Stardent

START HERE:
USERS GUIDE

tttttttttttttttttttt

Copyright © 1990
an unpublished work of Stardent Computer Inc.
All Rights Reserved.

This document has been provided pursuant to an agreement with Stardent Computer Inc. containing restrictions on
its disclosure, duplication, and use. This document contains confidential and proprietary information constituting
valuable trade secrets and is protected by federal copyright law as an unpublished work. This document (or any
portion thereof) may not be: (a) disclosed to third parties; (b) copied in any form except as permitted by the
agreement; or (c) used for any purpose not authorized by the agreement.

Restricted Rights Legend for Agencies of the U.S. Department of Defense
Use, duplication or disclosure by the Government is subject to restrictions as set forth in subparagraph
(e)(1)(ii) of the Rights in Technical Data and Computer Software clause at 252.227-7013 of the DoD

Supplement to the Federal Acquisition Regulations. Stardent Computer Inc., 880 West Maude Avenue,
Sunnyvale, California 94086.

Restricted Rights Legend for civilian agencies of the U.S. Government
Use, reproduction or disclosure is subject to restrictions set forth in subparagraph (a) through (d) of the
Commercial Computer Software—Restricted Rights clause at 52.227-19 of the Federal Acquisitions
Regulations and the limitations set forth in Stardent’s standard commercial agreement for this software.
Unpublished—rights reserved under the copyright laws of the United States.

Stardent™, Doré™, and Titan™ are trademarks of Stardent Computer Inc. UNIX® is a registered trademark of
AT&T.

(

CONTENTS

Preface

1 Overview
System Interface Hardware 1-1
Monitor 1-1
Keyboard 1-2
Mouse and Mouse Pad 1-3
Junction Box 1-3
Operating System 1-3
Kernel 1-4
File System 1-4
Shell 1-5
Commands 1-6
How to Execute Commands 1-6
How Commands Are Executed 1-8
Typing Conventions 1-9
Correcting Typing Errors 1-9
Using Special Characters as Literal Characters 1-10
Typing Speed 1-10
Logging In 1-11
Password 1-11

X Window System 1-13
Simple Commands 1-14
Logging Off 1-15

2 Display
Contents 2-1
Introduction 2-1
A. Session One 2-1
B. Basics 2-2
Using the Mouse 2-4

Contents Start Here iii

Opening and Closing Windows 2-6
Resizing Windows 2-7
Moving Windows 2-7
Raising, Lowering, and Circulating Windows 2-8
The System Menu 2-8
The User Menu 2-10
Modifying.the Default Window Configuration 2-11
Modifying the Default Mouse Keys 2-11

C. Resources 2-12
General Literature 2-12
D. Quick Reference 2-13
3 UNIX Essentials
Contents 3-1
Introduction 3-1
A. Session One 3-2
B-1. Basics: The File System 3-2
How the File System is Structured 3-2
Your Place in the File System 3-3
Your Home Directory 3-3
Your Current Directory 3-4
Pathnames 3-5
Full Pathnames 3-5
Relative Pathnames 3-6
Naming Directories and Files 3-9
Organizing a Directory 3-10
Creating Directories: the mkdir Command 3-10
Listing the Contents of a Directory: the Is Command 3-11
Listing All Names in a File 3-13
Listing Contents in Short Format 3-14
Changing the Current Directory 3-15
Removing Directories: the rmdir Command 3-17
Accessing and Manipulating Files 3-18
Concatenate and Print Contents of a File 3-19
Paging Through the Contents of a File 3-20
Print Partially Formatted Contents of a File 3-23
Requesting a Paper Copy of a File: the Ip Command 3-24
Making a Duplicate Copy of a File: the cp Command 3-25
Moving or Renaming a File: the mv Command 3-26
Removing a File: the rm Command 3-28
Counting Lines, Words, and Characters in a File 3-29
Protecting Your Files: the chmod Command 3-30
How to Determine Existing Permissions 3-31

A Note on Permissions and Directories 3-36

iv Start Here

Contents

Identifying Differences Between Files: diff 3-36
Searching a File for a Pattern: the grep Command 3-37
Sorting and Merging Files: the sort Command 3-38

B-2. Basics: The Shell 3-39
Shell Command Language 3-40

Pattern Matching 3-40

Special Characters 3-43
Input and Output Redirection 3-46

Redirecting Input: the < Sign 3-46

Redirecting Output to a File: the > Sign 3-47

Appending Output to an Existing File: the >> Symbol 3-47

Useful Applications of Output Redirection 3-48

Combining Input and Output Redirection 3-48

Combining Background Mode and Output Redirection = 3-49

Supplying Lines of Input to a Command 3-49

Redirecting Output to a Command: the Pipe (|) 3-50

Substituting Output for an Argument 3-51
Executing and Terminating Processes 3-52

Running Commands at a Later Time: batch and at 3-52

Obtaining the Status of Running Processes 3-54

Terminating Active Processes 3-55

Using the nohup Command 3-55
Shell Programming 3-56

Creating and Executing a Simple Shell Program 3-56

Creating a bin Directory for Executable Files 3-57

Warnings about Naming Shell Programs 3-58
Variables 3-58

Positional Parameters 3-58

Special Parameter: $ 3-59

Special Parameter: $* 3-60

Named Variables 3-61

Using the read Command 3-63

Substituting Command Output for Value of Variable 3-65

Assigning Values with Positional Parameters 3-65
Shell Programming Constructs 3-66

Comments 3-66

Return Codes 3-67

Looping With the for Loop 3-67

Looping With the while - do Loop 3-70

The Shell’s Garbage Can: /dev/null 3-71

if...the Conditional Constructs 3-72

if...then...else Conditional Constructs 3-73

The test Command for Loops 3-74

Using the Test Command With Return Codes 3-75

case..esac Conditional Constructs 3-75

Unconditional Control Statements 3-78

Contents Start Here v

Debugging Programs 3-78
The C-Shell 3-81
Using the C-Shell 3-82

The C-Shell History Feature 3-83

The C-Shell Alias Feature 3-84
Modifying Your Login Environment 3-84
Modifying Your .profile 3-85
An Example .profile 3-85
Setting Terminal Options 3-86
Using Shell Variables 3-86
Modifying Your C-Shell Environment: The .login 3-89

C. Resources : 3-90
General Literature 3-90
D. Quick Reference 3-92
4 The vi Editor
Contents 4-1
Introduction 4-1
A. Session One 4-2
B. Basics 4-2
Getting Started 4-3
Terminal Name 4-3
Creating a File ' 4-4
Creating Text: The Input Mode 4-5
Leaving Input Mode 4-6
Editing Text: the Command Mode 4-6
Basic Cursor Movement Commands 4-6
Deleting Text 4-7
Adding Text 4-8
Quitting vi 4-9
Moving the Cursor Around the Screen 4-10
Moving the Cursor to the First/Last Character of a Line 4-11
Move the Cursor to a Specific Character on a Line 4-12
Moving the Cursor Line by Line 4-12
Moving the Cursor Word by Word 4-13
Moving the Cursor Sentence by Sentence 4-14
Moving the Cursor Paragraph by Paragraph - 4-15
Moving the Cursor Within the Window 4-15
Moving the Cursor Outside the Window 4-16
Scrolling the Text 4-16
Moving to a Specified Line 4-17

Line Numbers 4-17
Searching for a Pattern of Characters: / and ? 4-18
Creating Text 4-20

vi Start Here Contents

Deleting Text 4-21
Deleting Text in Input Mode 4-21
Undoing the Last Command 4-21
Deleting Text in Command Mode 4-21

Modifying Text 4-22
Replacing Text 4-22
Substituting Text 4-23

Changing Text 4-24

Cutting And Pasting Text 4-25
Moving Text 4-25
Fixing Transposed Letters 4-26
Copying Text 4-26

Copying or Moving Text Using Registers 4-27

Other Commands 4-28
Repeating the Last Command 4-28
Joining Two Lines 4-29
Clearing and Redrawing the Window 4-29
Changing Cases 4-29

Using Line Editing Commands in vi 4-30
Temporarily Returning to the Shell 4-30
Saving Changes or Writing Text to a New File 4-31
Finding the Line Number ' 4-31
Deleting the Rest of the Buffer 4-32
Adding a File to the Buffer 4-32
Global Substitution 4-32

Quitting vi 4-33

Special Options For vi 4-34
Recovering a File Lost by an Interrupt 4-34
Editing Multiple Files 4-35
Viewing a File 4-35

C. Resources 4-35
General Literature 4-36
D. Quick Reference 4-36
5 Communication
Contents 5-1
Introduction 5-1
A. Session One 5-2
B. Basics 5-2

Sending Mail to One Person 5-2

Undeliverable Mail 5-4

Sending Mail to Several People Simultaneously 5-5

Sending Mail to Remote Systems 5-5

Managing Incoming Mail 5-7

Contents Start Here vii

Sending and Receiving Files Via the mail Command 5-11
Networking 5-12
Ethernet/Cheapernet: the rlogin Command- 5-13
Ethernet/Cheapernet: the rcp Command 5-13
Ethernet/Cheapernet: the rsh Command 5-14
RS-232 Port Communications: the ¢t Command 5-14
RS-232 Port Communications: the cu Command ‘ 5-15

C. Resources 5-18
General Literature 5-18
D. Quick Reference 5-18
6 Getting Started in Programming
Contents : 6-1
Introduction 6-1
A. Session One 6-2
B. Basics 6-2
Compiling 6-2
Command Line Options 6-3
Preprocessor Options : 6-3
Compiler Options 6-3
Loader Options 6-4
Compilation Control Statements 6-4
Compiler Directives : 6-5
The Stardent 1500/3000 Debugger 6-5
dbg Tasks 6-6
Debugging Tools . 6-7
Linker 6-8
Archive Libraries 6-8
Code Optimization 6-8

C. Resources 6-9
D. Quick Reference 6-10
Compiler Optimization 6-11
Fortran Compiler Options 6-11

C Compiler Options 6-13

C Preprocessor Options 6-14
Loader Table Options : 6-14

7 Example Sessions
A Sample Session 7-2
Sample Application 7-3
Creating The New Windows 7-3
Creating The Sample Directory 7-5

viii Start Here Contents

Editing a Program 7-5
Compiling The Program 7-6
Running The Program 7-7
Running Under Control Of The Debugger 7-7
A Sample X Program 7-10
A Inventory of Documentation
System Documentation A-1
UNIX A-1
General Literature A-1
X Window System A-2
General Literature A-2
Communications A-2
General Literature A-2
Programming A-3
General Literature A-3
Graphics A-3
Contents Start Here ix

PREFAC:

LL]

Start Here is the manual to use when you first work with the Star-
dent 1500/3000 operating system. Its purpose is to give you basic
information for its tools.

Start Here is intended for those who are not familiar with the
UNIX operating system, X Window, the vi editor, etc. We assume
that you do have prior mainframe or PC experience; this book is
not a primer for first-time computer users.

After the introductory Chapter 1: Overview, there are five
chapters, each dealing with a distinct group of tools — the X Win-
dow System, UNIX essentials, the vi editor, communications, and
getting started in programming — from four different
approaches:

* Each tool group is introduced with A. Session One, which
provides a few commands so that you can start working,.

* The next section is B. Basics, a group of more advanced com-
mands, along with brief explanations.

* C. Resources points at additional information available from
Stardent and elsewhere.

e Finally, D. Quick Reference is a list of the most often used
commands for each tool group.

After the “vertical’” description of distinct tool groups, Chapter 7:
Example Sessions, provides “horizontal” information, with true-
to-life, across-applications sequences such as starting X, creating a
file with vi, closing the file, compiling and running the program.

A matrix of the structure looks like this:

Contents

Preface

Start Here xi

Contents
(continued)

A. Session One B. Basics C.Resources D. Quick Ref

Ch. 2 Display (X) 2-A 2-B 2-C 2-D
Ch. 3 UNIX Essentials 3-A 3-B1 & 3-B2 3-C 3-D
Ch. 4 vi Editor 4-A 4-B 4-C 4-D
Ch. 5 Communications - 5-A 5B 5-C 5-D
Ch. 6 Programming N/A 6-B 6-C 6-D

Material in this guide is presented as briefly as possible so that
instead of spending time with reading, you get quick (if not-too-
dirty) solutions to initial problems you're certain to encounter
when first using any system. '

While Stardent 1500/3000 provides a great deal of functionality
and flexibility, this manual deals with a limited set of commands
only. See the Commands Reference Manual for complete informa-

tion.

Again, here is what you will find in this guide:

Chapter 1: Overview, is a description of the end-user inter-
face, and instructions on logging in.

Chapter 2: Display, is a guide to Stardent 1500/3000"s X Win-
dow System.

Chapter 3: UNIX Essentials, is a beginner’s guide to the UNIX
V.3 operating system, with emphasis on the shell command
language, pathnames, directory and file structure.

Chapter 4: The vi Editor, is a guide to the standard UNIX vi
editor, on using vi to create and edit files.

Chapter 5: Communications, is about exchanging information
with others on the network, both through electronic mail and
the transfer of files.

Chapter 6: Getting Started in Programming, provides informa-
tion so that you may begin using Stardent 1500/3000’s pro-
gramming tools.

Chapter 7: Example Sessions provides several sequences of
actual work with Stardent 1500/3000.

xii Start Here

Preface

(x

Contents
(continued)

Appendix A: Inventory of Documentation, is a roadmap to all
Ardent documentation as well as to some outside literature.

Preface Start Here xiii

OVERVIE

This chapter is an overview of Stardent 1500/3000’s end-user
interface followed by instructions on logging in. The rest of the
guide provides information about the interface.

Stardent 1500/3000’s end-user interface consists of

e System interface hardware

e UNIX operating system

e X Window system

CHAPTER ONE

The system interface hardware includes the monitor, keyboard,
mouse and mouse pad, any optional input devices you have
configured to your Stardent 1500/3000, and the junction box. The
following paragraphs describe these devices.

System Interface
Hardware

The Stardent 1500/3000 monitor has a 19” (diagonal measure)
screen that provides 1280 by 1024 pixel resolution. The monitor

has a self-contained power supply and operates from a standard
120V, 60Hz wall socket.

To configure the monitor, use the Stardent 1500/3000
Administration/Installation Guide.

Monitor

Overview

Start Here 1-1

- |
System Interface Hardware

(continued)

Keyboard

Stardent 1500/3000’s keyboard contains a full complement of
ASCII and special function keys in an industry-standard layout.
Figure 1-1 is a diagram of the keyboard. The keys correspond to

.® Letters of the English alphabet (both upper case and lower
case)

* Numerals 0 through 9

* A variety of symbols (including ! @ # $ % A & () _—+=~{}
[1\:;""<>,2/) :

* Specially defined functions (such as BREAK), also abbrevi-
ated (such as CTRL for control and ESC for escape).

1-2 Start Here

Overview

I O T S
System Interface Hardware

(continued)

Stardent 1500/3000 includes an optical mouse with a high resolu-
tion, 200 lines per inch mouse pad. Use the mouse to manipulate
the windows and icons on the screen. See the X Window System
section in this chapter and Chapter 2: Display for more informa-
tion.

Mouse and Mouse Pad

05
F1 -

~ OE 116 @1E 226 425 % 2E .36 © JE { 46) 45 - 4E . 55
) 1 2 3 4 s . 0) ° - -

=
H

28
;-

2

10

(s
MiCe

04 oc I 2Cc 35
M 4 .] n T A\ o

w E

T

C
[:NIT; p—

B-I
§ 5
3
[;}
A5

* f«*‘lﬁ
sljlm il
i
Sl

i

15| 24 20 ac 44
F4 v
08 14 1c 18 23 28 34 3B
Fe . cm. | - A] [F o J
0A 1A 21 2A 7 4A
Fo - z c v ' SHET

3 2 3
—o o
To .o

m1
El

= i

01 09 29
Fo oo F10 * ALT *

Figure 1-1. Keyboard Layout

Bﬂ

The junction box supplies connectors for the monitor, mouse, and
keyboard as well as for other optional devices, such as graphics
tablet, knob box, light pen, joy sticks, and trackballs. While the
junction box must be close to your monitor, it can be as far as 200
feet away from the system module (the cabinet that houses the
Stardent 1500/3000 processors and memory).

Junction Box

The Stardent 1500/3000 operating system is a set of programs (or
software) that controls the Stardent 1500/3000 computer, acts as
the link between you and the computer, and supplies tools to help
you do your work. It includes a full implementation of ATé&T’s
UNIX System V Release 3, as well as features from Berkeley 4.3
UNIX, high-performance enhancements, and integrated graphics
support.

The Stardent 1500/3000 operating system provides an uncompli-
cated, efficient, and flexible working environment, allowing you

to

Operating System

Overview

Start Here 1-3

Operating System
(continued)

e Communicate with Stardent 1500/3000 and receive
responses

e Perform a wide variety of tasks: running programs, editing
files, using special software capabilities such as graphics

e Execute more than one program simultaneously

The operating system has four major components:
* kernel

e file system

* shell

. commands

Kernel

The kernel controls access to Stardent 1500/3000, manages Star-
dent 1500/3000’s memory, maintains the file system, and allo-
cates Stardent 1500/3000 resources among users.

File System

The file system is a logical method of organizing, retrieving, and
managing information. The structure of the file system is
hierarchical; if you could see it, it might look like an organization
chart or an inverted tree. The file is the basic unit of the file sys-
tem and it can be any one of three types: an ordinary file, a direc-
tory, or a special file. Figure 1-2 is a representation of the file sys-
tem. The large rectangles represent directories and the small rec-
tangles represent ordinary or special files.

1-4 Start Here

Overview

(

Operating System
(continued)
/
(root)
bin dev etc lib tmp usr
I date I [cat l Iconsolel rnyoo l | mail I I news |
Figure 1-2. Hierarchical Structure of the File System
Shell

The shell is a command interpreter that allows you to communi-
cate with the operating system. The shell reads the commands
you enter and interprets them as requests to execute programs,
access files, or provide output. The shell is also a powerful pro-
gramming language, not unlike the C programming language,
providing conditional execution and control flow features.

The system features both the Bourne shell and the more contem-
porary Berkeley C-shell, which:

. Maintains a history of recently executed commands, and
includes shorthand ways of modifying or reissuing them.

* Provides a simple way to modify or redefine commands (the
alias feature).

* Allows stopping and restarting processes, and move jobs
from the background to the foreground (and vice versa).

Chapter 3 offers a description of the C-shell.

NOTE

Throughout this guide, the term
“’shell” is used to refer to the
standard UNIX (Bourne) shell.
All references to the C-shell are
explicit.

Overview

Start Here 1-5

Commands

NOTE

The notation is used
throughout this manual as an
instruction to press the carriage
return key.

Programs that can be executed by Stardent 1500/3000 without
need for translation are called executable programs or commands.
This guide describes many of the commands you will use on a
regular basis. If you need additional information on these or
other commands, refer to the Commands Reference Manual.

All of the commands in the Commands Reference Manual are avail-
able online. Use the man (short for manual page) command to
print a description of any command. For example, to print a
description of the date command, type '

man date

Your request and the system’s response looks like this on your
screen.

Stardent 1500/3000: man date

DATE (1) USER COMMANDS DATE (1)
NAME
date - display or set the date
SYNOPSIS
date [-u] [yymmddhhmm [.5]]
DESCRIPTION

date displays the current date and time when used without an
argument

Only the super-user may set the date. yyisthelasttwo

How to Execute Commands

To make your requests comprehensible to the operating system,
you must present each command in the correct command line
syntax. This syntax defines the order in which you enter the com-
ponents of a command line. Correct syntax is essential for the
shell to understand and interpret your request.

The syntax of a typical command line looks like this.

command option(s) argument(s)

1-6 Start Here

Overview

command is the name of the program you want to run.
option modifies how the command runs.
argument specifies data on which the command is to

operate (usually the name of a directory or file).

On every command line you must type at least two components:
the command name and the carriage return key (=]. A command
line may also contain either options or arguments, or both.

In command lines that include options and/or arguments, the
component words are separated by at least one blank space. If an
argument name contains a blank, enclose that name in single or
double quotation marks. For example, if the argument to your
command is sample 1, you can type it as follows: "sample 1". If
you forget the quotation marks, the shell interprets sample and 1
as two separate arguments.

Some commands allow you to specify multiple options and/or
arguments on a command line. Consider the following command
line:

wc -1-w filel file2 file3

command arguments

options

In this example, wc is the name of the command and two options,
-1 and —w, are specified. (The operating system usually allows
you to group options such as these to read —lw, if you prefer.) In
addition, three files (filel, file2, and file3) are specified as argu-
ments. Although most options can be grouped together, argu-
ments cannot.

The following examples show the proper sequence and spacing in
command line syntax:

Incorrect Correct

.|
Commands

(continued)

Overview

Start Here 1-7

Commands
(continued)

Input

wfile wc file

we-lIfile wce -1 file

we -1 w file wc —lw file or we -1 —w file
wec filelfile2 ~ we filel file2

Remember, regardless of the number of components, you must
end every command line by pressing the (=] key.

How Co‘mmands Are Executed

Figure 1-3 shows the flow of control when the operating system
executes a command.

Your)
Request ™

p_utgul

Shell

Directory Search

N

(Command
Language
Interpreter)

Program Execution

Program Retrieval

Data

\/

Text

Executable

Figure 1-3. Command Execution

To execute a command, you enter a command line when a prompt
(such as Stardent 1500/3000:) appears on your screen. The shell
considers your command as input, searches through one or more
directories to retrieve the program you specified, and conveys
your request along with the program requested to the kernel. The
kernel then follows the instructions in the program and executes
the command you requested. When the program finishes run-
ning, the shell signals that it is ready for your next command by
printing another prompt.

1-8 Start Here

Overview

(

Commands
(continued)

The operating system requires that you enter commands in lower
case letters (unless the command includes an upper case letter).
You can perform certain tasks, such as erasing letters or deleting
lines, simply by pressing one key or entering a specific combina-
tion of special characters. A list of some special character combi-
nations follows.

(backspace) Erases a character.
@ Stops input to the system or logs you off.
Temporarily stops output from printing on
the screen.
(a) Makes the output resume printing on the

screen after it has been stopped by the
command.

Kills the current command line.

Stops execution of a program or command.

Ends a line of typing and puts the cursor on
a new line.

Correcting Typing Errors

To erase a single character, use the) (backspace) key. When
you press backspace, the cursor backs up over your errors, eras-
ing them as it goes. When you erase an error with the &) key, the
line of text on the screen looks as though it was typed perfectly.

If you have started typing a command line and then change your
mind, press (@. The command is cancelled and a system
prompt appears. If you want to stop execution of a program that
is currently running, press (c). The program stops running
and the system prompt appears. Here are a couple of examples.

Stardent 1500/3000: date(cmx)
Stardent 1500/3000:

Typing Conventions

NOTE

Characters preccded by the
letters CTRE are called control
characters. To type a control
character, hold down the control
key and press the specified letter.

OQverview

Start Here 1-9

; ,
Command
(continued)

Stardent 1500/3000: wec filel (=)

Stardent 1500/3000:

Using Special Characters as Literal Characters

If you want to use a special character and assign it its literal mean-
ing you must tell the system to ignore the character’s special
meaning. The backslash (\) enables you to do this. Type a \
before any special character that you want to have treated as it
appears. By doing this you essentially tell the system to ignore
this character’s special meaning and treat it as a literal unit of text.

For example, suppose you want to add the following sentence to a
file:

Only one # appears on this sheet of music.

The shell interprets the special character # as a request to delete a
character. To prevent the operating system from using this
interpretation, enter a \ in front of the #. If you do not, the sys-
tem erases the space after the word one and prints your sentence
as follows:

Only one appears on this sheet of music.
To avoid this, type your sentence as follows:
Only one \# appears on this sheet of music.

The following are special characters understood by the shell.

P@# S NMN& ()TN | ;<>

Typing Speed

After the prompt appears on the screen, you can type as fast as
you wish, even when the operating system is busy executing a
command. Because your input and the system’s output the prin-
tout on the screen may appear garbled. While this may be incon-
venient, it does interfere with the operating system, which has
read-ahead capability: input and output are handled separately.

The system takes and stores input (your next request) while it
sends output (its response to your last request) to the screen.

1-10 Start Here

Qverview

Commands
(continued)

Before you can log in, the Stardent 1500/3000 must be installed
and registered. If this is not done yet, see the
Installation/ Administration Guide for instructions.

If your Stardent 1500/3000 is installed and if you have a login
name and password, you are ready to login. Turn on your Star-
dent 1500/3000. When the login: prompt appears, type your
login name and press (=). For example, if your login name is
starship, your login line looks like this:

login: starship

Remember to type in lower case letters. If you use upper case
from the time you log in, the operating system expects all input in
upper case and responds in upper case exclusively until the next
time you log in. The operating system accepts and runs many
commands typed in upper case, but does not allow you to edit
files while in upper case mode.

Logging In

Next, the system prompts you for your password. Type your
password and press (. For security reasons, the operating sys-
tem does not print (or echo) your password on the screen.

If both your login name and password are correct, the system
prompt appears on your screen. The entire procedure looks like
this:

login: starship (<)
password: your-password
Stardent 1500/3000:

You may see some system messages between the password line
and the system prompt. In any event, the system prompt is your
signal that Stardent 1500/3000 is ready to accept your commands.

For security reasons it is a good idea to choose your own private
password after you login for the first time. To do so, issue the
passwd command. The system prompts you first to enter your
old password, then to enter the new password of your choice, and
finally to confirm the new password by entering it again. This is

Password

Overview

Start Here 1-11

S
Logging In
(continued)

what the procedure looks like on your screen.

Stardent 1500/3000: passwd (<]

Changing password for starship

01d password: your_old_password («<2)

New password: your_new_password
Re-enter new password: your_new_password (<)
Stardent 1500/3000:

Note that there are several restrictions on passwords.

* They must have at least six characters, and only the first
eight characters count.

e There must be at least two alphabetic characters (upper or
lower case) and one numeric or special character.

e For security reasons you should not use a variation on your
login name as your password. Certain variations are in fact
illegal.

e New passwords must differ from old passwords by at least
three characters.

Here are some legal passwords:

9754Hi &whatis zz6llffpp (the last p is ignored)

If you make a typing mistake when logging in, the operating sys-
tem prints the message

login incorrect

on your screen. Then it gives you a second chance to log in by
printing another login: prompt.

login: ttarship
password: your-password
login incorrect

login:

If you have any problems logging in please see the Installation
Guide.

1-12 Start Here

Overview

When you log in, you see the screen is divided into windows or
work areas. Think of the screen as a desktop, and the windows
on the screen as sheets of paper that you can move around, stack,
file, and so on. You can run programs, edit files, and send mail
messages within each window, just as when the screen has only
one window. You can also tailor your windows and icons to suit
you. Figure 1-4 is a picture of a monitor screen with the default
windows and icons displayed.

The mouse controls the mouse pointer. If you move the mouse
around on the mouse pad right now, notice how the mouse
pointer moves around the screen. Also notice that the mouse
pointer changes shape. When the mouse pointer is not in a win-
dow, it is an X. When the mouse pointer is in a window, it
changes to an I-beam or an arrow.

Use the mouse and the mouse buttons to make temporary
changes to windows and icons. The window system'’s control files
must be altered to make permanent changes to windows and
icons. The Modifying the Default Window Configuration section in
Chapter 2 describes how to make those changes. For more infor-
mation, see the chapter on X in the Installation/Administration
Manual.

X Window System

Overview

Start Here 1-13

X Window System
(continued)

console

FM alp 101 > sh: xbitasp: not found

: Xe MdorFD drafts U makefiles phigss xi1 x3d xinput xtest

[Close] [Conpose | [Open] [Open_in tew] [Create | [Tslets]
Inbox:all -
DoDevice (<Doep in tha heart of /grgr/dore/src/su
T8¢ 01/22 dantel@l inbo <Ceinclude "do.,h" /¢ anti-aliased shaded z vector
[CREDITS: 02/43 sc§ the BSD world <<I have just compiled and installe
3 02/24 bsblsjn Copyright program updatad to Ardent froa Dana <CT

VO"‘I fon ? bota 02/26 delftddelft /bin/utsname on ca <<I have installed a command °
Based Upon: Xman f;r- X10 by l.lv"_v Shetin - Bn.tm Univ. 03/05 scy TR Lang-0786 <(Mo.: Lang-0786 Orig.: wip Priority
Written By: Chris Peterson - HIT Project Athena 03710 sc) profiler for friendly users <A profiler has been
1ght. 1909 ts Institute of T logy - 03/14 ecj@igmoma Re: problem with cc? <{oh ouch, that’s going to b

Done With Help
"'l‘nm is a manual brousing tool for the X Nindow System, build upon the
oolk:

i
!

01/04 rdwdgraphics

4
300 the file mit~copyright.h for specific copyright information. /14 delreidalit ;'llj?,s";é'pfmdn’r::”“u::: :nhudedm" u,_,": ﬁ;',s"':

CETTING STARTED: hrid < are mv f.ung 000 u-langle/ssmnd

Ndofultmsmswvlmnmll window that contains three
two of these buttone, Hnlv-:dmlt.nulf sxplanitory,
nndun!.nmull‘oge POPS UP 8 new manual page browser, you may uss
this button to open & new marual page anytime XHAN 13 rumning,

‘orvard
] Rescon] (151t 570 52 £ o]

A new manual page starts wp with this help screen, Clicking the - =
left and right buttons vhils in the text of a marual page will scroll
the text up and down one page. Clicking the middle mouse button will xmh
change to the directory listing

Athena version 2.0.2

The first directory show is the directory of user commands (section
1). Clicking left or right mouss button on the name of any of the
| [sanual pages shoun, brings wp thst particular manual page, Ihllo clicking
middle returns you to the marual page previously on the screen

SCROLLING TEXT:

The scroll bars act in exactly the same way they do in xwh and
imore, that is to ssy that clicking left or right with the pointer at
the very bottom of scrollbar will scroll the text up or down one page,
The farther uwp the scrollbar the pointer is vhen clicked the less of a

Page will be scrolled with each click. The middle button will move
thnwo‘u'mowamnumin-M. in the scrollbar,

A feat mmmmummlmdmlqmmmnnm
you to click left or right with the mouse on the actusl text of the
tmunmofvnmwznnhcuwnrdmm

page. V nay also use the following keys: "f° or <{space bard to page
down, bww

Tgetent extracts the entry For terminal name Into the bp
buFFer with the current size of the tty (usually a ulndou).
This allows pre-Sunlindows programs to run in & window of
arbitrary size. Bp should be a character buffer of size

1024 and must ?: retained through all subsequent calls to @@
tgetnum, tgetflag, L=

and tgetstr, Tgetent returns -1 if it

Figure 1-4. Windows and Icons

Simple Commands
When the prompt appears on your screen, the operating system
has recognized you as an authorized user and is waiting for you
to request a program by entering a command.

Move the mouse around on the mouse pad until the mouse
pointer appears in one of the windows. Then, try running the
date command. Type the command and press =). The operating
system accesses a program called date, executes it, and prints its
results on the screen, as shown below.

1-14 Start Here Overview

Stardent 1500/3000: date()
Wed Oct 15 09:49:44 EDT 1986
Stardent 1500/3000:

As you can see, the date command prints the date and time using
the 24-hour clock. Note that the date command accepts no
options or arguments.

Here are a couple of other commands to try.
who -q

This command gives the names of users currently logged into
your system, together with a count of users. The -q option means
that this is a "quick" or short version of the command. Notice
there are no arguments given.

echo Hello There!

This command prints all the words on the line following the com-
mand echo. "Hello" and "There!" are arguments; there are no
options.

Simple Commands
(continued)

When you have completed a session with the operating system,
type (d) or exit after the prompt. (Remember that you type
control characters such as (@ by holding down the control
key and pressing the appropriate alphabetic key. Because control
characters are nonprinting characters, they do not appear on the
screen.) After several seconds, the login: prompt appears on the
screen.

Stardent 1500/3000: =3

login:

This prompt shows that you have logged off successfully and the
system is ready for the next login.

Logging Off

Qverview

Start Here 1-15

DISPLAY

CHAPTER TWO
Contents
* A Session One: Starting up Stardent’s implementation of the
X Window System.
e B. Basics: Looking at X from the ground up.
. C. Resources: Where to find more information; note the avai-
lability of the on-line man feature for X topics.
e D. Quick Ref: A list of the most frequently used commands.
Introduction

The X+ Window System is an implementation of the standard X
Window System 11 Release 3, developed by the Massachussetts
Institute of Technology’s Project Athena and the X Consortium, a
group of companies responsible for developing and standardizing
extensions to X.

Material presented here is for those without X experience. If you
are a programmer who wants to use X in an application, check
Section B of this chapter and Appendix B at the end of the volume
for sources of information.

A. Session One
To start X:

xstart

To get help for X:

manxterm

Display Start Here 2-1

A. Session One

(continued)
To call up the WindowOps menu:
Place pointer on root window and hold down the right
mouse button.
To manipulate windows:
From the WindowOps menu, select Resize to resize a window,
MoveOpaque to move it, Raise to raise it, Lower to lower it,
Destroy to delete it, Iconify to change a window into an icon
or vice versa.
To quit X and return to the UNIX shell prompt:
xexit
B. Basics

When you enter X by typing xstart , a screen image is generated
with windows and icons. Figure 2-1 is a picture of a screen with
the default windows and icons. Think of the screen as a desktop
and the windows on the screen as sheets of paper in stacks.

You can run programs, edit files, and send mail messages within
each window, just as on an ordinary screen which has only one
window — the screen itself.

Icons represent closed windows. You can close windows into
icons and open icons into windows. You must open an icon
before you can use the window the icon represents.

Your Stardent 1500/3000 is shipped with a default window
configuration, as shown in Figure 2-1. This configuration displays
the following windows:

left_shell For interaction with the shell.
right_shell For interaction with the shell.
console For system messages such as disk space availabil-

ity, system errors, and so on.
clock Visual clock.

load_average Graph of system activity over time.

2-2 Start Here

Display

B. Basics
(continued)

You can temporarily or permanently modify the default windows.
You can

* Open and close windows.

* Resize windows.

e Move windows.

e Raise and lower windows.

Use the mouse to modify windows temporarily; alter the .Xde-
faults and .xdesktop files in your home directory to modify win-
dows permanently. See Modifying the Default Window
Configuration section in this chapter for more information on these

files. Also, the chapter on X in the System Administrator’s Manual
deals in detail with altering the default configuration.

Display Start Here 2-3

B. Basics
(continued)

Figure 2-1. Default Windows

Using the Mouse
The mouse pointer is your tool to point at objects on the screen.
Move the mouse around on the mouse pad to move the mouse
pointer on the screen.

When the mouse pointer is outside a window (such as in the
blank area of the screen called background), it appears in the shape
of an X; when the mouse pointer is moved inside a window, it
changes shape to an application-specific cursor.

Figure 2-1 shows the mouse pointer inside the right window. If
you type text or issue a command when the mouse pointer is out-
side a window, nothing happens. You must move the mouse
pointer inside a window before you can work in the window. (
)

2-4 Start Here Display

Do not confuse the mouse pointer with the cursor. The cursor is
the small rectangular character that tracks your current type-in
location within the window. (See Figure 2-1.) Moving the mouse
does not move the cursor. When the mouse pointer is outside a
window the cursor is an open rectangle; it becomes solid when
the mouse pointer is inside a window.

Each window has a title area at the top of the window that
displays the name of the window and contains a close box and a
resize box. See Figure 2-1.

* Moving the pointer into the close box and pressing any of
the three mouse buttons will iconify the window.

* Moving the pointer into the resize box and pressing any but-
ton allows you to resize the window.

e Pressing any button while the pointer is in the title area (but
not inside the close or resize boxes) allows you to move the
window:.

You can also modify windows temporarily by using the three
mouse buttons in conjunction with the key and the key
on your keyboard. Table 2-1 shows the modifications you can
make.

The table below applies to the default mouse button bindings
defined for Stardent 1500/3000. It is possible to change the
default bindings, but it is not recommended until you gain more
experience with X because changing the bindings can affect some
of the programs. See Modifying the Default Mouse Keys later in this
chapter.)

Here is how to use combinations of keys and mouse buttons:

Click MIDDLE

Hold down the key on the keyboard as you press and
release the MIDDLE mouse button.

Click LEFT

Hold down the key on the keyboard as you press and
release the LEFT mouse button.

Change LEFT
Hold down the key on the keyboard as you press and

B. Basics
(continued)

Display

Start Here 2-5

B. Basics
(continued)

Table 2-1. Default Mouse Buttons

. Mouse Button
Keyboard Key | Context | Action LEFT MIDDLE | RIGHT
Shift Window | Click Raise Circulate Lower
Alt Window | Click Raise Iconify Lower

(open or close) .

Alt Window | Change Move Resize
Alt Shift
or Window | Hold User-Menul User-Menu2 | System-Menu
(background)

hold down the LEFT mouse button and move the mouse.

Hold RIGHT

Hold down the and keys on the keyboard as you
press and hold down the RIGHT mouse button and move
the mouse. Continue to hold down the mouse button to
retain the menu on your screen.

background Hold RIGHT

Move the mouse pointer to the background area of your
screen (not in a window) and hold down the button as
you press and hold down the RIGHT mouse button. Con-
tinue to hold down the mouse button to retain the menu on
your screen.

Opening and Closing
Windows To open a window:

(1) Move the mouse pointer into the icon you want to open.
(2) Click MIDDLE.

The icon opens into a window and positions itself on the screen as
specified in your .xdesktop file.

To close a window:

(1) Move the mouse pointer into the window you want to
close.

) Click MIDDLE.

2-6 Start Here Display

The window closes and is displayed as an icon.

Windows remain open until you close them; icons remain closed
until you open them. When you log out and log back in, the win-
dows appear as configured in the .xdesktop file.

B. Basics
(continued)

To resize a window:

(1) Move the mouse pointer into the window you want to
resize.

(2 Change MIDDLE. A grid and a shaded size indicator
appear in the window. The size indicator adjusts as you
move the mouse up, down, left, right, or diagonally. The
size indicator shows the size of the resized window. For
terminal emulator (xterm) windows, it shows the number
of rows and columns; for graphical windows (such as the
clock) the size is given in pixels.

The extent to which you can resize a window depends on the
location of the mouse pointer when you do

Change MIDDLE

Specifically, if the mouse pointer is near an edge of a window,
only that side will be moved. If the mouse pointer is near a
corner, both sides can be moved.

The window stays resized until you resize it again or until you
logout. When you logout and log back in, the window returns to
the size set in the .xdesktop file.

The best way to learn how to resize windows is to experiment
with the mouse pointer.

Resizing Windows

To move a window:

(1) Position the mouse pointer in the window you want to
move.

2 Change LEFT. A grid appears and moves with the win-
dow as you move the mouse up, down, left, right, or diag-
onally.

Moving Windows

Display

Start Here 2-7

B. Basics
(continued)

Raising, Lowering, and
Circulating Windows

If you open windows on top of other windows, you need to know
how to move the bottom window to the top (raise the window)
and move the top window to the bottom (lower or push the win-
dow). If you have several windows stacked on top of each other
you can also circulate the windows (move the windows up step-
by-step in the stack). To raise a window:

(1) Move the mouse pointer into the window you want to
raise.

2 Click LEFT
or
Click LEFT.
To lower a window:

(1) Move the mouse pointer into the window you want to
lower.

() Click RIGHT
or
Click RIGHT.
To circulate windows: |

(1) Move the mouse pointer into top window in the stack you
want to circulate.

@ Click MIDDLE.

The System Menu

To bring up the system menu, use = Hold RIGHT or back-
ground Hold RIGHT, is shown in Table 2-2.

Table 2-3 shows the functions represented by the menu.

2-8 Start Here

Display

Table 2-2. System Menu

RefreshScreen
Resize

Lower

Raise
Preferences
CircUp
CircDown
MoveOpaque
Iconify

Focus
Destroy
Restart

Exit X Windows

Table 2-3. System Menu Functions

Name Function
RefreshScreen Refreshes (redraws) the entire display
Resize Resize a window
Lower Lower a window
Raise Raise a window
Preferences Display the Preferences menu
CircUp Causes a window to circulate up
CircDown Causes a window to circulate down
MoveOpaque Move a window opaquely
Iconify Iconify a window (deiconify an icon)
Focus Focus the keyboard on a window
Destroy Destroy a window
Restart Reinitialize the window manager
Exit X Windows | Exit from the window system

Moving the mouse pointer to one those entries that appear with a
right arrow and sliding the pointer out of the window to the right
brings up a menu for that entry. For instance, moving the mouse
pointer to the Preferences entry and sliding the pointer out of the
window to the right will display the User Preferences menu.

The User Preferences menu makes it possible to control the win-
dow manager’s behavior. Table 2-4 gives the choices available in
the User Preferences menu.

B. Basics
(continued)

Display

Start Here 2-9

B. Basics
(continued)

Table 2-4. User Preferences Menu

Name

Function

Bell Loud
Bell Normal
Bell Off

Change the volume of the bell

Click Loud
Click Soft
Click Off

Change the key click volume

Mouse Fast
Mouse Normal
Mouse Slow

Change Mouse speed

Screensaver on
Screensaver off

Enable/Disable the screen saver

Highlight Do/Don’t Highlight the window titles when the mouse

Don’t Highlight | is in the window

Autoraise Do/Don’t Auto Raise windows when the mouse moves into it
Don’t Autoraise

Rootbox Place the resize box in the upper left corner of the RootWindow

rather than in the resized window. This prevents potentially

annoying double exposures when set.

The User Menu

The default Applications menu (shown in Table 2-1 as User-
Menul), which you bring up with Hold LEFT or back-
ground Hold LEFT, has the options shown in Table 2-5.

Make selections by moving the mouse pointer to your choice of
function and releasing the mouse button.

Table 2-5. Options for Default Applications Menu

Name Function

xterm Runs a shell

xcalc A simple programmable calculator
xclock An analog clock

xlock A screen lock facility

Xman A man page bowser

xload Displays the systems load average

2-10 Start Here

Display

B. Baslcs
(continued)

The .xdesktop and .Xdefaults files in your home directory control
the default configuration of your windows. Every time you log
in, windows display on your screen as specified in these files. If
you want to change your default window configuration per-
manently, you need to modify one or both of these files.

The .xdesktop file in your home directory specifies the initial set of
windows, their layout and appearance. It is actually a shell script
executed by the window manager when it is started up. If you
want to change the layout of your desktop you need to change
this file. The default .xdesktop file looks like this:

#!/bin/sh

xrdb -merge $HOME/.Xdefaults

xset s 360 m 4 2

xclock —analog —g 100x100+830+0&
xload —-g 200x100+940+0&

xterm —-g 80x8+0+0 -C —-n console&
xterm —-g 80x50+0+200 -n ‘hostname‘&
xterm —-g 80x50+550+200 -n ‘hostname ‘&

The Xdefaults file in your home directory is used to specify default
values for such items as fonts, colors, window sizes/layouts, cur-
sors, and so on. It contains lines of the form

program.option: value

that allow you to define values for a wide variety of application
characteristics.

The .Xdefaults file should contain the default application charac-
teristics you most often want. If you want some special value for
some application, override .Xdefaults values by specifying the spe-
cial value on a command line.

Modifying the Default
Window Configuration

The system .gqwmrc file controls the default bindings of your
mouse buttons. If you want to change default mouse button
defaults permanently, modify the .awmrc file.

Changing the mouse button bindings can adversely affect some of
the X programs. Before attempting to redefine the mouse pointer
buttons see the awm Client man pages in the Window System
Manual.

Modifying the Default
Mouse Keys

Display

Start Here 2-11

B. Basics
(continued)

C. Resources

The on-screen man help facility has information about all aspects
of X. Use the xman command that provides you with an interac-
tive tool for browsing through X man pages.

Ardent’s Window System Manual contains printouts of X user man
pages and chapters on server and stereo library extensions, as
well as on multiple buffering.

The Ardent Window System Toolkit reference manual has printouts
of man pages for Xt and Xw widgets, plus MIT documentation on
X Toolkit Athena Widgets C Language Interface.

The Ardent System Administrator’s Manual has a fairly substantial
chapter on modifying X defaults.

General Literature

Scheifler, Gettys, Newman: X Window System C Library and Proto-
col Reference. Digital Press, 1988.

Oliver Jones: Introduction to the X Window System. Prentice-Hall,
1989.

2-12 Start Here

Display

Operation Description
Enter X Window Type xstart
Open Window Move mouse pointer to icon/window;
hold down ALT key as you
Close Window press and release middle mouse button.
Resize Window Move mouse pointer to window; hold

down ALT key as you press and hold
down middle mouse button. Move
mouse and observe size indicator.

Move window

Move mouse pointer to window; hold
down ALT key as you press and hold
down left mouse button. Move mouse
and observe grid.

Raise window

Move mouse pointer to window; hold
down ALT key as you press and release
the left mouse button.

Lower window

EZirculate windows

Move mouse pointer to window; hold
down ALT key as you press and release
the right mouse button.

Move mouse pointer into top window;
hold down the shift key as you press
and release the middle mouse button.

Call up System Menu

Place pointer on root window and hold
down the right mouse button.

Delete window

Select Destroy from the System Menu.

Redraw screen

Select RefreshScreen from the System
Menu.

Restart X Window Select Restart from the System Menu.
Help Type man xterm.
Exit X Window Type xexit.

D. Quick Reference

Display

Start Here 2-13

UNIX
ESSENTIALS

CHAPTER THREE

e A Session One: Jump in and start using the operating system.

. B. Basics: Bare-bone essentials about UNIX; B-1 is about the
file system, B-2 about the shell.

. C. Resources: Where to find more information; note the avai-
lability of the on-line man feature for UNIX topics.

e D. Quick Ref: A list of the most frequently used commands.

Contents

This chapter is about the UNIX operating system, dealing
specifically with the file system and the “shell” — the command
interpreter that provides the interface between you and Stardent
1500/3000.

After Session One, you will find sections on How the File System is
Structured and Your Place in the File System, followed by the intro-
duction of commands that enable you to build your own directory
structure, access and manipulate the subdirectories and files you
organize within it, and examine the contents of other directories
in the system.

After examining basics of the file system, we’ll look at the C-shell,
an enhanced version of the UNIX command interpreter, which
can be used both as a command interface and programming
language.

The section on the shell introduces you to commands that enable
you to find files with pattern matching, run commands in the
background, schedule when commands are to be executed or run
groups of commands sequentially, redirect standard input and
output from and to files, and other commands.

Introduction

UNIX Essentials

Start Here 3-1

A. Session One

To make a new directory:
mkdir mydir
To move into the directory (change directory):
cd mydir
To move back into your home directory:
cd
To see what's in the directory:
Is -1
To print a file on the screen (concatenate):
cat you-named-it
To find out where you are (print working directory):

pwd

B-1. Basics: The File
System

To use the file system effectively, you need to know its structure,
described below. Next, you will find some basic file system com-
mands, which you can best learn by trying them as you read
about them.

How the File System is
Structured

The file system is a set of ordinary files, special files, and direc-
tories. It provides a way to organize, retrieve, and manage infor-
mation electronically. Briefly,

e An ordinary file is a collection of characters stored on a disk.
It may contain text for a report or code for a program.

e A special file represents a physical device, such as a terminal
or disk.

e A directory is a collection of files and other directories
(sometimes called subdirectories). You can use directories to
group files together on the basis of any criteria you choose.

3-2 Start Here

UNIX Essentials

‘
(!

For example, you might create a directory for each product
that your company sells or for each of your student’s
records.

The set of all the directories and files is organized into a tree-
shaped structure. Figure 3-1 shows a sample file structure with a
directory named root (/) as its source. By moving down the
branches extending from root, you can reach other major system
directories. By branching down from these, you can, in turn,
reach all the directories and files in the file system.

In this hierarchy, files and directories subordinate to a directory
have a parent-child relationship. This type of relationship is pos-
sible for many layers of files and directories. In fact, there is no
limit to the number of files and directories you may create in any
directory that you own. Neither is there a limit to the number of
layers of directories that you may create, so you have the capabil-
ity to organize files in a variety of ways.

B-1. Basics: The File
System
(continued)

Whenever you interact with the operating system, you do so from
a location in its file system structure. The operating system
automatically places you at a specific point in its file system every
time you log in. From that point you can move through the
hierarchy to work in any of your directories and files and to
access those belonging to others that you have permission to use.

The following paragraphs describe your position in the file system
structure and how this position changes as you move through the
file system.

Your Home Directory

When you successfully complete the login procedure, the operat-
ing system places you at a specific point in its file system structure
called your login or home directory. Each user assigns a name to
his or her home directory. Most users give their home directory
the same name as their login name. If you share a Stardent
1500/3000 with other users, each user has a personal home direc-
tory.

Within your home directory you can create files and additional
directories in which to group them. You can move and delete
these files and directories, and also control access to them. Your
home directory is a jumping-off point from which to view all the

Your Place in the File
System

UNIX Essentials

Start Here 3-3

B-1. Basics: The File

System
(continued)

files of the file system, all the way up to root.

/

(root)
bin dev usert etc lib tmp usr
N\ | N\
[dale I | cat ”consolel [uyoo I [mail l I news l

m draft

[\

starship mary2 jmrs

/

\

| mbox I
letters bin

/ \

Ioulline ” table I IIjames IEandersI ldisp|ay " list II tools I

Figure 3-1. Sample File System

Your Current Directory

As long as you continue to work in your home directory, it is con-
sidered the current working directory. If you move to another
directory, that directory becomes the current working directory.

The pwd command (short for print working directory) prints the
name of the directory in which you are now working. For exam-
ple, if your login name is starship and you execute the pwd com-
mand in response to the first prompt after logging in, the system
responds as follows:

Stardent 1500/3000: pwd[=]
/userl/starship
Stardent 1500/3000:

3-4 Start Here

UNIX Essentials

The system response gives you both the name of the directory in
which you are working (starship) and the location of that directory
in the file system. The name /user1/starship tells you that the root
directory (shown by the leading / in the line) contains the direc-
tory user]l which in turn contains the directory starship. (All other
slashes in the pathname other than / are used to separate the
names of directories and files and to show the position of each
directory relative to /. A directory name that shows the
directory’s location in this way is usually called a full pathname.

Remember, you can determine your position in the file system at
any time simply by issuing the pwd command. This is especially
helpful if you want to read or copy a file and the operating system
tells you the file does not exist. You may be surprised to find you
are in a wrong directory.

B-1. Basics: The File
System
(continued)

Every file and directory in the system is identified by a unique
pathname. The pathname shows the location of the file or direc-
tory, and provides directions for reaching it. Knowing how to fol-
low the directions given by a pathname is your key to moving
around the file system successfully. The first step in learning
about these directions is to learn about the two types of path-
names: full and relative.

Full Pathnames

A full pathname (sometimes called an absolute pathname) gives
directions that start in the root directory and lead you down
through a unique sequence of directories to a particular directory
or file. You can use a full pathname to reach any file or directory.

Because a full pathname always starts at the root of the file sys-
tem, its leading character is always a / (slash). The final name in a
full pathname can be either a file name or a directory name. All
other names in the path must be directories.

To understand how a full pathname is constructed and how it
directs you, consider the following example. Suppose you are
working in the starship directory, located in /userl. You issue the
pwd command and the system responds by printing the full path-
name of the current working directory: /fuserl/starship. Analyze
the elements of this pathname using the following diagram and
key.

Pathnames

UNIX Essentials

Start Here 3-5

B-1. Basics: The File
System
(continued)

/ (leading)

userl

| (subsequent)

starship

The slash that appears as the first character in
the pathname is the root of the file system.

The subdirectory one level below root in the
hierarchy to which root points or branches.

The separator between the userl directory name

and the starship directory name.

The current working directory.

Figure 3-2 is a diagram of the full pathname of the starship direc-
tory. Follow the bold lines in the figure to trace the full path to

[user1/starship.

AN AN
ldale l rcat ”consolel |lly00 I

i—lis-t—-l draft

letters

bin

[ou(line ” lableJ ljames ”sandersJ |displayJ' list " tools |

Figure 3-2. Full Path for the starship Directory

Relative Pathnames

3-6 Start Here

UNIX Essentials

(\

A relative pathname gives directions that start in the current
working directory and lead you up or down through a series of
directories to a particular file or directory. By moving down from
the current directory you can access files and directories you own.
By moving up from the current directory you pass through layers
of parent directories to the parent of all / directories. From there
you can move anywhere in the file system.

A relative pathname begins with one of the following:
e A directory or file name.

e A . (pronounced dot), which is a shorthand notation for the
current directory.

* A . (pronounced dot dot), which is a shorthand notation for
the directory immediately above the current directory in the
file system hierarchy.

The directory represented by .. (dot dot) is called the parent direc-
tory of . (the current directory).

For example, say you are in the directory starship in the sample
system and starship contains directories named draft, letters, and
bin and a file named mbox. The relative pathname to any of these
is simply its name, such as draft or mbox. Figure 3-3 traces the
relative path from starship to draft.

jmrs

mbox
letters bin

loutline ” table] Ijames ”sanders1 ldisplay IL list]I tools—l

Figure 3-3. Relative Path for the draft Directory

The draft directory belonging to starship contains the files outline
and table. The relative pathname from starship to the file outline is

B-1. Basics: The File
System
(continued)

UNIX Essentials

Start Here 3-7

-B-1. Basics: The File
System
(continued)

draft/outline. Figure 3-4 traces this relative path. Notice that the
slash in this pathname separates the directory named draft from
the file named outline. Here, the slash is a delimiter showing that
outline is subordinate to draft; that is, outline is a child of its parent,

draft.

3 rtable | Fjames Ifsandersl [display Il list II tools l

Figure 3-4. Relative Path from starship to outline

So far, the discussion of relative path names has covered how to
specify names of files and directories that belong to, or are chil-
dren of, the current directory. You now know how to move down
the system hierarchy level by level until you reach your destina-
tion. You can also, however, ascend the levels in the system struc-
ture or ascend and subsequently descend into other files and
directories.

To ascend to the parent of the current directory use the .. notation.
This means that if you are in the directory named draft in the sam-
ple file system, .. is the pathname to starship, and is the path-
name to starship’s parent directory, userl.

From draft you can also trace a path to the file sanders by using the
pathname ../letters/sanders. The .. brings you up to starship. Then
the names letters and sanders take you down through the letters
directory to the sanders file.

Keep in mind that you can always use a full pathname in place of
a relative one. Some examples of full and relative pathnames are:

/ Full pathname of the root directory.

3-8 Start Here

UNIX Essentials

Jbin

Full pathname of the bin directory (contains most
executable programs and utilities)

[user1[starship/bin/tools

Full pathname of the tools directory belonging to the
bin directory that belongs to the starship directory
belonging to userl that belongs to root.

bin/tools Relative pathname to the file or directory tools in the

tools

directory bin.

If the current directory is / the operating system
looks for /bin/tools. If the current directory is starship
the system looks for the full path
[user1/starship/bin/tools.

Relative pathname of a file or directory tools in the
current directory.

B-1. Basics: The File
System
(continued)

You can give directories and files any names you want as long as
the name conforms to the following rules:

The name of a directory (or file) can be from one to fourteen
characters long.

All characters other than / are legal.

It is best to avoid using a space, tab, backspace, and the fol-
lowing:

?@#$NMN& ()TN I ;<>

If you use a blank or tab in a directory or file name, you
must enclose the name in quotation marks on the command
line.

Do not use a +, — or . as the first character in a file name.
They have special meanings.

Upper case and lower case characters are distinct to the
operating system. For example, the system considers a direc-
tory (or file) named draft to be different from one named
DRAFT.

Naming Directories and
Files

UNIX Essentials

Start Here 3-9

B-1. Basics: The File
System
(continued)

The following are examples of legal directory or file names:

memo MEMO section2 ref:list
file.d chap3+4 item1-10 Outline

Organizing a Directory

This section introduces four commands that allow you to organize
and use a directory structure: mkdir, Is, cd, and rmdir.

mkdir Makes new directories and subdirectories.

Is Lists the names of all the subdirectories and files in a
directory.

cd Changes your location in the file system from one

directory to another.
rmdir Removes an empty directory.

These commands can be used with either full or relative path-
names. Two of the commands, Is and c¢d, can also be used
without a pathname. Each command is described more fully in
the four sections that follow.

Creating Directories: the mkdir Command

It is a good idea to create subdirectories in your home directory
according to a logical and meaningful scheme that facilitates the
retrieval of information from your files. If you put all files per-
taining to one subject together in a directory, you know where to
find them later.

To create a directory, use the mkdir (make directory) command,
followed by the name you are giving the new directory. For
example, in the sample file system, the owner of the draft sub-
directory created draft by issuing the following command from
the home directory (/user1/starship):

Stardent 1500/3000: mkdir draft(=)
Stardent 1500/3000:

The second prompt shows that the command has succeeded; the
subdirectory draft has been created.

3-10 Start Here

UNIX Essentials

(

The mkdir command allows you to create several directories at
once. For instance, the following command line creates the direc-
tories draft, letters, and bin.

Stardent 1500/3000: mkdir draftletters bin
Stardent 1500/3000:

You can also move to a subdirectory you created and build addi-
tional subdirectories within it. You can name subdirectories and
files anything you want as long as you follow the guidelines listed
earlier in this chapter under Naming Directories and Files.

Listing the Contents of a Directory: thels Command

All directories in the file system maintain information about the
files and directories they contain, such as name, size, and the date
last modified. You can obtain this information about the contents
of your current directory and other system directories by execut-
ing the 1s (short for list) command.

The 1s command lists the names of all files and subdirectories in a
specified directory. If you do not specify a directory Is lists the
names of files and directories in the current directory. To under-
stand how the 1s command works consider the sample file system
shown in Figure 3-1.

Say you are logged in and run the pwd command. The system
responds with the pathname /userl/starship. To display the
names of files and directories in this current directory you then

type
Is ,

After this sequence your screen reads:

Stardent 1500/3000: pwd ()]
/userl/starship

Stardent 1500/3000: Is(=)
Memos

bin

draft

letters

list_1

list_two

mbox

Stardent 1500/3000:

B-1. Basics: The File
System
(continued)

UNIX Essentials

Start Here 3-11

B-1. Basics: The File
System
(continued)

As you can see, the system responds by listing the names of files
and directories in the current directory starship. Files are listed in
ASCII order, with numbers and upper case letters printed before
lower case.

To print the names of files and subdirectories in another directory
without moving from the current directory, you must specify the
name of that directory as follows:

Is pathname

The directory name can be either the full or relative pathname of
the desired directory (and use the ..(dot dot) notation if you wish).
To list the contents of draft while you are working in starship, type

Stardent 1500/3000: Is draft(<)
outline

table

Stardent 1500/3000:

Here, draft is a relative pathname from a parent (starship) to a child

(draft) directory. (

You can also use a relative pathname to print the contents of a
parent directory when you are located in a child directory. For
example, the following command line uses the .. (dot dot) nota-
tion to specify the relative pathname from starship to userl:

Stardent 1500/3000: Is..[«<Z)
jmrs .

mary?2

starship

Stardent 1500/3000:

You can get the same results by using the full pathname from / to
userl. If you type
Is /userl
the system responds by printing the same list.
Similarly, you can list the contents of any directory for which you

have access by executing the 1Is command with a full or relative
pathname.

(

3-12 Start Here UNIX Essentials

The Is command is useful for long lists of files when you want to
find out whether one of them exists in the current directory. For
example, if you are in the directory draft and want to determine if
the files named outline and notes are there, use the Is command as
follows:

Stardent 1500/3000: Is outline notes (=]
outline

notes not found

Stardent 1500/3000:

The system acknowledges the existence of outline by printing its
name and says that notes is not found.

The Is command does not print the contents of a file. If you want
to see what a file contains use the cat, pg, or pr commands
described in Accessing and Manipulating Files, later in this chapter.

The Is command also accepts various options. Three of these, the
—a, -1, and —F options, give additional information not included in
the basic Is command, while the —C option yields a columnar file
list. (See How to Execute Commands in Chapter 1 for a general dis-
cussion about using options in command lines. For additional
options see the listing 1s(1) in the Commands Reference Manual.)

Listing All Names in a File: the —a Option

Some important file names in your home directory, such as
.profile (pronounced dot-profile), begin with a dot. When a file
name begins with a dot it is not included in the list of files
reported by the Is command. If you want the Is to include these
files use the —-a option on the command line.

For example, to list all the files in your current directory (starship),
including those that begin with a . (dot), type

Stardent 1500/3000: ls-al)

.profile
Memos
bin
draft
letters
list_1
list_two

B-1. Basics: The File
System
(continued)

UNIX Essentials

Start Here 3-13

B-1. Basics: The File
System
(continued)

NOTE

In C-shell the Is automatically
lists files in columns. The -C
option is unnecessary.

Stardent
total 30

drwxr-xr-x
drwxr-xr-x

mbox
Stardent 1500/3000:

Listing Contents in Short Format: the —C and —F Options

The —C and -F options for the Is command are particularly useful
when listing the contents of large directories. The ~C option lists a
directory’s subdirectories and files in columns, while the -F
option identifies executable files (with an *) and directories (with
a /). For example, to list the files in your working directory star-
ship use the command line shown here:

Stardent 1500/3000: ls-CF[—)
bin/ letters/ mbox
draft/ listx*

Stardent 1500/3000:

Listing Contents in Long Format: the —I Option. The most
informative Is option is -1, which displays the contents of a direc-
tory in long format, giving mode, number of links, owner, group,
size in bytes, and time of last modification for each file. For exam-
ple, say you run the Is -1 command while in the starship directory.

1500/3000: 1s -1(«=)

starship project 96 Oct 27 08:16 bin
starship project 64 Nov 14:19 draft

DD W
[y

drwxr-xr-x starship project 80 Nov 8 08:41 letters
—rwWx——-———- starship project 12301 Nov 2 10:15 1list
—rw——————-= 1 starship project 40 Oct 27 10:00 mbox
Stardent 1500/3000:
The first line of output
total 30

NOTE

A byte is the smallest addressable
unit of memory (8 bits). Each
character is stored in a byte, so
the number of bytes in an Is
listing equals the number of
characters in the file or directory.

shows the amount of disk space used, measured in blocks. (A
block is 512 bytes, or one-half a kilobyte.) Each of the other lines
contains a report on a directory or file in starship. The first charac-
ter in each line (d, -, b, or ¢) tells you the type of file.

d Indicates a directory.

- Indicates an ordinary disk file.

3-14 Start Here

UNIX Essentials

b Indicates a block special file.
¢ Indicates a character special file.

Using this key to interpret the previous screen, you can see that
the starship directory contains three directories and two ordinary
disk files.

The next several characters, which are either letters or hyphens,
identify who has permission to read and use the file or directory.
Permissions are discussed in the description of the chmod com-
mand under Accessing and Manipulating Files later in this chapter.

The following number is the link count. For a file this equals the
number of parent and grandparent directories the file has, and for
a directory it includes in addition the number of directories
immediately under it in the file structure.

Next, the login name of the file’'s owner appears (here it is star-
ship), followed by the group name of the owner of the file or direc-
tory (project).

The following number shows the length of the file or directory
entry measured in bytes (see the note above). (For a directory this
includes just the byte count for the directory itself, not for its files
or sub-directories.) The month, day, and time that the file was last
modified is given next. Finally, the last column shows the name
of the directory or file.

Figure 3-5 identifies each column in the rows of output from the Is
-1 command.

Changing the Current Directory: the cd Command

When you first log in you are placed in your home directory. It is,
for the time being, also the current working directory. By using
the cd (short for change directory) command, you can work in
other directories as well. To use this command enter cd followed
by a pathname to the directory to which you want to move.

cd pathname_of newdirectory
Any valid pathname (full or relative) can be used as an argument

to the ¢d command. If you do not specify a pathname the com-
mand moves you to your home directory. Once you have moved

B-1. Basics: The File
System
(continued)

UNIX Essentials

Start Here 3-15

B-1. Basics: The File
System
(continued)

File
Type

Number of Owner's
blocks used name
Number Group
of links name
total 30

rwxr—-xr—-x 3
rWXr—Xr—-x 2
FWXr—xXr—-x 2

Permissions

starship project
starship project
starship project
starship project
starship project

Figure 3-5. Output of the Is -1 command

Size (in
bytes)
Name

96 Oct 27 (08:16 bin

64 Nov 1 14:19 draft

80 Nov 8 08:41 letters
12301 Nov 2 10:15 1list

40 Oct 27 10:00 mbox

Time/date last
modified

to a new directory it becomes the current working directory.

For example, to move from the starship directory to its child direc-
tory draft (in the sample file system), type

cd draft

(Here draft is the relative pathname to the desired directory.)
When you get a prompt, verify your new location by typing

pwd

Your terminal screen looks like this:

Stardent 1500/3000:
Stardent 1500/3000:

cd draft
pwd(=)

/userl/starship/draft

Stardent 1500/3000:

Now that you are in the draft directory you can create subdirec-
tories in it by using the mkdir command, and new files by using
the vi or ed editors, described later in this manual.

3-16 Start Here

UNIX Essentials

(

You can also use full pathnames with the ¢d command. For exam-
ple, to move to the letters directory from the draft directory,
specify [user]/starship/letters on the command line, as follows:

cd /userl/starship/letters

Also, because letters and draft are both children of starship, use the
relative pathname ../letters with the cd command. The .. nota-
tion moves you to the directory starship, and the rest of the path-
name moves you to letters.

If you no longer need a directory, you can remove it with the
rmdir (short for remove a directory) command:

rmdir directoryname(s)

You can specify more than one directory name on the command
line.

For the rmdir command to work the directory must be empty,
you must be the owner, and you must be in the parent directory
of the directory you wish to remove.

If you try to remove a directory that still contains subdirectories
and files (that is, is not empty), the rmdir command prints the
message

directoryname not empty

You must remove all subdirectories and files; only then does the
command succeed.

For example, say you have a directory called memos that contains
one subdirectory, tech, and two files, june.30 and july.31. If you try
to remove the directory memos (by issuing the rmdir command
from your home directory), the system responds as follows:

Stardent 1500/3000: rmdir memos
rmdir: memos not empty
Stardent 1500/3000:

To remove the directory memos you must first remove its contents:
the subdirectory fech, and the files june.30 and july.31. If the tech
subdirectory is empty you can remove it by executing the rmdir

B-1. Basics: The File
System
(continued)

Removing Directories:
the rmdir Command

UNIX Essentials

Start Here 3-17

B-1. Basics: The File
System
(continued)

command. For instructions on removing files see Accessing and
Manipulating Files later in this chapter. '

Once you have removed the contents of the memos directory,
memos itself can be removed. First, however, you must move to
its parent directory (your home directory). The rmdir command
does not work if you are still in the directory you want to remove.
From your home directory type

rmdir memos

If memos is empty the system removes it and returns a prompt.

Accessing and
Manipulating Files

This section introduces several commands that access and mani-
pulate files.

cat Prints the contents of a file on your screen.

P8 Prints the contents of a file on your screen in chunks or
pages.

pr Prints a partially formatted version of a file on your
screen.

Ip Requests a paper copy of a file from a printer.

cp Makes a duplicate copy of an existing file.

mv Moves or renames a file.

rm Removes a file.

wce

chmod Changes permission modes for a file (or a directory).

diff Displays differences between two files and changes
needed to make them the same.

grep Searches a file for a specific pattern.

sort Allows you to sort and merge contents of files.

3-18 Start Here

UNIX Essentials

Concatenate and Print Contents of a File: the cat Command

The cat (short for concatenate) command outputs the contents of
file(s). This output is displayed on the screen unless you tell cat to
direct it to another file or a new command. For example, say you
are located in the directory letters (in the sample file system) and
you want to display the contents of the file johnson. Type the com-
mand line shown on the example and you receive the following
output:

Stardent 1500/3000: catjohnson ()
March 5, 1986

Mr. Ron Johnson
Layton Printing
52 Hudson Street
New York, N.Y.

Dear Mr. Johnson:

I enjoyed speaking with you this morning
about your company’s plans to automate
your business.

Enclosed please find

the material you requested

about AB&C’s line of computers

and office automation software.

If I can be of further assistance to you,
please don’t hesitate to call.

Yours truly,

John Howe
Stardent 1500/3000:

To display the contents of two or more files simply type the
names of the files you want to see on the command line:

Stardent 1500/3000: catjohnson sanders (<]
March 5, 1986

Mr. Ron Johnson

Layton Printing

52 Hudson Street

New York, N.Y.

Dear Mr. Johnson:

I enjoyed speaking with you this morning

B-1. Basics: The File
System
(continued)

UNIX Essentials

Start Here 3-19

B-1. Basics: The File
System
(continued)

Yours truly,
John Howe
March 5, 1986

Mrs. D.L. Sanders
Sanders Research, Inc.
43 Nassau Street
Princeton, N.J.

Dear Mrs. Sanders:

My colleagues and I have been following, with great interest,

Sincerely,

John Howe
Stardent 1500/3000:

Paging Through the Contents of a File: the pg Command (

The command pg (page) allows you to examine the contents of a
file or files page by page on a terminal. The pg command
displays the text of a file in pages (or chunks) followed by a colon
prompt(:), a signal that the program is waiting for your instruc-
tions. Available instructions include requests for the command to
continue displaying the file’s contents a page at a time, and a
request that the command search through the file(s) to locate a
specific character pattern. A list of instructions accepted by the pg
command follows.

h Help; display list of available instructions.
qorQ Quit pg perusal mode.

=) Display next page of text.

1 Display next line of text.

d Display additional half page of text.

) (d) Display additional half page of text. ’

3-20 Start Here

UNIX Essentials

Redisplay current page of text.

Redisplay current page of text.

f Skip next page of text and display following
page.

n Begin displaying next file you specified on com-
mand line.

p Display previous file specified on command line.

$ Display last page of text in file currently
displayed.

Ipattern Search forward in file for specified character pat-
tern.

?pattern Search backward in file for specified character
pattern.

You can type most instructions with a preceeding number. For
example:

+1=) Displays the next page of text..
-1 Displays the previous page of text.
1 Displays the first page of text.

See the Commands Reference Manual for a detailed explanation of
all available pg instructions.

The pg command is useful when you want to read a long file or a
series of files because the program pauses after displaying each
page, allowing time to examine it. The size of the page displayed
depends on the terminal. For example, on a terminal capable of
displaying twenty-four lines, one page is defined as twenty-three

lines plus a line containing a colon. If the file is shorter there are

correspondingly fewer lines in the page.

To peruse the contents of a file with pg, use the following com-
mand line:

pg filename(s)

The first page of the file appears on the screen. If the file has more |

lines in it than can be displayed on one page, a colon appears at

B-1..Basics: The File
System
(continued)

UNIX Essentials

Start Here 3-21

B-1. Basics: The File
System
(continued)

the bottom of the screen. This is a reminder to you that there is
more of the file to be seen. When you are ready to read more,
press and pg prints the next page of the file. Here is an exam-
ple.

Stardent 1500/3000: pgoutline (]

After you analyze the subject for your
report, you must consider organizing and
arranging the material you want to use in
writing it.

An outline is an effective method of
organizing the material. The outline

is a type of blueprint or skeleton,

a framework for you the builder-writer
of the report; in a sense it is a recipe

:

When you press (=), pg resumes printing the file’s contents on
the screen.

that contains the names of the
ingredients and the order in which
to use them.

Your outline need not be elaborate or
overly detailed; it is simply a guide you
may consult as you write, to be varied,

if need be, when additional important
ideas are suggested in the actual writing.
(EOF') :

Notice the line at the bottom of the screen containing the string
(EOF):. This string indicates you have reached the end of the file.
The colon prompt is a cue for you to issue another instruction. If
you are finished with the pg command, type and the system
prompt will appear. If you are not at EOF use Q or q to receive
the system prompt.

The pg command can also be used along with another command
and a pipe symbol () to allow you to view output of a program
page by page. See Redirecting Output to a Command.

3-22 Start Here

UNIX Essentials

B-1. Basics: The File
System
(continued)

The pr command is used to prepare files for printing. It supplies
titles and headings, paginates, and prints a file, in any of various
page lengths and widths, on your screen.

If you choose not to specify any of the available options, the pr
command produces output in a single column that contains sixty-
six lines per page and is preceded by a short heading. The five-
line heading includes the date and time, file name, and page
number.

The pr command can be used together with the Ip command to
provide a partially formatted paper copy of text. (See Requesting a
Paper Copy of a File later in this chapter.) You can also use the pr
command to format and print the contents of a file on your termi-
nal:

Stardent 1500/3000: prjohnson (<)
Mar 5 15:43 1986 johnson Page 1

March 5, 1986

Mr. Ron Johnson
Layton Printing
New York, N.Y.

Dear Mr. Johnson:

I enjoyed speaking with you this morning
about your company’s plans to automate
your business.

Enclosed please find

the material you requested

about AB&C’s line of computers.

If I can be of further assistance to you,
please don’t hesitate to call.

Yours truly,

John Howe

Stardent 1500/3000:

Print Partially Formatted
Contents of a File: the
pr Command

UNIX Essentials

Start Here 3-23

B-1. Basics: The File
System
(continued)

The dots after the last line in the file represent the remaining lines
(all blank in this case) that pr formatted into the output.

When the pr command is issued, the entire sixty-six lines print
rapidly on your screen with no pause. In such cases, type
to interrupt the flow of printing on your screen. When you are
ready to continue, type (@ to resume printing. (Alterna-
tively, you may pipe the output of pr to the pg command. See
Redirecting Output to a command.)

See the pr(1) page in the Command Reference Manual for more on
the pr command.
Requesting a Paper Copy of a File: thelp Command

The lp (short for line printer) command allows you to request a
paper copy of a file from a printer.

To execute lp, follow this format:
lp option(s) filename

In the following example a copy of the file johnson is requested.

Stardent 1500/3000: lp johnson(x=)
request id is laser-6885 (1 file)
Stardent 1500/3000:

The system responds with the name (or type) of the printer on
which the file will be printed, and an identification (ID) number
for your request. Here, the job is to be printed on a laser printer,
has a request ID number of 6885, and includes one file.

3-24 Start Here

UNIX Essentials

To cancel a request to a printer type the cancel command and
specify the request ID number. For example, to cancel your
request for a printing of the file letters (request ID laser-6885)

type:
cancel laser-6885

To check the status of a line printer job in progress or to get its
request ID number issue the Ipstat command. This command also
gives a complete listing of every printer available on your system.
See the Ip(1) page and the Ipstat(1) page in the Commands Refer-
ence Manual for a list of all available options.

The cp (copy) command allows you to make a copy of a file while
leaving the original intact. It is useful, for instance, if you want to
modify a program you are writing while leaving the original pro-
gram unchanged. The cp command also allows you to copy one
or more files from one directory into another while leaving the
original file or files in place.

The format of the cp command is as follows:
cp filel file2

The command requests that a copy of filel be made and placed in
file2. The system returns a prompt when the copy is made.

In the following example the file outline is copied to a new file,
new.outline. The Is command is then used to verify the existence
of the new file.

Stardent 1500/3000: cp outline new.outline(—)
Stardent 1500/3000: Is(<)

new.outline

outline

table

Stardent 1500/3000:

B-1. Basics: The File
System
(continued)

Making a Duplicate Copy
of a File: the cp
Command

UNIX Essentials

Start Here 3-25

B-1. Basics: The File
System
(continued)

CAUTION

Because of the danger of file
overwriting, you should use the
1s command to confirm the
existence or non-existence of a
file before issuing the cp
command. (In the C-shell you
can set the variable noclobber,
which prevents accidental
overwriting.)

Only one file in a directory can have a given name. In this case,
because there was no file called new.outline when the ¢p command
was issued, the system created a new file with that name. If a file
called new.outline had already existed, its contents would have
been replaced by the contents of outline.

If you had tried to copy outline to another file name outline in the
same directory, it would not have worked. You would have got-
ten a message such as the one below.

Stardent 1500/3000: cp outline outline(s=)
cp: outline and outline are identical
Stardent 1500/3000: ls(<)

outline

table

Stardent 1500/3000:

You can have two files with the same name as long as they are in
different directories. For example, to copy the file outline from the
draft directory to another file named outline in the letters directory,
type the full pathname

“cp outline /userl/starship/letters/outline
or the relative pathname

cp outline ../letters/outline

or

cp outline ../letters

Note that (as in the last version of the command) it is sufficient to
write the relative path to the directory letters without specifying
the file name. The system automatically names the destination file
outline unless another name is given.

Moving or Renaming a
File: the mv Command

The mv (move) command allows you to rename a file in the same
directory or to move a file from one directory to another. If you
move a file to a different directory the file can be renamed or it
can retain its original name.

3-26 Start Here

UNIX Essentials

To rename a file within one directory, follow this format:
mv filel file2

The mv command changes a file’s name from filel to file2 and
deletes filel. Remember that the names filel and file2 can be any
valid names, including pathnames.

For example, if you are in the directory draft in the sample file sys-
tem and you would like to change the name of file table to
new.table, simply type

mv table new.table

If the command executes successfully you receive a prompt. To
verify that the file new.table exists use the 1Is command to list the
contents of the directory. The screen shows your input and the
system’s output as follows:

Stardent 1500/3000: mv table new.table (<)
Stardent 1500/3000: Is(=)

new.table

outline

Stardent 1500/3000:

You can also move a file from one directory to another keeping
the same name or changing it to a different one. To move the file
without changing its name, use the following command line:

mv file(s) directory

The file and directory names can be any valid names, including
pathnames.

For example, if you want to move the file table from the current
directory named draft (whose full pathname is /user1/starship/draft)
to a file with the same name in the directory letters (whose relative
pathname from draft is ..[letters and whose full pathname is
[user1/starship/letters), use any of several command lines:

mv table /userl/starship/letters

mv table /userl/starship/letters/table

B-1. Basics: The File
System
(continued)

CAUTION

As with the ¢p command, the mv
command will overwrite existing
files (unless the C-shell variable
noclobber has been set). Check
filenames with the Is command
before moving or renaming a file.

UNIX Essentials

Start Here 3-27

B-1. Basics: The File
System
(continued)

mv table ../letters

mv table ../letters/table
Now suppose you want to.change the name of file table to table2
while moving it to the directory letters. Use either of these com-
mand lines:

mv table /userl/starship/letters/table2

mv table ../letters/table2

You can verify that the command worked by using the Is com-

mand to list the contents of the directory.

Removing a File: the rm Command

When you no longer need a file, you can remove it from your
directory by executing the rm (short for remove) command:

rm file(s)

You can remove more than one file at a time by including the
filenames as arguments on the command line:

rm filel file2 file3

The system does not save a copy of a file it removes; once you
have executed this command, your file is removed permanently.

After you have issued the rm command, you can verify its suc-
cessful execution by running the Is command. Since Is lists the
files in your directory, you'll immediately be able to see whether
or not rm has executed successfully.

For example, say you have a directory that contains two files, out-
line and table. You can remove both files by issuing the rm com-
mand once. If rm is executed successfully, your directory will be
empty. Verify this by running the Is command.

Stardent 1500/3000: rm outline table(-)
Stardent 1500/3000: ls(<)
Stardent 1500/3000:

3-28 Start Here

UNIX Essentials

The prompt shows that outline and table were removed.

To remove multiple files in a directory use the special pattern
matching characters *, ?, or [] on the command line. This is a
powerful capability; please refer to Pattern Matching before
attempting to use it.

Counting Lines, Words, and Characters in a File: the wc
Command

The wc (word count) command reports the number of lines,
words, and characters there are in the file(s) named on the com-
mand line. If you name more than one file the wc program counts
the number of lines, words, and characters in each specified file
and then totals the counts. If you wish, you can direct the wc
command to give you only a line, a word, or a character count by
using the —1, —w, or —c options, respectively.

The general format for the we command is as follows:
we option(s) file(s)

Specifically, if you issue the command
wc filel =)

The system responds with a line in the following format:

I w c filel

I Represents the number of lines in filel.
w Represents the number of words in filel.
c Represents the number of characters in filel.

For example, to count the lines, words, and characters in the file
johnson (located in the current directory, letters) type the following
command line:

Stardent 1500/3000: wcjohnson (<)
24 66 406 johnson
Stardent 1500/3000:

B-1. Basics: The File
System
(continued)

UNIX Essentials

Start Here 3-29

B-1. Basics: The File
System
(continued)

The system response means that the file johnson has 24 lines, 66
words, and 406 characters.

You can use the we¢ command to count the lines, words, and char-
acters in more than one file. The following example shows the
counts of lines, words, and characters in the files johnson and
sanders in the current directory.

Stardent 1500/3000: wcjohnson sanders (=)

24 66 406 johnson
28 92 559 sanders
52 158 965 total

Stardent 1500/3000:

The first column gives the number of lines (28 for sanders), the
second gives words (92 for sanders), and the third column gives
characters (559 for sanders). As you can see, the last line totals the
columns in the first two lines.

To get only a line, a word, or a character count, use the -1, -w, or
—c options, respectively.

For example, if you use the —1 option, the system reports only the
number of lines in sanders.

Stardent 1500/3000: wc-1sanders(<)
28 sanders
Stardent 1500/3000:

Protecting Your Files: the chmod Command

The chmod (change mode) command allows you to decide who
can see and use your files and directories and who cannot. The
following three symbols are used for assigning permissions.

r Allows system users to read a file or to copy its contents.

w Allows system users to write changes into a file (or a copy
of it).

X Allows system users to run an executable file or search a
directory.

To specify the users to whom you are granting (or denying) these
types of permission, use the following symbols.

3-30 Start Here

UNIX Essentials

u You, the owner of the files and directories (u is short for
user).
g Members of the group to which you belong. (The group

could consist of team members working on a project,
members of a department, or a group arbitrarily desig-
nated by the person who registered you as a user. Please
see the System Administrator’s Guide for details about

defining groups.)

o All other system users.

Your system has been set up so that when you create a file or a

directory the system automatically grants or denies permission to

you, members of your group, and other system users. As the
owner of the file or directory you always have the option of

changing these permissions. For example, you may want to keep

certain files private and reserve them for your exclusive use. You
may want to grant permission to read and write changes into a

file to members of your group and all other system users as well.

Or you may share a program with members of your group by

granting them permission to execute it.

How to Determine Existing Permissions

You can determine what permissions are currently in effect on a
file or a directory by using the Is command with the -1 option.

Stardent 1500/3000: lIs-1(=]

total 35

—IWXI—Xr—— 1 starship project
—rw—r—-r—- 1 starship project
drwx——x--x 2 starship project

Stardent 1500/3000:

Permissions for the display and Ilist files and the tools directory are

9346
6428
32

shown on the left of the screen under the line

total 35
and appear in this format:

-rwxr-xr-- (for the display file)
-rw-r—--r-- (for the list file))

drwx--x--x (for the tools directory)

Nov 1 08:06
Dec 2 10:24
Nov 8 15:32

display
list
tools

B-1. Basics: The File
System
(continued)

UNIX Essentials

Start Here 3-31

B-1. Basics: The File
System
(continued)

After the initial character that describes the file type (for example
a - (dash) symbolizes a regular file and a d a directory), the
other nine permission-setting characters consist of three sets of
three characters. The first set refers to permissions for the owner,
the second set to permissions for group members, and the last set
to permissions for all other system users. Within each set of char-
acters, the r, w, and x show the permissions currently granted
to each category. If a dash appears instead of an r, w, or x, per-
mission to read, write, or execute is denied.

Here is the breakdown for the file named display.

Permissions for the File display
- rwx r-x r--
regular user group others
file can can can
read, read, read
write, execute
execute

As you can see, the owner has r, w, and x permissions,
members of the group have r and x permissions, and others
have r permission only.

There are two exceptions to this notation system. Occasionally
the letter s or the letter 1 may appear in the permissions line
instead of an r, wor x. The letter s (short for set user ID or set
group ID) represents a special type of permission to execute a file.
It appears where you normally see an x (or -) for the user or
group (the first and second sets of permissions). From a user’s
point of view it is equivalent to an x in the same position; it
implies that execute permission exists. It is significant only for
programmers and system administrators. (See the System
Administrator’s Guide for details about setting the user or group
ID.)

The letter 1 is the symbol for lock enabling (for special security
reasons). It does not mean that the file has been locked. It simply
means that the function of locking is enabled, or possible, for this
file. The file may or may not be locked; that cannot be determined
by the presence or absence of the letter 1.

3-32 Start Here

UNIX Essentials

B-1. Basics: The File
System
(continued)

How to Change Existing Permissions. After you have deter-
mined what permissions are in effect you can change them by exe-
cuting the chmod command in the following format:

chmod who+permission file(s)

or

chmod who-permission file(s)

The following list defines each component of this command line.

chmod

who

+ or —

permission

file

Is the name of the program.

Is one of three user groups (u, g, or o).

u = user
g = group
o = others

Is the instruction that grants (+) or denies (-) per-
mission.

Is any combination of three authorizations (r, w,

and x).
r =read
W = write

X = execute

Is the file or directory name.

The chmod command does not work if you type a space between
who, the instruction that gives (+) or denies (-) permission, and the

permission.

The following examples show a few ways to use the chmod com-
mand. As the owner of display, you can read, write, and run this
executable file. You can protect the file against being accidentally
changed by denying yourself write (w) permission. To do this,
type the command line:

chmod u-w display

After receiving the prompt use the Is —1 command to verify that
this permission has been changed, as shown in the following

sCreen.

UNIX Essentials Start Here 3-33

B-1. Basics: The File
System
(continued)

Stardent 1500/3000: chmod u-w display (<)
Stardent 1500/3000: 1s-1{=)

total 35

—r—Xr—-xr—-— 1 starship project 9346 Nov 1 08:06 display
rw—-r—-r—- 1 starship project 6428 Dec 2 10:24 1list
drwx——-x--x 2 starship project 32 Nov 8 15:32 tools

Stardent 1500/3000:

As you can see, you no longer have permission to write changes
into the file. You will not be able to change this file until you
restore write permission for yourself.

If you omit the who in the chmod command, the change is imple-
mented for all three user groups (u, g, 0). For instance:

chmod +x list
adds execute permission to the file list for all three groups.

Now consider another example. Notice that permission to write
into the file display has been denied to members of your group
and other system users. They do have read permission, however.
This means they can copy the file into their own directories and
then make changes to it. To prevent all system users from copy-
ing this file, you can deny them read permission by typing

chmod go-r display
The g and o stand for group members and all other system users,

respectively, and the —r denies them permission to read or copy
the file. Check the results with the Is —I command.

Stardent 1500/3000: $ chmod go-r display =)
Stardent 1500/3000: ls-1(=)

total 35

—rWX——X—-X 1 starship project 9346 ©Nov 1 08:06 display
—rw-r——r-- 1 starship project 6428 Dec 2 10:24 1list
drwx—-x--x 2 starship project 32 Nov 8 15:32 tools

Stardent 1500/3000:

3-34 Start Here

UNIX Essentials

An Alternative Method of Changing Permissions. The chmod
command accommodates two methods for changing permissions.
The method described above in which symbols such as r, w, and
x are used to specify permissions is called the symbolic method.

The alternative method is called the octal (or base eight) method.
Its format requires you to specify permissions using numbers
ranging from 0 to 7 (octal numbers).

With the octal method the chmod command has the following for-
mat:

chmod UGO filename

where you the user substitutes a numeric code for each of the
letters U, G and O. (U represents the code for user, G for group,
and O for other.) You compute the code by adding the following
values:

for no permission

for read permission
for write permission
for execute permission

B NS O

For example, for the file display, to grant read, write and execute
permission to yourself, read and write permission to your group,
and read permission to others, you issue the command

chmod 764 display
For the file list, to give yourself read and execute permission, your
group execute permission and others no permission, you issue the
command:

chmod 510 [ist

Here you can see the results of these commands.

Stardent 1500/3000: Is-I1 display list(—)

total 35
—YWXIW-I—— 1 starship project 9346 Nov 1 08:06 display
—r—x——XxX—-—-— 1 starship project 6428 Dec 2 10:24 1list

Stardent 1500/3000:

To learn more about the octal method see the chmod(1) page in
the Commands Reference Manual.

B-1. Basics: The File
System
(continued)

UNIX Essentials

Start Here 3-35

B-1. Basics: The File
System
(continued)

A Note on Permissions and Directories

You can use the chmod command to grant or deny permission for
directories as well as files. Simply specify a directory name
instead of a file name on the command line.

You should, however, consider the impact on other users of
changing permissions for directories. For example, say you grant
read permission for a directory to yourself (u), members of your
group (g), and other system users (0). Every user who has access
to the system is able to read the names of the files contained in
that directory by running the Is —1 command. Similarly, granting
write permission allows the designated users to create new files in
the directory and remove existing ones. Granting permission to
execute the directory allows designated users to use the cd com-
mand to move to that directory (and make it their current direc-
tory).

Identifying Differences Between Files: the diff Command

The diff command locates and reports all differences between two
files and tells you how to change the first file so that it is a dupli-
cate of the second. The basic format for the command is

diff filel file2

If filel and file2 are identical, the system returns a prompt to you.
If they are not, the diff command instructs you on how to change
the first file so it matches the second. The command flags lines in
filel (to be changed) with the < (less than) symbol and lines in file2
(the model text) with the > (greater than) symbol.

For example, say you execute the diff command to identify the
differences between the files johnson and mcdonough. The
mecdonough file contains the same letter that is in the johnson file,
with appropriate changes for a different recipient. The diff com-
mand identifies those changes as follows:

3,6¢3,6

< Mr. Ron Johnson

< Layton Printing

< 52 Hudson Street

< New York, N.Y.

> Mr. J.J. McDonough
> Ubu Press

> 37 Chico Place

3-36 Start Here

UNIX Essentials

> Springfield, N.J.
9¢c9
< Dear Mr. Johnson:

> Dear Mr. McDonough:

The first line of output from diff is
3,6c3,6

This means that if you want johnson to match mcdonough, you
must change (c) lines 3 through 6 in johnson to lines 3 through 6 in
mcdonough. The diff command then displays both sets of lines.

If you make these changes (using a text editor such as vi), the
johnson file becomes identical to the mcdonough file. Remember,
the diff command identifies differences between specified files. If
you want to make an identical copy of a file, use the cp command.
See the diff(1) page in the Commands Reference Manual for more on
the command and its options.

B-1. Basics: The File
System
(continued)

You can instruct the operating system to search through a file for
a specific word, phrase, or group of characters by executing the
grep command. (The word grep is short for globally search for a
regular expression and print. A regular expression is any pattern
of characters, such as a word, a phrase, or an equation.)

The basic format for the command line is:
grep pattern file(s)

The following example shows the lines that contain the word
automation in the file johnson.

Stardent 1500/3000: grep automation johnson (=]
and office automation software.
Stardent 1500/3000:

The output consists of all the lines in the file johnson that contain
the pattern for which you were searching (automation).

If the pattern contains multiple words or any character that con-
veys special meaning to the operating system, (suchas $, |, *, ?,
and so on), you must enclose the entire pattern in single or double

Searching a File for a
Pattern: the grep
Command

UNIX Essentials

Start Here 3-37

B-1. Basics: The File
System
(continued)

quotes. For example, if you want to locate the lines containing the
pattern office automation, type

Stardent 1500/3000: grep ‘office automation” johnson («<2)
and office automation software.
Stardent 1500/3000:

If you cannot recall which letter contained a reference to office
automation, your letter to Mr. Johnson or the one to Mrs. Sanders,
type the following command line.

Stardent 1500/3000: grep office automation” johnson sanders
johnson:and office automation software.
Stardent 1500/3000:

The output tells you that the pattern office automation is found once
in the johnson file.

In addition to the grep command, the operating system provides
variations of it called egrep and fgrep, along with several options
that enhance the searching powers of the command. See the
grep(1), egrep(1), and fgrep(1) pages in the Commands Reference
Manual for complete explanation of these commands.

Sorting and Merging
Files: the sort Command

The operating system provides an efficient tool called sort for
sorting and merging files. The format for the command line is:

sort0 option(s) file(s)

This command causes lines in the specified files to be sorted and
merged in the following order.

e Lines beginning with numbers are sorted by digit and listed
before lines beginning with letters.

e Lines beginning with upper case letters are listed before lines
beginning with lower case letters.

* Lines beginning with symbols such as *, %, or @, are sorted
on the basis of the symbol’s ASCII representation.

For example, let’s say you have two files, groupl and group2, each
containing a list of names. You want to sort each list

3-38 Start Here

UNIX Essentials

B-1. Basics: The File
System
(continued)

alphabetically and then interleave the two lists into one. First,
display the contents of the files by executing the cat command on
each.

Stardent 1500/3000: catgroupl(—)
Smith, Allyn

Jones, Barbara

Cook, Karen

Moore, Peter

Wolf, Robert

Stardent 1500/3000: catgroup2(+)
Frank, M. Jay

Nelson, James

West, Donna

Hill, Charles

Morgan, Kristine

Stardent 1500/3000:

Now sort and merge the contents of the two files by executing the
sort command.

Stardent 1500/3000: sort groupl group2 ()
Cook, Karen

Frank, M. Jay

Hill, Charles
Jones, Barbara
Moore, Peter
Morgan, Kristine
Nelson, James
Smith, Allyn

West, Donna

Wolf, Robert
Stardent 1500/3000:

In addition to combining simple lists as in the example, the sort
command can be used to rearrange lines and parts of lines (called
fields) according to a number of other specifications you designate
on the command line. Refer to the Commands Reference Manual for
a full description of the sort command and its available options.

B-2. Basics: The Shell
The shell is a powerful command interpreter that provides the
interface between you and the Stardent 1500/3000 operating sys-
tem, and allows you to do tasks such as managing files and
grouping commands together for streamlined execution. This sec-
- tion shows you how to use the shell command language, write

UNIX Essentials Start Here 3-39

I
B-2. Basics: The Shell

(continued)

simple shell programs, and modify your shell login environment.

An enhanced version of the shell, the C-shell, can be used as an
alternative command interface and programming language. This
section contains a brief description of the C-shell (see The C-Shell,
below).

Shell Command
Language

The following paragraphs introduce commands and characters
with special meanings that let you

e Find and manipulate a group of files using pattern matching.
* Runacommand in the background or at a specified time.
* Runa group of commands sequentially.

* Redirect standard input and output from and to files and
other commands.

e Terminate processes.

Pattern Matching

Pattern matching characters, or wild cards, are used to represent
file names or parts of file names, thereby simplifying commands
that use file names as arguments. The following pattern matching
characters are discussed in the next paragraphs.

* (asterisk) Matches all characters.

? (question mark) Matches any single character.

[1 (brackets) Matches any of a specified set of characters.

3-40. Start Here

UNIX Essentials

Matching All Characters: the Asterisk (*). The asterisk (*)
matches any string of characters, including a null (empty) string,
and can be used to to specify a full or partial file name. * alone
refers to all the file and directory names in the current directory.
For example, the command

Is * (=]

lists all of the files in your current directory.

Suppose you have written several reports, with names report,
reportl, reportla, report1b.01, report25, and report216. To find out
how many reports you have written, use the 1s command to list all
files that begin with the string report.

Stardent 1500/3000: Isreport*
report

reportl

reportla

reportlb.01

report25

report316

Stardent 1500/3000:

The * matches any characters after the string report, including no
letters at all.

The * can represent characters in any part of the file name, and
can be used any number of times in a command line. For exam-
ple, if you know that several files have a the letter F in common,
you can request a list of them on that basis.

Is #Fx*

B-2. Basics: The Shell
(continued)

CAUTION

The * is a powerful character. If
you type rm * you erase all the
files in your current directory. Be
very careful how you use it!

UNIX Essentials

Start Here 3-41

B-2. Basics: The Shell
(continued)

The system responds as follows.

123F

F
FATE
Fig3.4E

The order is determined by the ASCII sort sequence: (1) numbers;
(2) upper case letters; (3) lower case letters.

Matching One Character: the Question Mark (?). The question
mark (?) matches any single character of a file name. Let's say
you have written several chapters in a book that has twelve
chapters, and you want a list of those you have finished through
Chapter 9. Use the Is command with the ? to list all chapters that
begin with the string chapter and end with any single character, as
shown below:

Stardent 1500/3000: ls chapter?
chapterl

chapter2

chaptex5

chapter9

Stardent 1500/3000:

The system responds by printing a list of all file names that match.

Matching One of a Set of Characters: Brackets (I 1). Use
brackets ([1) to match any one of several possible characters that
may appear in one position in the file name. For example, if you
include [crf] as part of a file name pattern, the shell looks for file
names that have the letter ¢, the letter r, or the letter f in the
specified position.

Stardent 1500/3000 :ls [crflat
cat

fat

rat

Stardent 1500/3000:

~ 3-42 Start Here

UNIX Essentials

B-2. Basics: The Shell
(continued)

This command displays all three-letter file names that begin with
the letter ¢, r, or f and end with the letters at. Characters that are
grouped within brackets in this way are collectively called a char-
acter class.

Brackets can also be used to specify a range of characters. For
example, if you specify

chapter[1-5]

the shell matches any files named chapterl through chapter5. This
is an easy way to handle only a few chapters at a time. If you

specify
pr chapter[2-4]

The shell prints the contents of chapter2, chapter3, and chapter4, in
that order, on your terminal.

You may also use a character class to specify a range of letters. If
you specify [A-Z], the shell looks only for upper case letters; if [a-
z], only lower case letters.

Special Characters

The shell language has other special characters that perform use-
ful functions. Some of these are discussed in the following para-
graphs; others are described in Input and Output Redirection, later
in this chapter.

Running a Command in Background: the Ampersand
(&). Some shell commands take considerable time to execute. The
ampersand (&) is used to execute commands in background
mode, freeing your terminal for other tasks. The general format
for running a command in background mode is

command &

NOTE

In the next example, a search for the string delinquent in the file Z}?eglS&?ﬁ:&?ﬁﬁ;ﬁjﬁ:ﬁ:ﬁ?in
accounts is run in the background. the background. '

Stardent 1500/3000: grep delinquent accounts & (=]
21940
Stardent 1500/3000:

UNIX Essentials Start Here 3-43

B-2. Basics: The Shell
(continued)

When you run a command in the background the operating sys-
tem outputs a process number; 21940 is the process number in
the example. You can use this number to stop the execution of a
background command. (Stopping the execution of processes is
discussed under Executing and Terminating Processes later in this
chapter.) The prompt on the last line means the terminal is free
and waiting for your commands; grep has started running in
background.

Running a command in the background affects only the availabil-
ity of your terminal; it does not affect the output of the command.
Whether or not a command is run in background, it prints its out-
put on your terminal screen unless you redirect it to a file. (See
Input and Output Reduction, later in this chapter, for details.)

If you want a command to continue running in the background
after you log off, you can submit it with the nohup(1) command.
(This is discussed in Using the nohup Command later in this
chapter.)

Executing Commands Sequentially: the Semicolon (;). You
can type two or more commands on one line as long as each pair
is separated by a semicolon (;), as follows:
commandl; command?2; command3
The operating system executes the commands in the order that
they appear in the line and prints all output on the screen. This
process is called sequential execution. For example, if you enter
cd; pwd; 1s
The shell executes these commands sequentially:
(1) cd changes your location to your home directory.
(2) pwd prints the full pathname of your home directory.
(3) 1slists the files in your home directory.
If you do not want the system’s responses to these commands to

appear on your screen, refer to Input and Output Redirection, later
in this chapter, for instructions.

3-44 Start Here

UNIX Essentials

Turning Off Special Meanings: the Backslash (). The shell
interprets the backslash (\) as an escape character that allows you
to turn off any special meaning of the character immediately after
it. For example, if you want to use the grep command to search a
file named trial for an #, type

Stardent 1500/3000: grep * trial (=)
The all * game
Stardent 1500/3000:

The grep command finds the * in the text and displays the line in
which it appears. Without the \ the * would appear as a meta-
character to the shell and would match all lines in the file.

For a complete list of special characters understood by the shell
see Using Special Characters as Literal Characters, Chapter 1.

Turning Off Special Meanings: Quotes. Another way to escape
the meaning of a special character is to use quotation marks. Sin-
gle quotes ("..”) turn off the special meaning of any character.
Double quotes ("...") turn off the special meaning of all characters
except $ and (grave accent), which retain their special meanings
within double quotes. An advantage of using quotes is that
numerous special characters can be enclosed in the quotes; this
can be more concise than using the backslash.

For example, if your file named trial contains the line
He really wondered why. Why???

use the grep command to find the line with the three question
marks as follows:

Stardent 1500/3000: grep '??? trial
He really wondered why. Why???
Stardent 1500/3000:

If you had omitted the quotes, the three question marks would
have been interpreted as shell metacharacters and matched all file
names of three characters.

Using Quotes to Turn Off the Meaning of a Space. A common
use of quotes as escape characters is to turn off the special mean-
ing of the blank space. The shell interprets a space on a command
line as a delimiter between the arguments of a command. Both

B-2. Basics: The Shell
(continued)

UNIX Essentials

Start Here 3-45

B-2. Basics: The Shell
(continued)

single and double quotes allow you to escape that meaning.

For example, to locate two or more words that appear together in
text, make the words a single argument (to the grep command) by
enclosing them in quotes.

Stardent 1500/3000: grep “The all trial
The all * game
Stardent 1500/3000:

Input and Output
Redirection

Many shell commands expect to receive their input from the key-
board (standard input) and most commands display their output
on the screen (standard output). Redirection is used to reassign
the standard input and output to other files or programs. With
redirection, you can tell the shell to

» Take its input from a file rather than the keyboard.

¢ Send its output to file rather than the screen.

e Usea program as the source of data for another program.

* Supply lines of input to a command, where the command is

contained within a program.

You use a set of operators, the less than sign (<), the greater than
sign (>), two greater than signs (>>), two less than signs (<<), and
the pipe symbol (1) to redirect input and output.

Redirecting Input: the < Sign

To redirect input, specify a file name after a less than sign (<) on
the command line:

command < file

3-46 Start Here

UNIX Essentials

For example, assume that you want to use the mail command

(described in chapter 6) to send a file named report to another user
with the login colleague. Specify the file name as the source of
input:

mail colleague < report

Redirecting Output to a File: the > Sign

To redirect output, specify a file name after a greater than sign (>)
on the command line:

command > file

Before redirecting the output of a command to a particular file,
use the Is command to make sure that a file by that name does not
already exist (unless you don’t care if you lose the file). -Because
the shell does not allow you to have two files of the same name in
a directory, the shell overwrites the contents of the existing file
with the output of your command if you redirect the output to a
file with the existing file’s name. The shell does not warn you
about overwriting the original file.

Appending Output to an Existing File: the >> Symbol

To keep from destroying an existing file, you can also use the
double greater than sign symbols (>>), as follows:

command >> file

This appends the output of a command to the end of file. If file
does not exist, it is created.

The following example shows how to append the output of the
cat command to an existing file. First, the cat command is exe-
cuted on both files without output redirection to show their
respective contents. Then the contents of file2 are added after the
last line of filel by executing the cat command on file2 and
redirecting the output to filel.

. ___]
B-2. Basics: The Shell

(continued)

CAUTION

If you redirect output to a file
that already exists, the output of
your command overwrites the
contents of the existing file.

UNIX Essentials

Start Here 3-47

S
B-2. Basics: The Shell

(continued)

Stardent 1500/3000: cat filel{—)
Now is the time

for all

good men

Stardent 1500/3000:

Stardent 1500/3000: cat file2(—)
to come to the aid

of their country.

Stardent 1500/3000:

Stardent 1500/3000: cat file2 >> filel(s)
Stardent 1500/3000: cat filel(=)
Now is the time

for all

good men

to come to the aid

of their country.

Stardent 1500/3000:

Useful Applications of Output Redirection

Redirecting output is useful when you do not immediately want
output to appear on your screen or when you want to save it.
Output redirection is also especially useful when you run com-
mands that perform clerical chores on text files. Two such com-
mands are spell and sort.

In this example spell searches a file named memo and places a list
of misspelled words in a file named misspell. If the output of spell
were not redirected to a file, a list of misspelled words would
print on the screen.

spell memo > misspell

Combining Input and Output Redirection

Input and Output redirection can be used together in a command,
allowing you to take input from one file and send output to
another file. The general format is

command < input_file > output_file

3-48 Start Here

UNIX Essentials

Combining Background Mode and Output Redirection

Running a command in the background does not affect the
command’s output; unless the output is redirected, output is
always printed on the screen. If you are using your terminal to
perform other tasks while a command runs in the background,
you are interrupted when the command displays its output on
your screen. If you redirect that output to a file, however, you can
work undisturbed.

For example, in the Special Characters section you learned how to
execute the grep command in the background with &. Now sup-
pose you want to find occurrences of the word test in a file named
schedule. Run the grep command in the background and redirect
its output to a file called testfile:

Stardent 1500/3000: grep test schedule > testfile & (-=]

You can then use your terminal for other work and examine
testfile when you have finished.

Supplying Lines of Input to a Command: the << Symbol

The shell allows you to supply lines of input to a command,
where the command is contained within a shell program. It is a
way to supply input to a program without using a separate input
file. (The lines of input are sometimes called a "here document").
The notation consists of the redirection symbol << and a delimiter
that specifies the beginning and end of the lines of input. The exc-
lamation mark (!) is generally used as the delimiter. To redirect
input lines you use a special command line including the << and !
signs, followed by the input lines, followed by a terminating !.

command <<! =) ...input lines... =)!

In the next example, the program gbday uses input line redirec-
tion to send a generic birthday greeting by redirecting lines of
input into the mail command:

Stardent 1500/3000: catgbday (=)

mail -s ‘Birthday Greeting’ $1 <<!
Best wishes to you on your birthday.
!

Stardent 1500/3000:

]
B-2. Basics: The Shell

(continued)

UNIX Essentials

Start Here 3-49

B-2. Basics: The Shell
(continued)

The input line to the mail command is
Best wishes to you on your birthday

When you use this command, you must specify the recipient’s
login as the argument to the command. For example, to send this
greeting to the owner of login mary, type

gbday mary

Login mary will receive your greeting the next time she reads her
mail messages:

Message 1

From mylogin Wed May 14 14:31 CDT 1986
To: mary

Subject: Birthday Greeting

Status: R

Best wishes to you on your birthday

For more on the mail command see Chapter 5.

Redirecting Output to a Command: the Pipe (|)

The | character is called a pipe. Pipes are powerful tools that take
the output of one command and use it as input for another com-
mand without creating temporary files. A multiple command line
created in this way is called a pipeline.

The general format for a pipeline is
commandl | command2 | command3...

The output of commandl is used as the input of command2. The
output of command2 is then used as the input for command3.

To understand the efficiency and power of a pipeline, consider the
contrast between two methods that achieve the same results.

e To use the input/output redirection method, run one com-
mand and redirect its output to a temporary file. Then run a
second command that takes the contents of the temporary
file as its input." Finally, remove the temporary file after the
second command has finished running.

3-50 Start Here

UNIX Essentials

e To use the pipeline method, run one command and pipe its
output directly into a second command.

For example, say you want to mail a happy birthday message in a
banner to the owner of the login david. Doing this without a
pipeline is a three-step procedure. You must

(1) Enter the banner command and redirect its output to a
temporary file:

banner happy birthday > message.tmp
(2) Enter the mail command using message.tmp as its input:
mail david < message.tmp
(3) Remove the temporary file:
rm message.tmp
However, by using a pipeline you can do this in one step:
banner happy birthday | mail david
Using the pipe along with the pg command is an excellent way to
view output from a program without having to redirect the out-
put to a file. For example, to view the misspelled words in the file

memo, type:

spell memos | pg

You then have the capabilities of the pg command for perusing
the list of misspelled words. For a review of the pg command see
Paging Through the Contents of a File.

Substituting Output for an Argument

The output of any command may be captured and used as argu-
ments on a command line. This is done by enclosing the com-
mand in grave accents (*...") and placing it on the command line in
the position where the output should be treated as arguments.
This is known as command substitution.

For example, you can substitute the output of the date command
for the argument in a banner printout by typing the following
command line:

B-2. Basics: The Shell
(continued)

UNIX Essentials

Start Here 3-51

B-2. Basics: The Shell
(continued)

Stardent 1500/3000: banner" date’

The system prints a banner with the current date and time.

The Shell Programming section in this chapter shows you how you
can also use the output of a command line as the value of a vari-
able.

Executing and
Terminating Processes

NOTE

The character combination
means "End of File" and is

generally used to terminate input

or to log off the system. An

exception is its special meaning

to the vi editor.

This section discusses the following commands for controlling
processes:

batch or at To schedule commands for a later time.

ps To obtain the status of active processes.

kill To terminate active processes.

nohup To keep background processes running after you
have logged off.

Running Commands at a Later Time With the batch and at
Commands

The batch and at commands specify a command or sequence of
commands to be run at a later time. With the batch command, the
system determines when the commands run; with the at com-
mand, you determine when the commands run. Both commands
expect input from standard input (the terminal); the list of com-
mands entered as input from the terminal must be ended by
pressing .

The batch command is useful if you are running a process or shell
program that uses a large amount of system time. The batch com-
mand submits a batch job (containing the commands to be exe-
cuted) to the system. The job is put in a queue, and runs when the
system load falls to an acceptable level. This frees the system to
respond rapidly to other input and is a courtesy to other users.

3-52 Start Here

UNIX Essentials

The general format for batch is

batch
first command
last command
@

If there is only one command to be run with batch, you can enter
it as follows:

batch command_line
@

The next example uses batch to execute the grep command at a
convenient time. Here grep searches all files in the current direc-
tory and redirects the output to the file doLfile.

Stardent 1500/3000: batch grep dollar * > dol-file (=)

@
job 155223141.b at Sun Dec 7 11:14:54 1986
Stardent 1500/3000:

After you submit a job with batch, the system responds with a job
number, date, and time. This job number is not the same as the
process number that the system generates when you run a com-
mand in the background.

The at command allows you to specify an exact time to execute
the commands. The general format for the at command is

at time
first command

last command
@

The time argument consists of the time of day and, if the date is
not today, the date. You have choices of syntax for the date; see
at(1) in the Commands Reference Manual for specifics.

B-2. Basics: The Shell
(continued)

UNIX Essentials

Start Here 3-53

S ———
B-2. Basics: The Shell

(continued)

The following example shows how to use the at command to mail
a happy birthday banner to login emily on her birthday:

Stardent 1500/3000: at8:15am Feb 27(—)

banner happy birthday | mail -s ‘Happy Birthday’ emily
@

job 453400603.a at Thurs Feb 27 08:15:00 1986

Stardent 1500/3000:

Notice that the at command, like the batch command, responds
with the job number, date, and time.

If you decide you do not want to execute the commands currently
waiting in a batch or at job queue, you can erase those jobs by
using the —r option of the at command with the job number. The
general format is

at —r jobnumber

If you have forgotten the job number, the at -1 command gives
you a list of the current jobs in the batch or at queue, as the fol-
lowing screen shows:

Stardent 1500/3000: at-l1{=)

user = mylogin 168302040.a at Sat Nov 29 13:00:00 1986
user = mylogin 453400603.a at Fri Feb 27 08:15:00 1987
Stardent 1500/3000:

Notice that the system displays the job number and the time the
job will run.

Obtaining the Status of Running Processes

The ps (process status) command gives you the status of all the
processes you are currently running. For instance, use the ps
command to show the status of all processes that you are running
in the background using & (described earlier in Special Characters).

In the following example, grep is run in the background, and then
the ps command is issued. The system responds with the process
identification (PID) and the terminal identification (TTY) number.
It also gives the cumulative execution time for each process
(TIME), and the name of the command that is being executed
(COMMAND).

3-54 Start Here

UNIX Essentials

(

B-2. Basics: The Shell
(continued)

Stardent 1500/3000: grep word * > temp & (<)
28223

Stardent 1500/3000:

Stardent 1500/3000: ps(—)

PID TTY TIME COMMAND

28124 ttyl0 0:00 sh

28223 ttylo 0:04 grep

28224 ttyl0 0:04 ps

Stardent 1500/3000:

Notice that the system reports a PID number for the grep com-
mand, as well as for the other processes that are running: the ps
command itself, and the sh (shell) command that runs while you
are logged in.

Terminating Active Processes

The kill command is used to terminate active shell processes that
are running in the background. (The command is used to
terminate commands running in the foreground.) The general
format for the kill command is

kill PID
where PID is the process identification.

The following example shows how you can terminate the grep
command that you started executing in background in the previ-
ous example.

Stardent 1500/3000: kill 28223
28223 Terminated
Stardent 1500/3000:

Notice the system responds with a message and a Stardent
1500/3000 prompt, showing that the process has been killed. If
the system cannot find the PID number you specify, it responds
with an error message:

kill:28223:No such process

Using the nohup Command

Processes are automatically killed when you log off. If you want a
background process to continue running after you log off, you
must use the nohup command to run the process.

UNIX Essentials Start Here 3-55

B-2. Basics: The Shell
(continued)

nohup command &

Notice that you place the nohup command before the command
you intend to run as a background process.

For example, say you want the grep command to search all the
files in the current directory for the string word and redirect the
output to a file called word.list, and you wish to log off immedi-
ately afterward. Type the command line as follows:

nohup grep word * > word.list &

You can terminate the nohup command by using the kill com-
mand.

Shell Programming

This section shows you how to create and execute shell programs
containing commands, variables, positional parameters, return
codes, and basic programming control structures. Shell programs
allow you to streamline and simplify your interactions with Star-
dent 1500/3000.

Creating and Executing a Simple Shell Program
To create a simple shell program that
* Prints the current directory.

e Lists the contents of that directory.

e Displays this message on your terminal: "This is the end of
the shell program.”

simply create a file called dir_list and enter these three lines into it:

pwd
Is
echo This is the end of the shell program.

One way to execute this program is to use the sh command. If
you type

sh dir_list

sh executes the dir_list command. It first prints the pathname of
the current directory, then the list of files in the current directory,

3-56 Start Here

UNIX Essentials

and finally, the comment This is the end of the shell
program.

If dir_list is a useful command, use the chmod command to make
it an executable file; then you can type dir_list by itself to execute
the commands it contains. The following example shows how to
use the chmod command to make a file executable and then runs
the Is -1 command to verify the changes you have made in the
permissions.

Stardent 1500/3000: chmod u+x dir_list(«<]
Stardent 1500/3000: Is-I1(=)

total 2
—rW——————— 1 login login 3661 Nov 2 10:28 mbox
—rwx—————-— 1 login login 48 Nov 15 10:50 dir list

Stardent 1500/3000:

Notice that chmod turns on permission to execute (+x) for the
user (u). Now dir_list is an executable program and can be exe-
cuted by typing

dir_list

Creating abin Directory for Executable Files

You can make your shell programs executable from all your direc-
tories, by creating a special directory, often called bin, moving
your shell programs to it, and setting your PATH environment
variable to include the directory.

To create a bin directory and move dir_list to it, type

cd
mkdir bin
mv dir_list bin/dir_list

To set your environment variable PATH to include your bin
directory, add the following line to your .profile (located in your
home directory):

PATH=$PATH:$HOME/bin

(If the PATH variable has already been defined in your pathname
$HOME/bin to the definition. If you have any questions or prob-
lems please see Modifying Your Login Environment later in this
chapter. See Varigbles below for more information about PATH.)

B-2. Basics: The Shell
(continued)

UNIX Essentials

Start Here 3-57

B-2. Basics: The Shell
(continued)

Once you have completed this process, dir_list and any other
shell programs you move to your bin directory are executable
from any of your directories.

Warnings about Naming Shell Programs

You can give your shell program any appropriate file name.
However, you should not give your program the same name as a
system command. If you do, the shell executes your command
instead of the system command. For example, if you had named
your dir_list program mv, each time you tried to move a file, the
system would have executed your directory list program instead
of mv.

Variables

Shell programs use three basic types of variables that are
described in this section.

* Positional parameters.
* Special parameters.

° Named variables.

Positional Parameters

A positional parameter is a variable within a shell program whose
value is set from an argument specified on the command line
invoking the program. Positional parameters are numbered and
are referred to with a preceding $: $1, $2, $3, and so on.

a shell program may refer to up to nine positional parameters. If
a shell program is invoked with the following command line,

shell.prog param1 param2 param3

then positional parameter $1 within the program is assigned the
value paraml, positional parameter $2 within the program is
assigned the value param2, and positional parameter $3 is
assigned the value param3 when the shell program is invoked. The
shell program itself is referred to as $0.

The following example

(1) Shows a shell program named pp containing three echo
commands with positional parameters.

3-58 Start Here

UNIX Essentials

(2) Uses the chmod command to make pp executable.

(3) Executes the pp command with the arguments one, two,
and three.

Stardent 1500/3000: catpp (<)

echo The first positional parameter is: $1
echo The second positional parameter is: $2
echo The third positional parameter is: $3
echo The fourth positional parameter is: $4
Stardent 1500/3000: chmod u+x pp([=)

Stardent 1500/3000: pp one two three four ()

The first positional parameter is: one

The second positional parameter is: two

The third positional parameter is: three
The fourth positional parameter is: four
Stardent 1500/3000:

The following example shows the shell program bbday, which
mails a greeting to the login entered in the command line.

Stardent 1500/3000: catbbday (=)
banner happy birthday | mail ’'Happy Birthday’ $1

Try sending yourself a birthday greeting. If your login name is
sue, your command line will be:
bbday sue

The shell allows a command line to contain 128 arguments. How-
ever, a shell program is restricted to at most nine positional
parameters, $1 through $9, at a given time.

Special Parameter: $#
The $# parameter within a shell program contains the number of
arguments with which the shell program was invoked. Its value

can be used anywhere within the shell program.

In the following example, the executable shell program called
get.num contains one line.

B-2. Basics: The Shell
(continued)

UNIX Essentials

Start Here 3-59

B-2. Basics: The Shell
(continued)

Stardent 1500/3000: cat get.num (=) (
echo The number of arguments is: $#
Stardent 1500/3000:

get.num simply displays the number of arguments with which it
is invoked. For example

Stardent 1500/3000: get.num test out this program («=)
The number of arguments is: 4
Stardent 1500/3000:

Special Parameter: $x

The $* parameter within a shell program contains all the argu-
ments with which the shell program was invoked, starting with
the first. (You are not restricted to nine parameters as with the
positional parameters $1 through $9.)

In the following example, the executable shell program called
show.param contains one line.

Stardent 1500/3000: catshow.param (j
echo The parameters for this command are: $*)
Stardent 1500/3000:

show.param echoes all the arguments you give to it. For example

Stardent 1500/3000: show.param Hello. How are you?

The parameters for this command are: Hello. How are you?

Stardent 1500/3000: show.param one two 345 six7891011

The parameters for this command are: one two 3 4 5 six 7 8 9 10 11
Stardent 1500/3000:

The $* parameter allows you to refer to multiple files using a sin-
gle command line argument. For example, if you have several
files in your directory named for chapters of a book: chapl
through chap8, use show.param to print a list of all those files:

Stardent 1500/3000: show.param chap?

The parameters for this command are: chapl chap2
chap3 chap4 chap5 chap6é chap7 chap8

Stardent 1500/3000:

3-60 Start Here

UNIX Essentials

Named Variables

Shell programs accommodate two types of named variables:
e User-named.

. Reserved.
These are described in this section.

You can name your own shell program variables and assign
values to them yourself. You do this in a shell program by adding
the line:

named_variable=value

Then, later in the program, you refer to the variable with a prefix:
$named_variable.

Here is an example:

Stardent 1500/3000: cathi (=)
person=Sally

echo Hello $person

Stardent 1500/3000:

The variable person is assigned the value Sally. The character
string $person then refers to Sally (the value of the variable).
Think of the $ prefix as denoting "value". Here is the output of
the executable program.

Stardent 1500/3000: hi =]
Hello Sally
Stardent 1500/3000:

The first character of a variable must be a letter or an underscore.
The rest of the name can be composed of letters, underscores, and
digits. As in shell program file names, it is not advisable to use a
shell command name as a variable name.

Reserved variables have specific assigned meanings and cannot be
redefined by the user. A brief explanation of these follows.
* CDPATH defines the search path for the ¢d command.

. HOME is the default variable for the ¢d command (home
directory).

B-2. Basics: The Shell
(continued)

UNIX Essentials

Start Here 3-61

B-2. Basics: The Shell
(continued)

e IFS defines the internal field separators (normally the space,
tab, and carriage return).

¢ LOGNAME is your login name.
¢ MAIL names the file that contains your electronic mail.

* PATH determines the search path used by the shell to find
commands and other executable programs.

e PS1 defines the primary prompt (default is $).
e PS2 defines the secondary prompt (default is >).

e TERM identifies your terminal type. It is important to set
this variable if you are editing with vi.

* TERMINFO identifies the directory to be searched for infor-
mation about your terminal, for example, its screen size.

* TZ defines the time zone (default is ESTSEDT).

Some of these reserved variables are explained in Modifying Your
Login Environment later in this chapter. You can also read more
about them on the sh(1) manual page in the Commands Reference
Manual.

You set the values of reserved variables in the same way you set
user-named variables. For example, you use

TERM=term_name
to set the value of the variable TERM before using the vi editor.
At any time you can issue the command
echo $reserved_var
to get the current value of the variable reserved_var. Try typing
echo $TERM
to get the name of your terminal.

To get the current values of all your reserved variables, issue the
"environment" command:

env

Using variable_name=value is an easy way to assign a value to a
variable. Alternatively, do it in any of the following ways.

3-62 Start Here

UNIX Essentials

* Usethe read command to assign input to the variable.

* Redirect the output of a command into a variable by using
command substitution with grave accents (...").

e Assign a positional parameter to the variable.

The following sections discuss each of these methods in detail.

Using the read Command

The read command used within a shell program allows you to
prompt the user of the program for the values of variables. The
general format for the read command is

read variable

The values assigned by read to variable are substituted for $vari-
able wherever it is used in the program. The read command waits
until you type in a character string followed by (=), and then
makes that string the value of the variable.

In the following example an executable shell program called
num.please keeps track of telephone numbers listed in the file
listfl.

Stardent 1500/3000: catnum.please
echo Last name, please:

read name

grep $name list

Stardent 1500/3000:

If your [ist file contains the following names,

Stardent 1500/3000: catlist (=)
Wilson 408-732-0600

Smith 415-762-9888

Jones 712-984-0435

Stardent 1500/3000:

then you can execute num.please as follows.

Stardent 1500/3000: num.please
Last name, please:

Smith

Smith 415-762-9888

Stardent 1500/3000:

B-2. Basics: The Shell
(continued)

UNIX Essentials

Start Here 3-63

B-2. Basics: The Shell
(continued)

The next example is a shell program called mknum that creates a
phone list. mknum includes the following commands.

* echo prompts for a person’s name

e read assigns the person’s name to the variable name

* echo asks for the person’s number

e read assigns the telephone number to the variable num

J echo adds the values of the variables name and num to the
file list

The finished program looks like this.

Stardent 1500/3000: cat mknum (=)
echo Type in name

read name

echo Type in number

read num

echo $name $num >> list

Stardent 1500/3000:

In the next example, mknum creates a new listing for Mr.
Niceguy. num.please then gives you Mr. Niceguy’s phone
number. '

Stardent 1500/3000: sh mknum (=)
Type in the name

Mr. Niceguy

Type in the number

668-0007

Stardent 1500/3000: sh num.please
Type in last name

Niceguy

Mr. Niceguy 668-0007

Stardent 1500/3000:

3-64 Start Here

UNIX Essentials

Substituting Command Output for the Value of a Variable

You can substitute a command’s output for the value of a variable
by using command substitution. Use the following format in your
shell program.

variable="command’

The output from command becomes the value of variable. The com-
mand must be enclosed in grave accents (°..").

In the following example, the date command is piped into the cut
command (to strip off the day and year portions of date). This
produces an executable shell program what_time that prints the
time.

Stardent 1500/3000: cat what_time
time="date | cut —-cl2-19°

echo The time is: S$time

Stardent 1500/3000: what_time (<)
The time is: 10:36

Stardent 1500/3000:

(See cut(1) in the Commands Reference Manual for more on the cut
command.)
Assigning Values with Positional Parameters

You can assign a positional parameter to a named parameter by
using the following format:

varl=$%$n
where $n is the nth argument on the command line.

This example shows an executable program that assigns posi-
tional parameters to two variables. The program is then run with
command line arguments.

Stardent 1500/3000: catarg_assign

varl=5§1
var2=5$2
echo This is the first argument: S$varl
echo This is the second argument: $var2

Stardent 1500/3000: arg_assign Hello There
This is the first argument: Hello

This is the second argument: There
Stardent 1500/3000:

B-2. Basics: The Shell
(continued)

UNIX Essentials

Start Here 3-65

B-2. Basics: The Shell
(continued)

Shell Programming
Constructs

The shell programming language has several constructs that give
added flexibility to your programs.

¢ Comments let you document a program'’s function.

e Return codes signal whether a program has executed suc-
cessfully.

e The looping constructs, for and while, allow a program to
iterate through groups of commands in a loop.

e The conditional control commands, if and case, execute a
group of commands only if a particular set of conditions is
met. ‘

¢ The break command allows a program to exit uncondition-
ally from a loop.

Comments

You can place comments in a shell program by using the #
(pound) sign. All text on a line following a # sign is ignored by
the shell. The # sign can be at the beginning of a line, in which
case the comment uses the entire line, or it can occur after a com-
mand, in which case the command is executed but the remainder
of the line is ignored. The end of a line always ends a comment.
The general format for a comment line is

#comment
Consider the following program:
This program sends a generic birthday greeting.
This program needs a login as
the positional parameter.
echo THE END #This is the end of the program.
The shell ignores everything in the program except the phrase

echo THE END

Comments are useful for documenting a program’s function and
should be included in the programs you write.

3-66 Start Here

UNIX Essentials

Return Codes

Most shell commands produce return codes that indicate whether
or not the command executed properly. By convention, if the
value returned is 0 (zero) the command executed properly; any
other value indicates that it did not. The return code is not
printed automatically, but is available as the value of the shell
special parameter $?.

After executing a command interactively, you can see its return
code by typing

echo $?

Consider the following example:

Stardent 1500/3000: cathi
This is file hi.

Stardent 1500/3000: echo $?
0

Stardent 1500/3000: cathello
cat: cannot open hello
Stardent 1500/3000: echo $?
2

Stardent 1500/3000:

In the first case, the file ki exists in your directory and has read
permission for you. The cat command behaves as expected and
outputs the contents of the file. It exits with a return code of 0,
which you can see using the parameter $?. In the second case, the
file either does not exist or does not have read permission for you.
The cat command prints a diagnostic message and exits with a
return code of 2.

Return codes are useful if you want a program to execute a com-
mand conditional on whether or not a previous command was
successful. See below, Using the Test Command With Return Codes.

Looping With the for Loop

In the previous examples in this chapter, the commands in shell
programs have been executed in sequence. The for and while
looping constructs allow a program to execute a command or
sequence of commands several times.

B-2. Basics: The Shell
(continued)

UNIX Essentials

Start Here 3-67

B-2. Basics: The Shell
(continued)

The for loop executes a sequence of commands once for each
member of a list. It has the following format:

for variable in a_list_of values
do

command 1

command 2

last command
done(—)

For each iteration of the loop, the next member of the list is
assigned to the variable given in the for clause. References to that
variable may be made anywhere in the commands within the do
clause.

As an example, the following program moves the files memosl,
memos2, and memos3 to a new directory.

Stardent 1500/3000: cat mv.file
echo Please type in the directory path

read path
for file in memol memo2 memo3
do

mv $file $path/S$file

echo $file has been moved to $path/$file
done
Stardent 1500/3000:

The program contains these constructs:

echo
Prompts the user for a path name to the new directory.

read
Assigns the pathname to the variable path.

for wvariable
Calls the variable file; it can be referred to as $file in the com-
mand sequence.

in list_of values
Supplies a list of values. If the in clause is omitted, the list of
values is assumed to be $* (all the arguments entered on the
command line).

3-68 Start Here

UNIX Essentials

(

(

do command_sequence
Provides a command sequence. In this case it is

do
mv $file Spath/$file
echo $file has been moved to $path/$file
done

Notice several things about the program.

* Indentation is used to make the for and do loops visually
clear. This is good programming style and causes no confu-
sion because the shell ignores blanks at the beginning of
lines.

e The variable can be any name you choose. If the name is var,
just be sure you use $var to refer to the value of the variable
later in the program.

e If in is omitted the shell looks for the values of the variable
as command line arguments (as if the positional parameter
$* were specified.

. The command list between do and done is executed once for
each value of the variable.

In the following version of the program in is omitted, so the value
for file is accepted as a command line argument.

Stardent 1500/3000: catmv.file (<)
echo type in the directory path

read path
for file
do

mv $file S$path/S$Sfile

echo $file has been moved to $path/$file
done
Stardent 1500/3000:

Try moving files with this program. You supply the name of the
file you want to move as an argument on the command line. (To
move several files try using the file name expansion characters (*,
?, or [1 on the command line.)

B-2. Basics: The Shell
(continued)

UNIX Essentials

Start Here 3-69

B-2. Basics: The Shell
(continued)

Looping With the while - do Loop

Another loop construct, the while - do loop, allows you to do a
list of tasks repeatedly based on a list of conditions. Its general
format is is

while
command 1

.

last command
do ,
command 1

.

last command
done(=)

For each iteration of the loop the following occurs. First, the set of
commands in the while list is executed. As long as the last com-
mand in that list executes successfully (has a zero exit or return
code), the shell proceeds to do all the commands in the do list.
When the last command in the while list no longer executes suc-
cessfully the loop ends and any commands below the done key-
word are executed.

For example, the following program uses a while loop to enter a
list of names into a file.

Stardent 1500/3000: catenter.name
echo Please type in each person’s name and then RETURN
echo Please end the list of names with CONTROL d
while read x
do
echo $x>>xfile
done
echo xfile contains the following names:
cat xfile
Stardent 1500/3000:

Notice that after the loop is completed, the program executes the
commands below the done. Here are the results of enter.name.

3-70 Start Here UNIX Essentials

Stardent 1500/3000: enter.name
Please type in each person’s name and then a RETURN
Please end the list of names with CONTROL d
Mary Lou
Janice
crred]
xfile contains the following names:
Mary Lou
Janice
Stardent 1500/3000:

Notice that after the loop completes, the program prints all the
names contained in xfile.

Here is another example in which the executable program uses
two commands in each of the while and do lists.

Stardent 1500/3000: catread.nums

while
echo Type in two numbers, separated by a space:
read x y
do
echo Here is the answer:
echo The numbers are $x and Sy
done

Stardent 1500/3000: read.num ()
Type in two numbers, separated by a space:

12 30

Here is the answer:

The numbers are 12 and 30

Type in two numbers, separated by a space:

156 (<)

Here is the answer:

The numbers are 15 and 6:

Type in two numbers, separated by a space:

cld)

Stardent 1500/3000:

The Shell’s Garbage Can: /dev/null

The file system has a file called /dev/null where you can have the
shell deposit any unwanted output.

Try out /dev/null by destroying the results of the who command.
First, type in the who command. The response tells you who is on
the system. Now, try the who command, but redirect the output
into /dev/null:

B-2. Basics: The Shell
(continued)

UNIX Essentials

Start Here 3-71

B-2. Basics: The Shell
(continued)

who > /dev/null

Notice that the system responds with a prompt. The output from
the who command was placed in /dev/null and was effectively
discarded.

if...the Conditional Constructs

The if command tells the shell program to execute the then
sequence of commands only if the command following if is suc-
cessful. The if construct ends with the keyword fi.

The general format for the if construct is

if commandl
then
commandl

last command

The following shell program called search demonstrates the use of
the if...then construct. search uses the grep command to search
for a word in a file. If grep is successful, the program will echo
that the word is found in the file.

Stardent 1500/3000: catsearch (2]
echo Type in the word and the file name.
read word file
if grep S$word $file
then
echo You found it!
echo $Sword is in $file
fi
Stardent 1500/3000:

Notice that the read command assigns values to two variables.
The first characters you type, up until a space, are assigned to
word. The rest of the characters, including embedded spaces, are
assigned to file.

A problem with this program is the unwanted display of output
from the grep command. If you want to dispose of the system
response to the grep command in your program, use the file
[dev[null, changing the if command line to the following:

3-72 Start Here

UNIX Essentials

(

(

if grep $word $file > /dev/null

if...then...else Conditional Constructs

In the event that the command in the if clause of the if...then con-
struction is false, use an else clause issue an alternative set of com-
mands.

if commandl
then
commandl

last command
else
commandl

°

last command

You can now improve your search command so it tells you when
it cannot find a word, as well as when it can. The following screen
shows how your improved program looks:

Stardent 1500/3000: catsearch (<}
echo Type in the word and the file name.
read word file
if
grep S$word $file >/dev/null
then
echo You found it!
echo $word is in $file
else
echo Tough luck, the word wasn’t there!
echo $word is NOT in $file
fi
Stardent 1500/3000:

PSS
B-2. Basics: The Shell.
(continued)

UNIX Essentials

Start Here 3-73

B-2. Basics: The Shell
(continued)

The test Command for Loops

The test command, which checks to see if certain conditions are
true, is a useful command for conditional constructs. If the condi-
tion is true, the loop continues. If the condition is false, the loop
ends and the next command is executed. Some of the useful
options for the test command are

test —r file
True if the file exists and is readable.

test —w file
True if the file exists and has write permission.

test —x file
True if the file exists and is executable.

test —s file
True if the file exists and has at least one character.

test varl —eq var2
True if varl equals var2.

test varl —ne var2
True if varl does not equal var2.

The following executable shell program named mv.ex moves all
the executable files in your current directory to your bin directory.
This program uses the test —x command in the do...done loop to
select the executable files. The variable SHOME gives the path to
the login directory. $HOME/bin gives the path to your bin.

Stardent 1500/3000: catmv.ex)

for file
do
if test —x $file
then
mv $file SHOME/bin/$file
fi
done

Stardent 1500/3000:

The next example shows you how to test the mv.ex command
using all the files in the current directory, specified with the *
metacharacter as the command argument. The command lines
shown in this example execute the mv.ex from the current direc-
tory and then change to bin and list the files in that directory. All
executable files should be in bin.

3-74 Start Here

UNIX Essentials

Stardent 1500/3000: mv.ex*
Stardent 1500/3000: cd;cdbin;ls
list_of_executable_files

Stardent 1500/3000:

Using the Test Command With Return Codes

The test command can be used along with return codes to permit
you to execute a command only if a previous command executes
successfully. For example, the following program reads in a word
and a file and sends the file to the line printer only if the word is
in the file.

Stardent 1500/3000: cat maybe.print

echo Please type in the word and file name, separated by a space:

read word file
grep S$word $file > /dev/null
if test "$?" -eq "O"

then

echo The word was found, the file will be printed.

lpr $file
else
echo Sorry, the word is not in the file.
fi
Stardent 1500/3000:

case..esac Conditional Constructs

The case...esac construction has a multiple choice format that
allows you to choose one of several patterns and then execute a
list of commands for that pattern. The pattern statements must
begin with the keyword in, and a) must be placed after the last
character of each pattern. The command sequence for each pat-
tern is ended with ;. The case construction must be ended with
esac (the letters of the word case reversed).

The general format for the case construction is

case word
in(=)
patternl)
command line 1)

last command line (=)
A=)

B-2. Basics: The Shell
(continued)

UNIX Essentials

Start Here 3-75

- - |
B-2. Basics: The Shell

(continued)

pattern2) (=)
command line 1(=)

last command line (=)
s
pattern3) (=)
command line 1[=)

last command line =)
=)
*) [
command 1

last command
5
esac

The case construction tries to match the word following the key-
word case with the pattern in the first pattern section. If there is a
match, the program executes the command lines after the first pat-
tern and up to the corresponding ;;.

If the first pattern is not matched, the program proceeds to the
second pattern. Once a pattern is matched, the program does not
try to match any more of the patterns, but goes to the command
following esac.

In the following example the set.term shell program contains an
example of the case..esac construction. This program sets the
shell variable TERM according to the type of terminal you are
using. In this example, the terminal is a Teletype 4420, Teletype
5410, or Teletype 5420.

set.term first checks to see whether the value of term is 4420. If it
is, the program makes T4 the value of TERM, and terminates. If
the value of term is not 4420, the program checks for other values:
5410 and 5420. It executes the command under the first pattern it
finds, and then goes to the first command after esac.

Notice the use of * as the last pattern in the case statement. The
special character * matches any character string and so allows you

3-76 Start Here

UNIX Essentials

to give a set of commands to be executed if no other pattern
matches. To do this, it must be placed as the last possible pattern
in the case construct, so that the other patterns are checked first.
This provides a useful way to detect erroneous or unexpected
input.

(Any of the metacharacters *, ?, and [] can be used as part of a
pattern in a case statement. This permits the use of the file name
expansion for added flexibility.)

Here the * pattern is used to warn that you do not have a pattern
for the terminal specified and allows you to exit the case con-
struct.

Stardent 1500/3000: catset.term (<)
echo If you have a TTY 4420 type in 4420
echo If you have a TTY 5410 type in 5410
echo If you have a TTY 5420 type in 5420
read term
case Sterm

in

4420)

TERM=T4
5410)

TERM=T5
5420)

TERM=T7

*)
echo not a correct terminal type
esac
export TERM
echo end of program
Stardent 1500/3000:

Notice the use of the export command. You use export to make a
variable available within your environment and to other shell pro-
cedures.

B-2. Basics: The Shell
(continued)

UNIX Essentials

Start Here 3-77

|
B-2. Basics: The Shell

(continued)

Unconditional Control Statements: the break and continue
Commands

The break command unconditionally stops the execution of any
loop in which it is encountered, and goes to the next command
after the done, fi, or esac statement. If there are no commands
after that statement, the program ends.

In the example for set.term, you could have used the break com-
mand instead of echo to leave the program, as the next example
shows:

Stardent 1500/3000: catsetterm (=)
echo If you have a TTY 4420 type in 4420
echo If you have a TTY 5410 type in 5410
echo If you have a TTY 5420 type in 5420
read term
case S$term
in
4420)
TERM=T4
5410)
TERM=T5
5420)
TERM=T7
*)
break
esac
export TERM
echo end of program
Stardent 1500/3000:

The continue command causes the program to go immediately to
the next iteration of a loop without executing the remaining com-
mands in the loop. It can be used to simplify complicated con-
structs such as if - then - else statements nested within while - do
or for loops. It is less commonly used than the other constructs
discussed here.

Debugging Programs

At times you may need to debug a program to find and correct
errors. There are two options to the sh command (listed below)
that can help you debug a program:

3-78 Start Here

UNIX Essentials

sh —v shellprogramname
Prints the shell input lines as they are read by the system.

sh —x shellprogramname
Prints commands and their arguments as they are executed.

Here is an example to show how debugging works. The execut-
able program in.dir uses the command basename, which strips
off any prefix ending in / from a file or directory name. basename
works as follows:

Stardent 1500/3000: basename /usr/starship/draft/outline
outline
Stardent 1500/3000:

in.dir accepts as input the full pathname of a file. It checks to see
if the file is in the current directory. If yes, a message to that effect
is printed. If not, a different message is printed.

Stardent 1500/3000: catin.dir (=)
ls ‘basename $1‘' > /dev/null
if test "§?" -eqg "O"

then

echo The file is in the directory!
else

echo Sorry, the file is not in the directory!
fi

The program uses command substitution on the first line, substi-
tuting the output of the basename command into the 1s com-
mand. Notice the grave accents (..") that are required for com-
mand substitution to work. It then uses the return code to deter-
mine whether or not the 1Is command was successful, and prints
an appropriate message. For example, suppose you are in the
directory [usr/starship/draft, which contains the file outline. Run the
program as follows:

Stardent 1500/3000: in.dir/usr/starship/draft/outline
The file is in the directory!
Stardent 1500/3000:

Now suppose you wrote this program, but instead of using grave
accents around the basename command you used single quotes.
You would get the following incorrect output:

B-2. Basics: The Shell
(continued)

UNIX Essentials

Start Here 3-79

B-2. Basics: The Shell
(continued)

Stardent 1500/3000: in.dir /usr/starship/draft/outline
Sorry, the file is not in the directory!
Stardent 1500/3000:

To help find the mistake, issue the following debugging com-
mand:

sh -x in.dir /usy/starship/draft

Here is the result:

Stardent 1500/3000: sh -xin.dir /usr/starship/draft/outline
+ ls basename $1

basename $1 not found

+ test 2 =0

+ echo Sorry, the file is not in the directory!
Sorry, the file is not in the directory!

Stardent 1500/3000:

(The lines with the prefix + represent lines in the program. They
are printed as they are executed. The other lines represent actual
output of the program.)

You can see the problem with this output. The s command is not
being run on the actual file name. Instead, the shell believes that
the string "basename $1" is the name of the file. Consequently the
test fails, and the wrong answer is given.

Compare the output of the debugging command when the grave
accents are restored to the program:

Stardent 1500/3000: sh -x in.dir /usr/starship/draft/outline
+ basename /usr/starship/draft/outline

+ 1ls outline

+ test 0 =0

+ echo The file is in the directory!

The file is in the directory!

You can see that the program takes the basename of the right file,
and that the test is executed correctly.

To debug pipelines use the tee command. While simply passing
its standard input to its standard output, it also saves a copy of its
input into the file whose name is given as an argument.

3-80 Start Here

UNIX Essentials

The general format of the tee command is
commandl | tee saverfile | command2

saverfile is the file that saves the output of commandl for you to
study. ’

For example, say you want to check on the output of the grep
command in the following command line:

who | grep $1 | cut —c1-9

You can use tee to copy the output of grep into a file called check,
without disturbing the rest of the pipeline.

who | grep $1 | tee check | cut —c1-9 '

The file check contains a copy of the grep output, as shown in the
following screen:

Stardent 1500/3000: who | grep mlhmo | tee check | cut —c1-9
mlhmo

Stardent 1500/3000: catcheck

mlhmo tty6l Apr 10 11:30

Stardent 1500/3000:

B-2. Basics: The Shell
(continued)

The C-shell is an enhanced version of the shell that can be used
instead of the shell as a command interface and programming
language. Its most useful capabilities include

* A history feature that gives you shorthand ways of repeating
or altering previously issued commands.

e An alias feature that gives you a simple way of modifying or
redefining commands.

* A job control feature to move processes back and forth
between the foreground and background, and to start or
stop processes.

The C-shell also has programming capabilities not available in the
shell, and the ability to define numeric and array variables.

A description of the C-shell can be found in the Commands Refer-
ence Manual. (Also, see the Preface to this guide for information
about books that contain more about the C-shell.) This section

The C-Shell

UNIX Essentials

Start Here 3-81

B-2. Basics: The Shell
(continued)

describes the history and alias features.

Using the C-Shell

Your environment may already be set up so that you use the C-
shell whenever you log in, or you can choose to invoke the C-shell
in a particular session. You may also assign individual windows
to run the shell or the C-shell.

To find out whether you are currently running the C-shell, issue
the ps command:

Stardent 1500/3000: ps

PID TTY TIME COMMAND
218 sxt002 0:00 csh
271 sxt002 0:01 ps

Stardent 1500/3000:

In this example the C-shell is running, as indicated by "csh" as the
first command. If the shell were running, "sh" would have been
printed instead. To move from the shell to the C-shell you use the
command

csh
To move from the C-shell to the shell you type
sh

To set up your environment to run the C-shell, a file called
Jetc/passwd] must be edited. (This should be done by your system
administrator. If you are responsible for your own system
administration, see The Jetc/passwd File in the System
Administrator’s Guide.)

The C-shell programming language includes many more capabili-
ties than the shell; however, any shell programs can be run in the
C-shell environment (as long as the code for the program resides
in a file). Files containing C-shell programs must have a # as their
first character. '

3-82 Start Here

UNIX Essentials

B-2. Basics: The Shell
(continued)

The C-Shell History Feature

The C-shell history feature allows you to return to previously
issued commands, to reissue, modify, or simply remember them.
You use the history command to get a list of recently issued com-
mands:

Stardent 1500/3000: history (<)
1 mail
1ls
cd /usr/rocket/work/cpgms
1ls -1
vi eval.c
cd /usr/bjm
history

N oy O W N

As the example shows commands are listed by number with the
most recent commands listed last. The number of commands
listed is determined by the history variable. (See Modifying Your
Login Environment below.)

You have various options for reissuing a command. In each case
you begin with an exclamation mark (!) on the command line.
Typing just two exclamation marks repeats the last command
issued. Here are two of the most useful options.

e Using the number of the command. For instance, typing !3
repeats the cd command in the above example.

* Using the command name, which may be truncated. For
instance, typing !v repeats the vi command in the above
example. Typing !l (=) repeats the most recently issued com-
mand that matches the pattern (command 4 in the example.)

To alter a previously issued command you use the substitution
capability. For instance, suppose you decide you want to move to
directory /usr/rocket/work/fpgms. Issue the following command:

13:s/cpgms/fpgms/

The 3 refers to command 3 (in the above example), the colon (:) is
a delimiter, and the remainder of the command shows you are
substituting the directory fpgms for cpgms. The C-shell uses line
editor commands for altering previously issued commands. See
ed(1) in the Commands Reference Manual for a description of line
editor commands.

UNIX Essentials Sta_rt Here 3-83

B-2. Baslcs: The Shell
(continued)

The C-Shell Alias Feature

The C-shell gives you a simple way of redefining commands.
This is useful if you want to shorten some frequently-used but
lengthy commands, or if you always use certain options and don’t
want to have to list them explicitly. You use the following for-
mat:

alias entered_command executed_command

Here are a couple of examples.

Stardent 1500/3000: aliaslsls-1 (<)
Stardent 1500/3000; alias cdprog cd /usr/rocket/work
Stardent 1500/3000:

The first example shows the Is command redefined so that the
long option, -1is invoked every time. The second example gives a
shorthand command, cdprog, for moving to a particular direc-
tory. Here is the result of defining the command cdprog:

Stardent 1500/3000: cdprog
Stardent 1500/3000: pwd (<)
/usr/rocket/work

Stardent 1500/3000:

To get a list of current aliases, type

alias

Modifying Your Login
Environment

Every time you log in to your system the shell executes one or
more special "dot" files in your home directory. These files con-
trol your login environment and can be customized as you wish.
If you are using the standard shell, a file named .profile (pro-
nounced "dot profile") is executed; if you are using the C-shell,
two files, .login and .cshrc are executed. The .profile or .login and
.cshre files allow you to set the values of shell variables such as
TERM and PATH and to set terminal options such as BACK-
SPACE. (See Named Variables in this chapter for more on shell
variables.)

It is a good idea to customize all three files (.profile, .login, .cshrc)
if you want the option of using either shell interface. Procedures
for modifying these files are described below.

3-84 Start Here

UNIX Essentials

B-2. Basics: The Shell
(continued)

Because the .profile is a file, it can be edited and changed to suit
your needs. You may already have made some of the changes
described earlier in this guide, for instance, adding the name of
your terminal so use the vi editor.

Before making any changes to your .profile, make a copy of it in
another file called safe.profile. This ensures that you can recover
your current .profile in the event you don’t like the changes you
have made. Type

cp .profile safe.profile

You can now add commands to your .profile just as you do with
any other shell program. Practice adding commands to your
profile. Edit the file and add the following echo command to the
last line of the file:

echo Hello! Let’'s Go!

Whenever you want to implement changes to your .profile during
the current work session you may do so by using the . (dot) shell
command. This executes the commands in your .profile thus reini-
tializing your environment: Try this now. Type

. .profile
The system should respond with the following:
Hello! Let’s Go!
An Example .profile

Here is an example .profile that contains terminal settings and
reserved variable assignments.

Stardent 1500/3000: cat.profile
stty —-tabs

stty echoe

PATH=SPATH:$HOME /bin:/project/lib
TERM=vt100

EDITOR=vi

PS1=<>

export PATH TERM PS1 EDITOR

a message:

echo Hello! Let’s go!

Modifying Your .profile

UNIX Essentials

Start Here 3-85

B-2. Basics: The Shell
(continued)

(The line beginning with # is a comment.) The next sections
describe some of the modifications you may want to make to your

profile.

Setting Terminal Options

The stty command can make your shell environment more con-
venient. Three commonly used options are —tabs, erase @),
and echoe.

stty —tabs
This option preserves tabs when you are printing. It
expands the tab setting to eight spaces, which is the default.
(See stty(1) in the Commands Reference Manual for more on
the tabs options.)

stty erase
This option allows you to use the erase key on your key-
board to erase a letter, instead of the default character #.

Usually @ is the erase key.

stty echoe
This option erases characters from the screen as you erase
them with &

If you want to use these options for the stty command, just add
the appropriate command lines to your .profile as in the above
example.

Using Shell Variables

The values of reserved shell variables can be set in your .profile.
(See Named Variables in this chapter for a full list of reserved vari-
ables.) First, to see what variables have already been set, issue the
env (environment) command:

env

As the following example (for login rocket) shows, you may have
numerous variables already set, either in your .profile, or in other
files used in system administration.

3-86 Start Here

UNIX Essentials

L
B-2. Basics: The Shell
(continued)

Stardent 1500/3000: env (<
LOGNAME=rocket
HOME=/usr/rocket
PATH=SPATH: $HOME /bin:/usr/bin: /usr/lib
CDPATH=. : SHOME

TERM=vt100
MAIL=/usr/mail/rocket
TZ=PST8PDT

PS1=Stardent 1500/3000:
PS2=>

Stardent 1500/3000:

If you are interested in the value of a particular shell variable, you
can issue the following command:

echo $variable_name

If you wish to set the values of any variables not yet defined, or if
a variable is defined incorrectly, make the additions or changes in
your .profile. To do so you must both add an assignment line of
the form

VARIABLE=value
and make sure that the variable is "exported", by adding the line
export VARIABLE

to the .profile. (If your .profile already has an export line you can
simply add the new variable to it. See the example .profile above.)

Here are a few of the variables you may want to set.

PATH
This variable gives the search path for finding and executing
commands. Notice the line in the example .profile above:

PATH=$PATH:$HOME/bin:/project/lib

This line, defining the value of the variable PATH, gives a
list of pathnames where the shell should search for execut-
able programs. The colons (:) are delimiters between the
pathnames assigned to the variable PATH.

The first element in the list, $PATH, includes pathnames to
executable programs that you get automatically as a user of
the system (pathnames such as /usr/bin and /etc/passwd). It is
necessary to include $PATH in the list since you are
redefining the value of the variable PATH.

UNIX Essentials Start Here 3-87

B-2. Basics: The Shell
(continued)

NOTE
Don’t forget to export all the
variables you set in your .profile!

The next pathname, $HOME/bin, gives the path to the bin
directory in the user’s home directory. The last pathname,
[project/lib, gives the path to the directory /project/lib, a library
of executable programs for the user’s project.

If you wish to add a pathname to a list such as this, simply add a
colon (:) and the desired pathname to the end of the line.

TERM
This variable tells the shell what kind of terminal you are
using. Add a line of the form :

TERM-=terminal_name

to your .profile. (See the example .profile above.) It is necessary to
assign the value of TERM if you plan to use a screen editor such
as vi.

EDITOR
This variable tells the system what screen editor you are
using. (It is required by some system programs.) To indicate
that you are using the vi editor, add the line

EDITOR=vi
to your .profile.

PS1
This variable sets the primary shell prompt string (the
default is Stardent 1500/3000:).

Try the following example. Note that to use a multi-word
prompt, you must enclose the phrase in quotes. Type the
following variable assignment in your .profile, and export the
variable PS1. Then execute your .profile (with the . com-
mand) and watch for your new prompt sign.

Stardent 1500/3000: ..profile
Your command is my wish:

You can also put any messages or commands you wish to run
automatically when you log in, in your .profile. For instance, if
you add the command who to the file, the system will tell you
who is currently logged on every time you log in.

3-88 Start Here

UNIX Essentials

(

B-2. Basics: The Shell
{continued)

and .cshrc Files" Modifying your C-shell environment is analogous
to modifying your shell login environment, but with some impor-
tant differences. (Because of the similarities, be sure to read Modi-
fying Your profile above before reading this section.)

e Many of the C-shell variable names are different. (For
instance, you use path (lower case) instead of PATH to
define the search path for commands and prompt instead of
PS1 to set the system prompt. See csh(1) in the Commands
Reference Manual for a complete list of C-shell variables.)
You can, however, set the values of some standard shell vari-
ables.

e The syntax for setting the values of variables is different.
e You use two files: .login and .cshrc.

The .login file is executed once, when you log in (just like the
profile). Like the .profile it should be used for terminal settings
and setting the values of environment (or global) variables such as
term and path. '

The .cshre file is executed every time a new C-shell is invoked.
This happens at various times, including when you log in, when
you open a new window and run the C-shell, when you change
from the shell to the C-shell (using the csh command, or when
you execute a program written in the C-shell programming
language. The .cshrc file should be used for setting C-shell vari-
ables such as history and commands such as alias, which by their
nature only retain their values within a given shell.

To set terminal options in your .login file use the same command
you used in your .profile. (See Setting Terminal Options above.)
The only difference is that the C-shell allows you to define several
options on one line (see the example below).

To assign the values of environment variables use the setenv com-
mand:

setenv variable value
To assign the values of C-shell variables use the set command:

set variable = value

Modifying Your C-Shell
Environment: The .login

NOTE

There is no firm rule about
should be included in the .login
file versus the .cshrc file; in fact,
various people have differing
philosophies. Use the
explanation here as a general
guideline, not as the last word.

UNIX Essentials

Start Here 3-89

(continued)

B-2. Basics: The Shell

No "export" line is needed in either case.

Here are examples of a .login and a .cshrc file.

Stardent 1500/3000: cat.login
stty erase echoe

setenv path (. /usr/bin $home/bin)
setenv term vt1l00 : i
echo Hello, Let’s Go!-

Stardent 1500/3000: cat.cshrc

set history = 10

set noclobber

set prompt = ’<<>>’

alias 1s 1s -1

alias cdgrades cd $Shome/students/grades
Stardent 1500/3000: '

C. Resources

For: more informatioh on UNIX ‘commands, see the Commands
Reference - Manual (#340-0103-00) and the -two volumes of the
Programmer’s Reference Manual (#340-0121-00 and #340-0122-00).

The command man man will give you information about the avai-
lability of on-line command information.

General Literature

SR. Bourne: The UNIX System. Addison-Wesley, 1982.

Kaare Christian: The UNIX Operating System. John Wiley & Sons,
1983.

Fiedler & Hunter: UNIX System Administration. Hayden Books,
1986.. : .

Kerninghan & Pike: The UNIX Programming Environment.
Prentice-Hall, 1984. : s

McGilton & Morgan: Introducing the UNIX System. McGraw-Hill,
1983. , :

Prata & Martin: UNIX System VBible. Howard W. Sams & Co.,
Inc., 1987.

3-90 Start Here

UNIX Essentials

C. Resources
(continued)

Mark G. Sobell: A Practical Guide to the UNIX System.
Benjamin/Cummings, 1984.

Thomas & Yates: A User Guide to the UNIX System.
OSBORNE/McGraw-Hill, 1982.

Waite, Martin, Prata: UNIX Primer Plus. Howard W. Sams & Co.,
Inc., 1983.

UNIX Essentials Start Here 3-91

C. Resources
(continued)

D. Quick Reference

Operation

Command

change directory

cd directoryname

change existing permissions

chmod who+permission file(s)

copy file cp filel file2

count lines, words, characters wec option(s) filename
determine existing permissions Is -1

differences between files diff filel file2

execute commands in succession

commandl; command2; command3

list all filenames Is-a

list directory contents Is

list files in long format Is-1

list files in short format Is -CF

make new directory mkdir directoryname
merge files cat filel <return> sort filel file2
move file mv filel file2

peruse file contents pg filename

print hardcopy Ip option(s) filename
print file on screen cat directoryname
print partially formatted file pr filename

print working directory pwd

remove empty directory

rmdir directoryname

remove file rm file(s)

rename file mv filel file2
return to home directory cd

search file for pattern grep pattern file(s)
sort file sort file(s)

3-92 Start Here

UNIX Essentials

THE vi
EDITOR

A. Session One: Commands you need to start using the text
editor.

B. Basics: To get you up and away for most writing and edit-
ing tasks you may have.

C. Resources: Where to find more information about vi.

D. Quick Ref: A list of the most important editing commands.

This chapter is a guide to the visual screen editor, covering many
of the editor commands for creating and editing files. It guides
you through the following tasks:

Set up the shell environment for using vi.
Enter vi, create text, write the text to a file, and quit.
Move text within a file.

Cut and paste text.

“Escape’” (return) to the shell temporarily to execute shell

commands.
Use line editing commands within vi.
Edit several files in the same session.

Recover a file lost by an interrupt to an editing session.

CHAPTER FOUR

Contents

Introduction

The vi Editor

Start Here 4-1

For a complete reference to vi commands see the vi(1) pages in the
Commands Reference Manual.

A. Session One

Start vi

vi filename

Start writing
i (to insert)
Stop writing
Esc key to change to command mode

Stop writing and save file
Esc and ZZ (note capital Z)

B. Basics

The vi editor functions in three different modes: command, input,
and last line mode:

. In command mode, keystrokes result in issuing commands
to add, delete and rearrange text.

* Ininput mode, you add text to the file.

* Last line mode is for line editor and pattern search com-
mands.

vi provides a window for the file you are editing. To see and edit
different parts of the file, scroll backward and forward within it.
Figure 4-1 shows the view into the file you are editing.

4-2 Start Here

The vi Editor

TEXT FILE
You are in the screen editor.

This part of the file is above
the display window. You can
place it on the screen by
scrolling backward.

This part of the file
is in the display window.

You can edit it.

This part of the file is below
the display window. You can
place it on the screen by
scrolling forward.

Figure 4-1. Displaying a File with a vi Window

B. Basics
(continued)

This section is about starting vi. It introduces a few basic com-
mands, most of which are described more fully later in this
chapter.

Terminal Name

Before use vi you must provide the system with the name or type
of the terminal you are using. Normally this information is con-
tained in your .profile, a dot file in your home directory that is
automatically executed every time you log in. (If the C-shell com-
mand interpreter is used, add your terminal type to your .login
file. See Modifying Your C-Shell Environment in Chapter 3.)

Use the pg command to see if your .profile contains these two lines:

TERM=terminal_name
export TERM

Getting Started

The vi Editor

Start Here 4-3

e
B. Basics

(continued)

If these lines are not in your .profile file, add them by typing at the
system prompt:

Stardent 1500/3000: TERM=terminal_name[—=)
Stardent 1500/3000: export TERM (=]
Stardent 1500/3000:

If you plan to use vi regularly, be sure to add these lines to .profile;
otherwise you must type them every time you log in. See Modify-
ing Your Login Environment in Chapter 3 for more on the .profile
file.

You can always check to see if the terminal name has been set,
whether or not you are currently in your home directory, by typ-
ing

echo $TERM

If your terminal type has been set the system shows it; if not, you
will see just the system prompt.

Stardent 1500/3000: echo $TERM (=)
vt100
Creating a File
To use vi to create a file, type
vi filename

where filename is the name of the file about to be created. (To edit
an existing file, use the same procedure.) For example, to create a
file named stuff, type

vi stuff

When you type the vi command with the filename stuff, vi clears
the screen and displays a window in which you can enter and edit
text.

4-4 Start Here

The vi Editor

"stuff" [New file]l

The __ (underscore) on the top line shows the cursor waiting for
you to enter a command there. Every other line is marked with a
~ (tilde), the symbol for an empty line.

If, before entering vi, you did not set your terminal configuration
as explained in Getting Started, above, you see an error message:

Stardent 1500/3000: vistuff(«2]
terminal_name: unknown terminal type

[Using open mode]
"stuff" [New file]

You cannot set the terminal configuration while you are in vi; it
must be done in the shell, at the system prompt. Leave the editor

by typing
:q
Now set the correct terminal configuration.

If vi doesn’t allow you to return to the shell, check the error mes-
sage and chances are it will tell you what to do. For example,
there may be a message that you should use q! instead of just q.
Follow the instructions on the screen.

Once you have successfully entered vi and opened a file, you are
in command mode. To create text:

e Give the insert command by pressing (i). This puts you in
input mode so that you may type text into the file.

B. Basics
(continued)

Creating Text: The Input
Mode

The vi Editor

Start Here 4-5

]
B. Basics
(continued)

* Typeinseveral lines of text. Make the text lines as long or as
short as you wish.

e Press the (=) key after each line.

Leaving Input Mode

When you finish creating text press to leave input mode and
return to command mode. Here is an example:

(f)Create some text
in the screen editor («)
and return to
command mode.

If you press and a bell sounds, you are already in command
mode. The text in the file is not affected by this, even if you press
several times.

Editing Text: the
Command Mode

The vi editor offers an array of commands to enable you to move
within a file.

Basic Cursor Movement Commands

The following commands move the cursor around the screen:

n Moves the cursor down n lines. Without an # number
specified, the cursor is moved down one line.

n Moves the cursor up n lines. If the n is omitted, the
cursor is moved up one line.

n Moves the cursor n characters to the left. If you don't
specify a number, the cursor is moved one character to
the left.

n Moves the cursor n characters to the right. If the 7 is

omitted, the cursor is moved one character to the right.

Like most vi commands, the (3), (J, (1), and commands are
silent, meaning that they do not appear on the screen when you
enter them. The only time you should see characters on the

4-6 Start Here

The vi Editor

screen is when you are in input mode and are adding text to your
file, or when you are in last line mode, in which case characters
only appear on the last line of your screen. If the cursor move-
ment letters appear on the screen you are still in input mode.
Press the key to return to command mode and try the com-
mands again.

The and commands maintain the column position of the
cursor. For example, if the cursor is on the seventh character from
the left, it goes to the seventh character on the new line when you
type (3 or (&. If there is no seventh character on the new line the
cursor moves to the last character.

You can also use the arrows on your keyboard’s number pad to
move the cursor. Before doing so just make sure the number lock
indicator is off. The number pad arrow keys correspond to the
cursor movement keys discussed above: the (1) key is equivalent
to (3), the (A key to (3), the G key to (1), and the & key to (1.

In addition to (®)and (3, (space bar) and @) (backspace) can
be used to move the cursor right or left to a character on the
current line.

n Moves the cursor n characters to the right. If
the n is omitted the cursor is moved one
character to the right.

Moves the cursor n characters to the left. If
the n is omitted the cursor is moved one
character to the left.

If you cannot go any farther, vi sounds a bell. This is true for all
cursor movement commands.

Deleting Text

If you want to delete a character, press (x). Pressing in the
command mode deletes the character under the cursor and the
line readjusts to the change. In general,

n Deletes n characters, where n is the number of charac-
ters you want to delete. If no number is given, only
one character is deleted.

In the following examples the arrows under the letters show the
positions of the cursor.

B. Basics
(continued)

The vi Editor

Start Here 4-7

L ————————
B. Basics

(continued)

- (

Hello wurld

Hello wrld

To delete the second occurrence of the word deep from the text
shown in the following screen, put the cursor on the first letter of
the string you want to delete and delete five characters (for the
four letters of deep plus an extra space).

(’

Tomorrow the Loch Ness monster
shall slither forth from
the deep dark deep depths of the lake

Tomorrow the Loch Ness monster |
shall slither forth from

the deep dark depths of the lake.

Notice that vi adjusts the text so that no gap appears in place of
the deleted string.

Adding Text

To add text use the (I) (insert) or (3] (append) commands. To add
text with the insert command, move the cursor to the place where
you want to insert text and press and start entering text. As
you type, the new text appears on the screen to the left of the

4-8 Start Here The vi Editor

cursor. The character under the cursor and all characters to the
right of the cursor move right to make room for the new text. The
vi editor continues to accept characters you type (including =)
until you press (9. If necessary, the original characters even
wrap around onto the next line.

(,‘ Hello Wrld

@ o &

Hello World

Use the append command in the same way. New text appears to
the right of the cursor, not on the left as is the case with insert.

When you enter vi, a copy of the file you want to edit is placed in
a buffer. During your editing session all changes are made to the
copy of the file, not to the original. To save your work you must
make an explicit request.

To save the buffer contents in a file and return to the shell, hold
down and press (z) twice (@)). The editor remembers the
file name you specified with the vi command at the beginning of
the editing session and moves the buffer text to the file of that
name. A notice at the bottom of the screen gives the file name and
the number of lines and characters in the file. The shell then gives
you a prompt.

B. Basics
(continued)

Quitting vi

The vi Editor

Start Here 4-9

B. Basics
(continued)

(&)This is a test file.
Iam adding text to

a temporary buffer and
now it is perfect.

1 want to write this file,
and return to the shell.

"stuff" [New file] 7 lines, 151 characters
Stardent 1500/3000:

You can also use the :w and :q commands of the line editor to
write a file and quite the editor. Using them places you in last line
mode. You see the commands appear on the last line of your
screen as you type them; then, as with many of the last line com-
mands, the command disappears when you press (.

W Writes the buffer to a file.

:q Leaves the editor and returns you to the shell.

wq Writes the buffer to a file and returns you to the shell.
(&]This is a test file.
I am adding text to

a temperary buffer and
now it is perfect.

I want to write this file, (=)
and return to the shell.

:wq (=)
Stardent 1500/3000:

Moving the Cursor
Around the Screen

In addition to (3),), (), (@O, and (=g, various other com-
mands can help you move the cursor around the screen quickly.
The following paragraphs explain how to move the cursor by
characters on a line, by lines, by words, by sentences, by para-
graphs, and within the window.

4-10

Start Here

The vi Editor

Moving the Cursor to the First or Last Character of a Line

To move to the beginning or end of a line use the following com--

mands.

Puts the cursor on the last character of a
line.

(0) (zero) Puts the cursor on the first character of a
line.

(circumflex) Puts the cursor on the first nonblank char-

acter of a line.

The following examples show the movement of the cursor pro-
duced by each of these three commands.

/’7 Go to the end of the line!

Go to the end of the line!

f

Go to the beginning of the line!

@

Go to the beginning of the line!

Go to the first character
of the line
that i1s not blank!

Go to the first character
of the line
that is not blank!

1
B. Basics

(continued)

The vi Editor

Start Here 4-11

B. Basics
(continued)

Move the Cursor to a Specific Character on a Line

The following commands allow you to search for a specific char-
acter within a line.

Bx

®x

O x

@ x

a

@)

Moves the cursor to the right to the specified character
X.

Moves the cursor to the left to the specified character x.

Moves the cursor right to the character just before the
specified character x.

Moves the cursor left to the character just after the
specified character x.

Continues the search specified in the last command, in
the same direction.

Continues the search specified in the last command, in
the opposite direction.

For example, in the following screen vi searches to the right for
the first occurrence of the letter A on the current line.

(’k Go forward to the letter A on this line.

Go forward to the letter A on this line.

Moving the Cursor Line by Line

In addition to the commands and (k) described above, use the
commands (), (], and to move the cursor to other lines.

4-12 Start Here

The vi Editor

n(=) Moves the cursor up n lines.

n orn
Moves the cursor down n lines.

For each of these commands, if the n is omitted the cursor is
moved one line. If there are too few lines to move in the desired
direction, the cursor remains on the current line and a bell sounds.

Moving the Cursor Word by Word

The vi editor considers a word to be a string of characters that
may include letters, numbers, or underscores. There are six word

positioning commands: (), (&), (&), @, B, and E).

The lower case commands treat any character other than a letter,
digit, or underscore as a delimiter, signifying the beginning or
end of a word. The beginning or end of a line is also a delimiter.
The upper case commands treat punctuation as part of the word;
words are delimited only by blanks, tabs, and newlines.

The following is a summary of the word positioning commands.
Each command accepts 7 as a prefix, allowing you to move by #
words rather than one. For each command the end of the line
does not stop the movement of the cursor; instead, the cursor
wraps around and continues counting words.

or Moves the cursor forward to the first char-
acter in the next word, where word is as
defined above.

(e) or Moves the cursor forward in the line to the
last character in the next word, where word
is as defined above.

(&) or (B Moves the cursor backward in the line to
the first character of the previous word,
where word is as defined above.

B. Basics
(continued)

The vi Editor

Start Here 4-13

B. Basics
(continued)

/’> The 'w’ (word) command
leaps word by word through the
file. Move from THIS word forward

@

six words to THIS word.

Go to the end of the word, now.

(&)

Go to the end of the word, now.

Moving the Cursor Sentence by Sentence

The vi editor also recognizes sentences. In vi a sentence ends in
!'"or . or ?. If these delimiters appear in the middle of a line,
they must be followed by two blanks for vi to recognize them.

You can move the cursor from sentence to sentence in the file with
the (0 (open parenthesis) and () (close parenthesis) commands.
Each accepts 7 as a prefix, allowing you to move by n sentences.

Moves the cursor to the beginning of the current sen-
tence.
Moves the cursor to the beginning of the next sentence.
4-14 Start Here The vi Editor

Suddenly we spotted whales in the
distance. Daniel was the first to see them.

!

distance. Daniel was the first to see them.

!

Moving the Cursor Paragraph by Paragraph
Paragraphs are recognized by vi if they begin after a blank line.
Each of the following paragraph movement commands accepts n

as a prefix, allowing you to move by n paragraphs.

These are dummy spaces for new text.

Moves the cursor to the beginning of the current para-
graph.

Moves the cursor to the beginning of the next para-
graph.

Moving the Cursor Within the Window

The vi editor has three commands for moving the cursor around
the window. (See Figure 4-2).)

B. Basics
(continued)

Moves the cursor to the first line in the window.
Moves the cursor to the middle line in the window.
Moves the cursor to the last line in the window.
The vi Editor Start Here 4-15

B. Basics
(continued)

Moving the Cursor
Outside the Window

vi allows you to move throughout your file, scrolling forward or
backward, going to a specified line, or searching for a pattern.

This part of the file is above
the display window.

[Type (Home) to move the cursor here.

Type (Middle) to move the cursor here.

Type (Last line on screen) to move the
cursor here.

This part of the file is below
the display window.

Scrolling the Text

The following commands allow you to scroll the text of a file.

Scrolls forward one full screen.
@ Scrolls forward one half screen.
®) Scrolls backward one full screen.
Scrolls backward one half screen.

The command scrolls the text forward one full window
below the current window. To do this vi clears the screen and
redraws the window. The two lines at the bottom of the current
window are placed at the top of the new window. If there are not
enough lines left in the file to fill the window, the screen displays
a ~ (tilde).

4-16 Start Here

The vi Editor

The (@ command scrolls down a half screen to reveal text
below the window. When you type (d), the text appears to
be rolled up at the top and unrolled at the bottom. The lines
below the screen to appear on the screen, while the lines at the top
of the screen disappear. If there are not enough lines in the file, a
bell sounds.

The (5) command scrolls the screen back a full window to
reveal the text above the current window. To do this, vi clears the
screen and redraws the new window. Unlike the com-
mand, (®) does not leave any reference lines from the previ-
ous window. If there are not enough lines above the current win-
dow to fill a full new window, a bell sounds and the current win-
dow remains on the screen.

The command scrolls up a half screen of text to reveal the
lines just above the window. When the cursor reaches the top of
the file, a bell sounds to signify that you cannot move further.

Moving to a Specified Line

The command positions the cursor on a specified line in the
window; if that line is not currently on the screen, the com-
mand clears the screen and redraws the window around it. If you
do not specify a line, (G moves the cursor to the last line of the
file.

n Moves to the 7 th line of the file.

Moves to the last line of the file.

Line Numbers

Each line of the file has a line number corresponding to its posi-
tion in the buffer. To get the number of a particular line, position
the cursor on it and type (g). A status notice appears at the
bottom of the screen, telling you

e The name of the file.

e If the file has been modified.

e The line number on which the cursor rests.
* The total number of lines in the buffer.

* The percentage of the total lines in the buffer represented by
the current line.

B. Basics
(continued)

The vi Editor

Start Here 4-17

B. Basics
(continued)

(r' This line is the 35th line of the buffer.
The cursor is on this line.

There are several more lines in the buffer.
The last line of the buffer is line 116.

This line is the 35th line of the buffer.
The cursor is on this line.

There are several more lines in the buffer.
The last line of the buffer is line 116.

"file.name” [modified] line 36 of 116 --34%--

T

(=) (g

Searching for a Pattern

of Characters: the /and The fastest way to reach a specific place in your text is by using

? Commands the search commands: /, ?, (1), or . These commands allow
you to search forward or backward in the buffer for the next
occurrence of a specified charactey pattern.

/pattern

?pattern

Searches forward in the buffer for the next
occurrence of the characters in pattern, and puts
the cursor on the first of those characters. For
example, the command line

/Hello world

finds the next occurrence in the buffer of the
words Hello world and puts the cursor under
the H.

Searches backward in the buffer for the first
occurrence of the characters in pattern, and puts
the cursor on the first of those characters. For
example, the command line

?data set design
finds the last occurrence (before your current

position) of the words data set design and puts
the cursor under the d in data.

4-18 Start Here The vi Editor

T S L
B. Basics
(continued)

You can repeat the search commands by typing / or ? in succes-
sion. The editor remembers the last search request (using / or ?)
and repeats it. For example, the command

/find

moves the cursor down to the first occurrence of the word find.
Then the command

/
moves the cursor down to the next occurrence of the word find.

/ and ? are both last line commands. They appear on the last line
of your screen as you type them.

Alternatively, use the commands (r) and [to repeat the pattern
search commands.

Repeats the last search command.
Repeats the last search command in the opposite direc-
tion.

The commands (1) and do not appear on your screen as you
type them.

The pattern search commands do not wrap around the end of a
line to search for a pattern. For example, say you are searching
for the words Hello World. If Hello is at the end of one line and
World is at the beginning of the next, the search command does
not find that occurrence of Hello World. They do, however, wrap
around the end or the beginning of the buffer to continue a
search. If you are near the end of the buffer, and the pattern for
which you are searching (with the (7] pattern command) is at the
top of the buffer, the command finds the pattern.

Note that the and (2) search commands do not allow you to
specify particular occurrences of a pattern with numbers. You can-
not, for example, request the third occurrence (after your current
position) of a pattern.

The vi Editor Start Here 4-19

 e———
B. Basics

(continued)

Creating Text

The following commands allow you to enter text.

B 6 & &

©J

Appends text after the cursor.
Appends text at the end of the current line.
Inserts text before the cursor.

Inserts text before the first non-blank character in the
line.

Creates a blank line below the current line and places
you in input mode. You can issue this command from
any position within the current line.

Creates a blank line above the current line and places
you in input mode. You can issue this command from
any position within the current line.

When you have finished creating text with any of these com-
mands, you press (& to return to command mode.

The following examples compare the append and insert com-
mands. The arrows show the position of the cursor.

/r> Append three spaces AFTER the H of Here

T

8

Append three spaces AFTER the H of H ere

ESC

Insert three spaces BEFORE the H of Here

Insert three spaces BEFORE the H of Here

4-20 Start Here

The vi Editor

B. Basics
(continued)

You can delete text while in input or command mode, and you
can undo entirely the effects of your most recent command.

Deleting Text in Input Mode

Deletes a single character.

@ Deletes all text entered on the current line
since you last entered input mode. The
characters are not actually erased until you

press .

Undoing the Last Command
Undoes the last command issued.

Nullifies all changes made to the current line as long as
the cursor has not been moved from the line.

If you type (9 twice in a row, the second command undoes the
first; your undo is undone! Say you delete a line by mistake and
restore it by typing (9. Typing (&) a second time deletes the line
again.

Deleting Text in Command Mode

The following commands delete characters, words, paragraphs,
and lines. Each command accepts n as a prefix, allowing you to
change n elements of the text at once.

Deletes the character under the cursor.

Deletes from the character under the cursor to the end
of the current word including the spaces (if any) at the
end of the word, or deletes one punctuation mark and
the spaces (if any) that follow it.

Deletes from the beginning of the current paragraph to
the cursor.
@7 Deletes the character under the cursor to the end of the

current paragraph.

Deleting Text

The vi Editor

Start Here 4-21

e
B. Basics

(continued)

Deletes the line with the cursor. If the prefix n is
included n lines are deleted, beginning with the line
containing the cursor. If n is greater than 5, vi
displays this message on the bottom of the screen:

n lines deleted.

If you try to delete more lines than exist in the file, a
bell sounds and no lines are deleted.

D) Deletes from the character under the cursor to the end
of the line.

To delete three words and two commas, type @ ().

(

the deep, deep, dark depths of the lake

SEN)

the depths of the lake

Modifying Text

vi has commands that allow you to delete and create text simul-
taneously.

Replacing Text

The replace commands replace one or more characters with new
text. '

Replaces the current character (the character shown by
the cursor). The command does not initiate text
input mode, so it does not need to be followed by (9.
To replace n characters, use the command with an n
prefix. Again, no (=9 is needed.

4-22 Start Here

The vi Editor

Replaces characters typed over until is pressed. If
the end of the line is reached this command appends

the input as new text.

(rﬁ The circus had many ants.

The clrcus has many ants

To change many to 7777, type

[

The circus has many ants.

The circus has 7777 ants.

Substituting Text

The substitute commands delete one or more characters and place
you in text input mode. After you add text, press (esc.

Deletes the character under the cursor and places you
in text input mode.

]
B. Basics

(continued)

The vi Editor

Start Here 4-23

E.____________ |
B. Basics

(continued)

L~~~ "

Deletes the entire line and places you in text input

mode.

Each version of the substitute command accepts 7 as a prefix.

When you enter the command, the last character in the string
to be replaced is overwritten by a $ sign. Characters are not
erased from the screen until you type over them or leave input
mode (by pressing (&)).

(’7 The word is hat.

T

The word is S$at.

The word 1s scat.

Changing Text

The change commands delete one or more words, lines, sentences,
or paragraphs and place you in input mode. After you change the
text press to leave input mode.

Deletes a word or the remaining characters in a word
and places you in text input mode.

Deletes all the characters in the line and places you in
text input mode.

Deletes the character under the cursor to the end of the
line and places you in text input mode.

Deletes the characters from the left of the cursor to the
beginning of the sentence and places you in text input
mode.

Deletes the character under the cursor to the end of the
sentence and places you in text input mode.

4-24 Start Here The vi Editor

(

(\

Deletes the characters from the left of the cursor to the
beginning of the paragraph and places you in text
input mode.

Deletes the character under the cursor to the end of the

paragraph and places you in text input mode.
Each of these commands accepts n as a prefix.

The and commands use a $ sign to mark the last letter
to be replaced.

/

They are now due to arrive on Tuesday.

They are now due to arrive on Tuesda$.

Wednesday

They are now due to arrive on Wednesday.

Notice that the new word (Wednesday) has more letters than the
word it replaced (Tuesday). Once you have executed the change
command you are in text input mode and can enter as much text
as you want. To return to command mode, press (.

The (© command works in the same way.

B. Basics
(continued)

vi provides a set of commands that cut and paste text within a file,
or allow you to copy a portion of text and place it in another sec-
tion of a file.

Moving Text
Whenever you delete text from the vi buffer the text is saved in a

special temporary buffer until overridden by another deletion.
This provides a way to move text from one place to another. The

Cutting And Pasting Text

The vi Editor

Start Here 4-25

- |
B. Basics
(continued)

(® and (B) commands allow you to do this. The general procedure
is to delete the text, move the cursor to the new location, and then
issue the (p)or (P)command.

® Places the contents of the temporary buffer after the
cursor. If one or more lines were deleted, this com-
mand places them below the line on which the cursor
appears.

® Places the contents of the temporary buffer after the
cursor. If one or more lines were deleted, this com-
mand places them above the line on which the cursor
appears.

To position a partial sentence deleted with the ([©) command into
the middle of another line, position the cursor in the space
between two words, then press (&) ((8)). The partial sentence is
placed after (before) the cursor.

Remember to use the (p) and (P) commands right after a deletion,
since the temporary buffer only stores the results of one command
at a time.

Fixing Transposed Letters

A quick way to fix transposed letters is to combine the (x) and (¢)
commands as (®. deletes the letter. () places it after the
next character.

Notice the error in the next line.

A line of tetx
This error can be changed quickly by placing the cursor under the
t in tx and then pressing the (x)and (p) keys, in that order. The

result is

A line of text

Copying Text

The "yank" commands allow you to copy text to a temporary
buffer and then place the contents of the buffer anywhere in the
file. When you use the yank commands the original text remains
undisturbed, and unlimited copies can be placed where you wish.

4-26 Start Here

The vi Editor

(

Copies the character under the cursor to the end of the
word into the buffer.

Copies a line of text into the buffer.

Each command accepts an n prefix.

Once you have yanked text, use the (p) and (B) commands to put
the text in the new position. Type (g (@)); the text appears on

the line below (above). The temporary buffer retains the text you
have placed there until you yank other text or quit vi.

B. Basics
(continued)

vi provides special registers to use when you need to move or
copy several groups of text to different parts of the file. Using
registers is useful if pieces of text must appear in many places in
the file.

To store text in a register, you can either yank or delete the text.
The stored text stays in the specified register until you leave vi or
place new text in the same register.

To place text in a register use the following format.
"xCOMMAND

The double quote " signals that it is a register command. Register
commands operate in command mode; they do not appear on the
screen when you type them. The x is the name of the register and
can be any single letter of your choice. COMMAND can be any of
a variety of vi commands. For example, to yank two lines of a file
and place them in register a, put the cursor at the beginning of the
first line you want to yank and type

'laz

The two lines of text remain in register a until you either exit from
the editor or store new text in that register. To put a copy of the
text in register a into the file, move the cursor to the desired loca-
tion and type

"a@

In the next example, three words are deleted and placed in regis-
ter b. They are then moved to another place in the file.

Copying or Moving Text
Using Registers

The vi Editor

Start Here 4-27

_
B. Basics
(continued)

(' I want to move the three words CAT AND DOG to
this point in the file.

N JEICIRE)

I want to move the three words to
this point in the file.

"b)

I want to move the three words to

this point CAT AND DOGin the file.

Other Commands

The following miscellaneous commands are useful.

@) Repeats the last command.

Joins two lines together.

Clears the screen and redraws it. (|
Changes lower case to upper case and vice versa. |

Repeating the Last Command

Period ((1)) repeats the last command to create, delete, or change
text in the file. It is often used with the pattern search commands.

For example, suppose you forgot to capitalize the S in United
States. Use the command

/United states

to find the first occurrence of the phrase in your file. Issue the
replace command (z] to change s toS. Then type

/

to continue your search. When you find another occurrence sim-
ply type a period; vi remembers your last command and repeats
the substitution of s for S.

4-28 Start Here

The vi Editor

Joining Two Lines

The command joins the current line with the next line. To
enter this command, place the cursor on the current line, and
press and (3) simultaneously.

For example, suppose you have the following two lines of text:

Dear Mr.
Smith:

To join these two lines into one, place the cursor under any char-
acter in the first line and type

You immediately see the following on your screen:

Dear Mr. Smith:

Notice that vi automatically places a space between the last word
on the first line and the first word on the second line.

Clearing and Redrawing the Window

If another user sends you a message using the write command
while you are editing with vi, the message appears in your current
window and prints over part of the text you are editing. To
restore your text after you have read the message,

(1) Press to return to command mode.

(2) Then type (D). vi erases the message and redraws the
window exactly as it appeared before the message arrived.

Changing Cases

A quick way to change any lower case letter to upper case, or vice
versa, is by putting the cursor on the letter to be changed and typ-
ing a (7) (tilde). You can change several letters by typing ~ several
times, but you cannot precede the command with a number to
change several letters with one command.

B. Basics
(continued)

The vi Editor

Start Here 4-29

Using Line Editing
Commands in vi

The vi editor has access to many of the commands provided by
the ed line editor. (For a complete list of ed commands see the
ed(1) page in the Commands Reference Manual.) This section
discusses some of the ed commands that are particularly useful
when using vi. They all begin with a with a : (colon) and operate
in last line mode. In most cases the full command appears on the
last line of your screen.

Temporarily Returning to the Shell: the :sh and:! Commands

When you enter vi, the contents of the buffer fill your screen, and
you cannot issue any shell commands. If you wish to issue shell
commands without quitting vi, you can use the :sh or :! com-
mands. You can also use the :!! command to repeat the previous :!
command.

Jdshell_command
Allows you to escape vi to run a single shell command.
While in command mode type :!, followed immedi-
ately by the shell command. The shell runs your com-
mand, gives you output, and prints the message

[Hit return to continue]

When you press vi refreshes the screen and the
cursor reappears exactly where you left it.

At Allows you to repeat the previous shell command.
While in command mode type :!! and press). The
shell runs the command and gives the output of the
previous :!Ishell_command.

:sh Allows you to issue multiple commands before return-
ing to vi. While in command mode type :sh and press
=). A shell command prompt appears on the next
line. Type your command(s) after the prompt as you
would normally do while working in the shell. When
you are ready to return to vi, type (d) or exit; your
screen is refreshed with your buffer contents and the
cursor appears where you left it.

Even if you change directories while temporarily in the shell, you
can return to vi by typing (d) or exit.

4-30 Start Here

The vi Editor

Saving Changes or Writing Text to a New File: the :w Com-
mand

The :w (for write) command allows you to write text to a file by
copying text from the vi buffer to the file. The general format of
the command is

:line_number line_number W filename
(The line_number arguments and filename are optional.)
The :w command has two important uses in vi:

e Itallows you to save changes you have made to the vi buffer
during an editing session.

e It allows you to create a file by copying lines of text from the
file you are currently editing into a file that you specify.

The :w command insures that changes you have made to your file
won’t be lost in the event of a power interrupt or system failure.
The command

W (=)

writes the contents of the vi buffer to the file you are editing, sav-
ing any changes you have made since the beginning of the editing
session or since the last :w command.

You can also use the :w command to write a section of the buffer
to a new file. For example, to write lines 23 through 37 of the
buffer to a file named newfile, type

:23,37w newfile

vi reports the successful creation of your new file with the follow-
ing information:

"newfile" [New file] 10 lines, 265 characters
Finding the Line Number

To determine the line number of a line, move the cursor to it, then
type

L=

NOTE

To insure that significant changes
won’t be lost in the event of an
interrupt, issue the :w command
frequently during your editing
session (for example, after every

page).

The vi Editor

Start Here 4-31

This command gives the line number at the bottom of the screen,
then then returns the cursor to that point in the text.

You can move the cursor to any line in the buffer by typing : and
the line number, as follows.

m ()

Deleting the Rest of the Buffer

One of the easiest ways to delete all the lines between the current
line and the end of the buffer is by using the line editor command
d with the special symbols for the current and last lines.

+,$d

. represents the current line; $ the last line.

Adding a File to the Buffer

To add text from a file below a specific line in the editing buffer,
use the :r (read) command. For example, to put the contents of a
file called data into your current file, place the cursor on the line
above the place where you want it to appear. Type

:«r data

You may also specify the line number instead of moving the cur-
sor. For example, to insert the file data below line 56 of the buffer,

type
:56r data

Don’t be afraid to experiment; (u) undoes ed commands as well as
vi commands.

Global Substitution

Two special line editor commands, s (for substitute) and g (for
global), together allow you change all occurrences of a character
string with one command. For example, say you have several
pages of text about the DNA molecule in which you refer to its
structure as a helix. You want to change every occurrence of the
word helix to double helix. The substitute and global commands
allow you to do this with one command line.

4-32 Start Here

The vi Editor

The general form of the command line is
‘line_number line_numberslold_text/new_textlg

(The line_number arguments are optional; if they are omitted, the
scope of the command is the current line.)

For example, to change helix to double helix throughout the file,
type

:1,$s/helix/double helix/g

Use the following command sequences to quit the vi editor. Com-
mands preceded by a colon (:) are line editor commands.

wq
X

Writes the contents of the temporary buffer to the file
currently being edited and quits vi.

:w filename
Writes the temporary buffer to a new file named filename.

:w! filename
Overwrites an existing file called filename with the contents
of the buffer.

q
Quits vi without writing the buffer to a file. This works only
if you have made no changes to the buffer; otherwise vi
warns you that you must either save the buffer first with the
:w command or use the :q! command to terminate.

:q!
Quits vi without writing the buffer to a file and discards all
changes made to the buffer.

Suppose you want to give your file a new name, junk. Type

Quitting Vi

The vi Editor

Start Here 4-33

'w junk
After you write to the new file, leave vi by typing
iq

If you try to write to an existing file, you receive a warning. For
example, if you try to write to a file called johnson, the system
responds with:

"jJjohnson" File exists - use "w! johnson"
to overwrite

If you want to replace the contents of the existing file with the
contents of the buffer, use the :w! command to overwrite johnson.

:w! johnson
Your new file overwrites the existing one.

If you edit a file, make some changes to it, and then decide you
don’t want to keep the changes, or if you accidentally press a key
that gives vi a command you cannot undo, leave vi without writ-
ing to the file. Type

:q!

Special Options For vi

The vi command has some special options. It allows you to
* Recover a file lost by an interrupt to the operating system.

e Place several files in the editing buffer and edit each in
sequence.

e View a file without making changes.

Recovering a File Lost by an Interrupt

If there is an interrupt or disconnect the system exits the vi com-
mand without writing the text in the buffer back to its file. The
operating system, however, stores a copy of the buffer for you.
When you log back in you can restore the file with the —r option
for the vi command. Type

4-34 Start Here

The vi Editor

vi —7 filename

The changes you made to filename before the interrupt occurred
are now in the vi buffer. You can continue editing the file, or you
can write the file and quit vi.

Editing Multiple Files

If you want to edit more than one file in the same editing session,
issue the vi command, specifying each file name. Type

vi filel file2

vi responds by telling you how many files you are going to edit.
For example:

2 files to edit

After you have edited the first file, use the :w command to write
your changes to the file (filel).

Once this is done you can bring the next file into the editing buffer
by typing

n (=)

The system responds by printing a notice at the bottom of the
screen telling you the name of the next file to be edited and the
number of characters and lines in that file.

Viewing a File

It is often convenient to be able to inspect a file by using the vi
editor’s powerful search and scroll capabilities, while at the same
time protecting yourself against accidentally changing the file
during an editing session. To view a file in read-only mode
invoke the editor as view rather than vi.

Chapter One of the Programmer’s Guide, called Creating & Main-
taining Programs, provides a complete primer to vi basics, ex com-
mands, use of buffers, text block management, etc.

For a complete reference to vi commands see the vi(1) page in the
Commands Reference Manual.

C. Resources

The vi Editor

Start Here 4-35

General Literature
Mohamed el Lozy: Editing in a UNIX Environment. Prentice-Hall,
1985.
D. Quick Reference
Command Action
A-Bx* move backward one page
A-D scroll down
A-E* expose one more line at bottom of screen
A-F move forward one page
NG print statistics on current file and position
A-H move back one space
-] move to corresponding position on next line
AL redraw screen, useful if scrambled
A-M same as CR
AN move to corresponding position on next line
A-P maove to corresponding position on previous line
A-R redraw screen, eliminating deleted lines marked by @
AU scroll up
A-Y* expose one more line at top of screen
N-Z* suspend currently active UNIX command

* This command may not be available on some versions of UNIX.

4-36 Start Here The vi Editor

Command Action

A append text at end of current line

B move to start of current big word

CR move to first non-blank position on the next line
C change to end of line

D delete to end of line

E move to end of current big word

Fx move backward to character x on current line
nG move to start of line n

H move to start of top line on current screen

I insert text at beginning of current line

J join next line to current one

L move to start of last line on current screen

M move to start of middle line on current screen
N search for pattern in opposite direction

O insert line above current line

P put contents of a buffer into text before cursor
R replace characters by overtyping

S change line

Tx move backward to character after x on current line
U undo all changes on current line

\ move to start of next big word

X delete character before cursor

Y copy current line into buffer

4 save file and quit

D. Quick Reference
(continued)

The vi Editor

Start Here 4-37

D. Quick Reference
(continued)

Command

Action

append text

move to beginning of word

change object

delete object

a
b
C
d
e

move to end of word

move forward to character x on current line

move left one space

insert text

move down one line

move up one line

move right one space

associate a mark x with current cursor position

search for pattern in same direction

insert below line

put contents of a buffer into text after cursor

replace characters

change characters

move forward to character before x on current line

undo last change

move to start of new word

remove character

copy object into buffer

N%Xgﬁg"w’*ﬁ05§’_‘7¢“"‘“5‘§‘

redraw scréeen around current line

4-38 Start Here

The vi Editor

D. Quick Reference
(continued)

Command Action

lobject command | send lines from current line to
object to command, and replace
them by its output

$ move to end of current line

% if given with cursor on (,{, or [, moves it to matching), }, or]
) return to start of line you were previously on

‘x move to start of line containing mark x

move to start of current sentence

(
) move to start of next sentence
+ move cursor to first non-blank character on next line

- move to first non-blank position on previous line

repeat last command which changed buffer

/patCR move forward to first occurence of pattern pat

0 move to start of current line
decrease indent of each level of object by one shiftwidth
= reindent lisp program, as if it had been entered
> indent each line of object by one more shiftwidth
?patCR move backward to first occurence of pattern pat
[move to start of current section
nl move to column # on current line
1] move to start of next section
N move to first non-blank character on current line
‘x go to position marked x

return to previous position

move to start of current paragraph

} move to start of next paragraph

~* change case of character if alphabetic

The vi Editor Start Here 4-39

COMMUNICATIONS

CHAPTER FIVE

. A. Session One: Some basic communication commands.

e B. Basics: Brief explanation of remote login, copying files
between various machines, executing commands remotely,

sending mail and files.

. C. Resources: Where to find more information.

e D. Quick Ref: A list of the most frequently used communica-

tion commands.

Contents

UNIX offers a choice of commands for communicating with other
users and systems. You can exchange messages and files with
other users (on either your own or another computer system), and
execute commands on a remote system.

To help you take advantage of these capabilities, this chapter
explains the following commands.

mail, uname, and uuname

rlogin, rcp, and rsh

ctand cu

For exchanging messages and
files.

For use over an Ethernet or
Cheapernet network: to log into a
remote machine, copy files
between machines, and execute
commands on a remote machine.

For use with RS-232 connections
(direct or via modem): to con-
nect a remote terminal and to
connect to a remote system.

Introduction

Communication

Start Here 5-1

A. Session One

To send mail

mail addressee
To read your mail
mail
To mail a file

mail addressee < filename

Remote login, remote copying
r’login'
rcp

B. Basics

To send and receive messages, use the mail command. It allows
you to create and send messages, to manage incoming mail. The
same program (mail) is also used to send files containing memos,
reports, and so on.

Sending Mail to One
Person

Here is the basic command line format for sending mail:
mail option(s) login

where login is the recipient’s login name. It can be either of the
following: To send and receive messages you use the mail com-
mand. It allows you to create and send messages and manage
incoming mail. You can also use mail to send files containing
memos, reports, and so on.

Sending Mail to One
Person

Here is the basic command line format for sending mail:
mail option(s) login

where login is the recipient’s login name. It can be either of the
following:

* Alogin name if the recipient is on your system (for example,
bob).

5-2 Start Here

Communication

('

~——

e A system name and login name if the recipient is on another
system able to communicate with yours (for example,
sys2!bob).

Though not required, various options are available with the mail
command. One of these, —s subject, is described below.

Sending messages to yourself is a good way to experiment with
the mail command. At the system prompt type

mail your_login

The system now prompts you for a subject. Type in a subject of
your choice, press (=), and start typing the text of your message
on the next line. There is no limit to the length of your message.
When you have finished typing, send the message by typing ~.
(tilde period) or (@ at the beginning of a new line.

The following example shows how this procedure appears on
your screen.

Stardent 1500/3000: mail phyllis
Subject: Change of Schedule ()

My meeting with Smith’s

group tomorrow has been moved

up to 3:00 so I won’t be able to

see you then. Could we meet

in the morning instead?

EOT

Stardent 1500/3000:

Notice that the ~. or (@ do not appear on the screen. Instead
EOT (end of text) prints. This is the system’s indication that you
have ended typing the message. The prompt on the last line
means that your message has been queued (placed in a waiting
line of messages) and will be sent.

(Various commands are available to allow you to edit messages
you are writing, read in files as part of a message, and so on. See
the mail(1) command description in the Commands Reference
Manual.)

The mail is sent to a file with the same name as your login ID in
the /usr/mail directory, and you receive a notice that you have
mail.

B. Basics
(continued)

Communication

Start Here 5-3

B. Basics
(continued)

Sending mail to yourself can also serve as a handy reminder sys-
tem. Suppose you (login ID bob) want to call someone the next
morning. Send yourself a reminder in a mail message.

Stardent 1500/3000: mail bob
Subject: Reminder (=)

Call Accounting and find out

why they haven’t returned my 1985 figures!
EOT

Stardent 1500/3000:

When you log in the next day, a notice appears on your screen
informing you that you have mail waiting to be read.

The —s subject option lets you specify the subject of the message on
the command line. With this option there is no subject prompt, so
you type your message immediately after issuing the mail com-
mand. The following example shows how this works.

Stardent 1500/3000: mail -s ‘Picnic Friday’ bob
Just to remind you, Bob, that

the picnic is on Friday. Bring your softball glove!
EOT

Stardent 1500/3000:

Note that the subject, Picnic Friday, has been enclosed in quotes.
This is necessary if the subject has multiple words. Otherwise the
system will try to interpret part of the subject as the recipient’s
login.

Undeliverable Mail

If you make an error typing the recipient’s login the mail com-
mand cannot deliver your mail. Instead it prints a message telling
you it has failed and that it is returning your mail. It returns your
mail to a file called dead.letter in your home directory.

For example, say you (owner of the login kol) want to send a mes-
sage to a user on your system with the login chris.

Failing to notice that you have incorrectly typed the login as cris,
you try to send your message.

5-4 Start Here

Communication

Stardent 1500/3000: mail cris(+=)
Subject: Meeting Change

The meeting has been changed to 2:00.
EOT

Can't send to cris

"/usr/kol/dead.letter" 1/38

Stardent 1500/3000:

The two lines following EOT give the system’s response. The sys-
tem confirms that the message couldn’t be sent, that it has been
saved in the file fusr/kol/dead letter, and that the text of the saved
message has 1 line and 38 characters. You can now read what you
intended to send, or mail the message again using file redirection
(see Sending Files below in this chapter).

B. Basics
(continued)

You can send a message to several people at once by including all
their login names on the mail command line. For example:

Stardent 1500/3000: mail tommy jane wombat dave
Subject: Diamond cutters!

The game is on for tonight at diamond three.

Don’t forget your gloves!

Your Manager

EOT

Stardent 1500/3000:

Sending Mail to Several
People Simultaneously

Until now we have assumed that you are sending messages to
users on your own computer system. You are likely, however, to
want to send mail to users on other systems both in your own
building and elsewhere.

You send mail to users on other systems by adding the name of
the recipient’s system before the login ID on the command line.
For instance:

mail sys2!bob

Notice that the system name and the recipient’s login ID are
separated by an exclamation point.

Before you can run this command, however, you need three
pieces of information:

Sending Mail to Remote
Systems: the uname
anduuname Commands

Communication

Start Here 5-5

e —————
B. Basics

(continued)

~ login name from the recipient. If the recipient does not know the

. The name of the remote system.

* Whether or not your system and the remote system can com-
municate. '

* Therecipient’s login name.

The uname and uuname commands allow you to find this infor-
mation.

If you can, get the name of the remote system and the recipient’s

system name, have her or him issue the following command on
the remote system:

uname —-n

The command responds with the name of the system. For exam-
ple:

Stardent 1500/3000: uname -n (<)
squirrel
Stardent 1500/3000:

Once you know the remote system name, the uuname command
can help you verify that your system can communicate with the
remote system. At the prompt, type

uuname
This generates a list of remote systems with which your system
can communicate. If the recipient’s system is on that list, you can

send messages to it by mail.

You can simplify this step by using the grep command to search
through the uuname output. At the prompt, type

uuname | grep system

(Here system is the recipient’s system name.) If grep finds the
specified system name, it prints it on the screen. For example

Stardent 1500/3000: uuname | grep squirrel (=)
squirrel
Stardent 1500/3000:

5-6 Start Here

Communication

This means that squirrel can communicate with your system. If
squirrel does not communicate with your system, uuname returns
a prompt.

As an example, suppose you want to send a message to login
rocket on the remote system squirrel. Verify that squirrel can com-
municate with your system and send your message. The follow-
ing screen shows both steps.

Stardent 1500/3000: uuname | grep squirrel
squirrel

Stardent 1500/3000: mail squirrelirocket
Subject: Writing seminar follow-up
Rocket,

The final counts for the writing seminar (=)

Our department — 18

Your department — 20

Tom

EOT

Stardent 1500/3000:

B. Basics
(continued)

If you are logged in when someone sends you mail, the following
message is printed on your screen:

you have mail

This means that one or more messages are being held for you in a
file called [usr/maillyour_login, usually referred to as your mailbox.
To examine these messages, type the mail command without any
arguments:

mail

A message summary such as the following (for login jane) is
printed on your screen.

Stardent 1500/3000: mail(+=)
mail version xx.xx 10/28/87 Type ? for help.

Managing Incoming Mail

"/usr/mail/jane": 3 messages 2 new 1 unread

U 1 phyllis Tue Oct 14 1987 13:53 2/25 Weekly report due
>N 2 fred Thu Oct 22 1987 09:10 2/109 Meet for lunch?

N 3 tommy Thu Oct 22 1987 11:01 2/94 Fred’s visit

?

Communication

Start Here 5-7

B. Basics
(continued)

The summary shows that 3 messages have been saved in
[usr/mailfjane. Two of these, Messages 2 and 3, are marked with
an N to show that they are new, while Message 1 is marked with a
U to show that it is old but has not yet been read. The flag, or less
than sign (>), beside message 2 shows that it is next in line to be
read. Additional information includes the login of the sender
(phyllis, fred or tommy), the date and time the message was
received, the number of lines and characters (for example 2/25 in
message 1 means 2 lines, 25 characters), and the subject.

The question mark (?) on the last line shows that you are in com-

mand mode and that the system is waiting for you to issue a com-
mand. Here is a list of useful commands; they are described
below. In each case you have a choice of typing the whole word
(for example print) or typing just the abbreviation shown in bold

type (p).
print or type prints (or types) the next message.

n or print n or type n
prints (or types) message number 7.

next prints the next message (used to step through the
message list).

delete n deletes message n. If the n is omitted the current
message is deleted.a

save n filename saves message n in the file filename. If n is not
specified, the current or flagged message is
saved. If filename is not specified, the message is
saved in the file mbox in your home directory.

header prints the message summary or header.

help prints a summary of commands.

X or exit lets you leave mail without changing what is in
[ust/mailfyour_login. Any deletes or saves are
ignored.

quit leaves mail, saving wunread messages in

[ust/maillyour_login and read messages in mbox
(in your home directory).

For instance, to print the next mail message you can type p or t, as
in the following example.

5-8 Start Here

Communication

B. Basics
(continued)

1=

Message 2

From fred Thu Oct 22 09:10 PST 1987
To: jane

Subject: Meet for lunch?

Status: R

How about meeting for lunch when I come Tuesday for the seminar?

We can finalize changes on our joint paper.
)

The first two lines give the message number, the login of the
sender (fred), and the date and time the message was sent. The
next three lines give the login of the recipient (jane), the subject,
and the status (??????). The text of the message follows, and the
terminating question mark (?) shows that the system is ready for
another command. Message 2 was printed because it was the first
unread message in the list. (See jane’s message summary above.)

If a long message is being displayed on your terminal screen, you
may not be able to read it all at once. You can interrupt the print-
ing by typing (5). This freezes the screen, giving you a
chance to read. When you are ready to continue, type to
resume printing.

You may also print messages by number. For example, the com-
mand t 3 will print or "type" message number 3. The "next" com-
mand n will print the next message, incrementing each time it is
invoked. For example, if user jane types n after printing message
2, message 3 will appear.

2n(=)

Message 3

From tommy Thu Oct 22 11:01 PST 1987
To: jane

Subject: Fred’s visit

Status: R

While Fred is here, let’s get together and discuss
the recent article in the AMS journal. OK?

?
To delete the current, or flagged message, type d after the ques-
tion mark. A question mark prompt will appear to show that the

deletion has been completed and to await the next command. To
delete message number n type d n. For example:

?d3

Communication Start Here 5-9

|
B. Basics

(continued)

deletes message number 3.
You can save messages in two ways. The command
?s n filname

saves message number 7 in file filename. If n is omitted, the
current or flagged message is saved. If filename is omitted, the file
is saved in mbox (in your home directory). Here is an example.

283 tommy_note
"tommy note" [new file] 9/174
?

The system verifies the creation of a new file tommy_note (in your
current working directory) with 9 lines and 174 characters. (This
count includes header information.) If the file tommy_note already
existed, the message would have been appended to the end of that
file. If you wish you can save a file in another directory by speci-
fying a relative or full pathname. (For instructions see Pathnames,
Chapter 3.)

For a full list of the mail options, type help in response to the
mail ? prompt.

You can exit mail in two ways. The commands
?7x
or
?exit

let you exit the command program, preserving all messages.
Deleted and saved files remain in /[usr/mailfyour_login to be
viewed the next time mail is invoked. The command

2q &

lets you exit or "quit" mail, preserving only the unread messages
in fusr/mailfyour_login. Messages that have been read are saved in
the file mbox in your home directory. Here is an example.

2q (=)

Saved one message in /usr/Jjane/mbox
Held two messages in /usr/mail/jane
Stardent 1500/3000:

5-10 Start Here

Communication

T

B. Basics
(continued)

The mail command is used for sending files either to your local
system or to a remote system. To send a file in a mail message,
you must redirect the input to that file on the command line. Use
the < (less than) redirection symbol as follows:

mail Jogin < filename

(For further information see Redirecting Input in Chapter 5.) Here
login is the recipient’s login ID and filename is the name of the file
you want to send. For example, if you (login jane) want to send a
copy of a file called agenda to the owner of login sarah (on your
system) type the following command line:

Stardent 1500/3000: mail sarah < agenda (=)
Stardent 1500/3000:

The prompt that appears on the second line means the contents of
agenda have been sent. When sarah issues the mail command to
read her messages, she receives notice of the message.

Stardent 1500/3000: mail (=)

mail version xx.xx 10/28/87 Type ? for help.
"/usr/mail/sarah": 1 message new

>N 1 jane Thu Oct 22 1987 09:15 2/89

No subject was specified, so the subject field is left blank.

To send the same file to more than one user on your system, use
the same command line format with one difference; in place of
one login ID, type several, separated by spaces. For example:

Stardent 1500/3000: mail sarah tommy dingo wombat < agenda (=)
Stardent 1500/3000:

Again, the prompt returned by the system in response to your
command is a signal that your message has been sent.

The same general command line format can also be used to send a
file to a user on a remote system that can communicate with
yours. Simply specify the name of the remote system before the
user’s login name. Separate the system name and the login name
with an ! (exclamation point) as follows:

Sending and Receiving
Files Via the mail
Command

Communication

Start Here 5-11

B. Basics
(continued)

mail system!login < filename
For example:
mail squirrellrocket < agenda

If a file has been sent to you via the mail command, you receive
notification that a message has been received. If you then request
that the message be printed, the entire file appears on the screen.
It can then be saved using the save command in mail. Of course,
if you know a particular file is expected, you can issue the save .
command without first viewing the file. This is especially useful if
a large file (many pages) is being sent. If you are sending a large
file you may want to warn the recipient (in a separate mail mes-
sage) that a large file is due.

Networking

Stardent 1500/3000 supports networking over an Ethernet or
Cheapernet local area network or through an RS-232 port.

The following commands are used for Ethernet and Cheapernet

communications: (
rlogin Lets you log into a remote system.

rcp Lets you copy files from one system to another.

rsh Lets you execute a command on a remote system.

The following commands are used for RS-232 port communica-

tions:

ct Allows you to connect your computer to a remote ter-
minal that is equipped with a modem.

cu Enables you to connect your computer to a remote

computer.

These commands are described in the following sections. Before
they can be used, however, your computer must be configured for
Ethernet/Cheapernet or RS-232 port communications. See the
System Administrator’s Guide for information.

5-12 Start Here Communication

B. Basics
(continued)

The rlogin(lc) command connects your terminal (on your local
system) to a remote system. The command follows this format:

rlogin remotehost options

remotehost is the name of the remote system, as listed in the
administration file /etc/hosts. (See the System Administrator’s Guide
for more on the /etc/hosts file.) The most common option is -1 user-
name, which lets you log into the remote system under a different
user name. For instance, the command

rlogin meadow

logs you into the remote system meadow under your current login
name, while the command

rlogin meadow -1 moose

logs you into the remote system meadow under the login name
moose. If you use the -1 username option, the remote system
prompts you for a password as follows:

Stardent 1500/3000: rlogin meadow -1 moose
password: enter moose’s password
meadow:

Ethernet/Cheapernet
Communications: the
rlogin Command

The rcp command lets you copy files from one system to another.
The format of the command is

rcp filel file2

where each file is either a pathname on the local system (relative
or absolute), or it is a remote filename of the form
remotehost filename.

Here are some examples. For each, assume that you are logged in
as squirrel, on your local system, forest, and that you are in your
home directory.

rcp memos/draft meadow:/usr/rjs/memos
copies the file draft in the directory memos (in your
home directory) to a file of the same name in the direc-
tory [ust/rjs/memos on the system meadow.

Ethernet/Cheapernet
Communications: the
rcp Command

Communication

Start Here 5-13

T ——————
B. Basics

(continued)

rcp meadow:/usr/junk/examplel examplel
copies the file examplel in the directory /usr/junk on the
system meadow to a file of the same name in your home
directory on your local system.

rcp meadow:~bjm/pingpong /games/pingpong

in C-shell, copies the file pingpong in the home direc-
tory of the user bjm on the system meadow to a file of
the same name in the directory /games on your local
system. (In C-shell, the symbol ~ means “home direc-
tory of”. If it is not followed by a user name, the sym-
bol means “your home directory.” The symbol is not
recognized by the Bourne shell.)

rcp meadow:/work/draftl field:/work/draft2
copies the file draftl in the directory work on the sys-
tem meadow to a file named draft2 in the directory work
on the system field.

Ethernet/Cheapernet
Communications: the
rsh Command

The rsh(lc) command lets you execute a command on a remote
machine. Here is the format:

rsh remotehost command
Here is an example:
rsh meadow Is -a /work

gives a listing of all the files in the directory /work on
the system meadow.

RS-232 Port
Communications: the ct
Command

The ct (connect) command connects your computer to a remote
terminal equipped with a modem and allows a user on that termi-
nal to log in. To do so, the command dials the phone number of
the modem. The modem must be able to answer the call automat-
ically. When ct detects that the call has been answered, it issues a
getty (login) process for the remote terminal and allows a user on
it to log in on the computer.

To execute the ct command, follow this format:

ct option(s) telno

5-14 Start Here

Communication

The argument telno is the telephone number of the remote termi-
nal.

Suppose you are logged in and you want to connect a remote ter-
minal to your computer. The phone number of the modem on the
remote terminal is 932-3497. Here is an example command line.

ct-h —-w5 -s1200 9=9323497

ct calls the modem using a dialer operating at a speed of 1200
baud. If a dialer is not available, the -w5 option causes ct to wait
for a dialer for five minutes before quitting. The -h option tells ct
not to disconnect the local terminal (the terminal on which the
command was issued) from the computer. See ct(1) in the Com-
mands Reference Manual for more on the ct command.

S
B. Basics

(continued)

The cu command connects a remote computer to your computer
and allows you to be logged in on both computers simultane-
ously. This means that you can move back and forth between the
two computers, transferring files and executing commands on
both, without dropping the connection.

The method used by the cu command depends on the information
you specify on the command line. You may specify the telephone
number of the remote computer, in which case the number is
passed to an automatic dial modem. Alternatively, your system
may be set up to accept a system name on the command line. If
50, cu obtains the phone number from a special Systems file. If
there is a direct link to the remote computer (not involving a
modem), the line or port associated with the direct link can be
specified on the command line.

Once the connection is made, the remote computer prompts you
to log in on it (you may need to press first). When you have
finished working on the remote terminal, you log off and ter-
minate the connection by typing ~. (tilde period). You are still
logged in on the local computer.

To execute the cu command, follow this format:

cu option(s) telno
or

cu option(s) systemname

RS-

232 Port
Communications: the cu
Command

Communication

Start Here 5-15

B. Basics
(continued)

where the arguments are as follows:

telno
The telephone number of a remote computer.

Equal signs (=) represent secondary dial tones and dashes (-)
represent four-second delays.

systemname
A system name that is listed in the Systems file. To see the
list of computers in the Systems file, you can run the uuname
command. (See the System Administrator’s Guide for more on
the Systems file.)

The cu command obtains the telephone number and baud
rate from the Systems file and searches for a dialer.

Once your terminal is connected and you are logged in on the
remote computer, all standard input (input from the keyboard) is
sent to the remote computer. Here are the commands you can
execute while connected to a remote computer through cu.

~. Terminate the link.

~! Escape to the local computer without drop-
ping the link. To return to the remote com-
puter, type @.

~lcommand Execute command on the local computer.

~$command Run command locally and send its output to
the remote system.

~%cd path Change the directory on the local computer
where path is the pathname or directory

5-16 Start Here

Communication

name.
~%take from [to] Copy a file named from (on the remote
computer) to a file named to (on the local
computer). If to is omitted, the from argu-
ment is used in both places.

~%put from [to] Copy a file named from (on the local com-
puter) to a file named to (on the remote
computer). If to is omitted, the from argu-
ment is used in both places.

~%break Transmit a break to the remote computer

(can also be specified as ~%b).

Suppose you want to connect your computer to a remote com-
puter called eagle. The phone number for eagle is 847-7867. Enter
the following command line:

cu —s1200 9=8477867

The —s1200 option causes cu to use a 1200 baud dialer to call eagle.
If the —s option is not specified, cu uses a dialer at the default
speed for the modem being used.

When eagle answers the call, cu notifies you that the connection
has been made, and prompts you for a login ID:

connected
login:

Enter your login ID and password. (Depending on the remote
computer, you may need to press (=) before you can be prompted
to login.)

The take command allows you to copy files from the remote com-
puter to the local computer. Suppose you want to make a copy of
a file named proposal for your local computer. The following com-
mand copies proposal from your current directory on the remote
computer and places it in your current directory on the local com-
puter. If you do not specify a file name for the new file, it is also
called proposal.

~%take proposal

The put command allows you to do the opposite: copy files from
the local computer to the remote computer. Say you want to copy
a file named minutes from your current directory on the local

|
B. Basics

(continued)

NOTE

The use of ~%take requires the
existence of the echo and cat
commands on the remote
computer. Also, stty tabs mode
should be set on the remote
computer if tabs are to be copied
without expansion.

The use of ~%put requires stty
and cat on the remote computer.
It also requires that the current
erase characters on the remote
computer be identical to the
current ones on the local
computer.

CAUTION

Be careful about your files when
using ~%take and ~%put. Both
commands will overwrite
existing files of the same name.

Communication

Start Here 5-17

B. Basics
(continued)

computer to the remote computer. Type
~%put minutes minutes.9-18
In this case, you specified a different name for the new file

(minutes.9-18). Therefore the copy of the minutes file that is made
on the remote computer is called minutes.9-18.

C. Resources

The on-screen man help facility has information about various
communication commands. Use man mail for mail options.

Generai Literature

Frey & Adams: A Directory of Electronic Mail Addressing and
Networks.O'Reilly & Associates, 1989.

Kochan & Wood: UNIX Networking. Hayden Books, 1989.

Ricken & Weiman: Introduction to UNIX Networking. .sh consulting
inc. 1989.

Andrew S. Tanenbaum: Computer Networks/ (Second Edition).
Prentice Hall, 1988.

D. Quick Reference

5-18 Start Here

Communication

()

Operation

Command

Access mail messages

mail

Connect local system to
remote systems

rlogin remotehost options

Connect to both local
and remote systems

cu option(s) telno, or cu option(s) systemname

Copy files from one rcp filel file2
system to another
Determine system name uname -n

Execute command on
remote system

tsh remotehost command

Remote connection
with modem

ct options(s) telno

Send mail to yourself

mail your_login

Send mail to others

mail option(s) login

Send mail to several
people simultaneously

mail Joginl login2

Send mail to remote
system

mail system!login_name

Send file through mail

mail login < filename

Send file through mail
to several people

mail loginl login2 < filename

Send file to remote system

mail system!login < filename

Verify local and remote
system communication

uuname -n

D. Quick Reference
(continued)

Communication

Start Here 5-19

GETTING
STARTED IN
PROGRAMMING CHAPTER SIX

Contents
* A. Session One: Refer to Chapter 7.
e B. Basics: About Stardent 1500/3000’s programming tools.
e (. Resources: Where to find more information.
e D. Quick Ref: A list of essential commands and concepts.
Introduction

This chapter introduces Stardent 1500/3000’s programming tools.
They range from basic programming tasks, such as compiling
programs, to sophisticated techniques for optimizing code.

The topics presented in this chapter include:

* fcandcc-the and C compilers

* Command line options

e Compilation control statements

e Compiler directives

* dbg-thedebugger

e nm, od, prof, mkprof, and size - debugging tools

e Id - the linker

° Archive libraries

° Code optimization

Getting Started in Programming Start Here 6-1

A. Session One

To start using the programming tools presented in this chapter,
you should see them used in context, so no A. Session One section
is provided for this chapter. Instead, refer to Chapter 7, Example
Sessions.

B. Basics

To create programs for Stardent 1500/3000, you need to know
how to compile programs and use the compilation tools that are
specific to the Stardent 1500/3000 and each programming
language. It is also helpful to learn the basics of the available
debugging tools. Information for using the Linker and archive
libraries is provided for those who wish to search and/or create
non-standard libraries. The last topic in this section, Code
Optimization, provides the basics for making your code efficient
and fast.

Compiling

NOTE
Options and file names may be
intermingled.

NOTE
Options and file names may be
intermingled.

The syntax for the compiler command is as follows.

fc [options] [filespec] [options] [filespec...]

where

options
is a set of options.

filespec
is a UNIX file path by which a source file may be accessed.
The compiler can handle a mix of different programming
languages and object files on the same command line. For
example, file names can end with the characters .f, .c, .0, .4, or
.5. If the compiler does not know how to create or to access a
file you have specified, it generates an error message.

The syntax for the C compiler command is as follows.

cc [options] [filespec] [options] [filespec...]

where

options
is a set of options.

6-2 Start Here

Getting Started in Programming

filespec
is a UNIX file path by which a source file may be accessed.

Either command has the facilities to compile the program and link
it with default libraries. A run file is produced from the
compilation and link, always called a.out, unless you have
overridden the default file name. You may now run your

program by typing
prompt> a.out

on the command line. The results of your program are displayed
on the terminal.

B. Basics
(continued)

Command line options are used on the command line of a
compilation command. All options are case-sensitive, and some
options have defaults and negative forms. Following are some of
the most often used options for cc or fc. Refer to the Programmer’s
Guide for additional discussion and a complete list of options.

Preprocessor Options

-E
Output expanded source to standard output. This option
stops the compilation process after all macros and
conditional compilation expressions have been expanded.
-Idir

Search for include files in directory dir.

Compiler Options

-full_report

Invoke the vector reporting facility. This option produces a
report, in Fortran-like notation, of how code is vectorized,
what code the compiler generated and why.

8
Generate information for the Stardent 1500/3000 debugger.

-03
Perform common subexpression elimination, instruction

Command Line Options

Getting Started in Programming

Start Here 6-3

B. Basics
(continued)

scheduling, vectorization and parallelization.

-subcheck

Produce code to check at runtime to ensure that each array
element accessed is actually part of the appropriate array.

Loader Options

-ltag

Search a library called libtag.a. The default is to search first in
/lib and then in fusr/lib.

Change the output filename from a.out to a specified name.

Compilation Control
Statements In addition to compilation control options specified on the
command line, you can communicate with the Stardent 1500/3000
preprocessor by including certain statements in the source code,
such as these: (.
!

#define

Used to assign values to symbols used in the source code or
to act as preprocessor symbols to control the inclusion of
other source code.

#elif and else

Allow you to include alternative source code if tested
conditions are found to be false.

#endif
Terminates an #if, #ifdef or #ifndef statement allowing
formation of nested conditions.

#if
Lets you apply integer arithmetic tests against the integer

value of a symbol and include or not include sections of
source code based on results of the test.

#ifdef and ifndef
Test whether or not you have defined a particular symbol.

#include

(

6-4 Start Here Getting Started in Programming

Defines the name of a file to be copied into the source code
and to be processed with the file.

#line

To label lines of source text.

B. Basics
(continued)

This section briefly discusses the role of compiler directives, but
does not provide details of the directives themselves.

Stardent 1500/3000 provides restructuring compilers, which can
often determine at compilation time the optimal run-time use of
parallel and vector hardware.

The user may have certain information regarding the use of the
code at run-time which may not be obvious in the code or simply
not discernable to the compiler at the time of compilation. By
using certain compiler directives, it is possible to provide these
key bits of information that could allow (or force) the compiler to
choose a more efficient algorythm, thus overriding the compiler’s
natural, more cautious approach.

Compiler directives can do the following, which, in turn, causes
the compiler to generate more efficient code:

e Force vectorization or parallelization of a particular loop.
* Indicate the best loops to vectorize or parallelize.

e Request that a loop be executed exactly as written.

* Request that a procedure be in-lined within a loop.

* Declare a procedure that can take vectors as arguments.

Compiler Directives

A debugger is a program revealer, used to figure out what
happened to the code. When any behavior in your program is
different from what you expect, use a debugger. There are
generally four circumstances when you use a debugger.

(1) The program does not work and you need to determine
the location of an error in the program logic.

The Stardent 1500/3000
Debugger

Getting Started in Programming

Start Here 6-5

-]
B. Basics

(continued)

(2) The program works but the answers are not what you
expected. You must isolate the differences between your
expectations and the results.

(3) The program works, but you want a post mortem on what
happened during execution.

Do not confuse using a debugger with the need to include the -g
option in the compilation of your program. The Stardent
1500/3000 compilation system usually provides more than
adequate information to debug your program without the -g
option. In fact, using this option may have undesirable effects
unless used in the proper circumstances. Refer to the
Programmer’s Guide for more information on the -g option.

If you have determined that you want to use the debugger (dbg),
here is a summary of its most significant abilities:

e The “master” instructions in the debugger reflect the
position or operation of the code in the IPU.

* The debugger allows you to ask what the FPU is doing.

* The debugger can tell you when a process goes parallel and
what the threads are doing.

* The debugger can be used to keep track of the
synchronization between the IPU and the FPU.

* The debugger can be used to grab any process, and then look
at it, stop it, kill it, or take control of it.

dbg can be used for the same tasks as any other debugger would
be, such as controlling the execution of processes, setting break
points, examining the contents of memory and registers and
gaining source and object file information. For more information
on the specifics of using dbg, refer to the Programmer’s Guide.

dbg Tasks

To invoke dbg, the command is

dbg [a.outfile] [corefile]

To get online help in dbg, the command is

6-6 Start Here

Getting Started in Programming

help [keyword]

To exit dbg, the command is

exit
or
finish
or
quit

B. Basics
(continued)

There are several debugging tools available to you in addition to
dbg. This section briefly discusses what these tools are and why
you might want to use them.

nm Displays the symbol table from your a.out. For each symbol
in the table the following information is displayed: storage
class, type, size in bytes, source line number at which the
symbol is defined, and the object file section containing the
symbol. There are also many options for the command
controlling the output. This may help you in organizing and
sorting external and static symbols.

od Dumps and displays a file in one or more formats. These
formats allow interpretation of certain data types in forms
that include hexadecimal, octal, signed and unsigned
decimal.

prof and mkprof 4
Produce a report on the amount of execution time spent in
various portions of your program and the number of times
each function is called. This is useful if your program is
producing the desired results but is running very slowly.

mkprof
Requires no recompilation of the program. Produces profile
reports for programs that have previously been compiled.
Use prof when first compiling your program. Make sure to
specify the -p option. See Chapter 9 of the Programmers
Guide for details.

size Defines the amount of space that the three sections of a
common object file (text, data and bss) will occupy (in bytes)
when that file had been loaded, ready to run.

Debugging Tools

Getting Started in Programming

Start Here 6-7

B. Basics
(continued)

Linker

The basic function of the linker, also known as the link editor, is to
combine object files into an executable program. The linking
function is performed automatically when either the cc or fc
command is invoked. You may, however, invoke the linker
directly with the /d command.

The link editor performs the following functions: combines
several object files into one, performs relocation, resolves external
symbols, incorporates startup routines, and supports symbol table
information.

There are quite a few options that can be used with the Id
command. One of the most commonly used options is - ltag. It
directs the link editor to search a library named libfag.a; it is used
to bring in libraries that are not normally in the search path.

For a more complete discussion of the available options, refer to
the Commands Reference Manual.

Archive Libraries

A library is a collection of related object files (and possibly
declarations). It is common in UNIX system computers to keep
object files in archives. These archive files then hold object
modules that make up a library. The (archive) library can be
named on the /d command line, or with a link editor option on a
compiler command line. This naming causes the link editor to
search the symbol table of the archive file(s) when attempting to
resolve references.

To create an archive file, use the ar command. Refer to the
Commands Reference Manual for the details of all options.

Code Optimization

The Stardent 1500/3000 and C compilers automatically optimize
programs, searching for speed increases. Programs which use
vector instructions or can execute in parallel threads on several
processor units can achieve substantial speed increases. This
section provides a summary of the programming techniques you
can use that take the best advantage of the automatic
optimizations of the compilers.

6-8 Start Here

Getting Started in Programming

Use iterative loops wherever possible. The compiler operates
more efficiently on iterative loops than on DO WHILE
constructs.

Convert branches into structured IE-THEN-ELSE statements
instead of using GO TO statements.

Make nested loops into larger single loops. Put as much
calculation inside the loops as possible, to minimize
synchronization.

Do not unroll loops to enhance performance.

Use language intrinsics, such as MAX and MIN, instead of
writing code to test and then branch.

Program for memory access and not to save memory.

Do not program to avoid computing null elements in sparse
arrays.

Do not reference temporary variables outside of the loops in
which they are used.

Specify array dimensions as longest dimension first to
shortest dimension last in , and do the opposite in C.

Use COMMON and EQUIVALENCE statements only when
absolutely necessary.

Use compiler directives to handle loops with hidden bounds.

Refer to the Programmer’s Guide for details of the previous
summary.

B. Basics
(continued)

Use the following list to find more information on specific topics.

fc and cc - Programmer’s Guide, Chapter 2, the Commands
Reference Manual, and the on-line man pages

Command line options - Programmer’s Guide, Chapter 2

Compilation control statements - Programmer’s Guide,
Chapters 2, 4, and 9

C. Resources

Getting Started in Programming

Start Here 6-9

C. Resources
(continued)

Compiler directives - Programmer’s Guide, Chapters 2, 6, and
11

dbg, the debugger - Programmer’s Guide, Chapters 4 and 5,
and the on-line help facility within dbg

nm,od prof mkprof, and size - Programmer’s Guide, Chapter 4,
the Commands Reference Manual, and the on-line man pages

ld, the linker - Programmer’s Guide, Chapter 3, the Commands
Reference Manual, and the on-line man pages

Archive libraries - Programmer’s Guide, Chapter 3

Code optimization - Programmer’s Guide, Chapters 4, 6,7, 9

D. Quick Reference

The Five Commandments of good programming;:

Use iterative loops wherever possible

Use do(while) or for(while) statements

Do not use go to statements

Make nested loops into larger single loops

Do not unroll loops

6-10 Start Here

Getting Started in Programming

D. Quick Reference
(continued)

Compiler Optimization
Directive Result
ASIS loop not touched by vectorizer
INLINE inline a named function
IPDEP ignore dependencies that prevent parallelization
IVEP ignore dependencies that prevent vectorization

NO_PARALLEL | don’t run next loop in parallel
NO_VECTOR don’t run next loop in vector

PBEST indicates the best loop to parallelize

VBEST indicates the best loop to vectorize

PPROC compile procedure for parallel execution
VPROC function has assembly version taking vectorargs
VREPORT invokes vector reporting on next loop

SCALAR run next loop in scalar

Fortran Compiler Options
Invoke compiler with

fc [options]filespeclloptions][filespec]...

Option Result
-43 compile and link for BSD execution
-all_doubles set floating points to REAL*8
-blanks72 pad with blanks on right to column 72
-C compile only, do not link

-catalog=name.in create a database of inlined functions

-continuations=n | specify number of continuation lines

-cpp invoke the C preprocessor

-cross-reference generate cross-reference listing

-debug add debug data to object file
-double_precision | use double precision for undeclared variables
-d_lines compile debug lines starting with D or d
-extend_source extend statement field to column 132

Getting Started in Programming Start Here 6-11

D. Quick Reference
(continued)

Option

Result

~fast

optimize but lose some precision

-full_report

detailed vectorizer report

-fullsubcheck check each array subscript

-g add debugging information

-1 suppress default search for included files
-1dir search for included files in dir

-i supress production of #ident information
-implicit untype all variables

-include_listing

add included fields to listing file

-inline inline functions

-i4 interpret INTEGER and LOGICAL as *4
-L do not search -1libraries in /lib or /usr/lib
-messages print warning messages

-Npaths=name.in

use inlined functions in name.in

-no_assoc

turn off association of variables

-no_directive

do not apply directives during compilation

-novector do not generate vector code for loops
-O synonymous with -O1

-00 turn off optimizations

-O1 common subexpression elimination
-02 do -O1 and vectorization

-03 do -O2 and parallelization

-object generate an object file

-onetrip DO loops execute at least once

-opct count of FPU ops executed dynamically
-P preprocess only

-p load with profiling information

-ploop profile loops separately

-S generate assembly source file

) strip line numbers and symbol table
-safe=procs compile procedure for parallel execution

-safe_strings

correct for mismatched string parameters

6-12 Start Here

Getting Started in Programming

Option Result
-save all variables declared are saved
-standard check standard Fortran 77 usage
-subcheck check each linear array subscript
-t turn off certain warnings
-V print version information
-verbose generate message output
-vreport report on attempt to vectorize
-vsummary report on vectorized loops
-W suppress warning messages

D. Quick Reference
(continued)

Invoke compiler with

cc [options]lfilespec][options]lfilespec]...

Option Result
-43 compile and link for BSD execution
-C compile only, do not link

-catalog=name.in

create a database of inlined functions

-full_report

detailed vectorizer report

-fullsubcheck

check each array subscript

)

add debugging information

-Npaths=name.in

use inlined functions in name.in

ignored

-00 turn off all optimizations

-0O1 common subexpression elimination
-02 do -O1 and vectorization

-O3 do -O2 and parallelization

-opct count of FPU ops executed dynamically
-w suppress compiler warnings

-P

preprocess only

C Compiler Options

Getting Started in Programming

Start Here 6-13

D. Quick Reference

(continued)

Option Result
-p load with profiling information
-ploop profile loops separately
-S generate assembly source file
-safe=loops ignore dependencies for loop vectorization
-safe=parms do not change parameter values
-safe=ptrs do not change pointer values
-subcheck check each linear array subscript
-Thhhhhhh generate a.out with text address at hhhhhhh
-V print version information
-V use verbose message output
-vector_c use -safe=loops and -safe=parms options
-vreport report on attempt to vectorize
-vsummary report on vectorized loops
-W suppress warning messages at link and compile
-X preserve global symbols only
-yname print uses and definitions of name
C Preprocessor Options
Option Result
-Dname name=1 to the preprocessor
-Dname=val name=val to the preprocessor
-E output expanded source
-1 suppress default search for included files
-Idir search for included files in dir
-i supress production of #ident information
-Uname undefine name

Loader Table Options
Both fc and ec accept loader options.

6-14 Start Here Getting Started in Programming

Option Result
-Bhhhhhhh generate a.out with bss address at hhhhhhh
-Dhhhhhhh generate a.out with data address at hhhhhhh
-esym default entry point has address sym
-Ldir search for -1 libraries in dir
-list generate listing file
-ltag search library libfag.a
-M produce a load map
-m generate simple load map
-N generate NMAGIC file type
-n suppress standard C startup routine
-0 filename output goes into filename
T produce a relocatable output file
-S strip line numbers and symbol table
-Thhhhhhh generate a.out with text address at hhhhhhh
-t turn off certain warnings
-X preserve global symbols only
-ynarme print uses and definitions of name

D. Quick Reference
(continued)

Getting Started in Programming

Start Here 6-15

EXAMPLE
SESSIONS

This chapter provides an example with a cross-section of
programming tools being used to create a single simple example.
Following the simple example is a listing of a considerably more
complex program that is modeled after the basic window
program that you can find in Adrian Nye, Xlib Programming
Manual, Vol. 1. Sebastopol, CA: O'Reilly & Associates, Inc., 1989.

The difference between the example presented here and that in
the X book is twofold:

e Here the X-Window is created by calling the function
XCreateWindow instead of by wusing the function
XCreateSimpleWindow. This allows the example to create a
single-buffered full color X Window 24-planes deep
(allowing a choice of over 16 million colors) on a system that
might have only the basic graphics board (no graphics
expansion board) installed. The default for X Windows on a
system that does not have a graphics expansion board
installed is to produce a pseudo color display (that is, only 8
planes deep), allowing a choice of only 256 different colors.
This alternate function, XCreateWindow, makes it possible
for this example to function on both a non-expanded and an
expanded graphics system with no modifications.

* The original example draws text and some lines and waits
for any key press to exit. This modified example draws a
fixed number of random colored random positioned lines in
a string-art layout in the window and exits on its own after
the drawing has been completed and after a short sleep
period has elapsed.

Note that it is entirely possible that the example program contains
materials that are not needed for the function to be performed.
For example, the function "TooSmall" is not used in this example.
However this example is provided here since it is not obvious
from the existing documentation on X how to create this special

CHAPTER SEVEN

Example Sessions

Start Here 7-1

effect (a full color, single buffered X Window on a system that
only has a basic graphics board installed.).

A Sample Session

In creating a program, particularly a large one, it is highly
unlikely that it will run correctly the first time through. And,
even if it does run to completion, the program may not
necessarily yield the correct results. It is often necessary to
examine intermediate data values to determine that the
appropriate logic is being followed and that the intermediate
values make sense.

If a debugger program is not available, many programmers find
that they have to install print statements at strategic points in their
program. One might insert print statements for progress
messages such as "got this far," or "it has not crashed yet," or
"finished phase 1". Likewise, if certain data values will have an
effect on the result, the programmer might check occasionally
whether these values are within range: "Value of a is: XXX," and
S0 on.

As the debugging effort progresses, it may occur to the
programmer to check more and more data values or to run the
program up to a certain point and deliberately cause an exit
(something prior to a crash, for example). This often requires
several passes through the program editor and compiler, and
sometimes these efforts can be rewarded with the notification by
the compiler of a typographical error in the debugging statements
themselves, causing additional delay in the process.

However, with a debugger available, the programmer can enjoy
greater productivity. Breakpoints can be established in many
different places in the program. The program can be single-
stepped after a breakpoint and the values of variables and
intermediate results can be immediately examined without the
need to edit and recompile, thereby increasing productivity and
decreasing the time needed to fix the program.

The Stardent 1500/3000 system, running X Window, offers yet
another advantage that improves productivity. This is the fact
that two (or more) windows can be used simultaneously to work
on the same problem in a multi-tasking (or multi-user) operation.
For example, three windows can be opened, two of the windows
fairly large, and one fairly small. All three windows are currently
changed to the same directory, perhaps named "testdir." You
could have one window running the program text editor, one

7-2 Start Here

Example Sessions

window ready to run the compiler, and a third window running
the debugger. Thus by simply moving the mouse from one
window to another, you could make and save a change to the
program, compile the program, then debug the executable. The
alternative, of course, is to do everyting in a single window, but if
you can open more than one window, each with its own operating
characteristics, why not take advantage of it?

A Sample Session
(continued)

In this basic program we use a subroutine and some data to print
along with the some text that identifies the source of the data. The
program is compiled so that the Stardent 1500/3000 debugger,
dbg, can be used to examine the program variables and modify
them before the data is actually printed.

This section consists of explicit instructions for:

» Creating a directory in which to store the sample program

o Creating three windows with which to run this example
* Moving into that directory with all three windows

e Starting vi in one window to create the program

e Typing in the program

e Compiling the program so that the debugger can be used to
symbolically reference the program variables.

* Running the program without the debugger

e Starting the debugger

e Installing a breakpoint

e Running the program to the breakpoint

* Single stepping

* Viewing and changing the value of program variables

e Exiting the debugger

Sample Application

This example assumes that you have the default environment,
namely X Window, running on your Stardent 1500/3000. Here
are the steps necessary to create and position three new windows
onscreen.

Creating The New
Windows

Example Sessions

Start Here 7-3

Sample Application
(continued)

Move the mouse until the onscreen pointer becomes an "X."
That is, move it to a position in the background field of the
display not currently occupied by a window.

Press and hold the rightmost mouse button until a menu
appears. The top item on that menu should read "New
Window".

With the mouse button held down, move the pointer until it
causes that topmost item to be highlighted. That is, the
topmost item becomes a different color than the other items
on that menu.

Release the mouse button. This causes the New Window
item to be selected.

In the upper lefthand corner of the display, you will soon see
a notation such as "0x0" and the cursor character becomes a
pair of lines, one pointing down and the other pointing to
the right from a single intersection of the lines. Move the
mouse until this new cursor is positioned where you would
like a new window’s upper lefthand corner to appear.

Press and release the leftmost button of the mouse to
complete the creation of the new window. You have created
a new window of the default size, normally 80x24 (80
characters across, by 24 lines long, where the physical size
depends on the characteristics of the default font).

To move the window once it has been created, move the
mouse cursor somethere within the window boundaries.
Press and hold down the "LEFT" key on the keyboard, and
then press and hold down the middle mouse button. Move
the mouse cursor to the new position you wish the window
to occupy. Finally release both the key and the mouse
button.

To resize the window once it has been created, move the
mouse cursor somewhere within the window boundaries.
Press and hold down the "LEFT" key on the keyboard, and
then press and hold down the right mouse button. Move the
mouse cursor to make the window larger or smaller. The
text that appears in the upper left corner of the display while
you are performing this action tells you how many
characters wide and tall the new window size will be.

7-4 Start Here

Example Sessions

(1) Repeat steps 1-8 to create and position a total of three
windows. The first two windows should be at least 80x24.
This chapter refers to them as Windows 1 and 2. The
third window (called Window 3) will be used to run the
compiler. It should be at least 80x4.

Sample Application
(continued)

Move the mouse cursor into each of these newly created
windows, and into each, type the command:

cd

This moves each window into the user’s home directory. When a
new window is created, this is normally the default, however this
simply assures that consistent results can be obtained.

Now, in any one of the three windows, issue the command:

mkdir testdir

This creates a test directory in which program examples can be
placed and from which they can be run.

Move the mouse cursor to activate each window in turn and type
the command for each window:

cd testdir

Now all three windows are operating in the same directory
allowing shared access to that directory from all three locations.

Creating The Sample
Directory

Move the mouse cursor to Window 1 (one of the 80x24 windows).

1. Type the following command:

vi testl.c
This opens the vi editor.

2. Change vi from command mode into insert mode by
pressing

Editing a Program

Example Sessions

Start Here 7-5

Sample Application
(continued)

i
to be in insert mode.

3. Type the following program, exactly as presented here. If
you make a mistake typing, use the backspace key to
backspace and correct your error. If you need to know more
about how to use vi, refer to Chapter 1 of the Programmer’s
Guide. That chapter contains a thorough tutorial for vi. As
you complete each line, press RETURN to enter it and go on
to the next line of the program.

/* test.c*/

main ()

{
int k;
float x;
double y;
k =10; =x =1.25; y = 3.4d-9;
doprint (k, x, y):

}

doprint (m, n, p)

int m;

float n;

double p;

{
printf ("integer value is: %d0, k);
printf("single precision value is: %£0, x);
printf ("double precision value is: %g0, k);
return(0) ;

}
4. Now press the ESC key to end the insert mode of vi and exit.
5. Save the text by entering
22
This ends the data entry phase of this project. Leave the vi

editor window open in case you wish to do any more editing
later.

Compiling The Program
This section compiles the program with the -g option so that it
may be used with the debugger. Move the mouse cursor to the
smallest of the three windows (Window 3) to run the compiler.
Enter the command:

7-6 Start Here Example Sessions

cc —-g —o test test.c

This creates an executable file named fest in the current directory.
If the program generates any errors during the compile phase,
examine and correct the errors in the editor window, save an
edited copy by using the command "w! test.c" from command
mode, and recompile until no errors occur. Again, refer to
Chapter 1 of the Programmer’s Guide for information about editing
with i if it is needed.

Move to Window 2 (the 80x24 window that is not running vi).
Type the command:

test

You should obtain the following results:

integer value is: 10
single precision value is: 1.25
double precision value is: 0.0000000034

Sample Application
(continued)

Running The Program

As mentioned above, you might find it necessary to check (and
possibly change!!) intermediate results. Here is the method you
can use to run the program under the control of the debugger dbg
to obtain that capability, without recompiling your program.

1. Enter the following command to this same window
(Window 2):

dbg test
The debugger will start.

2. Enter this command to dbg:

break in doprint

This establishes a breakpoint just ahead of the first
executable statement in the doprint subroutine.

3. Lets also establish a break in the main function:

Running Under Control
Of The Debugger

Example Sessions

Start Here 7-7

L ——————————]
Sample Application

(continued)

L

break in main

4. Start the program running to the first breakpoint. Enter the
command:

run
dbg tells you where it stopped.

5. While you are debugging a program, you can see where you
are working in your source code by asking dbg to list your
program source code:

list

This shows the source code listing with a set of double-
arrows indicating the source code statement that will be
executed next.

6. You can examine the contents of variables by simply typing
their names:

k
X

y

Notice that at this first breakpoint, (which occurs before any of the
executable statements in this function) no value has been assigned
to any of those three variables. Thus you see the value that has, as
a default, been assigned to all of these variables by the compiler
(the value is zero).

7. Cause dbg to execute a single line of the source code by
issuing the command:

step

8. Examine the contents of the variables. Type their names:

k
X

y

Notice that when the step command was executed, dbg printed
the source code line that it executed. Notice that the variables
now have the value that your program source code has assigned
them. :

7-8 Start Here

Example Sessions

2
\
\

9. Determine the status of the program to make sure that the
breakpoints are where you expected them to be. Issue the
command:

status

This shows you that there are two breakpoints established, one in
main, and the other in doprint.

10. Continue to run the program by issuing the command:

cont
dbg continues the program and stops at the next breakpoint.

11. At this point you can do a traceback of the program to find
out where it is now and where it came from if there are
nested subroutine calls in effect. You could go back (see
chapter 5 of the Programmer’s Guide for information about
dbg) to prior subroutines and examine the value of variables
within those subroutines if there was a question in your
mind as to how a calculation or a logical step got to this
point. (You can only debug subroutines that are currently
active... inactive subroutines have no context and therefore
their variables have no value). You do a traceback by issuing
the command traceback or the command where. Both
are equivalent. The display shows you which subroutines
have been called and the values of the parameters with
which they have been called.

12. The program is now in the doprint function. You can now
view the values of the local variables m, n, and p by typing
their names. They are the same values as those in the main
program.

m
n

p

13. You can modify the values of the variables by setting them
equal to a different value. Note that the data type of the
value you choose must match the data type in the program.
Try these examples, modifying the data value, then type its
name to confirm that the value has been accepted.

Sample Application
(continued)

Example Sessions

Start Here 7-9

Sample Application
(continued)

15
-2.4e5
1.9d-9

B8 3T B 3B

14. Continue the program to completion by entering the
command:

cont

Notice that the printf statement this time outputs the values to
which the variables have been set instead of those values passed
into the program by the main function. This confirms that dbg
was indeed capable of changing the way your program worked
without editing and compiling again. This shows that you can use
the debugger to increase your productivity.

15. Exit the debugger by entering the command:
exit

Or you can use the command quit if you wish.

A Sample X Program

Here is the source code for a sample program in X. The program
opens a 24-plane X window on the display, draws a number of
random colored random string-art lines, waits for a few seconds,
then exits. Most of the drawing functions are contained in the
subroutine place_graphics.

This program is based on the "baswin.c" program from the (XIib
Programming Manual.

The differences are in the way the X Window is opened (as
indicated in the beginning of the chapter) and in the use of a
different function to place the graphics (draws multicolored string
art). The example is provided to show how to get a 24-plane
screen on a system that has only a base graphics board.

To compile this program, enter the following command line:

cc -o stringart -1X baswin24.c

To run the program, just type:

7-10 Start Here

Example Sessions

A Sample X Program
(continued)

stringart

The output is a set of multicolored interconnected lines. The
program exits automatically.

#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <X11l/Xos.h>

#include <stdio.h>

/* "@ (#)icon_bitmap 1.2 Stellar 88/12/14"
Copyright 1988 by
Stellar Computer Inc.
All Rights Reserved

This software comprises unpublished confidential information of
Stellar Computer Inc. and may not be used, copied or made
available to anyone, except in accordance with the license
under which it is furnished.
*/
#define icon_bitmap width 40
#define icon_bitmap height 40
static unsigned char icon_bitmap_bits[] = {
0xc3, 0Oxec3, 0x7f, 0x00, 0x78, 0x00, 0x00, 0x00, 0x00, OxcO, 0x00, 0x00,
0x00, 0x00, 0x80, 0x38, 0x00, 0x40, 0x00, 0x80, 0x24, 0x00, 0x00, 0x00,
0x80, 0x44, 0x00, 0x00, 0x00, 0x80, Ox44, 0x00, 0x00, 0x00, 0x80, 0x74,
0x00, 0x0f, 0xOc, 0x00, 0x7c, O0x3e, Ox41l, Ox0e, 0x00, Ox44, 0x22, 0x41,
0x02, 0x00, 0x84, 0x22, 0x46, 0x02, 0x00, Ox9%c, 0x26, Oxcc, 0x02, 0x00,
0x78, 0x3c, Oxcd, 0x36, 0x80, 0x00, 0x20, 0x06, OxOc, 0x80, 0x01, 0x00,
0x00, 0x00, 0x80, 0x0l1, 0x02, 0x40, 0x00, 0x80, 0x01, 0x06, 0x40, 0x00,
0x80, 0x0l1, 0x04, 0x20, 0x00, 0x80, 0x0l1, Ox04, 0x20, 0x01l, 0x80, 0x01,
0x04, 0x20, 0x00, 0x80, 0x01, 0x04, 0x22, 0x00, 0x80, 0x01l, 0x04, 0x33,
0xfl, 0Ox81, 0Ox01, 0x88, 0x12, 0x31, 0x03, Ox01, Ox88, 0xl1l2, 0x1ll, 0x02,
0x00, 0x88, 0x12, Oxl11l, 0x02, 0x00, 0x48, Oxla, Ox1ll, 0x02, 0x00, 0x70,
0x04, 0x19, 0x82, 0x01, 0x00, 0x00, 0x00, 0x80, 0x0l1, 0x00, 0x00, 0x38,
0x80, 0x01, 0x00, 0x00, Oxce, 0x80, 0x01, 0x00, 0x00, O0x83, 0x81, 0x81,
0x07, 0x80, 0x01, 0x81, Oxel, 0x04, OxcO, 0x00, 0x83, 0x31, 0x08, 0x40,
0x00, 0x82, 0x10, 0x08, 0x20, 0x00, 0x82, 0x19, 0xl1l0, 0x30, 0x00, 0x86,
0x0c, 0x30, 0x18, 0x00, 0x84, 0x04, 0x60, Ox0Oe, 0x00, Oxdec, 0x02, 0x80,
0x03, 0x00, 0x70, 0x00, 0x00, 0x00, 0x00, 0x00};

#define BITMAPDEPTH 1
#define SMALL 1
#define OK O

#define LINEWIDTH 2

/* These are used as arguments to nearly every Xlib routine, so it saves
* routine arguments to declare them global. If there were

* additional source files, they would be declared extern there. */
Display *display;

int screen;

unsigned short xsubi[3] = { 0x123, 0x4567, 0x89%ab };

Example Sessions Start Here 7-11

A Sample X Program

(continued)

&size_list, &count) == 0)

(void) fprintf(stderr,

"Window mgr didn’t set icon sizes - using default.\n");

icon_width = 40;
icon_height = 40;

else

while (icon_width < size_list—>min_width
icon_width = size_list->max width;
icon_height = size_list->max_height;

}

all the icon size stuff commented out */

/* Create pixmap of depth 1 (bitmap) for icon */
icon_pixmap = XCreateBitmapFromData (display, win,
icon bitmap bits, icon_bitmap_width, icon_bitmap height);

/* Set resize hints */

size_hints.flags = PPosition | PSize | PMinSize;
size_hints.x = x;

size_hints.y = y;

size_hints.width = width;

size hints.height = height;

size hints.min width = 600;

size hints.min height = 400;

/* set Properties for window manager (always before mapping) */
XSetStandardProperties (display, win, window_name, icon_name,
icon_pixmap, argv, argc, &size_hints);

/* Select event types wanted */
XSelectInput (display, win, ExposureMask | KeyPressMask |
ButtonPressMask | StructureNotifyMask);

/* create region for exposure event processing */
region = XCreateRegion():;

load font (&font_info);

/* create GC for text and drawing */
getGC (win, &gc, font_info);

/* Display window */
XMapWindow (display, win);

/* get events, use first to display text and graphics */
while (1) {
XNextEvent (display, &report);
switch (report.type) {
case Expose:
/* if this is the last contiguous expose
* in a group, draw the window */
if (report.xexpose.count == 0) {
/% if window too small to use */

7-14 Start Here

Example Sessions

A Sample X Program
(continued)

while (XCheckTypedEvent (display, Expose, &report));
if (window_size == SMALL)
TooSmall (win, gc, font_info);
else {
/* place graphics in window, */
place_graphics (win, gc, width, height,
font_info);

}
break;
case ConfigureNotify:

/* window has been resized, change width and
* height to send to place_text and place graphics
* in next Expose */

width = report.xconfigure.width;

height = report.xconfigure.height;

if ((width < size_hints.min_width) ||

(height < size_hints.min_height))
window_size = SMALL;

else

window_size OK;
break;
case ButtonPress:
/* trickle down into KeyPress (no break) */
case KeyPress:
XUnloadFont (display, font_info->fid);
XFreeGC (display, gc);
XCloseDisplay (display) ;
exit (1);
default:
/* all events selected by StructureNotifyMask
* except ConfigureNotify are thrown away here,
* since nothing is done with them */
break;
} /* end switch */
} /* end while */

getGC(win, gc, font_info)
Window win;

GC *gc;

XFontStruct *font_info;

{

I

unsigned long valuemask
XGCValues values;
unsigned int line_width LINEWIDTH;
int line style = LineSolid;

int cap_style = CapButt;

0; /* ignore XGCvalues and use defaults */

int join_style = JoinMiter;
int dash offset = 0O;
static char dash list[] = {12, 24};

int list_length = 2;

/* Create default Graphics Context */
*gc = XCreateGC (display, win, valuemask, &values);

Example Sessions Start Here 7-15

A Sample X Program

(continued)

/* specify font */
XSetFont (display, *gc, font_info->fid);

/* specify black foreground since default may be white on white */
XSetForeground (display, *gc, BlackPixel (display, screen));

/* set line attributes */
XSetLineAttributes (display, *gc, line_width, line style,
cap_style, join_style);

/* set dashes to be line_width in length */
XSetDashes (display, *gc, dash_offset, dash list, list_length);
}

load font (font_info)
XFontStruct **font_info;

{

char *fontname = "9x15";

/* Access font */
if ((*font_info = XLoadQueryFont (display,fontname)) == NULL)
{

(void) fprintf(stderr, "Basic: Cannot open 9x15 font\n");

exit(-1);
}
#define RangeRand (xx) nrand48 (xsubi) % (xx)

place_graphics(win, gc, window_width, window_height, font_info)
Window win;
GC ge;
unsigned int window_width, window_height;
XFontStruct *font_info;
{
int x1, yl;
int x2, y2;
int width, height;
int midx, midy;
int i,3;
int colorvalue, redvalue, greenvalue, bluevalue;

1

height -2 + window_height;
width -2 + window_width;
midx width/2;

midy = height/2;

I

x1
x2
vl
y2

RangeRand (width) ;
RangeRand (width) ;
RangeRand (height) ;
RangeRand (height) ;

for (j=0; 3j<20; j++)

{
for (i=0; 1i<20; i++)
{

7-16 Start Here Example Sessions

A Sample X Program
(continued)

redvalue = RangeRand (256) ;
bluevalue = RangeRand (256);
greenvalue = RangeRand (256);
colorvalue = 0x0 | (redvalue << 16)|

(greenvalue << 8) |bluevalue;

XSetForeground (display,
XDrawLine (display, win,
XDrawLine (display, win,

width - x2,
XDrawLine (display, win,

XDrawLine (display, win,

gc,
gec,
gc,

v2);

gc,

gc,

height - y2);

x1l = x2;
vyl = y2;
x2 = RangeRand(width) ;

}

sleep(l);

XClearWindow (display,win) ;
}
/* these are not NORMALLY here,

y2

colorvalue);

x1l, yl, x2, y2);

width - x1, y1,

width - x1, height - yi1,
width - x2, height - y2);
x1, height - yl, x2,

= RangeRand (height) ;

I just put it here to exit quickly */
XUnloadFont (display, font_info->fid);

XFreeGC (display, gc);
XCloseDisplay (display) ;
exit (1),

TooSmall (win, gc, font_info)

Window win;

GC gc;

XFontStruct *font_info;

{
char *stringl = "Too Small";
int y_offset, x offset;

y_offset = font_info->max bounds.ascent + 2;

2;

Il

x_offset

/* output text, centered on each line */
XDrawString (display, win, gc, x offset,
y_offset, stringl, strlen(stringl));

Example Sessions Start Here 7-17

INVENTORY

APPENDIX A

, System Documentation
Start Here: User’s Guide (Part Number 340-0027-01)

Site Preparation Manual (Part Number 340-0023-03)

Installation/ Administration Guide (Part Number 340-0119-00)

UNIX
Commands Reference Manual (Part Number 340-0103-00)

Programmer’s Reference Manual (Part Number 340-0121-00)
Programmer’s Reference Manual (Part Number 340-0122-00)

Documenter’s Workbench (Part Number 340-0034-02)

General Literature
S.R. Bourne: The UNIX System. Addison-Wesley, 1982. '

Kaare Christian: The UNIX Operating System. John Wiley & Sons,
1983.

Fiedler & Hunter: UNIX System Administration. Hayden Books,
1986.

Kerninghan & Pike: The UNIX Programming Environment.
Prentice-Hall, 1984.

McGilton & Morgan: Introducing the UNIX System. McGraw-Hill,
1983.

Prata & Martin: UNIX System V Bible. Howard W. Sams & Co.,
Inc., 1987.

Inventory of Documentation Start Here A-1

UNIX
(continued)

Mark G. Sobell: A Practical Guide to the UNIX System.
Benjamin/Cummings, 1984.

Thomas & Yates: A User Guide to the UNIX System.
OSBORNE /McGraw-Hill, 1982.

Waite, Martin, Prata: UNIX Primer Plus. Howard W. Sams & Co.,
Inc., 1983.

X Window System

Window System Manual (Part Number 340-0114-00)
Window System Toolkit (Part Number 340-0112-00)

X1ib Reference Manual (Part Number 340-0022-02)

General Literature

Oliver Jones: Introduction to the X Window System. Prentice-Hall,
1989. '

Adrian Nye, XIib Programming Manual, Vol. 1. Sebastopol, CA:
O'Reilly & Associates, Inc., 1989.

Scheifler, Gettys, Newman: X Window System C Library and Proto-
col Reference. Digital Press, 1988.

X Window System User’s Guide. O’Reilly & Associates, Inc., 1988.

Communications

Network File System Manual (Part Number 340-0126-02)

General Literature

Frey & Adams: A Directory of Electronic Mail Addressing and Net-
works. O'Reilly & Associates, 1989.

Kochan & Wood: UNIX Networking. Hayden Books, 1989.

Ricken & Weiman: Introduction to UNIX Networking. .sh consulting
inc. 1989.

Andrew S. Tanenbaum: Computer Networks/ (Second Edition).
Prentice Hall, 1988.

A-2 Start Here

Inventory of Documentation

Programmer’s Guide (Part Number 340-0116-00)
C: a Reference Manual (Part Number 340-0027-01)

Fortran Reference Manual (Part Number 340-0027-01)

Steve Talbott: Managing Projects with Make. O'Reilly & Associates,
Inc., 1988.

Dore Programmer’s Guide (Part Number 340-0107-00)

Dore Reference Manual (Part Number 340-0108-00)

Communications
(continued)

Programming

General Literature

Graphics

Inventory of Documentation

Start Here A-3

INDEX

A

awmre 2:11

absolute pathname 3:5
accessing files 3:18

adding file to buffer 4:32
adding text 4:7-8, 10

alias feature 3:81, 84
archive files 6:8

archive libraries 6:1-2, 8, 10
argument definition 1:6
ASCII 1:2; 3:12, 38, 42
assign directory permissions 3:30
assign file permissions 3:30
AT&T 1.3

B

background window 2:4
Berkeley 4.3 UNIX 1:3
Bourne shell 1:5; 5:14
box, close 2:5
junction 11,3
knob 1:3
resize 2:5
buffer, adding file to 4:32
deleting rest 4:32
byte 3:14-15

Start Here Index-1

C

.cshrc 3:84, 89-90
C compiler options 6:13
C preprocessor options ~ 6:14
C programming language 1:5
cases, changing 4:29
change directory permission 3:18, 30
change file permission 3:18, 30
changing cases 4:29
changing current directory ~ 3:15
changing directories 3:2
changing permissions 3:33, 35-36
changing text 4:24
character, pattern matching one 3:42
characters, control 1.9, 14
literal 1:9; 3:45
pattern matching 3:41
special 1:9; 3:43-10, 45, 49, 54
transposing 4:26
Cheapernet communication 5:13
child directory 3:8,12, 16
clearing window 4:29
close box 2:5
code optimization 6:1-2, 8, 10
codes, return 3:56, 66-67, 75
combine object files 6:8
command definition 1:6
command interpreter 1:5; 3:1, 39; 4:3
command line options 6:1, 3, 9
command line syntax 1:6-7
repeating last 4:28
command substitution 3:51, 63, 65, 79
undoing last 4:21
commands, cursor movement 4:6-7
line editor 3:83; 4:30-84, 32-33
mail message 5:8
online 1:6
redefining 3:81, 84
communication, Cheapernet 5:13
Ethernet 5:13
compilation control statements 6:1,4, 9
compiler directives 6:1, 5, 9-10
compiler optimization 6:11
conditional loops ~ 3:72

Index-2

Start Here

conditions, testing loop 3:74-75
configuration, terminal ~ 1:1; 4:5
constructing multiple conditional formats ~ 3:75
contents, listing directory = 3:2, 11

page through 3:18, 20
control characters 1:9, 14
copy file 3:18,25, 92

hard 3:18

printer 3:18
copying files system to system 5:12-13
copying text 4:26, 31
count characters in file 3:18, 29
count lines in file 3:18,29
count words in file 3:18, 29
creating a directory to execute programs 3:57
creating a file with vi 4:4
creating a simple shell program 3:56
creating directories 3:10
creating text 4:5
C-shell 1:5; 3:1, 14, 26-27, 40, 81-84, 89; 4:3; 5:14
C-shell programming language 3:82,89
current directory 3:4, 7-9, 11-13, 15, 27, 29-30, 36, 41, 53, 56-57,

74,79; 5:17; 7:7

current working directory 3:4-7, 15; 5:10-16
cursor 1:9; 2:4; 4:5-27,29-32,37;7:5-39, 7
cursor movement commands ~ 4:6-7

moving 4:10-16
cutting text ~ 4:25

D

debugger 6:1, 3, 5-6, 10; 7:2-3, 7, 10
debugging programs 3:78
debugging tools 6:1-2,7
definition, argument 1:6
command 1:6
option 1:6
deleting mail message 5:8
deleting rest of buffer 4:32
deleting text 4:7, 21
determining command execution status 3:67
determining existing permissions 3:31
directives, compiler 6:1, 5, 9-10
directories 1:4, 8; 3:1-3, 5, 7-12, 14-15, 17-18, 26, 30-31, 34, 36,
57; 4:30-58

Start Here

Index-3

changing 3:2
creating 3:10
making 3:2,10
naming 3:9,11
organizing 3:10
protect 3:18,30
removing 3:17
directory :ii; 1:4, 7; 2:3; 3:1-19, 25-33, 36, 41, 44, 47, 53, 56-58, 60,
62, 67-69, 74, 79-80, 83-84, 88, 92; 4:3; 5:3-4, 8, 10, 13-14, 16;
6:3; 7:3-18,5,7; A:2
changing current 3:15
child 3:8,12, 16
current 3:4, 7-9, 11-13, 15, 27, 29-30, 36, 41, 53, 56-57, 74, 79;
5:17,7:7
current working 3:4-7, 15; 5:10-16
home 2:3; 3:2-4, 10, 13, 15-18, 44, 57, 62, 84, 88, 92; 4:3; 5:4-4,
8,10, 13; 7:5-14
login 3:3,74
moving to 3:2
parent 3:7-8,12,17-18
directory permissions 3:15, 18, 30
print working 3:4, 92
root 3:3,5,9
source 33
discarding shell output 3:71
display differences between files 3:18, 36
documenting program functions 3:66
duplicate file 3:18, 25

E

editing multiple files 4:35
editing text with vi 4:6
editor, link 6:8

screen 3:88;4:1,6

vi i
entering X 2:1
environment, modifying login ~ 3:84
errors, typing 1.9
Ethernet communication 5:13
exchanging messages 5:1
executable programs 1:6; 3:9, 62, 87-88
executing a simple shell program 3:56
executing command on remote system 5:12, 14
executing commands sequentially 3:44

Index-4

Start Here

exiting mail 5:8
exiting X 2:2

F

feature, alias 3:81, 84
history 1:5; 3:81, 83
file, copy 3:18, 25,92
count characters 3:18, 29
count lines 3:18, 29
count words 3:18, 29
duplicate 3:18, 25
move 3:18, 26,92
ordinary 1:4; 3:2
file permissions 3:18, 30
recovering lost 4:34
remove 3:18, 28,92
special 1:4; 3:2, 15
file system 1:4; 3:1-8, 10-11, 16, 19,27, 71; A:2 -
viewinga 4:35
filenames, listing all ~ 3:13
files, accessing 3:18
archive 6:8
combine object 6:8
display differences 3:18, 36
editing multiple 4:35
manipulating 3:13, 15, 18
naming 3:9
ordinary 1:4; 3:2
protect 3:18, 30
special 1:4; 3:2
finding line number with line editor 4:31
finding out system name 5:6
fixing transposed letters ~ 4:26
format, listing in short ~ 3:14
formats, constructing multiple conditional ~ 3:75
Fortran compiler options ~ 6:11
full directory name 3:5
full pathname 3:5-6, 8-9, 12, 26-27, 44, 79; 5:10
functions, documenting program 3:66

Start Here

Index-5

G

global substitution = 4:32
graphics tablet 1:3

H

hard copy 3:18

hardware, system interface 1:1-2

header, printing message 5:8

help, man online 1:6

history feature 1:5; 3:81, 83

home directory 2:3; 3:2-4, 10, 13, 15-18, 44, 57, 62, 84, 88, 92; 4:3;
5:4-4, 8,10, 13; 7:5-14

I

iconifying windows 2:5

icons 1:3,12; 2:2-14

in, logging :ii; 1:1, 10, 12; 3:4; 5:12-13
input, redirecting 3:46; 5:11
interpreter, command 1:5; 3:1, 39; 4:3
interrupting mail message 5:9

J

joining two lines 4:29
joy sticks 1:3
junctionbox 1:1,3

K

kernel 1:4,8
keyboard 1:1; 2:5; 3:46-3, 86; 4:7; 5:16; 7:5
knob box 1:3

L

login 1:11-12, 15; 3:3-4, 15, 40, 47, 50-51, 54, 57, 59, 62, 66, 74,
83-84, 86, 89; 4:3; 5:1-9, 11-14, 17, 19 3:18, 26
language, C programming 1:5
C-shell programming 3:82, 89
shell command :ii; 3:40

Index-6

Start Here

leaving input mode 4:6

letters, fixing transposed 4:26

libraries, archive 6:1-2, 8, 10

library 3:88; 6:4, 8, 15; A:2

light pen 1:3

line editor commands 3:83; 4:30-84, 32-33

line editor commands in vi 4:30
moving to 4:17

line numbers 4:17; 6:12, 15

lines, joining two ~ 4:29

link editor 6:8

listing all filenames 3:13

listing directory contents 3:2, 11

listing in long format 3:14

listing in short format 3:14

literal characters 1:9; 3:45

loader table options 6:14

local to remote file copy 5:17

logging in :ii; 1:1, 10, 12; 3:4; 5:12-13

logging in to remote system 5:12-13

logging off 1:14; 3:55

login directory 3:3,74

looping with /f2for/f1loop 3:67

looping with /f2if...then...else/f1 loop 3:73

looping with /f2if...then/fl loop 3:72

looping with /f2whilw -do/f1 loop 3:70

loops, conditional ~ 3:72

M

mail i 1:12; 2:2; 3:47, 49-51, 54, 59, 62, 83, 87; 5:1-12, 18; A:2-19
exiting 5:8
managing incoming 5:7

mail message commands 5:8
undeliverable 5:4

making directories 3:2, 10

man online help 1:6

manager, window 7:11

managing incoming mail 5:7

manipulating files 3:13, 15, 18

matching, pattern 3:1, 29, 40-42

merge files 3:18, 38

message, deleting mail 5:8
interrupting mail ~ 5:9
printing mail 5:8

Start Here

Index-7

resuming mail 5:9

saving mail 5:8
messages, exchanging 5:1
mode, leaving input 4:6

vicommand 4:2

viinput 4:2

vilast 4:2
modem, remote communication with 5:12, 14
modifying login environment 3:84
modifying text 4:22
modifying windows 2:3
monitor 1:1,3,12
mouse 1:1,3,13;2:2;,7:3-5,5,7
mouse pad 1:1, 3, 13; 2:4-14
mouse pointer = 1:13; 2:4-5
move file 3:18, 26,92
moving cursor 4:10-16
moving cursor line by line 4:12
moving cursor paragraph by paragraph 4:15
moving cursor sentence by sentence 4:14
moving cursor to first character of line 4:11
moving cursor to last character of line 4:11
moving cursor to specific character on line 4:12
moving cursor within window 4:16
moving cursor word by word 4:13
moving to home directory 3:2
moving to specified line 4:17

N

name, full directory 3:5

named variables 3:58, 61, 84, 86
naming directories 3:9, 11
naming files 3:9

naming shell programs 3:58
networking 5:12, 18; A:2
numbers, line 4:17; 6:12, 15

@)

off, logging 1:14; 3:55

online commands 1:6

operating system i, ii; 1:1, 3-8, 10-12, 14; 3:1, 3, 5, 9, 37-39, 44,
90; 4:34; A:1

optimization, code 6:1-2, 8, 10

Index-8

Start Here

compiler 6:11
option definition 1:6
options, C compiler 6:13
C preprocessor 6:14
command line 6:1,3,9
Fortran compiler 6:11
loader table 6:14
ordinary file 1:4; 3:2
ordinary files 1:4; 3:2
organizing directories = 3:10
output, discarding shell ~ 3:71
redirecting 3:23-24, 47-48, 50

P

profile 3:13, 57, 84; 4:3; 6:7-4, 12, 14

pad, mouse 1:1,3,13; 2:4-14

page through file contents 3:18, 20

parent directory = 3:7-8, 12, 17-18

password 1:11; 5:13-12, 17

pasting text 4:25

pathname 3:5-18, 15-17, 26-27, 44, 57, 69, 79, 88; 5:10, 13, 16
absolute 3:5
full 3:5-6,8-9, 12, 26-27, 44, 79; 5:10
relative 3:7-9, 12-13, 16-17, 26-27

pattern matching 3:1, 29, 40-42

pattern matching a character set 3:42

pattern matching all characters 3:41

pattern matching one character 3:42
search file 3:19, 37, 92; 4:18

pen, light 1.3

permission, change directory 3:18, 30
change file 3:18, 30

permissions, changing 3:33, 35-36
determining existing 3:31
directory 3:15, 18, 30
file 3:18,30

pointer, mouse 1:13; 2:4-5

positional parameter variables 3:58-59, 65

print contents on screen 3:18

print partially formatted file contents 3:18, 23

print working directory = 3:4, 92

printer copy 3:18

printing mail message 5:8

printing message header 5:8

Start Here

Index-9

printing message number /f2n/fl1 5:8
printing on screen 3:2
printing summary of mail commands 5:8
prints contents on screen 3:19
programming, shell 3:52, 56, 66
programs, debugging 3:78

executable 1:6; 3:9, 62, 87-88

naming shell 3:58
prompt, system 1.9, 11; 3:22, 89; 4:4; 5:3-5
prompting user for variable values 3:63-64
protect directories 3:18, 30
protect files 3:18, 30

Q

quitting mail 5:8

R

receiving files via mail command 5:11
recovering lost file 4:34

redefining commands 3:81, 84

redirecting input 3:46; 5:11

redirecting output 3:23-24, 47-48, 50
redrawing window 4:29

relative pathname 3:7-9, 12-13, 16-17, 26-27
remote communication 5:12

remote communication 5:15

remote communication with modem 5:12, 14
remote to local file copy 5:17

remove file 3:18, 28,92

removing directories 3:17

rename file 3:18, 26

repeating last command 4:28

replacing text 4:22

report file’s character count 3:18

reserved variables 3:61-62, 86

resize box 2:5

resuming mail message 5:9

return codes 3:56, 66—67,75

root 2:2;3:3-6,9; 7:11

root directory 3:3,5,9

running background process after logging off ~ 3:55
running commands at later time 3:52
running process status ~ 3:54

Index-10

Start Here

S

saving changes with line editor ~ 4:31
saving mail message 5:8
screen editor 3:88; 4:1, 6
print contents 3:18
printing on 3:2
scrolling text 4:16
search file for pattern = 3:18-19, 37, 92; 4:18
sending files via mail command 5:11
sending mail to many people 5:5
sending messages to yourself 5:3
sequentially, executing commands 3:44
shell :ii; 1:4-8, 10; 2:2; 3:1, 3940, 42-47, 49, 52, 55-67, 69-72, 74,
76-77,79-82, 84; 4:1-89, 5, 9-10, 30; 5:14
Bourne 1:5; 5:14
shell command language :ii; 3:40
shell program variables 3:58
shell programming 3:52, 56, 66
sort files 3:18, 38
source directory 3:3
special characters 1:9; 3:43-10, 45, 49, 54
special file 1:4; 3:2, 15
special files 1:4; 3:2
special parameter variables = 3:59-60
speed, typing 1:10
statements, compilation control 6:1, 4, 9
unconditional control 3:78
status, determining command execution 3:67
running process 3:54
sticks, joy 1.3
substituting character string with one command 4:32
substituting text 4:23
substitution, command 3:51, 63, 65, 79
global 4:32
syntax, command line 1:6-7
system, file 1:4; 3:1-8, 10-11, 16, 19, 27, 71; A:2
system interface hardware 1:1-2
operating i, ii; 1:1, 3-8, 10-12, 14; 3:1, 3, 5, 9, 37-39, 44, 90;
4:34; A:1
system prompt 1:9, 11; 3:22, 89; 4:4; 5:3-5
System, X Window i, ii; 1:1, 3, 12; 2:1; A:2

Start Here

Index-11

T

tablet, graphics 1:3
terminal configuration 1:1; 4:5
testing loop conditions 3:74-75
testing loop conditions with return codes 3:75
text, adding 4:7-8, 10

changing 4:24

copying 4:26, 31

cutting 4:25

deleting 4:7,21

modifying 4:22

pasting 4:25

replacing 4:22

scrolling 4:16

substituting 4:23
tools, debugging 6:1-2,7
trackballs 1:3
transposing characters 4:26 »
turning off meaning of blank space 3:45
turning off special character meanings 3:45
typing errors 1:9
typing speed 1:10

U

unconditional control statements 3:78
undeliverable mail 5:4

undoing last command 4:21

UNIX, Berkeley 4.3 1:3

UNIXV.3 i

user-named variables 3:61-62

using comments in shell program 3:66
using shell variables 3:86

A%

V.3, UNIX :i

variables, named 3:58, 61, 84, 86
positional parameter 3:58-59, 65
reserved 3:61-62, 86
special parameter ~ 3:59-60
user-named 3:61-62
using shell ~ 3:86

Index-12

Start Here

vi i, 1ii; 3:17, 37, 52, 62, 83, 85, 88; 4:0-9, 12-17, 22, 25, 27; 7:3-36,
5-7
vi command mode 4:2
editing text 4:6
vi editor :ii
viinput mode 4:2
vi last line mode 4:2
viewing a file 4:35

W

window, background 2:4
clearing 4:29

window manager 7:11
moving cursor 4:16
redrawing 4:29

windows, iconifying 2:5
modifying = 2:3

writing text to new file 4:31

X

Xdefaults 2:3, 11
xdesktop 2:3,6-7,11
X, entering 2:1
exiting 2:2
X Window System i, ii; 1:1, 3, 12; 2:1; A:2

Y

yourself, sending messages to 5:3

Start Here Index-13

