-based applications that need to know if a character is present in the input queue before refreshing
the screen. In case C the read is timed; while in case D, it is not.

Another important note is that MIN is always just a minimum. It does not denote a record length. That is, if
a program does a read of 20 bytes, MIN is 10, and 25 characters are present, 20 characters will be returned
to the user.

Writing Characters
When one or more characters are written, they are transmitted to the terminal as soon as previously-written
characters have finished typing. Input characters are echoed as they are typed if echoing has been enabled.
If a process produces characters more rapidly than they can be typed, it will be suspended when its output
queue exceeds some limit. When the queue has drained down to some threshold, the program is resumed.

Special Characters
Certain characters have special functions on input and/or output. These functions and their default charac­
ter values are summarized as follows:

INTR

QUIT

ERASE

WERASE

KILL

REPRINT

EOF

NL

EOL

(CfRL-C or Ascn ETX) generates a SIGINT signal, which is sent to all processes in the
distinguished process group associated with the terminal. Normally, each such process is
forced to terminate, but arrangements may be made either to ignore the signal or to
receive a trap to an agreed-upon location; see sigvec(2).

(CfRLi or ASCII FS) generates a SIGQUIT signal, which is sent to all processes in the
distinguished process group associated with the terminal. Its treatment is identical to the
interrupt signal except that, unless a receiving process has made other arrangements, it
will not only be terminated but a core image file (called core) will be created in the
current working directory.

(Rubout or ASCII DEL) erases the preceding character. It will not erase beyond the start
of a line, as delimited by a NL, EOF, EOL, or EOL2 character.

(CfRL-W or ASCII ETB) erases the preceding "word". It will not erase beyond the start of
a line, as delimited by a NL, EOF, EOL, or EOL2 character.

(CfRL-U or Ascn NAK) deletes the entire line, as delimited by a NL, EOF, EOL, or EOL2
character.

(CfRL-R or Ascn DC2) reprints all characters that have not been read, preceded by a
NEWLINE.

(CfRL-D or ASCII EOT) may be used to generate an end-of-file from a terminal. When
received, all the characters waiting to be read are immediately passed to the program,
without waiting for a NEWLINE, and the EOF is discarded. Thus, if there are no charac­
ters waiting, which is to say the EOF occurred at the beginning of a line, zero characters
will be passed back, which is the standard end-of-file indication.

(ASCn LF) is the normal line delimiter. It can not be changed; it can, however, be
escaped by the LNEXT character.

EOL2 (ASCn NUL) are additional line delimiters, like NL. They are not normally used.

Sun Release 4.1 Last change: 15 January 1990 1483

TERMIO(4) DEVICES AND NETWORK INTERFACES lERMIO(4)

SUSP

STOP

START

DISCARD

(C1'RL-Z or ASCII EM) is used by the job control facility to change the current job to
return to the controlling job. It generates a SIGTSTP signal, which stops all processes in
the terminal's process group.

(CfRL-S or ASCII OC3) can be used to temporarily suspend output. It is useful with CRT
terminals to prevent output from disappearing before it can be read. While output is
suspended, STOP characters are ignored and not read.

(CfRL-Q or ASCII DCI) is used to resume output that has been suspended by a STOP
character. While output is not suspended, START characters are ignored and not read.

(C1'RL-O or ASCII SI) causes subsequent output to be discarded until another DISCARD
character is typed, more input arrives, or the condition is cleared by a program.

LNEXT (C1'RL-V or ASCII SYN) causes the special meaning of the next character to be ignored;
this works for all the special characters mentioned above. This allows characters to be
input that would otherwise get interpreted by the system (for example, KILL, QUIT.)

The character values for INTR, QUIT, ERASE, WERASE, KILL, REPRINT, EOF, EOL, EOL2, SUSP,
STOP, START, DISCARD, and LNEXT may be changed to suit individual tastes. If the value of a special
control character is 0, the function of that special control character will be disabled. The ERASE, KILL,
and EOF characters may be escaped by a preceding \ character, in which case no special function is done.
Any of the special characters may be preceded by the LNEXT character, in which case no special function
is done.

If IEXTEN is added to the local modes (this is the default), then all of the special characters are in effect. If
IEXTEN is cleared from the local modes, then only the following POSIX.I compatible specials are seen as
specials: INTR, QUIT, ERASE, KILL, EOF, NL, EOL, SUSP, STOP, START, and CR.

Software Carrier Mode
The software carrier mode can be enabled or disabled using the TIOCSSOFTCAR ioctl(). If the software
carrier flag for a line is off, the line pays attention to the hardware carrier detect (DCD) signal. The tty dev­
ice associated with the line can not be opened until OCD is asserted. If the software carrier flag is on, the
line behaves as if DCD is always asserted.

The software carrier flag is usually turned on for locally connected terminals or other devices, and is off for
lines with modems.

To be able to issue the TIOCGSOFTCAR and TIOCSSOFTCAR ioctl() calls, the tty line should be opened
with 0 _NDELA Y so that the open(2V) will not wait for the carrier.

Modem Disconnect
If a modem disconnect is detected, and the CLOCAL flag is not set in the c_cflag field, a SIGHUP signal is
sent to all processes in the distinguished process group associated with this terminal. Unless other arrange­
ments have been made, this signal terminates the processes. If SIGHUP is ignored or caught, any subse­
quent read() returns with an end-of-file indication until the terminal is closed. Thus, programs that read a
terminal and test for end-of-file can terminate appropriately after a disconnect. Any subsequent write()
will return -1 and set errno to EIO until the terminal is closed.

A SIGHUP signal is sent to the tty if the software carrier flag is off and the hardware carrier detect drops.

Terminal Parameters

1484

The parameters that control the behavior of devices and modules providing the termios interface are
specified by the termios structure, defined by <sysitermios.h>. Several ioctl() system calls that fetch or
change these parameters use this structure:

#define NCCS 17
struct termios {

unsigned long
unsigned long
unsigned long

cJflag;
c_oflag;
c_cflag;

1* input modes *1
1* output modes *1
1* control modes *1

Last change: 15 January 1990 Sun Release 4.1

TERMIO(4)

};

DEVICES AND NETWORK INTERFACES

unsigned
unsigned
unsigned

long
char
char

c _Iftag; /* local modes */
c_line; /* line discipline */
c_cc[NCCS]; /* control chars */

TERMIO(4)

The special control characters are defined by the array c _ cc. The relative positions and initial values for
each function are as follows:

o VINTR ETX
1 VQUIT FS
2 VERASE DEL
3
4
5
6
7
8
9
10
12
13
14
15

VKILL
VEOF
VEOL
VEOL2
VSWTCH
VSTART
VSTOP
VSUSP
VREPRINT
VDISCARD
VWERASE
VLNEXT

NAK
EOT
NUL
NUL
NUL
OCI
OC3
EM
De2
SI
ETB
SYN

The MIN value is stored in the VMIN element of the c_cc array, and the TIME value is stored in the
VTIME element of the c_cc array. The VMIN element is the same element as the VEOF element, and the
VTIME element is the same element as the VEOL element.

Input Modes
The c _ iflag field describes the basic terminal input control:

IGNBRK 0000001 Ignore break condition.
BRKINT 0000002 Signal interrupt on break.
IGNPAR 0000004 Ignore characters with parity errors.
PARMRK ()()()()()10 Mark parity errors.
INPCK 0000020 Enable input parity check.
ISTRIP 0000040 Strip character.
INLCR 0000100 Map NL to CR on input.
IGNCR 0000200 Ignore CR.
ICRNL 0000400 Map CR to NL on input.
IUCLC 0001000 Map upper-case to lower-case on input.
IX ON 0002000 Enable start/stop output control.
IXANY 0004000 Enable any character to restart output.
IXOFF 0010000 Enable start/stop input control.
IMAXBEL 0020000 Echo BEL on input line too long.

If IGNBRK is set, a break condition (a character framing error with data all zeros) detected on input is
ignored, that is, not put on the input queue and therefore not read by any process. Otherwise, if BRKINT is
set, a break condition will generate a SIGINT and flush both the input and output queues. If neither
IGNBRK nor BRKINT is set, a break condition is read as a single ASCII NUL character ('\0').

If IGNPAR is set, characters with framing or parity errors (other than break) are ignored. Otherwise, if
PARMRK is set, a character with a framing or parity error that is not ignored is read as the three-character
sequence: "377', '\0', X, where X is the data of the character received in error. To avoid ambiguity in this
case, if ISTRIP is not set, a valid character of \377' is read as "377', "377'. If neither IGNPAR nor
PARMRK is set, a framing or parity error (other than break) is read as a single ASCII NUL character ('\0').

Sun Release 4.1 Last change: 151anuary 1990 1485

TERMIO(4) DEVICES AND NETWORK INTERFACES TERMIO(4)

If INPCK is set, input parity checking is enabled. If INPCK is not set, input parity checking is disabled.
This allows output parity generation without input parity errors.

If 1ST RIP is set, valid input characters are first stripped to 7 bits, otherwise all 8 bits are processed.

If INLCR is set, a received NL character is translated into a CR character. If IGNCR is set, a received CR
character is ignored (not read). Otherwise if ICRNL is set, a received CR character is translated into a NL
character.

If IUCLC is set, a received upper-case alphabetic character is translated into the corresponding lower-case
character.

If IXON is set, start/stop output control is enabled. A received STOP character will suspend output and a
received START character will restart output The STOP and START characters will not be read, but will
merely perform flow control functions. If IXANY is set, any input character will restart output that has
been suspended.

If IXOFF is set, the system will transmit a STOP character when the input queue is nearly full, and a
ST ART character when enough input has been read that the input queue is nearly empty again.

If IMAXBEL is set, the ASCII BEL character is echoed if the input stream overflows. Further input will not
be stored, but any input already present in the input stream will not be disturbed. If IMAXBEL is not set,
no BEL character is echoed, and all input present in the input queue is discarded if the input stream
overflows.

The initial input control value is BRKINT, ICRNL, IXON, ISTRIP.

Output modes
The c _ oflag field specifies the system treatment of output:

OPOST 0000001 Postprocess output.
OLCUC 0000002 Map lower case to upper on output
ONLCR 0000004 Map NL to CR-NL on output.
OCRNL ()()()()()10 Map CR to NL on output.
ONOCR ()()()()()20 No CR output at column O.
ONLRET 0000040 NL performs CR function.
OFILL 0000100 Use fill characters for delay.
OFDEL 0000200 Fill is DEL, else NUL.
NLDLY 0000400 Select new-line delays:

NLO 0
NLt 0000400

CRDLY 0003000 Select carriage-return delays:
CRO 0
CRt 0001000
CR2 0002000
CR3 0003000

TABDLY 0014000 Select horizontal-tab delays:
TABO 0 or tab expansion:
TABt 0004000
TAB2 0010000
XTABS 0014000 Expand tabs to spaces.

BSDLY 0020000 Select backspace delays:
BSO 0
BSt 0020000

VTDLY 0040000 Select vertical-tab delays:
VTO 0
VTt 0040000

1486 Last change: 15 January 1990 Sun Release 4.1

TERMIO(4) DEVICES AND NETWORK INTERFACES TERMIO(4)

FFDLY
FFO
FFI

0100000 Select form-feed delays:
o
0100000

If OPOST is set, output characters are post-processed as indicated by the remaining flags, otherwise charac­
ters are transmitted without change.

If OLCUC is set, a lower-case alphabetic character is transmitted as the corresponding upper-case charac­
ter. This function is often used in conjunction with IUCLC.

If ONLCR is set, the NL character is transmitted as the CR-NL character pair. If OCRNL is set, the CR char­
acter is transmitted as the NL character. If ONOCR is set, no CR character is transmitted when at column 0
(first position). If ONLRET is set, the NL character is assumed to do the carriage-return function; the
column pointer will be set to 0 and the delays specified for CR will be used. Otherwise the NL character is
assumed to do just the line-feed function; the column pointer will remain unchanged. The column pointer
is also set to 0 if the CR character is actually transmitted.

The delay bits specify how long transmission stops to allow for mechanical or other movement when cer­
tain characters are sent to the terminal. In all cases a value of 0 indicates no delay. If OFILL is set, fill
characters will be transmitted for delay instead of a timed delay. This is useful for high baud rate terminals
that need only a minimal delay. If OFDEL is set, the fill character is DEL, otherwise NUL.

If a form-feed or vertical-tab delay is specified, it lasts for about 2 seconds.

New-line delay lasts about 0.10 seconds. If ONLRET is set, the RETURN delays are used instead of the
NEWLINE delays. If OFILL is set, two fill characters will be transmitted.

Carriage-return delay type 1 is dependent on the current column position, type 2 is about 0.10 seconds, and
type 3 is about 0.15 seconds. If OFILL is set, delay type 1 transmits two fill characters, and type 2, four fill
characters.

Horizontal-tab delay type 1 is dependent on the current column position. Type 2 is about 0.10 seconds.
Type 3, specified by T AB3 or XT ABS, specifies that TAB characters are to be expanded into SPACE charac­
ters. If OFILL is set, two fill characters will be transmitted for any delay.

Backspace delay lasts about 0.05 seconds. If OFILL is set, one fill character will be transmitted.

The actual delays depend on line speed and system load.

The initial output control value is OPOST, ONLCR, XT ABS.

The c _ cfJag field describes the hardware control of the terminal:

CBAUD ()()()()()17 Baud rate:
80 0 Hang up
850 00000o 1 50 baud
875 0000002 75 baud
8110 0000003 110 baud
8134 0000004 134.5 baud
8150 0000005 150 baud
8200 0000006 200 baud
8300 0000007 300 baud
8600 ()()()()()10 600 baud
81200 ()()()()() 11 1200 baud
81800 00000 12 1800 baud
82400 ()()()()()13 2400 baud
84800 ()()()()()14 4800 baud
89600 0000015 9600 baud
819200 ()()()()()16 19200 baud
838400 0000017 38400 baud

Sun Release 4.1 Last change: 15 January 1990 1487

TERMIO(4) DEVICES AND NETWORK INTERFACES TERMIO(4)

CSIZE 000006O Character size:
CSS 0 5 bits
CS6 0000020 6 bits
CS7 0000040 7 bits
CS8 000006O 8 bits

CSTOPB 0000100 Send two stop bits, else one.
CREAD 0000200 Enable receiver.
PARENB 0000400 Parity enable.
PAR ODD 0001000 Odd parity, else even.
HUPCL 0002000 Hang up on last close.
CLOCAL 0004000 Local line, else dial-up.
CIBAUD 03600000 Input baud rate, if different from output rate.
CRTSCTS 02()()()()()()()(Enable RTS/CTS flow control.

The CBAUD bits specify the baud rate. The zero baud rate, BO, is used to hang up the connection. If BO is
specified, the modem control lines will cease to be asserted. Normally, this will disconnect the line. If the
CIBAUD bits are not zero, they specify the input baud rate, with the CBAUD bits specifying the output baud
rate; otherwise, the output and input baud rates are both specified by the CBAUD bits. The values for the
CIBAUD bits are the same as the values for the CBAUD bits, shifted left IBSHIFT bits. For any particular
hardware, impossible speed changes are ignored.

The CSIZE bits specify the character size in bits for both transmission and reception. This size does not
include the parity bit, if any. If CSTOPB is set, two stop bits are used, otherwise one stop bit. For example,
at 110 baud, two stop bits are required.

If PARENB is set, parity generation and detection is enabled and a parity bit is added to each character. If
parity is enabled, the PARODD flag specifies odd parity if set, otherwise even parity is used.

If CREAD is set, the receiver is enabled. Otherwise no characters will be received.

If HUPCL is set, the modem control lines for the port will be disconnected when the last process with the
line open closes it or terminates.

If CLOCAL is set, a connection does not depend on the state of the modem status lines. Otherwise modem
control is assumed.

If CRTSCTS is set, and the terminal has modem control lines associated with it, the Request To Send (RTS)
modem control line will be raised, and output will occur only if the Clear To Send (ers) modem status line
is raised. If the ers modem status line is lowered, output is suspended until ers is raised. Some hardware
may not support this function, and other hardware may not permit it to be disabled; in either of these cases,
the state of the CRTSCTS flag is ignored.

The initial hardware control value after open is B9600, CS7, CREAD, PARENB.

Local Modes

1488

The c _Iflag field of the argument structure is used by the line discipline to control terminal functions. The
basic line discipline provides the following:

ISIG 0000001 Enable signals.
ICANON 0000002 Canonical input (erase and kill processing).
XCASE 0000004 Canonical upper/lower presentation.
ECHO 0000010 Enable echo.
ECHOE 0000020 Echo erase character as BS-SP-BS.
ECHOK 0000040 Echo NL after kill character.
ECHONL 0000100 Echo NL.
NOFLSH 0000200 Disable flush after interrupt or quit.
TOSTOP 0000400 Send SIGTTOU for background output.
ECHOCTL 0001000 Echo control characters as "char, delete as "?
ECHOPRT 0002000 Echo erase character as character erased.
ECHOKE 0004000 BS-SP-BS erase entire line on line kill.

Last change: 15 January 1990 Sun Release 4.1

TERMIO(4)

FLUSHO
PENDIN
IEXTEN

DEVICES AND NETWORK INTERFACES

0020000 Output is being flushed.
0040000 Retype pending input at next read or input character.
0100000 Recognize all specials (if clear t POSIX only).

TERMIO(4)

If ISIG is sett each input character is checked against the special control characters INTR t QUIT t and SUSP.
If an input character matches one of these control characters t the function associated with that character is
performed. If ISIG is not set t no checking is done. Thus these special input functions are possible only if
ISIG is set.

If ICANON is sett canonical processing is enabled. This is affected by the IEXTEN bit (see Special Char­
acters above). This enables the erase t word eraset kill t and reprint edit functions t and the assembly of
input characters into lines delimited by NL, EOF t EOL, and EOL2. If ICANON is not set t read requests are
satisfied directly from the input queue. A read will not be satisfied until at least MIN characters have been
received or the timeout value TIME has expired between characters. This allows fast bursts of input to be
read efficiently while still allowing single character input. The time value represents tenths of seconds.
See the Non-canonical Mode Input Processing section for more details.

If XCASE is set, and if ICANON is set, an upper-case letter is accepted on input by preceding it with a \
charactert and is output preceded by a \ character. In this mode, the following escape sequences are gen­
erated on output and accepted on input:

for: use:
\,
\!
\"

{ \(
} \)
\ \\

For example t A is input as \a, \n as \\n, and \N as \\\n.

If ECHO is set, characters are echoed as received. If ECHO is not set, input characters are not echoed.

If ECHOCTL is not set, all control characters (characters with codes between 0 and 37 octal) are echoed as
themselves. If ECHOCTL is sett all control characters other than ASCII TAB, ASCII NLt the START charac­
ter t and the STOP character, are echoed as AX, where X is the character given by adding 100 octal to the
control character's code (so that the character with octal code 1 is echoed as ,A A'), and the ASCII DEL char­
acter, with code 177 octal, is echoed as 'A?'.

When ICANON is set, the following echo functions are possible:

• If ECHO and ECHOE are set t and ECHOPRT is not set, the ERASE and WE RASE characters are
echoed as one or more ASCII BS SP BS, which will clear the last character(s) from a CRT screen.

• If ECHO and ECHOPRT are set, the first ERASE and WERASE character in a sequence echoes as
a backslash (\) followed by the characters being erased. Subsequent ERASE and WERASE char­
acters echo the characters being erased, in reverse order. The next non-erase character types a
slash (I) before it is echoed.

• If ECHOKE is set, the kill character is echoed by erasing each character on the line from the
screen (using the mechanism selected by ECHOE and ECHOPRT).

• If ECHOK is set, and ECHOKE is not set, the NL character will be echoed after the kill character
to emphasize that the line will be deleted. Note: an escape character (\) or an LNEXT character
preceding the erase or kill character removes any special function.

• If ECHONL is set, the NL character will be echoed even if ECHO is not set. This is useful for ter­
minals set to local echo (so-called half duplex).

Sun Release 4.1 Last change: 15 January 1990 1489

TERMIO(4) DEVICES AND NETWORK INTERFACES TERMIO(4)

• If ECHOCTL is not set, the EOF character is not echoed, unless it is escaped. Because EDT is the
default EOF character, this prevents terminals that respond to EDT from hanging up. If
ECHOCTL is set, the EOF character is echoed; if it is not escaped, after it is echoed, one back­
space character is output if it is echoed as itself, and two backspace characters are echoed if it is
echoed as "X.

If NOFLSH is set, the normal flush of the input and output queues associated with the INTR, QUIT, and
SUSP characters will not be done.

If TOSTOP is set, the signal SIGTTOU is sent to a process that tries to write to its controlling terminal if it
is not in the distinguished process group for that terminal. This signal normally stops the process. Other­
wise, the output generated by that process is output to the current output stream. Processes that are block­
ing or ignoring SIGTTOU signals are excepted and allowed to produce output.

If FLUSHO is set, data written to the terminal will be discarded. This bit is set when the FLUSH character
is typed. A program can cancel the effect of typing the FLUSH character by clearing FLUSHO.

If PENDIN is set, any input that has not yet been read will be reprinted when the next character arrives as
input.

The initial line-discipline control value is ISIG, ICANON, ECHO.

Minimum and Timeout
The MIN and TIME values are described above under Non-canonical Mode Input Processing. The initial
value of MIN is 1, and the initial value of TIME is O.

Tennio Structure
The System V termio structure is used by other ioctl() calls; it is defined by <sys/termio.h> as:

#define Nce 8
struct termio {

unsigned short c_iflag; 1* input modes *1
unsigned short c_o8ag; 1* output modes *1
unsigned short c_cflag; 1* control modes *1
unsigned short c_lflag; 1* local modes *1
char . c_line; 1* line discipline *1
unsigned char c_cc[NCC]; 1* control chars *1

};

The special control characters are defined by the array c _ cc. The relative positions for each function are as
follows:

o VlNTR
1 VQUIT
2 VERASE
3 VKILL
4 VEOF
5 VEOL
6 VEOL2
7 reserved

The calls that use the termio structure only affect the flags and control characters that can be stored in the
termio structure; all other flags and control characters are unaffected.

Terminal Size

1490

The number of lines and columns on the terminal's display (or page, in the case of printing terminals) is
specified in the winsize structure, defined by <sys/termios.h>. Several ioctl() system calls that fetch or
change these parameters use this structure:

struct winsize {
unsigned short
unsigned short

ws_row;
ws_col;

1* rows, in characters *1
1* columns, in characters *1

Last change: 15 January 1990 Sun Release 4.1

TERMIO(4)

FLUSHO
PENDIN
IEXTEN

DEVICES AND NETWORK INTERFACES

002()()()() Output is being flushed.
004()()()() Retype pending input at next read or input character.
0100000 Recognize all specials (if clear, POSIX only).

TERMIO(4)

If ISIG is set, each input character is checked against the special control characters INTR, QUIT, and SUSP.
If an input character matches one of these control characters, the function associated with that character is
performed. If ISIG is not set, no checking is done. Thus these special input functions are possible only if
ISIG is set.

If ICANON is set, canonical processing is enabled. This is affected by the IEXTEN bit (see Special Char­
acters above). This enables the erase, word erase, kill, and reprint edit functions, and the assembly of
input characters into lines delimited by NL, EOF, EOL, and EOL2. If ICANON is not set, read requests are
satisfied directly from the input queue. A read will not be satisfied until at least MIN characters have been
received or the timeout value TIME has expired between characters. This allows fast bursts of input to be
read efficiently while still allowing single character input. The time value represents tenths of seconds.
See the Non-canonical Mode Input Processing section for more details.

If XCASE is set, and if ICANON is set, an upper-case letter is accepted on input by preceding it with a \
character, and is output preceded by a \ character. In this mode, the following escape sequences are gen­
erated on output and accepted on input:

for: use:
\,
\!
\"

{ \(
} \)
\ \\

For example, A is input as \a, \n as \\n, and \N as \\\n.

If ECHO is set, characters are echoed as received. If ECHO is not set, input characters are not echoed.

If ECHOCTL is not set, all control characters (characters with codes between 0 and 37 octal) are echoed as
themselves. If ECHOCTL is set, all control characters other than Ascn TAB, Ascn NL, the START charac­
ter, and the STOP character, are echoed as AX, where X is the character given by adding 100 octal to the
control character's code (so that the character with octal code 1 is echoed as ,A A '), and the ASCn DEL char­
acter, with code 177 octal, is echoed as '''?'.

When ICANON is set, the following echo functions are possible:

• If ECHO and ECHOE are set, and ECHOPRT is not set, the ERASE and WE RASE characters are
echoed as one or more ASCn BS SP BS, which will clear the last character(s) from a CRT screen.

• If ECHO and ECHOPRT are set, the first ERASE and WERASE character in a sequence echoes as
a backslash (\) followed by the characters being erased. Subsequent ERASE and WERASE char­
acters echo the characters being erased, in reverse order. The next non-erase character types a
slash (f) before it is echoed.

• If ECHOKE is set, the kill character is echoed by erasing each character on the line from the
screen (using the mechanism selected by ECHOE and ECHOPRT).

• If ECHOK is set, and ECHOKE is not set, the NL character will be echoed after the kill character
to emphasize that the line will be deleted. Note: an escape character (\) or an LNEXT character
preceding the erase or kill character removes any special function.

• If ECHONL is set, the NL character will be echoed even if ECHO is not set. This is useful for ter­
minals set to local echo (so-called half duplex).

Sun Release 4.1 Last change: 15 January 1990 1489

TERMIO(4) DEVICES AND NETWORK INTERFACES TERMIO(4)

• If ECHOCTL is not set, the EOF character is not echoed, unless it is escaped. Because EOT is the
default EOF character, this prevents terminals that respond to EOT from hanging up. If
ECHOCTL is set, the EOF character is echoed; if it is not escaped, after it is echoed, one back­
space character is output if it is echoed as itself, and two backspace characters are echoed if it is
echoed as AX.

If NOFLSH is set, the normal flush of the input and output queues associated with the INTR, QUIT, and
SUSP characters will not be done.

If TOSTOP is set, the signal SIGTTOU is sent to a process that tries to write to its controlling terminal if it
is not in the distinguished process group for that terminal. This signal normally stops the process. Other­
wise, the output generated by that process is output to the current output stream. Processes that are block­
ing or ignoring SIGTTOU signals are excepted and allowed to produce output.

If FLUSHO is set, data written to the terminal will be discarded. This bit is set when the FLUSH character
is typed. A program can cancel the effect of typing the FLUSH character by clearing FLUSHO.

If PENDIN is set, any input that has not yet been read will be reprinted when the next character arrives as
input.

The initial line-discipline control value is ISIG, ICANON, ECHO.

Minimum and Timeout
The MIN and TIME values are described above under Non-canonical Mode Input Processing. The initial
value of MIN is 1, and the initial value of TIME is o.

Termio Structure
The System V termio structure is used by other ioctl() calls; it is defined by <sys/termio.h> as:

#define NCC 8
struct termio {

unsigned short c_iflag; 1* input modes *1
unsigned short c_o8ag; 1* output modes *1
unsigned short c_c8ag; 1* control modes *1
unsigned short c_lflag; 1* local modes *1
char c_line; 1* line discipline *1
unsigned char c_cc[NCC]; 1* control chars *1

};

The special control characters are defined by the array c _ cc. The relative positions for each function are as
follows:

o VINTR
1 VQUIT
2 VERASE
3 VKILL
4 VEOF
5 VEOL
6 VEOL2
7 reserved

The calls that use the termio structure only affect the flags and control characters that can be stored in the
termio structure; all other flags and control characters are unaffected.

Terminal Size

1490

The number of lines and columns on the terminal's display (or page, in the case of printing terminals) is
specified in the winsize structure, defined by <sys/termios.h>. Several ioctl() system calls that fetch or
change these parameters use this structure:

struct winsize {
unsigned short
unsigned short

ws_row;
ws_col;

1* rows, in characters *1
1* columns, in characters *1

Last change: 15 January 1990 Sun Release 4.1

TERMIO(4) DEVICES AND NETWORK INTERFACES TERMIO(4)

};

unsigned short
unsigned short

ws_xpixel;
wsypixel;

1* horizontal size, pixels - not used *1
1* vertical size, pixels - not used *1

Modem Lines

IOCTLS

On special files representing serial ports, the modem control lines supported by the hardware can be read
and the modem status lines supported by the hardware can be changed. The following modem control and
status lines may be supported by a device; they are defined by <sysltermios.h>:

TIOCM LE ()()()1 line enable
TIOCM DTR ()()()2 data terminal ready
TIOCM RTS 0004 request to send
TIOCM ST 0010 secondary transmit
TIOCM SR 0020 secondary receive
TIOCM CTS 0040 clear to send
TIOCM CAR 0100 carrier detect
TIOCM RNG 0200 ring
TIOCM DSR 0400 data set ready

TIOCM_CD is a synonym for TIO CM_CAR , and TIOCM_RI is a synonym forTIOCM_RNG.

Not all of these will necessarily be supported by any particular device; check the manual page for the dev­
ice in question.

The ioctl() calls supported by devices and STREAMS modules providing the termios interface are listed
below. Some calls may not be supported by all devices or modules.

Unless otherwise noted for a specific ioctl() call, these functions are restricted from use by background
processes. Attempts to perform these calls will cause the process group of the process performing the call
to be sent a SIGTTOU signal. If the process is ignoring SIGTTOU, has SIGTTOU blocked, or is in the mid­
dle of process creation using vfork(), the process will be allowed to perform the call and the SIGTTOU
signal will not be sent.

TCGETS

TCSETS

TCSETSW

TCSETSF

TCGETA

TCSETA

The argument is a pointer to a termios structure. The current terminal parameters
are fetched and stored into that structure. This call is allowed from a background
process; however, the information may subsequently be changed by a foreground
process.

The argument is a pointer to a termios structure. The current terminal parameters
are set from the values stored in that structure. The change is immediate.

The argument is a pointer to a termios structure. The current terminal parameters
are set from the values stored in that structure. The change occurs after all charac­
ters queued for output have been transmitted. This form should be used when
changing parameters that will affect output.

The argument is a pointer to a termios structure. The current terminal parameters
are set from the values stored in that structure. The change occurs after all charac­
ters queued for output have been transmitted; all characters queued for input are
discarded and then the change occurs.

The argument is a pointer to a termio structure. The current terminal parameters are
fetched, and those parameters that can be stored in a termio structure are stored into
that structure. This call is allowed from a background process; however, the infor­
mation may subsequently be changed by a foreground process.

The argument is a pointer to a termio structure. Those terminal parameters that can
be stored in a termio structure are set from the values stored in that structure. The
change is immediate.

Sun Release 4.1 Last change: 15 January 1990 1491

TERMIO(4)

TCSETAW

TCSETAF

TCSBRK

TCXONC

TCFLSH

TIOCEXCL

TIOCNXCL

TJOCSCTTY

TIOCGPGRP

TIOCSPGRP

TIOCOUTQ

1492

DEVICES AND NETWORK INTERFACES TERMIO(4)

The argument is a pointer to a termio structure. Those terminal parameters that can
be stored in a termio structure are set from the values stored in that structure. The
change occurs after all characters queued for output have been transmitted. This
form should be used when changing parameters that will affect output.

The argument is a pointer to a termio structure. Those terminal parameters that can
be stored in a termio structure are set from the values stored in that structure. The
change occurs after all characters queued for output have been transmitted; all char­
acters queued for input are discarded and then the change occurs.

The argument is an int value. Wait for the output to drain. If the argument is 0, then
send a break (zero-valued bits for 0.25 seconds). This define is available by #include
<sysltermio.h>

Start/stop control. The argument is an int value. If the argument is TCOOFF (0),
suspend output; if TCOON (1), restart suspended output; if TCJOFF (2), suspend
input; if TCJON (3), restart suspended input.

The argument is an int value. If the argument is TCJFLUSH (0), flush the input
queue; if TCOFLUSH (1), flush the output queue; if TCIOFLUSH (2), flush both the
input and output queues.

The argument is ignored. Exclusive-use mode is turned on; no further opens are per­
mitted until the file has been closed, or a TIOCNXCL is issued. The default on open
of a terminal file is that exclusive use mode is off. This ioctl() is only available by
#include <sys/ttold.h> •

The argument is ignored. Exclusive-use mode is turned off. This ioctl() is only
available by #include <syslttold.h>.

The argument is an int. The system will attempt to assign the terminal as the caller's
controlling terminal (see The Controlling Terminal above). If the caller is not the
super-user and/or the argument is not 1, all of the normal permission checks apply.
If the caller is the super-user and the argument is 1 the terminal will be assigned as
the controlling terminal even if the terminal was currently in use as a controlling ter­
minal by another session. getty(8) uses this method to acquire controlling terminals
for login(l) because there exists a possibility that a daemon process may obtain the
console before getty(8).

The argument is a pointer to an int. Set the value of that int to the process group ID
of the distinguished process group associated with the terminal. This call is allowed
from a background process; however, the infonnation may subsequently be changed
by a foreground process. This ioctiO exists only for backward compatibility, use
tcgetpgrp(3V).

The argument is a pointer to an int. Associate the process group whose process
group ID is specified by the value of that int with the terminal. The new process
group value must be in the range of valid process group ID values, or it must be zero
("no process group"). Otherwise, the error EINV AL is returned. If any processes
exist with a process ID or process group ID that is the same as the new process group
value, then those processes must have the same real or saved user ID as the real or
effective user ID of the calling process or be descendants of the calling process, or
the effective user ID of the current process must be super-user. Otherwise, the error
EPERM is returned. This ioctl() exists only for backward compatibility, use
tcsetpgrpO, see tcgetpgrp(3V),

The argument is a pointer to an int. Set the value of that int to the number of char­
acters in the output stream that have not yet been sent to the terminal. This call is
allowed from a background process.

Last change: 15 January 1990 Sun Release 4.1

TERMIO(4)

TIOCSTI

TIOCGWINSZ

DEVICES AND NETWORK INTERFACES TERMIO(4)

The argument is a pointer to a char. Pretend that character had been received as
input.

The argument is a pointer to a win size structure. The terminal driver's notion of the
terminal size is stored into that structure. This call is allowed from a background
process.

TIOCSWINSZ The argument is a pointer to a winsize structure. The terminal driver's notion of the
terminal size is set from the values specified in that structure. If the new sizes are
different from the old sizes, a SIGWINCH signal is sent to the process group of the
terminal.

TIOCMGET The argument is a pointer to an iot. The current state of the modem status lines is
fetched and stored in the iot pointed to by the argument. This call is allowed from a
background process.

TIOCMBIS The argument is a pointer to an int whose value is a mask containing modem control
lines to be turned on. The control lines whose bits are set in the argument are turned
on; no other control lines are affected.

TIOCMBIC The argument is a pointer to an iot whose value is a mask containing modem control
lines to be turned off. The control lines whose bits are set in the argument are turned
off; no other control lines are affected.

TIOCMSET The argument is a pointer to an iot containing a new set of modem control lines.
The modem control lines are turned on or off, depending on whether the bit for that
mode is set or clear.

TIOCGSOFTCAR The argument is a pointer to an iot whose value is 1 or 0, depending on whether the
software carrier detect is turned on or off.

TIOCSSOFTCAR The argument is a pointer to an int whose value is 1 or 0. The value of the integer
should be 0 to turn off software carrier, or 1 to turn it on.

SEE ALSO
csh(1), login(1), stty(1V), fork(2V), getpgrp(2V), ioctl(2), open(2V), read (2V), sigvec(2), vfork (2) ,
tcgetpgrp(3V), tty(4), ttytab(5), getty(8), init(8), ttysoftcar(8)

Sun Release 4.1 Last change: 15 January 1990 1493

TFS(4S) DEVICES AND NETWORK INTERFACES TFS (4S)

NAME
tfs, TFS - translucent file service

CONFIG
optionsTFS

SYNOPSIS
#include <syslmount.h>
mount("tfs", dir, M_NEWTYPElflags, nfsargs);

DESCRIPTION
The translucent file service (TFS) supplies a copy-on-write filesystem allowing users to share file hierar­
chies while providing each user with a private hierarchy into which files are copied as they are modified.
Consequently, users are isolated from each other's changes.

nfsargs specifies NFS style mount(2V) arguments, including the address of the file server (the tfsd(8) and
the file handle to be mounted. dir is the directory on which the TFS filesystem is to be mounted.

TFS allows a user to mount a private, writable filesystem in front of any number of public, read-only
filesystems in such a way that the contents of the public filesystems remain visible behind the contents of
the private filesystem. Any change made to a file that is being shared from a public filesystem will cause
that file to be copied into the private filesystem, where the modification will be performed.

A directory in a TFS filesystem consists of a number of stacked directories. The searchpath TFS uses to
look up a file in a directory corresponds to the stacking order: the TFS will search the "frontmost" directory
first, then the directory behind it, and so on until the first occurrence of the file is found. Modifications to a
file can be made only in the frontmost directory. TFS copies a file to the frontmost directory when the file
is opened for writing with open(2V) or when its stat(2V) attributes are changed.

If a user removes a file which is not in the frontmost directory, TFS creates a whiteout entry in the
frontmost directory and leaves the file intact in the back directory. This whiteout entry makes it appear that
the file no longer exists, although the file can be reinstated in the directory by using the unwhiteout(l)
command to remove the whiteout entry. The Isw(1) command lists whiteout entries.

TFS filesystems are served by the tfsd(8). A TFS filesystem is mounted on a directory by making a
TFS _MOUNT protocol request of the tfsd, specifying the directories that are to be stacked. The tfsd
responds with a file handle, which the client then supplies to the mount(2V) system call, along with the
address of the tfsd.

SEE ALSO
lsw(l), unwhiteout(l), mount(2V), tfsd(8), mount_tfs(8)

1494 Last change: 23 November 1988 Sun Release 4.1

TIMOD(4) DEVICES AND NETWORK INTERFACES TIMOD(4)

NAME
timod - Transport Interface cooperating STREAMS module

CONFIG
pseudo-device tim64

DESCRIPTION
timod is a STREAMS module for use with the Transport Interface (TI) functions of the Network Services
library (see Section 3). The timod module converts a set of ioctl(2) calls into STREAMS messages that may
be consumed by a transport protocol provider which supports the Transport Interface. This allows a user to
initiate certain TI functions as atomic operations.

The. timod module must be pushed onto only a stream terminated by a transport protocol provider which
supports the TI.

All STREAMS messages, with the exception of the message types generated from the ioctl() commands
described below, are transparently passed to the neighboring STREAMS module or driver. The messages
generated from the following ioctl() commands are recognized and processed by the timod module. The
format of the ioctl() call is:

Where, on issuance, size is the size of the appropriate TI message to be sent to the transport provider and
on return size is the size of the appropriate TI message from the transport provider in response to the issued
TI message. bur is a pointer to a buffer large enough to hold the contents of the appropriate TI messages.
The TI message types are defined in <sysltihdr.h>. The possible values for the cmd field are:

TI_BIND

TI_UNBIND

TI_GETINFO

TI_OPTMGMT

SEE ALSO
tirdwr(4)

Network Programming

DIAGNOSTICS

Bind an address to the underlying transport protocol provider. The message
issued to the TI_BIND ioctlO is equivalent to the TI message type T_BIND_REQ
and the message returned by the successful completion of the ioctl() is equivalent
to the TI message type T _BIND_ACK.

Unbind an address from the underlying transport protocol provider. The message
issued to the TI_UNBIND ioctl() is equivalent to the TI message type
T _UNBIND _REQ and the message returned by the successful completion of the
ioctl() is equivalent to the TI message type T _OK_ACK.

Get the TI protocol specific information from the transport protocol provider. The
message issued to the TCGETINFO ioctl() is equivalent to the TI message type
T_INFO_REQ and the message returned by the successful completion of the ioctl()
is equivalent to the TI message type T _INFO _ACK.

Get, set or negotiate protocol specific options with the transport protocol provider.
The message issued to the TI_OPTMGMT ioctl() is equivalent to the TI message
type T_OPTMGMT_REQ and the message returned by the successful completion of
the ioctl() is equivalent to the TI message type T_OPTMGMT_ACK.

If the ioctl() system call returns with a value greater than 0, the lower 8 bits of the return value will be one
of the TI error codes as defined in <sysltiuser .h>. If the TI error is of type TSYSERR, then the next 8 bits of
the return value will contain an error as defined in <syslerrno.h> (see intro(2».

Sun Release 4.1 Last change: 17 January 1990 1495

TIRDWR(4) DEVICES AND NETWORK INTERFACES TIRDWR(4)

NAME
tirdwr - Transport Interface read/write interface STREAMS module

CONFIG
pseudo-device tirw64

DESCRIPTION

1496

tirdwr is a STREAMS module that provides an alternate interface to a transport provider which supports the
Transport Interface (TI) functions of the Network Services library (see Section 3). This alternate interface
allows a user to communicate with the transport protocol provider using the read(2V) and write(2V) sys­
tem calls. The putmsg(2) and getmsg(2) system calls may also be used. However, putmsg() and
getmsg() can only transfer data messages between user and stream.

The tirdwr module must only be pushed (see CPUSH in streamio(4» onto a stream terminated by a tran­
sport protocol provider which supports the TI. Mter the tirdwr module has been pushed onto a stream,
none of the Transport Interface functions can be used. Subsequent calls to TI functions cause an error on
the stream. Once the error is detected, subsequent system calls on the stream return an error with errno
set to EPROTO.

The following are the actions taken by the tirdwr module when pushed on the stream, popped (see CPOP
in streamio(4» off the stream, or when data passes through it.

push When the module is pushed onto a stream, it checks any existing data destined for the user to
ensure that only regular data messages are present. It ignores any messages on the stream that
relate to process management, such as messages that generate signals to the user processes
associated with the stream. If any other messages are present, the CPUSH returns an error
with errno set to EPROTO.

write The module takes the following actions on data that originated from a write() system call:

All messages with the exception of messages that contain control portions (see putmsg(2)
and getmsg(2» are transparently passed onto the module's downstream neighbor.

Any zero length data message is freed by the module and is not passed onto the module's
downstream neighbor.

Any message with a control portion generates an error, and any further system calls associ­
ated with the stream fail with errno set to EPROTO.

read The module takes the following actions on data that originated from the transport protocol pro-
vider:

All messages with the exception of those that contain control portions (see the putmsg and
getmsg system calls) are transparently passed onto the module's upstream neighbor.

The action taken on messages with control portions is as follows:

• Messages that represent expedited data generate an error. All further system calls
associated with the stream fail with errno set to EPROTO.

• Any data messages with control portions have the control portions removed from the
message prior to passing the message on to the upstream neighbor.

• Messages that represent an orderly release indication from the transport provider
generate a zero length data message, indicating the end of file, which are sent to the
reader of the stream. The orderly release message itself is freed by the module.

• Messages that represent an abortive disconnect indication from the transport pro­
vider cause all further write() and putmsg() calls to fail with errno set to ENXIO.
All further read() and getmsg() calls return zero length data (indicating an EOF)
once all previous data has been read.

Last change: 17 January 1990 Sun Release 4.1

TIRDWR(4) DEVICES AND NETWORK INTERFACES TIRDWR(4)

• With the exception of the above rules, all other messages with control portions gen­
erate an error and all further system calls associated with the stream fail with errno
set to EPROTO.

Any zero length data messages are freed by the module and they are not passed onto the
module's upstream neighbor.

pop When the module is popped off the stream or the stream is closed, the module takes the fol­
lowing action:

SEE ALSO

If an orderly release indication has been previously received, then an orderly release request
is sent to the remote side of the transport connection.

intro(2), getmsg(2), putmsg(2), read(2V), write(2V), intro(3), streamio(4), timod(4)

Network Programming

Sun Release 4.1 Last change: 17 January 1990 1497

TM(4S) DEVICES AND NETWORK INTERFACES TM(4S)

NAME
tm - Tapemaster 1/2 inch tape controller

CONFIG - SUN-3, SUN-3x SYSTEMS
controller tmO at vme16d16? csr OxaO priority 3 vector tmintr Ox60
·controller tml at vme16d16? csr Oxa2 priority 3 vector tmintr Ox61
tape mtO at tmO drive 0 flags 1
tape mtO at tm 1 drive 0 flags 1

DESCRIPTION

FILES

The Tapemaster tape controller controls Pertee-interface 1/2" tape drives such as the CDC Keystone, pro­
viding a standard tape interface to the device, see mtio(4). This controller supports single-density or speed
drives.

The tm driver supports the character device interface. The driver returns an ENOTTY error on unsupported
ioctls.

The tm driver does not support the backspace file to beginning of file (MTNBSF n) command. The
equivalent positioning can be obtained by using MTBSF (n+ 1) followed by MTFSF 1.

Half-inch reel tape devices do not support the retension ioctl.

Idev/rmt*
Idev/nrmt*

rewinding
non-rewinding

SEE ALSO

BUGS

mt(I), tar(l), mtio(4), st(4S), xt(4S)

The Tapemaster controller does not provide for byte-swapping and the resultant system overhead prevents
streaming transports from streaming.

The system should remember which controlling terminal has the tape drive open and write error messages
to that terminal rather than on the console.

The Tapemaster controller is not supported on Sun-4 systems.

WARNINGS

1498

The Tapemaster interface will not be supported in a future release. The Xylogics 472 controller and xt
driver replace the Tapemaster controller and tm driver.

Last change: 19 December 1989 Sun Release 4.1

TMPFS(4S) DEVICES AND NETWORK INTERFACES TMPFS(4S)

NAME
tmpfs - memory based file system

CONFIG
options TMPFS

SYNOPSIS
#include <sys/mount.h>
mount ("tmpfs", dir, M_NEWTYPE I flags, args);

DESCRIPTION
tmpfs is a memory based filesystem which uses kernel resources relating to the VM system and page cache
as a filesystem. Once mounted, a tmpfs filesystem provides standard file operations and semantics. tmpfs
is so named because files and directories are not preserved across reboot or unmounts, all files residing on a
tmpfs filesystem that is unmounted will be lost.

tmpfs filesystems are mounted either with the command:

mount -t tmp swap directory-name

or by placing the line

swap directory-name tmp rw 0 0

in your letclfstab file and using the mount(8) command as normal. The letclrc.local file contains com­
mands to mount a tmpfs filesystem on Itmp at multi-user startup time but is by default commented out. To
mount a tmpfs filesystem on Itmp (maximizing possible perfonnance improvements), add the above line to
letclfstab and uncomment the following line in letc/rc.local:

#mount/tmp

tmpfs is designed as a performance enhancement which is achieved by cacheing the writes to files residing
on a tmpfs filesystem. Performance improvements are most noticeable when a large number of short lived
files are written and accessed on a tmpfs filesystem. Large compilations with tmpfs mounted on Itmp are
a good example of this.

Users of tmpfs should be aware of some tradeoffs involved in mounting a tmpfs filesystem. The resources
used by tmpfs are the same as those used when commands are executed (for example, swap space alloca­
tion). This means that a large sized or number of tmpfs files can affect the amount of space left over for
programs to execute. Likewise, programs requiring large amounts of memory use up the space available to
tmpfs. Users running into these constraints (for example, running out of space on tmpfs) can allocate
more swap space by using the swapon(8) command.

Normal filesystem writes are scheduled to be written to a permanent storage medium along with all control
information associated with the file (for example, modification time, file permissions). tmpfs control infor­
mation resides only in memory and never needs to be written to permanent storage. File data remains in
core until memory demands are sufficient to cause pages associated with tmpfs to be reused at which time
they are copied out to swap.

SEE ALSO

NOTES

df(1 V), mount(2V), umount(2V), fstab(5), mount(8), swapon(8)

System Services Overview,
System and Network Administration

swapon to a tmpfs file is not supported.

df(1 V) output is of limited accuracy since a tmpfs filesystem size is not static and the space available to

tmpfs is dependent on the swap space demands of the entire system.

Sun Release 4.1 Last change: 16 January 1990 1499

TMPFS(4S) DEVICES AND NETWORK IN1ERFACES TMPFS(4S)

DIAGNOSTICS
If tmpfs runs out of space, one of the following messages will be printed to the console.

directory: file system full, anon reservation exceeded
directory: file system full, anon allocation exceeded

A page could not be allocated while writing to a file. This can occur if tmpfs is attempting to

write more than it is allowed, or if currently executing programs are using a lot of memory. To
make more space available, remove unneccessary files, exit from some programs, or allocate more
swap space using swapon(8).

directory: file system full, kmem _ alloc failure
tmpfs ran out of physical memory while attempting to create a new file or directory. Remove
unneccesary files or directories or install more physical memory.

WARNINGS

1500

A tmpfs filesystem should not be mounted on /var/tmp, this directory is used by vi(l) for preserved files.
Files and directories on a tmpfs filesystem are not preserved across reboots or unmounts. Command
scripts or programs which count on this will not work as expected.

Last change: 16 January 1990 Sun Release 4.1

TICOMPAT(4M) DEVICES AND NETWORK INTERFACES TTCOMPAT(4M)

NAME
ttcompat - V7 and 4BSD STREAMS compatibility module

CONFIG
None; included by default.

SYNOPSIS
#include <sysltypes.h>
#include <syslstream.h>
#include <syslstropts.h>

ioctl(fd, I_PUSH, "ttcompat");

DESCRIPTION
ttcompat is a STREAMS module that translates the ioctl calls supported by the older Version 7 and 4BSD
terminal drivers into the ioctl calls supported by the termio(4) interface. All other messages pass through
this module unchanged; the behavior of read and write calls is unchanged, as is the behavior of ioctl calls
other than the ones supported by ttcompat.

Normally, this module is automatically pushed onto a stream when a terminal device is opened; it does not
have to be explicitly pushed onto a stream. This module requires that the termio interface be supported by
the modules and driver downstream. The TCGETS, TCSETS, and TCSETSF ioctl calls must be supported;
if any information set or fetched by those ioctl calls is not supported by the modules and driver down­
stream, some of the V7/4BSD functions may not be supported. For example, if the CBAUD bits in the
c_cflag field are not supported, the functions provided by the sg_ispeed and sg_ospeed fields of the sgttyb
structure (see below) will not be supported. If the TCFLSH ioctl is not supported, the function provided by
the TIOCFLUSH ioctl will not be supported. If the TCXONC ioctl is not supported, the functions provided
by the TIOCSTOP and TIOCSTART ioetl calls will not be supported. If the TIOCMBIS and TIOCMBIC
ioctl calls are not supported, the functions provided by the TIOCSDTR and TIOCCDTR ioctl calls will not
be supported.

The basic ioctl calls use the sgttyb structure defined by <syslioetI.h>:
struct sgttyb {

char sg_ ispeed;
char sg_ ospeed;
char sg_ erase;
char sg_ kill;
short sg_ flags;

};

The sgJspeed and sg_ ospeed fields describe the input and output speeds of the device, and reflect the
values in the c _ cflag field of the termio structure. The sg_ erase and sg_ kill fields of the argument struc­
ture specify the erase and kill characters respectively, and reflect the values in the VERASE and VKILL
members of the c cc field of the termio structure.

The sg_ flags field of the argument structure contains several flags that determine the system's treatment of
the terminal. They are mapped into flags in fields of the terminal state, represented by the termio structure.

Delay type 0 is always mapped into the equivalent delay type 0 in the c _ oflag field of the termio structure.
Other delay mappings are performed as follows:

sg_flags c_oflag

BSt BSt
FFI VTt
CRt CR2
CR2 CR3
CR3 not supported
TABt TABt
TAB2 TAB2

Sun Release 4.1 Last change: 16 February 1988 1501

TTCOMPAT(4M) DEVICES AND NETWORK IN1ERFACES TTCOMPAT (4M)

1502

XTABS
NLI
NL2

TAB3
ONLRETICRI
NLI

If previous TIOCLSET or TIOCLBIS ioctl calls have not selected LITOUT or PASS8 mode, and if RAW
mode is not selected, the ISTRIP flag is set in the c _ iflag field of the termio structure, and the EVENP and
ODDP flags control the parity of characters sent to the terminal and accepted from the terminal:

o

EVENP

ODDP

Parity is not to be generated on output or checked on input; the character size is set to CS8
and the PARENB flag is cleared in the c _ cflag field of the termio structure.

Even parity characters are to be generated on output and accepted on input; the INPCK flag
is set in the c_iflag field of the termio structure, the character size is set to CS7 and the
PARENB flag is set in the c _ cflag field of the termio structure.

Odd parity characters are to be generated on output and accepted on input; the INPCK flag is
set in the c_iflag field, the character size is set to CS7 and the PARENB and PARODD flags
are set in the c _ cflag field of the termio structure.

EVENPIODDP
Even parity characters are to be generated on output and characters of either parity are to be
accepted on input; the INPCK flag is cleared in the c _iflag field, the character size is set to
CS7 and the P ARENB flag is set in the c _ cflag field of the termio structure.

The RA W flag disables all output processing (the OPOST flag in the c _ oflag field, and the XCASE flag in
the c_lflag field, are cleared in the termio structure) and input processing (all flags in the c_iflag field other
than the IXOFF and IXANY flags are cleared in the termio structure). 8 bits of data, with no parity bit, are
accepted on input and generated on output; the character size is set to CS8 and the PARENB and PARODD
flags are cleared in the c _ cflag field of the termio structure. The signal-generating and line-editing control
characters are disabled by clearing the ISIG and ICANON flags in the c_Iflag field of the termio structure.

The CRMOD flag tum input RETURN characters into NEWLINE characters, and output and echoed NEW­
LINE characters to be output as a RETURN followed by a llNEFEED. The ICRNL flag in the c_ifIag fi~ld,
and the OPOST and ONLCR flags in the c _ oflag field, are set in the termio structure.

The LCASE flag maps upper-case letters in the ASCII character set to their lower-case equivalents on input
(the IUCLC flag is set in the c _iflag field), and maps lower-case letters in the ASCII character set to their
upper-case equivalents on output (the OLCUC flag is set in the c_oflag field). Escape sequences are
accepted on input, and generated on output, to handle certain ASCII characters not supported by older ter­
minals (the X CASE flag is set in the c _Iflag field).

Other flags are directly mapped to flags in the termio structure:

sg_ flags flags in termio structure

CBREAK
ECHO
TANDEM

complement of ICANON in c _lflag field
ECHO in c_lfIag field
IXOFF in c_iflag field

Another structure associated with each terminal specifies characters that are special in both the old Version
7 and the newer 4BSD terminal interfaces. The following structure is defined by <sys/ioctl.h>:

struct tchars {
char

};

char
char
char
char
char

t_intrc;
t_quitc;
t_startc;
t_stopc;
t_eofc;
t_hrkc;

1* interrupt *1
1* quit */
1* start output *1
1* stop output *1
1* end-or-file *1
1* input delimiter (like nl) */

Last change: 16 February 1988 Sun Release 4.1

TICOMPAT(4M) DEVICES AND NETWORK INTERFACES TICOMPAT(4M)

IOCTLS

The characters are mapped to members of the c _ cc field of the termio structure as follows:

tchars c cc index

t intrc VINTR
t_quitc VQUIT
t startc VSTART
t_stopc VSTOP
t eofc VEOF
t brkc VEOL

Also associated with each terminal is a local flag word, specifying flags supported by the new 4BSD termi­
nal interface. Most of these flags are directly mapped to flags in the termio structure:

local flags flags in termio structure

LCRTBS
LPRTERA
LCRTERA
LTILDE
LTOSTOP
LFLUSHO
LNOHANG
LCRTKIL
LCTLECH
LPENDIN
LDECCTQ
LNOFLSH

not supported
ECHOPRT in the c_lflag field
ECH 0 E in the c Jflag field
not supported
TOSTOP in the c_lflag field
FLUSHO in the c_lflag field
CLOCAL in the c _ cflag field
ECH 0 KE in the c Jflag field
CTLECH in the c _lflag field
PENDIN in the c Jflag field
complement of IXANY in the c _iflag field
NOFLSH in the c_lflag field

Another structure associated with each terminal is the Itchars structure which defines control characters for
the new 4BSD terminal interface. Its structure is:

struct Itchars {
char

};

char
char
char
char
char

t_suspc;
t_dsuspc;
t_rprntc;
t_flushc;
t_werasc;
t_lnextc;

1* stop process signal *1
1* delayed stop process signal *1
1* reprint line *1
1* flush output (toggles) *1
1* word erase *1
1* literal next character *1

The characters are mapped to members of the c _ cc field of the termio structure as follows:

Itchars c cc index

t_suspc VSUSP

t_dsuspc VDSUSP
t_rprntc VREPRINT

t flushc VDISCARD
t werasc VWERASE
t lnextc VLNEXT

ttcompat responds to the following ioctl calls. All others are passed to the module below.

TIOCGETP The argument is a pointer to an sgttyb structure. The current terminal state is fetched; the
appropriate characters in the terminal state are stored in that structure, as are the input and
output speeds. The values of the flags in the sg_ flags field are derived from the flags in the
terminal state and stored in the structure.

Sun Release 4.1 Last change: 16 February 1988 1503

TTCOMPAT(4M) DEVICES AND NETWORK INTERFACES TTCOMPAT(4M)

TIOCSETP The argument is a pointer to an sgttyb structure. The appropriate characters and input and
output speeds in the terminal state are set from the values in that structure, and the flags in
the terminal state are set to match the values of the flags in the sg_ flags field of that struc­
ture. The state is changed with a TCSETSF ioctl, so that the interface delays until output is
quiescent, then throws away any unread characters, before changing the modes.

TIOCSETN The argument is a pointer to an sgttyb structure. The terminal state is changed as
TIOCSETP would change it, but a TCSETS ioctl is used, so that the interface neither delays
nor discards input

TIOCHPCL The argument is ignored. The HUPCL flag is set in the c _ cflag word of the terminal state.

TIOCFLUSH The argument is a pointer to an int variable. If its value is zero, all characters waiting in
input or output queues are flushed. Otherwise, the value of the int is treated as the logical
OR of the FREAD and FWRITE flags defined by <syslfile.h>; if the FREAD bit is set, all
characters waiting in input queues are flushed, and if the FWRITE bit is set, all characters
waiting in output queues are flushed.

TIOCSBRK The argument is ignored. The break bit is set for the device.

TIOCCBRK The argument is ignored. The break bit is cleared for the device.

TIOCSDTR The argument is ignored. The Data Terminal Ready bit is set for the device.

TIOCCDTR The argument is ignored. The Data Terminal Ready bit is cleared for the device.

TIOCSTOP The argument is ignored. Output is stopped as if the STOP character had been typed.

TIOCST ART The argument is ignored. Output is restarted as if the START character had been typed.

TIOCGETC The argument is a pointer to an tchars structure. The current terminal state is fetched, and
the appropriate characters in the terminal state are stored in that structure.

TIOCSETC The argument is a pointer to an tchars structure. The values of the appropriate characters in
the terminal state are set from the characters in that structure.

TIOCLGET The argument is a pointer to an int. The current terminal state is fetched, and the values of
the local flags are derived from the flags in the terminal state and stored in the int pointed to
by the argument.

TIOCLBIS The argument is a pointer to an int whose value is a mask containing flags to be set in the
local flags word. The current terminal state is fetched, and the values of the local flags are
derived from the flags in the terminal state; the specified flags are set, and the flags in the
terminal state are set to match the new value of the local flags word.

TIOCLBIC The argument is a pointer to an int whose value is a mask containing flags to be cleared in
the local flags word. The current terminal state is fetched, and the values of the local flags
are derived from the flags in the terminal state; the specified flags are cleared, and the flags
in the terminal state are set to match the new value of the local flags word.

TIOCLSET The argument is a pointer to an int containing a new set of local flags. The flags in the ter­
minal state are set to match the new value of the local flags word.

TIOCGLTC The argument is a pointer to an Itchars structure. The values of the appropriate characters
in the terminal state are stored in that structure.

TIOCSLTC The argument is a pointer to an Itchars structure. The values of the appropriate characters
in the terminal state are set from the characters in that structure.

SEE ALSO
ioctl(2), termio(4)

1504 Last change: 16 February 1988 Sun Release 4.1

TTY(4) DEVICES AND NETWORK INTERFACES ITY(4)

NAME
tty - controlling terminal interface

DESCRIPTION

IOCTLS

FILES

The file Idev/tty is, in each process, a synonym for the controlling terminal of that process, if any. It is use­
ful for programs or shell sequences that wish to be sure of writing messages on the terminal no matter how
output has been redirected. It can also be used for programs that demand the name of a file for output,
when typed output is desired and it is tiresome to find out what terminal is currently in use.

In addition to the ioctl() requests supported by the device that tty refers to, the following ioctl() request is
supported:

TIOCNOTTY Detach the current process from its controlling terminal, and remove it from its
current process group, without attaching it to a new process group (that is, set its pro­
cess group ID to zero). This ioctl() call only works on file descriptors connected to
/dev/tty; this is used by daemon processes when they are invoked by a user at a ter­
minal. The process attempts to open /dev/tty; if the open succeeds, it detaches itself
from the terminal by using TIOCNOTTY, while if the open fails, it is obviously not
attached to a terminal and does not need to detach itself.

/dev/tty

SEE ALSO
termio(4)

Sun Release 4.1 Last change: 16 February 1988 1505

UDP(4P) PROTOCOLS UDP(4P)

NAME
udp - Internet User Datagram Protocol

SYNOPSIS
#include <sys/socket.h>
#include <netinetlin.h>

s = socket(AF_INET, SOCK_DGRAM, 0);

DESCRIPTION
UDP is a simple, unreliable datagram protocol which is used to support the SOCK_DGRAM abstraction for
the Internet protocol family. It is layered directly above the Internet Protocol (IP). UDP sockets are con­
nectionless, and are normally used with the sendto, sendmsg, recvfrom, and recvmsg system calls (see
send(2) and recv(2». If the connect(2) system call is used to fix the destination for future packets, then
the recv(2) or read(2V) and send(2) or write(2V) system calls may be used.

UDP address formats are identical to those used by the Transmission Control Protocol (TCP). Like TCP,
UDP uses a port number along with an IP address to identify the endpoint of communication. Note: the
UDP port number space is separate from the TCP port number space (that is, a UDP port may not be "con­
nected" to a TCP port). The bind(2) system call can be used to set the local address and port number of a
UDP socket. The local IP address may be left unspecified in the bind call by using the special value
INADDR_ANY. If the bind call is not done, a local IP address and port number will be assigned to each
packet as it is sent. Broadcast packets may be sent (assuming the underlying network supports this) by
using a reserved "broadcast address"; this address is network interface dependent. Broadcasts may only be
sent by the super-user.

Options at the IP level may be used with UDP; see ip(4P).

There are a variety of ways that a UDP packet can be lost or discarded, including a failure of the underlying
communication mechanism. UDP implements a checksum over the data portion of the packet. If the
checksum of a received packet is in error, the packet will be dropped with no indication given to the user.
A queue of received packets is provided for each UDP socket. This queue has a limited capacity. Arriving
datagrams which will not fit within its high-water capacity are silently discarded.

UDP processes Internet Control Message Protocol (ICMP) error messages received in response to UDP
packets it has sent. See icmp(4P). ICMP "source quench" messages are ignored. ICMP "destination
unreachable," "time exceeded" and "parameter problem" messages disconnect the socket from its peer so
that subsequent attempts to send packets using that socket will return an error. UDP will not guarantee that
packets are delivered in the order they were sent. As well, duplicate packets may be generated in the com­
munication process.

ERRORS

1506

A socket operation may fail if:

EISCONN

EISCONN

ENOTCONN

EADDRINUSE

EADDRNOTA V AIL

A connect operation was attempted on a socket on which a connect operation had
already been performed, and the socket could not be successfully disconnected
before making the new connection.

A sendto or sendmsg operation specifying an address to which the message
should be sent was attempted on a socket on which a connect operation had
already been performed.

A send or write operation, or a sendto or sendmsg operation not specifying an
address to which the message should be sent, was attempted on a socket on which
a connect operation had not already been performed.

A bind operation was attempted on a socket with a network address/port pair that
has already been bound to another socket.

A bind operation was attempted on a socket with a network address for which no
network interface exists.

Last change: 24 November 1987 Sun Release 4.1

UDP(4P) PROTOCOLS UDP(4P)

EINVAL

EACCES

ENOBUFS

A sendmsg operation with a non-NULL msg_accrigbts was attempted.

A bind operation was attempted with a "reserved" port number and the effective
user ID of the process was not super-user.

The system ran out of memory for internal data structures.

SEE ALSO

BUGS

bind(2), connect(2), read(2V), recv(2), send(2), write(2V), icmp(4P), inet(4F), ip(4P), tcp(4P)

Postel, Jon, User Datagram Protocol, RFC 768, Network Information Center, SRI International, Menlo
Park, Calif., August 1980. (Sun 800-1054-01)

SIOCSHIW AT and SIOCGHIWAT ioctl's to set and get the high water mark for the socket queue, and so
that it can be changed from 2048 bytes to be larger or smaller, have been defined (in sys/ioctl.h) but not
implemented.

Something sensible should be done with ICMP source quench error messages if the socket is bound to a
peer socket.

Sun Release 4.1 Last change: 24 November 1987 1507

UNIX (4F) PROTOCOL FAMILIES UNIX (4F)

NAME
unix - UNIX domain protocol family

DESCRIPTION
The Unix Domain protocol family provides support for socket-based communication between processes
running on the local host. While both SOCK_STREAM and SOCK _ DGRAM types are supported, the
SOCK_STREAM type often provides faster performance. Pipes, for instance, are built on Unix Domain
SOCK STREAM sockets.

Unix Domain SOCK _ DGRAM sockets (also called datagram sockets) exist primarily for reasons of ortho­
gonality under the BSD socket model. However, the overhead of reading or writing data is higher for the
(connectionless) datagram sockets.

Unix Domain addresses are pathnames. In other words, two independent processes can communicate by
specifying the same pathname as their communications rendezvous point. The bind(2) operation creates a
special entry in the file system of type socket. If that pathname already exists (as a socket from a previous
bindO operation, or as some other file system type), bindO will fail.

Sockets in the Unix domain protocol family use the following addressing structure:

struet sockaddr _un {

};

short sun_family;
u_short sunyath[108];

To create or reference a Unix Domain socket, the sun_family field should be set to AF _UNIX and the
sun yath array should contain the path name of a rendezvous point.

Although Unix Domain sockets are faster than Internet Domain sockets for communication between local
processes, the advantage of the additional flexibility afforded by the latter may outweigh performance
issues. Where inter-process communication thoughput is critical, a shared memory approach may be pre­
ferred.

Since there are no protocol families associated with Unix Domain sockets, the protocol argument to
socket(2) should be zero.

When setting up a Unix Domain socket, the length argument to the bind() call is the amount of space
within the sockaddr _un structure, not including the pathname delimiter. One way to specify the length is:

sizeof(addr.sunJamily) + strlen(path) where addr is a structure of type sockaddr_un, and path
is a pointer to the pathname.

The limit of 108 characters is an artifact of the implementation.

Since closing a Unix Domain socket does not make the file system entry go away, an application should
remove the entry using unlink(2V), when finished.

SEE ALSO
bind(2), socket(2), unlink(2V)

Network Programming

1508 Last change: 20 October 1988 Sun Release 4.1

VD(4) DEVICES AND NETWORK INTERFACES

NAME
vd - loadable modules interface

CONFIG
None; included with options VDDRV

DESCRIPTION

VD(4)

This pseudo-device provides kernel support for loadable modules. It is used exclusively by the
modload(8), modunload(8), and modstat(8) utilities. Other programs should not use it.

FILES
Idev/vd

SEE ALSO
modloadO, modunloadO, modstatO

WARNINGS
The interface provided by vd is subject to change without notice.

Sun Release 4.1 Last change: 12 January 1990 1509

VPC(4S) DEVICES AND NETWORK IN1ERFACES VPC(4S)

NAME
vpc - Systech VPC-2200 Versatec printer/plotter and Centronics printer interface

CONFIG-
device vpcO at vme16d16? csr Ox480 priority 2 vector vpcintr Ox80
device vpc1 at vme16d16 ? csr OxSOO priority 2 vector vpcintr Ox81

AVAILABILITY
Sun-3, Sun-3/80 and Sun-4 systems only.

DESCRIPTION

FILES

This Sun interface to the Versatec printer/plotter and to Centronics printers is supported by the Systech
parallel interface board, an output-only byte-wide DMA device. The device has one channel for Versatec
devices and one channel for Centronics devices, with an optional long lines interface for Versatec devices.

Devices attached to this interface are normally handled by the line printer spooling system and should not
be accessed by the user directly.

Opening the device /dev/vpcO or /dev/lpO may yield one of two errors: ENXIO indicates that the device is
already in use; Ero indicates that the device is offline.

The Versatec printer/plotter operates in either print or plot mode. To set the -printer into plot mode you
should include <sys/vcmd.h> and use the ioctI(2) call:

ioctI(f, VSETSTATE, plotmd);

where plotmd is defined to be

int plotmd[] = {VPLOT, 0, O};

When going back into print mode from plot mode you normally eject paper by sending it an EOT after put­
ting into print mode:

int prtmd[] = {VPRINT, 0,0 };

fflush (vpc);
f = fileno(vpc);
ioctl(f, VSETST ATE, prtmd);
write(f, "\04",1);

/dev/vpcO
/dev/lpO

SEE ALSO

BUGS

1510

ioctI(2), setbuf(3V)

If you use the standard I/O library on the Versatec, be sure to explicitly set a buffer using setbuf(3V), since
the library will not use buffered output by default, and will run very slowly.

Last change: 9 October 1987 Sun Release 4.1

WIN(4S) DEVICES AND NETWORK INlERFACES WIN(4S)

NAME

CONFIG

win - Sun window system

pseudo-device winnumber
pseudo-device dtopnumber

DESCRIPTION

FILES

The win pseudo-device accesses the system drivers supporting the Sun window system. number, in the
device description line above, indicates the maximum number of windows supported by the system.
number is set to 128 in the GENERIC system configuration file used to generate the kernel used in Sun sys­
tems as they are shipped. The dtop pseudo-device line indicates the number of separate "desktops"
(frame buffers) that can be actively running the Sun window system at once. In the GENERIC file, this
number is set to 4.

Each window in the system is represented by a Idev/win* device. The windows are organized as a tree
with windows being subwindows of their parents, and covering/covered by their siblings. Each window
has a position in the tree, a position on a display screen, an input queue, and information telling what parts
of it are exposed.

The window driver multiplexes keyboard and mouse input among the several windows, tracks the mouse
with a cursor on the screen, provides each window access to information about what parts of it are exposed,
and notifies the manager process for a window when the exposed area of the window changes so that the
window may repair its display.

Full information on the window system functions is given in the Sun View System Programmer's Guide.

Idev/win[0-9]
Idev/win[0-9] [0-9]

SEE ALSO
Sun View System Programmer's Guide

Sun Release 4.1 Last change: 9 October 1987 1511

XD(4S) DEVICES AND NETWORK INTERFACES XD(4S)

NAME
xd - Disk driver for Xylogics 7053 SMD Disk Controller

CONFIG - SUN-3, SUN-3x, SUN-4 SYSTEMS
controller xdcO at vme16d32? csr Oxee80 priority 2 vector xdintr Ox44
controller xdcl at vme16d32 ? csr Oxee90 priority 2 vector xdintr Ox45
controller xdc2 at vme16d32 ? csr OxeeaO priority 2 vector xdintr Ox46
controller xdc3 at vme16d32 ? csr OxeebO priority 2 vector xdintr Ox47
disk xdO at xdcO drive 0
disk xdl at xdcO drive 1
disk xd2 at xdcO drive 2
disk xd3 at xdcO drive 3
disk xd4 at xdcl drive 0
disk xd5 at xdcl drive 1
disk xd6 at xdcl drive 2
disk xd7 at xdcl drive 3
disk xd8 at xdc2 drive 0
disk xd9 at xdc2 drive 1
disk xdlO at xdc2 drive 2
disk xdll at xdc2 drive 3
disk xd12 at xdc3 drive 0
disk xd13 at xdc3 drive 1
disk xd14 at xdc3 drive 2
disk xd15 at xdc3 drive 3

The four controller lines given in the synopsis section above specify the first, second, third, and fourth
Xylogics 7053 SMD disk controller in a Sun system.

DESCRIPTION
Files with minor device numbers 0 through 7 refer to various portions of drive 0; minor devices 8 through
15 refer to drive 1, and so on. The standard device names begin with xd followed by the drive number and
then a letter a-h for partitions 0-7 respectively. The character? stands here for a drive number in the range
0-7.

The block files access the disk using the system's normal buffering mechanism and may be read and writ­
ten without regard to physical disk records. There is also a "raw" interface which provides for direct
transmission between the disk and the user's read or write buffer. A single read or write call usually results
in only one I/O operation; therefore raw I/O is considerably more efficient when many words are transmit­
ted. The names of the raw files conventionally begin with an extra r.

In raw I/O counts should be a multiple of 512 bytes (a disk sector). Likewise directory(3V) calls should
specify a multiple of 512 bytes.

If flags Oxl is specified, the overlapped seeks feature for that drive is turned off. Note: to be effective, the
flag must be set on all drives for a specific controller. This action is necessary for controllers with older
firmware, which have bugs preventing overlapped seeks from working properly.

DISK SUPPORT

FILES

1512

This driver handles all SMD drives by reading a label from sector 0 of the drive which describes the disk
geometry and partitioning.

The xd?a partition is normally used for the root file system on a disk, the xd?b partition as a paging area,
and the xd?c partition for pack-pack copying (it normally maps the entire disk). The rest of the disk is nor­
mally the xd?g partition.

Idev/xd[O-7][a-b]
/dev/rxd[O-7][a-b]

block files
raw files

Last change: 24 November 1987 S un Release 4.1

XD(4S) DEVICES AND NETWORK INTERFACES XD(4S)

SEE ALSO
Iseek(2V), read(2V), write(2V), directory(3V), dkio(4S)

DIAGNOSTICS

BUGS

xdcn: self test error
Self test error in controller, see the Maintenance and Reference Manual.

xdn: unable to read bad sector
The bad sector forwarding information for the disk could not be read.

xdn: initialization failed
The drive could not be successfully initialized.

xdn: unable to read label
The drive geometry/partition table information could not be read.

xdn: Corrupt label
The geometry/partition label checksum was incorrect.

xdn: offline
A drive ready status is no longer detected, so the unit has been logically removed from the system.
If the drive ready status is restored, the unit will automatically come back online the next time it is
accessed.

xdnc: cmd how (msg) blk #n abs blk #n
A command such as read or write encountered an error condition (how): either it/ailed, the con­
troller was reset, the unit was restored, or an operation was retry'ed. The msg is derived from the
error number given by the controller, indicating a condition such as "drive not ready(rq, "sector
not found" or "disk write protected". The blk # is the sector in error relative to the beginning of
the partition involved. The abs blk # is the absolute block number of the sector in error. Some
fields of the error message may be missing since the information is not always available.

In raw I/O read(2V) and write(2V) truncate file offsets to 512-byte block boundaries, and write(2V) scrib­
bles on the tail of incomplete blocks. Thus, in programs that are likely to access raw devices, read(2V),
write(2V) and lseek(2V) should always deal in 512-byte multiples.

Older revisions of the firmware do not properly support overlapped seeks. This will only affect systems
with multiple disks on a single controller. If a large number of "zero sector count" errors appear, you
should use the flags field to disable overlapped seeks.

Sun Release 4.1 Last change: 24 November 1987 1513

XT(4S) DEVICES AND NETWORK INTERFACES XT(4S)

NAME
xt - Xylogics 472 1/2 inch tape controller

CONFIG - SUN-3, SUN-4 SYSTEMS
controller xtcO at vme16d16 ? csr Oxee60 priority 3 vector xtintr Ox64
controller xtcl at vme16d16 ? csr Oxee68 priority 3 vector xtintr Ox65
tape xtO at xtcO drive 0 flags 1
tape xtl at xtcl drive 0 flags 1

DESCRIPTION
The Xylogics 472 tape controller controls Pertec-interface 1/2" tape drives such as the Fujitsu M2444 and
the CDC Keystone III, providing a standard tape interface to the device see mtio(4). This controller is used
to support high speed or high density drives, which are not supported effectively by the older Tapemaster
controller (see tm(4S»).

The flags field is used to control remote density select operation: a 0 specifies no remote density selection is
to be attempted, a 1 specifies that the Pertec density-select line is used to toggle between high and low den­
sity; a 2 specifies that the Pertec speed-select line is used to toggle between high and low density. The
default is 1, which is appropriate for the Fujitsu M2444, the CDC Keystone III (92185) and the Telex 9250.
In no case will the controller select among more than 2 densities.

The xt driver supports the character device interface.

EOT Handling
The user will be notified of end of tape (EDT) on write by a 0 byte count returned the first time this is
attempted. This write must be retried by the user. Subsequent writes will be successful until the tape
winds off the reel. Read past EDT is transparent to the user.

loctls

FILES

Not all devices support all ioctls. The driver returns an ENDTIY error on unsupported ioctls.

1/2" tape devices do not support the tape retension function.

Idev/rmtO
Idev/rmt8
Idev/nrmt*

low density operation, typically 1600 bpi
high density operation, typically 6250 bpi
non-rewinding

SEE ALSO
mt(1), tar(1), mtio(4), st(4S), suninstall(8)

BUGS
Record sizes are restricted to an even number of bytes.

Absolute file positioning is not fully supported; it is only meant to be used by suninstall(8).

1514 Last change: 19 December 1989 S un Release 4.1

XY(4S) DEVICES AND NETWORK INTERFACES XY (4S)

NAME
xy - Disk driver for Xylogics 450 and 451 SMD Disk Controllers

CONFIG - SUN-3, SUN-3x, SUN-4 SYSTEMS
controller xycO at vme16d16? csr Oxee40 priority 2 vector xyintr Ox48
controller xycl at vme16dl6 ? csr Oxee48 priority 2 vector xyintr Ox49
disk xyO at xyc9 drive 0
disk xyl at xyc9 drive 1
disk xy2 at xyc~ drive 0
disk xy3 at xycl drive 1

The two controller lines given in the synopsis sections above specify the first and second Xylogics 450 or
451 SMD disk controller in a Sun system.

DESCRIPTION
Files with minor device numbers 0 through 7 refer to various portions of drive 0; minor devices 8 through
15 refer to drive 1, and so on. The standard device names begin with xy followed by the drive number and
then a letter a-h for partitions 0-7 respectively. The character '?' stands here for a drive number in the
range 0-7.

The block files access the disk using the system's normal buffering mechanism and may be read and writ­
ten without regard to physical disk records. There is also a "raw" interface which provides for direct
transmission between the disk and the user's read or write buffer. A single read or write call usually results
in only one I/O operation; therefore raw I/O is considerably more efficient when many words are transmit­
ted. The names of the raw files conventionally begin with an extra r.

When using raw I/O, transfer counts should be multiples of 512 bytes (the size of a disk sector). Likewise,
when using lseek(2V) to specify block offsets from which to perform raw I/O, the logical offset should also
be a multiple of 512 bytes.

Due to word ordering differences between the disk controller and Sun computers, user buffers that are used
for raw I/O must not begin on odd byte boundaries.

If flags Oxl is specified, the overlapped seeks feature for that drive is turned off. Note: to be effective, the
flag must be set on all drives for a specific controller. This action is necessary for controllers with older
firmware, which have bugs preventing overlapped seeks from working properly.

DISK SUPPORT

FILES

This driver handles all SMD drives by reading a label from sector 0 of the drive which describes the disk
geometry and partitioning.

The xy?a partition is normally used for the root file system on a disk, the xy?b partition as a paging area,
and the xy?c partition for pack-pack copying (it normally maps the entire disk). The rest of the disk is nor­
mally the xy?g partition.

/dev/xy[0-7][a-hJ
/ dey /rxy[0-7] [a -h)

block files
raw files

SEE ALSO
Iseek(2V), read(2V), directory(3V) , write(2V), dkio(4S)

DIAGNOSTICS
xycn : self test error

Self test error in controller, see the Maintenance and Reference Manual.

xycn: WARNING: n bit addresses
The controller is strapped incorrectly. Sun systems use 20-bit addresses for Multibus based sys­
tems and 24-bit addresses for VMEbus based systems.

xyn : unable to read bad sector info
The bad sector forwarding information for the disk could not be read.

Sun Release 4.1 Last change: 24 November 1987 1515

XY(4S) DEVICES AND NETWORK INTERFACES XY (4S)

xyn and xyn are of same type (n) with different geometries.

BUGS

1516

The 450 and 451 do not support mixing the drive types found on these units on a single controller.

xyn : initialization failed
The drive could not be successfully initialized.

xyn : unable to read label
The drive geometry/partition table information could not be read.

xyn : Corrupt label
The geometry/partition label checksum was incorrect.

xyn: ofBine
A drive ready status is no longer detected, so the unit has been logically removed from the system.
If the drive ready status is restored, the unit will automatically come back online the next time it is
accessed.

xync: cmd how (msg) blk #n abs blk #n
A command such as read or write encountered an error condition (how): either itfailed, the con­
troller was reset, the unit was restored, or an operation was retry'ed The msg is derived from the
error number given by the controller, indicating a condition such as "drive not ready", "sector not
found" or "disk write protected". The blk # is the sector in error relative to the beginning of the
partition involved. The abs blk # is the absolute block number of the sector in error. Some fields
of the error message may be missing since the information is not always available.

In raw I/O read(2V) and write(2V) truncate file offsets to 512-byte block boundaries, and write(2V) scrib­
ble.s on the tail of incomplete blocks. Thus, in programs that are likely to access raw devices, read(2V),
write(2V) and lseek(2V) should always deal in 512-byte multiples.

Older revisions of the firmware do not properly support overlapped seeks. This will only affect systems
with multiple disks on a single controller. If a large number of "zero sector count" errors appear, you
should use the Bags field to disable overlapped seeks.

Last change: 24 November 1987 Sun Release 4.1

ZERO (4S) DEVICES AND NETWORK INTERFACES ZERO(4S)

NAME
zero - source of zeroes

SYNOPSIS
None; included with standard system.

DESCRIPTION

FILES

A zero special file is a source of zeroed unnamed memory.

Reads from a zero special file always return a buffer full of zeroes. The file is of infinite length.

Writes to a zero special file are always successful, but the data written is ignored.

Mapping a zero special file creates a zero-initialized unnamed memory object of a length equal to the
length of the mapping and rounded up to the nearest page size as returned by getpagesize(2). Multiple
processes can share such a zero special file object provided a common ancestor mapped the object
MAP_SHARED.

Idevlzero

SEE ALSO
fork(2V), getpagesize(2), mmap(2)

Sun Release 4.1 Last change: 9 October 1987 1517

ZS(4S) DEVICES AND NETWORK INTERFACES ZS(4S)

NAME
zs - Zilog 8530 SCC serial communications driver

eONFlG - SUN-3 SYSTEM
device zsO at obio ? csr Ox20000 8ags 3 priority 3
device zsI at obio? csr OxOOOOO 8ags OxI03 priority 3

eONFlG - SUN-3x SYSTEM
device zsO at obio ? csr Ox62002000 flags 3 priority 3
device zsI at obio? csr Ox62000000 flags OxI03 priority 3

eONFlG - SUN-4 SYSTEM
device zsI at obio? csr OxfOOOOOOO flags OxI03 priority 3
device zs2 at obio 3 csr OxeOOOOOOO flags 3 priority 3

CONFIG - SPAReST ATION 1 SYSTEM
device-driver zs

CONFIG - Sun386i SYSTEM
device zsO at obmem ? csr OxFCOOOOOO flags 3 irq 9 priority 6
device zsl at obmem ? csr OxA0000020 8ags Oxl03 irq 9 priority 6

SYNOPSIS
#include <fcntl.h>
#include <sysltermios.h>
open(n Idev/ttyn", mode);
open(n Idev/ttydn", mode);
open(n/dev/cuan", mode);

DESCRIPTION

1518

The Zilog 8530 provides 2 serial communication ports with full modem control in asynchronous mode.
Each port supports those termio(4) device control functions specified by flags in the c_c8ag word of the
termios structure and by the IGNBRK, IGNPAR, PARMRK, or INPCK flags in the c_iHag word of the ter­
mios structure are performed by the zs driver. All other termio(4) functions must be performed by
STREAMS modules pushed atop the driver; when a device is opened, the Idterm(4M) and ttcompat(4M)
STREAMS modules are automaticaHy pushed on top of the stream, providing the standard termio(4) inter­
face.

Of the synopsis lines above, the line for zsO specifies the serial I/O port(s) provided by the CPU board, the
line for zsI specifies the Video Board ports (which are used for keyboard and mouse), the lines for zs2 and
zs3 specify the first and second ports on the first SCSI board in a system, and those for zs4 and zsS specify
the first and second ports provided by the second SCSI board in a system, respectively.

Bit i of flags may be specified to say that a line is not properly connected, and that the line i should be
treated as hard-wired with carrier always present. Thus specifying flags Ox2 in the specification of zsO
would treat line Idev/ttyb in this way.

Minor device numbers in the range 0 - 11 correspond directly to the normal tty lines and are named
Idev/ttya and Idev/ttyb for the two serial ports on the CPU board and Idev/ttysn for the ports on the SCSI
boards; n is 0 or 1 for the ports on the first SCSI board, and 2 or 3 for the ports on the second SCSI board.

To allow a single tty line to be connected to a modem and used for both incoming and outgoing calls, a
special feature, controlled by the minor device number, has been added. Minor device numbers in the
range 128 - 139 correspond to the same physical lines as those above (that is, the same line as the minor
device number minus 128).

A dial-in line has a minor device in the range 0 - 11 and is conventionally renamed Idev/ttydn, where n is
a number indicating which dial-in line it is (so that Idev/ttydO is the first dial·in line), and the dial-out line
corresponding to that dial-in line has a minor device number 128 greater than the minor device number of
the dial-in line and is conventionally named Idev/cuan, where n is the number of the dial-in line.

Last change: 26 February 1988 Sun Release 4.1

ZS(4S)

IOCTLS

DEVICES AND NETWORK INTERFACES ZS(4S)

The /dev/cuan lines are special in that they can be opened even when there is no carrier on the line. Once
a /dev/cuan line is opened, the corresponding tty line can not be opened until the /dev/cuan line is closed; a
blocking open will wait until the /dev/cuan line is closed (which will drop Data Terminal Ready, after
which Carrier Detect will usually drop as well) and carrier is detected again, and a non-blocking open will
return an error. Also, if the /dev/ttydn line has been opened successfully (usually only when carrier is
recognized on the modem) the corresponding /dev/cuan line can not be opened. This allows a modem to
be attached to e.g. /dev/ttydO (renamed from /dev/ttya) and used for dial-in (by enabling the line for login
in letc/ttytab) and also used for dial-out (by tip(IC) or uucp(IC» as /dev/cuaO when no one is logged in
on the line. Note: the bit in the flags word in the configuration file (see above) must be zero for this line,
which enables hardware carrier detection.

The standard set of termio ioctl() calls are supported by zs.

If the CRTSCTS flag in the c _ cflag is set, output will be generated only if crs is high; if crs is low, output
will be frozen. If the CRTSCTS flag is clear, the state of CTS has no effect. Breaks can be generated by
the TCSBRK, TIOCSBRK, and TIOCCBRK ioctl() calls. The modem control lines TIOCM_CAR,
TIOCM_ CTS, TIOCM_RTS, and TIOCM_DTR are provided.

The input and output line speeds may be set to any of the speeds supported by termio. The speeds cannot
be set independently; when the output speed is set, the input speed is set to the same speed.

ERRORS

FILES

An open() will fail if:

ENXIO The unit being opened does not exist.

EBUSY

EBUSY

EINTR

The dial-out device is being opened and the dial-in device is already open, or the dial-in
device is being opened with a no-delay open and the dial-out device is already open.

The unit has been marked as exclusive-use by another process with a TIOCEXCL ioctl()
call.

The open was interrupted by the delivery of a signal.

/dev/tty{a,b,s[O-3]}
/dev/ttyd[O-9a-f]
/dev/cua[O-9a-f)

hardwired tty lines
dial-in tty lines
dial-out tty lines

SEE ALSO
tip(lC), uucp(IC), mcp(4S), mti(4S), termio(4), Idterm(4M), ttcompat(4M), ttysoftcar(8)

DIAGNOSTICS
zsn c: silo overflow.

The 8530 character input silo overflowed before it could be serviced.

zsn c: ring buffer overflow.
The driver's character input ring buffer overflowed before it could be serviced.

Sun Release 4.1 Last change: 26 February 1988 1519

Notes

IN1RO(5) FILE FORMATS INTRO(5)

NAME
intro - file formats used or read by various programs

DESCRIPTION
This section describes formats of files used by various programs.

A 5V section number means one or more of the following:

• The man page documents System V formats only.

• The man page documents default SunOS formats, and System V formats as they differ from the default
formats. These System V differences are presented under SYSTEM V section headers.

• The man page documents formats compliant with IEEE Std 1003.1-1988 (POSIX.l).

LIST OF FILE FORMATS
Name

acct
addresses
aliases
a.out
ar
audit control
audit data
audit.log
auto.home
auto.vol
bar
boards.pc
bootparams
bootservers
cofT
core
cpio
crontab
dir
dump
dumpdates
environ
ethers
exports
extyorts
fbtab
fcntl
forward
fs
fspec
fstab
ftpusers
gettytab
group
group.adjunct
help
help_viewer
hosts
hosts.equiv

Sun Release 4.1

Appears on Page

acct(5)
aliases(5)
aliases(5)
a.out(5)
ar(5)
audit_ control(5)
audit_data(5)
audit.log(5)
auto.home(5)
auto.vol(5)
bar(5)
boards.pc(5)
bootparams(5)
bootservers(5)
cofT(5)
core(5)
cpio(5)
crontab(5)
dir(5)
dump(5)
dump(5)
environ(5V)
ethers(5)
exports(5)
ext yorts(5)
fbtab(5)
fcntl(5)
aliases(5)
fs(5)
fspec(5)
fstab(5)
ftpusers(5)
getty tab (5)
group(5)
group.adjunct(5)
help(5)
help _ viewer(5)
hosts(5)
hosts.equiv(5)

Description

execution accounting file
addresses and aliases for sendmail
addresses and aliases for sendmail
assembler and link editor output format
archive (library) file format
control information for system audit daemon
current information on audit daemon
the security audit trail file
automount map for home directories
automount map for volumes
tape archive file format
AT - and XT -compatible boards for DOS windows
boot parameter data base
NIS bootservers file
common assembler and link editor output
fonnat of memory image file
fonnat of cpio archive
table of times to run periodic jobs
fonnat of directories
incremental dump format
incremental dump format
user environment
Ethernet address to hostname database or NIS domain
directories to export to NFS clients
external ports file for network printers, terminals, and modems
framebuffer table
file control options
addresses and aliases for sendmail
fonnat of a 4.2 (ufs) file system volume
fonnat specification in text files
static filesystem mounting table, mounted filesystems table
list of users prohibited by FTP
terminal configuration data base
group file
group security data file
help file format
help viewer file format
host name data base
trusted hosts by system and by user

Last change: 19 October 1987 1521

INTRO(5) FILE FORMATS INTRa (5)

indent.pro indent.pro(5) default options for indent
inetd.conf inetd.conf(5) Internet servers database
inode fs(5) fonnat of a 4.2 (ufs) file system volume
internat internat(5) key mapping table for internationalization
ipalloc.netrange ipalloc.netrange(5) range of addresses to allocate
keytables keytables(5) keyboard table descriptions for loadkeys and dumpkeys
lastlog utmp(5V) login records
link Iink(5) link editor interfaces
locale locale(5) locale database
magic magic(5) file command's magic number file
mtab fstab(5) static filesystem mounting table, mounted filesystems table
mtab mtab(5) mounted file system table
netgroup netgroup(5) list of network groups
netmasks netmasks(5) network mask data base
netrc netrc(5) file for ftp remote login data
networks networks(5) network name data base
orgrc orgrc(5) organizer configuration and initialization file
passwd passwd(5) password file
passwd.adjunct passwd.adjunct(5) user security data file
phones phones(5) remote host phone number data base
plot plot(5) graphics interface
pnp.sysnames pnp.sysnames(5) file used to allocate system names
policies policies(5) network administration policies
printcap printcap(5) printer capability data base
proto proto(S) prototype job file for at
protocols protocols(5) protocol name data base
publickey publickey(5) public key database
queuedefs queuedefs(S) queue description file for at, batch, and cron
rasterfile rasterfile(5) Sun's file format for raster images
remote remote(5) remote host description file
resolv.conf resolv.conf(S) configuration file for domain name system resolver
rfmaster rfmaster(5) Remote File Sharing name server master file
rgb rgb(5) available colors (by name) for coloredit
rbosts hosts.equiv(5) trusted hosts by system and by user
rootmenu rootmenu(5) root menu specification for SunView
rpc rpc(5) rpc program number data base
sccsfile sccsfile(5) format of an sees history file
services services(5) Internet services and aliases
setup.pc setup.pc(S) master configuration file for DOS

sm sm(5) in.statd directory and file structures
sm statmon(5) statd directories and file structures
sm.bak sm(S) in.statd directory and file structures
sm.bak statmon(5) statd directories and file structures
sm.state sm(5) in.statd directory and file structures
state statmon(S) statd directories and file structures
sun view sunview(5) initialization file for SunView
svdtab svdtab(5) SunView device table
syslog.conf syslog.conf(5) configuration file for syslogd system log daemon
systems systems(5) NIS systems file
tar tar(5) tape archive file format
termcap termcap(5) terminal capability data base
term term(S) terminal driving tables for nroff
term term(5V) format of compiled term file

1522 Last change: 19 October 1987 Sun Release 4.1

INTRO(5)

terminfo
toc
translate
ttys
ttytab
types
tzfile
ugid _ alloc.range
updaters
utmp
uuencode
vfont
vgrindefs
wtmp
xtab
ypaliases
ypfiles
ypgroup
yppasswd
ypprintcap

Sun Release 4.1

FILE FORMATS INTRO(5)

terminfo(5V)
toc(5)
translate (5)
ttytab(5)
ttytab(5)
types(5)
tzfile(5)
ugid _ alloc.range(5)
updaters(5)
utmp(5V)
uuencode(5)
vfont(5)
vgrindefs(5)
utmp(5V)
exports(5)
ypaliases(5)
ypfiles(5)
ypgroup(5)
yppasswd(5)
ypprintcap(5)

terminal capability data base
table of contents of optional clusters
input and output files for system message translation
terminal initialization data
terminal initialization data
primitive system data types
time zone information
range of user IDs and group IDs to allocate
configuration file for NIS updating
login records
format of an encoded uuencode file
font formats
vgrind's language definition data base
login records
directories to export to NFS clients
NIS aliases for sendmail
NIS database and directory structure
NIS group file
NIS password file
NIS printer capability database

Last change: 19 October 1987 1523

A.OUT(5) FILE FORMATS A.OUT(5)

NAME
a.out - assembler and link editor output format

SYNOPSIS
#include <a.out.h>
#include <stab.h>
#include <nlist.h>

AVAILABILITY
Sun-2, Sun-3, and Sun-4 systems only. For Sun386i systems refer to coff(5).

DESCRIPTION
a.out is the output format of the assembler as(l) and the link editor ld(l). The link editor makes a.out exe­
cutable files.

A file in a.out format consists of: a header, the program text, program data, text and data relocation infor­
mation, a symbol table, and a string table (in that order). In the header, the sizes of each section are given
in bytes. The last three sections may be absent if the program was loaded with the -s option of Id or if the
symbols and relocation have been removed by strip(l).

The machine type in the header indicates the type of hardware on which the object code can be executed.
Sun-2 code runs on Sun-3 systems, but not vice versa. Program files predating release 3.0 are recognized
by a machine type of '0'. Sun-4 code may not be run on Sun-2 or Sun-3, nor vice versa.

Header

1524

The header consists of a exec structure. The exec structure has the form:

struct exec {

};

unsigned char
unsigned char
unsigned char
unsigned short
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long

a_dynamic: 1; 1* has a DYNAMIC *1
a_toolversion:7; 1* version of toolset used to create this file *1
a _ machtype; 1* machine type *1
a_magic; 1* magic num ber *1
a_text; 1* size of text segment */
a_data; 1* size of initialized data *1
a _ bss; 1 * size of unin itialized data *1
a _ syms; 1* size of symbol table *1
a_entry; 1* entry point */
a_trsize; 1* size of text relocation *1
a_ drsize; 1* size of data relocation *1

The members of the structure are:

a_dynamic

a toolversion

a_machtype

1 if the a.out file is dynamically linked or is a shared object, 0 otherwise.

The version number of the toolset (a~, (d, etc.) used to create the file.

One of the following:

o pre-3.0 executable image

M 68010 executable image using only MC68010 instructions that can run on Sun-2
or Sun-3 systems.

M 68020 executable image using MC68020 instructions that can run only on Sun-3
systems.

M SPARC executable image using SPARe instructions that can run only on Sun-4
systems.

One of the following:

OMAGIC An text executable image which is not to be write-protected, so the data
segment is immediately contiguous with the text segment.

Last change: 18 February 1988 S un Release 4.1

A.OUT(5)

a text

a data

a bss

a trsize

NMAGIC

ZMAGIC

FILE FORMATS A.OUT(5)

A write-protected text executable image. The data segment begins at the
first segment boundary following the text segment, and the text segment
is not writable by the program. When the image is started with
execve(2V), the entire text and data segments will be read into memory.

A page-aligned text executable image. the data segment begins at the
first segment boundary following the text segment, and the text segment
is not writable by the program. The text and data sizes are both mUltiples
of the page size, and the pages of the file will be brought into the running
image as needed, and not pre-loaded as with the other formats. This is the
default format produced by Jd(1).

The macro N_BADMAG takes an exec structure as an argument; it evaluates to 1 if the
a_magic field of that structure is invalid, and evaluates to 0 if it is valid.

The size of the text segment, in bytes.

The size of the initialized portion of the data segment, in bytes.

The size of the "uninitialized" portion of the data segment, in bytes. This portion is
actually initialized to zero. The zeroes are not stored in the a.out file; the data in this
portion of the data segment is zeroed out when it is loaded.

The size of the symbol table, in bytes.

The virtual address of the entry point of the program; when the image is started with
execve, the first instruction executed in the image is at this address.

The size of the relocation information for the text segment.

a drsize The size of the relocation information for the data segment.

The macros N_TXTADDR, N_DATADDR, and N_BSSADDR give the memory addresses at which the text,
data, and bss segments, respectively, will be loaded.

In the ZMAGIC format, the size of the header is included in the size of the text section; in other formats, it
is not

When an a.out file is executed, three logical segments are set up: the text segment, the data segment (with
uninitialized data, which starts off as all 0, following initialized data), and a stack. For the ZMAGIC for­
mat, the header is loaded with the text segment; for other formats it is not

Program execution begins at the address given by the value of the a _entry field.

The stack starts at the highest possible location in the memory image, and grows downwards. The stack is
automatically extended as required. The data segment is extended as requested by brk(2) or sbrk.

Text and Data Segments
The text segment begins at the start of the file for ZMAGIC format, or just after the header for the other for­
mats. The N_TXTOFF macro returns this absolute file position when given an exec structure as argument
The data segment is contiguous with the text and immediately followed by the text relocation and then the
data relocation information. The N _ DATOFF macro returns the absolute file position of the beginning of
the data segment when given an exec structure as argument.

Relocation
The relocation information appears after the text and data segments. The N TRELOFF macro returns the
absolute file position of the relocation information for the text segment, when given an exec structure as
argument The N_DRELOFF macro returns the absolute file position of the relocation information for the
data segment, when given an exec structure as argument. There is no relocation information if
a trsize+a drsize==O. - -

Relocation (Sun-2 and Sun-3 Systems)
If a byte in the text or data involves a reference to an undefined external symbol, as indicated by the reloca­
tion information, then the value stored in the file is an offset from the associated external symbol. When

Sun Release 4.1 Last change: 18 February 1988 1525

A.OUT(5) FILE FORMATS A.OUT(5)

the file is processed by the link editor and the external symbol becomes defined, the value of the symbol is
added to the bytes in the file. If a byte involves a reference to a relative location, or relocatable segment,
then the value stored in the file is an offset from the associated segment.

If relocation information is present, it amounts to eight bytes per relocatable datum as in the following
structure:

struct reloc_info_68k {
long r_address; 1* address which is relocated *1

unsigned int r_symbolnum:24, 1* local symbol ordinal *1
r ycrel:l, 1* was relocated pc relative already *1
r _length: 2, 1* O=byte, l=word, 2=long *1
r extern:l, 1* does not include value of sym referenced *1
r = baserel: 1, 1* linkage table relative *1
r .Jmptable: 1, 1* pc-relative to jump table *1
r _relative: 1, 1* relative relocation *1
:1;

};

Ifr_extern is 0, then r_symbolnum is actually an n_type for the relocation (for instance, N_TEXT mean­
ing relative to segment text origin.)

Relocation (Sun-4 System)

1526

If a byte in the text or data involves a reference to an undefined external symbol, as indicated by the reloca­
tion information, then the value stored in the file is ignored. Unlike the Sun-2 and Sun-3 system, the offset
from the associated symbol is kept with the relocation record. When the file is processed by the link editor
and the external symbol becomes defined, the value of the symbol is added to this offset, and the sum is
inserted into the bytes in the text or data segment.

If relocation information is present, it amounts to twelve bytes per relocatable datum as in the following
structure:

enum reloc _type
{

};

RELOC_8,
RELOC _ DISP8,
RELOC _ WDISP30,
RELOC_HU2,
RELOC_13,
RELOC _ SF A_BASE,
RELOC _ BASEIO,
RELOC _PCIO,
RELOC _JMP _ TBL,
RELOC _ SEGOFFI6,
RELOC _GLOB _ DAT,

RELOC_16,
RELOC _ DISPI6,
RELOC _ WDISP22,
RELOC_22,
RELOC_LOIO,
RELOC _ SF A _ OFFI3,
RELOC _ BASEI3,
RELOC _ PC22,
1* jmp_tbl_rel in pic *1
1* ShLib offset-in-seg *1
RELOC _JMP _SLOT,

RELOC_32,
RELOC _ DISP32,
1* SR word disp's *1
1* SR 22-bit relocs *1
1* SR 13&10-bit reloes *1
1* SR S.F.A. relocs *1
RELOC _ BASE22,
1* special pc-rei pic*1

RELOC _RELATIVE,

1* simplest relocs *1
1* Disp's (pc-reI) *1

1* base_relative pic *1

1* rtld reloes *1

struct reloc_info_sparc 1* used when header.a_machtype == M_SPARC *1
{

};

unsigned long int
unsigned int
unsigned int
int
enum reloc _type
long int

r_address;
r index :24;
r extern 1;
: 2;
r_type 5;
r_addend;

1* relocation addr (offset in segment) *1
1* segment index or symbol index *1
1* ifF, rJndex==SEG#; ifT, SYM idx *1
1* <unused> *1
1* type of relocation to perform *1
1* addend for relocation value *1

Last change: 18 February 1988 Sun Release 4.1

A.OUT(5) FILE FORMATS A.OUT(5)

If r_extern is 0, then rJndex is actually a n_type for the relocation (for instance, N_TEXT meaning rela­
tive to segment text origin.)

Symbol Table
The N_SYMOFF macro returns the absolute file position of the symbol table when given an exec structure
as argument Within this symbol table, distinct symbols point to disjoint areas in the string table (even
when two symbols have the same name). The string table immediately follows the symbol table; the
N _ STROFF macro returns the absolute file position of the string table when given an exec structure as
argument The first 4 bytes of the string table are not used for string storage, but rather contain the size of
the string table. This size includes the 4 bytes; thus, the minimum string table size is 4. Layout information
as given in the include file for the Sun system is shown below.

The layout of a symbol table entry and the principal flag values that distinguish symbol types are given in
the include file as follows:

struct nUst {
union {

} n_un;

char
long

*n_name;
n_strx;

1* for use when in-memory *1
1* index into file string table */

unsigned char n _type; 1* type flag, that is, N _TEXT etc; see below */
char n _other;
short n _ desc; 1* see <stab.h> *1
unsigned n _ value; 1* value of this symbol (or adb offset) *1

};
#define
1*

n hash

* Simple values for n_type.
*1
#define N UNDF
#define NABS
#define N_TEXT
#define N_DATA
#define N BSS
#define N COMM
#define N FN
#define NEXT
#define N_TYPE

1*

n desc 1* used internally by ld *1

OxO 1* undefined *1
Ox2 1* absolute *1
Ox4 1* text *1
Ox6 1* data */
Ox8 /* bss */
Ox12 1* common (internal to ld) */
Oxlf 1* file name symbol */
01 1* external bit, or'ed in *1
Oxle 1* mask for all the type bits *1

* Other permanent symbol table entries have some of the N _ ST AB bits set.
* These are given in <stab.h>
*1
#define N STAB OxeO 1* if any of these bits set, don't discard *1

In the a.out file a symbol's n _ un.n _strx field gives an index into the string table. A n _ strx value of 0 indi­
cates that no name is associated with a particular symbol table entry. The field n_un.n_name can be used
to refer to the symbol name only if the program sets this up using n _ strx and appropriate data from the
string table. Because of the union in the ntist declaration, it is impossible in C to statically initialize such a
structure. If this must be done (as when using nlist(3V)) include the file <nlist.h>, rather than <a.out.h>.
This contains the declaration without the union.

If a symbol's type is undefined external, and the value field is non-zero, the symbol is interpreted by the
loader Id as the name of a common region whose size is indicated by the value of the symbol.

SEE ALSO
adb(I), as(I), cc(IV), dbx(I), ld(l), nm(I), strip(1), brk(2), nlist(3V), coff(5)

Sun Release 4.1 Last change: 18 February 1988 1527

ACCT(5) FILE FORMATS ACCT(5)

NAME
acct - execution accounting file

SYNOPSIS
#include <sysiacct.h>

DESCRIPTION
The acct(2V) system call makes entries in an accounting file for each process that terminates. The
accounting file is a sequence of entries whose layout, as defined by the include file is:

typedef u_short comp_t;

struct acct
{

};

char ac _flag;
char ac _stat;
uid t ac_uid;
gid t ac _gid;
dey t ac_tty;
time_t ac_btime;
comp_t ac_utime;
comp_t ac_stime;
comp_t ac_etime;
comp_t ac_mem;
comp_t ac)o;
comp_t ac_rw;
char ac_comm[8];

1* Accounting flag *1
1* Exit status *1

1* Accounting user ID *1
1* Accounting group ID *1
1* control typewriter *1
1* Beginning time *1
1* Accounting user time *1
1* Accounting system time *1
1* Accounting elapsed time *1

1* average memory usage *1
1* chars transferred *1
1* blocks read or written *1
1* Accounting command name *1

The type comp_t is a 3 bits base 8 exponent, 13 bit fraction "floating point" number. If the process does
an execve(2V), the first 8 characters of the filename appear in ac_comm. ac_flag contains bits indicating
whether execve(2V) was ever accomplished, and whether the process ever had super-user privileges.

SEE ALSO
acct(2V), execve(2V), sa(8)

1528 Last change: 19 October 1987 Sun Release 4.1

ALIASES (5) FILE FORMATS ALIASES (5)

NAME
aliases, addresses, forward - addresses and aliases for sendmail

SYNOPSIS
I etc/aliases
I etc/aliases.dir
letc/aliases.pag
-I.forward

DESCRIPTION
These files contain mail addresses or aliases, recognized by sendmail(8), for the local host:

letc/passwd Mail addresses (usernames) of local users.
letc/aliases Aliases for the local host, in ASCII format. This file can be edited to add, update,

or delete local mail aliases.
letc/aliases.{dir,pag} The aliasing information from lete/aliases, in binary, dbm(3X) format for use by

sendmail(8). The program newaliases(8), which is invoked automatically by
sendmail(8), maintains these files.

-I.forward Addresses to which a user's mail is forwarded (see Automatic Forwarding,
below).

In addition, the Network Information Service (NIS) aliases map mail.aliases contains addresses and aliases
available for use across the network.

Addresses
As distributed, sendmail(8) supports the following types of addresses:

Local Usernames
username

Each local username is listed in the local host's letc/passwd file.

Local Filenames
pathname

Messages addressed to the absolute pathname of a file are appended to that file.

Commands

I command

If the first character of the address is a vertical bar, (I), sendmail(8) pipes the message to the standard
input of the command the bar precedes.

TCPIIP-standard Addresses
username @domain

If domain does not contain any'.' (dots), then it is interpreted as the name of a host in the current domain.
Otherwise, the message is passed to a mailhost that determines how to get to the specified domain.
Domains are divided into subdomains separated by dots, with the top-level domain on the right. Top-level
domains include: .

. COM Commercial organizations .

. EDU Educational organizations .

. GOV Government organizations .

. MIL Military organizations.

For example, the full address of John Smith could be:

js@jsmachine.Podunk-U.EDU

if he uses the machine named jsmaehine at Podunk University.

Sun Release 4.1 Last change: 18 December 1989 1529

ALIASES (5) FILE FORMATS ALIASES (5)

uucp(lC) Addresses
... [host!]host!username

These are sometimes mistakenly referred to as "Usenet" addresses. uucp(lC) provides links to numerous
sites throughout the world for the remote copying of files.

Other site-specific forms of addressing can be added by customizing the sendmail configuration file. See
the sendmail(8), and System and Network Administration for details. Standard addresses are recom­
mended.

Aliases
Local Aliases

letc/aliases is formatted as a series of lines of the form

aliasname: address [, address]

aliasname is the name of the alias or alias group, and address is the address of a recipient in the group.
Aliases can be nested. That is, an address can be the name of another alias group. Because of the way
sendmail performs mapping from upper-case to lower-case, an address that is the name of another alias
group must not contain any upper-case letters.

Lines beginning with white space are treated as continuation lines for the preceding alias. Lines beginning
with # are comments.

Special Aliases
An alias of the form:

owner-aliasname: address

directs error-messages resulting from mail to aliasname to address, instead of back to the person who sent
the message.

An alias of the form:

aliasname: :include:pathname

with colons as shown, adds the recipients listed in the file pathname to the alias name alias. This allows a
private list to be maintained separately from the aliases file.

NIS Domain Aliases
Normally, the aliases file on the master NIS server is used for themail.aliases NIS map, which can be made
available to every NIS client. Thus, the letc/aliases* files on the various hosts in a network will one day be
obsolete. Domain-wide aliases should ultimately be resolved into usemames on specific hosts. For exam­
ple, if the following were in the domain-wide alias file:

jsmith:js@jsmachine

then any NIS client could just mail to jsmith and not have to remember the machine and usemame for John
Smith. If an NIS alias does not resolve to an address with a specific host, then the name of the NIS domain
is used. There should be an alias of the domain name for a host in this case. For example, the alias:

jsmith:root

sends mail on an NIS client to root@podunk-u if the name of the NIS domain is podunk-u.

Automatic Forwarding

1530

When an alias (or address) is resolved to the name of a user on the local host, sendmail checks for a .for­
ward file, owned by the intended recipient, in that user's home directory, and with universal read access.
This file can contain one or more addresses or aliases as described above, each of which is sent a copy of
the user's mail.

Care must be taken to avoid creating addressing loops in the .forward file. When forwarding mail between
machines, be sure that the destination machine does not return the mail to the sender through the operation
of any NIS aliases. Otherwise, copies of the message may "bounce". Usually, the solution is to change the
NIS alias to direct mail to the proper destination.

Last change: 18 December 1989 Sun Release 4.1

ALIASES (5) FILE FORMATS ALIASES (5)

FILES

A backs lash before a usemame inhibits further aliasing. For instance, to invoke the vacation(l) program,
user js creates a .forward file that contains the line:

\js, "l/usr/ucb/vacation js"

so that one copy of the message is sent to the user, and another is piped into the vacation(l) program.

letc!passwd
letc! aliases
-I.forward

SEE ALSO

BUGS

NOTES

uucp(lC), vacation(I), dbm(3X), newaliases(8), sendmail(8)

System and Network Administration

Because of restrictions in dbm(3X) a single alias cannot contain more than about 1000 characters. Nested
aliases can be used to circumvent this limit.

The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed.

Sun Release 4.1 Last change: 18 December 1989 1531

AR(5) FILE FORMATS AR(5)

NAME
ar - archive (library) file format

SYNOPSIS
#include <ar.h>

DESCRIPTION
The archive command ar combines several files into one. Archives are used mainly as libraries to be
searched by the link-editor Id(1).

A file produced by ar has a magic string at the startt followed by the constituent files t each preceded by a
file header. The magic number and header layout as described in the include file are:

#define ARMAG "!<arch>\n"
#define SARMAG 8

#define ARFMAG "'\n"

struct ar _ hdr {
char
char
char
char
char
char
char

};

ar _ name[16];
ar _ date[12];
ar_uid[6];
ar _gid[6];
ar _ mode[8];
ar _size[10];
ar _fmag[2];

The name is a blank-padded string. The ar _fmag field contains ARFMAG to help verify the presence of a
header. The other fields are left-adjusted t blank-padded numbers. They are decimal except for ar _ mode t

which is octal. The date is the modification date of the file at the time of its insertion into the archive.

Each file begins on a even (0 mod 2) boundary; a NEWLINE is inserted between files if necessary.
Nevertheless the size given reflects the actual size of the file exclusive of padding.

There is no provision for empty areas in an archive file.

The encoding of the header is portable across machines. If an archive contains printable files t the archive
itself is printable.

Sun386i DESCRIPTION

1532

The file produced by ar on Sun386i systems is identical to that described above with the following
changes:

Each archive containing COFF files [see coff(5)] includes an archive symbol table. This symbol table is
used by the link editor Id to determine which archive members must be loaded during the link edit process.
The archive symbol table (if it exists) is always the first file in the archive (but is never listed) and is
automatically created and/or updated by ar.

The ar _name field of the ar_hdr structure described above is blank-padded and slash (/) terminated. Com­
mon format archives can be moved from system to system as long as the portable archive command ar is
used. Conversion tools such as convert exist to aid in the transportation of non-common format archives
to this format.

Each archive file member begins on an even byte boundary; a NEWLINE is inserted between files if neces­
sary. Nevertheless the size given reflects the actual size of the file exclusive of padding.

If the archive symbol table exists t the first file in the archive has a zero length name (Le. t ar name[O] ==
'/'). The contents of this file are as follows: -

• The number of symbols. Length: 4 bytes.

• The array of offsets into the archive file. Length: 4 bytes * "the number of symbolst
,.

Last change: 18 February 1988 Sun Release 4.1

AR(5) FILE FORMATS AR(5)

• The name string table. Length: ar _size - (4 bytes * ("the number of symbols" + 1».

The number of symbols and the array of offsets are managed with sgetl and sputl. The string table con­
tains exactly as many null terminated strings as there are elements in the offsets array. Each offset from
the array is associated with the corresponding name from the string table (in order). The names in the
string table are all the defined global symbols found in the common object files in the archive. Each offset
is the location of the archive header for the associated symbol.

SEE ALSO
ar(l V), Id{l), nm{l)

Sun386i WARNINGS

BUGS

strip(l) will remove all archive symbol entries from the header. The archive symbol entries must be
restored via the ts option of the ar(1 V) command before the archive can be used with the link editor ld(I).

Filenames lose trailing blanks. Most software dealing with archives takes even an included blank as a
name terminator.

Sun Release 4.1 Last change: 18 February 1988 1533

AUDIT.LOG (5) FILE FORMATS AUDIT.LOG (5)

NAME
audit.log - the security audit trail file

SYNOPSIS
#include <sysllabel.h>
#include <syslaudit.h>
#include <sysluser .h>

DESCRIPTION

1534

The audit.log file begins with a header record consisting of an audit_header structure followed by the pre­
vious audit file name. When the audit daemon is started (usually only at boot time), the previous audit file
name is NULL.

struct audit_header {

};

int ah_magic;
time _ t ah _time;
short ah _ namelen;

1* magic number *1
1* the time *1
1* length of file name *1

typedef struct audit_header audit_header_t;

The file may end with a trailer record consisting of an audit_trailer structure followed by the name of the
next audit file.

struct audit_trailer {

};

short at_record_size;
short at_record _type;
time tat_time;
short at_namelen;

1* size of this' *1
1* its type, a trailer *1
1* the time *1
1* length of file name *1

typedef struct audit_trailer audit_trailer_t;

The audit.log file contains audit records in their raw fonn. The records are of varying size depending on
the record type. Each record has a header which is an audit_record structure.

struct audit_record {
short

};

short
time t
short
short
short
short
short
int
int
blabel t
short

au_record_size;
au_record_type;
au_time;
au_uid;
au_auid;
au_euid;
au_gid;
au_pid;
au_errno;
au_return;
au_label;
au _param _count;

typedef struct audit_record audit_record_t;

1* size of this *1
1* its type *1
1* the time *1
1* real uid *1
1* audit uid *1
1* effective *1
1* real group *1
1* effective *1
1* error code *1
1* a return value *1
1* also .•• *1

1* # of parameters *1

Immediately following the header is a set of two byte integers, the number of which exist for a given
record is contained in the au yaram _count field. These numbers are the lengths of the additional data
items. The additional data items follow the list of lengths, the first length describing the first data item.
Interpretation of this data is left to the program accessing it.

Last change: 19 October 1987 Sun Release 4.1

AUDIT.LOG (5) FILE FORMATS AUDIT.LOG(5)

SEE ALSO
audit(2), audit(8)

Security Features Guide

Sun Release 4.1 Last change: 19 October 1987 1535

FILE FORMATS AUDIT_CONTROL(5)

NAME
audiCcontrol - control information for system audit daemon

SYNOPSIS
letclsecurity/audit!audit _control

DESCRIPTION

1536

The audit_control file contains audit control information read by auditd(8). Each line consists of a title
and a string, separated by a colon. There are no restrictions on the order of lines in the file, although some
lines must appear only once. A line beginning with '#' is a comment.

Directory definition lines list the directories to be used when creating audit files, in the order in which they
are to be used. The format of a directory line is:

dir: directory-name
where directory-name is the name of a directory in which to create audit files, with the form:

letclsecurity/audit!serverlmachine
where server is the name of an audit file system on the machine where this audit directory resides, and
machine is the name of the local machine, since audit files belonging to different machines are, by conven­
tion, stored in separate subdirectories of a single audit directory. The naming convention normally has
server be the name of a server machine, and all clients mount letclsecurity/audit! server at the same loca­
tion in their local file systems. If the same server exports several different file systems for auditing, their
server names will, of course, be different.

The audit threshold line specifies the percentage of free space that must be present in the file system con­
taining the current audit file. The format of the threshold line is:

minfree: percentage
where percentage is indicates the amount of free space required. If free space falls below this threshold,
the audit daemon auditd(8) invokes the shell script letclsecurity/auditlaudit_ warn. If no threshold is
specified, the default is 0%.

The audit flags line specifies the default system audit value. This value is combined with the user audit
value read from letclsecurity/passwd.adjunct to form the process audit state. The user audit value over­
rides the system audit value. The format of a flags line is:

flags: audit-flags
where audit-flags specifies which event classes are to be audited. The character string representation of
audit-flags contains a series of flag names, each one identifying a single audit class, separated by commas.
A name preceded by '-' means that the class should be audited for failure only; successful attempts are not
audited. A name preceded by '+' means that the class should be audited for success only; failing attempts
are not audited. Without a prefix, the name indicates that the class is to be audited for both successes and
failures. The special string all indicates that all events should be audited; -all indicates that all failed
attempts are to be audited, and +all all successful attempts. The prefixes ", ,. -, and ,. + turn off flags
specified earlier in the string ("- and ,. + for failing and successful attempts, ,. for both). They are typically
used to reset flags.

The following table lists the audit classes:

short name long name short description

dr data read Read of data, open for reading, etc.
dw data write Write or modification of data
dc data create Creation or deletion of any object
da data_access _ cbange Change in object access (modes, owner)
10 login_logout Login, logout, creation by at(l)
ad administrative Normal administrative operation
pO minor yrivilege Privileged operation
pI major yrivilege Unusual privileged operation

Last change: 19 October 1987 S un Release 4.1

FILE FORMATS

EXAMPLE

FILES

Here is a sample letdsecurity/audit_ control file for the machine eggplant:

dir: letdsecurity/auditljedgar/eggplant
dir: letdsecurity/auditljedgar.aux/eggplant

Last-ditch audit file system when jedgar fills up.

dir: letdsecurity/auditigloballeggplant
minfree: 20
Bags: Io,pO,pl,ad,-all, A_da

This identifies server jed gar with two file systems normally used for audit data, another server global used
only when jedgar fills up or breaks, and specifies that the warning script is run when the file systems are
80% filled. It also specifies that all logins, privileged and administrative operations are to be audited
(whether or not they succeed), and that failures of all types except failures to access data are to be audited.

letdsecurity/auditlaudit _control
letdsecurity/auditlaudit _warn
letdsecurity/auditl*I*I*
letdsecurity/passwd _adjunct

SEE ALSO
at(1), audit(2), getfauditflags(3), audit.log(5), audit(8), auditd(8)

Sun Release 4.1 Last change: 19 October 1987 1537

FILE FORMATS

NAME
audicdata - current information on audit daemon

SYNOPSIS
letclsecurity/auditlaudit_data

DESCRIPTION

AUDIT_DATA(5)

The audit_data file contains information about the audit daemon. The file contains the process ID of the
audit daemon, and the pathname of the current audit log file. The format of the file is:

<pid>:<pathname>
Where pid is the process ID for the audit daemon, and pathname is the full pathname for the current audit
log file.

EXAMPLE
64:/etc/security/auditlauditserv/auditclientl2df0504

FILES
letclsecurity/auditlaudit_data

SEE ALSO
audit(2), audit.log(5), audit(8), auditd(8)

1538 Last change: 19 October 1987 Sun Release 4.1

AUTO.HOME (5) FILE FORMATS AUTO.HOME (5)

NAME
auto.home - automount map for home directories

SYNOPSIS
letc/auto.home

A V AILABIL TITY
Available only on Sun 386i systems running a SunOS 4.0.x release or earlier. Not a SunOS 4.1 release
feature.

DESCRIPTION

FILES

auto.home resides in the lete directory, and contains automount(8) map entries for user's home direc­
tories. On Sun386i systems, this file is used to build the auto.home Network Information Service (NIS)
map used by automount at system startup and reads the auto.master NIS database, which contains an
entry for auto. home and !home • The auto.home map contains entries for each username in the NIS
passwd map, and the hostname:/directory to NFS mount.

References to Ihomelusername are translated by the automount daemon using the auto.home map, and the
directory specified in the map entry is nfs mounted and that directory returned to the user's program.

User accounts created using snap(l) or logintool(8) have passwd(5) entries where the initial (home) direc­
tory name is, in the form Ihomelusername. snap and logintool also automatically create the auto.home
entry for a user account. The format of the entry is described in automount(8). An example entry is:

mtravis system2:1 exportlhome/users/m travis

Thus, when the user mtravis logs into a Sun386i systems, the automounter automatically mounts his home
directory from system2. This allows a user to log in to any Sun386i workstation on the network and be
automatically placed in their home directory.

The convention for the format of home directory names used by snap and login tool is:

lexportlhome/groupnamelusername

Note: this is a different map and mechanism for home directories than the one that the automount daemon
provides with the -homes switch. This is because the Sun386i convention for the format of home direc­
tory names differs and provides directories that can be used as mount points on a per user and per group
basis.

letc/auto.home

SEE ALSO

NOTES

snap(l), passwd(5), automount(8), logintool(8)

The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed.

Sun Release 4.1 Last change: 19 February 1988 1539

AUTO. VOL (5) FILE FORMATS AUTO. VOL (5)

NAME
auto. vol- automount map for volumes

SYNOPSIS
letc/auto.vol

A V AILABIL TITY
Available only on Sun 386i systems running a SunOS 4.0.x release or earlier. Not a SunOS 4.1 release
feature.

DESCRIPTION

FILES

auto.vol resides in the letc directory, and contains automount(8) map entries for volumes. On Sun386i
systems, this file is used to build the auto. vol Network Information Service (NIS) map used by auto­
mount(8) at system startup. automouunt reads the auto.master NIS map, which contains an entry for
auto. vol and Ivol.

References to Ivol/volume_name are translated by the automount daemon using the auto.vol map, and the
directory specified in the map entry is mounted.

The concept of a volume is that it is a self contained directory hierarchy that can be NFS mounted. It is
referenced using a known volume _name. The use of an automount map is suggested so that the volume
and its contents can be referenced through Ivol. This is advantageous because location-transparency (that
is, which host the volume is on) and replication of read-only volumes can be provided using the automount
mechanism. The format of the entry is described in automount(8). An example entry is:

archive system4:/exportiarchive

In the above example, the archive volume is currently on line on system4. Users and programs can refer­
ence it via Ivol/archive. If for some reason the volume had to be moved to another system, system2 for
example, the network or system administrator simply edits the map entry for the archive volume and
changes the hostname to system2 and then rebuilds the NIS maps.

archive system2:/exportiarchive

Users and programs can continue to refer to the archive volume using Ivol/archive, unaware that the
volume was moved to another system.

letclauto.vol

SEE ALSO

automount(8)

NOTES

1540

The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed.

Last change: 19 February 1988 Sun Release 4.1

BAR(S) FILE FORMATS BAR(S)

NAME
bar - tape archive file format

DESCRIPTION
bar(l), (the tape archive command) dumps several files into one, in a medium suitable for transportation.
This format is not compatible with the format generated by tar(l).

A bar tape or file is a series of blocks. Each block is of size TBLOCK. A file on the tape is represented by
a header block that describes the file, followed by zero or more blocks that give the contents of the file. At
the end of the tape are two blocks filled with binary zeros, as an EOF indicator.

The blocks are grouped for physical I/O operations. Each group of n blocks (where n is set by the b
key letter on the bar(l) command line - default is 20 blocks) is written with a single system call; on nine­
track tapes, the result of this write is a single tape record. The last group is always written at the full size,
so blocks after the two zero blocks contain random data. On reading, the specified or default group size is
used for the first read, but if that read returns less than a full tape block, the reduced block size is used for
further reads, unless the B keyletter is used.

The header block looks like:
#define TBLOCK512

union hblock {

};

char dummy[TBLOCK];
struct header {

} dbuf;

char mode[8];
char uid[8];
char gid[8];
char size[12];
char mtime[12];
char chksum[8];
char rdev[8];
char Iinkflag;
char bar _ magic[2];
char volume_num[4];
char compressed;
char date[12];
char start_of_name;

start _0/ -"ame is a null-terminated string. date is the date of the archive. bar _magic is a special number
indicating that this is a bar archive. rdev is the device type, for files that are devices. The other fields are
zero-filled octal numbers in ASCII. Each field (of width w) contains w-2 digits, a space, and a null, except
size, rdev, and mtime, which do not contain the trailing null. start _ 0/_ name is the name of the file, as
specified on the bar command line. Files dumped because they were in a directory that was named in the
command line have the directory name as prefix and /filename as suffix. mode is the file mode, with the top
bit masked off. uid and gid are the user and group numbers that own the file. size is the size of the file in
bytes. Links and symbolic links, and special files, are dumped with this field specified as zero. mtime is
the modification time of the file at the time it was dumped. chksum is a decimal ASCII value that represents
the sum of all the bytes in the header block. When calculating the checksum, the chksum field is treated as
if it were all blanks. linkflag is Ascn 0 if the file is "normal" or a special file, 1 if it is an hard link, 2 if it is
a symbolic link, and 3 if it is a special file (device or FIFO). The name linked-to, if any, is in a null­
terminated string, following start _0/_ name. Unused fields of the header are binary zeros (and are included
in the checksum).

The first time a given i-node number is dumped, it is dumped as a regular file. The second and subsequent
times, it is dumped as a link instead. Upon retrieval, if a link entry is retrieved, but not the file it was linked
to, an error message is printed and the tape must be manually re-scanned to retrieve the linked-to file.

Sun Release 4.1 Last change: 19 February 1988 1541

BAR(5) FILE FORMATS BAR(5)

When the H modifier is used with bar, an additional header block (one that does not pertain to a particular
file) is written to the first block of each volume of the archive. The header ID, as specified on the command
line, is copied to start _of_name. The size reflects the number of bytes to skip to the start of the first full file
(always zero on the first volume).

The encoding of the header is designed to be portable across machines.

SEE ALSO
bar(1)

1542 Last change: 19 February 1988 Sun Release 4.1

BOARDS.PC (5) FILE FORMATS BOARDS.PC(5)

NAME
boards.pc - information about AT-and XT -compatible boards for DOS windows

SYNOPSIS
/etc/dos/defaults/boards.pc

A V AILABILITY
Available only on Sun 386i systems running a SunOS 4.0.x release or earlier. Not a SunOS 4.1 release
feature.

DESCRIPTION
The boards.pc file stores information about AT- and XT-compatible boards installed on a system.

Only the super-user may alter the file.

The file format is as follows, with entries separated by SPACE or TAB characters:

Board-name I/O port range IRQ DMA Memory Options

Board-name
The name of the board as it will appear in the DOS Windows Device menu. Use any name that is
not longer than 19 characters.

I/O port range

Sun Release 4.1

Most boards have I/O addresses through which they exchange information with the workstation.
For boards that will be used by DOS, the I/O address is entered in the boards.pc file, directly to the
right of the board name.

Certain I/O addresses are already used by DOS Windows emulated devices (such as drive C and
the DOS printers), and by built-in system hardware. The following list shows the AT-bus I/O
address spaces:

Address

IFS-IFF *
21S-21F
230-23F
27S-27F
37S-37F *
3BO-3BF
3DO-3DF
3FO-3F7 *

DOS Use

Hard disk (C:) emulation
Expanded memory
Bus mouse emulation
Parallel port 2 (usually accessed through LPT3)
Parallel port 1 (usually accessed through LPT2)
Monochrome display adapter
Color display adapter
Diskette controller

An address marked with an asterisk cannot be replaced by a board. When the board you are ins­
talling uses one of these addresses, or it uses the same address as another board that is already
installed, change the jumpers or switch settings on your board to use a different address. If you
add a board that occupies one of these address spaces, DOS ignores the entry. An address not
marked with an asterisk may be used for a board you are installing, as long as you do not plan to
use the emulated device at that address.

Adding an I/O Address Entry to boards. pc:

If the board uses addresses that can be contained within one eight-address block, note the block
base address and include it in the I/O port range column of the boards.pc file. When using a
multiple-block address, specify the base address of each block. For example, when entering a
two-block address, specify the base addresses of both the first and second blocks, and separated
with a SPACE character. Suppose you have a board with a two-block I/O address space that begins
at 380. You would specify 380388 in the boards.pc file's 110 port range column.

Last change: 25 September 1989 1543

BOARDS.PC (5) FILE FORMATS BOARDS.PC (5)

1544

IRQ Some boards send periodic signals asking DOS to delay whatever it is doing and accept informa­
tion from the device. These signals are known as interrupt requests, or more simply, as inter­
rupts. The following chart shows the interrupt levels available under DOS Windows. Valid inter­
rupt levels are 1 to 15, although SOJ.11e of these are reserved for emulated DOS devices.

Interrupt
Level Availability

o Unavailable; used for timer emulation
1 Unavailable; used for keyboard emulation
2 Unavailable; used for interrupt controller 2 cascade
3 Available for board, unless COM2 emulation in use

(specified in setup.pc)
4 A vailable for board, unless COMI emulation in use

(specified in setup.pc)
5 A vailable for board, unless LPT3 emulation in use

(specified in setup.pc)
6 Unavailable; used for diskette drive emulation
7 Unavailable; used by built-in parallel port
8 Unavailable; used for real-time clock emulation
9 A vailable for board

10 A vailable for board
11 Available for board
12 A vailable for board
13 Unavailable; used for 8087 numeric coprocessor emulation
14 Unavailable; used for hard disk emulation
15 A vailable for board

To ensure that signals do not become confused, set each board or emulated device that uses inter­
rupts for a different interrupt level. Normally, interrupt settings are changed by pressing small
switches or moving metal jumpers on the board itself. Consult the manual of the board you are
installing for details on how this is done. In addition to the changes required on the board itself,
make sure that the interrupt level in your boards.pc file matches the setting on the card. For exam­
ple, if a board's physical interrupt was previously 3, and you change it to 4 by altering switch set­
tings or board jumpers, make a corresponding change in the boards.pc file. If the card uses a DOS

driver, you may also need to make changes in C:CONFIG.SYS or other files to reflect the switch
settings on the card.

Adding an Interrupt Entry to boards.pc

Some boards do not generate interrupts, and therefore will not have an interrupt level listed in
their manuals. If this is the case, leave the IRQ column empty. For boards where an interrupt level
is required, enter the letters irq followed by the appropriate number in the boards.pc file, as
shown in EXAMPLES below.

DMA Certain boards use direct memory access (DMA) channels to ensure speedy transfer of large quan­
tities of data. DMA channels 0, 1, 3, and 5 are available. Each DOS or SunOS DMA board on the
system must be assigned a unique DMA channel. When two or more boards expect to use DMA

channell, physically alter DMA settings on one of the boards so that it uses a different channel
(such as DMA channel 3). Normally these settings are changed by pressing small switches or
moving metal jumpers on the board itself. Consult the manual for the board you are installing for
details on changing a DMA channel setting.

Last change: 25 September 1989 Sun Release 4.1

BOARDS.PC (5)

Memory

Options

FILE FORMATS BOARDS.PC (5)

Adding a DMA Entry to boards.pc

When the board you are installing uses a DMA channel, include a dma entry for that board. For
example, when the board is set up to use DMA channel 3, the entry can look like this:

MYBOARD 200 208 irq 2 dma 3

Some boards are equipped with memory chips for DOS. Because this memory is "mapped"
(transferred) into DOS memory so that DOS can read it, the boards are called memory mapped
boards. When you install such a board, include a mem entry with the following format:

mem address size

The address is the starting address of the memory segment, in hexadecimal notation. Enter the
size of the memory block in kilobytes, in decimal notation. The following example is for a board
that starts mapped memory at the address $DEOO and uses a block of 8 kilobytes.

MYBOARD 258 irq 5 dma 3 mem deOO 8

When determining the size of the memory block, be careful not to confuse DOS address size (the
number you should use) with actual on-board memory (the number you should not use). For
example, a LIM memory board might have 2 megabytes of on-board memory, yet may require
only 64 kilobytes of DOS address space for its memory mapping. Therefore, the number to use for
the mem entry is 64.

reboot
Certain boards require DOS rebooting before they work. These same boards require that you
reboot DOS after you have finished using them. You can set up DOS to reboot the current DOS

window automatically whenever the board is attached. DOS displays a confirmatory alert before
rebooting.

To force DOS to reboot when you attach the board, add the word reboot at the end of the
boards.pc line for that board, as shown in the following example:

MYBOARD 3e8 mem aOOO 192 reboot

If you choose to omit the reboot instruction, you can enable the board by attaching it and then
manually rebooting:

1. Choose Attached from the Device menu to enable the board.
2. Choose Reboot DOS Window.

To detach such a board from a DOS window, choose Detach and then reboot the DOS window.

shared
You can specify that a device is to be shared between windows, rather than being reserved for use
by one window at a time. Generally, you should do this only with devices, such as joysticks,
which can fl uidly move from one DOS window to another. To designate a device as shared, place
the word shared at the very end of the boards.pc line:

Joystick 200 shared

Determining Board Information
In many cases, you may need to determine whether a board you are installing will conflict with other dev­
ices on the system. Also, you sometimes may need to install a board for which there is no entry in the
boards.pc file. In most cases, the instruction manual included with the board you are installing should con­
tain the technical information you need, including:

Sun Release 4.1 Last change: 25 September 1989 1545

BOARDS.PC (5) FILE FORMATS BOARDS.PC (5)

The I/O port addresses at which the board is accessed. One or more blocks can be reserved, and
there are eight consecutive addresses per block.

The board's interrupt level, if the board generates interrupts.

The DMA channel number, if the board uses a direct memory access channel.

Memory mapping information, if the board maps data into DOS memory.

If the board's manual does not provide such information, contact the manufacturer.

EXAMPLES

FILES

The following is an example of a boards.pc file:

#COM2 2f8
#Joystick 200
#EGA 3bO 3b8 3cO 3c8 3d0 3d8
#VGA 3bO 3b8 3cO 3c8 3d0 3d8 102 2e8
#3COM-3CSOI 300308
#TOPS-FlashTalk 398
#IBM-3363-Worm 258
#Plus-Hardcard20 320
#HP-Basic 390
#DCA-IRMAI 220 228
#DCA-IRMA2 220 228 280 288
#Bernoulli-A220H 350
#WD8003E 280 288 290 298
#Nl5210 360
#NlC
#LPT2 278

lusr/lib/help/*l*

SEE ALSO
dos(I), setup.pc(5)

Sun386i Advanced Skills

irq 3

irq 3 dma 1
irq 3

shared
mem aOOO 192 reboot
mem aOOO 192

irq 5 dma 3 mem deOO 8 reboot
irq 5 dma 3 mem caOO 8 reboot
irq 3

reboot
irq 5 mem dOOO 8
irq 5 mem cOOO 16
irq 5 mem dOOO 32
irq5

1546 Last change: 25 September 1989 Sun Release 4.1

BOOTP ARAMS (5)

NAME
bootparams - boot parameter data base

SYNOPSIS
/ etclbootparams

DESCRIPTION

FILE FORMATS BOOTP ARAMS (5)

The bootparams file contains the list of client entries that diskless clients use for booting. For each disk­
less client the entry should contain the following infonnation:

name of client
a list of keys, names of servers, and pathnames.

The first item of each entry is the name of the diskless client. The subsequent item is a list of keys, names
of servers, and pathnames.

Items are separated by TAB characters.

A client entry in the local/etc/bootparams file supersedes an entry in the corresponding Network Infonna­
tion Service (NIS) map.

EXAMPLE
Here is an example of the letc/bootparams taken from a SunOS system.

myclient root=myserver:/nfsrootlmyclient \
swap=myserver:/nfsswap/myclient \
dum p=myserver:/nfsdum p/myclient

FILES
I etclbootparams

SEE ALSO
bootparamd(8)

NOTES
The Network Information Service (NIS) was fonnedy known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed.

Sun Release 4.1 Last change: 16 February 1988 1547

BOOTSERVERS (5) FILE FORMATS BOOTSERVERS (5)

NAME
bootservers - NIS bootservers file

SYNOPSIS
letclbootservers

A V AILABILITY

Available only on Sun 386i systems running a SunOS 4.0.x release or earlier. Not a SunOS 4.1 release
feature.

DESCRIPTION
The bootservers file is an ASCII file that resides in the letc directory on the Network Information Service
(NIS) master server. The file contains basic information about each host providing boot services for clients
on the network. This file contains a one-line entry for each boot server, where each field must be separated
by a TAB character:

system type client _limit swap_size tmp _size root _ minfree swap _ minfree

The entries in the file have the following descriptions:

system is the name of a boot server. This field contains only lowercase and numeric characters,
must start with a lower-case character, and must not be longer than 32 characters.

type Currently, the only legal value is 3.

client limit indicates the maximum number of diskless clients the server is willing to accept.

swap _size default swap size per client (in kilobytes).

tmp _size default tmp size per client (in kilobytes).

root_min free minimum amount of disk space in the server's client-root partition after a client is added
(in kilobytes).

swap _minJree minimum amount of disk space in the server's client-swap partition after a client is added
(in kilobytes).

EXAMPLE
Here is a sample bootservers file entry:

polaris 3 2 16000 8000 40000 0

FILES
letclbootservers

SEE ALSO

NOTES

1548

System and Network Administration,
Sun386i Advanced Administration

The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed. The name Yellow Pages is a registered trade­
mark in the United Kingdom of British Telecommunications pIc, and may not be used without permission.

Last change: 25 September 1989 Sun Release 4.1

COFF(5) FILE FORMATS COFF(5)

NAME
coff - common assembler and link: editor output

SYNOPSIS
#include <filehdr .h>
#include <aouthdr .h>
#include <scnhdr .h>
#include <reloc.h>
#include <linenum.h>
#include <storclass.h>
#include <syms.h>

AVAILABILITY
Available only on Sun 386i systems running a SunOS 4.0.x release or earlier. Not a SunOS 4.1 release
feature.

DESCRIPTION
The output from the link editor and the assembler (named a.out by default) is in COFF format (Common
Object File Format) on the Sun386i system.

A common object file consists of a file header, a system header (if the file is link editor output), a table of
section headers, a data section, relocation information, (optional) line numbers, a symbol table, and a string
table. The general format looks like this:

file-header
system-header
section-headers
data
relocation
line-numbers
symbol-table
string-table

section-headers contains a number of section headers:

section 1 header

section n header

Similarly, data, relocation, and line-numbers are each divided into n sections.

The last three parts of an object file (line numbers, symbol table and string table) may be missing if the pro­
gram was linked with the -s option of Id(1) or if they were removed by strip(I). Also note that the reloca­
tion information will be absent after linking unless the -r option of Id(1) was used. The string table exists
only if the symbol table contains symbols with names longer than eight characters.

The sizes of each section (contained in the header, discussed below) are in bytes.

When an a.out file is loaded into memory for execution, three logical segments are set up: the text seg­
ment, the data segment (initialized data followed by uninitialized, the latter actually being initialized to all
D's), and a stack. The text segment starts at location Ox 1000 by default.

The a.out file produced by Id(!) has the magic number 0413 in the first field of the system header. The
headers (file header, system header, and section headers) are loaded at the beginning of the text segment
and the text immediately follows the headers in the user address space. The first text address will equal
Oxl000 plus the size of the headers, and will vary depending upon the number of section headers in the
a.out file. In an a.out file with three sections (.text, .data, .bss, and .comment), the first text address is at
OxOOOO10DO. The text segment is not writable by the program; if other processes are executing the same
a.out file, the processes will share a single text segment.

Sun Release 4.1 Last change: 19 February 1988 1549

COFF(5) FILE FORMATS COFF(5)

The data segment starts at the next 4K boundary past the last text address. The first data address is deter­
mined by the following: If an a.out file were split into 4K chunks, one of the chunks would contain both
the end of text and the beginning of data. When the a.out file is loaded into memory for execution, that
chunk will appear twice; once at the end of text and once at the beginning of data (with some unused space
in between). The duplicated chunk of text that appears at the beginning of data is never executed; it is
duplicated so that the operating system may bring in pieces of the file in multiples of the page size without
having to realign the beginning of the data section to a page boundary. Therefore the first data address is
the sum of the next segment boundary past the end of text plus the remainder of the last text address
divided by 4K. If the last text address is a multiple of 4K no duplication is necessary.

On the Sun386i computer the stack begins at location OxFBFFFFFF and grows toward lower addresses. The
stack is automatically extended as required. The data segment is extended only as requested by the brk(2)
system call.

For relocatable files the value of a word in the text or data portions that is not a reference to an undefined
external symbol is exactly the value that will appear in memory when the file is executed. If a word in the
text involves a reference to an undefined external symbol, there will be a relocation entry for the word, the
storage class of the symbol-table entry for the symbol will be marked as an "external symbol", and the
value and section number of the symbol-table entry will be undefined. When the file is processed by the
link editor and the external symbol becomes defined, the value of the symbol will be added to the word in
the file.

File Header
The format of the file header is:

struct filehdr
{

};

unsigned shortf_magic; 1* magic number *1
unsigned shortf_nscns; 1* number of sections *1
long f_timdat; 1* time and date stamp *1
long f_symptr; 1* tile ptr to symtab *1
long f_nsyms; 1* # symtab entries *1
unsigned shortf_opthdr; 1* sizeof(opt hdr) *1
unsigned shortf _flags; 1* flags *1

System Header

1550

The format of the system header is:

typedef struct aouthdr
{

short
short
long
long
long
long
long
long

} AOUTHDR;

magic;
vstamp;
tsize;
dsize;
bsize;
entry;
text_start;
data_start;

1* magic number *1
1* version stamp *1
1* text size in bytes, padded *1
1* initialized data (.data) *1
1* un initialized data (.bss) *1
1* entry point *1
1* base of text used for this tile *1
1* base of data used for this file *1

Last change: 19 February 1988 Sun Release 4.1

COFF(5) FILE FORMATS

Section Header
The format of the section header is:

Relocation

struct scnhdr
{

};

char s_name[SYMNMLEN];I* section name *1
long syaddr; 1* physical address *1
long s_ vaddr; 1* virtual address *1
long s_size; 1* section size *1
long s_scnptr; 1* file ptr to raw data *1
long s_relptr; 1* file ptr to relocation *1
long sJnnoptr;l* file ptr to line numbers *1
unsigned shorts_nreloc; 1* # reloc entries *1
unsigned shorts_nlnno; 1* # line number entries *1
long s_flags; 1* flags *1

COFF(5)

Object files have one relocation entry for each relocatable reference in the text or data. If relocation infor­
mation is present, it will be in the following format:

struct reloc
{

};

long
long
ushort

r _ vaddr; 1* (virtual) address of reference *1
r_symndx;l* index into symbol table *1
r _type; 1* relocation type *1

The start of the relocation information is s_relptr from the section header. If there is no relocation infor­
mation, s _relptr is O.

Line Number
The cc(l V) command generates an entry in the object file for each C source line on which a breakpoint is
possible (when invoked with the -g option. Users can refer to line numbers when using the appropriate
debugger, such as dbx(I)). The structure of these line number entries appears below.

struct lineno
{

} ;

union
{

long tsymndx;
long Iyaddr ;

} taddr;
unsigned shortlJnno ;

Numbering starts with one at the top of the source file and increments independent of transition between
functions. The initial line number entry for a function has IJnno equal to zero, and the symbol table index
of the function's entry is in tsymndx. Otherwise, IJnno is non-zero, and I_paddr is the physical address
of the code for the referenced line. Thus the overall structure is the following:

I addr I Inno

function symtab index 0
physical address line
physical address line

function symtab index 0

Sun Release 4.1 Last change: 19 February 1988 1551

COFF(5) FILE FORMATS COFF(5)

physical address line
physical address line

Symbol Table

1552

The format of each symbol in the symbol table is described by the syment structure, shown below. This
structure is compatible with System V COFF, but has an added _ n _ dbx structure which is needed by
dbx(l).

#define SYMNMLEN 8
#define FILNMLEN 14
#define DIMNUM 4

struct syment
{

};

union
{

char
struct
{

long
long

} _n_n;
char
struct
{

char
char
short
long

} _n_dbx;
} _n;
long
short
unsigned short
char
char

#define n name
#define n zeroes
#define n _offset
#define n _ nptr

/* all ways to get a symbol name */

_n_name[SYMNMLEN]; /* name of symbol */

_ll_zeroes;
_n_offset;

/* == OL ifin string table */
/* location in string table */

* _n_nptr[2]; /* allows overlaying */

_ ll".Jeading_ zero; /* null char */
_ll_dbx_type; /* stab type */
_ II _ dbx _ desc; /* value of desc field */
_ll_stab_ptr; /* table ptr */

n_value;
D_scDum;
n_type;
D_sclass;
D_numaux;

n. n name

/* value of symbol */
/* sectioD number */
/* type and derived type */
/* storage class */
/* number of aux entries */

D. n ll. n zeroes - - - - -
D. D n. D offset - - - --

_D._nyptr[l]

The storage class member (n _sclass) is set to one of the constants defined in <storclass.h>. Some symbols
require more information than a single entry; they are followed by auxiliary entries that are the same size
as a symbol entry. The format follows:

Last change: 19 February 1988 S un Release 4.1

COFF(5) FILE FORMATS

union auxent {
struct {

};

long x_tagndx;
union {

struct {
unsigned short x Jnno;
unsigned short x_size;

} x_lnsz;
long x_fsize;

} x_mise;
union {

struct {
long x _Innoptr;
long x _ endndx;

} x_fcn;
struct {

unsigned short x _dimen[DIMNUM];
} x_ary;

} x_fcnary;
unsigned short x _ tvndx;

} x_sym;

struct {
char x _fname[FILNMLEN];

} x_file;

struct {
long x _ scnlen;
unsigned short x _ nreloc;
unsigned short x _ nUnno;

} x_scn;

struct {

} x_tv;

long x _ tvfill;
unsigned short x _ tvlen;
unsigned short x _tvran[2];

COFF(5)

Indexes of symbol table entries begin at zero. The start of the symbol table is f_symptr (from the file
header) bytes from the beginning of the file. If the symbol table is stripped, f _ symptr is O. The string table
(if one exists) begins at f _symptr + (f_ nsyms * SYMESZ) bytes from the beginning of the file.

SEE ALSO
as(I), cc(1 V), Id(1), brk(2), Idfcn(3)

Sun Release 4.1 Last change: 19 February 1988 1553

cORE(5) FILE FORMATS CORE (5)

NAME
core - format of memory image file

SYNOPSIS
#include <syslcore.h>

DESCRIPTION

1554

The operating system writes out a memory image of a terminated process when any of various errors occur.
See sigvec(2) for the list of reasons; the most common are memory violations, illegal instructions, bus
errors, and user-generated quit signals. The memory image is called core and is written in the process's
working directory (provided it can be; normal access controls apply). Set-user-ID and set-group-ID pro­
grams do not produce core files when they terminate as this would cause a security loophole.

The maximum size of a core file is limited by setrlimit (see getrlimit(2). Files which would be larger
than the limit are not created.

The core file consists of a core structure, as defined in the <syslcore.h> file, followed by the data pages
and then the stack pages of the process image. The core structure includes the program's header, the size
of the text, data, and stack segments, the name of the program and the number of the signal that terminated
the process. The program's header is described by the exec structure defined in the <syslexec.h> file,
except on Sun386i systems.

struct core {

};

int
int
struct
struct
int
int
int
int
char
struct
int

c _magic; 1* Corefile magic number */
c Jen; 1* Sizeof (struct core) *1
regs c_regs; 1* General purpose registers */
exec c_aouthdr; 1* A.out header */
c_signo; 1* Killing signal, if any */
c _tsize; 1* Text size (bytes) *1
c_dsize; /* Data size (bytes) *1
c_ssize; 1* Stack size (bytes) *1
c_cmdname[CORE_NAMELEN + 1]; 1* Command name */
fpu c _fpu; 1* external FPU state *1
c_ucode; 1* Exception no. from u_code *1

The members of the structure are:

c aouthdr

c_signo

c tsize

c dsize

c ssize

c cmdname

The magic number CORE_MAGIC, as defined in <syslcore.h>.

The length of the core structure in the core file. This need not be equal to the current
size of a core structure as defined in <syslcore.h>, as the core file may have been pro­
duced on a different release of the SunOS operating system.

The general purpose registers at the time the core file was produced. This structure is
machine-dependent.

The executable image header of the program.

The number of the signal that terminated the process; see sigvec(2).

The size of the text segment of the process at the time the core file was produced.

The size of the data segment of the process at the time the core file was produced. This
gives the amount of data space image in the core file.

The size of the stack segment of the process at the time the core file was produced. This
gives the amount of stack space image in the core file.

The first CORE_NAMELEN characters of the last component of the path name of the
program.

Last change: 18 February 1988 Sun Release 4.1

CORE(5)

SEE ALSO

FILE FORMATS CORE(5)

The status of the floating point hardware at the time the core file was produced.

The signal code of the signal that terminated the process, if any. See sigvec(2).

adb(I), dbx(I), getrlimit(2), sigvec(2)

Sun Release 4.1 Last change: 18 February 1988 1555

CPIO(5) FILE FORMATS CPIO(5)

NAME
cpio - format of cpio archive

DESCRIPTION
The old fonnat header structure, when the -c option of cpio is not used, is:

struct {

} Hdr;

short

ushort

short

h_magic,
h_dev;
hJno,
h_mode,
h_uid,
h_gid;
h_nlink,
h_rdev,
h _ mtime[2],
h_namesize,
h _ filesize[2];

char h_name[h_namesize rounded to a word];

The byte order here is that of the machine on which the tape was written. If the tape is being read on a
machine with a different byte order, you have to use swab(3) after reading the header. You can determine
what byte order the tape was written with by examining the h_magic field; if it is equal to 0143561 (octal),
which is the standard magic number 070707 (octal) with the bytes swapped, the tape was written in a byte
order opposite to that of the machine on which it is being read. If you are producing a tape to be read on a
machine with the opposite byte order to that of the machine on which it is being produced, you can use
swap before writing the header.

When the -c option is used, the header information is described by the statement below:

sscanf(Chdr, "%60%60%60%60%60%60%60%60% 1110%60% 1110%s",
&Hdr.h_magic, &Hdr.h_dev, &Hdr.h_ino, &Hdr.h_mode,
&Hdr.h_uid, &Hdr.h_gid, &Hdr.h_nlink, &Hdr.h_rdev,
&Hdr.h_mtime, &Hdr.h_namesize, &Hdr.h_filesize, &Hdr.h_name);

Longtime and Longfile are equivalent to Hdr.h _ mtime and Hdr.h Jrlesize, respectively. The contents of
each file is recorded in an element of the array of varying length structures, archive, together with other
items describing the file. Every instance of h _magic contains the constant 070707 (octal). The items
h_dev through h_mtime have meanings explained in stat(2V). The length of the null-terminated path name
h _name, including the null byte, is given by h _ namesize.

The last record of the archive alway~ contains the name TRAILER!!!. Special files, directories, and the
trailer, are recorded with h Jrlesize equal to zero. Symbolic links are recorded similarly to regular files,
with the "contents" of the file being the name of the file the symbolic link points to.

SEE ALSO
cpio(1), find(l), stat(2V), swab(3)

1556 Last change: 19 October 1987 Sun Release 4.1

CRONTAB(5) FILE FORMATS CRONTAB(5)

NAME
crontab - table of times to run periodic jobs

SYNOPSIS
Ivarlspool/cron/crontabs/*

DESCRIPTION
The cron utility is a pennanent process, started by letc/rc.local. cron consults the files in the directory
Ivarlspool/cron/crontabs to find out what tasks are to be done, and at what time.

Each line in a crontab file consists of six fields, separated by spaces or tabs, as follows:

minutes hours day-oj-month month day-oj-week command

minutes

hours

day-oj-month

month

day-oj-week

command

Minutes field, which can have values in the range 0 through 59.

Hours field, which can have values in the range 0 through 23.

Day of the month, in the range 1 through 31.

Month of the year, in the range 1 through 12.

Day of the week, in the range 0 through 6. Sunday is day 0 in this scheme of things.
For backward compatibility with older systems, Sunday may also be specified as day 7.

Command to be run. A percent character in this field (unless escaped by \) is translated
to a NEWLINE character. Only the first line (up to a % or end of line) of the command
field is executed by the Shell. The other lines are made available to the command as
standard input.

Any of fields 1 through 5 can be a list of values separated by commas. A value can either be a number, or
a pair of numbers separated by a hyphen, indicating that the job is to be done for all the times in the
specified range. If a field is an asterisk character (*) it means that the job is done for all possible values of
the field.

Note: the specification of days may be made by two fields (day of the month and day of the week). If both
are specified as a list of elements, both are adhered to. For example,

00 1,15 * 1

would run a command on the first and fifteenth of each month, as well as on every Monday. To specify
days by only one field, the other field should be set to *. For example,

00**1

would run a command only on Mondays.

The command is run from your home directory with an argO of sh. Users who desire to have their .profile
executed must explicitly do so in the command. cron supplies a default environment for every shell,
defining HOME, LOGNAME, USER, SHELL(=lbinlsh), and PATH(=:/usr/ucb:/bin:/usr/bin).

NOTE: Users should remember to redirect the standard output and standard error of their commands! If
this is not done, any generated output or errors will be mailed to the user.

Lines that start with # are treated as comments.

EXAMPLES

Sun Release 4.1

o 0 * * * calendar -
15 0 * * * lusr/etclsa -s >/dev/null
15 4 * * * find Ivar/preserve -mtime +7 -a -exec rm -f {} ;
40 4 * * * find I -name '#*' -atime +3 -exec rm -f {} ;
00 * * 1-5/usrllocaVweekdays
o 0 * * 0,6 lusr/local/weekends

Last change: 6 October 1988 1557

CRONTAB(5) FILE FORMATS CRONTAB(5)

FILES

The calendar command runs at minute 0 of hour 0 (midnight) of every day. The lusr/etc/sa command
runs at 15 minutes after midnight every day. The two find commands run at 15 minutes past four and at40
minutes past four, respectively, every day of the year. The lusr/locallweekdays command is run at mid­
night on weekdays. Finally, the lusr/locallweekends command is run at midnight on weekends.

Ivarlspoollcron/crontabsl*
tables of times to run periodic jobs

I etclrc.local
.profile

SEE ALSO
cron(8), rc(8)

1558 Last change: 6 October 1988 Sun Release 4.1

DIR(5) FILE FORMATS DIR(5)

NAME
dir - format of directories

SYNOPSIS
#inelude <sys/types.h>
#inelude <sys/dir.h>

DESCRIPTION
A directory behaves exactly like an ordinary file, save that no user may write into a directory and direc­
tories must be read using the getdirentries(2) system call or the directory(3V) library routines. The fact
that a file is a directory is indicated by a bit in the flag word of its inode entry; see fs(5).

A directory consists of some number of blocks of DIRBLKSIZ bytes, where DIRBLKSIZ is chosen such that
it can be transferred to disk in a single atomic operation (512 bytes on most machines):

#ifdef KERNEL
#define DIRBLKSIZ DEV _BSIZE
#else
#define DIRBLKSIZ 512
#endif

#define MAXNAMLEN 255

Each DIRBLKSIZ byte block contains some number of directory entry structures, which are of variable
length. Each directory entry has a struct direct at the front of it, containing its inode number, the length of
the entry, and the length of the name contained in the entry. These are followed by the name padded to a
4-byte boundary with null bytes. All names are guaranteed null-terminated. The maximum length of a
name in a directory is MAXNAMLEN.

The macro DIRSIZ(dp) gives the amount of space required to represent a directory entry. Free space in a
directory is represented by entries that have:

dp->d _ reelen > DIRSIZ(dp)

All DIRBLKSIZ bytes in a directory block are claimed by the directory entries. This usually results in the
last entry in a directory having a large dp->d _reelen. When entries are deleted from a directory, the space
is returned to the previous entry in the same directory block by increasing its dp->d _reelen. If the first
entry of a directory block is free, then its dp->d Jno is set to O. Entries other than the first in a directory do
not normally have dp->d Jno set to O.

The DIRSIZ macro gives the minimum record length which will hold the directory entry. This requires the
amount of space in struct direct without the d _name field, plus enough space for the name with a terminat­
ing null byte (dp->d_namlen+l), rounded up to a 4-byte boundary.

#Undef DIRSIZ
#define DIRSIZ(dp) «sizeof (struct direct) - (MAXNAMLEN+l» + «(dp)->d_namlen+l + 3) &- 3»
struct direct {

};

uJong d_ino;
short d_reclen;
short d_namlen;
char d_name[MAXNAMLEN + 1];
1* typically shorter *1

By convention, the first two entries in each directory are for '.' and ' .. '. The first is an entry for the direc­
tory itself. The second is for the parent directory. The meaning of ' •• ' is modified for the root directory of
the master file system ("I"), for which ' • .' has the same meaning as '.'.

Sun Release 4.1 Last change: 19 October 1987 1559

DIR(5) FILE FORMATS DIR(5)

SEE ALSO
getdirentries(2), directory(3V), fs(5)

1560 Last change: 19 October 1987 Sun Release 4.1

DUMP(5) FILE FORMATS

NAME
dump, dumpdates - incremental dump format

SYNOPSIS
#include <sysltypes.h>
#include <syslinode.h>
#include <protocols/dumprestore.h>

DESCRIPTION
Tapes used by dump and restore(8) contain:

a header record
two groups of bit map records
a group of records describing directories
a group of records describing files

DUMP(5)

The format of the header record and of the first record of each description as given in the include file
<protocoIsldumprestore.h> is:

Sun Release 4.1

#define TP _ BSIZE
#define NTREC
#define HIGHDENSITYTREC
#define CARTRIDGETREC
#define TP _ NINDIR

#define TS _TAPE
#define TS_INODE
#define TS _BITS
#define TS _ ADDR
#define TS _END
#define TS _ CLRI
#define OFS _MAGIC
#define NFS_MAGIC
#define CHECKSUM
union u _spcl {

1024
10
32
63
(TP _BSIZE/2)

1
2
3
4
5
6
(int)60011
(int)60012
(int)84446

char dummy[TP _ BSIZE];
struct

} s_spcl;
} u_spcl;

#define spcl u _ spcl.s _ spcl

#define DUMPOUTFMT

#define DUMPINFMT

s_spcl {
iDtc_type;
time_tc_date;
time_tc_ddate;
iDtC _volume;
daddr _ tc _ tapea;
iDo_tc_iDumber;
iDtC _magic;
iDtC _checksum;
structdiDodec _ dinode;
iDtC _count;
charc_addr[TP _NINDIR];

"%-16s %c %s"/* for printf */
/* name, incno, ctime(date) */
"%16s %c %("\o]\n"/* inverse for scanf */

Last change: 19 October 1988 1561

DUMP(5) FILE FORMA TS DUMP(5)

1562

TP BSIZE

NTREC

Size of file blocks on the dump tapes. Note: TP _ BSIZE must be a multiple of
DEV_BSIZE.

Default number of TP _ BSIZE byte records in a physical tape block, changeable by the b
option to dump.

IllGHDENSITYNTREC
Default number of TP _BSIZE byte records in a physical tape block on 6250 BPI or
higher density tapes.

CARTRIDGETREC
Default number of TP _ BSIZE records in a physical tape block on cartridge tapes.

TP NINDIR Number of indirect pointers in a TS_INODE or TS_ADDR record. It must be a power of
two.

The TS _ entries are used in the c _type field to indicate what sort of header this is. The types and their
meanings are as follows:

TS TAPE Tape volume label

TS INODE

TS BITS

TS ADDR

TS END

TS_CLRI

NFS MAGIC

CHECKSUM

A file or directory follows. The c _ dinode field is a copy of the disk inode and
contains bits telling what sort of file this is.

A bit map follows. This bit map has a one bit for each inode that was dumped.

A subrecord of a file description. See c addr below.

End of tape record.

A bit map follows. This bit map contains a zero bit for all inodes that were empty
on the file system when dumped.

All header records have this number in c _magic.

Header records checksum to this value.

The fields of the header structure are as follows:

c_type

c date

c ddate

c volume

c_tapea

c inumber

c_magic

c checksum

c dinode

c count

c addr

The type of the header.

The date the dump was taken.

The date the file system was dumped from.

The current volume number of the dump.

The current number of this (1024-byte) record.

The number of the inode being dumped if this is of type TS_INODE.

This contains the value MAGIC above, truncated as needed.

This contains whatever value is needed to make the record sum to CHECKSUM.

This is a copy of the inode as it appears on the file system; see fs(5).

The count of characters in c addr.

An array of characters describing the blocks of the dumped file. A character is
zero if the block associated with that character was not present on the file system,
otherwise the character is non-zero. If the block was not present on the file sys­
tem, no block was dumped; the block will be restored as a hole in the file. If there
is not sufficient space in this record to describe all of the blocks in a file,
TS_ADDR records will be scattered through the file, each one picking up where
the last left off.

Last change: 19 October 1988 Sun Release 4.1

DUMP(5) FILE FORMATS DUMP(5)

FILES

Each volume except the last ends with a tapemark (read as an end of file). The last volume ends with a
TS _END record and then the tapemark.

The dump history is kept in the file letddumpdates. It is an ASCII file with three fields separated by white
space:

The name of the device on which the dumped file system resides.

The level number of the dump tape; see dump(8).

The date of the incremental dump in the format generated by ctime(3V).

DUMPOUTFMT is the format to use when using printf(3S) to write an entry to letddumpdates; DUM­
PINFMT is the fonnat to use when using scanf(3S) to read an entry from letddumpdates.

/etddumpdates

SEE ALSO
fs(5), types(5), dump(8), restore(8)

Sun Release 4.1 Last change: 19 October 1988 1563

ENVIRON (5V) FILE FORMATS ENVIRON (5V)

NAME
environ - user environment

SYNOPSIS
extern char **environ;

DESCRIPTION
An array of strings called the 'environment' is made available by execve(2V) when a process begins. By
convention these strings have the form 'name=value'. The following names are used by various com­
mands:

PATH

HOME

TERM

SHELL

TERMCAP

EXINIT

USER
LOGNAME

TZ

The sequence of directory prefixes that sh(1), time{l V), nice(1), etc., apply in
searching for a file known by an incomplete path name. The prefixes are
separated by':'. The login(1) process sets PATH=:/usr/ucb:/bin:/usrlbin.

The name of the user's login directory, set by login(1) from the password file
letc/passwd (see passwd(5)).

The type of terminal on which the user is logged in. This information is used by
commands, such as nroff(1) or plot{lG), which may exploit special terminal
capabilities. See letc/termcap (termcap(5)) for a list of terminal types.

The path name of the user's login shell.

The string describing the terminal in TERM, or the name of the termcap file, see
termcap(3X), termcap(5).

A startup list of commands read by ex{l), edit, and vi{l).

The user's login name.

The name of the time zone that the user is located in. If TZ is not present in the
environment, the system's default time zone, normally the time zone that the com-
puter is located in, is used.

Further names may be placed in the environment by the export command and 'name=value' arguments in
sh{l), or by the setenv command if you use csh(l). Arguments may also be placed in the environment at
the point of an execve(2V). It is unwise to conflict with certain sh(l) variables that are frequently exported
by .profile files: MAIL, PSi, PS2, IFS.

SYSTEM V DESCRIPTION

FILES

The description of the variable TERMCAP does not apply to programs built in the System V environment.

letc/passwd
etc/termcap

SEE ALSO

1564

csh(l), ex{l), login(l), nice(l), nroff(l), plot(lG), sh{l), time(l V), vi(l), execve(2V), getenv(3V), sys­
tem(3), termcap(3X), passwd(5), termcap(5)

Last change: 19 October 1987 Sun Release 4.1

ETHERS (5) FILE FORMATS ETHERS (5)

NAME
ethers - Ethernet address to hostname database or NIS domain

DESCRIPTION

FILES

The ethers file contains infonnation regarding the known (48 bit) Ethernet addresses of hosts on the Inter­
net. For each host on an Ethernet, a single line should be present with the following infonnation:

Ethernet-address official-hast-name

Items are separated by any number of blanks and/or TAB characters. A 'I' indicates the beginning of a
comment extending to the end of line.

The standard form for Ethernet addresses is "x:x:x:x:x:x" where x is a hexadecimal number between 0 and
ff, representing one byte. The address bytes are always in network order. Host names may contain any
printable character other than a SPACE, TAB, NEWLINE, or comment character. It is intended that host
names in the ethers file correspond to the host names in the hosts(5) file.

The ether _line() routine from the Ethernet address manipulation library, ethers(3N) may be used to scan
lines of the ethers file.

letc/ethers

SEE ALSO

NOTES

ethers(3N), hosts(5)

The Network Infonnation Service (NIS) was fonnerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed.

Sun Release 4.1 Last change: 19 October 1987 1565

EXPORTS (5) FILE FORMATS EXPORTS (5)

NAME
exports, xtab - directories to export to NFS clients

SYNOPSIS
/etdexports

/etdxtab

DESCRIPTION
The /etdexports file contains entries for directories that can be exported to NFS clients. This file is read
automatically by the exportfs(8) command. If you change this file, you must run exportfs(8) for the
changes to affect the daemon's operation.

Only when this file is present at boot time does the rc.local script execute exportfs(8) and start the NFS

file-system daemon, nfsd(8).

The /etdxtab file contains entries for directories that are currently exported. This file should only be
accessed by programs using getexportent (see exportent(3)). (Use the -u option of exportfs to remove
entries from this file).

An entry for a directory consists of a line of the following form:

directory -option[, option] ...

directory is the pathname of a directory (or file).

option is one of

ro Export the directory read-only. If not specified, the directory is exported read­
write.

rw=hostnames[:hostname] •••
Export the directory read-mostly. Read-mostly means read-only to most
machines, but read-write to those specified. If not specified, the directory is
exported read-write to all.

anon=uid
If a request comes from an unknown user, use uid as the effective user ID.
Note: root users (uid 0) are always considered "unknown" by the NFS server,
unless they are included in the "root" option below. The default value for this
option is -2. Setting "anon" to -1 disables anonymous access. Note: by default
secure NFS will accept insecure requests as anonymous, and those wishing for
extra security can disable this feature by setting "anon" to -1.

root=hostnames[:hostname] ..•
Give root access only to the root users from a specified hostname. The default
is for no hosts to be granted root access.

access=client[:client] ...
Give mount access to each client listed. A client can either be a hostname, or a
netgroup (see netgroup(5)). Each client in the list is first checked for in the
netgroup database, and then the hosts database. The default value allows any
machine to mount the given directory.

secure Require clients to use a more secure protocol when accessing the directory.

A 'I' (pound-sign) anywhere in the file indicates a comment that extends to the end of the line.

EXAMPLE

1566

/usr
/usr/local
/usr2
/usr/sun
/usr/new

-access=clients
export to the world
-access=hermes:zip:tutorial
-root=hermes:zip
-anon=O

export to my clients

export to only these machines
give root access only to these
give all machines root access

Last change: 19 October 1987 Sun Release 4.1

EXPORTS (5)

FILES

lusr/bin
lusr/stuff

letc/expor ts
letc/xtab
letc/hosts
letc/netgroup
re.local

SEE ALSO

FILE FORMATS

-ro
-aeeess=zip,anon=-3,ro

export read-only to everyone
several options on one line

exportent(3), hosts(5), netgroup(5), exportfs(8), nfsd(8)

WARNINGS

EXPORTS (5)

You cannot export either a parent directory or a subdirectory of an exported directory that is within the
same filesystem. It would be illegal, for instance, to export both lusr and lusr/loeal if both directories
resided on the same disk partition.

Sun Release 4.1 Last change: 19 October 1987 1567

FILE FORMATS

NAME
exCports - external ports file for network printers, terminals, and modems

SYNOPSIS
fetc/ext yorts

A V AILABILITY
Available only on Sun 386i systems running a SunOS 4.0.x release or earlier. Not a SunOS 4.1 release
feature.

DESCRIPTION
The extyorts external ports file is an ASCII file in the fetc directory on the Network Information Service
(NIS) master server. extyorts is used only by SNAP, and contains basic information about each printer,
terminal, and modem on the network. This file contains a one-line entry for each device, and each field
must be separated by a TAB character:

system:port type status baud model name #comment

system names the system to which the device is attached. This field contains only lower case and numeric
characters, must start with a lower case character, and must not be longer than 32 characters.

port names the port in Idev on the system: ttya for the Sun386i serial port, ppO for the parallel port,
and ttymO and ttym! for ports on an AT bus serial card.

type printer, terminal, or modem.

status indicates the device status. For terminals and printers, this can be on or off. An off status means
the device is disabled from access by the SunOS operating system, but can still be accessed by
OOS. For modems, this can be in to enable dialin, out to enable dialout, in _out to enable dialin
and dialout, or off. An off status means the device is disabled from access by the SunOS operat­
ing system, but it can still be accessed by DOS.

baud is the baud rate.

model indicates the manufacturer or kind of device. For printers, this can be epson, hp, or text, for
Epson and compatibles, HP Laserjet and compatibles, or for text-only printers. For terminals, this
can be vt100 or wyse-SO for DEC VT-l00 and compatibles or for Wyse WY-50 and compatibles.
For modems, this can be hayes for Hayes and compatibles.

name is only used for unique naming of printers on the network. Up to 16 characters can be entered.
This field is blank for terminals and modems - simply insert a TAB character.

#comment
can contain anything you want, up to a maximum of 96 characters.

EXAMPLE

FILES

1568

In this example of an extyorts file, the system vulcan has an epson printer attached to its parallel port, and
a Wyse-50 terminal attached to its serial port, but with logins currently disabled. The system android has a
VT100 attached to its serial port, with logins enabled. The system polaris has a hayes modem set for dial­
ing out on an installed AT bus serial card.

vulcan:ppO printer on
android:ttya terminal on
vulcan:ttya terminal off
polaris:ttymO modem in out

letc/ext yorts

9600
9600
9600
2400

epson
vt100
wyse-SO
hayes

Last change: 25 September 1989

lp #Engineering lab
#Reception
#Engineering lab
#QA lab

Sun Release 4.1

FILE FORMATS

SEE ALSO

BUGS

NOTES

soap(l), vipw(8)

Sun386i System and Network Administration,
Sun386i Advanced Administration

The letclextJorts file must be locked against simultaneous changes when it is edited; vipw(8) does the
necessary locking.

The Network Information Service (NIS) was fonnerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed.

Sun Release 4.1 Last change: 25 September 1989 1569

FBTAB(5) FILE FORMATS FBTAB(5)

NAME
fbtab - framebuffer table

SYNOPSIS
letclfbtab

DESCRIPTION
The letc/fbtab file contains information that is used by login(I), getty(8) and the window system (for
example, sunview(I» to change the owner, group, and pennissions of window system devices upon log­
ging into or out of a console device. By default, all lines in this file are commented out. That is, all window
security is disabled. To enable window security, edit /etc/tbtab, log out, and log back in. You must edit
this file before window security can be enabled.

The owner and group of the devices listed in letc/fbtab are set to the owner and group of the console. The
permissions are set as specified in letc/fbtab. As in the example below, 0600 is the recommended permis­
sions for normal security.

Fields are separated by TAB and/or SPACE characters. Blank lines and comments can appear anywhere in
the file; comments are delimited by '#' and a NEWLINE.

The first field specifies the name of a console device (for example, /dev/console). The second field
specifies the permissions to which the devices in the device _list field (third field) will be set. A device _list
is a colon-separated list of device names (the full pathname is required).

Once the devices are owned by the user, their permissions and ownership can be changed using
chmod(1 V) and chown(8), as with any other user-owned file.

EXAMPLES
The following example entry in the /etc/tbtab file enables normal window security:

Idev/console 0600
Idev/console 0600
Idev/console 0600
Idev/console 0600
Idev/console 0600

/dev/kbd:/dev/mouse
/dev/fb:/devlbwoneO:/devlbwtwoO
Idev/cgoneO:/dev/cgtwoO:/dev/cgthreeO:/dev/cgfourO
Idev/cgsixO:/dev/cgeightO:/dev/cgnineO
Idev/gponeOa:/dev/gponeOb:/dev/gponeOc:/dev/gponeOd

This entry specifies that upon login to /dev/console, the owner, group and permissions of all supported dev­
ices will be set to the user's usemame, the user's group and 0600, respectively. You need only specify the
devices supported by your configuration. Upon logout, the owner and group of these devices will be reset
to root and wheel. The permissions remain as set in the letc/fbtab file.

SEE ALSO
login(I), sunview(l), sv _acquire(1), getty(8)

1570 Last change: 26 January 1990 Sun Release 4.1

FCNTL(5)

NAME
fcnll - file control options

SYNOPSIS
#include <fcntl.h>

DESCRIPTION

FILE FORMATS FCNTL(5)

The fcntl(2V) function provides for control over open files. This include file describes requests and argu­
ments to fcntl and open(2V) as shown below:

1* @ (#)fcntl.h 1.283/12/08 SMI; from VCB 4.2 83/09/25*1
1*
* Flag values accessible to open(2V) and fcntl(2)
* (The first three can only be set by open)
*1
#define 0 RDONLY
#define 0 WRONLY
#define 0 RDWR
#define 0 NDELAY
#define 0 APPEND
#ifndef F DUPFD
1* fcntl(2) requests *1
#define F _ DUPFD
#define F _GETFD
#define F SETFD
#define
#define
#define
#define

F GETFL
F SETFL
F GETOWN
F SETOWN

o
1
2
FNDELAY
FAPPEND

o
1
2
3
4
5
6

1* flags for F _ G ETFL, F _ SETFL- copied from <syS/file.h> */
#define FNDELA Y
#define FAPPEND
#define F ASYNC
#endif

SEE ALSO
fcntl(2V),open(2V)

Sun Release 4.1 Last change: 19 October 1987

1* Non-blocking I/O *1
1* append (writes guaranteed at the end) *1

/* Duplicate fildes */
1* Get fildes flags */
1* Set fildes flags *1
/* Get file flags *1
1* Set file flags *1
1* Get owner */
1* Set owner */

00004/* non-blocking reads *1
00010/* append on each write *1
00100/* signal pgrp when data ready *1

1571

FS(5) FILE FORMATS FS(5)

NAME
fs, inode - fonnat of a 4.2 (ufs) file system volume

SYNOPSIS
#include <sysltypes.h>
#include <ufslfs.h>
#include <ufslinode.h>

DESCRIPTION

1572

Standard 4.2 (ufs) file system storage volumes have a common fonnat for certain vital infonnation. Every
such volume is divided into a certain number of blocks. The block size is a parameter of the file system.
Sectors 0 to 15 contain primary and secondary bootstrapping programs.

The actual file system begins at sector 16 with the super-block. The layout of the super block is defined by
the include file <ufslfs.h>

Each disk drive contains some number of file systems. A file system consists of a number of cylinder
groups. Each cylinder group contains inodes and data.

A file system is described by its super-block, which in tum describes the cylinder groups. The super-block
is critical data and is replicated in each cylinder group to protect against catastrophic loss. This is done at
file system creation time and the critical super-block data does not change, so the copies need not be refer­
enced further unless disaster strikes.

Addresses stored in inodes are capable of addressing fragments of "blocks." File system blocks of at most
size MAXBSIZE can be optionally broken into 2, 4, or 8 pieces, each of which is addressable; these pieces
may be DEV _BSIZE, or some multiple of a DEV _BSIZE unit.

Large files consist of exclusively large data blocks. To avoid undue wasted disk space, the last data block
of a small file is allocated as only as many fragments of a large block as are necessary. The file system for­
mat retains only a single pointer to such a fragment, which is a piece of a single large block that has been
divided. The size of such a fragment is detenninable from infonnation in the inode, using the 'blksize(fs,
ip, Ihn)' macro.

The file system records space availability at the fragment level; to determine block availability, aligned
fragments are examined.

The root inode is the root of the file system. Inode 0 cannot be used for nonnal purposes and historically
bad blocks were linked to inode 1, thus the root inode is 2 (inode I is no longer used for this purpose, how­
ever numerous dump tapes make this assumption, so we are stuck with it). The lost+found directory is
given the next available inode when it is initially created by mkfs(8).

fs _ minfree gives the minimum acceptable percentage of file system blocks which may be free. If the freel­
ist drops below this level only the super-user may continue to allocate blocks. This may be set to 0 if no
reserve of free blocks is deemed necessary, however severe performance degradations will be observed if
the file system is run at greater than 90% full; thus the default value of fs _ minfree is 10%.

Empirically the best trade-off between block fragmentation and overall disk utilization at a loading of 90%
comes with a fragmentation of 4, thus the default fragment size is a fourth of the block size.

Cylinder group related limits: Each cylinder keeps track of the availability of blocks at different rotational
positions, so that sequential blocks can be laid out with minimum rotational latency. fs _ nrpos is the
number of rotational positions which are distinguished. With the default fs _ nrpos of 8 the resolution of the
summary information is 2ms for a typical 3600 rpm drive.

fs_rotdelay gives the minimum number of milliseconds to initiate another disk transfer on the same
cylinder. It is used in detennining the rotationally optimal layout for disk blocks within a file; the default
value for fs_rotdelay is 2ms.

Each file system has a statically allocated number of inodes. An inode is allocated for each NBPI bytes of
disk space. The inode allocation strategy is extremely conservative.

Last change: 24 September 1989 Sun Release 4.1

FS(5) FILE FORMATS FS(5)

MINBSIZE is the smallest allowable block size. With a MINBSIZE of 4096 it is possible to create files of
size 2"32 with only two levels of indirection. MINBSIZE must be big enough to hold a cylinder group
block, thus changes to (struct cg) must keep its size within MINBSIZE. Note: super blocks are never more
than size SBSIZE.

The path name on which the file system is mounted is maintained in fs_fsmnt. MAXMNTLEN defines the
amount of space allocated in the super block for this name. The limit on the amount of summary informa­
tion per file system is defined by MAXCSBUFS. It is currently parameterized for a maximum of two mil­
lion cylinders.

Per cylinder group information is summarized in blocks allocated from the first cylinder group's data
blocks. These blocks are read in from fs_csaddr (size fs_cssize) in addition to the super block.

Note: sizeof (struct csum) must be a power of two in order for the fs_cs macro to work.

inode: The inode is the focus of all file activity in the file system. There is a unique inode allocated for
each active file, each current directory, each mounted-on file, text file, and the root. An inode is "named"
by its device/i-number pair. For further information, see the include file <ufsJinode.h>.

SEE ALSO
mkfs(8)

Sun Release 4.1 Last change: 24 September 1989 1573

FSPEC(5) FILE FORMATS FSPEC(5)

NAME
fspec - format specification in text files

DESCRIPTION

1574

It is sometimes convenient to maintain text files on the operating system with non-standard tab stop set­
tings, (that is, tab stops that are not set at every eighth column). Such files must generally be converted to a
standard format, frequently by replacing all TAB characters with the appropriate number of SPACE charac­
ters, before they can be processed by operating system commands. A format specification occurring in the
first line of a text file specifies how TAB characters are to be expanded in the remainder of the file.

A fonnat specification consists of a sequence of parameters separated by blanks and surrounded by the
brackets <: and :>. Each parameter consists of a keyletter, possibly followed immediately by a value. The
following parameters are recognized:

t tabs The t parameter specifies the tab stop settings for the file. The value of tabs must be one of the
following:

• A list of column numbers separated by commas, indicating tab stops set at the specified
columns;

• A '-' followed immediately by an integer n, indicating tab stops set at intervals of n columns,
that is, at l+n, 1+2*n, and so on;

• A '-' followed by the name of a "canned" tab stop specification.

Up to 40 numbers are allowed in a comma-separated list of tab stop settings. If any number (except the
first one) is preceded by a plus sign, it is taken as an increment to be added to the previous value. Thus, the
formats tl, 10, 20, 30 and tl, 10, + 10, + 10 are considered identical.

Standard tab stops are specified by t-8, or equivalently, tl, 9, 17, 25, etc. This is the tab stop setting that
most operating system utilities assume, and is the most likely setting to be found at a terminal. The
specification t-O specifies no tab stops at all.

The "canned" tab stops specifications that are recognized are as follows:

a 1,10,16,36,72
Assembler, IBM S/370, first format

a2 1,10,16,40,72
Assembler, IBM S/370, second format

c 1,8,12,16,20,55
COBOL, normal fonnat

c2 1,6,10,14,49
COBOL compact format (columns 1-6 omitted). Using this code, the first typed char­
acter corresponds to card column 7, one space gets you to column 8, and a TAB
reaches column 12. Files using this tab stop setup should include a format
specification as follows:

<:t-c2 m6 s66 d:>

c3 1,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62,67
COBOL compact format (columns 1-6 omitted), with more tab stops than c2. This is
the recommended format for COBOL. The appropriate format specification is:

<:t-c3 m6 s66 d:>

f 1, 7,11,15, 19,23
FORTRAN

P 1,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61
PL/l

s 1,10,55
SNOBOL

Last change: 7 January 1988 Sun Release 4.1

FSPEC(5) FILE FORMATS FSPEC(5)

u 1,12,20,44
UNIVAC 1100 Assembler

s size The s parameter specifies a maximum line size. The value of size must be an integer. Size check­
ing is performed after TAB characters have been expanded, but before the margin is prepended.

mmargin
The m parameter specifies a number of SPACE characters to be prepended to each line. The value
of margin must be an integer.

d The d parameter takes no value. Its presence indicates that the line containing the format
specification is to be deleted from the converted file.

e The e parameter takes no value. Its presence indicates that the current format is to prevail only
until another format specification is encountered in the file.

Default values, which are assumed for parameters not supplied, are t-8 and mO. If the s parameter is not
specified, no size checking is performed. If the first line of a file does not contain a format specification,
the above defaults are assumed for the entire file. The following is an example of a line containing a for­
mat specification:

* <:t5,10,15 s72:> *
If a format specification can be disguised as a comment, it is not necessary to code the d parameter.

SEE ALSO
ed(1), tabs{l V)

Sun Release 4.1 Last change: 7 January 1988 1575

FSTAB(5) FILE FORMATS FSTAB(5)

NAME
fstab, mtab - static filesystem mounting table, mounted filesystems table

SYNOPSIS
letclfstab

letclmtab

DESCRIPTION

1576

The lete/fstab file contains entries for filesystems and disk partitions to mount using the mount(8) com­
mand, which is normally invoked by the re.boot script at boot time. This file is used by various utilities
that mount, unmount, check the consistency of, dump, and restore file systems. It is also used by the sys­
tem itself when locating the swap partition.

The letclmtab file contains entries for filesystems currently mounted, and is read by programs using the
routines described in getmntent(3). umount (see mount(8» removes entries from this file.

Each entry consists of a line of the form:

filesystem directory type options freq pass

filesystem is the pathname of a block-special device, the name of a remote filesystem in host:pathname
form, or the name of a "swap file" made with mkfile(8).

directory is the pathname of the directory on which to mount the filesystem.

type is the filesystem type, which can be one of:
4.2 to mount a block -special device
10 to loopback-mount a file system
nrs to mount an exported NFS filesystem
swap to indicate a swap partition

. ignore to have the mount command ignore the current entry (good for noting disk
partitions that are not being used)

rfs to mount an RFS filesystem
tmp filesystem in virtual memory
hsfs to mount an ISO 9660 Standard or High Sierra Standard CD-ROM filesystem

options contains a comma-separated list (no spaces) of mounting options, some of which can be
applied to all types of filesystems, and others which only apply to specific types.

4.2 options:

quota I noquota Disk quotas are enforced or not enforced. The default is noquota.

nfs options:
bg I fg If the first attempt fails, retry in the background, or, in the foreground.
noquota Prevent quota{l) from checking whether the user is over quota on this file

system; if the file system has quotas enabled on the server, quotas will still
be checked for operations on this file system.

retry=n The number of times to retry the mount operation.
rsize=n Set the read buffer size to n bytes.
wsize=n Set the write buffer size to n bytes.
timeo=n Set the NFS timeout to n tenths of a second.
retrans=n

The number of NFS retransmissions.
port=n The server IP port number.
soft I hard

Return an error if the server does not respond, or continue the retry request
until the server responds.

intr Allow keyboard interrupts on hard mounts.
secure Use a more secure protocol for NFS transactions.

Last change: 19 December 1989 Sun Release 4.1

FSTAB(5) FILE FORMATS FSTAB (5)

acregmin=n
Hold cached attributes for at least n seconds after file modification.

acregmax=n
Hold cached attributes for no more than n seconds after file modification.

acdirmin=n
Hold cached attributes for at least n seconds after directory update.

acdirmax=n
Hold cached attributes for no more than n seconds after directory update.

actimeo=n
Set min and max times for regular files and directories to n seconds.

noac Suppress attribute caching.

Regular defaults are:
fg,retry=10000,timeo=7 ,retrans=3,port=NFS _ PO RT ,hard, \
acregmin=3,acregmax=60,acdirmin=30,acdirmax=60

actimeo has no default; it sets acregmin, acregmax, acdirmin and acdirmax

Defaults for rsize and wsize are set internally by the system kernel.

rfs options:
bg I fg If the first attempt fails, retry in the background, or, in the fore­

ground.
retry=n The number of times to retry the mount operation.

Defaults are the same as for NFS.

Common options:

ro I rw mount either read-only or read-write
suid I nosuid

setuid execution allowed or disallowed
grpid Create files with BSD semantics for propagation of the group ID. With this

option, files inherit the group ID of the directory in which they are created,
regardless of the directory's setgid bit.

noauto Do not mount this file system automatically (using 'mount -a').

freq is the interval (in days) between dumps.

pass is the fsck(8) pass in which to check the partition. Filesystems with pass 0 are not checked.
Filesystems with the pass 1 are checked sequentially. In general, the root filesystem should be
checked in pass 1, with others checked in higher (later) passes. For passes higher than 1, mul­
tiple filesystems in the same pass are checked simultaneously.

A hash-sign (#) as the first character indicates a comment line which is ignored by routines that read this
file. The order of records in letdfstab is important because fsck, mount, and umount process the file
sequentially; an entry for a file system must appear after the entry for any file system it is to be mounted on
top of.

EXAMPLES
In this example, two partitions on the local disk are 4.2 mounted. Several lexport directories are loopback
mounted to appear in the traditional file system locations on the local system. The !home/user directory is
hard mounted read-write over the NFS, along with additional swap space in the form of a mounted swap
file (see System and Network Administration for details on adding swap space):

Sun Release 4.1

Idev/xyOa / 4.2 rw,noquota 11
Idev/xyOb lusr 4.2 rw,noquota 11
lexportltmp/localhost Itmp 10 rw 00
lexportlvar/localhost /var 10 rw 0 0
lexportlclusterlsun386.sunos4.0.1 lusr/cluster 10 rw 0 0
/exportilocaI/sun386 lusr/locallo rw 0 0

Last change: 19 December 1989 1577

FSTAB(5)

FILES

FILE FORMATS

example:/home/user /home/user nfs rw,hard,fg 0 0
/exportlswap/myswap swap swap rw 0 0

letdfstab
letdmtab

SEE ALSO

FSTAB(5)

swapon(2), getmntent(3), lofs(4S), fsck(8), mkfile(8), mount(8), quotacheck(8), quotaon(8), swapon(8)

System and Network Administration

1578 Last change: 19 December 1989 SUD Release 4.1

FfPUSERS(5) FILE FORMATS

NAME
ftpusers - list of users prohibited by FfP

SYNOPSIS
letdftpusers

DESCRIPTION

FfPUSERS(5)

ftpusers contains a list of users who cannot access this system using the File Transfer Protocol (FrP).
ftpusers contains one user name per line.

If this file is missing, the list of users is considered to be empty, so that any user may use FTP to access the
system if the other criteria for access are met (see ftpd(8C)).

SEE ALSO
ftp(IC), ftpd(8C)

Sun Release 4.1 Last change: 17 June 1988 1579

GETIYTAB(5) FILE FORMATS GETTYTAB(5)

NAME
getty tab - terminal configuration data base

SYNOPSIS
I etc! getty tab

DESCRIPTION
gettytab is a simplified version of the termeap(5) data base used to describe terminal lines. The initial ter­
minallogin process getty(8) accesses the gettytab file each time it starts, allowing simpler reconfiguration
of terminal characteristics. Each entry in the data base is used to describe one class of terminals.

There is a default terminal class, default, that is used to set global defaults for all other classes. That is, the
default entry is read, then the entry for the class required is used to override particular settings.

CAPABILITIES
Refer to termcap(5) for a description of the file layout. The Default column below lists defaults obtained
if there is no entry in the table obtained, nor one in the special default table.

Name Type Default Description

ab bool false read a \r first and guess the baud rate from it
ap bool false terminal uses 7 bits, any parity
bd num 0 backspace delay
bk str 0377 alternate end of line character (input break)
cb bool false use crt backspace mode
cd Dum 0 carriage-return delay
ce bool false use crt erase algorithm
ck bool false use crt kill algorithm
cI str NULL screen clear sequence
co bool false console - add NEWliNE after login prompt
de num 0 delay before first prompt is printed (seconds)
ds str "Y delayed suspend character
dx bool false set DECCfLQ

ec bool false leave echo OFF
ep bool false terminal uses 7 bits, even parity
er str "? erase character
et str "D end of text (EOF) character
ev str NULL initial environment
fO num unused tty mode flags to write messages
n num unused tty mode flags to read login name
f2 num unused tty mode flags to leave terminal as
fd num 0 form-feed (vertical motion) delay
8 str "0 output fl ush character
he bool false do NOT hangup line on last close
he str NULL hostname editing string
hn str hostname hostname
ht bool false terminal has real tabs
ig bool false ignore garbage characters in login name
im str NULL initial (banner) message
in str "C interrupt character
is num unused input speed
kl str "U kill character
Ie bool false terminal has lower case
1m str login: login prompt
In str "V "literal next" character
10 str /usr/bin/login program to exec when name obtained

1580 Last change: 20 January 1990 Sun Release 4.1

GETIYTAB(5) FILE FORMATS GETTYTAB(5)

ms str NULL list of terminal modes to set or clear
mO str NULL set modes that apply at the same time as those set by fO
ml str NULL set modes that apply at the same time as those set by f1
m2 str NULL set modes that apply at the same time as those set by f2
od num 0 NEWLINE (LINEFEED) delay
01 bool false terminal has (or might have) a NEWLINE character
ox str default next table (for auto speed selection)
op bool false terminal uses 7 bits, odd parity
os num unused output speed
p8 bool false terminal uses 8 bits, no parity
pc str pad character
pe bool false use printer (hard copy) erase algorithm
pf num 0 delay between first prompt and following flush (seconds)
ps bool false line connected to a MICOM port selector
qu str quit character
rp str AR line retype character
rw bool false do NOT use RAW for input, use CBREAK
sp num 0 line speed (input and output)
su str '2 suspend character
tc str none table continuation
td num 0 tab delay
to num 0 timeout (seconds)
tt str NULL terminal type (for environment)
ub bool false do unbuffered output (of prompts etc)
uc bool false terminal is known upper case only
we str AW word erase character
xc bool false do NOT echo control chars as AX
xf str AS XOFF (stop output) character
xn str AQ XON (start output) character

If no line speed is specified, speed will not be altered from that which prevails when getty is entered.
Specifying an input or output speed overrides line speed for stated direction only. If ab is specified, getty
will initially read a character from the tty, assumed to be a carriage return, and will attempt to figure out the
baud rate based on what the character appears as. It will then look for a table entry for that baud rate; if the
line appears to be a 300 baud line, it will look for an entry 300-baud, if it appears to be a 1200 baud line, it
will look for an entry I200-baud, etc ..

Terminal modes to be used for the output of the message, for input of the login name, and to leave the ter­
minal set as upon completion, are derived from the Boolean flags specified. If the derivation should prove
inadequate, any (or all) of these three may be overridden with one of the ro, fl, or f2 numeric
specifications, which can be used to specify (usually in octal, with a leading '0') the exact values of the
flags. Local (new tty) flags are set in the top 16 bits of this (32 bit) value.

The ms field can be used to specify modes to be set and cleared. These modes are specified as stty(1 V)
modes; any mode supported by stty may be specified, except for the baud rate which must be specified
with the br field. This permits modes not supported by the older terminal interface described in
ttcompat(4M) to be set or cleared. Thus, to set the terminal port to which the printer is attached to even
parity , TAB expansion, no NEWLINE to RETURN/LINEFEED translation, and RTS/CTS flow control enabled,
do:

:ms=eveop,-tabs,ol,crtscts:

The mO, mI, and m2 fields can be used to set modes which only apply concurrently with those set by ro,
fl, and fl, respectively. The modes specified by ms, mO, mI, and m2 are applied after the modes specified
by other existing capabilities.

Sun Release 4.1 Last change: 20 January 1990 1581

GETTY TAB (5) FILE FORMATS GETTYTAB(5)

FILES

Should getty receive a null character (presumed to indicate a line break) it will restart using the table indi­
cated by the nx entry. If there is none, it will re-use its original table.

Delays are specified in milliseconds, the nearest possible delay available in the tty driver will be used.
Should greater certainty be desired, delays with values 0, I, 2, and 3 are interpreted as choosing that partic­
ular delay algorithm from the driver.

The cI screen clear string may be preceded by a (decimal) number of milliseconds of delay required (as
with termcap(5». This delay is simulated by repeated use of the pad character pc.

The initial message, and login message, im and 1m may include the character sequence %h or %t to obtain
the hostname or tty name respectively. (%% obtains a single '%' character.) The hostname is normally
obtained from the system, but may be set by the hn table entry. In either case it may be edited with he.
The he string is a sequence of characters, each character that is neither '@' nor '#' is copied into the final
hostname. A '@' in the he string, copies one character from the real hostname to the final hostname. A '#'
in the he string, skips the next character of the real hostname. Surplus '@' and '#' characters are ignored.

When getty execs the login process, given in the 10 string (usually /nsr/bin/login), it will have set the
environment to include the terminal type, as indicated by the tt string (if it exists). The ev string, can be
used to enter additional data into the environment. It is a list of comma separated strings, each of which
will presumably be of the form name = value .

If a non-zero timeout is specified, with to, then getty will exit within the indicated number of seconds,
either having received a login name and passed control to login, or having received an alarm signal, and
exited. This may be useful to hangup dial in lines.

Output from getty is even parity unless op or p8 is specified. op may be specified with ap to allow any
parity on input, but generate odd parity output. Note: this only applies while getty is being run, terminal
driver limitations prevent a more complete implementation. getty does not check parity of input characters
in RAW mode.

/ etd getty tab

SEE ALSO
termcap(5), getty(8)

1582 Last change: 20 January 1990 Sun Release 4.1

GROUP(5) FILE FORMATS GROUP(5)

NAME
group - group file

SYNOPSIS
fetc/group

DESCRIPTION
The group file contains a one-line entry for each group recognized by the system, of the form:

groupname :password :gid : user-list

where:

groupname is the name of the group.

gid is the group's numerical ID within the system; it must be unique.

user-list is a comma-separated list of users allowed in the group.

If the password field is empty, no password is demanded. The group file is an Ascn file. Because of the
encrypted passwords, the group file can and does have general read permission, and can be used as a map­
ping of numerical group IDs to group names.

A group entry beginning with a '+' (plus sign), means to incorporate an entry or entries from the Network
Information Service (NIS) A '+' on a line by itself means to insert the entire contents of the NIS group file
at that point in the file. An entry of the form: '+groupname' means to insert the entry (if any) for group­
name. If a '+' entry has a non-empty password or user-list field, the contents of that field override the
corresponding field from the NIS service. The gid field cannot be overridden in this way.

An entry of the form: -groupname indicates that the group is disallowed. All subsequent entries for the
indicated groupname, whether originating from the NIS service, or the local group file, are ignored.

Malformed entries cause routines that read this file to halt, in which case group assignments specified
further along are never made. To prevent this from happening, use grpck(8) to check the fetc/group data­
base from time to time.

Sun386i systems uses the following group IDs as program privileges:

operator 5 Pri vilege to do backup as root.
accounts 11 Privilege to update user accounts.
networks 12 Privilege to change network configuration.
devices 13 Privilege to modify printer, terminal, or modem configurations.

On all Sun systems, SunOS uses group ID 0 as privilege to run su(1 V).

EXAMPLE

FILES

Here is a sample group file when the group.adjunct file does not exist:

primary:q.mJzTnu8icF.:I0:fred,mary
+myproject:::bill,steve
+:

Here is a sample group file when the group.adjunct file does exist:

primary:#$primary:l0:fred,mary
+myproject:::bill,steve
+:

If these entries appear at the end of a group file, then the group primary will have members fred and mary,
and a group ID of 10. The group myproject will have members bill and steve, and the password and group
ill of the NIS entry for the group myproject. All groups listed in the NIS service are pulled in and placed
after the entry for myproject.

fetc/group

Sun Release 4.1 Last change: 14 December 1987 1583

GROUP(5) FILE FORMATS GROUP(5)

SEE ALSO

NOTES

BUGS

1584

passwd(l), su(1 V), getgroups(2V), crypt(3), initgroups(3), group.adjunct(5), passwd(5), grpck(8V)

SunOS releases prior to SunOS 4.0, permitted a user to belong to no more then eight groups at a time. A
user who belongs to more than eight groups may have trouble using the RPC service (and therefore NFS) to
communicate with machines running older releases. In such cases, RPC complains of an "Authentication
Error".

The Network Infonnation Service (NIS) was formerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed.

The passwd(l) command will not change group passwords.

Last change: 14 December 1987 S un Release 4.1

GROUP. ADJUNCT (5) FILE FORMATS GROUP. ADJUNCT (5)

NAME
group.adjunct - group security data file

SYNOPSIS
/etclsecurity/group.adjunct

DESCRIPTION

FILES

The group.adjunct file contains the following information for each group:

groupname :password

groupname The group's name in the system; it must be unique.

password The encrypted password, formerly field two of the letc/group file.

The group.adjunct file is in ASCII. Fields are separated by a colon, and each group is separated from the
next by a NEWLINE.

A group.adjunct file can have a line beginning with a '+' (Plus sign), which means to incorporate entries
from the Network Information Service (NIS). There are two styles of '+' entries: all by itself, '+' means to
insert the entire contents of the group.adjunct NIS file at that point; +name means to insert the entry (if
any) for name from the NIS service at that point. If a '+' entry has a non-null password, the contents of that
field will override what is contained in the NIS service.

/etclgroup

SEE ALSO

NOTES

crypt(3), getgraent(3), getgrent(3V), group(5)

The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed.

Sun Release 4.1 Last change: 14 December 1987 1585

HELP(5) FILE FORMATS HELP(5)

NAME
help - help file format

SYNOPSIS
lusr/lib/help/*

A V AILABILITY
Available only on Sun 386i systems running a SunOS 4.0.x release or earlier. Not a SunOS 4.1 release
feature.

DESCRIPTION
Each Sun View application using the help feature has a simple Ascn file in lusr/liblhelp with the name
application-name .info.

This file contains the text of help messages for each Sun View object within that program. Each help mes­
sage is separated in the file by a line beginning with a colon and identified by a keyword which matches the
HELP_DATA attribute of the SunView object.

The first character of each line in the file may be:

any other

comment line
keyword line
1-32 help text lines

If the line is a keyword line. it has the following structure-

:keyword[s]:datastring [pagenumber]NEWLINE

keyword

datastring

pagenumber

is a 1-65 character keyword
--any displayable characters may be used
--several keywords may be present
--keywords are separated by I-or-more blanks

is 1-256 ASCII bytes. and describes the path of the data files for
help_viewer, relative to /usr/lib/help.

is an optional page number within the help_viewer data file.

The help text which follows the :keyword line will be displayed in an Alert Box when help is requested for
one of the keywords by pressing the help key.

The datastring will be sent (by RPC) to the help _viewer procedure when the user selects the More Help
box in the Alert Box window.

EXAMPLE

1586

Here is part of a typical help file. called mailtool.info.

: abort
Abort button

o Quits the Mail application (click
left on button). Tentative message
deletions do not become permanent.

o Provides a menu of Abort options
(click right on button).

Last change: 19 February 1988 S un Release 4.1

HELP(5) FILE FORMATS

:cancel:maiitool/Writing_ and _ Sending_ Mail I
Cancel button

o Closes the message composition
window without sending message
(click left on button).

o Provides a menu of Cancel options
(click right on button).

HELP(5)

Pressing the help key while in the cancel or abort buttons triggers the display of the corresponding text.
The words cancel and abort in this file are the keywords. In the case of abort, there is no More Help avail­
able. For cancel, More Help is available and it is stored in the first page of the
Writing_and _Sending_Mail file in the mailtool directory.

FILES
lusr/lib/help/*

SEE ALSO

files for the pop-up help facility

help_ viewer(I), help _ viewer(5)

Sun386i Developer's Guide

Sun Release 4.1 Last change: 19 February 1988 1587

HELP_VIEWER (5) FILE FORMATS HELP_VIEWER (5)

NAME
help_viewer - help viewer file fonnat

SYNOPSIS
lusr/lib/belp/*l*

A V AILABILITY
Available only on Sun 386i systems running a SunOS 4.0..x release or earlier. Not a SunOS 4.1 release
feature.

DESCRIPTION

FILES

The help_viewer reads files of various types. The Top Level list of applications documented is
lusr/liblbelp/Top_Level. The Master Index shown at the top level is lusr/lib/helplMaster_Index. These
files are FrameMaker files. To add or remove a heading from this list, use FrameMaker (1.1 or later).

Each directory within lusrllib/help that corresponds to a SunView application name contains detailed
information about that application. These are also FrameMaker files. The *.rf files are rasterfiles, of stan­
dard image fonnat created by FrameMaker. These are the pictures that are interleaved into the text.

The Framel subdirectory of lusr/lib/help contains topic, contents, and index templates which can be used
to create new Help Viewer handbooks. The Interleafl subdirectory contains Interleaf templates, fonts, and
initialization files.

lusr/lib/belpl *1 *
SEE ALSO

belp(5), belp _ viewer(l)

1588 Last change: 19 February 1988 Sun Release 4.1

HOSTS (5) FILE FORMATS HOSTS (5)

NAME
hosts - host name data base

SYNOPSIS
/etc/hosts

DESCRIPTION
The hosts file contains information regarding the known hosts on the TCP/IP. For each host a single line
should be present with the following information:

Internet-address official-host-name aliases

Items are separated by any number of blanks and/or TAB characters. A '#' indicates the beginning of a
comment; characters up to the end of the line are not interpreted by routines which search the file. This file
is normally created from the official host data base maintained at the Network Information Control Center
(NIe) , though local changes may be required to bring it up to date regarding unofficial aliases and/or
unknown hosts.

Network addresses are specified in the conventional '.' notation using the inet_addr 0 routine from the
Internet address manipulation library, inet(3N). Host names may contain any printable character other
than an upper case character, a field delimiter, NEWLINE, or comment character.

EXAMPLE
Here is a typical line from the /etc/hosts file:

192.9.1.20 gaia # John Smith

FILES
/etc/hosts

SEE ALSO
gethostent(3N), inet(3N)

Sun Release 4.1 Last change: 18 December 1989 1589

HOSTS.EQmv (5) FILE FORMATS HOSTS.EQUIV (5)

NAME
hosts.equiv, .rhosts - trusted remote hosts and users

DESCRIPTION
The letclhosts.equiv and .rhosts files provide the "remote authentication" database for rlogin(1C),
rsh(IC), rcp(IC), and rcmd(3N). The files specify remote hosts and users that are considered trusted.
Trusted users are allowed to access the local system without supplying a password. The library routine
ruserok() (see rcmd(3N) performs the authentication procedure for programs by using the
letclhosts.equiv and .rhosts files. The letclhosts.equiv file applies to the entire system, while individual
users can maintain their own .rhosts files in their home directories.

These files bypass the standard password-based user authentication mechanism. To maintain system secu­
rity, care must be taken in creating and maintaining these files.

The remote authentication procedure determines whether a particular remote user from a particular remote
host should be allowed to access the local system as a (possibly different) particular local user. This pro­
cedure first checks the letclhosts.equiv file and then checks the .rhosts file in the home directory of the
local user as whom access is being attempted. Entries in these files can be of two forms. Positive entries
explicitly allow access, while negative entries explicitly deny access. The authentication succeeds as soon
as a matching positive entry is found. The procedure fails when a matching negative entry is found, or if
no matching entries are found in either file. The order of entries, therefore, can be important: If the files
contain both matching positive and negative entries, the entry that appears first will prevail. The rsh(1C)
and rcp(IC) programs fail if the remote authentication procedure fails. The rlogin program will fall back
to the standard password-based login procedure if the remote authentication fails.

Both files are fonnatted as a list of one-line entries. Each entry has the form:

hostname [username]

Negative entries are differentiated from positive entries by a '-' character preceding either the hostname or
username field.

Positive Entries
If the form:

1590

hostname

is used, then users from the named host are trusted. That is, they may access the system with the same user
name as they have on the remote system. This form may be used in both the letc/hosts.equiv and .rhosts
files.

If the line is in the fonn:

hostname username

then the named user from the named host can access the system. This form may be used in individual
.rhosts files to allow remote users to access the system as a different local user. If this form is used in the
letclhosts.equiv file, the named remote user will be allowed to access the system as any local user.

Netgroups(5) can be used in either the hostname or username fields to match a number of hosts or users in
one entry. The form:

+@netgroup

allows access from all hosts in the named netgroup. When used in the username field, netgroups allow a
group of remote users to access the system as a particular local user. The form:

hostname +@netgroup

allows all of the users in the named netgroup from the named host to access the system as the local user.
The form:

+@netgroupl +@netgroup2

Last change: 24 January 1990 Sun Release 4.1

HOSTS.EQUIV (5) FILE FORMATS HOSTS.EQUIV (5)

allows the users in netgroup2 from the hosts in netgroupl to access the system as the local user.

The special character '+' can be used in place of either hostname or username to match any host or user.
For example, the entry

+

will allow a user from any remote host to access the system with the same usemame. The entry

+ username

will allow the named user from any remote host to access the system. The entry

hostname +

will allow any user from the named host to access the system as the local user.

Negative Entries

FILES

NOTES

Negative entries are preceded by a '-' sign. The form:

-hostname

will disallow all access from the named host. The form:

-@netgroup

means that access is explicitly disallowed from all hosts in the named netgroup. The form:

hostname -username

disallows access by the named user only from the named host, while the form:

+ -@netgroup

will disallow access by all of the users in the named netgroup from all hosts.

letdhosts.equiv
-I.rhosts

Hostnames in letclhosts.equiv and .rhosts files must be the "official" name of the host, not one of its nic­
names.

Root access is handled as a special case. Only the I.rhosts file is checked when the access is being
attempted for root. To help maintain system security, the letclhosts.equiv file is not checked.

As a security feature, the .rhosts file must be owned by the user as whom access is being attempted.

Positive entries in letclhosts.equiv that include a username field (either an individual named user, a net­
group, or '+' sign) should be used only with extreme caution. Because letclhosts.equiv applies system­
wide, these entries allow one or a group of remote users to access the system as any local user. This can be
the source of a security hole.

SEE ALSO
rlogin(IC), rsh(1C), rcp(IC), rcmd(3N), hosts(5), netgroup(5), passwd(5)

Sun Release 4.1 Last change: 24 January 1990 1591

INDENT.PRO (5) FILE FORMATS INDENT.PRO (5)

NAME
indent pro - default options for indent

DESCRIPTION

FILES

The .indent.pro file in either the current or home directory contains default command line options for the
indent(l) program. It is a text file that contains space-separated command line options. For a description
of these options, see indent(1).

Explicit command line options override options taken from .indent.pro.

Here is a sample .indent.pro file:

-bap -nbad -nbbb -be -br -edb -nee
-fel -ip -Ip -npes -psi -se -nsob -cliO
-dil2 -179 -i4 -dO -e33

J.indent.pro
-I.indent.pro

SEE ALSO
indent(1)

1592 Last change: 16 February 1988 Sun Release 4.1

INETD.CONF (5) FILE FORMATS INETD.CONF (5)

NAME
inetd.conf - Internet servers database

DESCRIPTION

FILES

The inetd.conf file contains the list of servers that inetd(8C) invokes when it receives an Internet request
over a socket. Each server entry is composed of a single line of the form:

service-name socket-type protocol wait-status uid server-program server-arguments

Fields can be separated by either spaces or TAB characters. A 'I' (pound-sign) indicates the beginning of a
comment; characters up to the end of the line are not interpreted by routines that search this file.

service-name

socket-type

protocol

wait-status

uid

server-pro gram

server-arguments

/ etclinetd.conf
/etc/services
/ etc/protocols

is the name of a valid service listed in the file letc/services. For RPC services, the
value of the service-name field consists of the RPC service name, followed by a
slash and either a version number or a range of version numbers (for example,
mountd/I).

can be one of:
stream
dgram
raw
rdm
seq packet

for a stream socket,
for a datagram socket,
for a raw socket,
for a "reliably delivered message" socket, or
for a sequenced packet socket.

must be a recognized protocol listed in the file letclprotocols. For RPC services,
the field consists of the string "rpc" followed by a slash and the name of the proto­
col (for example, rpcludp for an RPC service using the UDP protocol as a tran­
sport mechanism).

is nowait for all but "single-threaded" datagram servers - servers which do not
release the socket until a timeout occurs (such as comsat(8C) and talkd(8C».
These must have the status wait. Although tftpd(8C) establishes separate
"pseudo-connections", its forking behavior can lead to a race condition unless it is
also given the status wait.

is the user ID under which the server should run. This allows servers to run with
access privileges other than those for root.

is either the pathname of a server program to be invoked by inetd to perform the
requested service, or the value internal if inetd itself provides the service.

If a server must be invoked with command-line arguments, the entire command
line (including argument 0) must appear in this field (which consists of all remain­
ing words in the entry). If the server expects inetd to pass it the address of its
peer (for compatibility with 4.2BSD executable daemons), then the first argument
to the command should be specified as '% A ' .

SEE ALSO
services(5), comsat(8C), inetd(8C), talkd(8C), tftpd(8C)

BUGS
inetd dumps core when the inetd.conf file contains blank lines.

Sun Release 4.1 Last change: 22 August 1989 1593

INTERNAT(5) FILE FORMATS INTERNA T (5)

NAME
internat - key mapping table for internationalization

A V AILABILITY
Available only on Sun 386i systems running a SunOS 4.0.x release or earlier. Not a SunOS 4.1 release
feature.

DESCRIPTION
This file format is used for the file specified by the -f option of old-setkeys(I).

The file has three columns. First column is key table identifier, one of: BASE, CfRL, SHIFT, CAPS, UP,
BASE_ISO, SHIff_ISO or ALTG. The second column is a decimal keystation number. The third column is
hexadecimal key table entry value. The file must end with line of "END, 0, 0". As usual, comment lines
start with #.

EXAMPLES

1594

This is the file for mapping keys to Canadian standards:

/usr/lib/.setkeys: Key remapping, used by "setkeys remap"

First column is key table identifier:
BASE, CTRL, SHIFT, CAPS, UP, BASE_ISO, SHIFT_ISO or ALTG
Second column is decimal keystation number
Third column is hexadecimal keytable entry value
File must end with line of "END, 0, 0"
Comment lines must start with #

--- Keymaps for Canadian keyboard ---
> Define AU Graph key (SHIFTKEYS+ALTGRAPH=86)
BASE 11986
CTRL 119 86
SHIFT 11986
CAPS 11986
UP 119 86
> Define Caps key (SHIFTKEYS+CAPSLOCK=80)
BASE 13 80
CTRL 1380
SHIFT 1380
CAPS 1380
> Define Floating Accent keys

BASE64AA
SHIFT 64 A9
CAPS 64A9
BASE 65 AC
SHIFT 65 AD
CAPS 65AB
BASE 87 AE
SIDFT87 AD
CAPS 87 AD

FA UMLAUT = A9
FA CFLEX=AA
FA TILDE = AB
FA CEDILLA = AC
FA ACUTE = AD
FA GRAVE=AE

> Define ASCII values

Last change: 19 February 1988 Sun Release 4.1

IN1ERNAT (5)

SEE ALSO
old-setkeys(l)

BASE 88 SB
SIDFT887B
CAPS 8878
BASE ISSD
SIDFT IS7D
CAPS IS7D
SIDFT3122
SIDFT322F
SHIFT3S3F
SIDFTI0727
CAPS 10727
SIDFTI0860
CAPS 10860
BASE 1243C
SHIFT 1243E
CAPS 1243E
> Define ISO values
BASE_ISO 109 E9
SHIFT ISO 109 C9

FILE FORMATS

> Define Alternate Graph ISO values
ALTG 88 AB
ALTG ISBB
ALTG 30 Bl
ALTG 31 B2
ALTG 32B3
ALTG 33A2
ALTG 34A4
ALTG 3SSE
ALTG 3640
ALTG 37 A3
ALTG 38SC
ALTG 40AC
ALTG 4123
ALTG 63B6
ALTG 64BC
ALTG 6SBD
ALTG 42BE
ALTG 106 BS
ALTG 10SBA
> End of file
ENDOO

The Sun386i Developer's Guide for key station number diagrams.

Sun Release 4.1 Last change: 19 February 1988

INTERNAT (5)

1595

IP ALLOC.NETRANGE (5) FILE FORMATS IPALLOC.NETRANGE (5)

NAME
ipalloc.netrange - range of addresses to allocate

SYNOPSIS
letC/ipalloc.netrange

AVAILABILITY
Available only on Sun 386i systems running a SunOS 4.0.x release or earlier. Not a SunOS 4.1 release
feature.

DESCRIPTION
This file, if it exists on the Network Information Service (NIS) master of the hosts.byaddr map, specifies
the ranges of IP addresses that can be allocated by the ipalJocd(8C) daemon. This allows multiple address
assignment authorities, probably in multiple administrative domains, to coexist on the same IF network by
preallocating ranges of addresses. If this file does not exist, the daemon assumes that all addresses not
listed in the hosts map may be freely allocated.

This file can contain blank lines. Comments begin with a '#' character and extend to the end of the current
line. Ranges of free addresses are specified on one line per network or subnetwork.

The first token on the line is the IP address, in four part "dot" notation as also used in the hosts file, of the
network or subnetwork described. It is separated from the second token by white space. The second token
is a comma-separated list of local host number ranges on that network. These ranges take two forms: a sin­
gle number specifies just that local host number, and two numbers separated by a dash specify all local host
numbers starting at the first number and ending at the second. In the case of a subnet, host numbers not in
that subnet are excluded.

For example, the following file would specify that a subset of the addresses on the class C network
192.9.200.0 may be allocated, and only some of the addresses on two particular subnets of the class B net­
work 128.255.0.0 may be allocated. In any case, only non-broadcast addresses not listed in the hosts map
are subject to allocation:

We have three network cables administered using automatic # IP address allocation.

192.9.200.0
128.255.211.0

50-100,200-254
1-254

128.255.210.0 3,5,7,9,100·110

SEE ALSO

BUGS

NOTES

1596

hosts(5), netmasks(5), ipaUocd(8C)

There is a silent limit of twenty ranges per network.

The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed.

Last change: 19 February 1988 Sun Release 4.1

KEYTABLES (5) FILE FORMATS KEYT ABLES (5)

NAME
key tables - keyboard table descriptions for loadkeys and dumpkeys

DESCRIPTION
These files are used by loadkeys(l) to modify the translation tables used by the keyboard streams module
kb(4M), and generated by dumpkeys (see loadkeys(l» from those translation tables.

Any line in the file beginning with # is a comment, and is ignored. # is treated specially only at the begin­
ning of a line.

Other lines specify the values to load into the tables for a particular keystation. The format is either:

key number list_oi_entries

or

swap number 1 with number2

or

key numberl same as number2

or a blank line, which is ignored.

key number list _ oi_ entries

sets the entries for keystation number from the list given. An entry in that list is of the form

tablename code

where tablename is the name of a particular translation table, or all. The translation tables are:

base entry when no shifts are active

shift entry when "S hift" key is down

caps entry when "Caps Lock" is in effect

ctrl entry when "Control" is down

altg entry when "Alt Graph" is down

numl entry when "Num Lock" is in effect

up entry when a key goes up

All tables other than up refer to the action generated when a key goes down. Entries in the up table are
used only for shift keys, since the shift in question goes away when the key goes up, except for keys such
as "Caps Lock" or "Nom Lock"; the keyboard streams module makes the key look as if it were a latching
key.

A table name of all indicates that the entry for all tables should be set to the specified value, with the fol­
lowing exception: for entries with a value other than hole, the entry for the numl table should be set to
nonl, and the entry for the up table should be set to nOPe

The code specifies the effect of the key in question when the specified shift key is down. A code consists
of either:

Sun Release 4.1

• A character, which indicates that the key should generate the given character. The character
can either be a single character, a single character preceded by " which refers to a "control
character" (for instance, "c is control-C), or a C-style character constant enclosed in single
quote characters ('), which can be expressed with C-style escape sequences such as \r for
REf URN or \000 for the null character. Note that the single character may be any character in
an 8-bit character set, such as ISO 8859/1.

• A string, consisting of a list of characters enclosed in double quote characters (It). Note that
the use of the double quote character means that a code of double quote must be enclosed in
single quotes.

Last change: 1 September 1988 1597

KEYT ABLES (5) FILE FORMATS KEYTABLES(5)

1598

• One of the following expressions:

shiftkeys+ leftshift
the key is to be the left-hand "Shift" key

shiftkeys+ rightshift
the key is to be the right-hand "Shift" key

shiftkeys+ leftctrl
the key is to be the left-hand "Control" key

shiftkeys+ rightctrl
the key is to be the right-hand "Control" key

shiftkeys+alt the key is to be the "Alt" shift key

shiftkeys+altgraph
the key is to be the "Alt Graph" shift key

shiftkeys+capslock
the key is to be the "Caps Lock" key

shiftkeys+shiftlock
the key is to be the "Shift Lock" key

shiftkeys+ numlock
the key is to be the "Nurn Lock" key

buckybits+systembit
the key is to be the "Stop" key in Sunview; this is nonnally the Ll key, or the SETUP
key on the VT100 keyboard

buckybits+metabit

compose

ctrlq

ctrls

noscroll

the key is to be the "meta" key, that is, the "Left" or "Right" key on a Sun-2 or Sun-3
keyboard or the "diamond" key on a Sun-4 keyboard

the key is to be the "Compose" key

on the "VT100" keyboard, the key is to transmit the control-Q character (this would
be the entry for the "Q" key in the ctrl table)

on the "VT100" keyboard, the key is to transmit the control-S character (this would
be the entry for the "s" key in the ctrl table)

on the "VT100" keyboard, the key is to be the "No Scroll" key

string+uparrow the key is to be the "up arrow" key

string+downarrow
the key is to be the "down arrow" key

string+leftarrow the key is to be the "left arrow" key

string+rightarrow
the key is to be the "right arrow" key

string+homearrow

fa acute

fa cedilla

fa cflex

fa_grave

fa tilde

the key is to be the "home" key

the key is to be the acute accent "floating accent" key

the key is to be the cedilla "floating accent" key

the key is to be the circumflex "floating accent" key

the key is to be the grave accent "floating accent" key

the key is to be the tilde "floating accent" key

Last change: 1 September 1988 Sun Release 4.1

KEYT ABLES (5)

nonl

padO

pad!

pad2

pad3

pad4

padS

pad6

pad7

padS

pad9

paddot

padenter

padplus

padminus

padstar

padslash

padequal

padsep

If(n)

rf(n)

tf(n)

bf(n)

nop

error

idle

oops

reset

FILE FORMATS KEYT ABLES (5)

the key is to be the umlaut "floating accent" key

this is used only in the Num Lock table; the key is not to be affected by the state of
NumLock

the key is to be the "0" key on the numeric keypad

the key is to be the "1" key on the numeric keypad

the key is to be the "2" key on the numeric keypad

the key is to be the "3" key on the numeric keypad

the key is to be the "4" key on the numeric keypad

the key is to be the "5" key on the numeric keypad

the key is to be the "6" key on the numeric keypad

the key is to be the "7" key on the numeric keypad

the key is to be the "8" key on the numeric keypad

the key is to be the "9" key on the numeric keypad

the key is to be the "." key on the numeric keypad

the key is to be the "Enter" key on the numeric keypad

the key is to be the" +" key on the numeric keypad

the key is to be the "- II key on the numeric keypad

the key is to be the" *" key on the numeric keypad

the key is to be the "/" key on the numeric keypad

the key is to be the "=" key on the numeric keypad

the key is to be the "," (separator) key on the numeric keypad

the key is to be the left-hand function key n

the key is to be the right-hand function key n

the key is to be the top function key n

the key is to be the "bottom" function key n

the key is to do nothing

this code indicates an internal error; to be used only for key station 126, and must be
used there

this code indicates that the keyboard is idle (that is, has no keys down); to be used
only for all entries other than the numl and up table entries for keystation 127, and
must be used there

this key exists, but its action is not defined; it has the same effect as nop

this code indicates that the keyboard has just been reset; to be used only for the up
table entry for key station 127, and must be used there

swap number 1 with number2

exchanges the entries for keystations number 1 and number2 .

key number 1 same as number2

sets the entries for keystation number 1 to be the same as those for key station number2. If the file does not
specify entries for keystation number2, the entries currently in the translation table are used; if the file does
specify entries for keystation number2, those entries are used.

Sun Release 4.1 Last change: 1 September 1988 1599

KEYT ABLES (5) FILE FORMATS KEYT ABLES (5)

EXAMPLES

1600

The following entry sets key station 15 to be a "hole" (that is, an entry indicating that there is no keystation
15); sets keystation 30 to do nothing when Alt Graph is down, generate "!" when Shift is down, and gen­
erate "1" under all other circumstances; and sets keystation 76 to be the left-hand Control key.

key 15 all hole .
key 30 base 1 shift! caps 1 ctrl 1 altg nop
key 76 all shiftkeys+leftctrl up shiftkeys+leftctrl

The following entry exchanges the Delete and Back Space keys on the Type 4 keyboard:

swap 43 with 66

Keystation 43 is normally the Back Space key, and keystation 66 is normally the Delete key.

The following entry disables the Caps Lock key on the Type 3 and U.S. Type 4 keyboards:

key 119 all nop

The following specifies the standard translation tables for the U.S. Type 4 keyboard:

key 0 all hole
key 1 all buckybits+systembit up buckybits+systembit
key 2 all hole
key 3 alllf(2)
key 4 all hole
key 5 all tf(l)
key 6 all tf(2)
key 7 all tf(1 0)
key 8 all tf(3)
key 9 all tf{ll)
key 10 all tf(4)
key 11 all tf(12)
key 12 all tf(5)
key 13 all shiftkeys+altgraph up shiftkeys+altgraph
key 14 all tf(6)
key 15 all hole
key 16 all tf(7)
. key 17 all tf(8)
key 18 all tf(9)
key 19 all shiftkeys+alt up shiftkeys+alt
key 20 all hole
key 21 all rf(l)
key 22 all rf(2)
key 23 all rf(3)
key 24 all hole
key 25 alllf(3)
key 26 alllf(4)
key 27 all hole
key 28 all hole
key 29 all A[
key 30 base 1 shift! caps 1 ctrll altg nap
key 31 base 2 shift @ caps 2 ctrl A@ altg nap
key 32 base 3 shift # caps 3 ctrl 3 altg nap
key 33 base 4 shift $ caps 4 ctrl4 altg nap
key 34 base 5 shift % caps 5 ctrl 5 altg nap
key 35 base 6 shift A caps 6 ctrl AA altg nap
key 36 base 7 shift & caps 7 ctrl 7 altg nop

Last change: 1 September 1988 Sun Release 4.1

KEYTABLES (5) FILE FORMATS

Sun Release 4.1

key 37 base 8 shift * caps 8 ctr18 altg nop
key 38 base 9 shift (caps 9 ctr19 altg nop
key 39 base 0 shift) caps 0 ctrl 0 altg nop
key 40 base - shift _ caps - ctrl A _ altg nop
key 41 base = shift + caps = ctrl = altg nop
key 42 base' shift - caps ' ctrl AA altg nop
key 43 all '\b'
key 44 all hole
key 45 all rf(4) numl padequal
key 46 all rf(5) numl padslash
key 47 all rf(6) numl padstar
key 48 all bf(13)
key 49 alllf(5)
key 50 all bf(lO) numl padequal
key 51 alllf(6)
key 52 all hole
key 53 all '\t'
key 54 base q shift Q caps Q ctrl "Q altg nop
key 55 base w shift W caps W ctrl "W altg nop
key 56 base e shift E caps E ctrl AE altg nop
key 57 base r shift R caps R ctrl AR altg nop
key 58 base t shift T caps T ctrl AT altg nop
key 59 base y shift Y caps Y ctrl Ay altg nop
key 60 base u shift U caps U ctrl AU altg nop
key 61 base i shift I caps I ctrl '\t' altg nop
key 62 base 0 shift 0 caps 0 ctrl "0 altg nop
key 63 base p shift P caps P ctrl "P altg nop
key 64 base [shift { caps [ctrl "[altg nop
key 65 base] shift } caps] ctrl "] altg nop
key 66 all '\177'
key 67 all compose
key 68 all rf(7) numl pad7
key 69 all rf(8) numl pad8
key 70 all rf(9) numl pad9
key 71 all bf(15) numl padminus
key 72 alllf(7)
key 73 alllf(8)
key 74 all hole
key 75 all hole
key 76 all shiftkeys+leftctrl up shiftkeys+leftctrl
key 77 base a shift A caps A ctrl" A altg nop
key 78 base s shift S caps S ctrl "S altg nop
key 79 base d shift D caps D ctrl "D altg nop
key 80 base f shift F caps F ctrl AF altg nop
key 81 base g shift G caps G ctrl AG altg nop
key 82 base h shift Heaps H ctrl '\b' altg nop
key 83 base j shift J caps J ctrl '\n' altg nop
key 84 base k shift K caps K ctrl '\v' altg nop
key 85 base I shift L caps L etrl AL altg nop
key 86 base; shift: caps; etrl ; altg nop
key 87 base '\" shift'''' caps '\" etrl '\" altg nop
key 88 base '\\' shift I caps '\\' etrl "\ altg nop
key 89 all 'v'

Last change: 1 September 1988

KEYTABLES (5)

1601

KEYTABLES(5) FILE FORMATS

SEE ALSO

key 90 all bf(ll) numl padenter
key 91 all rf(1 0) numl pad4
key 92 all rf(11) numl pad5
key 93 all rf(12) numl pad6
key 94 all bf(8) numl padO
key 95 alllf(9)
key 96 all hole
key 97 alllf(10)
key 98 all shiftkeys+numlock
key 99 all shiftkeys+leftshift up shiftkeys+leftshift
key 100 base z shift Z caps Z ctrl "Z altg nop
key 101 base x shift X caps X ctrl AX altg nop
key 102 base c shift C caps C ctrl AC altg nop
key 103 base v shift V caps V ctrl AV altg nop
key 104 base b shift B caps B ctrl AB altg nop
key 105 base n shift N caps N ctrl AN altg nop
key 106 base m shift M caps M ctrl '\r' altg nop
key 107 base, shift < caps, ctrl ,altg nop
key 108 base. shift> caps. ctrl. altg nop
key 109 base I shift? caps I ctrl A _ altg nop
key 110 all shiftkeys+rightshift up shiftkeys+rightshift
key 111 all '\0'
key 112 all rf(13) numl padl
key 113 all rf(14) numl pad2
key 114 all rf(15) numl pad3
key 115 all hole
key 116 all hole
key 117 all hole
key 118 all If(16)
key 119 all shiftkeys+capslock
key 120 all buckybits+metabit up buckybits+metabit
key 121 base" shift' , caps' , etrl A@ altg , ,
key 122 all buckybits+metabit up buckybits+metabit
key 123 all hole
key 124 all hole
key 125 all bf(14) numl padplus
key 126 all error numl error up hole
key 127 all idle numl idle up reset

loadkeys(1), kb(4M)

1602 Last change: I September 1988

KEYT ABLES (5)

Sun Release 4.1

LINK (5) FILE FORMATS LINK(5)

NAME
link - link editor interfaces

SYNOPSIS
#include <Iink.h>

DESCRIPTION
Dynamically linked executables created by Id(I) contain data structures used by the dynamic link editor to
finish link-editing the program during program execution. These data structures are described with a
link_dynamic structure, as defined in the Iink.h file. Id always identifies the location of this structure in the
executable file with the symbol __ DYNAMIC. This symbol is Id-defined and if referenced in an execut­
able that does not require dynamic linking will have the value zero.

The program stub linked with "main" programs by compiler drivers such as cc(1 V) (called crtO) tests the
definition of __ DYNAMIC to determine whether or not the dynamic link editor should be invoked. Pro­
grams supplying a substitute for crtO must either duplicate this functionality or else require that the pro­
grams with which they are linked be linked statically. Otherwise, such replacement crtO' s must open and
map in the executable /usr/lib/ld.so using mmap(2). Care should be taken to ensure that the expected
mapping relationship between the "text" and "data" segments of the executable is maintained in the same
manner that the execve(2V) system call does. The first location following the a.out header of this execut­
able is the entry point to a function that begins the dynamic link-editing process. This function must be
called and supplied with two arguments. The first argument is an integer representing the revision level of
the argument list, and should have the value "I". The second should be a pointer to an argument list
structure of the form:

struct {

}

int crt_ba;
int crt_dzfd;
int crt_Idfd;
struct link_dynamic *crt_dp;
char **crt_ep;
caddr_t crt_bp;

/* base address ofld.so */
/* open fd to /dev/zero */
/* open fd to Id.so *1
1* pointer to program's __ DYNAMIC *1
1* environment strings */
1* debugger hook *1

The members of the structure are:

crt ba

crt dzfd

crt Idfd

crt_dp

crt_ep

crt_bp

The address at which lusrllib/ld.so has been mapped.

An open file descriptor for /devlzero. Id.so will close this file descriptor before return­
ing.

The file descriptor used to map lusr/lib/ld.so. Id.so will close this file descriptor before
returning.

A pointer to the label __ DYNAMIC in the executable which is calling Id.so.

A pointer to the environment strings provided to the program.

A location in the executable which contains an instruction that will be executed after the
call to Id.so returns. This location is used as a breakpoint in programs that are being
executed under the control of a debugger such as adb(1).

SEE ALSO
Id(I), mmap(2), a.out(5)

BUGS
These interfaces are under development and are subject to rapid change.

Sun Release 4.1 Last change: 17 February 1988 1603

LOCALE (5) FILE FORMATS LOCALE (5)

NAME
locale - locale database

SYNOPSIS
Insrl share/lib/localel category/locale

I etdlocalel category/locale

DESCRIPTION
The category directory contains infonnation relating to one category of the complete list of categories that
comprise a full locale for all systems sharing this directory. locale is either a file or a directory that con­
tains information relating to the relevant category indicated by its parent directory category. locale is the
name that is given to describe the style of operation required by an application in a particular language, ter­
ritory or code-set.

At runtime these directories will be accessed if the application has made a valid call to:

setlocale(category, locale)

where category can be anyone of the following settings:

LC COLLATE Collation order. Affects the behavior of regular expressions and the string functions
defined in strcoll(3).

LC CTYPE Character classification and case conversion. Affects the behavior of regular expres­
sions and the character handling functions defined in toascii(3), and ctime(3V).

LC _MONET ARY Monetary fonnatting. Affects the behavior of functions that handle monetary values.

LC NUMERIC Numeric delimiters. Affects the radix character of the formatted input/output functions
defined in printf(3V) and scanf(3V), and the conversion functions defined in strtod(3).

LC TIME Date and time fonnats. Affects the behavior of the time functions defined in ctime(3V).

LC MESSAGES Message presentation style. Affects the behavior of the string access functions defined
in catgets(3C) and gettext(3).

NLSPATH Contains a sequence of pseudo-pathnames which catopen(3C) uses when attempting to
locate message catalogs. Each pseudo-pathname contains a name template consisting of
an optional path-prefix, one or more substitution fields, a filename and an optional
filename suffix.

Substitution fields consist of a % symbol, followed by a single-letter keyword. The following keywords
are currently defined:

%N The value of the name parameter passed to catopen(3C).

% L The value of the LANG environment variable.

% % A single % character.

A null string is sustituted if the specified value is not defined. Pathnames defined in NLSPA TH are
separated by colons (:). A leading or two adjacent colons indicate the current directory. For example:

NLSPATH=": % N .cat:/nlslibl % LI % N.cat"

Indicates to catopen(3C) that it should look for the requested message catalog in name, name. cat and
Inlslib/$LANGlname.cat. The LC _ALL and LANG environment variables do not commute to real direc­
tories or files but instead relate to a locale that is a assumed to be valid for all of the above categories.

SEE ALSO

1604

catgets(3C), catopen(3C), ctime(3V), gettext(3), printf(3V), scanf(3V), setlocale(3V), strcolI(3)
strtod(3), toascii(3V)

Last change: 2 February 1990 Sun Release 4.1

MAGIC (5) FILE FORMATS MAGIC(5)

NAME
magic - file command's magic number file

DESCRIPTION

FILES

The file(l) command identifies the type of a file using, among other tests, a test for whether the file begins
with a certain magic number. The file letclmagic specifies what magic numbers are to be tested for, what
message to print if a particular magic number is found, and additional information to extract from the file.

Each line of the file specifies a test to be performed. A test compares the data starting at a particular offset
in the file with a I-byte, 2-byte, or 4-byte numeric value or a string. If the test succeeds, a message is
printed. The line consists of the following fields:

offset type value message

offset A number specifying the offset, in bytes, into the file of the data which is to be tested.

type The type of the data to be tested. The possible values are:

byte A one-byte value.

short A two-byte value.

long A four-byte value.

string A string of bytes.

The types byte, short, and long may optionally be followed by a mask specifier of the form
& number. If a mask specifier is given, the value is AND'ed with the number before any com­
parisons are done. The number is specified in C form. For instance, 13 is decimal, 013 is
octal, and Ox13 is hexadecimal.

value The value to be compared with the value from the file. If the type is numeric, this value is
specified in C form. If it is a string, it is specified as a C string with the usual escapes permit­
ted (for instance, \n for NEWLINE).

Numeric values may be preceded by a character indicating the operation to be performed. It
may be '=', to specify that the value from the file must equal the specified value, '<', to specify
that the value from the file must be less than the specified value, '>', to specify that the value
from the file must be greater than the specified value, '&', to specify that all the bits in the
specified value must be set in the value from the file, 'A', to specify that at least one of the bits
in the specified value must not be set in the value from the file, or x to specify that any value
will match. If the character is omitted, it is assumed to be '='.

For string values, the byte string from the file must match the specified byte string. The byte
string from the file which is matched is the same length as the specified byte string.

message The message to be printed if the comparison succeeds. If the string contains a printf(3V) for­
mat specification, the value from the file (with any specified masking performed) is printed
using the message as the format string.

Some file formats contain additional information which is to be printed along with the file type. A line
which begins with the character '>' indicates additional tests and messages to be printed. If the test on the
line preceding the first line with a '>' succeeds, the tests specified in all the subsequent lines beginning
with '>' are performed, and the messages printed if the tests succeed. The next line which does not begin
with a '>' terminates this.

letc/magic

SEE ALSO
file(I), printf(3V)

Sun Release 4.1 Last change: 19 October 1987 1605

MAGIC (5) FILE FORMATS MAGIC (5)

BUGS

1606

There should be more than one level of subtests, with the level indicated by the number of '>' at the begin­
ning of the line.

Last change: 19 October 1987 Sun Release 4.1

MTAB(5)

NAME
mtab - mounted file system table

SYNOPSIS
/etclmtab

#include <mntent.h>

DESCRIPTION

FILE FORMATS MTAB(5)

mtab resides in the /etc directory, and contains a table of filesystems currently mounted by the mount(8)
command. umount removes entries from this file.

FILES

The file contains a line of information for each mounted filesystem, structurally identical to the contents of
/etclfstab, described in fstab(5). There are a number of lines of the form:

fsname dir type opts freq passno

for example:

/dev/xyOa / 4.2 rw,noquota 12

The file is accessed by programs using getmntent(3), and by the system administrator using a text editor.

/etclmtab
/etclfstab

SEE ALSO
getmntent(3), fstab(5), mount(8)

Sun Release 4.1 Last change: 19 October 1987 1607

NETGROUP (5) FILE FORMATS NETGROUP (5)

NAME
netgroup - list of network groups

DESCRIPTION
netgroup defines network wide groups, used for pennission checking when doing remote mounts, remote
logins, and remote shells. For remote mounts, the infonnation in netgroup is used to classify machines;
for remote logins and remote shells, it is used to classify users. Each line of the netgroup file defines a
group and has the format

groupname list-oj-members

where members is either another group name, or a triple:

(hostname, username, domainname)

Any of these three fields can be empty, in which case it signifies a wild card. Thus

universal (, ,)

defines a group to which everyone belongs.

The domainname field must either be the local domain name or empty for the netgroup entry to be used.
This field does not limit the netgroup or provide security. The domainname field refers to the domain in
which the triple is valid, not the domain containing the trusted host

A gateway machine should be listed under all possible hostnames by which it may be recognized:

wan (gateway, ,) (gateway-ebb, ,)

Field names that begin with something other than a letter, digit or underscore (such as '-') work in pre­
cisely the opposite fashion. For example, consider the following entries:

justmachines (analytica,-,sun)
justpeople (-,babbage,sun)

The machine analytica belongs to the group justmachines in the domain sun, but no users belong to it.
Similarly, the user babbage belongs to the group justpeople in the domain SUD, but no machines belong to
it

SEE ALSO
getnetgrent(3N), exports(5), makedbm(8), ypserv(8)

WARNINGS

1608

The triple, (" domain), allows all users and machines trusted access, and has the same effect as the triple,
(").

To correctly restrict access to a specific set of members, use the hostname and username fields of the triple.

Last change: 22 December 1987 Sun Release 4.1

NETMASKS (5) FILE FORMATS NETMASKS (5)

NAME
netmasks - network mask data base

DESCRIPTION

FILES

The netmasks file contains network masks used to implement IP standard subnetting. For each network
that is subnetted, a single line should exist in this file with the network number, any number of SPACE or
TAB characters, and the network mask to use on that network. Network numbers and masks may be
specified in the conventional IP '.' notation Oike IP host addresses, but with zeroes for the host part). For
example,

128.32.0.0 255.255.255.0

can be used to specify the Class B network: 128.32.0.0 should have eight bits of subnet field and eight bits
of host field, in addition to the standard sixteen bits in the network field. When running the Network Infor­
mation Service (NIS), this file on the master is used for the netmasks.byaddr map.

letclnetmasks

SEE ALSO
ifconfig(8C)

NOTES

Postel, Jon, and Mogul, Jeff, Internet Standard Subnetting Procedure, RFC 950, Network Information
Center, SRI International, Menlo Park, Calif., August 1985.

The Network Information Service (NIS) was fonnerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed.

Sun Release 4.1 Last change: 19 October 1987 1609

NETRC(5) FILE FORMATS NETRC(5)

NAME
netrc - file for ftp remote login data

DESCRIPTION
The .netre file contains data for logging in to a remote host over the network for file transfers by ftp(1C).
This file resides in the user's home directory on the machine initiating the file transfer. Its permissions
should be set to disallow read access by group and others (see ehmod(l V».

The following tokens are recognized; they may be separated by SPACE, TAB, or NEWLINE characters:

maehinename
Identify a remote machine name. The auto-login process searches the .netre file for a machine
token that matches the remote machine specified on the ftp command line or as an open command
argument Once a match is made, the subsequent .netre tokens are processed, stopping when the
EOF is reached or another machine token is encountered.

login name
Identify a user on the remote machine. If this token is present, the auto-login process will initiate
a login using the specified name.

password string
Supply a password. If this token is present, the auto-login process will supply the specified string
if the remote server requires a password as part of the login process. Note: if this token is present
in the .netrc file, ftp will abort the auto-login process if the .Detre is readable by anyone besides
the user.

account string
Supply an additional account password. If this token is present, the auto-login process will supply
the specified string if the remote server requires an additional account password, or the auto-login
process will initiate an ACCT command if it does not.

maedef name
Define a macro. This token functions as the ftp maedef command functions. A macro is defined
with the specified name; its contents begin with the next .Detre line and continue until a null line
(consecutive NEWLINE characters) is encountered. If a macro named init is defined, it is automat­
ically executed as the last step in the auto-login process.

EXAMPLE
The command:

machine ray login demo password mypassword

allows an autologin to the machine ray using the login name demo with password mypassword.

FILES
-I.netre

SEE ALSO
ehmod(l V), ftp(IC), ftpd(8C)

1610 Last change: 19 October 1988 Sun Release 4.1

NETWORKS (5) FILE FORMATS NETWORKS (5)

NAME
networks - network name data base

DESCRIPTION

FILES

The networks file contains information regarding the known networks which comprise the TCP/IP. For
each network a single line should be present with the following information:

official-network-name network-number aliases

Items are separated by any number of blanks and/or TAB characters. A 'I' indicates the beginning of a
comment; characters up to the end of the line are not interpreted by routines which search the file. This file
is normally created from the official network data base maintained at the Network Information Control
Center (NIC), though local changes may be required to bring it up to date regarding unofficial aliases and/or
unknown networks.

Network number may be specified in the conventional '.' notation using the inet _network () routine from
the Internet address manipulation library, inet(3N). Network names may contain any printable character
other than a field delimiter, NEWLINE, or comment character.

/ etc/networks

SEE ALSO

BUGS

getnetent(3N), inet(3N)

A name server should be used instead of a static file. A binary indexed file format should be available for
fast access.

Sun Release 4.1 Last change: 18 December 1989 1611

ORGRC(5) FILE FORMATS ORGRC(5)

NAME
orgrc - organizer configuration and initialization file

A V AILABILITY
Sun386i systems only.

DESCRIPTION

1612

organizer(l) is a SunView 1 application for viewing and manipulating files and directories. It saves its
parameters in the .orgrc file between runs. The user can use this file to configure organizer.

The first parameter in the file should always be the version number.

Version = 1.1

Change the version number only when necessary; if organizer determines that this version is "old", then it
will save this version in -I.orgrc.old and try to copy lusrlIib/Orgrc into -I.orgrc.

The next two parameters assign default names for the system DOS Program and the default text editor.

DOS Program = dos
Text Editor = textedit

The DOS Program parameter should not be changed. However, the user can change the default text editor.
For example:

Text Editor = shelltool vi

The Properties section initializes or customizes certain properties. The possible values for each item are
listed below. The braces and vertical bars below indicate choices, they are not used in the .orgrc file. The
Update Interval is in seconds.

Properties
PROPERTY Display Style = {Name and Icon I Name Only I Name and Info}
PROPERTY Roadmap = {Yes I No}
PROPERTY Show Hidden Files = {Yes I No}
PROPERTY Sort Type = {Name I File Type I Size I Date}
PROPERTY Sort Direction = {Ascending I Descending}
PROPERTY Update Interval = [5-300]

The Color Palette specifies all the color values used by organizer's buttons and icons. These values must
be RGB triplets. It is listed below.

Begin Color Palette
Background Color = 255, 255, 255
Directory Name Color = 0, 146, 236
Directory Icon Foreground Color = 114,45, °
Directory Icon Background Color = 255, 227, 185
Directory Highlight Name Color = 255, 255, 255
Text Name Color = 0, 166, 143
Text Icon Foreground Color = 0, 0, 0
Text Icon Background Color = 255, 255, 255
Text Highlight Name Color = 255, 255, 255
Executable Name Color = 255, 0, °
Executable Icon Foreground Color = 157, 162, 187
Executable Icon Background Color = 255, 255, 255
Executable Highlight Name Color = 255, 255, 255
Device Name Color = 113, 117, 135
Device Icon Foreground Color = 0, 0, 0
Device Icon Background Color = 174,255,159
Device Highlight Name Color = 255, 255, 255
Button Groupl Color = 255, 220,187

Last change: 3 May 1989 Sun Release 4.1

ORGRC(5) FILE FORMATS ORGRC(5)

FILES

Button Group2 Color = 201, 211, 232
Button Group3 Color = 255, 244, 113
Button Foreground Color = 0, 0, °
Button Background Color = 255, 255, 255
Button Shadow Color = 180, 180, 184
Button Highlight Color = 0, 0, °
Scroll bar Color = 142, 106, 146

End Color Palette

The Color Labels section allows the labelling or "aliasing" of RGB triplets. The right side of a label assign­
ment can contain an RGB triplet, a palette entry, or another label that has already been assigned. Here's an
example:

Begin Color Labels
Black = Text Icon Foreground Color
White = Background Color
Orange = 255, 213, 127
Dark Red = 232, 0,0
Steel Blue = 114, 146, 161
Rasberry (sic) = 202, 140, 156
Dark Blue = 0, 75, 161
Light Gray = 223, 223, 223
Maroon = 182,84,106

End Color Labels

The rest of the .orgrc file contains user defined file types. The user can specify that certain files be
grouped together and treated in a similar fashion. That is, the same icon is used to display all files in a file
type, and the same command is used when a file is opened or edited. In the default .orgrc (/usr/lib/Orgrc)
there are ten user defined file types. Here is an example of a user defined file type:

Begin File Type Definition
Name = *.c
Background Icon = lusr/include/imageS/cMask.icon
Foreground Icon = lusr/include/images/cStencil.icon
Name Color = Black
Icon Background Color = Orange
Icon Foreground Color = Black
Highlight Name Color = White
Execute Application = cmdtool vi "$(FILE)"
Edit Application = cmdtool vi "$(FILE)"
Print Application = pr -f "$(FILE)" Ilpr

End File Type Definition

The right side of the Name field can contain any combination of csh(1) Filename Substitution characters.
This field specifies the file type by way of its name. The next six fields together specify an organizer icon.
This model allows a rich variety of icons. For more information, see the Sun386i Advanced Skills manual.
The right side of the Execute Application entry specifies the command to execute when the user either
opens or double clicks on a file of that type. The Edit Application and Print Application entries specify
the command to execute when the user requests that a file of that type be edited or printed.

-/.orgrc
/usr/lib/Orgrc

read at beginning of execution by the Organizer
default .orgrc file

Sun Release 4.1 Last change: 3 May 1989 1613

ORGRC(5)

SEE ALSO
organizer(1)

Sun386i User's Guide
Sun386i Advanced Skills

LIMIT ATIONS

FILE FORMATS

The right side of Color Palette entries must be RGB triplets.

Forward references for Color Labels are not allowed.

BUGS

ORGRC(5)

organizer saves its parameters as it exits; unfortunately, it does not know how to save user's comments in
the file. So, comments are blown away.

1614 Last change: 3 May 1989 Sun Release 4.1

PASSWD(5) FILE FORMATS PASSWD(5)

NAME
passwd - password file

SYNOPSIS
letcJpasswd

DESCRIPTION
The passwd file contains basic information about each user's account. This file contains a one-line entry
for each authorized user, of the form:

username :password :uid:gid :gcos-field: home-dir: 10 gin-s he II

where

username is the user's login name. This field contains no uppercase characters, and must not be
more than eight characters in length.

password is the user's encrypted password, or a string of the form: ##name if the encrypted pass­
word is in the lete/seeurity/passwd.adjunct file (see passwd.adjunct(5». If this field is
empty, login(l) does not request a password before logging the user in.

uid

gid

is the user's numerical ID for the system, which must be unique. uid is generally a value
between 0 and 32767.

is the numerical ID of the group that the user belongs to. gid is generally a value
between 0 an 32767.

gcos-field is the user's real name, along with information to pass along in a mail-message heading.
It is called the gcos-field for historical reasons. A & in this field stands for the login
name (in cases where the login name appears in a user's real name).

home-dir

login-shell

is the path name to the directory in which the user is initially positioned upon logging in.

is the user's initial shell program. If this field is empty, the default shell is lusr/bin/sh.

The passwd file can also have lines beginning with a '+' (plus sign) which means to incorporate entries
from the Network Information Service (NIS). There are three styles of + entries in this file: by itself, +
means to insert the entire contents of the NIS password file at that point; +name means to insert the entry (if
any) for name from the NIS service at that point; +@netgroup means to insert the entries for all members of
the network group netgroup at that point. If a +name entry has a non-null password, gcos. home-dir, or
login-shell field, the value of that field overrides what is contained in the NIS service. The uid and gid
fields cannot be overridden.

The passwd file can also have lines beginning with a '-' (minus sign) which means to disallow entries
from the NIS service. There are two styles of '-' entries in this file: -name means to disallow any subse­
quent entries (if any) for name (in this file or in the NIS service); -@netgroup means to disallow any subse­
quent entries for all members of the network group netgroup.

The password file is an ASCII file that resides in the lete directory. Because the encrypted passwords on a
secure system are kept in the passwd.adjunet file, letcJpasswd has general read permission on all systems,
and can be used by routines that map numerical user IDs to names.

Appropriate precautions must be taken to lock the letc/passwd file against simultaneous changes if it is to
be edited with a text editor; vipw(8) does the necessary locking.

EXAMPLE
Here is a sample passwd file when passwd.adjunct does not exist:

Sun Release 4.1

root:q.mJzTnu8icF .:0: 10:God:/:/bin/csh
fred:6k17KCFRPNVXg:508: 10: % Fredericks:/usr2lfred:/binlcsh
+john:
+@documentation:no-Iogin:
+::::Guest

Last change: 14 December 1987 1615

PASSWD(5) FILE FORMATS PASSWD(5)

FILES

Here is a sample passwd file when passwd.adjunct does exist:

root:##root:o: 10: God:l:/bin/csh
fred:##fred :508: 10: & Fredericks:/usr2/fred:/bin/csh
+john:
+@documentation:no-Iogin:
+::::Guest

In this example, there are specific entries for users root and fred, to assure that they can log in even when
the system is running standalone. The user john will have his password entry in the NIS service incorporat­
ed without change; anyone in the netgroup documentation will have their password field disabled, and
anyone else will be able to log in with their usual password, shell, and home directory, but with a gcos-field
of Guest.

letclpasswd
letclsecurity/passwd.adjunct

SEE ALSO

BUGS

NOTES

1616

iogin(1), mail(1), passwd(l), crypt(3), getpwent(3V), group(5), passwd.adjunct(5), adduser(8),
sendmail(8), vipw(8)

mail(l) and sendmaiJ(8) use the gcos-field to compose the From: line for addressing mail messages, but
these programs get confused by nested parentheses when composing replies. This problem can be avoided
by using different types of brackets within the gcos-field; for example:

(& Fredricks [Podunk U <EE/CIS>] {818}-555-5555)

The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed.

Last change: 14 December 1987 S un Release 4.1

PASSWD.ADJUNCT (5) FILE FORMATS PASSWD.ADJUNCT (5)

NAME
passwd.adjunct - user security data file

SYNOPSIS
/etc!security/passwd.adjunct

DESCRIPTION
The passwd.adjunct file contains the following infonnation for each user.

name :password:min-label : max-label : default-label :always-audit-flags :never-audit-flags:

name

password

min-label

max-label

default-label

always-audit-jiags

never-audit -jiag s

The user's login name in the system and it must be unique.

The encrypted password.

The lowest security level at which this user is allowed to login (not used at C2 lev­
el).

The highest security level at which this user is allowed to login (not used at C2
level).

The security level at which this user will run unless a label is specified at login.

Flags specifying events always to be audited for this user's processes; see
audit _ control(5).

Flags specifying events never to be audited for this user's processes; see
audit _ control(5).

Field are separated by a colon, and each user from the next by a NEWLINE.

The passwd.adjunct file can also have line beginning with a '+' (Plus sign), which means to incorporate
entries from the Network Information Service (NIS). There are three styles of '+' entries: all by itself, '+'
means to insert the entire contents of the NIS passwd.adjunct file at that point; +name means to insert the
entry (if any) for name from the NIS service at that point; +@name means to insert the entries for all
members of the network group name at that point. If a '+' entry has a non-null password, it will override
what is contained in the NIS service.

EXAMPLE

FILES

Here is a sample /etc!security/passwd.adjunct file:

root:q.mJzTnu8icF.::::::
ignatz:7KsI8CFRPNVXg:: b,ap,bp,gp,dp,ic,r ,d,I:: +dc,+da: -dr:
rex:7HU8UUG RPNVXg: b,ap: b,ap,bp: b,bp: :+ad:
+fred:9x.FFUw6xcJBa::::::
+:

The user root is the super-user, who has no special label constraints nor audit interest. The user ignatz
may have any label from the lowest to the level b and any of a large number of categories. ignatz will run
at system low unless he specifies otherwise. He is being audited on the system default event classes as well
as data creations and access changes, but never for failed data reads. The user rex can function only at the
level b and only in the categories ap or ap and bp. By default, he will run at 'b,bp'. He is audited with the
system defaults, except that successful administrative operations are not audited. The user fred will have
the labels and audit flags that are specified in the NIS passwd.adjunct file. Any other users specified in the
NIS service will be able to log in on this system.

The user security data file resides in the tete/security directory. Because it contains encrypted passwords,
it does not have general read pennission.

/etc!security/passwd.adjunct
/ etc! security

Sun Release 4.1 Last change: 14 December 1987 1617

PASSWD.ADJUNCT (5) FILE FORMATS PASSWD.ADJUNCT (5)

SEE ALSO

NOTES

1618

login(I), passwd(I), crypt(3), getpwaent(3), getpwent(3V), audit_control(5), passwd(5), adduser(8)

The Network Information Service (NIS) was fonnerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed.

Last change: 14 December 1987 Sun Release 4.1

PHONES (5) FILE FORMATS PHONES (5)

NAME
phones - remote host phone number data base

SYNOPSIS
fetc/phones

DESCRIPTION

FILES

The file fetcfphones contains the system-wide private phone numbers for the tip(1C) program.
fetc/phones is normally unreadable, and so may contain privileged information. The fonnat of fetc/phones
is a series of lines of the form:

<system-name >[\t] * <phone-number >.

The system name is one of those defined in the remote(5) file and the phone number is constructed from
[0123456789-=*% J. The '=' and '*' characters are indicators to the auto call units to pause and wait for a
second dial tone (when going through an exchange). The '=' is required by the DF02-AC and the '*' is re­
quired by the BJZCOMP 1030.

Comment lines are lines containing a '#' sign in the first column of the line.

Only one phone number per line is permitted. However, if more than one line in the file contains the same
system name tip(lC) will attempt to dial each one in tum, until it establishes a connection.

fetc/phones

SEE ALSO
tip(1C), remote(5)

Sun Release 4.1 Last change: 19 October 1987 1619

PLOT(5) FILE FORMATS PLOT(5)

NAME
plot - graphics interface

DESCRIPTION
Files of this fonnat are produced by routines described in plot(3X), and are interpreted for various devices
by commands described in plot(1G). A graphics file is a stream of plotting instructions. Each instruction
consists of an ASCII letter usually followed by bytes of binary information. The instructions are executed
in order. A point is designated by four bytes representing the x and y values; each value is a signed integer.
The last designated point in an I, m, n, or p instruction becomes the "current point" for the next instruc­
tion.

Each of the following descriptions begins with the name of the corresponding routine in plot(3X).

m Move: the next four bytes give a new current point

n Cont: draw a line from the current point to the point given by the next four bytes. See plot(IG).

p Point plot the point given by the next four bytes.

Line: draw a line from the point given by the next four bytes to the point given by the following four
bytes.

t Label: place the following ASCII string so that its first character falls on the current point. The string is
terminated by a NEWLINE.

a Arc: the first four bytes give the center, the next four give the starting point, and the last four give the
end point of a circular arc. The least significant coordinate of the end point is used only to determine
the quadrant. The arc is drawn counter-clockwise.

c Circle: the first four bytes give the center of the circle, the next two the radius.

e Erase: start another frame of output.

f Linemod: take the following string, up to a NEWLINE, as the style for drawing further lines. The styles
are "dotted," "solid," "longdashed," "shortdashed," and "dotdashed." Effective only in plot 4014
and plot ver.

s Space: the next four bytes give the lower left comer of the plotting area; the following four give the
upper right comer. The plot will be magnified or reduced to fit the device as closely as possible.

Space settings that exactly fill the plotting area with unity scaling appear below for devices supported
by the filters of plot(IG). The upper limit is just outside the plotting area. In every case the plotting
area is taken to be square; points outside may be displayable on devices whose face is not square.

4014 space(O, 0, 3120, 3120);

ver space(O, 0, 2048, 2048);

300, 300s space(O, 0, 4096, 4096);

450 space(O, 0, 4096, 4096);

SEE ALSO
graph(IG), plot(1G), plot(3X)

1620 Last change: 19 October 1987 Sun Release 4.1

PNP.SYSNAMES (5) FILE FORMATS PNP.SYSNAMES (5)

NAME
pnp.sysnames - file used to allocate system names

SYNOPSIS
/etcJpnp.sysnames

A V AILABIT..ITY
Available only on Sun 386i systems running a SunOS 4.0.x release or earlier. Not a SunOS 4.1 release
feature.

DESCRIPTION

FILES

The /etclpnp.sysnames file contains system names that may be allocated on demand, typically as part of
Automatic System Installation.

The system names should be legal system names, one per line. Legal names are up to 31 characters long,
and consist of lowercase alphanumeric characters, dashes, and underscores. The first character must be al­
phabetic, and the last character should be alphanumeric. Blank lines are allowed in the file, but comments
are not

When a system name needs to be allocated, the first unused system name is taken from /etc/pnp.sysnames.
If all the system names there are in use, unused names are allocated from the list system-l , system-2, ... ;
the default prefix system may be changed in the /var/yp/updaters makefile. A system name is "used" if
there is already a matching entry in the Network Information Service (NIS) hosts.byname map, the
ethers.byname map, or there is a netgroup with that name. Names are allocated to correspond to a given
Ethernet address. There is no concept of "transient" name allocation; part of allocating a system name in­
cludes updating the ethers.byname and ethers.byaddr NIS maps to persistently associate the name with that
Ethernet address.

One way to allocate a system name is to issue a ypupdate(3N) call to update the ethers.byaddr map. The
key is the Ethernet address (or general IEEE 802.2 48 bit address, used also with FDDI and Token Ring
standards) of the system whose name is being allocated. The data is a line formatted according to the for­
mat specified in ethers(5). A name is allocated if the name passed is '*' (a single asterisk). Updating this
NIS map using ypupdate(3N) is a privileged operation, and may be performed only by users in the net­
works group (with group ID 12), or boot servers (listed in the ypservers NIS map).

/etcJpnp.sysnames
/usr/etc/yp/upd.systems
/var/yp/updaters

SEE ALSO
ypupdate(3N), ethers(5), group(5), hosts(5), netgroup(5), updaters(5), pnpd(8C)

NOTES
The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed.

Sun Release 4.1 Last change: 25 September 1989 1621

POLICIES (5) FILE FORMATS POLICIES (5)

NAME
policies - network administration policies

A V AILABILITY
Available only on Sun 386i systems running a SunOS 4.0.x release or earlier. Not a SunOS 4.1 release
feature.

DESCRIPTION

FILES

The policies file contains information relevant to domain-wide administration policies. Each line contains
two tokens. separated by white space; the first token is the name of an administrative policy. and the second
is the value of that policy.

fetc/policies
fvarfypf domainnamefpolicies.{ dir ,pag}

SEE ALSO
pnpd(8C). rarpd(8C). logintool(8)

1622 Last change: 19 February 1988 Sun Release 4.1

PRINTCAP(5) FILE FORMATS PRINTCAP(5)

NAME
printcap - printer capability data base

SYNOPSIS
/etc/printcap

DESCRIPTION
printcap is a simplified version of the termcap(5) data base for describing printers. The spooling system
accesses the printcap file every time it is used, allowing dynamic addition and deletion of printers. Each
entry in the data base describes one printer. This data base may not be substituted for, as is possible for
termcap, because it may allow accounting to be bypassed.

The default printer is normally Ip, though the environment variable PRINTER may be used to override this.
Each spooling utility supports a -Pprinter option to explicitly name a destination printer.

Refer to System and Network Administration for a discussion of how to set up the database for a given
printer. On Sun386i systems, refer to snap(1) for information on setting up printers with the system and
network administration program.

Each entry in the printcap file describes a printer, and is a line consisting of a number of fields separated
by':' characters. The first entry for each printer gives the names which are known for the printer, separat­
ed by 'I' characters. The first name is conventionally a number. The second name given is the most com­
mon abbreviation for the printer, and the last name given should be a long name fully identifying the
printer. The second name should contain no blanks; the last name may well contain blanks for readability.
Entries may continue onto multiple lines by giving a '\' as the last character of a line, and empty fields may
be included for readability.

Capabilities in printcap are all introduced by two-character codes, and are of three types:

Boolean Capabilities that indicate that the printer has some particular feature. Boolean capabilities are
simply written between the ':' characters, and are indicated by the word 'bool' in the type
column of the capabilities table below.

Numeric Capabilities that supply information such as baud-rates, number of lines per page, and so on.
Numeric capabilities are indicated by the word num in the type column of the capabilities
table below. Numeric capabilities are given by the two-character capability code followed by
the '#' character, followed by the numeric value. The following example is a numeric entry
stating that this printer should run at 1200 baud:

:br#1200:

String Capabilities that give a sequence which can be used to perform particular printer operations
such as cursor motion. String valued capabilities are indicated by the word str in the type
column of the capabilities table below. String valued capabilities are given by the two­
character capability code followed by an '=' sign and then a string ending at the next following
': '. For example,

:rp=spinwriter:

is a sample entry stating that the remote printer is named spinwriter.

Sun386i DESCRIPTION
On Sun386i systems, Ipr(l) and related printing commands use the Network Information Service (NIS) to
obtain the printcap entry for a named printer if the entry does not exist in the local/etc/printcap file. For
example, when a user issues the command:

Ipr -Pnewprinter roo
Ipr searches /etc/printcap on the local system for an entry for newprinter. If no local entry for new­
printer exists, then Ipr searches the NIS map called printcap. The search is invisible to the user.

Sun Release 4.1 Last change: 24 February 1988 1623

PRINTCAP (5) FILE FORMATS PRINTCAP(5)

Ipr creates the spooling directory for the printer automatically if no spooling directory exists.

System administrators can make a printer available to the entire NIS domain by placing an entry for that
printer in the NIS printeap map, typically using snap. Otherwise, the system administrator must edit the
letclprinteap file on the NIS master and then rebuild the NIS map.

CAPABILITIES
Name Type Default Description

af str NULL name of accounting file
br num none if lp is a tty, set the baud rate (ioctl call)
ef str NULL cifplot data filter
df str NULL TeX data filter (DVI format)
du str 0 User ID of user 'daemon'.
fe num 0 if lp is a tty, clear flag bits
tT str "\C" string to send for a form feed
fo bool false print a form feed when device is opened
fs num 0 like 'fc' but set bits
gf str NULL graph data filter (plot(3X) format)
hi bool false print the burst header page last
ie bool false driver supports (non standard) ioctl to indent printout
if str NULL name of input/communication filter (created per job)
If str "/dev/console" error logging file name
10 str "lock" name of lock file
Ip str "/dev/lp" device name to open for output
me num 0 maximum number of copies
ms str NULL list of terminal modes to set or clear
mx num 1000 maximum file size (in BUFSIZ blocks), zero = unlimited
nd str NULL next directory for list of queues (unimplemented)
nf str NULL ditroff data filter (device independent troft)
of str NULL name of output/banner filter (created once)
pc num 200 price per foot or page in hundredths of cents
pi num 66 page length (in lines)
pw num 132 page width (in characters)
px num 0 page width in pixels (horizontal)
py num 0 page length in pixels (vertical)
rf str NULL filter for printing FORTRAN style text files
rg str NULL restricted group. Only members of group allowed access
rm str NULL machine name for remote printer
rp str "lp" remote printer name argument
rs bool false restrict remote users to those with local accounts
rw bool false open printer device read/write instead of write-only
sb bool false short banner (one line only)
sc bool false suppress multiple copies
sd str "/var/spool/lpd' , spool directory
sf bool false suppress form feeds
sh bool false suppress printing of burst page header
st str "status" status file name
te str NULL name of similar printer; must be last
tf str NULL troff data filter (C/ A{f phototypesetter)
tr str NULL trailer string to print when queue empties
vf str NULL raster image filter
xc num 0 if lp is a tty, clear local mode bits
xs num 0 like 'xc' but set bits

1624 Last change: 24 February 1988 Sun Release 4.1

PRINTCAP (5) FILE FORMATS PRINTCAP (5)

FILES

If the local line printer driver supports indentation, the daemon must understand how to invoke it.

Note: the fs, fc, XS, and xc fields are flag masks rather than flag values. Certain default device flags are set
when the device is opened by the line printer daemon if the device is connected to a terminal port. The
flags indicated in the rc field are then cleared; the flags in the fs field are then set (or vice-versa, depending
on the order of fc#nnnn and rS#nnnn in the /etc/printcap file). The bits cleared by the rc field and set by
the rs field are those in the sgJlags field of the sgtty structure, as set by the TIOCSETP ioctl call, and the
bits cleared by the xc field and set by the xs field are those in the "local flags" word, as set by the
TIOCLSET ioctl call. See ttcompat(4M) for a description of these flags. For example, to set exactly the
flags 06300 in the rs field, which specifies that the EVENP, ODDP, and XTABS modes are to be set, and all
other flags are to be cleared, do:

: fc#O 177777 :fs#06300:

The same process applies to the xc and xs fields. Alternatively, the ms field can be used to specify modes
to be set and cleared. These modes are specified as stty(IV) modes; any mode supported by stty may be
specified, except for the baud rate which must be specified with the br field. This permits modes not sup­
ported by the older terminal interface described in ttcompat(4M) to be set or cleared. Thus, to set the ter­
minal port to which the printer is attached to even parity, TAB expansion, no NEWLINE to
RETURN/LINEFEED translation, and RTS/CTS flow control enabled, do:

:ms=evenp,-tabs,nl,crtscts:

On Sun386i systems, the tc field, as in the termcap(5) file, must appear last in the list of capabilities. It is
recommended that each type of printer have a general entry describing common capabilities; then an indi­
vidual printer can be defined with its particular capabilities plus a tc field that points to the general entry for
that type of printer.

/etc/printcap

SEE ALSO

NOTES

Ipq(l), Ipr(l), Iprm(l), plot(lG), snap(1), stty(1 V), plot(3X), ttcompat(4M), termcap(5), Ipc(8), Ipd(8),
pac(8)

System and Network Administration

The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed.

Sun Release 4.1 Last change: 24 February 1988 1625

PROTO (5) FILE FORMATS PROTO(5)

NAME
proto - prototype job file for at

SYNOPSIS
Ivarlspoollcron/.proto

Ivarlspoollcron/.proto.queue

DESCRIPTION
When a job is submitted to at or batch t (see at(1» the job is constructed as a shell script. Firstt a prologue
is constructedt consisting of:

• A header specifying the ownert job namet and shell that should be used to run the jobt and a flag indi­
cating whether mail should be sent when the job completes;

• A set of Bourne shell commands to make the environment (see environ(5V» for the at job the same as
the current environment;

• A command to run the userts shell (as specified by the SHELL environment variable) with the rest of
the job file as input.

at then reads a "prototype file," and constructs the rest of the job file from it.

Text from the prototype file is copied to the job file, except for special "variablesu that are replaced by oth­
er text:

$<I is replaced by the current working directory
$1 is replaced by the current file size limit (see ulimit(3C»
$m is replaced by the current umask (see umask(2V»
$t is replaced by the time at which the job should be run, expressed as seconds since Janu­

ary 1, 1970t 00:00 Greenwich Mean Timet preceded by a colon
$< is replaced by text read by at from the standard input (that is, the commands provided to

at to be run in the job)

If the job is submitted in queue queue, at uses the file Ivarlspoollcronl.proto.queue as the prototype file if
it exists, otherwise it will use the file Ivarlspoollcronl.proto.

EXAMPLES

FILES

The standard .proto file supplied with SunOS is:

@(#)proto.5 1.3 89/10/05 SMI; from S5R3 1.1

cd$d
umask $m
$<

which causes commands to change the current directory in the job to the current directory at the time at
was runt and to change the umask in the job to the umask at the time at was run, to be inserted before the
commands in the job.

Ivarlspoollcron/.proto
Ivarlspooll cron/.proto.queue

SEE ALSO
at(l)

1626 Last change: 19 December 1988 Sun Release 4.1

PROTOCOLS (5) FILE FORMATS PROTOCOLS (5)

NAME
protocols - protocol name data base

SYNOPSIS
I etc/protocols

DESCRIPTION
The protocols file contains information regarding the known protocols used in the TCP/IP. For each proto­
col a single line should be present with the following information:

official-protocol-name protocol-number aliases

Items are separated by any number of blanks and/or TAB characters. A '#' indicates the beginning of a
comment; characters up to the end of the line are not interpreted by routines which search the file.

Protocol names may contain any printable character other than a field delimiter, NEWLINE, or comment
character.

EXAMPLE
The following example is taken from SunOS.

Internet (IP) protocols

FILES

ip
icmp
ggp
tcp
pup
udp

I etc/protocols

SEE ALSO
getprotoent(3N)

BUGS

o
1
3
6
12
17

IP
ICMP
GGP
TCP
PUP
UDP

internet protocol, pseudo protocol number
internet control message protocol
gateway-gateway protocol
transmission control protocol
P ARC universal packet protocol
user datagram protocol

A name server should be used instead of a static file. A binary indexed file format should be available for
fast access.

Sun Release 4.1 Last change: 18 December 1989 1627

PUBLICKEY (5) FILE FORMATS PUBLICKEY (5)

NAME
publickey - public key database

SYNOPSIS
letclpublickey

DESCRIPTION
letclpublickey is the public key database used for secure networking. Each entry in the database consists of
a network user name (which may either refer to a user or a hostname), followed by the user's public key (in
hex notation), a colon, and then the user's secret key encrypted with its login password (also in hex nota­
tion).

This file is altered either by the user through the chkey(l) command or by the system administrator through
the newkey(8) command. The file letclpublickey should only contain data on the Network Information
Service (NIS) master machine, where it is converted into the NIS database publickey.byname.

The letclpublickey file contains a default entry for nobody. If this entry is commented out, chkey only al­
lows user to edit their existing entry, it will not allow them to create new entries.

SEE ALSO

NOTES

1628

chkey(I), publickey(3R), newkey(8), ypupdated(8C)

The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed.

Last change: 19 October 1987 Sun Release 4.1

QUEUEDEFS (5) FILE FORMATS QUEUEDEFS (5)

NAME
queuedefs - queue description file for at, batch, and cron

SYNOPSIS
/var/spool/cron/queuedefs

DESCRIPTION
The queuedefs file describes the characteristics of the queues managed by cron(8). Each non-comment
line in this file describes one queue. The format of the lines are as follows:

q.[njobj] [nicen] [nwaitw]

The fields in this line are:

q The name of the queue. a is the default queue for jobs started by at(1); b is the default queue for
jobs started by batch (see at(I»; c is the default queue for jobs run from a crontab(5) file.

njob The maximum number of jobs that can be run simultaneously in that queue; if more than njob jobs
are ready to run, only the first njob jobs will be run, and the others will be run as jobs that are
currently running terminate. The default value is 100.

nice The nice(1) value to give to all jobs in that queue that are not run with a user ID of super-user.
The default value is 2.

nwait The number of seconds to wait before rescheduling a job that was deferred because more than
njob jobs were running in that job's queue, or because more than 25 jobs were running in all the
queues. The default value is 60.

Lines beginning with # are comments, and are ignored.

EXAMPLE

FILES

@(#)queuedefs 1.187/02/18 SMI; from SSR3

a.4j1n
b.2j2n90w

This file specifies that the a queue, for at jobs, can have up to 4 jobs running simultaneously; those jobs
will be run with a nice value of 1. As no nwait value was given, if a job cannot be run because too many
other jobs are running cron will wait 60 seconds before trying again to run it. The b queue, for batch jobs,
can have up to 2 jobs running simultaneously; those jobs will be run with a nice value of 2. If a job cannot
be run because too many other jobs are running, cron will wait 90 seconds before trying again to run it.
All other queues can have up to 100 jobs running simultaneously; they will be run with a nice value of 2,
and if a job cannot be run because too many other jobs are running cron will wait 60 seconds before trying
again to run it.

/var/spool/cron/queuedefs

SEE ALSO
at(1), nice(1), crontab(5), cron(8)

Sun Release 4.1 Last change: 22 January 1988 1629

RASTERFILE (5) FILE FORMATS RASTERFILE (5)

NAME
rasterfile - Sun's file fonnat for raster images

SYNOPSIS
#include <rasterfile.h>

DESCRIPTION
A rasterfile is composed of three parts: first, a header containing 8 integers; second, a (possibly empty) set
of colormap values; and third, the pixel image, stored a line at a time, in increasing y order. The image is
layed out in the file as in a memory pixrect. Each line of the image is rounded up to the nearest 16 bits.

The header is defined by the following structure:

struct raster file {
int ras _magic;
int ras _width;
int ras _height;
int ras_depth;
int rasJength;
int ras _type;
int ras _ maptype;
int ras _ maplength;

};

The ras _magic field always contains the following constant:

#define RAS_MAGIC Ox59a66a95

The ras_width, ras_height, and ras_depth fields contain the image's width and height in pixels, and its
depth in bits per pixel, respectively. The depth is either 1 or 8, corresponding to standard frame buffer
depths. The ras _length field contains the length in bytes of the image data. For an unencoded image, this
number is computable from the ras_width, ras_height, and ras_depth fields, but for an encoded image it
must be explicitly stored in order to be available without decoding the image itself. Note: the length of the
header and of the (possibly empty) colormap values are not included in the value of the ras _length field; it
is only the image data length. For historical reasons, files of type RT_OLD will usually have a 0 in the
ras _length field, and software expecting to encounter such files should be prepared to compute the actual
image data length if needed. The ras _ maptype and ras _ maplength fields contain the type and length in
bytes of the colormap values, respectively. If ras_maptype is not RMT_NONE and the ras_maplength is not
0, then the colormap values are the ras_maplength bytes immediately after the header. These values are ei­
ther uninterpreted bytes (usually with the ras_maptype set to RMT_RAW) or the equal length red, green and
blue vectors, in that order (when the ras_maptype is RMT_EQUAL_RGB). In the latter case, the
ras _ maplength must be three times the size in bytes of anyone of the vectors.

SEE ALSO
Sun View Programmer's Guide

1630 Last change: 19 October 1987 Sun Release 4.1

REMOTE (5) FILE FORMATS REMOTE (5)

NAME
remote - remote host description file

SYNOPSIS
/etc/remote

DESCRIPTION
The systems known by tip(lC) and their attributes are stored in an Ascn file which is structured somewhat
like the termcap(5) file. Each line in the file provides a description for a single system. Fields are separat­
ed by a colon ':'. Lines ending in a '\' character with an immediately following NEWLINE are continued
on the next line.

The first entry is the name(s) of the host system. If there is more than one name for a system, the names
are separated by vertical bars. After the name of the system comes the fields of the description. A field
name followed by an '=' sign indicates a string value follows. A field name followed by a '#' sign indi­
cates a following numeric value.

Entries named tipbaudrate are used as default entries by tip, as follows. When tip is invoked with only a
phone number, it looks for an entry of the form tipbaudrate, where baudrate is the baud rate with which
the connection is to be made. For example, if the connection is to be made at 300 baud, tip looks for an en­
try of the form tip300.

CAP ABILITIES
Capabilities are either strings (str), numbers (num), or boolean flags (bool). A string capability is specified
by capability=value; for example, 'dv=ldev/harris'. A numeric capability is specified by
capability#value; for example, 'xa#99'. A boolean capability is specified by simply listing the capability.

at (str) Auto call unit type. The following lists valid 'at' types and their corresponding hardware:
biz31f Bizcomp 1031, tone dialing
biz31w Bizcomp 1031, pulse dialing
biz22f Bizcomp 1022, tone dialing
biz22w Bizcomp 1022, pulse dialing
df02 DEC DF02
df03 DEC DF03
ventel
v3451
v831
hayes
at

Vente1212+
Vadic 3451 Modem
Vadic 831
Any Hayes-compatible modem
Any Hayes-compatible modem

br (num) The baud rate used in establishing a connection to the remote host. This is a decimal
number. The default baud rate is 300 baud.

em (str) An initial connection message to be sent to the remote host. For example, if a host is reached
through a port selector, this might be set to the appropriate sequence required to switch to the host.

cu (str) Call unit if making a phone call. Default is the same as the dv field.

di (str) Disconnect message sent to the host when a disconnect is requested by the user.

du (bool) This host is on a dial-up line.

dv (str) Device(s) to open to establish a connection. If this file refers to a terminal line, tip attempts
to perform an exclusive open on the device to insure only one user at a time has access to the port.

ec (bool) Initialize the tip variable echocheck to on, so that tip will synchronize with the remote host
during file transfer by waiting for the echo of the last character transmitted.

el (str) Characters marking an end-of-line. The default is no characters. tip only recognizes ,-, es­
capes after one of the characters in el, or after a RETURN.

es (str) The command prefix (escape) character for tip.

Sun Release 4.1 Last change: 19 October 1988 1631

REMOTE(5) FILE FORMATS REMOTE (5)

FILES

1632

et (num) Number of seconds to wait for an echo response when echo-check mode is on. This is a
decimal number. The default value is 10 seconds.

ex (str) Set of non-printable characters not to be discarded when scripting with beautification turned
on. The default value is ''\t\n\b\f''.

fo (str) Character used to force literal data transmission. The default value is ''377'.

fs (num) Frame size for transfers. The default frame size is equal to 1024.

hd (bool) Initialize the tip variable halfduplex to on, so local echo should be performed.

hf (bool) Initialize the tip variable hardwareflow to on, so hardware flow control is used.

ie (str) Input end-of-file marks. The default is a null string ('''').

nb (bool) Initialize the tip variable beautify to off, so that unprintable characters will not be discard­
ed when scripting.

nt (bool) Initialize the tip variable tandem to off, so that XON/XOFF flow control will not be used
to throttle data from the remote host.

nv (bool) Initialize the tip variable verbose to off, so that verbose mode will be turned on.

oe (str) Output end-of-file string. The default is a null string (""). When tip is transferring a file, this
string is sent at end-of-file.

pa (str) The type of parity to use when sending data to the host. This may be one of even, odd,
none, zero (always set bit 8 to zero), one (always set bit 8 to 1). The default is none.

pn (str) Telephone number(s) for this host. If the telephone number field contains an '@' sign, tip
searches the /etc/phones file for a list of telephone numbers - see phones(5). A '%' sign in the
telephone number indicates a 5-second delay for the Ventel Modem.

pr (str) Character that indicates end-of-line on the remote host. The default value is '\n'.

ra (bool) Initialize the tip variable raise to on, so that lower case letters are mapped to upper case
before sending them to the remote host.

rc (str) Character that toggles case-mapping mode. The default value is '\377'.

re (str) The file in which to record session scripts. The default value is tip.record.

rw (bool) Initialize the tip variable rawftp to on, so that all characters will be sent as is during file
transfers.

sc (bool) Initialize the tip variable script to on, so that everything transmitted by the remote host
will be recorded.

tb (bool) Initialize the tip variable tabexpand to on, so that tabs will be expanded to spaces during
file transfers.

tc (str) Indicates that the list of capabilities is continued in the named description. This is used pri­
marily to share common capability information.

Here is a short example showing the use of the capability continuation feature:

UNIX -1200: \
: dv=/dev/ cuaO:el= "D"U'C "S"Q"O@:du:at=ventel:ie=#$% :oe= "D: br#1200:

arpavaxlax:\
:pn=7654321 %:tc=UNIX-1200

/etc/remote
/etc/phones

Last change: 19 October 1988 Sun Release 4.1

REMOTE(5) FILE FORMATS REMOTE (5)

SEE ALSO
tip(lC), phones(5), termcap(5)

Sun Release 4.1 Last change: 19 October 1988 1633

RESOL V .CONF (5) FILE FORMATS RESOL V .CONF (5)

NAME
resolv.conf - configuration file for domain name system resolver

DESCRIPTION

FILES

The resolver configuration file contains information that is read by the domain name system resolver li­
brary the first time it is invoked in a process. It is only necessary to create this file to specify an explicit de­
fault domain name other than the default one derived from the domainname(1) command, or to specify
name servers to use on other machines. The file is designed to be human readable and contains a list of
keyword-value pairs that provide various types of resolver infonnation.

keyword value

The different configuration options are:

nameserver address The Internet address (in dot notation) of a name server that the resolver should
query. Up to MAXNS (currently 3) name servers may be listed. In that case the
resolver library queries tries them in the order listed. The policy used is to try a
name server, and if the query times out, try the next, until out of name servers,
then repeat trying all the name servers until a maximum number of retries are
made. If there are no nameserver lines in this file, then the loopback address is
used, so there must be a name server running on the same machine.

domain name The default domain to append to names that do not have a dot in them, and used in
searches. If there is no domain line in this file, then it is derived from the domain
set by the domainname(l) command, usually by removing the first component.
For example, if the domainname(1) is set to "foo.podunk.edu" then the default
domain used by the resolver will be "podunk.edu". The is the same policy used
by sendmaiJ(8).

The keyword-value pair must appear on a single line, and the keyword (for instance, nameserver) must
start the line. The value follows the keyword, separated by white space.

I etclresolv .conf

SEE ALSO
domainname(1), gethostent(3N), resolver(3), named(8C), nslookup(8C), RFC 1034, RFC 1035

System and Network Administration

1634 Last change: 30 June 1989 Sun Release 4.1

RFMASTER (5) FILE FORMATS RFMASTER (5)

NAME
rfmaster - Remote File Sharing name server master file

SYNOPSIS
lusr/nserve/rfmaster

DESCRIPTION
The rfmaster file is an ASCII text file that identifies the hosts that are responsible for providing primary
and secondary domain name service for Remote File Sharing domains. This file contains a series of en­
tries, each terminated by a NEWLINE; a record may be extended over more than one line by escaping the
NEWLINE with a backslash. Fields in each record are separated by white space. Each record has three
fields: name, type, and data.

The type field, which defines the meaning of the name and data fields, has three possible values:

p Primary domain name server. In this case, name is the domain name and data is the full hostname
of the primary name server, specified as:

domain .nodename

There can be only one primary name server per domain.

s Define a secondary name server for a domain. In this case, name and data are the same as for the
p type. The order of the s entries in the rfmaster file determines the order in which secondary
name servers take over when the current domain name server fails.

a Define a network address for a machine. In this case, name is the full domain name for the
machine, and data is the network address. The network address can be in plain Ascn text or it
can be preceded by a '\x' to be interpreted as hexadecimal notation.

There are at least two lines in the rfmaster file per domain name server: one p line and one a line. Togeth­
er, they define the primary and its network address. There should also be at least one secondary name
server in each domain.

This file is created and maintained on the primary domain name server. When a machine other than the
primary tries to start Remote File Sharing, this file is read to determine the address of the primary. If this
file is missing, the -p option of rfstart must be used to identify the primary. After that, a copy of the
primary's rfmaster file is automatically placed on the machine.

Domains not served by the primary can also be listed in the rfmaster file. By adding primary, secondary,
and address information for other domains on a network, machines served by the primary will be able to
share resources with machines in other domains.

A primary name server may be a primary for more than one domain. However, the secondaries must then
also be the same for each domain served by the primary.

EXAMPLE
An example of an rfmaster file is shown below. The network addresses given in the example are IP ad­
dresses; for more information on their format and how to generate them, see hostrfs(8).

snnrfs p snn rfs.estale
snnrfs s snnrfs.ivy
snnrfs.estale a \xO00214508190320d
snnrfs.ivy a \xO002145081903246

Note: If a line in the rfmaster file begins with a '#' (pound sign) character, the entire line will be treated
as a comment.

Sun Release 4.1 Last change: 30 September 1988 1635

RFMASTER (5)

FILES
lusr/nserve/rfmaster

SEE ALSO
rfstart(8)

FILE FORMATS

System and Network Administration

1636 Last change: 30 September 1988

RFMAS1ER (5)

Sun Release 4.1

RGB(5) FILE FORMATS RGB(5)

NAME
rgb - available colors (by name) for coloredit

SYNOPSIS
.rgb

$HOME/.rgb

lusr/lib/.rgb

A V AILABILITY
Available only on Sun 386i systems running a SunOS 4.0.x release or earlier. Not a SunOS 4.1 release
feature.

DESCRIPTION
.rgb is an ASCII file containing consecutive lines terminated by newlines. Each line starts with three in­
tegers, each in the range 0-255. These integers are the RGB equivalent for the color named on the same
line. At least one tab character delimits the last integer from the name field. The coloreditor searches for
this file, first in the current directory; next, in the users home directory; and finally, in lusr/lib. The user
can add to or delete from the .rgb file that he or she has access to, thus changing the available color table
for subsequent invocations of coloredit.

EXAMPLES
The following is an example of a .rgb file.

000 Black
00255 Blue
95 159 159 Cadet Blue
66 66 111 Cornflower Blue
107 35 142 Dark Slate Blue

SEE ALSO
coloredit(l)

Sun Release 4.1 Last change: 19 February 1988 1637

ROOTMENU (5) FILE FORMATS ROOTMENU (5)

NAME
rootmenu - root menu specification for Sun View

SYNOPSIS
-/.rootmeDu
/usr/lib/ .rootmenu

DESCRIPTION
If a .rootmenu file is present in a user's home directory, it specifies the SunView menu, the menu that ap­
pears when the user clicks and holds the right mouse button in the background of the Sun View desktop. If
a .rootmeDu file is not present in the user's home directory, /usr/lib/.rootmenu specifies the SunView
menu.

Each line of a .rootmenu file has the format:

menu item command

menu item can be a character string, or an icon file delimited by angle brackets:

<icon-filename>

If menu item is a character string with embedded spaces, it must be enclosed by double quotes ('" ').

command can be a command line to be executed when the menu item is selected, or one of the following
reserved-word commands:

EXIT

REFRESH

MENU

END

Exit sunview (requires confinnation).

Redraw the entire screen.

This menu item is a pull-right item with a submenu. If a full path name follows
the MENU command, the submenu contents are taken from that file. Other-
wise, all the lines between a MENU command and a matching END command
are added to the submenu.

Mark the end of a nested submenu. The left side of this line should match the
left side of a line with a MENU command.

If command is not one of the reserved-word commands, it is treated as a command line, although no shell
interpretation is done.

Lines beginning with a '#' character are considered comments and are ignored.

If a user's .rootmenu file is modified, the SunView menu immediately reflects the changes.

See sunview(1) for more details about .rootmenu.

EXAMPLES

1638

The following is a sample .rootmenu file:

sample root menu

"Lock Screen"
Tools MENU

Perfmeter
Calculator
Mailtool

Tools END
"SbeIlTool"
" CommaDdTool"
"Console"
#"MaiiTool"
"TextEditor"

lockscreen

perfmeter
calc
mailtool

sbelltool
cmdtool
cmdtool-C
mailtool
textedit

Last change: 31 January 1990 Sun Release 4.1

ROOTMENU(5)

"DefaultsEditor"
#"IconEditor"
#"DbxTool"
"Perfl\1eter"
#"UraphicsTool"
"Redisplay All"
"Exit Suntools"

SEE ALSO
sunview(l)

Sun Release 4.1

defaultsedit
iconedit
dbxtool
perfmeter
gfxtool
REFRESH
EXIT

FILE FORMATS

Last change: 31 January 1990

ROOTMENU(5)

1639

RPC(5)

NAME
rpc - rpc program number data base

SYNOPSIS
letdrpc

DESCRIPTION

FILE FORMATS RPC(5)

The rpc file contains user readable names that can be used in place of rpc program numbers. Each line has
the following information:

rpc-program-server rpc-program-number aliases

Items are separated by any number of blanks and/or tab characters. A "#" indicates the beginning of a
comment; characters up to the end of the line are not interpreted by routines which search the file.

EXAMPLE

FILES

Here is an example of the letc/rpc file from the SunOS System.

rpc 1.10 87/04/10

portmapper 100000
rstatd 100001
rusersd 100002
nfs 100003
ypserv 100004
mountd 100005
ypbind 100007
walld 100008
yppasswdd 100009
etherstatd 100010
rquotad 100011
sprayd 100012
3270_ mapper 100013
rje_mapper 100014
selection svc 100015
database svc 100016
rexd 100017
alis 100018
sched 100019
lIockmgr 100020
nlockmgr 100021
x25.inr 100022
statmon 100023
status 100024
bootparam 100026
ypupdated 100028
keyser v 100029

letdrpc

portmap sunrpc
rstat rup perfmeter
rusers
nfsprog
ypprog
mount showmount

rwall shutdown
yppasswd
etherstat
rquotaprog quota rquota
spray

selnsvc

rex

ypupdate
keyserver

SEE ALSO
getrpcent(3N)

1640 Last change: 26 September 1985 Sun Release 4.1

seeSFILE (5) FILE FORMATS seCSFILE (5)

NAME
sccsfile - format of an sees history file

DESCRIPTION
An sees file is an ASCII file consisting of six logical parts:

checksum character count used for error detection

delta table log containing version info and statistics about each delta

usemames login names and/or group IDs of users who may add deltas

flags definitions of internal keywords

comments arbitrary descriptive information about the file

body the actual text lines intermixed with control lines

Each section is described in detail below.

Conventions
Throughout an sees file there are lines which begin with the ASCII SOH (start of heading) character (octal
(01). This character is hereafter referred to as the control character, and will be represented as '''A'. If a
line described below is not depicted as beginning with the control character, it cannot do so and still be
within sees file format

Entries of the form ddddd represent a five digit string (a number between 00000 and 99999).

Checksum
The checksum is the first line of an sces file. The form of the line is:

AA hddddd

The value of the checksum is the sum of all characters, except those contained in the first linc. The A Ah
provides a magic number of (octal) 064001.

Delta Table
The delta table consists of a variable number of entries of the form:

A As inserted Ideleted lunchanged
A Ad type sid yr Imo Ida hr :mi :se username serial-number predecessor-sn
"Ai include-list
" Ax exclude-list
A Ag ignored-list
A Am mr-number

A Ac comments . ..

AAe

The first line CAs) contains the number of lines inserted/deleted/unchanged respectively. The second line
r Ad) contains the type of the delta (normal: D, and removed: R), the sees ID of the delta, the date and
time of creation of the delta, the user-name corresponding to the real user ill at the time the delta was
created, and the serial numbers of the delta and its predecessor, respectively.

The A Ai, A Ax, and A Ag lines contain the serial numbers of deltas included, excluded, and ignored, respec­
tively. These lines do not always appear.

The A Am lines (optional) each contain one MR number associated with the delta; the A Ac lines contain
comments associated with the delta.

The A Ae line ends the delta table entry.

Sun Release 4.1 Last change: 30 June 1988 1641

SCCSFILE (5) FILE FORMATS SCCSFILE (5)

User Names
The list of user-names and/or numerical group IDs of users who may add deltas to the file, separated by
NEWLINE characters. The lines containing these login names and/or numerical group IDs are surrounded
by the bracketing lines A Au and A AU. An empty list allows anyone to make a delta.

Flags
Flags are keywords that are used internally (see sccs-admin(l) for more information on their use). Each
flag line takes the form:

" Af flag optional text

The following flags are defined in order of appearance:

AM t type-of-program
Defines the replacement for the % T % ID keyword.

A Af v program-name
Controls prompting for MR numbers in addition to comments; if the optional text is present it
defines an MR number validity checking program.

A Af i Indicates that the 'No id keywords' message is to generate an error that terminates the sees com­
mand. Otherwise, the message is treated as a warning only.

A Af b Indicates that the -b option may be used with the sees get command to create a branch in the
delta tree.

"M m module name
Defines the first choice for the replacement text of the % M % ID keyword.

AMfjioor
Defines the "floor" release; the release below which no deltas may be added.

A Af c ceiling
Defines the "ceiling" release; the release above which no deltas may be added.

A Af d default-sid
The d flag defines the default SID to be used when none is specified on an sees get command.

A Af n The n flag enables the sees delta command to insert a "null" delta (a delta that applies no
changes) in those releases that are skipped when a delta is made in a new release (for example,
when delta 5.1 is made after delta 2.7, releases 3 and 4 are skipped).

A Af j Enables the sees get command to allow concurrent edits of the same base SID.

A Af I lock-releases
Defines a list of releases that are locked against editing.

A Af q user defined

"Afe 011

Defines the replacement for the %Q% ID keyword.

The e flag indicates whether a source file is encoded or not. A 1 indicates that the file is encoded.
Source files need to be encoded when they contain control characters, or when they do not end
with a NEWLINE. The e flag allows files that contain binary data to be checked in.

Comments
Arbitrary text surrounded by the bracketing lines A At and "AT. The comments section typically will con­
tain a description of the file's purpose.

Body

1642

The body consists of text lines and control lines. Text lines do not begin with the control character, control
lines do. There are three kinds of control lines: insert, delete, and end, represented by:

Last change: 30 June 1988 Sun Release 4.1

SCCSFILE (5)

AAI ddddd
AAD ddddd
AAE ddddd

FILE FORMATS SCCSFILE (5)

respectively. The digit string is the serial number corresponding to the delta for the control line.

SEE ALSO
secs(1), sccs-admin(1), sccs-ede(1), sees-comb(1), sees-delta(I), sces-get(l), sccs-help(I), sccs-prs(l),
sees-prt(I), secs-rmdel(I), sces-sact(1), sccs-sccsditT(1), sccs-unget(1), sces-val(l), what(l)

Sun Release 4.1 Last change: 30 June 1988 1643

SERVICES (5) FILE FORMATS SERVICES (5)

NAME
services - Internet services and aliases

DESCRIPTION

FILES

The services file contains an entry for each service available through the TCP/IP. Each entry consists of a
line of the form:

service-name port / protocol aliases

service-name This is the official Internet service name.

port /protocol This field is composed of the port number and protocol through which the service is pro­
vided (for instance, 5121tcp).

aliases This is a list of alternate names by which the service might be requested.

Fields can be separated by any number of spaces or TAB's. A 'I' (pound-sign) indicates the beginning of a
comment; characters up to the end of the line are not intetpreted by routines which search the file.

Service names may contain any printable character other than a field delimiter, NEWLINE, or comment
character.

/etdservices

SEE ALSO
getservent(3N), inetd.conf(5)

BUGS
A name server should be used instead of a static file.

1644 Last change: 18 December 1989 Sun Release 4.1

SETUP.PC(5) FILE FORMATS SETUP.PC (5)

NAME
setup.pc - master configuration file for OOS

SYNOPSIS
-Ipelsetup.pc

A V AILABILITY
Available only on Sun 386i systems running a SunOS 4.0.x release or earlier. Not a SunOS 4.1 release
feature.

DESCRIPTION
The setup.pc file in your home PC directory, -/pc, is the master configuration file for OOS. Changes to the
file take effect for all new OOS windows you start. The definitions made in setup.pc and AUTOEXEC.BAT
serve to define your system to OOS. Among other things, the setup.pc file defines:

• The printers or devices to which you assign DOS printer names (LPTl, LPT2, LPT3)

• The devices or boards that are tied to the DOS communications devices (COMl, COM2)

• The name of a special DOS quick-start file that you may have set up

• The drive C file to be used

The format of each line is as follows; separators can be TAB or SPACE characters:

DOS Device SunOS Device or Command

DOS Device
The name of the device as DOS knows it. For example, the device name for the first diskette drive
in DOS is "A".

SunOS Device or Command

EXAMPLES

The name of the device as the SunOS system knows it. This can also be a symbolic link to the real
device name. For example, leteldosldefaults/diskette_a is a symbolic link to Idev/rfdOc. For
emulated DOS printers (LPTl, LPT2, or LPf3), specify a command or command pipeline.

DOS Device

A
#B
C
COMl
#COM2
LPTI
LPT2
LPT3
SAVE
#CMDTOOL
#TEXT
#BOARDS

SunOS Device Path Name

leteldosldefaultsldiskette a
leteldosldefaultsldiskette b
-/pelC:
leteldosldefaultslcoml
leteldosldefaultslcom2
Ipr
cat »-/lpt-2
psfx8011pr
-Ipel .quickpc

Placed at the beginning of a line to indicate a comment.

A, B Diskette drivers defined using the standard SunOS names for the Sun386i diskette drives. Drive A
is normally assigned to the built-in diskette drive.

C The emulated C drive. It is actually stored as one large system file.

Sun Release 4.1 Last change: 25 September 1989 1645

SETUP.PC (5) FILE FORMATS SETUP.PC(5)

FILES

COMl,COM2
Serial ports. The first DOS serial port (COMl) is assigned to the Sun386i built-in serial port. To
use the built-in serial port as COM2, comment out the COMl line and uncomment the COM2 line.
(DOS Windows directs the output of either COM! or COM2 to the built-in port, but uses different
interrupt levels so that COM2 "appears" to DOS to be a second serial port.) You can also add a real
second serial port by installing an AT or XT card and enabling the SunOS ATS driver.

LPTl, LPT2, LPT3
Emulated printers. DOS printer names can be assigned to SunOS printers, other devices, or files.

SAVE The "quick-start" file ooS reads at startup for faster loading.

CMDTOOL
Used to list the SunOS commands that must run in a separate Commands window when started
from DOS. The following SunOS commands automatically run in a Commands window when you
run them from DOS:

mail man more passwd rlogin stty vi

If there are other SunOS commands or applications you want to run from DOS, and these com­
mands require keyboard entry or Commands window display, list them here. If you add entries to

this line, separate them with a SPACE character, and be sure to remove the # (comment) symbol to

activate the line.

TEXT Specifies a list of "text-only" ooS programs. Such programs do not require a PC window because
they do not print at specific screen positions; they can print text in a current Commands window if
that i~ where you are working at the time. An example is a C compiler or a linker that runs from
the DOS command line. If you place entries on this line, separate them with a SPACE character,
and be sure to remove the # symbol to activate the text-only line.

BOARDS

A list of boards that DOS should attempt to activate when opening a DOS window. Each board
you list here must have a corresponding entry in the boards.pc file (see boards.pc(5».

You can create task-specific DOS environments by setting up additional setup.pc files to attach different
printers, drive C files, and other real and emulated devices.

If you are installing a board that duplicates a function normally enabled in the setup.pc file, you should dis­
able the corresponding setup.pc line by commenting it out with #.

-/pc/setup.pc

I etc/ dosl defaults/setup.pc

Personal setup.pc file, copied to the user's pc directory when DOS is started
for the first time.
Master copy of setup.pc for the workstation.

SEE ALSO

1646

dos(l), boards.pc(5)

Sun386i User's Guide,
Sun386i Advanced Skills,
Sun MS-DOS Reference Manual

Last change: 25 September 1989 Sun Release 4.1

SM(5) FILE FORMATS SM(5)

NAME
sm, sm.bak, sm.state - in.statd directory and file structures

SYNOPSIS
letc/sm, letc/sm.bak, letc/sm.state

DESCRIPTION

FILES

letc/sm and letc/sm.bak are directories generated by in.statd. Each entry in letc/sm represents the name
of the machine to be monitored by the in.statd daemon. Each entry in letc/sm.bak represents the name of
the machine to be notified by the in.statd daemon upon its recovery.

letc/sm.state is a file generated by rpc.statd to record the its version number. This version number is in­
cremented each time a crash or recovery takes place.

letc/sm
letc/sm.bak
letc/sm.state

SEE ALSO
lockd(8C), statd(8C)

Sun Release 4.1 Last change: 19 October 1987 1647

STATMON(5) FILE FORMATS STATMON(5)

NAME
sm, sm .bak, state - statd directories and file structures

SYNOPSIS
lete/sm tete/sm.bak lete/state

DESCRIPTION

FILES

lete/sm and lete/sm.bak are directories generated by statd. Each entry in lete/sm represents the name of
the machine to be monitored by the statd daemon. Each entry in lete/sm.bak represents the name of the
machine to be notified by the statd daemon upon its recovery.

lete/state is a file generated by statd to record its version number. This version number is incremented
each time a crash or recovery takes place.

lete/sm
lete/sm.bak
lete/state

SEE ALSO
lockd(8C), statd(8C)

1648 Last change: 19 October 1987 Sun Release 4.1

SUNVIEW(5) FILE FORMATS SUNVIEW(5)

NAME
sunview - initialization file for Sun View

SYNOPSIS
-1.suDview
-1.suDtools
lusr/lib/.suDview

DESCRIPTION
If the file .suDview or .suntools is present in a user's home directory when the user starts up sunview(1),
sun view starts up the "tools", or window-based applications listed in this file. You can use a .sunview or
.suntools file to customize your desktop layout. If a .sun view or .suntools file is not present in the user's
home directory, sun view starts up the tools listed in lusr/lib/.sunview.

Each line of a .sun view or .sun tools file has the format:

SunView-tool [options]

SunView-tool is in the form of a command line, although no shell interpretation is done. options are com­
mand line options which may include Sun View generic tool arguments (see sunview(l) for a description of
generic tool arguments). Lines beginning with the '#' character are considered comments and are ignored.

EXAMPLES
Here is a sample .sunview file:

sample .sunview file

cmdtool -Wp 0 0 -WP 0 0 -Wh 3 -Ww 80 -WI "« CONSOLE »" -WL "console" -C
clock -Wp 497 32 -WP 704 0 -Wi -Wh 1
cmdtool -Wp 0 71 -WP 772 0 -Wi -Wh 44 -Ww 80
textedit -Wp 259 98 -WP 840 0 -Wi
mailtool -Wp 492 71-WP 908 0 -Wi

SEE ALSO
sunview(l), toolplaces(l)

Sun Release 4.1 Last change: 31 January 1990 1649

SVDTAB(5) FILE FORMATS SVDTAB(5)

NAME
svdtab - SunView device table

SYNOPSIS
letclsvdtab

DESCRIPTION
The letc/svdtab contains information that is used by the window system (for example, sunview(I» to
change the owner, group, and permissions of the window devices (/dev/win*) upon startup. By default all
lines in this file are commented out. That is, all security is disabled. To enable security, uncomment the
following line in letclsvdtab and start up the window system again:

#0600

If letclsvdtab contains an entry, the owner and group of the win devices are set to the owner and group of
the console. The permissions are set as specified in letc/svdtab. The recommended permissions for nor­
mal security is ()()OO.

Once the window devices are owned by the user, their permissions and ownership can be changed using
chmod(l V) and chown(8), as with any user-other file.

EXAMPLES
The following is an example entry of the letc/svdtab file:

0600

This entry specifies that upon SunView startup, the owner, group and permissions of Idev/win* will be set
to the user's usemame, the user's group and 0600, respectively. Upon exiting the window system, the
owner and group of Idev/win*, will be reset to root, and wheel. The permissions remain as set in
letclsvdtab. If no entry appears in this file, the owner, group and permissions will not be changed.

SEE ALSO

NOTES

1650

chmod(1 V), sUDview(l), chown(8)

If the window system dies unnaturally, for example by kill(I), the owner, group and permissions remain as
set when the window was started up.

Last change: 26 January 1990 S un Release 4.1

SYSLOG.CONF (5) FILE FORMATS SYSLOG.CONF (5)

NAME
syslog.conf - configuration file for syslogd syst~m log daemon

SYNOPSIS
/ etdsyslog.conr

DESCRIPTION
The file /etc/syslog.conr contains information used by the system log daemon, syslogd(8), to forward a sys­
tem message to appropriate log files and/or users. syslog preprocesses this file through m4(1 V) to obtain
the correct information for certain log files.

A configuration entry is composed of two TAB-separated fields:

selector action

The selector field contains a semicolon-separated list of priority specifications of the form:

facility .level[;facility .level]

where facility is a system facility, or comma-separated list of facilities, and level is an indication of the
severity of the condition being logged. Recognized values for facility include:

user Messages generated by user processes. This is the default priority for messages from pro-
grams or facilities not listed in this file.

kern Messages generated by the 'kernel.

mail The mail system.

daemon System daemons, such as ftpd(8C), routed(8C), etc.

auth The authorization system: login(l), su(l V), getty(8), etc.

Ipr The line printer spooling system: Ipr(1), Ipc(8), Ipd(8), etc.

news Reserved for the USENET network news system.

uucp Reserved for the UUCP system; it does not currently use the syslog mechanism.

cron The cron/at facility; crontab(l), at(l), cron(8), etc.

localO-7 Reserved for local use.

mark For timestamp messages produced internally by syslogd.

* An asterisk indicates all facilities except for the mark facility.

Recognized values for level are (in descending order of severity):

emerg For panic conditions that would normally be broadcast to all users.

alert For conditions that should be corrected immediately, such as a corrupted system database.

crit For warnings about critical conditions, such as hard device errors.

err For other errors.

warning For warning messages.

notice For conditions that are not error conditions, but may require special handling.

info Informational messages.

debug For messages that are normally used only when debugging a program.

none Do not send messages from the indicated facility to the selected file. For example, a selector
of

* .debug;mail.none

will send all messages except mail messages to the selected file.

Sun Release 4.1 Last change: 18 February 1988 1651

SYSLOG.CONF (5) FILE FORMATS SYSLOG.CONF (5)

The action field indicates where to forward the message. Values for this field can have one of four forms:

• A filename, beginning with a leading slash, which indicates that messages specified by the selector are
to be written to the specified file. The file will be opened in append mode.

• The name of a remote host, prefixed with an @, as with: @server, which indicates that messages
specified by the selector are to be forwarded to the syslogd on the named host.

• A comma-separated list of usernames, which indicates that messages specified by the selector are to be
written to the named users if they are logged in.

• An asterisk, which indicates that messages specified by the selector are to be written to all logged-in
users.

Blank lines are ignored. Lines for which the first character is a '#' are treated as comments.

Sun386i DESCRIPTION
The file is as described above, except that there is an additional valid entry type, for translation. A line
containing the keyword Ittranslate,1t if present, specifies how system error messages are translated,
suppressed, or forwarded to appropriate log files and/or users.

A translation entry in the file is composed of five TAB-separated fields:

translate source facility input output

The translate field consists of the word translate and is used to indicate that this is a translation entry.

The source field contains a comma separated list of source names. Recognized sources are:

klog

log

syslog

*

Messages placed in Idevlklog by the kernel.

Messages placed in Idev/log file by local programs.

Messages placed in the internet socket by programs on other systems.

An asterisk indicates all three sources (klog, log and syslog).

The facility field contains a comma-separated list of facilities.

The input field is the name of the file used to map error messages (in printf format strings) to numbers.
This number is used to locate a new string in the file specified in the output field. The format of both files
is described in translate(5).

The output file specified by the output field translates the numbers from the input file into the desired error
messages, and also specifies the format to be used to output each message.

EXAMPLE

1652

With the following configuration file:
* .notice;maiI.info
*.crit
kern,mark.debug
kern.err

/var/log/notice
Ivar/log/critical
I dev/ console
@server

*.emerg *
* .alert root,operator
* .alert;auth. warning /var/log/auth

syslogd will log all mail system messages except debug messages and all notice (or higher) messages into
a file named /var/log/notice. It logs all critical messages into /var/log/critical, and all kernel messages and
20-minute marks onto the system console.

Kernel messages of err (error) severity or higher are forwarded to the machine named server. Emergency
messages are forwarded to all users. The users "root" and "operator" are informed of any alert messages.
All messages from the authorization system of warning level or higher are logged in the file /var/log/auth.

Last change: 18 February 1988 Sun Release 4.1

SYSLOG.CONF (5)

FILES
letclsyslog.conf
Ivar/log/notice
Ivar /log/critical
Ivar/log/auth

SEE ALSO

FILE FORMATS SYSLOG.CONF (5)

at(1), crontab(l), logger(I), login(I), Ipr(I), m4(1 V), su(1 V), syslog(3), translate(5), cron(8), ftpd(8C),
getty(8), Ipc(8), Ipd(8), routed(8C), syslogd(8)

Sun Release 4.1 Last change: 18 February 1988 1653

SYSTEMS (5) FILE FORMATS SYSTEMS (5)

NAME
systems - NIS systems file

SYNOPSIS
letc/systems

A V AILABILITY
Available only on Sun 386i systems running a SunOS 4.0.x release or earlier. Not a SunOS 4.1 release
feature.

DESCRIPTION
The letc/systems file is used only by SNAP and Automatic System Installation, and contains basic informa­
tion about each host on the network. It is an AScn file in the letc directory on the Network Information
Service (NIS) master server. To successfully administer all systems in a NIS domain using SNAP, there
must be an entry in this file for each host listed in the letc/hosts file. For each host, this file contains a
one-line entry, of the following form, where each field must be separated by a TAB character:

system architecture sunos "hostid" memory _size disk _size network_role

system is the name of a host, whether it is on a network or a standalone system. This field contains only
lowercase and numeric characters, must start with a lower-case character, and must not be longer
than 32 characters.

arc hitec ture
indicates the architecture of the specified system. This can be s386, sun4, sun3, sun2, sun1,
pcnfs, or other.

sunos indicates the SunOS operating system version the system is running. Typically, the fonn is
sunosversion _number or unknown. SNAP always inserts unknown when adding new systems.

hostid the system host ID, as obtained from Ibin/hostid. This entry must be in quotes. If the host ID is -
unknown, an empty string (" ") is specified. SNAP always inserts an empty string when adding
new systems.

memory_size
amount of memory, in kilobytes. This can be 8000 (for 8 megabytes), 4000 (for 4 megabytes), or
-1 for unknown. SNAP always inserts -1 when adding new systems.

disk size
amount of disk space, in kilobytes. This can be any value, but typically should be close to the ac­
tual disk size or to the total amount of disk space, if expansion disks were added. Diskless clients
would have a zero value, while unknown disk sizes are specified by a -1 value. SNAP always in­
serts -1 when adding new network clients.

network role
indicates the role the system plays on the network. This can be master _ bootserver ,
slave _ bootserver , network_client, or diskless_client.

EXAMPLES

FILES

1654

Here is a sample systems file:

vulcan
polaris
star
traveler

s386
s386
sun4
s386

letc/systems
letc/hosts
Ibinlhostid

sunos4.0.1
sunos4.0.1
sunos4.1
sunos4.0.1

"12345678"
""
''''
""

8000
8000
8000
8000

327000
91000
91000
o

Last change: 25 September 1989

master bootserver
slave bootserver
network client
diskless client

Sun Release 4.1

SYSTEMS (5) FILE FORMATS SYSTEMS (5)

SEE ALSO

NOTES

snap(1), vipw(8)

System and Network Administration,
Sun386i Advanced Administration

Take precautions to lock the letelsystems file against simultaneous changes if it will be edited with a text
editor; editing with vipw(8) provides the necessary locking.

Toe Network Information Service (NlS) was formerly known as Sun YeUow Pages (YP). The functionality
of the two remains the same; only the name has changed. The name Yellow Pages is a registered trade­
mark in the United Kingdom of British Telecommunications pIc, and may not be used without permission.

Sun Release 4.1 Last change: 25 September 1989 1655

TAR(5) FILE FORMATS TAR(5)

NAME
tar - tape archive file format

DESCRIPTION
tar, (the tape archive command) dumps severnl files into one, in a medium suitable for transportation.

A "tar tape" or file is a series of blocks. Each block is of size TBLOCK. A file on the tape is represented
by a header block which describes the file, followed by zero or more blocks which give the contents of the
file. At the end of the tape are two blocks filled with binary zeros, as an EOF indicator.

The blocks are grouped for physical I/O operations. Each group of n blocks (where n is set by the b
keyletter on the tar(1) command line - default is 20 blocks) is written with a single system call; on nine­
track tapes, the result of this write is a single tape record. The last group is always written at the full size,
so blocks after the two zero blocks contain random data. On reading, the specified or default group size is
used for the first read, but if that read returns less than a full tape block, the reduced block size is used for
further reads, unless the B key letter is used.

The header block looks like:

#define TBLOCK512
#define NAMSIZ 100
union hblock {

};

char dummy[TBLOCK];
struct header {

} dbuf;

char name[NAMSIZ];
char model8];
char uid[8];
char gid[8];
char size[12];
char mtime[12];
char chksum[8];
char Iinkftag;
char linkname[NAMSIZ];

name is a null-terminated string. The other fields are zero-filled octal numbers in ASCII. Each field (of
width w) contains w-2 digits, a SPACE, and a null character, except size and mtime, which do not contain
the trailing null. name is the name of the file, as specified on the tar command line. Files dumped because
they were in a directory which was named in the command line have the directory name as prefix and
!filename as suffix. mode is the file mode, with the top bit masked off. uid and gid are the user and group
numbers which own the file. size is the size of the file in bytes. Links and symbolic links are dumped with
this field specified as zero. mtime is the modification time of the file at the time it was dumped. chksum is
a decimal Ascn value which represents the sum of all the bytes in the header block. When calculating the
checksum, the chksum field is treated as if it were all blanks. linkflag is ASCII '0' if the file is "normal" or
a special file, Ascn '1' if it is an hard link, and ASCII '2' if it is a symbolic link. The name linked-to, if
any, is in linkname, with a trailing null character. Unused fields of the header are binary zeros (and are in­
cluded in the checksum).

The first time a given inode number is dumped, it is dumped as a regular file. The second and subsequent
times, it is dumped as a link instead. Upon retrieval, if a link entry is retrieved, but not the file it was linked
to, an error message is printed and the tape must be manually re-scanned to retrieve the linked-to file.

The encoding of the header is designed to be portable across machines.

SEE ALSO
tar(l)

1656 Last change: 19 October 1987 Sun Release 4.1

TAR(5) FILE FORMATS TAR(5)

BUGS
Names or linknames longer than NAMSIZ produce error reports and cannot be dumped.

Sun Release 4.1 Last change: 19 October 1987 1657

TERM(5) FILE FORMATS TERM(5)

NAME
term - terminal driving tables for nroff

SYNOPSIS
lusr/lib/term/tabname

DESCRIPTION

1658

nrotT(l) uses driving tables to customize its output for various types of output devices, such as terminals,
line printers, daisy-wheel printers, or special output filter programs. These driving tables are written as C
programs, compiled, and installed in the directory lusrllib/term. The name of the output device is
specified with the - T option of nrotT. The structure of the terminal table is as follows:

#define INCH 240

struct {

} t;

int bset;
int breset;
int Hor;
int Vert;
int Newline;
int Char;
int Em;
int Halfline;
int Adj;
char *twinit;
char *twrest;
char *twnl;
char *hlr;
char *hlf;
char *flr;
char *bdon;
char * bdoff;
char *ploton;
char *plotoff;
char *up;
char *dOWD;
char *right;
char *Ieft;
char *codetab[256-32];
char *zzz;

The meanings of the various fields are as follows:

bset Bits to set in the sg_ flags field of the sgtty structure before output; see ttcompat(4M).

breset Bits to reset in the sg_f1ags field of the sgtty structure after output; see ttcompat(4M).

Hor Horizontal resolution in fractions of an inch.

Vert Vertical resolution in fractions of an inch.

Newline Space moved by a NEWLINE (LINEFEED) character in fractions of an inch.

Char Quantum of character sizes, in fractions of an inch (that is, a character is a multiple of Char
units wide).

Em Size of an em in fractions of an inch.

Halfline Space moved by a half-LINEFEED (or half-reverse-LINEFEED) character in fractions of an
inch.

Last change: 16 February 1988 Sun Release 4.1

TERM(5)

Adj

twin it

twrest

twol

hlr

hlf

fir

bdon

bdoff

ploton

plototT

up

down

right

left

code tab

FILE FORMATS TERM(5)

Quantum of white space, in fractions of an inch. (that is, white spaces are a multiple of Adj
units wide)

Note: if this is less than the size of the SPACE character (in units of Char; see below for how
the sizes of characters are defined), nrotT will output fractional SPACE characters using plot
mode. Also, if the -e switch to nrotT is used, Adj is set equal to Dor by nrotT.

Set of characters used to initialize the terminal in a mode suitable for nrotT.

Set of characters used to restore the tenninal to normal mode.

Set of characters used to move down one line.

Set of characters used to move up one-half line.

Set of characters used to move down one-half line.

Set of characters used to move up one line.

Set of characters used to tum on hardware boldface mode, if any.

Set of characters used to tum off hardware boldface mode, if any.

Set of characters used to tum on hardware plot mode (for Diablo type mechanisms), if any.

Set of characters used to tum off hardware plot mode (for Diablo type mechanisms), if any.

Set of characters used to move up one resolution unit (Vert) in plot mode, if any.

Set of characters used to move down one resolution unit (Vert) in plot mode, if any.

Set of characters used to move right one resolution unit (Hor) in plot mode, if any.

Set of characters used to move left one resolution unit (Dor) in plot mode, if any.

Definition of characters needed to print an nroff character on the terminal. The first byte is the
number of character units (Char) needed to hold the character; that is, \001 is one unit wide,
\002 is two units wide, etc. The high-order bit (0200) is on if the character is to be underlined
in underline mode (.ul). The rest of the bytes are the characters used to produce the character
in question. If the character has the sign (0200) bit on, it is a code to move the terminal in plot
mode. It is encoded as:

0100 bit on vertical motion.

0100 bit off horizontal motion.

040 bit on negative (up or left) motion.

040 bit off positive (down or right) motion.

037 bits number of such motions to make.

zzz A zero terminator at the end.

All quantities which are in units of fractions of an inch should be expressed as 'INCH*numldenom', where
num and denom are respectively the numerator and denominator of the fraction; that is, 1/48 of an inch
would be written as 'INCH/48 , .

If any sequence of characters does not pertain to the output device, that sequence should be given as a null
string.

The following is a sample code tab encoding.

Sun Release 4.1

"\001 ",
"\001!" ,
"\001\'''' ,
"\001#" ,
"\001$" ,

l*space*1
I*!*I
1*"*1
1*#*1
1*$*1

Last change: 16 February 1988 1659

TERM(5) FILE FORMATS TERM(5)

"\001 %", 1*%*1
"\001&" , 1*&*1
"\001'" , 1*'*1
"\001(" , 1*(*1
"\001)" , 1*)*1
"\001 *", 1***1
"\001+" , 1*+*1
"\001," , 1*,*1
"\001-" , 1*-*1
"\001." , 1*.*1
"\001/" , 1*1*1
"\2010" , 1*0*1
"\2011" , 1*1*1
"\2012" , 1*2*1
"\2013" , 1*3*1
"\2014" , 1*4*1
"\2015" , 1*5*1
"\2016" , 1*6*1
"\2017" , 1*7*1
"\2018" , 1*8*1
"\2019" , 1*9*1
"\001:" , 1*:*1
"\001;" , 1*;*1
"\001<" , 1*<*1
"\001=" , 1*=*1
"\001>" , 1*>*1
"\001?" , I*?*I
"\001@", I*@*I
"\201A" , I*A*I
"\2018" , 1*8*1
"\201C" , I*C*I
"\201D" , I*D*I
"\201E" , I*E*I
"\201F" , I*F*I
"\201G" , I*G*I
"\201H" , I*H*I
"\2011" , 1*1*1
"\201J" , I*J*I
"\201K" , I*K*I
"\201L" , I*L*I
"\201M" , I*M*I
"\201N" , I*N*I
"\2010" , 1*0*1
"\201P" , I*P*I
"\201Q" , I*Q*I
"\201R" , I*R*I
"\201S" , I*S*I
"\201T" , I*T*I
"\201U" , I*U*I
"\201V" , I*V·I
"\201W" , I*W*I
n\201X" , I*X*I
"\201Y" , I*Y*I

1660 Last change: 16 February 1988 Sun Release 4.1

TERM(5) FILE FORMATS TERM(5)

"\201Z" , I*Z*I
"\001[" , 1*[*1
"\001\\" , 1**1
"\001]" , 1*]*1
"\001"" , 1*"*1
"\001_" , 1* *1
"\001'" , 1*'*1
"\201a" , l*a*1
"\201b" , l*b*1
"\201c" , l*c*1
"\201d" , l*d*1
"\201e" , l*e*1
"\201r' , l*f*1
"\201g" , l*g*1
"\201h" , l*h*1
"\20ti" , l*i*1
"\201j" , l*j*1
"\201k" , l*k*1
"\2011" , 1*1*1
"\201m" , l*m*1
"\201n" , l*n*1
"\2010" , 1*0*1
"\201p" , l*p*1
"\201q", l*q*1
"\201r" , l*r*1
"\201s" , l*s*1
"\20U" , l*t*1
"UOlu", l*u*1
"\201v" , l*v*1
"\201w", l*w*1
"\201x" , l*x*1
"\201y" , l*y*1
"\201z" , l*z*1
"\001{" , I*{*I
"\0011" , 1*1*1
"\001}" , I*}*I
"\Oor" , 1*-*1
"\000\0" , I*narrow sp*1
"\001-" , l*hyphen*1
"\001\0 16Z\017" , l*bullet*1
"\002[]" , l*square*1
"\002--" , 1*3/4 em dash*1
"\001_", l*rule*1
"\0031/4" , 1*1/4*1
"\0031/2" , 1*1/2*1
"\0033/4" , 1*3/4*1
"\001-" , l*minus*1
"\2026" , 1*6*1
"\2028" , 1*8*1
"\202ff" , l*ff*1
"\203f6" , l*ffi*1
"\203fll" , l*f8*1
"\001\016p\017" , l*degree*1

Sun Release 4.1 Last change: 16 February 1988 1661

TERM(5)

1662

"\0011\b\342-\3()2" ,
"\001\301s\343s\302" ,
"\001'" ,
"\001\033Z" ,
"\001 ''',
"\001_" ,
"\001/" ,
"\000\0" ,
"\001 ",
"\001\0 16A\017" ,
"\001\016B\017n,
n\OO1\016C\017n,
"\001\016D\017" ,
n\001\016E\017n,
"\001\0 16F\0 17n ,
n\001\016G\017" ,
"\001\016H\017" ,
"\001\0161\017" ,
n \001\0 16J\0 17" ,
"\001\016K\017" ,
"\001\016L\017" ,
n\001\016M\017" ,
n\001\016N\017n,
"\001\0160\017" ,
n\001\016P\017n,
"\001\0 16Q\017" ,
"\001\0 16R\0 17n ,
"\001\0 16S\017n ,
"\001\016T\017n,
"\001\0 16U\0 17n ,
"\001\0 16V\017n ,
"\001\0 16W\017" ,
"\001\0 16X\017" ,
"\001\016#\017" ,
"\001\016$\017" ,
"\001\016(\017" ,
"\001\016+\017" ,
n\001\016.\017" ,
n \001\0 160\0 17n ,
"\001\0169\017n,
"\000" ,
"\001\0164\017" ,
"\001\0165\017" ,
"\001\0167\017n,
"\001\0 168\0 17n ,
n\001\016[\017" ,
"\001\0 16Y\0 17" ,
"\001\016k\017" ,
n\OOl>\b _It ,

"\OOl<\b _It ,

"\OOl=\b _" ,
"\001-" ,
"\001\0160\017" ,

FILE FORMATS

/*dagger*/
1* section *1
/*foot mark*1
/*acute accent*/
/*grave accent*/
/*underrule*/
/*Iong slash*/
/*halfnarrow space*/
/*unpaddable space*/
/*alpha*/
l*beta*1
/*gamma*1
I*delta*!
l*epsilon*1
I*zeta*/
/*eta*1
I*theta*!
/*iota*/
l*kappa*1
/*lambda*1
l*mu*1
l*nu*1
l*xi*1
l*omicron*1
l*pi*1
l*rho*1
l*sigma*1
l*tau*1
l*upsilon*1
l*phi*1
l*chi*1
/*psi*/
/*omega*1
I*Gamma*1
1* Delta*!
I*Theta*1
I*Lambda*1
I*Xi*1
I*Pi*1
I*Sigma*1
1**/
I*Upsilon*1
I*Phi*1
I*Psi*1
I*Omega*1
/*square root*1
I*\(ts yields script-I*I
/*root en*1
1*>=*1
1*<=*1
/*identicallyequal*!
I*equation minus*1
I*approx =*1

Last change: 16 February 1988

TERM(5)

Sun Release 4.1

TERM(5) FILE FORMATS TERM(5)

FILES

"\001\016n\017" ,
"\OOI=\b/" ,
"\002-\242-\202>" ,
"\002<\b\202-\242\200-" ,
"\OOII\b"" ,
"\0011\b\302v\342" ,
"\001=" ,
"\001\0161\017" ,
"\001\016}\017" ,
"\001\0 16j\0 17" ,
"\001\2431\203 \2031\243",
"\001\2431\203~51 \311\2031\243",
"\001\243(\203\302-\345-\303" ,
"\001\302-\345-\303\203)\243" ,
"\001 \b\243(\203\302-\345-\303",
"\001-\b\302-\345-\303\203)\243" ,
"\001\016-\017" ,
"\001 \2000\201 \301 '\241\341 '\241\341 '\20 1\301" ,
"\001\016:\017" ,
"\001\200-\202\341,\301\242" ,
"\001\016?\017" ,
"\0020\242c\202" ,
"\0010\b/" ,
"\001<\b\341-\302" ,
"\001+" ,
"\003(R)" ,
"\003(C)" ,
"\0011" ,
"\001\033Y" ,
"\001 l\b\342=\302 " ,
"\002=>",
"\002<=" ,
"\001 *",
"\001\0162\017" ,
"\0011" ,
"\0010",
"\0011" ,
"\0011" ,
"\0011" ,
"\0011" ,
"\001\016]\017" ,
"\001\016\\\017" ,
"\0011" ,
"\0011" ,
"\0011" ,
"\0011" ,
"\0011"

driving tables

I*approximates*!
I*not equal*!
I*right arrow*!
1*left arrow*!
I*up arrow*!
I*down arrow*!
I*equation equal*!
1 *multiply*!
I*divide*!
!*plus-minus*!
I*cup (union)*!
I*cap (intersection)*!
I*subset of*!
I*superset of*!
I*improper subset*/
I*improper superset*/
I*infinity*!
I*partial derivative*!
/*gradient*/
I*not*/
/*integral sign*!
/*proportional to*/
/*empty set*/
/*member of*!
I*equation plus*/
/ * registered *!
I*copyright*/
/*box rule *!
I*cent sign*!
/*double dagger*/
I*right hand*/
1*left hand*/
I*math * */
/*\(bs yields small sigma*/
I*or (was star)*/
/*circle*/
1*left top of big brace*/
1*left bot of big brace*/
I*right top of big brace*1
I*right bot of big brace*1
1*left center of big brace*!
I*right center of big brace*1
/*bold vertical*!
/*Ieft floor (lb of big bracket)*!
/*right floor (rb of big bracket)*!
/*Ieft ceiling (It of big bracket)*/
/*right ceiling (rt of big bracket)*!

!usr/lib!term!tabname
!usr/lib/termlREADME list of terminals supported by nrofT(l)

SEE ALSO
nroff(l), ttcompat(4M)

Sun Release 4.1 Last change: 16 February 1988 1663

TERM(5V) FILE FORMATS TERM(5V)

NAME
term - format of compiled term file

SYNOPSIS
term

DESCRIPTION

1664

Compiled term info descriptions are placed under the directory lusrlshare/lib/terminfo. In order to avoid
a linear search of a huge system directory, a two-level scheme is used: lusrlsharellib/terminfo/clname
where name is the name of the terminal, and c is the first character of name. Thus, act4 can be found in the
file lusrlshare/lib/terminfo/alact4. Synonyms for the same terminal are implemented by multiple links to
the same compiled file.

The format has been chosen so that it will be the same on all hardware. An 8 or more bit byte is assumed,
but no assumptions about byte ordering or sign extension are made.

The compiled file is created with the tic(8V) program, and read by the routine setupterm (see curses(3V».
Both of these pieces of software are part of curses(3V). The file is divided into six parts:

the header,
terminal names,
boolean flags,
numbers,
strings,
and
string table.

The header section begins the file. This section contains six short integers in the format described below.
These integers are:

(1) the magic number (octal 0432);
(2) the size, in bytes, of the names section;
(3) the number of bytes in the boolean section;
(4) the number of short integers in the numbers section;
(5) the number of offsets (short integers) in the strings section;
(6) the size, in bytes, of the string table.

Short integers are stored in two 8-bit bytes. The first byte contains the least significant 8 bits of the value,
and the second byte contains the most significant 8 bits. (Thus, the value represented is 256*second+first.)
The value -1 is represented by 0377, 0377, other negative value are illegal. The -1 generally means that a
capability is missing from this terminal. Note: this format corresponds to the hardware of the V AX and
PDP-II. Machines where this does not correspond to the hardware read the integers as two bytes and com­
pute the result.

The terminal names section comes next. It contains the first line of the terminfo description, listing the
various names for the tenninal, separated by the 'I' character. The section is terminated with an ASCII NUL

character.

The boolean flags have one byte for each flag. This byte is either 0 or 1 as the flag is present or absent.
The capabilities are in the same order as the file <term.h>.

Between the boolean section and the number section, a null byte will be inserted, if necessary, to ensure
that the number section begins on an even byte. All short integers are aligned on a short word boundary.

The numbers section is similar to the flags section. Each capability takes up two bytes, and is stored as a
short integer. If the value represented is -1, the capability is taken to be missing.

The strings section is also similar. Each capability is stored as a short integer, in the format above. A
value of -1 means the capability is missing. Otherwise, the value is taken as an offset from the beginning
of the string table. Special characters in AX or \c notation are stored in their interpreted form, not the print­
ing representation. Padding information $<nn> and parameter information %x are stored intact in uninter­
preted form.

Last change: 19 October 1987 Sun Release 4.1

TERM(5V) FILE FORMATS TERM(5V)

FILES

The final section is the string table. It contains all the values of string capabilities referenced in the string
section. Each string is null-terminated.

Note: it is possible for setupterm to expect a different set of capabilities than are actually present in the
file. Either the database may have been updated since setupterm has been recompiled (resulting in extra
unrecognized entries in the file) or the program may have been recompiled more recently than the database
was updated (resulting in missing entries). The routine setupterm must be prepared for both possibilities
- this is why the numbers and sizes are included. Also, new capabilities must always be added at the end
of the lists of boolean, number, and string capabilities.

As an example, an octal dump of the description for the Microterm ACT' 4 is included:

mi c rot e nn I ac t 4 I mi c rot erma c t iv,
cr="M, cudl=" J, i nd=" J, be 1="G, am, cubl="H,
ed="_, el="", clear="L, cup="To/~lo/~~20/~,

cols#80, lines#24, cufl="X, cuul="Z, home="] ,

000 032 001 \0 025 \0 \b \0 212 \0 " \0 m

020 0 e m I a c 4 m c

040 e r m a c v \0 \0 001

060 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0

c

r 0

\0 \0
\0 \0

100 \0 \0 P \0 377 377 030 \0 377 377 377 377 377 377 377 377

120 377 377 377 377 \0 \0 002 \0 377 377 377 377 004 \0 006 \0

140 \b \0 377 377 377 377 \n \0 026 \0 030 \0 377 377 032 \0

160 377 377 377 377 034 \0 377 377 036 \0 377 377 377 377 377 377
200 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377

*
520 377 377 377 377 \0 377 377 377 377 377 377 377 377 377 377
540 377 377 377 377 377 377 007 \0 \r \0 \f \0 036 \0 037 \0
560 024 % p % c % p 2 % c \0 \n \0 035 \0
600 \b \0 030 \0 032 \0 \n \0

Some limitations: total compiled entries cannot exceed 4096 bytes. The name field cannot exceed 128
bytes.

lusrlsharellib/terminfo/*l*
compiled terminal capability data base

SEE ALSO
curses(3V), terminf'o(5V), tic(8V)

Sun Release 4.1 Last change: 19 October 1987 1665

TERMCAP(5) FILE FORMATS TERMCAP(5)

NAME
termcap - terminal capability data base

DESCRIPTION
term cap is a data base describing the capabilities of terminals. Terminals are described in termcap source
descriptions by giving a set of capabilities which they have, by describing how operations are performed,
by describing padding requirements, and by specifying initialization sequences. This database is used by
applications programs such as vi(l), and libraries such as curses(3V), so they can work with a variety of
terminals without changes to the programs.

Each termcap entry consist of a number of colon-separated (:) fields. The first field for each terminal lists
the various names by which it is known, separated by bar (I) characters. The first name is always two
characters long, and is used by older (version 6) systems (which store the terminal type in a 16-bit word in
a system-wide database). The second name given is the most common abbreviation for the terminal (this is
the one to which the environment variable TERM would normally be set). The last name should fully iden­
tify the terminal's make and model. All other names are taken as synonyms for the initial terminal name.
All names but the first and last should be in lower case and contain no blanks; the last name may well con­
tain upper case and blanks for added readability.

Terminal names (except for the last, verbose entry) should be chosen using the following conventions:

• The particular piece of hardware making up the terminal should have a root name chosen; for example,
for the Hewlett-Packard 2621, hp2621. This name should not contain hyphens.

• Modes that the hardware can be in or user preferences should be indicated by appending a hyphen and
an indicator of the mode. Thus, a vt100 in 132-column mode would be given as: vt100-w. The fol­
lowing suffixes should be used where possible:

Suffix Meaning Example

-w wide mode (more than 80 columns) vt100-w
-am with automatic margins (usually default) vt100-am
-nam without automatic margins vt100-nam
-n number of lines on the screen aaa-60
-na no arrow keys (leave them in local) conceptlOO-na
-np number of pages of memory conceptlOO-4p
-rv reverse video conceptlOO-rv

Terminal entries may continue onto multiple lines by giving a \ as the last character of a line, and empty
fields may be included for readability (here between the last field on a line and the first field on the next).
Comments may be included on lines beginning with #.

Types of Capabilities

1666

Terminal capabilities each have a two-letter code, and are of three types:

boolean

numeric

string

These indicate particular features of the terminal. For instance, an entry for a terminal that
has automatic margins (an automatic RETURN and LINEFEED when the end of a line is
reached) would contain a field with the boolean capability am.

These give the size of the display of some other attribute. Numeric capabilities are followed
by the character '#', and a number. An entry for a teminal with an 80-column display would
have a field containing co#80.

These indicate the character sequences used to perform particular terminal operations.
String-valued capabilities, such as ce (clear-to-end-of-line sequence) are given by the two­
letter code, followed by the character '=', and a string (which ends at the following: field
delimiter).

A delay factor, in milliseconds may appear after the '='. Padding characters are supplied by tputs after the
remainder of the string is sent. The delay can be either a number, or a number followed by the character
'*', which indicates that the proportional padding is required, in which case the number given is the

Last change: 16 February 1988 Sun Release 4.1

TERMCAP(5) FILE FORMATS TERMCAP(5)

amount of padding for each line affected by an operation using that capability. (In the case of an insert­
character operation, the factor is still the number of lines affected; this is always 1 unless the terminal has
in and the software uses it.)

When a * is specified, it is sometimes useful to give a delay of the form 3.5 to specify a delay per line to
tenths of milliseconds. (Only one decimal place is allowed.)

Comments
To comment-out a capability field, insert a '.' (period) as the first character in that field (following the :).

Escape Sequence Codes
A number of escape sequences are provided in the string-valued capabilities for easy encoding of charac­
ters there:

\E maps to ESC
AX maps to CTRL-X for any appropriate character X
\n maps to LINEFEED
\r maps to RETURN
\t maps to TAB
\b maps to BACKSPACE
\f maps to FORMFEED

Finally, characters may be given as three octal digits after a backslash (for example, \123). and the charac­
ters A (caret) and \ (backslash) may be given as \" and \\ respectively.

If it is necessary to place a : in a capability it must be escaped in octal as \072.

If it is necessary to place a NUL character in a string capability it must be encoded as \200. (The routines
that deal with termeap use C strings and strip the high bits of the output very late, so that a \200 comes out
as a \000 would.)

Parameterized Strings
Cursor addressing and other strings requiring parameters are described by a parameterized string capabil­
ity, with printf(3V)-like escapes (%x) in it; other characters are passed through unchanged. For example,
to address the cursor, the em capability is given, using two parameters: the row and column to move to.
(Rows and columns are numbered from zero and refer to the physical screen visible to the user, not to any
unseen memory. If the terminal has memory-relative cursor addressing, that can be indicated by an analo­
gous CM capability.)

The % escapes have the following meanings:

% % produce the character %
%d output value as in printf %d
%2 output value as in printf %2d
%3 output value as in printf %3<1
%. output value as in printf %e
%+x add x to value, then do '%.'
% >xy if value > x then add y, no output
% r reverse order of two parameters, no output
% i increment by one, no output
%n exclusive-or all parameters with 0140 (Datamedia 2500)
%8 BCD (l6*(value/l0)) + (value % 10), no output
%D Reverse coding (value - 2* (value % 16)), no output (Delta Data)

Sun Release 4.1 Last change: 16 February 1988 1667

TERMCAP(5) FILE FORMATS TERMCAP(5)

Consider the Hewlett-Packard 2645, which, to get to row 3 and column 12, needs to be sent \E&al2c03Y
padded for 6 milliseconds. Note: the order of the row and column coordinates is reversed here and that the
row and column are sent as two-digit integers. Thus its em capability is ':em=6\E&%r%2e%2Y: '. Ter­
minals that use '%.' need to be able to backspace the cursor (Ie) and to move the cursor up one line on the
screen (up). This is necessary because it is not always safe to transmit \n, AD, and \r, as the system may
change or discard them. (Programs using term cap must set terminal modes so that TAB characters are not
expanded, making \t safe to send. This turns out to be essential for the Ann Arbor 4080.)

A final example is the Lear Siegler ADM-3a, which offsets row and column by a blank character, thus it
requires ':em=\E=%+ %+:'.

Row or column absolute cursor addressing can be given as single-parameter capabilities eh (horizontal
position absolute) and ev (vertical position absolute). Sometimes these are shorter than the more general
two-parameter sequence (as with the Hewlett-Packard 2645) and can be used in preference to em. If there
are parameterized local motions (for example, move n positions to the right) these can be given as DO, LE,
RI, and UP with a single parameter indicating how many positions to move. These are primarily useful if
the terminal does not have em, such as the Tektronix 4025.

Delays
Certain capabilities control padding in the terminal driver. These are primarily needed by hardcopy termi­
nals and are used by the tset (I) program to set terminal driver modes appropriately. Delays embedded in
the capabilities er, sf, Ie, iT, and ta will set the appropriate delay bits in the terminal driver. If pb (padding
baud rate) is given, these values can be ignored at baud rates below the value of pb. For 4.2BSD tset, the
delays are given as numeric capabilities dC, dN, dB, dF, and dT instead.

Similar Terminals
If there are two very similar terminals, one can be defined as being just like the other with certain excep­
tions. The string capability te can be given with the name of the similar terminal. This capability must be
last, and the combined length of the entries must not exceed 1024. The capabilities given before te over­
ride those in the terminal type invoked by te. A capability can be canceled by placing xx@ to the left of
the te invocation, where xx is the capability. For example, the entry

hn 12621-01:ks@:ke@:te=2621:

defines a 2621-01 that does not have the ks or ke capabilities, hence does not tum on the function key
labels when in visual mode. This is useful for different modes for a terminal, or for different user prefer­
ences.

CAPABILITIES

1668

The characters in the Notes field in the next table have the following meanings (more than one may apply
to a capability):

N indicates numeric parameter(s)
P indicates that padding may be specified
* indicates that padding may be based on the number of lines affected
o indicates capability is obsolete

Obsolete capabilities have no term info equivalents, since they were considered useless, or are subsumed
by other capabilities. New software should not rely on them.

Name Type Notes Description

!1 str sent by shifted save key
!2 str sent by shifted suspend key
!3 str sent by shifted undo key
#1 str sent by shifted help key
#2 str sent by shifted home key
#3 str sent by shifted input key
#4 str sent by shifted left-arrow key
%0 str sent by redo key
%1 str sent by help key

Last change: 16 February 1988 Sun Release 4.1

TERMCAP(5) FILE FORMATS TERMCAP(5)

%2 str sent by mark key
%3 str sent by message key
%4 str sent by move key
%5 str sent by next-object key
%6 str sent by open key
%7 str sent by options key
%8 str sent by previous-object key
%9 str sent by print or copy key
%a str sent by shifted message key
%b str sent by shifted move key
%c str sent by shifted next-object key
%d str ,sent by shifted options key
%e str sent by shifted previous-object key
%f str sent by shifted print or copy key
%g str sent by shifted redo key
%h str sent by shifted replace key
%i str sent by shifted right-arrow key
%j str sent by shifted resume key
&0 str sent by shifted cancel key
&1 str scnt by ref(erence) key
&2 str sent by refresh key
&3 str sent by replace key
&4 str sent by restart key
&5 str sent by resume key
&6 str sent by save key
&7 str sent by suspend key
&8 str sent by undo key
&9 str sent by shifted beg(inning) key
*0 str sent by shifted find key
*1 str sent by shifted cmd (command) key
*2 str sent by shifted copy key
*3 str sent by shifted create key
*4 str sent by shifted delete-char key
*5 str sent by shifted delete-line key
*6 str sent by select key
*7 str sent by shifted end key
*8 str sent by shifted clear-line key
*9 str sent by shifted exit key
5i bool printer will not echo on screen
@O str sent by find key
@1 str sent by beg (inning) key
@2 str sent by cancel key
@3 str sent by close key
@4 str sent by cmd (command) key
@5 str sent by copy key
@6 str sent by create key
@7 str sent by end key
@8 str sent by enter/send key (unreliable)
@9 str sent by exit key
AL str (NP*) add n new blank lines
CC str terminal settable command character in prototype
CM str (NP) memory-relative cursor motion to row m, column n
DC str (NP*) delete n characters
DL str (NP*) delete n lines
DO str (NP*) move cursor down n lines
EP bool (0) even parity
FI-F9 str sent by function keys 11-19
FA-FZ str sent by function keys 20-45

Sun Release 4.1 Last change: 16 February 1988 1669

TERMCAP(5) FILE FORMATS TERMCAP(5)

Fa-Fr str sent by function keys 46-63
HC bool cursor is hard to see
HD bool (0) half-duplex
Ie str (NP*) insert n blank characters
Kl str sent by keypad upper left
K2 str sent by keypad center
K3 str sent by keypad upper right
K4 str sent by keypad lower left
KS str sent by keypad lower right
LC bool (0) lower -case only
LE str (NP) move cursor left n positions
LF str (P) tum off soft labels
LO str (P) tum on soft labels
Me str (P) clear left and right soft margins
ML str (P) set soft leftnnargin
MR sfr (P) set soft right margin
NL bool (0) \n is NEWLINE, not LINE FEED
NP bool pad character does not exist
NR bool ti does not reverse te
NI num number of labels on screen (start at 1)
OP bool (0) odd parity
RA str (P) tum off automatic margins
RF str send next input character (for ptys)
RI str (NP) move cursor right n positions
RX str (P) tum off xoff/xon handshaking
SA str (P) tum on autonnatic margins
SF str (NP*) scroll forward n lines
SR str (NP*) scroll backward n lines
SX str (P) tum on xoff/xon handshaking
UC bool (0) upper-case only
UP sfr (NP*) move cursor up n lines
XF str x-off character (default DC3)

XN sfr x-on character (default DC!)

ae str graphic character set pairs aAbBcC - def= VT100
ae str (P) end alternate character set
al str (P*) add new blank line
am bool terminal has automatic margins
as str (P) start alternate character set
be sfr (0) backspace if not AH
bl str (P) audible signal (bell)
bs bool (0) terminal can backspace with AH
bt str (P) back-tab
bw bool Ie (backspace) wraps from column 0 to last column
eb str (P) clear to beginning of line, inclusive
cd sfr (P*) clear to end of display
ee str (P) clear to end of line
eh str (NP) set cursor column (horizontal position)
cl str (P*) clear screen and home cursor
em str (NP) screen-relative cursor motion to row m, column n
co num number of columns in a line
er str (P*) RETURN
es str (NP) change scrolling region to lines m through n (VT100)
et str (P) clear all tab stops
ev str (NP) set cursor row (vertical position)
dB num (0) milliseconds of bs delay needed (default 0)
de num (0) milliseconds of er delay needed (default 0)
dF num (0) milliseconds of ff delay needed (default 0)
dN num (0) milliseconds of nl delay needed (default 0)

1670 Last change: 16 February 1988 Sun Release 4.1

TERMCAP(5) FILE FORMATS TERMCAP(5)

dT num (0) milliseconds of horizontal tab delay needed (default 0)
dV num (0) milliseconds of vertical tab delay needed (default 0)
da bool display may be retained above the screen
db bool display may be retained below the screen
de str (P*) delete character
dl str (P*) delete line
dm str enter delete mode
do str down one line
ds str disable status line
eA str (P) enable graphic character set
ee str (NP) erase n characters
ed str end delete mode
ei str end insert mode
eo bool can erase overstrikes with a blank
es bool escape can be used on the status line
tT str (P*) hardcopy terminal page eject
fs str return from status line
gn bool generic line type (for example dialup, switch)
he bool hardcopy terminal
hd str half-line down (forward IJ2linefeed)
ho str (P) home cursor
hs bool has extra "status line"
hu str half-line up (reverse 1(2 line feed)
hz bool cannot print -s (Hazeltine)
it str terminal initialization string (terminfo only)
i3 str terminal initialization string (terminfo only)
iP str pathname of program for initialization (term info only)
ie str (P*) insert character
if str name of file containing initialization string
im str enter insert mode
in bool insert mode distinguishes nulls
ip str (P*) insert pad after character inserted
is str terminal initialization string
it num tab stops initially every n positions
kO-k9 str sent by function keys 0-9
k-, str sent by function key 10
kA str sent by insert-line key
kB str sent by back-tab key
kC str sent by clear-screen or erase key
kD str sent by delete-character key
kE str sent by clear-to-end-of-line key
kF str sent by scroll-forward/down key
kH str sent by home-down key
kI str sent by insert-character or enter-insert-mode key
kL str sent by delete-line key
kM str sent by insert key while in insert mode
kN str sent by next-page key
kP str sent by previous-page key
kR str sent by scroll-backward/up key
kS str sent by clear-to-end-of-screen key
kT str sent by set-tab key
ka str sent by clear-all-tabs key
kb str sent by backspace key
kd str sent by down-arrow key
ke str out of "keypad transmit" mode
kh str sent by home key
kl str sent by left-arrow key
km bool has a "meta" key (shift, sets parity bit)

Sun Release 4.1 Last change: 16 February 1988 1671

TERMCAP(5) FILE FORMATS TERMCAP(5)

kn num (0) number of function (k~k9) keys (default 0)
ko str (0) termcap entries for other non-function keys
kr sIr sent by right-arrow key
ks sIr put terminal in "keypad transmit" mode
kt sIr sent by clear-tab key
ku sIr sent by up-arrow key
1O-I9 sIr labels on function keys 0-9 if not fO-f9
la sIr label on function key 10 if not f1 0
Ie sIr (P) move cursor left one position
Ih num number of rows in each label
Ii num number of lines on screen or page
II str last line, first column
1m num lines of memory if> Ii (0 means varies)
Iw num number of columns in each label
rna sir (0) arrow key map (used by vi version 2 only)
mb sIr tum on blinking attribute
md sIr tum on bold (extra bright) attribute
me sIr tum off all attributes
mh sIr tum on half-bright attribute
mi bool safe to move while in insert mode
mk sIr tum on blarik attribute (characters invisible)
ml sIr (0) memory lock on above cursor
mm sIr tum on "meta mode" (8th bit)
mo sIr tum off "meta mode"
mp sIr tum on protected attribute
mr str tum on reverse-video attribute
ms bool safe to move in standout modes
mu sIr (0) memory unlock (turn off memory lock)
nc bool (0) no correctly-working cr (Datamedia 2500, Hazeltine 2000)
nd sIr non-destructive space (cursor right)
nl sIr (0) NEWLINE character if not
ns bool (0) terminal is a CRT but does not scroll
nw sIr (P) NEWLINE (behaves like cr followed by do)
nx bool padding will not work, xoff/xon required
os bool terminal overstrikes
pO sIr (N) tum on the printer for n bytes
pb num lowest baud where delays are required
pc sIr pad character (default NUL)
pf sIr tum off the printer
pk sIr program function key n to type string s (terminfo only)
pI sIr program function key n to execute string s (terminfo only)
pn sIr (NP) program label n to show string s (terminfo only)
po sIr tum on the printer
ps sIr print contents of the screen
pt bool (0) has hardware tab stops (may need to be set with is)
px sIr program function key n to transmit string s (term info only)
rl sIr reset terminal completely to sane modes (terminfo only)
r2 sIr reset terminal completely to sane modes (terminfo only)
r3 sIr reset terminal completely to sane modes (terminfo only)
rP sIr (P) like ip but when in replace mode
rc sIr (P) restore cursor to position of last sc
rf sIr name of file containing reset string
ri ? unknown at present
rp sIr (NP*) repeat character c n times
rs sIr reset terminal completely to sane modes
sa sIr (NP) define the video attributes (9 parameters)
sc sIr (P) save cursor position
se sir end standout mode

1672 Last change: 16 February 1988 Sun Release 4.1

TERMCAP(5) FILE FORMATS TERMCAP(5)

sf str
sg num
so str
sr str
st str
ta str
tc str
te str
ti str
ts str
uc str
ue str
ug num
ul 0001
up str
us str
vb str
ve str
vi str
vs str
vt num
wi str
ws num
xb 0001
xn 0001
xo 0001
xr bool
xs 0001
xt bool
xx bool

(P) scroll text up
number of garbage chars left by so or se (default 0)
begin standout mode

(P) scroll text down
set a tab stop in all rows, current column

(P) move cursor to next 8-position hardware tab stop
entry of similar terminal - must be last
string to end programs that use termcap
string to begin programs that use termcap

(N) go to status line, column n
underscore one character and move past it
end underscore mode
number of garbage chars left by us or ue (default 0)
underline character overstrikes
upline (cursor up)
start underscore mode
visible bell (must not move cursor)
make cursor appear normal (undo vs/vi)
make cursor invisible
make cursor very visible
virtual terminal number (not supported on all systems)

(N) set current window to lines i throughj, columns m through n
number of columns in status line
Beehive (f1=ESC, f2=AC)
NEWLINE ignored after 80 cols (Concept)
terminal uses xoff/xon handshaking

(0) RETURN acts like ce cr nl (Delta Data)
standout not erased by overwriting (Hewlett-Packard)
TAB characters destructive, magic so char (Teleray 1061)

(0) Tektronix 4025 insert-line

ENVIRONMENT

FILES

If the environment variable TERMCAP contains an absolute pathname, programs look to that file for termi­
nal descriptions, rather than /usr/share/lib/termcap. If the value of this variable is in the form of a
term cap entry, programs use that value for the terminal description.

/usr/share/lib/termcap file containing terminal descriptions

SEE ALSO
ex(1), more(I), tset(1), ul(I), vi(1), curses(3V), printf(3V), termcap(3X), term(5V), terminfo(5V)

System and Network Administration

WARNINGS
UNIX System V uses terminfo(5V) rather than termcap. SunGS supports either termcap or terminfo(5V)
terminal databases, depending on whether you link with the termcap(3X) or curses(3V) libraries. Transi­
tions between the two should be relatively painless if capabilities flagged as "obsolete" are avoided.

vi allows only 256 characters for string capabilities, and the routines in termcap(3X) do not check for
overflow of this buffer. The total length of a single entry (excluding only escaped NEWUNE characters)
may not exceed 1024.

Not all programs support all entries.

Sun Release 4.1 Last change: 16 February 1988 1673

TERM INFO (5V) FILE FORMATS TERMINFO (5V)

NAME
terminfo - tenninal capability data base

SYNOPSIS
lusrlsharellib/terminfol? 1*

A V AILABILITY
This database is available with the System V software installation option. Refer to Installing SunOS 4.1 for
information on how to install optional software.

DESCRIPTION
terminfo is a compiled database (see tic(8V» describing the capabilities of terminals. Terminals are
described in terminfo source descriptions by giving a set of capabilities which they have, by describing
how operations are performed, by describing padding requirements, and by specifying initialization
sequences. This database is used by applications programs, and by libraries such as curses(3V), so they
can work with a variety of terminals without changes to the programs. To obtain the source description for
a terminal, use the -I option of infocmp(8V).

Entries in terminfo source files consist of a number of comma-separated fields. White space after each
comma is ignored. The first line of each tenninal description in the terminfo database gives the name by
which terminfo knows the terminal, separated by pipe (I) characters. The first name given is the most
common abbreviation for the terminal (this is the one to which the environment variable TERM would nor­
mally be set), the last name given should be a long name fully identifying the terminal, and all others are
understood as synonyms for the terminal name. All names but the last should contain no blanks; the last
name may contain blanks for readability.

Terminal names (except for the last, verbose entry) should be chosen using the following conventions:

• The particular piece of hardware making up the terminal should have a root name chosen; for example,
for the Hewlett-Packard 2621, hp2621. This name should not contain hyphens.

• Modes that the hardware can be in or user preferences should be indicated by appending a hyphen and
an indicator of the mode. Thus, a vt100 in 132-column mode would be given as: vt100-w. The fol­
lowing suffixes should be used where possible:

Suffix Meaning Example

-w wide mode (more than 80 columns) vt100-w
-am with automatic margins (usually default) vt100-am
-nam without automatic margins vt100-nam
-n number of lines on the screen aaa-60
-na no arrow keys (leave them in local) conceptlOO-na
-np number of pages of memory conceptlOO-4p
-rv reverse video conceptlOO-rv

CAPABILITIES

1674

In the table below, the Variable is the name by which the C programmer (at the terminfo level) accesses
the capability. The capname is the short name for this variable used in the text of the database. It is used
by a person updating the database and by the tput(1 V) command when asking what the value of the capa­
bility is for a particular terminal. The Termcap Code is a two-letter code that corresponds to the old
term cap capability name.

Capability names have no hard length limit, but an informal limit of 5 characters has been adopted to keep
them short. Whenever possible, names are chosen to be the same as or similar to the ANSI X3.64-1979
standard. Semantics are also intended to match those of the specification.

Last change: 26 February 1988 Sun Release 4.1

lERMINFO (5V) FILE FORMATS TERMINFO (5V)

All string capabilities listed below may have padding specified, with the exception of those used for input.
Input capabilities, listed under the Strings section in the table below, have names beginning with 'key_'.
The following indicators may appear at the end of the Description for a variable.

(G) indicates that the string is passed through tparm() with parameters (parms) as given (# .).
(*) indicates that ~dding may be based on the number of lines affected. Z

(#.) indicates the i parameter.
z

Variable Capname Termcap Description

Boolean

auto_left_margin
auto_right _margin
no esc die
ceot standout_glitch
eat_newline ..,glitch
erase overstrike
generic_type
hard_copy
hard cursor
has_meta _key
has status line - -
insert_null_glitch
memory_above
memory_below
move insert mode - -
move standout mode - -
needs xon xotT
non_rev _rmcup
noyad_char
over strike
prtr _silent
status line esc ok - - -

bw
am
xsb
xhp
xenl
eo
gn
hc

chts
km
hs
in
da
db
mir

msgr
nxon

nrrme
npe
os

mcSi
eslok

bw cub 1 wraps from column 0 to last column
am Tenninal has automatic margins
xb Beehive (f1=ESC, f2= AC)
xs Standout not erased by overwriting (Hewlett-Packard)
xn NEWLINE ignored after 80 cols (Concept)
eo Can erase overstrikes with a blank
gn Generic line type (for example, dialup, switch).
hc Hardcopy tenninal

HC Cursor is hard to see
km Has a meta key (shift, sets parity bit)
hs Has extra "status line"
in Insert mode distinguishes nulls
da Display may be retained above the screen
db Display may be retained below the screen
mi Safe to move while in insert mode
ms Safe to move in standout modes
ox Padding will not work, xon/xoff required
NR smcup does not reverse rmcup
NP Pad character does not exist
os Tenninal overstrikes on hard-copy terminal
Si Printer will not echo on screen
es Escape can be used on the status line

dest _tabs_magic _smso xt xt Destructive TAB characters, magic smso char (Teleray 1061)
tilde_glitch
transparent_underline
xon xoff

Number

columns
in it tabs
label_height
label width
lines
lines_of _memory
magic _cookie ~litch
num labels
padding_baud _rate
virtual terminal
width status line - -

String

acs chars
back tab
bell
carriage_return
change_scroll_region

Sun Release 4.1

hz
ul

xon

cols
it
Ih
Iw

lines
1m

xmc
nlab
pb
vt

wsl

aesc
cbt
bel
cr
csr

hz Hazeltine; cannot print tildes()
ul Underline character overstrikes
xo Tenninal uses xon/xoff handshaking

co Number of columns in a line
it tab stops initially every # spaces
Ih Number of rows in each label
Iw Number of cols in each label
Ii Number of lines on screen or page

1m Lines of memory if> lines; 0 means varies
sg Number blank chars left by smso or rmso
NI Number oflabels on screen (start at 1)
pb Lowest baud rate where padding needed
vt Virtual terminal number (not supported on all systems)
ws Number of columns in status line

ae Graphic charset pairs aAbBcC - def= VT100
bt Back tab
bl Audible signal (bell)
cr RETURN (*)
cs Change to lines #1 through #2 (VT100) (G)

Last change: 26 February 1988 1675

TERMINFO (5V) FILE FORMATS TERMINFO (5V)

char yadding rmp rP Like ip but when in replace mode
clear aD tabs tbc ct Clear all tab stops
clear_margins mgc MC Clear left and right soft margins
clear screen clear cl Clear screen and home cursor (*)
clr bol ell cb Clear to beginning of line, inclusive
clr eol el ce Clear to end of line
clr eos ed cd Clear to end of display (*)
column address hpa ch Horizontal position absolute (G)
command_character cmdch CC Terminal settable command char in prototype
cursor address cup cm Cursor motion to row #1 col #2 (G)
cursor down cudl do Down one line
cursor_home home ho Home cursor (if no cup)
cursor invisible civis vi Make cursor invisible
cursor_left cubl Ie Move cursor left one SPACE

cursor mem address mrcup CM Memory relative cursor addressing (G)
cursor_normal cnorm ve Make cursor appear normal (undo cvvls/civis)
cursor_right cun nd Non-destructive space (cursor right)
cursor to 11 II II Last line, first column (if no cup)
cursor_up cuul up Upline (cursor up)
cursor visible cvvis vs Make cursor very visible
delete character dchl dc Delete character (*)
delete_line dll dl Delete line (*)
dis_status _line dsl ds Disable status line
down half line hd hd Half-line down (forward 1/2 LINEFEED)

ena acs enacs eA Enable alternate char set
enter _ alt_ charset _mode smacs as Start alternate character set
enter_am _mode smam SA Tum on automatic margins
enter _ bUnk_mode blink mb Tum on blinking
enter bold mode bold md Tum on bold (extra bright) mode
enter _ ca _mode smcup ti String to begin programs that use cup
enter delete mode smdc - - dm Delete mode (enter)
enter_dim _mode dim mh Tum on half -bright mode
enter insert mode smir im Insert mode (enter); - -
enter yrotected _mode prot mp Turn on protected mode
enter_reverse _mode rev mr Turn on reverse video mode
enter_secure_mode invls mk Tum on blank mode (chars invisible)
enter standout mode smso so Begin standout mode - -
enter_underline _mode smul us Start underscore mode
enter xon mode smxon SX Turn on xonlxoff handshaking
erase_chars ech ec Erase #1 characters (G)
exit alt charset mode rmacs ae End alternate character set - - -
exit am mode rmam RA Tum off automatic margins
exit attribute mode sgrO me Tum off all attributes - -
exit ca mode rmcup te String to end programs that use cup
exit_delete_mode rmdc ed End delete mode
exit insert mode rmir ei End insert mode; - -
exit_standout _mode rmso se End standout mode
exit_underline _mode rmul ue End underscore mode
exit xon mode rmxon RX Tum off xonlxoff handshaking
flash screen flash vb Visible bell (must not move cursor)
form feed ff ff Hardcopy terminal page eject (*)
from status line fsl fs Return from status line - -
init _lstring isl it Terminal initialization string
init_ 2string ls2 is Terminal initialization string
init_3strlng is3 i3 Terminal initialization string
init file if if Name of initialization file containing is
inityrog iprog iP Path name of program for init
insert_character ichl ic Insert character

1676 Last change: 26 February 1988 Sun Release 4.1

TERM INFO (5V) FILE FORMATS TERMINFO (5V)

insert line ill al Add new blank line (*)
insert -padding Ip ip Insert pad after character inserted (*)
key_a I kal KI KEY _A 1, 0534, Upper left of keypad
key_a3 ka3 K3 KEY_A3, 0535, Upper right of keypad
key_b2 kb2 K2 KEY _B2, 0536, Center of keypad
key_backspace kbs kb KEY_BACKSPACE, 0407, Sent by BACKSPACE key
key_beg kbeg @l KEY_BEG, 0542, Sent by beg(inning) key
key_btab kcbt kB KEY_BTAB, 0541, Sent by back-tab key
key_c1 kcl K4 KEY_Cl, 0537, Lower left of keypad
key_c3 kc3 KS KEY_C3, 0540, Lower right of keypad
key_cancel kcan @2 KEY_CANCEL, 0543, Sent by cancel key
key_catab ktbc ka KEY_CATAB, 0526, Sent by clear-aU-tabs key
key_clear kclr kC KEY_CLEAR, 0515, Sent by clear- screen or erase key
key_close kclo @3 KEY_CLOSE, 0544, Sent by close key
key_command kcmd @4 KEY_COMMAND, 0545, Sent by cmd (command) key
key_copy kcpy @S KEY_COPY, 0546, Sent by copy key
key_create kcrt @6 KEY_CREATE, 0547, Sent by create key
key_ctab kctab kt KEY_CTAB, 0525, Sent by clear-tab key
key_dc kdchl kD KEY_DC, 0512, Sent by delete-character key
key_dl kdll kL KEY_DL, 0510, Sent by delete-line key
key_down kcudl kd KEY_DOWN, 0402, Sent by terminal down-arrow key
key_eic krmir kM KEY_EIC, 0514, Sent by rmir or smir in insert mode
key_end kend @7 KEY_END, 0550, Sent by end key
key_enter kent @8 KEY_ENTER, 0527, Sent by enter/send key
key_eol kel kE KEY_EOL, 0517, Sent by clear-to-end- of-line key
key_eos ked kS KEY_EOS, 0516, Sent by clear-to-end- of-screen key
key_exit kext @9 KEY_EXIT, 0551, Sent by exit key
key_fO kfO kO KEY_F(O), 0410, Sent by function key ill
key_fi kfl kl KEY_F(l), 0411, Sent by function key f1
key_f2 kf2 k2 KEY_F(2), 0412, Sent by function key f2
key_fJ kO k3 KEY_F(3), 0413, Sent by function key f3
key_f4 kf4 k4 KEY_F(4), 0414, Sent by function key f4
key_fS kfS kS KEY_F(5), 0415, Sent by function key f5
key_f6 kf6 k6 KEY_F(6), 0416, Sent by function key f6
key_r7 kf7 k7 KEY _F(7), 0417, Sent by function key fl
key_f8 kfS kS KEY_F(8), 0420, Sent by function key f8
key_f9 kf9 k9 KEY_F(9), 0421, Sent by function key f9
key_fiO kOO k; KEY_F(lO), 0422, Sent by function key flO
key_fil kOI Fl KEY_F(11), 0423, Sent by function key fll
key_fi2 k02 F2 KEY_F(12), 0424, Sent by function key fl2
key_fi3 k03 F3 KEY_F(13), 0425, Sent by function key f13
key_fi4 k04 F4 KEY_F(14), 0426, Sent by function key fl4
key_fiS kOS FS KEY_F(15), 0427, Sent by function key fl5
key_fi6 k06 F6 KEY_F(16), 0430, Sent by function key fl6
key_fi7 k07 F7 KEY _F(17), 0431, Sent by function key fl7
key_fiS kOS F8 KEY_F(18), 0432, Sent by function key fl8
key_fi9 k09 F9 KEY_F(19), 0433, Sent by function key fl9
key_f20 kf20 FA KEY _F(20), 0434, Sent by function key f20
key_f21 kf21 FB KEY_F(21), 0435, Sent by function key f21
key_f22 kf22 FC KEY_F(22), 0436, Sent by function key f22
key_f23 kf23 FD KEY_F(23), 0437, Sent by function key f23
key_f24 kf24 FE KEY_F(24), 0440, Sent by function key f24
key_f2S kf2S FF KEY_F(25), 0441, Sent by function key f25
key_f26 kf26 FG KEY _F(26), 0442, Sent by function key 126
key_f27 kf27 FH KEY_F(27), 0443, Sent by function key f27
key_f28 kf28 FI KEY_F(28), 0444, Sent by function key 128
key_f29 kf29 FJ KEY_F(29), 0445, Sent by function key f29
key_fJO kf30 FK KEY_F(30), 0446, Sent by function key f30

Sun Release 4.1 Last change: 26 February 1988 1677

TERMINFO (5V) FILE FORMATS TERMINFO (5V)

key_f31 kf31 FL KEY_F(31), 0447, Sent by function key f31
key_f32 kf32 FM KEY_F(32), 0450, Sent by function key f32
key_f33 kf33 FN KEY_F(13), 0451, Sent by function key f13
key_f34 kf34 FO KEY _F(34), 0452, Sent by function key f34
key_f3S kf3S FP KEY _F(35), 0453, Sent by function key f35
key_f36 kf36 FQ KEY_F(36), 0454, Sent by function key f36
key_f37 kf37 FR KEY_F(37), 0455, Sent by function key f37
key_f38 kf38 FS KEY_F(38), 0456, Sent by function key f38
key_f39 kf39 FT KEY_F(39), 0457, Sent by function key f39
key_f40 kf40 FU KEY_F(40), 0460, Sent by function key f40
key_f41 kf41 FV KEY_F(41), 0461, Sent by function key f41
key_f42 kf42 FW KEY_F(42), 0462, Sent by function key f42
key_f43 kf43 FX KEY_F(43), 0463, Sent by function key f43
key_f44 kf44 FY KEY _F(44), 0464, Sent by function key f44
key_f4S kf4S FZ KEY_F(45), 0465, Sent by function key f45
key_f46 kf46 Fa KEY_F(46), 0466, Sent by function key f46
key_f47 kf47 Fb KEY_F(47), 0467, Sent by function key f47
key_f48 kf48 Fc KEY_F(48), 0470, Sent by function key f48
key_f49 kf49 Fd KEY_F(49), 0471, Sent by function key f49
key_fSO kfSO Fe KEY_F(50), 0472, Sent by function key f50
key_fSI kfSI Ff KEY_F(51), 0473, Sent by function key f51
key_fS2 kfS2 Fg KEY_F(52), 0474, Sent by function key f52
key_fS3 kfS3 Fh KEY_F(53), 0475, Sent by function key f53
key_fS4 kfS4 Fi KEY_F(54), 0476, Sent by function key f54
key_fSS kfSS Fj KEY_F(55), 0477, Sent by function key f55
key_fS6 kfS6 Fk KEY_F(56), 0500, Sent by function key f56
key_fS7 kfS7 FI KEY_F(57), 0501, Sent by function key f57
key_fS8 kfS8 Fm KEY_F(58), 0502, Sent by function key f58
key_f59 kfS9 Fn KEY _F(59), 0503, Sent by function key f59
key_f60 kf60 Fo KEY_F(60), 0504, Sent by function key f60
key_f61 kf61 Fp KEY_F(61), 0505, Sent by function key f61
key_f62 kf62 Fq KEY_F(62), 0506, Sent by function key f62
key_f63 kf63 Fr KEY_F(63), 0507, Sent by function key f63
key_find kfnd @O KEY_FIND, 0552, Sent by find key
key_help khlp %1 KEY_HELP, 0553, Sent by help key
key_home khome kh KEY_HOME, 0406, Sent by home key
keyJc kichl kI KEY_Ie, 0513, Sent by ins-char/enter ins-mode key
key_ll kill kA KEY_IL, 0511, Sent by insert-line key
key_left kcubl kl KEY_LEFT, 0404, Sent by terminal left-arrow key
key_II kIl kH KEY _LL, 0533, Sent by home-down key
key_mark kmrk %2 KEY_MARK, 0554, Sent by mark key
key_message kmsg %3 KEY_MESSAGE, 0555, Sent by message key
key_move kmov %4 KEY_MOVE, 0556, Sent by move key
key_next knxt %S KEY_NEXT, 0557, Sent by next-object key
key_npage knp kN KEY_NPAGE, 0522, Sent by next-page key
key_open kopn %6 KEY_OPEN, 0560, Sent by open key
key_options kopt %7 KEY_OPTIONS, 0561, Sent by options key
keyypage kpp kP KEY_PPAGE, 0523, Sent by previous-page key
key yrevious kprv %8 KEY_PREVIOUS, 0562, Sent by previous-object key
keyyrint kprt %9 KEY_PRINT, 0532, Sent by print or copy key
key_redo krdo %0 KEY_REDO, 0563, Sent by redo key
key_reference kref &1 KEY_REFERENCE, 0564, Sent by ref(erence) key
key_refresh krfr &2 KEY_REFRESH, 0565, Sent by refresh key
key_replace krpl &3 KEY_REPLACE, 0566, Sent by replace key
key _restart krst &4 KEY_RESTART, 0567, Sent by restart key
key_resume kres &S KEY_RESUME, 0570, Sent by resume key
key_right kcufl kr KEY_RIGHT, 0405, Sent by terminal right-arrow key
key_save ksav &6 KEY_SA VE, 0571, Sent by save key

1678 Last change: 26 February 1988 Sun Release 4.1

TERMINFO (5V) FILE FORMATS TERMINFO (5V)

key_sbeg kBEG &9 KEY_SBEG, 0572, Sent by shifted beginning key
key _ scancel kCAN &0 KEY_SCANCEL, 0573, Sent by shifted cancel key
key _ scommand kCMD *1 KEY_SCOMMAND, 0574, Sent by shifted command key
key_scopy kCPY *2 KEY_SCOPY, 0575, Sent by shifted copy key
key _ screate kCRT *3 KEY_SCREATE, 0576, Sent by shifted create key
key_sdc kDC *4 KEY_SOC, 0577, Sent by shifted delete-char key
key_sdl kDL *5 KEY_SDL, 0600, Sent by shifted delete-line key
key_select kslt *6 KEY_SELECT, 0601, Sent by select key
key_send kEND *7 KEY_SEND, 0602, Sent by shifted end key
key_seol kEOL *8 KEY_SEOL, 0603, Sent by shifted clear-line key
key_sex it kEXT *9 KEY_SEXIT, 0604, Sent by shifted exit key
key_sf kind kF KEY_SF, 0520, Sent by scroll-forward/down key
key_sfind kFND *0 KEY_SFIND, 0605, Sent by shifted find key
key_shelp kHLP #1 KEY_SHELP, 0606, Sent by shifted help key
key_shome kHOM '#2 KEY _SHOME, 0607, Sent by shifted home key
key_sic kle #3 KEY_SIC, 0610, Sent by shifted input key
key_sleft kLFf #4 KEY_SLEFT, 0611, Sent by shifted left-arrow key
key _ smessage kMSG %a KEY _SMESSAGE, 0612, Sent by shifted message key
key_smove kMOV %b KEY_SMOVE, 0613, Sent by shifted move key
key_snext kNXT %c KEY_SNEXT. 0614, Sent by shifted next key
key _ soptions kOPT %d KEY_SOPTIONS, 0615, Sent by shifted options key
key _ sprevious kPRV %e KEY_SPREVIOUS, 0616, Sent by shifted prev key
key_sprint kPRT %f KEY_SPRINT, 0617, Sent by shifted print key
key_sr kri kR KEY_SR, 0521, Sent by scroll-backward/up key
key_sredo kRDO %g KEY _SREDO, 0620, Sent by shifted redo key
key _ sreplace kRPL %h KEY_SREPLACE, 0621, Sent by shifted replace key
key_sright kRIT %i KEY_SRIGHT, 0622, Sent by shifted right-arrow key
key_srsume kRES %j KEY_SRSUME, 0623, Sent by shifted resume key
key_ssave kSAV !1 KEY _SSA VE, 0624, Sent by shifted save key
key _ ssuspend kSPD !2 KEY_SSUSPEND, 0625, Sent by shifted suspend key
key_stab khts kT KEY_STAB, 0524, Sent by set-tab key
key_sundo kUND !3 KEY_SUNDO, 0626, Sent by shifted undo key
key_suspend kspd &7 KEY_SUSPEND, 0627, Sent by suspend key
key_undo kund &8 KEY_UNDO, 0630, Sent by undo key
key_up kcuu! ku KEY_UP, 0403, Sent by terminal up-arrow key
keypad Jocal rmkx ke Out of "keypad-transmit" mode
keypad _ xmit smkx ks Put terminal in "keypad-transmit" mode
lab fO If 0 10 Labels on function key fO if not fO
lab 0 1ft 11 Labels on function key f1 if not f1
lab f2 Ifl 12 Labels on function key f2 if not f2
lab fJ IfJ 13 Labels on function key f3 if not t3
lab f4 If4 14 Labels on function key f4 if not f4
lab fS Irs IS Labels on function key f5 if not f5
lab f6 Ir6 16 Labels on function key f6 if not f6
lab n In 17 Labels on function key f7 if not f7
lab f8 1f8 18 Labels on function key f8 if not f8
lab f9 1(9 19 Labels on function key f9 if not f9
lab 00 100 la Labels on function key f1 0 if not f1 0
label ofT rmln LF Tum off soft labels
label on smln LO Tum on soft labels
meta ofT rmm mo Tum off "meta mode"
meta on smm mm Tum on "meta mode" (8th bit)
newline nel nw NEWLINE (behaves like cr followed by If)
pad char pad pc Pad character (rather than null)
parm_dch deh DC Delete #1 chars (0*)
parm _delete Jine dl DL Delete #1 lines (0*)
parm _down_cursor cud DO Move cursor down #1 lines. (0*)
parm_ich ich Ie Insert #1 blank chars (0*)

Sun Release 4.1 Last change: 26 February 1988 1679

TERMINFO (5V) FILE FORMATS TERMINFO (5V)

parmJndex indn SF Scroll forward #1 lines. (G)
parm _insert_line il AL Add #1 new blank lines (G*)
parm _left_cursor cub LE Move cursor left #1 spaces (G)
parm _right_cursor cuf RI Move cursor right #1 spaces. (G*)
parm rindex rin SR Scroll backward #1 lines. (G)
parm _up_cursor cuu UP Move cursor up #1 lines. (G*)
pkey_key pfkey pk Prog funct key #1 to type string #2
pkey_Iocai pfloc pi Prog funct key #1 to execute string #2
pkey_xmit pfx px Prog funct key #1 to xmit string #2
plab norm pin pn Prog label # 1 to show string #2
print screen mcO ps Print contents of the screen
prtr_non mcSp pO Tum on the printer for #1 bytes
prtr_off mc4 pf Tum off the printer
prtr_on mcS po Tum on the printer
repeat_char rep rp Repeat char #1 #2 times (G*)
re<Lfor Jnput rfi. RF Send next input char (for ptys)
reset_lstring rsl rl Reset terminal completely to sane modes
reset _ 2string rs2 r2 Reset terminal completely to sane modes
reset _ 3string rs3 r3 Reset terminal completely to sane modes
reset_file rf rf Name of file containing reset string
restore_cursor rc rc Restore cursor to position of last sc
row address vpa cv Vertical position absolute (G)
save cursor sc· sc Save cursor position
scroll forward ind sf Scroll text up
scroll reverse ri sr Scroll text down
set attributes sgr sa Define the video attributes #1-#9 (G)
set Jeft _margin smgl ML Set soft left margin
set_right _margin smgr MR Set soft right margin
set tab hts st Set a tab stop in all rows, current column
set window wind wi Current window is lines #1-#2 cols #3-#4 (G)
tab ht ta Move the cursor to the next 8 space hardware tab stop
to status line tsl - - ts Go to status line, col #1 (G)
underline char uc uc Underscore one char and move past it
up _half_line hu hu Half-line up (reverse 1/2 line-feed)
xoff character xoffc XF X-off character
xon character xonc XN X -on character

SAMPLE ENTRY

1680

The following entry, which describes the Concept 100 tenninal, is among the more complex entries in the
terminfo file as of this writing.

conceptlOO I clool conceptlcl04IclOO-4plconceptlOO,
am, db, eo, in, mlr, ul, xenl, cols#8O, Iines#24, pb#9600, vt#8,
bel="G, blank=\EH, blink:::\EC, clear:::"L$<2*>, cnorm=\Ew, cr:::"M$<9>,
cubl:::"H, cudl:::"j, cufl:::\E:::, cup:::\Ea%pl %' '%+%c%p2%' '%+%c, cuul:::\E;,
cvvis:::\EW, dchl:::\E" A$<16*>, dim:::\EE, dl1:::\E"B$<3*>,
ed=\E"C$<16*>, el:::\E"U$<l6>, flash:::\Ek$<20>\EK, ht:::\t$<S>,
ill=\E"R$<3*>, ind:::"j, .ind:::"j$<9>, ip:::$<16*>,
is2=\EU\Et\E7\ES\ES\El\ENH\EK\E\O\Eo&\O\Eo\47\E,
kbs="h, kcubl:::\E>, kcudl:::\E<, kcufl=\E=, kcuul=\E;, kfl=\ES,
kf2=\E6, kt3=\E7, khome=\E?, prot=\EI,
rep=\Er%pl %c%p2%' '%+%c$<.2*>, rev=\ED,
rmcup=\Ev\s\s\s\s$<6>\Ep\r\n, rmir=\E\O, rmkx=\Ex,
rmso=\Ed\Ee, rmul=\Eg, rmul=\Eg, sgrO=\EN\O,
smcup=\EU\Ev\s\sSp\Ep\r, smir:::\E"P, smkx=\EX, srnso=\EE\ED,
srnul=\EG,

Last change: 26 February 1988 Sun Release 4.1

TERMINFO (5V) FILE FORMATS TERMINFO (5V)

Entries may continue onto multiple lines by placing white space at the beginning of each line except the
first. Lines beginning with # are taken as comment lines. Capabilities in terminfo are of three types:
boolean capabilities which indicate that the terminal has some particular feature, numeric capabilities giv­
ing the size of the terminal or particular features, and string capabilities, which give a sequence which can
be used to perform particular terminal operations.

Types of Capabilities
All capabilities have names. For instance, the fact that the Concept has automatic margins (that is, an
automatic RETURN and LINEFEED when the end of a line is reached) is indicated by the capability am.
Hence the description of the Concept includes am. Numeric capabilities are followed by the character #
and then the value. Thus eols, which indicates the number of columns the terminal has, gives the value 80
for the Concept. The value may be specified in decimal, octal or hexadecimal using normal C conventions.

Finally, string-valued capabilities, such as el (clear to end of line sequence) are given by the two- to five­
character capname, an '=', and then a string ending at the next following comma. A delay in milliseconds
may appear anywhere in such a capability, enclosed in $< .• > brackets, as in 'el=\EK$<3>', and padding
characters are supplied by tputsO (see eurses(3V» to provide this delay. The delay can be either a
number, for example, 20, or a number followed by an * (for example, 3*), a 1 (for example, 51), or both (for
example, 10*1). A * indicates that the padding required is proportional to the number of lines affected by
the operation, and the amount given is the per-affected-unit padding required. (In the case of insert charac­
ter, the factor is still the number of lines affected. This is always one unless the terminal has in and the
software uses it.) When a * is specified, it is sometimes useful to give a delay of the form 3.5 to specify a
delay per unit to tenths of milliseconds. (Only one decimal place is allowed.) A 1 indicates that the pad­
ding is mandatory. Otherwise, if the terminal has xon defined, the padding information is advisory and will
only be used for cost estimates or when the terminal is in raw mode. Mandatory padding will be transmit­
ted regardless of the setting of xon.

A number of escape sequences are provided in the string-valued capabilities for easy encoding of charac­
ters there:

\E, \e map to ESC
"X maps to CfRL-X for any appropriate character X
\n maps to NEWLINE
\1 maps to LINEFEED
\r maps to RETURN
\t maps to TAB
\b maps to BACKSPACE
\f maps to FORMFEED
\s maps to SPACE
\0 maps to NUL

(\0 will actually produce \200, which does not terminate a string but behaves as a null character on most
terminals.) Finally, characters may be given as three octal digits after a backs!ash (for example, \123), and
the characters" (caret), \ (backslash), : (colon), and , (comma) may be given as \", \\, \:, and \, respectively.

Sometimes individual capabilities must be commented out. To do this, put a period before the capability
name. For example, see the second ind in the example above. Note: capabilities are defined in a left-to­
right order and, therefore, a prior definition will override a later definition.

Sun Release 4.1 Last change: 26 February 1988 1681

TERMINFO (5V) FILE FORMATS TERMINFO (5V)

Preparing Descriptions
The most effective way to prepare a terminal description is by imitating the description of a similar termi­
nal in terminfo and to build up a description gradually, using partial descriptions with some curses-based
application to check that they are correct. Be aware that a very unusual terminal may expose deficiencies
in the ability of the terminfo file to describe it or bugs in the application. To test a new terminal descrip­
tion, set the environment variable TERMINFO to a path name of a directory containing the compiled
description you are working on and programs will look there rather than in lusrlsharellib/terminfo. To get
the padding for insert-line correct (if the terminal manufacturer did not document it) a severe test is to
insert 16 lines into the middle of a full screen at 9600 baud. If the display is corrupted, more padding is
usually needed. A similar test can be used for insert-character.

Basic Capabilities

1682

The number of columns on each line for the terminal is given by the cols numeric capability. If the termi­
nal has a screen, then the number of lines on the screen is given by the lines capability. If the terminal
wraps around to the beginning of the next line when it reaches the right margin, then it should have the am
capability. If the terminal can clear its screen, leaving the cursor in the home position, then this is given by
the clear string capability. If the terminal overstrikes (rather than clearing a position when a character is
struck over) then it should have the os capability. If the terminal is a printing terminal, with no soft copy
unit, give it both hc and os. (os applies to storage scope terminals, such as Tektronix 4010 series, as well
as hard-copy and APL terminals.) If there is a code to move the cursor to the left edge of the current row,
give this as cr. (Normally this will be RETURN, CTRL-M.) If there is a code to produce an audible signal
(bell, beep, etc) give this as bel. If the terminal uses the xon-xoff flow-control protocol, like most termi­
nals, specify XOD.

If there is a code to move the cursor one position to the left (such as backspace) that capability should be
given as cubl. Similarly, codes to move to the right, up, and down should be given as cuft, cuul, and
cudl. These local cursor motions should not alter the text they pass over; for example, you would not nor­
mally use cuft=\s because the SPACE would erase the character moved over.

A very important point here is that the local cursor motions encoded in term info are undefined at the left
and top edges of a screen terminal. Programs should never attempt to backspace around the left edge,
unless bw is given, and should never attempt to go up locally off the top. In order to scroll text up, a pro­
gram will go to the bottom left comer of the screen and send the ind (index) string.

To scroll text down, a program goes to the top left comer of the screen and sends the ri (reverse index)
string. The strings ind and ri are undefined when not on their respective comers of the screen.

Parameterized versions of the scrolling sequences are indn and rin which have the same semantics as ind
and ri except that they take one parameter, and scroll that many lines. They are also undefined except at
the appropriate edge of the screen.

The am capability tells whether the cursor sticks at the right edge of the screen when text is output, but this
does not necessarily apply to a cun from the last column. The only local motion which is defined from the
left edge is if bw is given, then a cubl from the left edge will move to the right edge of the previous row.
If bw is not given, the effect is undefined. This is useful for drawing a box around the edge of the screen,
for example. If the terminal has switch selectable automatic margins, the terminfo file usually assumes
that this is on; that is, am. If the terminal has a command which moves to the first column of the next line,
that command can be given as nel (NEWLINE). It does not matter if the command clears the remainder of
the current line, so if the terminal has no er and If it may still be possible to craft a working nel out of one
or both of them.

These capabilities suffice to describe hardcopy and screen terminals. Thus the model 33 teletype is
described as

331 tty33 1 tty 1 model 33 teletype,
bel="G, cols#72, er="M, cudl="J, he, ind="J, os,

Last change: 26 February 1988 Sun Release 4.1

TERMINFO (5V) FILE FORMATS TERMINFO (5V)

while the Lear Siegler ADM-3 is described as

adm311si adm3,

Parameterized Strings

am, bel="'G, clear="'Z, colS#80, cr="'M, cubl="'",
cudl="'J, ind="'J, IineS#24,

Cursor addressing and other strings requiring parameters in the terminal are described by a parameterized
string capability, with printf(3V)-like escapes (%x) in it. For example, to address the cursor, the cup
capability is given, using two parameters: the row and column to address to. (Rows and columns are num­
bered from zero and refer to the physical screen visible to the user, not to any unseen memory.) If the ter­
minal has memory relative cursor addressing, that can be indicated by mrcup.

The parameter mechanism uses a stack and special % codes to manipulate it in the manner of a Reverse
Polish Notation (postfix) calculator. Typically a sequence will push one of the parameters onto the stack
and then print it in some format. Often more complex operations are necessary. Binary operations are in
postfix form with the operands in the usual order. That is, to get x-5 one would use '%gx%{5}%-'.

The % encodings have the following meanings:

%% outputs %
%[[:]flags] [width[.precision]] [doxXs]

as in printf(3V), flags are [-+#] and SPACE

%c print p£p() gives %c
% p[1-9] push i parm
% P[a-z] set variable [a-z] to pop()
%g[a-z] get variable [a-z] and push it
% 'c' push char constant c
% {nn} push decimal constant nn
%1 push strlen(pop(»
%+ %- %* %/ %m

arithmetic (%m is mod): pusb(popO op pop(»
% & % I % '" bit operations: pusb(pop() op pop(»
%= %> %< logical operations: pusb(popO op popO)
%A %0 logical operations: and, or
%! %- unary operations: push(op pop(»
%i (for ANSI terminals)

add 1 to first parm, if one parm present,
or first two parms, if more than one
parm present

%? expr %tthenpart % eelsepart%;
if-then-else, '%eelsepart' is optional; else-if's are possible in Algol 68:

%?c
1

%tb
1

%ec
2

%tb
2

%ec
3

%tb
3

%ec
4

%tb
4

%ebs %;
c. are conditions, b. are bodies.

1 1

If the '-' flag is used with '%[doxXs]', then a colon (:) must be placed between the '%' and the '-' to dif­
ferentiate the flag from the binary' %-' operator, for example, '% :-16.16s'.

Consider the Hewlett-Packard 2645, which, to get to row 3 and column 12, needs to be sent \E&al2c03Y
padded for 6 milliseconds. Note: the order of the rows and columns is inverted here, and that the row and
column are zero-padded as two digits. Thus its cup capability is:

cup=\E&a%p2%2.2dc%pl %2.2dY$<6>

Sun Release 4.1 Last change: 26 February 1988 1683

TERMINFO (5V) FILE FORMATS TERMINFO (5V)

The Micro-Term ACT-N needs the current row and column sent preceded by a AT, with the row and
column simply encoded in binary, 'cup="T%p 1 %c%p2%c'. Terminals which use %c need to be able to
backspace the cursor (cubl), and to move the cursor up one line on the screen (cuul). This is necessary
because it is not always safe to transmit \0, AD, and \r, as the system may change or discard them. (The
library routines dealing with term info set tty modes so that TAB characters are never expanded, so \t is
safe to send. This turns out to be essential for the Ann Arbor 4080.)

A final example is the LSI ADM-3a, which uses row and column offset by a blank character, thus
'cup=\E=%pl%'\s'%+%c%p2%'\s'%+%c'. After sending '\E=', this pushes the first parameter, pushes
the Ascn value for a space (32), adds them (pushing the sum on the stack in place of the two previous
values), and outputs that value as a character. Then the same is done for the second parameter. More com­
plex arithmetic is possible using the stack.

Cursor Motions
If the terminal has a fast way to home the cursor (to very upper left corner of screen) then this can be given
as home; similarly a fast way of getting to the lower left-hand corner can be given as II; this may involve
going up with cuul from the home position, but a program should never do this itself (unless II does)
because it can make no assumption about the effect of moving up from the home position. Note: the home
position is the same as addressing to (0,0): to the top left corner of the screen, not of memory. (Thus, the
\EH sequence on Hewlett-Packard terminals cannot be used for home without losing some of the other
features on the terminal.)

If the terminal has row or column absolute-cursor addressing, these can be given as single parameter capa­
bilities bpa (horizontal position absolute) and vpa (vertical position absolute). Sometimes these are shorter
than the· more general two-parameter sequence (as with the Hewlett-Packard 2645) and can be used in
preference to cup. If there are parameterized local motions (for example, move n spaces to the right) these
can be given as cud, cub, cuf, and cuu with a single parameter indicating how many spaces to move.
These are primarily useful if the terminal does not have cup, such as the Tektronix 4025.

Area Clears
If the terminal can clear from the current position to the end of the line, leaving the cursor where it is, this
should be given as el. If the terminal can clear from the beginning of the line to the current position
inclusive, leaving the cursor where it is, this should be given as ell. If the terminal can clear from the
current position to the end of the display, then this should be given as ed. ed is only defined from the first
column of a line. (Thus, it can be simulated by a request to delete a large number of lines, if a true ed is
not available.)

InsertlDelete Line

1684

If the terminal can open a new blank line before the line where the cursor is, this should be given as 'ill';
this is done only from the first position of a line. The cursor must then appear on the newly blank line. If
the terminal can delete the line which the cursor is on, then this should be given as 'dll'; this is done only
from the first position on the line to be deleted. Versions of ill and dll which take a single parameter and
insert or delete that many lines can be given as it and dl.

If the terminal has a settable destructive scrolling region (like the VT100) the command to set this can be
described with the csr capability, which takes two parameters: the top and bottom lines of the scrolling
region. The cursor position is, alas, undefined after using this command. It is possible to get the effect of
insert or delete line using this command - the sc and rc (save and restore cursor) commands are also use­
ful. Inserting lines at the top or bottom of the screen can also be done using ri or ind on many terminals
without a true insert/delete line, and is often faster even on terminals with those features.

To determine whether a tenninal has destructive scrolling regions or non-destructive scrolling regions,
create a scrolling region in the middle of the screen, place data on the bottom line of the scrolling region,
move the cursor to the top line of the scrolling region, and do a reverse index (ri) followed by a delete line
(dll) or index (ind). If the data that was originally on the bottom line of the scrolling region was restored
into the scrolling region by the dll or ind, then the terminal has non-destructive scrolling regions. Other­
wise, it has destructive scrolling regions. Do not specify csr if the terminal has non-destructive scrolling
regions, unless ind, ri, indn, rin, dl, and dll all simulate destructive scrolling.

Last change: 26 February 1988 Sun Release 4.1

TERMINFO (5V) FILE FORMATS TERMINFO (5V)

If the terminal has the ability to define a window as part of memory, which all commands affect, it should
be given as the parameterized string wind. The four parameters are the starting and ending lines in
memory and the starting and ending columns in memory, in that order.

If the terminal can retain display memory above, then the da capability should be given; if display memory
can be retained below, then db should be given. These indicate that deleting a line or scrolling a full screen
may bring non-blank lines up from below or that scrolling back with ri may bring down non-blank lines.

InsertlDelete Character
There are two basic kinds of intelligent terminals with respect to insert/delete character operations which
can be described using term info. The most common insert/delete character operations affect only the
characters on the current line and shift characters off the end of the line rigidly. Other terminals, such as
the Concept 100 and the Perkin Elmer Owl, make a distinction between typed and untyped blanks on the
screen, shifting upon an insert or delete only to an untyped blank on the screen which is either eliminated,
or expanded to two untyped blanks. You can determine the kind of terminal you have by clearing the
screen and then typing text separated by cursor motions. Type' abc def' using local cursor motions (not
SPACE characters) between the abc and the def. Then position the cursor before the abc and put the termi­
nal in insert mode. If typing characters causes the rest of the line to shift rigidly and characters to fall off
the end, then your terminal does not distinguish between blanks and untyped positions. If the abc shifts
over to the def which then move together around the end of the current line and onto the next as you insert,
you have the second type of tenninal, and should give the capability in, which stands for "insert null".
While these are two logically separate attributes (one line versus multiline insert mode, and special treat­
ment of untyped blanks) we have seen no tenninals whose insert mode cannot be described with the single
attribute.

term info can describe both terminals which have an insert mode and terminals which send a simple
sequence to open a blank position on the current line. Give as smir the sequence to get into insert mode.
Give as rmir the sequence to leave insert mode. Now give as icbl any sequence needed to be sent just
before sending the character to be inserted. Most terminals with a true insert mode will not give icbl; ter­
minals which send a sequence to open a screen position should give it here. (If your terminal has both,
insert mode is usually preferable to iebl. Do not give both unless the terminal actually requires both to be
used in combination.) If post-insert padding is needed, give this as a number of milliseconds padding in ip
(a string option). Any other sequence which may need to be sent after an insert of a single character may
also be given in ip. If your tenninal needs both to be placed into an "insert mode" and a special code to
precede each inserted character, then both smir/rmir and icbl can be given, and both will be used. The
ich capability, with one parameter, n, will repeat the effects of iehl n times.

If padding is necessary between characters typed while not in insert mode, give this as a number of mil­
liseconds padding in rmp.

It is occasionally necessary to move around while in insert mode to delete characters on the same line (for
example, if there is a TAB character after the insertion position). If your terminal allows motion while in
insert mode you can give the capability mir to speed up inserting in this case. Omitting mir will affect
only speed. Some terminals (notably Datamedia's) must not have mir because of the way their insert mode
works.

Finally, you can specify debl to delete a single character, deb with one parameter, n, to delete n charac­
ters, and delete mode by giving smde and rmde to enter and exit delete mode (any mode the terminal
needs to be placed in for debl to work).

A command to erase n characters (equivalent to outputting n blanks without moving the cursor) can be
given as eeh with one parameter.

Highlighting, Underlining, and Visible Bells
If your terminal has one or more kinds of display attributes, these can be represented in a number of dif­
ferent ways. You should choose one display form as standout mode (see eurses(3V)), representing a good,
high contrast, easy-on-the-eyes, format for highlighting error messages and other attention getters. (If you
have a choice, reverse-video plus half-bright is good, or reverse-video alone; however, different users have

Sun Release 4.1 Last change: 26 February 1988 1685

TERMINFO (5V) FILE FORMATS TERMINFO (5V)

1686

different preferences on different terminals.) The sequences to enter and exit standout mode are given as
smso and rmso, respectively. If the code to change into or out of standout mode leaves .one or even two
blanks on the screen, as the TVI 912 and Teleray 1061 do, then xmc should be given to tell how many
blanks are left.

Codes to begin underlining and end underlining can be given as smul and rmul respectively. If the termi­
nal has a code to underline the current character and move the cursor one position to the right, such as the
Micro-Term MIME, this can be given as uc.

Other capabilities to enter various highlighting modes include blink (blinking), bold (bold or extra-bright),
dim (dim or half-bright), invis (blanking or invisible text), prot (protected), rev (reverse-video), sgrO (turn
off all attribute modes), smacs (enter alternate-character-set mode), and rmacs (exit alternate-character-set
mode). Turning on any of these modes singly mayor may not turn off other modes. If a command is
necessary before alternate character set mode is entered, give the sequence in enacs (enable alternate­
character-set mode).

If there is a sequence to set arbitrary combinations of modes, this should be given as sgr (set attributes),
taking nine parameters. Each parameter is either 0 or non-zero, as the corresponding attribute is on or off.
The nine parameters are, in order: standout, underline, reverse, blink, dim, bold, blank, protect, alternate
character set Not all modes need be supported by sgr, only those for which corresponding separate attri­
bute commands exist (See the example at the end of this section.)

Terminals with the "magic cookie" glitch (xmc) deposit special "cookies" when they receive mode-setting
sequences, which affect the display algorithm rather than having extra bits for each character. Some termi­
nals, such as the Hewlett-Packard 2621. automatically leave standout mode when they move to a new line
or the cursor is addressed. Programs using standout mode should exit standout mode before moving the
cursor or sending a newline, unless the msgr capability, asserting that it is safe to move in standout mode,
is present

If the terminal has a way of flashing the screen to indicate an error quietly (a bell replacement), then this
can be given as flash; it must not move the cursor. A good flash can be done by changing the screen into
reverse video. pad for 200 ms, then return the screen to normal video.

If the cursor needs to be made more visible than normal when it is not on the bottom line (to make, for
example, a non-blinking underline into an easier to find block or blinking underline) give this sequence as
cvvis. The boolean chts should also be given. If there is a way to make the cursor completely invisible,
give that as civis. The capability cnorm should be given which undoes the effects of either of these modes.

If the terminal needs to be in a special mode when running a program that uses these capabilities, the codes
to enter and exit this mode can be given as smcup and rmcup. This arises, for example, from terminals
like the Concept with more than one page of memory. If the terminal has only memory relative cursor
addressing and not screen relative cursor addressing, a one screen-sized window must be fixed into the ter­
minal for cursor addressing to work properly. This is also used for the Tektronix 4025, where smcup sets
the command character to be the one used by terminro. If the smcup sequence will not restore the screen
after an rmcup sequence is output (to the state prior to outputting rmcup), specify nrrmc.

If your terminal generates underlined characters by using the underline character (with no special codes
needed) even though it does not otherwise overstrike characters, then you should give the capability ul.
For terminals where a character overstriking another leaves both characters on the screen, give the capabil­
ity os. If overstrikes are erasable with a blank, then this should be indicated by giving eo.

Example of highlighting: assume that the terminal under question needs the following escape sequences to
tum on various modes.

tparm attribute escape sequence
parameter

none \E[Om
pI standout \E[0;4;7m
p2 underline \E[O;3m

Last change: 26 February 1988 Sun Release 4.1

TERMINFO (5V) FILE FORMATS TERMINFO (5V)

p3 reverse \E[0;4m
p4 blink \E[0;5m
p5 dim \E[0;7m
p6 bold \E[0;3;4m
p7 invis \E[0;8m
p8 protect not available
p9 altcharset AO (oft) AN(on)

Note: each escape sequence requires a 0 to turn off other modes before turning on its own mode. Also note
that, as suggested above, standout is set up to be the combination of reverse and dim. Also, since this ter­
minal has no bold mode, bold is set up as the combination of reverse and underline. In addition, to allow
combinations, such as underline+blink, the sequence to use would be '\E[O;3;5m'. The terminal does not
have protect mode, either, but that cannot be simulated in any way, so p8 is ignored. The altcharset mode
is different in that it is either AO or AN depending on whether it is off or on. If all modes were to be turned
on, the sequence would be '\E[O;3;4;5;7;8mAN'.

Now look at when different sequences are output. For example, ';3' is output when either 'p2' or 'p6' is
true, that is, if either underline or bold modes are turned on. Writing out the above sequences, along with
their dependencies, gives the following:

sequence when to output term info translation

\E[O always \E[O
;3 ifp20rp6 %?%p2%p6%I%t;3%;
;4 ifpl or p3 or p6 %?%pl %p3%1%p6%I%t;4%;
;5 ifp4 %?%p4%t;5%;
;7 ifpl or p5 %?%pl %p5%I%t;7%;
;8 ifp7 %?%p7%t;8%;
m always m
AN orAO if p9 AN, else AO %?%p9%(N%eAO%;

Putting this all together into the sgr sequence gives:

sgr=\E[0%?%p2%p6%I%t;3%;%?%pl %p3%1%p6%I%t;4%;%?%p5%t;5%;%?%pl %p5%
l%t;7%;%?%p7%t;8%;m%?%p9%(N%e"0%;,

Keypad
If the terminal has a keypad that transmits codes when the keys are pressed, this information can be given.
Note: it is not possible to handle terminals where the keypad only works in local (this applies, for example,
to the unshifted Hewlett-Packard 2621 keys). If the keypad can be set to transmit or not transmit, give
these codes as smkx and rmkx. Otherwise the keypad is assumed to always transmit.

The codes sent by the left arrow, right arrow, up arrow, down arrow, and home keys can be given as
kcubl, kcufl, keuul, keudl, and khome respectively. If there are function keys such as ro, fl, ... , f63,
the codes they send can be given as kfO, kfl, ... , kf63. If the first 11 keys have labels other than the
default ro through flO, the labels can be given as 11'0, 1ft, ... , IflO. The codes transmitted by certain other
special keys can be given: kll (home down), kbs (BACKSPACE), ktbc (clear all tab stops), ketab (clear the
tab stop in this column), kelr (clear screen or erase key), kdehl (delete character), kdIl (delete line),
krmir (exit insert mode), kel (clear to end of line), ked (clear to end of screen), kiehl (insert character or
enter insert mode), kill (insert line), knp (next page), kpp (previous page), kind (scroll forward/down),
kri (scroll backward/up), khts (set a tab stop in this column). In addition, if the keypad has a 3 by 3 array
of keys including the four arrow keys, the other five keys can be given as kal, ka3, kb2, kel, and ke3.
These keys are useful when the effects of a 3 by 3 directional pad are needed. Further keys are defined
above in the capabilities list.

Strings to program function keys can be given as pfkey, pHoc, and pfx. A string to program their soft­
screen labels can be given as pin. Each of these strings takes two parameters: the function key number to
program (from 0 to 10) and the string to program it with. Function key numbers out of this range may

Sun Release 4.1 Last change: 26 February 1988 1687

TERMINFO (SV) FILE FORMATS TERMINFO (SV)

program undefined keys in a terminal-dependent manner. The difference between the capabilities is that
pfkey causes pressing the given key to be the same as the user typing the given string; pfloc executes the
string by the terminal in local mode; and pfx transmits the string to the computer. The capabilities nlab, Iw
and Ih define how many soft labels there are and their width and height. If there are commands to tum the
labels on and off, give them in smln and rmln. smln is normally output after one or more pin sequences to
make sure that the change becomes visible.

Tabs and Initialization
If the terminal has hardware tab stops, the command to advance to the next tab stop can be given as ht
(usually CfRL-I). A "backtab" command which moves leftward to the next tab stop can be given as cbt.
By convention, if the teletype modes indicate that TAB characters are being expanded by the computer
rather than being sent to the terminal, programs should not use ht or cbt even if they are present, since the
user may not have the tab stops properly set. If the terminal has hardware tab stops which are initially set
every n spaces when the terminal is powered up, the numeric parameter it is given, showing the number of
spaces the tab stops are set to. This is normally used by 'tput init' (see tput(IV» to determine whether to
set the mode for hardware TAB expansion and whether to set the tab stops. If the terminal has tab stops
that can be saved in nonvolatile memory, the terminfo description can assume that they are properly set. If
there are commands to set and clear tab stops, they can be given as tbe (clear all tab stops) and hts (set a
tab stop in the current column of every row).

Other capabilities include: is!, is2, and is3, initialization strings for the terminal; iprog, the path name of a
program to be run to initialize the terminal; and if, the name of a file containing long initialization strings.
These strings are expected to set the terminal into modes consistent with the rest of the term info descrip­
tion. They must be sent to the terminal each time the user logs in and be output in the following order: run
the program iprog; output isl; output is2; set the margins using mge, smgl and smgr; set the tab stops
using tbc and hts; print the file if; and finally output is3. This is usually done using the in it option of
tput(lV).

Most initialization is done with is2. Special terminal modes can be set up without duplicating strings by
putting the common sequences in is2 and special cases in isl and is3. Sequences that do a harder reset
from a totally unknown state can be given as rsl, rs2, rf, and rs3, analogous to isl, is2, is3, and if. (The
method using files, if and rf, is used for a few terminals, from lusrlshare/lib/tabsetl*; however, the recom­
mended method is to use the initialization and reset strings.) These strings are output by 'tput reset',
which is used when the terminal gets into a wedged state. Commands are normally placed in rsl, rs2, rs3,
and rf only if they produce annoying effects on the screen and are not necessary when logging in. For
example, the command to set a terminal into 80-column mode would normally be part of is2, but on some
terminals it causes an annoying glitch on the screen and is not normally needed since the terminal is usually
already in 80-column mode.

If a more complex sequence is needed to set the tab stops than can be described by using tbe and hts, the
sequence can be placed in is2 or if.

If there are commands to set and clear margins, they can be given as mge (clear all margins), smgl (set left
margin), and smgr (set right margin).

Delays

1688

Certain capabilities control padding in the terminal driver. These are primarily needed by hard-copy termi­
nals, and are used by 'tput in it' to set tty modes appropriately. Delays embedded in the capabilities er,
ind, cub!, fT, and tab can be used to set the appropriate delay bits to be set in the tty driver. If pb (padding
baud rate) is given, these values can be ignored at baud rates below the value of pb.

Last change: 26 February 1988 Sun Release 4.1

TERMINFO (5V) FILE FORMATS TERMINFO (5V)

Status Lines
If the tenninal has an extra "status line" that is not normally used by software, this fact can be indicated. If
the status line is viewed as an extra line below the bottom line, into which one can cursor address nonnally
(such as the Heathkit H19's 25th line, or the 24th line of a VT100 which is set to a 23-line scrolling region),
the capability hs should be given. Special strings that go to a given column of the status line and return
from the status line can be given as tsl and fsl. (fsl must leave the cursor position in the same place it was
before tsl. If necessary, the sc and rc strings can be included in tsl and fsl to get this effect.) The capabil­
ity tsl takes one parameter, which is the column number of the status line the cursor is to be moved to.

If escape sequences and other special commands, such as TAB, work while in the status line, the flag eslok
can be given. A string which turns off the status line (or otherwise erases its contents) should be given as
dsl. If the terminal has commands to save and restore the position of the cursor, give them as sc and rc.
The status line is normally assumed to be the same width as the rest of the screen, for example, cols. If the
status line is a different width (possibly because the terminal does not allow an entire line to be loaded) the
width, in columns, can be indicated with the numeric parameter wsl.

Line Graphics
If the terminal has a line drawing alternate character set, the mapping of glyph to character would be given
in acsc. The definition of this string is based on the alternate character set used in the DEC VT100 terminal,
extended slightly with some characters from the AT&T 4410vl terminal.

glyph name VT100+
character

arrow pointing right +
arrow pointing left
arrow pointing down
solid square block 0
lantern symbol
arrow pointing up
diamond
checker board (stipple) a
degree symbol f
plus/minus g
board of squares h
lower right comer j
upper right comer k
upper left comer I
lower left comer m
plus n
scan line 1 0

horizontal line q
scan line 9 s
left tee (~) t
righttee (-n u
bottom tee (1) v
top tee (T) w
vertical line x
bullet

The best way to describe a new terminal's line graphics set is to add a third column to the above table with
the characters for the new terminal that produce the appropriate glyph when the terminal is in the alternate
character set mode. For example,

Sun Release 4.1 Last change: 26 February 1988 1689

TERMINFO (5V) FILE FORMATS TERMINFO (5V)

glyph name VT100+ new tty
char char

upper left corner R
lower left corner m F
upper right corner k T
lower right corner j G
horizontal line q
vertical line x

Now write down the characters left to right, as in 'acsc=IRmFkTjGq\x.'.

Miscellaneous

1690

If the terminal requires other than a null (zero) character as a pad, then this can be given as pad. Only the
first character of the pad string is used. If the terminal does not have a pad character, specify npc.

If the terminal can move up or down half a line, this can be indicated with hu (half-line up) and hd (half­
line down). This is primarily useful for superscripts and subscripts on hardcopy terminals. If a hardcopy
terminal can eject to the next page (form feed), give this as IT (usually CTRL-L).

If there is a command to repeat a given character a given number of times (to save time transmitting a large
number of identical characters) this can be indicated with the parameterized string rep. The first parameter
is the character to be repeated and the second is the number of times to repeat it. Thus,
'tparm(repeat_ char, 'x', 10), is the same as 'xxxxxxxxxx'.

If the terminal has a settable command character, such as the Tektronix 4025, this can be indicated with
cmdch. A prototype command character is chosen which is used in all capabilities. This character is given
in the cmdch capability to identify it. On some UNIX systems, when the environment variable CC is set to
a single-character value, all occurrences of the prototype character are replaced with that character.

Terminal descriptions that do not represent a specific kind of known terminal, such as switch, dialup,
patch, and network, should include the gn (generic) capability so that programs can complain that they do
not know how to talk to the terminal. (This capability does not apply to virtual terminal descriptions for
which the escape sequences are known.) If the terminal is one of those supported by the UNIX system vir­
tual terminal protocol, the terminal number can be given as vt. A line-tum-around sequence to be transmit­
ted before doing reads should be specified in rfi.

If the terminal uses xon/xoff handshaking for flow control, give xon. Padding information should still be
included so that routines can make better decisions about costs, but actual pad characters will not be
transmitted. Sequences to turn on and off xon/xoff handshaking may be given in smxon and rmxon. If the
characters used for handshaking are not "S and "Q (CTRL-S and CTRL-Q. respectively), they may be
specified with xonc and xolTc.

If the terminal has a "meta key" which acts as a shift key, setting the 8th bit of any character transmitted,
this fact can be indicated with km. Otherwise, software will assume that the 8th bit is parity and it will
usually be cleared. If strings exist to turn this "meta mode" on and off, they can be given as smm and
rmm.

If the terminal has more lines of memory than will fit on the screen at once, the number of lines of memory
can be indicated with 1m. A value of Im#O indicates that the number of lines is not fixed, but that there is
still more memory than fits on the screen.

Media copy strings which control an auxiliary printer connected to the terminal can be given as mcO: print
the contents of the screen, mc4: tum off the printer, and mcS: tum on the printer. When the printer is on,
all text sent to the terminal will be sent to the printer. A variation, mcSp, takes one parameter, and leaves
the printer on for as many characters as the value of the parameter, then turns the printer off. The parame­
ter should not exceed 255. If the text is not displayed on the terminal screen when the printer is on, specify
mcSi (silent printer). All text, including mc4, is transparently passed to the printer while an mcSp is in
effect.

Last change: 26 February 1988 Sun Release 4.1

TERMINFO (5V) FILE FORMATS TERMINFO (5V)

Special Cases
The working model used by terminfo fits most terminals reasonably well. However, some terminals do not
completely match that model, requiring special support by term info. These are not meant to be construed
as deficiencies in the terminals; they are just differences between the working model and the actual
hardware. They may be unusual devices or, for some reason, do not have all the features of the term info
model implemented.

Terminals which can not display tilde (-) characters, such as certain Hazeltine terminals, should indicate
hz.

Terminals which ignore a LINEFEED immediately after an am wrap, such as the Concept 100, should indi­
cate xenl. Those terminals whose cursor remains on the right-most column until another character has
been received, rather than wrapping immediately upon receiving the right-most character, such as the
VT100, should also indicate xenl.

If el is required to get rid of standout (instead of writing normal text on top of it), xhp should be given.

Those Teleray terminals whose tabs turn all characters moved over to blanks, should indicate xt (destruc­
tive TAB characters). This capability is also taken to mean that it is not possible to position the cursor on
top of a "magic cookie" therefore, to erase standout mode, it is instead necessary to use delete and insert
line.

Those Beehive Superbee terminals which do not transmit the escape or CTRL-C characters, should specify
xsb, indicating that the f1 key is to be used for escape and the f2 key for CTRL-C.

Similar Terminals

FILES

If there are two very similar terminals, one can be defined as being just like the other with certain excep­
tions. The string capability use can be given with the name of the similar terminal. The capabilities given
before use override those in the terminal type invoked by use. A capability can be canceled by placing
xx@ to the left of the capability definition, where xx is the capability. For example, the entry

att4424-2ITeletype 4424 in display function group ii,
rev@, sgr@, smul@, use=att4424,

defines an AT&T 4424 terminal that does not have the rev, sgr, and smul capabilities, and hence cannot do
highlighting. This is useful for different modes for a terminal, or for different user preferences. More than
one use capability may be given.

lusrlshare/lib/terminfo/? 1*
compiled terminal description database

lusrlshare/lib/tabsetl* tab stop settings for some terminals, in a format appropriate to be output to the ter­
minal (escape sequences that set margins and tab stops)

SEE ALSO
tput(l V), curses(3V), printf(3V), term(5V), captoinfo(8V), infocmp(8V), tic(8V)

WARNING

As described in the Tabs and Initialization section above, a terminal's initialization strings, is!, is2, and
is3, if defined, must be output before a curses(3V) program is run. An available mechanism for outputting
such strings is tput init (see tput(1 V)).

Tampering with entries in lusrlshare/lib/terminfo/?I* (for example, changing or removing an entry) can
affect programs that expect the entry to be present and correct. In particular, removing the description for
the "dumb" terminal will cause unexpected problems.

Sun Release 4.1 Last change: 26 February 1988 1691

TOC(5) FILE FORMATS TOC(5)

NAME
toe - table of contents of optional clusters in Application SunOS and Developer's Toolkit

SYNOPSIS
lusr/lib/loadltoc

A V AILABILITY
Available only on Sun 386i systems running a SunOS 4.0.x release or earlier. Not a SunOS 4.1 release
feature.

DESCRIPTION
The toc file contains information specifying the organization of the optional clusters in Application SunOS
and Developer's Toolkit on the Sun386i distribution media. For each cluster, a single line should be
present with the following information:

cluster name
set containing the cluster (Application SunOS or Developer's Toolkit)
size of the cluster (in kilobytes)
diskette volume of the cluster in the set (for loading from 3.5" diskette)
tape and file number of the cluster (for loading from 1/4" tape)

Items are separated by a ':'.

Cluster names can contain any printable character other than a':', space, tab, or newline character. The set
containing the cluster is specified by an 'A' for Application SunOS or 'D' for Developer's Toolkit. The
diskette volume is the number of the diskette within the diskette set on which the cluster begins. The tape
and file number specifies the tape and file position of the cluster on the tape.

EXAMPLE

1692

The following is an example to the toc file.

accounting:A:55:14:1@12
advanced _ admin:A:628:14: 1@4
audit:A:144: 14: 1@8
comm:A:312:13:1@9
disk _ quotas:A:56:14: 1@11
doc yrep :A:790: 13:1@10
extended _ commands:A:276: 13:1@5
games:A:2351:19:1@17
mailylus:A:135:14:1@7
man yages:A:5586: 16: 1@14
name_server:A:339:14:1@13
networkingylus:A:610: 13: 1@6
old:A:131:14:1@16
plot:A:227:14:1@14
spellcheck:A:455: 13: 1@2
sysV _commands:A:2505:14:1@3
base _ devel:D:5389: 1:2@2
plot devel:D:247:S:2@3
sccs:D:328:5:2@4
sun view _ devel:D: 1768:5:2@5
sysV _devel:D:4287:3:2@6
proftibs:D:4755:4:2@7
config:D:3065:6:2@8

Last change: 19 February 1988 S un Release 4.1

TOC(5)

FILES

FILE FORMATS TOC(5)

The first line specifies that the accounting cluster is part of Application SunOS and requires 55 kilobytes of
disk storage. In the diskette distribution, it begins on diskette 14 of Application SunOS optional clusters. In
the tape distribution, it can be found on file 12 of tape 1. The last line specifies that the config cluster is
part of Developer's Toolkit and requires 3065 kilobytes of disk storage. In the diskette distribution, it be­
gin on diskette 6 of Developer's Toolkit In the tape distribution, it can be found on file 8 of tape 2.

lusr/lib/loadltoc

SEE ALSO
cluster(l) load(l) unload(l)

Sun Release 4.1 Last change: 19 February 1988 1693

TRANSLATE (5) FILE FORMATS TRANSLATE (5)

NAME
translate - input and output files for system message translation

AVAILABILITY
Available only on Sun 386i systems running a SunOS 4.0.x release or earlier. Not a SunOS 4.1 release
feature.

DESCRIPTION
These files are used by syslogd(8) to translate systems messages. The input file is used to map system mes­
sages (in printf(3V) format strings) to numbers. This number is then used to locate a new string in the out­
put file.

An initial part of each line in the input file may specify that the message should be suppressed. Recognized
suppression specifications are:

(NONE) Suppress the message always.
(n) AUow only one message every n seconds. «10) for

example).
o Do not suppress the message. This can be used in a

message that begins with a '('.

Note that the message suppression specification is optional. If not present, the message is not suppressed.

Each line in the output file translates the numbers from the input file into the desired error messages, and
also specifies the format to be used to output each message. The order of parameters passed from the input
message can be changed, by replacing the % of a format phrase with a %num$ where num is a digit string.
For example, if num is 2, the second parameter on the input file line will be used. The value of num can be
from 1 to the number of parameters in the input message.

If a string is translated to a number that is not found in the output file, the message is suppressed.

EXAMPLES
An example input file:

$quote"
1 "(NONE)(l) logopen test code: %s\n"
2 "(10)(2) logopen test code: %s\n"
3 "0(3) logopen test code: %s\n"
4 "0(4) logopen test code: %s\n"
5 "(10)(5) logopen testcode: %s * 100\n"
6 "(10)(6) logopen testcode: %s * 100\n"
7 "(10)(7) logopen testcode: %s * 100\n"
8 "(10)0/0s: %s\n"
9 "(10)\n%s: write failed, file system is fuU\n"
10 "(10)NFS server %s not responding still trying\n"
11 "(10)NFS %s failed for server %s: %s\n"
12 "(10)NFS server %s ok\n"
13 "(NONE)\n%s: write failed, file system is fuU\n"
14 "(10)NFS server %s not responding still trying\n"
15 "(100)NFS %s failed for server %s: %s\n"

1694 Last change: 19 February 1988 Sun Release 4.1

1RANSLA TE (5) FILE FORMATS

An example output file:

$quote"
1 "TRANSLATION:(I) logopen test code: %s\n"
2 "TRANSLATION: (2) logopen test code: %s IS REALLY\n"
3 "TRANSLATION: (3) logopen test code: %s\n"
4 "TRANSLATION: (4) logopen test code: %s\n"
5 "TRANSLATION: (5) logopen testcode: %s * 100\n"
6 "TRANSLATION: (6) logopen testcode: %s * 100\n"
7 "TRANSLATION: (7) logopen testcode: %s * 100\n"
8 "TRANSLATION: %s: %s\n"
9 "TRANSLATION: \n%s: write failed, file system is full\n"
10 "TRANSLATION: NFS server %s not responding still trying\n"
11 "TRANSLATION: NFS %s failed for server %s: %s\n"
12 "TRANSLATION: NFS server %s ok\n"
13 "Out of disk on file system %s\n"
14 "Network file server %s not ok. Check your cable\n"
15 "Network file server %2$s down (% 1$s, %3$s)\n"

SEE ALSO
syslogd(8)

Sun Release 4.1 Last change: 19 February 1988

TRANSLATE (5)

1695

TTYTAB(5) FILE FORMATS TTYTAB(5)

NAME
tty tab, ttys - terminal initialization data

DESCRIPTION
The letc/ttytab file contains information that is used by various routines to initialize and control the use of
terminal special files. This information is read with the getttyent(3) library routines. There is one line in
letclttytab file per special file.

The letc/ttys file should not be edited; it is derived from letclttytab by init(8) at boot time, and is only
included for backward compatibility with programs that may still require it.

Fields are separated by TAB and/or SPACE characters. Some fields may contain more than one word and
should be enclosed in double quotes. Blank lines and comments can appear anywhere in the file; com­
ments are delimited by 'I' and NEWLINE. Unspecified fields default to NULL. The first field is the
terminal's entry in the device directory, Idev. The second field of the file is the command to execute for the
line, typically getty(8), which performs such tasks as baud-rate recognition, reading the login name, and
calling login(l). It can be, however, any desired command, for example the start up for a window system
terminal emulator or some other daemon process, and can contain multiple words if quoted. The third field
is the type of terminal normally connected to that tty line, as found in the termcap(5) data base file. The
remaining fields set flags in the ty _status entry (see getttyent(3» or specify a window system process that
init(8) will maintain for the terminal line.

As flag values, the strings on and otT specify whether init should execute the command given in the second
field, while secure in addition to on allows "root" to login on this line. If the console is not marked
"secure," the system prompts for the root password before coming up in single-user mode. local in addi­
tion to on indicates that the line is a "local" line; the modem control signals for this line, such as Carrier
Detect, will be ignored. These flag fields should not be quoted. The string window= is followed by a
quoted command string which init will execute before starting getty.

The flag local applies to terminals, and enables the software carrier mode in the kernel; the kernel ignores
the state of carrier detect when opening the serial port. Alternately, if this field is set to any value other
than local, this flag disables the software carrier mode in the kernel, so the state of the carrier detect is not
ignored. This usually applies to modems. See termio(4).

If the line ends in a comment, the comment is included in the ty _comment field of the ttyent structure.

After changing the letclttytab file, you must notify init(8) before those changes will take effect. To do
this, use:

kill-II

EXAMPLES
Below is a sample letc/ttytab file:

console" lusr/etclgetty std.1200" vt100 on secure
ttydO "/usr/etclgetty d1200" dialup on # 555-1234
ttybO "/usr/etclgetty std.9600" bp2621-nl on # 254MC
ttybl "/usr/etclgetty std.9600" plugboard on # Jobn's office
ttypO none network
ttypl none network ofT
ttyvO " lusr/new/xterm -L :0" vslOO on window="/usr/newlXvslOO 0"
console" lusr/etclgetty -n -s std.9600" sun on secure
console" lusr/etclgetty -n -s -I std.9600" sun on secure

1696 Last change: 19 October 1988 Sun Release 4.1

TIYTAB(5) FILE FORMATS TTYTAB(5)

FILES

The first line penn its "root" login on the console at 1200 baud, and indicates that the console is physically
secure for single-user operation. The second line allows dialup at 1200 baud without "root" login, and the
third and fourth lines allow login at 9600 baud with tenninal types of hp2621-nl and plugboard, respec­
tively. The fifth and sixth lines are examples of network pseudo-ttys, ttypO and ttypl for which getty
should not be enabled. The seventh line shows a tenninal emulator and window-system startup entry. The
last two lines instruct getty, using the -n argument, to run the logintool(8) graphic login interlace, and the
-s argument instructing logintool to start screenblank(l) with a plain black screen. The -I (lower case L)
argument instructs login tool to start lockscreen(1). lockscreen starts after 30 minutes; there is no way to

change this interval.

Idev
letc/ttys
letc/ttytab

SEE ALSO
login(I), ioc tl (2) , getttyent(3), termio(4), gettytab(5), termcap(5), getty(8), init(8), logintool(8),
ttysoftcar(8)

Sun Release 4.1 Last change: 19 October 1988 1697

TYPES (5)

NAME
types - primitive system data types

SYNOPSIS
#include <sysitypes.h>

DESCRIPTION

FILE FORMATS TYPES (5)

The data types defined in the include file are used in the system code; some data of these types are accessi­
ble to user code:

1698

1*
* Copyright (c) 1982, 1986 Regents of the University of California.
* AU rights reserved. The Berkeley software License Agreement
* specifies tbe terms and conditions for redistribution.
*1

#ifndef TYPES - -
#define TYPES - -

1*
* Basic system types.
*1

#include <sysisysmacros.h>

typedef unsigned char
typedef unsigned short
typedef unsigned int
typedef unsigned long
typedef unsigned short
typedef unsigned int

u_cbar;
u_short;
u_int;
uJong;
ushort;l* System V compatibility *1
uint;l* System V compatibility *1

#ifdefvax
typedef struct
typedef struct

int
} label_t;
#endif
#ifdef mc68000
typedef struct
typedef struct

int
} label_t;
#endif
#ifdef sparc

yhysadr { int r[1]; } *physadr;
label_t{
val[14];

yhysadr { short r[I]; } *physadr;
labett{
val[13];

typedef struct yhysadr { int r[I]; } *physadr;
typedef struct label_t {

int val[2];
} label_t;
#endif
#ifdef i386
typedef struct
typedef struct

int
} label_t;

yhysadr { short r[I]; } *physadr;
label_t {
val[8];

Last change: 19 October 1987 S un Release 4.1

TYPES (5) FILE FORMATS

#endif
typedef struct
typedef long
typedef char *
typedef u _long
typedef long
typedef int
typedef long
typedef short
typedef long
typedef u_short
typedef u _short
typedef long

_quad {long val[2]; } quad;
daddr_t;
caddr_t;
ino_t;
swblk_t;
size_t;
time_t;
dev_t;
otT_t;
uid_t;
gid_t;
key_t;

#define NBBY 8 1* number of bits in a byte */
1*
* Select uses bit masks of file descriptors in longs.
* These macros manipulate such bit fields (the filesystem macros use chars).
* FD _SETSIZE may be defined by the user, but the default here
* should be >= NOFILE (param.h).
*1

#ifndef FD SETSIZE
#define FD SETSIZE 256
#endif

typedef long fd _mask;
#define NFDBITS (sizeof(fd _mask) * NBBY)/* bits per mask */
#ifndef howmany
#ifdef sun386
#define howmany(x, y) ««u_int)(x»+«(uJnt)(y»-I»/«u_int)(y)))
#else
#define howmany(x, y) «(x)+«y)-I»/(y»
#endif
#endif

typedef struct fd _set {
fd_mask fds_bits[howmany(FD_SETSIZE, NFDBITS)];

typedef char * addr _t;

#define FD _SET(n, p) «p)->fds_bits[(n)INFDBITS] 1= (1 « «n) % NFDBITS»)
#define FD_CLR(n, p) «p)->fds_bits[(n)INFDBITS] &= -(1« «n) % NFDBITS»)
#define FD _ISSET(n, p) «p)->fds_ bits[(n)INFDBITS] & (I « «n) % NFDBITS»)
#define FD _ZERO(p) bzero«char *)(p), sizeof(*(p»)

#ifdef sparc
1*
* routines that call setjmp have strange control flow graphs,
* since a call to a routine that calls resume/longjmp will eventually
* return at the setjmp site, not the original call site. This
* utterly wrecks control flow analysis.
*1

Sun Release 4.1 Last change: 19 October 1987

TYPES (5)

1699

TYPES (5) FILE FORMATS TYPES (5)

extern int setjmpO;
#pragma unknown _ control_ fiow(setjmp)
#endif spare

#endif TYPES

The form daddr _t is used for disk addresses, see fs(5). Times are encoded in seconds since 00:00:00 GMT,
January 1, 1970. The major and minor parts of a device code specify kind and unit number of a device and
are installation-dependent. Offsets are measured in bytes from the beginning of a file. The label_t vari­
ables are used to save the processor state while another process is running.

SEE ALSO
adb(1), Iseek(2V), time(3V), fs(5)

1700 Last change: 19 October 1987 Sun Release 4.1

1ZFILE(5) FILE FORMATS 1ZFILE (5)

NAME
tzfile - time zone information

SYNOPSIS
#include <tzfile.h>

DESCRIPTION
The time zone infonnation files used by tzset (see ctime(3V)) begin with bytes reserved for future use, fol­
lowed by three four-byte values of type long, written in a "standard" byte order (the high-order byte of the
value is written first). These values are, in order:

tzh timecnt

tzh charcnt

The number of "transition times" for which data is stored in the file.

The number of "local time types" for which data is stored in the file
(must not be zero).

The number of characters of "time zone abbreviation strings" stored in
the file.

The above header is followed by tzh _timecnt four-byte values of type long, sorted in ascending order.
These values are written in "standard" byte order. Each is used as a transition time (as returned by get­
timeofday(2)) at which the rules for computing local time change. Next come tzh_timecnt one-byte values
of type unsigned char; each one tells which of the different types of "local time" types described in the file
is associated with the same-indexed transition time. These values serve as indices into an array of ttinfo
structures that appears next in the file; these structures are defined as follows:

struct ttinfo {
long tt_gmtoff;
int tt_isdst;
unsigned int tt_abbrind;

};

Each structure is written as a four-byte value for It_gmtoffof type long, in a standard byte order, followed
by a one-byte value for tt _isdst and a one-byte value for It _ abbrind. In each structure, tt _gmtoff gives the
number of seconds to be added to GMT, It _isdst tells whether tm _isdst should be set by localtime (see
ctime(3 V)) and tt _ abbrind serves as an index into the array of time zone abbreviation characters that fol­
low the ttinfo structure(s) in the file.

localtime uses the first standard-time ttinfo structure in the file (or simply the first ttinfo structure in the ab­
sence of a standard-time structure) if either tzh _timecnt is zero or the time argument is less than the first
transition time recorded in the file.

SEE ALSO
gettimeofday(2), ctime(3V)

Sun Release 4.1 Last change: 6 October 1989 1701

UGID _ALLOC.RANGE (5) FILE FORMATS UGID _ALLOC.RANGE (5)

NAME
ugid_alloc.range - range of user IDs and group IDs to allocate

SYNOPSIS
/ etclugid _ aIJoc.range

AVAILABILITY
Available only on Sun 386i systems running a SunOS 4.0x release or earlier. Not a SunOS 4.1 release
feature.

DESCRIPTION
The letclugid_alloc.range file, if it exists on the Network Information Service (NIS) master of the
passwd.byuid map (or the group.bygid map for group IDs), specifies the user IDs and group IDs that can
be allocated for the local NIS domain by the uid _ aIJocd(8C) daemons. If the file does not exist, user IDs or
group IDs may be allocated beginning at 100 and ending at 60,000; no user IDs or group IDs are allocated
out of that range in any case. If the local NIS domain is not listed in this file, no user IDs or group IDs will
be allocated. Otherwise, this file specifies ranges of user IDs or group IDs that may be allocated. The dif­
ferent NIS domains on a network can use identical copies of this file.

If a network has multiple NIS domains, each one will typically use ranges for its user IDs and group IDs that
do not overlap with the other NIS domains, guaranteeing that user IDs and group IDs are unique throughout
the network. Without guarantees of user ID and group ill uniqueness, network tools and services which
rely on that uniqueness for security or authentication will not work as intended. Such services include NFS,
except for the "Secure NFS," which has other solutions for security and authentication. Note: the required
uniqueness could be guaranteed by mechanisms other than automatic allocation within manually
configured ranges. For example, some sites can use a function of their employee numbers during manual
user ID allocation, and coordinate group ID assignment verbally.

This file can contain blank lines. Comments begin with a 'I' character and extend to the end of the current
line. The first token on the line is an NIS domain name. It is separated from the second token by white
space (SPACE or TAB characters). The second token is either user or group, indicating that the line
specifies user ID or group ID ranges, respectively. The third token is a comma-separated list of user or
group 10 ranges in that domain. These ranges take two forms: a single number specifies just that ID, and
two numbers separated by a dash specify all IDs starting at the first number and ending with the second.

For example, the following file would direct that the manufacturing department at a particular company use
user IDs from 700 to 999 or 1200 to 1499. Accounts created by tools in the NIS domain for manufacturing
would use a user 10 in those ranges, and those user accounts could safely be added to one of the other NIS

domains if desired (by manually transferring NIS map data between the domains). Group IDs are allocated
only within the administration domain.

Three departments share our site's network, and each has its
own Ethernet and master server connected with IP routers.
This file sets the user ID ranges assigned to each department.
Groups are defined by the administration group only.
YP .admin.company .com user 500-699
YP .manufacturing.company .com user 700-999
YP.engineering.company.com user 100-499,1000-1199
YP.manufacturing.company.com user 1200-1499
YP .admin.company .com group 100-60000

SEE ALSO
passwd(5), group(5), uid_allocd(8C)

BUGS
There is a limit of forty ranges for each domain; more ranges are silently ignored.

1702 Last change: 25 September 1989 Sun Release 4.1

UGID _ALLOC.RANGE (5) FILE FORMATS UGID_ALLOC.RANGE (5)

NOTES
The Network Infonnation Service (NIS) was fonnerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed.

Sun Release 4.1 Last change: 25 September 1989 1703

UPDA TERS (5) FILE FORMATS UPDA TERS (5)

NAME
updaters - configuration file for NIS updating

SYNOPSIS
Ivar/yp/updaters

DESCRIPTION

FILES

The file Ivar/yp/updaters is a makefile (see make(I» which is used for updating the Network Information
Service (NIS) databases. Databases can only be updated in a secure network, that is, one that has a pub­
Iickey(5) database. Each entry in the file is a make target for a particular NIS database. For example, if
there is an NIS database named passwd.byname that can be updated, there should be a make target named
passwd.byname in the up daters file with the command to update the file.

The infonnation necessary to make the update is passed to the update command through standard input.
The information passed is described below (all items are followed by a NEWLINE, except for 4 and 6)

• Network name of client wishing to make the update (a string)

• Kind of update (an integer)

• Number of bytes in key (an integer)

• Actual bytes of key

• Number of bytes in data (an integer)

• Actual bytes of data

Mter getting this information through standard input, the command to update the particular database should
decide whether the user is allowed to make the change. If not, it should exit with the status
YPERR_ACCESS. If the user is allowed to make the change, the command should make the change and
exit with a status of zero. If there are any errors that may prevent the updater from making the change, it
should exit with the status that matches a valid NIS error code described in <rpcsvdypclnt.h>.

Ivar/yp/updaters

SEE ALSO

NOTES

1704

make(I), ypupdate(3N), publickey(5), ypupdated(8C)

The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed. The name Yellow Pages is a registered trade­
mark in the United Kingdom of British Telecommunications pIc, and may not be used without permission.

Last change: 14 December 1987 Sun Release 4.1

UTMP(5V) FILE FORMATS UTMP(5V)

NAME
unnp, wnnp, lastlog - login records

SYNOPSIS
#include <utmp.h>
#include <lastlog.h>

DESCRIPTION
utmp file

The utmp file records information about who is currently using the system. The file is a sequence of utmp
structure entries. That structure is defined in <utmp.h>, and contains the following members:

ut line

ut name

ut host

ut time

Character array containing the name of the terminal on which the user logged in.

Character array containing the name of the user who logged in.

Character array containing the name of the host from which the user remotely
logged in, if they logged in from another host; otherwise, a null string.

long containing the time at which the user logged in, in seconds since 00:00 GMT,
January 1, 1970.

Whenever a user logs in, login(l) fills in the entry in /etc/utmp for the terminal on which the user logged
in. When they log out, init(8) clears that entry by setting ut _name and ut _host to null strings and ut _time
to the time at which the user logged out.

Some window systems will make entries in utmp for terminal emulation windows running shells, so that li­
brary routines such as getlogin will work correctly in that window. These entries do not directly represent
logged-in users; they are associated with a user who has already logged into the system on another termi­
nal. These entries generally have a utJine field that refers to a pseudo-terminal, and a ut_host field that is
a null string. The macro nonuser, defined in <utmp.h>, takes a pointer to a utmp structure as an argument
and, if the entry has a utJine field that refers to a pseudo-terminal, and a ut_ host field that is a null string,
will return 1; otherwise, it will return O. This can be used by programs that print information about
logged-in users if they should not list entries made for logged-in users' additional windows.

wtmp file
The wtmp file records alllogins and logouts. It also consists of a sequence of utmp entries.

Whenever a user logs in, login appends a record identical to the record it placed in utmp to the end of
/var/adm/wtmp. Whenever a user logs out, init appends a record with ut_line equal to the terminal that
the user was logged in on, ut_name and ut_host null, and ut_time equal to the time at which the user
logged out.

When the system is shut down, init appends a record with a utJine of -, a ut_name of shutdown, a null
ut_host, and a ut_time equal to the time at which the shutdown occurred. When the system is rebooted,
init appends a record with a ut _line of -, a ut _name of reboot, a null ut _host, and a ut _time equal to the
time at which init wrote the record.

When the date command is used to change the system-maintained time, date appends a record with a
ut _line of I, ut _name and ut _host null, and ut _time equal to the system time before the change, and then
appends a record with a ut_line of {, ut_name and ut_host null, and ut_time equal to the system time after
the change.

None of the programs that maintain wtmp create the file, so that if record-keeping is to be enabled, it must
be created by hand as a zero-length file, and if it is removed, record-keeping is turned off. It is summarized
byac(8).

As wtmp is appended to whenever a user logs in or out, it should be truncated periodically so that it does
not consume all the disk space on its file system.

lastlog file
The lastlog file records the most recent login-date for every user logged in. The file is a sequence of last­
log structure entries. That structure is defined in dastlog.h>, and contains the following members:

Sun Release 4.1 Last change: 24 January 1990 1705

UTMP(5V) FILE FORMATS UTMP(5V)

II time

II line

long containing the time at which the user logged in, in seconds since 00:00 GMT,
January 1, 1970.

Character array containing the name of the terminal on which the user logged in.

II host Character array containing the name of the host from which the user remotely
logged in, if they logged in from another host; otherwise, a null string.

When reporting (and updating) the most recent login date, login performs an Iseek(2V) to a byte-offset in
Ivar/adm/lastlog corresponding to the userid. Because the count of userids may be high, whereas the
number actual users may be small within a network environment, the bulk of this file may never be allocat­
ed by the file system even though an offset may appear to be quite large. Although Is(1 V) may show it to
be large, chances are that this file need not be truncated. du(1 V) will report the correct (smaller) amount of
space actually allocated to it.

SYSTEM V DESCRIPTION

FILES

For XPG2 conformance, the XPG2 private utmp structure is preserved for use by compliant applications
that specifically use the utmp structure. The structure is defined in lusr/xpg2include/utmp.h. Note: this
structure definition was removed in XPG3, and will be removed in a future SunOS release. Applications
using the XPG2 utmp structure must do so on an application private basis.

letc/utmp
Ivar/adm/wtmp
Ivar/adm/lastlog

SEE ALSO
login(1), who(l), ac(8), init(8)

1706 Last change: 24 January 1990 Sun Release 4.1

UUENCODE (5) FILE FORMATS UUENCODE (5)

NAME
uuencode - format of an encoded uuencode file

DESCRIPTION
Files output by uuencode(IC) consist of a header line, followed by a number of body lines, and a trailer
line. uudecode (see uuencode(lC» will ignore any lines preceding the header or following the trailer.
Lines preceding a header must not, of course, look like a header.

The header line is distinguished by having the first 6 characters 'begin'. The word begin is followed by a
mode (in octal), and a string which names the remote file. Spaces separate the three items in the header
line.

The body consists of a number of lines, each at most 62 characters long (including the trailing NEWLINE).
These consist of a character count, followed by encoded characters, followed by a NEWLINE. The charac­
ter count is a single printing character, and represents an integer, the number of bytes the rest of the line
represents. Such integers are always in the range from 0 to 63 and can be determined by subtracting the
character space (octal 40) from the character.

Groups of 3 bytes are stored in 4 characters, 6 bits per character. All are offset by a SPACE to make the
characters printing. The last line may be shorter than the normal 45 bytes. If the size is not a multiple of 3,
this fact can be determined by the value of the count on the last line. Extra garbage will be included to
make the character count a multiple of 4. The body is terminated by a line with a count of zero. This line
consists of one ASCII SPACE.

The trailer line consists of end on a line by itself.

SEE ALSO
mail(l), uucp(lC), uuencode(1C), uusend(IC)

Sun Release 4.1 Last change: 19 October 1987 1707

VFONT(5) FILE FORMATS VFONT(5)

NAME
vfont - font formats

SYNOPSIS
#include <vfont.h>

DESCRIPTION

FILES

The fonts used by the window system and printer/plotters have the following format. Each font is in a file,
which contains a header, an array of character description structures, and an array of bytes containing the
bit maps for the characters. The header has the following format:

struct header {
short magic;
unsigned shortsize;
short maxx;
short maxy;
short xtend;

};
#define VFONT MAGIC

1* Magic number VFONT_MAGIC *1
1* Total # bytes of bitmaps *1
1* Maximum horizontal glyph size *1
1* Maximum vertical glyph size *1
1* (unused) *1

0436

man and maxy are intended to be the maximum horizontal and vertical size of any glyph in the font, in ras­
ter lines. (A glyph is just a printed representation of a character, in a particular size and font.) The size is
the total size of the bit maps for the characters in bytes. The xtend field is not currently used.

After the header is an array of NUM _DISPATCH structures, one for each of the possible characters in the
font. Each element of the array has the form:

struct dispatch {
unsigned shortaddr;
short nbytes;
char up, down, left, right;
short width;

};
#define NUM DISPATCH

1* &(glyph) - &(start of bitmaps) *1
1* # bytes of glyphs (0 if no glyph) *1
1* Widths from baseline point *1
1* Logical width, used by troff *1

256

The nbytes field is nonzero for characters which actually exist. For such characters, the addr field is an
offset into the bit maps to where the character's bit map begins. The up , down, left, and right fields are
offsets from the base point of the glyph to the edges of the rectangle which the bit map represents. (The
imaginary "base point" is a point which is vertically on the "base line" of the glyph (the bottom line of a
glyph which does not have a descender) and horizontally near the left edge of the glyph; often 3 or so pix­
els past the left edge.) The bit map contains up+down rows of data for the character, each of which has
left+right columns (bits). Each row is rounded up to a number of bytes. The width field represents the log­
ical width of the glyph in bits, and shows the horizontal displacement to the base point of the next glyph.

lusr/lib/vfontl*
lusr/lib/fontslfixedwid thfonts/ *

SEE ALSO

BUGS

1708

troff(l), vfontinfo(l), vswap(l)

A machine-independent font format should be defined. The shorts in the above structures contain different
bit patterns depending whether the font file is for use on a VAX or a Sun. The vswap program must be
used to convert one to the other.

Last change: 19 October 1987 Sun Release 4.1

VGRINDEFS (5) FILE FORMATS VGRINDEFS (5)

NAME
vgrindefs - vgrind' s language definition data base

SYNOPSIS
/usr/Iib/vgrindefs

DESCRIPTION
vgrindefs contains all language definitions for vgrind(I). The data base is very similar to termcap(5).
Capabilities in vgrindefs are of two types: Boolean capabilities which indicate that the language has some
particular feature and string capabilities which give a regular expression or keyword list. Entries may con­
tinue onto multiple lines by giving a \ as the last character of a line. Lines starting with # are comments.

Capabilities
The following table names and describes each capability.

Name Type Description
ab str Regular expression for the start of an alternate form comment
ae str Regular expression for the end of an alternate form comment
bb str Regular expression for the start of a block
be str Regular expression for the end of a lexical block
cb str Regular expression for the start of a comment
ce str Regular expression for the end of a comment
id str String giving characters other than letters and digits that may legally occur in identifiers

(default '_')
kw str A list of keywords separated by spaces
Ib str Regular expression for the start of a character constant
Ie str Regular expression for the end of a character constant
oc bool Present means upper and lower case are equivalent
pb str Regular expression for start of a procedure
pi bool Procedure definitions are constrained to the lexical level matched by the 'px' capability
px str A match for this regular expression indicates that procedure definitions may occur at the next

lexical level. Useful for lisp-like languages in which procedure definitions occur as subex­
pressions of defuns.

sb str Regular expression for the start of a string
se str Regular expression for the end of a string
tc str Use the named entry as a continuation of this one
tl bool Present means procedures are only defined at the top lexical level

Regular Expressions
vgrindefs uses regular expressions similar to those of ex(l) and lex(1). The characters 'A', '$', ':', and '\'
are reserved characters and must be 'quoted' with a preceding \ if they are to be included as normal charac­
ters. The metasymbols and their meanings are:

$ The end of a line

The beginning of a line

'd A delimiter (space, tab, newline, start of line)

'a Matches any string of symbols (like'. *' in lex)

\p Matches any identifier. In a procedure definition (the 'pb' capability) the string that matches this
symbol is used as the procedure name.

o Grouping

Alternation

? Last item is optional

\e Preceding any string means that the string will not match an input string if the input string is pre­
ceded by an escape character (\). This is typically used for languages (like C) that can include the
string delimiter in a string by escaping it.

Sun Release 4.1 Last change: 15 February 1989 1709

VGRINDEFS (5) FILE FORMATS VGRINDEFS (5)

Unlike other regular expressions in the system, these match words and not characters. Hence something
like '(tramplsteamer)fties?' would match 'tramp', 'steamer', 'trampfties', or 'steamerflies'. Contrary to
some fonns of regular expressions, vgrindef alternation binds very tightly. Grouping parentheses are
likely to be necessary in expressions involving alternation.

Keyword List
The keyword list is just a list of keywords in the language separated by spaces. If the 'oc' boolean is
specified, indicating that upper and lower case are equivalent, then all the keywords should be specified in
lowercase.

EXAMPLE

FILES

The following entry, which describes the C language, is typical of a language entry.

C\c\the C programming language:\
:pb= "\d?*?\d?\p\d??): bb={: be= }:cb=I*:ce=*I:sb=" :se=\e":\
:Ib=' :Ie=\e':tl:\
:kw=asm auto break case char continue default do double else enum\
extern float for fortran goto if int long register return short\
sizeof static struct switch typedef union unsigned while #define\
#else #endif #if #ifdef #ifndef #include #undef # define else endit\
if ifdef ifndef include undef:

Note that the first field is just the language name (and any variants of it). Thus the C language could be
specified to vgrind(l) as 'c' or 'C'.

lusr/lib/vgrindefs file containing terminal descriptions

SEE ALSO
troff(l), vgrind(l)

1710 Last change: 15 February 1989 Sun Release 4.1

yP ALIASES (5) FILE FORMATS YP ALIASES (5)

NAME
ypaliases - NIS aliases for sendmail

SYNOPSIS
f etc!ypaliases

A V AILABILITY
Available only on Sun 386i systems running a SunOS 4.0.x release or earlier. Not a SunOS 4.1 release
feature.

DESCRIPTION

FILES

Create the Network Information Service (NIS) aliases map with this text file. The /ete/ypaliases file has the
same format as the fetc!aliases file described in aliases(5).

The text file for the NIS aliases map is stored in the fetc!aliases file on the NIS master of an NIS domain.
Other systems in a domain (besides the NIS master) can also have a local fetc!aliases file. The local file is
accessed first by programs such as sendmail(8), and if it contains a line beginning with the character '+',
the NIS map will be accessed.

The local lete/aliases file can specify resources that are not available on a network-wide basis. This im­
plies that the NIS master cannot use the local letc!aliases file to specify aliases that are to be known only to
the local system. Sun386i systems allow the fetc!aliases file on the NIS master to be used locally, creating
the NIS aliases map with the /ete/ypaliases text file.

f etc! aliases
f etc!ypaliases

SEE ALSO

NOTES

uuep(IC), dbm(3X), aliases(5), newaliases(8), sendmail(8)

System and Network Administration

The Network Information Service (NIS) was fonnedy known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed. The name Yellow Pages is a registered trade­
mark in the United Kingdom of British Telecommunications pIc, and may not be used without permission.

Sun Release 4.1 Last change: 25 September 1989 1711

YPFILES(5) FILE FORMATS YPFILES (5)

NAME
ypfiles - NIS database and directory structure

DESCRIPTION

FILES

The Network Information Service (NIS) uses a distributed, replicated database of dbm files contained in
the Ivar/yp directory hierarchy on each NIS server. A dbm database consists of two files, created by calls
to the ndbm(3) library package. One has the filename extension .pag and the other has the filename exten­
sion .dir. For instance, the database named hosts.byname, is implemented by the pair of files
hosts.byname.pag and hosts.byname.dir.

A dbm database served by the NIS service is called an NIS map. An NIS domain is a subdirectory of
Ivar/yp containing a set of NIS maps. Any number of NIS domains can exist. Each may contain any
number of maps.

No maps are required by the NIS lookup service itself, although they may be required for the normal opera­
tion of other parts of the system. There is no list of maps which the NIS service serves - if the map exists
in a given domain, and a client asks about it, the NIS service will serve it. For a map to be accessible con­
sistently, it must exist on all NIS servers that serve the domain. To provide data consistency between the
replicated maps, an entry to run ypxfr periodically should be made in the super-user's crontab file on
each server. More infonnation on this topic is in ypxfr(8).

The NIS maps should contain two distinguished key-value pairs. The first is the key
YP_LAST_MODIFIED, having as a value a ten-character Ascn order number. The order number should be
the system time in seconds when the map was built. The second key is YP _MASTER_NAME, with the
name of the NIS master server as a value. makedbm(8) generates both key-value pairs automatically. A
map that does not contain both key-value pairs can be served by the NIS service, but the ypserv process
will not be able to return values for "Get order number" or "Get master name" requests. See ypserv(8). In
addition, values of these two keys are used by ypxfr when it transfers a map from a master NIS server to a
slave. If ypxfr cannot figure out where to get the map, or if it is unable to determine whether the local
copy is more recent than the copy at the master, you must set extra command line switches when you run it.

The NIS maps must be generated and modified only at the master server. They are copied to the slaves us­
ing ypxfr(8) to avoid potential byte-ordering problems among the NIS servers running on machines with
different architectures, and to minimize the amount of disk space required for the dbm files. The NIS data­
base can be initially set up for both masters and slaves by using ypinit(8).

After the server databases are set up, it is probable that the contents of some maps will change. In general,
some ASCII source version of the database exists on the master, and it is changed with a standard text edi­
tor. The update is incorporated into the NIS map and is propagated from the master to the slaves by run­
ning Ivar/yplMakefile. All Sun-supplied maps have entries in Ivar/yp/Makefile; if you add an NIS map,
edit this file to support the new map. The makefile uses makedbm(8) to generate the NIS map on the mas­
ter, and yppush(8) to propagate the changed map to the slaves. yppusb is a client of the map ypservers,
which lists all the NIS servers. For more information on this topic, see yppusb(8).

Ivar/yp
Ivar/yplMakefiIe

SEE ALSO

NOTES

1712

dbm(3X), makedbm(8), rpcinfo(8C), ypinit(8), ypmake(8), yppoII(8), yppush(8), ypserv(8), ypxfr(8)

The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed. The name Yellow Pages is a registered trade­
mark in the United Kingdom of British Telecommunications pIc, and may not be used without permission.

Last change: 14 December 1987 Sun Release 4.1

YPGROUP(5) FILE FORMATS YPGROUP(5)

NAME
ypgroup - NIS group file

SYNOPSIS
/ete/ypgroup

A V AILABILITY
Available only on Sun 386i systems running a SunOS 4.0.x release or earlier. Not a SunOS 4.1 release
feature.

DESCRIPTION

FILES

Create the Network Information Service (NIS) group map with this text file. This file has the same format
as the fete/group file described in group(5).

The text file for the NIS group map is stored in the fetc/group file on the NIS master of an NIS domain.
Other systems in a domain (besides the NIS master) can also have a local fete/group file. The local file is
accessed first by programs such as groups(1), and if it contains a line beginning with the character' +', the
NIS map will be accessed. The local /etclgroup file can specify groups that are not available on a
network-wide basis.

This implies that the NIS master cannot use the local fetclgroup file to specify groups that are to be known
only to the local system. Sun386i systems allow the /etc/group file on the NIS master to be used locally,
creating the NIS group map from the /etclypgroup text file.

/etclgroup
/ete/ypgroup

SEE ALSO

NOTES

passwd(1), su(l V), getgroups(2V), crypt(3), initgroups(3), group(5), group.adjunct(5), passwd(5),
grpck(8V)

System and Network Administration,
Sun386i SNAP Administration,
Sun386i Advanced Administration

The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed. The name Yellow Pages is a registered trade­
mark in the United Kingdom of British Telecommunications pIc, and may not be used without permission.

Sun Release 4.1 Last change: 25 September 1989 1713

YPPASSWD (5) FILE FORMATS YPPASSWD(5)

NAME
yppasswd - NIS password file

SYNOPSIS
letc/yppasswd

DESCRIPTION

FILES

Create the Network Information Service (NIS) password map with this text file. The format for
letc/yppasswd is the same as for the letc/passwd file described in passwd(5).

The text file for the NIS password map is stored in the letclpasswd file on the NIS master of an NIS domain.
Other systems in a domain can also have a local I etc/passwd file. The local file is accessed first by pro­
grams such as passwd(I), and if it contains a line beginning with the character '+', the NIS map will be
accessed.

The local/etc/passwd file can specify users that are not available on a network-wide basis. This implies
that the NIS master cannot use the local/etc/passwd file to specify users that are to be known only to the
local system. Sun386i systems allow the letc/passwd file on the NIS master to be used locally, creating the
NIS password map from the letc/yppasswd text file.

I etc/passwd
I etc/yppasswd

SEE ALSO

NOTES

1714

login(l), mail(l), passwd(l), crypt(3), getpwent(3V), group(5), passwd(5), passwd.adjunct(5),
adduser(8), sendmail(8), vipw(8)

System and Network Administration,
Sun386i SNAP Administration,
Sun386i Advanced Administration

The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed. The name Yellow Pages is a registered trade­
mark in the United Kingdom of British Telecommunications pIc, and may not be used without permission.

Last change: 25 September 1989 Sun Release 4.1

YPPRINTCAP (5) FILE FORMATS YPPRINTCAP (5)

NAME
ypprintcap - NIS printer capability database

SYNOPSIS
/etc/ypprintcap

A V AILABILITY
Available only on Sun 386i systems running a SunOS 4.0.x release or earlier. Not a SunOS 4.1 release
feature.

DESCRIPTION

FILES

Create the Network Information Service (NIS) printcap map with this text file to centralize and simplify
printer administration. The /etc/ypprintcap file has the same format as the /etc/printcap file described in
printcap(5).

The text file for the NIS printcap map is stored in the /etc/printcap file on the NIS master of an NIS domain.
Other systems in a domain (besides the NIS master) can also have a local /etc/printcap file. The local file
is accessed first by programs such as Ipr(l), and if it contains a line beginning with the character' +', the
NIS map will be accessed.

The local /etc/printcap file can specify printers that are not available on a network-wide basis. This im­
plies that the NIS master cannot use the local /etc/printcap file to specify printers that are to be known only
to the local system. Sun386i systems allow the /etc/printcap file on the NIS master to be used locally, us­
ing the /etc/ypprintcap file to create the NIS printcap map.

/etc/printcap
/etc/ypprintcap

SEE ALSO

NOTES

Ipq(l), Ipr(l), Iprm(l), snap(l), stty(l V), plot(3X), ttcompat(4M), printcap(5), termcap(5), Ipc(8),
Ipd(8), pac(8)

System and Network Administration,
Sun386i SNAP Administration,
Sun386i Advanced Administration

The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed. The name Yellow Pages is a registered trade­
mark in the United Kingdom of British Telecommunications pIc, and may not be used without permission.

Sun Release 4.1 Last change: 25 September 1989 1715

I

INTRO(6) GAMES AND DEMOS INTRO(6)

NAME
intro - introduction to games and demos

DESCRIPTION
This section describes available games and demos.

LIST OF GAMES AND DEMOS

Name

adventure
arithmetic
backgammon
banner
battlestar
bcd
bdemos
bdraw
bj
boggle
boggle tool
bouncedemo
brotcube
bsuncube
buttontest
canfield
canfieldtool
canvas demo
cdplayer
cdraw
cfscores
chess
chesstool
ching
colordemos
craps
cribbage
cursor demo
dialtest
draw
factor
fish
Oight
fortune
framedemo
gaintool
gammontool
gp_demos
graphics_demos
hack
hangman
hunt
jumpdemo
life
mille
monop

Appears on Page

adventure(6)
arithmetic(6)
backgammon(6)
banner(6)
battlestar(6)
bcd(6)
bdemos(6)
draw(6)
bj(6)
boggle(6)
boggletool(6)
graphics _ demos(6)
brotcube(6)
bsuncube(6)
buttontest(6)
canfield(6)
canfield(6)
sunview _ demos(6)
cdplayer(6)
draw(6)
canfield(6)
chess (6)
chesstool(6)
ching(6)
colordemos(6)
craps(6)
cribbage(6)
sunview _ demos(6)
dialtest(6)
draw(6)
factor(6)
fish(6)
gp_demos(6)
fortune(6)
graphics _ demos(6)
gaintool(6)
gammontool(6)
gp_demos(6)
graphics _ demos(6)
hack(6)
hangman(6)
hunt(6)
graphics _ demos(6)
life(6)
mille(6)
monop(6)

Description

an exploration game
provide drill in number facts
the game of backgammon
print large banner on printer
a tropical adventure game
convert to antique media
demonstrate Sun Monochrome Bitmap Display
interactive graphics drawing
the game of black jack
play the game of boggle
playa game of boggle
graphics demonstration programs
rotate a simple cube
view 3-D Sun logo
demonstration and testing program for SunButtons
Canfield solitaire card game
Canfield solitaire card game
Window-System demonstration programs
CD-ROM audio demo program
interactive graphics drawing
Canfield solitaire card game
the game of chess
window-based front-end to chess program
the book of changes and other cookies
demonstrate Sun Color Graphics Display
the game of craps
the card game cribbage
Window-System demonstration programs
demonstration and testing program for SunDials
interactive graphics drawing
factor a number, generate large primes
play "Go Fish"
demonstration programs for the Graphics Processor
print a random, hopefully interesting, adage
graphics demonstration programs
audio control panel
playa game of backgammon
demonstration programs for the Graphics Processor
graphics demonstration programs
replacement for rogue
computer version of the game hangman
a multiplayer multi terminal game
graphics demonstration programs
John Conway's game of life
play Mille Bornes
Monopoly game

Sun Release 4.1 Last change: 25 September 1987 1717

IN1RO(6)

1718

moo
number
play
ppt
primes
primes
quiz
rain
random
raw2audio
record
robots
rotcvph
rotobj
snake
snscore
soundtool
spheresdemo
suncoredemos
sun view demos
trek
vwcvph
worm
worms
wump

GAMES AND DEMOS INTRO(6)

moo(6)
number(6)
play(6)
bcd(6)
factor(6)
primes(6)
quiz(6)
rain(6)
random (6)
raw2audio(6)
record (6)
robots(6)
rotcvph(6)
gp_demos(6)
snake(6)
snake(6)
soundtool(6)
graphics_demos(6)
suncoredemos(6)
sunview _demos(6)
trek(6)
vwcvph(6)
worm (6)
worms(6)
wump(6)

guessing game
convert Arabic numerals to English
play audio files
convert to antique media
factor a number, generate large primes
print all primes larger than some given number
test your knowledge
animated raindrops display
select lines randomly from a file
convert raw audio data to audio file format
record an audio file
fight off villainous robots
rotate convex polyhedron
demonstration programs for the Graphics Processor
display chase game
display chase game
audio play/record tool
graphics demonstration programs
demonstrate S unCore Graphics Package
Window-System demonstration programs
trekkie game
view convex polyhedron
play the growing worm game
animate worms on a display terminal
the game of hunt the wumpus

Last change: 25 September 1987 Sun Release 4.1

ADVENTURE (6)

NAME
adventure - an exploration game

SYNOPSIS
lusr/gamesladventure

DESCRIPTION

GAMES AND DEMOS ADVENTURE (6)

The object of the game is to locate and explore Colossal Cave, find the treasures hidden there, and bring
them back to the building with you. The program is self-describing to a point, but part of the game is to

discover its rules.

To terminate a game, type quit; to save a game for later resumption, type suspend.

BUGS
Saving a game creates a large executable file instead of just the information needed to resume the game.

Sun Release 4.1 Last change: 1 February 1983 1719

ARITHMETIC (6) GAMES AND DEMOS ARITHMETIC (6)

NAME
arithmetic - provide drill in number facts

SYNOPSIS
Insr/games/arithmetic [+-x1] [range]

DESCRIPTION

1720

arithmetic types out simple arithmetic problems, and waits for an answer to be typed in. If the answer is
correct, it types back "Right!", and a new problem. If the answer is wrong, it replies "What?", and waits
for another answer. Every twenty problems, it publishes statistics on correctness and the time required to

answer.

To quit the program, type an interrupt (such as CTRL-C).

The first optional argument determines the kind of problem to be generated; '+', '-', 'x', 'I' respectively
cause addition, subtraction, multiplication, and division problems to be generated. One or more characters
can be given; if more than one is given, the different types of problems will be mixed in random order;
default is +-.

range is a decimal number; all addends, subtrahends, differences, multiplicands, divisors, and quotients
will be less than or equal to the value of range. Default range is 10.

At the start, all numbers less than or equal to range are equally likely to appear. If the respondent makes a
mistake, the numbers in the problem which was missed become more likely to reappear.

As a matter of educational philosophy, the program will not give correct answers, since the learner should,
in principle, be able to calculate them. Thus the program is intended to provide drill for someone just past
the first learning stage, not to teach number facts de novo. For almost all users, the relevant statistic should
be time per problem, not percent correct.

Last change: 16 February 1988 Sun Release 4.1

BACKGAMMON (6) GAMES AND DEMOS BACKGAMMON (6)

NAME
backgammon - the game of backgammon

SYNOPSIS
backgammon [-] [n r w b pr pw pb tterm sfilename]

DESCRIPTION
backgammon lets you play backgammon against the computer or against a 'friend'. All commands only
are one letter, so you don't need to type a carriage return, except at the end of a move. backgammon is
mostly self documenting, so that a q ? (question mark) will usually get some help. If you answer y when
backgammon asks if you want the rules, you will get text explaining the rules of the game, some hints on
strategy, instruction on how to use backgammon, and a tutorial consisting of a practice game against the
computer. A description of how to use backgammon can be obtained by answering y when it asks if you
want instructions. The possible arguments for backgammon (most are unnecessary but some are very con­
venient) consist of:

n don't ask for rules or instructions

r player is red (implies n)

w player is white (implies n)

b two players, red and white (implies n)

pr print the board before red's tum

pw print the board before white's tum

pb print the board before both player's tum

tterm terminal is type term, uses letcltermcap, otherwise uses the TERM environment vari­
able.

sfilename recover previously saved game from filename. This can also be done by executing
the saved file, that is, typing its name in as a command.

Arguments may be optionally preceded by a - sign. Several arguments may be concatenated together, but
not after s or t arguments, since they can be followed by an arbitrary string. Any unrecognized arguments
are ignored. An argument of a lone - gets a description of possible arguments.

If term has capabilities for direct cursor movement. backgammon 'fixes' the board after each move, so
the board does not need to be reprinted, unless the screen suffers some horrendous malady. Also, any 'p'
option will be ignored.

QUICK REFERENCE
When backgammon prompts by typing only your color, type a space or carriage return to roll, or

d to double

p to print the board

q to quit

s to save the game for later

When backgammon prompts with 'Move:', type

p to print the board

q to quit

s to save the game

or a move, which is a sequence of

s-f move from s to f

sir move one man on s the roll r separated by commas or spaces and ending with a newline.
Available abbreviations are

Sun Release 4.1 Last change: 16 February 1988 1721

BACKGAMMON (6) GAMES AND DEMOS

FILES

BUGS

1722

s-fi -f2 means s-fi,fi-f2

slrlr2 means slrl,slr2

Use b for bar and h for home, or 0 or 25 as appropriate.

lusr/gameslteachgammon
letcltermcap

rules and tutorial
terminal capabilities

backgammon's strategy needs much work.

Last change: 16 February 1988

BACKGAMMON (6)

Sun Release 4.1

BANNER (6) GAMES AND DEMOS BANNER (6)

NAME
banner - print large banner on printer

SYNOPSIS
/usr/games/banner [-wn] message ...

DESCRIPTION

BUGS

banner prints a large, high quality banner on the standard output. If the message is omitted, it prompts for
and reads one line of its standard input. If -w is given, the output is reduced from a width of 132 to n, suit­
able for a narrow terminal. If n is omitted, it defaults to 80.

The output should be printed on a hard-copy device, up to 132 columns wide, with no breaks between the
pages. The volume is enough that you want a printer or a fast hardcopy terminal, but if you are patient, a
dec writer or other 300 baud tenninal will do.

Several ASCII characters are not defined, notably '<', '>', '[', ']', '\', ''''', '_', '{', '}', 'I', and '-'. Also, the
characters '"', ''', and '&' are funny looking (but in a useful way.)

The -w option is implemented by skipping some rows and columns. The smaller it gets, the grainier the
output. Sometimes it runs letters together.

Sun Release 4.1 Last change: 16 February 1988 1723

BATTLEST AR (6) GAMES AND DEMOS BATTLEST AR (6)

NAME
battlestar - a tropical adventure game

SYNOPSIS
battlestar [-r]

DESCRIPTION
battlestar is an adventure game in the classic style. However, it is slightly less of a puzzle and more a
game of exploration. There are a few magical words in the game, but on the whole, simple English should
suffice to make one's desires understandable to the parser.

OPTIONS
-r Recover a saved game.

THE SETTING

USAGE

In the days before the darkness came, when battles tars ruled the heavens ...
Three He made and gave them to His daughters,
Beautiful nymphs, the goddesses of the waters.
One to bring good luck and simple feats of wonder,
Two to wash the lands and chum the waves asunder,
Three to rule the world and purge the skies with thunder.

In those times great wizards were known and their powers were beyond belief. They could take any object
from thin air, and, uttering the word 'su', could disappear.

In those times men were known for their lust of gold and desire to wear fine weapons. Swords and coats of
mail were fashioned that could withstand a laser blast.

But when the darkness fell, the rightful reigns were toppled. Swords and helms and heads of state went
rolling across the grass. The entire fleet of battlestars was reduced to a single ship.

Sample Commands
take take an object
drop drop an object
wear wear an object you are holding
draw carry an object you are wearing
puton take an object and wear it
take off --- draw an object and drop it
throw <object> <direction>
! <shell esc>

Implied Objects

1724

>-: take watermelon
watermelon:
Taken.
>-: eat
watermelon:
Eaten.
>-: take knife and sword and apple, drop all
knife:
Taken.
broadsword:
Taken.
apple:
Taken.
knife:
Dropped.

Last change: 6 October 1989 Sun Release 4.1

BA TTLEST AR (6) GAMES AND DEMOS BA TTLEST AR (6)

broadsword:
Dropped.
apple:
Dropped.
>-: get
knife:
Taken.

Notice that the "shadow" of the next word stays around if you want to take advantage of it. That is, saying
'take knife' and then 'drop' will drop the knife you just took.

Score and Inven
The two commands score and inven will print out your current status in the game.

Saving a Game
The command save will save your game in a file called Bstar. You can recover a saved game by using the
-r option when you start up the game.

Directions

BUGS

The compass directions N, S, E, and W can be used if you have a compass. If you do not have a compass,
you will have to say R, L, A, or B, which stand for Right, Left, Ahead, and Back. Directions printed in
room descriptions are always printed in R, L, A, & B relative directions.

Countless.

Sun Release 4.1 Last change: 6 October 1989 1725

BCD(6)

NAME
bcd, ppt - convert to antique media

SYNOPSIS
lusr/gameslbed text

lusrl gameslppt

DESCRIPTION

GAMES AND DEMOS

bed converts the literal text into a form familiar to old-timers.

ppt converts the standard input into yet another form.

SEE ALSO
dd(l)

1726 Last change: 16 February 1988

BCD(6)

Sun Release 4.1

BDEMOS(6) GAMES AND DEMOS

NAME
bdemos - demonstrate Sun Monochrome Biunap Display

SYNOPSIS
/usr/demo/bballs
/usr/demo/bbounce
/usr/ demo/bdemos
/usr/demo/bjump
/usr/demo/bphoto file
/usr/ demo/brotcube

DESCRIPTION

BDEMOS(6)

Bdemos is a collection of simple demonstration programs for the Sun Monochrome Bitmap Display. Each
program is briefly described below. Unless otherwise noted, each program should be terminated by typing
the appropriate key (usually DELETE or "C) to generate an interrupt signal.

bballs colliding balls demo

bbounce bouncing square demo

bdemos a collection of demos

This program has a menu for selection of several different demos. After typing a key to select
a particular demo, the user may type "C to get back the menu. Type 'q' to quit.

FILES

bjump simulated jump to hyperspace

bphoto file dither monochrome image file to bitmap display

Image files suitable for display by this program are in /usr/demo/bwpix.

brotcube black and white spinning cube

/nsr/ demo/bwpix

SEE ALSO
bsnncube(6), draw(6)

Sun Release 4.1 Last change: 13 March 1984 1727

BJ(6) GAMES AND DEMOS BJ(6)

NAME
bj - the game of black jack

SYNOPSIS
lusrl gameslbj

DESCRIPTION

1728

bj is a serious attempt at simulating the dealer in the game of black jack (or twenty-one) as might be found
in Reno. The following rules apply:

The bet is $2 every hand.

A player "natural" (black jack) pays $3. A dealer natural loses $2. Both dealer and player natur­
als is a "push" (no money exchange).

If the dealer has an ace up, the player is allowed to make an "insurance" bet against the chance of
a dealer natural. If this bet is not taken, play resumes as normal. If the bet is taken, it is a side bet
where the player wins $2 if the dealer has a natural and loses $1 if the dealer does not.

If the player is dealt two cards of the same value, he is allowed to "double". He is allowed to
play two hands, each with one of these cards. (The bet is doubled also; $2 on each hand.)

If a dealt hand has a total of ten or eleven, the player may "double down". He may double the
bet ($2 to $4) and receive exactly one more card on that hand.

Under normal play, the player may "hit" (draw a card) as long as his total is not over twenty-one.
If the player "busts" (goes over twenty-one), the dealer wins the bet.

When the player "stands" (decides not to hit), the dealer hits until he attains a total of seventeen
or more. If the dealer busts, the player wins the bet.

If both player and dealer stand, the one with the largest total wins. A tie is a push.

The machine deals and keeps score. The following questions will be asked at appropriate times. Each
question is answered by y followed by a new-line for "yes", or just new-line for "no".

? (this means, "do you want a hit?")
Insurance?
Double down?

Every time the deck is shuffled, the dealer so states and the "action" (total bet) and "standing" (total won
or lost) is printed. To exit, hit the interrupt key (CTRL-C) and the action and standing will be printed.

Last change: 16 February 1988 Sun Release 4.1

BOGGLE (6) GAMES AND DEMOS BOGGLE (6)

NAME
boggle - play the game of boggle

SYNOPSIS
lusr/gameslboggle [+] [++]

A V AILABILITY
This game is available with the Games software installation option. Refer to Installing SunOS 4.1 for
information on how to install optional software.

DESCRIPTION
This program is intended for people wishing to sharpen their skills at Boggle (TM Parker Bros.). If you
invoke the program with 4 arguments of 4 letters each, (e.g. "boggle appl epie moth erhd") the program
forms the obvious Boggle grid and lists all the words from lusr/dictlwords found therein. If you invoke the
program without arguments, it will generate a board for you, let you enter words for 3 minutes, and then
tell you how well you did relative to lusr/dictlwords.

The object of Boggle is to find, within 3 minutes, as many words as possible in a 4 by 4 grid of letters.
Words may be formed from any sequence of 3 or more adjacent letters in the grid. The letters may join hor­
izontally, vertically, or diagonally. However, no position in the grid may be used more than once within
anyone word. In competitive play amongst humans, each player is given credit for those of his words
which no other player has found.

In interactive play, enter your words separated by spaces, tabs, or newlines. A bell will ring when there is
2:00, 1:00, 0:10,0:02, 0:01, and 0:00 time left. You may complete any word started before the expiration
of time. You can surrender before time is up by hitting 'break'. While entering words, your erase character
is only effective within the current word and your line kill character is ignored.

Advanced players may wish to invoke the program with 1 or 2 +' s as the first argument. The first +
removes the restriction that positions can only be used once in each word. The second + causes a position
to be considered adjacent to itself as well as its (up to) 8 neighbors.

Sun Release 4.1 Last change: 21 December 1987 1729

BOGGLETOOL (6) GAMES AND DEMOS BOGGLETOOL (6)

NAME
boggletool - playa game of boggle

SYNOPSIS
lusrl games/boggletool [number] [+ [+]] [16-character string]

AVAILABILITY
This game is available with the Games software installation option. Refer to Installing SunOS 4.1 for
information on how to install optional software.

DESCRIPTION
boggletool allows you to play the game of Boggle (TM Parker Bros.) against the computer. The number
argument specifies the time limit in minutes (the default is 3 minutes). If a 16 character long string is
placed on the command line, it is interpreted as a Boggle board: the first four letters form the top row, the
next four letters the second row, etc. If no letters are specified, a board is randomly rolled by the computer
from a set of Boggle cubes. The + [+] argument is explained below under Advanced Play.

PLAYING THE GAME
Rules of the Game

The object of Boggle is to find as many words as possible in a 4 by 4 grid of letters within a certain time
limit. Words may be formed from any sequence of 3 or more adjacent letters in the grid. The letters may
join horizontally, vertically, or diagonally. Normally, no letter in the grid may be used more than once in a
word (see Advanced Play for exceptions).

Playing the Game
When invoked, boggletool displays a grid of letters and an hourglass. To enter words, simply type in lower
case letters to spell the word you want. Use any whitespace (SPACE, TAB, or NEWLINE) to finish a word.
To correct mistakes you make, use BACKSPACE or DEL to delete the last character, or use CTRL-U to
delete an entire word. boggle tool verifies that words you enter are both in the grid and are valid English
words. If you type in a character which would form a word which is not in the grid, the display will flash
and the character you typed will not be echoed. When you type any whitespace to end the current word,
boggletooI will verify that the word is three or more letters long and that it appears in the dictionary. If the
word you typed is illegal for either reason, the display will flash and you will have to either erase the word
or change it. If you try to enter a valid word which you have already entered, the display will flash and the
previous occurrence of the word will be highlighted. Again, you will have to erase the word before con­
tinuing. As you enter words, the "sand" in the hourglass will fall. At the end of the time limit, the display
will flash and you will no longer be allowed to enter words. After a moment, the computer will display two
lists of words: the words you found, and other words which also appear in the grid. To play another game,
just type any capital letter (or use the pop-up menu).

Using the Menu

1730

The pop-up menu is invoked by pressing the RIGHT mouse button. There are four items in it, and they
work as follows.

Restart Game
Create a new boggletool a new board, reset the timer, and allow you to start from scratch.

Restart Timer
Allows you to cheat by reseting the hourglass timer to zero.

Give Up
End the game and print the results immediately.

Quit Allows you to quit running the boggletool program. A prompt appears asking you to confirm the
quit; when it does, click the LEFf mouse button to quit or the RIGHT mouse button to abort the
quit.

Last change: 21 December 1987 Sun Release 4.1

BOGGLETOOL (6) GAMES AND DEMOS BOGGLETOOL (6)

Advanced Play

FILES

There are two options for advanced players. If a single + appears on the command line, letters in the grid
may be reused. If two + 's are on the command line, letters may also be considered adjacent to themselves
as well as to their neighbors. Although it is far easier to find words with these two options, there are also
many more possible words in the grid and it is therefore difficult to find them all.

/usr/games/boggledict dictionary file for computer's words

Sun Release 4.1 Last change: 21 December 1987 1731

BROTCUBE (6)

NAME
brotcube - rotate a simple cube

SYNOPSIS
lusr/demo/brotcube

DESCRIPTION

GAMES AND DEMOS BROTCUBE (6)

brotcube rotates a skeletal outline of a cube consisting of 14 vectors. Using the SunCore Graphics Pack­
age, a 3-D projection is drawn on the Sun Monochrome Bitmap Display. Each rotation consists of 100
views.

1732

This program gives an indication of the performance of the SunCore Graphics Package.

Type q to exit the program.

Last change: 16 February 1988 Sun Release 4.1

BSUNCUBE (6) GAMES AND DEMOS BSUNCUBE (6)

NAME
bsuncube - view 3-D Sun logo

SYNOPSIS
lusr/demolbsuncube

DESCRIPTION
bsuncube allows the user to view a cube from various positions with hidden faces removed. The faces of
the cube consist of the Sun logo. The viewing position is selected using the mouse. Using the SunCore
Graphics Package. a 3-D projection is drawn on the Sun Monochrome Bitmap Display.

The program operates in two modes: DisplayObject mode and SelectView mode. The program starts in
DisplayObject mode:

DisplayObject: The cube is displayed in 3-D perspective with hidden faces removed. Type q
while in this mode to exit the program. Press RIGHT mouse button to switch to SelectView mode.

SelectView: Schematic projections of the outline of the cube are shown and the mouse is used to

select a viewing position. Use LEFT mouse button to set x and MIDDLE mouse button to set y in
the Front View. Use MIDDLE mouse button to set z in the Top View. Press RIGHT mouse button
to switch to DisplayObject mode.

The view shown in DisplayObject mode is drawn using the conventions that the viewer is always looking
from the viewing position toward the center of the cube and that the positive y axis on the screen is the pro­
jection of the positive y axis in 3-D cube coordinates.

Sun Release 4.1 Last change: 16 February 1988 1733

BUTTONTEST (6) GAMES AND DEMOS BUTTONTEST(6)

NAME
buttontest - demonstration and testing program for SunButtons

SYNOPSIS
/usr/demo/BUTTONBOXIbuttontest

DESCRIPTION

1734

buttontest displays a window with thirty two buttons, corresponding to those on SunButtons. To deter­
mine if the button box has been set up correctly, select the Diagnostic button on the panel. If the button
box is correctly interfaced, buttonbox OK is displayed, and pressing a button on the box highlights a but­
ton on the screen. If No Response from Butlonbox is displayed, repeat the button box install procedure.

Last change: 09 May 1989 Sun Release 4.1

CANFIELD (6) GAMES AND DEMOS CANFIELD (6)

NAME
canfield, canfield tool , cfscores - Canfield solitaire card game

SYNOPSIS
lusr/gameslcanfield [-ac]

lusr/gameslcanfieldtool [-ac]

lusr/gameslcfscores [-ac] [username]

A V AILABILITY
These games are available with the Games software installation option. Refer to Installing SunOS 4.1 for
information on how to install optional software.

DESCRIPTION
canfield can be played on any teoninal. canfieldtool is the SunView version with attractive graphics.

If you have never played solitaire before, it is recommended that you consult a solitaire instruction book. In
canfield, tableau cards may be built on each other downward in alternate colors. An entire pile must be
moved as a unit in building. Top cards of the piles are available to be able to be played on foundations, but
never into empty spaces.

Spaces must be filled from the stock. The top card of the stock also is available to be played on foundations
or built on tableau piles. After the stock is exhausted, tableau spaces may be filled from the talon and the
player may keep them open until he wishes to use them.

Cards are dealt from the hand to the talon by threes and this repeats until there are no more cards in the
hand or the player quits. To have cards dealt onto the talon the player types ht for his move. Foundation
base cards are also automatically moved to the foundation when they become available.

Canfieldtool
Once you understand the rules, canfieldtool is self-explanatory.

Canfield
The rules for betting are somewhat less strict than those used in the official version of the game. The initial
deal costs $13. You may quit at this point or inspect the game. Inspection costs $13 and allows you to
make as many moves as is possible without moving any cards from your hand to the talon. (The initial deal
places three cards on the talon; if all these cards are used, three more are made available.) Finally, if the
game seems interesting, you must pay the final installment of $26. At this point you are credited at the rate
of $5 for each card on the foundation; as the game progresses you are credited with $5 for each card that is
moved to the foundation. Each run through the hand after the first costs $5. The card counting feature
costs $1 for each unknown card that is identified. If the information is toggled on, you are only charged for
cards that became visible since it was last turned on. Thus the maximum cost of information is $34. Play­
ing time is charged at a rate of $1 per minute. If the -a flag is specified, it prints out the canfield accounts
for all users that have played the game since the database was set up.

OPTIONS

FILES

BUGS

a Print out canfield accounts for all users that have played the game since the database was set up.

c Maintain card counting statistics on the bottom of the screen. When properly used this can greatly
increase the chances of winning.

With no arguments, cfscores prints out the current status of your canfield account. If username is specified,
it prints out the status of their account.

lusr/games/canfield the game itself
/usr/games/lib/cfscores the database of scores

It is impossible to cheat.

Sun Release 4.1 Last change: 21 December 1987 1735

CDPLA YER (6) GAMES AND DEMOS CDPLA YER (6)

NAME
cdplayer - CD-ROM audio demo program

SYNOPSIS
cdplayer [-d device] [sun view options]

A V AIL ABILITY
This demo is available with the Games software installation option. Refer to Installing Sun OS 4.1 for infor­
mation on how to install optional software.

DESCRIPTION
cd player demonstrate the CO quality audio capability of the CD-ROM drive. It is a SunView program and
plays any Audio Compact Discs. There are four panels in the window. The top panel displays the all the
available tracks on the CD. The user can select the any tracks by clicking it with the left mouse button. The
second panel contains the play, pause, stop and eject button. The third panel display the CD music address
and track number. The bottom panel contains the volume control slider and close button.

Refer to the CD-ROM hardware documentation for connecting the speakers or head-phones to the drive.

OPTIONS
-d device

FILES
Idev/rsrO

SEE ALSO
sr(4)

1736

Use device as the CD-ROM device, rather than Idev/rsrO the default CD-ROM device.

CD-ROM raw file

Last change: 11 September 1989 Sun Release 4.1

CHESS (6)

NAME
chess - the game of chess

SYNOPSIS
lusrl games! chess

AVAILABILITY

GAMES AND DEMOS CHESS (6)

This game is available for Sun-3 and Sun-4 systems with the Games software installation option. Refer to
Installing SunOS 4.1 for infonnation on how to install optional software.

DESCRIPTION
chess is a computer program that plays class D chess. Moves may be given either in standard (descriptive)
notation or in algebraic notation. The symbol '+' is used to specify check; '0-0' and '0-0-0' specify cas­
tling. To play black, type 'first'; to print the board, type an empty line.

Each move is echoed in the appropriate notation followed by the program's reply.

DIAGNOSTICS
The most cryptic diagnostic is 'eh?' which means that the input was syntactically incorrect.

FILES
lusrl games/libl chess. book

book of opening moves

BUGS
Pawns may be promoted only to queens.

Sun Release 4.1 Last change: 18 February 1988 1737

CHESSTOOL (6) GAMES AND DEMOS CHESSTOOL (6)

NAME
chesstool- window-based front-end to chess program

SYNOPSIS
/usr/gameS/chesstool [chess yrogram]

AVAILABILITY
This game is available for Sun-3 and Sun-4 systems, with the Games software installation option. Refer to
Installing SunOS 4.1 for information on how to install optional software.

DESCRIPTION
cbesstool is a window-based front-end to the chess(6) program. Used without options, cbesstool uses
/usr/games/chess; you can designate any alternate program which uses the same command syntax as
cbess(6) with the chessyrogram argument.

When chesstool starts up, it displays a large window with three subwindows. The first subwindow displays
messages 'Illegal move', for example. The second subwindow is an options subwindow; options are
described below. The final subwindow is a chessboard display with white and black pieces and two
(advisory only) timekeeping clocks.

Make your moves with the mouse: select a piece by positioning the arrow cursor over the piece and press­
ing the left mouse button down, then drag the piece to the destination square, and release the button. The
cursor will then tum to an hourglass icon while the system plays.

Items in the subwindow may be selected with either the left or middle mouse buttons. These options are:

Last Play Show the last play made.

Undo

Flash

Undo your last move and the machine's response.

Once the game is over, it is not possible to restart it, so undo will update the board, but
the game cannot be continued from that position.

Flash when the machine has completed its move.

When this command is selected, a check mark will appear next to the word Flash. In
flash mode, if chesstool is open, the piece moved by the system on its play will flash
until you make your move. If chesstool is iconic, the entire icon will flash when the
machine has made its move. Thus you can "Close" chesstool and be alerted when it's
your turn to move. To tum flash mode off, select flash again.

Machine White Start a new game with the machine playing white.

Human Wbite Start a new game with the machine playing black.

Quit Exit from chesstool.

There are two moves which are special: castling and capturing a pawn enpassant. To castle, move the
king only. The position of the rook will automatically be updated. Since the king moves two squares when
castling, the move is unambiguous. To capture enpassant, move the pawn to the square occupied by the
opposing pawn which will be captured.

SEE ALSO
cbess(6)

1738 Last change: 18 February 1988 Sun Release 4.1

CHING (6) GAMES AND DEMOS CHING (6)

NAME
ching - the book of changes and other cookies

SYNOPSIS
lusr/gameslching [hexagram]

DESCRIPTION
The I Ching or Book o/Changes is an ancient Chinese oracle that has been in usc for centuries as a source
of wisdom and advice.

The text of the oracle (as it is sometimes known) consists of sixty-four hexagrams, each symbolized by a
particular arrangement of six straight (-) and broken (- -) lines. These lines have values ranging from
six through nine, with the even values indicating the broken lines.

Each hexagram consists of two major sections. The Judgement relates specifically to the matter at hand
(For instance, "It furthers one to have somewhere to go.") while the Image describes the general attributes
of the hexagram and how they apply to one's own life (''Thus the superior man makes himself strong and
untiring. ").

When any of the lines has the value six or nine, it is a moving line; for any such line there is an appended
judgement which becomes significant. Furthermore, the moving lines are inherently unstable and change
into their opposites; a second hexagram (and thus an additional jUdgement) is formed.

Normally, one consults the oracle by fixing the desired question firmly in mind and then casting a set of
changes (lines) using yarrow-stalks or tossed coins. The resulting hexagram will be the answer to the
question.

Using an algorithm suggested by S. C. Johnson, this oracle simply reads a question from the standard input
(up to an EOP) and hashes the individual characters in combination with the time of day, process ID and
any other magic numbers which happen to be lying around the system. The resulting value is used as the
seed of a random number generator which drives a simulated coin-toss divination. The answer is then
piped through nrotT for formatting and will appear on the standard output.

For those who wish to remain steadfast in the old traditions, the oracle will also accept the results of a per­
sonal divination using, for example, coins. To do this, cast the change and then type the resulting line
values as an argument.

The impatient modem may prefer to settle for Chinese cookies; try fortune(6).

SEE ALSO
It furthers one to see the great man.

DIAGNOSTICS

BUGS

The great prince issues commands,
Founds states, vests families with fiefs.
Inferior people should not be employed.

Waiting in the mud
Brings about the arrival of the enemy.

If one is not extremely careful,
Somebody may come up from behind and strike him.
Misfortune.

Sun Release 4.1 Last change: 16 February 1988 1739

COLORDEMOS (6) GAMES AND DEMOS COLORDEMOS (6)

NAME
colordemos - demonstrate Sun Color Graphics Display

SYNOPSIS
lusr/demo/cballs
lusr/demo/cdraw
lusr/demo/cphoto file
lusr/demo/cpipes
lusr/demo/cshowmap file
lusr/demo/csnow
lusr/demo/csuncu be
lusr/demo/csunlogo
lusr/demo/cvlsi

DESCRIPTION

FILES

1740

colordemos is a collection of simple demonstration programs for the Sun Color Graphics Display. Each
program is briefly described below. To exit each program, send an interrupt signal by typing the appropri­
ate key (usually CfRL-C).

cballs Colliding balls on color display.

cdraw Draw on the color display (see draw(6) for an explanation of how to use cdraw).

cphoto file Display dithered color file on color display. Files suitable for display are in
lusr/demo/colorpix.

cpipes Colliding pipes on color display.

cshowmap file Display maps. Files suitable for display are in lusr/demo/segments.

csnow Color kaleidoscope.

csuncube Multicolored Sun logo.

csunlogo Shaded Sun logo.

cvlsi Color VLSI layout demo.

lusr/demo/colorpix
lusr/demo/segments

Last change: 10 January 1984 Sun Release 4.1

CRAPS (6) GAMES AND DEMOS CRAPS (6)

NAME
craps - the game of craps

SYNOPSIS
lusr/gameslcraps

DESCRIPTION
craps is a form of the game of craps that is played in Las Vegas. The program simulates the roller, while
the user (the player) places bets. The player may choose, at any time, to bet with the roller or with the
House. A bet of a negative amount is taken as a bet with the House, any other bet is a bet with the roller.

The player starts off with a "bankroll" of $2,000.

The program prompts with:

bet?

The bet can be all or part of the player's bankroll. Any bet over the total bankroll is rejected and the pro­
gram prompts with bet? until a proper bet is made.

Once the bet is accepted, the roller throws the dice. The following rules apply (the player wins or loses
depending on whether the bet is placed with the roller or with the House; the odds are even). The first roll
is the roll immediately following a bet:

1. On the first roll:

7 or 11
2,3, or 12
any other number

2. On subsequent rolls:

wins for the roller;
wins for the House;
is the point, roll again (Rule 2 applies).

point roller wins;
7 House wins;
any other number roll again.

If a player loses the entire bankroll, the House will offer to lend the player an additional $2,000. The pro­
gram will prompt:

marker?

A yes (or y) consummates the loan. Any other reply terminates the game.

If a player owes the House money, the House reminds the player, before a bet is placed, how many markers
are outstanding.

If, at any time, the bankroll of a player who has outstanding markers exceeds $2,()()(), the House asks:

Repay marker?

A reply of yes (or y) indicates the player's willingness to repay the loan. If only 1 marker is outstanding, it
is immediately repaid. However, if more than 1 marker are outstanding, the House asks:

How many?

markers the player would like to repay. If an invalid number is entered (or just a carriage return), an
appropriate message is printed and the program will prompt with How many? until a valid number is
entered.

If a player accumulates 10 markers (a total of $20,000 borrowed from the House), the program informs the
player of the situation and exits.

Should the bankroll of a player who has outstanding markers exceed $50,000, the total amount of money
borrowed will be automatically repaid to the House.

Sun Release 4.1 Last change: 16 February 1988 1741

CRAPS (6) GAMES AND DEMOS CRAPS (6)

Any player who accumulates $100,00Q or more breaks the bank. The program then prompts:

New game?

to give the House a chance to win back its money.

Any reply other than yes is considered to be a no (except in the case of bet? or How many?). To exit,
send an interrupt (break), DELETE character or CTRL-D The program will indicate whether the player won,
lost, or broke even.

MISCELLANEOUS

1742

The random number generator for the die numbers uses the seconds from the time of day. Depending on
system usage, these numbers, at times, may seem strange but occurrences of this type in a real dice situa­
tion are not uncommon.

Last change: 16 February 1988 Sun Release 4.1

CRIBBAGE (6) GAMES AND DEMOS CRIBBAGE (6)

NAME
cribbage - the card game cribbage

SYNOPSIS
lusr/games/cribbage [-eqr] name . ..

DESCRIPTION
cribbage plays the card game cribbage, with cribbage playing one hand and the user the other. cribbage
initially asks the user if the rules of the game are needed - if so, cribbage displays the appropriate section
from According to Hoyle with more(I).

OPTIONS
-e Provide an explanation of the correct score when the player makes mistakes scoring his hand or

crib. This is especially useful for beginning players.

-q Print a shorter form of all messages - this is only recommended for users who have played the
game without specifying this option.

-r Instead of asking the player to cut the deck, cribbage will randomly cut the deck.

PLAYING CRIBBAGE
cribbage first asks the player whether he wishes to playa short game ("once around", to 61) or a long
game ("twice around", to 121). A response of's' results in a short game, any other response plays a long
game.

At the start of the first game, cribbage asks the player to cut the deck to detennine who gets the first crib.
The user should respond with a number between 0 and 51, indicating how many cards down the deck is to

be cut. The player who cuts the lower ranked card gets the first crib. If more than one game is played, the
loser of the previous game gets the first crib in the current game.

For each hand, cribbage first prints the player's hand, whose crib it is, and then asks the player to discard
two cards into the crib. The cards are prompted for one per line, and are typed as explained below.

After discarding, cribbage cuts the deck (if it is the player's crib) or asks the player to cut the deck (if it's
its crib); in the latter case, the appropriate response is a number from 0 to 39 indicating how far down the
remaining 40 cards are to be cut.

After cutting the deck, play starts with the non-dealer (the person who doesn't have the crib) leading the
first card. Play continues, as per cribbage, until all cards are exhausted. cribbage keeps track of the scor­
ing of all points and the total of the cards on the table.

After play, the hands are scored. cribbage requests the player to score his hand (and the crib, if it is his) by
printing out the appropriate cards (and the cut card enclosed in brackets). Play continues until one player
reaches the game limit (61 or 121).

A carriage return when a numeric input is expected is equivalent to typing the lowest legal value; when
cutting the deck this is equivalent to choosing the top card.

SPECIFYING CARDS

FILES

Cards are specified as rank followed by suit. The ranks may be specified as one of a, 2, 3,4,5,6,7,8,9, t,
j, q, and k, or alternatively, one of ace, two, three, four, five, six, seven, eight, nine, ten, jack, queen, and
king. Suits may be specified as s, h, d, and c, or alternatively as spades, hearts, diamonds, and clubs. A
card may be specified as rank suit, or rank of suit. If the single letter rank and suit designations are used,
the space separating the suit and rank may be left out. Also, if only one card of the desired rank is play­
able, typing the rank is sufficient. For example, if your hand was 2h, 4d, 5c, 6h, jc, kd and you wanted to
discard the king of diamonds, you could type any of k, king, kd, k d, k of d, king d, king of d, k dia­
monds, k of diamonds, king diamonds, or king of diamonds,

lusr/games/cribbage

Sun Release 4.1 Last change: 16 February 1988 1743

CRffi B AGE (6)

SEE ALSO
more(1)

1744

GAMES AND DEMOS CRIBBAGE (6)

Last change: 16 February 1988 Sun Release 4.1

DIAL TEST (6) GAMES AND DEMOS

NAME
dialtest - demonstration and testing program for SunDials

SYNOPSIS
lusrl demo/DIALBO Xldialtest

DESCRIPTION

DIAL TEST (6)

dialtest displays a window with eight dials, corresponding to those on SunDials. To detennine if the dial­
box has been set up correctly, select the Diagnostic button on the panel. If the dialbox is correctly inter­
faced, Dialbox OK is displayed, and turning a dial on the box tum a dial on the screen. If No Response
from Dialbox is displayed, repeat the dialbox install procedure.

Sun Release 4.1 Last change: 27 March 1989 1745

DRAW(6) GAMES AND DEMOS DRAW(6)

NAME
draw, bdraw, cdraw - interactive graphics drawing

SYNOPSIS
lusr/demo/bdraw
lusr/demo/cdraw

DESCRIPTION

1746

The draw programs are menu-driven programs which use the mouse, keyboard, bitmap display and option­
ally the color display to draw objects, drag them around, save them on disk, and so on. bdraw is the draw
program for the black and white display and cdraw is the program for driving the color display.

The main menu items are selected by moving the mouse cursor and pressing the left mouse button. To
redraw the display, point at the left edge of the main menu box and press the left button. The main menu
items are:

New Seg xlate
Open a new translatable segment. A segment is a collection of attributes and primitives (lines,
text, polygons, etc.). A translatable segment may subsequently be positioned.

New Seg xform
Open a new transformable segment. A transformable segment may subsequently be rotated,
scaled, or positioned.

Delete Seg To delete a segment, point at any primitive in the segment and press the left button.

Lines To add line primitives to the currently open segment, position cursor, press the left button, ...
press right button to quit.

Polygon To add a polygon primitive to the currently open segment, position the cursor, press the left
button, ••• press the right button to terminate the boundary definition. Polygons are filled with
the current fill attribute.

Raster To add a raster primitive to the currently open segment, position the cursor, press the left but­
ton to reposition the box, adjust the box by moving the mouse, press the right button to create
the raster primitive comprising the boxed bitmap. A 'rasterfile' is also created on disk for
hardcopy purposes (see lusrlincludelrasterfile.h). This 'rasterfile' file may be spooled to a
Versatec printer/plotter for hardcopy after exiting from the draw program. The command to
do this is Ipr -v raster file .

Text To add a text primitive to the currently open segment, position cursor, press left button, type
the text string at the keyboard (back space works), hit return. Text is drawn with the current
text attributes.

Marker To add marker primitives to the currently open segment, position cursor, press the left button
to place marker, ... press the right button to quit.

Position To position a segment, point at any primitive in the segment, press left button, position the seg­
ment, press right button to quit.

Rotate To rotate a transformable segment, point at any primitive in the segment, press left button,
move mouse to rotate, press right button to quit.

Scale To scale a transformable segment, point at any primitive in the segment, press the left button,
move mouse to scale in x or y, press right button to quit.

Attributes This item brings up the attribute menu. To select an attribute such as text font, region fill tex­
ture (color), linestyle, or line width, point at the item and press the left button. Point at the left
edge of the menu box to quit.

Save Seg To save a segment on a disk file, point at the segment, press the left button, type the disk file
name, hit return.

Last change: 8 March 1984 Sun Release 4.1

DRAW(6) GAMES AND DEMOS DRAW(6)

BUGS

Restore Seg
To restore a previously saved segment from disk, type file name, hit return.

Exit Exit the draw program.

Rasters and raster text do not scale or rotate. If segments completely overlap, only the last one drawn may
be picked by pointing with the mouse. This also applies to the menu segments! Therefore, don't cover
them up with polygons. If aborted with your interrupt character, you must give the 'reset' command to tum
keyboard echo back on and to reset -cbreak. Therefore, use the Exit item in the main menu to exit the pro­
gram.

Sun Release 4.1 Last change: 8 March 1984 1747

FACTOR (6) GAMES AND DEMOS FACTOR (6)

NAME
factor, primes - factor a number, generate large primes

SYNOPSIS
lusr/gameslfactor [number]

lusr/gameslprimes [number]

DESCRIPTION
factor reads lines from its standard input. If it reads a positive number, factor will factor the number and
print its prime factors, printing each one the proper number of times. factor exits when it reads zero, a
negative number, or something other than a number. If a number is given, factor will factor the number,
print its prime factors, and exit.

primes reads a number from the standard input and prints all primes larger than the given number and
smaller than 232 (about 4.3xl09

). If a number is given, primes will use that number rather than reading
one from the standard input.

DIAGNOSTICS
Ouch. Input out of range or for garbage input.

1748 Last change: 16 February 1988 Sun Release 4.1

FISH (6) GAMES AND DEMOS FISH(6)

NAME
fish - play "Go Fish"

SYNOPSIS
!USf! games/fish

DESCRIPTION
fish plays the game of "Go Fish", a children's card game. The object is to accumulate "books" of 4 cards
with the same face value. The players alternate turns; each tum begins with one player selecting a card
from his hand, and asking the other player for all cards of that face value. If the other player has one or
more cards of that face value in his hand, he gives them to the first player, and the first player makes
another request. Eventually, the first player asks for a card which is not in the second player's hand: he
replies 'GO FISH!' The first player then draws a card from the "pool" of undealt cards. If this is the card he
had last requested, he draws again. When a book is made, either through drawing or requesting, the cards
are laid down and no further action takes place with that face value.

To play the computer, simply make guesses by typing a, 2, 3, 4, 5,6, 7, 8, 9, 10, j, q, or k when asked. Hit­
ting a RETURN character gives you information about the size of my hand and the pool, and tells you about
my books. Saying 'p' as a first guess puts you into "pro" level; the default is pretty dumb.

Sun Release 4.1 Last change: 16 February 1988 1749

FORTUNE (6) GAMES AND DEMOS

NAME
fortune - print a random, hopefully interesting, adage

SYNOPSIS
lusr/gameslfortune [-] [-alsw] [filename]

DESCRIPTION
fortune with no arguments prints out a random adage. The flags mean:

-a Choose from either list of adages.

-I Long messages only.

-s Short messages only.

FORTUNE (6)

-w Waits before termination for an amount of time calculated from the number of characters in

FILES

1750

the message. This is useful if it is executed as part of the logout procedure to guarantee that
the message can be read before the screen is cleared.

lusrl gamesllib/fortunes.dat

Last change: 16 February 1988 Sun Release 4.1

GAINTOOL (6) GAMES AND DEMOS GAINTOOL (6)

NAME
gaintool - audio control panel

SYNOPSIS
gain tool

AVAILABILITY
This command is only available with the Demos installation option. Refer to Installing SunOS 4.1 for
information on how to install optional software.

DESCRIPTION
gaintool is a Sun View demonstration program that controls various characteristics of the SPARCstation 1
audio device, see audio(4S). Operations performed by gain tool affect all audio programs; for instance,
adjusting the Play Volume instantly changes the output gain, regardless of which program is playing.
gaintool also detects audio state changes made by other programs, and updates its display accordingly,
keeping gaintool in sync with the current device configuration.

gaintool demonstrates an important principle involved in the integration of audio in the desktop environ­
ment: by enabling global control of important characteristics, it is not necessary for every application to
provide an interface for these parameters. For instance, since audio output may be paused from the control
panel, it is not strictly necessary that output applications display a Pause button of their own. However,
such applications may detect that audio output has been paused, and take appropriate action.

Control Panel
Play Volume

This slider adjusts the output volume. Volume levels between 0 and 100 may be selected, where 0
represents infinite attenuation and 100 is maximum gain.

Record Volume
This slider adjusts the recording gain level in the range 0 to 100.

Monitor Volume
This slider adjusts the monitor gain level in the range 0 to 100. Monitor gain controls the amount
of audio input signal that is fed through to the output port. For instance, if an audio source (such
as a radio or CD-player) is connected directly to the input port, the input signal may be monitored
through either the built-in speaker or the headphone jack.

Output This selector switches the audio output port between the built-in speaker and the external head­
phone jack.

Pause Play
This button may be used to suspend and resume audio output. If audio output is in progress when
Pause is clicked, it is stopped immediately and subsequent output data remains queued. The but­
ton then switches to a Resume button that, when clicked, resumes audio output at the point that it
was suspended.

If no process has the device open for output when Pause is clicked, gain tool holds the device
open itself, thereby denying other processes output access. Audio programs that simply open and
write to the audio device will typically be suspended when they attempt to open the device. Pro­
grams that asynchronously poll the device will discover that it is "busy" and may take appropriate
action.

Audio Device Status Panel

Sun Release 4.1

Pressing the PROPS (L3) key brings up a status panel that shows the current state with the its
display accordingly, audio applications. Selecting "Done" from the panel menu (or pressing the
(L7) key) removes the panel.

Ordinarily, the device status is updated only when a SIGPOLL signal is delivered to gain tool (see
audio(4S)). Because of this, the Active and Samples indicators are not necessarily kept up-to­
date. However, when the mouse is positioned over the panel, status is continually updated.

Last change: 15 January 1990 1751

GAINTOOL (6) GAMES AND DEMOS GAINTOOL (6)

SEE ALSO
audio(4S), soundtool(6)

BUGS
Record Volume should be controlled by a separate panel that also provides automatic gain level adjust­
ment capabilities.

WARNINGS
This program is furnished on an as is basis as a demonstration of audio applications programming.

1752 Last change: 15 January 1990 Sun Release 4.1

GAMMONTOOL (6) GAMES AND DEMOS GAMMONTOOL(6)

NAME
gammontool - playa game of backgammon

SYNOPSIS
lusr/gameslgammontool [path]

A V AILABILITY
This game is available with the Games software installation option. Refer to Installing SunOS 4.1 for
information on how to install optional software.

DESCRIPTION
gammontool paints a backgammon board on the screen, and then lets you play against the computer. It
must be run in Sun Windows. The optional path argument specifies an alternate move-generating program,
which must be specially designed to run with gammontool.

The game has three subwindows: an option window on top, a message window in the middle, and a large
board on the bottom. The buttons in the option window are used to restart, double, etc. The message win­
dow has two lines: the first tells whose tum it is, and the second displays any errors that occur.

The Initial Roll
To start the game, roll the dice to determine who goes first. Move the mouse arrow onto the board and
click the left button. One die appears on each side of the board: the die on the left is yours, and the die on
the right is the computer's. If your roll is greater, then you move; if not, the computer makes a move.

Making Your Move
When it is your turn, 'Yourmove' appears in the message window. Place the mouse over any piece of your
color, and click the left button. While holding down the button, move the mouse to drag the piece; the
piece follows the mouse until you release the button. The tool checks each move and does not allow illegal
moves. When you have made as many moves as you can, the computer takes its tum; after it finishes, you
may either roll again, or double.

Doubling
To double, click the Double button in the option window and wait for the computer's response. If
the computer doubles you, a message is displayed and you must answer with the Accept Double
or Refuse Double buttons. The Forfeit button can also be used to refuse a double. If the game is
doubled, a doubling cube with the proper value is displayed on the bar strip. If the number is fac­
ing up, then you may double next. If the number is upside down, it is the computer's turn to dou­
ble.

Other Buttons
If you want to change your move before you have finished it, use the Redo Move or
Redo Entire Move buttons in the option window. Redo Entire Move replaces all of the pieces
you have moved so that you can redo them all. Redo Move only replaces the last piece you
moved, so it is useful when you roll doubles and want to redo only the last piece you moved. Note
that once you have made all of the moves your roll permits, play passes immediately to the com­
puter, so you cannot redo the very last move. The Show Last Move button allows you to see the
last move again.

Leaving the Game
If you want to quit playing backgammon, use the Quit button. If you want to forfeit the game, use the For­
feit button. The computer penalizes you by taking a certain number of points, but the program does not
terminate.

To play another game after winning, losing, or forfeiting, click the New Game button. To change the color
of your pieces, click the mouse button while pointing at either the White or Black checkboxes. You may
change colors at any time, even in the middle of a game. Changing colors in the middle of a game does not
mean that you trade places with the computer, your pieces stay where they are, but they are repainted with
the new color. Your pieces always move from the top right to the bottom right of the board, regardless of
your color. As an additional cue as to your color, your dice are always displayed on the left half of the
board.

Sun Release 4.1 Last change: 21 December 1987 1753

GAMMONTOOL(6) GAMES AND DEMOS GAMMONTOOL (6)

Log File

FILES

BUGS

1754

If a there is a gammonlog file your home directory, gammon tool keeps a log of the games played. Each
move and double gets recorded, along with the winners and accumulated scores.

-/gammonlog log of games played
lusr/gamesllib/gammonscores

log of wins and losses

The default strategy used by the computer is very poor.

If a single move uses more than one die (for instance if you roll 5,6 and move 11 spaces without touching
down in the middle) it is unpredictable where the program will make the piece touch down. This may be
important if there is a blot on one of these middle points. The program will always make the move if possi­
ble, but if two midpoints would work and there is a blot on one of them, it is much better to explicitly hit
the blot and then move the piece the rest of the way.

Last change: 21 December 1987 Sun Release 4.1

GAMES AND DEMOS

NAME
gp_demos, flight, rotobj - demonstration programs for the Graphics Processor

SYNOPSIS
/usr/demo/f1ight

/usr/demo/rotobj [object]

A V AILABILITY
These demos are available with the Demos software installation option. Refer to Installing SunOS 4.1 for
information on how to install optional software.

DESCRIPTION
These demos only run in windows running on a Graphics Processor surface.

:Flight
flight is a mouse-driven flight simulator.

Interactive Commands

Middle-Button Restart the program.

Right-Button Increase speed.

Left-Button Decrease speed.

Move-Mouse-Forward
The airplane dives.

Move-Mouse-Backward
The airplane climbs.

Move-Mouse-LeftlRight
The airplane banks.

LeftlRight-With-Right-Button
The airplane rolls without banking.

Rotobj
rotobj rotates an object. Object files are located in /usr/demo/DATA and have the suffix .vecs.

:FILES
/usr/demoDAT A

SEE ALSO
graphics_demos(6)

Sun Release 4.1 Last change: 21 December 1987 1755

GRAPHICS_DEMOS (6) GAMES AND DEMOS GRAPHICS_DEMOS (6)

NAME
graphics_demos, bouncedemo, framedemo, jumpdemo, spheresdemo, - graphics demonstration programs

SYNOPSIS
lusr/demo/bouncedemo [-d dey] [-nx] [-r] [-q]

lusr/demo/framedemo [-d dey] [-nx] [-r] [-q]

lusr/demo/jumpdemo [-c] [-d dey] [-ox] [-r] [-q]

lusr/demo/spberesdemo [-d dey] [-nx] [-r] [-q]

A V A1LABILITY
These demos are available with the Demos software installation option. Refer to Installing SunOS 4.1 for
information on how to install optional software.

DESCRIPTION
bouncedemo

bouncedemo displays a bouncing square.

framedemo
framedemo

displays a series of frames, each of which contains a 256 by 256 image one-bit-deep pixels (that is, the
image is a square monochrome bitmap, with 256 bits on a side). framedemo looks for the frames in the
files frame.1 through frame.n in the current working directory, and displays them in numerical order. A
set of sample frames is available in the directory lusr/demo/globeframes/*.

Interactive Commands
If you move the cursor onto the image surface, you can type certain commands to affect the rate at which
the frames are displayed. The initial rate is one frame per second:

f Remove l/20th of a second from the interval.

F Remove one second from the interval. Ff makes the interval as small as possible.

s Add l/20th of a second.

S Add one second.

jumpdemo
jumpdemo simulates the famous Star Wars jump to light-speed-sequence using vector drawing. Colored
stars are drawn on color surfaces.

spberesdemo
spberesdemo computes a random collection of shaded spheres. Colored spheres are drawn on color sur­
faces.

OPTIONS
-c Rotate the color map to produce a sparkling effect.

-d surface
Run the demo on a surface other than the window or system console, for instance:

bouncedemo -d Idev/cgoneO

-nx Draw x items, or repeat a sequence x times.

-r Retain the window. This allows the image to reappear when uncovered instead of restarting the
demo.

-q Quick exit. Useful for running several demos from within a shell script.

1756 Last change: 21 December 1987 Sun Release 4.1

HACK(6) GAMES AND DEMOS HACK(6)

NAME
hack - replacement for rogue

SYNOPSIS
hack [-d hackdir] [-s alii player. ..]

DESCRIPTION

FILES

hack is a display-oriented dungeons & dragons type game. Both display and command structure resemble
rogue, although hack has twice as many monster types and requires three times as much memory.

Normally hack looks in lusr/gamesllib/hackdir for the files listed below; this directory can be changed
with the -d option. The -s option permits you to search the player record. Given the keyword all, hack
lists all players; given the login name of a player, it lists all scores of that player.

record
news
data
help
hh
perm
rumors

top 100 list (start with an empty file)
changes or bugs (start with no news file)
information about objects and monsters
introductory information (no doubt outdated)
compacted version of help
empty file used for locking
texts for fortune cookies

Sun Release 4.1 Last change: 16 February 1988 1757

HANGMAN (6) GAMES AND DEMOS

NAME
hangman - computer version of the game hangman

SYNOPSIS
lusr/gameslhangman

DESCRIPTION

HANGMAN (6)

In hangman, the computer picks a word from the on-line word list and you must try to guess it. The com­
puter keeps track of which letters have been guessed and how many wrong guesses you have made on the
screen in a graphic fashion.

FILES
lusr/dictlwords on-line word list

1758 Last change: 16 February 1988 Sun Release 4.1

HUNT (6) GAMES AND DEMOS HUNT (6)

NAME
hunt - a multiplayer multitenninal game

SYNOPSIS
lusr/gameslhunt[-m] [hostname] [-I name]

DESCRIPTION
The object of the game hunt is to kill off the other players. There are no rooms, no treasures, and no mon­
sters. Instead, you wander around a maze, find grenades, trip mines, and shoot down walls and players.

Your score is the ratio of number of kills to number of times you entered the game and is only kept for the
duration of a single session of hunt. The more players you kill before you die, the better your score is.

hunt normally looks for an active game on the local network; if none is found, it starts one up on the local
host One may specify the location of the game by giving the hostnameargument.

hunt only works on crt (vdt) terminals with at least 24 lines, 80 columns, and cursor addressing. The
screen is divided in to 3 areas. On the right hand side is the status area. It shows you how much damage
you've sustained, how many charges you have left, who's in the game, who's scanning (the asterisk in
front of the name), who's cloaked (the plus sign in front of the name), and other players' scores. Most of
the rest of the screen is taken up by your map of the maze, except for the 24th line, which is used for longer
messages that do not fit in the status area.

hunt uses the same keys to move as vi does, for instance, hj,k, and I for left, down, up, right respectively.
To change which direction you're facing in the maze, use the upper case version of the movement key (for
instance, HJKL).

Other commands are:

f Fire (in the direction you're facing) (Takes 1 charge)
g Throw grenade (in the direction you're facing) (Takes 9 charges)
F Throw satchel charge (Takes 25 charges)
G Throw bomb (Takes 49 charges)
o Throw small slime bomb (Takes 15 charges)
a Throw big slime bomb (Takes 30 charges)
s Scan (where other players are) (Takes 1 charge)
c Cioak (where you are) (Takes 1 charge)
"L Redraw screen
q Quit

Knowing what the symbols on the screen often helps:

Sun Release 4.1

-1+ Walls

/\h1288u+288uDiagonal (deflecting) walls

Doors (dispersion walls)

Small mine

g Large mine

Shot

0 Grenade

0 Satchel charge

@ Bomb

s Small slime bomb

$ Big slime bomb

><"v You facing right, left, up, or down

Last change: 16 February 1988 1759

HUNT (6) GAMES AND DEMOS HUNT (6)

} {i! Other players facing rightt leftt UPt or down

* Explosion

\J/
- * E - Grenade and large mine explosion

fr\
Satchel and bomb explosions are larger than grenades (5x5t 7x7t and 3x3 respectively).

Other helpful hints:

You can only fire in the direction you are facing.
You can only fire three shots in a rowt then the gun must cool.
A shot only affects the square it hits.
Shots and grenades move 5 times faster than you do.
To stab someonet

you must face that player and move at them.
Stabbing does 3 points worth of damage and shooting does 5 points.
You start with 15 charges and get 5 more for every new player.
A grenade affects the nine squares centered about the square it hits.
A satchel affects the twenty-five squares centered about the square it hits.
A bomb affects the forty-nine squares centered about the square it hits.
One small mine and one large mine is placed in the maze for every new player.
A mine has a 5% probability of tripping when you walk directly at it;

50% when going sideways on to it; 95% when backing up on to it.
Tripping a mine costs you 5 points or 10 points respectively.
Defusing a mine is worth 1 charge or 9 charges respectively.
You cannot see behind you.
Scanning lasts for (20 times the number of players) turns.

Scanning takes 1 ammo charget so do not waste all your charges scanning.
You get 2 more damage capacity points and 2 damage points taken away

whenever you kill someone.
Maximum typeahead is 5 characters.
A shot destroys normal (for instancet non-diagonalt non-door) walls.
Diagonal walls deflect shots and change orientation.
Doors disperse shots in random directions (uPt downt left, right).
Diagonal walls and doors cannot be destroyed by direct shots but may

be destroyed by an adjacent grenade explosion.
Walls regeneratet reappearing in the order they were destroyed.

One percent of the regenerated walls will be diagonal walls or doors. When a wall is
generated directly beneath a playert he is thrown in a random direction for a random
period of time. When he lands, he sustains damage (up to 20 percent of the amount of
damage he had before impact); that is, the less damage he had, the more nimble he is and
therefore less likely to hurt himself on landing.

ENVIRONMENT

1760

The environment variable HUNT is checked to get the player name. If you do not have this variable sett
hunt will ask you what name you want to play under. You may also set up a single character keyboard
mapt but then you have to enumerate the options. For example:

setenv HUNT "name=Sneaky,mapkey=zoFfGglf2g3F4G"

sets the player name to Sneaky, and the maps z to Ot F to ft G to gt 1 to f, 2 to gt 3 to F, and 4 to G.

The mapkey option must be last.

It is a boring game if you are the only one playing.

Last change: 16 February 1988 Sun Release 4.1

HUNT (6) GAMES AND DEMOS HUNT (6)

OPTIONS
-m You enter the game as a monitor (you can see the action but you cannot play).

-I name Enter the game as player name.

FILES
lusr/gamesllib/hunt.driver game coordinator

LIMITATIONS
hunt normally drives up the load average to be about (number_of_players + 0.5) greater than it would be
without a hunt game executing. A limit of three players per host and nine players total is enforced by
hunt.

BUGS
To keep up the pace, not everything is as realistic as possible.

Sun Release 4.1 Last change: 16 February 1988 1761

LIFE (6) GAMES AND DEMOS LIFE (6)

NAME
life - John Conway's game of life

SYNOPSIS
/usr/games/life

AVAILABILITY
This game is available with the Games software installation option. Refer to Installing SunOS 4.1 for
information on how to install optional software.

DESCRIPTION
life is a program that plays John Conway's game of life. It only runs under sunview(1).

When invoked, life will display a window with a small control panel at the top, and a large drawing area at
the bottom. You can create pieces in the drawing area with the left button, and erase them with the middle
button. When you select Run in the control panel, the pieces will begin to evolve, and the drawing region
will update itself at a speed controlled by the slider labeled with Fast and Slow. life keeps track of all the
pieces even if they are not visible. The scroll bars surrounding the drawing region can be used to see
pieces that have moved out of view. There are some standard patterns that can be drawn by popping up a
menu in the drawing subwindow.

The meaning of the items in the first row of the control panel (from left to right) are as follows. If you
click on the picture which looks like a tic-tac-toe board, a grid will appear in the drawing region. If you
click on Step, the mode will change from run mode (where the pieces update continuously) to step mode
(where an update is only done when you click on Step). Following Gen is a number indicating the number
of generations that have occurred. The button marked Find will scroll so that at least one piece is in view.
This is useful when all the pieces disappear from view. The button marked Clear will clear the drawing
region, but leave the other controls unchanged. Reset will reset all the panel controls, but will not erase
any of the pieces, and Quit Exits the tool. The second row contains two sliders. The first controls the
update speed when in run mode, the second controls the size of the pieces.

SEE ALSO
sunview(1)

1762 Last change: 21 December 1987 Sun Release 4.1

MILLE (6) GAMES AND DEMOS MILLE (6)

NAME
mille - play Mille Bornes

SYNOPSIS
lusr/gameslmille [file]

DESCRIPTION
mille plays a two-handed game reminiscent of the Parker Brothert s game of Mille Bornes with you. The
rules are described below. If a file name is given on the command linet the game saved in that file is
started.

When a game is started up, the bottom of the score window will contain a list of commands. They are:

P Pick a card from the deck. This card is placed in the 'P' slot in your hand.

D Discard a card from your hand. To indicate which cardt type the number of the card in
the hand (or "pn for the just-picked card) followed by a carriage-return or space. The
carriage-return or space is required to allow recovery from typos which can be very
expensive, like discarding safeties.

U Use a card. The card is again indicated by its numbert followed by a carriage-return or
space.

o Toggle ordering the hand. By default off, if turned on it will sort the cards in your hand
appropriately. This is not recommended for the impatient on slow terminals.

Q Quit the game. This will ask for confirmation, just to be sure. Hitting DELETE (or
RUBOUT) is equivalent.

S Save the game in a file. If the game was started from a filet you will be given an oppor­
tunity to save it on the same file. If you don't wish tOt or you did not start from a filet you
will be asked for the file name. If you type a RETURN character without a name, the
save will be terminated and the game resumed.

R Redraw the screen from scratch. The command AL (CfRL-L) will also work.

W Toggle window type. This switches the score window between the startup window (with
all the command names) and the end-of-game window. Using the end-of-game window
saves time by eliminating the switch at the end of the game to show the final score.
Recommended for hackers and other miscreants.

If you make a mistaket an error message will be printed on the last line of the score window t and a bell will
beep.

At the end of each hand or garnet you will be asked if you wish to play another. If not, it will ask you if
you want to save the game. If you do, and the save is unsuccessfult play will be resumed as if you had said
you wanted to play another hand/game. This allows you to use the "Stt command to reattempt the save.
(The game itself is a product of Parker Brotherst Inc.)

SEE ALSO
curses(3V)

Sun Release 4.1 Last change: 16 February 1988 1763

MILLE (6) GAMES AND DEMOS MILLE (6)

CARDS

RULES

1764

Here is some useful information. The number in brackets after the card name is the number of that card in
the deck:

Hazard

Out of Gas [2]
Flat Tire [2]
Accident [2]
Stop [4]
Speed Limit [3]

Repair

Gasoline [6]
Spare Tire [6]
Repairs [6]
Go [14]
End of Limit [6]

Safety

Extra Tank [1]
Puncture Proof [1]
Driving Ace [1]
Right of Way [1]

25 - [10],50 - [10], 75 - [10], 100 - [12],200 - [4]

Object: The point of game is to get a total of 5000 points in several hands. Each hand is a race to put
down exactly 700 miles before your opponent does. Beyond the points gained by putting down milestones,
there are several other ways of making points.

Overview: The game is played with a deck of 101 cards. Distance cards represent a number of miles trav­
eled. They come in denominations of 25, 50, 75, 100, and 200. When one is played, it adds that many
miles to the player's trip so far this hand. Hazard cards are used to prevent your opponent from putting
down Distance cards. With the exception of the speed limit card, they can only be played if your opponent
has a Go card on top of the Battle pile. The cards are Out of Gas, Accident, Flat Tire, Speed Limit, and
Stop. Remedy cards fix problems caused by Hazard cards played on you by your opponent. The cards are
Gasoline, Repairs, Spare Tire, End of Limit, and Go. Safety cards prevent your opponent from putting
specific Hazard cards on you in the first place. They are Extra Tank, Driving Ace, Puncture Proof, and
Right of Way, and there are only one of each in the deck.

Board Layout: The board is split into several areas. From top to bottom, they are: SAFETY AREA (unla­
beled): This is where the safeties will be placed as they are played. HAND: These are the cards in your
hand. BATTLE: This is the Battle pile. All the Hazard and Remedy Cards are played here, except the
Speed Limit and End of Limit cards. Only the top card is displayed, as it is the only effective one. SPEED:
The Speed pile. The Speed Limit and End of Limit cards are played here to control the speed at which the
player is allowed to put down miles. MILEAGE: Miles are placed here. The total of the numbers shown
here is the distance traveled so far.

Play: The first pick alternates between the two players. Each tum usually starts with a pick from the deck.
The player then plays a card, or if this is not possible or desirable, discards one. Normally, a play or dis­
card of a single card constitutes a tum. If the card played is a safety, however, the same player takes
another turn immediately.

This repeats until one of the players reaches 700 points or the deck runs out. If someone reaches 700, they
have the option of going for an Extension, which means that the play continues until someone reaches 1000
miles.

Hazard and Remedy Cards: Hazard Cards are played on your opponent's Battle and Speed piles.
Remedy Cards are used for undoing the effects of your opponent's nastiness.

Go (Green Light) must be the top card on your Battle pile for you to play any mileage, unless you have
played the Right of Way card (see below).

Stop is played on your opponent's Go card to prevent them from playing mileage until they playa Go
card.

Speed Limit is played on your opponent's Speed pile. Until they play an End of Limit they can only
play 25 or 50 mile cards, presuming their Go card allows them to do even that

End of Limit is played on your Speed pile to nullify a Speed Limit played by your opponent.

Last change: 16 February 1988 Sun Release 4.1

MILLE (6) GAMES AND DEMOS MILLE (6)

Out of Gas is played on your opponent's Go card. They must then playa Gasoline card, and then a Go
card before they can play any more mileage.

Flat Tire is played on your opponent's Go card. They must then playa Spare Tire card, and then a Go
card before they can play any more mileage.

Accident is played on your opponent's Go card. They must then playa Repairs card, and then a Go
card before they can play any more mileage.

Safety Cards: Safety cards prevent your opponent from playing the corresponding Hazard cards on you for
the rest of the hand. It cancels an attack in progress, and always entitles the player to an extra turn.

Right of Way prevents your opponent from playing both Stop and Speed Limit cards on you. It also acts
as a permanent Go card for the rest of the hand, so you can play mileage as long as there is not a Hazard
card on top of your Battle pile. In this case only, your opponent can play Hazard cards directly on a
Remedy card besides a Go card.

Extra Tank When played, your opponent cannot play an Out of Gas on your Battle Pile.
Puncture Proof When played, your opponent cannot playa Flat Tire on your Battle Pile.
Driving Ace When played, your opponent cannot play an Accident on your Battle Pile.

Distance Cards: Distance cards are played when you have a Go card on your Battle pile, or a Right of
Way in your Safety area and are not stopped by a Hazard Card. They can be played in any combination
that totals exactly 700 miles, except that you cannot play more than two 200 mile cards in one hand. A
hand ends whenever one player gets exactly 700 miles or the deck runs out. In that case, play continues
until neither someone reaches 700, or neither player can use any cards in their hand. If the trip is com­
pleted after the deck runs out, this is called Delayed Action.

Coup Foure: This is a French fencing term for a counter-thrust move as part of a parry to an opponents
attack. In Mille Bomes, it is used as follows: If an opponent plays a Hazard card, and you have the
corresponding Safety in your hand, you play it immediately, even before you draw. This immediately
removes the Hazard card from your Battle pile, and protects you from that card for the rest of the game.
This gives you more points (see "Scoring" below).

Scoring: Scores are totaled at the end of each hand, whether or not anyone completed the trip. The terms
used in the Score window have the following meanings:

Milestones Played: Each player scores as many miles as they played before the trip ended.
Each Safety: 100 points for each safety in the Safety area.
All 4 Safeties: 300 points if all four safeties are played.
Each Coup Foure: 300 points for each Coup Foun~ accomplished.

The following bonus scores can apply only to the winning player.
Trip Completed: 400 points bonus for completing the trip to 700 or 1000.
Safe Trip: 300 points bonus for completing the trip without using any 200 mile cards.
Delayed Action: 300 points bonus for finishing after the deck was exhausted.
Extension: 200 points bonus for completing a 1 ()()() mile trip.
Shut-Out: 500 points bonus for completing the trip before your opponent played any mileage cards.

Running totals are also kept for the current score for each player for the hand (Hand Total), the game
(Overall Total), and number of games won (Games).

Sun Release 4.1 Last change: 16 February 1988 1765

MONOP(6) GAMES AND DEMOS MONOP(6)

NAME
monop - Monopoly game

SYNOPSIS
lusr/gameslmonop [filename]

DESCRIPTION
monop is reminiscent of the Parker Brother's game Monopoly, and monitors a game between 1 to 9 users.
It is assumed that the rules of Monopoly are known. The game follows the standard rules, with the excep­
tion that, if a property would go up for auction and there are only two solvent players, no auction is held
and the property remains unowned.

The game, in effect, lends the player money, so it is possible to buy something which you cannot afford.
However, as soon as a person goes into debt, he must "fix the problem", that is, make himself solvent,
before play can continue. If this is not possible, the player's property reverts to his debtee, either a player
or the bank. A player can resign at any time to any person or the bank, which puts the property back on the
board, unowned.

Any time that the response to a question is a string, for inStance a name, place or person, you can type? to
get a list of valid answers. It is not possible to input a negative number, nor is it ever necessary.

USAGE
Commands

1766

quit: Quit game. This allows you to quit the game. It asks you if you are sure.

print Print board. This prints out the current board. The columns have the following meanings (column
headings are the same for the where, own holdings, and holdings commands):

Name

Own

Price

Mg

The first ten characters of the name of the square

The number of the owner of the property.

The cost of the property (if any)

This field has a '*' in it if the property is mortgaged

If the property is a Utility or Railroad, this is the number of such owned by the
owner. If the property is land, this is the number of houses on it.

Rent Current rent on the property. If it is not owned, there is no rent.

where: where players are: Tells you where all the players are. A '*' indicates the current player.

own holdings:
List your own holdings, that is, money, get-out-of-jail-free cards, and property.

holdings:
Holdings list. Look at anyone's holdings. It will ask you whose holdings you wish to look at.
When you are finished, type done.

shell: Shell escape. Escape to a shell. When the shell dies, the program continues where you left off.

mortgage:
Mortgage property. Sets up a list of mortgageable property, and asks which you wish to mort­
gage.

unmortgage:
Unmortgage property. Unmortgage mortgaged property.

buy: Buy houses. Sets up a list of monopolies on which you can buy houses. If there is more than one,
it asks you which you want to buy for. It then asks you how many for each piece of property, giv­
ing the current amount in parentheses after the property name. If you build in an unbalanced
manner (a disparity of more than one house within the same monopoly), it asks you to re-input
things.

Last change: 16 February 1988 Sun Release 4.1

MONOP(6) GAMES AND DEMOS MONOP(6)

FILES

BUGS

sell: Sell houses. Sets up a list of monopolies from which you can sell houses. it operates in an analo­
gous manner to buy

card: Card for jail. Use a get-out-of-jail-free card to get out of jail. If you are not in jail, or you do not
have one, it tells you so.

pay: Pay for jail. Pay $50 to get out of jail, from whence you are put on Just Visiting. Difficult to do if
you are not there.

trade: This allows you to trade with another player. It asks you whom you wish to trade with, and then
asks you what each wishes to give up. You can get a summary at the end, and, in all cases, it asks
for confirmation of the trade before doing it.

resign: Resign to another player or the bank. If you resign to the bank, all property reverts to its virgin
state, and get-out-of-jail free cards revert to the deck.

save: Save game. Save the current game in a file for later play. You can continue play after saving,
either by adding the file in which you saved the game after the monop command, or by using the
restore command (see below). It will ask you which file you wish to save it in, and, if the file
exists, confirm that you wish to overwrite it.

restore:
Restore game. Read in a previously saved game from a file. It leaves the file intact

roll: Roll the dice and move forward to your new location. If you simply hit the RETURN key instead
of a command, it is the same as typing roll.

/usr/gamesllib/cards.pck chance and community chest cards

No command can be given an argument instead of a response to a query.

Sun Release 4.1 Last change: 16 February 1988 1767

MOO(6)

NAME
moo - guessing game

SYNOPSIS
/usr/games/moo

DESCRIPTION

GAMES AND DEMOS MOO(6)

moo is a guessing game imported from England. The computer picks a number consisting of four distinct
decimal digits. The player guesses four distinct digits being scored on each guess. A "cow" is a correct
digit in an incorrect position. A "bull" is a correct digit in a correct position. The game continues until
the player guesses the number (a score of four bulls).

1768 Last change: 5 October 1989 Sun Release 4.1

NUMBER (6) GAMES AND DEMOS

NAME
number - convert Arabic numerals to English

SYNOPSIS
/usr/games/number

DESCRIPTION

NUMBER (6)

number copies the standard input to the standard output, changing each decimal number to a fully spelled
out version.

Sun Release 4.1 Last change: 16 February 1988 1769

PLAY (6) GAMES AND DEMOS PLAY(6)

NAME
play - play audio files

SYNOPSIS
play [-i] [-V] [-d dev] [-v vol] [filename ...]

AVAILABILITY
This command is only available with the Demos software installation option. Refer to Installing SunOS 4.1
for information on how to install optional software.

DESCRIPTION
play copies the named audio files to the audio device. Audio files named on the command line are played
sequentially. If no filenames are present, the standard input stream is played. The special filename '-' may
be used to read the standard input stream instead of a file.

The input files (including the standard input) must contain a valid audio file header. The encoding informa­
tion in this header is matched against the capabilities of the audio device and, if the data formats are incom­
patible, an error message is printed and the file is skipped.

Minor deviations in sampling frequency (those less than 1%) are ordinarily ignored. This allows, for
instance, data sampled at 8012 Hz to be played on an audio device that only supports 8000 Hz. If the -V
option is specified, such deviations are flagged with warning messages.

OPTIONS
-i

-V

-ddev

-v vol

-?

SEE ALSO
record (6)

WARNINGS

Print an error message and exit immediately if the audio device is unavailable (that is, another
process currently has write access). play will ordinarily wait until it can obtain access to the
device.

Verbose. Print messages to the standard error while waiting for access to the audio device or
when sample rate deviations are detected.

Specify an alternate audio device to which output should be directed. If the -d option is not
specified, /dev/audio is the default audio device.

Set the output volume to vol before playing begins. vol is an integer value between 0 and 100,
inclusive. If this argument is not specified, the output volume remains at the level most
recently set by any process.

Help. Print a command line usage message.

This program is furnished on an as is basis as a demonstration of audio applications programming.

1770 Last change: 10 January 1990 Sun Release 4.1

PRIMES (6) GAMES AND DEMOS

NAME
primes - print all primes larger than some given number

SYNOPSIS
Insr/games/primes [number]

DESCRIPTION

PRIMES (6)

primes reads a number from the standard input and prints all primes larger than the given number. If
number is given as an argument, it uses that number rather than reading one from the standard input.

BUGS
It obviously cannot print all primes larger than some given number. It will not behave very sensibly when
it overflows an int.

Sun Release 4.1 Last change: 16 February 1988 1771

QUIZ (6) GAMES AND DEMOS QUIZ (6)

NAME
quiz - test your knowledge

SYNOPSIS
/usr/games/quiz [-iftlename] [-t] [category] category2]

DESCRIPTION

FILES

BUGS

1772

quiz gives associative knowledge tests on various subjects. It asks items chosen from category] and
expects answers from category2. If no categories are specified, quiz gives instructions and lists the avail­
able categories.

quiz tells a correct answer whenever you type a bare newline. At the end of input, upon interrupt, or when
questions run out, quiz reports a score and terminates.

The -t flag specifies 'tutorial' mode, where missed questions are repeated later, and material is gradually
introduced as you learn.

The -i flag causes the named file to be substituted for the default index file. The lines of these files have
the syntax:

line = category newline I category':' line
category = alternate I category' I' alternate
alternate = empty I alternate primary
primary = character I '[' category ']' I option
option =' {' category '}'

The first category on each line of an index file names an information file. The remaining categories specify
the order and contents of the data in each line of the information file. Information files have the same syn­
tax. Backslash '\' is used as with sh(l) to quote syntactically significant characters or to insert transparent
newlines into a line. When either a question or its answer is empty, quiz will refrain from asking it.

/usr/ games/ quiz.kI*

The construct 'a lab' doesn't work in an information file. Use 'alb} '.

Last change: 16 February 1988 Sun Release 4.1

RAIN(6)

NAME
rain - animated raindrops display

SYNOPSIS
lusr/gameslrain

DESCRIPTION

GAMES AND DEMOS RAIN (6)

rain's display is modeled after the VAXNMS program of the same name. The terminal has to be set for
9600 baud to obtain the proper effect.

FILES

As with all programs that use termcap, the TERM environment variable must be set (and exported) to the
type of the terminal being used.

letdtermcap

Sun Release 4.1 Last change: 16 February 1988 1773

RANDOM (6) GAMES AND DEMOS RANOOM(6)

NAME
random - select lines randomly from a file

SYNOPSIS
lusr/gameslrandom [-er] [divisor]

DESCRIPTION
random acts as a text filter, randomly selecting lines from its standard input to write to the standard output.
The probability that a given line is selected is normally 1/2; if a divisor is specified, it is treated as a
floating-point number, and the probability is lIdivisor instead.

OPTIONS

1774

-e Don't read the standard input or write to the standard output Instead, exit with a random exit
status between 0 and 1, or between 0 and divisor-l if divisor is specified.

-r Don't buffer the output. If -r is not used, output is buffered in blocks, or line-buffered if the stan­
dard output is a terminal.

Last change: 16 February 1988 Sun Release 4.1

RA W2AUDIO (6) GAMES AND DEMOS RA W2AUDIO (6)

NAME
raw2audio - convert raw audio data to audio file format

SYNOPSIS
raw2audio [-f] [-c chan] [-e enc] [-i info] [-0 cnt] [-p bits] [-s rate] [filename. ..]

A V AILABILITY
This command is only available with the Demos installation option. Refer to Installing SunOS 4.1 for
information on how to install optional software.

DESCRIPTION
raw2audio adds an audio file header to the named raw data files. The encoding information in this header
is taken from the command line options.

If no filenames are specified, raw2audio reads raw data from the standard input stream and writes an audio
file to the standard output. If a target file is a symbolic link, the underlying file will be rewritten.

OPTIONS
-f

-c chan

-e enc

-i info

-0 cnt

-s rate

-p bits

-?

Force. If an input file already contains an audio file header, raw2audio ordinarily prints a
warning message and skips the file. If the -f flag is specified, the old file header, including the
'information' field, is replaced.

Specify the number of interleaved audio channels in each sample frame. If not specified, a sin­
gle channel is assumed.

Specify the encoding type. enc may be one of the following: ULAW, LINEAR, or FLOAT,
corresponding to J..L-Iaw, integer PCM, and IEEE floating-point formats, respectively. If not
specified, J..L-Iaw encoding is assumed.

Specify the 'information' field of the output file header.

Specify the number of bytes to skip in the audio data stream. This option may be used, for
instance, to extract audio data from files containing unrecognizable file headers.

Specify the sample rate frequency, in Hz. If not specified, the sample rate defaults to 8000 Hz.

Specify the sound unit size, in bits. If not specified, the precision defaults to 8 bits.

Help. Print a command line usage message.

SEE ALSO
play(6),record(6)

WARNINGS
This program is furnished on an as is basis as a demonstration of audio applications programming.

Sun Release 4.1 Last change: 10 January 1990 1775

RECORD (6) GAMES AND DEMOS RECORD (6)

NAME
record - record an audio file

SYNOPSIS
record [-a] [-f] [-d dev] [-i info] [-t time] [-v vol] [filename]

AVAILABILITY
This command is only available with the Demos installation option. Refer to Installing SunOS 4.1 for
infonnation on how to install optional software.

DESCRIPTION
record copies audio data from the audio device to a named audio file. The output file will be prefixed by
an audio file header. The encoding information in this header is taken from the configuration of the audio
device. If no filename is present, or if the special filename '-' is specified, output is directed to the stan­
dard output stream.

Recording begins immediately and continues until a SIGINT signal (CfRL-C) is received. If the -t option
is specified, record stops when the specified quantity of data has been recorded.

If the audio device is unavailable (that is, another process currently has read access), record prints an error
message and exits immediately.

OPTIONS
-a

-f

-ddev

-i info

-t time

-v vol

Append the data on the end of the named audio file. The audio encoding of the file must match
the audio device configuration.

Force. When the -a flag is specified, the sample rate of the audio file must match the device
configuration. If the -f flag is also specified, sample rate differences are ignored, with a warn-
ing message printed to the standard error.

Specify an alternate audio device from which input should be taken. If the -d option is not
specified, /dev/audio is used as the default audio device.

The 'infonnation' field of the output file header is set to the string specified by the info argu­
ment. This option may not be specified in conjunction with the -a argument.

The time argument specifies the maximum length of time to record. Time may be specified as
a floating-point value, indicating the number of seconds, or in the form: hh :mm :ss .dd, where
hour and minute specifications are optional.

Specify the recording gain. vol is an integer value between 0 and 100, inclusive. If this argu­
ment is not specified, the input volume will remain at the level most recently set by any pro­
cess.

-? Help: Print a command line usage message.

SEE ALSO
play(6)

WARNINGS
This program is furnished on an as is basis as a demonstration of audio applications programming.

1776 Last change: 10 January 1990 Sun Release 4.1

ROBOTS (6) GAMES AND DEMOS ROBOTS (6)

NAME
robots - fight off villainous robots

SYNOPSIS
/usr/games/robots [-sjta] [score file]

DESCRIPTION
robots pits you against evil robots, who are trying to kill you (which is why they are evil). Fortunately for
you, even though they are evil, they are not very bright and have a habit of bumping into each other, thus
destroying themselves. In order to survive, you must get them to kill each other off, since you have no
offensive weaponry.

Since you are stuck without offensive weaponry, you are endowed with one piece of defensive weaponry: a
teleportation device. When two robots run into each other or a junk pile, they die. If a robot runs into you,
you die. When a robot dies, you get 10 points, and when all the robots die, you start on the next field. This
keeps up until they finally get you.

Robots are represented on the screen by a '+', the junk heaps from their collisions by a '*', and you (the
good guy) by a '@'.

The commands are:

h move one square left

move one square right

k move one square up

j move one square down

y move one square up and left

u move one square up and right

b move one square down and left

n move one square down and right

(also space) do nothing for one tum

HJKLBNYU
run as far as possible in the given direction

> do nothing for as long as possible

t teleport to a random location

w wait until you die or they all do

q quit

"L redraw the screen

All commands can be preceded by a count.

If you use the 'w' command and survive to the next level, you will get a bonus of 10% for each robot
which died after you decided to wait. If you die, however, you get nothing. For all other commands, the
program will save you from typos by stopping short of being eaten. However, with 'w' you take the risk of
dying by miscalculation.

Only five scores are allowed per user on the score file. If you make it into the score file, you will be shown
the list at the end of the game. If an alternate score file is specified, that will be used instead of the standard
file for scores.

OPTIONS
-s Do not play, just show the score file.

-j Jump, when you run, don't show any intennediate positions; only show things at the end. This is
useful on slow terminals.

Sun Release 4.1 Last change: 16 February 1988 1777

ROBOTS (6) GAMES AND DEMOS ROBOTS (6)

FILES

BUGS

1778

-t Teleport automatically when you have no other option. This is a little disconcerting until you get
used to it, and then it is very nice.

-a Advance into the higher levels directly, skipping the lower, easier levels.

lusr/gamesllib/robots _roll the score file

Bugs? You crazy, man?!?

Last change: 16 February 1988 Sun Release 4.1

ROTCVPH(6) GAMES AND DEMOS ROTCVPH(6)

NAME
rotcvph - rotate convex polyhedron

SYNOPSIS
lusr/demo/rotcvphfilename

DESCRIPTION

FILES

rotcvph rotates a convex polyhedron with hidden surfaces removed. Using the SunCore Graphics Pack­
age, a 3-D projection is drawn on the Sun Monochrome Bitmap Display. The mandatory file argument
contains a polygonal object definition as described below.

Initially the program displays a fixed view of the object. The following commands may be typed at any
time:

n Display successive views with no waiting.

w Wait for SPACE to be typed before displaying each view.

q Exit the program.

The format of the polygonal object definition is illustrated by this example of the definition of a pyramid:

5 5
-1.0 1.0 -1.0 1.0 -1.0 1.0
1.0 1.0-1.0
1.0-1.0-1.0
-1.0-1.0-1.0
-1.0 1.0-1.0
0.0 0.0 1.0
4 4321
3 154
3 251
3 352
3 453

The first line gives the number of vertices followed by the number of polygons. The second line gives the
coordinates of a bounding box for the object. Minimum and maximum coordinate yalues are given for
each of three dimensions in the order minx, maxx, miny, maxy, minz, maxz. Lines 3 through v+2 (where v
is the number of vertices) give vertex coordinates in the order x, y, ,IR z . Lines v+3 through v+p+2 (where
p is the number of polygons) give polygon descriptions. The first number is the number of vertices for the
polygon. Succeeding numbers on the line are indices into the vertex list. Polygons should be planar.
Coordinates are given in floating point format and everything else is integer. Entries on a given line are
separated by arbitrary whitespace. A maximum of 400 vertices and 400 polygons may be defined. The
polygon definitions may contain a maximum of 1600 instances of the vertices. lusr/demo/data contains
several object definition files, including icosa.dat, socbal.dat, and pyramid.dat.

The above format may be used to define non-convex objects. The program will display these objects but
hidden surface computations will not be done correctly.

lusr/demo/datal* .dat
icosa.dat
socbal.dat
pyramid.dat

sample object definition files

Sun Release 4.1 Last change: 16 February 1988 1779

ROTCVPH(6) GAMES AND DEMOS ROTCVPH(6)

BUGS

1780

All floating point transformations are done twice for each view, once to draw the object and once to
undraw it

Lines which are common to two visible polygons in a view are drawn twice, once for each polygon.

Last change: 16 February 1988 Sun Release 4.1

SNAKE (6) GAMES AND DEMOS SNAKE (6)

NAME
snake, snscore - display chase game

SYNOPSIS
lusr/gameslsnake [-wn] [-In]
lusr/gameslsnscore

DESCRIPTION

FILES

BUGS

snake is a display-based game which must be played on a CRT terminal from among those supported by
vi(1). The object of the game is to make as much money as possible without getting eaten by the snake.
The -I and -w options allow you to specify the length and width of the field. By default the entire screen
(except for the last column) is used.

You are represented on the screen by an I. The snake is 6 squares long and is represented by S's. The
money is $, and an exit is #. Your score is posted in the upper left hand comer.

You can move around using the same conventions as vi(l), the h, j, k, and I keys work, as do the arrow
keys. Other possibilities include:

sere These keys are like hjkl but form a directed pad around the d key.

HJKL These keys move you all the way in the indicated direction to the same row or column as
the money. This does not let you jump away from the snake, but rather saves you from
having to type a key repeatedly. The snake still gets all his turns.

SEFC Likewise for the upper case versions on the left.

ATPB These keys move you to the four edges of the screen. Their position on the keyboard is
the mnemonic, for example, P is at the far right of the keyboard.

x This lets you quit the game at any time.

p Points in a direction you might want to go.

w Space warp to get out of tight squeezes, at a price.

Shell escape

"z Suspend the snake game, on systems which support it. Otherwise an interactive shell is
started up.

To eam money, move to the same square the money is on. A new $ will appear when you earn the current
one. As you get richer, the snake gets hungrier. To leave the game, move to the exit (#).

A record is kept of the personal best score of each player. Scores are only counted if you leave at the exit,
getting eaten by the snake is worth nothing.

As in pinball, matching the last digit of your score to the number which appears after the game is worth a
bonus.

To see who wastes time playing snake, run lusr/gameslsnscore.

lusr/gamesllib/snakerawseores
lusr/gamesllib/snake.log

database of personal bests
log of games played

When playing on a small screen, it's hard to tell when you hit the edge of the screen.

The scoring function takes into account the size of the screen. A perfect function to do this equitably has
not been devised.

Sun Release 4.1 Last change: 16 February 1988 1781

SOUNDTOOL (6) GAMES AND DEMOS SOUNDTOOL (6)

NAME
soundtool- audio play /record tool

SYNOPSIS
sound tool

A V AILABILITY
This command is only available with the Demos installation option. Refer to Installing Sun OS 4.1 for
information on how to install optional software.

DESCRIPTION
soundtool is a SunView demonstration program that allows recording, playing, and simple editing of audio
data. The display consists of six regions: a play/record control panel, a function control panel, an oscillo­
scope, a display control panel, a waveform display panel, and a pop-up audio status panel.

PlaylRecord Control Panel
Play/Stop

Clicking this button plays the currently selected region of data. While data is playing this button
becomes a Stop button. If audio output is busy when Play is started, this button displays Waiting.
When the device is available, the button switches to Stop and audio output begins. Clicking on
the Waiting button resets the tool to the idle state.

Record/Stop
Clicking this button starts the recording of data from the audio input port that is wired to the 8-pin
mini-DIN connector on the back of SPARCstation 1 systems. While recording is in progress, this
button becomes a Stop button. If audio input is busy when Record is selected, an alert pops up
and the tool resets to the idle state. A maximum of 5 minutes may be recorded at a time.

Pause Clicking this button while playing or recording suspends the current operation. The button
becomes a Resume button that may be selected to continue the suspended operation.

Describe
Clicking this button brings up the "Audio Status Panel". If the panel was already visible, clicking
this button removes it.

Quit Clicking this button exits soundtool.

Play Volume
This slider adjusts the playback volume. Volume levels between 0 and 100 may be selected,
where 0 represents infinite attenuation and 100 is maximum gain.

Record Volume
This slider adjusts the recording level in the range 0 to 100.

Output To

Looping

This selector switches the audio output port between the built-in speaker and the external head­
phone jack.

When Looping is disabled, the current data region (that is, the data between the two markers in
the waveform display) is played once. If Looping is enabled, the selected data plays endlessly
until the Stop button is pressed.

Function Control Panel

1782

Load Clicking Load reads in the audio file specified by the Directory and File fields. If the named file
does not contain a valid audio header, the raw data is copied into the buffer and an alert is
displayed. Clicking the Store button at that point rewrites the file with the proper audio file
header.

Arbitrarily large audio files may be loaded. However, system swap space resources may be
depleted (one minute of SPARCstation 1 audio data consumes roughly .5 Mbyte of swap space).

Last change: 10 January 1990 Sun Release 4.1

SOUNDTOOL (6) GAMES AND DEMOS SOUNDTOOL (6)

Store Clicking Store writes the selected data region into the file specified by the Directory and File
fields. If the named file exists, an alert will request confirmation of the operation.

Append
Clicking Append appends the selected data region to the file specified by the Directory and File
fields. The named file must contain a valid audio file header.

Directory
The Directory field specifies a directory path in which to look for audio files.

File The File field designates the file to be loaded from, stored to, or appended to. Holding down the
right mouse button on this field presents a menu of audio files in the currently designated direc­
tory. All files that contain a valid audio file header, or whose names have the suffix .au or .snd,
are listed.

Oscilloscope
When the program is in the idle state and the cursor is in the waveform display panel, the oscilloscope acts
as a magnifying glass, displaying the region of the audio waveform that is currently under the cursor.
When the program is playing or recording, the oscilloscope displays the data that is currently being
transferred. Note: there is a small time lag in the display of recorded data, due to the fact that the audio
device driver buffers input data and delivers it to the application in discrete segments.

Display Control Panel
Zoom The Zoom slider adjusts the compression factor used in the display of the waveform. The upper

compression limit is chosen so that th~ entire waveform fits in the waveform display panel. The
lower limit is restricted by the ability to manipulate large scrolling regions in SunView. Adjust­
ment of the Zoom slider ordinarily results in data compression or expansion around the center of
the currently displayed waveform. If the waveform display contains one or both data selection
markers, an attempt is made to keep at least a portion of the selected data region in the window.

The magnified waveform presented in the oscilloscope display is unaffected by the Zoom value.
However, cursor movement over the waveform reflects the current compression; that is, lower
Zoom values result in finer granularity of mouse movement.

Waveform Display Panel
The waveform display shows all or part of the current waveform, depending on the current Zoom
value. Scrolling of the waveform may be achieved either by using the scrollbar or by dragging the
waveform to the right or left while holding the middle mouse button down. Note: scrolling is dis­
abled when the entire waveform is being displayed (that is, when the Zoom value is at its max­
imum).

In some cases, it is desirable to identify a subset of the waveform. For instance, the Play, Store,
and Append functions operate on a selected region, rather than the entire waveform. The
currently selected region of interest is delimited by dashed vertical lines. A new region may be
selected by clicking the left or right mouse button and dragging it across the desired region of
interest. Alternatively, a single click on the left or right mouse buttons adjusts the start or end
points.

Audio Status Panel
This panel is displayed (or removed) when the Describe button is pressed. It contains fields that
describe the data in the buffer.

Sample Rate
This field displays the sampling frequency, in samples per second.

Channels
This field denotes the number of interleaved channels of audio data.

Precision
This field identifies the encoding precision, in bits per sample.

Sun Release 4.1 Last change: 10 January 1990 1783

SOUNDTOOL (6) GAMES AND DEMOS SOUNDTOOL (6)

BUGS

Encoding
This field displays the encoding format.

Total Length
This field shows the length of the entire data buffer, in the form hh:mm:ss.dd.

Selection
This field identifies the start and end times of the currently selected region of interest.

Info String
When an audio file is loaded, the first 80 characters of the information field of the audio header are
displayed in this field. This string may be edited, though the new information is only written out
when the Store operation is performed.

Currently, soundtool is capable of displaying only 8-bit J.L-Iaw encoded data. This restriction should be
removed.

Audio files should be mapped in order to reduce the swap space requirements. The limit on recording
length should also be removed.

SunView scrollbars operate on canvases whose virtual size is given by a short integer (that is, 16 bits).
This ridiculous constraint is the reason for the lower limit on zooming. Because of this, the accuracy of
start and end point selection is reduced when the data buffer is large.

Region selections made over the waveform display panel work best when the click and drag paradigm is
used. Adjusting the start or end points by a single click is susceptible to error; that is, if the mouse moves
slightly between the button down and up events, the result is a very small selection.

SEE ALSO
gaintool(6), play(6), raw2audio(6), record(6)

WARNINGS
This program is furnished on an as is basis as a demonstration of audio applications programming.

1784 Last change: 10 January 1990 Sun Release 4.l

SUNCOREDEMOS (6) GAMES AND DEMOS SUNCOREDEMOS (6)

NAME
suncoredemos - demonstrate SunCore Graphics Package

SYNOPSIS
/usr/demo/cproduct
/usr/ demol cshademo

A V AILABILITY
This command is only available with the Demos installation option. Refer to Installing SunOS 4.1 for
information on how to install optional software.

DESCRIPTION
suncoredemos is a collection of simple programs demonstrating the SunCore Graphics Package. Each
program is briefly described below. These programs generate all graphics output using subroutine calls to
SunCore. To exit each program, generate an interrupt signal by typing the appropriate key (usually
DELETE).

cproduct

cshademo

Sun Release 4.1

Color Sun architecture demo (requires Sun Color Graphics Display).

Shaded surface polygons demo (requires Sun Color Graphics Display).

Last change: 28 October 1983 1785

SUNVIEW _DEMOS (6) GAMES AND DEMOS SUNVIEW _DEMOS (6)

NAME
sunview_demos, canvas_demo, cursor_demo - Window-System demonstration programs

SYNOPSIS
/usr/demo/canvas demo

/usr/demo/cursor demo

A V AILABILITY
These demos are available with the SunView Demos software installation option. Refer to Installing SunOS
4.1 for information on how to install optional software.

DESCRIPTION
canvas_Demo

canvas_demo demonstrates the capabilities of the canvas subwindow package. It consists of two subwin­
dows: a control panel and a canvas. By adjusting the items on the control panel, you can manipulate the
attributes of the canvas, and see the results.

cursor_Demo

1786

cursor_demo demonstrates what you can do with cursors. A single control panel is provide for adjusting
the various cursor attributes. As you adjust the items on the control panel, the panel's cursor changes in
appearance.

Last change: 16 February 1988 Sun Release 4.1

TREK (6) GAMES AND DEMOS TREK(6)

NAME
trek - trekkie game

SYNOPSIS
/usr/games/trek [[-a] filename]

DESCRIPTION
trek is a game of space glory and war. Below is a summary of commands. For complete documentation,
see Trek by Eric Allman.

If a filename is given, a log of the game is written onto that file. If the -a flag is given before the filename,
that file is appended to, not truncated.

The game will ask you what length game you would like. Valid responses are "short", "medium", and
"long". You may also type "restart", which restarts a previously saved game. You will then be prompted
for the skill, to which you must respond "novice", "fair", "good", "expert", "commodore", or "impossible".
You should normally start out with a novice and work up.

In general, throughout the game, if you forget what is appropriate the game will tell you what it expects if
you just type in a question mark.

COMMAND SUMMARY
abandon
cloak up/down
computer request; ...
destruct
help
Irscan
phasers automatic amount
phasers manual amtl course 1 spreadl ...
torpedo course [yes] angle/no
ram course distance
shell
srscan [yes/no]
status
undock
warp warp_factor

capture

damages
dock
impulse course distance
move course distance

rest time
shields up/down

terminate yes/no
visual course

Sun Release 4.1 Last change: 24 October 1983 1787

YWCVPH(6) GAMES AND DEMOS VWCVPH(6)

NAME
vwcvph - view convex polyhedron

SYNOPSIS
lusrl demo/vwcvph filename

DESCRIPTION

FILES

BUGS

1788

vwcvph allows the user to view a convex polyhedron from various posIDons with hidden surfaces
removed. The viewing position is selected using the mouse. Using the SunCore Graphics Package, a 3-D
projection is drawn on the Sun Monochrome Bitmap Display. The mandatory file argument contains a
polygonal object definition as described in the manual page for lusr/demo/rotcvph.

The program operates in two modes: DisplayObject mode and SelectView mode. The program starts in
DisplayObject mode:

DisplayObject:
The object is displayed in 3-D perspective with hidden surfaces removed. Type q while
in this mode to exit the program. Press RIGHT mouse button to switch to SelectView
mode.

SelectView:
Schematic projections of the outline of the object are shown and the mouse is used to
select a viewing position. Press LEFf mouse button to set x and MIDDLE mouse button to
set y in the Front View. Use MIDDLE mouse button to set z in the Top View. Press
RIGHT mouse button to switch to DisplayObject mode.

The view shown in DisplayObject mode is drawn using the conventions that the viewer is always looking
from the viewing position toward the center of the object and that the positive y axis on the screen is the
projection of the positive y axis in object coordinates.

The input file may define non-convex objects. The program will display these objects but hidden surface
computations will not be done correctly.

lusr/demo/datal* .dat sample object definition files

Lines which are common to two visible polygons in a view are drawn twice, once for each polygon.

Last change: 16 February 1988 Sun Release 4.1

WORM(6) GAMES AND DEMOS WORM(6)

NAME
worm - play the growing worm game

SYNOPSIS
lusr/gameslworm [size]

DESCRIPTION

BUGS

In worm, you are a little worm, your body is the 0 's on the screen and your head is the @ • You move
with the hjkl keys (as in the game snake). If you don't press any keys, you continue in the direction you
last moved. The upper case HJKL keys move you as if you had pressed several (9 for HL and 5 for JK) of
the corresponding lower case key (unless you run into a digit, then it stops).

On the screen you will see a digit; if your worm eats the digit it will grow longer, the actual amount longer
depends on which digit it was that you ate. The object of the game is to see how long you can make the
worm grow.

The game ends when the worm runs into either the sides of the screen, or itself. The current score (how
much the worm has grown) is kept in the upper left comer of the screen.

The optional argument, if present, is the initial length of the worm.

If the initial length of the worm is set to less than one or more than 75, various strange things happen.

Sun Release 4.1 Last change: 16 February 1988 1789

WORMS (6) GAMES AND DEMOS

NAME
worms - animate worms on a display terminal

SYNOPSIS
Insr/games/worms [-field] [-length #] [-number #] [-trail]

DESCRIPTION

WORMS (6)

-field makes a "field" for the worm(s) to eat; -trail causes each worm to leave a trail behind it. You can
figure out the rest by yourself.

FILES
letdtermcap

SEE ALSO

BUGS

1790

Snails by Karl Heuer

The lower-right-hand character position will not be updated properly on a terminal that wraps at the right
margin.

Terminal initialization is not performed.

Last change: 16 February 1988 Sun Release 4.1

WUMP(6) GAMES AND DEMOS WUMP(6)

NAME
wump - the game of hunt the wumpus

SYNOPSIS
/usr/games/wump

DESCRIPTION
wump plays the game of 'Hunt the Wumpus.' A Wumpus is a creature that lives in a cave with several
rooms connected by tunnels. You wander among the rooms, trying to shoot the Wumpus with an arrow,
meanwhile avoiding being eaten by the Wumpus and falling into Bottomless Pits. There are also Super
Bats which are likely to pick you up and drop you in some random room.

The program asks various questions which you answer one per line; it will give a more detailed description
if you want.

This program is based on one described in People's Computer Company, 2, 2 (November 1973).

Sun Release 4.1 Last change: 16 February 1988 1791

I

INTRO(7) ENVIRONMENTS, TABLES, AND TROFF MACROS INTRO(7)

NAME
intro - miscellaneous useful information pages

DESCRIPTION
This section contains miscellaneous documentation, mostly in the area of text processing macro packages
for trotT(l).

A 7V section number means one or more of the following:

• The man page documents System V behavior only.

• The man page documents default SunOS behavior, and System V behavior as it differs from the default
behavior. These System V differences are presented under SYSTEM V section headers.

• The man page documents behavior compliant with IEEE Std 1003.1-1988 (POSIX.l).

LIST OF MISC. TABLES
Name

ansic
ascii
bsd
eqnchar
filesystem
bier
iso 8859 1
man
me
ms
posix
SunOS
svidii
svidiii
xopen

Sun Release 4.1

Appears on Page

ansic(7V)
ascii(7)
bsd(7)
eqncbar(7)
filesystem (7)
hier(7)
iso_8859 _1(7)
man(7)
me(7)
ms(7)
posix(7V)
sunos(7)
svidii(7V)
svidiii(7V)
x/open(7V)

Description

ANSI C (draft of December 7 1988) lint library
map of ASCII character set
overview of the Berkeley 4.3 environment
special character definitions for eqn
file system organization
file system hierarchy
map of character set
macros to format Reference Manual pages
macros for formatting papers
text formatting macros
overview of the IEEE Std 1003.1-1988 (POSIX.l) environment
overview of the SunOS Release 4.1 environment
overview of the System V environment
SVIOill lint library
overview of the XPG Issue 2 (X/Open) environment

Last change: 4 September 1987 1793

ANSIC(7V) ENVIRONMENTS, TABLES, AND lROFF MACROS ANSIC(7V)

NAME
ansie - ANSI C (draft of December 7 1988) lint library

SYNOPSIS
lusrlSbinllint -n -Iansic ansic src.C

A V AILABILITY
This environment is not available under SunOS Release 4.1. The environment that most closely approxi­
mates an ANSI C environment is the System V environment. The System V environment is available with
the System V software installation option. Refer to Installing SunOS 4.1 for information on how to install
optional software.

DESCRIPTION

FILES

ANSI C is a proposed standard for the C language. SunOS Release 4.1 does not currently fully support
ANSI C applications. It does support many of the functions described by the ANSI C draft. This man page
does not imply that the functions supported by SunOS Release 4.1 and the functions described by the ANSI
C draft perform identically. The ANSI C lint library is intended solely as a porting aid.

The ANSI C lint library consists exclusively of ANSI C functions. Users may lint their code with the -n
-Ian sic options to catch all non-ANSI C features.

Certain functions defined in the ANSI C lint library are not available in the C library but are available. In
particular, math functions are made available only when the -1m option is added to cc(1 V) or Id(l) com­
mands.

Other ANSI C functions not supported at all in SunOS Release 4.1 are raise(), fgetpos(), fsetpos(), div(),
Idiv(), strtoul(), strerror(), and difftime().

lusrl S1ib/lint/llib-lansic*
ANSI C lint library

SEE ALSO
lint(l V), bsd(7), posix(7V), sunos(7), svidii(7V), svidiii(7V), xopen(7V)

1794 Last change: 30 September 1989 Sun Release 4.1

ASCII(7) ENVIRONMENTS, TABLES, AND 1ROFF MACROS ASCII (7)

NAME
ascii - map of ASCII character set

SYNOPSIS
cat lusr/pub/ascii

DESCRIPTION
lusr/pub/ascii is a map of the ASCII character set, to be printed as needed. It contains octal and hexade-
cimal values for each character. While not included in that file, a chart of decimal values is also shown
here.
Octal- Character

000 NUL 100 I SUI 002 STX 003 ETX 004 EDT 005 Pm 006 ACK 007 BEL
010 BS I 011 HT 012 NL 013 VT 014 NP 015 CR 016 SO 017 SI
020 DLEI021 DCl 022 OC2 023 DC3 024 OC4 025 NAK 026 SYN 027 ETB
030 CANI031 EM 032 SUB 033 ESC 034 FS 035 GS 036 RS 037 US
040 SP 041 042 043 # 044 $ 045 % 046 & 047
050 (051) 052 * 053 + 054 055 - 056 057 /
060 0 061 1 062 2 063 3 064 4 065 5 066 6 067 7
070 8 071 9 072 073 074 < 075 = 076 > 077 ?
100 @ 101 A 102 B 103 C 104 D 105 E 106 F 107 G
110 H 111 I 112 J 113 K 114 L 115 M 116 N 117 0
120 P 121 Q 122 R 123 S 124 T 125 U 126 V 127 W
130 X 131 Y 132 Z 133 [134 \ 135] 136 137
140 141 a 142 b 143 c 144 d 145 e 1146 f 147 g
150 h 151 152 153 k 154 155 m 1156 n 157 0

160 P 161 q 162 r 163 s 164 165 u 1166 v 167 w
170 x 171 y 172 z 173 174 175 1176 177 DEL

Hexadecimal- Character

00 NUL 01 SUI 02 STXI 03 ETX 04 EDT 05 Pm 06 ACK 07 BEL
08 BS 09 HT OA NL 1 OB VT OC NP OD CR OE SO OF SI
10 DLE 11 OCI 12 OC21 13 OC3 14 DC4 15 NAK 16 SYN 17 ETB
18 CAN 19 EM lA SUB 1 IB ESC lC FS ID GS IE RS IF US
20 SP 21 22 " 1 23 # 24 $ 25 % 26 & 27
28 (29) 2A * I 2B + 2C 2D - 2E 2F /
30 0 31 1 32 2 1 33 3 34 4 35 5 36 6 37 7
38 8 39 9 3A 1 3B 3C < 3D = 3E > 3F ?
40 @ 41 A 42 B 1 43 C 44 D 45 E 46 F 47 G
48 H 49 I 4A J 1 4B K 4C L 4D M 4E N 4F 0
50 P 51 Q 52 R 1 53 S 54 T 55 U 56 V 57 W
58 X 59 y 5A Z 1 5B [5C \ 5D] 5E 5F
60 61 a 62 b 63 c 64 d 65 e 66 f 67 g
68 h 69 6A 6B k 6C I 6D m 6E n 6F 0

70 P 71 q 72 r 1 73 s 74 75 u 76 v 77 w
78 x 79 y 7A z 1 7B 7C 7D 7E 7F DEL

Sun Release 4.1 Last change: 16 February 1988 1795

ASCII (7) ENVIRONMENTS, TABLES, AND 1ROFF MACROS ASCII(7)

Decimal- Character

o NULl 1 S(JII 2 STX 3ETX 4 EDT 5 Pml 6 ACXI 7 BEL
8 BS I 9HT 10 NL 11 VT 12 NP 13 CR I 14 SO I 15 SI

16 DLEI 17 OCI 18 OC2 19 OC3 20 OC4 21 NAK 22 SYNI 23 ETB
24 CAN I 25 EM: 26 SUB 27 ESC 28 FS 29 GS 30 RS 31 US
32 SP 33 34 35 # 36 $ 37 % 38 & 39
40 (41) 42 * 43 + 44 45 - 46 47 ,f

48 0 49 1 50 2 51 3 52 4 53 5 54 6 55 7
56 8 57 9 58 59 60 < 61 = 62 > 63 ?
64 @ 65 A 66 B 67 C 68 D 69 E 70 F 71 G
72 H 73 I 74 J 75 K 76 L 77 M 78 N 79 0
80 P 81 Q 82 R 83 S 84 T 85 U 86 V 87 W
88 X 89 y 90 Z 91 [92 \ 93] 94 95
96 97 a 98 b 99 c 100 d 101 e 102 f 103 g

104 h 105 106 j 107 k 108 I 109 m 110 n 111 0

112 P 113 q 114 r 115 s 116 117 u 118 v 119 w
120 x 121 y 122 z 123 124 125 126 127 DEL

FILES
lusr/pub/ascii Online chart of octal and hexadecimal values for the ASCII character set.

17% Last change: 16 February 1988 Sun Release 4.1

BSD(7) ENVIRONMENTS, TABLES, AND 1ROFF MACROS BSD(7)

NAME
bsd - overview of the Berkeley 4.3 environment

SYNOPSIS
Insr/bin/lint -n -lbsd bsd src.c

DESCRIPTION

LINT

FILES

BSD 4.3 is a set of functions and headers. The SunOS Release 4.1 is a superset of BSD 4.3. It includes all
of the functionality described in the BSD 4.3 documentation. See sunos(7) for an overview of SunOS func­
tionality.

Note: there may be some cases where the coexistence of another environment overrides the BSD 4.3
semantics. In particular, when there has been a point of conflict between POSIX.l and BSD 4.3, POSIX.1
has won (see setsid(8V) for such an example).

Many man pages are marked with a "V" after the section number, indicating some sort of System V con­
formance. BSD 4.3 functions are also documented on these man pages, as well as on man pages without
the "V" section suffix.

By default, the user will get a superset of the BSD 4.3 environment. No path modifications should be
necessary. The typical path is set path = (/usr/ucb Ibin lusr/bin)

As a portability aid, Sun is providing a lint library that consists exclusively of BSD 4.3 functions. Users
may lint their code with the -n -Ibsd options to catch all non-BSD 4.3 features.

BSD, as with most other environments, continues to evolve. The -Ibsd lint library will always refer to the
most recent BSD release supported by Sun. Some applications may wish to port to a particular release of
BSD. They may safely use the more specific name of -14.3bsd (currently the same as -lbsd). Lint libraries
for BSD releases earlier than 4.3 are not currently available. 4.3 BSD is sufficiently close to 4.2 BSD that
the 4.3 BSD lint library usually works.

lusr/bin/*
lusr/ucb/*
lusr/include/*
/usr/lib/*
lusrl1ib/lintlllib-lbsd *

BSD 4.3 and SunOS specific executables
BSD 4.3 derived executables
BSD 4.3 and SunOS specific header files
BSD 4.3 and SunOS specific library files
BSD 4.3 lint library

SEE ALSO
Jint(l V), ansic(7V), posix(7V), sunos(7), svidii(7V), svidiii(7V), xopen(7V), setsid(8V)

Sun Release 4.1 Last change: 30 September 1989 1797

EQNCHAR(7) ENVIRONMENTS, TABLES, AND 1ROFF MACROS

NAME
eqnchar - special character definitions for eqn

SYNOPSIS
eqn lusr/pub/eqnchar [filename] I trotT [options]

neqn lusr/pub/eqnchar [filename] I nrotT [options]

DESCRIPTION

EQNCHAR(7)

eqnchar contains trotT(1) and nrotT(l) character definitions for constructing characters that are not avail­
able on the Graphic Systems typesetter. These definitions are primarily intended for use with eqn(l) and
eqn(1). It contains definitions for the following characters

ciplus E9 II II square 0
citimes 0 lang Ie I circle a \
wig rang Ie \ blot 0 I

-wig hbar 1i bullet •
> wig ? ppd ./- prop oc

<wig 5 <-> ~ empty (2)

= wig - <=> <::::. member E

star
* /< 1:- nomem fi.

bigstar * I> ";f cup u
=dot - ang L cap n
orsign y rang 1- incl k
andsign A 3dot subset c
=del !l thf supset ~ =
oppA -¥ quarter ~ !subset ~

oppE :3 3quarter % !supset ~

angstrom A degree 0

FILES
lusr/pub/eqnchar

SEE ALSO
eqn(1), nroff(1), troff(l)

1798 Last change: 9 September 1987 Sun Release 4.1

FILESYSTEM (7) ENVIRONMENTS, TABLES, AND TROFF MACROS FILESYSTEM (7)

NAME
filesystem - file system organization

SYNOPSIS
I
Insr

DESCRIPTION
The SunOS file system tree is organized for easy administration. Distinct areas within the file system tree
are provided for files that are private to one machine, files that can be shared by multiple machines of a
common architecture, files that can be shared by all machines, and home directories. This organization
allows the sharable files to be stored on one machine, while being accessed by many machines using a
remote file access mechanism such as Sun's Network File System (NFS). Grouping together similar files
makes the file system tree easier to upgrade and manage.

The file system tree consists of a root file system and a collection of mountable file systems. The mount(8)
program attaches mountable file systems to the file system tree at mount points (directory entries) in the
root file system, or other previously mounted file systems. Two file systems, I (the root) and lusr, must be
mounted in order to have a fully functional system. The root file system is mounted automatically by the
kernel at boot time; the fusr file system is mounted by the fetclre.boot script, which is run as part of the
booting process.

The root file system contains files that are unique to each machine; it can not be shared among machines.
The root file system contains the following directories:

Idev Character and block special files. Device files provide hooks into hardware devices or operat­
ing system facilities. The MAKEDEV command (see makedev(8» builds device files in the
Idev directory. Typically, device files are built to match the kernel and hardware configuration
of the machine.

letc

Ihome

Imnt

Various configuration files and system administration databases that are machine specific. You
can think of lete as the "home directory" of a machine, defining its "identity." Executable pro­
grams are no longer kept in lete.

Mount points for home directories. This directory may be arranged so that shared user files are
placed under the directory !homelmachine-name on machines serving as file servers.
Machines may then be locally configured with mount points under fhome for all of the file
servers of interest, with the name of the mount point being the name of the file server.

A generic mount point. This is an empty directory available for temporarily mounting file sys-
terns on.

Isbin Executable programs that are needed in the boot process before fusr is mounted. Isbin con­
tains only those programs that are needed in order to mount the fusr file system: hostname(1),
ifconfig(8C), init(8), monnt(8), and sh(I). After lusr is mounted, the full complement of utili­
ties are available.

Itmp Temporary files that are deleted at reboot time.

Ivar Files, such as log files, that are unique to a machine but that can grow to an arbitrary ("vari­
able") size.

Ivar/adm System logging and accounting files.

Ivar/preserve
Backup files for vi(1) and eX(I).

Ivarlspool Subdirectories for files used in printer spooling, mail delivery, eron(8), at(1), etc.

Ivar/tmp Transitory files that are not deleted at reboot time.

Sun Release 4.1 Last change: 10 January 1988 1799

FILESYSTEM (7) ENVIRONMENTS, TABLES, AND TROFF MACROS FILESYSTEM (7)

1800

Because it is desirable to keep the root file system small, larger file systems are often mounted on Ivar and
Itmp.

The file system mounted on lusr contains architecture-dependent and architecture-independent shareable
files. The subtree rooted at lusr/share contains architecture-independent shareable files; the rest of the lusr
tree contains architecture-dependent files. By mounting a common remote file system, a group of machines
with a common architecture may share a single lusr file system. A single lusrlshare file system can be
shared by machines of any architecture. A machine acting as a file server may export many different lusr
file systems to support several different architectures and operating system releases. Clients usually mount
lusr read-only to prevent their accidentally modifying any shared files. The lusr file system contains the
following subdirectories:

lusr/Sbin System V executables.

lusrlSinciude

lusrlSlib

lusr/bin

lusr/dict

lusr/etc

lusr/games

lusr/include

lusr/lib

lusr/pub

lusr/ucb

lusrlshare

lusrlshare/man

System V include files.

System V library files.

Executable programs. The bulk of the system utilities are located here.

Dictionary databases.

Executable system administration programs.

Executable game programs and data.

Include files.

Program libraries and various architecture-dependent databases.

Various data files.

Executable programs descended from the Berkeley Software Distribution.

Subtree for architecture-independent shareable files.

Subdirectories for the on-line reference manual pages.

lusrlshare/lib Architecture-independent databases.

A machine with disks may export root file systems, swap files and lusr file systems to diskless or partially­
disked machines, which mount these into the standard file system hierarchy. The standard directory tree
for exporting these file systems is:

lex port The root of the exported file system tree.

lexport!exec! architecture-name
The exported lusr file system supporting architecture-name for the current
release.

lexport!exec! architecture-name .release-name

lexport!share

lex port/root! hastname

lexport!swapl hostname

lexport!varl hostname

lexport!dumpl hastname

lexport! crash/ hastname

The exported lusr file system supporting architecture-name for SunOS
release-name.

The exported common lusrlshare directory tree.

The exported root file system for hastname.

The exported swap file for hastname.

The exported Ivar directory tree for hastname.

The exported dump file for hostname.

The exported crash dump directory for hostname.

Last change: 10 January 1988 Sun Release 4.1

FILESYSTEM (7) ENVIRONMENTS, TABLES, AND TROFF MACROS FILESYSTEM (7)

Changes from Previous Releases
The file system layout described here is quite a bit different from the layout employed previous to release
4.0 of SunOS. For compatibility with earlier releases of SunOS, and other versions of the UNIX system,
symbolic links are provided for various files and directories linking their previous names to their current
locations. The symbolic links provided include:

Ibin -> lusr/bin All programs previously located in Ibin are now in lusr/bin.

Ilib -> lusrlIib All files previously located in llib are now in lusrllib.

lusr/adm -> Ivar/adm

lusrlspool-> Ivarlspool

lusr/tmp -> Ivar/tmp

The entire lusr/adm directory has been moved to Ivar/adm.

The entire /usrlspool directory has been moved to Ivar/spool.

The lusr/tmp directory has been moved to /var/tmp.

letcltermcap -> lusr/share/lib/termcap

lusr/51ib/terminfo -> lusrlsharellib/terminfo

lusr/lib/me -> lusr/share/lib/me

lusr/lib/ms -> lusr/share/lib/ms

lusr/lib/tmac -> lusr/share/lib/tmac

lusr/man -> lusrlshare/man

The following program binaries have been moved from letc to lusr/etc with symbolic links to them left in
letc: arp, clri, cron, chown, chroot, config, dkinfo, dmesg, dump, fastboot, fasthalt, fsck, halt, ifconfig,
link, mkfs, mknod, mount, ncheck, newfs, pstat, rdump, reboot, renice, restore, rmt, rrestore, shut­
down, umount, update, unlink, and vipw.

In addition, some files and directories have been moved with no symbolic link left behind in the old loca-
tion:

Old Name New Name

letclbiod /usr/etc/biod

letclfsirand lusr/etc/fsirand

letclgetty lusr/etc/getty

I etclin.r logind /usr/etc/in.rlogind

I etclin.routed lusrl etc/in.routed

letclin.rshd lusrl etc/in.rshd

letclinetd lusrl etc/inetd

letclinit /usrl etc/init

/etclnfsd lusrl etc/nfsd

letclportmap lusrl etc/portmap

I etclrpc.Iockd lusrl etc/rpc.lockd

I etclrpc.statd lusrl etc/rpc.statd

letclypbind lusr/etc/ypbind

I usr/libl sendmail.cf letclsendmail.cf

lusr/preserve Ivar/preserve

lusr/lib/aliases letclaliases

Istand lusr/stand

letclyp Ivar/yp

Sun Release 4.1 Last change: 10 January 1988 1801

FILESYSTEM (7) ENVIRONMENTS, TABLES, AND TROFF MACROS FILESYSTEM (7)

Note: with this new file system organization, the approach to repairing a broken file system changes. One
must mount lusr before doing an fsck(8), for example. If the mount point for lusr has been destroyed, lusr
can be mounted temporarily on Imnt or Itmp. If the root file system on a standalone system is so badly
damaged that none of these mount points exist, or if Isbin/mount has been corrupted, the only way to
repair it may be to re-install the root file system.

SEE ALSO

1802

at(l), ex(I), hostname(I), sh(I), vi(l), intro(4), nfs(4P), hier(7), fsck(8), ifconfig(8C), init(8), mak­
edev(8), mount(8), rc(8)

Last change: 10 January 1988 Sun Release 4.1

HIER(7) ENVIRONMENTS, TABLES, AND TROFF MACROS

NAME
hier - file system hierarchy

DESCRIPTION
The following outline gives a quick tour through a typical SunOS file system hierarchy:

I root directory of the file system
Idevl devices (Section 4)

MAKEDEV
shell script to create special files

MAKEDEV.local
site specific part of MAKEDEV

console main system console, console(4S)
drum paging device, drum(4)
*mem memory special files, mem(4S)
null null file or data sink, nulI(4)
pty[p-z]*

pseudo terminal controllers, pty(4)
tty[ab] CPU serial ports, zs(4S)
tty[0123][O-f]

MTI serial ports mti(4S)
tty[hijk][O-f]

ALM-2 serial ports mcp(4S)
tty[p-z]*

pseudo terminals, pty(4)
vme* VME bus special files, mem(4S)
win window system special files, win(4S)
xY* disks, xy(4S)
rxy* raw disk interfaces, xy(4S)

letd system-specific maintenance and data files
dumpdates

Sun Release 4.1

dump history, dump(8)
exports table of file systems exportable with NFS, exports(5)
fstab file system configuration table, fstab(5)
group group file, group(5)
hosts host name to network address mapping file, hosts(5)
hosts.equiv

list of trusted systems, hosts.equiv(5)
motd message of the day, login(1)
mtab mounted file table, mtab(5)
networks

network name to network number mapping file, networks(5)
passwd password file, passwd(5)
phones private phone numbers for remote hosts, as described in phones(5)
printcap

table of printers and capabilities, printcap(5)
protocols

protocol name to protocol number mapping file, protocols(5)
rc shell program to bring the system up multiuser
rc.boot startup file run at boot time
rc.local site dependent portion of rc
remote names and description of remote hosts for tip(1C), remote(5)
services

network services definition file, services(5)

Last change: 10 January 1988

HIER(7)

1803

HIER(7) ENVIRONMENTS, TABLES, AND 1ROFF MACROS HIER(7)

1804

ttytab database of terminal infonnation used by getty(8)

lexport!
directory of exported files and file systems for clients, including swap files, root, and lusr file
systems

Ihomel directory of mount points for remote-mounted home directories and shared file systems
user home (initial working) directory for user

.profile set environment for sh(I), environ(5V)

.project

Ilost + found

what you are doing (used by (finger(I»
.cshrc startup file for csh(l)
.exrc startup file for eX(I)
.plan what your short-term plans are (used by finger(1»
.rhosts host equivalence file for rlogin(IC)
.mailrc startup file for mail(l)
calendar

user's datebook for ealendar(l)

directory for connecting detached files for fsck(8)
Imnt! mount point for file systems mounted temporarily
Isbin! executable programs needed to mount lusrl

hostname
ifconfig
init
mount
sh

Itmpl temporary files, usually on a fast device, see also Ivar/tmpl
ctm * used by ce(l V)
e* used by ed(l)

Ivarl directory of files that tend to grow or vary in size
adml administrative log files

lastlog record of recent logins, utmp(5V)
Ipacet line printer accounting Ipr(l)
messages

system messages
tracet phototypesetter accounting, troff(l)
utmp table of currently logged in users, utmp(5V)
vaacct, vpaect

varian and versatec accounting vtroff(I), pac(8)
wtmp login history, utmp(5V)

preservel
editor temporaries preserved here after crashes/hangups

spool! delayed execution files
cron! used by cron(8)
Ipd! used by Ipr(l)

lock present when line printer is active
cf* copy of file to be printed, if necessary
df* control file for print job
tf* transient control file, while lpr is working

Last change: 10 January 1988 Sun Release 4.1

HIER(7) ENVIRONMENTS, TABLES, AND TROFF MACROS

maill mailboxes for mail(l)
name mail file for user name
name.lock

lock file while name is receiving mail
mqueuel

mail queue for sendmail(8)
secretmaill

like maiIl, but used by xsend(l)
uucpl work files and staging area for uucp(IC)

LOGFILE
summary log

LOG.* log file for one transaction

tmpl temporary files, to keep Itmpl small
raster used by plot(IG)
stm * used by sort(1 V)

ypl Network Information Service (NIS) database files, ypfiles(5)
lusr/ general-purpose directory, usually a mounted file system

Sun Release 4.1

bini utility programs

demol
diag/
dict!

etcl

games!

as assembler, as(l)
cc C compiler executive, c.f./usrlIib/ccom, lusrllib/cpp, lusr/lib/c2
csh the C-shell, csh(1)
sh the Bourne shell, sh(l)

demonstration programs
system tests and diagnostics
word lists, etc.
spellhist

history file for spell(l)
words principal word list, used by look(l)

system administration programs; c.f. section 8
catman update preformatted man pages, catman(8)
cron the clock daemon, cron(8)
dump file system backup program dump(8)
getty part of login(l), getty(8)
in.comsat

biff server (incoming mail daemon), comsat(8C)
init the parent of all processes, init(8)
mount mount(8)
ypl NIS programs

ypinit build and install NIS database, ypinit(8)
yppush force propagation of a changed NIS map, yppush(8)
ypset point ypbind at a particular server, ypset(8)

backgammon

Last change: 10 January 1988

HIER(7)

1805

HIER(7)

1806

ENVIRONMENTS, TABLES, AND TROFF MACROS

lib! library directory for game scores, etc.
quiz.kI what quiz(6) knows

africa countries and capitals
index category index

hosts! symbolic links to rsh(lC) for commonly accessed remote hosts
include!

standard #include files
a.out.h object file layout, a.out(5)
images! icon images
machine!

header files from !usr!share!syslsys!machine; may be a symbolic link
math.h intro(3M)
net! header files from !usr!share!syslsys!net; may be a symbolic link
nfs! header files used in the Network File System (NFS)
stdio.h standard I/O, intro(3)
sysl kernel header files, c.f. !usr!share!syslsys

lib! object libraries, compiler program binaries, and other data

local!
old!
pub!
sccs!
srd
standi
share!

ccom e compiler proper
cpp e preprocessor
c2 e code improver
eign list of English words to be ignored by ptx(l)
fontl fonts for trotT(1)

libc.a
libm.a
lint!

units
uucp!

ftR Times Roman
ftB Times Bold

system calls, standard I/O, etc. (2,3,3S)
math library, intro(3M)
utility files for lint
Iint[12] subprocesses for lint(l V)
IIib-lc dummy declarations for !usrlIiblIibc.a, used by Iint(1 V)
IIib-lm dummy declarations for !usrllibllibm.a

conversion tables for units(1)
programs and data for uucp(lC)
L.sys remote system names and numbers
uucico the real copy program

locally maintained software
obsolete and unsupported programs
publicly readable data files
binaries of programs that compose the source code control system (SeCS)
system source code tree
standalone programs (not run under the Sun Operating System)
architecture independent files
lib! architecture independent data files

termcap
description of terminal capabilities, termcap(5)

HIER(7)

Last change: 10 January 1988 Sun Release 4.1

HIER(7) ENVIRONMENTS, TABLES, AND TROFF MACROS HIER(7)

!vmnnix

tmac! macros for troff(l)
tmac.an

macros for man(7)
tmac.s macros for ms(7)

man! on-line reference manual pages, man(l)
man?! source files (nroff(1)) for sections I through 8 of the manual

as.l

cat?! preformatted pages for sC{;tions I through 8 of the manual

sysl SunOS kernel source and object modules
ncb! binaries of programs developed at the University of California, Berkeley

ex line-oriented editor for experienced users, ex(l)
vi screen-oriented editor, vi(l)

the S unOS kernel binary

SEE ALSO

BUGS

filesystem(7), find(l), finger(l), grep(1 V), Is(l V), rlogin(lC), whatis(l), whereis(l), which(I),
ncheck(8)

The locations of files are subject to change without notice; the organization of your file system may vary.

This list is incomplete.

The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YF). The functionality
of the two remains the same; only the name has changed.

Sun Release 4.1 Last change: 10 January 1988 1807

ENVIRONMENTS, TABLES, AND TROFF MACROS

NAME
iso_8859_1- map of character set

SYNOPSIS
cat lusrlshare/lib/localelLC _ CTYPE/iso _ 8859 _1

DESCRIPTION
lusrlshare/lib/localelLC_ CTYPE/iso_8859 _1 is a map of the ISO_8859/1 character set, to be printed as
needed.

This character set is available if setlocale (3V) is declared as:

setiocale(LC _ CTYPE, iso _ 8859 _1)

or:

setiocale(LC _ALL, iso _8859 _1) see setiocale(3V) for more information about declaring
categories and locales.

ISO Latin 1 Character Set
The following table displays the ISO 8859/1 character set.

ISO Latin 1

Row/Col Decimal Octal Name
02/00 032 040 SP SPACE

02/01 033 041 ! EXCLAMATION POINf

02/02 034 042 .. QUOTATION MARK

02/03 035 043 # NUMBER SIGN

02/04 036 044 $ OOLLARSIGN

02/05 037 045 % PERCENT SIGN

02/06 038 046 & AMPERSAND

02107 039 047 APOSTROPHE

02/08 040 050 (LEFT PARENTHESIS

02/09 041 051) RIGHf PARENTHESIS

02/10 042 052 * ASTERISK

02/11 043 053 + PLUS SIGN

02/12 044 054 COMMA

02/13 045 055 - HYPHEN, MINUS SIGN

02/14 046 056 RJLL STOP (U.S.: PERIOD, DECIMAL POINf)

02/15 047 057 / SOLIDUS (U.S.: SLASH)

03/00 048 060 0 DIGIT ZERO

03/01 049 061 1 DIGIT ONE

03/02 050 062 2 DIGIT TWO

03/03 051 063 3 DIGIT THREE

03/04 052 064 4 DIGIT FOUR

03/05 053 065 5 DIGIT FIVE

03/06 054 066 6 DIGIT SIX

03/07 055 067 7 DIGIT SEVEN

03/08 056 070 8 DIGITEIGHf

03/09 057 071 9 DIGIT NINE

03/10 058 072 : COLON

03/11 059 073
03/12 060 074 < LESS-THAN SIGN

03/13 061 075 = EQUALS SIGN

03/14 062 076 > GREATER-THAN SIGN

03/15 063 077 ? QUESTION MARK

1808 Last change: 5 October 1989 S un Release 4.1

ENVIRONMENTS, TABLES, AND TROFF MACROS

ISO Latin 1 (continued)

Row/Col Decimal Octal Name
04/00 064 100 @ COMMERCIAL AT
04/01 065 101 A LATIN CAPITAL lEITER A
04/02 066 102 B LATIN CAPITAL lEITER B
04/03 067 103 C LATIN CAPITAL lEITER C
04/04 068 104 D LATIN CAPITAL lEITER D
04/05 069 105 E LATIN CAPITAL lEITER E
04/06 070 106 F LATIN CAPITAL lEITER F
04/01 071 107 G LATIN CAPITAL lEITER G
04/08 072 110 H LATIN CAPITAL lEITER H

04/09 073 111 I LATIN CAPITAL lEITER I
04/10 074 112 J LATIN CAPITAL lEITER J
04/11 075 113 K LATIN CAPITAL lEITER K

04/12 076 114 L LATIN CAPITAL lEITER L
04/13 077 115 M LATIN CAPITAL lEITER M
04/14 078 116 N LATIN CAPITAL lEITER N
04/15 079 117 0 LATIN CAPITAL LETIER 0

05/00 080 120 P LATIN CAPITAL LETIER P
05/01 081 121 Q LATIN CAPITAL lEITER Q
05/02 082 122 R LATIN CAPITAL lEITER R
05/03 083 123 S LATIN CAPITAL lEITER S
05/04 084 124 T LATIN CAPITAL LETIER T
05/05 085 125 U LATIN CAPITAL lEITER U
05/06 086 126 V LATIN CAPITAL lEITER V
05/07 087 127 W LATIN CAPITAL lEITER W

05/08 088 130 X LATIN CAPITAL lEITER X
05/09 089 131 Y LATIN CAPITAL LETTER Y
05/10 090 132 Z LATIN CAPITAL lEITER Z
05/11 091 133 [LEFT SQUARE BRACKET
05/12 092 134 \ REVERSE SOLIDUS (U.S.: BACK SLASH)

05/13 093 135] . RIGHT SQUARE BRACKET
05/14 094 136 A

CIRCUMFLEX ACCENT
05/15 095 137 - LOWUNE (U.s.: UNDERSCORE)

06/00 096 140 GRAVE ACCENT
06/01 097 141 a LA TIN SMALL LETTER a

06/02 098 142 b LA TIN SMALL LETTER b
06/03 099 143 c LA TIN SMALL LETTER c
06/04 100 144 d LA TIN SMALL LETIER d
06/05 101 145 e LA TIN SMALL LETTER e
06/06 102 146 f LATIN SMALL LETTER f
06/07 103 147 g LATIN SMALL LETTER g

06/08 104 150 h LA TIN SMALL LETTER h
06/09 105 151 i LATIN SMALL LETTER i
06/10 106 152 j LATIN SMALL LETTER j
06/11 107 153 k LATIN SMALL LETTER k
06/12 108 154 1 LATIN SMALL LETTER 1
06/13 109 155 m LATIN SMALL LETTER m

06/14 110 156 n LA TIN SMALL LETTER n

06/15 111 157 0 LATIN SMALL LETTER 0

Sun Release 4.1 Last change: 5 October 1989 1809

ENVIRONMENTS, TABLES, AND TROFF MACROS

ISO Latin 1 (continued)

Row/Col Decimal Octal Name

00/00 112 160 p LATIN SMALL LETTER P
00/01 113 161 q LATIN SMALL LETTER q
oom, 114 162 r LATIN SMALL LETTER r
00/03 115 163 s LA TIN SMALL LETTER s

00/04 116 164 t LATIN SMALL LETTER t
00/05 117 165 u LATIN SMALL LETTER u

00/06 118 166 v LA TIN SMALL LETTER v

00/07 119 167 w LATIN SMALL LETTER w

00/08 120 170 x LA TIN SMALL LETTER x

00/09 121 171 y LATIN SMALL LETTER y
00/10 122 172 z LATIN SMALL LETTER z
00/11 123 173 { LEFf CURLY BRACKEr
00/12 124 174 I VERTICAL LINE
00/13 125 175 } mGHTCURLYBRACKET
00/14 126 176 - TILDE

10/00 160 240 NO-BREAK SPACE
10/01 161 241 INVERTED EXCLAMATION MARK
10/02 162 242 CENT SIGN
10/03 163 243 POUND SIGN
10/04 164 244 CURRENCY SIGN
10/05 165 245 YEN SIGN
10/06 166 246 BROKEN BAR
10/07 167 247 PARAGRAPH SIGN, (U.S.: SECTION SIGN)
10/08 168 250 DIAERESIS
10/09 169 251 COPYRIGHT SIGN
10/10 170 252 FEMININE ORDINAL INDICATOR
10/11 171 253 LEFf ANGLE QUOTATION MARK
10/12 172 254 NOT SIGN
10/13 173 255 SHY SOFf HYPHEN
10/14 174 256 REGISTERED TRADEMARK SIGN
10/15 175 257 MACRON

11/00 176 260 RING ABOVE, DEGREE SIGN
11/01 177 261 PLUS-MINUS SIGN
11/02 178 262 SUPERSCRIPT TWO
11/03 179 263 SUPERSCRIPT THREE
11/04 180 264 ACUTE ACCENT
11/05 181 265 MICRO SIGN
11/06 182 266 PILCROW SIGN, (U.S.: PARAGRAPH)
11/07 183 267 MIDDLE DOT
11/08 184 270 CEDILLA
11/09 185 271 SUPERSCRIPT ONE
11/10 186 272 MASCULINE ORDINAL INDICATOR
11/11 187 273 RIGHT ANGLE QUOTATION MARK
11/12 188 274 VULGAR FRACTION ONE QUARTER
11/13 189 275 VULGAR FRACTION ONE HALF
11/14 190 276 VULGAR FRACTION THREE QUARTERS
11/15 191 277 INVERTED QUESTION MARK

1810 Last change: 5 October 1989 Sun Release 4.1

ENVIRONMENTS, TABLES, AND TROFF MACROS

ISO Latin 1 (continued)

Row/Col Decimal Octal Name

12/00 192 300 LA TIN CAPITAL LEITER A WITH GRAVE ACCENf
12/01 193 301 LATIN CAPITAL LEITER A WITH AClITE ACCENT

12/02 194 302 LA TIN CAPITAL LEITER A WITH CIRCUMFLEX ACCENf

12/03 195 303 LATIN CAPITAL LEITER A WITH TIlDE
12/04 196 304 LATIN CAPITAL LEITER A WITH DIAERESIS
12/05 197 305 LATIN CAPITAL LEITER A WITH RING ABOVE

12/06 198 306 CAPITAL DIPIITHONG AE
12/07 199 307 LATIN CAPITAL LEITER C WITH CEDIlLA

12/08 200 310 LA TIN CAPITAL LEITER E WITH GRAVE ACCENT

12/09 201 311 LATIN CAPITAL LEITER E WITH AClITE ACCENT

12/10 202 312 LATIN CAPITAL LEITER E WITH CIRCUMFLEX ACCENT
12/11 203 313 LATIN CAPITAL LEITER E WITH DIAERESIS

12/12 204 314 LATIN CAPITAL LEITER I WITH GRAVE ACCENT
12/13 205 315 LATIN CAPITAL LEITER I WITH AClITE ACCENT

12/14 206 316 LATIN CAPITAL LEITER I WITH CIRCUMFLEX ACCENT
12/15 207 317 LATIN CAPITAL LEITER I WITH DIAERESIS

13/00 208 320 CAPITAL ICELANDIC LEITER ETH

13/01 209 321 LATIN CAPITAL LEITER N WITH TILDE
13/02 210 322 LA TIN CAPITAL LEITER 0 WITH GRAVE ACCENT

13/03 211 323 LA TIN CAPITAL LEITER 0 WITH AClITE ACCENT

13/04 212 324 LATIN CAPITAL LEITER 0 WITH CIRCUMFLEX ACCENT
13/05 213 325 LA TIN CAPITAL LEITER 0 WITH TILDE

13/06 214 326 LA TIN CAPITAL LEITER 0 WITH DIAERESIS

13/07 215 327 MULTIPLICATION SIGN
13/08 216 330 LATIN CAPITAL LEITER 0 WITH OBUQUE STROKE

13/09 217 331 LATIN CAPITAL LEITER U WITH GRAVE ACCENT

13/10 218 332 LATIN CAPITAL LETTER U WITH ACum ACCENT
13/11 219 333 LATIN CAPITAL LEITER U WITH CIRCUMFLEX

13/12 220 334 LATIN CAPITAL LEITER U WITH DIAERESIS
13/13 221 335 LATIN CAPITAL LEITER Y WITH ACum ACCENT
13/14 222 336 CAPITAL ICELANDIC LETTER THORN

13/15 223 337 SMALLGERMANLEnrnRSHARPs

14/00 224 340 LA TIN SMALL lEITER I WITH GRAVE ACCENT

14/01 225 341 LA TIN SMALL lEITER I WITH ACUfE ACCENT

14/02 226 342 LA TIN SMALL lEITER I WITH CIRCUMFLEX ACCENT

14/03 227 343 LA TIN SMALL lEITER I WITH TILDE

14/04 228 344 LA TIN SMALL lEITER I WITH DIAERESIS

14/05 229 345 LATIN SMALL lEITER I WITH RING ABOVE

14/06 230 346 SMALL DIPIITHONG Ie

14/07 231 347 LA TIN SMALL lEITER c WITH CEDILLA

14/08 232 350 LA TIN SMALL lEITER e WITH GRAVE ACCENT

14/09 233 351 LA TIN SMALL lEITER e WITH ACUfE ACCENT
14/10 234 352 LA TIN SMALL lEITER e WITII CIRCUMFLEX ACCENT

14/11 235 353 LA TIN SMALL lEITER e WITH DIAERESIS

14/12 236 354 LA TIN SMALL lEITER i WITH GRAVE ACCENT
14/13 237 355 LA TIN SMALL lEITER i WITH ACUfE ACCENT

14/14 238 356 LA TIN SMALL lEITER i WITH CIRCUMFLEX ACCENT
14/15 239 357 LATIN SMALL lEITER i WITH DIAERESIS

Sun Release 4.1 Last change: 5 October 1989 1811

Row/Col

15/00
15/01
15102
15/03
15/04
15/05
15/06
15/01
15/08
15/09
15/10
15/11
15/12
15/13
15/14
15/15

SEE ALSO
setJocaJe(3V)

1812

ENVIRONMENTS, TABLES, AND TROFF MACROS

ISO Latin 1 (continued)

Decimal Octal Name

240 360 SMALL ICELANDIC LEITER ETII

241 361 LATIN SMALL LE'ITER n WITH ID.DE

242 362 LA TIN SMAlL LE'ITER 0 WITH GRAVE ACCENT

243 363 LA TIN SMALL LE'ITER 0 WITH ACUfE ACCENT

244 364 LATIN SMAlL LE'ITER 0 WITH CIRCUMFLEX ACCENT

245 365 LATIN SMALL LE'ITER 0 WITH ID.DE

246 366 LA TIN SMAlL LE'ITER 0 WITH DIAERESIS

247 367 DMSIONSIGN

248 370 LA TIN SMALL LE'ITER 0 WITH OBUQUE STROKE

249 371 LA TIN SMALL lEITER u WITH GRAVE ACCENT

250 372 LA TIN SMAlL lEITER u WITH ACUfE ACCENT

251 373 LATIN SMAlL lEITER u WITH CIRCUMFLEX ACCENT

252 374 LA TIN SMALL LE'ITER u WITH DIAERESIS

253 375 LATIN SMAlL LE'ITER y WITH ACUfE ACCENT

254 376 SMALL ICELANDIC LEITER THORN

255 377 LA TIN SMALL LE'ITER y WITH DIAERESIS

Last change: 5 October 1989 Sun Release 4.1

MAN(7) ENVIRONMENTS, TABLES, AND TROFF MACROS MAN(7)

NAME
man - macros to format Reference Manual pages

SYNOPSIS
nroIT -man filename .. .

troIT -man filename . . .

DESCRIPTION
These macros are used to layout the reference pages in this manual. Note: if filename contains format
input for a preprocessor, the commands shown above must be piped through the appropriate preprocessor.
This is handled automatically by man(l). See Conventions.

Any text argument t may be zero to six words. Quotes may be used to include SPACE characters in a
"word". If text is empty, the special treatment is applied to the next input line with text to be printed. In
this way .1 may be used to italicize a whole line, or .SB may be used to make small bold letters.

A prevailing indent distance is remembered between successive indented paragraphs, and is reset to default
value upon reaching a non-indented paragraph. Default units for indents i are ens.

Type font and size are reset to default values before each paragraph, and after processing font and size set­
ting macros.

These strings are predefined by -man:

Requests
Request

.B t

.BI t

.BRt
• DT
.HPi
.It
.IB t
.IP xi
.IRt
.IXt
.LP
.PDd
• PP
.RE
• RB t
. RI t
.RS i

• SB t
.SH t
.SMt
• SS t

Sun Release 4.1

*R '@', '(Reg)' in nroIT.

*S Change to default type size.

Cause
Break

no
no
no
no
yes
no
no
yes
no
no
yes
no
yes
yes
no
no
yes

no
yes
no
yes

If no Explanation
Argument

t=n.t.1.*
t=n.t1.
t=n.t1.
.5i li ...
i=p.i.*
t=n.t1.
t=n.t1.
x=""
t=n.t.1.

d=.4v

t=n.t.1 .
t=n.t.1 .
i=p.i.

t=n.t1.
t=n.t1.

Text is in bold font
Join words, alternating bold and italic.
Join words, alternating bold and roman.
Restore default tabs .
Begin paragraph with hanging indent Set prevailing indent to i.
Text is italic.
Join words, alternating italic and bold.
Same as . TP with tag x.
Join words, alternating italic and roman .
Index macro, for Sun internal use .
Begin left-aligned paragraph. Set prevailing indent to .5i.
Set vertical distance between paragraphs.
Same as .LP .
End of relative indent. Restores prevailing indent
Join words, alternating roman and bold.
Join words, alternating roman and italic.
Start relative indent, increase indent by i. Sets prevailing indent to .5i
for nested indents .
Reduce size of text by I point, make text boldface.
Section Heading.
Reduce size of text by 1 point.
Section Subheading .

Last change: 24 November 1987 1813

MAN(7) ENVIRONMENTS, TABLES, AND mOFF MACROS MAN(7)

.TH n s dfm yes

• TP i yes i=p.i .

Begin reference page n, of section s; d is the date of the most
recent change. If present, f is the left page footer; m is the
main page (center) header. Sets prevailing indent and tabs to .5i.
Begin indented pamgraph, with the tag given on the next text
line. Set prevailing indent to i.

.TX tp no Resolve the title abbreviation t; join to punctuation mark (or text) p. *
n.t.l. = next text line; pj. = prevailing indent

Conventions

1814

When formatting a manual page, man examines the first line to determine whether it requires special pro­
cessing. For example a first line consisting of:

'\" t

indicates that the manual page must be run through the thl(l) preprocessor.

A typical manual page for a SunOS command or function is laid out as follows:

.TH TITLE [1-8]
The name of the command or function in upper-case, which serves as the title of the manual page.
This is followed by the number of the section in which it appears .

• SH NAME The name, or list of names, by which the command is called, followed by a dash and then a
one-line summary of the action performed. All in roman font, this section contains no troff(l)
commands or escapes, and no macro requests. It is used to generate the whatis(1) database .

• SH SYNOPSIS

Commands:

The syntax of the command and its arguments, as typed on the command line. When in
boldface, a word must be typed exactly as printed. When in italics, a word can be
replaced with an argument that you supply. References to bold or italicized items are not
capitalized in other sections, even when they begin a sentence.

Syntactic symbols appear in roman face:

[] An argument, when surrounded by brackets is optional.

I Arguments separated by a vertical bar are exclusive. You can supply only one
item from such a list.

Functions:

Arguments followed by an ellipsis can be repeated. When an ellipsis follows a
bracketed set, the expression within the brackets can be repeated.

If required, the data declaration, or #include directive, is shown first, followed by the
function declaration. Otherwise, the function declaration is shown .

. SH DESCRIPTION
A narrative overview of the command or function's external behavior. This includes how it
interacts with files or data, and how it handles the standard input, standard output and standard
error. Internals and implementation details are normally omitted. This section attempts to provide
a succinct overview in answer to the question, "what does it do?"

Literal text from the synopsis appears in boldface, as do literal filenames and references to items
that appear elsewhere in the SunOS Reference Manual. Arguments are italicized.

If a command interprets either subcommands or an input grammar, its command interface or input
grammar is normally described in a USAGE section, which follows the OPTIONS section. The
DESCRIPTION section only describes the behavior of the command itself, not that of subcom­
mands.

Last change: 24 November 1987 Sun Release 4.1

MAN(7) ENVIRONMENTS, TABLES, AND TROFF MACROS MAN(7)

FILES

.SHOPTIONS
The list of options along with a description of how each affects the command's operation .

. SHFILES
A list of files associated with the command or function .

. SH SEE ALSO
A comma-separated list of related manual pages, followed by references to other published
materials .

. SH DIAGNOSTICS
A list of diagnostic messages and an explanation of each .

. SHBUGS
A description of limitations, known defects, and possible problems associated with the command
or function.

lusrlshare/lib/tmac/tmac.an

SEE ALSO
man(I), nroff(l), troff(l), wbatis(l)

Formatting Documents.

Sun Release 4.1 Last change: 24 November 1987 1815

ME(7) ENVIRONMENTS, TABLES, AND TROFF MACROS ME(7)

NAME
me - macros for formatting papers

SYNOPSIS
nrotT -me [options] file .. .
trotT -me [options] file .. .

DESCRIPTION
This package of nrotT and trotT macro definitions provides a canned fonnatting facility for technical
papers in various fonnats. When producing 2-column output on a terminal, filter the output through col(1).

The macro requests are defined below. Many nrotT and trofT requests are unsafe in conjunction with this
package, however, these requests may be used with impunity after the first .pp:

.bp begin new page

.br break output line here

.sp n insert n spacing lines

.Is n (line spacing) n= 1 single, n=2 double space

.na no alignment of right margin

.ce n center next n lines

.ul n underline next n lines

.sz +n add n to point size

Output of the eqn, neqn, refer, and tbl(l) preprocessors for equations and tables is acceptable as input.

REQUESTS
In the following list, "initialization" refers to the first .pp, .lp, .ip, .np, .sh, or .uh macro. This list is
incomplete.

Request Initial Cause Explanation
Value Break

.(c

.(d

.(f

.(1

.(q

.(xx

.(z

.)c

.)d

.)f

.)1

.)q

.)x

.)z

.++ m H

. +cT

.Ic

.2c

. EN

.EQxy

. GE

.GS

1816

1
1

yes
no
no
yes
yes
no
no
yes
yes
yes
yes
yes
yes
yes

no

yes
yes
yes
yes
yes

Begin centered block
Begin delayed text
Begin footnote
Begin list
Begin major quote
Begin indexed item in index x
Begin floating keep
End centered block
End delayed text
End footnote
End list
End major quote
End index item
End floating keep

Define paper section. m defines the part of the paper. and can be C (chapter), A
(appendix), P (preliminary, for instance, abstract, table of contents, etc.), B (bibliography),
RC (chapters renumbered from page one each chapter), or RA (appendix renumbered from
page one).
Begin chapter (or appendix, etc., as set by .++). T is the chapter title .
One column format on a new page .
Two column format.
Space after equation produced by eqn or meqn .
Precede equation; break out and add space. Equation number is y. The optional argument
x may be I to indent equation (default), L to left-adjust the equation, or C to center the
equation.

yes End gremlin picture .
yes Begin gremlin picture.

Last change: 19 December 1989 Sun Release 4.1

ME(7)

. PE

. PS

. TE

. TH

. TSx

ENVIRONMENTS, TABLES, AND TROFF MACROS

yes End pic picture .
yes Begin pic picture .
yes End table .
yes End heading section of table .
yes Begin table; if x is Ii table has repeated heading .

ME(7)

. acAN no Set up for ACM style output. A is the Author's name(s), N is the total number of pages .
Must be given before the first initialization.

. bx no no Print x in boldface; if no argument switch to boldface .

.ba +n 0 yes Augments the base indent by n. This indent is used to set the indent on regular text (like

.be no

.bix no

.bu

. bxx no

.ef 'x'y'z

.eh 'x'y'z

.fo 'x'y'z

. hx

.he 'x'y'z

.hl

.ix no
jp x y no
.1p yes
.10
. np 1
.of 'x'y'z
.oh x'y'z
.pd
. pp no
. r yes
. re

paragraphs).
yes Begin new column
no Print x in bold italics (nofill only)
yes Begin bulleted paragraph
no Print x in a box (nofill only) .
no Set even footer to x y z
no Set even header to x y z
no Set footer to x y z
no Suppress headers and footers on next page .
no Set header to x y z
yes Draw a horizontal line
no Italicize x; if x missing, italic text follows .
yes Start indented paragraph. with hanging tag x. Indentation is yens (default 5).
yes Start left-blocked paragraph .
no Read in a file of local macros of the form .*x. Must be given before initialization .
yes Start numbered paragraph .
no Set odd footer to x y z
no Set odd header to x y z
yes Print delayed text.
yes Begin paragraph. First line indented .
no Roman text follows .
no Reset tabs to default values .

.sc no no Read in a file of special characters and diacritical marks. Must be given before
initialization.

. shnx

. sk

. smx­

. sz +n

. th

. tp

. ux

. uh

. xpx

FILES

yes Section head follows, font automatically bold. n is level of section, x is title of section .
no no Leave the next page blank. Only one page is remembered ahead .
no Set x in a smaller pointsize .
lOp no Augment the point size by n points .
no no Produce the paper in thesis format. Must be given before initialization .
no yes Begin title page .

no Underline argument (even in troft). (Nofill only) .
yes Like .sh but unnumbered .
no Print inpex x .

lusrlsharellib/tmac/tmac.e
lusrlshare/lib/me/*

SEE ALSO
eqn(1), nrofT(1), trofT(I). refer(1), tbl(l)

Formatting Documents

Sun Release 4.1 Last change: 19 December 1989 1817

MS(7) ENVIRONMENTS, TABLES, AND 1ROFF MACROS MS(7)

NAME
ms - text formatting macros

SYNOPSIS
nrotT -ms [options] filename .. .

trotT -ms [options] filename .. .

DESCRIPTION
This package of nrotT(l) and trotT(1) macro definitions provides a formatting facility for various styles of
articles, theses, and books. When producing 2-column output on a terminal or lineprinter, or when reverse
line motions are needed, filter the output through col (1 V). All external -IDS macros are defined below.

Note: this -ms macro package is an extended version written at Berkeley and is a superset of the standard
-ms macro packages as supplied by Bell Labs. Some of the Bell Labs macros have been removed; for
instance, it is assumed that the user has little interest in producing headers stating that the memo was
generated at Whippany Labs.

Many nrotT and trotT requests are unsafe in conjunction with this package. However, the first four
requests below may be used with impunity after initialization, and the last two may be used even before
initialization:

.bp begin new page

.br break output line

.sp n insert n spacing lines

.ce n center next n lines

.Is n line spacing: n=1 single, n=2 double space

.na no alignment of right margin

Font and point size changes with \f and \s are also allowed; for example, \f1word\tR will italicize word.
Output of the tbl(1), eqn(l) and refer(l) preprocessors for equations, tables, and references is acceptable
as input.

REQUESTS

1818

Macro
Name

.ADx

.AE

.AI

.AM

.AU

.Bx

.HI

.B2

.DT

.DXx

.CM

.CT

.DAx

.DE

.DSxy

.ID Y

.LD

.CD

.DD

.EFx

.EHx

.EN

Initial
Value

date

ift

ifn

I
8n,.5i

Break?
Reset?

y
y
y
n
y
n
y
y
n
n
n
y,y
n
y
y
y
y
y
y
n
n
y

Explanation

begin abstract; if x=no do not label abstract
end abstract
author's institution
better accent mark definitions
author's name
embolden x; if no x, switch to boldface
begin text to be enclosed in a box
end boxed text and print it
bottom title, printed at foot of page
print word x in a box
cut mark between pages
chapter title: page number moved to CF (TM only)
force date x at bottom of page; today if no x
end display (unfilled text) of any kind
begin display with keep; x=I, L, C, B; y=indent
indented display with no keep; y=indent
left display with no keep
centered display with no keep
block display; center entire block
even page footer x (3 part as for .tl)
even page header x (3 part as for .t1)
end displayed equation produced by eqn

Last change: 16 February 1988 Sun Release 4.1

MS(7) ENVIRONMENTS, TABLES, AND TROFF MACROS MS(7)

.EQxy y break out equation; x=L,I,C; y=equation number

.FE n end footnote to be placed at bottom of page

.FP n numbered footnote paragraph; may be redefined

.FSx n start footnote; x is optional footnote label

.HD undef n optional page header below header margin

.Ix n italicize x; if no x, switch to italics

.IP xy y,y indented paragraph, with hanging tag x; y=indent

.IXxy y index words x y and so on (up to 5 levels)

.KE n end keep of any kind

.KF n begin floating keep; text fills remainder of page

.KS y begin keep; unit kept together on a single page

.LG n larger; increase point size by 2

. LP y,y left (block) paragraph .

.MCx y,y multiple columns; x=column width

.NDx ift n no date in page footer; x is date on cover

.NHxy y,y numbered header, x=level, x=O resets, x=S sets to y

.NL lOp n set point size back to normal

.OFx n odd page footer x (3 part as for .tl)

.OHx n odd page header x (3 part as for .tt)

.PI ifTM n print header on first page

.PP y,y paragraph with first line indented

.PT n page title, printed at head of page

.PXx y print index (table of contents); x=no suppresses title

.QP y,y quote paragraph (indented and shorter)

.R on n return to Roman font

.RE 5n y,y retreat: end level of relative indentation

.RPx n released paper format; x=no stops title on first page

.RS 5n y,y right shift: start level of relative indentation

.SH y,y section header, in boldface

.SM n smaller; decrease point size by 2

.TA 8n,5n n set TAB characters to 8n 16n ... (nroll) 5n IOn ... (troff)

.TCx y print table of contents at end; x=no suppresses title

.TE y end of table processed by tbl

.TH y end mUlti-page header of table

.TL y title in boldface and two points larger

.TM off n UC Berkeley thesis mode

.TSx y,y begin table; if x=H table has mUlti-page header

.ULx n underline x, even in trotT

.UXx n UNIX; trademark message first time; x appended

.XAxy y another index entry; x=page or no for none; y=indent

.XE y end index entry (or series of .IX entries)

.XP y,y paragraph with first line exdented, others indented

.XSxy y begin index entry; x=page or no for none; y=indent

.IC on y,y one column format, on a new page

.2C y,y begin two column format

.]- n beginning of refer reference

.[0 n end of unc1assifiable type of reference

.[N n N= l:journal-artic1e, 2:book, 3:book-artic1e, 4:report

REGISTERS
Formatting distances can be controlled in -ms by means of built-in number registers. For example, this
sets the line length to 6.5 inches:

.nr LL 6.Si

Sun Release 4.1 Last change: 16 February 1988 1819

MS(7)

FILES

ENVIRONMENTS, TABLES, AND TROFF MACROS MS(7)

Here is a table of number registers and their default values:

Name Register Controls Takes Effect Default

PS point size paragraph 10
VS vertical spacing paragraph 12
LL line length paragraph 6i
LT title length next page same as LL
FL footnote length next .FS 5.5i
PD paragraph distance paragraph 1 v (if n), .3v (if t)
DD display distance displays 1 v (if n), .5v (if t)
PI paragraph indent paragraph 5n
QI quote indent next .QP 5n
FI footnote indent next .FS 2n
PO page offset next page 0 (if n), -Ii (if t)
8M header margin next page Ii
FM footer margin next page Ii
FF footnote format next .FS 0 (1, 2,3 available)

When resetting these values, make sure to specify the appropriate units. Setting the line length to 7, for
example, will result in output with one character per line. Setting FF to I suppresses footnote
superscripting; setting it to 2 also suppresses indentation of the first line; and setting it to 3 produces an
.IP-like footnote paragraph.

Here is a list of string registers available in -ms; they may be used anywhere in the text:

Name String's Function

*Q
*U
*­
*(MO
*(DY
**
*'
*'
*"
*,
*:
*-

quote (" in oroff, " in trolT)
unquote (" in orolT, " in trofT)
dash (.- in orolT, - in trolT)
month (month of the year)
day (current date)
automatically numbered footnote
acute accent (before letter)
grave accent (before letter)
circumflex (before letter)
cedilla (before letter)
umlaut (before letter)
tilde (before letter)

When using the extended accent mark definitions available with .AM, these strings should come after,
rather than before, the letter to be accented.

lusrlsharellib/tmac/tmac.s
lusrlsharellib/ms/ms. ???

SEE ALSO

BUGS

1820

col(1 V), eqn(I), nrolT(I), refer(I), tbl(I), trolT(1)

Formatting Documents

Floating keeps and regular keeps are diverted to the same space, so they cannot be mixed together with
predictable results.

Last change: 16 February 1988 Sun Release 4.1

POSIX(7V) ENVIRONMENTS~ TABLES~ AND 1ROFF MACROS POSIX(7V)

NAME
posix - overview of the IEEE Std 1003.1-1988 (POSIX.l) environment

SYNOPSIS
/usr/Sbinllint -n -Iposix posix _src.c

A V AILABILITY
This environment is available with the System V software installation option. Refer to Installing SunOS 4.1
for information on how to install optional software.

DESCRIPTION

LINT

FILES

POSIX.l is a set of functions and headers. The SunOS Release 4.1 implementation of POSIX.l is a superset
- it includes all of the functionality described in the IEEE standard as well as most of the SunOS
functionality. See the sunos(7) man page for a description of SunOS functionality.

All man pages that are associated with POSIX.l are marked by a "V" after the section number. Not aU "V"
pages~ however, are POSIX.l. Some "V" pages may be part of other System V based environments such as
X/Open.

If a user desires to work in a POSIX.l (or System V) environment~ the user should set the path variable to
include /usr/Sbin before anything else. The typical path is PATH=/usr/Sbin:/bin:/usr/bin:/usr/ueb.

As a portability aid~ Sun is providing a lint library that consists exclusively of POSIX.l functions. Users
may lint their code with the -n -lposix options to catch all non-POSIX.l features.

POSIX.l is primarily an operating system interface. POSIX.l also specifies a subset of the functions defined
by ANSI C. These are included in the posix lint library. Because of the additional functionality provided by
ANSI C, Sun will also be providing an ANSI C (based on the December 7~ 1988 draft) lint library. A
portable application may want to lint with -n -lposix -Iansie for the most complete coverage of functions.

POSIX.l as with most other environments~ continues to evolve. The -Iposix lint library will always refer to
the most recent standard supported by S un. Some applications may wish to port to a particular version of
the standard; they may safely use the more specific name of -lposixl-88 (currently the same as -Iposix).

Certain functions defined in the posix lint library are not available in the C library. In particular~ math
functions are made available only when the -1m option is added to ec(1 V) or Id(l) commands.

/usrISbinl*
lusrISinclude/*
/usr/Slib/*

POSIX.l and System V specific executables
POSIX.l and System V specific headers
POSIX.l and System V specific library files

SEE ALSO
lint(1 V)~ ansic(7V). bsd(7)~ sunos(7)~ svidii(7V)~ svidiii(7V)~ xopen(7V)

IEEE Std 1003.1-1988

Sun Release 4.1 Last change: 30 September 1989 1821

SUNOS(7) ENVIRONMENTS, TABLES, AND TROFF MACROS SUNOS(7)

NAME
sunos, SunOS - overview of the SunOS Release 4.1 environment

SYNOPSIS
lint sunos src.c

DESCRIPTION

FILES

The SunOS Release 4.1 lint library is a superset of the 4.3 BSD lint library. It includes all of the 4.3 BSD
functionality, most of System V release 3.2 functionality, as well as extensive additional functionality in
the networking and file system areas.

It is important to note that the default environment in SunOS Release 4.1 provides BSD 4.3 compatibility.
Sun also provides a System V compatible environment (see svidii(7V)).

Note that many man pages are marked with a "V" after the section number, indicating some sort of System
V compliance. SunOS functions are also documented on these man pages, as well as on man pages without
the "V" section suffix.

By default, the user will get the SunOS environment. No path modifications should be necessary. The typ­
ical path is set path = (Ibin lusr/bin lusr/ucb)

lusr/binl*
lusr/ucb/*
lusr/include/*
lusr/lib/*

SunOS executables
BSD derived executables
SunOS specific header files
SunOS specific library files

SEE ALSO
lint(1 V), ansic(7V), bsd(7), posix(7V), svidii(7V), svidiii(7V), xopen(7V)

1822 Last change: 30 September 1989 Sun Release 4.1

SVIDII(7V) ENVIRONMENTS, TABLES, AND TROFF MACROS SVIDII (7V)

NAME
svidii - overview of the System V environment

SYNOPSIS
lusrlSbin/liot -n -Isvidii sys5 _src.c

A V AILABILITY
This command is available with the System V software installation option. Refer to Installing SunOS 4.1
for information on how to install optional software.

DESCRIPTION

FILES

SVID IT is a set of functions and header files. The SunOS Release 4.1 implementation of SVID II is a super­
set - it includes all of the functionality described in the SVID issue 2 documents as well as most of the
SunOS functionality. See the suoos(7) man page for a description of SunOS functionality.

All man pages that are associated with SVID IT are marked by a "V" after the section number. Not all "V"
pages are SVID IT, however. Some "V" pages may be part of other System V based environments such as
X/Open.

If a user desires to work in a SVID II environment, the user should set the path variable to include
lusr/xpg2bio and lusrlSbio before anything else. The typical path is:

set path=(lusr/xpg2bio lusrlSbio Ibin lusr/bin lusr/ucb)

As a portability aid, Sun is providing two lint libraries that consist exclusively of SVID II functions as
defined in the SVID issue 2. Users may lint their code with the -n -lsvidii options to catch all features that
are not found in SVID issue 2, all volumes. Using lint with the -n -lsvidii-3 options is just like -n -lsvidii
except that it does not include volume 3 (which contains new directory reading routines and new signal
functions that appeared in System V release 3.2).

lusrlSbinl*
lusrlSioclude/*
lusrlSlib/*

System V specific executables
System V specific header files
System V specific library files

SEE ALSO
lint(1 V), aosic(7V), bsd(7), posix(7V), suoos(7), svidiii(7V), xopen(7V)

Sun Release 4.1 Last cha ige: 30 September 1989 1823

SVIDIII (7V) ENVIRONMENTS, TABLES, AND TROFF MACROS SVIDIII (7V)

NAME
svidiii - S VID III lint library

SYNOPSIS
lusr/Sbin/Iiot -0 -Isvidiii svidiii src.C

AVAILABILITY
This environment is not fully tested under SunOS Release 4.1 as there is no test suite available. The
environment that is believed to closely approximate a SVIDm environment is the System V environment.
The System V environment is available with the System V software installation option. Refer to Installing
SunOS 4.1 for information on how to install optional software.

DESCRIPTION

FILES

SVIDm is a future environment that Sun intends to support. SunOS Release 4.1 does not currently fully
support SVIDID applications. It does support many of the functions described by the SVIDID document.
This man page does not imply that the functions supported by SunOS Release 4.1 and the functions
described by the SVIDIII document perform identically. The SVIDll lint library is intended solely as a port­
ing aid.

The SVIDill lint library consists exclusively of SVIDll functions. Users may lint their code with the -0

-Isvidiii options to catch all non-SVIDll features.

lusrl Slib/liotlIlib-lsvidiii* SVIDll C lint library

SEE ALSO
liot(l V), ansic(7V), bsd(7), posix(7V), suoos(7), svidii(7V), xopen(7V)

1824 Last change: 30 September 1989 Sun Release 4.1

XOPEN(7V) ENVIRONMENTS, TABLES, AND TROFF MACROS XOPEN(7V)

NAME
xopen - overview of the X/Open Portability Guide Issue 2 (X/Open) environment

SYNOPSIS
lusrlSbinllint -n -Ixopen xopen _src.c

AV AlLABILITY
This command is available with the System V software installation option. Refer to Installing SunOS 4.1
for infonnation on how to install optional software.

DESCRIPTION

FILES

X/Open is a set of functions and header files. The SunOS Release 4.1 implementation of X/Open is a
superset - it includes all of the functionality described in the lusr/group Standard 1984 - as well as
much of the System V functionality, and much of the SunOS functionality.

All man pages that are associated with X/Open are marked by a "V" after the section number. Not all "V"
pages are X/Open, however. Some "V" pages may be part of other System V based environments such as
POSIX.l.

If a user desires to work in a X/Open (or System V) environment, the user should set the path variable to
include lusr/xpg2bin and lusrlSbin before anything else. The typical path is:

set path=(lusr/xpg2bin lusrlSbin Ibin lusr/bin /usr/ucb)

As a portability aid, Sun is providing a lint library that consists exclusively of X/Open functions. Users
may lint their code with the -n -lxopen options to catch all non-X/Open features.

X/Open, as with most other environments, continues to evolve. The -Ixopen lint library will always refer
to the most recent document supported by Sun. Some applications may wish to port to a particular version
of the environment; they may safely use the more specific name of -lxpg2 (currently the same as -Ixopen).

/usr/xpg2bin/*
lusr/xpg2include/*
lusrlSinclude/*
lusr/xpg2lib/*
lusrlSUb/*

X/Open specific executables
X/Open specific header files
System V specific header files
X/Open specific library files
System V specific library files

SEE ALSO
Iint(1 V), ansic(7V), bsd(7), posix(7V), sunos(7), svidii(7V), svidiii(7V)

Sun Release 4.1 Last change: 30 September 1989 1825

I

INTRO(8) MAINTENANCE COMMANDS INTRO(8)

NAME
intro - introduction to system maintenance and operation commands

DESCRIPTION
This section contains information related to system bootstrapping, operation and maintenance. It describes
all the server processes and daemons that run on the system, as well as standalone (PROM monitor) pro­
grams.

An 8V section number means one or more of the following:

• The man page documents System V behavior only.

• The man page documents default SunOS behavior, and System V behavior as it differs from the default
behavior. These System V differences are presented under SYSTEM V section headers.

• The man page documents behavior compliant with IEEE Std 1003.1-1988 (POSIX.l).

Disk formatting and labeling is done by format(8S). Bootstrapping of the system is described in boot(8S)
and init(8). The standard set of commands run by the system when it boots is described in rc(8). Related
commands include those that check the consistency of file systems, fsck(8); those that mount and un mount
file systems, mount(8); add swap devices, swapon(8); force completion of outstanding file system I/O,
sync(2); shutdown or reboot a running system shutdown(8), halt(8), and reboot(8); and, set the time on a
machine from the time on another machine rdate(8C).

Creation of file systems is discussed in mkfs(8) and newfs(8). File system performance parameters can be
adjusted with tunefs(8). File system backups and restores are described in dump(8) and restore(8).

Procedures for adding new users to a system are described in adduser(8), using vipw(8) to lock the pass­
word file during editing. panic(8S) which describes what happens when the system crashes, savecore(8)
which can be used to analyze system crash dumps. Occasionally useful as adjuncts to the fsck(8) file sys­
tem repair program are c1ri(8), dcheck(8), icheck(8), and ncheck(8).

Configuring a new version of the kernel requires using the program config(8); major system bootstraps
often require the use of mkproto(8). New devices are added to the Idev directory (once device drivers are
configured into the system) using makedev(8) and mknod(8). The installboot(8S) command can be used
to install freshly compiled programs. The catman(8) command preformats the on-line manual pages.

Resource accounting is enabled by the accton command, and summarized by sa(8). Login time accounting
is performed by ac(8). Disk quotas are managed using quot(8), quotacheck(8), quotaon(8), and
repquota(8).

A number of servers and daemon processes are described in this section. The update(8) daemon forces
delayed file system I/O to occur and cron(8) runs periodic events (such as removing temporary files from
the disk periodically). The syslogd(8) daemon maintains the system error log. The init(8) process is the
initial process created when the system boots. It manages the reboot process and creates the initial login
prompts on the various system terminals, using getty(8). The Internet super-server inetd(8C) invokes all
other internet servers as needed. These servers include the remote shell servers rshd(8C) and rexecd(8C),
the remote login server rlogind(8C), the FrP and TELNEf daemons ftpd(8C), and telnetd(8C), the TFrP
daemon tftpd(8C), and the mail arrival notification daemon comsat(8C). Other network daemons include
the 'load average/who is logged in' daemon rwhod(8C), the routing daemon routed(8C), and the mail dae­
mon sendmail(8).

If network protocols are being debugged, then the protocol debugging trace program trpt(8C) is often use­
ful. Remote magnetic tape access is provided by rsh and rmt(8C). Remote line printer access is provided
by Ipd(8), and control over the various print queues is provided by Ipc(8). Printer cost-accounting is done
through pac(8).

Network host tables may be gotten from the ARPA NIe using gettable(8C) and converted to UNIX-system­
usable format using htable(8).

Sun Release 4.1 Last change: 17 November 1987 1827

IN1RO(8) M~NANCECOMMANDS INTRO(8)

RPC and NFS daemons
RPC and NFS daemons include:

portmap
ypbind

biod
nfsd
ypserv
rstatd
mountd

rwalld

used by RPC based services.
used by the Network Information Service (NIS) to locate the NIS server. Note: the
Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP).
The functionality of the two remains the same; only the name has changed.
used by NFS clients to read ahead to, and write behind from, network file systems.
the NFS server process that responds to NFS requests on NFS server machines.
the NIS server, typically run on each NFS server.
the server counterpart of the remote speedometer tools.
the mount server that runs on NFS server machines and responds to requests by other
machines to mount file systems.
used for broadcasting messages over the network.

LIST OF MAINTENANCE COMMANDS
Name Appears on Page Description

ac ac(8) login accounting
acetcms acctcms(8) command summary from per-process accounting records
acetconl acctcon(8) connect-time accounting
acetcon2 acctcon(8) connect-time accounting
acetdisk acct(8) miscellaneous accounting commands
acetdusg acct(8) miscellaneous accounting commands
acetmerg acctmerg(8) merge or add total accounting files
aceton acct(8) miscellaneous accounting commands
aceton sa(8) system accounting
acetprcl acctprc(8) process accounting
acetprc2 acctprc(8) process accounting
acctwtmp acct(8) miscellaneous accounting commands
adbgen adbgen(8) generate adb script
add client add _ c1ient(8) create a diskless network bootable NFS client on a server
add services add _ services(8) provide software installation services for any architecture
adduser adduser(8) procedure for adding new users
adv adv(8) advertise a directory for remote access with RFS
analyze 0Id-analyze(8) postmortem system crash analyzer
arp arp(8C) address resolution display and control
audit audit(8) audit trail maintenance
auditd auditd(8) audit daemon
audit warn audit_ warn(8) audit daemon warning script
automount automount(8) automatically mount NFS file systems
biod nfsd(8) NFS daemons
boot boot(8S) start the system kernel, or a standalone program
bootparamd bootparamd(8) boot parameter server
C2conv c2conv(8) convert system to or from C2 security
C2unconv c2conv(8) convert system to or from C2 security
captoinfo captoinfo(8V) convert a termcap description into a terminfo description
catman catman(8) create the cat files for the manual
change_login change Jogin(8) control screen blanking and choice of login utility
chargefee acctsh(8) shell procedures for accounting
check4 set4(8) check the virtual address space limit flag in a module
chown chown(8) change owner
chroot chroot(8) change root directory for a command
chrtbl chrtbl(8) generate character classification table
ckpacet acctsh(8) shell procedures for accounting

1828 Last change: 17 November 1987 Sun Release 4.1

INTRO(8) MAINTENANCE COMMANDS INTRO(8)

client client(8) add or remove diskless Sun386i systems
clri clri(8) clear inode
colldef colJdef(8) convert collation sequence source definition
com sat comsat(8C) biff server
con fig config(8) build system configuration files
copy_home copy _ bome(8) fetch default startup files for new home directories
crasb crasb(8) examine system images
cron cron(8) clock daemon
dbconfig dbconfig(8) ini tializes the dial box
dcbeck dcbeck(8) file system directory consistency check
devinfo devinfo(8S) print out system device information
devom devnm(8V) device name
diskusg diskusg(8) generate disk accounting data by user
dkctl dkctl(8) control special disk operations
dkinfo dkinfo(8) report information about a disk~s geometry and partitioning
dmesg dmesg(8) collect system diagnostic messages to form error log
dname dname(8) print RFS domain and network names
dodisk acctsb(8) shell procedures for accounting
dorfs dorfs(8) initialize, start and stop RFS automatically
dump dump(8) incremental file system dump
dumpfs dumpfs(8) dump file system information
edquota edquota(8) edit user quotas
eeprom eeprom(8S) EEPROM display and load utility
etberd etberd(8C) Ethernet statistics server
etberfind etberfind (8C) find packets on Ethernet
exportfs exportfs(8) export and unexport directories to NFS clients
extract unbundled extract _ unbundled(8) extract and execute unbundled-product installation scripts
fastboot fastboot(8) reboot/halt the system without checking the disks
fastbalt fastboot(8) reboot/halt the system without checking the disks
fingerd fingerd(8C) remote user information server
format format(8S) disk partitioning and maintenance utility
fpa _download fpa _ download(8) download to the Floating Point Accelerator
fparel fparel(8) Sun FPA online reliability tests
fpaversion fpaversion(8) print FPA version, load microcode
fpurel fpurel(8) perform tests the Sun Floating Point Co-processor
fpuversion4 fpuversion4(8) print the S un-4 FPU version
fsek fsck(8) file system consistency check and interactive repair
fsirand fsirand(8) install random inode generation numbers
ftpd ftpd(8C) TCP/IP Internet File Transfer Protocol server
fumount fumount(8) force unmount of an advertised RFS resource
fusage fusage(8) RFS disk access profiler
fuser fuser(8) identify processes using a file or file structure
fwtmp fwtmp(8) manipulate connect accounting records
gettable gettable(8C) get DARPA Internet format host table from a host
getty getty(8) set terminal mode
gid_alJocd uid _ allocd(8C) UID and GID allocator daemons
gpconfig gpconfig(8) initialize the Graphics Processor
grpck grpck(8V) check group database entries
gxtest gxtest(8S) stand alone test for the S un video graphics board
bait balt(8) stop the processor
bostrfs bostrfs,(8) Convert IP addresses to RFS format
btable btable(8) convert DoD Internet format host table
icbeck icbeck(8) file system storage consistency check

Sun Release 4.1 Last change: 17 November 1987 1829

INTRO(8)

1830

idload
ifconfig
imemtest
in.comsat
inetd
in.fingerd
infocmp
in.ftpd
init
in.named
in.rexecd
in.rlogind
in.routed
in.rsbd
in.rwhod
installboot
install small kernel - -
insta II txt
in.talkd
in.telnetd
in.tftpd
in.tnamed
intr
iostat
ipaUocd
kadb
keyenvoy
keyserv
kgmon
lastJogin
Idconfig
link
listen
lockd
logintool
Ipc
Ipd
mailstats
makedbm
MAKEDEV
makekey
mc68881version
mconnect
mkfile
mkfs
mknod
mkproto
modload
modstat
modnnload
monacct
monitor
monntd

MAINTENANCE COMMANDS INTRO(8)

idload(8) RFS user and group mapping
ifconfig(8C) configure network interface parameters
imemtest(8S) stand alone memory test
comsat(8C) biff server
inetd(8C) Internet services daemon
fingerd(8C) remote user information server
infocmp(8V) compare or print out terminfo descriptions
ftpd(8C) TCP/IP Internet File Transfer Protocol server
init(8) process control initialization
named(8C) Internet domain name server
rexecd(8C) remote execution server
rlogind(8C) remote login server
routed(8C) network routing daemon
rshd(8C) remote shell server
rwhod(8C) system status serve~
installboot(8S) install bootblocks in a disk partition
instaU_ small_ kernel(8) install a small, pre-configured kernel
installtxt(8) create a message archive
talkd(8C) server for talk program
telnetd(8C) TCP/IP TELNET protocol server
tftpd(8C) TCP/IP Trivial File Transfer Protocol server
tnamed(8C) TCP/IP Trivial name server
intr(8) allow a command to be interruptible
iostat(8) report I/O statistics
ipaUocd(8C) . Ethernet-to-IP address allocator
kadb(8S) adb-like kernel and standalone-program debugger
keyenvoy(8C) talk to key server
keyserv(8C) server for storing public and private keys
kgmon(8) generate a dump of the operating system's profile buffers
acctsh(8) shell procedures for accounting
Idconfig(8) link-editor configuration
Iink(8V) exercise link and unlink system calls
nlsadmin(8) network listener service administration for RFS
lockd(8C) network lock daemon
logintool(8) graphic login interface
Ipc(8) line printer control program
Ipd(8) printer daemon
mailstats(8) print statistics collected by sendmail
makedbm(8) make a NIS ndbm file
makede'v(8) make system special files
makekey(8) generate encryption key
mc68881 version(8) print the MC6888I mask number and approximate clock rate
mconnect(8) connect to SMTP mail server socket
mkfile(8) create a file
mkfs(8) construct a file system
mknod(8) build special file
mkproto(8) construct a prototype file system
modload(8) load a module
modstat(8) display status of loadable modules
modunload(8) unload a module
acctsh(8) shell procedures for accounting
monitor(8S) system ROM monitor
moontd(8C) NFS mount request server

Last change: 17 November 1987 Sun Release 4.1

IN1RO(8) MAINTENANCE COMMANDS INTRO(8)

mount mount(8) mount and unmount file systems
mount tfs mount_tfs(8) mount and dismount TFS filesystems
named named(8C) Internet domain name server
neheck neheck(8) generate names from i-numbers
ndbootd ndbootd(8C) ND boot block server
neteonfig neteonfig(8C) PNP boot service
netstat netstat(8C) show network status
newaliases newaliases(8) rebuild the data base for the mail aliases file
newfs newfs(8) create a new file system
newkey newkey(8) create a new key in the publickey database
nfsd nfsd(8) NFS daemons
nfsstat nfsstat(8C) Network File System statistics
nlsadmin nlsadmin(8) network listener service administration for RFS
nslookup nslookup(8C) query domain name servers interactively
nsquery nsquery(8) RFS name server query
nulladm aectsb(8) shell procedures for accounting
old-analyze old-analyze(8) postmortem system crash analyzer
pac pac(8) printer/plotter accounting information
panie panic(8S) what happens when the system crashes
ping ping(8C) send ICMP ECHO_REQUEST packets to network hosts
pnpboot pnpboot(8C) pnp diskless boot service
pnpd pnpd(8C) PNPdaemon
pnp.s386 pnpboot(8C) pnp diskless boot service
portmap portmap(8C) TCP/IP port to RPC program number mapper
praudit praudit(8) print contents of an audit trail file
prctmp aectsh(8) shell procedures for accounting
prdaily aectsh(8) shell procedures for accounting
prtaect acctsh(8) shell procedures for accounting
pstat pstat(8) print system facts
pwck pwck(8V) check password database entries
pwdauthd pwdauthd(8C) server for authenticating passwords
quotacbeek quotaeheck(8) file system quota consistency checker
quotaofT quotaon(8) turn file system quotas on and off
quotaon quotaon(8) tum file system quotas on and off
quot quot(8) summarize file system ownership
rarpd rarpd(8C) TCP/IP Reverse Address Resolution Protocol server
re re(8) command scripts for auto-reboot and daemons
re.boot re(8) command scripts for auto-reboot and daemons
re.local re(8) command scripts for auto-reboot and daemons
rdate rdate(8C) set system date from a remote host
rdump dump(8) incremental file system dump
reboot reboot(8) restart the operating system
reniee renice(8) alter nice value of running processes
repquota repquota(8) summarize quotas for a file system
restore restore (8) incremental file system restore
rexd rexd(8C) RPC-based remote execution server
rexeed rexecd(8C) remote execution server
rfadmin rfadmin(8) RFS domain administration
rfpasswd rfpasswd(8) change RFS host password
rfstart rfstart(8) startRFS
rfstop rfstop(8) stop the RFS environment
rfuadmin rfuadmin(8) RFS notification shell script
rfudaemon rfudaemon(8) Remote File Sharing daemon

Sun Release 4.1 Last change: 17 November 1987 1831

INTRO(8) M~NANCECOMMANDS INTRO(8)

rlogind rlogind(8C) remote login server
rotail rmail(8C) handle remote mail received via uucp
rm client rm _ client(8) remove an NFS client
rmntstat rmntstat(8) display RFS mounted resource information
rmt rmt(8C) remote magtape protocol module
route route(8C) manually manipulate the routing tables
routed routed(8C) network routing daemon
rpc.etherd etherd(8C) Ethernet statistics server
rpcinfo rpcinfo(8C) report RPC information
rpc.lockd lockd(8C) network lock daemon
rpc.mountd mountd(8C) NFS mount request server
rpc.rexd rexd(8C) RPC-based remote execution server
rpc.rquotad rquotad(8C) remote quota server
rpc.rstatd rstatd(8C) kernel statistics server
rpc.rusersd rusersd(8C) network username server
rpc.rwalld rwalld(8C) network rwall server
rpc.sprayd sprayd(8C) spray server
rpc.statd statd(8C) network status monitor
rpc.yppasswdd yppasswdd(8C) server for modifying NIS password file
rpc.ypupdated ypupdated(8C) server for changing NIS information
rquotad rquotad(8C) remote quota server
rrestore restore (8) incremental file system restore
rshd rshd(8C) remote shell server
rstatd rstatd(8C) kernel statistics server
runacct acctsh(8) shell procedures for accounting
runacct runacct(8) run daily accounting
rusage rusage(8) print resource usage for a command
rusersd rusersd(8C) network username server
rwalld rwalld(8C) network rwall server
rwhod rwhod(8C) system status server
sa sa(8) system accounting
savecore savecore(8) save a core dump of the operating system
sendmail sendmail(8) send mail over the internet
set4 set4(8) set the virtual address space limit flag in a module
setsid setsid(8V) set process to session leader
showfbd showflld(8C) showfb daemon run on the NFS servers
showfb showfll(8C) print full pathname of file from the NFS file handle
showmount showmount(8) show all remote mounts
shutacct acctsh(8) shell procedures for accounting
shutdown shutdown(8) close down the system at a given time
skyversion skyversion(8) print the SKYFFP board microcode version number
sprayd sprayd(8C) spray server
spray spray(8C) spray packets
start_applic start_applic(8) generic application startup procedures
startup acctsh(8) shell procedures for accounting
statd statd(8C) network status monitor
sticky sticky(8) mark files for special treatment
sundiag sundiag(8) system diagnostics
sun install suninstall(8) install and upgrade the S unOS operating system
swapon swapon(8) specify additional device for paging and swapping
sys-config sys-config(8) configure a system or administer configuration information
syslogd syslogd(8) log system messages
sys-unconfig sys-unconfig(8) undo a system's configuration

1832 Last change: 17 November 1987 Sun Release 4.1

INTRO(8) MAThnENANCECOMMANDS INTRO(8)

talkd talkd(8C) server for talk program
telnetd telnetd(8C) TCP/IP TELNET protocol server
tfsd tfsd(8) TFS daemon
tftpd tftpd(8C) TCP/IP Trivial File Transfer Protocol server
tic tic(8V) terminfo compiler
tnamed tnamed(8C) TCP/IP Trivial name server
trpt trpt(8C) transliterate protocol trace
ttysoftcar ttysoftcar(8) enable/disable carrier detect
tunefs tunefs(8) tune up an existing file system
turnacct acctsh(8) shell procedures for accounting
tzsetup tzsetup(8) set up old-style time zone information in the kernel
uid allocd uid _ allocd(8C) UID and GID allocator daemons
umount mount(8) mount and unmount file systems
umount tfs mount _tfs(8) mount and dismount TFS filesystems
unadv unadv(8) unadvertise a Remote File Sharing resource
unconfigure unconfigure(8) reset the network configuration for a Sun386i system
unlink Iink(8V) exercise link and unlink system calls
unset4 set4(8) unset the virtual address space limit flag in a module
update update(8) periodically update the super block
user_agentd user _ agentd (8C) user agent daemon
uucheck uucheck(8C) check the UUCP directories and Permissions file
uucico uucico(8C) file transport program for the UUCP system
uuclean u uclean(8C) uucp spool directory clean-up
uucleanup uucleanup(8C) UUCP spool directory clean-up
uucpd uucpd(8C) UUCP server
uusched uusched(8C) the scheduler for the UUCP file transport program
uuxqt uuxqt(8C) execute remote command requests
vipw vipw(8) edit the password file
vmstat vmstat(8) report virtual memory statistics
wtmpfix fwtmp(8) manipulate connect accounting records
ypbatchupd ypbatchupd(8C) NIS batch update daemon
ypbind ypserv(8) NIS server and binder processes
ypinit ypinit(8) build and install NIS database
ypmake ypmake(8) rebuild NIS database
yppasswdd yppasswdd(8C) server for modifying NIS password file
yppoll yppoll(8) version of NIS map at NIS server
yppush yppush(8) force propagation of changed NIS map
ypserv ypserv(8) NIS server and binder processes
ypset ypset(8) point ypbind at a particular server
ypsync ypsync(8) collect most up-to-date NIS maps
ypupdated ypupdated(8C) server for changing NIS information
ypxfr ypxfr(8) transfer NIS map from NIS server to here
zdump zdump(8) time zone dumper
zie zic(8) time zone compiler

Sun Release 4.1 Last change: 17 November 1987 1833

AC(8) MAThITENANCECOMMANDS AC(8)

NAME
ac - login accounting

SYNOPSIS
lusr/etc/ac [-w wtmp] [-p] [-d] [username] ...

DESCRIPTION
ac produces a printout giving connect time for each user who has logged in during the life of the current
wtmp file. A total is also produced.

The accounting file Ivar/admlwtmp is maintained by init(8) and login(I). Neither of these programs
creates the file, so if it does not exist no connect-time accounting is done. To start accounting, it should be
created with length O. On the other hand if the file is left undisturbed it will grow without bound, so
periodically any information desired should be collected and the file truncated.

OPTIONS
-wwtmp

Specify an alternate wtmp file.

-p Print individual totals; without this option, only totals are printed.

-d Printout for each midnight to midnight period. Any people will limit the printout to only the
specified login names. If no wtmp file is given, Ivar/adm/wtmp is used.

FILES
Ivar/adm/wtmp

SEE ALSO
login(I), utmp(5V), init(8), sa(8)

1834 Last change: 9 September 1987 Sun Release 4.1

ACCT(8) MAThnENANCECOMMANDS ACCT(8)

NAME
acctdisk, acctdusg, accton, acctwtmp - overview of accounting and miscellaneous accounting commands

SYNOPSIS
lusr/lib/acetlaectdisk

lusr/lib/acetlaeetdusg [-u filename] [-p filename]

lusr/lib/acetlaeeton [filename]

lusr/lib/acetlaectwtm p reason

DESCRIPTION
Accounting software is structured as a set of tools (consisting of both C programs and shell procedures)
that can be used to build accounting systems. aeetsb(8) describes the set of shell procedures built on top of
the C programs.

Connect time accounting is handled by various programs that write records into letdutmp, as described in
utmp(5V). The programs described in aecteon(8) convert this file into session and charging records,
which are then summarized by aectmerg(8).

Process accounting is performed by the UNIX system kernel. Upon termination of a process, one record
per process is written to a file (normally Ivar/adm/pacet). The programs in aeetpre(8) summarize this
data for charging purposes; aectems(8) is used to summarize command usage. Current process data may
be examined using aeeteom(I).

Process accounting and connect time accounting (or any accounting records in the format described in
aeet(5» can be merged and summarized into total accounting records by aeetmerg (see taeet format in
aeet(5». prtaeet (see aeetsh(8» is used to format any or all accounting records.

acetdisk reads lines that contain user ID, login name, and number of disk blocks and converts them to total
accounting records that can be merged with other accounting records.

acetdusg reads its standard input (usually from 'find / -print') and computes disk resource consumption
(including indirect blocks) by login.

aeeton without arguments turns process accounting off. If filename is given, it must be the name of an
existing file, to which the kernel appends process accounting records (see acct(2V) and aect(5». You must
be super-user to use this command.

aeetwtmp writes a utmp(5V) record to its standard output. The record contains the current time and a
string of characters that describe the reason. The login name for this record is set to @@aect (see
utmp(5V». reason must be a string of 8 or fewer characters, numbers, $, or SPACE characters. If reason
contains a SPACE character, it must be enclosed in double quotes. For example, the following are sugges­
tions for use in reboot and shutdown procedures, respectively:

acetwtmp uname »/var/adm/wtmp
acetwtmp fsave »/var/adm/wtmp

OPTIONS
acctdusg

-ufilename
Place records consisting of those file names for which aeetdusg charges no one in filename (a
potential source for finding users trying to avoid disk charges).

-pfilename
Use filename as the password file, rather than lete/passwd. (See diskusg(8) for more details.)

FILES
/etdpasswd
lusr/lib/aect
Ivar/adm/paect
Ivar/adm/wtmp

Sun Release 4.1

used for login name to user ID conversions
holds all accounting commands listed in section 8 of this manual
current process accounting file
login/logoff history file

Last change: 13 January 1990 1835

ACCT(8) MAThITENANCECOMMANDS ACCf(8)

SEE ALSO
acctcom(1), acct(2V), acct(5), utmp(5V), acctcms(8), acctcon(8), acctmerg(8), acctprc(8), acctsh(8),
diskusg(8), fwtmp(8), runacct(8)

1836 Last change: 13 January 1990 Sun Release 4.1

ACCTCMS(8) MAThITENANCECOMMANDS ACCTCMS(8)

NAME
acctcms - command summary from per-process accounting records

SYNOPSIS
lusr/lib/acctlacctcms [-cjnst] filename ...

lusr/lib/acctlacctcms [-a [po] [cjnstpo] filename . ..

DESCRIPTION
acctcms reads one or more filenames, normally in the form described in acct(S). It adds all records for
processes that executed identically-named commands, sorts them, and writes them to the standard output,
normally using an internal summary format.

OPTIONS
-a Print output in ASCII rather than in the internal summary format. The output includes command

name, number of times executed, total kcore-minutes, total CPU minutes, total real minutes, mean
size (in K), mean CPU minutes per invocation, "hog factor", characters transferred, and blocks
read and written, as in acctcom(l). Output is nonnally sorted by total kcore-minutes.

-c Sort by total CPU time, rather than total kcore-minutes.

-j Combine all commands invoked only once under "* * * other".

-n Sort by number of processes.

-s Any file names encountered hereafter are already in internal summary format.

-t Process all records as total accounting records. The default internal summary format splits each
field into prime and non-prime time parts. This option combines the prime and non-prime time
parts into a single field that is the total of both.

The following options may be used only with the -a option.

-p Output a prime-time-only command summary.

-0 Output a non-prime (offshift) time only command summary.

When -p and -0 are used together, a combination prime and non-prime time report is produced. All the
output summaries will be total usage except number of times executed, CPU minutes, and real minutes
which will be split into prime and non-prime.

EXAMPLES
A typical sequence for performing daily command accounting and for maintaining a running total is:

acctcms file .•• >today
cp total previoustotal
acctcms -s today previoustotal >total
acctcms -a -s today

SEE ALSO

BUGS

acctcom(l), acct(2V), acct(S), utmp(SV), acct(8), acctcon(8), acctmerg(8), acctprc(8), acctsh(8),
fwtmp(8), runacct(8)

Unpredictable output results if -t is used on new style internal summary format files, or if it is not used
with old style internal summary format files.

Sun Release 4.1 Last change: 17 January 1990 1837

ACCTCON(8) MA~NANCECOMMANDS ACCTCON(8)

NAME
acctconl, acctcon2 - connect-time accounting

SYNOPSIS
lusr/lib/acctlacctcon1 [-pt] [-Ifile] [-ofile]

lusr/lib/acctlacctcon2

DESCRIPTION
acctconl

acctcon1 converts a sequence of login/logoff records read from its standard input to a sequence of records,
one per login session. Its input should normally be redirected from Ivar/adm/wtmp. Its output is ASCII,
giving device, user ID, login name, prime connect time (seconds), non-prime connect time (seconds), ses­
sion starting time (numeric), and starting date and time.

acctcon2
acctcon2 expects as input a sequence of login session records and converts them into total accounting
records (see tacct fonnat in acct(5».

OPTIONS
acctconl

-p Print input only, showing line name, login name, and time (in both numeric and date/time for­
mats).

-t Test mode. acctcon 1 maintains a list of lines on which users are logged in. When it reaches the
end of its input, it emits a session record for each line that still appears to be active. It normally
assumes that its input is a current file, so that it uses the current time as the ending time for each
session still in progress. The -t flag causes it to use, instead, the last time found in its input, thus
assuring reasonable and repeatable numbers for non-current files.

-I file file is created to contain a summary of line usage showing line name, number of minutes used,
percentage of total elapsed time used, number of sessions charged, number of logins, and number
of logoffs. This file helps track line usage, identify bad lines, and find software and hardware
oddities. Hang-up, tennination of 10gin(l) and termination of the login shell each generate logoff
records, so that the number of logoffs is often three to four times the number of sessions. See
init(8) and utmp(5V).

-0 file file is filled with an overall record for the accounting period, giving starting time, ending time,
number of reboots, and number of date changes.

EXAMPLES

FILES

These commands are typically used as shown below. The file ctmp is created only for the use of
acctprc(8) commands:

acctcon1 -t -Ilineuse -0 reboots <wtmp I sort + 1n +2 >ctmp
acctcon2 <ctmp I acctmerg >ctacct

Ivar/adm/wtmp

SEE ALSO

BUGS

1838

acctcom(I), 10gin(1), acct(2V), acct(5), utmp(5V), acct(8), acctcms(8), acctmerg(8), acctprc(8),
acctsb(8), fwtmp(8), init(8), runacct(8)

The line usage repo:! is confused by date changes. Use wtmpfix (see fwtmp(8» to correct this situation.

Last change: 13 January 1990 Sun Release 4.1

ACCTMERG (8) MAINTENANCE COMMANDS

NAME
acctmerg - merge or add total accounting files

SYNOPSIS
lusr/lib/acctlacctmerg [-aiptuv] [filename ...]

DESCRIPTION

ACCTMERG (8)

acctmerg reads its standard input and up to nine additional files, all in the tacct format (see acct(5» or an
Ascn version thereof. It merges these inputs by adding records whose keys (nonnally user ID and name)
are identical, and expects the inputs to be sorted on those keys.

OPTIONS
-a Produce output in Ascn version of tacet.

-i Input files are in ASCII version of tacet.

-p Print input with no processing.

-t Produce a single record that totals all input.

-u Summarize by user ID, rather than user ID and name.

-v Produce output in verbose ASCII format, with more precise notation for floating point numbers.

EXAMPLES
The following sequence is useful for making "repairs" to any file kept in this format:

acctmerg -v <filenamel >filename2
edit file2 as desired . ..

acctmerg -i <filename2 >filenamel

SEE ALSO
acetcom(I), acct(2V), acct(S), utmp(5V), acet(8), acctcms(8), acctcon(8), acctprc(8), acctsh(8) ,
fwtmp(8), runacct(8)

Sun Release 4.1 Last change: 17 January 1990 1839

ACCTPRC(8) MAINTENANCE COMMANDS ACCfPRC(8)

NAME
acctprcl, acctprc2 - process accounting

SYNOPSIS
lusr/lib/acctlacctprcl [ctmp]

lusr/lib/acctlacctprc2

DESCRIPTION
acctprcl

acctprcl reads input in the form described by acct(5), adds login names corresponding to user IDs, then
writes for each process an ASCII line giving user ID, login name, prime CPU time (ticks), non-prime CPU
time (ticks), and mean memory size (in pages). If ctmp is given, it is expected to be the name of a file con­
taining a list of login sessions, in the form described in acctcon(8), Sorted by user ID and login name .. If
this file is not supplied, it obtains login names from the password file. The infonnation in ctmp helps it dis­
tinguish among different login names that share the same user ID.

acctprc2
acctprc2 reads records in the form written by acctprcl, summarizes them by user ID and name, then writes
the sorted summaries to the standard output as total accounting records.

EXAMPLES
These comm3}1ds are typically used as shown below:

acctprcl ctmp <lvar/adm/pacct I acctprc2 >ptacct

FILES
letclpasswd

SEE ALSO

BUGS

1840

acctcom(1), acct(2V), acct(5), utmp(5V), acct(8), acctcms(8), acctcon(8), acctmerg(8), acctsh(8),
cron(8), fwtmp(8), runacct(8)

Although it is possible to distinguish among login names that share user IDs for commands run from the
command line, it is difficult to do this for those commands run by cron(8), for example. More precise
conversion can be done by faking login sessions on the console using the acctwtmp program in acct(8).

Last change: 13 January 1990 Sun Release 4.1

ACCTSH(8) MAINTENANCE COMMANDS ACcrSH(8)

NAME
chargefee, ckpacct, dodisk, lastlogin, monacct, nulladm, prctmp, prdaily, prtacct, runacct, shutacct, startup,
turnacct - shell procedures for accounting

SYNOPSIS
lusr/lib/acctlchargefee login-name number

lusr/lib/acctlckpacct [blocks]

lusr/lib/acctldodisk [-0] [filename...]

lusrllib/acctllastlogin

lusr/lib/acctlmonacct number

lusr/lib/acctlnulladmfilename

lusr/lib/acctlprctmp filename

lusr/lib/acctlprdaily [-cl] [mmdd]

lusr/lib/acctlprtacct filename [heading]

lusr/lib/acctlrunacct [mmdd] [mmdd state]

lusr/lib/acctlshutacct [reason]

lusr/lib/acctlstartup

lusr/lib/acctlturnacct on I off I switch

DESCRIPTION
chargeree

chargefee can be invoked to charge a number of units to login-name. A record is written to Ivar/adm/fee,
to be merged with other accounting records during the night

ckpacct
ckpacct should be initiated by cron(8) every hour. It periodically checks the size of Ivar/admlpacct. If
the size exceeds blocks, 1000 by default, turnacct is called with the argument switch. If the number of
free disk blocks in the lusr file system falls below 500, ckpacct automatically turns off the collection of
process accounting records using the off argument to turnacct. When at least this number of blocks is
restored, accounting is activated again. This feature is sensitive to the frequency at which ckpacct is exe­
cuted, usually by cron.

dodisk
dodisk should be executed by cron to perfonn the disk accounting functions. By default, it does disk
accounting on the 4.2 file systems in letc/fstab. filenames specify the one or more filesystem names where
disk accounting will be done. Iffilenames are used, disk accounting will be done on these filesystems only.
They should be the special file names of mountable filesystems.

lastlogin
lastlogin is invoked by runacct to update Ivar/adm/acctlsum/loginlog, which shows the last date on
which each person logged in. Iastlogin deletes the entries of users no longer in letc/passwd and creates
new entries.

monacct
monacct should be invoked once each month or each accounting period. number indicates which month or
period it is. If number is not given, it defaults to the current month (01-12). This default is useful if
monacct is executed by cron(8) on the first day of each month. monacct creates summary files in
Ivar/adm/acctlfiscal and restarts summary files in Ivar/adm/acctlsum.

nulladm
nulladm creates filename with mode 664 and insures that owner and group are adm. It is called by various
accounting shell procedures.

Sun Release 4.1 Last change: 17 January 1990 1841

ACCTSH(8) MA~NANCECOMMANDS ACcrSH(8)

prctmp
prctmp can be used to print the session record file with headings (normally Ivar/admlacctlnite/ctmp
created by acctconl (see acctcon(8». The heading specifies device, user 10, login name, prime connect
time (in seconds), non-prime connect time (in seconds), session starting time (numeric) and starting date
and time.

prdaily
prdaily is invoked by runacct to format a report of the previous day's accounting data. The report resides
in Ivar/adm/acctlsum/rprtmmdd where mmdd is the month and day of the report. The current daily
accounting reports may be printed by typing prdaily. Previous days' accounting reports can be printed by
using the mmdd option and specifying the exact report date desired. Previous daily reports are cleaned up
and therefore inaccessible after each invocation of monacct.

prtacct
prtacct can be used to format and print any total accounting (tacct) file with headings. See Chapter 8 in
the System and Network Administration manual, for an explanation of this output.

runacct
runacct performs the accumulation of connect, process, fee, and disk accounting on a daily basis. It also
creates summaries of command usage. For more information, see runaect(8).

shutacct
shutacct should be invoked during a system shutdown (usually in letc/shutdown) to turn process account­
ing off and append a "reason" record to Ivar/adm/wtmp. If reason is not specified, shutdown is provided
as a default reason.

startup
startup should be called by letdrc to turn the accounting on whenever the system is brought up.

turnacct
turnacct is an interface to accton (see acct(8» to tum process accounting on or off. The switch argument
turns accounting off, moves the current Ivar/adm/pacet to the next free name in Ivar/adm/pacctincr
(where incr is a number starting with 1 and incrementing by one for each additional pacct file), then turns
accounting back on again. This procedure is called by ckpacct and thus can be taken care of by eron and
used to keep pacct to a reasonable size. This command is restricted to the super-user.

OPTIONS
dodisk

-0 Do a slower version of disk accounting by login directory. filenames should be mount points of
mounted filesystem.

prdaily

FILES

1842

-c Prints a report of exceptional resource usage by command. This may be used on current day's
accounting data only.

-I Print a report of exceptional usage by login 10 for the specifed date.

letdfstab
Ivar/adm/pacct
Ivar/adm/pacct*
Ivar/adm/wtmp
lusr/lib/acctlptelus.awk
lusr/lib/acctlptecms.awk
Ivar/adm/acetlnite
lusr/lib/acct
Ivar/adm/acetlsum

list of file systems Ivar/adm/fee accumulator for fees
current file for per-process accounting
used if pacct gets large and during execution of daily accounting procedure
login/logoff summary
limits for exceptional usage by login id
limits for exceptional usage by command name
working directory
directory of accounting commands
summary directory, should be saved

Last change: 17 January 1990 Sun Release 4.1

ACCTSH(8) MAINTENANCE COMMANDS ACcrSH(8)

SEE ALSO
aeeteom(1), aect(2V), aect(5), utmp(5V), aect(8), aectems(8), aeeteon(8), aectmerg(8), acctpre(8),
eron(8), diskusg(8), fwtmp(8), runacct(8)

System and Network Administration

Sun Release 4.1 Last change: 17 January 1990 1843

ADBGEN(8) MAINTENANCE COMMANDS ADBGEN(8)

NAME
adbgen - generate adb script

SYNOPSIS
lusrllib/adb/adbgen filename .adb ...

DESCRIPTION
adbgen makes it possible to write adb(l) scripts that do not contain hard-coded dependencies on structure
member offsets. The input to adbgen is a file namedfilename.adb which contains adbgen header informa­
tion, then a null line, then the name of a structure, and finally an adb script. adbgen only deals with one
structure per file; all member names are assumed to be in this structure. The output of adbgen is an adb
script in filename. adbgen operates by generating a C program which determines structure member offsets
and sizes, which in turn generates the adb script.

The header lines, up to the null line, are copied verbatim into the generated C program. Typically these
,include C #include statements to include the header files containing the relevant structure declarations.

The adb script part may contain any valid adb commands (see adb(l», and may also contain adbgen
requests, each enclosed in {}s. Request types are:

• Print a structure member. The request form is {member ,format}. member is a member name of
the structure given earlier, and format is any valid adb format request. For example, to print the
p yid field of the proc structure as a decimal number, you would write {p yid,d}.

• Reference a structure member. The request form is {*member,base}. member is the member
name whose value is desired, and base is an adb register name which contains the base address of
the structure. For example, to get the p yid field of the proc structure, you would get the proc
structure address in an adb register, say <f, and write {*p yid,<f}.

• Tell adbgen that the offset is ok. The request form is {OFFSETOK}. This is useful after invoking
another adb script which moves the adb dot.

• Get the size of the structure. The request form is {SIZEOF}. adbgen replaces this request with
the size of the structure. This is useful in incrementing a pointer to step through an array of struc­
tures.

• Get the offset to the end of the structure. The request form is {END}. This is useful at the end of
the structure to get adb to align the dot for printing the next structure member.

adbgen keeps track of the movement of the adb dot and emits adb code to move forward or backward as
necessary before printing any structure member in a script. adbgen's model of the behavior of adb's dot
is simple: it is assumed that the first line of the script is of the form struct _address/adb text and that subse­
quent lines are of the form +/adb text. This causes the adb dot to move in a sane fashion. adbgen does
not check the script to ensure that these limitations are met. adbgen also checks the size of the structure
member against the size of the adb format code and warns you if they are not equal.

EXAMPLE

1844

If there were an include file x.h which contained:
struct x {

char *x_cp;
char x_c;
int x_i;

};

Then an adbgen file (call it script.adb) to print it would be:
#include "x.h"
x
.I"x_cp" 16t"x_c" 8t"xJ" n{x_cp,X}{x_c,C}{xJ,D}

Last change: 25 September 1987 Sun Release 4.1

ADBGEN(8) MAINTENANCE COMMANDS ADBGEN(8)

FILES

After running adbgen the output file script would contain:

16t"x _ c"St"x J"nXC+D"" .I"x _ cp" 16t"x _ c"St"x J"nXC+D

To invoke the script you would type:

x$<script

lusrlIib/adb/*

SEE ALSO

adb scripts for debugging the kernel

BUGS

adb(I). kadb(8S)

Debugging Tools

adb syntax is ugly; there should be a higher level interface for generating scripts.

Structure members which are bit fields cannot be handled because C will not give the address of a bit field.
The address is needed to determine the offset.

DIAGNOSTICS
Warnings about structure member sizes not equal to adb format items and complaints about badly format­
ted requests. The C compiler complains if you reference a structure member that does not exist. It also
complains about & before array names; these complaints may be ignored.

Sun Release 4.1 Last change: 25 September 1987 1845

MAINTENANCE COMMANDS

NAME
add_client - create a diskless network bootable NFS client on a server

SYNOPSIS
/usr/etclinstaIlladd_client [-inpv] [-a kernel-arch] [-e exec-path] [-f share-path] [-h home-path]

[-k kvm-path] [-m mail-path] [-r root-path] [-s swap-path] [-t term-type]
[-y yptype] [-z swapsize] [client. ..]

DESCRIPTION
add_client adds an NFS client to a server. It can only be run by the super-user.

A default standard layout is used to set up the client's environment, but most pathnames can be overridden
with the appropriate option, or menu field change.

Before you can add a client, you must first make sure that the Internet and Ethernet addresses for client are
listed in the Network Interface Service (NIS) hosts database (if the server is running the NIS service), or in
the server's /etclhosts and /etclethers databases, respectively. If add_client cannot find the client entry in
the hosts database it aborts the operation. If there is no client entry in the /etdethers database, add_client
issues a warning to update this file while adding the client.

The default root and swap partitions are /export/root/client and /exportlswap/client, respectively.

add_client updates the /etc/bootparams file on the server but not the bootparams database in the NIS ser­
vice (if used).

If the server is not running as an NIS master , add_client issues a warning to indicate that the database is out
of date and the NIS master should be updated.

add_client updates the server's /etc/exports file to allow client's root access to each client's root file sys­
tem. It also exports each client's swap file accordingly. Note: the system administrator should verify that
the /etc/exports file contains correct information, and that file systems are exported to the correct users and
groups. Refer to exportfs(8) for details on exporting file systems.

If the -i or -p option is not specified, at least one client argument must be supplied on the command line.

OPTIONS

1846

-i Interactive. Bring up a full-screen menu interface to add _client.

-0 Print the working parameters and exit without doing anything. This is used to verify
what parameters add _client will use before actually doing anything.

-p Display a short version of all client information, If clients are specified on the command
line, only display information for those clients. When combined with the -v option, a
long version of client information is displayed.

-v Verbose. Report information about the client as steps are performed.

-a kernel-arch Specify the client kernel architecture (for instance, sun3, sun4, sun4c ...). add client
prompts for the kernel architecture when unable to determine the correct value.

-e exec-path Set the pathname of the directory in which the executables for the architecture specified
by -a. The client mounts lexportlexeclarch.rel as lusr. See WARNINGS.

-f share-path Set the pathname of the share directory, which is normally a link to /usrlshare.

-h home-path Set the pathname of the directory for the client's home. The default is Ihome/ server-

-kkvm-path

-m mail-path

-r root-path

name.

Set the pathname of the directory containing the client's kernel executables. See WARN­
INGS.

Set the path name of the client's mail directory. The default is /var/spool/mail.

Set the pathname of parent directory for client root directories; root/client is the path­
name of the client's root directory. The default is /exportlrootlclient-name.

Last change: 13 January 1990 Sun Release 4.1

FILES

-s swap-path

-t term-type

-y yptype

-z swapsize

letdbootparams
tetdethers
letdexports
letdhosts

MAINlENANCE COMMANDS ADD_CLIENT (8)

Set the pathname of parent directory for client swap files; swap/client is the pathname of
the client's swap file. The default is /exportlswap/client-name.

Set the terminal type of the client's console.

Indicate the type of NIS server or if client is to be an NIS client; it can be client or none.
The none argument results in the NIS service being disabled on the client. The default is
client.

Reserve swapsize bytes for the client's swap file. swapsize can be flagged as kilobytes,
blocks, or megabytes, with the k, b, or m suffixes, respectively. The default is 16Mb,
and bytes are used when no units are specified.

I exportl execlproto.root.release
architecture independent base for the client root file system

Itftpboot.client-ipaddr link to Itftpbootlboot.arch

SEE ALSO
add _ services(8), bootparamd(8), exportfs(8), ndbootd(8C), rm _ client(8), suninstaU(8)

Installing Sun OS 4.1

DIAGNOSTICS

NOTES

add_client: must be super-user
You must be root to use add client.

The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed.

WARNINGS
The -e exec-path and the -k kvm-path options should not be used since the correct paths are determined
when the adding the client's architecture service. See add_services(8).

Sun Release 4.1 Last change: 13 January 1990 1847

ADD_SERVICES (8) MAINTENANCE COMMANDS ADD_SERVICES (8)

NAME
add_services - provide software installation services for any architecture

SYNOPSIS
fusrf etcfinstalll add services

DESCRIPTION

FILES

add_services is a menu-based program to setup a system as a server and/or to add additional software
categories or other architecture releases. It is used to provide support to diskless clients, dataless clients, or
just to act as a file server. add_services can only be run by the super-user.

add_services updates the fetc/exports file (see exports(5) and exportfs(8» to export the necessary file
systems to become a file server. After running add_services, the system administrator should verify this
file to make sure that the new services have been exported to the correct groups.

fetc/bosts

fetc/exports
ftftpboot

hosts database, host must be in this database or in the Network Interface Service
(NIS) hosts map
database of exported file systems, service related directories must be exported
add_services sets up this directory in order to provide boot service to clients

SEE ALSO

NOTES

1848

exports(5), add _ client(8). exportfs(8), rm _ client(8), suninstall(8)

Installing SunOS 4.1

The Network Information Service (NIS) was fonnedy known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed.

Last change: 13 January 1990 Sun Release 4.1

ADDUSER(8) MAINTENANCE COMMANDS ADDUSER(8)

NAME
adduser - procedure for adding new users

DESCRIPTION

USAGE

To add an account for a new user, the system administrator (or super-user):

• Create an entry for the new user in the system password files.

• Create a home directory for the user, and change ownership so the new user owns that direc­
tory.

• Optionally set up skeletal dot files for the new user (.cshrc, .Iogin, .profile ...).

• If the account is on a system running the Network Interface Service (NIS), take additional
measures.

Making an Entry in the Password File
To add an entry for the new login name on a local host, first edit the letc/passwd file - inserting a line for
the new user. This must be done with the password file locked, for instance, by using vipw(8), and the
insertion must be made above the line containing the string:

+::0:0:::

This line indicates that additional accounts can be found in the NIS service.

To add an entry for the new login name into the NIS service, add an identical line to the file letc/passwd on
the NIS master server, and run make(1) in the directory Ivar/yp (see ypmake(8) for details) to propagate
the change.

The new user is assigned a group and user ID number (GID and UID respectively). UIDs should be unique
for each user and consistent across the NFS domain, since they control access to files. GIDs need not be
unique. Typically, users working on similar projects will assigned to the same group. The system staff is
group 10 for historical reasons, and the super-user is in this group.

An entry for a new user francine would look like this:

rrancine::23S:20:& Featherstonehaugh:/usr/francine:lbinlcsh

Fields in each password-file entry are delimited by colons, and have the following meanings:

Sun Release 4.1

• Login name (francine). The login name is limited to eight characters in length.

• Encrypted password or the string ##name if encrypted passwords are stored in the password
adjunct file. Typically, if passwords are to be stored in the main password file, this field is left
empty, so no password is needed when the user first logs in. If security demands a password,
it should be assigned by running passwd(l) immediately after exiting the editor. The number
of significant characters in a password is eight. (See passwd(1).)

• User ID. The UID is a number which identifies that user uniquely in the system. Files owned
by the user have this number stored in their data blocks, and commands such as Is (IV) (see
1s(1 V», use it to look up the owner's login name. For this reason, you cannot randomly
change this number. See passwd(5) for more infonnation.

• Group ID. The GID number identifies the group to which the user belongs by default (although
the user may belong to additional groups as well). All files that the user creates have this
number stored in their data blocks, and commands such as Is(1 V) (see Is(1 V), use it to look up
the group name. Group names and assignments are listed in the file fetc/group (which is
described in group(5» or in the NIS group map.

• This field is called the GCOS field (from earlier implementation of the operating system) and is
traditionally used to hold the user's full name. Some installations have other infonnation
encoded in this field. From this infonnation we can tell that Francine's real name is 'Francine
Featherstonehaugh'. The & in the entry is shorthand for the user's login name.

Last change: 7 September 1989 1849

ADDUSER(8) MAINTENANCE COMMANDS ADDUSER(8)

• User's home directory. This is the directory in which that user is "positioned" when they log
in.

• Initial shell which this user will see on login. If this field is empty, sh(l) is used as the initial
shell.

An entry for a new user francine would look like this:

francine:::: :Io:ad,+dw

Fields in each password adjunct file entry are delimited by colons, and have the following meanings:

• Login name (francine). This name must match the login name in the password file.

• Encrypted password. Typically, this field is left empty when adding the line using the editor.
passwd(l) should be run immediately after exiting the editor.

• The next three fields are the minimum label, the maximum label, and the default label. These
fields should be left empty, since they are reserved for future use.

• The next two fields are for the always-audit flags and the never-audit flags. Always-audit flags
specify which events are guaranteed to be audited for that user. Never-audit flags specify
which events are guaranteed not to be audited for that user. For a description of audit flags,
see audit_data(5).

Making a Home Directory
As shown in the password file entry above, the name of Francine's home directory is to be lusr/francine.
This directory must be created using mkdir(I), and Francine must be given ownership of it using
chown(8), in order for her profile files to be read and executed, and to have control over access to it by
other users:

example# mkdir lusr/francine
example# lusr/etc/chown francine lusr/francine

If running under NFS, the mkdir(l) and chown(8) commands must be performed on the NFS server.

Setting Up Skeletal Profile Files

FILES

New users often need assistance in setting up their profile files to initialize the terminal properly, configure
their search path, and perform other desired functions at startup. Providing them with skeletal profile files
saves time and interruptions for both the new user and the system administrator.

Such files as .profile (if they use lusr/bin/sh as the shell), or .cshrc and .Iogin (if they use lusrlbinlcsh as
the shell), can include commands that are performed automatically at each login, or whenever a shell is
invoked, such as tset(I). The ownership of these files must be changed to belong to the new user, either by
running su(1 V) before making copies, or by using chown(8).

letclpasswd password file
letclsecurity/passwd.adjunct
letclgroup group file
letclyp/src/passwd
-I.cshrc
-1.login
-I.profile

SEE ALSO

1850

csh(I), 1s(IV), make(I), mkdir(I), passwd(1), sh(I), su(1V), tset(I), audit(2), audit_control(5),
audit_data(5), passwd.adjuDct(5), group(5), passwd(5), passwd.adjuDct(5) audit(8), auditd(8),
chown(8), vipw(8), ypmake(8)

System and Network Administration

Last change: 7 September 1989 Sun Release 4.1

ADDUSER(8) MAIN1ENANCE COMMANDS ADDUSER(8)

NOTES
The Network Infonnation Service (NIS) was fonnerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed.

Sun Release 4.1 Last change: 7 September 1989 1851

ADV(8) M~NANCECOMMANDS ADV(8)

NAME
adv - advertise a directory for remote access with RFS

SYNOPSIS

adv
adv [-r] [-d description] resource pathname [clients . ..]
adv -m resource -d description I [clients . ..]
adv -m resource [-d description] I clients . . .

A V AILABILITY
This program is available with the RFS software installation option. Refer to Installing SunOS 4.1 for
information on how to install optional software.

DESCRIPTION
adv makes a resource from one system available for use on other systems. The machine that advertises the
resource is called the server, while systems that mount and use the resource are clients. See mount(8).
resource represents a directory, which could contain files, subdirectories, named pipes and devices.

Remote File Sharing (RFS) must be running before adv can be used to advertise or modify a resource entry.

When used with no options, adv displays all local resources that have been advertised; this includes the
resource name, the pathname, the description, the read-write status, and the list of authorized clients. The
resource field has a fixed length of 14 characters; all others are of variable length. Fields are separated by
two SPACE characters and double quotes (tt) surround the description.

This command may be used without options by any user; otherwise it is restricted to the super-user.

There are three ways adv is used:

• To print a list of all locally-advertised resources, as shown by the first synopsis.

• To advertise the directory pathname under the name resource so it is available to RFS clients,
as shown by the second synopsis.

• To modify client and description fields for currently advertised resources, as shown by the
third and fourth synopses.

If any of the following are true, an error message will be sent to standard error.

• The network is not up and running.

• pathname is not a directory.

• pathname is not on a file system mounted locally.

• There is at least one entry in the clients field but none are syntactically valid.

OPTIONS

1852

-r Restrict access to the resource to a read-only basis. The default is read-write access.

-d description Provide brief textual information about the advertised resource. description is a single
argument surrounded by double quotes (tt argument") and has a maximum length of 32
characters.

-m resource Modify information for a resource that has already been advertised. The resource is
identified by a resource name. Only the clients and description fields can be modified.
To change the pathname, resource name, or read/write permissions, you must unadver­
tise and re-advertise the resource.

resource This is the symbolic name used by the server and all authorized clients to identify the
resource. It is limited to a maximum of 14 characters and must be different from every
other resource name in the domain. All characters must be printable ASCII characters,
but must not include '.' (periods), '/' (slashes), or white space.

Last change: 30 June 1988 Sun Release 4.1

ADV(8) MAINTENANCE COMMANDS ADV (8)

pathname

clients

This is the local pathname of the advertised resource. It is limited to a maximum of 64
characters. This pathname cannot be the mount point of a remote resource and it can
only be advertised under one resource name.

These are the names of all clients that are authorized to remotely mount the resource.
The default is that all machines that can connect to the server are authorized to access
the resource. Valid input is of the form node name , domain.nodename, domain., or an
alias that represents a list of client names. A domain name must be followed by a '.' to
distinguish it from a host name. The aliases are defined in letdhost.alias and must con­
form to the alias capability in mail(I).

EXAMPLES
The following example displays the local resources that have been advertised:

example% adv

EXIT STATUS

LOCAL SUN3 lexportlIocaIlsun3 tt" read-only unrestricted
LOCAL SUN4 lexportlIocaIlsun4 tt" read-only unrestricted
LOCAL SHARE lexportlIocaIlshare tt" read-only unrestricted

If there is at least one syntactically valid entry in the clients field, a warning will be issued for each invalid
entry and the command will return a successful exit status. A non-zero exit status will be returned if the
command fails.

FILES
letdhost.alias

SEE ALSO
mount(8), rfstart(8), unadv(8)

Sun Release 4.1 Last change: 30 June 1988 1853

ARP(8C) MA~NANCECOMMANDS ARP(8C)

NAME
arp - address resolution display and control

SYNOPSIS
arp hostname

arp -a [vmunix [kmem]]

arp -d hostname

arp -s hostname ether_address [temp] [pub] [trail]

arp -r filename

DESCRIPTION
The arp program displays and modifies the Internet-to-Ethernet address translation tables used by the
address resolution protocol (arp(4P»).

With no flags, the program displays the current ARP entry for hostname. The host may be specified by
name or by number, using Internet dot notation.

OPTIONS
-a Display all of the current ARP entries by reading the table from the file kmem (default Idev/kmem)

based on the kernel file vmunix (default Ivmunix).

-d Delete an entry for the host called hostname. This option may only be used by the super-user.

-s Create an ARP entry for the host called hostname with the Ethernet address ether _address. The
Ethernet address is given as six hex bytes separated by colons. The entry will be permanent
unless the word temp is given in the command. If the word pub is given, the entry will be pub­
lished, for instance, this system will respond to ARP requests for hostname even though the host­
name is not its own. The word trail indicates that trailer encapsulations may be sent to this host.

-f Read the file named filename and set multiple entries in the ARP tables. Entries in the file should
be of the form

hostname ether_address [temp] [pub] [trail]

with argument meanings as given above.

SEE ALSO
arp(4P), irconfig(8C)

1854 Last change: 17 November 1987 Sun Release 4.1

AUDIT (8) MAINTENANCE COMMANDS AUDIT(8)

NAME
audit - audit trail maintenance

SYNOPSIS
audit [-n I-s I-t]
audit -d username
audit -u username audit event state - -

A V AILABILITY

This program is available with the Security software installation option. Refer to Installing SunOS 4.1 for
information on how to install optional software.

DESCRIPTION
The audit command is the general administrator's interface to kernel auditing. The process audit state for
a user can be temporarily or permanently altered. The audit daemon may be notified to read the contents of
the audit_control file and re-initialize the current audit directory to the first directory listed in the
audit_control file, or to open a new audit file in the current audit directory specified in the audit_control
file as last read by the audit daemon. Auditing may also be terminated/disabled.

OPTIONS
-n Signal audit daemon to close the current audit file and open a new audit file in the current audit

directory.

-s Signal audit daemon to read audit control file. The audit daemon stores the information internally.

-t Signal audit daemon to disable auditing and die.

-d username
Change the process audit state of all processes owned by user name. This new process audit state
is constructed from the system and user audit values as specified in the audit control and
passwd.adjunct files respectively.

-u username audit event state

SEE ALSO

- -
Set the process audit state from audit _event _state for all current processes owned by username.
See audit_control(5) for the format of the system audit value. The process audit state is one
argument. Enclose the audit event state in quotes, or do not use SPACE characters in the process
audit state specification. A new login session reconstructs the process audit state from the audit
flags in the audit_control and passwd.adjunct files.

audit(2), setuseraudit(2), getauditflags(3), getfauditflags(3), audit_ control(5), passwd.adjunct(5)

Sun Release 4.1 Last change: 26 January 1988 1855

AUDITD(8) MA~NANCECOMMANDS AUDITD(8)

NAME
auditd - audit daemon

SYNOPSIS
lusr/etc/auditd

DESCRIPTION
The audit daemon controls the generation and location of audit trail files. If the function issecure(3)
returns false, the only action that auditd takes is to disable the auditing system; otherwise, auditing is set
up and started. If auditing is desired, auditd reads the audit_ control(5) file to get a list of directories into
which audit files can be written and the percentage limit for how much space to reserve on each filesystem
before changing to the next directory.

If auditd receives the signal SIGUSRl, the current audit file is closed and another is opened. If SIGHUP is
received, the current audit trail is closed, the audit_control file reread, and a new trail is opened. If
SIGTERM is received, the audit trail is closed and auditing is terminated. The program audit(8) sends
these signals and is recommended for this purpose.

Each time the audit daemon opens a new audit trail file, it updates the file audit _ data(5) to include the
correct name.

Auditing Conditions

1856

The audit daemon invokes the program audit_ warn(8) under the following conditions with the indicated
options:

audit_warn soft pathname

The file system upon which pathname resides has exceeded the minimum free space limit defined
in audit_ control(5). A new audit trail has been opened on another file system.

audit_warn allsoft
All available file systems have been filled beyond the minimum free space limit. A new audit trail
has been opened anyway.

audit_warn hard pathname
The file system upon which pathname resides has filled or for some reason become unavailable.
A new audit trail has been opened on another file system.

audit_warn allhard count.
All available file systems have been filled or for some reason become unavailable. The audit dae­
mon will repeat this call to audit_warn every twenty seconds until space becomes available.
count is the number of times that audit_warn has been called since the problem arose.

audit_warn ebusy
There is already an audit daemon running.

aUdit_warn tmpfile
The file letc/security/auditlaudit_tmp exists, indicating a fatal error.

audit warn nostart
The internal system audit condition is AUC _FCHDONE. Auditing cannot be started without
rebooting the system.

audit warn auditotT
The internal system audit condition has been changed to not be AUC_AUDITING by someone
other than the audit daemon. This causes the audit daemon to exit.

audit_warn postsigterm
An error occurred during the orderly shutdown of the auditing system.

audit_warn getacdir
There is a problem getting the directory list from letclsecurity/auditlaudit _control.

The audit daemon will hang in a sleep loop until this file is fixed.

Last change: 7 September 1988 Sun Release 4.1

AUDITD(8) MAINlENANCE COMMANDS

FILES
letdsecurity/auditlaudit_control
letdsecurity/auditlaudit _data

SEE ALSO
auditsvc(2), audit _ control(5), audit.log(5), audit(8), audit _ warn(8)

Sun Release 4.1 Last change: 7 September 1988

AUDITD(8)

1857

MAThITENANCECOMMANDS

NAME
audic warn - audit daemon warning script

SYNOPSIS
/usr/etc/audit_ warn [option [arguments]]

DESCRIPTION
The audit_warn script processes warning or error messages from the audit daemon. When a problem is
encountered, the audit daemon, auditd(8) calls audit_warn with the appropriate arguments. The option
argument specifies the error type.

The system administrator can specify a list of mail recpients using the script's RECIPIENTS variable. The
default recipient is root.

OPTIONS
soft filename

indicates that the soft limit for filename has been exceeded. The default action for this option is to
send mail to the system administrator.

allsoft indicates that the soft limit for all filesystems has been exceeded. The default action for this
option is to send mail to the system administrator.

hard filename
indicates that the hard limit for the file has been exceeded. The default action for this option is to
send mail to the system administrator.

allhard count
indicates that the hard limit for all filesystems has been exceeded count times. The default action
for this option is to send mail to the system administrator only if the count is 1, and to send a mes­
sage to console every time. It is recommended that mail not be send every time.

ebusy indicates that the audit daemon is already running. The default action for this option is to send
mail to the system administrator.

tmpfile indicates that the temporary audit file already exists indicating a fatal error. The default action for
this option is to send mail to the system administrator.

nostart indicates that auditing cannot be started because the system audit state is AUC_FCHDONE. The
default action for this option is to send mail to the system administrator. Some system administra­
tors may prefer to have the script reboot the system at this point.

auditofT
indicates that someone other than the audit daemon changed the system audit state to something
other than AUC_AUDITING. The audit daemon will have exited in this case. The default action
for this option is to send mail to the system administrator.

postsigterm

getacdir

indicates that an error occurred during the orderly shutdown of the audit daemon. The default
action for this option is to send mail to the system administrator.

indicates that there is a problem getting the directory list from: letclsecurity/auditlaudit _control.

The audit daemon will hang in a sleep loop until the file is fixed.

SEE ALSO
audit.log(5), audit_controI(5), audit(8), auditd(8)

1858 Last change: 7 September 1988 Sun Release 4.1

AUTOMOUNT (8) MAINTENANCE COMMANDS AUTOMOUNT (8)

NAME
automount - automatically mount NFS file systems

SYNOPSIS
automount [-mnTv] [-D name= value] [-f master-file] [-M mount-directory] [-tJ duration]

[-tm interval] [-tw interval] [directory map [-mount-options]] ...

DESCRIPTION
automount is a daemon that automatically and transparently mounts an NFS file system as needed. It mon­
itors attempts to access directories that are associated with an automount map, along with any directories
or files that reside under them. When a file is to be accessed, the daemon mounts the appropriate NFS file
system. You can assign a map to a directory using an entry in a direct automount map, or by specifying
an indirect map on the command line.

The automount daemon appears to be an NFS server to the kernel. automount uses the map to locate an
appropriate NFS file server, exported file system, and mount options. It then mounts the file system in a
temporary location, and creates a symbolic link to the temporary location. If the file system is not accessed
within an appropriate interval (five minutes by default), the daemon unmounts the file system and removes
the symbolic link. If the indicated directory has not already been created, the daemon creates it, and then
removes it upon exiting.

Since the name-to-Iocation binding is dynamic, updates to an automount map are transparent to the user.
This obviates the need to "pre-mount" shared file systems for applications that have "hard coded" refer­
ences to files.

If the directory argument is a pathname, the map argument must be an indirect map. In an indirect map the
key for each entry is a simple name that represents a symbolic link within directory to an NFS mount point.

If the directory argument is '1-', the map that follows must be a direct map. A direct map is not associated
with a single directory. Instead, the key for each entry is a full pathname that will itself appear to be a
symbolic link to an NFS mount point.

A map can be a file or a Network Interface Service (NIS) map; if a file, the map argument must be a full
pathname.

The -mount-options argument, when supplied, is a comma-separated list of mount(8) options, preceded by
a '-'. If these options are supplied, they become the default mount options for all entries in the map.
Mount options provided within a map entry override these defaults.

OPTIONS
-m Suppress initialization of directory-map pairs listed in the auto.master NIS database.

-n Disable dynamic mounts. With this option, references through the automount daemon only
succeed when the target filesystem has been previously mounted. This can be used to prevent NFS
servers from cross-mounting each other.

- T Trace. Expand each NFS call and display it on the standard output.

-v Verbose. Log status and/or warning messages to the console.

-D envar=value
Assign value to the indicated automount (environment) variable.

-f master-file
Read a local file for initialization, ahead of the auto.master NIS map.

-M mount-directory
Mount temporary file systems in the named directory, instead of Itmp _ mnt.

-tl duration
Specify a duration, in seconds, that a file system is to remain mounted when not in use. The
default is 5 minutes.

Sun Release 4.1 Last change: 20 January 1990 1859

AUTOMOUNT (8) MAINTENANCE COMMANDS AUTOMOUNT(8)

-tm interval
Specify an interval, in seconds, between attempts to mount a filesystem. The default is 30
seconds.

-tw interval
Specify an interval, in seconds, between attempts to unmount filesystems that have exceeded their
cached times. The default is 1 minute.

ENVIRONMENT

USAGE

Environment variables can be used within an automount map. For instance, if $HOME appeared within a
map, automount would expand it to its current value for the HOME variable. Environment variables are
expanded only for the automounter's environment - not for the environment of a user using the
automounter's services.

The special reference to $ARCH expands to the output of arch (1). This can be useful in creating a map
entry for mounting executables using a server's export pathname that varies according to the architecture
of the client reading the map.

If a reference needs to be protected from affixed characters, you can surround the variable name with curly
braces.

Map Entry Format
A simple map entry (mapping) takes the foOll:

key [-mount-options] location ...

where key is the full pathname of the directory to mount when used in a direct map, or simple name in an
indirect map. mount-options is a comma-separated list of mount options, and location specifies a remote
filesystem from which the directory may be mounted. In the simple case, location takes the form:

hostname :pathname

Replicated Filesystems

Multiple location fields can be specified for replicated read-only filesystems, in which case automount
sends multiple mount requests; automount mounts the file system from the first host that replies to the
mount request. This request is first made to the local net or subnet. If there is no response, any connected
server may respond. Since automount does not monitor the status of the server while the filesystem is
mounted it will not use another location in the list if the currently mounted server crashes. This support for
replicated filesystems is available only at mount time.

If each location in the list shares the same pathname then a single location may be used with a comma­
separated list of hostnames.

hostname ,hostname ... : pathname

Sharing Mounts

1860

If location is specified in the form:

hostname :pathname :subdir

hostname is the name of the server from which to mount the file system, pathname is the path name of the
directory to mount, and subdir, when supplied, is the name of a subdirectory to which the symbolic link is
made. This can be used to prevent duplicate mounts when multiple directories in the same remote file sys­
tem may be accessed. With a map for !borne such as:

able homeboy:/home/homeboy:able
baker homeboy:/home/homeboy:baker

and a user attempting to access a file in Ihome/able, automount mounts homeboy:/home/homeboy, but
creates a symbolic link called /home/able to the able subdirectory in the temporarily-mounted filesystem.
If a user immediately tries to access a file in /home/baker, automount needs only to create a symbolic link
that points to the baker subdirectory; Ihome/homeboy is already mounted.

Last change: 20 January 1990 Sun Release 4.1

AUTOMOUNT (8) MAINTENANCE COMMANDS AUTOMOUNT(8)

With the following map:

able homeboy:/home/homeboy/able
baker homeboy:/home/homeboy/baker

automount would have to mount the filesystem twice.

Comments and Quoting
A mapping can be continued across input lines by escaping the NEWLINE with a backslash. Comments
begin with a # and end at the subsequent NEWLINE.

Characters that have special significance to the automount map parser may be protected either with double
quotes (") or by escaping with a backslash (\). Pathnames with embedded whitespace, colons (:) or dollar
($) should be protected.

Directory Pattern Matching

The '&' character is expanded to the value of the key field for the entry in which it occurs. In this case:

able homeboy:/home/homeboy: &

the & expands to able.

The '*' character, when supplied as the key field, is recognized as the catch-all entry. Such an entry will be
used if any previous entry has not successfully matched the key being searched for. For instance, if the fol­
lowing entry appeared in the indirect map for Ihome:

* &:/home/&

this would allow automatic mounts in Ihome of any remote file system whose location could be specified
as:

hostname :/homel hostname

Multiple Mounts
A multiple mount entry takes the form:

key [I[mountpoint [-mount-options] location. ..] ...

The initial I within the '/[mountpoint]' is required; the optional mountpoint is taken as a path name relative
to the destination of the symbolic link for key. If mountpoint is omitted in the first occurrence, a
mount point of I is implied.

Given the direct map entry:

larch/src \
I
11.0
Il.O/man

-ro,intr
-ro,intr
-ro,intr

arch:/arch/src alt:/arch/src \
alt:/arch/src/l.O arch:/archlsrcll.O
arch :/arch/srcll.O/man alt:/archlsrc/1.0/man

automount would automatically mount larch/src, larch/src/l.O and larch/src/1.0/man, as needed, from
either arch or alt, whichever host responded first. If the mounts are hierarchically related mounts closer to
the root must appear before submounts. All the mounts of a multiple mount entry will occur together and
will be unmounted together. This is important if the filesystems reference each other with relative sym­
bolic links. Multiple mount entries can be used both in direct maps and in indirect maps.

Included Maps
The contents of another map can be included within a map with an entry of the form:

+mapname

mapname can either be a filename, or the name of an NIS map, or one of the special maps described below.
If the key being searched for is not located in an included map, the search continues with the next entry.

Sun Release 4.1 Last change: 20 January 1990 1861

AUTO MOUNT (8) MAIN1ENANCE COMMANDS AUTO MOUNT (8)

Special Maps
There are two special maps currently available: -hosts, and -null. The -hosts map uses the NIS

hosts.byname map to locate a remote host when the hostname is specified. This map specifies mounts of
all exported file systems from any host. For instance, if the following automount command is already in
effect:

automount Inet -hosts

then a reference to Inetlhermeslusr would initiate an automatic mount of all file systems from hermes that
automount can mount; references to a directory under Inet/hermes will refer to the corresponding direc­
tory relative to hermes root.

The -null map, when indicated on the command line, cancels any subsequent map for the directory indi­
cated. It can be used to cancel a map given in auto.master or for a mount point specified as an entry in a
direct map.

Configuration and the auto. master Map

FILES

automount normally consults the auto.master NIS configuration map for a list of initial automount maps,
and sets up automatic mounts for them in addition to those given on the command line. If there are dupli­
cations, the command-line arguments take precedence over a local -f master map and they both take pre­
cedence over an NIS auto.master map. This configuration database contains arguments to the automount
command, rather than mappings; unless -f is in effect, automount does not look for an auto.master file on
the local host.

Maps given on the command line, or those given in a local auto.master file specified with -f override
those in the NIS auto.master map. For instance, given the command:

automount -f lete/auto.master /home -null 1- lete/auto.direet

and a file named /ete/auto.master that contains:

/home auto.home

automount would ignore /home entry in /etc/auto.master.

/tmp _ mnt directory under which filesystems are dynamically mounted

SEE ALSO

NOTES

1862

df(1 V), Is(1 V), stat(2V), passwd(5), mount(8)

System and Network Administration

The -hosts map must mount all the exported filesystems from a server. If frequent access to just a single
filesystem is required it is more efficient to access the filesystem with a map entry that is tailored to mount
just the filesystem of interest.

When it receives signal number I, SIGHUP, automount rereads the /ete/mtab file to update its internal
record of currently-mounted file systems. If a file system mounted with automount is unmounted by a
umount command, automount should be forced to reread the file.

An 1s(1 V) listing of the entries in the directory for an indirect map shows only the symbolic links for
currently mounted filesystems. This restriction is intended to avoid unnecessary mounts as a side effect of
programs that read the directory and stat(2Y) each of the names.

Mount points for a single automounter must not be hierarchically related. automount will not allow an
automount mount point to be created within an automounted filesystem.

automount must not be terminated with the SIGKILL signal (kill -9). Without an opportunity to unmount
itself, the automount mount points will appear to the kernel to belong to a non-responding NFS server.
The recommended way to terminate automount services is to send a SIGTERM (kill -15) signal to the
daemon. This allows the automounter to catch the signal and unmount not only its daemon but also any
mounts in Itmp_mnt. Mounts in /tmp_mnt that are busy will not be unmounted.

Last change: 20 January 1990 Sun Release 4.1

AUTOMOUNT (8) MAINTENANCE COMMANDS AUTO MOUNT (8)

BUGS

Since each direct map entry results in a separate mount for the mount daemon such maps should be kept
short. Entries added to a direct map will have no effect until the automounter is restarted.

Entries in both direct and indirect maps can be modified at any time. The new information will be used
when automount next uses the map entry to do a mount. automount does not cache map entries.

The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed.

The bg mount option is not recognized by the automounter.

Since automount is single-threaded, any request that is delayed by a slow or non-responding NFS server
will delay all subsequent automatic mount requests until it completes.

Programs that read letc/mtab and then touch files that reside under automatic mount points will introduce
further entries to the file.

Automatically-mounted file systems are mounted with type ignore; they do not appear in the output of
either mount(8), or df(1 V).

Sun Release 4.1 Last change: 20 January 1990 1863

BOOT(8S) MAThnENANCECOMMANDS BOOT(8S)

NAME
boot - start the system kernel, or a standalone program

SYNOPSIS
>b [device [(c,u,p)]] [filename] [-av] boot-flags
>b?
>b!

DESCRIPTION

USAGE

The boot program is started by the PROM monitor and loads the kernel, or another executable program, into
memory.

The form b? displays all boot devices and their device arguments.

The form b! boots, but does not perform a RESET.

Booting Standalone
When booting standalone, the boot program (!boot) is brought in by the PROM from the file system. This
program contains drivers for all devices.

Booting a Sun-3 System Over the Network

1864

When booting over the network, the Sun-3 system PROM obtains a version of the boot program from a
server using the Trivial File Transfer Protocol (TFfP). The client broadcasts a RARP request containing its
Ethernet address. A server responds with the client's Internet address. The client then sends a TFrP
request for its boot program to that server (or if that fails, it broadcasts the request). The filename
requested (unqualified - not a pathname) is the hexadecimal, uppercase representation of the client's
Internet address, for example:

Using IP Address 192.9.1.17 = C0090111

When the Sun server receives the request, it looks in the directory Itftpboot for filename. That file is typi­
cally a symbolic link to the client's boot program, normally boot.sun3 in the same directory. The server
invokes the TFrP server, tftpd(8C), to transfer the file to the client.

When the file is successfully read in by the client, the boot program jumps to the load-point and loads
vmunix (or a standalone program). In order to do this, the boot program makes a broadcast RARP request
to find the client's IP address, and then makes a second broadcast request to a bootparamd(8) bootparams
daemon, for information necessary to boot the client. The bootparams daemon obtains this information
either from a local letclbootparams database file, or from a Network Interface Service (NIS) map. The
boot program sends two requests to the bootparams daemon, the first, whoami, to obtain its hostname, and
the second, getfile, to obtain the name of the client's server and the pathname of the client's root partition.

The boot program then performs a mount(8) operation to mount the client's root partition, after which it
can read in and execute any program within that partition by pathname (including a symbolic link to
another file within that same partition). Typically, it reads in the file Ivmunix. If the program is not read in
successfully, boot responds with a short diagnostic message.

Last change: 18 February 1988 Sun Release 4.1

BOOT(8S) MAINTENANCE COMMANDS BOOT(8S)

Booting a Sun-2, Sun-4, or Sun386i System Over the Network
Sun-2, Sun-4 and Sun386i systems boot over the network in a similar fashion. However, the filename
requested from a server must have a suffix that reflects the system architecture of the machine being
booted. For these systems, the requested filename has the form:

ip-address .arch

where ip-address is the machine's Internet Protocol (IP) address in hex, and arch is a suffix representing its
architecture. (Only Sun-3 systems may omit the arch suffix.) These filenames are restricted to 14 charac­
ters for compatibility with System V and other operating systems. Therefore, the architecture suffix is lim­
ited to 5 characters; it must be in upper case. At present, the following suffixes are recognized: SUN2 for
Sun-2 system, SUN3 for Sun-3 system, SUN4 for Sun-4 system, S386 for Sun386i system, and PCNFS for
PC-NFS. That file is typically a symbolic link to the client's boot program, normally boot.sun2 in the same
directory for a Sun-2 system, boot.sun3 in the same directory for a Sun-3 system, or boot.sun4 in the same
directory for a Sun-4 system.

Note: a Sun-2 system boots from its server using one extra step. It broadcasts an ND request which is inter­
cepted by the user-level ndbootd (8C) (see ndbootd(8C) server. This server sends back a standalone pro­
gram that carries out the same TFfP request sequence as is done for all the other systems.

System Startup
Once the system is loaded and running, the kernel performs some internal housekeeping, configures its
device drivers, and allocates its internal tables and buffers. The kernel then starts process number 1 to run
init(8), which perfonns file system housekeeping, starts system daemons, initializes the system console,
and begins multiuser operation. Some of these activities are omitted when init is invoked with certain
boot-flags. These are typically entered as arguments to the boot command, and passed along by the kernel
to init.

OPTIONS
device

c

u

filename

-a

-v

boot-flags

Sun Release 4.1

One of:

ie Intel Ethernet
ee 3Com Ethernet
Ie Lance Ethernet
sd SCSI disk
st SCSI 1/4" tape
mt Tape Master 9-track 1/2" tape
xt Xylogics 1/2" tape
xy Xylogics 440/450/451 disk

Controller number, 0 if there is only one controller for the indicated type of device.

Unit number, 0 if only there is only one driver.

Name of a standalone program in the selected partition, such as standldiag or vmunix.
Note: filename is relative to the root of the selected device and partition. It never begins
with '/' (slash). If filename is not given, the boot program uses a default value (normally
vmunix). This is stored in the vrnunix variable in the boot executable file supplied by Sun,
but can be patched to indicate another standalone program loaded using adb(1).

Prompt interactively for the device and name of the file to boot. For more information on
how to boot from a specific device, refer to Installing SunOS 4.1.

Verbose. Print more detailed information to assist in diagnosing diskless booting problems.

The boot program passes all boot-flags to the kernel or standalone program. They are typi­
cally arguments to that program or, as with those listed below, arguments to programs that
it invokes.

-b Pass the -b flag through the kernel to init(8) so as to skip execution of the
tetc/re.boot script.

Last change: 18 February 1988 1865

BOOT(8S) MAINlENANCE COMMANDS BOOT(8S)

FILES

-b Halt after loading the system.

-s Pass the -s flag through the kernel to init(8) for single-user operation.

-i initname

Iboot
Itftpbootladdress

Itftpbootlboot.sun3
Itftpbootlboot.sun4
lusr/etc/in.tftpd
lusr/mdec/installboot
Ivmunix
letclbootparams

Pass the -i initname to the kernel to tell it to run initname as the first program
rather than the default Isbinlinit.

standalone boot program
symbolic link to the boot program for the client whose Internet address, in upper­
case hexadecimal, is address
Sun-3 first stage boot program
Sun-4 first stage boot program
TFfP server
program to install boot blocks from a remote host
kernel file that is booted by default
file defining root and swap paths for clients

SEE ALSO

BUGS

NOTES

1866

adb(l) , tftp(lC) bootpararnd(8),
reboot(8), tftpd(8C)

Installing Sun OS 4.1
System and Network Administration

init(8), kadb(8S), rnonitor(8S), rnount(8), ndbootd(8C), rc(8),

On Sun-2 systems, the PROM passes in the default name vrnunix, overriding the the boot program's patch­
able default.

The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed.

Last change: 18 February 1988 Sun Release 4.1

BOOTP ARAMD (8) MAINTENANCE COMMANDS

NAME
bootparamd - boot parameter server

SYNOPSIS
/usr/etc/rpc.bootparamd [-d]

DESCRIPTION

BOOTP ARAMD (8)

bootparamd is a server process that provides information to diskless clients necessary for booting. It first
consults the local /etdbootparams file for a client entry. If the local bootparams file does not exist, boot­
paramd consults the corresponding Network Interface Service (NIS) map.

bootparamd can be invoked either by inetd(8C) or by the user.

OPTIONS
-d Display the debugging information.

FILES
/etdbootparams

SEE ALSO
inetd(8C)

NOTES
The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed.

Sun Release 4.1 Last change: 14 December 1987 1867

C2CONV(8) MAThITENANCECOMMANDS C2CONV(8)

NAME
C2conv, C2unconv - convert system to or from C2 security

SYNOPSIS
C2conv

C2unconv

AVAILABILITY
This program is available with the Security software installation option. Refer to Installing SunOS 4.1 for
information on how to install optional software.

DESCRIPTION

FILES

C2conv converts a standard SunOS system to operate with C2-level security.

The program prompts for information regarding the Secure NFS option, client systems (if the system is an
NFS server for diskless clients), audit devices (if it is an audit file server), and names of file systems (if
there is a remote audit server). The program also requests certain information for the audit _ control(5) file;
default values may be used for audit flags and for the "minfree" value. Finally, it requests the mail address
to be used (by mail(l)) when C2 administrative tasks are required. The default address is root for the host
being converted.

Once it has this information, C2conv uses it to set up the necessary files for a C2 secure system, reporting
on its progress as it proceeds.

C2unconv backs out the changes made to fetcfpasswd and fetcfgroup. It does not back out changes to
other files.

fetcfpasswd
fete/group
fetcffstab

SEE ALSO
audit _ control(5)

1868 Last change: 14 June 1989 Sun Release 4.1

CAPTOINFO (8V) MAINTENANCE COMMANDS CAPTOINFO (8V)

NAME
captoinfo - convert a termcap description into a terminfo description

SYNOPSIS
captoinfo [-v ...] [-V] [-1] [-w width]filename ...

SYNOPSIS
lusr/5binicaptoinfo [-v ...] [-V] [-1] [-w width] filename . ..

A V AILABILITY
The System V version of this command is available with the System V software installation option. Refer
to Installing SunOS 4.1 for information on how to install optional software.

DESCRIPTION
captoinfo converts the termcap(5) terminal description entries given in filename into terminfo(5V) source
entries, and writes them to the standard output along with any comments found in that file. A description
that is expressed as relative to another description (as specified in the termcap te= capability) is reduced to
the minimum superset before being written.

If no filename is given, then the environment variable TERMCAP is used for the filename or entry. If
TERMCAP is a full pathname to a file, only the terminal-name is specified in the environment variable
TERM is extracted from that file. If that environment variable is not set, then the file letc/termcap is read.

OPTIONS

FILES

-v Verbose. Print tracing information on the standard error as the program runs. Additional-v
options increase the level of detail.

-V Version. Display the version of the program on the standard error and exit.

-1 Print fields one-per-line. Otherwise, fields are printed several to a line, to a maximum width of 60
characters.

-w width
Change the output to width characters.

lusrlshare/lib/terminfol?l* compiled terminal description database
letdtermcap

SEE ALSO
curses(3V), termcap(5), terminfo(5V), infocmp(8V), tic(8V)

DIAGNOSTICS
tgetent failed with return code n

The tenncap entry is not valid. In particular, check for an invalid 'tc=' entry.

unknown type given for the term cap code ee.
The tenncap description had an entry for ee whose type was not boolean, numeric or string.

wrong type given for the boolean (numeric, string) term cap code ee.
The boolean termcap entry ec was entered as a numeric or string capability.

the boolean (numeric, string) term cap code ec is not a valid name.
An unknown term cap code was specified.

tgetent failed on TERM=term.
The terminal type specified could not be found in the termcap file.

TERM=term: cap ce (info ii) is
The termcap code was specified as a null string. The correct way to cancel an entry is with an
'@', as in ':bs@:'. Giving a null string could cause incorrect assumptions to be made by the
software which uses term cap or term info.

Sun Release 4.1 Last change: 17 November 1987 1869

CAPTOINFO (8V) MAINTENANCE COMMANDS CAPTOINFO (8V)

a function key for cc was specified, but it already has the value
vv. When parsing the ko capability, the key ce was specified as having the same value as the
capability ce, but the key cc already had a value assigned to it.

the unknown term cap name ee was specified in the ko term cap capability.
A key was specified in the ko capability which could not be handled.

the vi character v (info ii) has the value xx, but rna gives n.
The rna capability specified a function key with a value different from that specified in another
setting of the same key.

the unknown vi key v was specified in the rna termcap capability.
A vi(1) key unknown to captoinfo was specified in the rna capability.

Warning: termcap sg (nn) and terrncap ug (nn) had different values.
term info assumes that the sg (now xmc) and ug values were the same.

Warning: the string produced for ii may be inefficient.
The parameterized string being created should be rewritten by hand.

Null termname given.
The terminal type was null. This is given if the environment variable TERM is not set or is null.

cannot open filename for reading.
The specified file could not be opened.

WARNINGS

1870

Certain termcap defaults are assumed to be true. The bell character (term info bel) is assumed to be AG.
The linefeed capability (term cap nl) is assumed to be the same for both cursor_down and scroll_forward
(terminfo cud! and ind, respectively.) Padding information is assumed to belong at the end of the string.

The algorithm used to expand parameterized information for term cap fields such as cursor yosition
(termcap em, terminfo cup) can sometimes produce a string that may not be optimal. In particular, the
rarely used termcap operation %n produces strings that are especially long. Most occurrences of these
non-optimal strings will be flagged with a warning message and may need to be recoded by hand.

The short two-letter name at the beginning of the list of names in a term cap entry, a hold-over from an ear­
lier version of the system, has been removed.

Last change: 17 November 1987 Sun Release 4.1

CATMAN(8) MAINTENANCE COMMANDS CATMAN(8)

NAME
catman - create the cat files for the manual

SYNOPSIS
/nsr/etc/catman [-nptw 1 [-M directory 1 [- T tmac.an 1 [sections 1

DESCRIPTION
catman creates the preformatted versions of the on-line manual from the nroff(l) input files. Each manual
page is examined and those whose preformatted versions are missing or out of date are recreated. If any
changes are made, catman recreates the whatis database.

If there is one parameter not starting with a '-', it is taken to be a list of manual sections to look in. For
example

catman 123

only updates manual sections 1, 2, and 3.

If an unformatted source file contains only a line of the fonn '.so manx/yyy.x', a symbolic link is made in
the catx or fmtx directory to the appropriate preformattcd manual page. This feature allows easy distribu­
tion of the preformatted manual pages among a group of associated machines with rdist(1), since it makes
the directories of pre formatted manual pages self-contained and independent of the unformatted entries.

OPTIONS
-n Do not (re)create the whatis database.

-p Print what would be done instead of doing it.

-t Create troffed entries in the appropriate fmt subdirectories instead of nroffing into the cat sub-
directories.

-w Only create the whatis database that is used by whatis(l) and the man(l) -f and -k options. No
manual reformatting is done.

-M Update manual pages located in the specified directory (/nsr/man by default).

- T Use tmac.an in place of the standard manual page macros.

ENVIRONMENT

FILES

TROFF The name of the formatter to use when the -t flag is given. If not set, 'troff' is used.

/nsr/[share l/man
/nsr/[share l/manlman? / *. *
/nsr/[sharel/man/cat?/*.*
/nsr/[share l/manlfmt? / *. *
/nsr/[share]/manlwhatis
/nsr/lib/makewhatis

default manual directory location
raw (nroff input) manual sections
preformatted nroffed manual pages
preformatted trotTed manual pages
whatis database location
command script to make whatis database

SEE ALSO
apropos(1), man(l), nroff(I), rdist(I), troff(l), whatis(l)

NOTES
If the -n option is specified, the /usr/manlwhatis database is not created and the apropos, whatis, 'man
-f' , and 'man -k' commands will fail.

DIAGNOSTICS
man?/xxx.? (.so'ed from man?/yyy.?): No such file or directory

The file outside the parentheses is missing, and is referred to by the file inside them.

target of .so in man?/xxx.? mnst be relative to /nsr/man
catman only allows references to filenames that are relative to the directory /usr/man.

Sun Release 4.1 Last ch?nge: 9 September 1987 1871

CATMAN(8) MAINTENANCE COMMANDS CATMAN(8)

1872

opendir:man?: No such file or directory
A harmless warning message indicating that one of the directories catman normally looks for is
missing.

.: No such file or directory
A harmless warning message indicating catman came across an empty directory.

Last change: 9 September 1987 Sun Release 4.1

CHANGE_LOGIN (8) MAINTENANCE COMMANDS CHANGE_LOGIN (8)

NAME
change_login - control screen blanking and choice of login utility

SYNOPSIS
change_login

AVAILABILITY
Available only on Sun 386i systems running a SunOS 4.0.x release or earlier. Not a SunOS 4.1 release
feature.

DESCRIPTION
To prolong the life of your monitor, your Sun386i system turns off the screen display if you have not used
the keyboard or mouse for 30 minutes or more. To see the screen again, simply move the mouse on the
pad or press any key. This feature is normally enabled automatically when you log in, but you can control
it using the change_login command as explained below.

This command also determines whether you log into your workstation using the Sun386i login screen,
logintool(8) or through a traditional login: prompt.

The screen blanking choices available with changeJogin are:

1. Logintool and Sun Logo screenblank
Enables screen blanking. When blank, the system displays the Sun logo moving randomly around
an otherwise dark screen.

2. Logintool and video-off screen blank
Shuts off the video output to your monitor when the screen goes blank. This is the most efficient
type of screen blanking. The Desktop is almost instantly redisplayed when you move the mouse
or begin typing.

3. Logintool and no screen blank
Retains the login screen, but disables screen blanking.

4. No Logintool and no screenblank
Disables both the login screen and screen blanking.

EXAMPLE
The following is an example of change_login. Notice you must be super-user to use this command.

example# change_login

This program will check what login and screenblank
options are set on this workstation, and allow you
to choose other options, if you are logged in as superuser.

Do you want to do this? [y or n]: y

This workstation is set up to use login tool and
a screenblank program that displays a Sun logo graphic.

These are the available options:

+ 1. Logintool and Sun Logo screen blank
2. Logintool and video-off screenblank
3. Logintool and no screenblank
4. No Logintool and no screenblank

+ indicates the current configuration

You must be logged in as superuser to change the current setting.

Follow the instructions in Sun386i System Setup and Maintenance or Sun386i Advanced Administration to
shut down and then restart your system. The setting chosen in the above example will not be enabled until
you have restarted your system.

Sun Release 4.1 Last change: 6 October 1989 1873

CHANGE_LOGIN (8) MAINTENANCE COMMANDS

SEE ALSO

1874

login(I), screenblank(I), su(1 V), logintool(8)

Sun386i Advanced Skills
Sun386i System Setup and Maintenance
Sun386i Advanced Administration

Last change: 6 October 1989

CHANGE_LOGIN (8)

Sun Release 4.1

CHOWN(8)

NAME
chown - change owner

SYNOPSIS

MAINTENANCE COMMANDS

lusr/etc/chown [-flIR] owner [.group] filename . ..

DESCRIPTION

CHOWN(8)

chown changes the owner of the filenames to owner. The owner may be either a decimal user ID (UID) or
a login name found in the password file. An optional group may also be specified. The group may be
either a decimal group ID (GID) or a group name found in the GID file.

Only the super-user can change owner, in order to simplify accounting procedures.

OPTIONS
-f

-R

FILES

Do not report errors.

Recursively descend into directories setting the ownership of all files in each directory encoun­
tered. When symbolic links are encountered, their ownership is changed, but they are not
traversed.

letdpasswd password file

SEE ALSO
chgrp(1), chown(2V), group(5), passwd(5)

Sun Release 4.1 Last change: 9 September 1987 1875

CHROOT(8) MAINTENANCE COMMANDS CHROOT(8)

NAME
chroot - change root directory for a command

SYNOPSIS
lusr/etc/chroot newroot command

DESCRIPTION
The given command is executed relative to the new root. The meaning of any initial '/' (slashes) in path
names is changed for a command and any of its children to newroot. Furthermore, the initial working
directory is newroot.

Input and output redirections on the command line are made with respect to the original root:

chroot newroot command >x

creates the file x relative to the original root, not the new one.

This command is restricted to the super-user.

The new root path name is always relative to the current root even if a chroot is already in effect; the
newroot argument is relative to the current root of the running process.

SEE ALSO
chdir(2V)

BUGS
One should exercise extreme caution when referring to special files in the new root file system.

1876 Last change: 9 September 1987 Sun Release 4.1

CHRTBL(8) MAINTENANCE COMMANDS CHRTBL(8)

NAME
chrtbl - generate character classification table

SYNOPSIS
/usr/etc/chrtbl [filename]

DESCRIPTION
chrtbl converts a source description of a character classification table into a form that can be used by the
character classification functions and multibyte functions (see ctype(3V) and mblen(3». The source
description is found in filename. If filename is not given, or just given as '-', chrtbl reads its source
description from the standard input.

chrtbl creates one or two output files, the second file is only created if the model token is specified. By
default, these files are created in the current working directory. The first file, named by the chrclass token,
is always produced and contains the character classification information for all single-byte (7-bit and 8-bit)
character code-sets described by one setting of the LC _ CTYPE category of locale. The second file, created
if the model token is specified, contains information relating to details of width and structure of the coded
character set currently under definition. The second file is named by appending' .ci'. to the value specified
by the chrclass token.

The first output file contains a binary form of the character classification information described in filename.
It is structured in such a way that it can be used at run-time to replace the active version of the ctype[]
array in the C-library, For it to be understood at run-time, the output file must be moved to the
/usr/share/lib/localeILC_TYPE or letcllocale directory (see FILES below) by the super-user or a member
of group bin. This file must be readable by user, group, and other; no other permission should be set

filename contains a sequence of tokens in any order after the chrclass token, each separated by one or more
NEWLINE characters or comment lines. The tokens recognized by chrtbl are as follows:

Sun Release 4.1

chrclass name
name is the filename or pathname of the character classification file. This is a man­
datory token. It must be the first token to be defined, and is usually given the name
that relates to a valid setting of the LC _ CTYPE category of locale.

model name ,args
This optional token chooses the type of character code-set announcement mechan­
ism associated with the character classification table generated by chrtbi. The
name of the file created by this token is the name specified by the chrclass token,
concatenated with a '.ci'. The arguments to model must be one of the following:

euc x,y,z
The model file contains information describing the required setting for the
Extended Unix code-set announcement mechanism. x,y,z relate to the
storage widths (in bytes) of EVC code-sets I, 2 and 3 respectively.

xccs The model file contains information describing the Xerox Character Code
Standard (XCI-3-3-0) announcement mechanism. There are no additional
arguments required.

iso2022 gO,gl ,g2,g3 x
The model file contains information describing a generative version of the
ISO-2022 code set announcement mechanism. The multibyte functions
driven by this model are capable of handling the standard one or more
byte escape sequences as well as all of the standard shift functions. The
four arguments gO,gi ,g2,g3 define the default width (in bytes) of the four
designations (respectively) available under ISO-2022, Maximum integer
value of any of these arguments is 2. The fianl argument x is mandatory
and must be set to either 7 or 8. It selects the default bit-width of each byte
on input and output to/from the multibyte functions.

Last change: 2 February 1990 1877

CHRTBL(8) MAINlENANCE COMMANDS CHRTBL(8)

isupper

islower

isdigit

isspace

ispunct

iscntrl

If the model token is declared without arguments, then it is assumed that there is a
set of user-defined rules for character code-set announcement. This is noted in the
output file and will be later used to fold in user-defined code into the multibyte
functions in the C-library (see mblen(3)).

Character codes to be classified as upper-case letters.

Character codes to be classified as lower-case letters.

Character codes to be classified as numeric.

Character codes to be classified as a spacing (delimiter) character.

Character codes to be classified as a punctuation character.

Character codes to be classified as a control character.

isblank Character code for the space character.

isxdigit Character codes to be classified as hexadecimal digits.

ul Relationship between upper- and lower-case characters.

Any lines with the number sign (#) in the first column are treated as comments and are ignored. Blank
lines are also ignored.

A character can be represented as a hexadecimal or octal constant (for example, the letter a can be
represented as Ox61 in hexadecimal or 0141 in octal). Hexadecimal and octal constants may be separated
by one or more space and tab characters.

The dash (-) may be used to indicate a range of consecutive numbers. Zero or more space characters may
be used for separating the dash character from the numbers.

The backslash character (\) is used for line continuation. Only a RETURN is permitted after the backslash
character.

The relationship between upper- and lower-case letters (ul) is expressed as ordered pairs of octal and hexa­
decimal constants:

<upper-ease_character lower-ease_character>

These two constants may be separated by one or more space characters. Zero or more space characters
may be used for separating the angle brackets « » from the numbers.

EXAMPLES

1878

The following is an example of an input file used to create the ASCII code set definition table on a file
named ascii.

chrclass
isupper
islower
isdigit
isspace
ispunct

iscntrl
isblank
isxdigit

ul

ascii
Ox41- OxSa
Ox61- Ox7a
Ox30 - Ox39
Ox20 Ox9 - Oxd
Ox21 - Ox2f Ox3a - Ox40 \
Ox5b - Ox60 Ox7b - Ox7 e
OxO - Oxlf Ox7f
Ox20
Ox30 - Ox39 Ox61 - Ox66 \
Ox41- Ox46
<Ox41 Ox61> <Ox42 Ox62> <Ox43 Ox63> \
<Ox44 Ox64> <Ox45 Ox6S> <Ox46 Ox66> \
<Ox47 Ox67> <Ox48 Ox68> <Ox49 Ox69> \
<Ox4a Ox6a> <Ox4b Ox6b> <Ox4c Ox6c> \
<Ox4d Ox6d> <Ox4e Ox6e> <Ox4f Ox6f> \
<Ox50 Ox70> <Ox51 Ox71> <OXS2 Ox72> \

Last change: 2 February 1990 Sun Release 4.1

CHRTBL(8) MAINlENANCE COMMANDS CHRTBL(8)

FILES

<Ox53 Ox73> <Ox54 Ox74> <Ox55 Ox75> \
<Ox56 Ox76> <Ox 57 Ox77> <Ox58 Ox78> \
<Ox59 Ox79> <Ox5a Ox7a>

lusrlshare/lib/localelLC CTYPE/*

I etc/localelLC CTYPE/*

run-time location of the character classification tables generated
by chrtbl
location for private versions of the classification tables gen­
erated by chrtbl

SEE ALSO
ctype(3V), environ(5V)

DIAGNOSTICS
The error messages produced by chrtbl are intended to be self-explanatory. They indicate input errors in
the command line or syntactic errors encountered within the input file.

Sun Release 4.1 Last change: 2 February 1990 1879

CLIENT(8) MAThITENANCECOMMANDS CLIENT (8)

NAME
client - add or remove diskless Sun386i systems

SYNOPSIS
client [-a arch] [-b hostid] [-0 os] [-q] [-t minutes] add bootserver client etheraddress ipaddress

client remove client

client modify client [diskfull diskless I slave]

A V AILABILITY
Available only on Sun 386i systems running a SunOS 4.0.x release or earlier. Not a SunOS 4.1 release
feature.

DESCRIPTION
client can be used to manually add and remove diskless clients of a PNP boot server. After successful
completion of the command, the diskless client can boot. Only users in the networks group (group 12) on
the boot server are allowed to change configurations using this utility. client can be invoked from any sys­
tem on the network.

The boot server of a system is the only machine truly required for that system to boot to the point of allow­
ing user logins; it must accordingly provide name, booting, and time services. Diskless clients can provide
none of these services themselves. Diskful clients, however can provide most of their own boot services.
Network clients only need name and time services from the network, and can use any boot server.

To add a diskless client, use the add operation. To remove a diskless, diskful, or network client, use the
remove operation. To change a system's network role, use the modify operation.

A server can reject a configuration request if it is disallowed by the contents of the bootservers map (e.g.,
too many clients would be configured, or too little free space would be left on the server), or if no system
software for the client is available.

OPTIONS
-a arch Specifies the architecture code of the client; it defaults to s386. (Note: architecture codes

are different from architecture names. Architecture codes are used in diskless booting, and
are at most five characters in length, while architecture names can be longer.)

-b hostid Specifies the host ID of the client; if supplied, it is used as the root password for the system.
It defaults to the null string.

-0 os Specifies the operating system; defaults to 'unix'. This is currently used only to construct
the system's publickey data, where applicable; this is never done if the system has no hostid
specified.

-q Quiet. Displays only error messages.

-t minutes Sets the RPC timeout to the number of minutes indicated; this defaults to 15 minutes. If the
bootserver takes more time than this to complete, client will exit. Unless the server has
already completed setup, but not yet sent status to client, this will cause the bootserver to
back out of the setup, deallocating all assigned resources.

SEE ALSO

BUGS

1880

publickey(5) netconfig(8C), pnpd(8C)

Unless the hostid is assigned, the root filesystem for the diskless client is not set up beyond copying the
proto and boot files into it. This means that netconfig will often handle other parts of the setup.

Last change: 188020 December 19881880 Sun Release 4.1

CLRI(8) MAINTENANCE COMMANDS CLRI(8)

NAME
clri - clear inode

SYNOPSIS
lusr/etc/clrifilesystem i-number ...

DESCRIPTION
Note: clri has been superseded for normal file system repair work by fsck(8).

c1ri writes zeros on the inodes with the decimal i-numbers on the filesystem. After clri, any blocks in the
affected file will show up as "missing" in an icheck(8) of the filesystem.

Read and write permission is required on the specified file system device. The inode becomes allocatable.

The primary purpose of this routine is to remove a file which for some reason appears in no directory. If it
is used to zap an inode which does appear in a directory, care should be taken to track down the entry and
remove it. Otherwise, when the inode is reallocated to some new file, the old entry will still point to that
file. At that point removing the old entry will destroy the new file. The new entry will again point to an
unallocated inode, so the whole cycle is likely to be repeated again and again.

SEE ALSO
icheck(8) fsck(8)

BUGS
If the file is open, clri is likely to be ineffective.

Sun Release 4.1 Last change: 9 September 1987 1881

COLLDEF(8) MA~NANCECOMMANDS COLLDEF(8)

NAME
colldef - convert collation sequence source definition

SYNOPSIS
/usr/etc/colldef filename

DESCRIPTION

USAGE

colldef converts a collation sequence source definition into a format usable by the strxfrm() and strcoll(3)
functions. It is used to define the many ways in which strings can be ordered and collated.

colldef reads the collation sequence source definition from the standard input and stores the converted
definition in filename.

The collation sequence definition specifies a set of collating elements and the rules defining how strings
containing these should be ordered. This is most useful for different language definitions. The rules pro­
vide the following capabilities:

l-to-Many mapping
A single character is mapped into a string of collating elements.

Many-to-l mapping
A string of two or more characters is mapped as a single collating element.

Null string mapping
A character, or string of characters, is mapped to a null collating element (that is, will be
ignored).

Equivalence class definition.
A collection of characters that have the same value.

Secondary ordering within equivalence class.

The following keywords may be used in the input file filename.

charmap
Optional keyword. Defines where a mapping of the character and collating element symbols to
the actual character encoding can be found.

substitute
Optional keyword. Defines a one-to-many mapping between a single byte and a character string.

order Mandatory keyword. Defines the primary and secondary ordering of collating elements within this
collation table.

EXIT STATUS

FILES

colldef exits with the following values:

o No errors were found and the output was successfully created.

>0 Errors were found.

letc/locale/LC COLLATE/locale/domain
standard private location for collation orders under the locale locale

lusr/sharellib/localeILC COLLATE
standard shared location for collation orders under the locale locale

SEE ALSO
strcoll(3)
System Services Overview

1882 Last change: 2 February 1990 Sun Release 4.1

COMSAT(8C) MAINTENANCE COMMANDS COMSAT(8C)

NAME
comsat, in.comsat - biff server

SYNOPSIS
lusrl etclin.comsat

DESCRIPTION

FILES

comsat is the server process which listens for reports of incoming mail and notifies users who have
requested to be told when mail arrives. It is invoked as needed by inetd(8C), and times out if inactive for a
few minutes.

comsat listens on a datagram port associated with the biff(l) service specification (see services(5» for one
line messages of the form

user@mailbox-offset

If the user specified is logged in to the system and the associated terminal has the owner execute bit turned
on (by a 'biIT y'), the offset is used as a seek offset into the appropriate mailbox file and the first 7 lines or
560 characters of the message are printed on the user's terminal. Lines which appear to be part of the mes­
sage header other than the From, To, Date, or Subject lines are not printed when displaying the message.

letclutmp to find out who's logged on and on what terminals

SEE ALSO
biff(I), services(5), inetd(8C)

BUGS
The message header filtering is prone to error.

The notification should appear in a separate window so it does not mess up the screen.

Sun Release 4.1 Last change: 9 September 1987 1883

CONFIG(8) MA~NANCECOMMANDS CONFIG(8)

NAME
config - build system configuration files

SYNOPSIS
lusr/etc/config [-fgnp] [-0 obj_dir] configJtle

DESCRIPTION
config does the preparation necessary for building a new system kernel with make(l). The configJt.le
named on the command line describes the kernel to be made in tenns of options you want in your system,
size of tables, and device drivers to be included. When you run con fig, it uses several input files located in
the current directory (typically the conf subdirectory of the system source including your configJtle). The
format of this file is described below.

If the directory named. JconfigJtle does not exist, config will create one. One of config's output files is a
makefile which you use with make(l) to build your system.

You use con fig as follows. Run config from the conf subdirectory of the system source (in a typical Sun
environment, from lusrlshare/sys/sun[2 3 4]/conf):

example# lusr/etc/config con fig_ file
Doing a "make depend"
example# cd •• Icon fig_fiIe
example# make
... lots of output . ..

While config is running watch for any errors. Never use a kernel which config has complained about; the
results are unpredictable. If config completes successfully, you can change directory to the •• lconfigJtle
directory, where it has placed the new makefile, and use make to build a kernel. The output files placed in
this directory include ioconf.c, which contains a description of I/O devices attached to the system;
mbglue.s, which contains short assembly language routines used for vectored interrupts, a makefile, which
is used by make to build the system; a set of header files (device _name.h) which contain the number of
various devices that may be compiled into the system; and a set of swap configuration files which contain
definitions for the disk areas to be used for the root file system, swapping, and system dumps.

Now you can install your new kernel and try it out.

OPTIONS

USAGE

-f

-g

-n

-p

Set up the makefile for fast builds. This is done by building a vmunix.o file which includes all the
.0 files which have no source. This reduces the number of files which have to be stated during a
system build. This is done by pre linking all the files for which no source exists into another file
which is then linked in place of all these files when the kernel is made. This makefile is faster
because it does not stat the object files during the build.

Get the current version of a missing source file from its sees history, if possible.

Do not do the 'make depend'. Nonnally config will do the 'make depend' automatically. If this
option is used config will print 'Don't forget to do a "make depend'" before completing as a
reminder.

Configure the system for profiling (see kgmon(8) and gprof(I».

-oob}_dir
Use • Jobj_ dir instead of •• /OBJ as the directory to find the object files when the corresponding
source file is not present in order to generate the files necessary to compile and link your kernel.

Input Grammar

1884

In the following descriptions, a number can be a decimal integer, a whole octal number or a whole hexade­
cimal number. Hex and octal numbers are specified to config in the same way they are specified to the C
compiler, a number starting with Ox is a hex number and a number starting with just a 0 is an octal number.

Last change: 7 September 1988 Sun Release 4.1

CONFIG(8) MAThnENANCECOMMANDS CONFIG(8)

Comments are begin with a # character, and end at the next NEWLINE. Lines beginning with TAB charac­
ters are considered continuations of the previous line. Lines of the configuration file can be one of two
basic types. First, there are lines which describe general things about your system:

machine" type"
This is system is to run on the machine type specified. Only one machine type can appear in the
config file. The legal types for a Sun system are sun2, sun3, sun4, and sun386. Note: the double
quotes around type are part of the syntax, and must be included.

cpu "type"
This system is to run on the cpu type specified. More than one cpu type can appear in the config
file. Legal types for a sun2 machine are noted in the annotated config file in Installing SunOS 4.1.

ident name
Give the system identifier - a name for the machine or machines that run this kernel. Note that
name must be enclosed in double quotes if it contains both letters and digits. Also, note that if
name is GENERIC, you need not include the 'options GENERIC' clause in order to specify 'swap
generic'.

maxusers number
The maximum expected number of simultaneously active user on this system is number. This
number is used to size several system data structures.

options opt list
Compile the listed options into the system. Options in this list are separated by commas. A line of
the form:

options FUNNY, HAHA

yields

-DFUNNY -DHAHA

to the C compiler. An option may be given a value, by following its name with = (equal sign)
then the value enclosed in (double) quotes. None of the standard options use such a value.

In addition, options can be used to bring in additional files if the option is listed in the files files.
All options should be listed in upper case. In this case, no corresponding option.h will be created
as it would be using the corresponding pseudo-device method.

config sysname con fig_clauses ...

Sun Release 4.1

Generate a system with name sysname and configuration as specified in con fig-clauses . The
sysname is used to name the resultant binary image and per-system swap configuration files. The
config_ clauses indicate the location for the root file system, one or more disk partitions for swap­
ping and paging, and a disk partition to which system dumps should be made. All but the root
device specification may be omitted; config will assign default values as described below.

root A root device specification is of the form 'root on xyOd'. If a specific partition is omitted
- for example, if only root on xyO is specified - the 'a' partition is assumed. When a
generic system is being built, no root specification should be given; the root device will
be defined at boot time by prompting the console.

swap To specify a swap partition, use a clause of the form: 'swap on partition'. Swapping
areas may be almost any size. Partitions used for swapping are sized at boot time by the
system; to override dynamic sizing of a swap area the number of sectors in the swap area
can be specified in the config file. For example, 'swap on xyOb size 99999' would
configure a swap partition with 99999 sectors. If swap generic or no partition is
specified with on, partition b on the root device is used. For dataless clients, use 'swap
on type nrs' .

Last change: 7 September 1988 1885

CONFIG(8) MAINTENANCE COMMANDS CONFIG(8)

1886

To configure multiple swap partitions, specify multiple 'swap on' clauses. For example:

config vmunix swap on xyO swap on xyl

dumps The location to which system dumps are sent may be specified with a clause of the form
'dumps on xyJ'. If no dump device is specified, the first swap partition specified is used.
If a device is specified without a particular partition, the 'b' partition is assumed. If a
generic configuration is to be built, no dump device should be specified; the dump device
will be assigned to the swap device dynamically configured at boot time. Dumps are
placed at the end of the partition specified. Their size and location is recorded in global
kernel variables dumpsize and dumplo, respectively, for use by savecore(8).

Device names specified in configuration clauses are mapped to block device major numbers with the file
devices.machine, where machine is the machine type previously specified in the configuration file. If a
device name to block device major number mapping must be overridden, a device specification may be
given in the form 'major x minor y'.

The second group of lines in the configuration file describe which devices your system has and what they
are connected to (for example, a Xylogics 450 Disk Controller at address Oxee40 in the Multibus I/O
space). These lines have the following format:

dey _type dey _name at con _ dey more_info

dey _type is either controller, disk, tape, device, or pseudo-device. These types have the following mean­
ings:

A disk or tape controller.

Devices connected to a controller.

controller

disk or tape

device Something "attached" to the main system bus, like a cartridge tape interface.

pseudo-device A software subsystem or driver treated like a device driver, but without any
associated hardware. Current examples are the pseudo-tty driver and various
network subsystems. For pseudo-devices, more_in fo may be specified as an
integer, that gives the value of the symbol defined in the header file created for
that device, and is generally used to indicate the number of instances of the
pseudo-device to create.

dey _name is the standard device name and unit number (if the device is not a pseudo-device) of the device
you are specifying. For example, xycO is the dey _name for the first Xylogics controller in a system; arO
names the first quarter-inch tape controller.

con _ dey is what the device you are specifying is connected to. It is either nexus?, a bus type, or a con­
troller. There are several bus types which are used by config and the kernel.

The different possible bus types are:

obmem
obio
mbrnem
mbio
vme16d16 (vme16)
vme24d16 (vme24)
vme32d16
vme16d32
vme24d32
vme32d32 (vme32)

On board memory
On board io
Multibus memory (sun2 system only)
Multibus io (sun2 system only)
16 bit VMEbus/ 16 bit data
24 bit VMEbus/ 16 bit data
32 bit VMEbus/ 16 bit data (sun3 system only)
16 bit VMEbus/ 32 bit data (sun3 system only)
24 bit VMEbus/ 32 bit data (sun3 system only)
32 bit VMEbus/ 32 bit data (sun3 system only)

All of these bus types are declared to be connected to nexus. The devices are hung off these buses. If the
bus is wildcarded, then the autoconfiguration code will determine if it is appropriate to probe for the device
on the machine that it is running on. If the bus is numbered, then the autoconfiguration code will only look
for that device on machine type N. In general, the Multibus and VMEbus bus types are always wildcarded.

Last change: 7 September 1988 Sun Release 4.1

CONFIG(8) MAINTENANCE COMMANDS CONFIG(8)

FILES

more _info is a sequence of the following:

csr address Specify the address of the csr (command and status registers) for a device.

drive number

flags number

priority level

The csr addresses specified for the device are the addresses within the bus
type specified.

The csr address must be specified for all controllers, and for all devices
connected to a main system bus.

For a disk or tape, specify which drive this is.

These flags are made available to the device driver, and are usually read at
system initialization time.

For devices which interrupt, specify the interrupt level at which the device
operates.

vector intr nwnber [intr number . ..]
For devices which use vectored interrupts on VMEbus systems, intr specify
the vectored interrupt routine and number the corresponding vector to be
used (Ox40-0xFF).

A ? may be substituted for a number in two places and the system will figure out what to fill in for the ?
when it boots. You can put question marks on a con _dev (for example, at virtual '?'), or on a drive number
(for example, drive '?'). This allows redundancy, as a single system can be built which will boot on dif­
ferent hardware configurations.

The easiest way to understand config files it to look at a working one and modify it to suit your system.
Good examples are provided in Installing SunOS 4.1.

Files in lusrlshare/syslsun[2 3 4]/conf which may be useful for developing the configJtle used by con fig
are:

GENERIC These are generic configuration files for either a Sun-2 or Sun-3 system.
They contain all possible device descriptions lines for the particular
architecture.

README File describing how to make a new kernel.

As shipped from Sun, the files used by lusr/etc/config as input are in the lusr/include/sys/conf directory:

configJtle System-specific configuration file
Makefile.src Generic prototype makefile for Sun-[23] systems
files List of common files required to build a basic kernel
devices Name to major device mapping file for Sun-[23] systems

/usr/etc/config places its output files in the • . lconfigJtle directory:

mbglue.s
ioconf.c
makeftle
device name.h

Short assembly language routines used for vectored interrupts
Describes I/O devices attached to the system
Used with make{l) to build the system
a set of header files (various device _name's) containing devices which
can be compiled into the system

SEE ALSO
gprof(l), make(I), kgmon(8), savecore(8)

The SYNOPSIS portion of each device entry in Section 4 of this manual.

Installing Sun OS 4.1
System and Network Administration

Sun Release 4.1 Last change: 7 September 1988 1887

MAINTENANCE COMMANDS

NAME
copy_home - fetch default startup files for new home directories

SYNOPSIS
/home/groupname/copy _home /homel groupname Ihomelusername

AVAILABILITY
Available only on Sun 386i systems running a SunOS 4.0.x release or earlier. Not a SunOS 4.1 release
feature.

DESCRIPTION
Whenever snap(l) is used to add a new user account, the copy_home script in the selected primary
group's home directory is executed to copy the default files to the new user's home directory, and also per­
form any additional custom setup.

copy_home copies default environment files, such as .cshrc, .Iogin, and .orgrc, from a group's defaults
directory to a new user's home directory. It is started by user _ agentd(8) when snap(1) is used to create
new home directories on a Sun386i home directory server.

Every new group created by snap(l) has a home directory, which can be accessed using
/home/groupname. user _agentd(8) copies the contents of the Sun386i's default group, thome/users, into
the home directory of the new group. This includes the Welcome.txt file, the copy_home script, and the
defaults directory. copy_home can be modified to customize the default setup environment for new users
in the group.

SEE ALSO

1888

snap(1), user _agentd(8)

Sun386i SNAP Administration
Sun386i Advanced Administration

Last change: 6 October 1989 Sun Release 4.1

CRASH(8) MAINTENANCE COMMANDS CRASH(8)

NAME
crash - examine system images

SYNOPSIS
/etc/crash [-d dump-file] [-0 namelist-file] [-w output-file]

DESCRIPTION
crash examines the memory image of a live or a crashed system kernel. It displays the values of system
control structures, tables, and other pertinent information.

OPTIONS

USAGE

-d dump-file Specify the file containing the system memory image. The default is /dev/mem.

-0 namelist-file
Specify the text file containing the symbol table for symbolic access to the memory image.
The default is /vmuoix. If a system image from another machine is to be examined, the
image file must be copied from that machine.

-w output-file Specify a file for crash output. The default is the standard output.

For commands that pertain to a process, the default process is the one currently running on a live system, or
the one that was running at the time the system crashed.

If the contents of a table are being dumped, the default is all active table entries.

Numeric Notation
Depending on the command, numeric arguments are assumed to be in a specific base. Counts are assumed
to be decimal. Addresses are always hexadecimal. Table addresses larger than the size of the specified
table are interpreted as hexadecimal addresses; smaller arguments are assumed to be in decimal. The
default base of any argument may be overridden; the C conventions for designating the base of a number
are recognized. (A number that is usually interpreted as decimal will be interpreted as hexadecimal if it is
preceded by Ox and as octal if it is preceded by O. Decimal override is designated by Od, and binary by
Ob.)

Expressions
Many commands accept several forms of an argument. Requests for table information accept a table entry
number, a physical address, a virtual address, a symbol, a range, or an expression. A range of slot numbers
may be specified in the form a-b where a and b are decimal numbers. An expression consists of two
operands and an operator. An operand may be an address, a symbol, or a number. The operator may be
"+" (Plus sign), "-" (minus sign), "*" (multiplication symbol), "I" (division symbol), "&~' (logical AND),
or "I" (logical OR). An operand which is a number should be preceded by a radix prefix if it is not a
decimal number (0 for octal, Ox for hexidecimal, Ob for binary). The expression must be enclosed in '()'
(parentheses). Other commands accept any of these argument forms that are meaningful.

Two abbreviated arguments to crash commands are used throughout. Both accept data entered in several
forms. A table_entry argument may be an address, symbol, range or expression that resolves to one of
these. A start _ addr argument may be an address, symbol, or expression that resolves to one of those.

Commands
? [-w filename]

List available commands.

!command

-wfilename
Redirect the output of a command to the named file. Corresponds to the redirect
command.

Escape to the shell to execute a command.

Sun Release 4.1 Last change: 26 October 1988 1889

CRASH(8) MAThnENANCECOMMANDS CRASH(8)

1890

adv [---t!p] [-w filename] [table_entry] ...
Print the advertise table.

-e Display every entry in a table.

-p Interpret all address arguments in the command line as physical addresses. With
this option, all address and symbol arguments explicitly entered on the com­
mand line are interpreted as physical addresses. Corresponds to the mode com­
mand.

as [-wfilename] [-p] proc _entry I #pid [s]]
Print the address space table.

base [-w filename] number ...
Print number in binary, octal, decimal, and hexadecimal. A number in a radix other then decimal
should be preceded by a prefix that indicates its radix as follows: Ox, hexidecimal; 0, octal; and
Ob~ binary.

buffer [-w filename] [-format] bufferslot
buffer [-p] [-w filename] [-format] start _ addr

Alias: b.
Print the contents of a buffer in the designated format. The following format designations are
recognized: -b, byte; -c, character; -d, decimal; -x, hexadecimal; -0, octal; -r, directory; and -i,
inode. If no format is given, the previous format is used. The default format at the beginning of a
crash session is hexadecimal.

butbdr [-fp] [-w filename] [table_entry] ...
Alias: buf.
Print system buffer headers.

-f Display the full structure.

callout [-w filename]
Alias: c.
Print the callout table.

ctx [-wfilename] [[-p] tbl_ entry. ..]
Print the context table.

dbfree [-w filename]
Print free streams data block headers. If a class is entered, only data block headers for the class
specified will be printed.

dblock [-ep] [-w filename] [dblk _ addr] ...
Print allocated streams data block headers. If the class option (-c) is used, only data block
headers for the class specified will be printed.

defproc [-c] [-w filename]
defproc [-w filename] [slot]

Set the value of the process slot argument. The process slot argument may be set to the current
slot number (-c) or the slot number may be specified. If no argument is entered, the value of the
previously set slot number is printed. At the start of a crash session, the process slot is set to the
current process.

ds [-w filename] virtual_address ...
Print the data symbol whose address is closest to, but not greater than, the address entered.

file [-ep] [-w filename] [table _entry] ...
Alias: f.
Print the file table.

Last change: 26 October 1988 Sun Release 4.1

CRASH(8) MAINTENANCE COMMANDS CRASH(8)

findaddr [-w filename] table slot
Print the address of slot in table. Only tables available to the size command are available to
findaddr.

gdp [-erp] [-w filename] [table_entry] ...
Print the gift descriptor protocol table.

help [-w filename] command ...
Print a description of the named command, including syntax and aliases.

inode [-r] [-w filename] [table _entry] ...
Alias: i.
Print the inode table, including file system switch information.

kfp [-r] [-s process] [-w filename]
kfp [-s process] [-w filename] [value]

Print the frame pointer for the start of a kernel stack trace. The kfp value can be set using the
value argument or the reset option (-r), which sets the kfp through the nvram. If no argument is
entered, the current value of the kfp is printed.

-s process Specify a process slot other than the default. Corresponds to the defproc
command.

linkblk [-ep] [-w filename] [table_entry] ...
Print the linkblk table.

map [-w filename] mapname ...
Alias: m.
Print the map structure of mapname .

mbfree [-w filename]
Print free streams message block headers.

mblock [-ep] [-w filename] [mblk _addr] ...
Print allocated streams message block headers.

mode [-w filename] [mode]
Set address translation of arguments to virtual (v) or physical (p) mode. If no mode argument is
given, the current mode is printed. At the start of a crash session, the mode is virtual.

mount [-p] [-w filename] [table _entry] ...
Alias: m.
Print the mount table.

nm [-w filename] symbol ...
Print value and type for the given symbol.

od [-p] [-w filename] [-format] [-mode] [-s process] start _ addr [count]
Alias: rd.
Print count values starting at the start address in one of the following formats:

-c character
-d decimal
-x hexadecimal
-0 octal
-a ASCII
-h hexadecimal character

and one of the following modes:

-I long
-t short
-b byte

Sun Release 4.1 Last change: 26 October 1988 1891

CRASH(8) MAINTENANCE COMMANDS CRASH(8)

1892

The default mode for character and ASCII fonnats is byte; the default mode for decimal, hexade­
cimal, and octal formats is long. The fonnat -h prints both hexadecimal and character representa­
tions of the addresses dumped; no mode needs to be specified. When format or mode is omitted,
the previous value is used. At the start of a crash session, the format is hexadecimal and the mode
is long. If no count is entered, I is assumed.

page [-e] [-wfilename] [[-p] tbl_ entry] ...
Alias: p.
Print the page structures.

pcb [-w filename] [process]
Print the process control block. If no arguments are given, the active pcb for the current process
is printed. -ep

pment [-p] [-wfilename] tbl_entry ...
Print the page map entry table (not available on machines with a sun3x kernel architecture).

pmgrp [-wfilename] [[-p] tbl_entry ...]
Print the page map group table (not available on machines with a sun3x kernel architecture).

proc [-fp] [-w filename] [#pid] ... [table_entry] ...
proc [-fr] [-w filename]

Print the process table. Process table information may be specified in two ways. First, any mix­
ture of table entries and process IDs (PID) may be entered. Each PID must be preceded by a 'I'
(pound sign). Alternatively, process table information for runnable processes may be specified
with the runnable option (-r).

qrun [-w filename]
Print the list of scheduled streams queues.

queue [-p] [-w filename] [queue _ addr] ...
Print stream queues.

quit Alias: q.
Terminate the crash session.

rcvd [-efp] [-w filename] [table_entry] ...
Print the receive descriptor table.

redirect [-c] [-w filename]
redirect [-w filename] [filename]

Alias: rd.
Used with a name, redirects output of a crash session to the named file. If no argument is given,
the file name to which output is being redirected is printed. Alternatively, the close option (-c)
closes the previously set file and redirects output to the standard output. To pipe output from a
single crash command, use an exclamation point followed by a shell command:

crash-command! shell-command

This is not available when -w is in effect.

search [-p] [-m mask] [-s process] [-w filename] pattern start _addr length
Alias: s.
Print the words in memory that match pattern, beginning at the start address for length words.
The mask is ANDed (&) with each memory word and the result compared against the pattern. The
mask defaults to Oxffff'ffff.

seg [-wfilename] [[-p] proc _entry]
seg [-wfilename] [#procid . ..]

Print the segment table of process.

Last change: 26 October 1988 Sun Release 4.1

CRASH(8) MA~NANCECOMMANDS CRASH(8)

FILES

segdata [-wfilename] [[-p] proc _entry]
segdata [-wfilename] [#procid . ..]

Print the segment data of process.
size [-x] [-w filename] [structure_name ...]

Print the size of the designated structure. The -x option prints the size in hexadecimal. If no
argument is given, a list of the structure names for which sizes are available is printed.

sndd [-erp] [-w filename] [table _entry] ...
Print the send descriptor table.

srmount [-ep] [-w filename] [table_entry] ...
Print the server mount table.

stack [-u] [-w filename] [process]
stack [-k] [-w filename] [process]
stack [-p] [-w filename] -i start_addr]

Alias: s.
Dump stack. The -u option prints the user stack. The -k option prints the kernel stack. The-i
option prints the interrupt stack starting at the start address. If no arguments are entered, the ker­
nel stack for the current process is printed. The interrupt stack and the stack for the current pro­
cess are not available on a running system.

status [-w filename]
Print system statistics.

stream [-erp] [-w filename] [table_entry] ...
Print the streams table.

strstat [-w filename]
Print streams statistics.

trace [-r] [-w filename] [process]
trace [-p] [-w filename] -i start _ addr]

Alias: t.
Print stack trace. The krp value is used with the -r option. The interrupt option prints a trace of
the interrupt stack beginning at the start address. The interrupt stack trace and the stack trace for
the current process are not available on a running system.

ts [-w filename] virtual_address ...
Print closest text symbol to the designated address.

user [-r] [-w filename] [process]
Alias: u.
Print the ublock for the designated process.

vrs [-wfilename] [[-p] tbl_ entry. ..]
Print the vfs table.

vnode [-wfilename] [[-p] addr]
Alias: v.
Print the vnade table.

vtop [-s process] [-w file name] start _ addr ...
Print the physical address translation of the virtual start address.

Idev/mem system image of currently running system
Ivar/crashlmachinelvmcore.N
Ivar/crashlmachine/vmunix.N

SEE ALSO
savecore(8)

Sun Release 4.1 Last change: 26 October 1988 1893

CRON(8) MAThnENANCECOMMANDS CRON(8)

NAME
cron - clock daemon

SYNOPSIS
/usr/ etc/croo

DESCRIPTION

FILES

cron executes commands at specified dates and times. Regularly scheduled commands can be specified
according to instructions found in crontab files in the directory /var/spoollcronlerontabs. Users can sub­
mit their own crootab files using the crontab(l) command. Commands that are to be executed only once
may be submitted using the at(l) command.

cron only examines crootab files and at command files during process initialization and when a file
changes using crontab or at. This reduces the overhead of checking for new or changed files at regularly
scheduled intervals.

Since eron never exits, it should only be executed once. This is normally done by running croo from the
initialization process through the file /ete/rc; see iDit(8). IvarlspoollcronlFIFO is a FIFO file that crontab
and at use to communicate with cron; it is also used as a lock file to prevent the execution of more than
one croo.

Ivarlspoollcron
Ivarlspoollcroo/FIFO
Ivarlspoolleroo/crontabs

main cron directory
FIFO for sending messages to eroo
directory containing eroDtab files

SEE ALSO
at(I), crontab(I), sh(I), queuedefs(5), init(8), syslogd(8)

DIAGNOSTICS
crOD logs various errors to the system log daemon, syslogd(8), with a facility code of erOD. The messages
are listed here, grouped by severity level.

Err Severity

1894

CaD't create IvarlspoolleronlFIFO: reason
croo was unable to start up because it could not create IvarlspoollcronlFIFO.

CaD't access Ivar/spoolleronlFIFO: reason
croo was unable to start up because it could not access Ivarlspoollcroo/FIFO.

CaD't opeD IvarlspoollcronlFIFO: reason
crOD was unable to start up because it could not open Ivarlspoollcron/FIFO.

Can't start cron - another cron may be running (/var/spoollcron/FIFO exists)
crOD found that IvarlspoollcronlFIFO already existed when it was started; this normally means
that crOD had already been started, but it may mean that an earlier cron terminated abnormally
without removing IvarlspoollcronlFIFO.

Can't stat Ivarlspoollcron/FIFO: reason
crOD could not get the status of Ivarlspoolleron/FIFO.

Can't change directory to directory:reason
crOD could not change to directory.

Can't read directory:reason
cron could not read directory.

error reading message: reason
An error occurred when cron tried to read a control message from IvarlspooVcronlFIFO.

Last change: 6 December 1988 Sun Release 4.1

CRON(8) MAThnENANCECOMMANDS CRON(8)

message received - bad format
A message was successfully read by cron from Ivarlspoollcron/FIFO, but the message was not of
a form recognized by cron.

SIGTERM
received cron was told to terminate by having a SIGTERM signal sent to it

cron could not unlink Ivarlspoollcron/FIFO: reason
cron was told to terminate, but it was unable to unlink IvarlspoollcronlFIFO before it terminated.

******* CRON ABORTED ********
cron terminated, either due to an error or because it was told to.

Can't open queuedefs filefile:reason
cron could not open a queuedefs file.

1/0 error reading queuedefs file file : reason
An I/O error occurred while cron was reading a queuedefs file.

Using default queue definitions
An error occurred while trying to read a queuedefs file; the default queue definitions will be used.

Can't allocate number bytes of space
An internal error occurred in cron while trying to allocate memory.

Info Severity
queue queue max run limit reached

There were more jobs running or to be run in the queue queue than the maximum number
specified. cron will wait until one of the currently-running jobs completes before starting to run a
new one.

MAXRUN (25) procs reached
There were more than 25 jobs running or to be run by cron. cron will wait until one of the
currently-running jobs completes before starting to run a new one.

* * * cron started * * *
cron started running.

> CMD: pid queue command job
A cron job was started, in queue queue, with process ID pid. command is the command to be run.
For at or batch jobs, job is the job number.

> user pid queue time job
A cron job was started for user user, in queue queue, with process ID pid, at the date and time
time. For at or batch jobs, job is the job number.

< user pid queue time job status
A cron job completed for user user, in queue queue, with process ID pid, at the date and time
time. For at or batch jobs, job is the job number. If the command terminated with a non-zero exit
status or a signal, status indicates the exit status or signal.

Notice Severity
Can't fork

An attempt to fork (2) to run a new job failed; cron will attempt again after a 30-second delay.

Warning Severity
Can't stat queuedefs filefile:reason

Sun Release 4.1

cron could not get the status of a queuedefs file in order to determine whether it has changed.
cron will assume it has changed and will reread it

Last change: 6 December 1988 1895

DBCONFIG (8) MAINTENANCE COMMANDS

NAME
dbconfig - initializes the dial box

SYOPNSIS
lusr/etc/dbconfig serial-device

DESCRIPTION

DBCONFIG (8)

dbconfig opens the designated serial port and sets its baud, parity and transmission rates. It also removes
all STREAMS modules already pushed upon it (such as ttcompat(4M) and Idterm(4M» and pushes the dial
box STREAMS module "db" onto the device. db then holds the stream open to maintain this configuration.

If the device Idev/dialbox has not been created and linked to the serial port, dbconfig will fail.

FILES
Idev/dialbox

SEE ALSO
db(4M), Idterm(4M), ttcompat(4M), dialtest(6)

1896 Last change: 28 March 1989 Sun Release 4.1

DCHECK(8) MAINTENANCE COMMANDS DCHECK(8)

NAME
dcheck - file system directory consistency check

SYNOPSIS
lusr/etc/dcheck [-i numbers] [filesystem]

DESCRIPTION
Note: dcheck has been superseded for normal consistency checking by fsck(8).

dcheck reads the directories in a file system and compares the link-count in each inode with the number of
directory entries by which it is referenced. If the file system is not specified, dcheck checks a set of default
file systems.

dcheck is fastest if the raw version of the special file is used, since the i-list is read in large chunks.

OPTIONS

FILES

-i numbers
numbers is a list of i-numbers; when one of those i-numbers turns up in a directory, the number,
the i-number of the directory, and the name of the entry are reported.

Default file systems vary with installation.

SEE ALSO
fs(5), fsck(8), ciri(8), icheck(8), ncheck(8)

DIAGNOSTICS

BUGS

When a file turns up for which the link-count and the number of directory entries disagree, the relevant
facts are reported. Allocated files which have 0 link-count and no entries are also listed. The only
dangerous situation occurs when there are more entries than links; if entries are removed, so the link-count
drops to 0, the remaining entries point to thin air. They should be removed. When there are more links
than entries, or there is an allocated file with neither links nor entries, some disk space may be lost but the
situation will not degenerate.

Since dcheck is inherently two-pass in nature, extraneous diagnostics may be produced if applied to active
file systems.

Inode numbers less than 2 are invalid.

Sun Release 4.1 Last change: 9 September 1987 1897

DEVINFO (8S) MA~NANCECOMMANDS

NAME
devinfo - print out system device information

SYNOPSIS
/usr/etc/devinfo [-v]

AVAILABILITY
This program is available on SPARCstation 1 systems only.

DESCRIPTION

DEVINFO (8S)

devinro displays the devices that the system knows about. The output will state the name of the device, its
unit number, and whether a system device driver has claimed it. Since the internal system representation of
this information is an n-ary tree, indentation is used to denote a parent-child relationship, and devices
reported at the same indentation level are considered sibling devices.

OPTIONS
-v Report hardware specifications such as register addresses and interrupt priorities for each device.

EXAMPLE

FILES

1898

The following example displays the format of devinfo output:
example% devinfo
Node 'Sun 4/60', unit #0 (no driver)

/dev/kmem

Node 'options', unit #0 (no driver)
Node 'zs', unit #0
Node 'zs', unit #1
Node 'fd', unit #0
Node 'audio', unit #0
Node 'sbus' , unit #0

Node 'dma', unit #0
Node 'esp', unit #0

Node 'st', unit #1 (no driver)
Node 'st', unit #0
Node 'sd', unit #3
Node 'sd', unit #2
Node 'sd', unit #1
Node 'sd', unit #0

Node 'Ie', unit #0
Node 'bwtwo', unit #0

Node 'auxiliary-io', unit #0
Node 'interrupt-enable', unit #0
Node 'memory-error', unit #0
Node 'counter-timer', unit #0
Node 'eeprom', unit #0

to get kernel device information

Last change: 5 May 1989 Sun Release 4.1

DEVNM(8V) MAINTENANCE COMMANDS DEVNM(8V)

NAME
devnm - device name

SYNOPSIS
lusr/etc/devnm [name] ...

A V AILABILITY
This command is available with the System V software installation option. Refer to Installing Sun OS 4.1
for information on how to install optional software.

DESCRIPTION
devnm identifies the special file associated with the mounted file system where each name argument
resides. This command can be used to construct a mount table entry for the root file system.

EXAMPLE
If Insr is mounted on Idev/dsk/cldOs2, then the command:

lusr/etc/devnm lusr

FILES

produces:
Idev/dsklcldOs2 usr

Idev/dskl*
letclmtab

SEE ALSO
fstab(5) mount(8)

Sun Release 4.1 Last change: 17 September 1989 1899

DISKUSG(8) MAThnENANCECOMMANDS DIS KUSG (8)

NAME
diskusg - generate disk accounting data by user

SYNOPSIS
diskusg [-sv] [-pfilename] [-ufilename] [filename ...]

DESCRIPTION
diskusg generates intermediate disk accounting information from data in filename, or the standard input if
filename is omitted. diskusg displays one line per user on the standard output in the following format:

uid login #blocks

uid is the numerical user ID of the user. login is the user's login name. #blocks is the total number of disk
blocks allocated to the user.

diskusg normally reads only the i-nodes of file systems for disk accounting. In this case, filename s are the
special filenames of these devices.

The output of diskusg is normally the input to acctdisk (see acct(8» which generates total accounting
records that can be merged with other accounting records. diskusg is normally run in dodisk (see
acctsh(8».

OPTIONS
-s The input data is already in diskusg output format; combine all lines for a single user into a

single line.

-v Print a list to the standard error of all files that are not charged to any user.

-p filename Use filename as the name of the password file to generate login names. letc/passwd is used
by default.

-ufilename Write records to filename of files that are not charged to any user. Records consist of the
special file name, the i-node number, and the user ID.

EXAMPLES
The following example generates daily disk accounting information:

for i in Idev/xyOa Idev/xyOg Idev/xylg; do
diskusg $i > dtmp.'basename $i' &

done
wait
diskusg -s dtmp.* 1 sort +On +11 acctdisk > disktacct

FILES
letclpasswd used for user ID to login name conversions

SEE ALSO
acct(5), acct(8), acctsh(8)

1900 Last change: 13 January 1990 Sun Release 4.1

DKCTL(8) MAThITENANCECOMMANDS DKCTL(8)

NAME
dkctl - control special disk operations

SYNOPSIS
lusr/etc/dkctl disk command

DESCRIPTION
dkctl is used to enable or disable special disk operations. In particular the enabling or disabling of verified
writes (write check functionality) is controlled by this program.

The disk specification here is a disk name of the form Idevlrxxnp, where xx is the controller device abbrevi­
ation (xy, sd, etc.), n is the disk number, and p is the partition to which the operation applies. The partition
specification is simply the letter used to identify that partition in the standard UNIX system nomenclature.

SUPPORTED COMMANDS
wchk

-wchk

BUGS

This function enables write checking for disks that support it for the named disk partition.
This means that for partitions of disks with this feature enabled, all writes are verified to have
been correctly written on the disk. This operation emphasizes data reliability over perfor­
mance, although for each implementation, the fastest reasonable method will be used (Le.,
implemented in hardware, if possible).

This disables write check functionality for the named disk partition.

Use of the dkctl command requires super-user permissions.

There are many other features this program could control, and may in the future.

FILES
Idev/rxxnp

SEE ALSO
dkio(4S), sd(4S), xy(4S)

Sun Release 4.1 Last change: 17 June 1988 1901

DKINFO(8) MAINTENANCE COMMANDS DKINFO(8)

NAME
dkinfo - report information about a disk's geometry and partitioning

SYNOPSIS
/usr/etc/dkinfo disk [partition]

DESCRIPTION
dkinfo gives the total number of cylinders, heads, and sectors or tracks on the specified disk, and gives this
information along with the starting cylinder for the specified partition. If no partition is specified on the
command line, dkinfo reports on all partitions.

The disk specification here is a disk name of the form xxn, where xx is the controller device abbreviation
(ip, xy, etc.) and n is the disk number. The partition specification is simply the letter used to identify that
partition in the standard UNIX system nomenclature. For example, '/usr/etcldkinro xyO' reports on the
first disk in a system controlled by a Xylogics controller; '/usr/etc/dkinfo xyOg' reports on the seventh par­
tition of such a disk.

EXAMPLE

FILES

A request for information on my local disk, an 84 MByte disk controlled by a Xylogics 450 controller,
might look like this:

#/usr/etc/dkinro xyO
xyO: Xylogics 450 controller at addr ee40, unit # 0
586 cylinders 7 heads 32 sectors/track
a: 15884 sectors (70 cyls, 6 tracks, 12 sectors)
starting cylinder 0
b: 33440 sectors (149 cyls, 2 tracks)
starting cylinder 71
c: 131264 sectors (586 cyls)
starting cylinder 0
d: No such device or address
e: No such device or address
r: No such device or address
g: 81760 sectors (365 cyls)
starting cylinder 221
h: No such device or address

/dev/rxxnp

SEE ALSO
dkio(4S), rormat(8S)

1902 Last change: 20 October 1987 Sun Release 4.1

DMESG(8) MAINlENANCE COMMANDS

NAME
dmesg - collect system diagnostic messages to form error log

SYNOPSIS
lusr/etc/dmesg [-]

DESCRIPTION
Note: dmesg is obsoleted by syslogd(8) for maintenance of the system error log.

DMESG(8)

dmesg looks in a system buffer for recently printed diagnostic messages and prints them on the standard
output The messages are those printed or logged by the system when errors occur. If the '-' flag is given,
then dmesg computes (incrementally) the new messages since the last time it was run and places these on
the standard output.

FILES
Ivar/adm/msgbuf

SEE ALSO
syslogd(8)

Sun Release 4.1

scratch file for memory of '-' option

Last change: 9 September 1987 1903

DNAME(8) MAThITENANCECOMMANDS DNAME(8)

NAME
dname - print RFS domain and network names

SYNOPSIS
dname [-adD] [-D domain] [-N nets pee]

AVAILABILITY
This program is available with the RFS software installation option. Refer to Installing SunOS 4.1 for
infonnation on how to install optional software.

DESCRIPTION
dname prints or defines a host's Remote File Sharing (RFS) domain name or the network used by RFS as
transport provider.

When dDame is used to change a domain name, the host's password is removed. The administrator will be
prompted for a new password the next time RFS is started. See rfstart(8).

If dname is used with no options, it defaults to 'dDame -d'.

You cannot use the -0 or -N options while RFS is running.

OPTIONS
-a Print both the domain name and network name.

-d Print the domain name.

-n Print the network name.

-D domain
Set the domain name for the host. domain must consist of no more than 14 characters, consisting
of any combination of letters (upper and lower case), digits, hyphens (-), and underscores U.
This option is restricted to the super-user.

-N netspee
Set the network specification used for RFS. nets pee is the network device name, relative to the
Idev directory. For example, the TCP transport device, Idev/tcp uses tcp. This option is restricted
to the super-user.

SEE ALSO
rfstart(8)

NOTES

1904

This domain name is not related to the Network Interface Service (NIS) domain name. Note: NIS was
fonnerly known as Sun Yellow Pages (YP). The functionality of the two remains the same; only the name
has changed.

Last change: 30 June 1988 Sun Release 4.1

OORFS(8) MAINTENANCE COMMANDS OORFS(8)

NAME
dorfs - initialize, start and stop RFS automatically

SYNOPSIS
dorfs init domain netspec [address]
dorfs start [-v]
dorfs stop

A V AILABILITY
This program is available with the RFS software installation option. Refer to Installing SunOS 4.1 for
information on how to install optional software.

DESCRIPTION
dorfs sets up necessary environment to run Remote File Sharing (RFS). You can also use it to start or stop
RFS automatically, after its environment is initialized. The environment only needs to be set up once and
lusr/nserve/rfmaster must exist before the environment is initialized. Descriptions of
lusr/nserve/rfmaster are in rfmaster(5). You must be the super-user to run this command.

USAGE
Subcommands

FILES

init domain netspec [address]
domain is the name of the RFS domain. netspec is the name of a device file in the Idev directory
which represents the streams-based transport provider on which RFS will run. Currently, tcp is
the only accepted value for this field. address is the optional tcp port number on which the
listener will listen. If unspecified, it defaults to Ox14S0. This subcommand only needs to be run
once to initialize the environment. You do not need to rerun dorfs with the init argument, unless
you want to change ,netspec. lusr/nserve/rfmaster must exists before you run this command to
initialize the environment. To reinitialize the environment, you need to remove
lusr/nserve/domain, lusr/nservelnetspec, Ivar/netlnlslnetspec laddress and
Ivar/netlnlslnetspecldbf beforehand.

start [-v]

stop

Start RFS automatically. It also automatically advertises resources that are stored in letc/rstab and
mounts RFS resources that are stored in letdfstab.

-v Verify clients on mounts (see 'rfstart -v').

Takes down RFS by forced unmounting of all advertised resources, umounting all remotely
mounted resources, executing rfstop, and stopping listener.

letdadvtab
letdrstab
Ivar/netlnlsltcp/addr
Ivar/netlnlsltcp/dbf
lusr/nserve/domain
lusr/nserve/netspec
lusr/nserve/rfmaster

SEE ALSO
rfmaster(5), dname(8), fumount(8), mount(8), nlsadmin(8), rfstart(8), rfstop(8)

Sun Release 4.1 Last change: 30 September 1988 1905

DUMP (8) MAINTENANCE COMMANDS DUMP(8)

NAME
dump, rdump - incremental file system dump

SYNOPSIS
/usr/etc/dump [options [arguments]]filesystem
/usr/etc/dump [options [arguments]]filename ...

/usr/etc/rdump [options [arguments]] filesystem
/usr/etc/rdump [options [arguments]] filename . ..

DESCRIPTION
dump backs up all files in filesystem, or files changed after a certain date, or a specified set of files and
directories, to magnetic tape, diskettes, or files. options is a string that specifies dump options, as shown
below. Any arguments supplied for specific options are given as subsequent words on the command line,
in the same order as that of the options listed.

If dump is called as rdump, the dump device defaults to dumphost:/dev/rmtS.

If no options are given, the default is 9u.

dump is normally used to back up a complete filesystem. To restrict the dump to a specified set of files and
directories on one filesystem, list their names on the command line. In this mode the dump level is set to 0
and the u option is ignored.

OPTIONS

1906

0-9 The "dump level." All files in the filesystem that have been modified since the last dump at a
lower dump level are copied to the volume. For instance, if you did a "level 2" dump on Monday.
followed by a "level 4" dump on Tuesday, a subsequent "level 3" dump on Wednesday would
contain all files modified or added since the "level 2" (Monday) backup. A "level 0" dump copies
the entire filesystem to the dump volume.

a archive-file
Create a dump table-of-contents archive in the specified file, archive-file. This file can be used by
restore(8) to determine whether a file is present on a dump tape, and if so, on which volume it
resides. For further information on the use of a dump archive file, see restore(8).

b factor Blocking factor. Specify the blocking factor for tape writes. The default is 20 blocks per write.
Note: the blocking factor is specified in terms of 512 bytes blocks, for compatibility with tar(l).
The default blocking factor for tapes of density 6250BPI and greater is 64. The default blocking
factor for cartridge tapes (c option specified) is 126. The highest blocking factor available with
most tape drives is 126.

c Cartridge. Use a cartridge instead of the standard half-inch reel. This sets the density to 1000BPI,
the blocking factor to 126, and the length to 425 feet. This option also sets the "inter-record gap"
to the appropriate length. When cartridge tapes are used, and this option is not specified, dump
will slightly miscompute the size of the tape. If the b, d, s or t options are specified with this
option, their values will override the defaults set by this option.

d bpi Tape density. The density of the tape, expressed in BPI, is taken from bpi. This is used to keep a
running tab on the amount of tape used per reel. The default density is 1600 except for cartridge
tape. Unless a higher density is specified explicitly, dump uses its default density - even if the
tape drive is capable of higher-density operation (for instance, 6250BPI). Note: the density
specified should correspond to the density of the tape device being used, or dump will not be able
to handle end-of-tape properly. The d option is not compatible with the D option.

D Diskette. Specify diskette as the dump media.

f dump-file
Dump file. Use dump-file as the file to dump to, instead of /dev/rmt8. If dump-file is specified as
'-', dump to the standard output. If the file name argument is of the form machine:device, dump
to a remote machine. Since dump is normally run by root. the name of the local machine must

Last change: 7 September 1989 Sun Release 4.1

DUMP(8) MA~NANCECOMMANDS DUMP(8)

FILES

appear in the .rhosts file of the remote machine. If the file name argument is of the form
user@machine:device, dump will attempt to execute as the specified user on the remote machine.
The specified user must have a .rhosts file on the remote machine that allows root from the local
machine. If dump is called as rdump, the dump device defaults to dumphost:/dev/rmt8. To
direct the output to a desired remote machine, set up an alias for dumphost in the file letclhosts.

n Notify. When this option is specified, if dump requires attention, it sends a terminal message
(similar to wall(l» to all operators in the "operator" group.

s size Specify the size of the volume being dumped to. When the specified size is reached, dump waits
for you to change the volume. dump interprets the specified size as the length in feet for tapes,
and cartridges and as the number of 1024 byte blocks for diskettes. The following are defaults:

tape 2300 feet
cartridge 425 feet
diskette 1422 blocks (Corresponds to a 1.44 Mb diskette, with one cylinder

reserved for bad block information.)

t tracks Specify the number of tracks for a cartridge tape. On all Sun-2 systems the default is 4 tracks,
although some Sun-2 systems have 9 track drives. On all other machines the default is 9 tracks.
The t option is not compatible with the D option.

u Update the dump record. Add an entry to the file letc/dumpdates, for each filesystem success­
fully dumped that includes the filesystem name, date, and dump level. This file can be edited by
the super-user.

v After writing each volume of the dump, the media is rewound and is verified against the filesystem
being dumped. If any discrepancies are found, dump will respond as if a write error had occurred;
the operator will be asked to mount new media, and dump will attempt to rewrite the volume.
Note that any change to the filesystem. even the update of the access time on a file will cause the
verification to fail. Thus, the verify option can only be used on a quiescent filesystem.

w List the filesystems that need backing up. This information is gleaned from the files
letcldumpdates and letc/fstab. When the woption is used, all other options are ignored. After
reporting, dump exits immediately.

W Like w, but includes all filesystems that appear in letcldumpdates, along with information about
their most recent dump dates and levels. Filesystems that need backing up are highlighted.

Idev/rmt8
dumphost:/dev/rmt8
Idev/rst,*
Idev/rfdOa
Idev/rfdlOa
Idev/rfdOc
Idev/rfdlOc
letcldumpdates
letclfstab
letclgroup
letclhosts

default unit to dump to
default remote unit to dump to if called as rdump
Sun386i cartridge tape dump device
Sun386i 1.44 megabyte 3.5-inch high density diskette drive dump device
Sun386i 720 kilobyte 3.5-inch low density diskette drive dump device
Sun386i 1.44 megabyte 3.5-inch high density diskette drive dump device
Sun386i 720 kilobyte 3.5-inch low density diskette drive dump device
dump date record
dump table: file systems and frequency
to find group operator

SEE ALSO
bar(I), fdformat(l), tar(l), wall(l), dump(5), fstab(5), restore(8), shutdown(8)

Sun Release 4.1 Last change: 7 September 1989 1907

DUMP(8) MAINTENANCE COMMANDS DUMP(8)

DIAGNOSTICS
While running, dump emits many verbose messages.

Exit Codes

BUGS

NOTES

o
1
3

Normal exit.
Startup errors encountered.
Abort - no checkpoint attempted.

Fewer than 32 read errors on the file system are ignored.

Each reel requires a new process, so parent processes for reels already written just hang around until the
entire tape is written.

It is recommended that incremental dumps also be performed with the system running in single-user mode.

dump does not support multi-file multi-volume tapes.

Operator Intervention
dump requires operator intervention on these conditions: end of volume, end of dump, volume write error,
volume open error or disk read error (if there are more than a threshold of 32). In addition to alerting all
operators implied by the n option, dump interacts with the operator on dump's control terminal at times
when dump can no longer proceed, or if something is grossly wrong. All questions dump poses must be
answered by typing yes or no, as appropriate.

Since backing up a disk can involve a lot of time and effort, dump checkpoints at the start of each volume.
If writing that volume fails for some reason, dump will, with operator permission, restart itself from the
checkpoint after a defective volume has been replaced.

dump reports periodically, and in verbose fashion. Each report includes estimates of the percentage of the
dump completed and how long it will take to complete the dump. The estimated time is given as
hours:minutes.

Suggested Dump Schedule
It is vital to perform full, "level 0", dumps at regular intervals. When performing a full dump, bring the
machine down to single-user mode using shutdown(8). While preparing for a full dump, it is a good idea
to clean the tape drive and heads.

Incremental dumps allow for convenient backup and recovery on a more frequent basis of active files, with
a minimum of media and time. However there are some tradeoffs. First, the interval between backups
should be kept to a minimum (once a day at least). To guard against data loss as a result of a media failure
(a rare, but possible occurrence), it is a good idea to capture active files on (at least) two sets of dump
volumes. Another consideration is the desire to keep unnecessary duplication of files to a minimum to save
both operator time and media storage. A third consideration is the ease with which a particular backed-up
version of a file can be located and restored. The following four-week schedule offers a reasonable trade­
off between these goals.

Sun
Week 1: Full
Week 2:
Week 3:
Week 4:

Mon
5
5
5
5

Tue
5
5
5
5

Wed
5
5
5
5

Thu
5
5
5
5

Fri
3
3
3
3

Although the Tuesday - Friday incrementals contain "extra copies" of files from Monday, this scheme
assures that any file modified during the week can be recovered from the previous day's incremental dump.

Process Priority of dump

1908

dump uses multiple processes to allow it to read from the disk and write to the media concurrently. Due to

the way it synchronizes between these processes, any attempt to run dump with a nice (process priority) of
'-5' or better will likely make dump run slower instead of faster.

Last change: 7 September 1989 Sun Release 4.1

DUMPFS(8) MAINTENANCE COMMANDS

NAME
dumpfs - dump file system information

SYNOPSIS
lusr/etc/dumpfs device

DESCRIPTION

DUMPFS(8)

dumpfs prints out the super block and cylinder group information for the file system or special device
specified. The listing is very long and detailed. This command is useful mostly for finding out certain file
system information such as the file system block size and minimum free space percentage.

SEE ALSO
fs(5). fsck(8). newfs(8). tunefs(8)

Sun Release 4.1 Last change: 9 September 1987 1909

EDQUOTA(8) MAINTENANCE COMMANDS EDQUOTA(8)

NAME
edquota - edit user quotas

SYNOPSIS
lusr/etc/edquota [-p proto-user] usernames . ..

lusr/etc/edquota -t

DESCRIPTION
edquota is a quota editor. One or more users may be specified on the command line. For each user a tem­
porary file is created with an ASCII representation of the current disk quotas for that user and an editor is
then invoked on the file. The quotas may then be modified, new quotas added, etc. Upon leaving the edi­
tor, edquota reads the temporary file and modifies the binary quota files to reflect the changes made.

The editor invoked is vi(l) unless the EDITOR environment variable specifies otherwise.

Only the super-user may edit quotas. (In order for quotas to be established on a file system, the root direc­
tory of the file system must contain a file, owned by root, called quotas. See quotaon(8) for details.)

OPTIONS

FILES

-p

-t

Duplicate the quotas of the prototypical user specified for each user specified. This is the normal
mechanism used to initialize quotas for groups of users.

Edit the soft time limits for each file system. If the time limits are zero, the default time limits in
<ufslquota.h> are used. Time units of sec(onds), min(utes), hour(s), day(s), week(s), and
month(s) are understood. Time limits are printed in the greatest possible time unit such that the
value is greater than or equal to one.

quotas
letdmtab

quota file at the file system root
mounted file systems

SEE ALSO
quota(l), vi(I), quotactl(2), quotacbeck(8), quotaon(8), repquota(8)

BUGS
The format of the temporary file is inscrutable.

1910 Last change: 9 September 1987 Sun Release 4.1

EEPROM (8S) MAThnENANCECOMMANDS EEPROM(8S)

NAME
eeprom - EEPROM display and load utility

SYNOPSIS
eeprom [-] [-c] [-i] [-f device] [field[=value] ... J

SYNOPSIS - SPARCstation 1 SYSTEMS
eeprom [- J [-f device J [field[=valueJ ... J

DESCRIPTION
eeprom displays or changes the values of fields in the EEPROM. It processes fields in the order given.
When processing afield accompanied by a value, eeprom makes the indicated alteration to the EEPROM;
otherwise it displays the field's value. When given no field specifiers, eeprom displays the values of all
EEPROM fields. A' -' flag specifies that fields and values are to be read from the standard input (one field
orfield=value per line).

Only the super-user may alter the EEPROM contents.

eeprom verifies the EEPROM checksums and complains if they are incorrect; if the -i flag is specified,
erroneous checksums are ignored. If the -c flag is specified, all incorrect checksums are recomputed and
corrected in the EEPROM.

The PROM monitor supports three security modes designated by the secure field: non-secure, command
secure, and fully secure.

If secure=none the PROM monitor runs in the non-secure mode. In this mode all PROM monitor com­
mands are allowed with no password required.

If secure=command the PROM monitor is in the command secure mode. In this mode, only the b (boot)
command with no parameters and the c (continue) command with no parameters may be entered without a
password being required. Any other command requires that the PROM monitor password be entered.

If secure=full the PROM monitor is in the fully secure mode. In this mode, only the c (continue) command
with no parameters may be entered without a password being required. Entry of any other command
requires that the PROM monitor password be entered. Note: the system will not auto-reboot in fully secure
mode. The PROM monitor password must be entered before the boot process will take place.

When changing the security mode from non-secure to either command secure or fully secure, eeprom
prompts for the entry and re-entry of a new PROM password as in the passwd(l) command. Changing
from one secure mode to the other secure mode, or to the non-secure mode does not prompt for a password.
Changing to non-secure mode erases the password.

The content of the password field is never displayed to any user. If the security mode is not none, the
super-user may change the PROM monitor password by entering:

example# eeprom password=

eeprom prompts for a new password to be entered and re-entered.

The field bad Jogin maintains the count of bad login tries. It may be reset to zero (0) by specifying
bad _Iogin=reset.

OPTIONS
-c

-i

-f device

FIELDS and VALVES
hwupdate
memsize
memtest
scrsize

Sun Release 4.1

Correct bad checksums. (Ignored on SPARCstation 1 systems.)

Ignore bad checksums. (Ignored on SPARCstation 1 systems.)

Use device as the EEPROM device.

a valid date (including today and now)
8 bit integer (megabytes of memory on machine)
8 bit integer (megabytes of memory to test)
l024xl024, 1152x900, 1600x1280, or 1440x1440

Last change: 1 September 1989 1911

EEPROM(8S)

watchdog_reboot
default boot

MAINTENANCE COMMANDS

true or false
true or false

EEPROM(8S)

bootdev charchar(hex-int,hex-int,hex-int) (with char a character, and hex-int a hexade­
cimal integer.)

kbdtype 8 bit integer (0 for all Sun keyboards)
keyclick true or false
console b&w or ttya or ttyb or color
custom -'ogo true or false
banner bannersbOng
diagdev %c%c (%x,%x,%x) - diagnostic boot device
diagpath diagnostic boot path
ttya _ no _ rtsdtr true or false
ttyb _no _rtsdtr true or false
ttya _use_baud true or false
ttyb _use_baud true or false
ttya_baud baud rate (16-bit decimal integer)
ttyb _baud baud rate (16-bit decimal integer)
columns number of columns on screen (8-bit integer)
rows number of rows on screen (8-bit integer)
secure none, command, or full
bad_login number of bad login tries (16-bit unsigned integer, ° if reset)
password PROM monitor password (8-bytes)

FIELDS and VALUES - SPARCstation 1 SYSTEMS

1912

hardware-revision 7 chars (for example, 30Mar88)
selftest-#megs 32 bit decimal integer (megabytes of memory to test)
watchdog-reboot? true or false; true to reboot after watchdog reset
boot-from A string specifying boot string (for example, le()vrnunix); defaults to vrnunix
keyboard-click? true or false; true to enable clicking of keys on each keystroke
input-device A string specifying one of keyboard, ttya, or ttyb; if the specified device is una-

output-device

oem-banner?
oem-banner
oem-logo?
oem-logo
boot-from-diag

ttya-mode

ttyb-mode

vailable, ttya is used for both input and output only if input-device specified the
keyboard and output-device specified the screen.
A string specifying one of screen, ttya, or ttyb; if the specified device is unavail­
able, ttya is used for both input and output only if input-device specified the key­
board and output-device specified the screen.
true or false; true to use custom banner string instead of Sun banner
80 chars for custom banner string
true or false; true to display custom logo instead of S un logo
Name of file (in iconedit format) containing custom logo.
80 chars specifying diag boot string (for example, sdOdexec); defaults to
le()vmunix
16 chars to specify 5 comma-separated fields of configuration information (for
example, 1200,8,I,n,-); defaults to 9600,8,1 ,n,-.
Fields, in left-to-right order, are:

baud rate: 110,300,1200,4800,9600 ...
data bits: 5,6, 7, 8
parity: n(none), e(even), o(odd), m(mark), s(space)
stop bits: 1, 1.5, 2
handshake: -(none), h(hardware:rts/cts), s(software:xon/xoff)

16 chars to specify 5 comma-separated fields of configuration information (for
example, 1200,7,I,n,s); defaults to 9600,8,1,0,-.

Last change: 1 September 1989 S un Release 4.1

EEPROM (8S) MAINTENANCE COMMANDS EEPROM (8S)

FILES

ttyb-rts-dtr-off
ttya-rts-dtr-off
ttya-ignore-cd
ttyb-ignore-cd
screen-#rows

screen-#columns

auto-boot?
scsi-initiator-id

sd-targets

st-targets

Fields, in left-to-right order, are:
baud rate: 110,300, 1200,4800,9600 ...
data bits: 5, 6, 7, 8
stop bits: 1, 1.5,2
parity: n(none), e(even), o(odd), m(mark), s(space)
handshake: -(none), h(hardware:rts/cts), s(software:xon/xoff)

true or false. Defaults to false.
true or false. Defaults to false.
true or false. Defaults to true.
true or false; true to ignore the CARRIER DETECT line. Defaults to true.
number of rows on output device; defaults to 34 (for some devices actual values
used may be less)
number of columns on output device; defaults to 80 (for some devices actual
values used may be less)
true or false; true to boot on power-on
An integer between ° and 7 that specifies the SCSI initiator 10 of the on board SCSI
host adapter.
An array of 8 integers that map SCSI disk unit numbers to SCSI target numbers.
The unit number is used to index into this string. The default settings are
31204567, which means that unit 0 maps to target 3, unit 1 maps to target 1, and
so on.
An array of 8 integers that map SCSI tape unit numbers to SCSI target numbers.
The unit number is used to index into this string. The default settings are
45670123, which means that unit 0 maps to target 4, unit 1 maps to target 5, and
soon.

sunmon-compat? true or false. Defaults to true.
sbus-probe-list Defaults to 0123.
fcode-debug? true or false. Defaults to false.
last-hardware-update Date the CPU board was manufactured or upgraded to the latest hardware revision.

The format is a human-readable date string, such as 23May89.
testarea Defaults to 0.
mfg-switch?
diag-switch?

/dev/eeprom

true or false. Defaults to false.
true or false. Defaults to true.

FILES - SP ARCstation 1 SYSTEMS
/dev/openprom

SEE ALSO
passwd(l)

PROM User's Manual

Sun Release 4.1 Last change: 1 September 1989 1913

ETHERD(8C) MA~NANCECOMMANDS

NAME
etherd, rpc.etherd - Ethernet statistics server

SYNOPSIS
lusr/etc/rpc.etherd interface

AVAILABILITY

ETHERD(8C)

This program is available with the Networking software installation option. Refer to Installing SunOS 4.1
for information on how to install optional software.

DESCRIPTION
etherd is a server which puts interface into promiscuous mode, and keeps summary statistics of all the
packets received on that interface. It responds to RPC requests for the summary. You must be root to run
etherd.

interface is a networking interface such as ieO, iel, eeO, eel and leO.

traffie(IC) displays the information obtained from etherd in graphical form.

SEE ALSO
traffic(1 C)

1914 Last change: 17 December 1987 Sun Release 4.1

ETHERFIND (8C) MAThnENANCECOMMANDS ETHERFIND (8C)

NAME
etherfind - find packets on Ethernet

SYNOPSIS
etherfind [-d] [-0] [-p] [-r] [-t] [-u] [-v] [-x] [-c count] [-i interface] [-I length]

expression

A V AILABILITY
This program is available with the Networking software installation option. Refer to Installing SunOS 4.1
for information on how to install optional software.

DESCRIPTION
etherfind prints out the information about packets on the ethernet that match the boolean expression. The
short display, without the -v option, displays only the destination and src (with port numbers). When an
Internet packet is fragmented into more than one ethernet packet, all fragments except the first are marked
with an asterisk. With the -v option, the display is much more verbose, giving a trace that is suitable for
analyzing many network problems. You must be root to invoke etherfind.

OPTIONS
-d

-n

-p

Print the number of dropped packets. Not necessarily reliable.

Do not convert host addresses and port numbers to names.

Normally, the selected interface is put into promiscuous mode, so that etherfind has access to all
packets on the ethemet. However, when the -p flag is used, the interface will not go promiscu-
ous.

-r RPC mode: treat each packet as an RPC message, printing the program and procedure numbers.
Routing packets are also more fully decoded using this option, and Network Interface Service
(NJS) and NFS requests have their arguments printed.

-t Timestamps: precede each packet listing with a time value in seconds and hundredths of seconds
since the first packet.

-u Make the output line buffered.

-v Verbose mode: print out some of the fields ofTCP and UDP packets.

-x Dump the packet in hex, in addition to the line printed for each packet by default. Use the -I

-c count

option to limit this printout.

Exit after receiving count packets. This is sometimes useful for dumping a sample of ethemet
traffic to a file for later analysis.

-i interface

-I length

etherfind listens on interface. The program netstat(8C) when invoked with the -i flag lists all the
interfaces that a machine has.

Use with the -x option to limit the number of bytes printed out.

expression

Sun Release 4.1

The syntax of expression is similar to that used by find(1). Here are the allowable primaries.

dst destination
True if the destination field of the packet is destination, which may be either an address
or a name.

src source
True if the source field of the packet is source, which may be either an address or a
name.

Last change: 16 June 1989 1915

ETHERFIND (8C) MAINlENANCE COMMANDS ETHERFIND (8C)

1916

host name
True if either the source or the destination of the packet is name.

between host] host2
True if either the source of the packet is host] and the destination host2, or the source is
host2 and the destination hostl .

dstnet destination
True if the destination field of the packet has a network part of destination, which may be
either an address or a name.

srcnet source
True if the source field of the packet has a network part of source, which may be either
an address or a name.

srcport port
True if the packet has a source port value of port. This will check the source port value
of either UDP or TCP packets (see tcp(4P», and udp(4P». The port can be a number or a
name used in letc/services.

dstport port
True if the packet has a destination port value of port. The port can be a number or a
name.

less length
True if the packet has a length less than or equal to length.

greater length
True if the packet has a length greater than or equal to length.

-proto protocol
True if the packet is an IP packet (see ip(4P» of protocol type protocol. Protocol can be
a number or one of the names icmp, udp, nd, or tcp.

byte byte op value
True if byte number byte of the packet is in relation op to value. Legal values for op are
+, <, >, &, and I. Thus 4=6 is true if the fourth byte of the packet has the value 6, and
20&Oxf is true if byte twenty has one of its four low order bits nonzero.

broadcast
True if the packet is a broadcast packet.

arp True if the packet is an ARP packet (see arp(4P».

rarp True if the packet is a rarp packet.

-ip True if the packet is an IP packet.

-decnet
True if the packet is a DECNET packet.

-apple True if the packet is an AppleTalk protocol packet.

The primaries may be combined using the following operators (in order of decreasing precedence):

A parenthesized group of primaries and operators (parentheses are special to the Shell and must be
escaped).

The negation of a primary ('not' is the unary not operator).

Last change: 16 June 1989 Sun Release 4.1

ETHERFIND (8C) MAINTENANCE COMMANDS ETHERFIND (8C)

Concatenation of primaries (the and operation is implied by the juxtaposition of two primaries, or
can be specified with 'and').

Alternation of primaries ('or' is the or operator).

EXAMPLE
To find all packets arriving at or departing from the host sundown, or that are ICMP packets:

example% etherfind host sundown or proto icmp

SEE ALSO

BUGS

NOTES

find(I), traffic(IC), arp(4P), ip(4P), nit(4P) tcp(4P), udp(4P), netstat(8C)

The syntax is painful.

The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed.

Sun Release 4.1 Last change: 16 June 1989 1917

EXPOR1FS (8) MAThITENANCECOMMANDS EXPORTFS (8)

NAME
exportfs - export and unexport directories to NFS clients

SYNOPSIS
/usr/etc/exportfs [-aiuv] [-0 options] [pathname]

DESCRIPTION
exportfs makes a local directory or filename available for mounting over the network by NFS clients. It is
normally invoked at boot time by the /etc/rc.local script, and uses information contained in the
/etclexports file to export pathname (which must be specified as a full pathname). The super-user can run
exportfs at any time to alter the list or characteristics of exported directories and filenames. Directories
and files that are currently exported are listed in the file /etc/xtab.

With no options or arguments, exportfs prints out the list of directories and filenames currently exported.

OPTIONS

FILES

1918

-a All. Export all pathnames listed in /etc/exports, or if -u is specified, unexport all of the currently
exported pathnames.

-i Ignore the options in /etc/exports. Normally, exportfs will consult /etc/exports for the options
associated with the exported pathname.

-u Unexport the indicated pathnames.

-v Verbose. Print each directory or filename as it is exported or unexported.

-0 options
Specify a comma-separated list of optional characteristics for the pathname being exported.
options can be selected from among:

ro Export the pathname read-only. If not specified, the pathname is exported read-write.

rw=hostname[:hostname] ...
Export the pathname read-mostly. Read-mostly means exported read-only to most
machines, but read-write to those specified. If not specified, the pathname is exported
read-write to all.

anon=uid
If a request comes from an unknown user, use UID as the effective user ID. Note: root
users (UID 0) are always considered "unknown" by the NFS server, unless they are
included in the root option below. The default value for this option is -2. Setting the
value of "anon" to -1 disables anonymous access. Note: by default secure NFS accepts
insecure requests as anonymous, and those wishing for extra security can disable this
feature by setting "anon" to -1.

root=hostname[:hostname] ...
Give root access only to the root users from a specified hostname. The default is for no
hosts to be granted root access.

access=client[: client] ...
Give mount access to each client listed. A client can either be a hostname, or a netgroup
(see netgroup(5»). Each client in the list is first checked for in the /etc/netgroup data­
base, and then the /etclhosts database. The default value allows any machine to mount
the given directory.

secure Require clients to use a more secure protocol when accessing the directory.

/etclexports
/etclxtab
/ etclnetgroup

static export information
current state of exported pathnames

Last change: 9 September 1987 Sun Release 4.1

EXPORTFS (8) MAINTENANCE COMMANDS EXPORTFS(8)

SEE ALSO
exports(5). netgroup(5). showmount(8)

WARNINGS
You cannot export a directory that is either a parent- or a sub-directory of one that is currently exported
and within the same filesystem. It would be illegal. for example, to export both lusr and lusr/local if both
directories resided in the same disk partition.

Sun Release 4.1 Last change: 9 September 1987 1919

MAINTENANCE COMMANDS

NAME
extraccpatch - extract and execute patch files from installation tapes

SYNOPSIS
extractyatch [-ddevice [-rremote-host]] [-ppatch-name] [-DEFAULT]

DESCRIPTION
extractyatch extracts a patch from a release tape onto the current system. If no options are specifed, it
prompts for input as to the patch name, tape device, or remote hostname from which to the software is to be
installed. If the named patch cannot be found, a list of valid patches are printed.

If the named patch is found then the patch is extracted from the tape onto the system. If there is a
README file in the extracted contents then the user is given a chance to view it. If there is a patch instal­
lation program the user is given a chance to run it

Patches must appear in the tape's table of contents, and must have a name that starts with "Patch_".

OPTIONS
-ddevice

Install from the indicated tape drive, such as stO, or mtO.

-rremote-host
Install from the device given in the -d option on the indicated remote host.

-ppatch-name
Specifes the name of the patch to extract

-DEFAULT
Execute the installation script using all default values. Otherwise the installation script prompts
for any optional values.

SEE ALSO
extract _ unbundled(8)

1920 Last change: 18 January 1990 Sun Release 4.1

EXTRACT_UNBUNDLED (8) MAThnENANCECOMMANDS EXTRACT_UNBUNDLED (8)

NAME
extraccunbundled - extract and execute unbundled-product installation scripts

SYNOPSIS
extract_unbundled [-ddevice [-rremote-host]] [-DEFAULT]

DESCRIPTION
extract_unbundled extracts and executes the installation scripts from release tapes for Sun unbundled
software products. If no options are specified, it prompts for input as to the tape device, or remote host­
name from which to the software is to be installed. For information about installing a specific product,
refer to the installation manual that accompanies that product.

OPTIONS
-ddevice

Install from the indicated tape drive, such as stO or mtO.

-rremote host
Install from the device given in the -d option on the indicated remote host.

-DEFAULT
Execute the installation script using all default values. Otherwise the installation script prompts
for any optional values.

Sun Release 4.1 Last change: 18 September 1987 1921

FASTBOOT (8) MAINTENANCE COMMANDS

NAME
fastboot, fasthalt - reboot/halt the system without checking the disks

SYNOPSIS
/nsr/etc/fastboot [boot-options]

/nsr/etc/fastbalt [halt-options]

DESCRIPTION

FASTBOOT (8)

fastboot and fastbalt are shell scripts that reboot and halt the system without checking the file systems.
This is done by creating a file /fastboot, then invoking the reboot(8) program. The system startup script,
/etclrc, looks for this file and, if present, skips the normal invocation of fsck(8).

FILES
/nsr/etc/fastboot
/etclrc

SEE ALSO
fsck(8), baJt(8), init(8), rc(8), reboot(8)

1922 Last change: 9 September 1987 Sun Release 4.1

FINGERD (8C) MA~NANCECOMMANDS FINGERD (8C)

NAME
fingerd, in.fingerd - remote user information server

SYNOPSIS
/usr/etc/in.fingerd

DESCRIPTION
fingerd implements the server side of the Name/Finger protocol, specified in RFC 742. The Name/Finger
protocol provides a remote interface to programs which display information on system status and indivi­
dual users. The protocol imposes little structure on the format of the exchange between client and server.
The client provides a single "command line" to the finger server which returns a printable reply.

fingerd waits for connections on TCP port 79. Once connected it reads a single command line terminated
by a LINEFEED which is passed to finger(I). fingerd closes its connections as soon as the output is
finished.

If the line is null (only a LINEFEED is sent) then finger returns a "default" report that lists all people logged
into the system at that moment.

If a user name is specified (for instance, ericLINEFEED) then the response lists more extended information
for only that particular user, whether logged in or not. Allowable "names" in the command line include
both "login names" and "user names". If a name is ambiguous, all possible derivations are returned.

SEE ALSO
finger(l)

BUGS

Harrenstien, Ken, NAME/FINGER, RFC 742, Network Information Center, SRI International, Menlo Park,
Calif., December 1977.

Connecting directly to the server from a TIP or an equally narrow-minded TELNET -protocol user program
can result in meaningless attempts at option negotiation being sent to the server, which will foul up the
command line interpretation. fingerd should be taught to filter out lAC's and perhaps even respond nega­
tively (lAC will not) to all option commands received.

Sun Release 4.1 Last change: 9 September 1987 1923

FONTFLIP (8) MA~NANCECOMMANDS

NAME
fonftlip - create Sun386i-style vfont file

SYNOPSIS
fontflip fontname [-0 newfontname]

A V AlLABILITY

FONTFLIP (8)

Available only on Sun 386i systems running a SunOS 4.0.x release or earlier. Not a SunOS 4.1 release
feature.

DESCRIPTION
fontflip takes as input a vfont file (Sun-3 fixedwidthfont) and creates a Sun386i system vfont. This new
font is a bitflipped version of its input. The new font is named ol4{ont.flip unless otherwise specified.

OPTIONS
-0 newfontname Specify the name of the new flipped font.

FILES
lusr/lib/fontslfixedwidthfonts

SEE ALSO
vfont(5)

1924 Last change: 15 September 1988 Sun Release 4.1

FORMAT(8S) MAThITENANCECOMMANDS FORMAT(8S)

NAME
format - disk partitioning and maintenance utility

SYNOPSIS
format [-f command-file] [-Ilog-file] [-x data-file] [-d disk-name] [-t disk_type]

[-p partition-name] [-s] diskname . ..

DESCRIPTION
format enables you to format, label, repair and analyze disks on your Sun computer. Unlike previous disk
maintenance programs, format runs under SunOS. Because there are limitations to what can be done to the
system disk while the system is running, format is also supported within the memory-resident system
environment. For most applications, however, running format under SunGS is the more convenient
approach.

If no disk-list is present, format uses the disk list defined in the data file specified with the -x option. If
that option is omitted, the data file defaults to format.dat in the current directory, or else letc/format.dat.

OPTIONS

FILES

-f command-file
Take command input from command-file rather than the standard input. The file must contain
commands that appear just as they would if they had been entered from the keyboard. With this
option, format does not issue continue? prompts.

-I log-file
Log a transcript of the format session to the indicated log-file, including the standard input, the
standard output and the standard error.

-x data-file
Use the disk list contained in data-file.

-d disk name
Specify which disk should be made current upon entry into the program. The disk is specified by
its logical name (for instance, - xyO). This can also be accomplished by specifying a single disk in
the disk list.

-t disk-type
Specify the type of disk which is current upon entry into the program, A disk's type is specified by
name in the data file. This option can only be used if a disk is being made current as described
above.

-p partition-name
Specify the partition table for the disk which is current upon entry into the program. The table is
specified by its name as defined in the data file. This option can only be used if a disk is being
made current, and its type is either specified or available from the disk label.

-s Silent Suppress all of the standard output. Error messages are still displayed. This is generally
used in conjunction with the -f option.

letclformat.dat

SEE ALSO

default data fi Ie

System and Network Administration

Sun Release 4.1 Last change: 20 January 1988 1925

MAINTENANCE COMMANDS

NAME
fpa_download - download to the Floating Point Accelerator

SYNOPSIS
fpa _download [-d] [-r] [-v] [-u ufile] [-m mfile] [-c cfile]

A V AILABILITY
fpa_download applies to Sun-3 and Sun-3x systems equipped with either an FPA or FPA+.

DESCRIPTION
fpa_download writes microcode, map, and constants files to FPA and FPA+ boards. FPA requires a map
file; FPA+ does not.

Root execution level is required to download (d,u,m and c options). fpa_download is called from
/etcJrc.local when /dev/fpa exists.

Given no arguments, fpa_download prints whether an FPA, or FPA+ is installed.

OPTIONS

FILES

-d

-r

-v

-u ufile

-m mfile

-c cfile

/dev/fpa

Download microcode, constants, and map files. Enable default file names.

Print microcode and constant revision.

Verbose mode.

Download microcode from ufile.

Download map from mfile (FPA only).

Download constants from cfile.

/usr/ etc/fpa/fpa _micro_bin
/usr/ etc/fpa/fpa _constants
/usr/ etc/fpa/fpa _micro_map
/usr/etc/fpa/fpa _micro _ bin+
/usr/etc/fpa/fpa _ constants+

device file for both FPA and FPA+.
default microcode file (ufile) for FPA.
default constants file (cfile) for FPA
default map file (mfile) for FPA
default microcode file (ufile) for FPA+
default constants file (cfilc) for FPA+

SEE ALSO
fpa(4)

DIAGNOSTICS

1926

The following diagnostics are printed when fpa _download encounters a serious error and asks the kernel
to disable the FPA. This might occur if the microcode, map, or constants files are corrupted, or if there is an
FPA or system hardware problem.

FP A Download Failed - FP A ioetl failed
An ioctlO on /dev/fpa failed, possibly due to a hung FPA pipe.

FPA Failed Download - FPA Bus Error
Received a SIGFPE.

FPA Failed Download - Upload mismatch
After each file is written to the FPNFPA+, fpa_download uploads the contents of FPA memory
and compares it with the source. They should always match.

Last change: 31 January 1990 Sun Release 4.1

FPAREL(8) MAThITENANCECOMMANDS FPAREL(8)

NAME
fparel - Sun FP A online reliability tests

SYNOPSIS
fparel [-pn] [-v]

AVAILABILITY
Not available on Sun386i systems.

DESCRIPTION
fparel is a command to execute the Sun FPA online confidence and reliability test program. fparel tests
about 90% of the functions of the FPA board, and tests all FPA contexts not in use by other processes.
fparel runs without disturbing other processes that may be using the FPA. fparel can only be run by the
super-user.

After a successful pass, fparel writes

time, date: Sun FPA Passed. The contexts tested are: 0, 1, ... 31

to the file Ivar/adm/diaglog.

If a pass fails, fparel writes

time, date: Sun FPA failed

along with the test name and context number that failed, to the file Ivar/adm/diaglog. fparel then broad­
casts the message

time, date: Sun FPA failed, disabled, service required

to all users of the system. Next, fparel causes the kernel to disable the FP A. Once the kernel disables the
FPA, the system must be rebooted to make it accessible.

The file lete/re.loeal should contain an entry to cause fparel to be invoked upon reboot to be sure that the
FPA remains unaccessible in cases where rebooting doesn't correct the problem. See re(8).

The erontab(5) file for root should contain an entry indicating that cron(8) is to run fparel daily, such as:

7 2 * * * lusr/etelfpa/fparel

which causes fparel to run at seven minutes past two, every day. See cron(8) and erontab(5) for details.

OPTIONS

FILES

-pn Perform n passes. Default is n=1. -pO means perform 2147483647 passes.

-v Run in verbose mode with detailed test results to the standard output.

Ivar/adm/diaglog
/ etelre.local

Log of fparel diagnostics.

/varlspooJ/eron/erontabslroot
lusr/etc/fpa/* directory containing FPA microcode, data files, and loader

SEE ALSO
crontab(5), cron(8), fpaversion(8), re(8)

Sun Release 4.1 Last change: 29 September 1987 1927

FP AVERSION (8) MAINTENANCE COMMANDS FPAVERSION (8)

NAME
fpaversion - print FP A version, load microcode

SYNOPSIS
fpaversion [-chlqv] [-t [cdhimprstvxCIMS]]

AVAILABILITY
Available only on Sun-3 and Sun-3x systems equipped with either an FPA or an FPA+.

DESCRIPTION
fpaversion performs various tests on the FPA or FPA+. Without arguments, it prints the microcode version
number and constants currently installed on Idev/fpa. fpaversion also performs a quick test to ensure
proper operation and reports whether an FPA or an FPA+ is installed.

OPTIONS

FILES

1928

-c Continue tests after an error.

-h Help. Print command-line summary.

-I Loop through tests infinitely.

-q Quiet output. Print out only error messages.

-v Verbose output.

-t Specify certain tests:

c Command register format instructions.

d Double precision format instructions.

h Help. Print summary of test specifiers.

Imask register.

m Mode register.

p Simple pipe sequencing.

r User registers for all contexts.

s Single precision format instructions.

t Status generation.

v Print version number and date of microcode, and constants. Report whether an FPA or an
FP A+ is installed.

x Extended format instructions.

C Check checksum for microcode, mapping RAM, and constant RAM for the FPA. Check
checksum for microcode RAM and constant RAM for the FPA+.

I Allows interactive reads and writes to the FPA.

M Command register format matrix instructions.

S Shadow registers.

Idev/fpa
lusr/etc/fpa/fpa _micro_bin
lusrl etc/fpa/fpa _micro_map
lusrl etc/fpa/fpa _constants
lusr/etc/fpa/fpa _micro _ bin+
lusr/etc/fpa/fpa _ constants+
lusr/etc/fpa/fpa _download

physical FPA device
microcode binaries for the FPA
microcode map binaries for the FPA
microcode data file for the FP A
microcode binaries for the FPA+
microcode data file for the FP A+
microcode loader

Last change: 28 September 1987 Sun Release 4.1

FPAVERSION (8) MAINTENANCE COMMANDS FPA VERSION (8)

SEE ALSO
fpa _ download(8), fparel(8), sundiag(8)

DIAGNOSTICS
If a test fails, its name, along with the actual and expected results will be printed.

Sun Release 4.1 Last change: 28 September 1987 1929

FPUREL(8) MA~NANCECOMMANDS FPUREL(8)

NAME
fpurel- perform tests the Sun Floating Point Co-processor.

SYNOPSIS
(pure) [-v] [-p[count]] [-r]

DESCRIPTION
(pure) performs a series of functional and computational tests for the Sun Floating Point Co-processor to
verify that it is operational and accurate. With no options, fpure) runs one pass silently in the foreground
and only reports errors if any are found.

OPTIONS
-v Verbose. Display the name and results of each test on the console. The default is to run silently.

-p[count]
Passcount. Specify the number of times to run the test suite. The default is to run one pass.

-r Disable stop on error. Continue to run if errors are detected. The default is to display the error
message and to stop testing when an error is detected.

EXAMPLE

1930

This example uses fpure) from the lusr/diag directory. If no errors are detected, then no information is
displayed.

% lusr/diag/fpure)

Last change: 6 October 1988 Sun Release 4.1

FPUVERSION4 (8) MAThITENANCECOMMANDS

NAME
fpuversion4 - print the Sun-4 FPU version

SYNOPSIS
/usr/etc/fpuversion4

A V AILABILITY
Sun-4 systems only.

DESCRIPTION

FPUVERSION4 (8)

fpuversion4 reads the %fsr register to detennine the FPU version installed on a Soo-4. The printed ver­
sion field contains a value in the range 0-7; by SPARe convention 7 indicates that no FPU is installed, so
floating-point instructions are always emulated in the kernel.

Sun Release 4.1 Last change: 6 October 1988 1931

FSCK(8) MAINTENANCE COMMANDS FSCK(8)

NAME
fsek - file system consistency check and interactive repair

SYNOPSIS
lusr/etc/fsck -p [filesystem ...]

lusr/etc/fsck [-b block#] [-w] [-y] [-0] [-c] [filesystem] ...

DESCRIPTION

1932

The first form of fsck preens a standard set of file systems or the specified file systems. It is normally used
in the letc/rc script during automatic reboot. In this case, fsck reads the table letc/fstab to determine the
file systems to check. It inspects disks in parallel, taking maximum advantage of I/O overlap to check the
file systems as quickly as possible.

Normally, the root file system is checked in pass 1; other root-partition file systems are checked in pass 2.
Small file systems on separate partitions are checked in pass 3, while larger ones are checked in passes 4
and 5.

Only partitions marked in letc/fstab with a file system type of "4.2" and a non-zero pass number are
checked.

fsck corrects innocuous inconsistencies such as: unreferenced inodes, too-large link counts in inodes, miss­
ing blocks in the free list, blocks appearing in the free list and also in files, or incorrect counts in the super
block, automatically. It displays a message for each inconsistency corrected that identifies the nature of,
and file system on which, the correction is to take place. After successfully correcting a file system, fsck
prints the number of files on that file system, the number of used and free blocks, and the percentage of
fragmentation.

If fsck encounters other inconsistencies that it cannot fix automatically, it exits with an abnormal return
status (and the reboot fails).

If sent a QUIT signal, fsck will finish the file system checks, then exit with an abnormal return status that
causes the automatic reboot to fail. This is useful when you wish to finish the file system checks, but do
not want the machine to come up multiuser.

Without the -p option, fsck audits and interactively repairs inconsistent conditions on file systems. In this
case, it asks for confirmation before attempting any corrections. Inconsistencies other than those men­
tioned above can often result in some loss of data. The amount and severity of data lost can be determined
from the diagnostic output.

The default action for each correction is to wait for the operator to respond either yes or 00. If the operator
does not have write permission on the file system, fsck will default to a -n (no corrections) action.

If no file systems are given to fsck then a default list of file systems is read from the file letc/fstab.

Inconsistencies checked in order are as follows:

• Blocks claimed by more than one inode or the free list.
• Blocks claimed by an inode or the free list outside the range of the file system.
• Incorrect link counts.
• Incorrect directory sizes.
• Bad inode format.
• Blocks not accounted for anywhere.
• Directory checks, file pointing to unallocated inode, inode number out of range.
• Super Block checks: more blocks for inodes than there are in the file system.
• Bad free block list format.
• Total free block and/or free inode count incorrect.

Orphaned files and directories (allocated but unreferenced) are, with the operator's concurrence, recon­
nected by placing them in the lost+found directory. The name assigned is the inode number. If the
lost+found directory does not exist, it is created. If there is insufficient space its size is increased.

Last change: 24 September 1989 Sun Release 4.1

FSCK(8) MAThnENANCECOMMANDS FSCK(8)

A file system may be specified by giving the name of the cooked or raw device on which it resides, or by
giving the name of its mount point. If the latter is given, fsck finds the name of the device on which the file
system resides by looking in letclfstab.

Checking the raw device is almost always faster.

OPTIONS
-b

-w

-y

-n

-c

FILES

Use the block specified immediately after the flag as the super block for the file system. Block 32
is always an alternate super block.

Check writable file systems only.

Assume a yes response to all questions asked by fsck; this should be used with extreme caution, as
it is a free license to continue, even after severe problems are encountered.

Assume a no response to all questions asked by fsck; do not open the file system for writing.

If the file system is in the old (static table) format, convert it to the new (dynamic table) format. If
the file system is in the new format, convert it to the old format provided the old format can sup­
port the filesystem configuration. In interactive mode, fsck will list the direction the conversion is
to be made and ask whether the conversion should be done. If a negative answer is given, no
further operations are done on the filesystem. In preen mode, the direction of the conversion is
listed and done if possible without user interaction. Conversion in preen mode is best used when
all the file systems are being converted at once. The format of a file system can be determined
from the first line of output from dumpfs(8)

letclfstab

DIAGNOSTICS

default list of file systems to check

The diagnostics produced by fsck are fully enumerated and explained in System and Network Administra-
tion.

EXIT STATUS
o Either no errors detected or all errors were corrected.

4 Root file system errors were corrected. The system must be rebooted.

8 Some uncorrected errors exist on one or more of the file systems checked, there was a syntax
error, or some other operational error occurred.

12 A signal was caught during processing.

SEE ALSO
fs(5), fstab(5), dumpfs(8), newfs(8), mkfs(8), panic(8S), reboot(8), rexecd(8C), ypserv(8)

System and Network Administration

BUGS
There should be some way to start a 'fsck -p' at pass n.

Sun Release 4.1 Last change: 24 September 1989 1933

FSIRAND(8) MAINTENANCE COMMANDS

NAME
fsirand - install random inode generation numbers

SYNOPSIS
fsirand [-p] special

DESCRIPTION

FSIRAND(8)

fsirand installs random inode generation numbers on all the inodes on device special, and also installs a
filesystem ID in the superblock. This helps increase the security of filesystems exported by NFS.

fsirand must be used only on an unmounted filesystem that has been checked with fsck(8). The only
exception is that it can be used on the root filesystem in single-user mode, if the system is immediately re­
booted afterwords.

OPTIONS
-p

SEE ALSO
fsck(8)

1934

Print out the generation numbers for all the inodes, but do not change the generation numbers.

Last change: 9 September 1987 Sun Release 4.1

FfPD(8C) MAINTENANCE COMMANDS FfPD(8C)

NAME
ftpd, in.ftpd - TCP/IP Internet File Transfer Protocol server

SYNOPSIS
lusr/etc/in.ftpd [-dl] [-ttimeout] host .socket

A V AILABILITY
This program is available with the Networking software installation option. Refer to Installing SunOS 4.1
for information on how to install optional software.

DESCRIPTION
ftpd is the TCP/IP Internet File Transfer Protocol (FTP) server process. The server is invoked by the Inter­
net daemon inetd(8C) each time a connection to the FTP service (see services(5» is made, with the con­
nection available as descriptor 0 and the host and socket the connection originated from (in hex and
decimal respectively) as argument.

Inactive connections are timed out after 60 seconds.

If the -d option is specified, debugging information is logged to the system log daemon, syslogd(8).

If the -I option is specified, each FTP session is logged to syslogd.

The FIP server will timeout an inactive session after 15 minutes. If the -t option is specified, the inactivity
timeout period will be set to timeout.

The FTP server currently supports the following FTP requests; case is not distinguished.

Request Description

ABOR abort previous command

ACCT specify account (ignored)

ALLO allocate storage (vacuously)

APPE append to a file

CDUP change to parent of current working directory

CWD change working directory

DELE delete a file

HELP give help information

LIST give list files in a directory (Is -Ig)

MKD make a directory

MODE specify data transfer mode

NLST give name list of files in directory (Is)

NOOP do nothing

PASS specify password

PASV prepare for server-to-server transfer

PORT specify data connection port

PWD print the current working directory

QUIT terminate session

RETR retrieve a file

RMD remove a directory

RNFR specify rename-from file name

RNTO specify rename-to file name

Sun Release 4.1 Last change: 18 December 1989 1935

FfPD(8C) MAINTENANCE COMMANDS FfPD(8C)

1936

STOR

STOU

STRU

TYPE

USER

XCUP

XCWD

XMKD

XPWD

store a file

store a file with a unique name

specify data transfer structure

specify data transfer type

specify user name

change to parent of current working directory

change working directory

make a directory

print the current working directory

XRMD remove a directory

The remaining FrP requests specified in RFC 959 are recognized, but not implemented.

The FrP server will abort an active file transfer only when the ABOR command is preceded by a Telnet
"Interrupt Process" (IP) signal and a Telnet "Synch" signal in the command Telnet stream, as described in
RFC959.

ftpd interprets file names according to the "globbing" conventions used by csb(I). This allows users to
utilize the metacharacters '* ? [] {} -, .

ftpd authenticates users according to three rules.

• The user name must be in the password data base, letc/passwd, and not have a null password. In
this case a password must be provided by the client before any file operations may be performed.

• If the file letc/ftpusers exists, the user name must not appear in that file.

• The user must have a standard shell returned by getusersbell(3).

• If the user name is "anonymous" or "ftp" , an anonymous FrP account must be present in the pass­
word file (user "ftp"). In this case the user is allowed to log in by specifying any password (by
convention this is given as the client host's name).

In the last case, ftpd takes special measures to restrict the client's access privileges. The server performs a
cbroot(2) command to the home directory of the "ftp" user. In order that system security is not breached,
it is recommended that the "ftp" subtree be constructed with care; the following rules are recommended.

-ftp Make the home directory owned by "ftp" and unwritable by anyone.

-ftplbin Make this directory owned by the super-user and un writable by anyone. The program ls(l V)
must be present to support the list commands. This program should have mode 111. Since the
default /bin/ls command is linked with a shared library, so you need to set up the files for
dynamic linking as well.

-ftp/usr/lib/ld.so
the runtime loader must be present and executable.

-ftp/dev/zero
used by the runtime loader, create this with the command "mknod zero c 3 12".

-ftp/usr/lib/libc.so.*
should be a copy of the latest version of the shared C library.

-ftp/etc Make this directory owned by the super-user and unwritable by anyone. The files passwd(5) and
group(5) must be present for the Is command to work properly. These files should be mode 444.

-ftp/pub Make this directory mode 777 and owned by "ftp". Users should then place files which are to be
accessible via the anonymous account in this directory.

Last change: 18 December 1989 S un Release 4.1

FfPD(8C) MAThnENANCECOMMANDS FfPD(8C)

DIAGNOSTICS
ftpd logs various errors to the system log daemon, syslogd, with a facility code of daemon. The messages
are listed here, grouped by severity level.

Err Severity
getpeername failed: reason

A getpeername(2) call failed.

getsockname failed: reason
A getsockname(2) call failed.

signal failed: reason
A signal (3V) (see signal(3V» call failed.

setsockopt failed: reason
A setsockopt call (see getsockopt(2» failed.

ioctl failed: reason
A ioctl(2) call failed.

directory: reason
ftpd did not have write pennission on the directory directory in which a file was to be created by
the STOU command.

Info Severity
These messages are logged only if the -I flag is specified.

FTPD: connection from host at time
A connection was made to ftpd from the host host at the date and time time.

FTPD: User user timed out after timeout seconds at time
The user user was logged out because they hadn't entered any commands after timeout seconds;
the logout occurred at the date and time time.

Debug Severity
These messages arc logged only if the -d flag is specified.

TPD: command: command
A command line containing command was read from the FrP client.

lost connection
The FrP client dropped the connection.

< --- rep/ycode
< --- rep/ycode-

A reply was sent to the FrP client with the reply code replycode. The next message logged will
include the message associated with the reply. If a - follows the reply code, the reply is continued
on later lines.

SEE ALSO

BUGS

csh(1), ftp(1C), 1s(1 V), chroot(2) getpeername(2), getsockname(2), getsockopt(2), ioctl(2) , getuser­
shell(3), ftpusers(S), group(S), passwd(S), services(S), inetd(8C), syslogd(8)

Postel, Jon, and Joyce Reynolds, File Transfer Protocol (FfP). RFC 959, Network Information Center, SRI
International, Menlo Park, Calif., October 1985.

The anonymous account is inherently dangerous and should be avoided when possible.

The server must run as the super-user to create sockets with privileged port numbers. It maintains an effec­
tive user ID of the logged in user, reverting to the super-user only when binding addresses to sockets. The
possible security holes have been extensively scrutinized, but are possibly incomplete.

Sun Release 4.1 Last change: 18 December 1989 1937

FUMOUNT(8) MAINTENANCE COMMANDS FUMOUNT(8)

NAME
fumount - force unmount of an advertised RFS resource

SYNOPSIS
fumount [-w seconds] resource

AVAILABILITY
This program is available with the RFS software installation option. Refer to Installing SunOS 4.1 for
information on how to install optional software.

DESCRIPTION

OPTION

fumount unadvertises resource and disconnects remote access to the resource.

When the forced unmount occurs, an administrative shell script, rfuadmin, is started on each remote sys­
tem that has the resource mounted If a grace period is specified (in seconds), rfuadmin(8) is started with
the fuwarn option. When the actual forced unmount is ready to occur, rfuadmin(8) is started with the
fumount option. See rfuadmin(8) for information on the action taken in response to the forced unmount.

This command is restricted to the super-user.

An error message will be sent to standard error if any of the following are true of resource:

• It does not physically reside on the local machine.

• It is an invalid resource name.

• It is not currently advertised and is not remotely mounted.

-w seconds Delay execution of the disconnect seconds seconds.

SEE ALSO
adv(8), mount(8), rfuadmin(8), rfudaemon(8), unadv(8)

1938 Last change: 30 June 1988 Sun Release 4.1

FUSAGE(8) MA~NANCECOMMANDS FUSAGE(8)

NAME
fusage - RFS disk access profiler

SYNOPSIS
fusage [[mount yoint] I [advertised_resource] I [block _special_device] [...]]

AVAILABILITY
This program is available with the RFS software installation option. Refer to Installing SunOS 4.1 for
infonnation on how to install optional software.

DESCRIPTION
When used with no options, fusage reports block I/O transfers, in kilobytes, to and from all locally
mounted file systems and advertised Remote File Sharing resources on a per client basis. The count data
are cumulative since the time of the mount. When used with an option, fusage reports on the named file
system, advertised resource, or block special device.

The report includes one section for each file system and advertised resource and has one entry for each
machine that has the directory remotely mounted, ordered by decreasing usage. Sections are ordered by
device name; advertised resources that are not complete file systems will immediately follow the sections
for the file systems they are in.

SEE ALSO
df(l V), adv(8), crash(8), mount(8)

Sun Release 4.1 Last change: 30 June 1988 1939

FUSER(8} MA~NANCECOMMANDS FUSER(8}

NAME
fuser - identify processes using a file or file structure

SYNOPSIS
lusr/etclfuser [-ku] filename I resource [-] [[-ku] filename I resource]

DESCRIPTION
fuser outputs the process IDs of the processes that are using the filenames or remote resources specified as
arguments. Each process ID is followed by a letter code. Possible code letters and an explanation of how
the process is using the file are given below:

c its current directory

p the parent of its current directory (only when the file is being used by the system)

r its root directory

v process has exec' ed or mmap' ed file

For block special devices with mounted file systems, all processes using any file on that device are listed.
For remote resource names, all processes using any file associated with that remote resource are reported.
fuser cannot use the mount point of the remote resource to report all processes using any file associated
with that remote resource; it must use the resource name. For all other types of files (text files, executables,
directories, devices, etc.) only the processes using that file are reported.

The process IDs are printed as a single line on the standard output, separated by SPACE characters and ter­
minated with a single NEWUNE. All other output is written on standard error.

Any user with permission to read Idev/kmem and Idev/mem can use fuser.

Only the super-user can terminate another user's process

OPTIONS

FILES

If more than one group of files are specified, the options may be respecified for each additional group of
files.

Cancel the options currently in force. The new set of options applies to the next group of files.

-k Send SIGKILL signal to each process. Since this option spawns kills for each process, the kill
messages may not show up immediately (see kill(2V».

-u User login name, in parentheses, also follows the process ID.

Ivmunix
Idev/kmem
Idev/mem

system namelist
system image
system image

SEE ALSO
ps(l), kill(2V}, signal(3V), mount(8}

1940 Last change: 30 June 1988 Sun Release 4.1

FWTMP(8) MAThITENANCECOMMANDS FWTMP(8)

NAME
fwtmp, wtmpfix - manipulate connect accounting records

SYNOPSIS
lusr/lib/acctlfwtmp [-ci]

lusr/lib/acctlwtmpfix [filename . ..]

DESCRIPTION
fwtmp

fwtmp reads from the standard input and writes to the standard output, converting binary records of the
type found in wtmp to formatted ASCII records. The ASCII version is useful to enable editing bad records,
using a text editor, or general purpose maintenance of the file.

wtmpfix
wtmpfix examines the standard input or named files in wtmp format, corrects the time/date stamps to make
the entries consistent. and writes to the standard output. A '-' can be used in place of filename to indicate
the standard input. If time/date corrections are not performed, acctconl fails when it encounters certain
date-change records.

Each time the date is set, a pair of date change records are written to Ivar/adm/wtmp. The first record is
the old date denoted by the string 'I' placed in the line field of the <utmp.h> structure. The second record
specifies the new date and is denoted by the string '(' placed in the line field. wtmpfix uses these records
to synchronize all time stamps in the file.

In addition to correcting time/date stamps, wtmpfix checks the validity of the name field to ensure that it
consists solely of alphanumeric characters or SPACE characters. If it encounters a name that is considered
invalid, it changes the login name to INVALID and writes a diagnostic message to the standard error. In
this way, wtmpfix reduces the chance that acctconl will fail when processing connect accounting records.

OPTIONS
fwtmp

-c Write output in binary form.

-i Input is in ASCII form.

FILES
Ivar/adm/wtmp

SEE ALSO
acctcom(l), acct(2V), acct(5), utmp(5V), acct(8), acctcms(8), acctcon(8), acctmerg(8), acctprc(8),
acctsh(8), runacct(8)

Sun Release 4.1 Last change: 17 January 1990 1941

GETTABLE(8C) MAINTENANCE COMMANDS GEIT ABLE (8C)

NAME
gettable - get DARPA Internet format host table from a host

SYNOPSIS
lusr/etc/gettable host

DESCRIPTION
gettable is a simple program used to obtain the DARPA Internet host table from a "hostname" server. The
indicated host is queried for the table. The table, if retrieved, is placed in the file hosts.txt.

gettable operates by opening a TCP connection to the port indicated in the service specification for "host­
name" . A request is then made for "ALL" names and the resultant information is placed in the output file.

gettable is best used in conjunction with the htable(8) program which converts the DARPA Internet host
table format to that used by the network libr~y lookup routines.

SEE ALSO

BUGS

1942

intro(3), htable(8)

Harrenstien, Ken, Mary Stahl, and Elizabeth Feinler,HOSTNAME Server, RFC 953, Network Information
Center, SRI International, Menlo Park, Calif., October 1985.

Should allow requests for only part of the database.

Last change: 9 September 1987 Sun Release 4.1

GETIY(8) MA~NANCECOMMANDS GETTY (8)

NAME
getty - set terminal mode

SYNOPSIS
lusr/etc/getty [type [tty]]

Sun386i SYSTEM SYNOPSIS
lusr/etc/getty [-n] [type [tty]]

DESCRIPTION
getty, which is invoked by init(8), opens and initializes a tty line, reads a login name, and invokes login(l).

The tty argument is the name of the character-special file in Idev that corresponds to the terminal. If there
is no tty argument, or the argument is '-', the tty line is assumed to be opened as file descriptor O.

The type argument, if supplied, is used as an index into the gettytab(5) database-to determine the charac­
teristics of the line. If this argument is absent, or if there is no such entry, the default entry is used. If there
is no letc/gettytab file, a set of system-supplied defaults is used.

When the indicated entry is located, getty clears the tenninal screen, prints a banner heading, and prompts
for a login name. Usually, either the banner or the login prompt includes the system's hostname.

Next, getty prompts for a login and reads the login name, one character at a time. When it receives a null
character (which is assumed to be the result pressing the BREAK, or "interrupt" key), getty switches to the
entry gettytab entry named in the nx field. It reinitializes the line to the new characteristics, and then
prompts for a login once again. This mechanism typically is used to cycle through a set of line speeds
(baud rates) for each terminal line. For instance, a rotary dialup might have entries for the speeds: 300,
1200, 150, and 110 baud, with each nx field pointing to the next one in succession.

The user terminates login input line with a NEWLINE or RETURN character. The latter is preferable; it sets
up the proper treatment of RETURN characters (see tty(4». getty checks to see if the terminal has only
upper-case alphabetical characters. If all alphabetical characters in the login name are in upper case, the
system maps them along with all subsequent upper-case input characters to lower-case internally; they are
displayed in upper case for the benefit of the terminal. To force recognition of an upper-case character, the
shell allows them to be quoted (typically by preceding each with a backs lash , '\').

Finally, getty calls login(l) with the login name as an argument.

getty can be set to time out after a certain interval; this hangs up dial-up lines if the login name is not
entered in time.

Sun386i SYSTEM DESCRIPTION
For Sun386i system, the value of type is the constant Sun, for the console frame buffer.

Sun386i SYSTEM OPTIONS

FILES

-n invoke the full screen login program logintool(8), and optionally the "New User Accounts"
feature. May only be used on a frame buffer. Unless removed from the console entry in
letclttytab, this option is in effect by default.

letclgettytab

SEE ALSO
login(l), ioctl(2), tty(4), fbtab(5), gettytab(5), svdtab(5), ttytab(5), init(8), logintool(8)

DIAGNOSTICS
ttyn: No such device or address.

ttyn: No such file or directory.

Sun Release 4.1

A terminal which is turned on in the ttys file cannot be opened, likely because the requisite lines
are either not configured into the system, the associated device was not attached during boot-time
system configuration, or the special file in Idev does not exist.

Last change: 18 February 1988 1943

GPCONFIG (8) MA~NANCECOMMANDS GPCONFIG (8)

NAME
gpconfig - initialize the Graphics Processor

SYOPNSIS
lusr/etc/gpconfig gpunit [[-b] [-f] fbunit. .. [-u microcode-file]]

DESCRIPTION
gpconfig binds cgtwo frame buffers to the GP, (Graphics Processor) and loads and starts the appropriate
microcode in the GP. For example, the command line:

lusr/etc/gpconfig gponeO cgtwoO cgtwol

will bind the frame buffer boards cgtwoO and cgtwol to the Graphics Processor gponeO. The devices
Idev/gponeOa and Idev/gponeOb will then refer to the combination of gpone and cgtwoO or cgtwol
respectively.

The same cgtwo frame buffer cannot be bound to more than one GP.

All cgtwo frame buffer boards bound to a GP must be configured to the same width and height.

The standard version of the file letc/re.local contains the following gpeonfig command line:

lusr/ete/gpeonfig gponeO -f -b egtwoO

This binds gponeO and cgtwoO as gponeOa, causes gponeOa to use the Graphics Buffer Board if it is
present, and redirects Idev/fb to be /dev/gponeOa. If another configuration is desired, edit the command
line in letc/re.local to do the appropriate thing.

It is inadvisable to run the gpeonfig command while the GP is being used. Unpredictable results may
occur. If it is necessary to change the frame buffer bindings to the GP (or to stop using the GP altogether),
bring the system down gently, boot single user, edit the gpeonfig line in the lete/re.local file, and bring the
system back up multiuser.

OPTIONS

FILES

-b

-r

Configure the GP to use the Graphics Buffer as well. Currently only one GP-to-frame-buffer bind­
ing is allowed to use the graphics buffer at a time. Only the last -b option in the command line
takes effect.

Redirect Idev/tb to the device formed by binding gpunit with tbunit. Only the last -f option in
the command line takes effect.

-u microcode-file
Load the specified microcode file instead of the default file from lusrllib.

/dev/egtwo[O-9]
Idev/fb
Idev/gpone[O-3][abed]
lusr/libl gpleg2.1024.ucode
lusr/lib/gpleg2.1152.ucode
/ etc/re.local

SEE ALSO
egtwo(4S), gpone(4S)

1944 Last change: 9 September 1987 Sun Release 4.1

GRPCK(8V) MAINTENANCE COMMANDS

NAME
grpck - check group database entries

SYNOPSIS
lusr/etc/grpck [filename]

AVAILABILITY

GRPCK(8V)

This command is available with the System V software installation option. Refer to Installing SunOS 4.1
for information on how to install optional software.

DESCRIPTION
grpck checks that a file in group(5) does not contain any errors; it checks the letc/group file by default.

FILES
letc/group

DIAGNOSTICS
Too many/few fields

An entry in the group file does not have the proper number of fields.

No group name
The group name field of an entry is empty.

Bad character(s) in group name
The group name in an entry contains characters other than lower-case letters and digits.

Invalid GID
The group ID field in an entry is not numeric or is greater than 65535.

Null login name
A login name in the list of login names in an entry is null.

Login name not found in password file
A login name in the list of login names in an entry is not in the password file.

First char in group name not lower case alpha
The group name in an entry does not begin witha lower-case letter.

Group name too long
The group name in an entry has more than 8 characters.

SEE ALSO
groups(1), group(5), passwd(5)

Sun Release 4.1 Last change: 17 September 1989 1945

GXTEST(8S) MAINTENANCE COMMANDS GXTEST(8S)

NAME
gxtest - stand alone test for the Sun video graphics board

SYNOPSIS
b Istandlgxtest

DESCRIPTION

1946

gxtest runs stand alone, not under control of the operating system. With the PROM resident monitor in con­
trol of the system, type the command:

> b Istand/gxtest

and the monitor boots the video test program into memory. gxtest is completely self-explanatory and runs
under its own steam. It reports any errors it finds on the screen.

Last change: 23 September 1987 Sun Release 4.1

HALT(8)

NAME
halt - stop the processor

SYNOPSIS
lusr/etc/halt [-nqy]

DESCRIPTION

MAINTENANCE COMMANDS

halt writes out any information pending to the disks and then stops the processor.

HALT(8)

halt normally logs the system shutdown to the system log daemon, syslogd(8), and places a shutdown
record in the login accounting file Ivar/admlwtmp. These actions are inhibited if the -n or -q options are
present.

OPTIONS
-n Prevent the sync before stopping.

-q Do a quick halt. No graceful shutdown is attempted ..

-y Halt the system, even from a dialup terminal.

FILES
Ivar/adm/wtmp login accounting file

SEE ALSO
reboot(8), shutdown(8), syslogd(8)

Sun Release 4.1 Last change: 9 September 1987 1947

HOSTRFS(8) MAINTENANCE COMMANDS HOSTRFS(8)

NAME
hostrfs - convert IP addresses to RFS format

SYNOPSIS
hostrfs hostname [portnum]

A V AILABILITY
This program is available with the RFS software installation option. Refer to Installing SunOS 4.1 for
information on how to install optional software.

DESCRIPTION
hostrfs converts IP addresses to a format suitable for use by Remote File Sharing (RFS). It takes a host­
name and an optional portnumber and produces an address in the following format:

\x<AF-INET><portnum><lP-address>OOOOOOOOOOOOOOOO

Each field given above is a hex Ascn representation. The AF _INET field is the address family which
always has the value 0002. portnum is the two-byte TCP port number; if not specified on the command line
it defaults to 1450. IP-address is the IP address of the hostname given on the command line followed by 16
trailing zeroes.

The output of this command may be directly used as the network address field for the address of an RFS
name server in the rfmaster(5) file. It may also be used as input to the nlsadmin (8) command to initialize
the addresses on which the listener program listens for service requests.

EXAMPLES
The output of

example% hostrfs wopr

is

\00021450819035090000000000000000

The output of the command can be used to initialize the network address on which the RFS listener pro­
gram listens for remote service requests, for example:

example# nlsadmin -I 'hostrfs wopr' tcp

SEE ALSO
rfmaster(5), nlsadmin(8)

System and Network Administration

1948 Last change: 19 September 1988 Sun Release 4.1

HTABLE(8) MAINTENANCE COMMANDS HTABLE(8)

NAME
htable - convert DoD Internet format host table

SYNOPSIS
lusr/etdhtable filename

DESCRIPTION

FILES

htable converts a host table in the format specified by RFC 952 to the fonnat used by the network library
routines. Three files are created as a result of running htable: hosts, networks, and gateways. The hosts
file is used by the gethostent(3N) routines in mapping host names to addresses. The networks file is used
by the getnetent(3N) routines in mapping network names to numbers. The gateways file is used by the
routing daemon in identifying "passive" Internet gateways; see routed(8C) for an explanation.

If any of the files localhosts, localnetworks, or local gateways are present in the current directory, the
file's contents is prepended to the output file without interpretation. This allows sites to maintain local
aliases and entries which are not nonnally present in the master database.

htable is best used in conjunction with the gettable(8C) program which retrieves the DoD Internet host
table from a host.

localhosts
localnetworks
localgateways

SEE ALSO

BUGS

intro(3), gethostent(3N), getnetent(3N), gettable(8C), routed(8C)

Harrenstien, Ken, Mary Stahl, and Elizabeth Feinler, DoD Internet Host Table Specification, RFC 952, Net­
work Infonnation Center, SRI International, Menlo Park, Calif., October 1985.

Does not properly calculate the gateways file.

Sun Release 4.1 Last change: 9 September 1987 1949

ICHECK(8) MA~NANCECOMMANDS ICHECK(8)

NAME
icheck - file system storage consistency check

SYNOPSIS
lusr/etc/icheck [-s] [-b numbers] [filesystem]

DESCRIPTION
Note: icheck has been superseded for normal consistency checking by fsck(8).

icheck examines a file system, builds a bit map of used blocks, and compares this bit map against the free
list maintained on the file system. The normal output of icheck includes a report of

The total number of files and the numbers of regular, directory, block special and character special
files.

The total number of blocks in use and the numbers of single-, double-, and triple-indirect blocks
and directory blocks.

The number of free blocks.

The number of blocks missing; that is, not in any file nor in the free list.

With the -s option icheck ignores the actual free list and reconstructs a new one by rewriting the super­
block of the file system. The file system should be dismounted while this is done; if this is not possible (for
example if the root file system has to be salvaged) care should be taken that the system is quiescent and that
it is rebooted immediately afterwards so that the old, bad in-core copy of the superblock will not continue
to be used. Notice also that the words in the superblock which indicate the size of the free list and of the i­
list are believed. If the superblock has been curdled these words will have to be patched. The -s option
suppresses the normal output reports.

Following the -b option is a list of block numbers; whenever any of the named blocks turns up in a file, a
diagnostic is produced.

icheck is faster if the raw version of the special file is used, since it reads the i-list many blocks at a time.

SEE ALSO
fs(5), clri(8), dcbeck(8), fsck(8), ncheck(8)

DIAGNOSTICS

BUGS

1950

For duplicate blocks and bad blocks (which lie outside the file system) icheck announces the difficulty, the
i-number, and the kind of block involved. If a read error is encountered, the block number of the bad block
is printed and icheck considers it to contain O.

Bad freeblock
means that a block number outside the available space was encountered in the free list.

n dups in free
means that n blocks were found in the free list which duplicate blocks either in some file or in the
earlier part of the free list.

Since icheck is inherently two-pass in nature, extraneous diagnostics may be produced if applied to active
file systems.

It believes even preposterous superblocks and consequently can get core images.

The system should be fixed so that the reboot after fixing the root file system is not necessary.

Last change: 9 September 1987 Sun Release 4.1

IDLOAD(8) MAINTENANCE COMMANDS IDLOAD(8)

NAME
idload - RFS user and group mapping

SYNOPSIS
idload [-0] [-g g_rules] [-u u _rules] [directory]

A V AILABILITY
This program is available with the RFS software installation option. Refer to Installing SunO S 4.1 for
information on how to install optional software.

DESCRIPTION
idload is used on Remote File Sharing (RFS) servers to build translation tables for user and group IDs. It
takes your letc/passwd and letc/group files and produces translation tables for user and group IDs from
remote machines, according to the rules set down in the u _rules and g_rules files. If you are mapping by
user and group name, you will need copies of remote letc/passwd and letc/group files. If no rules files are
specified, remote user and group IDs are mapped to MAXUID+ l. This is an ID number that is one higher
than the highest number you could assign on your system.

By default, the remote password and group files are assumed to reside in
lusr/oserve/auth.info/domainlhostl[passwd I group]. The directory argument indicates that some direc­
tory structure other than lusr/oserve/auth.iofo contains the domain/host passwd and group files. host is
the name of the host the files are from and domain is the domain where host can be found.

This command is restricted to the super-user.

This command is run automatically when the first remote mount is done of a remote resource (sec
mouot(8)).

If any of the following are true, an error message will be sent to standard error.

• Neither rules files can be found or opened.

• There are syntax errors in the rules file.

• There are semantic errors in the rules file.

• Host information could not be found.

• The command is not run with super-user privileges.

Partial failures will display a warning message, although the process will continue.

OPTIONS

USAGE

-0 Do not produce a translation table, however, send a display of the ID mapping to the stan­
dard out. This is used to do a trial run of the mapping.

-u u rules The u rules file contains the rules for user ID translation. The default rules file is
lusr/nserve/auth.info/uid.rules.

-g g_rules The g_rules file contains the rules for group ID translation. The default rules file is
lusr/nserve/auth.info/gid.rules.

Rules
The rules files have two types of sections, both optional: global and host. There can be only one global
section, though there can be one host section for each host you want to map.

The global section describes the default conditions for translation for any machines that are not explicitly
referenced in a host section. If the global section is missing, the default action is to map all remote user
and group IDs from undefined hosts to MAXUID+ l. The syntax of the first line of the global section is:

global

Sun Release 4.1 Last change: 30 June 1988 1951

IDLOAD(8) MAINTENANCE COMMANDS IDLOAD(8)

A host section is used for each client machine or group of machines that you want to map differently from
the global definitions. The syntax of the first line of each host section is:

hostname[. ..]

where name is replaced by the full name(s) of a host (domain.hostname).

The format of a rules file is described below. All lines are optional, but must appear in the order shown.

global
default local I transparent
exclude
[remote _id-remote _id] I [remote _id]
map [remote _id:loeal]

host domain.hostname [domain.hostname ••.]
default local I transparent
exclude [remote _id-remote _id] I [remote _id] I [remote _name]
map [remote:loeal] I remote I all

Each of these instruction types is described below.

The line

default local I transparent

defines the mode of mapping for remote users that are not specifically mapped in instructions in other lines.
transparent means that all remote user and group IDs will have the same numeric value locally unless they
appear in the exclude instruction. local can be replaced by a local user name or 10 to map all users into a
particular local name or ill number. If the default line is omitted, all users that are not specifically mapped
are mapped into a "special guest" login ID .

The line

exclude [remote _id-remote _id] I [remote _id] I [remote_name]

defines remote IDs that will be excluded from the default mapping. The exclude instruction must precede
any map instructions in a block. You can use a range of ID numbers, a single ID number, or a single name.
(remote _name cannot be used in a global block.)

The line

map [remote:local] I remote I all

defines the local IDs and names that remote IDs and names will be mapped into. remote is either a remote
ill number or remote name; local is either a local ID number or local name. Placing a colon between a
remote and a local will give the value on the left the permissions of the value on the right. A single remote
name or ID will assign the user or group permissions of the same local name or ID. all is a predefined alias
for the set of all user and group IDs found in the local/etdpasswd and letdgroup files. You cannot map
by remote name in global blocks.

Note: idload will always output warning messages for 'map all', since password files always contain mul­
tiple administrative user names with the same ID number. The first mapping attempt on the ID number will
succeed, all subsequent attempts will fail.

RFS does not need to be running to use idload.

EXIT STATUS

1952

On successful completion, idload will produce one or more translation tables and return a successful exit
status. If idload fails, the command will return an unsuccessful exit status without producing a translation
table.

Last change: 30 June 1988 S un Release 4.1

IDLOAD(8) MAINTENANCE COMMANDS

FILES
letc/passwd
letdgroup
lusr/nserve/auth.infoldomainlhostl[user I group]
lusr/nserve/auth.info/vid.rules
lusr/nserve/auth.info/gid.rules

SEE ALSO
mount(8)

Sun Release 4.1 Last change: 30 June 1988

IDLOAD(8)

1953

IFCONFIG (8C) MAINTENANCE COMMANDS IFCONFIG (8C)

NAME
ifconfig - configure network interface parameters

SYNOPSIS
/usr/etc/ifconfig interface [address Jamily] [address [dest _address]] [netmask mask]

[broadcast address] [up] [down] [trailers] [-trailers] [arp] [-arp] [private]
[-private] [metric n]

/usr/etc/ifconfig interface [protocol Jamily]

DESCRIPTION
ifconfig is used to assign an address to a network interface and/or to configure network interface parame­
ters. ifconfig must be used at boot time to define the network address of each interface present on a
machine; it may also be used at a later time to redefine an interface's address or other operating parameters.
Used without options, ifconfig displays the current configuration for a network interface. If a protocol fam-

. ily is specified, ifconfig will report only the details specific to that protocol family. Only the super-user
may modify the configuration of a network interface.

The interface parameter is a string of the form name unit, for example ieO. The interface name "-a" is
reserved, and causes the remainder of the arguments to be applied to each address of each interface in turn.

Since an interface may receive transmissions in differing protocols, each of which may require separate
naming schemes, the parameters and addresses are interpreted according to the rules of some address fam­
ily, specified by the addressJamily parameter. The address families currently supported are ether and
inet. If no address family is specified, inet is assumed.

For the TCP/IP family (inet) , the address is either a host name present in the host name data base (see
hosts(5)) or in the Network Interface Service (NIS) map hosts, or a TCP/IP address expressed in the Internet
standard "dot notation". Typically, an Internet address specified in dot notation will consist of your
system's network number and the machine's unique host number. A typical Internet address is
192.9.200.44, where 192.9.200 is the network number and 44 is the machine's host number.

For the ether address family, the address is an Ethernet address represented as x:x:x:x:x:x where x is a
hexadecimal number between 0 and ff. Only the super-user may use the ether address family.

If the dest_address parameter is supplied in addition to the address parameter, it specifies the address of the
correspondent on the other end of a point to point link.

OPTIONS

1954

up

down

trailers

-trailers

arp

-arp

private

Mark an interface "up". This happens automatically when setting the first address on an
interface. The up option enables an interface after an ifconfig down, reinitializing the
hardware.

Mark an interface "down". When an interface is marked "down", the system will not
attempt to transmit messages through that interface. If possible, the interface will be
reset to disable reception as well. This action does not automatically disable routes
using the interface.

This flag used to cause a non-standard encapsulation of inet packets on certain link lev­
els. Sun drivers no longer use this flag, but it is ignored for compatibility.

Disable the use of a "trailer" link level encapsulation.

Enable the use of the Address Resolution Protocol in mapping between network level
addresses and link level addresses (default). This is currently implemented for mapping
between TCP/IP addresses and lOMb/s Ethernet addresses.

Disable the use of the Address Resolution Protocol.

Tells the in.routed routing daemon (see routed(8C)) that the interface should not be
advertised.

Last change: 18 December 1989 Sun Release 4.1

IFCONFIG (8C) MAThITENANCECOMMANDS IFCONFIG (8C)

-private Specify unadvertised interfaces.

metric n Set the routing metric of the interface to n, default O. The routing metric is used by the
routing protocol (routed(8C»). Higher metrics have the effect of making a route less
favorable; metrics are counted as addition hops to the destination network or host.

netmask mask (inet only) Specify how much of the address to reserve for subdividing networks into
sub-networks. The mask includes the network part of the local address and the subnet
part, which is taken from the host field of the address. The mask can be specified as a
single hexadecimal number with a leading Ox, with a dot-notation address, or with a
pseudo-network name listed in the network table networks(5). The mask contains 1 's
for the bit positions in the 32-bit address which are to be used for the network and subnet
parts, and a's for the host part. The mask should contain at least the standard network
portion, and the subnet field should be contiguous with the network portion. If a '+'
(plus sign) is given for the netmask value, then the network number is looked up in the
NlS netrnasks.byaddr map (or in the letc/netmasks) file if not running the NlS service.

broadcast address
(inet only) Specify the address to use to represent broadcasts to the network. The
default broadcast address is the address with a host part of all a's. A + (plus sign) given
for the broadcast value causes the broadcast address to be reset to a default appropriate
for the (possibly new) address and netmask. Note that the arguments of ifconfig are
interpreted left to right, and therefore

ifconfig -a netmask + broadcast +

and

ifconfig -a broadcast + netmask +

may result in different values being assigned for the interfaces' broadcast addresses.

EXAMPLES

FILES

If your workstation is not attached to an Ethernet, the ieO interface should be marked "down" as follows:

ifconfig ieO down

To print out the addressing information for each interface, use

ifconfig -a

To reset each interface's broadcast address after the netmasks have been correctly set, use

ifconfig -a broadcast +

/dev/nit
/ etclnetrnasks

SEE ALSO
intro(3). ethers(3N). arp(4P). hosts(5). netmasks(5), networks(5) netstat(8C). rc(8), routed(8C),

DIAGNOSTICS

NOTES

Messages indicating the specified interface does not exist, the requested address is unknown, or the user is
not privileged and tried to alter an interface's configuration.

The Network Information Service (NlS) was formerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed.

Sun Release 4.1 Last change: 18 December 1989 1955

IMEMTEST (8S) MAINTENANCE COMMANDS IMEMTEST (8S)

NAME
imemtest - stand alone memory test

SYNOPSIS
b Istandlimemtest

DESCRIPTION

1956

imemtest runs stand alone, not under control of the operating system. With the PROM resident monitor in
control of the system, type the command:

> b Istand/imemtest

and the monitor boots the memory test program into memory. imemtest is completely self-explanatory. It
prompts for all start and end addresses, and after that it runs under its own steam. It reports any errors it
finds on the screen.

Last change: 23 September 1987 Sun Release 4.1

INETD(8C) MA~NANCECOMMANDS INETD(8C)

NAME
inetd - Internet services daemon

SYNOPSIS
lusr/ete/inetd [-d] [configuration-file]

DESCRIPTION
inetd, the Internet services daemon, is normally run at boot time by the letc/re.loeal script. When started
inetd reads its configuration information from configuration-file, the default being lete/inetd.eonf. See
inetd.eonf(5) for more information on the format of this file. It listens for connections on the Internet
addresses of the services that its configuration file specifies. When a connection is found, it invokes the
server daemon specified by that configuration file for the service requested. Once a server is finished, inetd
continues to listen on the socket (except in some cases which will be described below).

Depending on the value of the "wait-status" field in the configuration line for the service, inetd will either
wait for the server to complete before continuing to listen on the socket, or immediately continue to listen
on the socket If the server is a "single-threaded" datagram server (a "wait-status" field of "wait"), inetd
must wait. That server will handle all datagrams on the socket All other servers (stream and xlti­
threaded" data-gram, a "wait-status" field of "nowait") operate on separate sockets from the connection
request socket, thus freeing the listening socket for new connection requests.

Rather than having several daemon processes with sparsely distributed requests each running concurrently,
inetd reduces the load on the system by invoking Internet servers only as they are needed.

inetd itself provides a number of simple TCP-based services. These include echo, discard, chargen (char­
acter generator), daytime (human readable time), and time (machine readable time, in the form of the
number of seconds since midnight, January 1, 19(0). For details of these services, consult the appropriate
RFC, as listed below, from the Network Information Center.

inetd rereads its configuration file whenever it receives a hangup signal, SIGHUP. New services can be
activated, and existing services deleted or modified in between whenever the file is reread.

SEE ALSO
inetd.eonf(5), comsat(8C), ftpd(8C), rexecd(8C), rlogind(8C), rshd(8C), telnetd(8C), tftpd(8C)

Postel, Jon, Echo Protocol, RFC 862, Network Information Center, SRI International, Menlo Park, Calif.,
May 1983.

Postel, Jon, Discard Protocol, RFC 863, Network Information Center, SRI International, Menlo Park,
Calif., May 1983.

Postel, Jon, Character Generator Protocol, RFC 864, Network Information Center, SRI International,
Menlo Park, Calif., May 1983.

Postel, Jon, Daytime Protocol, RFC 867, Network Information Center, SRI International, Menlo Park,
Calif., May 1983.

Postel, Jon, and Ken Harrenstien, Time Protocol, RFC 868, Network Information Center, SRI International,
Menlo Park, Calif., May 1983.

Sun Release 4.1 Last change: 17 November 1987 1957

INFOCMP (8V) MAINTENANCE COMMANDS INFOCMP(8V)

NAME
infocmp - compare or print out terminfo descriptions

SYNOPSIS
infocmp [-cdnlLCruvVl] [-sd] [-si] [-sl] [-sc] [-w width] [-A directory] [-8 directory]

[termname ...]

SYNOPSIS
/usr/5binlinfocmp arguments

Note: arguments to lusr/5bin/infocmp are the same as those for infocmp, above.

A V AILABILITY
The System V version of this command is available with the System V software installation option. Refer
to Installing SunOS 4.1 for information on how to install optional software.

DESCRIPTION
infocmp compares a binary terminfo(5V) entry with other terminfo entries, rewrites a terminfo descrip­
tion to take advantage of the use= field, or prints out a terminfo description from the corresponding binary
file in a variety of formats. It displays boolean fields first, then numeric fields, then string fields.

It can also convert a terminfo entry to a termcap(5) entry; the -C flag causes infocmp to perform this
conversion. Some termcap variables are not supported by terminfo, but those that can be derived from
terminfo variables are displayed. Not all term info capabilities are translated either; only those that are
allowed in a termcap entry are normally displayed. Specifying the -r option eliminates this restriction,
allowing all capabilities to be displayed in termcap form.

Because padding is collected at the beginning of a capability, not all capabilities are displayed. Since man­
datory padding is not supported by terminfo and term cap strings are not as flexible, it is not always possi­
ble to convert a terminfo string capability into an equivalent working term cap capability. Also, a subse­
quent conversion of the termcap file back into terminfo format will not necessarily reproduce the original
source; infocmp attempts to convert parameterized strings, and comments out those that it can not.

Some common terminfo parameter sequences, their termcap equivalents, and some terminal types which
commonly have such sequences, are:

Terminfo
%pl%c
%pl%d
%pl %'x'%+%c
%i
%pl %?%'x'%>%t%pl %'y'%+%;
%p2 is printed before %pl

Termcap
%.
%d
%+x
%i
%>xy
%r

Representative Terminals
adm
hp, ANSI standard, vt100
concept
ANSI standard, vt100
concept
hp

If no termname arguments are given, the environment variable TERM is used for all expected term name
arguments.

OPTIONS
Default Options

If no options are specified and either zero or one termname is specified, the -I option is assumed to be in
effect. If more than one termname is specified, the -d option is assumed.

Comparison Options

1958

infocmp compares the description of the first terminal termname with each of the descriptions for terminals
listed in subsequent termname arguments. If a capability is defined for only one of the terminals, the value
returned will depend on the type of the capability: F for boolean variables, -1 for integer variables, and
NULL for string variables.

-c Produce a list of capabilities common to both entries. Capabilities that are not set arc ignored.
This option can be used as a quick check to see if the -u option is worth using.

Last change: 26 February 1988 Sun Release 4.1

INFOCMP (8V) MAINTENANCE COMMANDS INFOCMP (8V)

-d Produce a list of capabilities that differ between descriptions.

-0 Produce a list of capabilities in neither entry.

Source Listing Options
The -I, -L, and -C options produce a source listing for each terminal named.

-I Use the terminfo names.

-L Use the long C variable name listed in <term.h>.

-C Display only those capabilities that have termcap equivalents, using the term cap names and
displaying them in term cap form whenever possible.

The source produced by the -C option may be used directly as a termcap entry, but not all of the
parameterized strings may be changed to the term cap format. All padding information for strings
is collected together and placed at the beginning of the string where term cap expects it. Manda­
tory padding (padding information with a trailing'/') will become optional.

-r When using -C, display all capabilities, not just those capabilities that have termcap equivalents.

-u Produce a term info source description for the first named terminal which is relative to the
descriptions given by the entries for all terminals named subsequently on the command line, by
analyzing the differences between them, and producing a description with use= fields for the other
terminals. In this manner, it is possible to retrofit generic terminfo entries into a terminal's
description. Or, if two similar terminals exist, but were coded at different times or by different
people so that each description is a full description, using infocmp will show what can be done to
change one description to be relative to the other.

A capability is displayed with an at-sign (@) if it no longer exists in the first terminal, but one of
the other terminal entries contains a value for it. A capability's value gel\) printed if the value in
the first termname is not found in any of the other termname entries, or if the first of the other
termname entries has a different value for that capability.

The order of the other termname entries is significant. Since the terminfo compiler tic(8V) does a
left-to-right scan of the capabilities, specifying two use= entries that contain differing entries for
the same capabilities will produce different results, depending on the order in which they are
given. infocmp flags any such inconsistencies between the other termname entries as they are
found.

Alternatively, specifying a capability after a use= entry that contains it, will cause the second
specification to be ignored. Using infocmp to recreate a description can be a useful check to
make sure that everything was specified correctly in the original.

Specifying superfluous use= slows down the comparison, but is not fatal; infocmp flags
superfluous use= fields.

Sorting Options
-sd Sort fields in the order that they are stored in the terminfo database.

-si Sort fields by terminfo name.

-sl Sort fields by the long C variable name.

-sc Sort fields by the termcap name.

If no sorting option is given, fields are sorted alphabetically by the terminfo name within each
type, except in the case of the -C or the -L options, which cause the sorting to be done by the
termcap name or the long C variable name, respectively.

Sun Release 4.1 Last change: 26 February 1988 1959

INFOCMP (8V) MAINTENANCE COMMANDS INFOCMP (8V)

Changing Databases
The location of the compiled terminfo database is taken from the environment variable TERMINFO. If the
variable is not defined, or if the terminal is not found in that location, the system terminfo database, usu­
ally in lusrlshare/Iib/terminfo, is used. The options -A and -B may be used to override this location.
With these options, it is possible to compare descriptions for a terminal with the same name located in two
different databases. This is useful for comparing descriptions for the same terminal created by different
people.

-A Set TERMINFO for the first termname argument.

-B Set TERMINFO for the remaining termname arguments.

Other Options
-v Print out tracing information on the standard error.

-V Print out the version of the program in use on the standard error and exit.

-1 Print fields out one to a line. Otherwise, fields are printed several to a line to a maximum width of
60 characters.

-w width
Change the output to width characters.

FILES
lusrlshare/Iib/terminfol? 1*

compiled terminal description database
lusrl 5include/term.h

SEE ALSO
eurses(3V), termeap(5), terminfo(5V), tic(8V)

DIAGNOSTICS

1960

malloe is out of space!
There was not enough memory available to process all the terminal descriptions requested. Run
infocmp in several smaller stages (with fewer termname arguments).

use= order dependency found:
A value specified in one relative terminal specification was different from that in another relative
terminal specification.

'use=term' did not add anything to the description.
A relative terminal name did not contribute anything to the final description.

must have at least two terminal names for a comparision to be done.
The -u, -d and -c options require at least two terminal names.

Last change: 26 February 1988 Sun Release 4.1

INIT(8) MA~NANCECOMMANDS INIT(8)

NAME
init - process control initialization

SYNOPSIS
lusr/etc/init [-bs]

DESCRIPTION
init is invoked inside the operating system as the last step in the boot procedure. It normally runs the
sequence of commands in the script letdrc.boot (see rc(8» to check the file system. If passed the -b
option from the boot program, in it skips this step. If the file system check succeeds or is skipped, init runs
the commands in letdrc and letc/rc.local to begin multiuser operation; otherwise it commences single-user
operation by giving the super-user a shell on the console. It is possible to pass the -s parameter from the
boot program to init so that single-user operation is commenced immediately.

Whenever a single-user shell is created, and the system is running as a secure system, the init program
demands the super-user password. This is to prevent an ordinary user from invoking a single-user shell and
thereby circumventing the system's security. Logging out (for instance, by entering an EOT) causes init to
proceed with a multi-user boot. The super-user password is demanded whenever the system is running
secure as determined by issecure(3), or the console terminal is not labeled "secure" in /etdttytab.

Whenever single-user operation is terminated (for instance by killing the single-user shell) init runs the
scripts mentioned above.

In multi-user operation, init's role is to create a process for each terminal port on which a user may log in.
To begin such operations, it reads the file /etc/ttytab and executes a command for each terminal specified
in the file. This command will usually be /usr/etc/getty. getty(8) opens and initializes the terminal line,
reads the user's name and invokes login(l) to log in the user and execute the shell.

Ultimately the shell will terminate because it received EOF, either explicitly, as a result of hanging up, or
from the user logging out. The main path of init, which has been waiting for such an event, wakes up and
removes the appropriate entry from the file /etc/utmp, which records current users. init then makes an
entry in Ivar/adm/wtmp, which maintains a history of logins and logouts. The /var/adm/wtmp entry is
made only if a user logged in successfully on the line. Then the appropriate terminal is reopened and the
command for that terminal is reinvoked.

init catches the hangup signal (SIGHUP) and interprets it to mean that the file /etc/ttytab should be read
again. The shell process on each line which used to be active in /etdttytab but is no longer there is ter­
minated; a new process is created for each added line; lines unchanged in the file are undisturbed. Thus it
is possible to drop or add terminal lines without rebooting the system by changing letdttytab and sending
a hangup signal to the init process: use 'kill-HUP 1'.

init terminates multi-user operations and resumes single-user mode if sent a terminate (SIGTERM) signal:
use 'kill-TERM 1'. If there are processes outstanding which are deadlocked (due to hardware or software
failure), init does not wait for them all to die (which might take forever), but times out after 30 seconds and
prints a warning message.

init ceases to create new processes, and allows the system to slowly die away, when sent a terminal stop
(SIGTSTP) signal: use 'kill-TSTP 1'. A later hangup will resume full multi-user operations, or a terminate
will initiate a single-user shell. This hook is used by reboot(8) and halt(8).

Whenever it reads /etdttytab, init will normally write out an old-style letc/ttys file reflecting the contents
of /etdttytab. This is required in order that programs built on earlier versions of SunOS that read the
/etdttys file (for example, programs using the ttyslot(3V) routine, such as shelltool (1» may continue to
run. If it is not required that such programs run, /etc/ttys may be made a link (hard or symbolic) to
/etdttytab and init will not write to /etc/ttys.

init's role is so critical that if it dies, the system will reboot itself automatically. If, at bootstrap time, the
init program cannot be located, the system will print an error message and panic.

Sun Release 4.1 Last change: 6 December 1988 1961

INIT(8) MAINTENANCE COMMANDS INIT(8)

FILES
Idev/console
Idev/tty*
letclutmp
Ivar/adm/wtmp
letclttytab
letclrc
letclrc.local
letclrc.boot
lusr/etc/getty

SEE ALSO
kil1(l), login(l), sh(l), shelltool(l), issecure(3), ttyslot(3V), ttytab(5), getty(8), halt(8), rc(8), reboot(8),
shutdown(8)

DIAGNOSTICS

1962

command failing, sleeping.
A process being started to service a line is exiting quickly each time it is started. This is often
caused by a ringing or noisy terminal line. init will sleep for 30 seconds, then continue trying to
start the process.

WARNING: Something is hung (won't die); ps axl advised.
A process is hung and could not be killed when the system was shutting down. This is usually
caused by a process which is stuck in a device driver due to a persistent device error condition.

Last change: 6 December 1988 Sun Release 4.1

INST ALLBOOT (8S) MAINTENANCE COMMANDS INST ALLBOOT (8S)

NAME
installboot - install bootblocks in a disk partition

SYNOPSIS
lusr/mdec/installboot [-Ivt] bootfile protobootblk bootdevice

DESCRIPTION
The boot(8S) program is loaded from disk by bootblock code which resides in the bootblock area of a disk
partition. In order for the bootblock code to read the boot program (usually Iboot) it is necessary for it to
know the block numbers occupied by the boot program. Previous versions of the bootblock code could
find /boot by interpreting the file system on the partition from which it was being booted, but this is no
longer so.

install boot plugs the block numbers of the boot program into a table in the bootblock code, and writes the
modified bootblock code onto the disk. Note: install boot must be run every time the boot program is rein­
stalled, since in general, the block list of the boot program will change each time it is written.

bootfile is the name of the boot program, usually Iboot. protobootblk is the name of the bootblock code
into which the block numbers of the boot program arc to be inserted. The file read in must have an
a.out(5) header, but it will be written out to the device with the header removed. bootdevice is the name of
the disk device onto which the bootblock code is to be installed.

OPTIONS
-I Print out the list of block numbers of the boot program.

-t Test. Display various internal test messages.

-v Verbose. Display detailed information about the size of the boot program, etc.

EXAMPLE
To install the bootblocks onto the root partition on a Xylogics disk:

example% cd lusr/mdec
example% installboot -vlt /boot bootxy /dev/rxyOa

For an SD disk, you would use bootsd and Idev/rsdOa, respectively, in place of bootxy and Idev/rxyOa.

SEE ALSO
od(lV), a.out(5) boot(8S), bootparamd(8), init(8), kadb(8S), monitor(8S), ndbootd(8C), rc(8),
reboot(8)

System and Network Administration

Installing SunOS 4.1

Sun Release 4.1 Last change: 15 August 1988 1963

MAINTENANCE COMMANDS

NAME
install_smalCkernel - install a small, pre-configured kernel

SYNOPSIS
lusr/etc/instali/install_smaltkernel [hostname] ...

DESCRIPTION

FILES

install_small_kernel is a script that installs a small, pre-configured kernel, GENERIC_SMALL on a host.
This kernel supports approximately four users, and is only available for the following configurations:

Sun-3/S0 and Sun-3/60 systems with up to 2 SCSI disks, 1 SCSI tape
Sun-3/80 systems with up to 4 SCSI disks, 1 SCSI tape
Sun-4/110 systems with up to 2 SCSI disks, 1 SCSI tape
SPARCsystem 330 systems with up to 4 SCSI disks, 1 SCSI tape
SPARCstation 1 systems with up to 4 SCSI disks. 1 floppy drive and 2 SCSI tapes

If hostname is a server that does not fit any of the above configurations, install_small_kernel can be used
to install the small kernel on its clients.

If no hostnames are specified, install_small_kernel cycles through all the clients configured for a server to
determine the small kernel installs to be made. If the 'small_kernel' flag in the client file,
letclinstaillclient.hostname is set to 'yes', that client will not be processed. To force re-installation of a
small kernel on any clients, simply call install_small_kernel with the appropriate client names.

install_small_kernel prompts for confirmation before actually doing the install on any host.

install_small_kernel is executable from the miniroot, as well as single-user and multi-user modes. It sup­
ports standalone and server configuration in all cases, but dataless systems are supported in multi-user
mode only. This script is restricted to the super-user.

lusrlsyslsunarchlconf/GENERIC _SMALL
kernel configuration file for arch lusr/installlclient.hostname

SEE ALSO
add _ client(8), add _services(8), rm _ client(8)~ suninstall(8)

System and Network Administration

1964 Last change: 24 January 1990 Sun Release 4.1

INSTALL TXT (8) MAINTENANCE COMMANDS INS TALL TXT (8)

NAME
install txt, gencat - create a message archive

SYNOPSIS
lusr/etc/installtxt [[-]d I c I r I t I x I i [ouvs]]] message-archive. .. [source-message-file]

lusr/etc/gencat catfde msgfile . ..

DESCRIPTION
installtxt converts each source-message-file into a binary format message archive. At the same time, if
necessary, installtxt maintains groups of files (member files) combined into a single message archive.
installtxt is nonnally used to create and update message archives used by the run-time message handling
facility gettext(3).

gencat performs the same function as installtxt, but supports the X/Open catalog source format.

installtxt creates the message archive in message-archive. If the message archive does not exist, it is
created by the -c option. source-message-file contains source versions of the target strings. On successful
completion of an update operation of installtxt, the message archive will have been updated with details of
the formatted version of each source-message-file. If message-archive does not contain the full pathname
of the run-time location of the message catalog, it will have to be moved to the appropriate locale directory
before applications using the archive are activated.

gencat merges the message text source files (msgfile . ..) into a formatted message catalog catfile. catfde is
created if it does not already exist. If catfile does exist, its messages are included in the new catflie. If set
and message numbers collide, the new message-text defined in msgfile will replace the old message text
currently contained in catfile. The output formats of both message_arc hive and catftle are the same. How­
ever it should be noted that on a per-application basis, it is not intended that the output forms of these two
utilities should be mixed, and the consequence of doing so is undefined.

OPTIONS
The following options and modifiers apply to installtxt only. For installtxt you must indicate only one of:
c, d, r, t, or, x, which may be followed by one or more Modifiers, 0, u, or, v.

The options are:

c Create. The member file called source-message-file is being made for the first time in the message
archive. It should not exist already.

d Delete the named member files from message archive. Note that individual messages can be
deleted by entering an empty value after the message-id selecting the message to be deleted. With
the v option these deletions are notified on the standard output.

r Replace the named member files in the message archive. This allows the existing message archive
to be merged with new versions of messages. No new message will be added to the message
archive unless each message-tag in the source-message-file is unique in the active domain. If the
member file contains a message-tag that is not unique within the active domain, installtxt will fail
and the contents of the active message archive will not be altered.

t Table of contents. Produces a list on the standard output of all member files in message _archive.

x Extract. If no names are given, all member files in the message archive are extracted into the
current directory; if names are given, only those files are extracted. In neither case does x alter the
message archive. The extracted member files will be returned in their original source format. It is
possible for the -x option to lose comments that were contained in the original source message
file. In addition, overlong lines may be escaped (using \n) at a point that is different from the ori­
ginal source, although the end result will logically be the same string.

Sun Release 4.1 Last change: 2 February 1990 1965

INSTALL TXT (8) MAINTENANCE COMMANDS INSTALLTXT (8)

Modifiers

USAGE

1966

o Old date. When member files are extracted with the x option, set the "last modified" date to the
date recorded in the message archive.

D Update. Replace only those member files that have changed since they were put in the message
archive. Used with the r option.

v Verbose. When used with the c, r, or d option, give a file-by-file description of the creation of a
new message archive file from the old version and the constituent member files. When used with
x, give a file-by-file description of the extraction of message archive member files. When used
with t, print information about the size and creation date of the message archive, as well as a coun t
of the number of target strings in the message-archive.

source-message-file consists of one or more lines of text, with each line containing either a comment, a
directive or a text line. The format of a comment line is:

"$ %s", comment

A line beginning with a dollar sign ($), followed by a blank character streated as a comment line. The for­
mat of directives is:

"$%s %s", control-type, value

Directives should be directly preceded by a dollar sign ($), and followed by an optional value. There is one
blank character between the directive and its value. The following directives are recognized:

$separator c
This directive specifies an optional separator character that will subsequently be used in the fol­
lowing text lines to separate the message identifier from the target string. There is one blank
character between separator and the separator character itself. If this line is absent then the
default separator is the blank character. Only the first occurrence of this character on one text line
will be interpreted, for example:

$separator :
12345:Bonjour: Mon ami

would declare the message identifier to be 12345, the target string would contain the second ":".

$domain domain
This directive states that all following target strings are contained within a domain of the object
message file as described by domain. domain can be any string of up to {PATH_MAX} bytes in
length.

$quote c This directive specifies an optional quote character c, which can be used to surround both
message _string and message_identifier. By default, or if an empty $quote directive is supplied,
no quoting of message _string will be recognized. If the $quote directive is given then all mes­
sage strings must contain pairs of quotes, although quotes around the message_identifier are still
optional after the directive.

The format of the text line is:

"%s%s%s", message _identifier, separator _character, message_string

Each line defines a message identifier and a target string pair.

Empty lines in a source text file are ignored. If a message _identifier starts with a dollar ($) character, then
that dollar character must be escaped with a backslash (\$). Any other form of input line syntax is illegal
and will cause installtxt to exit with the error value.

Last change: 2 February 1990 Sun Release 4.1

INSTALL TXT (8) MAINTENANCE COMMANDS INST ALLTXT (8)

Message strings and message identifiers can contain the special characters and escape sequences as defined
in the following table:

Description Symbol

newline \n
tab \t
vertical-tab \v
backspace \b
carriage-return \r
form-feed \f
backslash \\
bit pattern \ddd

The escape sequence \ddd consists of backslash followed by 1, 2 or 3 octal digits, which are used to specify
the value of the desired character. If message _identifier contains the separator character then it must be
escaped with a backslash (\) character. If the character following a backs lash is not one of those specified,
the effect is unspecified.

Backslash, \, followed by a NEWLINE character is used to continue an individual string on the following
line. Both message _identifier and message _string may be continued over lines in this way. message _string
is stored in object Jtle in an implementation specific way. If message _string is empty, and separator is
present, a null string is stored in objectJtle.

msgfile must be in the X/Open gencat format.

EXAMPLES

FILES

Ibinlsh script
The following creates a message archive in the file messages.general
install txt -cv messages.general input

I etc/locale/LC MESSAGESI locale/domain
standard private location for message archive/catalog in locale locale and domain
domain

lusrlshare/lib/locale/LC _MESSA G ES
standard shared location for message archive/catalog in locale locale and domain
domain

SEE ALSO
catgets(3), gettext(3), setlocale(3V), locale(5)

X/Open Portability Guide Issue 2

Sun Release 4.1 Last change: 2 February 1990 1967

INTR(8) MAINTENANCE COMMANDS INTR(8)

NAME
intr - allow a command to be interruptible

SYNOPSIS
intr [-anv] [-t seconds] command [arguments]

DESCRIPTION
intr executes command after altering the execution environment to make command to be interrutable.

Since interactive commands are by default interruptable, intr is intended for use as a wrapper around com­
mands started by the letc/rc files; commands spawned from these files are not interruptable by default. It
has no other intended use than as a wrapper around letc/rc commands.

The following signals are ignored as a result of wrapping intr around a command:

SIGTSTP terminal generated stop signal

SIGTTIN background read

SIGTTOU background write

The following signals are reset to their default actions:

SIGINT interrupt signal

SIGQUIT quit signal

OPTIONS
-v Echo the command in the form' command' (note leading SPACE).

Echo the command and its arguments. -a

-n

-t secs

Do not echo a NEWLINE after the command or arguments (for example' echo -n ••• ').

Arrange to have a SIGALRM signal delivered to the command in secs seconds.

EXAMPLES
All of these examples assume that they are in an letc/rc file, that is, talking to the console, and not run
interactively. The following example runs fsck(8) but allow it to be killed from the console:

intr fsck -p -w / /nsr

Echoing is provided so that

ypbind; echo -0 'ypbind'

can be replaced with

intr -vn ypbiod

Timeouts are provided so that the machine will not hang at boot:

intr -t 10 rdate date host

SEE ALSO
echo(1 V), login(l), ioit(8), rc(8)

BUGS
The -v option is a kludge.

1968 Last change: 20 January 1990 Sun Release 4.1

IOSTAT(8) MAThITENANCECOMMANDS IOSTAT(8)

NAME
iostat - report I/O statistics

SYNOPSIS
iostat [-edDIt] [-I n] [disk ...] [interval [count]]

DESCRIPTION
iostat can iteratively report terminal and disk I/O activity, as well as CPU utilization. The first report is for
all time since a reboot and each subsequent report is for the prior interval only.

In order to compute this information, the kernel maintains a number of counters. For each disk, seeks and
data transfer completions and number of words transferred are counted; for terminals collectively, the
number of input and output characters are counted. Also, at each clock tick, the state of each disk is exam­
ined and a tally is made if the disk is active. The kernel also provides approximate transfer rates of the
devices.

OPTIONS

FILES

iostat's activity class options default to tde (terminal, disk, and CPU). If any activity class options are
specified, the default is completely overridden. Therefore, if only -d is specified, neither terminal nor CPU

statistics will be reported. The last disk option specified (either -d or -D) is the only one that is used.

-e Report the percentage of time the system has spent in user mode, in user mode running low prior­
ity processes, see niee(1), in system mode, and idling.

-d For each disk, report the number of kilobytes transferred per second, the number of transfers per
second, and the milliseconds per average seek (see BUGS below).

-D For each disk, report the reads per second, writes per second, and percentage disk utilization.

-I Report the counts in each interval, rather than reporting rates.

-t Report the number of characters read and written to terminals.

-I n Limit the number of disks included in the report to n; the disk limit defaults to 4. Note: disks
explicitly requested (see disk below) are not subject to this disk limit.

disk Explicitly specify the disks to be reported; in addition to any explicit disks, any active disks up to
the disk limit (see -I above) will also be reported.

interval Report once each interval seconds.

count Only print count reports.

Idev/kmem
Ivmunix

SEE ALSO
vmstat(8)

BUGS
Milliseconds per average seek is an approximation based on the disk (not the controller) transfer rate.
Therefore, the seek time will be over-estimated in systems with slower controllers.

Sun Release 4.1 Last change: 29 April 1988 1969

IPALLOCD (8C) MA~NANCECOMMANDS IPALLOCD (8C)

NAME
ipaUocd - Ethernet-to-IP address allocator

SYNOPSIS
lusrl ete/rpe.ipallocd

A V AILABILITY
Available only on Sun 386i systems running a SunOS 4.0.x release or earlier. Not a SunOS 4.1 release
feature.

DESCRIPTION

FILES

ipallocd is a daemon that determines or temporarily allocates IP addresses within a network segment. The
service is only available on the system which is home to the address authority for the network segment,
currently the Network Interface Service (NIS) master of the hosts.byaddr map although the service is not
tied to the NIS service. It has complete knowledge of the hosts listed in the NIS service, and, if the system
is running the name server, of any hosts listed in internet domain tables automatically accessed on that host
through the standard library gethostent(3N) call.

This protocol uses DES authentication (the Sun Secure RPC protocol) to restrict access to this function. The
only clients privileged to allocate addresses are those whose net IDs are in the networks group. For machine
IDs, the machine must be an NIS server.

The daemon uses permanent entries in the letclethers and lete/hosts files when they exist and are usable.
In other cases, such as when a system is new to the network, ipalloed enters a temporary mapping in a
local cache. Entries in the cache are removed when there have been no references to a given entry in the
last hour. This cache survives system crashes so that IP addresses remain consistent.

The daemon also provides corresponding IP address to name mapping.

If the file lete/ipalloc.netrange exists, ipallocd refuses to allocate addresses on networks not listed in the
netrange file, or for which no free address is available.

letclipalloe.eaehe temporary cache
letclipalloe.netrange optional file to allocate network addresses

SEE ALSO

NOTES

1970

ipalloc(3R), pnp(3R), ipalloc.netrange(5), ipalloed(8C), neteonfig(8C), pnpboot(8C), rarpd(8C)

The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed.

Last change: 4 December 1987 Sun Release 4.1

KADB(8S) MAINTENANCE COMMANDS KADB(8S)

NAME
kadb - adb-like kernel and standalone-program debugger

SYNOPSIS
> b kadb [-d] [boot-flags]

DESCRIPTION
kadb is an interactive debugger that is similar in operation to adb(1), and runs as a standalone program
under the PROM monitor. You can use kadb to debug the kernel, or to debug any standalone program.

Unlike adb, kadb runs in the same supervisor virtual address space as the program being debugged -
although it maintains a separate context. The debugger runs as a coprocess that cannot be killed (no ':k')
or rerun (no ':r'). There is no signal control (no ':i', ':1', or '$i'), although the keyboard facilities
(CTRL-C, CTRL-S, and CTRL-Q) are simulated.

While the kernel is running under kadb, the abort sequence (LI-A or BREAK) drops the system into kadb
for debugging - as will a system panic. When running other standalone programs under kadb, the abort
sequence will pass control to the PROM monitor. kadb is then invoked from the monitor by jumping to the
starting address for kadb found in /usr/include/debug/debug.h The following list gives the monitor com­
mands to use for each system.

System Monitor Command

Sun-2
Sun-3
Sun386i
Sun-4
SPARCstation 1

g fdOooOO
g fdOooOO
g fe005OO0
g ffcOOooO
go tTcOOOOO

The kadb user interface is similar to that of adb. Note: kadb prompts with

kadb>

Most adb commands function in kadb as expected. Typing an abort sequence in response to the prompt
returns you to the PROM monitor, from which you can examine control spaces that are not accessible
within adb or kadb. The PROM monitor command c will return control to kadb. As with 'adb -k', $p
works when debugging kernels (by actually mapping in new user pages). The verbs? and I are equivalent
in kadb , since there is only one address space in use.

OPTIONS

USAGE

kadb is booted from the PROM monitor as a standalone program. If you omit the -d flag, kadb automati­
cally loads and runs vmunix from the filesystem kadb was loaded from. The kadb vmunix variable can
be patched to change the default program to be loaded.

-d Interactive startup. Prompts with
kadb:

for a file to be loaded. From here, you can enter a boot sequence line to load a standalone pro­
gram. Boot flags entered in response to this prompt are included with those already set and passed
to the program. If you type a RETURN only, kadb loads vmunix from the filesystem that kadb
was loaded from.

boot-flags
You can specify boot flags as arguments when invoking kadb. Note: kadb always sets the -d
(debug) boot flag, and passes it to the program being debugged.

Refer to adb in Debugging Tools.

Kernel Macros
As with adb, kernel macros are supported. With kadb, however, the macros are compiled into the
debugger itself, rather than being read in from the filesystem. The kadb command $M lists macros known
to kadb.

Sun Release 4.1 Last change: 24 February 1988 1971

KADB(8S) MAINTENANCE COMMANDS KADB (8S)

Setting Breakpoints
Self-relocating programs such as the SunOS kernel need to be relocated before breakpoints can be used.
To set the first breakpoint for such a program, start it with ':s'; kadb is then entered after the program is
relocated (when the system initializes its interrupt vectors). Thereafter, ':s' single-steps as with adb. Oth­
erwise, use ':c' to start up the program.

Sun386i System Commands
The Sun386i system version of kadb has the following additional commands. Note, for the general syntax
ofadb commands, see adb(l).

:i

:0

:p

$S

[

Read a byte (with the INB instruction) in from the port at address.

Send a byte (with the OUTB instruction) containing count out through the port at
address.

Like :b in adb(l), but sets a breakpoint using the hardware debug register instead
of the breakpoint instruction. The advantage of using :p is that when setting break­
points with the debug register it is not necessary to have write access to the break­
point location. Four (4) breakpoints can be set with the hardware debug registers.

Switch I/O from the console to the serial port or vice versa.

Like :e in adb(l), but requires only one keystroke and no RETURN character.

Like:s in adb(l), but requires only one keystroke and no RETURN character.

Automatic Rebooting with kadb

FILES

You can set up your workstation to automatically reboot kadb by patching the vmunix variable in Iboot
with the string kadb. (Refer to adb in Debugging Tools for details on how to patch executables.)

Ivmunix
Iboot
Ikadb
lusr/include/debuWdebug.h

SEE ALSO

BUGS

1972

adb(l), boot(8S)

Debugging Tools
Writing Device Drivers

There is no floating-point support, except on Sun386i systems.

kadb cannot reliably single-step over instructions that change the status register.

When sharing the keyboard with the operating system the monitor's input routines can leave the keyboard
in a confused state. If this should happen, disconnect the keyboard momentarily and then reconnect it.
This forces the keyboard to reset as well as initiating an abort sequence.

Most of the bugs listed in adb(l) also apply to kadb.

Last change: 24 February 1988 Sun Release 4.1

KEYENVOY (8C)

NAME
keyenvoy - talk to key server

SYNOPSIS
keyenvoy

DESCRIPTION

MAINTENANCE COMMANDS KEYENVOY (8C)

keyenvoy is used by some RPC programs to talk to the key server, keyserv(8C). The key server will not
talk to anything but a root process, and keyenvoy is a set-uid root process that acts as an intermediary
between a user process that wishes to talk to the key server and the key server itself.

This program cannot be run interactively.

SEE ALSO
keyserv(8C)

Sun Release 4.1 Last change: 9 September 1987 1973

KEYSERV (8C) MAINTENANCE COMMANDS KEYSERV (8C)

NAME
keyserv - server for storing public and private keys

SYNOPSIS
keyserv [-dkn]

DESCRIPTION
keyserv is a daemon that is used for storing the private encryption keys of each user logged into the sys­
tem. These encryption keys are used for accessing secure network services such as secure NFS. When a
user logs in to the system, the login(1) program uses the login password to decrypt the user's encryption
key stored in the Network Interface Service (NIS), and then gives the decrypted key to the keyserv daemon
to store away.

Normally, root's key is read from the file letc/.rootkey when the daemon starts up. This is useful during
power-failure reboots when no one is around to type a password, yet you still want the secure network ser­
vices to operate normally.

OPTIONS
-d

-k

-n

FILES

Prohibit the use of the default key. If this is used then every machine and user should have a pub­
lickey. New publickeys cannot be created if you do not already have a key. This can be done glo­
bally for an entire domain by deleting the nobody entry from letc/publickey on the NIS master.
See chkey(1)

Remember keylogins across machine reboots. This is only needed if 3t(1) is used to schedule jobs
that require secure RPC. Use of this option is not recommended.

Do not read root's key from letc! .rootkey. Instead, prompt the user for the password to decrypt
root's key stored in the NIS service and then store the decrypted key in letc/.rootkey for future
use. This option is useful if the letc!.rootkey file ever gets out of date or corrupted.

I etc! .rootkey

SEE ALSO

/etc!keystore

NOTES

1974

login(1), keylogin(l), keylogout(l), publickey(S)

The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed.

Last change: 9 September 1987 Sun Release 4.1

KGMON(8) MA~NANCECOMMANDS KGMON(8)

NAME
kgmon - generate a dump of the operating system's profile buffers

SYNOPSIS
lusr/etc/kgmon [-bbpr] [filesystem] [memory]

DESCRIPTION
kgmon is a tool used when profiling the operating system. When no arguments are supplied, kgmon indi­
cates the state of operating system profiling as running, off, or not configured (see config(8». If the -p flag
is specified, kgmon extracts profile data from the operating system and produces a gmon.out file suitable
for later analysis by gprof(1).

OPTIONS

FILES

-b

-b

Resume the collection of profile data.

Stop the collection of profile data.

-p Dump the contents of the profile buffers into a gmon.out file.

-r Reset all the profile buffers. If the -p flag is also specified, the gmon.out file is generated before
the buffers are reset.

If neither -b nor -b is specified, the state of profiling collection remains unchanged. For example, if the
-p flag is specified and profile data is being collected, profiling is momentarily suspended, the operating
system profile buffers are dumped, and profiling is immediately resumed.

Ivrnunix
Idev/kmem
gmon.out

the default system
the default memory

SEE ALSO
gprof(1), config(8)

DIAGNOSTICS
Users with only read permission on Idev/kmem cannot change the state of profiling collection. They can
get a gmon.out file with the warning that the data may be inconsistent if profiling is in progress.

Sun Release 4.1 Last change: 9 September 1987 1975

LDCONFIG (8) MAINTENANCE COMMANDS LDCONFIG (8)

NAME
ldconfig -link-editor configuration

SYNOPSIS
lusr/etelldeoofig [directory ...]

DESCRIPTION

FILES

Ideonfig is used to configure a performance-enhancing cache for the run-time link-editor, ld.so. It is run
from lete/re.local and periodically via eroo to avoid linking with stale libraries. It should be also be run
manually when a new shared object (e.g., a shared library) is installed on the system.

When invoked with no arguments, a default set of directories are built into the cache - these are the direc­
tories searched by default by the link editors. Additional directories may be specified on the command
line.

letc/ld.so.eaehe

SEE ALSO

holds the cached data.

Id(1)

1976 Last change: 28 November 1987 Sun Release 4.1

LINK (8V) MAINTENANCE COMMANDS

NAME
link, unlink - exercise link and unlink system calls

SYNOPSIS
lusrl etc/link filenamel filename2

lusr/etc/unlink filename

A V AILABILITY

LINK (8V)

This command is available with the System V software installation option. Refer to Installing SunOS 4.1
for information on how to install optional software.

DESCRIPTION
link and unlink perform their respective system calls on their arguments, abandoning all error checking.

SEE ALSO
rm(l), Iink(2V), unlink(2V)

WARNINGS
Only the super-user can unlink a directory, in which case the files it contains are lost. The files can, how­
ever, be recovered from the file system's lost+found directory after performing an fsck.

If you have write permission on the directory in which filename resides, unlink removes that file without
warning, regardless of its ownership.

Sun Release 4.1 Last change: 17 September 1989 1977

LOCKD(8C) MAINTENANCE COMMANDS LOCKD(8C)

NAME
lockd, rpc.lockd - network lock daemon

SYNOPSIS
/usr/etc/rpc.lockd [-g graceperiod] [-t timeout]

DESCRIPTION
lockd processes lock requests that are either sent locally by the kernel or remotely by another lock daemon.
lockd forwards lock requests for remote data to the server site's lock daemon through the rpc(3N) xdr(3N)
in lockd(8C) package. lockd then requests the status monitor daemon, statd(8C), for monitor service. The
reply to the lock request will not be sent to the kernel until the status daemon and the server site's lock dae­
mon have replied.

If either the status monitor or server site's lock daemon is unavailable, the reply to a lock request for
remote data is delayed until all daemons become available.

When a server recovers, it waits for a grace period for all client site lock daemons to submit reclaim
requests. Client site lock daemons, on the other hand, are notified by the status daemon of the server
recovery and promptly resubmit previously granted lock requests. If lockd fails to secure a previously
granted lock at the server site, it sends SIGLOST to a process.

OPTIONS
-t timeout

-g grace period

SEE ALSO

Use timeout (seconds) as the interval instead of the default value (15 seconds) to
retransmit lock request to the remote server.

Use grace period (seconds) as the grace period duration instead of the default
value (45 seconds).

fcntl(2V), lockf(3), signal(3V), statd(8C)

1978 Last change: 9 September 1987 Sun Release 4.1

LOGINTOOL (8) MAINTENANCE COMMANDS LOGINTOOL (8)

NAME
logintool - graphic login interface

A V AILABILITY
Available only on Sun 386i systems running a SunOS 4.0.x release or earlier. Not a SunOS 4.1 release
feature.

DESCRIPTION

FILES

login tool is started by getty(8) to display a full screen window for logging in. It cannot be run from the
shell. It is more attractive than the traditional 'login: ' prompt, and also provides help for the person
without a usemarne and information about the workstation.

logintool is normally invoked on the console by getty(8), and works only on a frame buffer.

If the newlogin policy in the policies Network Interface Service (NIS) map is set to unrestricted, then
logintool may create new user accounts in the NIS service. The account resides on the local system if it is
diskful, or on the system's boot server if the local system is diskless.

/usr/share/lib/ez/login

SEE ALSO

NOTES

getty (8)

The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed.

Sun Release 4.1 Last change: 19 February 1988 1979

LPC(8) MAINTENANCE COMMANDS LPC(8)

NAME
lpc - line printer control program

SYNOPSIS
lusr/ete/lpe [command [parameter . ..]]

DESCRIPTION

USAGE

Ipe controls the operation of the printer, or of multiple printers, as described in the lete/printeap database.
Ipc commands can be used to start or stop a printer, disable or enable a printer's spooling queue, rearrange
the order of jobs in a queue, or display the status of each printer-along with its spooling queue and printer
daemon.

With no arguments, Ipe runs interactively, prompting with Ipc>. If arguments are supplied, lpe interprets
the first as a command to execute; each subsequent argument is taken as a parameter for that command.
The standard input can be redirected so that Ipe reads commands from a file.

Commands

1980

Commands may be abbreviated to an unambiguous substring. Note: the printer parameter is specified just
by the name of the printer (as Iw), not as you would specify it to Ipr(1) or Ipq(l) (not as -Plw).
? [command] ...
belp [command] ...

Display a short description of each command specified in the argument list, or, if no arguments are
given, a list of the recognized commands.

abort [alii [printer .. .]]
Terminate an active spooling daemon on the local host immediately and then disable printing
(preventing new daemons from being started by Ipr(l» for the specified printers. The abort com­
mand can only be used by the super-user.

clean [alii [printer .. .]]
Remove all files with names beginning with ef, tf, or df from the specified printer queue(s) on the
local machine. The clean command can only be used by the super-user.

disable [alii [printer . ..]]
Turn the specified printer queues off. This prevents new printer jobs from being entered into the
queue by Ipr(I). The disable command can only be used by the super-user.

down [alii [printer . ..]] [message]
Turn the specified printer queue off, disable printing and put message in the printer status file. The
message doesn't need to be quoted, the remaining arguments are treated like eeho(1 V). This is
normally used to take a printer down and let others know why (Ipq(l) indicates that the printer is
down, as does the status command).

enable [alii [printer . ..]]

exit

Enable spooling on the local queue for the listed printers, so that Ipr(l) can put n~w jobs in the
spool queue. The enable command can only be used by the super-user.

quit Exit from Ipe.

restart [alii [printer . ..]]
Attempt to start a new printer daemon. This is useful when some abnormal condition causes the
daemon to die unexpectedly leaving jobs in the queue. Ipq(l) reports that there is no daemon
present when this condition occurs. This command can be run by any user.

start [alii [printer . ..]]
Enable printing and start a spooling daemon for the listed printers. The start command can only
be used by the super-user.

Last change: 9 September 1987 Sun Release 4.1

LPC(8)

FILES

MAINTENANCE COMMANDS LPC(8)

status [alii [printer . ..]]
Display the status of daemons and queues on the local machine. This command can be run by any
user.

stop [all I [printer . ..]]
Stop a spooling daemon after the current job completes and disable printing. The stop command
can only be used by the super-user.

topq printer [job# ...] [user ...]
Move the print job(s) specified by job# or those job(s) belonging to user to the top (head) of the
printer queue. The topq command can only be used by the super-user.

up [alii [printer . ..]] Enable everything and start a new printer daemon. Undoes the effects of down.

I etc/printca p
Ivarlspoo)/*
Ivarlspoo)/* flock

printer description file
spool directories
lock file for queue control

SEE ALSO
Ipq(l), Ipr(l), Iprm(l), printcap(5), Ipd(8)

DIAGNOSTICS
? Ambiguous command

The abbreviation you typed matches more than one command.

?Invalid command
You typed a command or abbreviation that was not recognized.

?Privileged command
You used a command can be executed only by the super-user.

Sun Release 4.1 Last change: 9 September 1987 1981

LPD(8) MAINTENANCE COMMANDS LPD (8)

NAME
lpd - printer daemon

SYNOPSIS
lusrlIib/lpd [-I] [-L logfile] [port#]

DESCRIPTION
Ipd is the line printer daemon (spool area handler). It is usually invoked at boot time from the rc(8) script,
making a single pass through the printcap(5) file to find out about the existing printers and printing any
files left after a crash. It then accepts requests to print files in a queue, transfer files to a spooling area,
display a queue's status, or remove jobs from a queue. In each case, it forks a child process for each
request, and continues to listen for subsequent requests.

The Internet port number used to communicate with other processes is usually obtained with
getservent(3N), but can be specified with the port# argument.

If a file cannot be opened, an error message is logged using the LOG_LPR facility of sysIog(3). Ipd will try
up to 20 times to reopen a file it expects to be there, after which it proceeds to the next file or job.

OPTIONS
-I Log valid requests received from the network. This can be useful for debugging purposes.

-L logfile
Change the file used for writing error conditions to logfile. The default is to report a message using
the syslog(3) facility.

OPERATION

1982

Access Control
Access control is provided by two means. First, all requests must come from one of the machines listed in
either the file letc/hosts.equiv or letc/hosts.lpd. (This latter file is in hosts.equiv(5) format.) Second, if
the rs capability is specified in the printcap entry, Ipr(l) requests are only be honored for users with
accounts on the printer host.

Lock File
The lock file in each spool directory is used to prevent multiple daemons from becoming active, and to
store information about the daemon process for Ipr(1), Ipq(1), and Iprm(1).

Ipd uses flock(2) to provide exClusive access to the lock file and to prevent multiple daemons from becom­
ing active simultaneously. If the daemon should be killed or die unexpectedly, the lock file nced not be
removed. The lock file is kept in a readable ASCII form and contains two lines. The first is the process id
of the daemon and the second is the control file name of the current job being printed. The second line is
updated to reflect the current status of Ipd for the programs Ipq(l) and Iprm(I).

Control Files
After the daemon has successfully set the lock, it scans the directory for files beginning with cr. Lines in
each cJfile specify files to be printed or non-printing actions to be performed. Each such line begins with a
key character that indicates what to do with the remainder of the line.

J Job name to print on the burst page.
C Classification line on the burst page.
L Literal. This line contains identification information from the password file, and causes a

burst page to be printed.
T Title string for page headings printed by pr(1 V).
H Hostname of the machine where Ipr(l) was invoked.
P Person. Login name of the person who invoked Ipr(l). This is used to verify ownership

by Iprm(l).
M Send mail to the specified user when the current print job completes.
f Formatted File, the name of a file to print that is already formatted.
I Like f, but passes control characters along, and does not make page breaks.
p Name of a file to print using pr(1 V) as a filter.
t Troff File. The file contains trofT(1) output (cat phototypesetter commands).

Last change: 5 December 1989 Sun Release 4.1

LPD(8) MAINTENANCE COMMANDS LPD(8)

n Dittoff File. The file contains device independent troff output.
d DVI File. The file contains TEX output (DVI format from Stanford).
g Graph File. The file contains data produced by plot(3X).
c Cifplot File. The file contains data produced by cifplot.
v The file contains a raster image.
r The file contains text data with FORTRAN carriage control characters.
1 Troff Font R. The name of a font file to use instead of the default.
2 Troff Font I. The name of the font file to use instead of the default.
3 Troff Font B. The name of the font file to use instead of the default.
4 Troff Font S. The name of the font file to use instead of the default.
W Width. Changes the page width (in characters) used by pr(1 V) and the text filters.
I Indent. Specify the number of characters by which to indent the output.
U Unlink. The name of file to remove upon completion of printing.
N Filename. The name of the file being printed, or a blank for the standard input (when

Ipr(l) is invoked in a pipeline).

Data Files
When a file is spooled for printing, the contents are copied into a data file in the spool directory. Data file
names begin with df. When Ipr is called with the -s option, the control files contain a symbolic link to the
actual file, and no data files are created.

Minfree File

FILES

The file min/ree in each spool directory contains the number of kilobytes to leave free so that the line
printer queue won't completely fill the disk.

letdprintcap
Ivarlspool!*
Ivarlspool!*/minfree
Idev/lp*
Idev/printer
letc/hosts.equiv
I etdhosts.lpd

printer description file
spool directories
minimum free space to leave
line printer devices
socketforlocalreques~

hosts allowed equivalent host access
hosts allowed printer access only

SEE ALSO
Ipq(l), Ipr(l), Iprm(1), hosts(5), hosts.equiv(5), printcap(5), Ipc(8), pac(8)

Sun Release 4.1 Last change: 5 December 1989 1983

MAILS TATS (8) MAINTENANCE COMMANDS MAILS TATS (8)

NAME
mailstats - print statistics collected by sendmail

SYNOPSIS
/usr/etc/mailstats [filename]

DESCRIYfION

FILES

mailstats prints out the statistics collected by the sendmail program on mailer usage. These statistics are
collected if the file indicated by the S configuration option of sendmail exists. The mailstats program first
prints the time that the statistics file was created and the last time it was modified. It will then print a table
with one row for each mailer specified in the configuration file. The first column is the mailer number, fol­
lowed by the symbolic name of the mailer. The next two columns refer to the number of messages
received by sendmail, and the last two columns refer to messages sent by sendmail. The number of mes­
sages and their total size (in 1024 byte units) is given. No numbers are printed if no messages were sent (or
received) for any mailer.

You might want to add an entry to /var/spool/cron/crontab/root to reinitialize the statistics file once a
night. Copy /dev/null into the statistics file or otherwise truncate it to reset the counters.

/etclsendmail.st default statistics file
/etclsendmail.cf sendmail configuration file
/varlspoollcron/crontab/root
/dev/null

SEE ALSO
sendmail(8)

BUGS

1984

Mailstats should read the configuration file instead of having a hard-wired table mapping mailer numbers to
names.

Last change: 9 September 1987 Sun Release 4.1

MAKEDBM(8) MAINTENANCE COMMANDS MAKEDBM(8)

NAME
makedbm - make a NIS ndbm file

SYNOPSIS
/usr/etc/yp/makedbm [-b] [-I] [-s] [-i yp jnput Jrle] [-0 yp _output_name]

[-d yp _domain_name] [-m yp _master _name] infile outfile

makedbm [-u dbmfilename]

DESCRIPTION
makedbm takes infile and converts it to a pair of files in ndbm(3) format, namely outfile .pag and
outfile .dir. Each line of the input file is converted to a single dbm record. All characters up to the first
TAB or SPACE form the key, and the rest of the line is the data. If a line ends with '\', then the data for that
record is continued on to the next line. It is left for the clients of the Network Interface Service (NIS) to

interpret #; makedbm does not itself treat it as a comment character. infile can be '-', in which case the
standard input is read.

makedbm is meant to be used in generating dbm files for the NIS service, and it generates a special entry
with the key yp _last_modified, which is the date of infile (or the current time, if infile is '-').

OYfIONS
-b Interdomain. Propagate a map to all servers using the interdomain name server named(8C).

-I Lowercase. Convert the keys of the given map to lower case, so that host name matches, for
example, can work independent of upper or lower case distinctions.

-s Secure map. Accept connections from secure NIS networks only.

-i yp _input Jrle
Create a special entry with the key yp _input Jrle.

-0 yp _output_name
Create a special entry with the key yp _output_name.

-d yp _domain_name
Create a special entry with the key yp _domain_name.

-m yp _master _name
Create a special entry with the key yp _master_name. If no master host name is specified,
yp _master _name will be set to the local host name.

-u dbmfilename
Undo a dbm file. That is, print out a dbm file one entry per line, with a single space separating
keys from values.

EXAMPLE
It is easy to write shell scripts to convert standard files such as /etdpasswd to the key value form used by
makedbm. For example:

#!/bin/awk -f
BEGIN {FS = ":"; OFS = "\t";}
{ print $1, $0 }

takes the /etc/passwd file and converts it to a form that can be read by makedbm to make the NIS file
passwd.byname. That is, the key is a usemame, and the value is the remaining line in the /etdpasswd file.

SEE ALSO

NOTES

yppasswd(1), ndbm(3), named(8C)

The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed.

Sun Release 4.1 Last change: 9 September 1987 1985

MAKEDEV(8) MAINTENANCE COMMANDS MAKEDEV(8)

NAME
makedev, MAKEDEV - make system special files

SYNOPSIS
/devIMAKEDEV device-name . ..

DESCRIYfION

FILES

MAKEDEV is a shell script normally used to install special files. It resides in the /dev directory, as this is
the normal location of special files. Arguments to MAKEDEV are usually of the form device-name? where
device-name is one of the supported devices listed in section 4 of the manual and '?' is a logical unit
number (0-9). A few special arguments create assorted collections of devices and are listed below.

std Create the standard devices for the system; for example, /dev/console, /dev/tty.

local Create those devices specific to the local site. This request runs the shell file
/devIMAKEDEV.local. Site specific commands, such as those used to setup dialup lines as
"ttyd?" should be included in this file.

Since all devices are created using mknod(8), this shell script is useful only to the super-user.

/dev/console /devIMAKEDEV.local/dev/tty

SEE ALSO
intro(4), config(8), mknod(8)

DIAGNOSTICS

1986

Either self-explanatory, or generated by one of the programs called from the script. Use sh -x MAKEDEV
in case of trouble.

Last change: 9 September 1987 Sun Release 4.1

MAKEKEY(8) MAINTENANCE COMMANDS MAKEKEY(8)

NAME
makekey - generate encryption key

SYNOPSIS
lusr/lib/makekey

DESCRIPTION
makekey improves the usefulness of encryption schemes depending on a key by increasing the amount of
time required to search the key space. It reads 10 bytes from its standard input, and writes 13 bytes on its
standard output. The output depends on the input in a way intended to be difficult to compute (that is, to
require a substantial fraction of a second).

The first eight input bytes (the input key) can be arbitrary ASCII characters. The last two (the salt) are best
chosen from the set of digits, upper- and lower-case letters, and '.' and'/,. The salt characters are
repeated as the first two characters of the output. The remaining 11 output characters are chosen from the
same set as the salt and constitute the output key.

The transformation performed is essentially the following: the salt is used to select one of 4096 crypto­
graphic machines all based on the National Bureau of Standards DES algorithm, but modified in 4096 dif­
ferent ways. Using the input key as key, a constant string is fed into the machine and recirculated a
number of times. The 64 bits that come out are distributed into the 66 useful key bits in the result.

makekey is intended for programs that perform encryption (for instance, ed(l) and crypt(I». Usually
makekey's input and output will be pipes.

SEE ALSO
crypt(1), ed(1)

Sun Release 4.1 Last change: 9 September 1987 1987

MC68881VERSION (8) MAINTENANCE COMMANDS

NAME
mc68881version - print the MC68881 mask number and approximate clock rate

SYNOPSIS
lusr/etc/mc68881 version

AVAILABILITY
Sun-2, Sun-3, and Sun-4 systems only.

DESCRIPTION

MC68881 VERSION (8)

mc68881version determines whether an Mc68881 or MC68882 floating-point coprocessor is available, and
if so, determines its apparent mask number and approximate clock rate and prints them on the standard out­
put. The reported clock rate is derived by timing floating-point operations with getrusage(2) and is thus
somewhat variable; best results may be obtained in single-user mode. The same applies to the differentia­
tion between MC68881 and MC68882 ; these can be distinguished in user mode only by timing tests.

SEE ALSO
getrusage(2)

1988 Last change: 28 May 1988 Sun Release 4.1

MCONNECT (8) MAINTENANCE COMMANDS MCONNECT (8)

NAME
mconnect - connect to SMTP mail server socket

SYNOPSIS
lusr/etc/mconnect [-p port] [-r] [hostname]

DESCRIYfION
mconnect opens a connection to the mail server on a given host, so that it can be tested independently of
all other mail software. If no host is given, the connection is made to the local host. Servers expect to
speak the Simple Mail Transfer Protocol (SMTP) on this connection. Exit by typing the quit command.
Typing EOF will send an end of file to the server. An interrupt closes the connection immediately and
exits.

OYfIONS
-p port Specify the port number instead of the default SMTP port (number 25) as the next argument.

-r "Raw" mode: disable the default line buffering and input handling. This gives you a similar
effect as telnet to port number 25, not very useful.

FILES
lusr/lib/sendmail.hf help file for SMTP commands

SEE ALSO
sendmail(8)

Postel, Jonathan B Simple Mail TransferProtocol,RFC821 August 1982,SRINetwork Information Center

Sun Release 4.1 Last change: 9 September 1987 1989

MKFILE(8)

NAME
mkfile - create a file

SYNOPSIS

MAINTENANCE COMMANDS

mkfile [-nv] size[k I b I m] filename . ..

DESCRIPTION

MKFILE(8)

mkfile creates one or more files that are suitable for use as NFS-mounted swap areas, or as local swap
areas. The sticky bit is set, and the file is padded with zeroes by default. The default size is in bytes, but it
can be flagged as kilobytes, blocks, or megabytes, with the k, b, or m suffixes, respectively.

OPTIONS
-n Create an empty filename. The size is noted, but disk blocks aren't allocated until data is written

to them.

-v Verbose. Report the names and sizes of created files.

SEE ALSO
swapon(2), fstab(5), swapon(8)

1990 Last change: 1 March 1988 Sun Release 4.1

MKFS(8) MAINTENANCE COMMANDS MKFS(8)

NAME
mkfs - construct a file system

SYNOPSIS
lusr/etc/mkfs [-N] special size [nseet] [ntraek] [blksize] [fragsize] [nepg] [minfree]

[rps] [nbpi] [opt] [ape] [rot] [nrpos]

DESCRIPTION
Note: file systems are normally created with the newfs(8) command.

mkfs constructs a file system by writing on the special file special unless the -N flag has been specified.
special must be specified as a raw device and disk partition. For example, to create a file system on sdO,
specify Idev/rsdO[a-h], where a-h is the disk partition.

The numeric size specifies the number of sectors in the file system. mkfs builds a file system with a root
directory and a losHfound directory (see fsck(8». The number of in odes is calculated as a function of the
file system size. No boot program is initialized by mkfs (see newfs(8».

You must be super-user to use this command.

OPTIONS
-N Print out the file system parameters without actually creating the file system.

The following arguments allow fine tune control over the parameters of the file system.

nseet The number of sectors per track on the disk. The default is 32.

ntraek The number of tracks per cylinder on the disk. The default is 16.

blksize The primary block size for files on the file system. It must be a power of two, currently selected
from 4096 or 8192 (the default).

fragsize The fragment size for files on the file system. The Jragsize represents the smallest amount of disk
space that will be allocated to a file. It must be a power of two currently selected from the range
512 to 8192. The default is 1024.

ncpg The number of disk cylinders per cylinder group. The default is 16.

min/ree The minimum percentage of free disk space allowed. Once the file system capacity reaches this
threshold, only the super-user is allowed to allocate disk blocks. The default value is 10%.

rps The rotational speed of the disk, in revolutions per second. The default is 60.

nbpi The number of bytes for which one inode block is allocated. This parameter is currently set at one
inode block for every 2048 bytes.

opt Space or time optimization preference; s specifies optimization for space, t specifies optimization
for time. The default is t.

apc The number of alternates per cylinder (SCSI devices only). The default is O.

rot The expected time (in milliseconds) to service a transfer completion interrupt and initiate a new
transfer on the same disk. It is used to decide how much rotational spacing to place between suc­
cessive blocks in a file.

nrpos The number of distinguished rotational positions. The default is 8.

Users with special demands for their file systems are referred to the paper cited below for a discussion of
the tradeoffs in using different configurations.

SEE ALSO
dir(5), fs(5), fsck(8), newfs(8), tunefs(8)

System and Network Administration
McKusick, Joy, Leffler; A Fast File System for UNIX

Sun Release 4.1 Last change: 6 November 1989 1991

MKFS(8) MA~NANCECOMMANDS MKFS (8)

NOTES
newfs(8) is preferred for most routine uses.

1992 Last change: 6 November 1989 Sun Release 4.1

MKNOD(8)

NAME
mknod - build special file

SYNOPSIS

MAINTENANCE COMMANDS

lusr/etc/mknodfilename [c] [b] major minor

lusrl etc/mknod filename p

DESCRIPTION

MKNOD(8)

mknod makes a special file. The first argument is the filename of the entry. In the first form, the second
argument is b if the special file is block-type (disks, tape) or c if it is character-type (other devices). The
last two arguments are numbers specifying the major device type and the minor device (for example, unit,
drive, or line number). Only the super-user is permitted to invoke this form of the mknod command.

In the second form, mknod makes a named pipe (FIFO).

The first form of mknod is only for use by system configuration people. Normally you should use
IdevIMAKEDEV instead when making special files.

SEE ALSO
mknod(2V), makedev(8)

Sun Release 4.1 Last change: 9 September 1987 1993

MKPROTO(8) MAINTENANCE COMMANDS MKPROTO(8)

NAME
mkproto - construct a prototype file system

SYNOPSIS
lusr/ete/mkproto special proto

DESCRIPTION
mkproto is used to bootstrap a new file system. First a new file system is created using newfs(8).
mkproto is then used to copy files from the old file system into the new file system according to the direc­
tions found in the prototype file proto. The prototype file contains tokens separated by SPACE or NEW­
LINE characters. The first tokens comprise the specification for the root directory. File specifications con­
sist of tokens giving the mode, the user ID, the group ID, and the initial contents of the file. The syntax of
the contents field depends on the mode.

The mode token for a file is a 6 character string. The first character specifies the type of the file. (The
characters -bed specify regular, block special, character special and directory files respectively.) The
second character of the type is either u or '-' to specify set-user-id mode or not. The third is g or '-' for
the set-group-id mode. The rest of the mode is a three digit octal number giving the owner, group, and
other read, write, execute permissions, see ehmod(1 V).

Two decimal number tokens come after the mode; they specify the user and group ID's of the owner of the
file.

If the file is a regular file, the next token is a pathname whence the contents and size are copied.

If the file is a block or character special file, two decimal number tokens follow which give the major and
minor device numbers.

If the file is a directory, mkproto makes the entries'.' and' • .' and then reads a list of names and (recur­
sively) file specifications for the entries in the directory. The scan is terminated with the token $.

A sample prototype specification follows:

d--77731
usr d--777 3 1

sh ---7553 l/usr/bin/sh
ken d--7556 1

$
bO b--644 3 1 0 0
cO e--644 3 1 0 0
$

$

SEE ALSO

BUGS

1994

ehmod(1 V), fs(5), dir(5), fsek(8), newfs(8)

There should be some way to specify links.

There should be some way to specify bad blocks.

mkproto can only be run on virgin file systems. It should be possible to copy files into existent file sys­
tems.

Last change: 9 September 1987 Sun Release 4.1

MODLOAD(8) MAINTENANCE COMMANDS MODLOAD(8)

NAME
modload - load a module

SYNOPSIS
modloadfilename [-conf configJile] [-entry entryyoint] [-exec execJile] [-0 outputJile]

[-nolink] [-A vmunix Jile]

DESCRIPTION
modload loads a loadable module into a running system. The input file filename is an object file (.0 file).

OPTIONS
-conf configJile

Use this configuration file to configure the loadable driver being loaded. The commands in this
file are the same as those that the config(8) program recognizes. There are two additional com­
mands, blockmajor and charmajor, shown in the configuration file example below.

-entry entry "'point
This is the module entry point. This is passed by modload to Id(1) when the module is linked.
The default module entry point name is 'xxx init'.

-exec exec Jile
This is the name of a shell script or executable image file that is executed if the module is success­
fully loaded. It is always passed the module id and module type as the first two arguments. For
loadable drivers, the third and fourth arguments are the block major and character major numbers
respectively. For a loadable system call, the third argument is the system call number.

-0 output Jtle
This is the name of the output file that is produced by the linker. If this option is omitted, then the
output file name is filename> without the' .0' .

-nolink This option can be used if modload has already been issued once and the output file already
exists. One must take care that neither the kernel nor the module have changed.

-A vmunixJile

EXAMPLES

SEE ALSO

This is the file that is passed to the linker to resolve module references to kernel symbols. The
default is Ivmunix. The symbol file must be for the currently running kernel or the module is
likely to crash the system.

controller
controller
disk
disk
disk
device
disk
blockmajor 51
charmajor 52

fdcO at atmem csr OxOOlOOO irq 6 priority 3
fdc2 at atmem csr Ox002000 irq 5 priority 2
fdO at fdcO drive 0
fdO at fdcO drive 1
fdO at fdcO drive 2
fdO at fdc2 drive 0 csr OxOO3000 irq 4 priority 2
fdO at fdc2 drive 1

Id(l), modunload(8), modstat(8)

Sun Release 4.1 Last change: 20 January 1990 1995

MODSTAT(8) MA~NANCECOMMANDS

NAME
modstat - display status of loadable modules

SYNOPSIS
modstat [-id module _id]

DESCRIPTION
modstat displays the status of the loaded modules.

OPTIONS
-id module id

Display the status of only this module.

SEE ALSO
modload(8), modunload(8)

1996 Last change: 20 January 1990

MODSTAT(8)

Sun Release 4.1

MODUNLOAD (8)

NAME
modunload - unload a module

SYNOPSIS

MAINTENANCE COMMANDS

modunload -id module _id [-exec exec_file]

DESCRIPTION

MODUNLOAD(8)

modunload unloads a loadable module from a running system. The module id is the ID of the module as
shown by modstat(8).

OPTIONS
-exec exec Jr.le

SEE ALSO

This is the name of a shell script Elr executable image file that will be executed before the module
is unloaded. It is always passed the module ID and module type as the first two arguments. For
loadable drivers, the third and fourth arguments are the block major and character major numbers
respectively. For a loadable system call, the third argument is the system call number.

modload(8), modstat(8)

Sun Release 4.1 Last change: 20 January 1990 1997

MONITOR (8S) MA~NANCECOMMANDS MONITOR (8S)

NAME
monitor - system ROM monitor

SYNOPSIS
LI-A

BREAK

DESCRIPTION

USAGE

The CPU board of the Sun workstation contains an EPROM (or set of EPROMs), called the monitor, that
controls the system during startup. The monitor tests the system before attempting to boot the operating
system. If you interrupt the boot procedure by holding down Ll while typing a or A on the workstation
keyboard (or BREAK if the console is a dumb terminal) the monitor issues the prompt:

>

and accepts commands interactively.

Modes
The monitor supports three security modes (non-secure, command secure, and fully secure) and an authen­
tication password. Access to monitor commands is controlled by these security modes. In non-secure
mode all monitor commands are allowed. In command secure mode, only the b(boot) command with no
arguments and the c(continue) command with no arguments may be entered without supplying the authen­
tication password. In fully secure mode, only the c(continue) command with no arguments may be entered
without supplying the authentication password. Note: The system will not auto-reboot in fully secure
mode. The authentication password must be entered before booting will take place.

Commands

1998

+1- Increment or decrement the current address and display the contents of the new location.

AC source destination n
(caret-C) Copy, byte-by-byte a block of length n from the source address to the destination
address.

AI program (caret-I) Display the compilation date and location of program.

AT virtual address
(caret-n Display the physical address to which virtual_address is mapped.

a [n] [action].. . (Sun-2 and Sun-3 systems only)
Open A-register (cpu address register) n, and perform indicated actions. The number n can
be any value from 0 to 7, inclusive. The default value is O. A hexadecimal action argument
assigns the value you supply to the register n. A non-hex action terminates command input.

b [!] [device [(c,u,p)]] [pathname] [arguments Jist]
b[?] Reset appropriate parts of the system and bootstrap a program. A '!' (preceding the device

argument) prevents the system reset from occurring. Programs can be loaded from various
devices (such as a disk, tape or Ethernet). 'b' with no arguments will cause a default boot,
either from a disk, or from an Ethernet controller. 'b?' displays all boot devices and their
device arguments, where device is one of:

ie Intel Ethernet
Ie Lance Ethernet (Sun-2, Sun-3, Sun-4 systems only)
sd SCSI disk
st SCSI 1/4" tape
mt Tape Master 9-track 1/2" tape (Sun-2, Sun-3, Sun-4 systems only)
xd Xylogics 7053 disk (Sun-2, Sun-3, Sun-4 systems only)
xt Xylogics 1/2" tape (Sun-2, Sun-3, Sun-4 systems only)
xy Xylogics 440/450 disk (Sun-2, Sun-3, Sun-4 systems only)
fd Diskette (Sun386i system only)

Last change: 24 September 1989 Sun Release 4.1

MONITOR (8S)

c

u

p

pathname

arguments_list

M~NANCECOMMANDS

A controller number (0 if only one controller).

A unit number (0 if only one driver). and

A partition.

A pathname for a program such as Istandldiag. Ivrnunix is the default.

A list of up to seven arguments to pass to the program being booted.

MONITOR (8S)

c [virtual_address]
Resume execution of a program. When given. virtual_address is the address at which exe­
cution will resume. The default is the current PC (EIP on Sun386i systems). Registers are
restored to the values shown by the a. d. and r commands (for Sun-2 and Sun-3 systems). or
by the d and r commands (for Sun-4 systems). or by the d command (for Sun386i systems).

d [window_number] (Sun-4 systems only)
Display (dump) the state of the processor. The processor state is observable only after:

• An unexpected trap was encountered.
• A user program dropped into the monitor (by calling abortent).
• The user manually entered the monitor by typing LI-A or BREAK.

The display consists of the following:

• The special registers: PSR. PC. nPC. TBR. WIM and Y
• Eight global registers, and
• 24 window registers (8 in, 8 local. and 8 out), corresponding to one of the 7

available windows. If a Floating-Point Unit is on board, its status register
along with its 32 floating-point registers are also shown.

window number
Display the indicated window_number, which can be any value between 0 and 6.
inclusive. If no window is specified and the PSR's current window pointer contains
a valid window number. registers from the window that was active just prior to
entry into the monitor are displayed. Otherwise. registers from window 0 are
displayed.

d (Sun386i systems only)
Display (dump) the state of the processor. This display consists of the registers. listed
below:

Processor Registers:

Segment Registers:
Memory Management Registers:
Control Registers:
Debug Registers:
Test Registers:

EAX, ECX, EOX, ESI, EOI, ESP, EBP, EFLAGS,
EIP
ES,CS,SS,OS,FS,GS
GDTR, LDTR, IDTR, TR
CRO, CR2, CR3
ORO, DRl , OR2 , DR3, OR6, DR7
TR6, TR7

The processor's state is observable only after an unexpected trap. a user program has
"dropped" into the monitor (by calling monitor function abortentor) or the user has manually
"broken" into the monitor (by typing LI-A on the Workstation console. or BREAK on the
dumb terminal's keyboard.

d [n] [action] . .. (Sun-2 and Sun-3 systems only)

Sun Release 4.1

Open D-register (cpu data register) n. and perform indicated actions. The number n can be
any value from 0 to 7, inclusive. The default is O. See the a command for a description of
action.

Last change: 24 September 1989 1999

MONITOR (8S) MAINTENANCE COMMANDS MONITOR (8S)

2000

e [virtual_address] [action] ...
Open the 16 bit word at virtuataddress (default zero). On Sun-2, Sun-3, and Sun-4 sys­
tems, the address is interpreted in the address space defined by the s command. See the a
command for a description of action.

fvirtual_address1 virtual_address2 pattern [size] (Sun-3 and Sun-4 systems only)
Fill the bytes, words or long words from virtual_address1 (lower) to virtual_ address2
(higher) with the constant, pattern. The size argument can take one of the following values

b byte format (the default)
w word format

long word format

For example, the following command fills the address block from Oxl000 to Ox2000 with
the word pattern, OxABCD:

f 1000 2000 ABCD W

g [vector] [argument]
g [virtual_address] [argument]

Goto Gump to) a predetermined or default routine (first form), or to a user-specified routine
(second form). The value of argument is passed to the routine. If the vector or
virtual_address argument is omitted, the value in the PC is used as the address to jump to.

To set up a predetermined routine to jump to, a user program must, prior to executing the
monitor's g command, set the variable *romp->v _vector _ cmd to be equal to the virtual
address of the desired routine. Predetermined routines need not necessarily return control to
the monitor.

The default routine, defined by the monitor, prints the user-supplied vector according to the
format supplied in argument. This format can be one of:

% x hexadecimal
%d decimal

gO (Sun-2, Sun-3, and Sun-4 only)
When the monitor is running as a result of the system being interrupted, force a panic and
produce a crash dump.

g4 When the monitor is running as a result of the system being interrupted, force a kernel stack
trace.

h (Sun-3 and Sun-4 and Sun386i systems)
Display the help menu for monitor commands and their descriptions. To return to the
monitor's basic command level, press ESCAPE or q before pressing RETURN.

i [cache_data_offset] [action]... (Sun-3/200 series and Sun-4 systems only)
Modify cache data RAM command. Display and/or modify one or more of the
Modify cache data RAM command. Display and/or modify one or more of the cache data
addresses. See the a command for a description of action.

j [cache _tag_offset] [action] ... (Sun-3/200 series and Sun-4 systems only)
Modify cache tag RAM command. Display and/or modify the contents of one or more of the
cache tag addresses. See the a command for a description of action.

k [reset_level]
Reset the system. If reset Jevel is:

o CPU reset only (Sun-2 and Sun-3 systems). Reset VMEbus, interrupt registers,
video monitor (Sun-4 systems). This is the default. Reset video (Sun386i sys­
tems).

1 Software reset.

Last change: 24 September 1989 Sun Release 4.1

MONITOR (8S) MAINTENANCE COMMANDS MONITOR (8S)

2 Power-on reset. Resets and clears the memory. Runs the EPROM-based diag­
nostic self test, which can take several minutes, depending upon how much
memory is being tested.

kb Display the system banner.

I [virtual_address] [action] ...
Open the long word (32 bit) at memory address virtual_address (default zero). On Sun-2,
Sun-3 and Sun-4 systems, the address is interpreted in the address space defined by the s
command (below). See the a command for a description of action.

m [virtual_address] [action] ...
Open the segment map entry that maps virtual_address (default zero). On Sun-2, Sun-3 and
Sun-4 systems, the address is interpreted in the address space defined by the s command.
Not supported on Sun386i. See the a command for a description of action.

nd (Sun386i systems only)
ne
ni Disable, enable, or invalidate the cache, respectively

o [virtual_address] [action] ...
Open the byte location specified by
virtual_address (default zero). On Sun-2, Sun-3 and Sun-4 systems, the address is inter­
preted in the address space defined by the s command. See the a command for a description
of action.

p [virtual address Haction] ...
Open the page map entry that maps virtual_address (default zero) in the address space
defined by the s command. See the a command for a description of action.

p [port_address] [[non hex_char [hex_value] I hex_value] ...] (Sun386i systems only)
Display or modify the contents of one or more port I/O addresses in byte mode. Each port
address is treated as a 8-bit unit. The optional port_address, argument, which is a 16-bit
quantity, specifies the initial port I/O address. See the e command for argument descrip­
tions.

q [eeprom_offset] [action]... (Sun-3 and Sun-4 systems only)
Open the EEPROM eeprom_offset (default zero) in the EEPROM address space. All addresses
are referenced from the beginning or base of the EEPROM in physical address space, and a
limit check is performed to insure that no address beyond the EEPROM physical space is
accessed. On Sun386i systems, open the NVRAM nvram_offset (default zero). This com­
mand is used to display or modify configuration parameters, such as: the amount of memory
to test during self test, whether to display a standard or custom banner, if a serial port (A or
B) is to be the system console, etc. See the a command for a description of action.

r [reg_name] [[nonhex_char [hex_value] I hex_value] ...] (Sun386i systems only)
Display or modify one or more of the processor registers. If reg_ name is specified (2 or 3
characters from the above list), that register is displayed first. The default is EAX. See note
on register availability under the command d (for Sun386i systems). See the e command for
argument descriptions.

s [step _count] (Sun386i systems only)
Single step the execution of the interrupted program. The step _count argument specifies the
number of single steps to execute before displaying the monitor prompt. The default is 1.

r [register _number] [action] ... (Sun-2 and Sun-3 systems only)
Display and/or modify the register indicated. register _number can be one of:

eA 68020 Cache Address Register
ee 68020 Cache Control Register
ex 68020 System and User Context

Sun Release 4.1 Last change: 24 September 1989 2001

MONITOR (8S) MAINTENANCE COMMANDS MONITOR (8S)

2002

DF Destination Function code
IS 68020 Interrupt Stack Pointer
MS 68020 Master Stack Pointer
PC Program Counter
SC 68010 System Context
SF Source Function code
SR Status Register
SS 68010 Supervisor Stack Pointer
UC 68010 User Context
US User Stack Pointer
VB Vector Base

Alterations to these registers (except SC and UC) do not take effect until the next c com­
mand is executed. See the a command for a description of action.

r [register Jlumber] (Sun-4 systems only)
r [register _type]
r [w window_number]

Display and/or modify one or more of the IU or FPU registers.

A hexadecimal register _ number can be one of:

OxOO-OxOf window(0,iO)-window(O,i7), window(O,iO)-window(0,i7)
Ox16-Oxlf window(1 ,iO)-window(1 ,i7), window(1 ,iO)-window(1,0)
Ox20-Ox2f window(2,iO)-window(2,i7), window(2,iO)-window(2,i7)
Ox30-Ox3f window(3,iO)-window(3,i7), window(3 ,iO)-window(3,i 7)
Ox40-Ox4f window(4,iO)-window(4,i7), window(4,iO)-window(4,i7)
Ox50-Ox5f window(5,iO)-window(5,i7), window(5 ,iO)-window(5 ,i7)
Ox60-Ox6f window(6,iO)-window(6,i7), window(6,iO)-window(6,i7)
Ox70-Ox77 gO,gl,g2,g3,g4,g5,g6,g7
Ox78-Ox7d PSR,PC,nPC,~,TBR,Y

Ox7e-Oxge FSR, fO-f31

Register numbers can only be displayed after an unexpected trap, a user program
has entered the monitor using the abortent function, or the user has entered the
monitor by manually typing LI-A or BREAK.

If a register _type is given, the first register of the indicated type is displayed. register _type
can be one of:

f floating-point
g global
s special

If wand a window _number (O~) are given, the first in-register within the indicated win­
dow is displayed. If window _number is omitted, the window that was active just prior to
entering the monitor is used. If the PSR' s current window pointer is invalid, window 0 is
used.

Last change: 24 September 1989 Sun Release 4.1

MONITOR (8S) MAINTENANCE COMMANDS MONITOR (8S)

s [code] (Sun-2 and Sun-3 systems only)
Set or query the address space to be used by subsequent memory access commands. code is
one of:

o undefined
1 user data space
2 user program space
3 user control space
4 undefined
5 supervisor data space
6 supervisor program space
7 supervisor control space

If code is omitted, s displays the current address space.

s [asi] (Sun-4 systems only)
Set or display the Address Space Identifier. With no argument, s displays the current
Address Space Identifier. The asi value can be one of:

Ox2 control space
Ox3 segment table
Ox4 Page table
Ox8 user instruction
Ox9 supervisor instruction
Oxa user data
Oxb supervisor data
Oxc fl ush segment
Oxd flush page
Oxe flush context
Oxf cache data

t [program] (Sun-3 systems only)

u [echo]

Trace the indicated standalone program. Works only with programs that do not affect inter­
rupt vectors.

u [port] [options] [baud_rate]
u [u] [virtual_address]

Sun Release 4.1

With no arguments, display the current I/O device characteristics including: current input
device, current output device, baud rates for serial ports A and B, an input-to-output echo
indicator, and virtual addresses of mapped UART devices. With arguments, set or configure
the current I/O device. With the u argument (uu ...), set the I/O device to be the
virtual_address of a UART device currently mapped.

echo Can be either e to enable input to be echoed to the output device, or
ne, to indicate that input is not echoed.

port Assign the indicated port to be the current I/O device. port can be
one of:

baud rate

a serial port A
b serial port B (except on Sun386i systems)
k the workstation keyboard
s the workstation screen

Any legal baud rate.

options can be any combination of:

input
o output

Last change: 24 September 1989 2003

MONITOR (8S) MAThnENANCECOMMANDS MONITOR (8S)

2004

u UART
e echo input to output
De do not echo input
r reset indicated serial port (a and b ports only)

If either a or b is supplied, and no options are given, the serial port
is assigned for both input and output. If k is supplied with no
options, it is assigned for input only. If s is supplied with no
options, it is assigned for output only.

v virtual_address1 virtual_address2 [size] (Sun-3 and Sun-4 systems only)
Display the contents of virtual_ address1 (lower) virtual_address2 (higher) in the format
specified by size:

b byte format (the default)
w word format
I long word format

Enter return to pause for viewing; enter another return character to resume the display. To
terminate the display at any time, press the space bar.

For example, the following command displays the contents of virtual address space from
address Oxl000 to Ox2000 in word format:

v 1000 2000 W

w [virtual_address] [argument] (Sun-3 and Sun-4 systems only)
Set the execution vector to a predetermined or default routine. Pass virtual address and
argument to that routine.

To set up a predetermined routine to jump to, a user program must, prior to executing the
monitor's w command, set the variable *romp->v _vector _ cmd to be equal to the virtual
address of the desired routine. Predetermined routines need not necessarily return control to
the monitor.

The default routine, defined by the monitor, prints the user-supplied vector according to the
format supplied in argument. This format can be one of:

%x hexadecimal
%d decimal

x (Sun-3 and Sun-4 systems only)
Display a menu of extended tests. These diagnostics permit additional testing of such things
as the I/O port connectors, video memory, workstation memory and keyboard, and boot dev­
ice paths.

yc context_number (Sun-4 systems only)
y pis context_number virtual_address

Flush the indicated context, context page, or context segment.
c fl ush context context number
p fl ush the page beginning at virtual_address within context context_number
s flush the segment beginning at virtual_address within context context_number

Last change: 24 September 1989 Sun Release 4.1

MONITOR (8S) M~NANCECOMMANDS MONITOR (8S)

z [number] [breakpoint_virtual_address [type] [len]] (Sun386i systems only)
Set or reset breakpoints for debugging. With no arguments, this command displays the
existing breakpoints. The number argument is a values from 0 to 3, corresponding to the
processor debug registers, DRO to DR3, respectively. Up to 4 distinct breakpoints can be
specified. If number is not specified then the monitor chooses a breakpoint number. The
breakpoint _virtual_address argument specifies the breakpoint address. The type argument
can be one of:

x Instruction Execution breakpoint (the default)
m for Data Write only breakpoint
r Data Reads and Writes only breakpoint.

The len argument can be one of: 'b', 'w', or 'I', corresponding to the breakpoint field length
of byte, word, or long-word, respectively. The default is 'b'. Since the breakpoints are set
in the on-chip registers, an instruction breakpoint can be placed in ROM code or in code
shared by several tasks. If the number argument is specified but not
breakpoint_virtual_address, the corresponding breakpoint is reset.

z [virtual_address] (Sun-3 systems only)

FILES
Ivmunix

SEE ALSO
eeprom(8S)

Sun Release 4.1

Set a breakpoint at virtual_address in the address space selected by the s command.

Last change: 24 September 1989 2005

MOUNT (8) MA~NANCECOMMANDS MOUNT(8)

NAME
moun~ umount - mount and unmount file systems

SYNOPSIS
/usr/etc/mount [-p]
/usr/etc/mount -a [fnv] [-t type]
/usr/etc/mount [-fnrv] [-t type] [-0 options] filesystem directory
/usr/etc/mount [-vfn] [-0 options] filesystem I directory
/usr/etc/mount -d [fnvr] [-0 options] RFS-resource I directory

/usr/etc/umount [-t type] [-b host]
/usr/etc/umount -a [v]
/usr/etc/umount [-v] filesystem I directory
/usr/etc/umount [-d] RFS-resource I directory

DESCRIPTION
mount attaches a named filesystem to the file system hierarchy at the pathname location directory, which
must already exist. If directory has any contents prior to the mount operation, these remain hidden until
the filesystem is once again unmounted. If filesystem is of the form host:pathname, it is assumed to be an
NFS file system (type nfs).

umount unmounts a currently mounted file system, which can be specified either as a directory or afilesys­
tem.

mount and umount maintain a table of mounted file systems in /etclmtab, described in fstab(S). If
invoked without an argument, mount displays the contents of this table. If invoked with either afilesystem
or directory only, mount searches the file /etc/fstab for a matching entry, and mounts the file system indi­
cated in that entry on the indicated directory.

mount also allows the creation of new, virtual file systems using loop back mounts. Loopback file systems
provide access to existing files using alternate pathnames. Once a virtual file system is created, other file
systems can be mounted within it without affecting the original file system. File systems that are subse­
quently mounted onto the original file system, however, are visible to the virtual file system, unless or until
the corresponding mount point in the virtual file system is covered by a file system mounted there.

Recursive traversal of loopback mount points is not allowed; after the loopback mount of /tmp/newroot,
the file /tmp/newrootltmp/newroot does not contain yet another file system hierarchy. Rather, it appears
just as /tmp/newroot did before the loopback mount was performed (say, as an empty directory).

The standard RC files first perform 4.2 mounts, then nfs mounts, during booting. On Sun386i systems, 10
(loopback) mounts are performed just after 4.2 mounts. /etc/fstab files depending on alternate mount ord­
ers at boot time will fail to work as expected. Manual modification of /etc/rc.local will be needed to make
such mount orders work.

See lofs(4S) and fstab(5) for more information and WARNINGS about loopback mounts.

OPTIONS
mount

2006

-p Print the list of mounted file systems in a format suitable for use in /etclfstab.

-a All. Attempt to mount all the file systems described in letc/fstab. If a type argument is specified
with -t, mount all file systems of that type. Using -a, mount builds a dependency tree of mount
points in /etc/fstab. mount will correctly mount these file systems regardless of their order in
/etclfstab (except loopback mounts; see WARNINGS below).

-f Fake an /etclmtab entry, but do not actually mount any file systems.

-n Mount the file system without making an entry in /etc/mtab.

-v Verbose. Display a message indicating each file system being mounted.

Last change: 19 October 1988 Sun Release 4.1

MOUNT(8) MAINTENANCE COMMANDS MOUNT(8)

-t type Specify a file system type. The accepted types are 4.2, nfs, rfs, 10, hsfs, and tmp. See fstab(5)
for a description of 4.2, hsfs, and nfs; see lofs(4S) for a description of 10; and see trnpfs(4) for a
description of tmp. See System and Network Administration for details on rfs.

-r Mount the specified file system read-only, even if the entry in letc/fstab specifies that it is to be
mounted read-write.

Physically write-protected and magnetic-tape file systems must be mounted read-only. Otherwise
errors occur when the system attempts to update access times, even if no write operation is
attempted.

-d Mount an RFS file system. This option provides compatibility with the System V, Release 3 syntax
forRFS mounts. Alternatively, the equivalent Sun syntax, -t rfs, may be used.

-0 options

Sun Release 4.1

Specify file system options, a comma-separated list of words from the list below. Some options
are valid for all file system types, while others apply to a specific type only.

options valid on all file systems:

rw I ro Read/write or read-only.
suid I nosuid Setuid execution allowed or disallowed.
grpid Create files with BSD semantics for the propagation of the group ID.

Under this option, files inherit the GID of the directory in which they are
created, regardless of the directory's set-GID bit.

noauto Do not mount this file system that is currently mounted read-only. If
the file system is not currently mounted, an error results.

remount If the file system is currently mounted, and if the entry in letc/fstab
specifies that it is to be mounted read-write or rw was specified along
with remount, remount the file system making it read-write. If the
entry in letc/fstab specifies that it is to be mounted read-only and rw
was not specified, the file system is not remounted. If the file system is
currently mounted read-write, specifying ro along with remount results
in an error. If the file system is not currently mounted, an error results.

The default is 'rw,suid'.

options specific to 4.2 file systems:

quota I noquota Usage limits are enforced, or are not enforced. The default is
noquota.

options specific to nrs (NFS) file systems:

bglfg
noquota

retry=n
rsize=n
wsize=n
timeo=n
retrans=n
port=n
soft I hard

intr
secure
posix

If the first attempt fails, retry in the background, or, in the foreground.
Prevent quota(1) from checking whether the user is over quota on this
file system; if the file system has quotas enabled on the server, quotas
will still be checked for operations on this file system.
The number of times to retry the mount operation.
Set the read buffer size to n bytes.
Set the write buffer size to n bytes.
Set the NFS timeout to n tenths of a second.
The number of NFS retransmissions.
The server IP port number.
Return an error if the server does not respond, or continue the retry
request until the server responds.
Allow keyboard interrupts on hard mounts.
Use a more secure protocol for NFS transactions.
Request POSIX.l semantics for the file system. Requires a mount ver­
sion 2 mountd(8C) on the server.

Last change: 19 October 1988 2007

MOUNT (8) MA~NANCECOMMANDS MOUNT(8)

acregmin=n
acregmax=n

Hold cached attributes for at least n seconds after file modification.
Hold cached attributes for no more than n seconds after file
modification.

acdirmin=n Hold cached attributes for at least n seconds after directory update.
acdirmax=n Hold cached attributes for no more than n seconds after directory

update.
actimeo=n Set min and max times for regular files and directories to n seconds.
nodo Suppress fresh attributes when opening a file.
noac Suppress attribute and name (lookup) caching.

Regular defaults are:
fg,retry= lOOOO,timeo=7 ,retrans=3,port=NFS _PORT ,hard,\
acregmin=3,acregmax=60,acdirmin=30,acdirmax=60

actimeo has no default; it sets acregmin, acregmax, acdirmin and acdirmax

Defaults for rsize and wsize are set internally by the system kernel.

options specific to rfs (RFS) file systems:

bg I fg If the first attempt fails, retry in the background, or, in the foreground.
retry=n The number of times to retry the mount operation.

Defaults are the same as for NFS.

umount
-h host Unmount all file systems listed in letclmtab that are remote-mounted from host.

-t type Unmount all file systems listed in letclmtab that are of a given type.

-a Unmount all file systems currently mounted (as listed in letclmtab).

-v Verbose. Display a message indicating each file system being unmounted.

-d Unmount an RFS file system. This option provides compatibility with the System V, Release 3
syntax for unmounting an RFS file system.

NFS FILESYSTEMS
Background vs. Foreground

Filesystems mounted with the bg option indicate that mount is to retry in the background if the server's
mount daemon (mountd(8C» does not respond. mount retries the request up to the count specified in the
retry=n option. Once the file system is mounted, each NFS request made in the kernel waits timeo=n
tenths of a second for a response. If no response arrives, the time-out is multiplied by 2 and the request is
retransmitted. When the number of retransmissions has reached the number specified in the retrans=n
option, a file system mounted with the soft option returns an error on the request; one mounted with the
hard option prints a warning message and continues to retry the request.

Read-Write vs. Read-Only
File systems that are mounted rw (read-write) should use the hard option.

Interrupting Processes With Pending NFS Requests

2008

The intr option allows keyboard interrupts to kill a process that is hung while waiting for a response on a
hard-mounted file system.

Last change: 19 October 1988 Sun Release 4.1

MOUNT(8) MA~NANCECOMMANDS MOUNT(8)

Quotas
Quota checking on NFS file systems is performed by the server, not the client; if the file system has the
quota option on the server, quota checking is performed for both local requests and NFS requests. When a
user logs in, login(l) runs the quota(l) program to check whether the user is over their quota on any of the
file systems mounted on the machine. This check is performed for NFS file systems by an RPC call to the
rquotad(8C) server on the machine from which the file system is mounted. This can be time-consuming,
especially if the remote machine is down. If the noquota option is specified for an NFS file system, quota
will not check whether the user is over their quota on that file system, which can speed up the process of
logging in. This does not disable quota checking for operations on that file system; it merely disables
reporting whether the user is over quota on that file system.

Secure Filesystems
The secure option must be given if the server requires secure mounting for the file system.

File Attributes
The attribute cache retains file attributes on the client Attributes for a file are assigned a time to be
flushed. If the file is modified before the flush time, then the flush time is extended by the time since the last
modification (under the assumption that files that changed recently are likely to change soon). There is a
minimum and maximum flush time extension for regular files and for directories. Setting actimeo=n
extends flush time by n seconds for both regular files and directories.

SYSTEM V COMPATIBILITY
System V File-Creation Semantics

Ordinarily, when a file is created its GID is set to the effective GID of the calling process. This behavior
may be overridden on a per-directory basis, by setting the set-GID bit of the parent directory; in this case,
the GID is set to the GID of the parent directory (see open(2V) and mkdir(2V)). Files created on file sys­
tems that are mounted with the grpid option will obey BSD semantics; that is, the GID is unconditionally
inherited from that of the parent directory.

EXAMPLES

Sun Release 4.1

To mount a local disk:
mount Idev/xyOg lusr

To fake an entry for nd root:
mount -ft 4.2/dev/ndO /

To mount all 4.2 file systems:
mount -at 4.2

To mount a remote file system:
mount -t nrs serv:/usrlsrc lusrlsrc

To mount a remote file system:
mount serv:/usrlsrc lusrlsrc

To hard mount a remote file system:
mount -0 hard serv:/usrlsrc lusrlsrc

To mount an RFS remote file system, retrying in the background on failure:
mount -d -0 bg SRC lusrlsrc

To mount an RFS remote file system read-only:
mount -t rfs -r SRC lusr/src

To save current mount state:
mount -p > letcJfstab
Note: this is not recommended when running the automounter, see automount(8).

To loopback mount file systems:
mount -t 10 lexportltmp/localhost Itmp
mount -t 10 lexportlvar/localhost Ivar 10
mount -t 10/exportlclusterlsun386.sunos4.0.1/usr/cluster
mount -t 10 lexportllocallsun386/usr/local

Last change: 19 October 1988 2009

MOUNT(8) MAINTENANCE COMMANDS MOUNT (8)

FILES
/etc/mtab
/etc/fstab

table of mounted file systems
table of file systems mounted at boot

WARNINGS
mount does not understand the mount order dependencies involved in loopback mounting. Loopback
mounts may be dependent on two mounts having been previously performed, while nfs and 4.2 mounts are
dependent only on a single previous mount. As a rule of thumb, place loopback mounts at the end of the
/etC/fstab file. See lofs(4S) for a complete description.

SEE ALSO

BUGS

2010

mkdir(2V), mount(2V), open(2V), unmount(2V), lofs(4S), fstab(5), mtab(5), automount(8),
mountd(8C), nfsd(8)

Mounting file systems full of garbage crashes the system.

If the directory on which a file system is to be mounted is a symbolic link, the file system is mounted on the
directory to which the symbolic link refers, rather than being mounted on top of the symbolic link itself.

Last change: 19 October 1988 Sun Release 4.1

MOUNTD(8C) MAINTENANCE COMMANDS

NAME
mountd, rpc.mountd - NFS mount request server

SYNOPSIS
Insr/etc/rpc.monntd [-0]

AVAILABILITY

MOUNTD(8C)

This program is available with the Networking software installation option. Refer to Installing SunOS 4.1
for information on how to install optional software.

DESCRIPTION
mouotd is an RPC server that answers file system mount requests. It reads the file letclxtab, described in
exports(5), to determine which file systems are available for mounting by which machines. It also pro­
vides information as to what file systems are mounted by which clients. This information can be printed
using the showmouot(8) command.

The monotd daemon is normally invoked by rc(8).

OPTIONS
-0 Do not check that the clients are root users. Though this option makes things slightly less secure, it

does allow older versions (pre-3.0) of client NFS to work.

FILES
letclxtab

SEE ALSO
exports(5), rc(8), showmount(8)

Sun Release 4.1 Last change: 17 December 1987 2011

MAThnENANCECOMMANDS

NAME
mounctfs, umounCtfs - mount and dismount TFS filesystems

SYNOPSIS
/usr/etc/mount_tfs [-r lIs] Is2 ... IsN dir
/usr/etclmount -t trs [-0 options lIs dir

/usr/etclumount _ trs dir
/usr/etc/umount dir

DESCRIPTION
mount_tfs attaches a translucent file service (TFS) filesystem to the directory dire After the mount, the
directory dir is a TFS directory whose frontmost directory is Isl and whose backmost directory is dir, with
any number of directories intervening. Effectively, the directories Is] ... IsN are stacked in front of dir.)

TFS filesystems can also be mounted using the mount(8) command. The mount command can only mount
one directory, Is, in front of the backmost directory, dir.

umount _ tfs detaches the TFS filesystem rooted at dir. See trs(4S) for a description of a TFS filesystem.

OPTIONS
-r Mount the TFS filesystem read-only.

SEE ALSO

BUGS

2012

Isw(I), unwhiteout(I), trs(4S), mount(8), trsd(8)

mount_trs will cause tfsd(8) to deadlock (hang and answer no more requests) if it is used in conjunction
with Network Software Environment (NSE) exec sets. For example, a deadlock will occur if a user has used
mount_trs to mount over /usr/lib, and then tries to activate an NSE environment whose execset mounts
over /usr/lib.

The directories Isl ,ls2 • ... • lsN must be writable.

Last change: 23 November 1988 Sun Release 4.1

NAMED (8C) M~NANCECOMMANDS NAMED(8C}

NAME
named, in.named - Internet domain name server

SYNOPSIS
lusr/etc/in.named [-d level] [-p port] [[-b] bootfile]

DESCRIPTION
named is the Internet domain name server. It is used by resolver libraries to provide access to the Internet
distributed naming database. The domain name server is described in the System and Network Administra­
tion. See RFC 1034 and RFC 1035 for more details. With no arguments named reads letc/named.boot for
any initial data, and listens for queries on a privileged port.

OPTIONS
-d level Print debugging information. level is a number indicating the level of messages printed.

-p port Use port as the port number, rather than the standard port number.

-b bootfile

EXAMPLE

Use bootfile rather than letc/named.boot.

boot file for name server

; type

primary
secondary
cache

domain source file or host

berkeley.edu named.db
cc.berkeley.edu 10.2.0.78 128.32.0.10

named.ca

The primary line states that the file named.db contains authoritative data for berkeley.edu. The file
named.db contains data in the master file format, described in RFC 1035, except that all domain names are
relative to the origin; in this case, berkeley.edu (see below for a more detailed description).

The secondary line specifies that all authoritative data under cc.berkeley.edu is to be transferred from the
name server at 10.2.0.78. If the transfer fails it will try 128.32.0.10, and continue for up to 10 tries at that
address. The secondary copy is also authoritative for the domain.

The cache line specifies that data in named.ca is to be placed in the cache (only used to find the root
domain servers). The file named.ca is in the same format as named.db.

The master file consists of entries of the form:
$INCLUDE <.filename>
$ORIGIN <domain>
<domain> <opt _ttl> <opt_class> <type> <resource _record_data>

where domain is '.' for the root, '@' for the current origin, or a standard domain name. If domain is a
standard domain name that does not end with '.', the current origin is appended to the domain. Domain
names ending with '.' are unmodified.

The opt _ttl field is an optional integer number for the time-to-live field. It defaults to zero.

The opt _class field is currently one token, 'IN' for the Internet.

The type field is one of the following tokens; the data expected in the resource_record _data field is in
parentheses.

A A host address (dotted quad).

NS An authoritative name server (domain).

MX A mail exchanger (domain).

CNAME
The canonical name for an alias (domain).

Sun Release 4.1 Last change: 30 June 1989 2013

NAMED (8C) MA~NANCECOMMANDS NAMED (8C)

FILES

SOA Marks the start of a zone of authority (5 numbers). (see RFC 1035».

MB A mailbox domain name (domain).

MG A mail group member (domain).

MR A mail rename domain name (domain).

NULL A null resource record (no format or data).

WKS A well know service description (not implemented yet).

PTR A domain name pointer (domain).

mNFO Host information (cpu_type OS_type).

MINFO Mailbox or mail list information (requescdomain error_domain).

letc/named.boot name server configuration boot file
letc/named.pid the process ID
Ivar/tmp/named.run debug output
Ivar/tmp/named _ dump.db

dump of the name servers database

SEE ALSO

NOTES

2014

kill(l), signal(3V), resolver(3), resolv.conf(5), nslookup(8C)

System and Network Administration

Mockapetris, Paul, Domain Names - Concepts and Facilities, RFC 1034, Network Information Center, SRI
International, Menlo Park, Calif., November 1987.

Mockapetris, Paul, Domain Names - Implementation and Specification, RFC 1035, Network Information
Center, SRI International, Menlo Park, Calif., November 1987.

Mockapetris, Paul, Domain System Changes and Observations, RFC 973, Network Information Center, SRI
International, Menlo Park, Calif., January 1986.

Partridge, Craig, Mail Routing and the Domain System, RFC 974, Network Information Center, SRI Inter­
national, Menlo Park, Calif., January 1986.

The following signals have the specified effect when sent to the server process using the kill(1) command.

SIGHUP Causes server to read named.boot and reload database.

SIGINT Dumps current data base and cache to Ivar/tmp/named_dump.db.

SIGUSRI
Turns on debugging; each subsequent SIGUSRI increments debug level.

SIGUSR2
Turns off debugging completely.

Last change: 30 June 1989 Sun Release 4.1

NCHECK(8) MAINTENANCE COMMANDS

NAME
ncheck - generate names from i-numbers

SYNOPSIS
lusr/etc/ncheck [-i numbers] [-as] filesystem

DESCRIPTION

NCHECK(8)

Note: For most normal file system maintenance, the function of ncheck is subsumed by fsck(8).

ncbeck generates a pathname versus i-number list of files for the indicated filesystem. Names of directory
files are followed by '.'

The report is in no useful order, and probably should be sorted.

OPTIONS
-i numbers

Report only those files whose i-numbers follow.

-a Print the names '.' and ' .. ', which are ordinarily suppressed.

-s Report only special files and files with set-user-ID mode. This is intended to discover concealed
violations of security policy.

SEE ALSO
sort(1 V), dcbeck(8), fsck(8), icbeck(8)

DIAGNOSTICS
When the filesystem structure is improper, '??' denotes the "parent" of a parentless file and a pathname
beginning with' .•. ' denotes a loop.

Sun Release 4.1 Last change: 7 September 1988 2015

NDBOOTD(8C) MA~NANCECOMMANDS NDBOOTD (8C)

NAME
ndbootd - NO boot block server

SYNOPSIS
ndbootd [-dv]

DESCRIYfION
ndbootd sends boot blocks to diskless Sun-2 system clients that request them using the (now obsolete) NO
protoco1. This server uses the boot block contained in the file Itftpbootlsun2.bb. A client must appear in
the etbers(S) and bosts(S) databases, in order for the request to be served. In determining whether to serve
the client, ndbootd checks the Itftpboot directory for a file whose name is the client's IP address in hexa­
decimal notation. For example, if the file ItftpbootlCOO901AD exists, the machine at IP address
192.9.l.173 can be served. This file normally contains the boot program that is sent to the client by
tftpd(8C).

Only root can invoke ndbootd.

OYfIONS

FILES

-d Debug. Display information about ignored packets, retransmissions, and address translation.

-v Verbose. Show a detailed listing of packets sent and received. etc.

If either option is used, all output is sent to the invoking terminal. Otherwise, error output (if any) appears
on the console.

Itftpboot
Itftpbootlsun2.bb
Itftpbootl????????

bootfiles directory
boot blocks
boot programs for clients

SEE ALSO
ethers(S), hosts(S), boot(8S), tftpd(8C)

2016 Last change: 10 September 1986 Sun Release 4.1

NETCONFIG (8C) M~NANCECOMMANDS NETCONFIG (8C)

NAME
netconfig - PNP boot service

SYNOPSIS
/single/neteonfig [-e] [-n]

AVAILABILITY
Available only on Sun 386i systems running a SunOS 4.0.x release or earlier. Not a SunOS 4.1 release
feature.

DESCRIPTION
neteonfig is used both for automatic installation of new diskful systems, and during routine booting of all
systems. The sequence of actions taken by neteonfig depends on which of these situations is in effect, but
it always sets the hostname, domainname, time, timezone, and interface IP address. If the system is newly
installed on the network, it does more, perhaps interrogating the user about system configuration.

neteonfig is invoked with the -e option from the /etc/re.boot script.

Invoked without options, neteonfig may perform PNP set up, including set up of files, passwords, and
secure RPCs. Unless -n is specified, it writes /ete/net.eonf, which is read later by re.boot. This includes
the VERBOSE flag, derived from NVRAM data, which controls the verbosity of the commands in re.boot.

Routine Booting
Boot servers use information stored locally in Network Interface Service (NIS) acquiring it over the net­
work, except that they get the time from the timehost system if it is up. The following describes the steps
taken by boot clients: diskful clients, diskless clients, and network clients.

Boot clients first invoke rarp to acquire an IP address. This is followed by a ICMP Netmask request to
obtain the IP subnetwork mask, and then a PNP _ WHOAMI RPC to determine the system's name, NIS
domain, and time zone. Then the systems clock is set using the RFC 868 time service. If PNP _ WHOAMI
fails, a PNP _SETUP sequence is followed by set up of /etc/passwd and other files.

OPTIONS

FILES

-e Check shell environment variables. This option is specified during routine boot. HOSTNAME and
DOMAINNAME are used to determine if the system is an NIS server using local NIS maps. Other­
wise, if NETWORKED is YES, neteonfig probes the network for network configuration.
MUST_SETUP requires writing /etc/passwd and other files for setup in restricted network
environments.

-n Used in conjunction with '-e', this does not probe the network for anything but just sets the host­
name and domainname of the system from the environment variables HOSTNAME and DOMAIN­
NAME respectively. Does not write the letc/net.eonf file.

Ivar/yp/domainname/netmasks
Ivar/ypl domainnamelbosts

SEE ALSO

NOTES

pnp(3R), pnpboot(8C), pnpd(8C), rarpd(8C)

The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed.

Sun Release 4.1 Last change: 19 February 1988 2017

NETSTAT(8C) MAThITENANCECOMMANDS NETS TAT (8C)

NAME
netstat - show network status

SYNOPSIS
netstat [-aAn] [-f addressJamily] [system] [core]

netstat [-n] [-s] [-m I -i I -r] [-f address Jamily] [system] [core]

netstat [-n] [-I interface] interval [system] [core]

A V AILABILITY
This program is available with the Networking software installation option. Refer to Installing SunOS 4.1
for information on how to install optional software.

DESCRIPTION
netstat displays the contents of various network-related data structures in various formats, depending on
the options you select.

The first form of the command displays a list of active sockets for each protocol. The second form selects
one from among various other network data structures. The third form displays running statistics of packet
traffic on configured network interfaces; the interval argument indicates the number of seconds in which to
gather statistics between displays.

The default value for the system argument is Ivmunix; for core, the default is Idev/kmem.

OPTIONS
-a

-A

-f address Jamily

-i

-I interface

-m

-n

-r

-s

-t

DISPLAYS

Show the state of all sockets; normally sockets used by server processes are not shown.

Show the address of any protocol control blocks associated with sockets; used for
debugging.

Limit statistics or address control block reports to those of the specified address Jamily,
which can be one of:

inet For the AF _INET address family, or
unix For the AF _UNIX family.

Show the state of interfaces that have been auto-configured. Interfaces that are statically
configured into a system, but not located at boot time, are not shown.

Highlight information about the indicated interface in a separate column; the default (for
the third form of the command) is the interface with the most traffic since the system
was last rebooted. interface can be any valid interface listed in the system configuration
file, such as ieO or leO.

Show the statistics recorded by management routines for the network's private buffer
pool.

Show network addresses as numbers. netstat normally displays addresses as symbols.
This option may be used with any of the display formats.

Show the routing tables. (When -s is also present, show routing statistics instead.)

Show per-protocol statistics. When used with the -r option, show routing statistics.

Replace queue length information with timer information.

Active Sockets (First Form)

2018

The display for each active socket shows the local and remote address, the send and receive queue sizes (in
bytes), the protocol, and the internal state of the protocol.

Last change: 6 January 1989 Sun Release 4.1

NETSTAT(8C} MA~NANCECOMMANDS NETS TAT (8C)

The symbolic format normally used to display socket addresses is either:

hostname • port

when the name of the host is specified, or:

network. port

if a socket address specifies a network but no specific host. Each hostname and network is shown accord­
ing to its entry in the lete/hosts or the letc/networks file, as appropriate.

If the network or hostname for an address is not known (or if the -n option is specified), the numerical net­
work address is shown. Unspecified, or "wildcard" , addresses and ports appear as "*". (For more infor­
mation regarding the Internet naming conventions, refer to inet(3N) }.

TCP Sockets

The possible state values for TCP sockets are as follows:

CLOSED
LISTEN
SYN SENT
SYN RECEIVED
ESTABLISHED
CLOSE WAIT
FIN WAIT 1 - -
CLOSING
LAST ACK
FIN WAIT 2 - -
TIME WAIT

Closed: the socket is not being used.
Listening for incoming connections.
Actively trying to establish connection.
Initial synchronization of the connection under way.
Connection has been established.
Remote shut down: waiting for the socket to close.
Socket closed, shutting down connection.
Closed, then remote shutdown: awaiting acknowledgement.
Remote shut down, then closed: awaiting acknowledgement.
Socket closed, waiting for shutdown from remote.
Wait after close for remote shutdown retransmission.

Network Data Structures (Second Form)
The form of the display depends upon which of the -JD, -i, -h or -r, options you select. (If you specify
more than one of these options, netstat selects one in the order listed here.)

Routing Table Display

The routing table display lists the available routes and the status of each. Each route consists of a destina­
tion host or network, and a gateway to use in forwarding packets. The flags column shows the status of the
route (U if "up"), whether the route is to a gateway (G), and whether the route was created dynamically
by a redirect (D).

Direct routes are created for each interface attached to the local host; the gateway field for such entries
shows the address of the outgoing interface.

The refent column gives the current number of active uses per route. (Connection-oriented protocols nor­
mally hold on to a single route for the duration of a connection, whereas connection less protocols obtain a
route while sending to the same destination.)

The use column displays the number of packets sent per route.

The interface entry indicates the network interface utilized for the route.

Cumulative Traffic Statistics (Third Form)
When the interval argument is given, netstat displays a table of cumulative statistics regarding packets
transferred, errors and collisions, the network addresses for the interface, and the maximum transmission
unit ("mtu"). The first line of data displayed, and every 24th line thereafter, contains cumulative statistics
from the time the system was last rebooted. Each subsequent line shows incremental statistics for the inter­
val (specified on the command line) since the previous display.

SEE ALSO
hosts(5}, networks(5}, protocols(5}, serviees(5) iostat(8), trpt(8C), vrnstat(8)

Sun Release 4.1 Last change: 6 January 1989 2019

NETS TAT (8C) MA~NANCECOMMANDS NETSTAT(8C)

BUGS
The notion of errors is ill-defined. Collisions mean something else for the IMP.

The kernel's tables can change while netstat is examining them, creating incorrect or partial displays.

2020 Last change: 6 January 1989 Sun Release 4.1

NEW ALIASES (8) MAINTENANCE COMMANDS

NAME
newaliases - rebuild the data base for the mail aliases file

SYNOPSIS
newaliases

DESCRIPTION

NEW ALIASES (8)

newaliases rebuilds the random access data base for the mail aliases file letdaliases. It is run automati­
cally by sendmail(8) (in the default configuration) whenever a message is sent.

FILES
fetc/aliases

SEE ALSO
aliases(5), sendmail(8)

Sun Release 4.1 Last change: 9 September 1987 2021

NEWFS(8) MA~NANCECOMMANDS NEWFS(8)

NAME
newfs - create a new file system

SYNOPSIS
lusr/etc/newfs [-Nv] [mkfs-options] raw-special-device

DESCRIPTION
newfs is a "friendly" front-end to the mkfs(8) program. On Sun systems, the disk type is determined by
reading the disk label for the specified raw-special-device.

raw-special-device is the name of a raw special device residing in Idev, including the disk partition, where
you want the new file system to be created. If you want to make a file system on sdO[a-h], specify sdO[a­
b1, rsdO[a-b1 or Idev/rsdO[a-b1; if you only specify sdO[a-b], newfs will find the proper device.

newfs then calculates the appropriate parameters to use in calling mkfs, and builds the file system by fork­
ing mkfs.

You must be super-user to use this command.

OPTIONS

2022

-N Print out the file system parameters without actually creating the file system.

-v Verbose. newfs prints out its actions, including the parameters passed to mkfs.

mkfs-options
Options that override the default parameters passed to mkfs(8) are:

-a ape Number of alternates per cylinder (SCSI devices only).

-b block-size
The block size of the file system in bytes. The default is 8192.

-c #eylinders/group
The number of cylinders per cylinder group in a file system. The default is 16.

-d rotdelay
This specifies the expected time (in milliseconds) to service a transfer completion inter­
rupt and initiate a new transfer on the same disk. It is used to decide how much rota­
tional spacing to place between successive blocks in a file.

-f Jrag-size
The fragment size of the file system in bytes. The default is 1024.

-i bytes/inode
This specifies the density of inodes in the file system. The default is to create an inode
for each 2048 bytes of data space. If fewer in odes are desired, a larger number should be
used; to create more inodes a smaller number should be given.

-m free-space%
The percentage of space reserved from normal users; the minimum free space threshold.
The default is 10%.

-0 optimization
(space or time). The file system can either be instructed to try to minimize the time spent
allocating blocks, or to try to minimize the space fragmentation on the disk. If the
minimum free space threshold (as specified by the -m option) is less than 10%, the
default is to optimize for space; if the minimum free space threshold is greater than or
equal to 10%, the default is to optimize for time.

-r revolutions/minute
The speed of the disk in revolutions per minute (normally 3600).

-s size The size of the file system in sectors.

Last change: 6 November 1989 Sun Release 4.1

NEWFS(S) MAINTENANCE COMMANDS NEWFS(S)

-t #tracks/cylinder
The number of tracks per cylinders on the disk. The default is 16.

-n #rotational-positions
The number of distinguished rotational positions. The default is S.

EXAMPLES
The following example verbosely displays the parameters for the raw special device, sdOa, but does not
actually create a new file system:

example% /usr/etc/newfs -vN sdOa
mkfs -N /dev/rsdOa 160483488192 1024 16 10602048 to -1
/dev/rsdOa: 16048 sectors in 59 cylinders of 8 tracks, 34 sectors

8.2Mb in 4 cyl groups (16 c/g, 2.23Mb/g, 896 i/g)
super-block backups (for fsck -b#) at:
32,4432,8832,13232,
example %

SEE ALSO
fs(5), fsck(S), installboot(SS), mkfs(8), tunefs(S)

System and Network Administration

DIAGNOSTICS
newfs: special No such file or directory

The device specified does not exist, or a disk partition was not specified.

special: cannot open
You must be super-user to use this command.

NOTES
To install the bootstrap programs for a root partition, run installboot(SS) after newfs.

Sun Release 4.1 Last change: 6 November 1989 2023

NEWKEY(8) MAINTENANCE COMMANDS NEWKEY(8)

NAME
newkey - create a new key in the publickey database

SYNOPSIS
newkey -b hostname
newkey -u username

DESCRIPTION
newkey is normally run by the network administrator on the Network Interface Service (NIS) master
machine in order to establish public keys for users and super-users on the network. These keys are needed
for using secure RPC or secure NFS.

newkey will prompt for the login password of the given username and then create a new public/secret key
pair in /etc/publickey encrypted with the login password of the given user.

Use of this program is not required: users may create their own keys using chkey(1).

OPTIONS
-b hostname Create a new public key for the super-user at the given hostname. Prompts for the root pass­

word of the given hostname.

-u username Create a new public key for the given usemame. Prompts for the NIS password of the given
username.

SEE ALSO

NOTES

2024

chkey(1), keylogin(1), puhlickey(5), keyserv(8C)

The Network Information Service (NIS) was fonnerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed.

Last change: 12 October 1987 Sun Release 4.1

NFSD(8) MAINTENANCE COMMANDS NFSD(8)

NAME
nfsd, biod - NFS daemons

SYNOPSIS
lusr/etc/nfsd [nservers]

lusr/etc/biod [nservers]

DESCRIPTION

FILES

nfsd starts the daemons that handle client filesystem requests. nservers is the number of file system request
daemons to start. This number should be based on the load expected on this server. Eight seems to be a
good number.

biod starts nservers asynchronous block I/O daemons. This command is used on a NFS client to buffer
cache handle read-ahead and write-behind. The magic number for nservers in here is also eight.

When a file that is opened by a client is unlinked (by the server), a file with a name of the form .nfsXXX
(where XXX is a number) is created by the client. When the open file is closed, the .nfsXXX file is removed.
If the client crashes before the file can be closed, the .nfsXXX file is not removed.

.nfsXXX client machine pointer to an open-but-unlinked file

SEE ALSO
exports(5), mountd(8C)

Sun Release 4.1 Last change: 8 September 1989 2025

NFSSTAT(8C) MA~NANCECOMMANDS NFSSTAT(8C)

NAME
nfsstat - Network File System statistics

SYNOPSIS
nfsstat [-cmorsz]

AVAILABILITY
This program is available with the Networking software installation option. Refer to Installing SunOS 4.1
for information on how to install optional software.

DESCRIYfION
nfsstat displays statistical information about the NFS (Network File System) and RPC (Remote Procedure
Call), interfaces to the kernel. It can also be used to reinitialize this information. If no options are given
the default is

nfsstat -cnrs

That is, display everything, but reinitialize nothing.

OYfIONS
-c Display client information. Only the client side NFS and RPC information will be printed. Can be

combined with the -0 and -r options to print client NFS or client RPC information only.

-m Display statistics for each NFS mounted file system. This includes the server name and address,
mount flags, current read and write sizes, the retransmission count, and the timers used for
dynamic retransmission.

-0 Display NFS information. NFS information for both the client and server side will be printed. Can
be combined with the -c and -s options to print client or server NFS information only.

-r Display RPC information.

-s Display server information.

-z Zero (reinitialize) statistics. This option is for use by the super-user only, and can be combined
with any of the above options to zero particular sets of statistics after printing them.

DISPLAYS

2026

The server RPC display includes the fields:

calls total number of RPC calls received

badcalls total number of calls rejected

nullrecv number of times no RPC packet was available when trying to receive

badleo number of packets that were too short

xdrcall number of packets that had a malformed header

The server NFS display shows the number of NFS calls received (calls) and rejected (badcalls), and the
counts and percentages for the various calls that were made.

The client RPC display includes the following fields:

calls total number of RPC calls sent
badcalls total of calls rejected by a server
retrans number of times a call had to be retransmitted
badxid number of times a reply did not match the call
timeout number of times a call timed out
wait
newcred

number of times a call had to wait on a busy CLIENT handle
number of times authentication information had to be refreshed

The client NFS display shows the number of calls sent and rejected, as well as the number of times a
CLIENT handle was received (nelget), the number of times a call had to sleep while awaiting a handle
(nclsleep), as well as a COllilt of the various calls and their respective percentages.

Last change: 8 September 1988 Sun Release 4.1

NFSSTAT(8C)

FILES
Ivmunix
Idev/kmem

Sun Release 4.1

MAINTENANCE COMMANDS

system namelist
kernel memory

Last change: 8 September 1988

NFSSTAT(8C)

2027

NLSADMIN (8) MA~NANCECOMMANDS NLSADMIN (8)

NAME
listen, nlsadmin - network listener service administration for RFS

SYNOPSIS
nlsadmin [-mx] [-edr service_code net_spec] [-ikqsv net_spec]

[-It addr net_spec] [-a service_code [-p modules] -c command -y comment net_spec]
[-qz code net_spec] [-z code net_spec] [net_spec]

lusr/etc/listen

AVAILABILITY
This program is available with the RFS software installation option. Refer to Installing SunOS 4.1 for
information on how to install optional software.

DESCRIPTION

2028

nlsadmin configures, initiates and terminates network listener (listen) servers for the local host Each net­
work (transport provider) has an associated listen daemon to service it locally. The listen daemon for each
is configured separately. A listen daemon accepts network service requests when they arrive, and spawns
servers in response to those requests. It can be used on any network (transport provider) that conforms to
the transport provider specification.

nlsadmin can also report on the listener processes on a machine, either individually (per network) or col­
lectively.

Changing the list of services provided by the listener produces immediate changes, while changing an
address on which the listener listens has no effect until the listener is restarted.

nlsadmin without any options gives a brief usage message.

The net _spec argument to nlsadmin refers to a particular listen daemon. Specifically, net _spec is the rela­
tive path name of the entry under Idev for a given network.

-x Report the status of all of the listener processes installed on this machine.

-e service_code net_spec
-d service _code net_spec

Enable or disable, respectively, the service indicated by service _code for the specified
network. The service must have previously been added to the listener for that network
(see the -a option). When a listener is disabled, processes serving prior requests con­
tinue until they complete.

-r service _code net_spec

-s net_spec
-knet_spec

Remove the entry for the service _code from that listener's list of services.

Initialize or change a listener process for the network specified by net_spec. That is,
create and initialize the files required by the listener. Initializing a listener with this
option does not start it running. The listener must be initialized before assigning
addressing or services. Note: the listener should only be initialized once for a given net­
work.

Query the status of the listener process for the specified network. If the listener process
is active, nlsadmin exits with a status of O. If no such process is active, the exit code is
1. The exit code will be greater than 1 if there is an error.

Start or kill, respectively, the listener process for the indicated network. When a listener
is killed, processes that are still running as a result of prior service requests will continue
unaffected. The listener runs under its own ID of listen with group ID (GID) adm. This
GID appear in the system password file letdpasswd; the HOME directory listed for the
GID is concatenated with net_spec to determine the location of the listener configuration
infonnation for each network.

Last change: 1 November 1988 Sun Release 4.1

NLSADMIN (8) MAINTENANCE COMMANDS NLSADMIN (8)

nlsadmin may be invoked by any user to generate reports, but all operations that affect a
listener's status or configuration are restricted to the super-user.

-v net_spec Verbose. Report on the servers associated with net_spec, giving the service code, status,
command, and comment for each.

-I addr net_spec Change or set the address for the general listener service. This is the address generally
used by remote processes to access the servers available through the listener (see the-3
option). addr is the transport address on which to listen, and is interpreted using a syn­
tax that allows for a variety of address formats. By default addr is interpreted as the
symbolic Ascn representation of the transport address. An addr preceded by a '\x'
(BACKSlASH-X) lets you enter an address in hexadecimal notation. Note: addr must be
quoted if it contains any blanks. If addr is just a dash ('-'), nlsadmin merely reports
the currently configured address.

A change of address does not take effect until the next time the listener for that network
is started.

-t addr net _spec Change or set the address on which the listener listens for requests for terminal service.
Otherwise, this is similar to -I. A terminal service address should not be defined unless
the appropriate remote login software is available; if such software is available, it must
be configured as service code 1 (see the -3 option).

[-m] -3 service_code -c cmd -y comment net_spec
Add a new service to the list of services available through the indicated listener.
service_code is the code for the service, cmd is the command to be invoked in response
to that service code, comprised of the full path name of the server and its arguments, and
comment is a brief (free-form) description of the service for use in various reports.
Note: cmd must be quoted if it contains arguments for the server. Similarly, comment
must also be quoted, so as to appear to be a single word to the shell. When a service is
added, it is initially enabled (see the -e and -d options).

-qz code net_spec

If the -m option is specified, the entry is marked as an administrative entry. Service
codes 1 through 100 are reserved for administrative entries, which are those that require
special handling internally. In particular, code 1 is assigned to the remote login service,
which is the service automatically invoked for connections to the terminal login address.

A service must explicitly be added to the listener for each network on which that service
is to be available. This operation is normally performed only when the service is
installed on a machine, or when populating the list of services for a new network.

Query the status of the service with service code code on network net_spec, Exit with a
status of 0 if the service is enabled, 1 if the service is disabled, or greater than 1 on error.

-z code net _spec Print a report on the server associated with net _spec that has service code code, giving
the same information as in the -v option.

net_spec

DIAGNOSTICS

Print the status of the listener process for net _spec.

If the command is not run under the proper ID, an error message is sent to the standard error, and the com­
mand terminates.

FILES
lusr/etc/listen
lusr/netlnlslnet _spec

SEE ALSO
Network Programming

Sun Release 4.1 Last change: 1 November 1988 2029

NSLOOKUP (8C) M~NANCECOMMANDS NSLOOKUP (8C)

NAME
nslookup - query domain name servers interactively

SYNOPSIS
nslookup [-I] [address]

DESCRIYfION
nslookup is an interactive program to query Internet domain name servers. The user can contact servers to
request information about a specific host or print a list of hosts in the domain.

OPTIONS
-I

address

Use the local host's name server instead of the servers in lete/resolv.eonf. (If letclresolv.eonf
does not exist or does not contain server information, the -I option does not have any effect).

Use the name server on the host machine with the given Internet address.

USAGE
Overview

2030

The Internet domain name-space is tree-structured, with top-level domains such as:

COM commercial establishments
EDU educational institutions
GOV government agencies
MIL MILNET hosts

If you are looking for a specific host, you need to know something about the host's organization in order to
determine the top-level domain it belongs to. For instance, if you want to find the Internet address of a
machine at UCLA, do the following:

• Connect with the root server using the root command. The root server of the name space has
knowledge of the top-level domains.

• Since UCLA is a university, its domain name is ucla.edu. Connect with a server for the ucla.edu
domain with the command serverucla.edu. The response will print the names of hosts that act as
servers for that domain. Note: the root server does not have information about ucla.edu, but
knows the names and addresses of hosts that do. Once located by the root server, all future
queries will be sent to the UCLA name server.

• To request information about a particular host in the domain (for instance, locus), just type the
host name. To request a listing of hosts in the UCLA domain, use the Is command. The Is com­
mand requires a domain name (in this case, ucla.edu) as an argument.

Note: if you are connected with a name server that handles more than one domain, all lookups for host
names must be fully specified with its domain. For instance, the domain harvard.edu is served by
seismo.ess.gov, which also services the ess.gov and eornell.edu domains. A lookup request for the host
aiken in the harvard.edu domain must be specified as aiken.harvard.edu. However, the

set domain = name

and

set defname

commands can be used to automatically append a domain name to each request.

After a successful lookup of a host, use the finger command to see who is on the system, or to finger a
specific person. To get other information about the host, use the

set query type = value

command to change the type of information desired and request another lookup. (finger requires the type
to be A.)

Last change: 30 June 1989 Sun Release 4.1

NSLOOKUP (8C) MA~NANCECOMMANDS NSLOOKUP (8C)

Commands
Commands may be interrupted at any time by typing CTRL-C. To exit, type CTRL-D (EOF). The command
line length must be less than 80 characters. Note: an unrecognized command will be interpreted as a host
name.

host [server]
Look up information for host using the current default server or using server if it is specified.

server domain
Iserver domain

Change the default server to domain. Iserver uses the initial server to look up information about
domain while server uses the current default server. If an authoritative answer can't be found, the
names of servers that might have the answer are returned.

root Changes the default server to the server for the root of the domain name space. Currently, the host
sri-nic.arpa is used; this command is a synonym for 'lserver sri-nic.arpa'.) The name of the
root server can be changed with the set root command.

finger [name]

"Is [-ah]

Connect with the finger server on the current host, which is defined by a previous successful
lookup for a host's address information (see the set query type = A command). As with the shell,
output can be redirected to a named file using> and ».

List the information available for domain. The default output contains host names and their Inter­
net addresses. The -a option lists aliases of hosts in the domain. The -h option lists CPU and
operating system information for the domain. As with the shell, output can be redirected to a
named file using> and ». When output is directed to a file, hash marks are printed for every 50
records received from the server.

viewfilename
Sort and list the output of the Is command with more(l).

help

? Print a brief summary of commands.

setlceyword [= value] This command is used to change state information that affects the lookups. Valid
keywords are:

Sun Release 4.1

all Prints the current values of the various options to set. Information about the current
default server and host is also printed.

[no]deb[ug]
Tum debugging mode on. A lot more information is printed about the packet sent to the
server and the resulting answer. The default is nodebug.

[no]def[name]
Append the default domain name to every lookup. The default is nodefname.

dol main] =filename
Change the default domain name to filename. The default domain name is appended to
all lookup requests if defname option has been set. The default is the value in
letdresolv.conf.

q[querytype]=value
Change the type of information returned from a query to one of:

A The host's Internet address (the default).
CNAME

The canonical name for an alias.
HINFO The host CPU and operating system type.
MD The mail destination.

La~t change: 30 June 1989 2031

NSLOOKUP (8C) M~NANCECOMMANDS NSLOOKUP (8C)

MX The mail exchanger.
MB The mailbox domain name.
MG The mail group member.
MINFO The mailbox or mail list information.

(Other types specified in the RFC883 document are valid, but are not very useful.)

[no]recurse
Tell the name server to query other servers if it does not have the information. The
default is recurse.

ret[ry]=count
Set the number of times to retry a request before giving up to count. When a reply to a
request is not received within a certain amount of time (changed with set timeout), the
request is resent. The default is count is 2.

ro[ot] = host
Change the name of the root server to host. This affects the root command. The default
root server is sri-nic.arpa.

t[timeout]=interval
Change the time-out for a reply to interval seconds. The default interval is 10 seconds.

[no]v[c]
Always use a virtual circuit when sending requests to the server. The default is novc.

DIAGNOSTICS

FILES

2032

If the lookup request was not successful, an error message is printed. Possible errors are:

Time-out
The server did not respond to a request after a certain amount of time (changed with set
timeout= value) and a certain number of retries (changed with set retry = value).

No information
Depending on the query type set with the set querytype command, no information about the host
was available, though the host name is valid.

Non-existent domain
The host or domain name does not exist.

Connection refused
Network is unreachable

The connection to the name or finger server could not be made at the current time. This error
commonly occurs with finger requests.

Server failure
The name server found an internal inconsistency in its database and could not return a valid
answer.

Refused
The name server refused to service the request.

The following error should not occur and it indicates a bug in the program.

Format error
The name server found that the request packet was not in the proper format.

letdresolv.conf initial domain name and name server addresses.

Last change: 30 June 1989 Sun Release 4.1

NSLOOKUP (8C) MAINTENANCE COMMANDS NSLOOKUP (8C)

SEE ALSO
resolver(3), resolv.conf(5), named(8C)

RFC 1034, RFC 1035

System and Network Administration

Sun Release 4.1 Last change: 30 June 1989 2033

NSQUERY(8) MAINTENANCE COMMANDS NSQUERY(8)

NAME
nsquery - RFS name server query

SYNOPSIS
nsquery [-b] [name]

AV A1LABILITY
This program is available with the RFS software installation option. Refer to Installing SunOS 4.1 for
information on how to install optional software.

DESCRIPTION
nsquery provides information about resources available to the host from both the local domain and from
other domains. All resources are reported, regardless of whether the host is authorized to access them.
When used with no options, nsquery identifies all resources in the domain that have been advertised as
sharable. A report on selected resources can be obtained by specifying name, where name is one of:

nodename The report will include only those resources available from nodename.

domain. The report will include only those resources available from domain.

domain.nodename The report will include only those resources available from
domain.nodename.

When the name does not include the delimiter '.', it will be interpreted as a nodename within the local
domain. If the name ends with a delimiter '.' , it will be interpreted as a domain name.

The information contained in the report on each resource includes its advertised name (domain.resource),
the read/write permissions, the server (nodename.domain) that advertised the resource, and a brief textual
description.

A remote domain must be listed in your rfmaster file in order to query that domain.

If no entries are found when nsquery is executed, the report header is printed.

If your host cannot contact the domain name server, an error message will be sent to standard error.

OPTIONS
-b Do not print header.

EXAMPLE
The following example displays the resources available from the domain sunrfs:

example% nsquery sunrfs.
RESOURCE ACCESS SERVER DESCRIPTION

SEE ALSO

LOCAL SUN3
LOCAL SUN4
LOCAL SHARE

rfmaster(5), adv(8), unadv(8)

2034

read-only
read-only
read-only

sunrfs.estale
sunrfs.estale
sunrfs.estale

Last change: June 301988 Sun Release 4.1

OLD-ANALYZE (8) MAINTENANCE COMMANDS OLD-ANAL YZE (8)

NAME
old-analyze, analyze - postmortem system crash analyzer

SYNOPSIS
lusr/old/analyze [-dfmvD] [-s swapflie] corefile [system]

DESCRIPTION

FILES

analyze is the post-mortem analyzer for the state of the paging system. In order to use analyze you must
arrange to get a image of the memory (and possibly the paging area) of the system after it crashes (see
panic(8S)).

The analyze program reads the relevant system data structures from the core image file and indexing infor­
mation from Ivmunix (or the specified file) to determine the state of the paging subsystem at the point of
crash. It looks at each process in the system, and the resources each is using in an attempt to determine
inconsistencies in the paging system state. Normally, the output consists of a sequence of lines showing
each active process, its state (whether swapped in or not), its pObr, and the number and location of its page
table pages. Any pages which are locked while raw I/O is in progress, or which are locked because they
are intransit are also printed. (Intransit text pages often diagnose as duplicated; you will have to weed
these out by hand.)

The program checks that any pages in core which are marked as not modified are, in fact, identical to the
swap space copies. It also checks for non-overlap of the swap space, and that the core map entries
correspond to the page tables. The state of the free list is also checked.

Options to analyze:

-d Print the (sorted) paging area usage.

-f Dump the free list.

-m Dump the entire coremap state.

-v (Long unused.) Use a hugely verbose output format.

-D Print the diskmap for each process.

In general, the output from this program can be confused by processes which were forking, swapping, or
exiting or happened to be in unusual states when the crash occurred. You should examine the flags fields
of relevant processes in the output of a pstat(8) to weed out such processes.

It is possible to look at the core dump with adb(l) if you do

adb -k Ivrnunix Ivrncore

Ivmunix default system namelist

SEE ALSO
adb(l), ps(l), panic(8S), pstat(8)

DIAGNOSTICS
Various diagnostics about overlaps in swap mappings, missing swap mappings, page table entries incon­
sistent with the core map, incore pages which are marked clean but differ from disk-image copies, pages
which are locked or intransit, and inconsistencies in the free list.

It would be nice if this program analyzed the system in general, rather than just the paging system in partic­
ular.

Sun Release 4.1 Last change: 23 September 1987 2035

PAC(8) MAINTENANCE COMMANDS PAC(8)

NAME
pac - printer/plotter accounting information

SYNOPSIS
/usr/etc/pac [-cmrs] [-Pprinter] [-pprice] [username. ..]

DESCRIYfION
pac reads the printer/plotter accounting files, accumulating the number of pages (the usual case) or feet (for
raster devices) of paper consumed by each user, and printing out how much each user consumed in pages
or feet and dollars. The accounting file is taken from the af field of the printcap entry for the printer. If
any username s are specified, then statistics are only printed for those users; usually, statistics are printed
for every user who has used any paper.

OYfIONS

FILES

-c Sort the output by cost; usually the output is sorted alphabetically by name.

-m Disregard machine names. Normally, print jobs submitted by a user from different machines
would be counted separately for each machine.

-r Reverse the sorting order.

-s Summarize the accounting information on the summary accounting file. The name of the sum-
mary file is the name of the accounting file with ' _sum' appended to it.

-Pprinter Do accounting for the named printer. If this option is not used, the printer specified by the
PRINTER environment variable will be used if it is present; otherwise accounting is done for
the default printer.

-pprice Use the value price for the cost in dollars per page/foot instead of the default value of 0.02.

letclprintcap

SEE ALSO
printcap(5)

BUGS
The relationship between the computed price and reality is as yet unknown.

2036 Last change: 10 October 1988 Sun Release 4.1

PANIC (8S) MAINTENANCE COMMANDS PANIC (8S)

NAME
panic - what happens when the system crashes

DESCRIPTION

FILES

This section explains what happens when the system crashes and how you can analyze crash dumps.

When the system crashes voluntarily, it displays a message of the form

panic: why i gave up the ghost

on the console, takes a dump on a mass storage peripheral, and then invokes an automatic reboot procedure
as described in reboot(8). Unless some unexpected inconsistency is encountered in the state of the file sys­
tems due to hardware or software failure, the system will then resume multiuser operations.

The system has a large number of internal consistency checks; if one of these fails, it will panic with a very
short message indicating which one failed.

When the system crashes it writes (or at least attempts to write) an image of memory into the back end of
the primary swap area. After the system is rebooted, you can run the program savecore(8) to preserve a
copy of this core image and kernel namelist for later perusal. See savecore(8) for details.

To analyze a dump you should begin by running adb(l) with the -k flag on the core dump, as described in
Debugging Tools.

The most common cause of system failures is hardware failure, which can reflect itself in different ways.

See DIAGNOSTICS for some messages that you may encounter, with some hints as to causes. In each case
there is a possibility that a hardware or software error produced the message in some unexpected way.

Ivmunix
letdrc.local

the system kernel
script run when the local system starts up

SEE ALSO
adb(l), old-analyze(8), reboot(8) sa(8), savecore(8)

Debugging Tools

DIAGNOSTICS
10 err in push
hard 10 err in swap The system encountered an error trying to write to the paging device or an error in

reading critical information from a disk drive. You should fix your disk if it is bro­
ken or unreliable.

timeout table overflow
This really should not be a panic, but until the data structure is fixed, involved, run­
ning out of entries causes a crash. If this happens, you should make the timeout
table bigger by changing the value of ncallout in the param.c file, and then rebuild
your system.

trap type type, pid process-id, pc = program-counter, sr = status-register, context context-number
A unexpected trap has occurred within the system; typical trap types are:

• Bus error
• Address error
• Illegal instruction
• Divide by zero
• Chk instruction
• Trapv instruction
• Privilege violation

• Trace
• 10 I 0 emulator trap
• 1111 emulator trap
• S tack format error

Sun Release 4.1 Last change: 25 September 1987 2037

PANIC (8S)

init died

2038

MA~NANCECOMMANDS PANIC (8S)

• Uninitialized interrupt
• Spurious interrupt

The favorite trap types in system crashes are "Bus error" or "Address error", indi­
cating a wild reference. The process-id is the ID of the process running at the time
of the fault, program-counter is the hexadecimal value of the program counter,
status-register is the hexadecimal value of the status register, and context-number is
the context that the process was running in. These problems tend to be easy to track
down if they are kernel bugs since the processor stops cold, but random flakiness
seems to cause this sometimes.

The system initialization process has exited. This is bad news, as no new users will
then be able to log in. Rebooting is the only fix, so the system just does it right
away.

Last change: 25 September 1987 Sun Release 4.1

PING (8C) MA~NANCECOMMANDS PING (8C)

NAME
ping - send ICMP ECHO_REQUEST packets to network hosts

SYNOPSIS
/usr/etc/ping host [timeout]

/usr/etc/ping [-s] [-lrRv] host [packetsize] [count]

AVAILABILITY
This program is available with the Networking software installation option. Refer to Installing SunOS 4.1
for information on how to install optional software.

DESCRIYfION
ping utilizes the ICMP protocol's mandatory ECHO_REQUEST datagram to elicit an ICMP
ECHO_RESPONSE from the specified host, or network gateway. ECHO_REQUEST datagrams, or "pings,"
have an IP and ICMP header, followed by a structtimeval, and then an arbitrary number of bytes to pad out
the packet If host responds, ping will print host is alive on the standard output and exit. Otherwise after
timeout seconds, it will write no answer from host. The default value of timeout is 20 seconds.

When the -s flag is specified, ping sends one datagram per second, and prints one line of output for every
ECHO_RESPONSE that it receives. No output is produced if there is no response. In this second form, ping
computes round trip times and packet loss statistics; it displays a summary of this information upon termi­
nation or timeout. The default datagram packet size is 64 bytes, or you can specify a size with the packet­
size command-line argument. If an optional count is given, ping sends only that number of requests.

When using ping for fault isolation, first 'ping' the local host to verify that the local network interface is
running.

OPTIONS
-I

-r

-R

-v

SEE ALSO

Loose source route. Use this option in the IP header to send the packet to the given host and back
again. Usually specified with the -R option.

Bypass the normal routing tables and send directly to a host on an attached network. If the host is
not on a directly-attached network, an error is returned. This option can be used to ping a local
host through an interface that has been dropped by the router daemon, see routed(8C).

Record route. Sets the IP record route option, which will store the route of the packet inside the IP
header. The contents of the record route will only be printed if the -v option is given, and only be
set on return packets if the target host preserves the record route option across echos, or the -1
option is given.

Verbose output. List any ICMP packets, other than ECHO_RESPONSE, that are received.

icmp(4P), ifconfig(8C), netstat(8C), rpcinfo(8C), spray(8C)

Sun Release 4.1 Last change: 10 May 1988 2039

PNPBOOT (8C) MA~NANCECOMMANDS PNPBOOT (8C)

NAME
pnpboot, pnp.s386 - pnp diskless boot service

SYNOPSIS
Itftpbootlpnp.s386

AVAILABILITY
Available only on Sun 386i systems running a SunOS 4.0.x release or earlier. Not a SunOS 4.1 release
feature.

DESCRIPTION

FILES

pnp.s386 is a level 2 boot program that requests actions necessary to set up a diskless workstation on the
network.

The PNP diskless boot service is used by diskless workstations at installation time to locate a server that
will configure the diskless client

The last steps of the level 1 boot (from the PROM) are to load the level 2 program through rarpd(8C) and
tftpd(8C). The first step in the boot sequence is RARP to acquire an IP address. This is followed by TFrP
service calls to acquire the pnp.sun* program file needed for the client's architecture. A PNP _ACQUIRE
RPC is then broadcast to locate a server willing to configure the diskless client

A PNP _SETUP is issued to the server which returns one of three statuses: success, failure, or in_progress.
As long as the server responds with a status of in_progress the client will periodically issue a PNP _POLL
until the status changes to either success or failure.

The last step is to reboot the client. This goes through a RARP, TFfP, BOOT sequence, with the boot using
the normal boot.sun* file and bootparamd(8) service.

The system will have been set up using the IP address returned in the first step and a system name will have
been assigned.

Itftpbootlpnp.sun*

SEE ALSO

2040

bootparam(3R), bootparams(5) boot(8S), bootparamd(8), ipallocd(8C), netconfig(8C), pnpd(8C),
rarpd(8C), tftpd(8C)

Last change: 5 December 1987 Sun Release 4.1

PNPD(8C) MAINTENANCE COMMANDS PNPD(8C)

NAME
pnpd - PNP daemon

SYNOPSIS
lusr/ete/rpe.pnpd

AVAILABILITY
Available only on Sun 386i systems running a SunOS 4.0.x release or earlier. Not a SunOS 4.1 release
feature.

DESCRIPTION

FILES

pnpd is used during routine booting of systems to determine their network configuration, and by new sys­
tems to configure themselves on a network. pnpd adds and removes diskless clients of the boot server on
which it is running. The pnpd daemon is normally invoked in re.local. The RPCs are used by
neteonfig(8C), pnp.s386 (see pnpboot(8C)), and elient(8).

The bootservers Network Interface Service (NIS) map specifies limits on server capacity and default swap
size.

lexport!exec! arch
symbolic link to lexport/exeelarch.release

lexport/exec! arch.release
symbolic link to Insf for the architecture

I export! exec! arch.release Iboot
root binaries

SEE ALSO

NOTES

pnp(3R), client(8), ipalloed(8C), neteonfig(8C), pnpboot(8C)

The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed.

Sun Release 4.1 Last change: 25 February 1988 2041

PORTMAP(8C) MA~NANCECOMMANDS PORTMAP (8C)

NAME
portmap - TCP/lP port to RPC program number mapper

SYNOPSIS
Insrl etc/portmap

DESCRIPTION
portmap is a server that converts TCP/IP protocol port numbers into RPC program numbers. It must be
running in order to make RPC calls.

When an RPC server is started, it will tell portmap what port number it is listening to, and what RPC pro­
gram numbers it is prepared to serve. When a client wishes to make an RPC call to a given program
number, it will first contact portmap on the server machine to determine the port number where RPC pack­
ets should be sent.

Normally, standard RPC servers are started by inetd(8C), so portmap must be started before inetd is
invoked.

SEE ALSO
inetd.conf(5), inetd(8C), rpcinfo(8C)

BUGS
If portmap crashes, all servers must be restarted.

2042 Last change: 18 December 1989 Sun Release 4.1

PRAUDIT(8) MAINTENANCE COMMANDS PRAUDIT(8)

NAME
praudit - print contents of an audit trail file

SYNOPSIS
praudit [-Irs] [-ddel] [filename ...]

AVAILABILITY
This program is available with the Security software installation option. Refer to Installing SunOS 4.1 for
information on how to install optional software.

DESCRIPTION
praudit reads the listed filenames (or standard input, if no filename is specified) and interprets the data as
audit trail records as defined in audit_ control(S). By default, times, security labels, user and group IDs
(UIDs and GIDs, respectively) are converted to their ASCII representation. Record type and event fields are
converted to long ASCII representation. A maximum of 100 audit files can be specified on the command
line.

OPTIONS
-I Print records one line per record. The record type and event fields are always converted to their

short ASCII representation.

-r

-s

-ddel

FILES

Print records in their raw form. Times, security labels, UIDs, GIDs, record types, and events are
displayed as integers. Currently, labels are not used and are displayed as zero in this mode. This
option and the -s option are exclusive. If both are used, a format usage error message is output.

Print records in their short form. All numeric fields are converted to ASCII and displayed. The
short ASCII representations for the record type and event fields are used. Security labels are
displayed in their short representation. Again, labels are not currently used. This option and the
-r option are exclusive. If both are used, a format usage error message is output.

Use del as the field delimiter instead of the default delimiter, which is the comma. If del has spe­
cial meaning for the shell, it must be quoted. The maximum size of a delimiter is four characters.

/etc/passwd

SEE ALSO
audit(2), setuseraudit(2), getauditfiags(3), audit_ control(S)

Sun Release 4.1 Last change: 7 September 1988 2043

PSTAT(8) MA~NANCECOMMANDS PSTAT(8)

NAME
pstat - print system facts

SYNOPSIS
lusr/etc/pstat [-afipSsT] [-u pid] [system [corefile]]

DESCRIPTION
pstat interprets the contents of certain system tables. If corefile is given, the tables are sought there, other­
wise in Idevlkmem. The required namelist is taken from Ivmunix unless system is specified.

OPTIONS

2044

-a Under -p, describe all process slots rather than just active ones.

-f Print the open file table with these headings:

LOC The memory address of this table entry.
TYPE The type of object the file table entry points to.
FLG Miscellaneous state variables encoded thus:

R open for reading
W open for writing
A open for appending
S shared lock present
X exclusive lock present
I signal pgrp when data ready

CNT Number of processes that know this open file.
MSG Number of references from message queue.
DATA The location of the vnode table entry or socket for this file.
OFFSET The file offset (see lseek(2V».

-i Print the inode table including the associated vnode entries with these headings:

ILOC The memory address of this table entry.
IFLAG Miscellaneous inode state variables encoded thus:

A inode access time must be corrected
C inode change time must be corrected
L inode is locked
R inode is being referenced
U update time (fs(5» must be corrected
W wanted by another process (L flag is on)

IDEVICE Major and minor device number of file system in which this inode resides.
INO I-number within the device.
MODE Mode bits in octal, see chmod(2V).
NLK Number of links to this inode.
UID
SIZE/DEV

VFLAG

CNT
SHC
EXC

TYPE

User ID of owner.
Number of bytes in an ordinary file, or major and minor device of special
file.
Miscellaneous vnode state variables encoded thus:

R root of its file system
S shared lock applied
E exclusive lock applied
Z process is waiting for a shared or exclusive lock

Number of open file table entries for this vnode.
Reference count of shared locks on the vnode.
Reference count of exclusive locks on the vnode (this may be '> l' if, for
example, a file descriptor is inherited across a fork).
Vnode file type, either VNON (no type), VREG (regular), VDIR (directory),
VBLK (block device), VCHR (character device), VLNK (symbolic link),
VSOCK (socket), VFIFO (named pipe), or VBAD (bad).

Last change: 27 January 1988 Sun Release 4.1

PSTAT(8) MAnnENANCECOMMANDS PSTAT(8)

-p Print process table for active processes with these headings:

Sun Release 4.1

LOC The memory address of this table entry.
S Run state encoded thus:

o no process
1 awaiting an event
2 (abandoned state)
3 runnable
4 being created
5 being terminated
6 stopped (by signal or under trace)

F Miscellaneous state variables, ORed together (hexadecimal):
0000001 loaded
0000002 a system process (scheduler or page-out daemon)
0000004 locked for swap out
0000008 swapped out during process creation
0000010 process is being traced
0000020 tracing parent has been told that process is stopped
0000040 user settable lock in memory
0000080 in page-wait
0000100 prevented from swapping during fork(2V)
0000200 will restore old mask after taking signal
0000400 exiting
0000800 doing physical I/O
0001000 process resulted from a vfork(2) which is not yet

complete
0002000 another flag for vfork(2)
0004000 process has no virtual memory, as it is a parent in

the context of vfork(2)
0008000 process is demand paging pages from its execut­

able image vnode
0010000 process has advised of sequential VM behavior

with vadvise(2)
0020000 process has advised of random VM behavior with

vadvise(2)
0080000 process is a session process group leader
0100000 process is tracing another process
0200000 process needs a profiling tick
0400000 process is scanning descriptors during select
4000000 process has done record locks
8000000 process is having its system calls traced

PRI Scheduling priority, see getpriority(2).
SIG Signals received (signals 1-32 coded in bits 0-31).
DID Real user ID.
SLP Amount of time process has been blocked.
TIM Time resident in seconds; times over 127 coded as 127.
CPU Weighted integral of CPU time, for scheduler.
NI Nice level, see getpriority(2).
PGRP Process number of root of process group.
PID The process ID number.
PPID The process ID of parent process.
RSS Resident set size - the number of physical page frames allocated to this

process.
SRSS RSS at last swap (0 if never swapped).

Last change: 27 January 1988 2045

PSTAT(8) MA~NANCECOMMANDS PSTAT(8)

SIZE The size of the process image. That is, the sum of the data and stack seg­
ment sizes, not including the sizes of any shared libraries.

WCHAN Wait channel number of a waiting process.
LINK Link pointer in list of runnable processes.

-S Print the streams table with these headings:

2046

LOC The memory address of this table entry.
WRQ The address of this stream's write queue.
VNODE The address of this stream's vnode.
DEVICE
PGRP
SIGIO
FLG

Major and minor device number of device to which this stream refers.
This stream's process group number.
The process id or process group that has this stream open().
Miscellaneous stream state variables encoded thus:

I waiting for ioctl() to finish
R read/recvmsg is blocked
W write/putmsg is blocked
P priority message is at stream head
H device has been "hung up" (M_HANGUP)
o waiting for open to finish
M stream is linked under multiplexor
D stream is in message-discard mode
N stream is in message-nondiscard mode
E fatal error has occurred (M_ERROR)
T waiting for queue to drain when closing
2 waiting for previous ioctl() to finish before starting new one
3 waiting for acknowledgment for ioctl()
B stream is in non-blocking mode
A stream is in asynchronous mode
o stream uses old-style no-delay mode
S stream has had TOSTOP set
C VTIME clock running
V VTIME timer expired
r collision on select() for reading
w collision on select() for writing
e collision on select() for exceptional condition

The queues on the write and read sides of the stream are listed for each stream. Each queue is
printed with these headings:

NAME
COUNT

FLG

MINPS

MAXPS
HIWAT

LOWAT

The name of the module or driver for this queue.
The approximate number of bytes on this queue.
Miscellaneous state variables encoded thus:

E queue is enabled to run
R someone wants to get from this queue when it becomes

non-empty
W someone wants to put on this queue when it drains
F queue is full
N queue should not be enabled automatically by a putq

The minimum packet size for this queue.
The maximum packet size for this queue, or INF if there is no maximum.
The high-water mark for this queue.
The low-water mark for this queue.

Last change: 27 January 1988 Sun Release 4.1

PSTAT(8) MA~NANCECOMMANDS PSTAT(8)

FILES

-s Print information about swap space usage:

allocated: The amount of swap space (in bytes) allocated to private pages.

reserved:

used:

available:

The number of swap space bytes not currently allocated, but claimed by
memory mappings that have not yet created private pages.

The total amount of swap space, in bytes, that is either allocated or
reserved.

The total swap space, in bytes, that is currently available for future reser­
vation and allocation.

- T Print the number of used and free slots in the several system tables. This is useful for checking to
see how full system tables have become if the system is under heavy load. Shows both used and
cached inodes.

-u pid Print information about the process with ID pid.

Ivmunix
Idev/kmem

namelist
default source of tables

SEE ALSO

BUGS

ps(1), chmod(2V), fork(2V), getpriority(2), Iseek(2V), stat(2V), vadvise(2), vfork(2), fs(5) iostat(8),
vmstat(8)

It would be very useful if the system recorded "maximum occupancy" on the tables reported by - T; even
more useful if these tables were dynamically allocated.

Sun Release 4.1 Last change: 27 January 1988 2047

PWCK(8V) MA~NANCECOMMANDS PWCK(8V)

NAME
pwck - check password database entries

SYNOPSIS
/usr/etc/pwck [filename]

AV AILABILITY
This command is available with the System V software installation option. Refer to Installing Sun OS 4.1
for information on how to install optional software.

DESCRIPTION
pwck checks that a file in passwd(5) does not contain any errors; it checks the /etc/passwd file by default.

FILES
/etc/passwd

DIAGNOSTICS
Too many/few fields

An entry in the password file does not have the proper number of fields.

No login name
The login name field of an entry is empty.

Bad character(s) in login name
The login name in an entry contains characters other than lower-case letters and digits.

First char in login name not lower case alpha
The login name in an entry does not begin with a lower-case letter.

Login name too long
The login name in an entry has more than 8 characters.

Invalid UID
The user ID field in an entry is not numeric or is greater than 65535.

Invalid GID
The group ID field in an entry is not numeric or is greater than 65535.

No login directory
The login directory field in an entry is empty.

Login directory not found
The login directory field in an entry refers to a directory that does not exist.

Optional shell file not found.
The login shell field in an entry refers to a program or shell script that does not exist.

No netgroup name
The entry is a Network Interface Service (NIS) entry referring to a netgroup, but no netgroup is
present.

Bad character(s) in netgroup name
The netgroup name in an NIS entry contains characters other than lower-case letters and digits.

First char in netgroup name not lower case alpha
The netgroup name in an NIS entry does not begin with a lower-case letter.

SEE ALSO

NOTES

2048

group(5), passwd(5)

The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed.

Last change: 17 September 1989 Sun Release 4.1

PWDAUTHD(8C) MAINTENANCE COMMANDS PWDAUTHD (8C)

NAME
pwdauthd - server for authenticating passwords

SYNOPSIS
lusrl etc/rpc.pwdautbd

AVAILABILITY
This program is available with the Security software installation option. Refer to Installing SunOS 4.1 for
information on how to install optional software.

DESCRIYfION
pwdautbd is a server that determines authentication for users and groups. It handles authentication
requests from pwdautb(3) and grpautb(). Communication to and from pwdauthd is by means of RPC
calls. The server is passed afilename and a password. It returns an integer value that specifies whether the
password is valid. The possible return values are PW A_V ALID if the name is valid, PW A _ INV ALID if the
name is invalid, and PWA_UNKNOWN if validity cannot be determined because no adjunct files are
present

If pwdautbd is serving pwdauth, it determines whether the passwd.adjunct file exists. If not, it returns
PWA_UNKNOWN. In this case, pwdauth knows to check the letdpasswd file. Otherwise, the server calls
getpwanam() (see getpwaent(3» to get the entry for filename in either the local or the Network Interface
Service (NIS) file for passwd.adjunct. If the encrypted password guess matches the encrypted password
from the file, pwdautbd returns PWA_ VALID. If the passwords do not match, it returns PWA_INVALID.

If pwdautbd is serving grpauth(), it determines whether the group.adjunct file exists. If not, it returns
PWA_ UNKNOWN. In this case, grpautb() knows to check the letc/group file. Otherwise, the server calls
getgranam() (see getgraent(3» to get the entry for filename in either the local or the NIS file for
group.adjunct. If the encrypted password guess matches the encrypted password from the file, pwdauthd
returns PWA_ VALID. If the passwords do not match, it returns PWA_INVALID.

SEE ALSO

NOTES

getgraent(3), getpwaent(3), pwdautb(3)

The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed.

Sun Release 4.1 Last change: 21 December 1987 2049

QUOT(8) MAINTENANCE COMMANDS QUOT(8)

NAME
quot - summarize file system ownership

SYNOPSIS
lusr/etc/quot [-actbnv] [filesystem]

DESCRIYfION
quot displays the number of blocks (1024 bytes) in the namedfilesystem currently owned by each user.

OYfIONS

FILES

-a Generate a report for all mounted file systems.

-c Display three columns giving file size in blocks, number of files of that size, and cumulative total
of blocks in that size or smaller file.

-f Display count of number of files as well as space owned by each user.

-b Estimate the number of blocks in the file - this doesn't account for files with holes in them.

-n Run the pipeline ncbeck filesystem I sort +On I quot -n filesystem to produce a list of all files
and their owners.

-v Display three columns containing the number of blocks not accessed in the last 30, 60, and 90
days.

letclmtab
letclpasswd

mounted file systems
to get user names

SEE ALSO
du(l V), 1s(1 V)

2050 Last change: 9 September 1987 Sun Release 4.1

QUOTACHECK(8) MA~NANCECOMMANDS QUOTACHECK(8)

NAME
quotacheck - file system quota consistency checker

SYNOPSIS
lusr/etc/quotacheck [-v] [-p] filesystem . ..

lusr/etc/quotacheck [-apv]

DESCRIPTION
quotacheck examines each file system, builds a table of current disk usage, and compares this table against
that stored in the disk quota file for the file system. If any inconsistencies are detected, both the quota file
and the current system copy of the incorrect quotas are updated (the latter only occurs if an active file sys­
tem is checked).

quotacheck expects each file system to be checked to have a quota file named quotas in the root directory.
If none is present, quotacheck will ignore the file system.

quotacheck is normally run at boot time from the letc/rc.local file, see rc(8), before enabling disk quotas
with quotaon(8).

quotacheck accesses the raw device in calculating the actual disk usage for each user. Thus, the file sys­
tems checked should be quiescent while quotacheck is running.

OPTIONS

FILES

-v Indicate the calculated disk quotas for each user on a particular file system. quotacheck normally
reports only those quotas modified.

-a Check all the file systems indicated in letclfstab to be read-write with disk quotas.

-p Run parallel passes on the required file systems, using the pass numbers in letclfstab in an identi-
cal fashion to fsck(8).

quotas
letclmtab
letclfstab

quota file at the file system root
mounted file systems
default file systems

SEE ALSO
quotactl(2), quotaon(8), rc(8)

Sun Release 4.1 Last change: 9 September 1987 2051

QUOTAON(8) MAINTENANCE COMMANDS

NAME
quotaon, quotaoff - tum file system quotas on and off

SYNOPSIS
lusr/etc/quotaon [-v] file system ...
lusr/etc/quotaon [-av]

lusr/etc/quotaoff [-v]filesystem ...
lusr/etc/quotaoff [-av]

DESCRIYfION
quotaon

QUOTAON(8)

quotaon announces to the system that disk quotas should be enabled on one or more file systems. The file
systems specified must be mounted at the time. The file system quota files must be present in the root
directory of the specified file system and be named quotas.

quotaoff
quotaoff announces to the system that file systems specified should have any disk quotas turned off.

OYfIONS
quotaon

-3 All file systems in letc/fstab marked read-write with quotas will have their quotas turned on. This
is normally used at boot time to enable quotas.

-v Display a message for each file system where quotas are turned on.

quotaoff

FILES

-a Force all file systems in letc/fstab to have their quotas disabled.

-v Display a message for each file system affected.

These commands update the status field of devices located in letc/mtab to indicate when quotas are on or
off for each file system.

quotas
letdmtab
letdfstab

quota file at the file system root
mounted file systems
default file systems

SEE ALSO
quotactl(2), fstab(5), mtab(5)

2052 Last change: 9 September 1987 Sun Release 4.1

RARPD(8C) MA~NANCECOMMANDS RARPD(8C)

NAME
rarpd - TCP/IP Reverse Address Resolution Protocol server

SYNOPSIS
lusr/etc/rarpd interface [hostname]

lusr/etc/rarpd -a

AVAILABILITY
This program is available with the Networking software installation option. Refer to Installing SunOS 4.1
for information on how to install optional software.

DESCRIPTION

FILES

rarpd starts a daemon that responds to Reverse Address Resolution Protocol (RARP) requests. The dae­
mon forks a copy of itself that runs in background. It must be run as root.

RARP is used by machines at boot time to discover their Internet Protocol (IP) address. The booting
machine provides its Ethernet Address in an RARP request message. Using the "ethers" and "hosts" data­
bases, rarpd maps this Ethernet Address into the corresponding IP address which it returns to the booting
machine in an RARP reply message. The booting machine must be listed in both databases for rarpd to
locate its IP address. rarpd issues no reply when it fails to locate an IP address. The "ethers" and "hosts"
databases may be contained either in files under letc or in Network Interface Service (NIS) maps.

In the first synopsis, the interface parameter names the network interface upon which rarpd is to listen for
requests. The interface parameter takes the "name unit" form used by ifconfig(8C). The second argument,
hostname, is used to obtain the IP address of that interface. An IP address in "decimal dot" notation may be
used for hostname. If hostname is omitted, the address of the interface will be obtained from the kernel.
When the first form of the command is used, rarpd must be run separately for each interface on which
RARP service is to be supported. A machine that is a router may invoke rarpd multiple times, for exam­
ple:

lusr/etc/rarpd ieO host
lusr/etc/rarpd iel host-backbone

In the second synopsis, rarpd locates all of the network interfaces present on the system and starts a dae­
mon process for each one that supports RARP.

letc/ethers
letc/hosts

SEE ALSO

NOTES

ethers(5), hosts(5), policies(5), boot(8S), ifconfig(8C), ipallocd(8C), netconfig(8C)

Finlayson, Ross, Timothy Mann, Jeffrey Mogul, and Marvin Theimer, A Reverse Address Resolution Pro­
tocol, RFC 903, Network Information Center, SRI International, Menlo Park, Calif., June 1984.

The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed.

Sun Release 4.1 Last change: 18 December 1989 2053

RC(8) MAINTENANCE COMMANDS RC(8)

NAME
rc, rc.boot, rc.local - command scripts for auto-reboot and daemons

SYNOPSIS
letclre

letclre.boot

I etclre.local

DESCRIYfION

Sun386i

FILES

2054

re and re.boot are command scripts that are invoked by init(8) to perform file system housekeeping and to
start system daemons. re.local is a script for commands that are pertinent only to a specific site or client
machine.

re.boot sets the machine name, and then, if coming up multi-user, runs fsck(8) with the -p option. This
"preens" the disks of minor inconsistencies resulting from the last system shutdown and checks for serious
inconsistencies caused by hardware or software failure. If fsek(8) detects a serious disk problem, it returns
an error and init(8) brings the system up in single-user mode. When coming up single-user, when init(8) is
invoked by fastboot(8), or when it is passed the -b flag from boot(8S), functions performed in the re.loeal
file, including this disk check, are skipped.

Next, re runs. If the system came up single-user, re runs when the single-user shell terminates (see
init(8)). It mounts 4.2 filesystems and spawns a shell for lete/re.loeal, which mounts NFS filesystems, and
starts local daemons. After re.loeal returns, re starts standard daemons, preserves editor files, clears Itmp,
starts system accounting (if applicable), starts the network (where applicable), and if enabled, runs
saveeore(8) to preserve the core image after a crash.

These files operate as described above with the following variations:

fsek(8) is invoked with the -y option to prevent users being put in single-user mode by happenstance.

re.boot invokes neteonfig(8C) to configure the system for the network before booting. netconfig is
invoked before the /nsr filesystem is mounted, because /nsr might be mounted from a server. neteonfig
writes lete/net.eonf unless the -n option is specified, controlling system booting.

re.boot dynamically loads device drivers.

re invokes any programs found in /var/reeover to clean up any operations partially completed when the
system crashed or was shut down.

re.local starts the automounter.

The file /ete/net.eonf stores these environment variables: The VERBOSE environment variable controls the
verbosity of the messages from the rc script; its value is taken from NVRAM. The NETWORKED environ­
ment variable controls whether services useful only on a networked system are started in lete/re.local. The
PNP environment variable, set up during initial system installation, controls whether local network
configuration information is used or whether that information comes from the network. (Using automatic
system installation causes all systems except boot servers to get this information from the network, facili­
tating network reconfiguration.) The HOSTNAME and DOMAINNAME environment variables, used
together, help determine if this system is a boot server or, with PNP set to no, control the host name and
domain name.

/etc/re
letc/re.boot
letc/re.local
/etclnet.eonf
Ivar/reeover/*
Ivar/yp/*
Itmp

Last change: 8 September 1988 Sun Release 4.1

RC(8) MAINTENANCE COMMANDS RC(8)

SEE ALSO
automount(8), boot(8S), fastboot(8), init(8), reboot(8), savecore(8), netconfig(8C)

BUGS
The system message file Ivar/admlmessages is no longer created automatically.

Sun Release 4.1 Last change: 8 September 1988 2055

RDA1E(8C) MAINTENANCE COMMANDS RDATE(8C)

NAME
rdate - set system date from a remote host

SYNOPSIS
lusr/ucb/rdate hostname

A V AILABILITY
This program is available with the Networking software installation option. Refer to Installing SunOS 4.1
for information on how to install optional software.

DESCRIPTION

FILES

BUGS

2056

rdate sets the local date and time from the hostname given as argument. You must be super-user on the
local system. Typically rdate can be inserted as part of your letc/rc.local startup script.

letc!rc.local

Could be modified to accept a list of hostnames and try each until a valid date returned. Better yet would
be to write a real date server that accepted broadcast requests.

Last change: 17 December 1987 Sun Release 4.1

REBOOT(8) MA~NANCECOMMANDS REBOOT (8)

NAME
reboot - restart the operating system

SYNOPSIS
/usr/etc/reboot [-dnq] [boot arguments]

DESCRIYfION
reboot executes the reboot(2) system call to restart the kernel. The kernel is loaded into memory by the
PROM monitor, which transfers control to it. See boot(8S) for details.

Although reboot can be run by the super-user at any time, shutdown(8) is normally used first to warn all
users logged in of the impending loss of service. See shutdown(8) for details.

reboot performs a sync(l) operation on the disks, and then a multiuser reboot is initiated. See init(8) for
details.

reboot normally logs the reboot to the system log daemon, syslogd(8), and places a shutdown record in the
login accounting file /var/adm/wtmp. These actions are inhibited if the -n or -q options are present.

Power Fail and Crash Recovery
Normally, the system will reboot itself at power-up or after crashes.

OYfIONS
-d Dump system core before rebooting.

-n Avoid the sync(l). It can be used if a disk or the processor is on fire.

-q Quick. Reboots quickly and ungracefully, without first shutting down running processes.

Boot Arguments

FILES

If a boot argument string is given, it is passed to the boot command in the PROM monitor. The string must
be quoted if it contains spaces or other characters that could be interpreted by the shell. If the first charac­
ter of the boot argument string is a minus sign '-' the string must be preceded by an option terminator
string '--' For example: 'reboot -- -s' to reboot and come up single user, 'reboot vmunix.test' to reboot
to a new kernel. See boot(8S) for details.

/var/adm/wtmp login accounting file

SEE ALSO
sync(1), reboot(2), boot(8S), fsck(8), halt(8), init(8), panic(8S), shutdown(8), syslogd(8)

Sun Release 4.1 Last change: 23 September 1987 2057

RENICE(8) M~NANCECOMMANDS RENICE(8)

NAME
renice - alter nice value of running processes

SYNOPSIS
lusr/etc/renice priority pid . ..

lusr/etc/renice priority [-p pid. ..] [-g pgrp. ..] [-u username. ..]

DESCRIYfION
renice alters the scheduling nice value, and hence the priority, of one or more running processes. See
nice(1) for a discussion of nice value and process scheduling priority.

OPTIONS

FILES

By default, the processes to be affected are specified by their process IDs. priority is the new priority value.

-p pid . . . Specify a list of process IDs.

-gpgrp ...

-u user ...

Specify a list of process group IDs. The processes in the specified process groups have
their scheduling priority altered.

Specify a list of user IDs or usemames. All processes owned by each user have their
scheduling altered.

Users other than the super-user may only alter the priority of processes they own, and can only monotoni­
cally increase their "nice value" within the range 0 to 20. (This prevents overriding administrative fiats.)
The super-user may alter the priority of any process and set the priority to any value in the range -20 to
19. Useful nice values are 19 (the affected processes will run only when nothing else in the system wants
to), 0 (the default nice value) and any negative value (to make things go faster).

If only the priority is specified, the current process (alternatively, process group or user) is used.

letclpasswd

SEE ALSO

to map user names to user ID's

BUGS

2058

pstat(8)

If you make the nice value very negative, then the process cannot be interrupted.

To regain control you must make the priority greater than zero.

Users other than the super-user cannot increase scheduling priorities of their own processes, even if they
were the ones that decreased the priorities in the first place.

Last change: 9 September 1987 Sun Release 4.1

REPQUOTA (8) MAINTENANCE COMMANDS

NAME
repquota - summarize quotas for a file system

SYNOPSIS
lusr/etc/repquota [-v] filesystem . ..

lusr/etc/repquota [-av]

DESCRIYfION

REPQUOTA (8)

repquota prints a summary of the disc usage and quotas for the specified file systems. For each user the
current number of files and amount of space (in kilobytes) is printed, along with any quotas created with
edquota(8).

OPTIONS

FILES

-a Report on all file systems indicated in letc/fstab to be read-write with quotas.

-v Report all quotas, even if there is no usage.

Only the super-user may view quotas which are not their own.

quotas
letclfstab

quota file at the file system root
default file systems

SEE ALSO
quota(l), quotactl(2), edquota(8), quotacheck(8), quotaon(8)

Sun Release 4.1 Last change: 9 September 1987 2059

RESTORE(8) MA~NANCECOMMANDS RESTORE (8)

NAME
restore, rrestore - incremental file system restore

SYNOPSIS
lusr/etc/restore -irRtx [filename. ..]

DESCRIPTION
restore restores files from backup tapes created with the dump(8) command. options is a string of at least
one of the options listed below, along with any modifiers and arguments you supply. Remaining arguments
to restore are the names of files (or directories whose files) are to be restored to disk. Unless the h
modifier is in effect, a directory name refers to the files it contains, and (recursively) its subdirectories and
the files they contain.

OPTIONS
Interactive. After reading in the directory information from the tape, restore invokes an interactive
interface that allows you to browse through the dump tape's directory hierarchy, and select indivi­
dual files to be extracted. See Interactive Commands, below, for a description of available com­
mands.

r Restore the entire tape. Load the tape's full contents into the current directory. This option should
only be used to restore a complete dump tape onto a clear filesystem, or to restore an incremental
dump tape after a full "level 0" restore. For example:

example# /usr/etc/newfs /dev/rxyOg
example# /usr/etc/mount Idev/xyOg Imnt
example# cd Imnt
example# restore r

is a typical sequence to restore a "level 0" dump. Another restore can be done to get an incremental
dump in on top of this.

R Resume restoring. restore requests a particular tape of a multivolume set from which to resume a
full restore (see the r option above). This allows restore to start from a checkpoint when it is inter­
rupted in the middle of a full restore.

t Table of contents. List each filename that appears on the tape. If no filename argument is given, the
root directory is listed. This results in a list of all files on the tape, unless the h modifier is in effect.
(The t option replaces the function of the old dumpdir program).

x Extract the named files from the tape. If a named file matches a directory whose contents were writ­
ten onto the tape, and the h modifier is not in effect, the directory is recursively extracted. The
owner, modification time, and mode are restored (if possible). If no filename argument is given, the
root directory is extracted. This results in the entire tape being extracted unless the h modifier is in
effect.

Modifiers

2060

Some of the following modifiers take arguments that are given as separate words on the command line.
When more than one such modifier appears within options, the arguments must appear in the same order as
the modifiers that they apply to.

a archive-file
The dump table of contents is taken from the specified archive-file instead of from a dump tape. If
a requested file is present in the table of contents, restore will prompt for the tape volume to be
mounted. If only contents information is needed, for example when the t option is specified, or
the i option is specified without a corresponding extract request, no dump tape will have to be
mounted.

c Convert the contents of the dump tape to the new filesystem format.

d Debug. Turn on debugging output.

Last change: 7 September 1988 Sun Release 4.1

RESTORE (8) MA~NANCECOMMANDS RESTORE (8)

USAGE

h Extract the actual directory, rather than the files that it references. This prevents hierarchical restora­
tion of complete subtrees from the tape.

m Extract by inode numbers rather than by filename to avoid regenerating complete pathnames. This is
useful if only a few files are being extracted.

v Verbose. restore displays the name of each file it restores, preceded by its file type.

y Do not ask whether to abort the restore in the event of tape errors. restore tries to skip over the bad
tape block(s) and continue as best it can.

bfactor
Blocking factor. Specify the blocking factor for tape reads. By default, restore will attempt to
figure out the block size of the tape. Note: a tape block is 512 bytes.

f dump-file
Use dump-file instead of Idev/rmt? as the file to restore from. If dump-file is specified as
restore reads from the standard input This allows, dump(8) and restore to be used in a pipeline to
dump and restore a file system:

example# dump Of -/dev/rxyOg I (cd Imnt; restore xf-)

If the name of the file is of the form machine : device the restore is done from the specified machine
over the network using rmt(8C). Since restore is normally run by root, the name of the local
machine must appear in the .rhosts file of the remote machine. If the file is specified as
user@machine : device , restore will attempt to execute as the specified user on the remote machine.
The specified user must have a .rhosts file on the remote machine that allows root from the local
machine.

s n Skip to the n'th file when there are multiple dump files on the same tape. For example, the com­
mand:

example# restore xfs Idev/nrarO 5

would position you at the fifth file on the tape.

Interactive Commands
restore enters interactive mode when invoked with the i option. Interactive commands are reminiscent of
the shell. For those commands that accept an argument, the default is the current directory.

Is [directory]
List files in directory or the current directory, represented by a '.' (period). Directories are
appended with a '/' (slash). Entries marked for extraction are prefixed with a '*' (asterisk). If the
verbose option is in effect, inode numbers are also listed.

cd directory
Change to directory directory (within the dump-tape).

pwd Print the full pathname of the current working directory.

add [filename]
Add the current directory, or the named file or directory directory to the list of files to extract If
a directory is specified, add that directory and its files (recursively) to the extraction list (unless the
h modifier is in effect).

delete [filename]

Sun Release 4.1

Delete the current directory, or the named file or directory from the list of files to extract If a
directory is specified, delete that directory and all its descendents from the extraction list (unless
the h modifier is in effect). The most expedient way to extract a majority of files from a directory
is to add that directory to the extraction list, and then delete specific files to omit

Last change: 7 September 1988 2061

RESTORE(8) MAnnENANCECOMMANDS RESTORE (8)

FILES

extract Extract all files on the extraction list from the dump tape. restore asks which volume the user
wishes to mount The fastest way to extract a small number of files is to start with the last tape
volume and work toward the first

verbose Toggle the status of the v modifier. While v is in effect, the Is command lists the inode numbers
of all entries, and restore displays information about each file as it is extracted.

help Display a summary of the available commands.

quit restore exits immediately, even if the extraction list is not empty.

Idev/rmt8
dumphost:/dev/rmt8
Itmp/rstdir*
Itmp/rstmode*
Jrestoresymn tab Ie

the default tape drive
the default tape drive if called as rrestore
file containing directories on the tape
owner, mode, and timestamps for directories
information passed between incremental restores

SEE ALSO
dump(8), mkfs(8), mount(8), newfs(8), rmt(8C)

DIAGNOSTICS

2062

restore complains about bad option characters.

Read errors result in complaints. If y has been specified, or the user responds y, restore will attempt to
continue.

If the dump extends over more than one tape, restore asks the user to change tapes. If the x or i option has
been specified, restore also asks which volume the user wishes to mount.

There are numerous consistency checks that can be listed by restore. Most checks are self-explanatory or
can "never happen". Common errors are given below.

Converting to new file system format.
A dump tape created from the old file system has been loaded. It is automatically converted to the
new file system format.

filename: not found on tape
The specified file name was listed in the tape directory, but was not found on the tape. This is
caused by tape read errors while looking for the file, and from using a dump tape created on an
active file system.

expected next file inumber, got inumber
A file that was not listed in the directory showed up. This can occur when using a dump tape
created on an active file system.

Incremental tape too low
When doing an incremental restore, a tape that was written before the previous incremental tape,
or that has too Iowan incremental level has been loaded.

Incremental tape too high
When doing incremental restore, a tape that does not begin its coverage where the previous incre­
mental tape left off, or one that has too high an incremental level has been loaded.

Tape read error while restoring filename
Tape read error while skipping over inode inumber
Tape read error while trying to resynchronize
A tape read error has occurred.

If a file name is specified, then its contents are probably partially wrong. If an inode is being
skipped or the tape is trying to resynchronize, then no extracted files have been corrupted, though
files may not be found on the tape.

Last change: 7 September 1988 Sun Release 4.1

RESTORE(8) MAINTENANCE COMMANDS RESTORE (8)

BUGS

resync restore, skipped num blocks
After a tape read error, restore may have to resynchronize itself. This message lists the number
of blocks that were skipped over.

restore can get confused when doing incremental restores from dump tapes that were made on active file
systems.

A "level 0" dump must be done after a full restore. Because restore runs in user mode, it has no control
over inode allocation; this means that restore repositions the files, although it does not change their con­
tents. Thus, a full dump must be done to get a new set of directories reflecting the new file positions, so that
later incremental dumps will be correct.

Sun Release 4.1 Last change: 7 September 1988 2063

REXD(8C) MA~NANCECOMMANDS REXD(8C)

NAME
rexd, rpc.rexd - RPC-based remote execution server

SYNOPSIS
lusr/etc/rpc.rexd [-s]

DESCRIPTION

FILES

rexd is the Sun RPC server for remote program execution. This daemon is started by inetd(8C) whenever a
remote execution request is made.

For non interactive programs, the standard file descriptors are connected directly to TCP connections.
Interactive programs involve pseudo-terminals, in a fashion that is similar to the login sessions provided by
rlogin(1 C). This daemon may use NFS to mount file systems specified in the remote execution request.

Idev/Uypn pseudo-terminals used for interactive mode
letclpasswd authorized users
Itmp _ rexlrexd?????? temporary mount points for remote file systems.

OPTIONS
-s Secure. When specified, requests must have valid des credentials. If the request does not have a

DES credential it is rejected. The default publickey credential is rejected. Only newer on com­
mands send DES credentials.

If access is denied with an Authentication error, you may have to set your publickey with the
chkey(l) command.

SEE ALSO
chkey(I), on(lC), rlogin(IC), rex(3R), exports(S), inetd.conf(S), publickey(S), inetd(8C)

DIAGNOSTICS
Diagnostic messages are normally printed on the console, and returned to the requestor.

RESTRICTIONS
Root cannot execute commands using rexd client programs such as on(IC).

2064 Last change: 9 September 1987 Sun Release 4.1

REXECD(8C) MA~NANCECOMMANDS REXECD(8C)

NAME
rexecd, in.rexecd - remote execution server

SYNOPSIS
lusr/etc/in.rexecd host.port

AVAILABILITY
This program is available with the Networking software installation option. Refer to Installing SunOS 4.1
for information on how to install optional software.

DESCRIYfION
rexecd is the server for the rexec(3N) routine. The server provides remote execution facilities with
authentication based on user names and encrypted passwords. It is invoked automatically as needed by
inetd(8C), and then executes the following protocol:

• The server reads characters from the socket up to a null (\0) byte. The resultant string is inter­
preted as an ASCII number, base 10.

• If the number received in step 1 is non-zero, it is interpreted as the port number of a secondary
stream to be used for the stderr. A second connection is then created to the specified port on the
client's machine.

• A null terminated user name of at most 16 characters is retrieved on the initial socket.

• A null terminated, encrypted, password of at most 16 characters is retrieved on the initial socket.

• A null terminated command to be passed to a shell is retrieved on the initial socket. The length of
the command is limited by the upper bound on the size of the system's argument list.

• rexecd then validates the user as is done at login time and, if the authentication was successful,
changes to the user's home directory, and establishes the user and group protections of the user. If
any of these steps fail the connection is aborted with a diagnostic message returned.

• A null byte is returned on the connection associated with the stderr and the command line is
passed to the normal login shell of the user. The shell inherits the network connections esta­
blished by rexecd.

SEE ALSO
rexec(3N) inetd(8C)

DIAGNOSTICS
All diagnostic messages are returned on the connection associated with the stderr, after which any network
connections are closed. An error is indicated by a leading byte with a value of 1 (0 is returned in step 7
above upon successful completion of all the steps prior to the command execution).

username too long
The name is longer than 16 characters.

password too long
The password is longer than 16 characters.

command too long
The command line passed exceeds the size of the argument list (as configured into the system).

Login incorrect.
No password file entry for the user name existed.

Password incorrect.
The wrong password was supplied.

No remote directory.
The chdir command to the home directory failed.

Try again.
A fork by the server failed.

Sun Release 4.1 Last change: 17 December 1987 2065

REXECD(8C) MAINTENANCE COMMANDS REXECD(8C)

BUGS

2066

lusr/binlsh: ...
The user's login shell could not be started.

Indicating 'Login incorrect' as opposed to 'Password incorrect' is a security breach which allows people
to probe a system for users with null passwords.

A facility to allow all data exchanges to be encrypted should be present.

Last change: 17 December 1987 Sun Release 4.1

RFADMIN(8) MAINTENANCE COMMANDS RFADMIN(8)

NAME
rfadmin - RFS domain administration

SYNOPSIS
rfadmin
rfadmin-p
rfadmin -a hostname
rfadmin -r hostname

AVAILABILITY
This program is available with the RFS software installation option. Refer to Installing SunOS 4.1 for
information on how to install optional software.

DESCRIPTION
rfadmin is used to add and remove hosts and their associated authentication information from a
domain/passwd file on a Remote File Sharing (RFS) primary domain name server. It is also used to
transfer domain name server responsibilities from one machine to another. Used with no options, rfadmin
returns the hostname of the current domain name server for the local domain. For each domain,
lusr/nserve/auth.info/domain/passwd is created on the primary, and should be copied to all secondaries,
and all hosts that want to do password verification of hosts in the domain.

rfadmin can only be used to modify domain files on the primary domain name server (-a and -r options).
If domain name server reponsibilities are temporarily passed to a secondary domain name server, that com­
puter can use the -p option to pass domain name server responsibility back to the primary. Any host can
use rfadmin with no options to print information about the domain. The user must have root permissions
to use the command.

Using rfadmin with the -a option, will result in an error if hostname is not unique in the domain.

Using rfadmin with the -r option, will send an error to the standard error if one of the following is true:

• hostname does not exist in the domain.

• hostname is defined as a domain name server.

• There are resources advertised by hostname.

When used with the -p option, rfadmin sends an error message to standard error, if there are no backup
name servers defined for domain.

OPTIONS
-p Pass the domain name server responsibilities back to a primary or to a secondary name server.

FILES

-a hostname
Add a host to a domain that is served by this domain name server. hostname must be of the form
domain.nodename. Create an entry for hostname in the domain/passwd file, which has the same
format as letc/passwd, and prompt for an initial authentication password; the password prompting
process conforms with that of passwd(l).

-r hostname
Remove a host from its domain by removing it from the domain/passwd file.

lusr/nserve/auth.info/domain/passwd

SEE ALSO
passwd(l), mount(8), rfstart(8), rfstop(8)

Sun Release 4.1 Last change: 30 June 1988 2067

RFP ASSWD (8) MAINTENANCE COMMANDS RFP ASSWD (8)

NAME
rfpasswd - change RFS host password

SYNOPSIS
rfpasswd

AVAILABILITY
This program is available with the RFS software installation option. Refer to Installing SunOS 4.1 for
information on how to install optional software.

DESCRIYfION

FILES

rfpasswd updates the Remote File Sharing (RFS) authentication password for a host; processing of the new
password follows the same criteria as passwd(I). The updated password is registered at the domain name
server (/usr/nserve/auth.infoldomainlpasswd) and replaces the password stored at the local host
(/usr/nserve/loc.passwdlfile).

This command is restricted to the super-user.

Note: if you change your host password, make sure that hosts that validate your password are notified of
this change. To receive the new password, hosts must obtain a copy of the domainlpasswd file from the
domain's primary name server. If this is not done, attempts to mount remote resources may fail.

If any of the following is true an error message will be sent to the standard error:

• The old password entered from this command does not match the existing password for this
machine.

• The two new passwords entered from this command do not match.

• The new password does not satisfy the security criteria in passwd(1).

• The domain name server does not know about this machine.

• The command is not run with super-user privileges.

Also, RFS must be running on your host and your domain's primary name server. A new password cannot
be logged if a secondary is acting as the domain name server.

lusr/nserve/anth.infoldomain/passwd
lusr/nserve/loc.passwd

SEE ALSO
passwd(l), rfadmin(8), rfstart(8)

2068 Last change: 30 June 1988 Sun Release 4.1

RFSTART(8) MA~NANCECOMMANDS RFSTART(8)

NAME
rfstart - start RFS

SYNOPSIS
rfstart [-v] [-p primary_addr]

AVAILABILITY
This program is available with the RFS software installation option. Refer to Installing SunOS 4.1 for
information on how to install optional software.

DESCRIYfION
rfstart starts Remote File Sharing (RFS) and defines an authentication level for incoming requests. This
command can be used only after the domain name server is set up and your computer's domain name and
network specification has been defined using dname(8).

If the host password has not been set, rfstart will prompt for a password; the password prompting process
must match the password entered for your machine at the primary domain name server (see rfadmin(8)).
If you remove the loc.passwd file or change domains, you will also have to reenter the password.

Also, when rfstart is run on a domain name server, entries in the rfmaster(5) file are syntactically vali­
dated.

This command is restricted to the super-user.

If syntax errors are found in validating the rfmaster(5) file, a warning describing each error will be sent to
the standard error.

An error message will be sent to the standard error if any of the following is true:

• The shared resource environment is already running.

• There is no communications network.

• The domain name server cannot be found.

• The domain name server does not recognize the machine.

• The command is run without super-user privileges.

Remote file sharing will not start if the host password in lusr/nserve/loc.passwd is corrupted. If you
suspect this has happened, remove the file and run rfstart again to reenter your password.

Note: rfstart will not fail if your host password does not match the password on the domain name server.
You will simply receive a warning message. However, if you try to mount a resource from the primary or
any other host that validates your password, the mount will fail if your password does not match the one
that host has listed for your machine.

OYfIONS

FILES

-v Specify that verification of all clients is required in response to initial incoming mount requests;
any host not in the file lusr/nserve/auth.infoldomain/passwd for the domain they belong to, will
not be allowed to mount resources from your host. If the -v option is not specified, hosts named
in domain/passwd will be verified, other hosts will be allowed to connect without verification.

-p primary _addr
Indicate the primary domain name server for your domain. primary _addr must be the network
address of the primary name server for your domain. If the -p option is not specified, the address
of the domain name server is taken from the rfmaster file. See rfmaster(5) for a description of
the valid address syntax.

lusr/nserve/rfmaster
lusr/nserve/loc.passwd

Sun Release 4.1 Last change: 30 June 1988 2069

RFSTART(8) MAINTENANCE COMMANDS RFSTART(8)

SEE ALSO
rfmaster(S), adv(8), dname(8), mount(8), rfadmin(8), rfstop(8), unadv(8)

2070 Last change: 30 June 1988 Sun Release 4.1

RFSTOP(8) MAINTENANCE COMMANDS

NAME
rfstop - stop the RFS environment

SYNOPSIS
rfstop

AVAILABILITY

RFSTOP(8)

This program is available with the RFS software installation option. Refer to Installing SunOS 4.1 for
information on how to install optional software.

DESCRIPTION
rfstop disconnects a host from the Remote File Sharing (RFS) environment until another rfstart(8) is exe­
cuted.

When executed on the domain name server, the domain name server responsibility is moved to a secondary
name server as designated in the rfmaster file.

This command is restricted to the super-user.

If any of the following is true, an error message will be sent to standard error.

• There are resources currently advertised by this host.

• Resources from this machine are still remotely mounted by other hosts.

• There are still remotely mounted resources in the local file system tree.

• rfstart(8) had not previously been executed.

• The command is not run with super-user privileges.

SEE ALSO
rfmaster(5), adv(8), mount(8), rfadmin(8), rfstart(8), unadv(8)

Sun Release 4.1 Last change: 30 June 1988 2071

RFUADMIN(8) MA~NANCECOMMANDS RFUADMIN(8)

NAME
rfuadmin - RFS notification shell script

SYNOPSIS
rfuadmin message remote _resource [seconds]

AV AILABILITY
This program is available with the RFS software installation option. Refer to Installing SunOS 4.1 for
information on how to install optional software.

DESCRIPTION
The rfuadmin shell script is used to respond to unexpected Remote File Sharing (RFS) events picked up by
the rfudaemon(8) process. Such events may include broken network connections and forced unmounts.
This script is not intended to be run directly from the shell.

Responses to messages received by rfudaemon can be tailored to suit the particular system by editing this
script. The following paragraphs describe the arguments passed to rfuadmin and its standard responses.

disconnect remote resource
A link to a remote resource has been cut. rfudaemon executes rfuadmin, passing it the message
disconnect and the name of the disconnected resource. rfuadmin sends this message to all termi­
nals using wall(l):

remote _resource has been disconnected from the system.

rfuadmin executes fuser(8) to kill all processes using the resource, unmounts the resource, and
attempts to mount the resource again.

fumount remote resource
A remote server machine has forced an unmount of a resource a local machine has mounted. The
processing is similar to processing for a disconnect.

fuwarn remote resource seconds
This message notifies rfuadmin that a resource is about to be unmounted. rfudaemon sends this
script the fuwarn message, the resource name, and the number of seconds in which the forced
unmount will occur. rfuadmin sends this message to all terminals:

remote _resource is being removed from the system in # seconds.

SEE ALSO

BUGS

2072

wall(l), fumount(8), fuser(8), mount(8), rfstart(8), rfudaemon(8)

The console must be on when RFS is running, otherwise rfuadmin hangs when it attempts to write to it, in
which case recovery from disconected resources may not complete.

Last change: 30 September 1988 Sun Release 4.1

RFUDAEMON (8) MAINTENANCE COMMANDS RFUDAEMON (8)

NAME
rfudaemon - Remote File Sharing daemon

SYNOPSIS
rfudaemon

AVAILABILITY
This program is available with the RFS software installation option. Refer to Installing SunOS 4.1 for
information on how to install optional software.

DESCRIPTION
The RFS daemon, rfudaemon, is started automatically by rfstart(8) and runs as a daemon process while
Remote File Sharing is active. It listens for unexpected events, such as broken network connections and
forced unmounts, and invokes rfuadmin(8) to execute the appropriate administrative procedures. Events
recognized by rfudaemon are as follows:

disconnect
A link to a remote resource has been cut. rfudaemon executes rfuadmin, with two arguments:
disconnect and the name of the disconnected resource.

fumount

getumsg

A remote server machine has forced an unmount of a resource a local machine has mounted. rfu­
daemon executes rfuadmin, with two arguments: fumount and the name of the disconnected
resource.

A remote user-level program has sent a message to the local rfudaemon. Currently the only mes­
sage sent is fuwarn, which notifies rfuadmin that a resource is about to be unmounted. rfudae­
mon sends rfuadmin the fuwarn, the resource name, and the number of seconds in which the
forced unmount will occur.

lastumsg
The local machine wants to stop the rfudaemon (rfstop(8». This causes rfudaemon to exit.

SEE ALSO
rfstart(8), rfstop(8), rfuadmin(8)

Sun Release 4.1 Last change: 30 September 1988 2073

RLOGIND (8C) MAINTENANCE COMMANDS RLOGIND (8C)

NAME
rlogind, in.rlogind - remote login server

SYNOPSIS
lusr/etclin.rlogind host .port

DESCRIPTION
rlogind is the server for the rlogin(IC) program. The server provides a remote login facility with authenti­
cation based on privileged port numbers.

rlogind is invoked by inetd(8C) when a remote login connection is established, and executes the following
protocol:

• The server checks the client's source port. If the port is not in the range 0-1023, the server aborts
the connection. The client's address and port number are passed as arguments to rlogind by inetd
in the form host .port with host in hex and port in decimal.

• The server checks the client's source address. If the address is associated with a host for which no
corresponding entry exists in the host name data base (see hosts(5», the server aborts the connec­
tion.

Once the source port and address have been checked, rlogind allocates a pseudo-terminal (see pty(4», and
manipulates file descriptors so that the slave half of the pseudo-terminal becomes the stdin, stdout, and
stderr for a login process. The login process is an instance of the login(l) program, invoked with the-r
option. The login process then proceeds with the authentication process as described in rshd(8C), but if
automatic authentication fails, it reprompts the user to login as one finds on a standard terminal line.

The parent of the login process manipulates the master side of the pseudo-terminal, operating as an
intermediary between the login process and the client instance of the rlogin program. In normal operation,
the packet protocol described in pty(4) is invoked to provide "srQ type facilities and propagate interrupt
signals to the remote programs. The login process propagates the client terminal's baud rate and terminal
type, as found in the environment variable, TERM; see environ(5V).

SEE ALSO
inetd(8C)

DIAGNOSTICS

BUGS

2074

All diagnostic messages are returned on the connection associated with the stderr, after which any network
connections are closed. An error is indicated by a leading byte with a value of 1.

Hostname for your address unknown.
No entry in the host name database existed for the client's machine.

Try again.
Afork by the server failed.

lusr/binlsh: ...
The user's login shell could not be started.

The authentication procedure used here assumes the integrity of each client machine and the connecting
medium. This is insecure, but is useful in an "open" environment.

A facility to allow all data exchanges to be encrypted should be present.

Last change: 9 September 1987 Sun Release 4.1

RMAIL(8C) MAnITENANCECOMMANDS

NAME
rmail- handle remote mail received via uucp

SYNOPSIS
rmail recipient . ..

DESCRIPTION

RMAIL(8C)

rmail interprets incoming mail received through uucp(1C), collapsing "From" lines in the form generated
by bin-mail (1) (see bin-mail(1» into a single line of the form return-path!sender, and passing the pro­
cessed mail on to sendmail(8).

rmail is explicitly designed for use with uucp(1C) and sendmail(8).

SEE ALSO
bin-maH(1), uucp(1C), sendmail(8)

Sun Release 4.1 Last change: 9 September 1987 2075

MAINTENANCE COMMANDS

NAME
rm_client - remove an NFS client

SYNOPSIS
rm_client [-y] clients

DESCRIPTION

RM_CLIENT(8)

rm_client removes an NFS client from a server. By default, rm_client asks if you want to remove the
client's root directory, swap file, hosts entry, and Itftpboot file and whether to delete the client's entry in
letc/bootparams. rID_client can be run only by the super-user on the server, while in multiuser mode, or
while not in the miniroot.

OYfIONS
-y Supply "yes" answers to all questions about what to remove.

FILES
I etc/bootparams
Itftpbootlmachine_addr
lexportlrootl client
lexportlswapl client

SEE ALSO
add _ client(8), add _ services(8), suninstall(8)

Installing SunOS 4.1

DIAGNOSTICS
must be run as root (super-user).

You must be root to run rm client.

2076 Last change: 20 October 1988 Sun Release 4.1

RMNTSTAT(8) MAINTENANCE COMMANDS

NAME
rmntstat - display RFS mounted resource information

SYNOPSIS
rmntstat [-b] [resource]

A V AILABILITY

RMNTSTAT(8)

This program is available with the RFS software installation option. Refer to Installing SunOS 4.1 for
information on how to install optional software.

DESCRIPTION
When used with no options, rmntstat displays a list of all local Remote File Sharing resources that are
remotely mounted, the local path name, and the corresponding clients. rmntstat returns the remote mount
data regardless of whether a resource is currently advertised; this ensures that resources that have been
unadvertised but are still remotely mounted are included in the report. When a resource is specified,
rmntstat displays the remote mount information only for that resource.

This command is restricted to the super-user.

OPTIONS
-b Omit header information from the display.

EXIT STATUS
If no local resources are remotely mounted, rmntstat will return a successful exit status.

ERRORS
If resource does not physically reside on the local machine or is an invalid resource name, an error mes­
sage will be sent to standard error.

SEE ALSO
mount(8), fumount(8), unadv(8)

Sun Release 4.1 Last change: 30 June 1988 2077

RMT(8C) MAINTENANCE COMMANDS RMT(8C)

NAME
rmt - remote magtape protocol module

SYNOPSIS
lusr/etc/rmt

DESCRIPTION
rmt is a program used by the remote dump and restore programs in manipulating a magnetic tape drive
through an interprocess communication connection. rmt is normally started up with an rexec(3N) or
rcmd(3N) call.

The rmt program accepts requests specific to the manipulation of magnetic tapes, performs the commands,
then responds with a status indication. All responses are in Ascn and in one of two forms. Successful
commands have responses of

Anumber\n

where number is an Ascn representation of a decimal number. Unsuccessful commands are responded to
with

Eerror-number\nerror-message \n

where error-number is one of the possible error numbers described in intro(2) and error-message is the
corresponding error string as printed from a call to perror(3). The protocol is comprised of the following
commands:

s

Cdevice

Return the status of the open device, as obtained with a MTIOCGET ioctl call.
If the operation was successful, an "ack" is sent with the size of the status
buffer, then the status buffer is sent (in binary).

Close the currently open device. The device specified is ignored.

Ioperation \ncount\n
Perform a MTIOCOP ioctl(2) command using the specified parameters. The
parameters are interpreted as the Ascn representations of the decimal values to
place in the mt _ op and mt _count fields of the structure used in the ioctl call.
The return value is the count parameter when the operation is successful.

Lwhence\nojfset\n

Odevice \nmode \n

Rcount

Wcount

Perform an Iseek(2V) operation using the specified parameters. The response
value is that returned from the Iseek call.

Open the specified device using the indicated mode. device is a full pathname
and mode is an Ascn representation of a decimal number suitable for passing to
open(2V). If a device had already been opened, it is closed before a new open
is performed.

Read count bytes of data from the open device. rmt performs the requested
read(2V) and responds with Acount-read\n if the read was successful; other­
wise an error in the standard format is returned. If the read was successful, the
data read is then sent.

Write data onto the open device. rmt reads count bytes from the connection,
aborting if a premature EOF is encountered. The response value is that returned
from the write(2V) call.

Any other command causes rmt to exit.

DIAGNOSTICS
All responses are of the form described above.

2078 Last change: 26 May 1988 Sun Release 4.1

RMT(8C) MAINTENANCE COMMANDS RMT(8C)

SEE ALSO
intro(2), ioctl(2), lseek(2V), open(2V), read(2V), write(2V), perror(3), rcmd(3N), rexec(3N), mtio(4),
dump(8), restore(8)

BUGS
People tempted to use this for a remote file access protocol are discouraged.

Sun Release 4.1 Last change: 26 May 1988 2079

ROUTE (8C) MAINTENANCE COMMANDS ROUTE (8C)

NAME
route - manually manipulate the routing tables

SYNOPSIS
/nsr/etc/route [-fn] add I delete [host I net] destination [gateway [metric]]

AVAILABILITY
This program is available with the Networking software installation option. Refer to Installing SunOS 4.1
for information on how to install optional software.

DESCRIPTION
route manually manipulates the network routing tables normally maintained by the system routing dae­
mon, routed(8C), or through default routes and redirect messages from routers. route allows the super­
user to operate directly on the routing table for the specific host or network indicated by destination. The
gateway argument, if present, indicates the network gateway to which packets should be addressed. The
metric argument indicates the number of "hops" to the destination. The metric is required for add com­
mands; it must be zero if the destination is on a directly-attached network, and nonzero if the route utilizes
one or more gateways.

The add command instructs route to add a route to destination. delete deletes a route.

Routes to a particular host must be distinguished from those to a network. The optional keywords net and
host force the destination to be interpreted as a network or a host, respectively. Otherwise, if the destina­
tion has a "local address part" of INADDR_ANY, then the route is assumed to be to a network; otherwise, it
is presumed to be a route to a host. If the route is to a destination connected by a gateway, the metric
parameter should be greater than O. If adding a route with metric 0, the gateway given is the address of this
host on the common network, indicating the interface to be used directly for transmission. All symbolic
names specified for a destination or gateway are looked up in the hosts database using gethostbyname()
(see gethostent(3N». If this lookup fails, then the name is looked up in the networks database using get­
netbyname() (see getnetent(3N». "default" is also a valid destination, which is used for all routes if there
is no specific host or network route.

OPTIONS

FILES

-f

-n

Flush the routing tables of all gateway entries. If this is used in conjunction with one of the com­
mands described above, route flushes the gateways before performing the command.

Prevents attempts to print host and network names symbolically when reporting actions. This is
useful, for example, when all name servers are down on your local net, so you need a route before
you can contact the name server.

/etdhosts
/etdnetworks

SEE ALSO
ioctl(2), gethostent(3N), getnetent(3N), routing(4N), routed(8C)

DIAGNOSTICS

2080

add [host I net] destination:gateway
The specified route is being added to the tables. The values printed are from the routing table
entry supplied in the ioctl(2) call.

delete [host I net] destination :gateway
The specified route is being deleted.

destination done
When the -f flag is specified, each routing table entry deleted is indicated with a message of this
form.

Last change: 3 August 1988 Sun Release 4.1

ROUTE (8C) MAINTENANCE COMMANDS ROUTE (8C)

Network is unreachable
An attempt to add a route failed because the gateway listed was not on a directly-connected net­
work. Give the next-hop gateway instead.

not in table
A delete operation was attempted for an entry that is not in the table.

routing table overflow

Sun Release 4.1

An add operation was attempted, but the system was unable to allocate memory to create the new
entry.

Last change: 3 August 1988 2081

ROUTED (8C) MAINTENANCE COMMANDS ROUTED (8C)

NAME
routed, in.routed - network routing daemon

SYNOPSIS
lusr/etc/in.routed [-qstv] [logfile]

DESCRIPTION

2082

routed is invoked at boot time to manage the network routing tables. The routing daemon uses a variant of
the Xerox NS Routing Information Protocol in maintaining up to date kernel routing table entries.

In normal operation routed listens on udp(4P) socket 520 (decimal) for routing information packets. If the
host is an internetwork router, it periodically supplies copies of its routing tables to any directly connected
hosts and networks.

When routed is started, it uses the SIOCGIFCONF ioctl() (see ioctl(2» to find those directly connected
interfaces configured into the system and marked "up" (the software loopback interface is ignored). If mul­
tiple interfaces are present, it is assumed the host will forward packets between networks. routed then
transmits a request packet on each interface (using a broadcast packet if the interface supports it) and
enters a loop, listening for request and response packets from other hosts.

When a request packet is received, routed formulates a reply based on the information maintained in its
internal tables. The response packet generated contains a list of known routes, each marked with a "hop
count" metric (a count of 16, or greater, is considered "infinite"). The metric associated with each route
returned provides a metric relative to the sender.

request packets received by routed are used to update the routing tables if one of the following conditions
is satisfied:

• No routing table entry exists for the destination network or host, and the metric indicates the desti­
nation is "reachable" (that is, the hop count is not infinite).

• The source host of the packet is the same as the router in the existing routing table entry. That is,
updated information is being received from the very internetwork router through which packets
for the destination are being routed.

• The existing entry in the routing table has not been updated for some time (defined to be 90
seconds) and the route is at least as cost effective as the current route.

• The new route describes a shorter route to the destination than the one currently stored in the rout­
ing tables; the metric of the new route is compared against the one stored in the table to decide
this.

When an update is applied, routed records the change in its internal tables and generates a response packet
to all directly connected hosts and networks. routed waits a short period of time (no more than 30
seconds) before modifying the kernel's routing tables to allow possible unstable situations to settle.

In addition to processing incoming packets, routed also periodically checks the routing table entries. If an
entry has not been updated for 3 minutes, the entry's metric is set to infinity and marked for deletion. Dele­
tions are delayed an additional 60 seconds to insure the invalidation is propagated throughout the internet.

Hosts acting as internetwork routers gratuitously supply their routing tables every 30 seconds to all directly
connected hosts and networks.

In addition to the facilities described above, routed supports the notion of "distant" passive and active
gateways. When routed is started up, it reads the file letc/gateways to find gateways which may not be
identified using the SIOGIFCONF ioctl(). Gateways specified in this manner should be marked passive if
they are not expected to exchange routing information, while gateways marked active should be willing to
exchange routing information (that is, they should have a routed process running on the machine). Passive
gateways are maintained in the routing tables forever and information regarding their existence is included
in any routing information transmitted. Active gateways are treated equally to network interfaces. Routing
information is distributed to the gateway and if no routing information is received for a period of the time,
the associated route is deleted.

Last change: 9 September 1987 Sun Release 4.1

ROUTED(8C) MA~NANCECOMMANDS ROUTED (8C)

The letc/gateways is comprised of a series of lines, each in the following format:

< net I host> filenamel gateway filename2 metric value < passive I active>

The net or host keyword indicates if the route is to a network or specific host.

filenamel is the name of the destination network or host. This may be a symbolic name located in
letc/networks or letc/hosts, or an Internet address specified in "dot" notation; see inet(3N).

filename2 is the name or address of the gateway to which messages should be forwarded.

value is a metric indicating the hop count to the destination host or network.

The keyword passive or active indicates if the gateway should be treated as passive or active (as described
above).

OPTIONS

FILES

-s Force routed to supply routing information whether it is acting as an internetwork router or not.

-q Opposite of the -s option.

-t All packets sent or received are printed on the standard output. In addition, routed will not
divorce itself from the controlling terminal so that interrupts from the keyboard will kill the pro­
cess.

-v Allow a logfile to be created showing the changes made to the routing tables with a timestamp.

logfile Specify a file in which routed records any changes to the routing tables and a history of recent
messages sent and received which are related to the changed route.

letc/gateways
letc/networks
letc/hosts

for distant gateways

SEE ALSO

BUGS

ioctl(2), inet(3N), udp(4P)

The kernel's routing tables may not correspond to those of routed for short periods of time while processes
utilizing existing routes exit; the only remedy for this is to place the routing process in the kernel.

routed should listen to intelligent interfaces, such as an IMP, and to error protocols, such as ICMP, to gather
more information.

Sun Release 4.1 Last change: 9 September 1987 2083

RPCINFO (8C) MAINTENANCE COMMANDS RPCINFO (8C)

NAME
rpcinfo - report RPC information

SYNOPSIS
rpciofo -p [host]

rpciofo [-0 portnum] -u host program [version]

rpciofo [-0 portnum] -t host program [version]

rpciofo -b program version

rpciofo -d program version

AVAILABILITY
This program is available with the Networking software installation option. Refer to Installing SunOS 4.1
for information on how to install optional software.

DESCRIPTION
rpciofo makes an RPC call to an RPC server and reports what it finds.

OPTIONS
-p

-u

-t

-n

-b

-d

Probe the portmapper on host, and print a list of all registered RPC programs. If host is not
specified, it defaults to the value returned by hostname(l).

Make an RPC call to procedure 0 of program on the specified host using UDP, and report whether
a response was received.

Make an RPC call to procedure 0 of program on the specified host using TCP, and report whether a
response was received.

Use portnum as the port number for the -t and -u options instead of the port number given by the
porttnapper.

Make an RPC broadcast to procedure 0 of the specified program and version using UDP and report
all hosts that respond.

Delete registration for the RPC service of the specified program and version. This option can be
exercised only by the super-user.

The program argument can be either a name or a number.

If a version is specified, rpcinfo attempts to call that version of the specified program. Otherwise, rpcinfo
attempts to find all the registered version numbers for the specified program by calling version 0 (which is
presumed not to exist; if it does exist, rpcinfo attempts to obtain this information by calling an extremely
high version number instead) and attempts to call each registered version. Note: the version number is
required for -b and -d options.

EXAMPLES

2084

To show all of the RPC services registered on the local machine use:

example% rpcinfo -p

To show all of the RPC services registered on the machine named klaxon use:

example% rpcinfo -p klaxon

To show all machines on the local net that are running the Network Interface Service (NIS) use:

example% rpcinfo -b ypserv 'version' I uniq

where 'version' is the current NIS version obtained from the results of the -p switch above.

To delete the registration for version 1 of the walld service use:

example% rpcinfo -d walld 1

Last change: 17 December 1987 Sun Release 4.1

RPCINFO (8C) MAINTENANCE COMMANDS RPCINFO (8C)

SEE ALSO

BUGS

NOTES

rpc(5), portmap(8C)

RPC Programming Guide in Network Programming

In releases prior to the SunOS 3.0 release, the Network File System (NFS) did not register itself with the
portmapper; rpcinfo cannot be used to make RPC calls to the NFS server on hosts running such releases.

The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed.

Sun Release 4.1 Last change: 17 December 1987 2085

RQUOTAD (8C) MAINTENANCE COMMANDS

NAME
rquotad, rpc.rquotad - remote quota server

SYNOPSIS
/nsr/ etc/rpc.rqnotad

AVAILABILITY

RQUOTAD (8C)

This program is available with the Networking software installation option. Refer to Installing SunOS 4.1
for information on how to install optional software.

DESCRIPTION

FILES

rquotad is an rpc(3N) server which returns quotas for a user of a local file system which is mounted by a
remote machine over the NFS. The results are used by quota(l) to display user quotas for remote file sys­
tems. The rquotad daemon is normally invoked by inetd(8C).

quotas quota file at the file system root

SEE ALSO
quota(1), rpc(3N), nfs(4P), services(5) inetd(8C)

2086 Last change: 17 December 1987 Sun Release 4.1

RSHD(8C) MA~NANCECOMMANDS RSHD(8C)

NAME
rshd, in.rshd - remote shell server

SYNOPSIS
lusrl etc/in.rshd host .port

DESCRIPTION

FILES

rshd is the server for the rcmd(3N) routine and, consequently, for the rsh(lC) program. The server pro­
vides remote execution facilities with authentication based on privileged port numbers.

rshd is invoked by inetd(8C) each time a shell service is requested, and executes the following protocol:

• The server checks the client's source port. If the port is not in the range 512-1023, the server
aborts the connection. The clients host address (in hex) and port number (in decimal) are the
argument passed to rshd.

• The server reads characters from the socket up to a null (\0) byte. The resultant string is inter­
preted as an ASCII number, base 10.

• If the number received in step 1 is non-zero, it is interpreted as the port number of a secondary
stream to be used for the stderr. A second connection is then created to the specified port on the
client's machine. The source port of this second connection is also in the range 512-1023.

• The server checks the client's source address. If the address is associated with a host for which no
corresponding entry exists in the host name data base (see hosts(5)), the server aborts the connec­
tion.

• A null terminated user name of at most 16 characters is retrieved on the initial socket. This user
name is interpreted as a user identity to use on the server's machine.

• A null terminated user name of at most 16 characters is retrieved on the initial socket. This user
name is interpreted as the user identity on the client's machine.

• A null terminated command to be passed to a shell is retrieved on the initial socket. The length of
the command is limited by the upper bound on the size of the system's argument list.

• rshd then validates the user according to the following steps. The remote user name is looked up
in the password file and a chdir is performed to the user's home directory. If the lookup or fails,
the connection is terminated. If the chdir fails, it does a chdir to I (root). If the user is not the
super-user, (user ID 0), the file letdhosts.equiv is consulted for a list of hosts considered
"equivalent". If the client's host name is present in this file, the authentication is considered suc­
cessful. If the lookup fails, or the user is the super-user, then the file .rhosts in the home directory
of the remote user is checked for the machine name and identity of the user on the client's
machine. If this lookup fails, the connection is terminated.

• A null byte is returned on the connection associated with the stderr and the command line is
passed to the normal login shell of the user. The shell inherits the network connections esta­
blished by rshd.

letdhosts.equiv

SEE ALSO

BUGS

rsh(lC), rcmd(3N), syslogd(8)

The authentication procedure used here assumes the integrity of each client machine and the connecting
medium. This is insecure, but is useful in an "open" environment.

A facility to allow all data exchanges to be encrypted should be present.

Sun Release 4.1 Last change: 9 September 1987 2087

RSHD(8C) MAINTENANCE COMMANDS RSHD(8C)

DIAGNOSTICS

2088

The following diagnostic messages are returned on the connection associated with the stderr, after which
any network connections are closed. An error is indicated by a leading byte with a value of 1 (0 is returned
in step 9 above upon successful completion of all the steps prior to the command execution).

hlCuser too long
The name of the user on the client's machine is longer than 16 characters.

rem user too long
The name of the user on the remote machine is longer than 16 characters.

command too long
The command line passed exceeds the size of the argument list (as configured into the system).

Hostname for your address unknown.
No entry in the host name database existed for the client's machine.

Login incorrect.
No password file entry for the user name existed.

Permission denied.
The authentication procedure described above failed.

Can't make pipe.
The pipe needed for the stderr, was not created.

Try again.
A fork by the server failed.

lusr/binlsh: ...
The user's login shell could not be started.

In addition, daemon's status messages and internal diagnostics are logged to the appropriate system log
using the syslogd(8) facility.

Last change: 9 September 1987 Sun Release 4.1

RSTATD(8C) MAINTENANCE COMMANDS

NAME
rstatd, rpc.rstatd - kernel statistics server

SYNOPSIS
lusr/etc/rpc.rstatd

DESCRIPTION

RSTATD(8C)

rstatd is a server which returns performance statistics obtained from the kernel. These statistics are graph­
ically displayed by perfmeter(I). The rstatd daemon is normally invoked by inetd(8C).

Systems with disk drivers to be monitored by this daemon must be configured so as to report disk
(_ dk_ xfer) statistics.

SEE ALSO
perfmeter(I), services(5), inetd(8C)

Sun Release 4.1 Last change: 22 December 1987 2089

RUNACCT(8) MAINTENANCE COMMANDS RUNACCT(8)

NAME
runacct - run daily accounting

SYNOPSIS
lusr/lib/acctlrunacct [mmdd [state]]

DESCRIPTION
runacct is the main daily accounting shell procedure. It is normally initiated using cron(8). runacct
processes connect, fee, disk, and process accounting files. It also prepares summary files for prdaily or bil­
ling purposes.

runacct takes care not to damage active accounting files or summary files in the event of errors. It records
its progress by writing descriptive diagnostic messages into active. When an error is detected, a message is
written to Idev/console, mail (see mail(1» is sent to root, and runacct terminates. runacct uses a series of
lock files to protect against re-invocation. The files lock and lock! are used to prevent simultaneous invo­
cation, and lastdate is used to prevent more than one invocation per day.

runacct breaks its processing into separate, restartable states using statefile to remember the last state
completed. It accomplishes this by writing the state name into statefile. runacct then looks in statefile to
see what it has done and to determine what to process next. states are executed in the following order:

SETUP

WTMPFIX

CONNECfl

CONNECf2

PROCESS

MERGE

FEES

DISK

Move active accounting files into working files.

Verify integrity of the wtm p file, correcting date changes if necessary.

Produce connect session records in ctmp.h format.

Convert ctmp.h records into tacct.h format.

Convert process accounting records into tacct.h format.

Merge the connect and process accounting records.

Convert output of chargefee into tacct.h format and merge with connect and
process accounting records.

Merge disk accounting records with connect, process, and fee accounting
records.

MERGETACCT Merge the daily total accounting records in daytacct with the summary total
accounting records in Ivar/adm/acctlsum/tacct.

CMS

USEREXIT

CLEANUP

Produce command summaries.

Any installation-dependent accounting programs can be included here.

Cleanup temporary files and exit.

To restart runacct after a failure, first check the active file for diagnostics, then fix up any corrupted data
files, such as pacct or wtmp. The lock files and lastdate file must be removed before runacct can be res­
tarted. The argument mmdd is necessary if runacct is being restarted, and specifies the month and day for
which runacct will rerun the accounting. Entry point for processing is based on the contents of statefile;
to override this, include the desired state on the command line to designate where processing should begin.

EXAMPLES
To start runacct:

nohup runacct 2> Ivar/adm/acctlnite/fd210g &

To restart runacct:
nohup runacct 06012» Ivar/admlacctlnite/fd210g &

To restart runacct at a specific state:
nohup runacct 0601 MERGE 2» Ivar/adm/acctlnite/fd2log &

2090 Last change: 17 January 1990 Sun Release 4.1

RUNACCT(8) MAINTENANCE COMMANDS RUNACCT(8)

FILES
/etc/wtmp
/var/adm/paect*·
/var/adm/aeetlnite/aetive
/var/adm/aeetlnite/daytaeet
/var/adml aeet/nite/lock
/var/adm/aeetlnite/lockl
/var/adm/aeet/nite/lastdate
/var/adml aeet/nite/statefile
/var/adm/aeetlnite/ptaeet*.mmdd

SEE ALSO

BUGS

aeeteom(l), mail(l), aeet(2V), aeet(5), utmp(5V), aeet(8), aeetems(8), aeeteon(8), acetmerg(8),
acctprc(8),acetsh(8),eron(8),fw1mp(8)

Normally it is not a good idea to restart runaect in the SETUP state. Run SETUP manually and restart
using:

runaect mmdd WTMPFIX

If runaeet failed in the PROCESS state, remove the last ptacet file because it will not be complete.

Sun Release 4.1 Last change: 17 January 1990 2091

RUSAGE(8) MAINTENANCE COMMANDS RUSAGE(8)

NAME
rusage - print resource usage for a command

SYNOPSIS
rusage command

DESCRIYfION
The rusage command is similar to time(lV). It runs the given command, which must be specified; that is,
command is not optional as it is in the C shell's timing facility. When the command is complete, rusage
displays the real (wall clock), the system CPU, and the user CPU times which elapsed during execution of
the command, plus other fields in the rusage structure, all on one long line. Times are reported in seconds
and hundredths of a second.

EXAMPLE
The example below shows the format of rusage output

example% rusage wc lusr/manlmanllcsh (1)
3045 13423 78071/usr/manlmanllcsh (1)
2.26 real 0.80 user 0.36 sys 11 pf 38 pr 0 sw 11 rb 0 wb 16 vcx 37 icx 24 mx 0 ix 1230 id 9 is
example %

Each of the fields identified corresponds to an element of the rusage structure, as described in
getrusage(2), as follows:

real elapsed real time
user ru utime user time used
sys ru stime system time used
pf ru_majOt page faults requiring physical I/O
pr ru minOt page faults not requiring physical 1/0
sw ru_nswap swaps
rb ru inblock block input operations
wb ru oublock block output operations
vcx ru nvcsw voluntary context switches
icx ru nivcsw involuntary context switches
mx ru maxrss maximum resident set size
ix ru ixrss currently 0
id ru idrss integral resident set size
is ru isrss currently 0

SEE ALSO
csh(l), time(lV), getrusage(2)

:BUGS
When the command being timed is interrupted, the timing values displayed may be inaccurate.

2092 Last change: 02 April 1988 Sun Release 4.1

RUSERSD (8C) MAINTENANCE COMMANDS

NAME
rusersd, rpc.rusersd - network username server

SYNOPSIS
I usrl etc/rpc.rusersd

A V AILABILITY

RUSERSD (8C)

This program is available with the Networking software installation option. Refer to Installing SunOS 4.1
for information on how to install optional software.

DESCRIPTION
rusersd is a server that returns a list of users on the network. The rusersd daemon is normally invoked by
inetd(8C).

SEE ALSO
perfmeter(l), rusers(lC), services(5) inetd(8C)

Installing Sun OS 4.1

Sun Release 4.1 Last change: 17 December 1987 2093

RWALLD(8C) MA~NANCECOMMANDS

NAME
rwalld, rpc.rwalld - network rwall server

SYNOPSIS
I usrl etc/rpc.rwalld

AV AILABILITY

RWALLD(8C)

This program is available with the Networking software installation option. Refer to Installing SunOS 4.1
for information on how to install optional software.

DESCRIYfION
rwalld is a server that handles rwall(1C) and shutdown(2) requests. It is implemented by calling wall(1)
to all the appropriate network machines. The rwalld daemon is normally invoked by inetd(8C).

SEE ALSO
rwall(1C), wall(1), shutdown(2) services(S), inetd(8C)

2094 Last change: 17 December 1987 Sun Release 4.1

RWHOD(8C) MAINTENANCE COMMANDS RWHOD(8C)

NAME
rwhod, in.rwhod - system status server

SYNOPSIS
lusr/etc/in.rwhod

AVAILABILITY
Due to its potential impact on network performance, this service is commented out of the letclrc system
initialization script. It is provided only for 4.3 BSD compatibility.

This program is available with the Networking software installation option. Refer to Installing SunOS 4.1
for information on how to install optional software.

DESCRIPTION
rwhod is the server which maintains the database used by the rwho(1 C) and ruptime(1 C) programs. Its
operation is predicated on the ability to broadcast messages on a network.

rwhod operates as both a producer and consumer of status information. As a producer of information it
periodically queries the state of the system and constructs status messages which are broadcast on a net­
work. As a consumer of information, it listens for other rwhod servers' status messages, validating them,
then recording them in a collection of files located in the directory Ivarlspoollrwho.

The rwho server transmits and receives messages at the port indicated in the "rwho" service specification,
see services(5). The messages sent and received, are of the form:

struct outmp {
char out_linerS]; 1* tty name *1
char out_narne[S]; 1* user id *1
long out_time; 1* time on *1

};

struct whod{
char wd_vers;
char wd_type;
char wdJill[2];
int wd_sendtime;
int wd _recvtime;
char wd _ hostname[32];
int wd Joadav[3];
int wd _ boottirne;

struct whoent {
struct outmp we_utmp;
int weJdle;

} wd_we[1024 I sizeof (struct whoent)];
};

All fields are converted to network byte order prior to transmission. The load averages are as calculated by
the w(l) program, and represent load averages over the 5, 10, and 15 minute intervals prior to a server's
transmission. The host name included is that returned by the gethostname(2) system call. The array at the
end of the message contains information about the users logged in to the sending machine. This informa­
tion includes the contents of the utmp(5V) entry for each non-idle terminal line and a value indicating the
time since a character was last received on the terminal line.

Messages received by the rwho server are discarded unless they originated at a rwho server's port. In
addition, if the host's name, as specified in the message, contains any unprintable ASCII characters, the
message is discarded. Valid messages received by rwhod are placed in files named whod.hostname in the
directory Ivarlspoollrwho. These files contain only the most recent message, in the format described
above.

Sun Release 4.1 Last change: 17 December 1987 2095

RWHOD(8C) MA~NANCECOMMANDS RWHOD(8C)

FILES

Status messages are generated approximately once every 60 seconds. rwhod performs an nlist (3V) on
Ivrnunix every 10 minutes to guard against the possibility that this file is not the system image currently
operating.

letclrc
Ivarlspoollrwho

SEE ALSO
rwho(lC), ruptime(IC), w(I), gethostname(2), nlist(3V), utmp(5V), syslogd(8)

DIAGNOSTICS

BUGS

2096

Status and diagnostic messages are logged to the appropriate system log using the syslogd(8) facility.

This service takes up progressively more network bandwidth as the number of hosts on the local net
increases. For large networks, the cost becomes prohibitive. RPC-based services such as rup(1C) and
rusers(1 C) provide a similar function with greater efficiency.

rwhod should relay status information between networks. People often interpret the server dying as a
machine going down.

Last change: 17 December 1987 Sun Release 4.1

SA(8) MAINTENANCE COMMANDS SA(8)

NAME
sa, accton - system accounting

SYNOPSIS
/usr/etc/sa [-abcdDfijkKlmnrstu] [-v[n]] [-S savacctfile] [-U usracctfile] [filename]

/usr/lib/acctlaecton [filename]

DESCRIYI'ION
With an argument naming an existing filename, accton causes system accounting information for every
process executed to be placed at the end of the file. If no argument is given, accounting is turned off.

sa reports on, cleans up, and generally maintains accounting files.

sa is able to condense the information in /var/adm/pacet into a summary file /var/admlsavacct which con­
tains a count of the number of times each command was called and the time resources consumed. This
condensation is desirable because on a large system /var/adm/paCel can grow by 500K bytes per day. The
summary file is normally read before the accounting file, so the reports include all available information.

If a file name is given as the last argument, that file will be treated as the accounting file~ /var/adm/paect is
the default.

Output fields are labeled: epu for the sum of user+system time (in minutes), re for real time (also in
minutes), k for CPU-time averaged core usage (in 1k units), avio for average number of I/O operations per
execution. With options fields labeled tio for total I/O operations, k*sec for CPU storage integral (kilo-core
seconds), u and s for user and system CPU time alone (both in minutes) will sometimes appear.

sa also breaks out accounting statistics by user. This information is kept in the file /var/adm/usracet.

OPTIONS
-a Print all command names, even those containing unprintable characters and those used only once.

By default, those are placed under the name '***other.'

-b Sort output by sum of user and system time divided by number of calls. Default sort is by sum of
user and system times.

-e Besides total user, system, and real time for each command print percentage of total time over all
commands.

-d Sort by average number of disk I/O operations.

-D Print and sort by total number of disk I/O operations.

-f Force no interactive threshold compression with -v flag.

-i Do not read in summary file.

-j Instead of total minutes time for each category, give seconds per call.

-k Sort by CPU-time average memory usage.

-K Print and sort by CPU-storage integral.

-I Separate system and user time; normally they are combined.

-m Print number of processes and number of CPU minutes for each user.

-n Sort by number of calls.

-r Reverse order of son.

-s Merge accounting file into summary file /var/admlsavaect when done.

-t For each command report ratio of real time to the sum of user and system times.

-u Superseding all other flags, print for each record in the accounting file the user ID and command
name.

Sun Release 4.1 Last change: 8 January 1988 2097

SA(8)

FILES

MA~NANCECOMMANDS SA(8)

-v Followed by a number n, types the name of each command used n times or fewer. If n is not
specified, it defaults to 1. Await a reply from the terminal; if it begins with y, add the command to
the category '**junk**.' This is used to strip out garbage.

-S The following filename is used as the command summary file instead of Ivar/adm/savacct.

-U The following filename is used instead of Ivar/adm/usracct to accumulate the per-user statistics
printed by the -m option.

Ivar/adm/pacct
Ivar/adm/savacct
Ivar/adm/usracct

raw accounting
summary by command
summary by user ID

SEE ALSO
acct(2V), acct(5), ac(8)

BUGS
sa's execution time increases linearly with the magnitude of the largest positive user ID in letclpasswd.

2098 Last change: 8 January 1988 Sun Release 4.1

SA VECORE (8) MAThnENANCECOMMANDS SA VECORE (8)

NAME
savecore - save a core dump of the operating system

SYNOPSIS
lusr/ete/saveeore [-v] directory [system-name]

DESCRIPTION
savecore saves a core dump of the kernel (assuming that one was made) and writes a reboot message in the
shutdown log. It is meant to be called near the end of the letc/re.local file after the system boots. How­
ever, it is not normally run by default. You must edit that file to enable it.

saveeore checks the core dump to be certain it corresponds with the version of the operating system
currently running. If it does, saveeore saves the core image in the file directory/vrneore.n and the kernel's
namelist in directory/vmunix.n. The trailing .n in the pathnames is replaced by a number which grows
every time saveeore is run in that directory.

Before saveeore writes out a core image, it reads a number from the file directorylminfree. This is the
minimum number of kilobytes that must remain free on the filesystem containing directory. If there is less
free space on the filesystem containing directory than the number of kilobytes specified in minfree, the
core dump is not saved. If the rninfree file does not exist, saveeore always writes out the core file (assum­
ing that a core dump was taken).

saveeore also logs a reboot message using facility LOG_AUTH (see syslog(3». If the system crashed as a
result of a panic, saveeore logs the panic string too.

If the core dump was from a system other than Ivrnunix. the name of that system must be supplied as
system-name.

OPTIONS

FILES

-v Verbose. Enable verbose error messages from saveeore.

directorylvmeore.n
directory Ivmunix.n
directory Iminfree
Ivmunix
I etc/re.loeal

the kernel

SEE ALSO

BUGS

syslog(3), panie(8S), sa(8)

saveeore can be fooled into thinking a core dump is the wrong size.

You must run saveeore very soon after booting - before the swap space containing the crash dump is
overwritten by programs currently running.

Sun Release 4.1 Last change: 23 September 1987 2099

SENDMAIL (8) MAINTENANCE COMMANDS SENDMAIL (8)

NAME
sendmail - send mail over the internet

SYNOPSIS
lusr/lib/sendmail [-ba] [-bd] [-bi] [-bm] [-bp] [-bs] [-bt] [-bY] [-bz]

[-Cfile] [-dX] [-Ffullname] [-fname] [-bN] [-n] [-ox value] [-q[time]]
[-rname] [-Rstring] [-t] [-v] [address . ..]

DESCRIPTION
sendmail sends a message to one or more people, routing the message over whatever networks are neces­
sary. sendmail does internetwork forwarding as necessary to deliver the message to the correct place.

sendmail is not intended as a user interface routine; other programs provide user-friendly front ends; send­
mail is used only to deliver pre-formatted messages.

With no flags, sendmail reads its standard input up to an EOF, or a line with a single dot and sends a copy
of the letter found there to all of the addresses listed. It determines the network to use based on the syntax
and contents of the addresses.

Local addresses are looked up in the local aliases(5) file, or by using the Network Interface Service (NIS),
and aliased appropriately. In addition, if there is a .forward file in a recipient's home directory, sendmail
forwards a copy of each message to the list of recipients that file contains. Aliasing can be prevented by
preceding the address with a backslash. Normally the sender is not included in alias expansions, for exam­
ple, if 'john' sends to 'group', and 'group' includes 'john' in the expansion, then the letter will not be
delivered to 'john'.

sendmail will also route mail directly to other known hosts in a local network. The list of hosts to which
mail is directly sent is maintained in the file lusr/lib/mailhosts.

OPTIONS
-ba

-bd

-bi

-bm

-bp

-bs

-bt

-bY

-bz

-Cfile

-dX

-Ffullname

-fname

-bN

2100

Go into ARPANET mode. All input lines must end with a LINEFEED, and all messages
will be generated with a CR-LF at the end. Also, the "From:" and "Sender:" fields are
examined for the name of the sender.

Run as a daemon, waiting for incoming SMTP connections.

Initialize the alias database.

Deliver mail in the usual way (default).

Print a summary of the mail queue.

Use the SMTP protocol as described in RFC 821. This flag implies all the operations of
the -ba flag that are compatible with SMTP.

Run in address test mode. This mode reads addresses and shows the steps in parsing; it
is used for debugging configuration tables.

Verify names only - do not try to collect or deliver a message. Verify mode is nor­
mally used for validating users or mailing lists.

Create the configuration freeze file.

Use alternate configuration file.

Set debugging value to X.

Set the full name of the sender.

Sets the name of the "from" person (that is, the sender of the mail). -f can only be
used by "trusted" users (who are listed in the config file).

Set the hop count to N. The hop count is incremented every time the mail is processed.
When it reaches a limit, the mail is returned with an error message, the victim of an
aliasing loop.

Last change: 25 September 1987 Sun Release 4.1

SENDMAIL (8)

-Mid

-n

-ox value

MAThnENANCECOMMANDS

Attempt to deliver the queued message with message-id id.

Do not do aliasing.

Set option x to the specified value. Options are described below.

SENDMAIL (8)

-q[time] Processed saved messages in the queue at given intervals. If time is omitted, process the
queue once. time is given as a tagged number, with s being seconds, m being minutes, b
being hours, d being days, and w being weeks. For example, -qlb30m or -q90m
would both set the timeout to one hour thirty minutes.

-rname An alternate and obsolete form of the -f flag.

-Rstring Go through the queue of pending mail and attempt to deliver any message with a reci­
pient containing the specified string. This is useful for clearing out mail directed to a
machine which has been down for awhile.

-t Read message for recipients. "To:",' 'Cc:" , and "Bcc:" lines will be scanned for peo­
ple to send to. The' 'Bcc:" line will be deleted before transmission. Any addresses in
the argument list will be suppressed.

-v Go into verbose mode. Alias expansions will be announced, etc.

PROCESSING OPTIONS
There are also a number of processing options that may be set. Normally these will only be used by a sys­
tem administrator. Options may be set either on the command line using the -0 flag or in the configuration
file. These are described in detail in the Installation and Operation Guide. The options are:

Afile Use alternate alias file.

c On mailers that are considered "expensive" to connect to, do not initiate immediate connection.
This requires queueing.

dx Set the delivery mode to x. Delivery modes are i for interactive (synchronous) delivery, b for
background (asynchronous) delivery, and q for queue only - that is, actual delivery is done the
next time the queue is run.

D Run newaliases(8) to automatically rebuild the alias database, if necessary.

ex Set error processing to mode x. Valid modes are m to mail back the error message, w to "write"
back the error message (or mail it back if the sender is not logged in), p to print the errors on the
terminal (default), 'q' to throwaway error messages (only exit status is returned), and 'e' to do
special processing for the BerkNet. If the text of the message is not mailed back by modes m or w
and if the sender is local to this machine, a copy of the message is appended to the file dead.letter
in the sender's home directory.

Fmode The mode to use when creating temporary files.

f Save UNIX-system-style "From" lines at the front of messages.

gN The default group ID to use when calling mailers.

Hfile The SMTP help file.

Do not take dots on a line by themselves as a message terminator.

Ln The log level.

m Send to "me" (the sender) also if I am in an alias expansiGn.

o If set, this message may have old style headers. If not set, this message is guaranteed to have new
style headers (that is, commas instead of spaces between addresses). If set, an adaptive algorithm
is used that will correctly determine the header format in most cases.

Qqueuedir
Select the directory in which to queue messages.

Sun Release 4.1 Last change: 25 September 1987 2101

SENDMAIL (8) MAINTENANCE COMMANDS SENDMAIL (8)

FILES

rtimeout
The timeout on reads; if none is set, sendmail will wait forever for a mailer.

Sfile Save statistics in the named file.

s Always instantiate the queue file, even under circumstances where it is not strictly necessary.

Ttime Set the timeout on messages in the queue to the specified time. After sitting in the queue for this
amount of time, they will be returned to the sender. The default is three days.

tstz,dtz Set the name of the time zone.

uN Set the default user id for mailers.

If the first character of the user name is a vertical bar, the rest of the user name is used as the name of a
program to pipe the mail to. It may be necessary to quote the name of the user to keep sendmail from
suppressing the blanks from between arguments.

sendmail returns an exit status describing what it did. The codes are defined in sysexits.h
IDCOK Successful completion on all addresses.
IDCNOUSER User name not recognized.
IDCUNA V AILABLE Catchall meaning necessary resources were not available.
IDCSYNT AX Syntax error in address.
IDCSOFfW ARE Internal software error, including bad arguments.
EX_OSERR Temporary operating system error, such as "cannot fork".
EX_NOHOST Host name not recognized.
EX_TEMPFAIL Message could not be sent immediately, but was queued.

If invoked as newaliases, sendmail rebuilds the alias database. If invoked as mailq, sendmail prints the
contents of the mail queue.

Except for letc/sendmail.cf, these pathnames are all specified in letdsendmail.cf. Thus, these values are
only approximations.
letdaliases raw data for alias names
letdaliases.pag data base of alias names
I etd aliases.dir
lusr/lib/mailhosts list of hosts to which mail can be sent directly
letdsendmail.cf configuration file
letclsendmail.fc frozen configuration
letdsendmail.hf help file
letdsendmail.st collected statistics
lusr/bin/uux to deliver uucp mail
lusr/bin/mail to deliver local mail
Ivarlspoollmqueue/* temp files and queued mail
-I.forward list of recipients for forwarding messages

SEE ALSO

2102

biff(l), bin-mail(l), mail(l), aliases(5) newaliases(8)

System and Network Administration

Su, Zaw-Sing, and Jon Postel, The Domain Naming Convention for Internet User Applications, RFC 819,
Network Information Center, SRI International, Menlo Park, Calif., August 1982.

Postel, Jon, Simple Mail TransferProtocol,RFC 821, Network Information Center, SRI International,
Menlo Park, Calif., August 1982.

Crocker, Dave, Standardfor the Format of ARPA-Internet Text Messages, RFC 822, Network Information
Center, SRI International, Menlo Park, Calif., August 1982.

Last change: 25 September 1987 Sun Release 4.1

SENDMAIL (8) MAINTENANCE COMMANDS SENDMAIL (8)

NOTES
The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed.

Sun Release 4.1 Last change: 25 September 1987 2103

SET4(8) MA~NANCECOMMANDS SET4(8)

NAME
set4, unset4, check4 - set, unset, and check the 4 megabyte process virtual address space limit flag in a
Sun386i module

SYNOPSIS
set4 [-d working_directory] [- I filename] ...

unset4 filename . . .

check4 filename .. .

AVAILABILITY
Available only on Sun 386i systems running a SunOS 4.0.x release or earlier. Not a SunOS 4.1 release
feature.

DESCRIPTION
set4 sets the 4 megabyte process memory flag in each filename program image, limiting the virtual address
space for each program to 4 megabytes. If a '-' is used, set4 reads the standard input for a list of files to

set the 4 megabyte limit on. Lines in the standard input whose first character is 'I' are ignored, so files
may include comments.

unset4 clears the 4 megabyte process memory flag in the program image, so the process virtual address
space is not limited to 4 megabytes.

check4 reports programs that do not have the 4 megabyte limit set, and does not report programs with the
limit set.

OPTIONS
-d working_directory

This specifies a directory prefix for file names that set4 processes.

EXAMPLES
Suppose that the file smaltprogs contains the following:

These files should have their virtual address spaces limited to 4 MB:
/bin/date
/bin/true

Then the following command will run set4 on /build/bin/false, /build/bin/date, /build/bin/true, and
/build/bin/ cat.

example% set4 -d /build /bin/false -
/bin/cat < small"'progs
example%

In this example, unset4 clears the 4 megabyte limit flag in date, and clri.

example% unset4 /bin/date /etdclri
example %

In the last example, check4 shows that date and clri are 4 megabyte processes, but basename is not.

example% check4 /bin/date /etdclri /usr/bin/basename
base name is not a 4MB process
example %

SEE ALSO

BUGS

2104

execve(2V) execl(3V)

There is a problem in the way that processes that have the 4 megabyte limit set exec() processes that do not
have the limit set. (See execve(2V) and execl(3V) for descriptions of exec() processing.) For a short time
during the exec(), a child has the parent's data and stack limits. During this time, the program is checked

Last change: 6 October 1989 Sun Release 4.1

SET4(8) MA~NANCECOMMANDS SET4(8)

to see if it will fit into memory. If the parent had the 4 megabyte limit set, the test fails, because the child
program is running with the parent's 4 megabyte limit This only affects programs which have more than 4
megabytes of global or static data compiled into the program. It does not affect programs which use
malloc(3V) to obtain memory.

For example, csh(l) and sh(l) may be 4 megabyte processes. If they are, and if you try to run a program
with more than 4 megabytes of global and static data, the shell cannot successfully exec(). To fix this
problem, become root on your machine and enter the following commands:

example% letc/mount -0 remount,rw lusr
lusr/etc/unset4 Ibinlcsh Ibin/sh
example %

Then log out and back in again to run the modified shell. This makes csh and sh "normal" processes.

Sun Release 4.1 Last change: 6 October 1989 2105

SETSID(8V) MAThnENANCECOMMANDS

NAME
setsid - set process to session leader

SYNOPSIS
setsid [-b] command [arguments]

DESCRIYfION

SETSID(8V)

setsid executes command after altering the execution environment such that the next non-controlling termi­
nal opened will be assigned as command's controlling terminal.

OPfIONS
-b Alteration to the execution environment persists across calls to fork(2V).

The -b option puts the process into a state that is supported in SunOS Release 4.1 solely as a migration aid;
this option will not be supported in future releases.

EXAMPLES
Components of two SunLink products, lusrlsunlinkldnildnilogind (the DEeNEr analog of rlogind(8C)
and lusrlsunlinklx2S/x29 (the OSI analog of rlogind), are known to need this wrapper. Typical usage is:

example% cd /usrlsunlinkldni
example% mv dnilogind .dnilogind
example% cat> dnilogind
#!/binlsh
/usr/etc/setsid -b /usr/sunlinkldnil.dnilogind "$@"
AD
example% chmod +x dnilogind

SEE ALSO
setsid(2V)

IEEE Std 1003.1-1988

2106 Last change: 20 January 1990 Sun Release 4.1

SHOWFH(8C) MAINTENANCE COMMANDS SHOWFH(8C)

NAME
showfh - print full pathname of file from the NFS file handle

SYNOPSIS
lusr/etc/showtb server name numl num2 . .. num8

DESCRIPTION
showfb prints the full path name of the file on the server for the given file handle (numl ... numB).
server _name is the server from where the client got this file handle. numl ... numB are the file handle
numbers represented in hexadecimal notation.

The showfbd daemon should be running on the NFS servers to answer showfb requests. If it cannot find
the file corresponding to the given file handle, it prints a diagnostic message.

SEE ALSO
showfbd(8C)

BUGS
If the given NFS file handle is stale, then showfb may not print the name of the actual file. The in ode for
the file could have been allocated to some other file.

Sun Release 4.1 Last change: 10 May 1988 2107

SHOWFHD (8C) MAINTENANCE COMMANDS

NAME
showtbd - showfh daemon run on the NFS servers

SYNOPSIS
lusrl etc/rpc.showtltd

DESCRIYfION

SHOWFHD (8C)

showfbd is the daemon which runs on the NFS servers and answers showtb requests. It provides the full
path name for the given file handle. If it cannot find the file for the corresponding inode number, it returns
an error message.

FILES
letclmtab

SEE ALSO
find(l), showtlt(8C)

2108

table of mounted file systems

Last change: 10 May 1988 Sun Release 4.1

SHOWMOUNT (8) MAINTENANCE COMMANDS SHOWMOUNT (8)

NAME
showmount - show all remote mounts

SYNOPSIS
lusr/etc/showmount [-a de] [hostname]

AVAILABILITY
This program is available with the Networking software installation option. Refer to Installing SunOS 4.1
for information on how to install optional software.

DESCRIPTION
showmount lists all the clients that have remotely mounted a filesystem from host. This information is
maintained by the mountd(8C) server on host, and is saved across crashes in the file letdrmtab. The
default value for host is the value returned by hostname(l).

OPTIONS

FILES

-a Print all remote mounts in the format:

hostname: directory

where hostname is the name of the client, and directory is the root of the file system that has been
mounted.

-d List direetories that have been remotely mounted by clients.

-e Print the list of exported file systems.

letdrmtab

SEE ALSO
hostname(l), exports(5), exports(5), exportfs(8), mountd(8C)

BUGS
If a client crashes, its entry will not be removed from the list until it reboots and executes 'umount -a'.

Sun Release 4.1 Last change: 17 December 1987 2109

SHUTDOWN (8) MA~NANCECOMMANDS SHUTDOWN (8)

NAME
shutdown - close down the system at a given time

SYNOPSIS
/usr/etc/shutdown [-tbknr] [time [warning-message . ..

DESCRIPTION
shutdown provides an automated procedure to notify users when the system is to be shut down. time
specifies when shutdown will bring the system down; it may be the word now (indicating an immediate
shutdown), or it may specify a future time in one of two formats: +number and hour:min. The first form
brings the system down in number minutes, and the second brings the system down at the time of day indi­
cated in 24-hour notation.

At intervals that get closer as the apocalypse approaches, warning messages are displayed at terminals of
all logged-in users, and of users who have remote mounts on that machine. Five minutes before shutdown,
or immediately if shutdown is in less than 5 minutes, logins are disabled by creating /etc/nologin and writ­
ing a message there. If this file exists when a user attempts to log in, login(1) prints its contents and exits.
The file is removed just before shutdown exits.

At shutdown time a message is written to the system log daemon, syslogd(8), containing the time of shut­
down, the instigator of the shutdown, and the reason. Then a terminate signal is sent to init, which brings
the system down to single-user mode.

The time of the shutdown and the warning message are placed in /etclnologin, which should be used to
inform the users as to when the system will be back up, and why it is going down (or anything else).

OPTIONS

FILES

As an alternative to the above procedure, these options can be specified:

-f Shut the system down in the manner of fasthalt (see fastboot(8»), so that when the system is
rebooted, the file systems are not checked.

-h Execute halt(8).

-k Simulate shutdown of the system. Do not actually shut down the system.

-n Prevent the normal sync(2) before stopping.

-r Execute reboot(8).

/etclnologin
/etclxtab

tells login not to let anyone log in
list of remote hosts that have mounted this host

SEE ALSO

BUGS

2110

login(l), sync(2), fastboot(8), halt(8), reboot(8), syslogd(8)

Only allows you to bring the system down between "now" and 23:59 if you use the absolute time for shut­
down.

Last change: 9 September 1987 Sun Release 4.1

SKYVERSION (8) MAINTENANCE COMMANDS

NAME
skyversion - print the SKYFFP board microcode version number

SYNOPSIS
lusr/etc/skyversion

DESCRIPTION

SKYVERSION (8)

skyversion obtains from the SKYFFP board the Sky version number of the microcode currently loaded and
prints the result on the standard output.

DIAGNOSTICS
The Sky version number operation code used to implement this command is not available for microcode
releases earlier than Sky release 3.00. The result in this case is unpredictable and is either a nonmeaningful
version number or a message indicating that no version number is available.

Meaningful version numbers are of the form n.dd where n 2! 3.

Sun Release 4.1 Last change: 9 September 1987 2111

SPRAY (8C) MAThnENANCECOMMANDS SPRAY (8C)

NAME
spray - spray packets

SYNOPSIS
/usr/etc/spray [-c count] [-d delay] [-i delay] [-I length] host

A V AILABILlTY
This program is available with the Networking software installation option. Refer to Installing SunOS 4.1
for information on how to install optional software.

DESCRIPTION
spray sends a one-way stream of packets to host using RPC, and reports how many were received, as well
as the the transfer rate. The host argument can be either a name or an internet address.

OYfIONS
-c count

-d delay

-i delay

-I length

Specify how many packets to send. The default value of count is the number of packets
required to make the total stream size 100000 bytes.

Specify how many microseconds to pause between sending each packet. The default is
O.
Use ICMP echo packets rather than RPC. Since ICMP automatically echos, this creates a
two way stream.

The length parameter is the numbers of bytes in the Ethernet packet that holds the RPC
call message. Since the data is encoded using XDR, and XDR only deals with 32 bit
quantities, not all values of length are possible, and spray rounds up to the nearest possi­
ble value. When length is greater than 1514, then the RPC call can no longer be encap­
sulated in one Ethernet packet, so the length field no longer has a simple correspondence
to Ethernet packet size. The default value of length is 86 bytes (the size of the RPC and
UDP headers).

SEE ALSO
icmp(4P), ping(8C), sprayd(8C)

Installing SunOS 4.1

2112 Last change: 17 December 1987 Sun Release 4.1

SPRAYD(8C) MA~NANCECOMMANDS

NAME
sprayd, rpc.sprayd - spray server

SYNOPSIS
lusr/etc/rpc.sprayd

AVAILABILITY

SPRAYD(8C)

This program is available with the Networking software installation option. Refer to Installing SunOS 4.1
for information on how to install optional software.

DESCRIPTION
rpc.sprayd is a server which records the packets sent by spray(8C), and sends a response to the originator
of the packets. The rpc.sprayd daemon is normally invoked by inetd(8C).

SEE ALSO
inetd(8C), spray(8C)

Installing Sun OS 4.1

Sun Release 4.1 Last change: 17 December 1987 2113

START_APPLIC (8) MAINTENANCE COMMANDS START_APPLIC(8)

NAME
starcapplic - generic application startup procedures

SYNOPSIS
/usr/ete/start_applic

AVAILABILITY
Available only on Sun 386i systems running a SunOS 4.0.x release or earlier. Not a SunOS 4.1 release
feature.

DESCRIPTION
start_applic is a short generic shell script that can be copied or symbolically linked into either
/vol/iocal/bin/application or /usr/iocal/bin/application. When invoked as application, an application
installed as described below will be correctly invoked on systems of any supported processor architecture.
Installing start_applic (or a customized version of it) in one of these locations ensures that no user's or
system's environment needs to be modified just to run the application. Applications are stored in a single
tree which is not shared with any other applications. This tree may be available on different systems in dif­
ferent places; if the application needs to reference its distribution tree, this should be determined from the
application_ROOT environment variable.

The application startup script arranges that the PATH and application_ROOT environment variables are set
correctly while the application is running. If the application's distribution tree (placed into /vol/application
or /usr/local/application) does not have an executable binary with the name of the application (for exam­
ple, /vol/application/bin.archlapplication), then start_applie can not be used, and a customized applica­
tion startup script must be used instead. Such scripts must also allow users to invoke the application from
systems of any architecture, without requiring them to customize their own environments.

Note that there are two contrasting models of software installation. The heterogeneous model assumes
general availabiljty of the software, and solves the "which binaries to use" problem with no administrative
overhead. The homogeneous model assumes very limited availability of software, requires administrative
procedures to ensure that /usr/local only contains binaries of the local architecture, and does not really
account for networked installations. It is easier to add support for additional architectures using a hetero­
geneous network model of software installation from the beginning.

Heterogeneous Networked Installations
Applications available on the network are available through /vol/application and exported either to all sys­
tems or just to selected ones, as licensing restrictions allow. The export point is /export/vol/application,
which is a symbolic link to the actual installation point, typically the /files/vol/application directory. All
subdirectories not explicitly tagged with a processor architecture are shared among all processor architec­
tures; thus while the .. .Ibin.sun386 and .. .Ilib.sun386 subdirectories contain, respectively, binaries and
libraries executable only on systems of the Sun386i architecture, the .. .Ibin directory contains executables
that run on any architecture (typically using an interpreter such as Ibin/sh), and the .. .Iete directory only
contains sharable configuration files.

Homogeneous Single Machine Installations
Applications available only on a specific machine and its boot clients of the same architecture are installed
into lusr/local/application. This directory supports only a single architecture, so /usr/local/application/bin
contains binaries executable only on the local architecture, and /usr/local/applicationllib contains libraries
executable only on the local architecture. Any sharable files are grouped in lusr/local/application/share.

To install an application onto a boot server to serve boot clients with other architectures, place the applica­
tion in /usr/local/application on the clients, as described above. The installation point (on the server) for
application binaries of architecture arch is lexport/local/archlapplication. When the architecture is the
server architecture, this case is identical with the one above.

Other Installations

2114

Smaller applications (of only one or two files) may be installed into the appropriate Ivol/locallbin.arch
directory, or possibly into /exportlloeallarch/bin. These directories are in user's default paths, so the
application does not need to be registered using start _ applic.

Last change: 10 March 1989 Sun Release 4.1

START _APPLIC (8) MAINTENANCE COMMANDS

FILES
/files<o>/vol/application
/ export/vol! application
/vol!application
/vol!application/bin.archl application
/usr/local! application
/ export/local! archl application

SEE ALSO
auto.vol(S), exports(S), automount(8), exportfs(8)

Sun386i SNAP Administration

Sun386i Advanced Administration

Sun Release 4.1 Last change: 10 March 1989

START _APPLIC (8)

211S

STATD(8C) M~NANCECOMMANDS

NAME
statd, rpc.statd - network status monitor

SYNOPSIS
lusrl etc/rpc.statd

DESCRIPTION

STATD(8C)

statd is an intermediate version of the status monitor. It interacts with lockd(8C) to provide the crash and
recovery functions for the locking services on NFS.

FILES
letclsm
letclsm.bak
letclstate

SEE ALSO
statmon(S), lockd(8C)

BUGS
The crash of a site is only detected upon its recovery.

2116 Last change: 9 September 1987 Sun Release 4.1

STICKY (8) MAINTENANCE COMMANDS STICKY (8)

NAME
sticky - mark files for special treattnent

DESCRIPTION

BUGS

FILES

The sticky bit (file mode bit 01000, see chmod(2V» is used to indicate special treattnent of certain files and
directories. A directory for which the sticky bit is set restricts deletion of files it contains. A file in a sticky
directory may only be removed or renamed by a user who has write permission on the directory, and either
owns the file, owns the directory, or is the super-user. This is useful for directories such as Itmp, which
must be publicly writable, but should deny users permission to arbitrarily delete or rename the files of oth­
ers.

If the sticky bit is set on a regular file and no execute bits are set, the system's page cache will not be used
to hold the file's data. This bit is normally set on swap files of diskless clients so that accesses to these files
do not flush more valuable data from the system's cache. Moreover, by default such files are treated as
swap files, whose inode modification times may not necessarily be correctly recorded on permanent
storage.

Any user may create a sticky directory. See chmod for details about modifying file modes.

mkdir(2V) will not create a file with the sticky bit set.

Itmp

SEE ALSO
chmod(l V), chmod(2V), chown(2V), mkdir(2V)

Sun Release 4.1 Last change: 2 March 1989 2117

SUNDIAG(8) MA~NANCECOMMANDS SUNDIAG(8)

NAME
sundiag - system diagnostics

SYNOPSIS
lusr/diaglsundiaglsundiag [-Crnt] [-k kernel_name] [-0 saved_options Jtle]

[generic _tooCarguments]

AVAILABILITY
This program is available with the User Diagnostics software installation option. Refer to Installing
SunOS 4.1 for information on how to install optional software.

DESCRIPTION
sundiag is a diagnostic facility that tests the functionality of the operating system and reports its findings.
It can also be used to report the hardware configuration as detected by the system.

You must be root to use sundiag.

When run on the console monitor, sundiag takes full advantage of the SunView 1 windowing environment.
There are four subwindows:

• A control panel for displaying the discovered hardware configuration and manipulating of the
numerous test parameters and options.

• A test status panel which shows the test results.

• A console window which is used to display messages.

• A performance monitor.

There are also some popup frames, including a text frame for viewing sundiag and system log files.

When executed from a terminal, sundiag uses curses(3V) to simulate each subwindow on the screen.

sundiag consists of sundiag, along with several binary modules and executable files containing the actual
test code, all of which reside in lusr/diag/sundiag.

OPTIONS

FILES

2118

-c

-m

Redirect the console output from any existing console window to the sundiag console sub­
window.

Create a device file for all devices found during the kernel probe. sundiag uses the same
major/minor device numbers and permissions declared in Idev/MAKEDEV.

-t Run sundiag on a terminal.

-k kernel name
Specify the customized kernel name that was used to boot up the system. The default kernel name
is Ivrnunix. Since the rstatd(8C) that the performance monitor requires is hard-wired to use
Ivrnunix as the kernel name, the performance monitor is disabled when this option is specified.

-0 saved_options Jtle
Use the saved_options JLle to restore options. The default option file is .sundiag .• sundiag is used
if the -0 option is not used and if the default file exists.

generic _too 1_ arguments
Refer to sunview(1) for examples of generic tool arguments that may be used with sundiag.

Ivar/admlsundiaglogloptionsl.sundiag
lusr/diaglsundiagl.usertest

start-up option file
user-defined test description file

Last change: 6 September 1988 Sun Release 4.1

SUNDIAG(8) MA~NANCECOMMANDS SUNDIAG(8)

SEE ALSO
sunview(l), curses(3V), rstatd(8C)

Installing SunOS 4.1
Sundiag User's Guide

Sun Release 4.1 Last change: 6 September 1988 2119

SUNINSTALL(8) M~NANCECOMMANDS SUNINSTALL (8)

NAME
sun install - install and upgrade the SunOS operating system

SYNOPSIS
/ usr/ etc/install! sun install

DESCRIPTION

USAGE

FILES

sun install is a forms-based subsystem for installing and upgrading the SunOS operating system. Unlike
previous installation subsystems, suninstall does not require recapitulation of an interrupted procedure;
you can pick up where you left off. A new invocation of sun install displays the saved information and
offers the user an opportunity to make any needed alterations before it proceeds.

Note: suninstall only exists in the mini-root and should only be invoked from there (see Installing SunOS
4.1).

suninstall allows installation of the operating system onto any system configuration, be it standalone, data­
less, a homogeneous file server, or a heterogeneous server. It installs the various versions of the operating
system needed by clients on a heterogeneous file server, from any Sun distribution media format. The
number of different system versions that can be installed is only limited to the disk space available.

After the initial installation, the suninstall utility program add _ client(8) adds clients while the server is
running in multiuser mode. The suninstall add _ services(8) program converts a standalone system or
server into a heterogeneous file server, without rebooting, while the system is running in multiuser mode.
To remove a diskless client, use the sun install rm _ client(8) program in multiuser mode.

To abort the installation procedure, use the interrupt character (typically CTRL-C).

Refer to Installing SunOS 4.1 for more information on the various menus and selections.

/usr! etc/install
/usr! etcfinstalVxdrtoc
fetclinstall

directory containing installation programs and scripts
subsystem utility program
directory containing suninstall data files

SEE ALSO
add _ client(8), add _services(8), extract_ unbundled(8), rm _ client(8)

Installing SunOS 4.1

NOTES
It is advisable to exit suninstall through the exit options from the suninstall menus.

2120 Last change: 13 January 1990 Sun Release 4.1

SWAPON(8) MAINTENANCE COMMANDS SWAPON(8)

NAME
swapon - specify additional device for paging and swapping

SYNOPSIS
lusr/etc/swapon -a

lusr/etc/swapon name . ..

DESCRIPTION
swapon specifies additional devices or files on which paging and swapping are to take place. The system
begins by swapping and paging on only a single device so that only one disk is required at bootstrap time.
Calls to swapon normally occur in the system multi-user initialization file letclrc making all swap devices
available, so that the paging and swapping activity is interleaved across several devices.

The second form gives individual block devices or files as given in the system swap configuration table.
The call makes only this space available to the system for swap allocation.

Note: "swap files" made with mkfile(8) can be used as swap areas over NFS.

OPTIONS

FILES

-a Make available all devices of type swap in letc/fstab. Using swapon with the -a option is the
normal usage.

Idev/sd?b
Idev/xy?b
Idev/xd?b
letclfstab
letclrc

normal paging devices

SEE ALSO

BUGS

swapon(2), fstab(5), init(8), mkfile(8)

There is no way to stop paging and swapping on a device. It is therefore not possible to make use of dev­
ices which may be dismounted during system operation.

Sun Release 4.1 Last change: 31 October 1988 2121

SYS-CONFIG (8) MAINTENANCE COMMANDS SYS-CONFIG (8)

NAME
sys-config - configure a system or administer configuration information

SYNOPSIS
lusr/etc/instaillsys-config

DESCRIPTION

FILES

sys-config "unpacks" a machine and sets up its configuration. sys-config automatically runs when a pre­
installed system is booted for the first time. It should not be run by hand. Instead, run sys-unconfig(8) to

return the system to its pre-installed state. Then, reboot system, which will run sys-config automatically.

A system's configuration consists of hostname, Network Interface Service (NIS) domain name, timezone
and IP address.

sys-config does the following:

• Edits the letc/hosts with the correct hostname and IP address.

• Sets the hostname in letc/rc.boot.

• Sets the domainname in letc/rc.single.

• Sets the lusr/liblzoneinfo/localtime file.

• Enables the Network Information Service (NIS) if the NIS service was requested.

When sys-config is finished, it prompts for a system reboot.

The default answer to any particular question is the current value of that configuration parameter. Parame­
ters that have not changed can be quickly skipped over to get to the one that should be changed by typing a
RETURN.

sys-config is potentially a dangerous utility and can be run only by the super-user.

letc/hosts
lusr/lib/zoneinfollocaltime
lusr/etc/instaillsys Jnfo

SEE ALSO
sys-unconfig(8)

NOTES

2122

The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed.

Last change: 13 January 1990 Sun Release 4.1

SYS-UNCONFIG (8) MA~NANCECOMMANDS

NAME
sys-unconfig - undo a system's configuration

SYNOPSIS
/usr/ etc/install/sys-unconfig

DESCRIYfION
sys-unconfig packs up a machine to make it ready to be configured again.

SYS-UNCONFIG (8)

It restores a systems's configuration to an "as-manufactured" state. A system's configuration consists of
hostname, Network Interface Service (NIS) domain name, timezone and IP address.

FILES

sys-unconfig does the following:

• Restores the default lete/hosts file.

• Removes the default hostname in /etclhostname.??[O-9].

• Removes the default domainname in letcldefaultdomain.

• Removes the default lusr/lib/zoneinfo/loealtime file.

• Disables the Network Information Service (NIS) if the NIS service was requested.

When sys-unconfig is finished, it will prompt for a system shutdown.

sys-unconfig is potentially a dangerous utility and can only be run by the super-user.

/etclhosts
/usr/lib/zoneinfo/localtime
/usr/etc/install/sys _info

SEE ALSO
sys-config(8)

NOTES
The Network Information Service (NIS) was fonnerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed.

Sun Release 4.1 Last change: 13 January 1990 2123

SYSLOGD(8) MAINTENANCE COMMANDS SYSLOGD(8)

NAME
syslogd - log system messages

SYNOPSIS
lusr/etc/syslogd [-d] [-fconfigfile] [-rn interval]

DESCRIYfION
syslogd reads and forwards system messages to the appropriate log files and/or users, depending upon the
priority of a message and the system facility from which it originates. The configuration file
letclsyslog.conf (see syslog.conf(5» controls where messages are forwarded. syslogd logs a mark
(timestamp) message every interval minutes (default 20) at priority LOG_INFO to the facility whose name
is given as mark in the syslog.conf file.

A system message consists of a single line of text, which may be prefixed with a priority code number en­
closed in angle-brackets « »; priorities are defined in syslsyslog.h.

syslogd reads from the AF _UNIX address family socket Idev/log, from an Internet address family socket
specified in letclservices, and from the special device Idev/klog (for kernel messages).

syslogd reads the configuration file when it starts up, and again whenever it receives a HUP signal, at which
time it also closes all files it has open, re-reads its configuration file, and then opens only the log files that
are listed in that file. syslogd exits when it receives a TERM signal.

As it starts up, syslogd creates the file letc!syslog.pid, if possible, containing its process ID (PID).

Sun386i DESCRIPTION
syslogd translates messages using the databases specified on an optional line in the syslog.conf as indicated
with a translate entry.

The format of these databases is described in translate(5).

OPTIONS

FILES

-d

-fconfigfile

-m interval

letclsyslog.conf
I etcl syslog.p id
Idev/log
Idev/klog
letclservices

SEE ALSO

Turn on debugging.

Specify an alternate configuration file.

Specify an interval, in minutes, between mark messages.

configuration file
process ID
AF _UNIX address family datagram log socket
kernel log device
network services database

logger(1), syslog(3), syslog.conf(5), translate(S)

2124 Last change: 13 January 1990 Sun Release 4.1

TALKD(8C) MA~NANCECOMMANDS

NAME
talkd, in.talkd - server for talk program

SYNOPSIS
lusr/etc/in.talkd

DESCRIPTION

TALKD(8C)

talkd is a server used by the talk(1) program. It listens at the udp port indicated in the "talk" service
description; see services(5). The actual conversation takes place on a tcp connection that is established by
negotiation between the two machines involved.

SEE ALSO
talk(1), services(5), inetd(8C)

BUGS
The protocol is architecture dependent, and can not be relied upon to work between Sun systems and other
machines.

Sun Release 4.1 Last change: 9 September 1987 2125

TELNETD (8C) MAINTENANCE COMMANDS TELNETD (8C)

NAME
telnetd, in.telnetd - TCP/IP TEL NET protocol server

SYNOPSIS
lusr/etc/in.telnetd

AVAILABILITY
This program is available with the Networking software installation option. Refer to Installing SunOS 4.1
for information on how to install optional software.

DESCRIYfION
telnetd is a server which supports the TCP/lP standard TELNET virtual terminal protocol. telnetd is in­
voked by the internet server (see inetd(8C», normally for requests to connect to the TELNET port as indi­
cated by the letc/services file (see services(5».

telnetd operates by allocating a pseudo-terminal device (see pty(4» for a client, then creating a login pro­
cess which has the slave side of the pseudo-terminal as its standard input, output, and error. telnetd mani­
pulates the master side of the pseudo-terminal, implementing the TELNET protocol and passing characters
between the remote client and the login process.

When a TELNET session is started up, telnetd sends TELNET options to the client side indicating a willing­
ness to do remote echo of characters, to suppress go ahead, and to receive terminal type information from
the remote client. If the remote client is willing, the remote terminal type is propagated in the environment
of the created login process. The pseudo-terminal allocated to the client is configured to operate in
"cooked" mode, and with XTABS, ICRNL, and ONLCR enabled (see termio(4».

telnetd is willing to do: echo, binary, suppress go ahead, and timing mark. telnetd is willing to have the
remote client do: binary, terminal type, and suppress go ahead.

SEE ALSO
telnet(1C)

BUGS

2126

Postel, Jon, and Joyce Reynolds, "Telnet Protocol Specification," RFC 854, Network Information Center,
SRI International, Menlo Park, Calif., May 1983.

Some TELNET commands are only partially implemented.

The TELNET protocol allows for the exchange of the number of lines and columns on the user's terminal,
but telnetd doesn't make use of them.

Because of bugs in the original 4.2 BSD telnet(1C), telnetd performs some dubious protocol exchanges to
try to discover if the remote client is, in fact, a 4.2 BSD telnet(1C).

Binary mode has no common interpretation except between similar operating systems

The terminal type name received from the remote client is converted to lower case.

The packet interface to the pseudo-terminal (see pty(4» should be used for more intelligent flushing of in­
put and output queues.

telnetd never sends TELNET go ahead commands.

telnetd can only support 64 pseudo-terminals.

Last change: 18 December 1989 Sun Release 4.1

TFSD(8)

NAME
tfsd - TFS daemon

SYNOPSIS
lusrl etc/tfsd

DESCRIPTION

MAThITENANCECOMMANDS TFSD(8)

tfsd is the daemon for the Translucent File Service (TFS). This daemon is started by inetd(8C) whenever a
TFS request is made.

FILES

tfsd looks up a file by looking in the frontmost directory (see tfs(4S)). If the file is not found in this direc­
tory, tfsd follows the searchlink from the frontmost directory to the directory immediately behind it. tfsd
continues to search for the file until one of the following conditions is met:

• The file is found in a directory.

• There are no more search links to follow.

• A whiteout entry for the file is found.
The search links and whiteout entries are specified in .tfs _info files.

.tfs info holds search link and whiteout entries

SEE ALSO
unwhiteout(I), lsw(I), tfs(4S), mount_tfs(8)

Sun Release 4.1 Last change: 23 November 1988 2127

TFTPD(8C) M~NANCECOMMANDS TFTPD(8C)

NAME
tftpd, in.tftpd - TCP/IP Trivial File Transfer Protocol server

SYNOPSIS
lusr/etc/in.tftpd [-s] [homedir]

Sun386i SYNOPSIS
lusr/etc/in.tftpd [-s] [-p] [homedir]

AVAILABILITY
This program is available with the Networking software installation option. Refer to Installing SunOS 4.1
for information on how to install optional software.

DESCRIPTION
tftpd is a server that supports the TCP/IP Trivial File Transfer Protocol (TFfP). This server is normally
started by inetd(8C) and operates at the port indicated in the tftp Internet service description in the
letc/inetd.coof file; see ioetd.conf(5) for details.

Before responding to a request, the server attempts to change its current directory to homedir; the default
value is Itftpboot.

Sun386i DESCRIPTION
The tftpd daemon acts as described above, except that it will perform certain filename mapping operations
unless instructed otherwise by the -p command line argument or when operating in a secure environment.
This mapping affects only TFfP boot requests and will not affect requests for existing files.

The semantics of the changes are as follows. Only filenames of the format ip-address or ip-address .arch,
where ip-address is the IP address in hex, and arch is the hosts's architecture (as returned by the arch(l)
command), that do not correspond to files in Itftpboot, are mapped. If the address is known through a Net­
work Interface Service (NIS) lookup, any file of the form Itftpbootlip-address* (with or without a suffix)
is returned. If there are multiple such files, anyone may be returned. If the ip-address is unknown (that is if
the ipaUoc (8C) service says the name service does not know the address), the filename is mapped as fol­
lows: Names without the arch suffix are mapped into the name pop.SUN3, and names with the suffix are
mapped into pop. arch. That file is returned if it exists.

OPTIONS
-s Secure. When specified, the directory change must succeed; and the daemon also changes its root

directory to homedir.

The use of tftp does not require an account or password on the remote system. Due to the lack of
authentication information, tftpd will allow only publicly readable files to be accessed. Files may
be written only if they already exist and are publicly writable. Note: this extends the concept of
"public" to include all users on all hosts that can be reached through the network; this may not be
appropriate on all systems, and its implications should be considered before enabling this service.

tftpd runs with the user ID (UID) and group ID (GID) set to -2, under the assumption that no files exist with
that owner or group. However, nothing checks this assumption or enforces this restriction.

Sun386i OPTIONS
-p Disable pnp entirely. Do not map filenames.

Sun386i FILES
Itftpboot/* filenames are IP addresses

SEE ALSO
tftp(IC) inetd(8C), ipallocd(8C), netconfig(8C)

Sollins, K.R., The TFTP Protocol (Revision 2), RFC 783, Network Information Center, SRI International,
Menlo Park, Calif., June 1981.

2128 Last change: 18 December 1989 Sun Release 4.1

TFTPD(8C) MAINTENANCE COMMANDS TFTPD(8C)

NOTES
The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed.

Sun386i WARNINGS
A request for an ip-address from a Sun-4 can be satisfied by a file named ip-address .386 for compatibility
with some early Sun-4 PROM monitors.

Sun Release 4.1 Last change: 18 December 1989 2129

TIC(8V) MAINTENANCE COMMANDS TIC(8V)

NAME
tic - term info compiler

SYNOPSIS
tic [-v[n]] [-c]filename

A V AILABILITV
This command is available with the System V software installation option. Refer to Installing SunOS 4.1
for information on how to install optional software.

DESCRIYfION
tic compiles a terminfo(5V) source file into the compiled format. The results are placed in the directory
lusrlshare/lib/terminfo. The compiled format is used by the curses(3V) library.

Each entry in the file describes the capabilities of a particular terminal. When a use=entry field is given in
a terminal entry, tic reads in the binary (compiled) description of the indicated entry from
lusrlsharellib/terminfo to duplicate the contents of that entry within the one being compiled. However, if
an entry by that name is specified in filename, the entry in that source file is used first. Also, if a capability
is defined in both entries, the definition in the current entry's source file is used.

If the environment variable TERMINFO is set, that directory is searched and written to instead of
lusrlshare/lib/terminfo.

OPTIONS
-v[n]

FILES

Verbose. Display trace information on the standard error. The optional integer argument is a
number from 1 to 10, inclusive, indicating the desired level of detail. If n is omitted, the default is
1.

-c Only check filename for errors. Errors in use= links are not detected.

lusrlshare/lib/terminfol?l* compiled terminal description data base

SEE ALSO

BUGS

fork(2V), curses(3V), curses(3V), malloc(3V), term(S), terminfo(SV)

Total compiled entries cannot exceed 4096 bytes. The name field cannot exceed 1024 bytes.

When the -c option is used, duplicate terminal names will not be diagnosed; however, when -c is not used,
they will be.

For backward compatibility, cancelled capabilities will not be marked as such within the term info binary
unless the entry name has a '+' within it. Such terminal names are only used for inclusion with a use=
field, and typically aren't used for actual terminal names.

DIAGNOSTICS

2130

Most diagnostic messages produced by tic are preceded with the approximate line number and the name of
the entry being processed.

mkdir name returned bad status
The named directory could not be created.

File does not start with terminal names in column one
The first thing seen in the file, after comments, must be the list of terminal names.

Token after a seek(2) not NAMES
Somehow the file being compiled changed during the compilation.

Last change: 17 November 1987 Sun Release 4.1

TIC(8V) MAINTENANCE COMMANDS

Not enough memory for use_list element
Out of memory

Not enough free memory was available (malloc(3V) failed).

Can't open filename
The named file could not be opened or created.

Error in writing filename
The named file could not be written to.

Can'tlink filename to filename
A link failed.

Error in re-reading compiled filename
The compiled file could not be read back in.

Premature EOF
The current entry ended prematurely.

Backspaced off beginning of line
This error indicates something wrong happened within tic.

Unknown Capability - filename
The named invalid capability was found within the file.

Wrong type used for capability •..
For example, a string capability was given a numeric value.

Unknown token type

TIC(8V)

Tokens must be followed by '@' to cancel, ',' for booleans, '#' for numbers, or '=' for strings.
name: bad term name
Line n: Illegal terminal name - name
Terminal names must start with a letter or digit

The given name was invalid. Names must not contain white space or slashes, and must begin with
a letter or digit.

name: terminal name too long.
An extremely long terminal name was found.

name: terminal name too short.
A one-letter name was found.

name defined in more than one entry. Entry being used is name .
An entry was found more than once.

Terminal name name synonym for itself
A name was listed twice in the list of synonyms.

At least one synonym should begin
At least one of the names of the terminal should begin with a letter.

Illegal character - c
The given invalid character was found in the input file.

Newline in middle of terminal name
The trailing comma was probably left off of the list of names.

Missing comma
A comma was missing.

Missing numeric value
The number was missing after a numeric capability.

NULL string value
The proper way to say that a string capability does not exist is to cancel it.

Sun Release 4.1 Last change: 17 November 1987 2131

TIC(8V) M~NANCECOMMANDS TIC(8V)

2132

Very long string found. Missing comma?
Self-explanatory .

Unknown option. Usage is:
An invalid option was entered.

Too many file names. Usage is:
Self-explanatory .

name non-existent or permission denied
The given directory could not be written into.

name is not a directory
Self-explanatory .

name: Permission denied
Access denied.

name: Not a directory
tic wanted to use the given name as a directory, but it already exists as a file

SYSTEM ERROR!! Fork failed!!!
A fork(2V) failed.

Error in following up use-links.
Either there is a loop in the links or they reference non-existent terminals. The following is a list
of the entries involved:
A terminfo(5V) entry with a use=name capability either referenced a non-existent terminal called
filename or filename somehow referred back to the given entry.

Last change: 17 November 1987 Sun Release 4.1

TNAMED(8C) MAINTENANCE COMMANDS

NAME
tnamed, in.tnamed - TCP/IP Trivial name server

SYNOPSIS
lusr/etc/in.tnamed [-v]

DESCRIPTION

TNAMED(8C)

tnamed is a server that supports the TCP/IP Name Server Protocol. The name server operates at the port
indicated in the "name" service description (see services(5», and is invoked by inetd(8C) when a request
is made to the name server.

Two known clients of this service are the MIT PC/IP software the Bridge boxes.

OPTIONS
-v Invoke the daemon in verbose mode.

SEE ALSO
uucp(lC), services(5), inetd(8C)

Postel, Jon, Internet Name Server, lEN 116, SRI International, Menlo Park, California, August 1979.

BUGS
The protocol implemented by this program is obsolete. Its use should be phased out in favor of the Internet
Domain protocol. See named(8C).

Sun Release 4.1 Last change: 18 December 1989 2133

TRPT(8C) MAINTENANCE COMMANDS TRPT(8C)

NAME
trpt - transliterate protocol trace

SYNOPSIS
lusr/etc/trpt [-afjst] [-phex-address] [system [core]]

DESCRIPTION
trpt interrogates the buffer of TCP trace records created when a socket is marked for "debugging" (see get­
sockopt(2», and prints a readable description of these records. When no options are supplied, trpt prints
all the trace records found in the system grouped according to TCP connection protocol control block
(PCB). The following options may be used to alter this behavior.

onIONS

FILES

-a In addition to the normal output, print the values of the source and destination addresses for each
packet recorded.

-f Follow the trace as it occurs, waiting a short time for additional records each time the end of the
log is reached.

-j Just give a list of the protocol control block addresses for which there are trace records.

-s In addition to the normal output, print a detailed description of the packet sequencing information.

-t In addition to the normal output, print the values for all timers at each point in the trace.

-p hex-address
Show only trace records associated with the protocol control block, the address of which follows.

The recommended use of trpt is as follows. Isolate the problem and enable debugging on the socket(s) in­
volved in the connection. Find the address of the protocol control blocks associated with the sockets using
the -A option to netstat(8C). Then run trpt with the -p option, supplying the associated protocol control
block addresses. The -f option can be used to follow the trace log once the trace is located. If there are
many sockets using the debugging option, the -j option may be useful in checking to see if any trace
records are present for the socket in question.

If debugging is being performed on a system or core file other than the default, the last two arguments may
be used to supplant the defaults.

Ivmunix
Idev/kmem

SEE ALSO
getsockopt(2), netstat(8C)

DIAGNOSTICS

BUGS

2134

no namelist When the system image does not contain the proper symbols to find the trace buffer; oth­
ers which should be self explanatory.

Should also print the data for each input or output, but this is not saved in the trace record.

The output format is inscrutable and should be described here.

Last change: 9 September 1987 Sun Release 4.1

TTYSOFfCAR (8) MA~NANCECOMMANDS

NAME
ttysoftcar - enable/disable carrier detect

SYNOPSIS
ttysoftcar [-y 1-0] tty ...

ttysoftcar -a

DESCRIPTION

TTYSOFfCAR(8)

For each tty specified ttysoftcar changes the carrier detect flag using the TIOCSSOYfCAR ioctl() request
(see tty(4». If the -a option is specified, ttysoftcar sets all tty's in the letc/ttytab file to the carrier detec­
tion mode specified by their status field. If this field is set to local, software carrier detection is turned on.
If this field is set to anything other than local, as is usually the case for modems, software carrier detection
is turned off. ttysoftcar ignores devices in the letclttytab file which do not exist.

If no options are specified, ttysoftcar returns the current status for tty. This status is reported as y or o.

OPTIONS
-a Reset ttys to appropriate values based on the status field of the letc/ttytab file.

-y Turn on software carrier detect.

-0 Turn off software carrier detect. Use hardware carrier detect.

SEE ALSO
termio(4), zs(4S), ttytab(5)

Sun Release 4.1 Last change: 21 July 1989 2135

TUNEFS(8) MAINTENANCE COMMANDS TUNEFS(8)

NAME
tunefs - tune up an existing file system

SYNOPSIS
/usr/etc/tuners [-a maxcontig] [-d rotdelay] [-e maxbpg] [-m min/ree] special I filesystem

DESCRIPTION
tuners is designed to change the dynamic parameters of a file system which affect the layout policies. The
parameters which are to be changed are indicated by the OPTIONS given below:

OPTIONS
-a maxcontig

This specifies the maximum number of contiguous blocks that will be laid out before forcing a ro­
tational delay (see -d below). The default value is one, since most device drivers require an inter­
rupt per disk transfer. Device drivers that can chain several buffers together in a single transfer
should set this to the maximum chain length.

-d rotdelay
This specifies the expected time (in milliseconds) to service a transfer completion interrupt and in­
itiate a new transfer on the same disk. It is used to decide how much rotational spacing to place
between successive blocks in a file.

-emaxbpg
This indicates the maximum number of blocks any single file can allocate out of a cylinder group
before it is forced to begin allocating blocks from another cylinder group. Typically this value is
set to about one quarter of the total blocks in a cylinder group. The intent is to prevent any single
file from using up all the blocks in a single cylinder group, thus degrading access times for all files
subsequently allocated in that cylinder group. The effect of this limit is to cause big files to do
long seeks more frequently than if they were allowed to allocate all the blocks in a cylinder group
before seeking elsewhere. For file systems with exclusively large files, this parameter should be
set higher.

-m minfree
This value specifies the percentage of space held back from normal users; the minimum free space
threshold. The default value used is 10%. This value can be set to zero, however up to a factor of
three in throughput will be lost over the performance obtained at a 10% threshold. Note: if the
value is raised above the current usage level, users will be unable to allocate files until enough
files have been deleted to get under the higher threshold.

SEE ALSO

BUGS

2136

rs(5), dumpfs(8), mkfs(8), newfs(8)

System and Network Administration

This program should work on mounted and active file systems. Because the super-block is not kept in the
buffer cache, the program will only take effect if it is run on dismounted file systems; if run on the root file
system, the system must be rebooted.

Last change: 25 September 1987 Sun Release 4.1

TZSETUP(8) MAINTENANCE COMMANDS TZSETUP(8)

NAME
tzsetup - set up old-style time zone information in the kernel

SYNOPSIS
lusr/etc/tzsetup

DESCRIPTION
tzsetup attempts to find the offset from GMT and old-style Daylight Savings Time correction type (see
gettimeofday(2» that most closely matches the default time zone for the machine, and to pass this infor­
mation to the kernel with a settimeofday () call (see gettimeofday(2». This is necessary if programs built
under releases of SunOS prior to 4.0 are to be run; those programs get time zone information from the ker­
nel using gettimeofday.

If it cannot find the offset from GMT, the offset is set to 0; if it cannot find the Daylight Savings Time
correction type, it is set to DST_NONE, indicating that no Daylight Savings Time correction is to be per­
formed.

DIAGNOSTICS
tzsetup: Can't open lusrlsharelliblzoneinfo/localtime: reason

The time zone file for the current time zone could not be opened.

tzsetup: Error reading lusr/liblzoneinfollocaltime: reason
The time zone file for the current time zone could not be read.

tzsetup: Two or more time zone types are equally valid - no DST selected
There were two or more Daylight Savings Time correction types that generated results that were
equally close to the correct results. None of them was selected. Programs built under versions of
SunOS prior to 4.0 may not convert dates correctly.

tzsetup: No old-style time zone type is valid - no DST selected
None of the Daylight Savings Time correction types generated results that were in any way
correct; none of them was selected. Programs built under versions of SunOS prior to 4.0 may not
convert dates correctly.

tzsetup: Warning: No old-style time zone type is completely valid
None of the Daylight Savings Time correction types generated results that were completely
correct; the best of them was selected. Programs built under versions of SunOS prior to 4.0 may
not convert dates correctly.

tzsetup: Can't set time zone

SEE ALSO

tzsetup was run by a user other than the super-user; only the super-user may change the kernel's
notion of the current time zone.

gettimeofday(2), tzfile(5), zic(8)

Sun Release 4.1 Last change: 17 November 1987 2137

UlD _ALLOCD (8C) MA~NANCECOMMANDS UID _ALLOCD (8C)

NAME
uid_allocd, gid_allocd - UlD and GID allocator daemons

SYNOPSIS
lusrl etc/rpc.uid _aUocd
lusr/etc/rpc.gid _allocd

AVAILABILITY
Available only on Sun 386i systems running a SunOS 4.0.x release or earlier. Not a SunOS 4.1 release
feature.

DESCRIPTION

FILES

The UID (or Gill) allocator will temporarily allocate an unused Uill (or GID) for use by account administra­
tion tools. It maintains a cache of Uills (Gills) that have been allocated by potentially multiple tools (or in­
stances of tools) in a distributed system, so that they can create accounts (or groups) concurrently. It also
provides the ability to safely enter a Uill (Gill) into the cache which was al10cated using some other
method, such as manually by an administrator; and the ability to delete entries from the cache. Entries in
this cache persist for at least an hour even through system crashes.

These allocators are available on the system which contains the master copy of the list of UIDs (or GID).
Since this list is currently maintained using the Network Interface Service (NIS), the service is available on
the master of the passwd.byuid (group.bygid) NIS map. The service could be provided using a UID data­
base service other than the NIS service.

This implementation uses DES authentication (the Sun Secure RPC protocol) to restrict access to this func­
tion. The only clients privileged to allocate UIDs (GIDs) are those whose net IDs are in the accounts group
(fixed at GID II). All machine IDs are allowed to allocate UIDs (GIDs).

If the file letclugid_alloc.range exists, the allocator only allocates UIDs (GIDs) in the range listed there.
This feature is intended to be used by sites which have multiple NIS domains on their networks; each NIS
domain would be assigned a unique range of UIDs (GIDs). If the file exists, and the local NIS domain is not
explicitly assigned a unique range of UIDs or GID, none will be allocated. Without a mechanism to ensure
that UIDs are uniquely assigned between NIS domains that share resources, normal NFS security mechan­
isms (excluding Secure NFS) may fail to serve as an advisory security mechanism. Common alternative
methods for ensuring UID uniqueness include using a function of some preexisting identifier such as an em­
ployee number, or using a single NIS domain for the entire site.

Ivar/ypldomainnamelpasswd.byuid.{dir,pag}
Ivar/ypldomainnamelgroup.bygid.{dir,pag}
Ivar/ypl domainname Inetid.byname.{dir ,pag}
letc!uid alloc.cache
I etc! gid _ alloc.cache
I etc!ugid _ alloc.range
lusr/include/rpcsvc/uid _ alloc.x
lusr/include/rpcsvcl gid _ alloc.x

SEE ALSO

BUGS

2138

snap(I}, ugid _ alloc.range(5}, logintool(8)

Using UID (GID) ranges does not solve the problem that two different machines, or groups of machines,
may assign different meaning to a given UID (GID).

The current implementation of the daemon is tuned towards small lists of active UIDs (GIDs), both in the
NIS service and in the cache it maintains.

Last change: 6 October 1989 Sun Release 4.1

NOTES

MAINTENANCE COMMANDS UID _ALLOCD (8C)

The Network Information Service (NIS) was fonnerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed.

Sun Release 4.1 Last change: 6 October 1989 2139

UNADV(8) MA~NANCECOMMANDS UNADV(8)

NAME
unadv - unadvertise a Remote File Sharing resource

SYNOPSIS
unadv resource

AVAILABILITY
This program is available with the RFS software installation option. Refer to Installing SunOS 4.1 for in­
formation on how to install optional software.

DESCRIYfION
unadv unadvertises a Remote File Sharing (RFS) resource, which is the advertised symbolic name of a lo­
cal directory, by removing it from the advertised information on the domain name server. unadv prevents
subsequent remote mounts of that resource. It does not affect continued access through existing remote or
local mounts.

An administrator at a server can unadvertise only those resources that physically reside on the local
machine. A domain administrator can unadvertise any resource in the domain from the primary name
server by specifying resource name as domain.resource. A domain administrator should only unadvertise
another hosts resources to clean up the domain advertise table when that host goes down. Unadvertising
another host's resource changes the domain advertise table, but not the host advertise table.

This command is restricted to the super-user.

If resource is not found in the advertised information, an error message will be sent to standard error.

SEE ALSO
adv(8), fumount(8), nsquery(8)

2140 Last change: 30 June 1988 Sun Release 4.1

UNCONFIGURE (8) M~NANCECOMMANDS UNCONFIGURE (8)

NAME
unconfigure - reset the network configuration for a Sun386i system

SYNOPSIS
lusr/etc/unconfigure [-y]

AVAILABILITY
Available only on Sun 386i systems running a SunOS 4.0.x release or earlier. Not a SunOS 4.1 release
feature.

DESCRIPTION
unconfigure restores most of the system configuration and status files to the state they were in when
delivered by Sun Microsystems, Inc. It also deletes all user accounts (including home directories), Net­
work Interface Service (NIS) information, and any diskless client configurations that were set up.

After running unconfigure, a system halts. Rebooting it to multi-user mode at this point will start automat­
ic system installation.

unconfigure is intended for use in the following situations:

• As one of the final steps in Software Manufacturing.

• In systems being set up with temporary configurations, holding no user accounts or diskless clients.
These will occur during demonstrations and evaluation trials.

• To allow systems that had been used as standalones to be upgraded to join a network in a role other
than as a master server. (See instructions later.)

unconfigure is potentially a dangerous utility; it does not work unless invoked by the super-user. As a
warning, unless the -y option is passed, it will require confirmation that all user files and system software
configuration information is to be deleted.

This utility is not recommended for routine use of any sort.

Resetting Temporary Configurations
If users need to set up and tear down configurations, unconfigure can be used to restore the system to an
essentially as-manufactured state. The main concern here is that user accounts will be deleted, so this
should not be done casually.

To reset a temporary configuration, just become the super-user and invoke unconfigure.

Upgrading Standalones to Network Clients
Systems that are going to be networked should be networked from the very first, if at all possible. This el­
iminates whole classes of compatibility problems, such as pathnames and (in particular) user account
clashes.

Automatic system installation directly supports upgrading a single standalone system to an NIS master, and
joining any number of unused systems (or systems upon which unconfigure has been run) into a network.

However, in the situation where standalone systems that have been used extensively are to be joined to a
network, unconfigure can be used in conjunction with automatic system installation by a knowledgeable
super-user to change a system's configuration from standalone to network client. This procedure is not
recommended for use by inexperienced administrators.

The following procedure is not needed unless user accounts or other data need to be preserved; it is intend­
ed to ensure that every UID and GID is changed so as not to clash with those in use on the network. It must
be applied to each system that is being upgraded from a standalone to a network client.

The procedure is as follows:

• Identify all accounts and files that you will want to save. If there are none, just run unconfigure and
install the system on the network. Do not follow the remaining steps.

• Copy letclpasswd to letclpasswd.bak.

Sun Release 4.1 Last change: 24 February 1988 2141

UNCONFIGURE (8) MAINTENANCE COMMANDS UNCONFIGURE (8)

FILES

• Rename all the files (including home directories) so that they aren't deleted. (See FILES below.)
These will probably be only in lexport/home.

• Run uocoofigure and install the system on the network.

• For each account listed in letclpasswd.bak that you want to save, follow this procedure:

• Create a new account on the network; if the VID and GID are the same as in letc/passwd.bak on
the standalone, then skip the next step. However, be sure that you do not make two different ac­
counts with the same VID.

• Use the 'chown -R' command to change the ownership of the home directories.

• You may need to rename the files you just chowned above, for example to ensure that they are
the user's home directory. This may involve updating the auto.home(5) and auto.home(5) NIS
maps, as well.

• Delete I etc/passwd.bak.

unconfigure deletes the following files, if they are present, replacing some of them with the distribution
version if one is supposed to exist:

I etcl.rootkey
letclauto.home
I etc! auto. vol
letclbootparams
letclbootservers
Ivarlsysexl*

letclethers
letclexports
letclfstab
letclgroup
letclhosts

letc/localtime
I etc/net.conf
letc/netmasks
letc/networks
letc/passwd

/etclpublickey
letclsendmail.cf
letclsyslog.conf
letclsystems
Isingle/ifconfig

and all files in Ivar/yp except those distributed with the operating system.

unconfigure truncates all files in Ivar/adm. All user home directories in lexport/home are deleted, except
those for the default user account users, which is shipped with the operating system. All diskless client
configuration information stored in lexport/roots, lexport/swaps, and lexport/dumps is deleted.

SEE ALSO

BUGS

NOTES

2142

chgrp(1), fiod(l), group(5), passwd(5) adduser(8), chown(8)

More of the system configuration files should be reset.

This does not yet support taking a workstation off the network temporarily, for example, to take it home
over the weekend for use as a standalone, or to move it to another network while traveling. This should be
the default behavior.

The procedure for upgrading standalones to network clients should be automated; currently, only upgrading
a standalone to a master server is automated.

The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed.

Last change: 24 February 1988 Sun Release 4.1

UPDATE (8) MAnnENANCECOMMANDS

NAME
update - periodically update the super block

SYNOPSIS
lusr/etc/update

DESCRIPTION

UPDATE (8)

update is a program that executes the sync(2) primitive every 30 seconds. This insures that the file system
is fairly up to date in case of a crash. This command should not be executed directly, but should be execut­
ed out of the initialization shell command file.

SEE ALSO
sync(l), sync(2), init(8)

Sun Release 4.1 Last change: 9 September 1987 2143

USER_AGENTD (8C) MAINTENANCE COMMANDS USER_AGENTD (8C)

NAME
user_agentd - user agent daemon

SYNOPSIS
lusr/etc/rpc.user _agentd

AVAILABILITY
Available only on Sun 386i systems running a SunOS 4.0.x release or earlier. Not a SunOS 4.1 release
feature.

DESCRIPTION
rpc.user _agentd is the remote service used by snap(1) to create, move, or delete home directories, and by
the New User Accounts feature of logintool(8) to create new home directories. The user_agent daemon is
normally invoked by inetd(8C), and runs on all non-diskless systems.

When creating a new home directory, the user_agent daemon executes the copy_home(8) script which re­
sides in the home directory of the primary group to which a new user will be added.

SEE ALSO
snap(1), copy_home(8), inetd(8C), logintool(8)

2144 Last change: 6 October 1989 Sun Release 4.1

UUCHECK (8C) MAINTENANCE COMMANDS UUCHECK (8C)

NAME
uucheck - check the UUCP directories and Permissions file

SYNOPSIS
lusr/lib/uuep/uuebeck [-v] [-x debugJevel]

AVAILABILITY
This command is available with the uucp software installation option. Refer to Installing SunOS 4.1 for
information on how to install optional software.

DESCRIPTION
uuebeck checks for the presence of the UUCP system required files and directories. It also checks for some
obvious errors in the Permissions file (/usr/lib/uueplPerrnissions).

Note: uuebeek can only be used by the super-user or uuep.

OPTIONS

FILES

-v Give a detailed explanation of how the UUCP programs will interpret the Permissions file.

-x debug_level
Produce debugging output on the standard output. debug_level is a number between 0 and 9;
higher numbers give more detailed information. 5,7, and 9 are good numbers to try; they give in­
creasing amounts of detail.

I etduuep/Systems
letduueplPermissions
I etduuep/Deviees
letduuep/Maxuusebeds
letduuep/Maxuuxqts
Ivarlspoolluuep/*
IvarlspoolllocksILCK *
Ivarlspoolluueppublic/*

SEE ALSO

BUGS

uucp(lC), uustat(lC), uux(lC), uucieo(8C), uusched(8C)

The program does not check file/directory modes or some errors in the Permissions file such as duplicate
login or machine name.

Sun Release 4.1 Last change: 26 May 1988 2145

UUCICO(8C) MAThnENANCECOMMANDS UUCICO(8C)

NAME
uucico - file transport program for the UUCP system

SYNOPSIS
lusr/lib/uucp/uucico [-r role _number] [-x debug_level] [-i interface] [-d spool_directory]

-s system_name

AVAILABILITY
This command is available with the uucp software installation option. Refer to Installing SunOS 4.1 for
information on how to install optional software.

DESCRIPTION
uucico is the file transport program for UUCP work file transfers. uux(1C) and uucp(1C) both queue jobs
that will be transferred by uucico. It is normally started by the scheduler, uusched (8C), but can be started
manually; this is done for debugging. For example, the script Uutry starts uucico with debugging turned
on.

OPTIONS

FILES

-r role number
Specify the role that uucico should perform. role _number is the digit 1 for master mode or 0 for
slave mode (default). Master mode should be specified when uucico is started by a program or
cron(8).

-x debug_level
Produce debugging output on the standard output. debug_level is a number between 0 and 9;
higher numbers give more detailed information. 5, 7, and 9 are good numbers to try; they give in­
creasing amounts of detail.

-i interface
Define the interface used with uucico. This interface only affects slave mode. Known interfaces
are UNIX (default).

letcluucp/Systems
letcluucplPermissions
letcluucp/Devices
letcluucp/Devconfig
letcluucp/Sysfiles
letcluucplMaxuuxqts
letcluucplMaxuuscheds
Ivarlspool/uucp/*
Ivarlspool/locksILCK *
Ivarlspoolluucppublic/*

SEE ALSO
uucp(lC), uustat(lC), uux(lC), cron(8), uuscbed(8C)

2146 Last change: 12 June 1988 Sun Release 4.1

UUCLEAN (8C) M~NANCECOMMANDS

NAME
uuclean - uucp spool directory clean-up

SYNOPSIS
/usr/lib/uucp/uuclean [-m] [-ddirectory] [-ntime] [-ppre]

DESCRIPTION

UUCLEAN (8C)

uuclean scans the spool directory for files with the specified prefix and deletes all those which are older
than the specified number of hours.

OPTIONS
-ddirectory

Clean the indicated spool directory.

-m Send mail to the owner of the file when it is deleted.

-ntime Files whose age is more than time hours are deleted if the prefix test is satisfied (default time is 72

FILES

hours).

-ppre Scan for files with pre as the file prefix. Up to 10 -p arguments may be specified. A -p without
any pre following deletes all files older than the specified time.

uuclean will typically be started by cron(8).

/usr/lib/uucp
/usr/lib/ uucp/ spool

directory with commands used by uuclean internally
spool directory

SEE ALSO
uucp(1C), uux(1C), cron(8)

Sun Release 4.1 Last change: 15 August 1988 2147

UUCLEANUP (8C) MAINTENANCE COMMANDS UUCLEANUP (8C)

NAME
uucleanup - UUCP spool directory clean-up

SYNOPSIS
lusr/lib/uucp/uucleanup [-Ctime] [-Dtime] [-mstring] [-otime] [-ssystem] [-Wtime]

[-x debug_level] [- Xtime]

AVAILABILITY
This command is available with the uucp software installation option. Refer to Installing SunOS 4.1 for
information on how to install optional software.

DESCRIPTION
uucleanup will scan the spool directories for old files and take appropriate action to remove them in a use­
ful way:

• Inform the requestor of send/receive requests for systems that cannot be reached.

• Return mail, which cannot be delivered, to the sender.

• Delete or execute rnews for rnews type files (depending on where the news originated -lo­
cally or remotely).

• Remove all other files.

In addition, there is provision to warn users of requests that have been waiting for a given number of days
(default 1 day). Note: uucleanup will process as if all option times were specified to the default values un­
less time is specifically set.

This program is typically started by the shell uudemon.cleanup, which should be started by cron(8).

OPTIONS

FILES

2148

-Ctime Remove any C. files that are at least time days old (default 7 days), and send appropriate informa­
tion to the requestor.

-Dtime Remove any D. files that are at least time days old (default 7 days), and make an attempt to deliver
mail messages and execute rnews when appropriate.

-mstring
Include this line in the warning message generated by the -W option. The default line is 'See
your local administrator to locate the problem'.

-otime Delete other files that are more than time days old (default 2 days).

-ssystem

-Wtime

Execute for the spool directory for the remote system system only.

Send a mail message to be sent to the requestor warning about the delay in contacting the remote
for any C. files that are time days old (default 1 day). The message includes the JOBlD, and in the
case of mail, the mail message. The administrator may include a message line telling whom to
call to check the problem (-m option).

-x debug_level
Produce debugging output on the standard output. debug_level is a number between 0 and 9;
higher numbers give more detailed information. 5, 7, and 9 are good numbers to try; they give in­
creasing amounts of detail.

-X time Remove any X. files that are at least time days old (default 2 days). The D. files are probably not
present (if they were, the X. could get executed). But if there are D. files, they will be taken care
of by D. processing.

lusr/lib/uucp
Ivarlspoolluucp

directory with commands used by uucleanup internally
spool directory

Last change: 26 May 1988 Sun Release 4.1

UUCLEANUP (8C) MAnnENANCECOMMANDS UUCLEANUP (8C)

SEE ALSO
uucp(IC), uux(IC), cron(8)

Sun Release 4.1 Last change: 26 May 1988 2149

UUCPD(8C) MAThnENANCECOMMANDS UUCPD(8C)

NAME
uucpd - UUCP server

SYNOPSIS
lusrl etc/in. uucpd

AVAILABILITY
This command is available with the uucp software installation option. Refer to Installing SunOS 4.1 for
information on how to install optional software.

DESCRIYfION

FILES

uucpd is the server for supporting UUCP connections over networks.

uucpd is invoked by inetd(8C) when a UUCP connection is established (that is, a connection to the port in­
dicated in the "uucp" service specification; see services(5», and executes the following protocol:

1) The server prompts with login:. The uucico(8C) process at the other end must supply a username.

2) Unless the username refers to an account without a password, the server then prompts with Pass-
word:. The uucico process at the other end must supply the password for that account.

If the username is not valid or is valid but refers to an account that does not have lusr/lib/uucp/uucico as
its login shell, or if the password is not the correct password for that account, the connection is dropped.
Otherwise, uucico is run, with the user ID, group ID, group set, and home directory for that account, with
the environment variables USER and LOGNAME set to the specified usemame, and with a -u flag specify­
ing the usemame. Entries are made in Ivar/adm/wtmp and Ivar/adm/lastlog for the username.

Ivar/adm/wtmp
Ivar/adm/lastlog

SEE ALSO

accounting
time of last login

services(5), inetd(8C), uucico(8C)
DIAGNOSTICS

2150

All diagnostic messages are returned on the connection, after which the connection is closed.
user read

An error occurred while reading the usernarne.
passwd read

An error occurred while reading the password.
Login incorect.

The usemame is invalid or refers to an account with a login shell other than lusr/lib/uucp/uucico,
or the password is not the correct password for the account.

Last change: 12 June 1988 Sun Release 4.1

UUSCHED (8C) MAINTENANCE COMMANDS UUSCHED (8C)

NAME
uusched - the scheduler for the UUCP file transport program

SYNOPSIS
/usr/lib/uucp/uusched [-u debug_level] [-x debug_level]

A V AILABILITY
This command is available with the uucp software installation option. Refer to Installing SunOS 4.1 for
information on how to install optional software.

DESCRIPTION
uusched is the UUCP file transport scheduler. It is usually started by the daemon uudemon.hour that is
started by cron(8) from an entry in the system crontab file:

39 * * * * /bin/su uucp -c "/usr/lib/uucp/uudemon.hour > !dev/null"

OPTIONS

FILES

-u debug_level
Pass debug_level as '-x debug_level' to any invocations of uucico(8C) started by uusched.

-x debug_level
Produce debugging output on the standard output. debug_level is a number between 0 and 9;
higher numbers give more detailed information. 5,7, and 9 are good numbers to try; they give in­
creasing amounts of detail.

/etc/uucp/Systems
/etc/uucp/Permissions
/etc/uucp/Devices
/var/spoolluucp/*
/var/spoolllocksILCK *
/var/spoolluucppublic/*

SEE ALSO
uucp(1C), uustat(1C), uux(1C), cron(8), uucico(8C)

Sun Release 4.1 Last change: 26 May 1988 2151

UUXQT(8C) M~NANCECOMMANDS UUXQT(8C)

NAME
uuxqt - execute remote command requests

SYNOPSIS
lusr/lib/uucp/uuxqt [-x debugJevel]

DESCRIPTION
uuxqt is the program that executes remote job requests from remote systems generated by the use of the
uux(lC) command. mail(l) uses uux for remote mail requests. uuxqt searches the spool directories look­
ing for X. files. For each X. file, uuxqt checks to see if all the required data files are available and accessi­
ble, and file commands are permitted for the requesting system. The Permissions file is used to validate
file accessibility and command execution permission.

OPTIONS
-x debug_level

Produce debugging output on the standard output. debug_level is a number between 0 and 9;
higher numbers give more detailed information. 5, 7, and 9 are good numbers to try; they give in­
creasing amounts of detail.

ENVIRONMENT

FILES

There are two environment variables that are set before the uuxqt command is executed:

UU MACHINE

UU USER

Machine that sent the job (the previous one).

User that sent the job.

These can be used in writing commands that remote systems can execute to provide information, auditing,
or restrictions.

letcluucp/Permissions
letcluucp/Maxuuxqts
Ivarlspoolluucp/*
IvarlspoolllocksILCK *

SEE ALSO
mail(l), uucp(lC), uustat(lC), uux(1C), uucico(8C)

2152 Last change: 26 May 1988 Sun Release 4.1

VIPW (8) MAINTENANCE COMMANDS VIPW (8)

NAME
vipw - edit the password file

SYNOPSIS
lusr/etc/vipw

DESCRIPTION

FILES

vipw edits the password file while setting the appropriate locks, and does any necessary processing after
the password file is unlocked. If the password file is already being edited, then you will be told to try again
later. The vi(1) editor will be used unless the environment variable VISUAL or EDITOR indicates an alter­
nate editor.

vipw performs a number of consistency checks on the password entry for root, and will not allow a pass­
word file with a "mangled" root entry to be installed. It also checks the letdshells file to verify the login
shell for root.

letdptmp
letdshells

SEE ALSO
passwd(1), vi(1), passwd(5), adduser(8)

Sun Release 4.1 Last change: 9 September 1987 2153

VMSTAT(8) MAINTENANCE COMMANDS VMSTAT(8)

NAME
vrnstat - report virtual memory statistics

SYNOPSIS
vmstat (-cfisS] (interval [count]]

DESCRIPTION

2154

vmstat delves into the system and normally reports certain statistics kept about process, virtual memory,
disk, trap and CPU activity.

Without options, vmstat displays a one-line summary of the virtual memory activity since the system has
been booted. If interval is specified, vmstat summarizes activity over the last interval seconds. If a count
is given, the statistics are repeated count times.

For example, the following command displays a summary of what the system is doing every five seconds.
This is a good choice of printing interval since this is how often some of the statistics are sampled in the
system.

example% vmstat 5

procs memory page faults
r b w avm fre re at pi po fr de sr xO xl x2 x3 in sy cs us sy id
20 0 918 286 0 0 0 0 0 0 0 1 0 0 0 4 12 5 3 5 91
100 846 254 0 0 0 0 0 0 0 6 0 1 0 42153 31 7 40 54
1 0 0 840 268 0 0 0 0 0 0 0 5 0 0 0 27 103 25 8 26 66
100 620 312 0 0 0 0 0 0 0 6 0 0 0 26 76 25 6 27 67

CTRL-C
example%

The fields of vmstat' s display are:

procs Report the number of processes in each of the three following states:
r in run queue
b blocked for resources (i/o, paging, etc.)
w runnable or short slccper « 20 secs) but swapped

memory Report on usage of virtual and real memory. Virtual memory is considered active if it belongs to
processes which are running or have run in the last 20 seconds.
avm number of active virtual Kbytes
fre size of the free list in Kbytes

page Report information about page faults and paging activity. The information on each of the follow­
ing activities is averaged each five seconds, and given in units per second.
re page reclaims - but see the -8 option for how this field is modified.
at number of attaches - but see the -8 option for how this field is modified.
pi kilobytes per second paged in
po kilobytes per second paged out
fr kilobytes freed per second
de anticipated short term memory shortfall in Kbytes
sr pages scanned by clock algorithm, per-second

disk Report number of disk operations per second (this field is system dependent). For Sun systems,
four slots are available for up to four drives: "xO" (or "sO" for SCSI disks), "xl", "x2", and
"x3" .

faults Report trap/interrupt rate averages per second over last 5 seconds.
in (non clock) device interrupts per second
sy system calls per second
cs CPU context switch rate (switches/sec)

Last change: 7 September 1988 Sun Release 4.1

VMSTAT(8) MA~NANCECOMMANDS VMSTAT(8)

cpu Give a breakdown of percentage usage of CPU time.
us user time for normal and low priority processes
sy system time
id CPU idle

OPTIONS

FILES

BUGS

-c Report cache flushing statistics. By default, report the total number of each kind of cache flushed
since boot time. The types are: user, context, region, segment, page, and partial-page.

-f Report on the number of forks and vforks since system startup and the number of pages of virtual
memory involved in each kind of fork.

-i Report the number of interrupts per device. Autovectored interrupts (including the clock) are list­
ed first.

-s Display the contents of the sum structure, giving the total number of several kinds of paging­
related events which have occurred since boot.

-S Report on swapping rather than paging activity. This option will change two fields in vms tat 's
"paging" display: rather than the "re" and "at" fields, vmstat will report "si" (swap-ins), and
"so" (swap-outs).

Idev/kmem
Ivrnunix

If more than one autovectored device has the same name, interrupts are counted for all like-named devices
regardless of unit number. Such devices are listed with a unit number of '?'.

Sun Release 4.1 Last change: 7 September 1988 2155

YPBATCHUPD (8C) MAINTENANCE COMMANDS YPBATCHUPD (8C)

NAME
ypbatchupd - NIS batch update daemon

SYNOPSIS
lusr/etc/rpc.ypbatchupd

AVAILABILITY
Available only on Sun 386i systems running a SunOS 4.0.x release or earlier. Not a SunOS 4.1 release
feature.

DESCRIYfION
ypbatchupd(8C) is the remote service used by snap(1) and logintool(8) to update the Network Interface
Service (NIS) database on the master server, and to push all modified NIS maps to NIS servers. It is normal­
ly started by letclrc.local.

SEE ALSO

NOTES

2156

snap(1), logintool(8), rc(8)

The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed. The name Yellow Pages is a registered trade­
mark in the United Kingdom of British Telecommunications pIc, and may not be used without permission.

Last change: 6 October 1989 Sun Release 4.1

YPINIT(8) MA~NANCECOMMANDS YPINIT(8)

NAME
ypinit - build and install NIS database

SYNOPSIS
fusr/etc/ypfypinit -m

fusr/etc/ypfypinit -s master _name

DESCRIPTION
ypinit sets up a Network Interface Service (NIS) database on an NIS server. It can be used to set up a mas­
ter or a slave server. You must be the super-user to run it. It asks a few, self-explanatory questions, and
reports success or failure to the terminal.

It sets up a master server using the simple model in which that server is master to all maps in the data base.
This is the way to bootstrap the NIS system; later if you want you can change the association of maps to
masters.

Note: If there are both 3.x and 4.x NIS servers running in the network, the 4.x server should be
configured as the master.

All databases are built from scratch, either from information available to the program at runtime, or from
the ASCII data base files in fetc. These files are listed below under FILES. All such files should be in their
"traditional" form, rather than the abbreviated form used on client machines.

An NIS database on a slave server is set up by copying an existing database from a running server. The
master _name argument should be the hostname of an NIS server (either the master server for all the maps,
or a server on which the data base is up-to-date and stable).

Read ypfiles(5) and ypserv(8) for an overview of the NIS service.

OPTIONS

FILES

-m Indicate that the local host is to be the NIS master.

-s Set up a slave database.

fetc/passwd
fetc/group
fetc/hosts
letc/networks
f etc/services
fetc/protocols
letc/ethers

SEE ALSO

NOTES

ypfiles(5), makedbm(8), ypmake(8), yppush(8), ypserv(8), ypxfr(8)

The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed. The name Yellow Pages is a registered trade­
mark in the United Kingdom of British Telecommunications pic, and may not be used without permission.

Sun Release 4.1 Last change: 8 December 1988 2157

YPMAKE(8) MA~NANCECOMMANDS YPMAKE(8)

NAME
ypmake - rebuild NIS database

SYNOPSIS
cd Ivar/yp ; make [map]

DESCRIPTION

FILES

The file called Makefile in Ivar/yp is used by make(1) to build the Network Interface Service (NIS) data­
base. With no arguments, make creates dbm databases for any NIS maps that are out-of-date, and then ex­
ecutes yppusb(8) to notify slave databases that there has been a change.

If you supply a map on the command line, make will update that map only. Typing make passwd will
create and yppush the password database (assuming it is out of date). Likewise, make hosts and make
networks will create and yppush the host and network files, letc/hosts and letc/networks.

There are three special variables used by make: DIR, which gives the directory of the source files; NO­
PUSH, which when non-null inhibits doing a yppush of the new database files; and OOM, used to construct
a domain other than the master's default domain. The default for DIR is letc, and the default for NOPUSH
is the null string.

Refer to ypfiles(5) and ypserv(8) for an overview of the NIS service.

Ivar/yp
letc/hosts
letc/networks

SEE ALSO

NOTES

2158

make(1), ypfiles(5), makedbm(8), yppush(8), ypserv(8)

The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed. The name Yellow Pages is a registered trade­
mark in the United Kingdom of British Telecommunications pic, and may not be used without permission.

Last change: 14 December 1987 Sun Release 4.1

YPPASSWDD (8C) MA~NANCECOMMANDS YPPASSWDD (8C)

NAME
yppasswdd, rpc. yppasswdd - server for modifying NIS password file

SYNOPSIS
lusr/etc/rpc.yppasswddfilename [adjunctJile] [-nogecos] [-noshell] [-nopw]

[-m argument1 argument2 . ..]

A V AIL ABILITY
This program is available with the Networking software installation option. Refer to Installing SunOS 4.1
for information on how to install optional software.

DESCRIPTION
yppasswdd is a server that handles password change requests from yppasswd(l). Unless an adjunct Jile is
specified, it changes a password entry in filename, which is assumed to be in the format of passwd(5).
filename is the password file that provides the basis for the passwd.byname and passwd.byuid maps. This
should not be confused with the servers /etclpasswd file which controls access to the server. In particular
this file should not contain an entry for the super user.

If an adjunct Jile is specified or letclsecurity/passwd.adjunct exists, this file will be changed instead of
the filename. An entry in filename or adjunct Jile will only be changed if the password presented by yp­
passwd(1) matches the encrypted password of that entry.

If the -noshell -no gee os or -nopw options are given then these fields may not be changed remotely using
chfn, chsh, or passwd(l).

If the -m option is given, then after filename or adjunct Jile is modified, a make(1) will be performed in
/var/yp. Any arguments following the flag will be passed to make.

This server is not run by default, nor can it be started up from inetd(8C). If it is desired to enable remote
password updating for the Network Interface Service (NIS), then an entry for yppasswdd should be put in
the letc/rc file of the host serving as the master for the NIS passwd file.

EXAMPLE

FILES

If the NIS password file is stored as Ivar/yp/passwd, then to have password changes propagated immedi­
ately, the server should be invoked as

lusr/etc/rpc.yppasswdd Ivar/yp/passwd -m passwd DIR=/var/yp

Ivar/yp/Makefile
letclsecurity/passwd.adjunct
letclrc

SEE ALSO

NOTES

make(1), yppasswd(1), passwd(1), passwd(5), passwd.adjunct(5), ypfiles(5), inetd(8C), ypmake(8)

The password file specified to rpc.yppasswdd may not be a link.

The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed. The name Yellow Pages is a registered trade­
mark in the United Kingdom of British Telecommunications pIc, and may not be used without permission.

Sun Release 4.1 Last change: 17 December 1987 2159

YPPOLL(8) MAINTENANCE COMMANDS YPPOLL(8)

NAME
yppoll- version of NIS map at NIS server

SYNOPSIS
lusr/etc/yp/yppoll [-h host] [-d domain] mapname

DESCRIPTION
yppoll asks a ypserv(8) process what the order number is, and which host is the Network Interface Service
(NIS) master server for the named map. If the server is a v.1 NIS protocol server, yppoll uses the older pro­
tocol to communicate with it In this case, it also uses the older diagnostic messages in case of failure.

OPTIONS
-h host Ask the ypserv process at host about the map parameters. If host is not specified, the NIS server

for the local host is used. That is, the default host is the one returned by ypwhich(8).

-d domain
Use domain instead of the default domain.

SEE ALSO

NOTES

2160

ypfiles(5), ypserv(8), ypwhicb(8)

The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed. The name Yellow Pages is a registered trade­
mark in the United Kingdom of British Telecommunications pIc, and may not be used without permission.

Last change: 14 December 1987 Sun Release 4.1

YPPUSH(8) MA~NANCECOMMANDS YPPUSH(8)

NAME
yppush - force propagation of changed NIS map

SYNOPSIS
lusr/etc/yp/yppush [-v] [-d domain] mapname

DESCRIPTION
yppush copies a new version of a Network Interface Service (NIS) map from the master NIS server to the
slave NIS servers. It is normally run only on the master NIS server by the Makefile in Ivar/yp after the
master databases are changed. It first constructs a list of NIS server hosts by reading the NIS map yp­
servers within the domain. Keys within the map ypservers are the ASCII names of the machines on which
the NIS servers run.

A "transfer map" request is sent to the NIS server at each host, along with the information needed by the
transfer agent (the program which actually moves the map) to call back the yppush • When the attempt has
completed (successfully or not), and the transfer agent has sent yppush a status message, the results may
be printed to stdout. Messages are also printed when a transfer is not possible; for instance when the re­
quest message is undeliverable, or when the timeout period on responses has expired.

Refer to ypfiles(S) and ypserv(8) for an overview of the NIS service.

OPTIONS
-ddomain

FILES

Specify a domain.

-v Verbose. This prints messages when each server is called, and for each response. If this flag is
omitted, only error messages are printed.

Ivar/yp/domain Iypservers. {dir ,pag}
Ivar/yp

SEE ALSO

BUGS

NOTES

ypfiles(S), ypserv(8), ypxfr(8)

NIS protocol specification

In the current implementation (version 2 NIS protocol), the transfer agent is ypxfr(8), which is started by
the ypserv program. If yppush detects that it is speaking to a version 1 NIS protocol server, it uses the old­
er protocol, sending a version 1 YPPROC_GET request and issues a message to that effect. Unfortunately,
there is no way of knowing if or when the map transfer is performed for version 1 servers. yppush prints a
message saying that an "old-style" message has been sent. The system administrator should later check to
see that the transfer has actually taken place.

The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed. The name YeHow Pages is a registered trade­
mark in the United Kingdom of British Telecommunications pIc, and may not be used without permission.

Sun Release 4.1 Last change: 14 December 1987 2161

YFSERV(8) MAThnENANCECOMMANDS YPSERV(8)

NAME
ypserv, ypbind, ypxfrd - NIS server and binder processes

SYNOPSIS
lusr/etc/ypserv [-d]

lusr/etc/ypbind [-s] [-ypset I-ypsetme]

ypxfrd [-x]

AVAILABILITY
This program is available with the Networking software installation option. Refer to Installing SunOS 4.1
for information on how to install optional software.

DESCRIYfION

2162

The Network Interface Service (NIS) provides a simple network lookup service consisting of databases and
processes. The databases are dbm(3X) files in a directory tree rooted at Ivar/yp. These files are described
in ypfiles(5). The processes are lusr/etc/ypserv, the NIS database lookup server, and lusr/etdypbind, the
NIS binder. The programmatic interface to the NIS service is described in ypclnt(3N). Administrative
tools are described in yppush(8), ypxfr(8), yppoU(8), ypwhich(8), and ypset(8). Tools to see the contents
of NIS maps are described in ypcat(I), and ypmatch(I). Database generation and maintenance tools are
described in ypinit(8), ypmake(8), and makedbm(8).

Both ypserv and ypbind are daemon processes typically activated at system startup time from
letdrc.local. ypserv runs only on NIS server machines with a complete NIS database. ypbind runs on all
machines using the NIS services, both NIS servers and clients.

ypxfrd transfers entire NIS maps in an efficient manner. For systems that use this daemon, map transfers
will be 10 to 100 times faster, depending on the map. To use this daemon, ypxfrd should be run on a
server running SunOS release 4.1. ypxfr will attempt to use ypxfrd first, if that fails, it will print a warning
and then use the older transfer method.

The ypserv daemon's primary function is to look up information in its local database of NIS maps. The
operations performed by ypserv are defined for the implementor by the YP Protocol Specification, and for
the programmer by the header file rpcsvdyp yrot.h. Communication to and from ypserv is by means of
RPC calls. Lookup functions are described in ypclnt(3N), and are supplied as C-callable functions in the C
library. There are four lookup functions, all of which are performed on a specified map within some NIS

domain: match, get_first, get_next, and get_aU. The match operation takes a key, and returns the associ­
ated value. The get_first operation returns the first key-value pair from the map, and get_next can be used
to enumerate the remainder. get_all ships the entire map to the requester as the response to a single RPC
request

Two other functions supply information about the map, rather than map entries: get_order_number, and
get_master_name. In fact, both order number and master name exist in the map as key-value pairs, but
the server will not return either through the normal lookup functions. If you examine the map with mak­
edbm(8), however, they will be visible. Other functions are used within the NIS service subsystem itself,
and are not of general interest to NIS clients. They include dOJou_serve_this_domain?, transfer_map,
and reinitialize internal state. - -
The function of ypbind is to remember information that lets client processes on a single node communicate
with some ypserv process. ypbind must run on every machine which has NIS client processes; ypserv
mayor may not be running on the same node, but must be running somewhere on the network.

The information ypbind remembers is called a binding - the association of a domain name with the inter­
net address of the NIS server, and the port on that hos~ at which the ypserv process is listening for service
requests. This information is cached in the directory Ivar/yp/binding using a filename of
domainname. version.

The process of binding is driven by client requests. As a request for an unbound domain comes in, the yp­
bind process broadcasts on the net trying to find a ypserv process that serves maps within that domain.
Since the binding is established by broadcasting, there must be at least one ypserv process on every net If

Last change: 17 December 1987 Sun Release 4.1

YPSERV(8) MA~NANCECOMMANDS YPSERV(8)

the client is running in C2 secure mode, then ypbind will only accept bindings to servers where the ypserv
process is running as root. Once a domain is bound by a particular ypbind, that same binding is given to
every client process on the node. The ypbind process on the local node or a remote node may be queried
for the binding of a particular domain by using the ypwhich(l) command.

Bindings and rebindings are handled transparently by the C library routines. If ypbind is unable to speak to
the ypserv process it's bound to, it marks the domain as unbound, tells the client process that the domain is
unbound, and tries to bind the domain once again. Requests received for an unbound domain will wait un­
til the domain requested is bound. In general, a bound domain is marked as unbound when the node run­
ning ypserv crashes or gets overloaded. In such a case, ypbind will to bind any NIS server (typically one
that is less-heavily loaded) available on the net.

ypbind also accepts requests to set its binding for a particular domain. The request is usually generated by
the NIS subsystem itself. ypset(8) is a command to access the set_domain facility. It is for unsnarling
messes. Note: the set_domain procedure only accepts requests from processes running as root.

OPTIONS

FILES

-d

-s

-v

The NIS service should go to the DNS (Domain Name Service) for more host information.

Secure. When specified, only ypservers bound to a reserved port are used. This allows for a
slight increase in security in completely controlled environments, where there are no computers
operated by untrusted individuals. It offers no real increase in security.

Do not fork when ypxfrd is called multiple times.

-ypset ypset(8) may be used to change the binding. This option is very dangerous, and only should be
used for debugging the network from a remote machine.

-ypsetme
ypset(8) may be issued from this machine, security is based on IP address checking, which can be
defeated on network where untrusted individuals may inject packets. This option is not recom­
mended.

If the file Ivar/yp/ypserv.log exists when ypserv starts up, log information will be written to this file when
error conditions arise.

The file(s) Ivar/yp/binding/domainname.version will be created to speed up the binding process. These
files cache the last successful binding created for the given domain, when a binding is requested these files
are checked for validity and then used.
Ivar/yp
lusr/etc/ypbind

SEE ALSO

NOTES

domainname(l), ypcat(l), ypmatch(l), dbm(3X), ypclnt(3N), ypfiles(S) makedbm(8), ypmake(8),
ypinit(8), yppoll(8), yppush(8), ypset(8), ypwhich(8), ypxfr(8),

Network Programming
System and Network Administration

Both ypbind and ypserv support multiple domains. The ypserv process determines the domains it serves
by looking for directories of the same name in the directory Ivar/yp. It will reply to all broadcasts request­
ing yp service for that domain. Additionally, the ypbind process can maintain bindings to several domains
and their servers, the default domain is however the one specified by the domainname(l) command at
startup time.

The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed. The name YeHow Pages is a registered trade­
mark in the United Kingdom of British Telecommunications pIc, and may not be used without permission.

Sun Release 4.1 Last change: 17 December 1987 2163

YPSET(8) MAINTENANCE COMMANDS YPSET(8)

NAME
ypset - point ypbind at a particular server

SYNOPSIS
lusr/etc/yp/ypset [-VII-V2] [-d domain] [-b host] server

DESCRIPTION
ypset tells ypbind to get the Network Interface Service (NIS) for the specified domain from the ypserv
process running on server. If server is down, or is not running ypserv, this is not discovered until an NIS
client process tries to get a binding for the domain. At this point, the binding set by ypset is tested by yp­
bind. If the binding is invalid, ypbind attempts to rebind for the same domain.

ypset is useful for binding a client node which is not on a broadcast net, or is on a broadcast net which is
not running an NIS server host. It also is useful for debugging NIS client applications, for instance where
an NIS map only exists at a single NIS server host.

In cases where several hosts on the local net are supplying NIS services, it is possible for ypbind to rebind
to another host even while you attempt to find out if the ypset operation succeeded. For example, you can
type:

example% ypset bosH
example% ypwbicb
host2

which can be confusing. This is a function of the NIS service subsystem's attempt to load-balance among
the available NIS servers, and occurs when host1 does not respond to ypbind because it is not running yp­
serv (or is overloaded), and host2, running ypserv, gets the binding.

server indicates the NIS server to bind to, and can be specified as a name or an IP address. If specified as a
name, ypset attempts to use NIS services to resolve the name to an IP address. This works only if the node
has a current valid binding for the domain in question. In most cases, server should be specified as an IP
address.

Refer to ypfiles(5) and ypserv(8) for an overview of the NIS service.

OPTIONS
-Vl Bind server for the (old) v.1 NIS protocol.

-V2 Bind server for the (current) v.2NIS protocol.

If no version is supplied, ypset, first attempts to set the domain for the (current) v.2 protocol. If
this attempt fails, ypset, then attempts to set the domain for the (old) v.1 protocol.

-bhost Set ypbind's binding on host, instead of locally. host can be specified as a name or as an IP ad­
dress.

-ddomain
Use domain, instead of the default domain.

DIAGNOSTICS
Sorry, I couldn't send my rpc message to ypbind on host name

The user is not root, or ypbind was run without one of the -ypset flags. See ypserv(8) for expla­
nations of the -ypset flags.

SEE ALSO

NOTES

2164

ypwbich(l), ypfiles(5), ypserv(8)

The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed. The name Yellow Pages is a registered trade­
mark in the United Kingdom of British Telecommunications pIc, and may not be used without permission.

Last change: 23 August 1989 Sun Release 4.1

YPSYNC(8) MA~NANCECOMMANDS YPSYNC(8)

NAME
ypsync - collect most up-to-date NIS maps

SYNOPSIS
/usr/etc/yp/ypsync [-r] [-u]

AVAILABILITY
Available only on Sun 386i systems running a SunOS 4.0.x release or earlier. Not a SunOS 4.1 release
feature.

DESCRIPTION
ypsync gathers current Network Information Service (NIS) maps to the local NIS server. When invoked
with no arguments, it polls all the NIS servers listed in the /etc/ypservers NIS map for the maps they serve,
and the order of those maps. If there are any new maps that the local server does not have, or if there are
maps that are more current than the local server's copy, it excutes ypxfr(8) to transfer those maps to the lo­
cal server.

ypsync eliminates the need for cron(8) jobs to ensure that NIS map updates are eventually transmitted to all
NIS servers, and supports different NIS maps having different masters. It is invoked periodically by yp­
serv(8).

OPTIONS

FILES

-r When invoked with the -r flag, ypsync re-creates the local /var/yp directory and databases if
needed. This facility is used when upgrading servers, since they can automatically retrieve NIS
maps without needing manual intervention. The NIS master of the ypservers map can also desig­
nate new servers, which would automatically pick up their new maps on reboot.

-u When invoked with the -u flag, ypsync updates the list of NIS servers on the master of the yp­
servers NIS map to include the local system if it does not already, and then get copies of all the
NIS databases. A user invoking ypsync -u may not be root, and must have the networks privilege
in the NIS group map.

/var/yp/YP.domainname

SEE ALSO

NOTES

ypupdate(3), ypserv(8), ypxfr(8)

Sun386i Advanced Administration

System and Network Administration

The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed. The name Yellow Pages is a registered trade­
mark in the United Kingdom of British Telecommunications pic, and may not be used without permission.

Sun Release 4.1 Last change: 10 March 1989 2165

YPUPDA TED (8C) MAThnENANCECOMMANDS YPUPDA TED (8C)

NAME
ypupdated, rpc.ypupdated - server for changing NIS information

SYNOPSIS
rpc.ypupdated [-is]

DESCRIPTION
ypupdated is a daemon that updates information in the Network Interface Service (NIS), normally started
up by inetd(8C). ypupdated consults the file updaters(5) in the directory Ivar/yp to determine which NIS
maps should be updated and how to change them.

By default, the daemon requires the most secure method of authentication available to it, either DES
(secure) or UNIX (insecure).

OPTIONS

FILES

-i Accept RPC calls with the insecure AUTH_UNIX credentials. This allows programmatic updating
of the NIS maps in all networks.

-s Accept only calls authenticated using the secure RPC mechanism (AUTH_DES authentication).
This disables programmatic updating of the NIS maps unless the network supports these calls.

Ivar/yp/updaters

SEE ALSO

NOTES

2166

updaters(5), inetd(8C), keyserv(8C)

System and Network Administration
Network Programming

The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YF). The functionality
of the two remains the same; only the name has changed. The name Yellow Pages is a registered trade­
mark in the United Kingdom of British Telecommunications pIc, and may not be used without permission.

Last change: 23 February 1988 Sun Release 4.1

YPXFR(8) MAThnENANCECOMMANDS YPXFR(8)

NAME
ypxfr - transfer NIS map from NIS server to here

SYNOPSIS
lusr/etc/yp/ypxfr [-b] [-c] [-f] [-d domain] [-b host] [-s domain] [-C tid prog ipadd port]

mapname

DESCRIPTION
ypxfr moves a Network Interface Service (NIS) map in the default domain for the local host to the local
host by making use of normal NIS services. It creates a temporary map in the directory /var/yp/domain
(this directory must already exist; domain is the default domain for the local host), fills it by enumerating
the map's entries, fetches the map parameters (master and order number), and loads them. It then deletes
any old versions of the map and moves the temporary map to the real mapname.

If run interactively, ypxfr writes its output to the terminal. However, if it is invoked without a controlling
terminal, and if the log file Ivar/yp/ypxfr.log exists, it will append all its output to that file. Since ypxfr is
most often run from the super-user's crontab file, or by ypserv, you can use the log file to retain a record
of what was attempted, and what the results were.

If issecure(3) is TRUE, ypxfr requires that ypserv on the host be running as root. If the map being
transferred is a secure map, ypxfr sets the permissions on the map to 0600.

For consistency between servers, ypxfr should be run periodically for every map in the NIS data base. Dif­
ferent maps change at different rates: the services .byname map may not change for months at a time, for
instance, and may therefore be checked only once a day (in the wee hours). You may know that
mail.aliases or hosts.byname changes several times per day. In such a case, you may want to check hourly
for updates. A crontab(5) entry can be used to perform periodic updates automatically. Rather than hav­
ing a separate crontab entry for each map, you can group commands to update several maps in a shell
script. Examples (mnemonically named) are in /usr/etc/yp: ypxfr _lperday, ypxfr _ 2perday, and
ypxfr _lperhour. They can serve as reasonable first cuts.

Refer to ypfiles(5) and ypserv(8) for an overview of the NIS service.

OPTIONS
-b

-c

-f

Preserve the resolver flag in the map during the transfer.

Do not send a "Clear current map" request to the local ypserv process. Use this flag if ypserv is
not running locally at the time you are running ypxfr. Otherwise, ypxfr will complain that it can­
not talk to the local ypserv, and the transfer will fail.

Force the transfer to occur even if the version at the master is not more recent than the local ver­
sion.

-d domain
Specify a domain other than the default domain.

-h host Get the map from host, regardless of what the map says the master is. If host is not specified,
ypxfr asks the NIS service for the name of the master, and tries to get the map from there. host
may be a name or an internet address in the form a.b.c.d.

-s domain
Specify a source domain from which to transfer a map that should be the same across domains
(such as the services .byname map).

-Ctid prog ipadd port

Sun Release 4.1

This option is only for use by ypserv. When ypserv invokes ypxfr, it specifies that ypxfr should
call back a yppush process at the host with IP address ipaddr, registered as program number prog ,
listening on port port, and waiting for a response to transaction tid.

Last change: 21 December 1987 2167

YPXFR(8) MAnnENANCECOMMANDS YPXFR(8)

FILES
Ivar/yp/ypxfr.log log file
lusr/etc/yp/ypxfr _lperday

script to run one transfer per day, for use with cron(8)
lusr/etc/yp/ypxfr _ 2perday

script to run two transfers per day
lusr/etc/yp/ypxfr _1 perhour

script for hourly transfers of volatile maps
Ivar/ypl domain NIS domain
Ivarlspoollcron/crontabslroot

Super-user's crontab file

SEE ALSO

NOTES

2168

issecure(3), crontab(S), ypfiles(S), cron(8), ypserv(8), yppush(8)

YP Protocol Specification, in Network Programming

The Network Information Service (NIS) was formerly known as Sun Yellow Pages (YP). The functionality
of the two remains the same; only the name has changed. The name Yellow Pages is a registered trade­
mark in the United Kingdom of British Telecommunications pIc, and may not be used without permission.

Last change: 21 December 1987 Sun Release 4.1

ZDUMP(8)

NAME
zdump - time zone dumper

SYNOPSIS

MA~NANCECOMMANDS

zdump [-v] [~ cutoffyear] [zone name ...]

DESCRIPTION
zdump prints the current time in each zone name named on the command line.

OPTIONS

ZDUMP(8)

-v For each zonename on the command line, print the current time, the time at the lowest possible
time value, the time one day after the lowest possible time value, the times both one second before
and exactly at each time at which the rules for computing local time change, the time at the
highest possible time value, and the time at one day less than the highest possible time value.
Each line ends with isdst=l if the given time is Daylight Saving Time or isdst=O otherwise.

-c cutoffyear
Cut off the verbose output near the start of the year cutoffyear.

FILES
lusrlshare/liblzoneinfo standard zone information directory

SEE ALSO
ctime(3V), tzfile(5), zic(8)

Sun Release 4.1 Last change: 9 September 1987 2169

ZIC(8) MA~NANCECOMMANDS ZIC(8)

NAME
zic - time zone compiler

SYNOPSIS
zie [-v] [-d directory] [-iloealtime] [filename . ..]

DESCRIPTION

2170

zie reads text from the file(s) named on the command line and creates the time conversion infonnation files
specified in this input. If afilename is '-', the standard input is read.

Input lines are made up of fields. Fields are separated from one another by any number of white space
characters. Leading and trailing white space on input lines is ignored. An '#' (unquoted sharp character)
in the input introduces a comment which extends to the end of the line the sharp character appears on.
White space characters and sharp characters may be enclosed in ' '" (double quotes) if they're to be used
as part of a field. Any line that is blank (after comment stripping) is ignored. Non-blank lines are expected
to be of one of three types: rule lines, zone lines, and link lines.

A rule line has the fonn

Rule NAME FROM TO TYPE IN ON AT SAVE LETTERIS

For example:

Rule USA 1969 1973 - Apr lastSun 2:00 1:00 D

The fields that make up a rule line are:

NAME

FROM

TO

TYPE

Gives the (arbitrary) name of the set of rules this rule is part of.

Gives the first year in which the rule applies. The word minimum (or an abbreviation) means
the minimum year with a representable time value. The word maximum (or an abbreviation)
means the maximum year with a representable time value.

Gives the final year in which the rule applies. In addition to minimum and maximum (as
above), the word only (or an abbreviation) may be used to repeat the value of the FROM field.

Gives the type of year in which the rule applies. If TYPE is '-' then the rule applies in all years
between FROM and TO inclusive; if TYPE is uspres, the rule applies in U.S. Presidential elec-
tion years; if TYPE is nonpres, the rule applies in years other than U.S. Presidential election
years. If TYPE is something else, then zie executes the command

yearistype year type

to check the type of a year: an exit status of zero is taken to mean that the year is of the given
type; an exit status of one is taken to mean that the year is not of the given type.

IN Names the month in which the rule takes effect. Month names may be abbreviated.

ON Gives the day on which the rule takes effect Recognized forms include:

5

lastSun

lastMon

the fifth of the month

the last Sunday in the month

the last Monday in the month

Sun>=8 first Sunday on or after the eighth

Sun<=25
last Sunday on or before the 25th

Last change: 17 November 1987 Sun Release 4.1

ZIC(8) MAINTENANCE COMMANDS ZIC (8)

Names of days of the week may be abbreviated or spelled out in full. Note: there must be no
spaces within the ON field.

AT Gives the time of day at which the rule takes effect. Recognized forms include:

2

2:00

15:00

1:28:14

time in hours

time in hours and minutes

24-hour format time (for times after noon)

time in hours, minutes, and seconds

Any of these forms may be followed by the letter w if the given time is local "wall clock" time or s if the
given time is local "standard" time; in the absence of w or s, wall clock time is assumed.

SAVE Gives the amount of time to be added to local standard time when the rule is in effect. This field
has the same format as the AT field (although, of course, the wand s suffixes are not used).

LETTER/S
Gives the "variable part" (for example, the "S" or "D" in "EST" or "EDT") of time zone
abbreviations to be used when this rule is in effect. If this field is '-', the variable part is null.

A zone line has the form

Zone NAME GMTOFF RULES/SAVE FORMAT [UNTIL]

For example:

Zone Australia/South-west 9:30 Aus CST 1987 Mar 15 2:00

The fields that make up a zone line are:

NAME The name of the time zone. This is the name used in creating the time conversion information
file for the zone.

GMTOFF
The amount of time to add to GMT to get standard time in this zone. This field has the same for­
mat as the AT and SAVE fields of rule lines; begin the field with a minus sign if time must be
subtracted from GMT.

RULES/SAVE

FORMAT

The name of the rule(s) that apply in the time zone or, alternately, an amount of time to add to
local standard time. If this field is '-' then standard time always applies in the time zone.

The format for time zone abbreviations in this time zone. The pair of characters %s is used to
show where the "variable part" of the time zone abbreviation goes. UNTIL The time at which
the GMT offset or the rule(s) change for a location. It is specified as a year, a month, a day, and a
time of day. If this is specified, the time zone information is generated from the given GMT
offset and rule change until the time specified.

The next line must be a "continuation" line; this has the same form as a zone line except that the
string "Zone" and the name are omitted, as the continuation line will place information starting
at the time specified as the UNTIL field in the previous line in the file used by the previous line.
Continuation lines may contain an UNTIL field, just as zone lines do, indicating that the next line
is a further continuation.

A link line has the form

Link LINK-FROM LINK-TO

Sun Release 4.1 Last change: 17 November 1987 2171

ZIC (8) M~NANCECOMMANDS ZIC (8)

For example:

Link US/Eastern ESTSEDT

The LINK-FROM field should appear as the NAME field in some zone line; the LINK-TO field is used as an
alternate name for that zone.

Except for continuation lines, lines may appear in any order in the input.

OPTIONS
-v

-d directory

-I timezone

FILES

Complain if a year that appears in a data file is outside the range of years representable
by system time values (0:00:00 AM GMT, January 1,1970, to 3:14:07 AM GMT, Janu­
ary 19, 2038).

Create time conversion information files in the directory directory rather than in the
standard directory /usr/share/liblzoneinfo.

Use the time zone timezone as local time. zic will act as if the file contained a link line
of the form

Link timezone localtime

lusr/share/lib/zoneinfo standard directory used for created files

SEE ALSO

NOTES

2172

time(l V), ctime(3V), tzfile(5), zdump(8)

For areas with more than two types of local time, you may need to use local standard time in the AT field of
the earliest transition time's rule to ensure that the earliest transition time recorded in the compiled file is
correct.

Last change: 17 November 1987 Sun Release 4.1

Index

Special Characters

history substitution - csh,l00
logical negation operator - csh, 103

! mail command, 310
! = - not equal to operator - csh, 103
! - globbing pattern mismatch operator - c sh, 103
mail command, 310
#! invoke shell to process script, 105
$ - variable substitution, 102
$# - word count for variable, 102
$ $ - process number of shell, 103
$< - read value from terminal- csh, 103
$? - variable set inquiry - csh, 103
%

&

&&

job control, reference to current job - csh, 105
job to foregroundlbackground - c sh, 111
modular division operator - csh, 103

bitwise AND operator - c sh, 103
run command in background, 99

execute on success - c sh, 99
logical AND operator - csh,l03

, quote character, 99
()

*

command grouping - csh,99
group operators - csh,103

filename wild card, zero or more of any characters, 103
integer multiplication operator - csh, 103

+ - integer addition operator - csh,103
- - integer subtraction operator - c sh, 103
. (dot) command, 505
/ - integer division operator - c sh, 103
: command, 106, 505
: modifiers - history substitution - c sh, 100

- command separation, 99
<

«

less than operator - c s h, 103
redirect standard input, 101

bitwise shift left - c sh, 103
parse and pass input to command, 101

<= -less than or equal to operator - csh,103
= mail command, 310

- 2173-

>

- is equal to operator - c sh, 103
- globbing pattern match operator - c sh, 103

greater than operator - c sh, 103
redirect standard output, 101

>& - redirect standard output and standard error - csh,101
>= - greater than or equal to operator - csh, 103
»

append standard output, 101
bitwise shift right - c sh, 103

»& - append standard output and standard error - csh,101
? - filename wild card, any single characters, 103
? mail command, 310
@ - arithmetic on variables - csh,111
[] - filename substitution, any character in list or range, 103
" quote character, 99
\ escape character, 99
\ ! * - alias substitution, include command-line arguments­

csh,101

bitwise XOR operator - c sh, 103
quick substitution - csh,101

_ toupper () - convert character to upper-case, System V, 929
, - command substitution, 103

} - filename substitution, successive strings in enclosed list,
103, 104

bitwise OR operator - c sh, 103
pipe standard output, 99

I mail command, 312
I & -pipe standard output and standard etror·.~ csh,99
II

execute on failure - c sh, 99
logical OR operator - csh, 103

filename substitution, home directory, 103
one's complement operator..;...:.. csh, 103

- ! - mail tilde escape, 308
- mail tilde escape, 308

- . - mail tilde escape, 309
-< - mail tilde escape, 309
-? - mail tilde escape, 309

- mail tilde escape, 309
- I - mail tilde escape, 309

Index Continued

o
o error number, 691

1
1 error number, 690
l/2-inch tape drive

tm - tapemaster, 1498
xt - Xylogics 472, 1514

1/4-inch tape drive
ar - Archive l/4-inch Streaming Tape Drive, 1353

10 error number, 686
10 Mb/s Sun Ethernet interface - ie, 1395 thru 1396
11 error number, 686
12 error number, 689
13 error number, 686
14 error number, 687
15 error number, 689
1 6 error number, 686
1 7 error number, 687
18 error number, 691
1 9 error number, 688

2
2 error number, 688
20 error number, 689
21 error number, 688
22 error number, 687
23 error number, 688
24 error number, 688
25 error number, 689
26 error number, 691
27 error number, 687
28 error number, 689
2 9 error number, 690

3
3 error number, 690
3-byte integer

convert to and from long integer, 1037
30 error number, 690
31 error number, 688
32 error number, 690
33 error number, 687
34 error number, 690
35 error number, 691
36 error number, 687
37 error number, 686
38 error number, 689
39 error number, 687

4
4 error number, 687
40 error number, 688
41 error number, 690
42 error number, 689
43 error number, 690
4 4 error number, 690
45 error number, 690

450 SMD Diskdriver- xy, 1515 thru 1516
451 SMD Diskdriver- xy, 1515 thru 1516
4 6 error number, 690
47 error number, 686
472 l/2-inch tape drive - xt, 1514
48 error number, 686
4 9 error number, 686

5
5 error number, 687
50 error number, 688
51 error number, 688
52 error number, 688
53 error number, 686
54 error number, 687
55 error number, 688
56 error number, 687
57 error number, 689
58 error number, 690

6
6 error number, 689
60 error number, 691
61 error number, 686
62 error number, 688
63 error number, 688
64 error number, 687
65 error number, 687
66 error number, 689
68 error number, 691
69 error number, 687

7
7 error number, 686
70 error number, 691
7053 SMD Disk driver - xd, 1512 thru 1513
71 error number, 690
72 error number, 689
73 error number, 691
74 error number, 689
75 error number, 689
7 6 error number, 686
77 error number, 687
78 error number, 687
7 9 error number, 688

8
8 error number, 688
80 error number, 689
81 error number, 690
82 error number, 688
83 error number, 686
84 error number, 690
85 error number, 686
8530 see serial communications driver - zs, 1518 thru 1519
86 error number, 690
87 error number, 688

-2174-

9
9 error number, 686
90 error number, 689

A
-A - mail tilde escape, 309
a. out - assembler and link editor output, 1524
a 6 41 () - convert long integer to base-64 ASen, 902
abort printer - Ipc, 1980
abort () - generate fault, 903
abs () - integer absolute value, 904
absolute value - abs () , 904
ac -login accounting, 1834
accept

a connect request, 1187
accept () -connection on socket, 695
access

report, for disk, 1939
access times of file, change

utime (), 1245
utimes (), 876

access () , 696
accounting, display login record - ac, 1834

acctcom - search and print process accounting files, 14
acctmerg, 1839
process accounting, display record - sa, 2097
process accounting, on or off - accton, 2097
process accounting, tum on or off - acct () , 698

accounting file - acct, 1528
accounting shell procedure

ckpacct, 1841
accounting shell procedures

chargefee, 1841
dodisk, 1841
lastlogin, 1841
monacct, 1841
nulladm, 1841
prctmp, 1841
prdaily, 1841
prtacct, 1841
runacct, 1841
shutacct, 1841
startup, 1841
turnacct, 1841

acct - miscellaneous accounting commands, 1835
acct - execution accounting file, 1528

acct () - process accounting on or off, 698
acctcms - command summary from pre-process accounting

records, 1837
acctcom- search and print process acounting files, 14
a c ct di s k - create disk usage records, 1835
acctdusg - compute disk usage by login, 1835
acctmerg -merge or add total accounting files, 1839
accton - tum on process accounting, 1835
accton - processing accounting on or off, 2097
acctprcl-process accounting, 1840
acctprc2 -process accounting, 1840
acctsh - shell procedures for accounting, 1841
acos () - trigonometric arccosine, 1327
acosh () - inverse hyperbolic function, 1309

- 2175-

accounting
process accouting - acctprc, 1840

adb -debugger, 16
adb scripts - adbgen, 1844
a dbgen - generate adb script, 1844

Index - ConJinued

add password file entry - putpwent () , 1104
add route ioctl- SIOCADDRT,1454
add_client command, 1846
add_services command, 1848
addbib - create bibliography, 21
addexportent () function, 971
additional paging/swapping devices, specify - swapon, 2121
addmntent () - add a file system description file entry, 998
address resolution display and control - a rp, 1854
address space limit checking - check4 command,2104
address space limiting - set4 command, 2104
address space unlimit- unset4 command, 2104-
adduser - add new user account, 1849
adjacentscreens, 23
adjtime () - adjust time, 700
admin - administer sees, 461
administer

configuration information, 2122
RFS domain, 2067

adv - advertise directory for remote RFS access, 1852
adventure - exploration game, 1719
advise paging system - vadvise (), 877
agt _create () function, 1277
agt_enumerate () function, 1277
agt_trap () function, 1277
aint () - convert to integral floating, 1323
aiocancel () - cancel an asynchronous operation, 905
aioread () - initiate asynchronous read, 906
aiowait () - wait for completion of asynchronous I/O opera-

tion,908
aioread () - initiate asynchronous write, 906
a 1 a rm () - schedule signal, 909
alias command, 106
alias mail command, 310
alias substitution - in e shell, 101
aliases - sendmail aliases file, 1529
align_equal s - textedi t selection filter, 586
allnet mail variable, 315
alloca () - allocate on stack, 1068
allocate

a library structure, 1189
allocate aligned memory

memalign (), 1067
valloc (), 1067

allocate memory
calloc (), 1067
malloc (), 1067

allocate on stack - alloca (), 1068
allow messages - mesg, 343
alpha sort () - sort directory, 1143
alter process nice value - renice, 2058
alternates mail command, 310
alwaysignoremail variable, 315
analyze - crash analyzer, 2035

Index - Continued

anint () - anint - convert to integral floating, 1323
ANSI standard terminal emulation, 1374 thru 1378
ANSI tenninal emulation - console, 1374 thru 1379
ansic - C language standard, 1794
append mail variable, 315
application architecture - arch, 27
apropos -locate commands by keyword, 24
a r -library maintenance, 25
ar - Archive 1/4-inch Streaming Tape Drive, 1353
ar - archive file fonnat, 1532
arc () - plot arc, 1091
arch - display Sun architecture, 27
archive

ar - library maintenance, 25
cpio - copy archive, 89
process tape archives, 629
read and write archive files, 402

archive file format- ar,1532
archive header

read for COFF file, 1038
archive tapes - tar, 563

tar, 38
archives

copy file archives in and out, 406
argument list processing - in C shell, 98
argument lists, varying length- varargs (), 1248
argv variable, 111
arithmetic - drill in number facts, 1720
arp - address resolution display and control, 1854
arp ioctl

SIOCDARP -delete arp entry, 1354
SIOCGARP - get arp entry, 1354
SIOCSARP - set arp entry, 1354

arp - Address Resolution Protocol, 1354 thru 1355
as - assembler, 28
ASCII

string to long integer - strtol (), 1181
to integer - atoi () , 1181
to long - atol (), 1181

ASCII dump file - od,369
ascii - ASCII character set, 1795, 1808
ASCII string to double - strtod (), 1180
ASCII to Ethernet address - ether a ton () , 966
ASCII to float - atof (), 1180 -
asctime () - date and time conversion, 923
asin () - trigonometric arcsine, 1327
asinh () - inverse hyperbolic function, 1309
askcc mail variable, 315
asksub mail variable, 315
assembler output - a. out, 1524
assert () -program verification, 910
assign buffering to stream

setbuf () - assign buffering, 1151
setbuffer () - assign buffering, 1151
setlinebuf () - assign buffering, 1151
set vbuf () - assign buffering, 1151

assign to memory characters - memset (), 1073
async _daemon (), 793
asynchronous I/O

aioread () , 906

asynchronous I/O, continued
aiowait (), 908
aiowrite (), 906

asynchronous operation
cancel,905

at - do job at specified time, 30
at an () - trigonometric arctangent, 1327
atan2 () - trigonometric arctangent, 1327
atanh () - inverse hyperbolic function, 1309
atof () - ASCII to float, 1180
atoi () - ASCII to integer, 1181
atol () - ASCII to long, 1181
atq - display delayed execution queue, 32
at rm - remove delayed execution jobs, 33
attributes of file f stat () ,858
attributes of file 1 stat () , 858
attributes of file stat () , 858
audio - telephone quality audio device, 1356

control panel- gaintool, 1751
play audio files - play, 1770
record audio file - re co rd, 1776

audi t - maintain audit trail, 1855
audi t - audit trail file, 1534, 1536, 1538
audit () function, 701
audit_args () -produce text audit message, 911
audit_text () -produce text audit message, 911
audit_warn command, 1858
audi td daemon, 1856
audi ton () function, 702
auditsvc () function, 703
a uth_ de st roy () - client side authentication, 1124
authdes_getucred () - secure RPC, 1148
authdes_seccreate () -secure RPC, 1148
authnone _create () - client side authentication, 1124
authunix_create () -client side authentication, 1124
authunix create default () - client side authentication

1124 - - '

auto. home - autmount map for home directories, 1539
auto. vol - automount map for volumes, 1540
autoboot procedures - boot, 1864, 1963, 2057
automatic network install, 1337
automount - automatically mount NFS file systems, 1859
autoprint mail variable, 315
awk - scan and process patterns, 34, 352

B
-b - mail tilde escape, 309
backgammon - backgammon game, 1721
backquote substitution, 103
backspace magnetic tape files - mt, 349
backspace magnetic tape records - mt,349
backup dumps - dump, 1906
bang mail variable, 315
banner

large banner, 1723
make posters, 37

bar command, 38
bar - tape archive file format, 1541
ba s ename - deliver portions of path names, 43

- 2176-

battlestar game, 1724
bball s - black and white demo, 1727
bbounee - black and white demo, 1727
be - calculator language, 44
bed - convert to antique media, 1726
bemp () - compare byte strings, 916
beopy () - copy byte strings, 916
bdemos - black and white demo, 1727
bdra w - interactive graphics drawing, 1746
Bessel functions

jO (), 1304
j 1 (), 1304
jn (), 1304
yO (), 1304
y1 (), 1304
yn (), 1304

bg command, 106
bibliography

addbib - create or extend, 21
indxbib - make inverted index, 242
lookbib - find bibliographic references, 287
refer - insert literature references, 437
roffbib - print literature references, 443
sortbib - sort bibliographic database, 522

biff - mail notifier, 46
binary file transmission

uudeeode - decode binary file, 634
uueneode - encode binary file, 634

binary I/O, buffered
fread () - read from stream, 981
frwite () - write to stream, 981

binary search of sorted table - bseareh () , 913
binary tree routines, 1236
bind

address to a transport endpoint, 1191
bind (), 704
bindresvport () - bind socket to privileged IP port, 912
binmail-version 7 mail, 47
biod daemon, 2025
bit string functions - f f s () , 916
b j game, 1728
bjump - black and white demo, 1727
black and white demos

bbounee, 1727
bdemo s, 1727
bjump, 1727
bphoto, 1727

block signals, 844
block size for tape - 512 bytes, 1906
blocked signals, release - sigpause (), 845
blocks, count, in file - sum, 537
boards. pc - file for DOS windows, 1543
boggle - boggle game, 1729
boggletool- SunView game of boggle, 1730
boot - system startup procedures, 1864, 1963
boot parameter database - bootparams, 1547
bootparam protocol- bootparam, 1330
bootparamd daemon, 1867
bootparams - boot parameter database, 1547
bootservers-NIS bootservers file, 1548

Index - COnlinued

bootstrap procedures - boot, 1864, 1963,2057
bootstrap PROM monitor program - monitor, 1998
both real and effective group ID, set - setgid () , 1158
both real and effective user ID, set - set uid () , 1158
bouneedemo - bouncing square graphics demo, 1756
Bourne shell, sh, 499 thru 509
Bourne shell commands, 505

. command, 505
: command, 505
break command, 505
case command, 500
cd command, 505
continue command, 505
do command, 500
done commmand, 500
echo command, 506
eli f command, 500
e 1 s e command, 500
esae command, 500
eval command, 506
exec command, 506
exi t command, 506
export command, 506
f i command, 500
for command, 500
hash command, 506
if command, 500
log in command, 506
newgrp command, 506
pwd command, 506
read command, 506
readonly command, 507
return command, 507
set command, 507
shift command, 507
test command, 507
then command, 500
times command, 507

-2177-

t ra p command, 507
type command, 507
umask command, 508
unset command, 508
until command, 500
wait command, 508
while command, 500

Bourne shell functions, 500
Bourne shell variables, 501 thru 502

CDPATH variable, 502
HOME variable, 502
IFS variable, 502
MAl L variable, 502
MAl LCHECK variable, 502
MAl LPATH variable, 502
PATH variable, 502
P Sl variable, 502
P S2 variable, 502
SHELL variable, 502

bphoto - black and white demo. 1727
branch, C shell control flow, 104
break command. 106.505
breaksw command, 106
brk () - set data segment break, 706

Index - Continued

broadcast messages to all users on network - rwall,453
brotcube -rotate a simple cube, 1732
bsd - Berkeley 4.3 environment, 1797
bsearch () - binary search of a sorted table, 913
bsuncube - display 3-D Sun logo, 1733
buffered binary I/O

fread () - read from stream, 981
frwite () -write to stream, 981

buffered I/O library functions, introduction to, 1171
buffering

assign to stream - setbuf () , 1151
assign to stream - setbuffer (), 1151
assign to stream - setlinebuf (), 1151
assign to stream - setvbuf (), 1151

build
NIS database - ypini t, 2157
programs - make, 376
random library - ranlib,428
system configuration files - config, 1884

build programs - make, 325 thru 339
buttontest - SunButtons demo program, 1734
bwtwo - black and white frame buffer, 1361
byte order, functions to convert between host and network, 917
byte string functions

bcmp (), 916
bcopy (), 916
bzero (), 916

bzero () - zero byte strings, 916

c
-c - mail tilde escape, 309
C compiler, 54
C library functions, introduction to, 887
Cprogranuninglanguage

cflow - code flow graph, 61
cpp - C preprocessor, 91
ct ag s - create tags file, 117
cxref - cross reference C program, 128
indent - format C source, 238
lint - C program verifier, 270
mkstr - create C error messages, 345
tcov - code coverage tool, 570
vg rind - make formatted listings, 646
xstr - extract strings from C code, 673

C shell
alias substitution, 101
and Bourne shell scripts, 105
argument list processing, 98
arguments list - argv variable, 111
branch,l04
command execution, 105
command inquiry, 104
command substitution, 103
commands, 106 thru 111
conditional execution - & &, 99
conditional execution - I I, 99
• c shrc file, 98
escape character, quotes and comments, 99
expressions, 103
file inquries, 104
filename completion, 99
filename substitution, 103

C shell, continued
history substitution, 100
I/O redirection, 101
job control, 105
lexical structure, 99
. login file, 98
. logout file, 98
loop, 104
operators, 103
parentheses - command grouping, 99
pipeline, 99
quick substitution, 101
signal handling, 105
variable substitution, 102

C shell commands

- 2178-

% - job to foregroundlbackground, 111
: - null command, 106
@ - arithmetic on variables, 111
ali a s - shell macros, 106
bg - job to background, 106
break - exit loop, 106
breaksw -exit switch, 106
case - selector in switch, 106
cd - change directory, 106
chdir - change directory, 106
continue - cycle loop, 106
default - catchall in switch, 106
di r s - print directory stack, 106
echo - echo arguments, 106
else - alternative commands, 107
end - end loop, 107
endif - end conditional, 107
endsw - end switch, 110
eval - re-evaluate shell data, 106
exec - execute command, 106
exi t - exit shell, 107
fg - job to foreground, 107
foreach -loop on list of names, 107
glob - filename expand wordlist, 107
goto - command transfer, 107
hashstat - display hashing statistics, 107
history -display history list, 107
if -conditional statement, 107
job s - display job list, 107
kill- kill jobs and processes, 108
limit - alter resource limitations, 108
login -login new user, 108
logout - end session, 108
nice -run low priority process, 108
nohup - run command immune to hangups, 108
not ify - request immediate notification, 108
onintr - handle interrupts in scripts, 109
popd - pop shell directory stack, 109
pushd - push shell directory stack, 109
rehash - recompute command hash table, 109
repeat - execute command repeatedly, 109
set - change value of shell variable, 109
setenv - set or display variables in environment, 109
shift - shift argument list, 109
source - read commands from file, 109
stop - halt job or process, 11 0
sus pend - suspend shell, 11 0
swi tch - multi-way branch, 110
time - time command, 110

C shell commands, continued
umask - change/display file creation mask, 110
unalias - remove aliases, 110
unhash - discard hash table, 110
unl imi t - remove resource limitations, 110
unset - discard shell variables, 110
unsetenv -remove environment variables, 110
wai t - wait for background process, 110

C shell metacharacters, 99
C shell variables, 111, 113

argv,l11
cdpath,111
cwd,l11
echo, 111
fignore,111
filec,111
hardpaths, 111
histchars,111
history, 111
home, 111
ignoreeof, 111
mail,112
nobeep, 112
noclobber, 112
noglob,112
nonomatch,112
notify, 112
path,112
prompt, 112
savehist, 112
shell,112
status, 112
time, 112
verbose, 113

C2conv - convert to C2 security, 1868
cal - display calendar, 49
calculator, 142
calendar - reminder service, 50
call-graph, display profile data - gprof,219
calloc () - allocate memory, 1067
callrpc () - client side calls, 1125
cancel

asynchronous operation, 905
cancel--cancel requests to a printer, 289
canfield - solitaire card game, 1735
canvas _demo - canvas subwindow demo, 1786
capi tali ze - textedi t selection filter, 586
captoinfo command, 1869
ca se command, 106, 500
ca t - concatenate files, 51
C/A{f interpreter - pti,384
catclose - close a message catalog, 919
ca tget s - read a program message, 918
catman - create cat files for manual pages, 1871
catopen - open a message catalog, 919
cb - format filter for C source files, 53
cballs - color demo, 1740
cbrt () - cube root function, 1326
cc - C compiler, 54
ccat - extract files compressed with compact, 371
cd - change directory, 60

-2179-

cd command, 106, 505
cd mail command, 311
cdc - change delta commentary, 464
cdpath variable, 111,502

Index - ConJinued

cdplayer - CD-ROM audio demo program, 1736
cdra w - color demo, 1740, 1746
control operations -cdromio, 1362
cdromio- CDROM control operations, 1362
ceil () - ceiling - convert to integral floating, 1323
cfgetispeed () - get input baud rate, 1227
cfgetospeed () - get output baud rate, 1227
cflow - generate C flow graph, 61
cfree () - free memory, 1067
cfsetispeed () - set input baud rate, 1227
cf setospeed () - set output baud rate, 1227
cgeight - 24-bit color memory frame buffer, 1367
cgfour - Sun-3 color memory frame buffer, 1368
cgJ1ine - low-end graphics accelerator with color memory

frame buffer, 1369
cgsix - accelerated 8-bit color frame buffer, 1370
cgthree - 8-bit color memory frame buffer, 1371
cgtwo - color graphics interface, 1372
change

audit characteristics, 1855
blocked signals, 847
current working directory, 707
data segment size - sbrk (), 706
delta commentary, 464
directory, 60
file access times - utime () , 1245
file access times - utimes (), 876
file mode - chmod () , 708
file name - rename () , 819
group ID of user - newgrp, 357
group ownership of file - chgrp, 64
login password- passwd,399
login password in NIS - yppas swd, 679
mode of file, 66
name of file or directory - mV,351
owner and group of file - chown () , 710
owner of file - chown, 1875
permissions of file, 66
priority of command - nice, 358
process nice value - renice, 2058
RFS host password, 2068
root directory - chroot () , 712
working directory, 60

change mapping protections - mprotect () , 783
change translation table entry ioctl - KIOCSKEY, 1408
change_login - screen blanking and login, 1873
character

get from stdin - getchar (), 987
get from stream - fgetc (), 987
get from stream - get c () , 987
push back to stream - ungetc () , 1243
put to stdin - putchar (), 1102
put to stream - fputc (), 1102
put to stream - putc (), 1102

character classification
isalnum (), 928
i salpha () , 928

Index Continued

character classification, continued
isascii (), 928
iscntrl 0,928
isdigit 0,928
isgraph (), 928
islower (), 928
isprint 0,928
ispunct (), 928
isspace (), 928
isupper 0,928
isxdigit () ,928

character conversion
toascii (), 928
tolower () , 928
toupper () , 928

character conversion, System V
tolower () ,929

-toupper () , 929
char~ter translation - tr,604
characters for equations - eqnchar, 1798
characters in file, count - wc, 659
chargefee - accounting shell procedure, 1841
chdi r command, 106
chdi r mail command, 311
chdir () , 707
check

UUCP directories and Permissions file, 2145
check buffer state ioctl- GPIIO_GET_GBUFFER_STATE,

1392
check directory - dcheck, 1897
check file system - f s ck, 1932
checkheap- malloc_verifyO, 1069
check quota consistency - quotacheck,2051
check spelling - spell,523
CHECK () function, 1288
check4 command, 2104
checkeq - check eqn constructs, 180
checknr - check nroff/troff files, 63
chess - chess game, 1737
chesstool- SunView chess game, 1738
chgrp - change group ID of file, 64
ching - book of changes, 1739
chkey - create or change encryption key, 65
chmod - change mode, 66
chmod () , 708
chown - change owner of file, 1875
chown (), 710
chroot - change root directory for a command, 1876
chroot () - change root directory, 712
chrtbl- generate character classification table, 1877
circle () -plot circle, 1091
ckpacct - accounting shell procedure, 1841
clean

UUCP spool directory clean-up, 2148
clean print queue - lpc, 1980
clean UUCP spool area - uuclean, 2147
clear - clear screen, 68
clear inode - clri, 1881
clear colormap - make console text visible, 69
clear-functions - reset SunView selection service, 70

clearerr () - clear error on stream, 974
click - control keyboard click, 71
cl i en t command, 1880
clnt broadcast () - client side calls, 1125
clnt - call () - client side calls, 1125
clnt - control () - creation of CLIENT handles, 1128
clnt -create () - creation of CLIENT handles, 1128
clnt -create vers 0 - creation of CLIENT handles, 1128
clnt - destroy () - creation of CLIENT handles, 1128
clnt - freeres () - client side calls, 1125
clnt - geterr () - client side calls, 1125
clnt ycreateerror () - creation of CLIENT handles, 1128
clnt perrno () - client side calls, 1125
clnt-perror () - client side calls, 1125
clnt:= spcreateerror () - creation of CLIENT handles,

1128
clnt sperrno () - client side calls, 1125
clnt - sperror () - client side calls, 1125
clnt;aw create () - creation of CLIENT handles, 1128
clnttcp -create () - creation of CLIENT handles, 1128
clntudp - buf create () - creation of CLIENT handles, 1128
clntudp -create () - creation of CLIENT handles, 1128
clock --display time in window, 72
clock 0 -report CPU time used, 920
clone, STREAMS device driver, 1373
close

transport endpoint, 1193
close database - close () , 953
close directory stream - closedir (), 957
close stream - fclose 0,973
close (), 714, 953
closedir () - close directory stream, 957
closelog () - close system log file, 1184
closepl () - close plot device, 1091
clri - clear inode, 1881
cluster command, 74
cmd mail variable, 315
cmdtool- shell or program with SunView text facility, 75
cmp - compare files, 78
code coverage tool- tcov, 570
code flow graph - cflow,61
code formatter

cb - C source format filter, 53
vgrind - troff preprocessor for listings, 646
indent - format C source, 238

COFF, Sun386i executable file format, 1549
read archive header, 1038

col - filter reverse paper motions, 79
colcrt - document previewer, 81
colldef - convert collation sequence source definition, 1882
color demo

- 2180-

cballs, 1740
cdraw, 1740
cphoto, 1740
cpipes, 1740
cshowmap, 1740
csnow, 1740
csuncube, 1740
csunlogo, 1740

color demo, continued
cvlsi,1740

color graphics interface
cgeight - 24-bit color memory frame buffer, 1367
cgfour - Sun-3 color memory frame buffer, 1368
cgnine - color memory frame buffer, 1369
cgsix - accelerated 8-bit color frame buffer, 1370
cgthree - 8-bit color memory frame buffer, 1371
cgtwo - color graphics interface, 1372

coloredi t - edit icons, 82
colrm - remove columns from file, 83
columns

print in multiple - pr,415
remove from file, 126
remove from file - colrm, 83

comb - combine deltas, 466
combine sees deltas, 466
comm - display common lines, 84
command

change priority of - nice,358
describe - whatis, 661
execution in e shell, 105
grouping in the e shell-) , 99
inquiry, in e shell, 104
locate - wherei s, 662
process options in scripts - getopt, 213
return stream to remote - rcmd (), 1111
return stream to remote - rexec () , 1120
run immune to hangup - nohup, 363
substitution, 103

commands
Bourne shell, 500, 505, 509
comm - display common lines, 84
help open - open help_viewer file, 229
help-viewer - get help_viewer, 230
logintool- graphic login interface, 1979
organizer, 394

commands, introduction, 3
communications

cu - connect to remote system, 123
enroll- enroll for secret mail, 672
mai 1 - send and receive mail, 307 thru 318
mesg - permit or deny messages, 343
talk - talk to another user, 562
telnet - TELNET interface, 574
tip - connect to remote system, 592
uuclean - clean uuep spool area, 2147
uucp - system to system copy, 631
uudecode - decode binary file, 634
uuencode - encode binary file, 634
uulog - uuep log, 631
uuname - uuep list of names, 631
uusend - send file to remote host, 635
uux - system to system command execution, 640
wri te - write to another user, 668
xget - receive secret mail, 672
xsend - send secret mail, 672

compact - compress files, 371
compare

byte strings - bcmp (), 916
files, 78
files differentially, 153
files side-by-side, 489

- 2181-

compare, continued
memory characters - memcmp (), 1073
strings - strcmp (), 1175
strings - strncmp (), 1175

Index - ConJinued

three-way differential- diff3,156
versions of sees file - sccsdiff,480

compile regular expression - re _ c omp () , 1114
compiler generator, 372
compiler generators

lex -lexical analyzer generator, 267
yacc - parser generator, 675

compiler preprocessors
cpp - e preprocessor, 91

compilers
c c - e compiler, 54
rpcgen - generate RPC protocols, e header files, 445

compres 5 - compress files, 85
comsat - biff server, 1883
concatenate files - cat,51
concatenate strings

strcat () , 1175
strncat (), 1175

config - build system configuration files, 1884
configuration file, system log daemon - syslogd, 1651
configuration files, build - config, 1884
configure

a system, 2122
administer configuration information, 2122
network listener server, 2028
query file system related limits and options, 798
system variables, 868
undo system configuration, 2123

configure network interface parameters - ifconfig, 1954
connect

establish a connection with another transport user, 1194
receive confirmation from connect request, 1209

connect to remote system
cU,I23
tip, 592

connect () , 715
connected peer, get name of, 747
connection

accept on socket - accept () , 695
listen for on socket - listen (), 769

console - console driver/terminal emulator, 1374 thru 1379
console I/O iocd, TIOCCONS, 1374
cont () - continue line, 1091
continue command, 106, 505
control devices - ioctl (), 763
control flow - in e shell, 104
control line printer - lpc, 1980 thru 1981
control magnetic tape - mt, 349
control resource consumption - v 1 imi t (), 1250
control structures

examine, 1889
control system log

close system log - closelog (), 1184
set log priority mask - setlogmask (), 1184
start system log - openlog (), 1184
write to system log - syslog (), 1184

control terminal, hangup - vhangup (), 879

Index - Continued

conv mail variable, 315
convert

between long integer and 3-byte integer, 1037
functions to between host and network byte order, 917
host to network long - htonl () , 917
host to network short - htons () , 917
network to host long - ntohl (), 917
network to host short - ntohs () , 917
spaces to tabs unexpand, 186
tabs to spaces expand, 186

convert 8-bit rasterfile to I-bit rasterfile- rasfil terato1,
429

convert and copy files, 144
convert base-64 ASen to long integer - 164 a, 902
convert character

to ASen - toascii (), 928
to lower-case - tolower () , 928
to lower-case, System V - tolower () , 929
to upper-case - toupper <> , 928
to upper-case, System V - _ toupper () , 929

convert foreign font files - vswap, 652
convert long integer to base-64 ASen - 164 a, 902
convert numbers to strings

econvert, 963
fconvert, 963
f'printf (), 1096
gconvert, 963
printf (), 1096
seconvert, 963
sfeonvert (), 963
sgconvert () , 963
sprintf (), 1096

convert strings to numbers
atof (), 1180
atoi () , 1181
atol () , 1181
sscanf (), 1144
strtod (), 1180
strtol (), 1181

convert time and date
asetime (), 923
ctime (), 923
dysize (), 923
gmtime (), 923
loealtime (), 923
strftime (), 924
strptime () , 925
timegm () , 926
timeloeal (), 926
tzset (), 926
tzsetwall (), 926

convert units - uni t s, 622
copy

archives, 89
byte strings - bcopy () , 916
file archives in and out, 406
files, 87
files from remote machine - rep, 431
memory character fields - memepy () , 1073
memory character strings - memccpy (), 1073
standard output to many files - tee, 571
strings - strcpy (), 1175

copy, continued
strings - strncpy (), 1175

copy mail command, 311
copy_home- fetch default startup files for new home direc-

tories, 1888
Copy mail command, 311
copysign () function, 1314
core - memory image file format, 1554
core image, get of process - gcore, 212
cos () - trigonometric cosine, 1327
cosh () - hyperbolic cosine, 1309
count blocks in file - sum, 537
count lines, words, characters in file - we, 659
cp - copy files, 87
cphoto - color demo, 1740
cpio - copy archives, 89
cpio - cpio archive format, 1556
cpipes - color demo, 1740
cpp - e preprocessor, 91
CPU PROM monitor

program - monitor, 1998
craps game, 1741
crash analyzer - analyze, 2035
crash - examine system images, 1889
pan i c - crash information, 2037
creat (), 717
name for temporary file - tmpnam () , 1235

bibliography - addbib, 21
cat files for manual pages - eatman, 1871
delta - delta,467
directory - mkdir, 344
error log - dmesg, 1903
fifo - mknod,1993
file - open () , 794
file system - mkf s, 1991
font width table - vwidth,654
hash table - hcreate (), 1023
interprocess communication channel- pipe () , 800
interprocess communication endpoint - socket (), 855
mail aliases database - newaliases, 2021
named pipe - mknod, 1993
new file system- newfs, 2022
NIS database - ypini t, 2157
NIS ndbm file - makedbm, 1985
pair of connected sockets - soeketpair (), 857
permuted index - ptx, 425
prototype file system - mkproto, 1994
random library - ranI ib, 428
sees data bases, 461
sees delta- delta, 467
script of terminal session - script, 488
session and set process group ID, 835
special file, 776
special file - mkn od, 1993
symbolic link - syml ink () , 864
system configuration files - config, 1884
system log entry - logger, 282
system log entry - old-syslog, 389
tags file, 117
unique file name - mktemp () , 1074

create directory, 774

- 2182-

create new process, 729
cribbage - cribbage card game, 1743
cron - clock daemon, 1894
crontab command, 96
crontab - periodic jobs table, 1557
cross reference C program - cxref,128
crt mail variable, 315
crypt - encrypt, 97
crypt - encryption, 921
csh, C shell, 98
cshowmap - color demo, 1740
. cshrc file, 98
csnow - color demo, 1740
csplit - split file into sections, 115
csuncube -color demo, 1740
csunlogo - color demo, 1740
ctags - create tags file, 117
ctermid () - generate filename for terminal, 922
ct ime () - date and time conversion, 923
ctrace -display program trace, 119
cu - connect to remote system, 123
cube

rotate, 1732
current directory

change, 707
get patbname - get wd (), 1022

current domain, set or display name - domainname, 161
current host, get identifier of - gethostid (), 740
current working directory - getcwd () , 988
curses functions, System Y, 931
curses library routines, 931
cursor_demo - cursor attributes demo, 1786
curve fitting, spline, 525
cuserid () - get user name, 952
cut -remove columns from file, 126
cv _broadcast () function, 1279
cv _create () function, 1279
cv _destroy () function, 1279
cv _enumerate () function, 1279
cv _notify () function, 1279
cv _send () function, 1279
cv _ wai t () function, 1279
cv_waiters () function, 1279
cvlsi - color demo, 1740
cwd variable, 111
cxref - cross reference C program, 128

D
-d C shell file inquiry - directory, 104,309
daemon

RFS,2073
showfh daemon run on NFS servers, 2108
TFS,2127

daemons
biod daemon, 2025
network file system, 793
nfsd daemon, 2025
rquotad - remote quota server, 2086
sprayd - spray server, 2113

- 2183-

Index - COnlinued

DARPA Internet host table, get from host - gettable, 1942
Data Encryption Standard - des, 150
data file

boards. pc - file for DOS windows, 1543
data segment size, change - sbrk (), 706
data types - types, 1698
database functions - dbm ()

close () , 953
dbmini t () , 953
delete () , 953
fetch () ,953
firstkey (), 953
nextkey () , 953
store () , 953

database functions - ndbm ()
dbm clearerr(),1082
dbm -close (), 1082
dbm -delete (), 1082
dbm -err (), 1082
dbm -error () , 1082
dbm -fetch (), 1082
dbm-firstkey(),1082
dbm -nextkey (), 1082
dbm -open (), 1082
dbm=store (), 1082

database library
-ldbmoption to cc,953
ndbm () , 1082

database operator - join, 252
datafile

help - get help, 1586
help_viewer-help viewer file format, 1588

date
formatting conventions for locale, 1055

date and time
get - time (), 1231
get - gettimeofday (), 760
get - ftime (), 1231
set- settimeofday (), 760

date and time conversion
asctime (), 923
ctime () , 923
dysize (), 923
gmtime (), 923
local time () , 923
strftime (), 924
strptime (), 925
timegm() ,926
timelocal (), 926
tzset (), 926
tzsetwall (), 926

date - date and time, 129
DB, initialize dial box- dbconf ig, 1896
dbm _ clearerr () - clear ndbm () database error condition,

1082
dbm_close () -close ndbmO routine, 1082
dbm_delete () -remove data from ndbm () database, 1082
dbm _err () - ndbm () database routine, 1082
dbm _error () - return ndbm () database error condition, 1082
dbm_fetch () -fetch ndbmO database data, 1082
dbm_firstkey () - access ndbm () database, 1082

Index - Continued

dbm nextkey () - access ndbm () database, 1082
dbm - open () - open ndbm () database, 1082
dbm -store () - add data to ndbm () database, 1082
dbminit () - open database, 953
dbx - source debugger, 131
dbxtool - debugger, 140
dc - desk calculator, 142
dcheck - directory consistency check, 1897
dd - convert and copy, 144
DEAD mail variable, 315
debug mail variable, 315
debug network - ping, 2039
debug tools

adb-debugger,16
adbgen - generate adb script, 1844
ctrace - display program trace, 119
dbx - source debugger, 131
dbxtool - debugger, 140
kadb - kernel debugger, 1971

debugging memory management, 1066 thru 1070
malloc debug () - set debug level, 1069
malloc -verify () - verify heap, 1069

debugging suPPort - ass ert () , 910
decimal dump file - od, 369
decimal record from double-precision floating -

double_to_decimal(),975
decimal record from single-precision floating­

single to decimal (},975
decimal record to double-precision floating -

decimal_to_double(),955
decimal record to extended-precision floating­

decimal to extended(),955
decimal record to en ended-precision floating­

extended_to_decimal(),975
decimal record to single-precision floating -

decimal to single(},955
decimal_ to -=-do~ble () - decimal record to double-precision

floating, 955
decimal_to _extended () - decimal record to extended­

precision floating, 955
decimal_to _single () - decimal record to single-precision

floating, 955
decode binary file - uudecode,634
decode files

crypt, 97
des - Data Encryption Standard, 150

crypt - decrypt, 97
default command, 106
defaults, update kernel from- input_from_defaults, 246
defaults from input -update defaults from kernel, 246
defaults;di t -= changing SunView default settings, 146
delayed execution

add job to queue - at, 30
display queue - atq, 32
remove jobs from queue - at rm, 33

delete
columns from file, 126
columns from file - colrm, 83
directory - rmdir (), 821

delete, continued
directory - rmdir command, 442
directory entry - unlink () , 872
file - rm, 442
filename affixes - basename,43
mlc address ioctl- SIOCDELMULTI,1398
nroff, troff, tbl and eqn constructs - deroff,

149
print jobs - lprm, 295
repeated lines - uniq, 621

delete arp entry ioctl- SIOCDARP, 1354
delete datum and key - delete (), 953
delete delayed execution jobs - atrm, 33
delete descriptor, 714
delete mail command, 311
delete route ioctl- SIOCDELRT,1454
delete () - delete datum and key, 953
delta

change commentary, 464
combine, 466
make SCCS delta - delta, 467
remove - rmdel,478

demonstration
SunCore graphics package, 1785

demos
bouncedemo - bouncing square graphics demo, 1756
canvas demo - canvas subwindow demo, 1786
cursor-demo - cursor attributes demo, 1786
flight-=-- graphics processor demo, 1755
f ra me demo - graphics demo, 1756
graphics processor, 1755
graphics_demos, 1756
introduction, 1717
j umpdemo - graphics demo, 1756
rotobj - graphics processor demo, 1755
spheresdemo - graphics demo, 1756
Sun View demos, 1786

demount file system - umount, 2006
demount file system - unmount (), 873
deny messages - mesg, 343
deroff -remove troff constructs, 149
des - data encryption, 150
des - DES encryption chip interface, 1381
DES encryption

cbc crypt (), 956
des=setparity(},956

describe command - whatis, 661
descriptors

close (), 714
delete, 714
dup (), 719
dup2 (), 719
fcntl (), 724
flock () , 728
getdtablesi ze (), 737
lockf (), 1060
select (), 822

DESIOCBLOCK-process block, 1381
DESIOCQUICK-process quickly, 1381
desk calculator, 142
destroy hash table - hdestroy (), 1023

-2184-

device controls - ioctl (), 763
devices

paging, specify - swapon, 2121
swapping, specify - swapon, 2121

devices, introduction to, 1349
devinf 0 - print out system device information, 1898
devnm command, 1899
df - display free space, 152
diagnostics

gxtest - graphics board diagnostics, 1946
imemtest - memory diagnostic, 1956
system, 2118

dial box - SunDials, 1380
dial test - SunDials demo program, 1745
diff - differential compare, 153
diff3 - three-way differential compare, 156
diffmk - add change marks to documents, 158
dir - directory format, 1559
dircmp - compare directories, 159
directory

advertise for RFS access, 1852
change current, 707
change name of - mv, 351
change root - chroot () , 712
change working, 60
check consistency - dcheck, 1897
check UUCP directories and Permissions file, 2145
delete - rmdi r command, 442
delete - rmdir (), 821
differential compare, 153
display name of working - pwd, 426
erase - rmdir () , 821
get entries, 732, 734
list contents of - Is, 298
make- mkdir, 344,345,774
make link to - In, 274
move- mv,351
remove - rmdir command, 442
remove - rmdir (), 821
rename - mV,351
scan, 1143
UUCP spool directory clean-up, 2148

directory operations
closedir () , 957
opendir (), 957
readdir (), 957
rewinddir (), 957
seekdir () , 957
telldir (), 957

di rs command, 106
di s command, 160
disable

transport endpoint, 1222
disable print queue - Ipc, 1980
disablenumlock - disable the NumLock key, 178
discard mail command, 311
disconnect

host from RFS environment, 2071
retrieve information from, 1211

disk
access pro filer, 1939

- 2185-

disk, conJinued
control operations - dkio, 1382
dkinfo - geometry information, 1902
dkctl- special disk operations, 1901

disk driver
fd - Sun floppy, 1387

Index - COnlinued

xd - Xylogics, 1512 thru 1513, 1515 thru 1516

disk quotas
edquota - edit user quotas, 1910
quotacheck - check quota consistency, 2051
quotaoff - tum file system quotas off, 2052
quotaon - tum file system quotas on, 2052
repquota - summarize quotas, 2059
rquotad -remote quota server, 2086

disk quotas - quotactl (), 810
diskette, eject with - eject, 177
diskusg - generate disk accounting data by user, 1900
display

architecture of current Sun host - arch, 27
call-graph profile data - gprof,219
current domain name - domainname, 161
current host identifier, 232
current host name, 233
date, 129
date and time, 129
delayed execution queue - atq, 32
disk usage, 167
disk usage and limits - quota, 427
dynamic dependencies - 1 dd, 265
effective user name - whoami, 666
file by screenfuls - more, 346
file names - 1 s, 298
file system quotas - repquota, 2059
first lines of file, 228
free space in file system, 152
group membership, 227
identifier of current host, 232
last commands - lastcomm, 257
last part of file - tail,561
login name - logname, 285
name list of object file or library - nm, 362
name of current host, 233
page size - pagesize, 398
printer queue - 1 pq, 290
process status - ps,421
processor of current Sun host, 305
program profile - prof,419
program trace - ctrace, 119
sees file editing status - sact, 479
selected lines from file - sed,491
status of network hosts - rup, 450
system up time - uptime, 627
time and date, 129
time in window, 72
user and group IDs - i d, 237
users on system - users, 628
waiting mail- prmai 1, 383
working directory name - pwd, 426

display editor - vi, 649
display status of local hosts - ruptime, 451
dkctl - special disk operations, 1901
dkinfo - disk geometry information, 1902
dkio - disk control operations, 1382

Index - Continued

OKI OCGGEOM - get disk geometry, 1383
OKIOCGPART - get disk partition info, 1383
OKIOCINFO - get disk info, 1383
OKIOCSGEOM- set disk geometry, 1383
OKIOCSPART - set disk partition info, 1383
OKIOCWCHK - disk write check, 1383
dlclose () -unload a shared object, 960
dlerror () - dynamic linking error string, 960
dlopen () - dynamically load a shared object, 960
dl s ym () - dynamically lookup a symbol, 960
dme sg - create error log, 1903
dn _ comp () - Internet name server routines, 1118
dn _expand () - Internet name server routines, 1118
dname - print RFS domain and network names, 1904
do command, 500
document production

addbib - create bibliography, 21
checknr - check nroff/troff files, 63
col - filter reverse paper motions, 79
co 1 c rt command, 81
deroff - delete troff, tbl and eqn constructs, 149
diffmk - add change marks, 158
eqn - set mathematical equations, 180
eqnchar - special characters for equations, 1798
fmt - simple formatter, 198
indxbib - make inverted index, 242
lookbib - find bibliographic references, 287
-man - macros to format manual pages, 1813
-me - macro package, 1816
-ms - macro package, 1818
nroff - document formatter, 365
pti - (old) troff interpreter, 384
ptx - generate permuted index, 425
refer - insert literature references, 437
roffbib - print bibliographic database, 443
soelim - eliminate .so's from nroff input, 518
sortbib - sort bibliographic database, 522
spell- check spelling, 523
tbl - table formatter, 567
troff - typeset documents, 609
vfontinfo - examine font files, 645
vt ro f f - format document for raster printer, 653
vwidth - make font width table, 654

dodisk - accounting shell procedure, 1841
domain

get name of current - getdomainname () , 736
primary and secondary domain name service, 1635
print RFS domain and network names, 1904
RFS domain administration, 2067
set name of current - setdomainname () , 736

domain name system, resolver, 1118
domainname - set/display domain name, 161
done command, 500
dorfs - start and stop RFS automatically, 1905
dos - window for IBM PC/AT applications, 162
DOS windows

boards. pc - file for DOS windows, 1543
dos2unix -convert text file from DOS format to ISO format,

166
dot mail variable, 316
double_to _decimal () - decimal record from double-

precision floating, 975
down, take printer - lpc, 1980
dp mail command, 311
drand48 () - generate uniformly distributed random numbers,

961
draw graph, 221
driver

driver for SCSI disk devices, 1456
drum - paging device, 1384
dt mail command, 311
du - display disk usage, 167
dump - dump file system, 1906
dump - incremental dump format, 1561
dump frame buffer image- sCl:eendump,484
dumpf s - dump file system information, 1909
dumpkeys

keyboard table descriptions, 1597
dumpkey s command, 279
dup (), 719
dup2 (), 719
duplicate descriptor, 719
dysize () - date and time conversion, 923

E
-e C shell file inquiry - file exists, 104, 309
echo

echo variable - csh,l11
echo - echo arguments, 168,506
echo mail command, 311
econvert () - convert number to ASCII, 963
ed -line editor, 169
eda ta () - end of program data, 965
edit

fonts - font edit, 200
icons - coloredi t, 82
icons - iconedi t, 234
password file - vipw, 2153
SunView defaults - defaultsedi t, 146
user quotas - edquota, 1910

edi t - line editor, 184
edi t mail command, 311
editheaders mail variable, 316
editing text

ed -line editor, 169
edit -line editor, 184
ex -line editor, 184
sed - stream editor, 491

EDITOR mail variable, 316
edquota - edit user quotas, 1910
EEPROM display and load program - eeprom, 1911
effective group ID

get - getegid (), 738
set- setregid (), 833

effective group ill, set - setegid (), 1158
effective user ID

get, 762
set- setreuid (), 834

effective user ID, set - seteuid (), 1158
egrep - pattern scanner, 223
e j e ct - eject floppy diskette, 177

-2186 -

el i f command, 500
eliminate 4I=ifdef's from C input - unifdef,620
eliminate .so's from nroff input - soelim, 518
el se command, 107, 500
else mail command, 312
emulate Tektronix 4014 - tektool,572
enable print queue - lpc, 1980
enablenumlock - enable the NumLock key, 178
encode binary file - uuencode, 634
encode files

crypt, 97
des - Data Encryption Standard, 150

encrypt () - encryption, 921
encrypted mail

enroll for - enroll, 672
receive - enroll, 672
send - xsend,672

encryption
cbc crypt (), 956
crypt () , 921
des setparity (), 956
encrypt (), 921
setkey (), 921

encryption chip - des, 1381
encryption key, change, chkey commmand, 65
encryption key, generate - makekey, 1987
end command, 107
end () - end of program, 965
end locations in program, 965
endac () function, 985
endexportent () function, 971
endf sent () - get file system descriptor file entry, 991
endgraent () function, 992
endgrent () - get group file entry, 993
endhostent () - get network host entry, 995
endif C shell command, 107
endif mail command, 312
endmntent () - close a file system description file, 998
endnetent () - get network entry, 1000
endnetgrent () - get network group entry, 1001
endpoint

establish transport endpoint, 1204
endprotoent () - get protocol entry, 1005
endpwaent () function, 1007
endpwent () - get password file entry, 1009
endrpcent () - get RPC entry, 1011
endservent () - get service entry, 1013
endsw command, 110
endttyent () - close ttytab file, 1019
endusershell () - function, 1021
enquire stream status

clearerr () - clear error on stream, 974
feof () - enquire EOF on stream, 974
ferror () - inquire error on stream, 974
fileno () - get stream descriptor number, 974

enroll- enroll for secret mail, 672
env - obtain or alter environment variables, 179
environ - user environment, 1564
environ () - execute file, 968

- 2187-

environment
display variables - printenv, 418
get value - getenv (), 989
set value - putenv (), 1103

Index - COnlinued

tset - set terminal characteristics for, 612
environment variables - in C shell, 111
environment variables in rna iI, 314 thru 317, see also rna i I

environment variables
eqn - remove constructs - derof f, 149
eqn - mathematical typesetting, 180
eqnchar - special characters for equations, 1798
erand48 () - generate uniformly distributed random numbers,

961
erase

directory - rmdir (), 821
directory - rmdir command, 442
directory entry - unlink () , 872
file - rm, 442

erase magnetic tape - mt, 349
erase () - start new plot frame, 1091
erf () - error functions, 1305
erf c () - error functions, 1305
errno - system error messages, 1089
error

describe error during call to transport function, 1196
error - analyze error messages, 182
error messages, 1089
esac command, 500
escape character, quotes and comments, C shell, 99
escape mail variable, 316
etext () - end of program text, 965
etherd - Ethernet statistics server daemon, 1914
etherfind - find packets on the Ethernet, 1915
Ethernet

find packets - etherfind, 1915
statistics server daemon - etherd, 1914

Ethernet address mapping, 966
Ethernet address to ASCII - ether _ ntoa () , 966
Ethernet address to hostname - ether _ n toho st () , 966
Ethernet controller

ie - Sun Ethernet interface, 1395 thru 1396
Ie -10 Mb/s LANCE Ethernet interface, 1413 thru 1414

ethers file - Ethernet addresses, 1565
Euclidean distance function - hypot () , 1310
eval command, 106,506
evaluate expressions, 187
ex-line editor, 184
examine

blocked signals, 847
system images, 1889

exc _bound () function, 1281
exc_handle () function, 1281
exc _notify () function, 1281
exc_on_exit () function, 1281
exc_raise () function, 1281
exc _ unhandle () function, 1281
exec command, 106,506
execl () - execute file, 968
execle () - execute file, 968

Index - Continued

execlp () - execute file, 968
execute commands at specified times - cron, 1894
execute file, 720, 968

environ () ,968
execl () , 968
execle () , 968
execlp () , 968
execv () , 968
execvp () , 968

execute regular expression - re _exec () , 1114
executing commands in C shell, 105
execution

suspend for interval, 1168
suspend for interval in microseconds, 1244

execution accounting file - acct, 1528
execution profile, prepare - monitor (), 1077
execv () - execute file, 968
execve (), 720
execvp () -execute file, 968
exi t command, 107, 506
exi t mail command, 311
exi t (), 723, 970
exp () - exponential function, 1306
exp 10 () - exponential function, 1306
exp2 () - exponential function, 1306
expand assembly-language calls in-line, inline, 243
expand - expand tabs, 186
expml () - exponential function, 1306
exponent and significant, split into - frexp (), 1308
exponential function - exp () , 1306
export command, 506
exportable file system table - export 5, 1566
exported file system table - xtab,1566
exportent () function, 971
exportfs command, 1918
export 5 - exported file system table, 1566
expr - evaluate expressions, 187
expression evaluation, 187
expressions - in C shell, 103
ext yo rt 5 - EXT_PORTS for network printers, terminals and

moderns, 1568
extend bibliography - addbib,21
extended_to _decimal () - decimal record from extended-

precision floating, 975
extract strings from C code - xstr, 673
extract yatch - extract and execute patch fiies, 1920
extract_unbundled command, 1921
eyacc - compiler generator, 372

F
-f C shell file inquiry - plain file, 104,309
fabs () function, 1314
factor game, 1748
fastboot -reboot system, 1922
fasthalt -halt system, 1922
fb - Sun console frame buffer driver, 1385
fbio - frame buffer control operations, 1386
fbtab - framebuffer table, 1570
f chmod (), 708

fchown 0,710
fclose 0 -close stream, 973
f cntl- file control options, 1571
f cn t I () - file control system call, 724
f convert () - convert number to ASCn, 963
f df orma t - floppy format

format floppy, 189
FDKEJECT - eject floppy, 1383
FDKIOGCHAR - get floppy characteristics, 1383
FDKIOGETCHANGE - get status of disk changed, 1383
f dopen () - associate descriptor, 979
feof () -enquire EOF on stream, 974
ferror () - inquire error on stream, 974
fetch () -retrieve datum under key, 953
fflushO -flush stream, 973
ffs () - find first one bit, 916
f g command, 107
fgetc () - get character from stream, 987
fgetgraent () function, 992
fgetgrent () - get group file entry, 993
fgetpwaent () function, 1007
fgetpwent () - get password file entry, 1009
fgets () - get string from stream, 1012
fgrep - pattern scanner, 223
f i command, 500
FIFO (named pipe)

make, 776
fifo, make - mknod, 1993
fignore variable, 111
file

ftw () - traverse file tree, 984
browse through text- more, 346
browse through text- page, 346
browse through text- pg,410
change name of - mV,351
change ownership - chown, 1875
copy from remote machine - rcp, 431
count lines, words, characters in - wc,659
create new, 717
create temporary name - trnpnarn (), 1235
delete - rm, 442
determine accessibility of, 696
display last part of - tail,561
dump - od, 369
execute, 720
find lines in sorted - look, 286
identify version - what, 660
make hard link to, 767
make link to - In, 274
move - rnv,351
print - lpr, 292
remove - rm, 442
rename - rnv, 351
report processes using file, 1940
reverse lines in - rev, 439
send to remote host- uusend,635
split into pieces - split, 526
sum - sum and count blocks in file, 537
synchronize state - f sync () , 730
update last modified date of - touch,601

file attributes

-2188 -

file attributes, continued
f stat () , 858
lstat (), 858
stat (), 858

file - get file type, 191
file control

options header file - fcntl, 1571
system call- fcntl (), 724

file formats, 1521
file inquries - in C shell, 104
f i Ie mail command, 311
file position, move - lseek (), 770
file system

4.2 format- fs,1572
access (), 696
cd - change directory, 60
chdi r () , 707
check and repair - fsck,1932
check consistency - icheck,1950
check directory - dcheck, 1897
chmod () , 708
chown (), 71 0
create file - open (), 794
create new - newfs, 2022
delete directory entry - unlink (), 872
delete directory - rmdir (), 821
demount - umount, 2006
unmount () - demount file system, 873
display disk usage and limits - quota, 427
display free space, 152
dump information - dumpf s, 1909
edquota - edit user quotas, 1910
erase directory entry - unlink (), 872
erase directory - rmdir () , 821
exported table - xt ab, 1566
exports table - export s, 1566
fchmodO, 708
fchown 0, 710
free space display, 152
f stab - static information, 1576
ftruncate (), 869
get file descriptor entry, 991
get file system statistics, 875
getdents (), 732
getdirentries (), 734
link (), 767
loopback - mount, 2006
I seek () , 770
make- mkfs, 1991
make prototype-- mkproto, 1994
mkdir () , 774
mknod (), 776
mount - mount, 2006
mount () , 780
mounted table - mtab, 1576, 1607
open (), 794
quotacheck - check quota consistency, 2051
quotactl () - disk quotas, 810
quotaoff - tum file system quotas off, 2052
quotaon - turn file system quotas on, 2052
readlink (), 815
remove directory entry - unlink (), 872
remove directory - rmdir (), 821

- 2189-

file system, continued
rename file - rename (), 819
report access, 1939
repquota - summarize quotas, 2059
rquotad -remote quota server, 2086
statistics - fstatfs (), 861
statistics - statfs 0,861
summarize ownership - quot, 2050
symlink () , 864
tell (), 770
truncate (), 869
tune - t unef s, 2136
umask (), 870
unmount - umount, 2006
unmount () - demount file system, 873
utime () - set file times, 1245
utimes () - set file times, 876
where am 1- pwd,426

file system description file close
endmntent () , 998

file system description file entry add
addmntent (), 998

file system description file entry option search
hasmntopt (), 998

file system description file entry read
getmntent () , 998

file system description file open
setmntent () , 998

file system description file, manipulate, 998
file system dump - dump, 1906
file system restore - re st ore, 2060
file transfer protocol

ftp command, 205
server - ftpd, 1935
trivial, tftp command, 588

Index - Continued

file _ to_decimal () - decimal record from character stream,
1177

filec variable, 111
filemerge command, 373
filename completion, C shell, 99
filename substitution, 103
filename, change - rename () , 819
fileno () - get stream descriptor number, 974
files

cspli t - split file into sections, 115
basename - strip affixes, 43
cat - concatenate, 51
ccat - extract files compressed with compact, 371
chrnod - change mode, 66
cmp - compare files, 78
col rm - remove columns from, 83
compact - compress files, 371
compare, 78
compare, three-way differential- diff3, 156
compres s - compress files, 85
convert and copy, 144
copy,87
copy standard output to many - tee, 571
cp - copy files, 87
cpio - copy archives, 89
crypt - encrypt/decrypt, 97
• cshrc and the C shell, 98

Index Continued

files, continued
cut -remove columns from, 126
de s - encrypt/decrypt, data encryption standard, 150
determine type of, 191
differential compare, 153
display first lines of, 228
display names - 1 s, 298
find, 193
find differences, 153
. log in and the C shell, 98
. logout and the C shell, 98
pa ck - pack files, 396
paste - horizontal merge, 401
pcat -pack files, 396
prepare files for printing - pr,415
search for patterns in - grep, 223
side-by-side compare, 489
sort - sort and collate lines, 519
transfer, 205, 588
uncompact - uncompress files, 371
uncompress - uncompress files, 85
unpack - unpack files, 396
zcat - extract compress files, 85

file system organization, 1799
filter reverse paper motions - col, 79
find

first key in dbm() database- firstkey (), 953
first one bit - f f s () , 916
find lines in sorted file - look, 286
find literature references - refer, 437
name of terminal- ttyname (), 1239
next key in dbm () database - next key () , 953
find object file size - size, 514
find ordering for object library - lorder, 288
patterns in file - grep, 223
find printable strings in binary file - strings, 527
program - whereis,662

find- find files, 193
finger - info on users, 196
fingerddaemon,1923
finite () function, 1314
FIOASYNC - set/clear async 1/0,1389
FIOCLEX - set close-on-exec flag for fd, 1389
FIOGETOWN - get file owner, 1389
FIONBIO- set/clear non-blocking I/O, 1389
F IONCLEX - remove close-on-exec flag, 1389
FIONREAD - get # bytes to read, 1389
FIOSETOWN - set file owner, 1389
firstkey () - find first key, 953
fish - Go Fish game, 1749
flight - graphics processor demo, 1755
floating-point, 203

reliability tests - fparel,1927
version and tests - fpaversion, 1928

floating-point accelerator, fpa, 1390
floatingpoint () - IEEE floating point definitions, 977
flock () , 728
floor () - floor - convert to integral floating, 1323
floppy diskette, eject with - eject, 177
flush disk activity - sync, 555
flush stream - fflush (), 973

fmod () function, 1314
fmt - simple formatter, 198
f old - fold long lines, 199
f 01 de r mail command, 311
folder mail variable, 316
f 01 de rs mail command, 311
followup mail command, 311
Followup mail command, 311
font

files, convert foreign - vswap,652
vwidth - make font width table, 654

fontedit - font editor, 200
fontflip command, 1924
f open () - open stream, 979
foption -determine available floating-point code generation

options, 203
for command, 500
force

unmount of advertised resource, 1938
foreach command, 107
fork a new process - fork () , 729
format C programs - indent, 238
forma t command, 1925
format document for raster printer - vtroff,653
format ofrriemory image file - core, 1554
format tables - tbl, 567
formatted input conversion

fscanf () -convert from stream, 1144
s canf () - convert from stdin, 1144
s scanf () - convert from string, 1144

formatting
dates and times for locale, 1055
numeric and monetary conventions for locale, 1057

fortune - get fortune, 1750
. forward file, 314
. forward - mail forwarding file, 1529
forwarding mail, 314
fp clas s () function, 1314
fp~, floating-point accelerator, 1390
FPA+ - download to the FPA, 1926
f pa re 1 - floating -point reliability tests, 1927
fpathconf () - query file system related limits and options,

798
fpaversion - floating-point version and tests, 1928
fprintf () - formatted output conversion, 1096
fpurel- Test Numeric Co-processor, 1930
fputc () - put character on stream, 1102
fputs () -put string to stream, 1105
fpuversion4 - display Sun-4 FPU version, 1931
frame buffer

bwtwo - black and white frame buffer, 1361
framebuffer

fbtab - framebuffer table, 1570
framedemo - graphics demo, 1756
fread () -read from stream, 981
free

transport library structure, 1197
free memory - cfree () , 1067
free memory - free (), 1067

-2190-

free static block ioctl- GPIIO FREE STATIC BLOCK,
1392 - - -

free () - free memory, 1067
freopen () - reopen stream, 979
f rexp () - split into significant and exponent, 1308
from - who is mail from, 204
f rom mail command, 311
f s - 4.2 file system format, 1572
fscanf () -convert from stream, 1144
f s ck - check and repair file system, 1932
fseek () - seek on stream, 982
fsirand- install random inode generation numbers, 1934
fspec text file tabs top specifications, 1574
f stab - file mountable information, 1576
fstat () - obtain file attributes, 858
fstatf s () - obtain file system statistics, 861
fsync () - synchronize disk file with core image, 730
ftell () - get stream position, 982
ftime () - get date and time, 1231
ftok () - interprocess communication routine, 983
ft p - file transfer, 205
ftp-remote login data - . netrc file, 1610
ft pd - file transfer protocol server, 1935
ftpusers - ftpprohibited users list, 1579
ftruncate () , 869
ft w () - traverse file tree, 984
full-duplex connection, shut down - shutdown () , 843
fumount - force unmount of advertised resource, 1938
file_to _decimal () - decimal record from character func-

tion, 1177
functions, Bourne shell, 500
fusage - disk access pro filer, 1939
fuser - identify processes using file structure, 1940
fwrite () -write to stream, 981
fwtmp - convert connect accounting records to ASCII, 1941

G
gaintool-audio control panel, 1751
games

boggletool- SunView game of boggle, 1730
canfield - solitaire card game, 1735
chess - chess game, 1737
chesstool- SunView chess game, 1738
gammontool - Sun View backgammon game, 1753
introduction, 1717
life - SunView game oflife, 1762

gamma () -log gamma, 1319
gammontool - Sun View backgammon game, 1753
gather write - wri tev () , 884
gcd () - multiple precision GCD, 1079
gconvert () - convert number to ASCII, 963
gcore - core image of process, 212
gencat - create a message catalog, 1965
generate

adb script- adbgen, 1844
encryption key - makekey, 1987
fault - abort () , 903
lexical analyzer - lex, 267
permuted index - ptx, 425

- 2191-

Index - Continued

generate random numbers
initstate(),1109
rand (), 1108
random (), 1109
setstate (), 1109
srand (), 1108
s random (), 11 09
drand48 (), 961
erand48 (), 961
j rand4 8 (), 961
lcong48 (), 961
lrand48 (), 961
mrand48 (), 961
nrand48 () , 961
seed48 (), 961
srand48 () , 961

generic disk control operations - dkio, 1382
generic operations

get

gather write - wri tev (), 884
ioctl (), 763
read (), 812
scatter read - readv (), 812
wri te () , 884

arp entry ioctl - SIOCGARP, 1354
character from stream - fgetc (), 987
character from stream - getc (), 987
console I/O ioctl- TIOCCONS, 1374
count of bytes to read ioctl- FIONREAD, 1389
current working directory pathname - getwd () , 1022
date and time - ft ime () , 1231
date and time - time (), 1231
disk geometry ioctl- DKIOCGGEOM, 1383
disk info ioctl- DKIOCINFO, 1383
disk partition info ioctl- DKIOCGPART,1383
entries from kernel symbol table - kvm nli st () , 1033
entries from symbol table - nlist () ,1086
environment value - getenv () , 989
file owner ioctl- FIOGETOWN, 1389
file system descriptor file entry, 991
foreground process group 10, 1223
high water mark ioctl- SIOCGHIWAT, 1477
ifnet address ioctl - SIOCGIFADDR, 1397
ifnet flags ioctl- SIOCGIFFLAGS, 1397
ifnet list ioctl- SIOCGIFCONF, 1397
info on resource usage - vtimes (), 1254
login name - getlogin (), 997
low water mark ioctl - SIOCGLOWAT, 1477
magnetic tape unit status - mt,349
network entry - getnetent (), 1000
network group entry - getnetgrent (), 1001
network host entry - gethostent () , 995
network service entry - getservent (), 1013
options on sockets - getsockopt (), 758
p-p address ioctl- SIOCGIFDSTADDR, 1397
parent process identification - getppid (), 750
pathname of current working directory - getcwd () , 988
position of stream - ftell (), 982
process domain name - getdomainname () , 736
process identification - getpid (), 750
process times - times (), 1232
protocol entry - getprotoent (), 1005
requested minor device ioctl- GPIIO_GET_REQDEV,

Index - Continued

1392
get, contirmed

restart count ioetl- GP1IO_GET_RESTART_COUNT,
1392

RPC program entry - getrpcent (), 1011
scheduling nice value - get pr io ri t y (), 751
signal stack context - sigstaek (), 849
staticblock ioetl- GP1IO GET STATIC BLOCK

1392 - - - '

string from stdin - gets (), 1012
string from stream - f get s () , 1012
terminal name - tty, 617
terminal state - gtty (), 1182
true minor device ioctl-

GP1IO GET TRUMINORDEV, 1392
user limits - ullmit-O, 1242
word from stream - get w () , 987

get - get SCCS file, 469
get compatibility mode ioctl- KIOCGCOMPAT, 1409
get date and time, 760
get group file entry

endgrent () , 993
fgetgrent () , 993
getgrent () , 993
getgrgid (), 993
getgrnam () , 993
setgrent () , 993

get high water mark ioctl- SIOCGHIWAT,1507
get keyboard "direct input" state ioetl- KIOCGDIRECT,

1409
get keyboard translation ioetl- KIOCGTRANS, 1407
get keyboard type ioctl - KIOCTYPE, 1408
getLEDs ioetl- KIOCGLED,1409
get low water mark ioctl- SIOCGLOWAT,1507
get password file entry

endpwent () , 1009
fgetpwent(),1009
getpwent (), 1009
getpwnam (), 1009
getpwuid (), 1009
setpwent () , 1009
fgetpwent(),l009

get time zone name - time zone () , 1233
get translation table entry ioetl- KIOCGKEY, 1408
get user name - euserid (), 952
set_alarm- SunView programmable alarms, 497
get_myaddress () - secure RPC, 1148
get_selection -copy a SunView selection to standard out-

put, 217
getacdir () function, 985
getacflg () function, 985
getacinfo () - get audit control file information, 985
getacmin () function, 985
getauditflags () - generate process audit state, 990
getaudi tflagsbin () - convert audit flag specifications, 986
getauditflagsehar () -convert audit flag specifications,

986
getauid () function, 731
gete () - get character from stream, 987
getehar () - get character from stdin, 987
getewd () - get patbname of current directory, 988

getdents (), 732
getdirentries (), 734
getdomainname () - get process domain, 736
getdtablesize(),737
getegid () - get effective group ID, 738
getenv () - get value from environment, 989
geteuid () - get effective user ID, 762
getexportent () function, 971
getexportopt () function, 971
getfsent () - get file system descriptor file entry, 991
getfsfile () - get file system descriptor file entry, 991
getfsspec () - get file system descriptor file entry, 991
getfstype () - get file system descriptor file entry, 991
getgid () - get group ID, 738
getgraent () function, 992
getgranam () function, 992
getgrent () - get group file entry, 993
getgrgid () - get group file entry, 993
getgrnam () - get group file entry, 993
get groups (), 739
gethostbyaddr () - get network host entry, 995
gethostbyname () - get network host entry, 995
gethostent () - get network host entry, 995
gethostid (), 740
gethostname(),741
getitimer () - get value of interval timer, 742
get login () - get login name, 997
getmntent () - read a file system description file entry, 998
getmsg () - get next message from stream, 744
getnetbyaddr () - get network entry, 1000
getnetbyname () - get network entry, 1000
getnetent () - get network entry, 1000
getnetgrent () - get network group entry, 1001
getnetname () - secure RPC, 1148
getopt - process options in scripts, 213
get opt () function, 1002

parse suboptions, 1014
getopts command, 215
getpagesize () - get system page size, 746
get pa s s () - read password, 1004
getpeername () - get name of connected peer, 747
getpgrp (), 748
getpid (), 750
getppid (), 750
getpriori ty () - get process nice value, 751
get protobynumber () - get protocol entry, 1005
getprotoent () - get protocol entry, 1005
getpublickey () - get public key, 1338
getpw () - get name from uid, 1006
getpwaent 0 function, 1007
getpwanam () function, 1007
getpwent () - get password file entry, 1009
getpwnam () - get password file entry, 1009
getpwuid () - get password file entry, 1009
getrlimit (), 752
getrpcbyname () - getRPC entry, 1011
getrpcbynumber () - get RPC entry, 1011
getrpcent 0 - get RPC entry, 1011

- 2192-

getrpcport () - get RPC port number, 1332
getrusage (), 754
get s () - get string from stdin, 1012
getsecretkey () - get secret key, 1338
getservbyname () - get service entry, 1013
getservbyport () - get service entry, 1013
getservent () - get service entry, 1013
getsockname(),757
getsockopt () - get socket options, 758
getsubopt () - parse sub options from a string, 1014
gettable - get DARPA Internet host table, 1942
gettext - retrieve a message string, 1017
gettimeofday(),760
getttyent () - get ttytab file entry, 1019
getttynam () - get ttytab file entry, 1019
getty - set terminal mode, 1943
gettytab - terminal configuration data base, 1580
getuid () - get user ID, 762
getusershell () - get legal user shells, 1021
getw () - get word from stream, 987
get wd () - get current working directory pathname, 1022
gfxtool- SunWindows graphics tool, 218
gid_allocd-GIDAllocator Daemon, 2138
glob command, 107
gmtime () - date and time conversion, 923
goto command, 107
GP. initialize graphics processor - gpconfig, 1944
GPIIO CRK GP -restart GP, 1392
GPIIO-FREE STATIC BLOCK-free static block, 1392
GPIIO -GET GBUFFER -STATE - check buffer state, 1392
GPIIO - GET - REQDEV -= get requested minor device, 1392
GP 1 I 0= GET =RESTART _COUNT - get restart count, 1392
GPIIO GET STATIC BLOCK - get static block, 1392
GPIIO - GET - TRUMINORDEV - get true minor device, 1392
GP 1 I 0 - PUT -INFO - pass framebuffer info, 1392
GPIIO -REDIRECT DEVFB - reconfigure fb, 1392
gpconfig - bind ~gtwo frame buffers to GP, 1944
gpone - graphics processor interface, 1392 thru 1393
gprof - call-graph profile, 219
graph - draw graph, 221
graphics

spline - interpolate smooth curve, 525
SunCore demonstration package, 1785
vplot - plot on Versatec, 651

graphics board diagnostics - gxtest.1946
graphics filters - plot. 413
graphics interface

arc (), 1091
circle (), 1091
closepl (), 1091
cont (), 1091
erase (), 1091
label () , 1091
line (), 1091
linemod (), 1091
move (), 1091
openpl (). 1091
point (), 1091
space (), 1091

Index - Continued

graphics interface files - plot, 1620
graphics processor interface - gpone, 1392 thru 1393
graphics tool- gfxtool,218
grep-pattem scanner, 223
create session and set process group ID

ID,835
group entry, network - getnetgrent (). 1001
group - group file format, 1583
group file entry - getgrent () , 993
groupID

chgrp - change group ID of file, 64

-2193 -

id - display user and group IDs, 237
newgrp - change group ID of user, 357
get- getgid (), 738
get effective - getegid (), 738
get foreground process group ID, 1223
set foreground process group ID, 1223
set process group ID for job control, 832
set real and effective - setregid (), 833

group mail command. 310
group. adjunct - password file. 1585
grouping commands in the C shell, 99
groups - display group membership, 227
grpauth () - password authentication function, 1106
grpck - check group database entries, 1945
gt t Y () - getterminal state. 1182
gxtest - graphics board diagnostics, 1946

H
-h - mail tilde escape, 309
hack game, 1757
halt - stop processor, 1947
halt processor. 816
halt system - fasthalt.1922
hangman - hangman game, 1758
hangup, control terminal- vhangup () , 879
hard link to file - link () , 767
hard link, make - In, 274
hardpaths variable, 111
hardware support, introduction to, 1349
ha sh command, 506
hash table search routine - hsearch (), 1023
hashcheck - check spelling, 523
hashmake - check spelling. 523
hashstat command, 107
hasmntopt () - search a file system description file entry for an

option, 998
ha vedi s k () - disk inquiry of remote kernel, 1342
hcrea te () - create hash table. 1023
hdestroy () - destroy hash table. 1023
head - display head of file, 228
header

read for COFF file, 1038
header mail variable, 316
headers mail command, 312
help- get SCCS help, 472
help- get help, 1586
help mail command, 312
help_open - open help_viewer file, 229

Index - Continued

help_viewer - help viewer file format, 1588
help_viewer - get help_viewer, 230
hexadecimal dump file - od, 369
hier - file system hierarchy, 1803
histchars variable, 111
history command, 107
history substitution - in C shell, 100
history substitution modifiers, 100
history variable, 111
hold mail command, 312
hold mail variable, 316
HOME mail environment variable, 314
home variable, Ill, 502
host

functions to convert to network byte order, 917
get identifier of, 740
get network entry - gethostent () ,995
get/set name - gethostname (), 741
phone numbers file - phones, 1619

host2netname () - secure RPC, 1148
hostid - display host ID, 232
hostname - display host name, 233
hostname to Ethernet address - ether_hostton (), 966
hostrfs - IP to RFS address conversion, 1948
hosts -host name data base, 1589
hosts. equi v - trusted hosts list, 1590
h search () - hash table search routine, 1023
htable - convert DoD Internet format host table, 1949
htonl () - convert network to host long, 917
htons () - convert host to network short, 917
HUGE () function, 1318
HUGE_VAL () function, 1318
hunt game, 1759
hyperbolic functions

cosh (), 1309
sinh () , 1309
tanh (), 1309

hypot () - Euclidean distance, 1310

I
- i-mail tilde escape, 309
I/O

socket, see sockio(4), 1459
STREAMS, see streamio(4), 1467
terminals, see termio(4), 1480
tty, see termio(4), 1480

I/O redirection in the C shell, 101
I/O statistics report - iostat, 1969
I/O, buffered binary

fread () -read from stream, 981
frwite () -write to stream, 981

i 3 86 - machine type indication, 306
iAPX2 86 - machine type indication, 306
icheck - file system consistency check, 1950
icmp - Internet Control Message Protocol, 1394
iconedit -edit icons, 234
id - display user and group IDs, 237
identifier of current host, get - gethostid (), 740
identify

identify, continued
processes using file structure, 1940

identify file version - what, 660
idload-RFS user and group mapping, 1951
ie - Sun 10 Mb/s Ethernet interface, 1395 thru 1396
ieee_flags () function, 1311
ieee_handler () function, 1315
ieeefp. h - IEEE floating point definitions, 977
if command, 107, 500
if -network interface general properties, 1397 thru 1398
if mail command, 312
if con fig - configure network interface parameters, 1954
IFS variable - sh, 502
ignore mail command, 311
ignore mail variable, 316
ignoreeof C shell variable, 111
ignoreeof mail variable, 316
ilogb () function, 1314
imemtest - memory diagnostic, 1956
inc mail command, 312
incremental dump format - dump, 1561
incremental file system dump - dump, 1906
incremental file system restore - restore, 2060
indent - format C source, 238, 1592
indentprefix mail variable, 316
index memory characters - memchr () , 1073
index strings - index () , 1175
index strings - rindex () , 1175
index () - find character in string, 1175
indexing, generate permuted index - ptx, 425
indirect system call, 867
indxbib - make inverted index, 242
inet - Internet protocol family, 1399 thru 1400
inet _ addr () - Internet address manipulation, 1025
inet _lnaof () - Internet address manipUlation, 1025
inet _ makeaddr () - Internet address manipUlation, 1025
inet_netof () -Internet address manipUlation, 1025
inet_network () - Internet address manipulation, 1025
inet _ntoa () - Internet address manipulation, 1025
inetd - Internet server daemon, 1957
inetd. conf - Internet server database, 1593, 1644
infinity () function, 1318
infocmp command, 1958
inhibit messages - mesg, 343
ini t - process control initialization, 1961
ini tgroups () - initialize supplementary group IDs, 1027
initial

Sun View initialization file, 1649
initialize

RFS,1905
initialize supplementary group IDs - initgroups (), 1027
initiate

connection on socket- connect (), 715
I/O to or from process - popen (), 1093
network listener server, 2028

initstate () -random number routines, 1109
inline command, 243
innetgr () - get network group entry, 1001
inode, clear - clri,1881

- 2194-

input conversion
f scanf () - convert from stream, 1144
scanf () - convert from stdin, 1144
sscanf () -convert from string, 1144

input stream, push character back to - ungetc (), 1243
in pu t _ from _ def a ul t s - update kernel from defaults data­

base, 246
inquire stream status

clearerr () - clear error on stream, 974
feof () - enquire EOF on stream, 974
ferror () - inquire error on stream, 974
fileno () - get stream descriptor number, 974

insert element in queue - insque (), 1028
insert literature references - refer, 437
insert_brackets - textedit selection filter, 586
in sque () - insert element in queue, 1028
install- install files, 247
install NIS database - ypini t, 2157
installboot procedures - boot, 1963
installtxt - create a message archive, 1965
integer

access long integer data, 1169
conversion between 3-byte integer and long integer, 1037

integer absolute value - abs () , 904
interactive graphics drawing - bdraw, 1746
internat -key mapping table for internationalization, 1594
international

set international environment, 1155
Internet

control message protocol- i cmp, 1394
directory service - whois, 667
file transfer protocol server - ft pd, 1935
protocol family - inet, 1399 thru 1400
Protocol- ip, 1401 thru 1403
to Ethernet address resolution - arp, 1354 thru 1355
Transmission Control Protocol- tcp, 1476, 1477
User Datagram Protocol - udp, 1506, 1507

Internet address manipulation functions, 1025
Internet name server routines, 1118
Internet servers database - servers, 1593, 1644
interpolate smooth curve - spline, 525
interpret (old) troff output - pti,384
interprocess communication

accept connection - accept () , 695
bind (), 704
connect (), 715
ftokO,983
get sockname (), 757
get sockopt () , 758
ipcrm, 248
ipcs, 249
listen (), 769
pipe (), 800
recv (), 817
recvfrom(),817
recvmsg (), 817
send (), 830
sendmsg () , 830
sendto (), 830
setsockopt (), 758
shutdown (), 843

-2195 -

interprocess communication, continued
socket () , 855
socketpair (), 857

Index - C on1inued

interrupts, release blocked signals - sigpause (), 845
interv al timers

clock () , 920
get value - getitimer, 742
set value - seti timer, 742
tirnerclear-macro, 743
timercmp - macro, 743
tirnerisset -macro, 743

int r- allow a command to be interruptible, 1968
introduction

C library functions, 887
commands,3
devices, 1349
file formats, 1521
games and demos, 1717
hardware support, 1349
mathematical library functions, 1301
miscellaneous environment information, 1793
miscellaneous table information, 1793
network interface, 1349
protocols, 1349
RPC library functions, 1329
standard I/O library functions, 1171
system calls, 681 thru 685
system error numbers, 686
system maintenance and operation, 1827

ioctl (), 763
ioctl's for des chip

DESIOCBLOCK - process block, 1381
DESIOCQUICK - process quickly, 1381

ioctls for disks
DKI OCGGEOM - get disk geometry, 1383
DKIOCGPART - get disk partition info, 1383
DKIOCINFO - get disk info, 1383
DKIOCSGEOM- set disk geometry, 1383
DKI OCSP ART - set disk partition info, 1383
DKIOCWCHK - disk write check, 1383

ioctl's for files
FIOASYNC - set/clear async I/O, 1389
F IOCLEX - set close-on-exec for fd, 1389
FIOGETOWN get owner, 1389
FIONBIO - set/clear non-blocking I/O, 1389
F IONCLEX - remove close-on-exec flag, 1389
FIONREAD - get # bytes to read, 1389
FIOSETOWN - set owner, 1389

ioctls for floppy
FDKEJECT - eject floppy, 1383
FDKIOGCHAR - get floppy characteristics, 1383
FDKIOGETCHAGE - get status of disk changed, 1383

ioctl's for graphics processor
GPl IO_CHK_GP -restart GP, 1392
GPl 10 _FREE_STATIC _BLOCK - free static block, 1392
GP 1 10_ GET _ GBUFFE~ STATE - check buffer state, 1392
GPl 10_ GET _ REQDEV - get requested minor device, 1392
GP 110_GET _RESTART_COUNT - get restart count, 1392
GP 110_ GET_STATIC _BLOCK - get static block, 1392
GPl IO_GET_TRUMINORDEV - get true minor device,

1392
GP 1 10_ PUT _INFO - pass framebuffer info, 1392
GPl 10_ REDIRECT _DEVFB - reconfigure fb, 1392

Index - Continued

ioetl's for keyboards
KIOCCMD - send a keyboard command, 1408
KIOCGCOMPAT - get compatibility mode, 1409
KIOCGDIRECT - get keyboard "direct input" state, 1409
KIOCGKEY - get translation table entry, 1408
KIOCGLED - get LEDs, 1409
KIOCGTRANS - get keyboard translation, 1407
KIOCLAYOUT - get keyboard type, 1408
KIOCSCOMPAT - set compatibility mode, 1409
KIOCSDIRECT - set keyboard "direct input" state, 1409
KIOCSKEY -change translation table entry, 1408
KIOCSLED - set LEDs, 1408
KIOCTRANS - set keyboard translation, 1407
KIOCTYPE - get keyboard type, 1408

ioetl's for sockets
SIOCADDMULTI - set rn/c address, 1398
SIOCADDRT - add route, 1454
SIOCDARP -delete arp entry, 1354
SIOCDELMULTI - delete rn/c address, 1398
SIOCDELRT - delete route, 1454
SIOCGARP - get arp entry, 1354
SIOCGHIWAT - get high water mark, 1477, 1507
SIOCGIFADDR - get ifnet address, 1397
SIOCGIFCONF - get ifnet list, 1397
SIOCGIFDSTADDR- get p-p address, 1397
SIOCGIFFLAGS - get ifnet flags, 1397
SIOCGLOWAT - get low water mark, 1477, 1507
SIOCSARP - set arp entry, 1354
SIOCSHIWAT - set high water mark, 1477, 1507
SIOCSIFADDR - set ifnet address, 1397
SIOCSIFDSTADDR - set p-p address, 1397
SIOCSIFFLAGS - set ifnet flags, 1397
SIOCSLOWAT - set low water mark, 1477, 1507
SIOCSPROMISC - toggle promiscuous mode, 1398

ioetl's for terminals
TIOCCONS - get console I/O, 1374
TIOCPKT - set/clear packet mode (pty), 1450
TIOCREMOTE - remote input editing, 1450
TIOCSTART - start output (like control-Q), 1450
TIOCSTOP - stop output (like control-S), 1450

iostat -report I/O statistics, 1969
IP address allocation, 1333
IP address mapping, 1333
ip - Internet Protocol, 1401 thru 1403
ipalloe () - IP address mapper, 1333
ipalloe.netrange file, 1596
ipalloed - Ethernet-to-IP address mapper, 1970
i perm - remove interprocess communication identifiers, 248
ipes - display interprocess communication status, 249
irint () - convert to integral floating, 1323
i salnum () - is character alphanumeric, 928
i salpha () - is character letter, 928
isaseii () - is character ASCII, 928
isatty () - test if device is terminal, 1239
isentrl () - is character control, 928
i sdig i t () - is character digit, 928
isgraph () -is character graphic, 928
isinf () function, 1314
islower () -is characterlower-case, 928
isnan () function, 1314
isnormal () function, 1314

isprint () - is character printable, 928
i spunct () - is character punctuation, 928
issecure () function, 1029
isspace () - is character whitespace, 928
issubnormal () function, 1314
issue shell command - system (), 1186
i supper () - is character upper-case, 928
i sxdi 9 it () - is character hex digit, 928
iszero () function, 1314
itom () - integer to multiple precision, 1079

J
j 0 () - Bessel function, 1304
j 1 () - Bessel function, 1304
j n () - Bessel function, 1304
job control- c sh, 105
job s command, 107
join -relational database operator, 252
j rand4 8 () - generate uniformly distributed random numbers,

961
jumpdemo - graphics demo, 1756

K
kadb - kernel debugger, 1971
kb - Sun keyboard
kb - Sun keyboard STREAMS module, 1404
keep mail variable, 316
keepsavemail variable, 316
kernel and local lock manager protocol, 1334
kernel symbol table, get entries from - kvm _ nl i st (), 1033
key decrypt session () - secure RPC, 1148
key=:encryptsession () - secure RPC, 1148
key gendes () -secureRPC,1148
key=: set secret () - secure RPC, 1148
keyboard

table descriptions for loadkeys and dumpkeys, 1597
keyboard click, control with - elick,71
kbd - Sun keyboard, 1410
keyenvoy command, 1973
keyenvoy server, 1974
keylogin - decrypt and store secret key, 253
key logout command, 254
key tables - keyboard table descriptions for loadkeys and

dumpkeys, 1597
kgmon - dump profile buffers, 1975
kill command, 108,255
kill () - send signal to process, 764
killpg () - send signal to process group, 766
K I OCCMD - send a keyboard command, 1408
K I OCGCOMP AT - get compatibility mode, 1409
KIOCGDlRECT - get keyboard "direct input" state, 1409
KIOCGKEY - get translation table entry, 1408
KIOCGLED - get LEOs, 1409
KIOCGTRANS - get keyboard translation, 1407
KIOCLAYOUT - get keyboard type, 1408
KIOCSCOMPAT - set compatibility mode, 1409
KIOCSDlRECT - set keyboard "direct input" state, 1409
KIOCSKEY - change translation table entry, 1408

- 2196-

KIOCSLED - set LEDs, 1408
KIOCTRANS - set keyboard translation, 1407
KIOCTYPE - get keyboard type, 1408
kmern-kernel memory space, 1420 thru 1421

kvrn_close () function, 1034
kvrn _geternd () fWlction, 1030
kvrn_getproc () function, 1032
kvrn_getu () function, 1030
kvrn _next proc () function, 1032
kvrn _ nl i s t () - get entries from kernel symbol table, 1033
kvrn _open () function, 1034
kvrn _read () function, 1036
kvrn_setproc () function, 1032
kvrn_write () function, 1036

L
l3tol () - convert from 3-byte integer to long integer, 1037
164 a () - convert base-64 ASCII to long integer, 902
label () - plot label, 1091
LANCE 10 Mb/s Ethernet interface - Ie, 1413 thru 1414
language standards

ansie - C Language standard, 1794
languages

cb - format filter for C sources, 53
cc - C compiler, 54
tcflow-codeflow graph, 61
cpp - C preprocessor, 91
cxref - cross reference C program, 128
indent - format C source, 238
lex - generate lexical analyzer, 267
lint - C program verifier, 270
rnkstr - create C error messages, 345
t cov - code coverage tool, 570
xstr - extract strings from C code, 673

last -list last logins, 256
last locations in program, 965
lastcomm - display last commands, 257
lastlog -login records, 1705
lastlogin - accoWlting shell procedure, 1841
LC_ALL

setlocale () category, 1155
LC_COLLATE

setlocale () category, 1155
LC_CTYPE

setlocale () category, 1155
LC_MESSAGES

setlocale () category, 1155
LC_MONET ARY

setlocale () category, 1155
LC_NUMERIC

setlocale () category, 1155
LC_TIME

setlocale () category, 1155
lcong48 () - generate uniformly distributed random numbers,

961
ld -link editor, 258
ldaclose () function, 1039
ldahread () - read archive header of COFF file, 1038
ldaopen () function, 1047
ldclose () function, 1039

- 2197-

ldconfig - configure link-editor, 1976
1 dd - list dynamic dependencies, 265
1 df cn () function, 1040

Index - Continued

ldfhread () - read file header of COFF file, 1042
ldgetname () - retrieve symbol name for COFF file symbol

table entry, 1043
1 dl in it () function, 1044
1 dl item () function, 1044
ldlread () function, 1044
ldlseek () function, 1045
1 dn 1 s ee k () function, 1045
ldnrseek () function, 1049
ldnshread () function, 1050
ldnsseek () function, 1051
ldohseek () - seek to optional file header of COFF file, 1046
ldopen () function, 1047
ldrseek () function, 1049
ldshread () function, 1050
ldsseek () function, 1051
ldtbindex () - compute index of symbol table entry of COFF

file, 1052
ldtbread () - read an indexed symbol table entry of a COFF

file, 1053
ldtbseek () - seek to the symbol table of a COFF file, 1054
ldterm, terminal STREAMS module, 1411
Ie - LANCE 10 Mb/s Ethernet interface, 1413 thru 1414
1 ea ve - remind you of leaving time, 266
lex language tags file - etags,117
lex - generate lexical analyzer, 267
lexical analysis, C shell, 99
1 find () -linear search routine, 1062
library

find ordering for object - lorder, 288
make random - ranlib,428

library file format- ar,1532
library functions

introduction to C, 887
introduction to mathematical, 1301
introduction to RPC, 1329
introduction to standard I/O, 1171

library management
a r -library maintenance, 25

life-SunView gameoflife,1762
lightweight processes library, 1273
1 imi t command, 108
limiting virtual address space - set 4 command, 2104
limits

disk space - quota, 427
get for user - ulimit (), 1242
setfor user - ulimi t (), 1242

line - read one line, 269
line numbering - nl,360
line printer control - 1 pc, 1980 thru 1981
line printer daemon - 1 pd, 1982
line to Ethernet address - ether_line (), 966
line () - plot line, 1091
linear search and update routine - lsearch (), 1062
linear search routine - 1 f in d () , 1062
1 in emod () - set line style, 1091

Index - Continued

lines
count - wc, 659
find, in sorted file - look,286

link - make a link, 1977
make symbolic, 864
read value of symbolic, 815

link editor - ld, 258, 1603
link editor output - a. out, 1524
link (), 767
lint - C program verifier, 270
list mail command, 312
listen - network listener service administration, 2028
listen (), 769
LISTER mail variable, 316
literature references, find and insert - refer, 437
10 - software loopback network interface, 1415
load command, 277
load frame buffer image - screenload,486
load mail command, 312
loadc command, 277
loadkeys

keyboard table descriptions, 1597
loadkey s command, 279
localdt conv () - get date and time formatting conventions,

1055
locale

date and time formatting conventions, 1055
numeric and monetary formatting conventions, 1057

locale -localization data base, 1604
localeconv () - get numeric and monetary formatting con-

ventions, 1057
local time () - date and time conversion, 923
locate program - whereis, 662
lock

file - flock (), 728
record - f cntl (), 724, 1060

lock address space - mlockall (), 1076
lock memory pages - mlock (), 1075
lock process, text, or data segment in memory - plock (), 1090
lockd-network lock daemon. 1978
lockf () -record locking on files, 1060
lockscreen - save window context, 280
log files and system log daemon - syslogd, 2124
log gamma function - gamma (), 1319
log () -natural logarithm, 1306
10g10 -logarithm, base 10, 1306
10glp () -naturallogarithm, 1306
10g2 -logarithm, base 2, 1306
logarithm, base 10 - 10g10, 1306
logarithm, base 2 - 10g2, 1306
logarithm, natural- log () , 1306
10gb () function, 1317
logger - make system log entry, 282
login

change password - pa s s wd, 399
change_login - screen blanking and login, 1873
display effective user name - whoami, 666
display login name - logname, 285
display user and group IDs - id,237

login. continued
info on users - finger, 196
list last - last, 256
make script of session - script, 488
rusers - who is on local network, 452
rwho - who is on local network, 454
save window context- lockscreen, 280
to local machine - login. 283
to remote machine - rlogin,440
what are users doing - w,655
who - who is logged in. 665

login accounting, display login record - ac,1834
log in command, 108, 506
login environment

display variables - printenv, 418
tset - set terminal characteristics, 612
tty - get terminal name. 617

login environment - environ, 1564
. login file, 98
login name, get- getlogin (), 997
login password

change password- passwd,399
change in NIS - yppa s swd, 679

10 gin records
lastlog file, 1705
utmp file, 1705
wtmp file, 1705

logintool- graphic login interface, 1979
logname - display login name, 285
logout command, 108
. logout file, 98
long integer

convert to and from 3-byte integer, 1037
longjmp () - non-local goto, 1153
look

at current event on transport endpoint, 1203
at system images, 1889

look - find lines in a sorted file, 286
look for pattern in file - grep, 223
lookbib - find bibliographic references, 287
loop, C shell control flow, 104
loopback file system, 1416

mount - mount, 2006
lorder - find ordering for object library, 288
Ip-send requests to a printer, 289
Ipc -line printer control, 1980
lpd -line printer daemon, 1982
1 pq - display printer queue, 290
Ipr - print files, 292
Iprm - remove print jobs, 295
Ipstat-print the printer status information, 296
Iptest command, 297
lrand48 () - generate uniformly distributed random numbers,

961
1 s -list files, 298
1 sea r ch () - linear search and update routine, 1062
1 seek () - move file position, 770
lstat () - obtain file attributes, 858
1 sw-listTFS whiteout entries, 301
1 to13 () - convert from long integer to 3-byte integer, 1037

-2198 -

lwp_checkstkset () function, 1288
lwp_create () function, 1284
lwp_ctxinit () function, 1286
lwp_ctxrnernget () function, 1286
lwp_ctxrnernset () function, 1286
lwp _ ctxrernove () function, 1286
lwp _ ctxset () function, 1286
lwp_datastk () function, 1288
lwp_destroy () function, 1284
lwp_enurnerate () function, 1291
lwp_errstr () function, 1290
lwp_fpset () function, 1286
lwp_geterr () function, 1290
lwp_getregs () function, 1291
lwp_getstate () function, 1291
lwp_join () function, 1292
Iwp_Iibcset () function, 1286
lwp_newstk () function, 1288
lwp_perror () function, 1290
lwp _ping () function, 1291
lwp_resched () function, 1292
lwp_resurne () function, 1292
lwp_self () function, 1291
lwp_setpri () function, 1292
lwp_setregs () function, 1291
lwp_setstkcache () function, 1288
lwp_sleep () function, 1292
lwp_stkcswset () function, 1288
lwp_suspend () function, 1292
lwp _yield () function, 1292

M
-rn - mail tilde escape, 309
rn4 -macro processor, 302
rn6 8k - machine type truth value, 306
mach - display Sun processor, 305
machine-dependent values - value s (), 1247
macro processor - rn4, 302
madd () - multiple precision add, 1079
madvise () - provide advice to VM system, 1064
magic file - file command's magic numbers table, 1605
magnetic tape

backspace files - rnt,349
backspace records - rnt,349
copy- tcopy, 569
erase - rnt, 349
forward space files - rnt, 349
forward space records - rnt, 349
general interface, 1427
get unit status - rnt,349
manipUlate - rnt,349
place unit off-line - rnt, 349
retension - rnt, 349
rewind - rnt, 349
scan - tcopy, 569
skip backward files - rnt,349
skip backward records - rnt, 349
skip forward files - rnt,349
skip forward records - rnt, 349
write EOF mark on- rnt,349

- 2199-

magnify raster image - rastrepl,430
mail

enroll for secret - enroll, 672
print waiting - prrnail,383
receive secret mail- enroll, 672
send secret mail- xsend,672

rnail- send and receive mail, 307 thru 318
rna i I commands, 310 thru 314

!,310
i,310
=,310
?,310
1,312
alias, 310
alternates, 310
cd,311
chdir,311
copy, 311
Copy, 311
delete, 311
discard,311
dp,311
dt,311
echo, 311
edit, 311
else, 312
endif,312
exit, 311
file, 311
folder, 311
folders, 311
followup,311
Followup,311
from, 311
group, 310
headers, 312
help, 312
hold,312
if,312
ignore, 311
inc,312
list,312
load,312
mail,312
mbox, 312
new,312
next, 312
pipe, 312
preserve, 312
print, 313
Print, 313
quit, 313
reply, 313
Reply, 313
Replyall,313
replysender,313
respond,313
Respond, 313
save, 313
Save, 313
set, 313
shell,313
size,314

Index - Continued

Index - Continued

mai I commands, continued
source, 314
top, 314
touch,314
type, 313
Type, 313
undelete, 314
unread,312
unset, 314
version, 314
visual,314
write, 314
xit, 311
z,314

mail delivery server - sendmail,2100
mail environment variables

HOME,314
MAIL, 314
MAILRC, 315

mail, forwarding messages, 314
mai I mail command, 312
MAIL mail environment variable, 314
mail services

biff - mail notifier, 46
binmail- version 7 mail, 47
who is mail from - from, 204

rna i I tilde escapes, 308 thru 309
-! ,308

,308
-- t 309
-< ,309
-? ,309

,309
-I ,309
-A ,309
-b ,309
-c ,309
-d ,309
-e ,309
-f ,309
-h ,309
-i ,309
-m ,309
-p ,309
-q ,309
-r ,309
-s ,309
-t ,309
-v ,309
-w ,309
-x ,309

mail utilities
corns at - biff server, 1883
create aliases database - newaliases, 2021
statistics - mailstats, 1984

mail variable, 112,502
mail variables, 314 thru 317

allnet, 315
al waysignore, 315
append, 315
askcc, 315
asksub,315
autoprint, 315

mail variables, continued
bang, 315
cmd,315
conv, 315
crt,315
DEAD,315
debug, 315
dot, 316
editheaders, 316
EDITOR,316
escape, 316
folder, 316
header, 316
hold, 316
ignore, 316
ignoreeof,316
indentprefix, 316
keep, 316
keepsave, 316
LISTER,316
MBOX, 316
metoo, 316
no,316
onehop, 316
outfolder, 316
page, 316
PAGER,317
prompt, 317
quiet, 317
record,317
replyall,317
save, 317
sendmail,317
sendwait, 317
SHELL,317
showto, 317
sign, 317
toplines, 317
verbose, 317
VISUAL,317

MAl LCHECK variable - sh, 502
MAl LPATH variable - sh,502
MAILRC mail environment variable, 315
mailstats - mail delivery statistics, 1984
mailtool- SunView mail interface, 319
maintain programs - make, 325 thru 339, 376 thru 382
maintenance and operation, 1827
make

-2200-

delta, sees - delta, 467
directory - mkdir,344
FIFO (named pipe), 776
fifo - mknod, 1993
file system- mkfs,1991
hard link to file - In, 274
implicit rules, list of - <make/default .mk>, 334
named pipe, 776
named pipe - mknod, 1993
new file system- newfs, 2022
sees delta- delta, 467
special file, 776
special file - mknod, 1993
symbolic link to file - In,274
system log entry - logger, 282

make, continued
system log entry - old-syslog, 389
system special files - makedev, 1986

make - build programs, 325 thru 339, 376 thru 382
make directory, 774
make hard link to file, 767
makedbm - make NIS ndbm file, 1985
makedev - make system special files, 1986
makekey - generate encryption key, 1987
mallinfo () - dynamic memory usage information, 1068
malloe () - allocate memory, 1067
ma 11 oe debug () - set debug level, 1069
malloe -verify () - verify heap, 1069
mallopt () - quick allocation of small blocks, 1067
man - online display of reference pages, 340
-man - macros to format manual pages, 1813
manipulate Internet addresses, 1025
manipulate magnetic tape - mt,349
manual pages

create cat files for - eatman, 1871
describe command - whatis, 661

map memory pages - mmap () , 778
mapping

RFS user and group, 1951
mask, set current signal- sigsetmask (), 848
master file, RFS name server, 1635
mathematical functions

aeos (), 1327
aint () - convert to integral floating, 1323
anint () - convert to integral floating, 1323
asin (), 1327
at an (), 1327
atan2 (), 1327
ceil () - convert to integral floating, 1323
cos (), 1327
cosh (), 1309
exp () - exponential, 1306
floor () - convert to integral floating, 1323
gamma (), 1319
hypot () , 1310
irint () - convert to integer, 1323
j 0 (), 1304
j 1 (), 1304
jn (), 1304
log () - natural 10 garithm, 1306
10g10 -logarithm, base 10,1306
10g2 -logarithm, base 2, 1306
nint () - convert to integer, 1323
pow - raise to power, 1306
rint () - convert to integral floating, 1323
sin (), 1327
sinh (), 1309
tan (), 1327
tanh (), 1309
yO (), 1304
y1 (), 1304
yn (), 1304

mathematical library functions, introduction to, 1301
matherr () -math library exception-handline function, 1320
max normal () function, 1318
max= subnormal () function. 1318

-2201-

Index - Continued

mblen () -multibyte character handling, 1071
mbox mail command, 312
MBOX mail variable, 316
mbstowes () - multibyte character handling, 1071
mbt omb () - multibyte character handling, 1071
me688 81 version - display MC68881 version, 1988
meonneet - open connection to remote mail server, 1989
mep - Sun MCP Multiprotocol Communications Processor, 1417
metl (), 771
mdi v () - multiple precision divide, 1079
-me - macro package, 1816
mem - main memory space, 1420 thru 1421
memal ign () - allocate aligned memory, 1067
memeepy () - copy memory character strings, 1073
memeh r () - index memory characters, 1073
mememp () compare memory characters, 1073
memepy () copy memory character fields, 1073
memory

optimizing usage of user mapped memory, 1064
synchronize with physical storage, 1081

memory allocation debugging, 1066 thru 1070
memory based filesystem tmpfs, 1499
memory diagnostic - imemtest, 1956
memory image

examine, 1889
memory image file format - core, 1554
memory images

kmem - kernel memory space, 1420 thru 1421
mem - main memory space, 1420 thru 1421
sbus - Sbus address space, 1420 thru 1421
virtual-virtual address space, 1420 thru 1421
vme16 - VMEbus 16-bitspace, 1420thru 1421
vme16d16 - VMEbus address space, 1420 thru 1421
vme16d32 - VMEbus address space, 1420 thru 1421
vme24 - VMEbus 24-bit space, 1420 thru 1421
vme24d16 - VMEbus address space, 1420 thru 1421
vme24d32 - VMEbus address space, 1420thru 1421
vme32d16 - VMEbus address space, 1420 thru 1421
vme32d32 - VMEbus address space, 1420 thru 1421

memory management, 1066 thru 1070
alloea () - allocate on stack, 1068
brk () - set data segment break, 706
ealloe () - allocate memory, 1067
efree () - free memory, 1067
free () - free memory, 1067
getpagesize (), 746
malloe () - allocate memory, 1067
malloe debug () - set debug level, 1069
malloe -verify () - verify heap, 1069
metl () -;-771
memal ign () - allocate aligned memory, 1067
mloek (), 1075
mloekall (), 1076
mmap (), 778
mproteet (), 783
munloek (), 1075
munloekall(),1076
munmap () , 792
realloe () - reallocate memory, 1067
sbrk () - change data segment size, 706
valloe () - allocate aligned memory, 1067

Index - Continued

memory management control- mctl () , 771
memory management debugging, 1066 thru 1070
memory operations, 1073
memset () assign to memory characters, 1073
sort and collate lines - sort, 519
merge files - paste, 401
mesg - permit or deny messages, 343
message

receive from socket - recv () , 817
send from socket - send () , 830

message control operations
msgctl () , 784
msgget (), 786
msgsnd () , 788

messages
permit or deny - mesg, 343
system error, 1089
system signal, 1101

metacharacters in C shell, 99
metoo mail variable, 316
mfree () - release multiple precision storage, 1079
mille - Mille Bornes game, 1763
min () - multiple precision decimal input, 1079
min_normal () fimction, 1318
min_subnormal () function, 1318
mincore () - determie residency of memory pages, 773
MINSTACKSZ () function, 1288
miscellaneous environment information, 1793
miscellaneous troff information, 1793
mkdir -make directory, 344
mkdir (), 774
mkf i 1 e command, 1990
mkf s - make file system, 1991
mknod - make special file, 1993
mknod () , 776
mkproto - make prototype file system, 1994
mkstr - create C error messages, 345
mktemp () -make unique file name, 1074
mlock () -lock pages in memory, 1075
mlockall () -lock address space, 1076
mmap 0,778
modes, change permission - chmod, 66
modf () - split into integer part and fraction part, 1308
modload -load a module, 1995
modstat command, 1996
modunload command, 1997
mon _break () function, 1294
mon_cond_enter () function, 1294
mon_create 0 function, 1294
mon_destroy () function, 1294
mon_ enter () function, 1294
mon _enumerate () function, 1294
mon_exit () function, 1294
mon_waiters () function, 1294
monacct - accounting shell procedure, 1841
moncontrol 0 - make execution profile, 1077
money

formatting conventions for locale, 1057
monitor

monitor, continued
PROM monitor configuration interface, 1446

monitorprogram- monitor, 1998
monitor traffic on the Ethernet, 1331
monitor () -make execution profile, 1077, 1294
monochrome frame buffer - bwtwo, 1361
monop - Monopoly game, 1766
monstartup () - make execution profile, 1077
moo game, 1768
mo re - browse text file, 346
mount

display mounted resource information, 2077
TFS filesystems, 2012

mount - mount filesystem, 2006
mount file system - mount, 2006
mount () , 780, 1335
mount_tfs -mountTFS filesystems, 2012
mountd - NFS mount server, 2011
mounted file system table - mtab, 1576, 1607
mouse - Sun mouse, 1422
mouse - Sun mouse, 1423
mout () - mUltiple precision decimal output, 1079
move directory - mv,351
move file - mv, 351
move file position - lseek (), 770
move print jobs - Ipc, 1981
move () - move current point, 1091
mprotect (), 783
mrand48 () - generate uniformly distributed random numbers

961 '
-ms - macro package, 1818
msg_ enumrecv () function, 1297
msg_ enumsend () function, 1297
msg_ recv () function, 1297
MSG _ RECVALL () macro, 1297
msg_ reply () function, 1297
msg_send () function, 1297
msgctl (), 784
msgget () , 786
msgsnd (), 788
msqrt () - multiple precision exponential, 1079
msub () - mUltiple precision subtract, 1079
msync () - synchronize memory with physical storage, 791

1081 '
mt - manipulate magnetic tape, 349
mtab - mounted file system table, 1576, 1607
mti - Systech MTI-800/1600 multi-terminal interface, 1425 thru

1426
mtio - general magnetic tape interface, 1427
mtox () - multiple precision to hexadecimal string, 1079
mul t 0 - mUltiple precision multiply, 1079
mUltiple columns, print in - pr,415
multiple precision integer arithmetic

-2202-

gcd (), 1079
i tom 0, 1079
madd () , 1079
mdi v () , 1079
mfree (), 1079
min (), 1079

mUltiple precision integer arithmetic, continued
mout (), 1079
msqrt (), 1079
msub (), 1079
mtox (), 1079
mul t (). 1079
pow (), 1079
rpow (), 1079
sdi v (), 1079
xtom () • 1079

munlock () - unlock pages in memory, 1075
munlockall () - unlock address space, 1076
munmap () , 792
mv - move or rename files or directory, 351

N
name of terminal, find- ttyname (), 1239
name server routines, Internet, 1118
name termination handler - on exi t (), 1087
named - internet domain name -;erver daemon, 2013
named pipe

make, 776
named pipe, make - mknod,1993
names

print RFS domain and network names, 1904
natural logarithm - log () , 1306
ncheck - convert i-numbers to filenames. 2015
ndbootd daemon, 2016
neqn - mathematical typesetting, 180
netconfig - pnp diskful boot service, 2017
netgroup -network groups list, 1608
netmasks -netmask data base, 1609
netname2host () - secure RPC, 1148
netname2user () - secure RPC. 1148
. netrc - ftpremote login data file, 1610
netstat - display network status, 2018
network

copy files across - rep, 431
listener service administration, 2028
print RFS domain and network names, 1904
RFS notification shell script, 2072
rusers - who is logged in on local network. 452
rwall - write to all users. 453
rwho - who is logged in on local network, 454

network debugging - ping, 2039
network entry. get- getnetent (). 1000
network file system

biod daemon. 2025
n f sd daemon. 2025

network file system daemons. 793
network group entry. get - getnetgrent (), 1001
network host entry. get - gethostent (). 995
network interface ioctl's

SIOCADDMULTI - set rn/c address, 1398
SIOCDELMULTI - delete rn/c address, 1398
SIOCGIFADDR - get ifnet address. 1397
SIOCGIFCONF:- get ifnet list. 1397
SIOCGIFDSTADDR- get p-p address. 1397
SIOCGIFFLAGS - get ifnet flags. 1397
SIOCSIFADDR - set ifnet address. 1397
SIOCSIFDSTADDR- set p-p address, 1397

- 2203-

Index Continued

network interface ioctl's, continued
S I OCS IFFLAGS - set ifnet flags, 1397
SIOCSPROMISC toggle promiscuous mode, 1398

network interface parameters, configure - ifconfig, 1954
network interface, introduction to, 1349
network loopback interface - 10, 1415
network packet routing device - routing, 1454
network routing daemon - routed, 2082
network rwall server - rwalld, 2094
network service entry, get - get servent (), 1013
network services status monitor files, 1648
network status, display - netstat, 2018
networks - network name data base, 1611
new mail command, 312
newaliases - make mail aliases database, 2021
newfs - make new file system, 2022
newgrp - change group ID of user, 357,506
newkey command, 2024
next mail command, 312
nextafter () function, 1314
nextkey () - find next key, 953
NFS

print pathname from file handle, 2107
showfh daemon run on NFS servers, 2108

NFS and sticky bits, 2117
NFS directories to export- exports, 1566
NFS exported directories- xtab, 1566
NFS mount server - mountd, 2011
NFS statistics, display- nfsstat, 2026
NFS, network file system protocol, 1432
n f s d daemon, 2025
nf s stat - display network statistics, 2026
nfssvc (), 793
nice command, 108,358
nice value

get - getpriorityO, 751
set - setpriorityO, 751

nice () - change nice value of a process, 1084
nint () - nintO - convert to integral floating, 1323
NIS

change login password in - yppasswd,679
make database - ypini t, 2157
make ndbm file - makedbm, 1985
print values from database - ypca t, 677
rebuild database - ypmake, 2158

NIS client interface, 1267
NIS protocol - yp () , 1347
NIT, Network Interface Tap, 1434
ni t _ buf, NIT buffering module, 1438
nit_if, NIT device interface, 1440
nit yf, NIT packet filtering module, 1442
nl-numberlines, 360
nl_langinfo () -language information, 1085
n 1 i st () - get entries from symbol table, 1086
nlm _prot - network lock manager protocol, 1336
nl sadmin - network listener service administration, 2028
nm - display name list, 362
no mail variable, 316
nobeep variable, 112

Index - Continued

noclobber variable, 112
noglob variable, 112
nohup command, 108,363
non-local goto

non-local goto - long jrnp () , 1153
non-local goto - setjrnp (), 1153

nonomatch variable, 112
notify command, 108
notify variable, 112
n rand4 8 () - generate uniformly distributed random numbers,

961
nroff - document fonnatter, 365
nroff utilities

checknr - check nroff/troff files, 63
col - filter reverse paper motions, 79
colcrt - filter nroff output for CRT, 81
nroff utilities, 149
soelirn - eliminate • so's, incorporate sourced-in files,

518
nslookup command, 2030
n sque ry - RFS name server query, 2034
ntohl () - convert network to host long, 917
ntohs () - convert host to network short, 917
null-null device, 1445
null-tenninated strings

compare - strcmp (), 1175
compare - strncmp (), 1175
concatenate - strca t () , 1175
concatenate - strncat (), 1175
copy- strcpy(), 1175
copy - strncpy (), 1175
index - index () , 1175
index- rindex (), 1175
reverse index - rindex (), 1175

nulladrn- accounting shell procedure, 1841
number - convert Arabic numerals to English, 1769
numbers

formatting conventions for locale, 1057
numbers, convert to strings - econvert () , 963

o
-0 C shell file inquiry - ownership, 104
objdumpcommand,367
object code management

a r -library maintenance, 25
ranlib - make random library, 428

object file
find printable strings in - strings, 527
s i z e - find object file size, 514
strip - strip symbols and relocation bits, 528

object library, find ordering for - lorder, 288
octal dump file - od,369
od - dump file, 369
on - remote command execution, 393
on _ exi t () - name termination handler, 1087
onehop mail variable, 316
onintr command, 109
online reference - man, 340
open database - dbrnini t () , 953
open directory stream - opendir (), 957

open stream - fopen (), 979
open (), 794
opendir () - open directory stream, 957
openlog () - initialize system log file, 1184
openpl () - open plot device, 1091
openprom - PROM monitor configuration interface, 1446
operating system standards

bsd - Berkeley 4.3 environment, 1797
posix -IEEE Std 1003.1-1988 (POSIX.l), 1821
sunos - SunOS Release 4.1 environment, 1822
svidii - SVID Issue 2,1823
svidiii - System V release 4 environment, 1824
svidii - SVID Issue 2, 1823
xopen - lusr/group X/Open issue 2, 1825

optarg () function, 1002
optimize

user mapped memory usage, 1064
options on sockets

get - getsockoptO, 758
set - setsockopt(),758

options, parsing
get subopt (), 1014

organizer - get organizer, 394
orgrc - organizer file, 1612
outfolder mail variable, 316
output conversion

fprintf () - convert to stream, 1096
printf () - convert to stdout, 1096
sprintf () - convert to string, 1096

overview - take over screen w/ graphics, 395
owner of file, change - chown, 1875

p
-p - mail tilde escape, 309
pac - printerlplotter accounting, 2036
pack - pack files, 396
packet routing device - routing, 1454
packet routing ioctl's

SIOCADDRT - add route, 1454
SIOCDELRT - delete route, 1454

page - browse text file, 346
page mail variable, 316
page size, display - pagesize, 398
page size, get - getpagesize (), 746
PAGER mail variable, 317
pagesize - display page size, 398
paging device - swapon (), 863,1384
paging devices, specify - swapon, 2121
paging system, advise - vadvise (), 877
pan i c - crash information, 2037
parent process identification, get - get ppid () , 750
parentheses, C shell command grouping, 99
parse

suboptions, 1014
parser generator - yacc, 675
pass framebuffer info ioctl- GP1IO PUT INFO, 1392
passwd - change login password, 399
passwd-passwordfile, 1615
passwd. adjunct -password file, 1617
passwd2des () - convert password into DES key, 1346

-2204-

password
change inNIS - yppasswd, 679
change login- passwd,399
change RFS host password, 2068
read - getpass (), 1004

password file
add entry - putpwent (), 1104
edit - vipw, 2153
get entry - endpwent (), 1009
get entry - fgetpwent (), 1009
get entry - getpwent () , 1009
get entry - getpwnam (), 1009
get entry - getpwuid (), 1009
get entry - setpwent (), 1009
get entry - fsetpwfile (), 1009

paste - horizontal merge, 401
path

print pathname from NFS file handle, 2107
query file system related limits and options, 798

path variable, 112,502
pathconf () - query file system related limits and options, 798
patterns, search in file for - grep,223
pause () - stop until signal, 1088
pax - portable archive exchange, 402
paxcpio - copy file archives in and out, 406
pcat - pack files, 396
pclose () -close stream to process, 1093
pdpll - machine type truth value, 306
peer name, get - getpeername (), 747
perf meter - display performance statistics, 408
performance monitoring - perfmeter, 408

display call-graph profile data - gprof, 219
prof - display program profile, 419
rusage - resource usage for a command, 2092
time - time command, 590

periodic jobs table - crontab,1557
Permissions

check UUCP directories and Permissions file, 2145
permissions, change mode - chmod, 66
permit messages - mesg, 343
permuted index, generate - ptx, 425
perror () - system error messages, 1089
pg - browse text file, 410
phones - remote host phone numbers, 1619
ping - debug network, 2039
pipe mail command, 312
pipe () - create interprocess communication channel, 800
pipeline, C shell, 99
place magnetic tape unit off-line - mt,349
play -play audio files, 1770
plock () -lock process, text, or data segment in memory, 1090
plot - graphics filters, 413
plot - graphics interface files, 1620
plot on Versatec - vplot, 651
pmap _getmaps () - RPC bind servie, 1094
pmap _get port () - RPC bind servie, 1094
pmap_rmtcall () - RPC bind servie, 1094
pmap set () - RPC bind servie, 1094
pmap=unset () - RPC bind servie, 1094
pnp () - automatic network installation, 1337

pnpboot - pnp diskless boot service, 2040
pnpboot - pnp diskless boot service, 2040
f stab - system name allocation file, 1621
pnpboot - pnp diskless boot service, 2040
pnpd - PNP daemon, 2041
pod _ exi t () function, 1284
pod_getexit () function, 1284

Index - Continued

pod getmaxpri () - control LWP scheduling priority, 1299
pod =getmaxsize () - control LWP scheduling priority, 1299
pod setexit () function, 1284

- 2205-

pod =setmaxpri () - control LWP scheduling priority, 1299
point () -plot point, 1091
policies file, 1622
poll () - I/O multiplexing, 801
polyhedron

rotate, 1779
view convex polyhedron, 1788

popd command, 109
popen () - open stream to process, 1093
portmap - TCP/IP to RPC mapper, 2042
position of directory stream - telldir (), 957
posix - IEEE Std 1003.1-1988 (POSIX.l), 1821
postmortem crash analyzer - analyze, 2035
pow - raise to power, 1306
pow () - mUltiple precision exponential, 1079
power function - pow, 1306
pp, Sun386i parallel printer port, 1448
bcd - convert to antique media, 1726
pr -prepare files for printing, 415
pra udi t - display audit trail, 2043
prctmp - accounting shell procedure, 1841
prdai ly - accounting shell procedure, 1841
predefined variables, in C shell, 111
prepare execution profile

moncontrol () -make execution profile, 1077
monitor () -make execution profile, 1077
mon~tartup () -make execution profile, 1077

prepare files for printing - pr,415
preserve mail command, 312
pretty printer

indent - format C source, 238
vgrind - make formatted listings, 646

prevent
remote mounts, 2140

colcrt command, 81
primes game, 1771
primitive system data types - types, 1698
print

print waiting mail - prmai 1, 383
values from NIS database - ypcat, 677
working directory name - pwd, 426

print bibliographic database - roffbib,443
print files - I pr, 292
print mail command, 313
Print mail command, 313
p r in t ca p - printer capability data base, 1623
printenv - display environment, 418
printer

abort - Ipc, 1980

Index - Continued

printer, continued
cancel requests to, 289
clean queue - lpc, 1980
control- lpc,1980
daemon - 1 pd, 1982
disable queue - lpc, 1980
lpq - display queue, 290
display status information, 296
enable queue - 1 pc, 1980
move jobs - lpc, 1981
remove jobs from queue - lprm, 295
restart - 1 pc, 1980
send requests to, 289
start - lpc, 1980
status of - lpc, 1981
stop - lpc, 1981
take printer down- lpc, 1980

printer interface
vpc - Systech VPC-2200 Versatec/Centronics interface,

1510
printer/plotter accounting, 2036
printf () - formatted output conversion, 1096
priority of process - nice (), 1084
prmail- print waiting mail, 383
procedure calls, assembler, expand in-line, inline, 243
process

change priority - renice, 2058
create, 729
display status - ps, 421
get core image of, 212
get identification - getpid (), 750
get times - times () , 1232
initiate I/O to or from, 1093
priority - nice () , 1084
send signal to - kill (), 764
set process group!p, 835
set process group ID for job control, 832
software signals - sigvec (), 850 thru 854
terminate - kill, 255, 723
terminate and cleanup - exit () , 970
tracing - ptrace () , 804
wait - wait process completion, 657

process block ioctl- DESIOCBLOCK,1381
process group

get- getpgrp (), 748
send signal to - killpg (), 766
set- setpgrp (), 748

process quickly ioctl- DESIOCQUICK,1381
process scheduling

getpriority (), 751
setpriority (), 751

processes and protection
execve () , 720
exit (), 723
fork (), 729
getdomainname(),736
getegid () , 738
geteuid () , 762
getgid (), 738
getgroups (), 739
gethostid (), 740
gethostname (), 741
getpgrp (), 748

processes and protection, continued
getpid (), 750
get ppid (), 750
get uid () , 762
ptrace () , 804
setdomainname (), 736
set groups () , 739
sethostname(),741
setpgrp (), 748
setregid (), 833
setreuid (), 834
vfork (), 878
vhangup () , 879
wait (), 881
wai t3 () , 881
wai t4 (), 881

prof - display program profile, 419
prof () - profile within a function, 1100
profil (), 803
profile

disk access, 1939
display call-graph - gprof, 219

profile, execution- monitor (), 1077
profiling

prof - display program profile, 419
prof (), 1100
program verification - as sert () , 910
SunView programmable alarms - set_alarm, 497
programmatic interface to dynamic linker

dlclose (), 960
dlerror () , 960
dlopen () ,960
dlsym (), 960

programming languages
analyze and disperse compiler error messages, 182
assembler, 28
c c - C compiler, 54
cpp - C preprocessor, 91
cxref - cross reference C program, 128
lex - generate lexical analyzer, 267
lint - C program verifier, 270
vgrind - make formatted listings, 646
xstr - extract strings from C code, 673

programming tools

-2206-

adb - debug tool, 16
be - calculator language, 44
c flow - code flow graph, 61
compiler generator, 372
ctags - create tags file, 117
ctrace - display program trace, 119
dbx - source debugger, 131
dbxtool - debugger, 140
display call-graph profile data - gprof,219
indent - format C source, 238
install - install files, 247
ld -link editor, 258
lex - generate lexical analyzer, 267
lint - C program verifier, 270
lorder - find ordering for object library, 288
m4 - macro processor, 302
maintain object libraries, 25
make - build programs, 325 thru 339, 376 thru 382
mk s t r - create C error messages, 345

programming tools, continued
nm - display name list, 362
prof - display program profile, 419
ranlib - make random library, 428
rusage - resource usage for a command, 2092
s cc s - source code control system, 455
size - find object file size, 514
strings - find printable strings in binary file, 527
strip - strip symbols and relocation bits, 528
tcov - code coverage tool, 570
time - time command, 590
t ou ch - update last modified date of file, 601
unifdef - eliminate #ifdef's from e input, 620
yacc - parser generator, 675

programs, introduction, 3
PROM

monitor configuration interface, 1446
PROM monitor program - monitor, 1998
PROM monitor program, display and load program - eeprom,

1911
prompt mail variable, 317
prompt variable, 112
• proto file, 1626
protocol

get transport protocol-specific service information, 1198
protocol entry, get- getprotoent (), 1005
protocol specifications, 1329
protocol s - protocol name data base, 1627
protocols, introduction to, 1349
provide truth values - true, 611
provider

get state of, 1200
prs -display sees history, 473
prt -display sees history, 476
prtacct - accounting shell procedure, 1841
ps - display process status, 421
PSl variable - sh,502
PS2 variable- sh,502
psignal () - system signal messages, 1101
pstat - display system statistics, 2044
pti -(old) troff interpreter, 384
ptrace (), 804
ptx - generate permuted index, 425
pty -pseudo-terminal driver, 1449 thru 1451
publickey get public or secret key, 1338
publickey file, 1628
push character back to input stream - ungetc () , 1243
pushdcommand, 109
put character to stdout - putchar (), 1102
put character to stream - fputc (), 1102
put character to stream - putc () , 1102
put string to stdout - puts (), 1105
put string to stream - fput s () , 1105
put word to stream - putw (), 1102
pu tc () - put character on stream, 1102
putchar () -put character on stdout, 1102
putenv () -setenvironmentvalue, 1103
putmsg () - send message on a stream, 808
putpwent () - add password file entry, 1104
puts () -put string to stdout, 1105

- 2207-

Index - Continued

put w () - put word on stream, 1102
pwck - check password database entries, 2048
pwd - print working directory name, 426, 506
pwda u th () - password authentication function, 1106
pwdauthd daemon, 2049

Q
-q - mail tilde escape, 309
qsort () -quicker sort, 1107
query

RFS name server, 2034
queue

atq - display delayed execution, 32
lpq - display printer, 290
insert element in - insque (), 1028
remove element from - remque () , 1028
remove jobs from delayed execution - at rm, 33
remove jobs from printer - Iprm, 295

queuedefs file, 1629
quick substitution - in e shell, 101
quicker sort- qsort (), 1107
quiet mail variable, 317
quiet_nan () function, 1318
qui t mail command, 313
qui z - test knowledge, 1772
quot - summarize file system ownership, 2050
quota - display disk usage and limits, 427
quotacheck - check quota consistency, 2051
quotactl () - disk quotas, 810
quotaoff - tum file system quotas off, 2052
quotaon - tum file system quotas on, 2052
quotas

edquota - edit user quotas, 1910
quotacheck - check quota consistency, 2051
quotaoff - tum file system quotas off, 2052
quotaon - tum file system quotas on, 2052
repquota - summarize quotas, 2059
rquotad - remote quota server, 2086

R
-r e shell file inquiry - read accessible, 104,309
rain - display raindrops, 1773
rand () - generate random numbers, 1108
random game, 1774
random number generator

drand48 (), 961
erand48 (), 961
ini tstate (), 1109
j rand4 8 () , 961
lcong48 (), 961
lrand48 (), 961
mrand48 (), 961
nrand48 (), 961
rand (), 1108
random (), 1109
seed48 () , 961
setstate (), 1109
srand (), 1108
srand48 (), 961
srandom () , 1109

random () - generate random number, 1109

Index - Continued

ran lib - make random library, 428
rarpd - Reverse Address Resolution Protocol daemon, 2053
rasfil ter8tol - convert 8-bit rasterfile to I-bit rasterfile,

429
rasterfile, 1630
rastrepl - magnify raster image, 430
raw2audio - convert raw audio data to audio file format, 1775
rc - startup commands, 2054
rcmd () - execute command remotely, 1111
rcp -remote file copy, 431
rdate -remote date, 2056
rdi st - remote file distribution, 433
re _ comp () - compile regular expression, 1114
re _exec () - execute regular expression, 1114
read

archive files, 402, 629
archive header of eOFF file, 1038
initiate asynchronous read, 906

read command, 506
read directory stream - readdir () ,957
read formatted

fscanf () -convert from stream, 1144
scanf () - convert from stdin, 1144
s 5 can f () - convert from string, 1144

read from stream - fread (), 981
read mail- mail, 307 thru 318
read password - getpass 0, 1004
read scattered - readv (), 812
read (), 812
read/write pointer, move - lseek (), 770
readdir () - read directory stream, 957
readlink (), 815
readonly command, 507
real group ill

set- setregid (), 833
real group ID, set - setrgid (), 1158
real user 10

get - getuid (), 762
set - setreuid (), 834

real user 10, set - setruid () , 1158
realloc () - reallocate memory, 1067
reallocate memory - realloc () , 1067
realpath () - return absolute pathname, 1113
reboot - system startup procedures, 2057
reboot system - fastboot, 1922
reboot () - halt processor, 816
rebuild NIS database - ypmake, 2158
receive

data unit from transport user, 1213
transport unit data error indication, 1214

receive message from socket, 817
receive secret mail- enroll, 672
reconfigurefb ioctl- GP1IO_REDlRECT_DEVFB, 1392
record - record an audio file, 1776
record mail variable, 317
recv () - receive message from socket, 817
recvfromO, 817
recvmsg (), 817
refer - insert literature references, 437

regenerate programs - make, 325 thru 339, 376 thru 382
regexp () - regular expression compile and match routines,

1115
registerrpc () -register servers, 1132
regular expressions

compile-re_comp (), 1114
execute - re _exec () , 1114

rehash command, 109
relational database operator - join, 252
release

transport connection in orderly manner, 1219
release blocked signals - sigpause (), 845
remainder () function, 1314
remexportent () function, 971
reminder services

b iff - mail notifier, 46
calendar - reminder service, 50
leave - remind you of leaving time, 266

remote
execute remote command requests, 2152

remote command execution - on, 393
remote command, return stream to

rcmd 0, 1111
rexec (), 1120

remote execution protocol - rex () , 1339
remote execution server - rexecd, 2065
remot e - remote host descriptions, 1631
remote file copy - rep, 431
Remote File Sharing

see RFS, 1951
remote host

number of users - ru s er s () , 1340
phone numbers - phones, 1619
send file to - uusend, 635

remote input editing ioctl- TIOCREMOTE,1450
remote kernel performance, 1342
remote login

rlogin,440
server - r logind, 2074

remote magtape protocol server - rmt, 2078
remote procedure call services

rquotad - remote quota server, 2086
sprayd - spray server, 2113

remote procedure calls, 1121, 1267
remote shell- r sh, 448
remote shell server - r shd, 2087
remote system

connect to - cu, 123
connect to - tip, 592

remote users, number of - rnusers (), 1340
remove

- 2208-

close-on-exec flag ioctl- FIONCLEX, 1389
columns from file, 126
columns from file - colrm, 83
delayed execution jobs - atrm, 33
remove delta from sees file - rmdel,478
directory - rmdir () ,821
directory - rmdi r command, 442
directory entry - unlink (), 872
element from queue - remque () , 1028
file - rm, 442

remove, continued
file system - unmount (), 873
filename affixes - ba sename, 43
nroff, troff, tbl and eqn constructs - deroff,

149
old files in UUCP spool directory, 2148
print jobs - lprm, 295
print jobs from printer queue, 289
repeated lines - uniq, 621
TFS whiteout entry, 626

remove_brackets - textedit selection filter, 586
remque () - remove element from queue, 1028
rename directory - mV,351
rename file - mv, 351,819
renice - change process nice value, 2058
reopen stream - freopen (), 979
repeat command, 109
reply mail command, 313
Reply mail command, 313
replyall mail variable, 317
Replyall mail command, 313
replysender mail command, 313
report

disk access, 1939
processes using file structure, 1940

report file system quotas - repquota, 2059
reposition stream

f seek () , 982
ftell (), 982
rewind (), 982

repquota - summarize quotas, 2059
requests

execute remote command requests, 2152
re s _ in it () - Internet name server routines, 1118
res _mkquery () -Internet name servers, 1118
re s _ send () - Internet name server routines, 1118
reset -reset terminal bits, 612
reset terminal bits - reset, 612
resol v • conf file - domain name resolver initialization info,

1634
resolver library, 1118
resource

display mounted resource information, 2077
force unmount of advertised resource, 1938

resource consumption, control- vlimi t (), 1250
resource control

getrlimit (), 752
getrusage (), 754
setrlimit (), 752

resource usage, get information about - vtimes (), 1254
resource utilization, get information about - getrusage (),

754
respond mail command, 313
Respond mail command, 313
restartGP ioctl- GPIIO_CHK GP,1392
restart printer - lpc, 1980
restore - restore file system, 2060
restore file system - restore, 2060
restore frame buffer image - screenload, 486
retension magnetic tape - mt, 349

Index - Continued

retrieve datum under key - fetch (), 953
return command, 507
return stream to remote command - rcmd (), 1111
return stream to remote command - rexec () , 1120
return to saved environment- longjmp (), 1153
rev - reverse lines in file, 439
reverse index strings - r index (), 1175
reverse lines in file - rev, 439
rewind directory stream - rewinddir (), 957
rewind magnetic tape - mt, 349
rewind stream - rewind () , 982

-2209 -

rewind () - rewind stream, 982
rewinddir () -rewind directory stream, 957
rexd - remote execution daemon, 2064
rexec () - return stream to remote command, 1120
rexecd - remote execution server, 2065
rfadmin -RFS domain administration, 2067
rfmaster - RFS name server master file, 1635
rfpas swd - change RFS host password, 2068
rfs - remote file sharing, 1452
RFS

advertise directory for access, 1852
change RFS host password, 2068
daemon, 2073
display mounted resource information, 2077
domain administration, 2067
force unmount of an advertised RFS resource, 1938
name server master file, 1635
name server query, 2034
network listener server, 2028
notification shell script, 2072
print RFS domain and network names, 1904
RFS disk access profiler, 1939
start, 2069
start and stop automatically, 1905
stop environment, 2071
unadvertise a resource, 2140
user and group mapping, 1951

rfstop - stop the RFS environment, 2071
rfuadmin - notification shell script, 2072
rfudaemon - RFS daemon, 2073
. rgb file, 1637
rindex () - find character in string, 1175
set_alarm- SunViewprogrammable alarms, 497
rint () - rint - convert to integral floating, 1323
rlogin -remote login, 440
rlogind -remote login server, 2074
rm - remove file or directory, 442
rm_client command, 2076
rmail - process remote mail, 2075
rmdel-remove delta from sees file, 478
rmdir - remove directory, 442
rmdir () -remove directory, 821
rmnstat - display mounted resource information, 2077
rmt - remote magtape protocol server, 2078
robot 5 game, 1777
rof fbib - print bibliographic database, 443
root

menu specification for SunView, 1638
root directory, change - chroot (), 712

Index - Continued

root directory, change for a command - chroot, 1876
root, Sun386i root disk device, 1453
rootmenu -root menu specification for SunView, 1638
rotate

a simple cube, 1732
convex polyhedron, 1779

rotcvph - rotate convex polyhedron, 1779
rotobj - graphics processor demo, 1755
route - manipulate routing tables, 2080
routed - network routing daemon, 2082
routing -local network packet routing, 1454
routing ioctl's

SIOCADDRT - add route, 1454
SIOCDELRT - delete route, 1454

RPC routines, 1121, 1267
RPC

generate protocols - rpcgen, 445
report RPC information - rpcinfo, 2084

RPC library functions, introduction to, 1329
RPC program entry, get - getrpcent (), 1011
rpc - rpc name data base, 1640
RPC protocol specifications, 1329
rpc routines

auth destroy () - client side authentication, 1124
authdes getucred () - secure RPC, 1148
authdes - seccreate () - secure RPC, 1148
authnone create () - client side authentication, 1124
authunix -create () - client side authentication, 1124
authunix - create default () - client side authenti-

cation, 1124-
callrpc () - client side calls, 1125
clnt broadcast () - client side calls, 1125
clnt - call () - client side calls, 1125
clnt-control () - creation of CLIENT handles, 1128
clnt - create () - creation of CLIENT handles, 1128
clnt -create vers () -creation of CLIENT handles,

- 1128-

clnt destroy () - creation of CLIENT handles, 1128
clnt - freeres () - client side calls, 1125
clnt - get err () - client side calls, 1125
clnt ycreateerror () - creation of CLIENT handles,

1128
clnt yerrno () - client side calls, 1125
clnt yerror () - client side calls, 1125
clnt spcreateerror () - creation of CLIENT han-

- dIes, 1128
clnt sperrno () - client side calls, 1125
clnt - sperror () - client side calls, 1125
clnt ~a w create () - creation of CUENT handles, 1128
clnttcp -create () - creation of CLIENT handles, 1128
clnt udp - buf create () - creation of CLIENT handles,

fi28
clntudp create () - creation of CLIENT handles, 1128
get myaddress () - secure RPC, 1148
get;etname () - secure RPC, 1148
host2netname () - secure RPC, 1148
key decryptsession () - secure RPC, 1148
key - encrypt session () - secure RPC, 1148
key-gendes () - secure RPC, 1148
key - setsecret () - secure RPC, 1148
net;ame2host () - secure RPC, 1148
netname2user () - secure RPC, 1148

rpc routines, continued
pmap getmaps () - RPC bind servie, 1094
pmap =:getport () - RPC bind servie, 1094
pmap rmtcall () - RPC bind servie, 1094
pmap-set () - RPC bind servie, 1094
pmap=:unset () -RPC bind servie, 1094
registerrpc () - register servers, 1132
rpc createrr () - creation of CLIENT handles, 1128
svc - destroy () - create server handles, 1134
svc-fds () - server side calls, 1138
svc - fdset () - server side calls, 1138
svc - freeargs () - server side calls, 1138
svc - getargs () - server side calls, 1138
svc - getcaller () - server side calls, 1138
svc - getreq () - server side calls, 1138
svc-getreqset () - server side calls, 1138
svc-register () -register servers, 1132
svc -run () - server side calls, 1138
svc - sendreply () - server side calls, 1138
svc-unregister () - register servers, 1132
svcerr auth () - server side call errors, 1136
svcerr - decode () - server side call errors, 1136
svcerr - noproc () - server side call errors, 1136
svcerr - noprog () - server side call errors, 1136
svcerryrogvers () - server side call errors, 1136
svcerr systemerr () - server side call errors, 1136
svcerr - weakauth () - server side call errors, 1136
svcfd create () - create server handles, 1134
s vc ra;- create () - create server handles, 1134
svctcp-create () -create server handles, 1134
svcudp - bufcreate () - create server handles, 1134
user2netname () - secure RPC, 1148
xdr accepted reply () - XDR routines for RPC,

- 1140 -
xdr authunix parms () - XDR routines for RPC,

- 1140-
xdr callhdr () -XDR routines for RPC, 1140
xdr - callmsg () - XDR routines for RPC, 1140
xdr -opaque auth () - XDR routines for RPC, 1140
xdr ymap () -=- RPC bind servie, 1094
xdrymaplist () - RPC bind servie, 1094
xdr re j ected reply () - XDR routines for RPC,

- 1140 -
xdr replymsg () - XDR routines for RPC, 1140
xprt register () - register servers, 1132
xprt -unregister () -register servers, 1132

rpc cre;terr () - creation of CLIENT handles, 1128
rpcgen - generate RPC protocol, C header files, and server

skeleton, 445
rpc in f 0 - report RPC information, 2084
rpow () - mUltiple precision exponential, 1079
rquota () - implement quotas on remote machines, 1341
rquotad -remote quota server, 2086
rresvport () - get privileged socket, 1111
r sh - remote shell, 448
rshd-remote shell server, 2087
rstat () -performance data from remote kernel, 1342
rstatd - kernel statistics server, 2089, 2093
rtime () - get remote time, 1142
runacct - accounting shell procedure, 1841,2090
rup - display status of network hosts, 450
ruptime -display status oflocal hosts, 451

-2210-

rusage - resource usage for a command, 2092
ruserok () - authenticate user, 1111
rusers - who is logged in on local network, 452
rwall () - write to specified remote machines, 1343
rwalld - network rwall server, 2094
rwho - who is logged in on local network, 454
rwhod - system status server, 2095

s
-s - mail tilde escape. 309
sa - process accounting summary, 2097
SAMECV () function. 1279
SAMEMON () macro, 1294
SAME THREAD () function. 1284
save mail command, 313
save mail variable, 317
save stack environment- set jmp (), 1153
savecore - save OS core dump, 2099
savehist variable, 112
sbrk () - change data segment size, 706
sbus - Sbus address space, 1420 thru 1421
scalb () function, 1317
scalbn () function, 1314
scan directory

alphasort (), 1143
scandir (), 1143

scandir () - scan directory, 1143
scanf () - convert from stdin, 1144
scatter read - readv (), 812
sccs - source code control system, 455
sees commands

admin - administer sees, 461
cdc - change delta commentary, 464
comb - combine deltas, 466
get - get sees file, 469
help - get sees help, 472
cdc - display sees history, 473
prt - display sees history, 476
rmdel - remove delta, 478
sact - display sees file editing status, 479
sccsdiff -compare versions of sees file, 480
unget - unget sees file, 481
val - validate sees file, 482

sees delta
changecommentary,464
combine, 466
create - delta. 467
remove - rmdel,478

sccsdiff -compare versions of sees file, 480
sccsfile - sees file format, 1641
schedule

scheduler for UUCP file transport program, 2151
schedule signal- alarm () , 909, 1241
scheduling nice value

get - getpriorityO, 751
set - setpriorityO, 751

screen blanking
change_login - screen blanking and login, 1873

screen fonts, edit - f on tedi t, 200
screen-oriented editor - vi,649

-2211-

Index - Continued

screenblank - tum of idle screen, 483
s creendump - dump frame buffer image, 484
screenload -load frame buffer image, 486
script - make script of terminal session, 488
SCSI

driver for SCSI disk devices, 1456
sd - driver for SCSI disk devices, 1456
sdiff - side-by-side compare, 489
s di v () - multiple precision divide, 1079
search for files, 193
search for pattern in file - grep, 223
search functions

bsearch () binary search, 913
hsearch () - hash table search, 1023
1 search () -linear search and update, 1062

s econ ve rt () - convert number to ASCII, 963
secret mail

enroll for - enroll, 672
receive - enroll, 672
send - xsend, 672

sed - stream editor, 491
seed48 () - generate uniformly distributed random numbers,

961
seek in directory stream - seekdir () , 957
seek on stream - fseek (), 982
seekdir () - seek in directory stream, 957
select (), 822
selection, copy to standard output- get_selection, 217
selection_svc,496
semaphore

control- semctl () , 824
get set of - semget () , 826
operations - semop () , 828

semctl () - semaphore controls, 824
semget () - get semaphore set, 826
s emop () - semaphore operations, 828
send

data unit to transport user, 1220
file to remote host - uusend,635
normal or expedited data over a connection, 1215
print jobs to printer, 289
secret mail- xsend, 672
signal to process - kill () , 764
signal to process - ki 11, 255
signal to process group - killpg (), 766
user-initiated disconnect request, 1217

send a keyboard command ioctl- KIOCCMD, 1408
send and receive mail- mail, 307 thru 318
sendO

message from socket- send (), 830
sendmail aliases file - aliases, 1529
sendmail- mail delivery system, 2100
sendmail aliases file - . forward, 1529
sendmail mail variable, 317
sendmsg () - send message over socket, 830
sendto () - send message to socket, 830
sendwai t mail variable, 317
serial communications driver - ZS, 1518 thru 1519
server

advertise directory for RFS access, 1852

Index - Continued

server, continued
RFS name server master file, 1635
unadvertise, 2140

servers
comsat - biff server, 1883
ftpd-Internet File Transfer Protocol, 1935
inetd - Internet server daemon, 1957
lockd - network lock daemon, 1978
mountd - mount request server, 2011
named - internet domain name server daemon, 2013
pnpd - PNP daemon, 2041
rexecd - remote execution server, 2065
rlogind-remote login server, 2074
rshd - remote shell server, 2087
rstatd - kernel statistics server, 2089,2093
rwalld - network rwall server, 2094
rwhod - system status server, 2095
sta td - network status monitor, 2116
talkd - talk program server, 2125
tnamed - TCP/IP Trivial name server, 2133
uucpd - UUCP server, 2150
yppasswdd - NIS password server, 2159

service entry, get - getservent (), 1013
session

set
create, 835

arp entry ioctl- SIOCSARP,1354
close-on-exec for fd ioctl- FIOCLEX, 1389
current domain name - domainname, 161
current host name, 233
current signal mask - sigsetmask (), 848
date and time - gettimeofday (), 760
disk geometry ioctl- DKIOCSGEOM,1383
disk partition info ioctl - DKIOCSPART, 1383
environment value - putenv (), 1103
file creation mode mask - umask (), 870
file owner ioctl- FIOSETOWN, 1389
foreground process group ID, 1223
high water mark ioctl- SIOCSHIWAT,1477
ifnet address ioctl- SIOCSIFADDR. 1397
ifnet flags ioctl- SIOCSIFFLAGS, 1397
low water mark ioctl- SIOCSLOWAT,1477
rn/c address ioctl- SIOCADDMULTI, 1398
memory management debug level- malloe _debug () ,

1069
name of current host, 233
network group entry - setnetgrent (), 1001
network service entry - getservent (), 1013
p-p address ioctl- SIOCSIFDSTADDR. 1397
process domain name - setdoma inname () , 736
process group ID for job control, 832
RPC program entry - set rpcent (), 1011
scheduling nice value - setpriority (), 751
signal stack context - sigstaek (), 849
terminal characteristics - stty, 529
terminal characteristics - tset, 612
terminal state - stty () , 1182
user limits - ulimit (), 1242
user mask - uma sk () , 870

set command, 109,507
set compatibility mode ioctl - KIOCSCOMPAT,1409
set high watermark ioctl- SIOCSHIWAT,1507
set keyboard "direct input" state ioct I - KI OCSD IRECT,

1409
set keyboard translation ioctl - KIOCTRANS, 1407
set LEDs ioctl- KIOCSLED, 1408
set low water mark ioctl- SIOCSLOWAT,1507
set mail command, 313
set options sockets, 758
set/clear

async 110 ioetl- FIOASYNC, 1389
non-blocking I/O ioctl- FIONBIO, 1389
packet mode (pty) ioctl- TIOCPKT,1450

set_alarm- SunView programmable alarms, 497
set4 command, 2104
setae () function, 985
setuseraudi t () set audit class, 836
setbuf () - assign buffering, 1151
setbuffer () - assign buffering, 1151
setdomainname () - set process domain, 736
setegid () - set effective group ID, 1158
set en v command, 109
seteuid () - set effective user ID, 1158
setexportent () function, 971
setfsent () - get file system descriptor file entry, 991
setgid () - set group ID, 1158
setgraent () function, 992
setgrent () - get group file entry, 993
setgroups (), 739
sethostent () - get network host entry, 995
sethostname(),741
setitimer () - set value of interval timer, 742
setjmp () - save stack environment, 1153
set jmp () - non-local goto, 1153
setkey () - encryption, 921
setkeys - change keyboard layout, 385
setlinebuf () - assign buffering, 1151
set locale () - set international environment, 1155
closelog () - set log priority mask, 1184
setmntent () - open a file system description file, 998
setnetent () - get network entry, 1000
setnetgrent () - get network group entry, 1001
setpgid () - set process group ID for job control, 832
setpgrp (), 748
setpriority () - set process nice value, 751
setprotoent () - get protocol entry, 1005
setpwaent () function, 1007
setpwent () - get password file entry, 1009
fgetpwent () - get password file entry, 1009
setregid () - set real and effective group ID,

833
setreuid (), 834
setrgid () - set real group ID, 1158
setrlimit (), 752
setrpcent () - get RPC entry, 1011
setruid () - set real user ID, 1158
setservent () - get service entry, 1013
set sid- set process to session leader, 2106
setsid () - create session and set process group ID, 835
set sockopt () - set socket options, 758
setstate () - random number routines, 1109

- 2212-

settimeofday(),760
setttyent () - rewind tty tab file, 1019
setuid () - set user ID, 1158
setup. pc - setup.pc master configuration file for DOS, 1645
setuseraudit () set audit class for user ID, 836
setusershell () - function, 1021
setvbuf () - assign buffering, 1151
sfconvert () - convert number to ASCII, 963
sgconvert () - convert number to ASCII, 963
sgetl () - access long integer data, 1169
sh command, Bourne shell, 499 thru 509
shared libraries

display users of - ldd, 265
shared memory

control-shmctl (), 837

shell

get segment -shmget () , 839
operation -shmop () , 841

remote - r sh, 448
shell command, issuing - system () , 1186
shell functions, Bourne, 500
shell mail command, 313
SHELL mail variable, 317
shell variable, 112, 502
shell variables, in Bourne shell, 501thru 502
shell window

cmdtool,75
shell tool, 510

shelltool- shell terminal window, 510
shift command, 109,507
shift_lines - textedit selection filter, 586
shmctl () - shared memory control, 837
shmget () - get shared memory segment, 839
shmop () - get shared memory operations, 841
show fh - print pathname from the NFS file handle, 2107
showfhd - showth daemon run on NFS servers, 2108
showmount - display remote mounts, 2109
showto mail variable, 317
shutacct - accounting shell procedure, 1841
shutdown - shut down multiuser operation, 2110
shutdown () , 843
sigaction () - examine and change signal action, 1159
sigaddset () - manipulate signal sets, 1166
sigblock () - block signals, 844
sigdelset () - manipulate signal sets, 1166
sigemptyset () -manipulate signal sets, 1166
sigfillset () - manipulate signal sets, 1166
sigfpe () - signal handling for specific SIGFPE codes, 1161
siginterrupt () - interrupt system calls with software signal,

1163
sigismember () -manipulate signal sets, 1166
sign mail variable, 317
login - sign on, 283
sign-on last- last, 256
signal

examine and change blocked signals, 847
examine and change signal action, 1159
examine pending signals, 846
schedule - alarm (), 909, 1241

signal, continued
stop until- pause (), 1088

signal handling, in C shell, 105
signal messages

psignal () , 1101
sys_siglist (), 1101

signal () - software signals, 1164, 1170
signaling_nan () function, 1318
signals

kill (), 764
killpg () - send to process group, 766
sigblock (), 844
sigpause (), 845
sigsetmask (), 848

Index Continued

sigstack () - signal stack context, 849
s igvec () , 850 thru 854

- 2213-

signbit () function, 1314
significant and exponent, split into - f rexp () , 1308
significant () function, 1317
s igpa use - release blocked signals, wait for interrupt, 845
s igpending () - examine pending signals, 846
sigprocmask () - examine and change blocked signals, 847
sigsetmask () - set current signal mask, 848
s ig st ack () - signal stack context, 849
s igvec () - software signals, 850 thru 854
sin () - trigonometric sine, 1327
singleyrecision () -single-precision versions of math

functions, 1325
single_to _decimal () - decimal record from single-

precision floating, 975
sinh () - hyperbolic sine, 1309
SIOCADDMULTI -setm/c address, 1398
SIOCADDRT - add route, 1454
S IOCDARP - delete arp entry, 1354
S IOCDELMULTI - delete mlc address, 1398
SIOCDELRT - delete route, 1454
SIOCGARP - get arp entry, 1354
SIOCGHIWAT - get high water mark, 1477, 1507
SIOCGIFADDR - get ifnet address, 1397
SIOCGIFCONF - get ifnet list, 1397
S I OCG IFDSTADDR - get p-p address, 1397
SIOCGIFFLAGS - get ifnet flags, 1397
SIOCGLOWAT - get low water mark, 1477, 1507
SIOCSARP - set arp entry, 1354
SIOCSHIWAT - set high water mark, 1477, 1507
SIOCSIFADDR - set ifnet address, 1397
SIOCSIFDSTADDR- set p-p address, 1397
S I OCS IFFLAGS - set ifnet flags, 1397
SIOCSLOWAT - set low water mark, 1477, 1507
S I OCSPROMI SC - toggle promiscuous mode, 1398
size - find object file size, 514
size mail command, 314
skip backward magnetic tape files - mt,349
skip backward magnetic tape records - mt, 349
skip forward magnetic tape files - mt,349
skip forward magnetic tape records - mt, 349
skyversion -display SKY version, 2111
sleep - suspend execution, 515
sleep () -suspend execution, 1168

Index - Continued

sm, file, 1647
sm_inter () - status monitor protocol, 1344
SMD disk controller

xy - Xylogics 450, 1515 thru 1516
xy -Xylogics 451, 1515 thru 1516
xd-Xylogics 7053, 1512thru 1513

smoothing, interpolate curve - spline, 525
snake - display chase game, 1781
snap command, 516
socket I/O, see sockio(4), 1459
socket operations

async daemon () , 793
bind(),704
connect () , 715
getpeername () , 747
getsockname 0, 757
getsockopt (), 758
listen 0, 769
nfssvc (), 793
recv (), 817
recvfrom () , 817
recvrnsg (), 817
send (), 830
sendrnsg () , 830
sendto () , 830
setsockopt (), 758
shutdown () , 843
socket () , 855
socketpair (), 857

socket operations, accept connection - accept (), 695
socket options

get - getsockopt() , 7 58
set - set sockopt (), 758

socket () , 855
socketpair () create connected socket pair, 857
soelim- eliminate .so's from nroffinput, 518
interrupt system calls with software signal- siginter-

rupt (), 1163, 1164, 1170
software signals - sigvec () , 850 thru 854
sort bibliographic database - sortbib, 522
sort - sort and collate lines, 519
sort and collate lines - sort, 519
sort quicker - qsort () , 1107
sort topologically - tsort, 616
sortbib - sort bibliographic database, 522
sorted file

find lines in - look, 286
remove repeated lines - uniq, 621

soundtool - audio play/record tool, 1782
source code control system - sccs, 455
source command, 109
source mail command, 314
spa ce () - specify plot space, 1091
spaces, to tabs - unexpand,186
sparc -machine type truth value, 306
spawn process, 878
special characters for equations - eqnchar, 1798
special file

make, 776
make- mknod, 1993

special files - makedev, 1986
specification

root menu, for SunView, 1638
specify paging/swapping device - swapon () , 863
spell - check spelling, 523
spellin - check spelling, 523
spheresdemo - graphics demo, 1756
spline - interpolate smooth curve, 525
spli t - split file into pieces, 526
split into significant and exponent - f rexp () , 1308
spool

UUCP spool directory clean-up, 2148
spray - spray packets, 2112
spray () - scatter data to check the network, 1345
sprayd - spray server, 2113
sprintf () - formatted output conversion, 1096
sputl () - access long integer data, 1169
sqrt () - square root function, 1326
s r - driver for CDROM SCSI controller, 1460
s rand () - generate random numbers, 1108
s rand4 8 () - generate uniformly distributed random numbers,

961
srandom () - generate random number, 1109
sscanf () - convert from string, 1144
stand-alone utilities

gxtest - graphics board diagnostics, 1946
imemtest - memory diagnostic, 1956

standard I/O library functions, introduction to, 1171
standard output, copy to many files - tee, 571
start

RFS, 2069
RFS automatically, 1905
Sun View initialization file, 1649

start output (like control-Q) ioctl- TIOCSTART,1450
start printer - lpc, 1980
start_applic -Generic Application Startup, 2114
startup - accounting shell procedure, 1841
startup procedures - boot, 1864, 1963,2057
stat () - obtain file attributes, 858
statd - network status monitor, 2116
state of terminal

get- gtty (), 1182
set- stty (), 1182

statfs () - obtain file system statistics, 861
static file system information - f stab, 1576
statistics

get file system statistics, 875
I/O - iostat, 1969
offilesystem- fstatfs 0, 861
offilesystem- statfs 0, 861
profil (), 803
rstatd- kernel statistics server, 2089, 2093

statistics ofNFS, display - nfsstat, 2026
status monitor files for network services, 1648
status monitor protocol, 1344
status of network, display - netstat, 2018
status of printer - lpc, 1981
status variable, 112
stdin

-2214-

stdin, continued
get character - getchar (), 987
getstringfrom- gets (), 1012
input conversion - scanf (), 1144

stdout
put character to - putchar (), 1102

sticky bit - chmod () , 708
sticky directory, 2117
STKTOP () function, 1288
stop

network listener server, 2028
RFS automatically, 1905
RFS environment, 2071

stop command, 110
stop output (like control-S) ioctl- TIOCSTOP, 1450
stop printer - I pc, 1981
stop processor, 816
stopprocessor- halt, 1947
stop until signal- pause () , 1088
storage

synchronize with memory, 1081
storage allocation, 1066 thru 1070

alloca () - allocate on stack, 1068
calloe () - allocate memory, 1067
cfree () - free memory, 1067
free () - free memory, 1067
malloe () - allocate memory, 1067
malloc debug () - set debug level, 1069
malloc -verify () - verify heap, 1069
memalign () - allocate aligned memory, 1067
realloc () - reallocate memory, 1067
valloc () - allocate aligned memory, 1067

storage management, 1066 thru 1070
storage management debugging, 1066 thru 1070
store datum under key - store () , 953
store () - store datum under key, 953
strcasecmp () - compare strings ignoring case, 1175
strcat () -concatenate strings, 1175
index () - find character in string, 1175
strcmp () - compare strings, 1175
strcoll () - compare strings using collating information, 1173
st rcpy () - copy strings, 1175
st rcat () - duplicate string, 1175
stream

assign buffering - setbuf (), 1151
assign buffering - setbuffer (), 1151
assign buffering - setlinebuf (), 1151
assign buffering - setvbuf (), 1151
associate descriptor - f dopen () , 979
close - fclose (), 973
flush - fflush (), 973
get character - fgetc (), 987
get character - getc () , 987
get character - getchar (), 987
get position of - ftell () , 982
get string from - fgets (), 1012
get word- getw (), 987
input conversion - scanf () , 1144
open - fopen (), 979
push character back to - ungetc () , 1243
put character to - fputc (), 1102

-2215 -

stream, continued
put character to - putc (), 1102
put string to - put s () , 11 05
put string to - fputs (), 1105
put word to - putw (), 1102
read from stream - fread (), 981
reopen - freopen () , 979
reposition - rewind () , 982

Index - Continued

return to remote command - rcmd (), 1111
return to remote command - rexec () , 1120
rewind - rewind () , 982
seek - fseek (), 982
write to stream - fwri te () , 981

stream editor - sed,491
stream status enquiries

clearerr () - clear error on stream, 974
feof () - enquire EOF on stream, 974
ferror () - inquire error on stream, 974
f ileno () - get stream descriptor number, 974

streaming 1/4-inch tape drive - ar, 1353
STREAMS

clone device driver, 1373
I/O, see streamio(4), 1467
Idterm terminal module, 1411
NIT, Network Interface Tap, 1434
nit buf, NIT buffering module, 1438
nit-if, NIT device interface, 1440
nit yf, NIT packet filtering module, 1442
ttcompat, V7, BSD compatibility module, 1501

strftime () - date and time conversion, 924
string

number conversion- printf 0,1096,1144
string operations

compare - strcmp (), 1175
compare - strncmp (), 1175
concatenate - strcat () , 1175
concatenate - st rn ea t (), 1175
copy- strepy 0,1175
copy - strncpy (), 1175
getfromstdin- gets 0,1012
get from stream - fgets (), 1012
index- nndex (), 1175
put to stdout- puts 0,1105
put to stream - fputs 0, 1105
reverse index - rindex (), 1175
reverse index - rindex () , 1175

string_to_decimal () - decimal record from character
string, 1177

strings - find printable strings in binary file, 527
strings, convert from numbers - eeonvert () , 963
strip - strip symbols and relocation bits, 528
strip filename affixes - basename,43
strlen () - get length of string, 1175
strneasecmp () - compare strings ignoring case, 1175
strneat () - concatenate strings, 1175
strnemp () - compare strings, 1175
strnepy () - copy strings, 1175
strptime () - date and time conversion, 925
r index () - find character in string, 1175
strtod () - ASCn string to double, 1180
strtol () - ASCn string to long integer, 1181
strxfrm () - transform strings using collating information,

Index - Continued

1173
stty command, 529
s tty () - set terminal state, 1182
stty _fro~defaults - set terminal from SunView defaults,

534
su - substitute user id, 535
sUboptions

parse, 1014
substitute user id - su, 535
sum - sum and count blocks in file, 537
summarize file system quotas - repquota, 2059
sun -machine type truth value, 306
Sun 10 Mb/s Ethernet interface - ie, 1395 thru 1396
Sun floppy disk driver - fd, 1387
Sun keyboard device - kbd, 1410
Sun mouse device - mouse, 1422
Sun mouse streams module - mouse, 1423
sun3cvt - convert large Sun-2 executables to Sun-3, 388
suncoredemos - demonstrate SunCore Graphics Package,

1785
sundiag - system diagnostics, 2118
SunDials streams module- dial box, 1380
suninstall command, 2120
sunos - SunOS Release 4.1 environment, 1822
SunView

coloredi t, 82
iconedi t, 234
initialization file for, 1649
root menu specification for, 1638
start up environment, 538

sunview - Suntools window environment, 538
SunView device table - svdtab(5),1650
Sun View environment, changing default settings -

defaultsedit, 146
sunview - initialization file for SunView, 1649
SunWindows, graphics tool- gfxtool,218
super block, update - sync () , 866
super-user command - su, 535
supplementary group IDs, get - get groups () , 739
supplementary group IDs, set- setgroups 0,739
supplementary group IDs

initialize- initgroups 0, 1027
suspend command, 110
suspend execution - sleep, 515
suspend execution - sleep () , 1168
suspend execution for interv al in microseconds - us 1 e ep () ,

1244
sv _acquire - change owner, group, mode of window devices,

548
sv _release - return owner, group, mode of window devices to

default, 548
svc _destroy 0 - create server handles, 1134
svc _ f ds () - server side calls, 1138
svc _ fdset 0 - server side calls, 1138
svc_freeargs 0 - server side calls, 1138
svc _getargs () - server side calls, 1138
svc getcaller () -server side calls, 1138
svc - getreq () - server side calls, 1138
svc =get reqset 0 - server side calls, 1138

svc _reg () - register servers, 1132
svc _run 0 - server side calls, 1138
svc _ sendreply () - server side calls, 1138
svc_unreg () -register servers, 1132
svcerr _ auth 0 - server side call errors, 1136
svcerr _decode () - server side call errors, 1136
svcerr _noproc () - server side call errors, 1136
svcerr_noprog () - server side call errors, 1136
svcerr yrogvers () - server side call errors, 1136
svcerr _ systemerr () - server side call errors, 1136
svcerr _ weakauth () - server side call errors, 1136
svcfd _create () - create server handles, 1134
svcraw _create () - create server handles, 1134
svctcp _ crea te () - create server handles, 1134
s vcudp _ buf c reate () - create server handles, 1134
svdtab(5) - SunView device table, 1650
svidii - SVID Issue 2, 1823, 1824
swab () - swap bytes, 1183
swap bytes - swab (), 1183
swapon - specify paging device, 2121
swapon () - specify paging device, 863
swapping device - swapon 0 , 863
swapping devices, specify - swapon, 2121
swin - set window input behavior, 549
switch command, 110
swi tcher, 552
symbol table, get entries from - n 1 i s t () , 1086
symbolic link

create, 864
read value of, 815

symbolic link, make - In, 274
symlink () , 864
symorder - update symbol table ordering, 554
sync - update super block, 555
sync () - update super block, 866
synchronize

memory with physical storage, 1081
transport library, 1221

synchronize file state - f sync () , 730
synchronous 110 multiplexing, 822
sys-config - configure a system, 2122
sys-unconfig - undo system configuration, 2123
sys_errlist - system error messages, 1089
sys _ nerr - system error messages, 1089
sys_siglist () - system signal messages, 1101
s y s ca 11 () - indirect system call, 867
sysconf () - get configurable system variables, 868
sysex command, 556
old-syslog - make system log entry, 389
syslog () - write message to system log, 1184
syslogd. conf - system log daemon configuration file, 1651
syslogd -system log message daemon, 2124
Systech VPC-2200 interface - vpc, 1510
system

diagnostics, 2118
system administration

-2216 -

adduser - add new user account, 1849
analyze - crash analyzer, 2035
catman - create cat files for manual pages, 1871

system administration, continued
install- install files, 247

system calls, introduction to, 681 thru 685
system configuration files, build - conf ig, 1884
system data types - types, 1698
system EEPROM display and load program, 1911
system error messages

errno - system error messages, 1089
perror () - system error messages, 1089
sys_errlist -systemerrormessages, 1089
sys _ nerr - system error messages, 1089

system error numbers, introduction to, 686
system images

examine, 1889
system log configuration file - syslogd. conf, 1651
system log daemon - sy slog, 2124
system log, control- syslog (), 1184
system maintenance and operation, 1827
system operation support

mount () , 780
process accounting - acct (), 698
reboot () , 816
swapon () - specify paging device, 863
sync (), 866
vadvise (), 877

system page size, get - getpagesize (), 746
system PROM monitor program - monitor, 1998
system resource consumption

control- v 1 imi t () , 1250
system signal messages

psignal (), 1101
sys_siglist(),1101

system special files - makedev, 1986
system status server - rwhod, 2095
system to system command execution - uux, 640
system to system copy - uucp, 631
System V commands

banner, 37
cat, 51
cc,54
chmod,66
col,79
date, 129
diff3, 156
dircmp, 159
du,167
echo, 168
expr, 187
grep, 223
grpck,1945
lint,270
Is, 298
m4,302
nohup, 363
od,370
pg,410
pr,415
pwck,2048
sed,491
sort, 519
sum, 537
test, 578

- 2217-

System V commands, continued
time, 590
touch,601
tr,604

System V library, system call versions
getpgrp (), 748
open (), 794
setpgrp (), 748
wri te () , 884

system () - issue shell command. 1186
systems

systems - NIS systems file, 1654
syswait - execute a command, 558

T
-t - mail tilde escape, 309

Index - Continued

t _accept () - accept a connect request, 1187
t _all 0 c () - allocate a library structure, 1189
t _bind () - bind an address to a transport endpoint, 1191
t _ c 10 se () - close a transport endpoint, 1193
t _connect () - establish a connection with another transport

user, 1194
t _error () - produce error message, 1196
t _free () - free a library structure, 1197
t _get info () - get protocol-specific service information, 1198
t _get state () - get state of provider, 1200
t _listen () -listen for a connect request, 1201
t _100 k () - look at current event on transport endpoint, 1203
t _open () - establish transport endpoint, 1204
t _ optmgmt () - manage options for transport endpoint, 1206
t _ rcv () - receive data over a connection, 1208
t _ rcvconnect () - receive confirmation from connect request,

1209
t _ rcvdi s () - retrieve information from disconnect, 1211
t _ rcvrel () - acknowledge orderly release indication, 1212
t _ rcvuda t a () - receive a data unit, 1213
t _ rcvuderr () - receive unit data error indication, 1214
t _ snd () - send normal or expedited data over a connection,

1215
t _ snddi s () - send user-initiated disconnect request, 1217
t _ sndrel () - initiate an orderly release, 1219
t _ sndudata () - send data unit to transport user, 1220
t _sync () - synchronize transport library, 1221
t _unbind () - disable a transport endpoint, 1222
taac device, 1475
tabs command, 559
tabs, expand to spaces - expand, 186
tabstop specifications in text files - fspec, 1574
tail- display last part of file, 561
talk - talk to another user, 562
talkd - talk server, 2125
tan () - trigonometric tangent, 1327
tanh () - hyperbolic tangent, 1309
tape

backspace files - mt,349
backspace records - mt,349
copy, blocking preserved - tcopy, 569
erase - mt,349
forward space files - mt, 349

Index - Continued

tape, continued
forward space records - mt, 349
general magnetic tape interface, 1427
get unit status - mt. 349
manipulate magnetic - mt, 349
place unit off-line - mt, 349
process tape archives. 629
retension- mt.349
rewind - rnt, 349
scan - tcopy, 569
skip backward files - mt, 349
skip backward records - mt, 349
skip forward files - mt,349
skip forward records - rnt, 349
write EOF mark on - mt,349

tape archives - tar, 563
bar command, 38

tape block size - 512 bytes. 1906
tape drive. 1I2-inch

tm - tapemaster, 1498
xt - Xylogics 472, 1514

tape drive. 1/4-inch
ar - Archive 1/4-inch Streaming Tape Drive, 1353

tapemaster Ill-inch tape drive - tm, 1498
tar - tape archiver, 563
tar - tape archive file fonnat, 1656
tbl-remove constructs - deroff,149

table formatter. 567
tcdrain () - drain terminal I/O queues, 1227
tcflow () - suspend transmission or reception of data, 1227
tcflush () - flush terminalI/O queues, 1227
t cgetat tr () - get terminal attributes, 1227
tcgetpgrp () - get foreground process group ID, 1223
t cov - code coverage tool, 570
TCP ioctl's

S10CGH1WAT - get high water mark, 1477
S10CGLOWAT - get low water mark, 1477
S10CSH1WAT - set high water mark, 1477
S10CSLOWAT - set low water mark, 1477

t cp - Internet Transmission Control Protocol, 14761hru 1477
TCP/IP

Internet directory service - whois, 667
Internet file transfer protocol server - ftpd, 1935
to RPC mapper - portrnap, 2042

TCP/IP Trivial name server - tnamed, 2133
tcptli - Til-Conforming TCP Stream-Head, 1478
tcsendbreak () - send break to terminal, 1227
tcsetattr () - setterminal attributes, 1227
t c s et pgrp () - set foreground process group ID, 1223
tdelete () - delete binary tree node, 1236
tee - copy standard output to many files, 571
tektool- emulate Tektronix 4014,572
Tektronix 4014, emulate - tektool, 572
tell (), 770
telldir () - position of directory stream, 957
telnet - TELNET interface, 574
telnetd daemon, 2126
temporary file

create name for - tmpnam () , 1235
terrn- terminal driving tables, 1658, 1664
terrncap - terminal capability data base, 1666

terminal
configuration data base - gettytab,1580
find name of - t t yname (), 1239
get name of - tty, 617
I/O, see termio(4),1480
make script of session - script, 488
reset bits - reset, 612
set characteristics - stty, 529.612

terminal emulation, ANSL 13741hru 1378
terminal emulator - console, 13741hru 1379
terminal independent operations

tgetent (), 1225
tgetflag (), 1225
tgetnum () , 1225
tgetstr () , 1225
tgoto () , 1225
tputs (), 1225

aIm - Sun ALM-2 Asynchronous Line Multiplexer, 1417
aIm - Sun ALM-2 Asynchronous Line MUltiplexer, 1418

terminal state
get - gtty (), 1182
set- stty (), 1182

terminate
network listener server, 2028

terminate process. 723, 970
terminate program - abort () , 903
termination handler, name- on_exit 0,1087
terminfo - System V terminal capability data base, 1674
termios () - terminal interface, 1227
test command, 507, 578
text editing

ed -line editor, 169
edit -line editor, 184
ex -line editor, 184
sed - stream editor, 491
vi -visual editor, 649

text file
browse through - pg,410

text file, browse through
more, 346
page, 346

text processmg utilities
awk - scan and process patterns. 34,352
cat - concatenate files, 51
reverse lines in file - rev, 439
search for patterns - grep, 2~3
sort - sort and collate lines, 519
spell-check spelling, 523
split - split file into pieces, 526
tail- display last part of file, 561
t r - translate characters, 604
tsort - topological sort, 616
ul-underline text, 618
uniq - remove repeated lines, 621

textdomain - get or set the current text domain, 1017
t extedi t - Sun View text editor, 580
tfind () -search binary tree, 1236
TFS

list TFS whiteout entries, 301
mounting and unmounting filesystems, 2012
remove a TFS whiteout entry, 626

t f s - translucent file service, 1494

-2218 -

tfsd - TFS, 2127
tftp command, 588
tftpddaemon, 2128
tgetent () - get entry for terminal, 1225
tgetflag () - get Boolean capability, 1225
tgetnum () - get numeric capability, 1225
tgetstr () - get string capability, 1225
tgoto () - go to position, 1225
then command, 500
ti c command, 2130
tilde escapes in mail, 308 thru 309, see also mail tilde escapes
time

adjust- adjtime (), 700
display date and, 129
display in window, 72
formatting conventions for locale, 1055

time and date
get- time (), 1231
get- gettimeofday (), 760
get- ftime (), 1231
set- settimeofday (), 760

time and date conversion
asctime (), 923
ctime (), 923
dysize (), 923
gmtime (), 923
local time () ,923
strftime (), 924
strptime (), 925
t imegm () , 926
timelocal (), 926
tzset (), 926
tzsetwall (), 926

time command, 110,590
time variable, 112
time () - get date and time, 1231
timed event jobs table - crontab,1557
timed event services

at - do job at specified time, 30
calendar -reminder service, 50
1 ea ve - remind you of leaving time, 266

timed events - cron, 1894
timegm () - date and time conversion, 926
timelocal () - date and time conversion, 926
timerclear - macro, 743
timercmp - macro, 743
timerisset -macro, 743
times command, 507
times () - get process times, 1232
time zone () - get time zone name, 1233
timing and statistics

clock () , 920
getitimer (), 742
gettimeofday(),760
profil (), 803
setitimer (), 742
settimeofday (), 760
timerclear - macro, 743
timercmp-macro, 743
timerisset - macro, 743

TIOCCONS - get console I/O, 1374

-2219-

Index - Continued

TIOCPKT - set/clear packet mode (pty), 1450
T IOCREMOTE - remote input editing, 1450
TIOCSTART - start output (like control-Q), 1450
TIOCSTOP - stop output (like control-S), 1450
tip - connect to remote system, 592
tm - tapemaster 1I2-inch tape drive, 1498
tmpfile () - create temporary file, 1234
tmpf s - memory based filesystem, 1499
tmpnam () - make temporary file name, 1235
tnamed - name server, 2133
toascii () - convert character to ASCII, 928
toc file, 1692
toggle promiscuous mode ioctl- SIOCSPROMISC, 1398
tolower () - convert character to lower-case, 928
_ tolower () - convert character to lower-case, System V, 929
toolplaces - show current window info, 599
tools

mailtool,319
textedi t, 580

top mail command, 314
toplines mail variable, 317
topological sort - t sort, 616
touch - update last modified date of file, 601
touch mail command, 314
toupper () - convert character to upper-case, 928
t pu t command, 602
t pu t s () - decode padding information, 1225
t r - translate characters, 604
trace command, 606
trace process - ptrace (), 804
traffic -show Ethernet traffic, 608
transfer

UUCP file transport program, 2146
translate - input and output files for system message transla­

tion, 1694
translate characters - t r, 604
translation tables, 1597

build with idload,1951
transliterate protocol trace - t rpt, 2134
translucent file service, 1494
Translucent File Service

list whiteout entries, 301
remove whiteout entry, 626

transport
accept a connect request, 1187
acknowledge orderly release indication, 1212
allocate a library structure, 1189
bind an address to a transport endpoint, 1191
close transport endpoint, 1193
describe error during call to transport function, 1196
disable a transport endpoint, 1222
establish a connection with another transport user, 1194
establish endpoint, 1204
free a library structure, 1197
get protocol-specific service information, 1198
get state of provider, 1200
initiate an orderly release, 1219
listen for a connect request, 1201
look at current event on endpoint, 1203
manage options for transport endpoint, 1206

Index - Continued

transport, continued
receive a data unit, 1213
receive a unit data error indication, 1214
receive confirmation from connect request, 1209
receive data over a connection, 1208
retrieve information from disconnect, 1211
scheduler for UUCP file transport program, 2151
send data unit, 1220
send normal or expedited data over a connection, 1215
send user-initiated disconnect request, 1217
synchronize transport library, 1221
UUCP file transport program, 2146

trap command, 507
trek - Star Trek game, 1787
trigonometric functions, 1327 thru 1328

acos () , 1327
asin (), 1327
atan (), 1327
atan2 (), 1327
cos (), 1327
sin (), 1327
tan (), 1327

t ro f f - typeset documents, 609
troff utilities

checknr - check nroff/troff files, 63
col - filter reverse paper motions, 79
troff utilities, 149
soelim - eliminate . so's, incorporate sourced-in files,

518
trpt - transliterate protocol trace, 2134
true - provide truth values, 611
truncate () - set file to specified length, 869
trustedhostslist- hosts.equiv, 1590,1608
tsearch () - build and search binary tree, 1236
tset - set terminal characteristics, 612
tsort - topological sort, 616
ttcompat S1REAMS module, 1501
tty - get terminal name, 617
tty terminal interface, 1505
tty I/O, see termio(4),1480
tty, set characteristics - stty, 529
tty, set characteristics - t set, 612
ttyname () - find terminal name, 1239
ttyslot () -getutmpslotnumber, 1240
ttysoftcar - enable/disable carrier detect, 2135
ttytab file, 1696
tunefs - tune file system, 2136
turnacct - accounting shell procedure, 1841
twalk () - traverse binary tree, 1236
type command, 507
t ypemail command, 313
Type mail command, 313
types -primitive system data types, 1698
typeset documents - t ro f f, 609
tzfile file, 1701
t z s et () - date and time conversion, 926
tzsetupcommand,2137
tzsetwall () - date and time conversion, 926

U
u3b - machine type truth value, 306
u3b15 -machine type truth value, 306
u3b2 - machine type truth value, 306
u3b5 - machine type truth value, 306
ualarm () - schedule signal in microsecond precision, 1241
UDP ioctl's

SIOCGHIWAT - get high water mark, 1507
SIOCGLOWAT - get low water mark, 1507
SIOCSHIWAT - set high water mark, 1507
SIOCSLOWAT - set low water mark, 1507

udp - Internet User Datagram Protocol, 1506 thru 1507
user and group ill range specification file, 1702
uid _allocd - UID Allocator Daemon, 2138
u I - underline text, 618
ulimi t () - get and set user limits, 1242
umask command, 110,508
umask () -set user mask, 870
umount - unmount file system, 2006
umounctfs - dismount TFS file systems, 2012
unadv - unadvertise an RFS resource, 2140
unalias command, 110
uname -printhostname, 619
uncompact - uncompress files, 371
uncompres s - uncompress files, 85
unconfigure

undo system configuration, 2123
unconfigure command, 2141
.undeletemail command, 314
underline text - ul, 618
unexpand - spaces to tabs, 186
unget - unget sees file, 481
ungetc () - push character back to stream, 1243
unhash command, 110
unifdef -eliminate #ifdef's from e input, 620
uniq- remove repeated lines, 621
unique file name

create - mktemp (), 1074
uni ts - convert units, 622
Unix Domain protocol family, 1508
unix2 do s - convert text file from ISO format to SunOS DOS

format, 623
unlimit command, 110
unlimit virtual address space - unset4 command,2104
unlink - remove a link, 1977
unl ink () - remove directory entry, 872
unload command, 624
unlock address space - munlockall (), 1076
unlock memory pages - munlock (), 1075
unmap memory pages - mma p () , 792
unmount

force unmount of advertised resource, 1938
TFS filesystems, 2012

unmount () - demount file system, 873
unmount, forced

RFS notification shell script, 2072
zero - source of zeroed unnamed memory, 1517
unpack - unpack files, 396
unread mail command, 312

-2220-

unset command, 110,508
unset mail command, 314
unset4 command,2104
unsetenv command, 110
un til command, 500
unwhiteout-remove a TFS whiteout entry, 626
update -update superblock, 2143
update last modified date of file - touch,601
update programs - make, 325 thru 339, 376 thru 382
update super block - sync, 555
update super block - sync () , 866
updaters file, 1704
uptime - display system up time, 627
user

display effective name - logname, 285, 666
talk to another - talk,562
write to another - w r i t e, 668

user ID
chown - change user ill of file, 1875
id - display user and group IDs, 237
get, 762
set real and effective - setreuid (), 834
substitute - s u, 535

user limits
get- ulimit (), 1242
set - ulimit (), 1242

user mask, set - umask (), 870
user name, get - cuserid () ,952
user quotas

edquota - edit user quotas, 1910
quotacheck - check quota consistency, 2051
quotaoff - tum file system quotas off, 2052
quotaon - tum file system quotas on, 2052
repquota - summarize quotas, 2059
rquotad - remote quota server, 2086

user _agentd- user agent daemon, 2144
user2netname () - secure RPC, 1148
users

info on users - finger, 196
list last logins - last, 256
what are they doing - w,655
who - who is logged in, 665
write to all- wall, 658

users - display users on system, 628
us I eep () - suspend execution for interval in microseconds,

1244
ustar - process tape archives, 629
ustat () - get file system statistics, 875
utilities, introduction, 3
utime () - set file times, 1245
utimes () - set file times, 876
utmp -login records, 1705
uucheck - check UUCP directories and Permissions file, 2145
uucico - file transport program for UUCP, 2146
uuclean - clean UUCP spool area, 2147
uucleanup - UUCP spool directory clean-up, 2148
UUCP

check directories and Permissions file, 2145
file transport program, 2146
scheduler for UUCP file transport program, 2151

Index Continued

UUCP, continued
server - uucpd, 2150
spool directory clean-up, 2148

uucp - system to system copy, 631
UUCP log - uulog, 631
uucpd - UUCP server, 2150
uudecode - decode binary file, 634
uuencode - encode binary file, 634
uuencode - UUCP encoded file format, 1707
uulog - UUCP log, 631

- 2221-

uuname - UUCP list of names, 631
uupick command, 638
uusched - scheduler for UUCP file transport program, 2151
uusend - send file to remote host, 635
uustat command, 636
uut 0 command, 638
uux - system to system command execution, 640
uuxqt - execute remote command requests, 2152

v
-v - mail tilde escape, 309
va _ arg () - next argument in variable list, 1248
va _ dcl () - variable argument declarations, 1248
va_end () - finish variable argument list, 1248
va_Ii st () - variable argument declarations, 1248
va_start () - initialize varargs, 1248
vacation - automatic mail replies, 643
vadv i se () - advise paging system, 877
val - validate SCCS file, 482
validate SCCS file - val,482
valloc () - allocate aligned memory, 1067
val ue s () - machine-dependent values, 1247
varargs () - variable argument list, 1248
variable argument list, - varargs () , 1248
variable substitution, in C shell, 102
variables

get configurable system variables, 868
in Bourne shell, 501, 502
in C shell, 111

vax - machine type truth value, 306
vc command, 390
verbose mail variable, 317
verbose variable, 113
verifier, C programs - lint, 270
verify heap - malloe_verify (), 1069
plot graphics on - vplot, 651
version mail command, 314
version of file - what, 660
vfont - font formats, 1708
vfontinfo - examine font files, 645
vfork () , 878
vfprintf () - format and print variable argument list, 1251
vgrind - make formatted listings, 646
vgrindefs - vgrind language definitions, 1709
vhangup () , 879
vi - visual editor, 649
view

convex polyhedron, 1788
vipw - edit password file, 2153

Index - Continued

virtual address space limiting - set4 command, 2104
check virtual address space limits - eheek4 command,2104
virtual address space unlimit- unset4 command, 2104
virtual-virtual address space, 1420 thru 1421
visual editor - vi,649
visual mail command, 314
VISUAL mail variable, 317
vlimit () -control consumption, 1250
vme16 - VMEbus 16-bitspace, 1420thru 1421
vme16d16 - VMEbus address space, 1420 thru 1421
vme16d32 - VMEbus address space, 1420thru 1421
vme24 - VMEbus 24-bit space, 1420 thru 1421
vme24d16 - VMEbus address space, 1420 thru 1421
vme24d32 - VMEbus address space, 1420 thru 1421
vme32d16 - VMEbus address space, 1420thru 1421
vme32d32 - VMEbus address space, 1420 thru 1421
vmstat - display virtual memory statistics, 2154
vpe - Systech VPC-2200 Versatec/Centronics interface, 1510
vplot - plot on Versatec, 651
vprintf () - format and print variable argument list, 1251
vsprintf () - format and print variable argument list, 1251
vswap - convert foreign font files, 652
vsyslog () -log message with variable argument list, 1253
vtimes () -resource use information, 1254
vtroff - format document for raster printer, 653
vwevph - view convex polyhedron, 1788
vw i dt h - make font width table, 654

w
-w C shell file inquiry - write accessible, 104
w - what are users doing, 655
-w - mail tilde escape, 309
wait

for asynchronous I/O, 908
wait command, 110,508,657
wait 0,881
wait3,881
wait4 (), 881
wall- write to all users, 658
we - count lines, words, characters in file, 659
westowes () - multibyte character handling, 1071
wetomb () - multibyte character handling, 1071
what are users doing - w,655
what - identify file version, 660
wha ti s - describe command, 661
whereis- find program, 662
whi ch - find program file, 664
while command, 110,500
whi Ie - repeat commands - c sh, 110
whiteout

list TFS whiteout entries, 301
who - who is logged in, 665
who is logged in on local network - rusers, 452, 454
who ami - display effective user name, 666
whois - Internet directory service, 667
win - Sun window system, 1511
window environment- sunview,538
window management

window management, continued
adjaeentsereens command, 23
swi teher utility, 552

window, save context- loeksereen, 280
word

get from stream - get w () , 987
put to stream - putw (), 1102

words in file, count - wc, 659
working directory

cd - change directory, 60
change, 707
display name of - pwd, 426
get pathname - getwd (), 1022

worm - growing worm game, 1789
worms - animate worms on display, 1790
write

archive files, 402, 629
initiate asynchronous write, 906

wri te - write to another user, 668
write EOF mark on magnetic tape - mt, 349
write gathered- writev (), 884
write mail command, 314
write to all users - wall, 658
write to all users on network - rwall,453
write to stream - fwrite (), 981
write () , 884
wtmp -login records, 1705
wtmpf ix - correct connect accounting records date/time stamp,

1941
wump - hunt the Wumpus game, 1791

x
-x C shell file inquiry - execute accessible, 104
-x - mail tilde escape, 309
xargs - construct and use initial arguments lists, 670
xcrypt () - hex encryption, 1346
xd -Xylogics SMD Disk driver, 1512 thru 1513
xdecrypt () - hex decryption, 1346
xdr () networking functions, 1255
xdr routines

-2222-

xdr array () - describe format ofXDR data, 1259
xdr - bool () function, 1264
xdr -bytes () -describe format ofXDR data, 1259
xdr - char () function, 1264
xdr -destroy () - create XDR streams, 1262
xdr -double () function, 1264
xdr - enum () function, 1264
xdr -float () function, 1264
xdr -free () function, 1264
xdr - get po s () - XDR stream management, 1257
xdr-inline () -XDR stream management, 1257
xdr - int () function, 1264
xdr -long () function, 1264
xdr-opaque () -describe format ofXDR data, 1259
xdr -pointer () - describe format of XDR data, 1259
xdr -reference () - describe format ofXDR data, 1259
xdr -set po s () - XDR stream management, 1257
xdr -short () function, 1264
xdr -string () - describe format ofXDR data, 1259
xdr - u char () function, 1264
xdr=u=)nt () function, 1264

xdr routines, continued
xdr u long () function, 1264
xdr - u -short () function, 1264
xdr - u~ion () - describe format of XDR data, 1259
xdr -vector () - describe fonnat of XDR data, 1259
xdr -void () function, 1264
xdr - wrapstring () - describe format ofXDR data,

- 1259
xdrmem create () - create XDR streams, 1262
xdrrec -create () - create XDR streams, 1262
xdrrec - endofrecord () - XDR stream management,

-1257
xdrrec eof () - XDR stream management, 1257
xdrrec - readbytes () - XDR stream management,

-1257
xdrrec skiprecord () - XDR stream management,

-1257
xdrstdio create () - create XDR streams, 1262

xdr accepted reply () - XDR routines for RPC, 1140
xdr -array () -= describe format ofXDR data, 1259
xdr = authunix yarms () - XDR routines for RPC, 1140
xdr bool () function. 1264
xdr -bytes () - describe format ofXDR data, 1259
xdr - callhdr () -XDR routines for RPC, 1140
xdr=callmsg () -XDR routines for RPC, 1140
xdr char () function. 1264
xdr=destroy () -create XDR streams, 1262
xdr _double () function, 1264
xdr en urn () function. 1264
xdr=float () function, 1264
xdr free () function. 1264
xdr - getpos () - XDR stream management, 1257
xdr=inline () -XDR stream management, 1257
xdr _ int () function, 1264
xdr long () function. 1264
xdr= opaque () - describe fonnat of XDR data, 1259
xdr_opaque_auth () -XDR routines for RPC, 1140
xdr _pmap () - RPC bind servie, 1094
xdr pmaplist () - RPC bind servie, 1094
xdr -pointer () -describe fonnat ofXDR data, 1259
xdr -reference () - describe format ofXDR data, 1259
xdr - re j ected reply () - XDR routines for RPC, 1140
xdr - replymsg (") - XDR routines for RPC, 1140
xdr = setpos () - XDR stream management, 1257
xdr short () function, 1264
xdr=string () - describe format ofXDR data, 1259
xdr u char () function, 1264
xdr=u=int () function, 1264
xdr _ u _long () function, 1264
xdr u short () function, 1264
xdr - u~ion () - describe format of XDR data, 1259
xdr = vector () - describe format of XDR data, 1259
xdr void () function, 1264
xdr - wrapstring () - describe format of XDR data, 1259
xdr;em create () - create XDR streams, 1262
xdrrec -create () - create XDR streams, 1262
xdrrec = endof record () - XDR stream management, 1257
xdrrec eof () - XDR stream management, 1257
xdrrec - readbytes () -XDR stream management, 1257
xdrrec = skiprecord () - XDR stream management, 1257

-2223 -

Index - Continued

xdrstdio _create () - create XDR streams, 1262
xget - receive secret mail, 672
xi t mail command, 311
xopen - Iusr/group X/Open version 2, 1825
xprt register () -register servers, 1132
xprt=unregister () -register servers, 1132
xsend - send secret mail, 672
xstr - extract strings from C code, 673
xt - Xylogics 472 l/2-inch tape drive, 1514
xtab - exported file system table, 1566
xtom () - hexadecimal string to multiple precision, 1079
xy -Xylogics SMD Disk driver, 1515 thru 1516
Xylogics 472 l/2-inch tape drive - xt, 1514
Xylogics SMD Disk driver - xd, 1512 thru 1513, 1515 thru 1516

y
yO () - Bessel function, 1304
yl () - Bessel function, 1304
yacc language tags file - ctags, 117
yacc - parser generator, 675
yes - be repetitively affirmative, 676
yn () - Bessel function, 1304
YP

change login password in - yppas swd, 679
make database - ypini t, 2157
make ndbm file - makedbrn, 1985
print values from database - ypcat, 677
rebuild database - ypmake, 2158

yP client interface, 1267
yp () function. 1347
yp_all () -NIS client interface, 1267
yp _bind - NIS client interface, 1267
yp first () - NIS client interface, 1267
yp =get _ defaul t _domain - NIS client interface, 1267
yp_rnaster () -NIS client interface, 1267
yp _ rna t ch () - NIS client interface, 1267
yp _next () - NIS client interface, 1267
yp _order () - NIS client interface, 1267
yp _unbind () - NIS client interface, 1267
yp_update () -change NIS information, 1272
ypaliases

ypa 1 ia s es - NIS aliases for sendmail, 1711
ypbatchupd- NIS batch update daemon, 2156
ypbind - NIS server process, 2162
ypcat - print values from NIS database, 677
yperr _string () - NIS client interface, 1267
ypf i 1 e s - NIS database and directory, 1712
ypgroup-NIS group file, 1713
ypini t - make NIS database, 2157
ypmake - rebuild NIS database, 2158
ypma t ch - match NIS keys, 678
yppasswd-NIS password file, 1714
yppasswd - change login password in NIS, 679
yppasswd () - update NIS password entry, 1348
yppoll - NIS version inquiry, 2160
ypprintcap- NIS printer capability database, 1715
ypprot _err () - NIS client interface, 1267
yppush - force propagation of changed NIS map, 2161
ypserv - NIS server process, 2162

Index - Continued

ypset - direct ypbind to a server, 2164
ypsync command, 2165
ypupdated daemon, 2166
ypwhich- who is NIS server, 680
ypxfr -move remote NIS map to local host, 2167
ypxfrd - NIS server process, 2162
yppasswdd-NIS password server, 2159

z
-z e shell file inquiry - zero length, 104
z mail command, 314
zcat - extract compressed files, 85
zdump command, 2169
zero byte strings - bzero () ,916
zic command, 2170
zs - zilog 8530 see serial communications driver, 1518 thru

1519

- 2224-

