Stardent

FORTRAN

S

CRENCE

MANUAL

tttttttttttttttttttt

Change History

340-0009-02 Original
340-0009-03 February, 1989 — Software Release 2.0
340-0111-01 January, 1990 — Software Release 3.0

Copyright © 1990
an unpublished work of Stardent Computer Inc.
All Rights Reserved.

This document has been provided pursuant to an agreement with Stardent Computer Inc. containing restrictions on
its disclosure, duplication, and use. This document contains confidential and proprietary information constituting
valuable trade secrets and is protected by federal copyright law as an unpublished work. This document (or any
portion thereof) may not be: (a) disclosed to third parties; (b) copied in any form except as permitted by the
agreement; or (c) used for any purpose not authorized by the agreement.

Restricted Rights Legend for Agencies of the U.S. Department of Defense
Use, duplication or disclosure by the Government is subject to restrictions as set forth in subparagraph
(c)(1)(ii) of the Rights in Technical Data and Computer Software clause at 252.227-7013 of the DoD

Supplement to the Federal Acquisition Regulations. Stardent Computer Inc., 880 West Maude Avenue,
Sunnyvale, California 94086.

Restricted Rights Legend for civilian agencies of the U.S. Government
Use, reproduction or disclosure is subject to restrictions set forth in subparagraph (a) through (d) of the
Commercial Computer Software—Restricted Rights clause at 52.227-19 of the Federal Acquisitions
Regulations and the limitations set forth in Stardent’s standard commercial agreement for this software.
Unpublished—rights reserved under the copyright laws of the United States.

Stardent™, Doré™, and Titan™ are trademarks of Stardent Computer Inc. UNIX® is a registered trademark of

AT&T. VAX® is a registered trademark of Digital Equipment Corporation. Cray™ is a trademark of Cray
Research, Inc.

CONTENTS

Structure of This Manual
Related Documentation
Intended Audience

Preface

xiii
xvi
XVi

1 Language Elements
1.1 The TITAN Fortran Character Set 1-1
1.2 Special Symbols 1-2
1.3 Keywords 1-3
1.4 Symbolic Names 1-4
1.4.1 Predefined Symbolic Names 1-5
1.4.1.1 Predefined Symbolic Names (Intrinsic Functions) ~ 1-5

1.5 Data Types 1-7
1.5.1 Integer 1-8
1.5.2 Real 1-9
1.5.2.1 Real Constants 19

1.5.3 Complex 1-11
1.5.4 Logjical 1-11
1.5.5 Character 1-12
1.5.6 Hollerith Constants 1-13
1.5.7 Octal Constants 1-15
1.5.8 Hexadecimal Constants 1-16
1.5.9 Simple Variables 1-17
1.5.10 Arrays 1-17
1.5.10.1 Array Declarators 1-17
1.5.10.2 Subscripts 1-19
1.5.10.3 Array Element Storage 1-20
1.5.11 Character Substrings 1-21
1.6 Expressions 1-22
1.6.1 Arithmetic Expressions 1-22
1.6.1.1 Hierarchy of Arithmetic Operators 1-23
1.6.1.2 Expressions with Mixed Operands 1-25

Contents

Fortran Reference Manual iii

1.6.1.3 Arithmetic Constant Expressions 1-26

1.6.2 Character Expressions 1-26
1.6.2.1 Character Constant Expressions 1-27

1.6.3 Relational Expressions 1-27
1.6.4 Arithmetic Relational Expressions 1-28
1.6.4.1 Character Relational Expressions 1-28

1.6.5 Logical Expressions 1-29
1.6.6 Bit-Masking Expressions 1-31

2 Fortran Statements
2.1 Fortran Statement Format 2-1
2.2 Statement Classification 2-2
2.2.1 Executable Statements 2-2
2.2.2 Nonexecutable Statements 2-2
2.3 Statement Classification 2-3
2.3.1 PROGRAM UNIT STATEMENTS 2-3
2.3.2 SPECIFICATION STATEMENTS 2-3
2.3.3 VALUE ASSIGNMENT STATEMENTS 2-4
2.3.4 CONTROL STATEMENTS 2-4
2.3.5 INPUT/OUTPUT STATEMENTS 2-5
2.3.6 PROGRAM HALT STATEMENTS 2-5
2.4 Order of Statements 2-6
2.5 ACCEPT Statement 2-7
2.6 ASSIGN Statement 2-8
2.7 Assignment Statement 2-9
2.7.1 Arithmetic Assignment Statement 2-9
2.7.2 Logical Assignment Statement 2-10
2.7.3 Character Assignment Statement 2-11
2.8 BACKSPACE Statement 2-13
2.9 BLOCK DATA Statement 2-15
2.10 CALL Statement 2-16
2.11 CLOSE Statement 2-18
2.12 COMMON Statement 2-20
2.13 CONTINUE Statement 2-24
2.14 DATA Statement 2-25
2.15 DECODE Statement 2-27
2.16 DO Statement 2-28
2.16.1 DO Loop Controls 2-28
2.16.2 Labeled and Block DO Statements 2-29
2.16.3 Proper Nesting 2-31
2.16.4 Transfers of Control 2-31
2.16.5 Implied DO Loops 2-33
2.16.6 Implied DO Loops in Input/Output Statements 2-33

iv Fortran Reference Manual

Contents

2.16.7 Implied DO Loops in Data Statements

2.16.8 DO WHILE Statement
2.16.9 Nesting DO Loops
2.16.10 Ranges of DO Loops
2.17 ENCODE Statement
2.18 END Statement
2.19 ENDFILE Statement
2.20 ENTRY Statement
2.21 EQUIVALENCE Statement
2.21.1 Equivalence of Array Elements
2.21.2 Equivalence Between Arrays of
Different Dimensions
2.21.3 Equivalence of Character Variables
2.21.4 Equivalence in Common Blocks
2.22 EXTERNAL Statement
2.23 FORMAT Statement
2.24 FUNCTION Statement
2.25 GOTO Statement
2.25.1 Unconditional GOTO Statement
2.25.2 Computed GOTO Statement
2.25.3 Assigned GOTO Statement
2.26 IF Statement
2.26.1 Arithmetic IF Statement
2.26.2 Logical IF Statement
2.26.3 Block IF Statement
2.27 IMPLICIT Statement
2.28 INCLUDE Statement
2.29 INQUIRE Statement
2.29.1 INQUIRE Statement Specifiers
2.30 INTRINSIC Statement
2.31 NAMELIST Statement
2.32 OPEN Statement
2.32.1 OPEN Statement Specifiers
2.33 OPTIONS Statement
2.34 PARAMETER Statement
2.35 PAUSE Statement
2.36 PRINT Statement
2.37 PROGRAM Statement
2.38 READ Statement

2.38.1 Read from the Standard Input Unit Statement

2.38.2 Read from File Statement
2.39 RETURN Statement
2.40 REWIND Statement
2.41 SAVE Statement
2.42 Statement Function Statement

2-37
2-38
2-39
2-40
2-43
2-44
2-45
2-46
2-49
2-50

2-51
2-52
2-54
2-56
2-58
2-60
2-62
2-62
2-63
2-64
2-65
2-65
2-67
2-68
2-70
2-72
2-73
2-74
2-77
2-78
2-79
2-80
2-84
2-85
2-87
2-89
291
2-92
2-92
2-93
2-96
2-98
2-99
2-101

Contents

Fortran Reference Manual v

2.43 STOP Statement 2-103
2.44 SUBROUTINE Statement 2-104
2.45 TYPE Statement 2-105
2.46 Type Statement 2-106
2.47 WRITE Statement 2-108
3 Fortran I/O Statements
3.1 Formatted Input/Output 3-1
3.1.1 Formatted Input 3-1
3.1.2 Formatted Output 3-3
3.2 Format Specifications 34
3.2.1 Format Specifications in Format Statements 34
3.2.2 Format Specifications in Input/Output Statements 3-5
3.2.3 Repeat Specification 3-6
3.2.4 Nesting of Format Specifications 3-6
3.2.5 Variable Format Expressions 3-7
3.3 Format Descriptors 3-8
3.3.1 Numeric Format Descriptors 3-11
3.3.2 Integer Format Descriptors 3-11
3.3.3 Real and Double Precision Format Descriptors 3-12
3.3.4 Fixed-Point Format Descriptor 3-14
3.3.5 Floating-Point Format Descriptors 3-14
3.3.6 Fixed- or Floating-Point Format Descriptor 3-15
3.3.7 Character Format Descriptor 3-16
3.3.7.1 Contents of Character Data Fields 3-16

3.3.8 Logical Format Descriptor 3-17
3.3.9 Octal Format Descriptor 3-18
3.3.10 Hexadecimal Format Descriptors 3-19
3.4 Edit Descriptors 3-20
3.4.1 Blank Interpretation Edit Descriptors 3-20
3.4.2 Dollar Sign Edit Descriptor 3-21
3.4.3 Q Edit Descriptor 3-21
3.4.4 Plus Sign Edit Descriptors 3-21
3.4.5 Literal Edit Descriptors 3-22
3.4.6 Literal Edit Descriptor 3-22
3.4.7 Position Edit Descriptor 3-22
3.4.8 Tab Edit Descriptors 3-23
3.4.9 Record Terminator Edit Descriptor 3-24
3.4.10 Colon Edit Descriptor 3-24
3.4.11 Scale Factor Edit Descriptor 3-24
3.5 Unformatted Input/Output 3-27
3.5.1 Unformatted Input 3-27
3.5.2 Unformatted Output 3-28

vi Fortran Reference Manual

Contents

3.6 List-Directed Input 3-29
3.7 List-Directed Output 3-33
3.8 NAMELIST-Directed I/0O 3-35
3.8.1 NAMELIST-Directed Input 3-36
3.8.2 NAMELIST-Directed Output 3-40
3.9 Special Programming Considerations 3-42
3.9.1 Recursion in I/O 3-42
3.9.2 ASA Carriage Control 3-43
4 File Handling
4.1 File Definition 4-2
4.1.1 Sequential Formatted File Format 4-3
4.1.2 Sequential Unformatted File Format 4-3
4.1.3 Direct Formatted File Format 4-4
4.1.4 Direct Unformatted File Format 4-4
4.2 File Access 4-4
4.3 File Existence and Connection 4-4
4.4 File Control Specifiers 4-6
4.4.1 READ and WRITE Statements 4-6
4.4.2 OPEN Statement 4-7
4.4.3 CLOSE Statement 4-9
4.4.4 INQUIRE Statement 4-10
4.5 File Positioning Statements 4-12 -
4.6 Internal Files 4-13
4.7 Preconnected Files 4-15
4.8 General File Examples 4-15
4.9 Environment Setting Variables 4-18
4.9.1 UNFORMATTED_IO, UNFORMATTED_INPUT,
UNFORMATTED_OUTPUT 4-18
5 Procedures and Subprograms
5.1 Subroutine Subprograms 5-2
5.1.1 Referencing a Subroutine 5-3
5.1.2 Alternate Returns from a Subroutine 5-3
5.2 Functions 5-4
5.2.1 Function Subprograms 5-4
5.2.2 Statement Functions 5-6
5.2.3 Intrinsic Functions 5-7
5.2.3.1 Generic Names 5-8
5.2.4 Referencing a Function 5-9
5.3 Procedure Communication 5-10
Contents Fortran Reference Manual vii

5.3.1 Using Arguments 5-10
5.3.2 Using the COMMON Statement 5-13
5.3.3 Arrays in Subprograms 5-13
5.3.4 Built-In Functions 5-15
5.3.4.1 Argument List Built-In Functions 5-15
5.3.4.2 %LOC Built-In Function 5-17

5.4 ENTRY Statement 5-17
5.4.1 Referencing an External Procedure by Entry Name 5-17
5.4.2 Entry Association 5-18
5.4.3 ENTRY Statement Restrictions 5-18
5.5 Block Data Subprograms 5-19
6 Intrinsic Functions
6.1 Intrinsic Functions 6-1
6.1.1 General Type Rules for Intrinsic Functions 6-14
6.2 Additional Library Subroutines 6-14
6.2.1 DATE Subroutine 6-15
6.2.2 IDATE Subroutine 6-15
6.2.3 EXIT Subroutine 6-16
6.2.4 SECNDS Function 6-16
6.2.5 TIME Subroutine 6-17
6.2.6 RAN Function 6-17
6.2.7 MVBITS and MVBITS2 Subroutines 6-18

7 Compiler Options
7.1 Options List 7-1
7.2 Standard Compilation Options 7-5
7.3 Input/Output Options 7-7
7.4 Debugging Options 7-8
7.5 Optimization Options 7-10
7.6 Porting Options 7-13
7.7 Miscellaneous Options 7-15
7.8 Form of Compiler Options 7-19
8 TITAN Fortran Optimization Facilities
8.1 Vector Reporting Facility 8-1
8.1.1 -vsummary 8-2
8.1.2 -vreport 8-3
8.1.3 -full_report 8-6

viii Fortran Reference Manual Contents

8.2 Program Transformations

8.2.1 Induction Variable Elimination

8.2.2 Constant Propagation

8.2.3 Dead Code Elimination

8.2.4 Loop Distribution

8.2.5 Loop Interchange

8.2.6 Scalar Expansion

8.2.7 Reduction Recognition
8.3 Compiler Directives

8.3.1 ASIS

8.3.2 INLINE

8.3.3 IVDEP

8.3.4 IPDEP

8.3.5 PPROC

8.3.6 THREADLOCAL

8.3.7 STATIC

8.3.8 VBEST

8.3.9 PBEST

8.3.10 VPROC

8.3.11 VREPORT

8.3.12 NO_PARALLEL

8.3.13 NO_VECTOR

8.3.14 OPT_LEVEL

8.3.15 SCALAR

8.3.16 Cray Directives

8.3.16.1 IVDEP

8.3.16.2 NORECURRENCE

8.3.16.3 NOVECTOR
8.3.16.4 VECTOR

8.3.17 Inline Expansion

8.4 Inline Functions

8.4.1 isamax

8.4.2 sasum

8.4.3 saxpy

8.4.4 scopy

8.4.5 sdot

8.4.6 smach

8.4.7 snrm2

8.4.8 srot

8.4.9 srotg

8.4.10 sscal

8.4.11 sswap

8.5 User-Controlled Parallelism

8.5.1 Static Storage
8.5.2 Stack Storage
8.5.3 Threadlocal Storage

8-11
8-11
8-12
8-13
8-13
8-14
8-15
8-16
8-19
8-19
8-20
8-20
8-20
8-20
8-21
8-22
8-22
8-22
8-23
8-23
8-23
8-24
8-24
8-24
8-25
8-25
8-25
8-25
8-26
8-26
8-30
8-31
8-31
8-31
8-31
8-32
8-32
8-32
8-32
8-33
8-33
8-33
8-33
8-34
8-34
8-34

Contents

Fortran Reference Manual ix

8.5.4 Parallelization in TITAN Fortran 8-35
8.5.5 Microtasking Library 8-37
8.5.5.1 MT_INIT 8-37
8.5.5.2 MT_FINI 8-37
8.5.5.3 MT_LOCK 8-37
8.5.5.4 MT_UNLOCK 8-38
8.5.5.5 MT_NUMBER_OF_PROCS 8-39
8.5.5.6 MT_SERIAL 8-39
8.5.5.7 MT_SET_THREAD_NUMBER 8-40
8.5.5.8 MT_SET_THREAD_PROCS 8-40
8.5.5.9 Special Notes on Microtasking 8-41

8.6 Asynchronous I/O 8-42
8.6.1 Definition 8-42
8.6.2 Asynchronous Library Functions for Fortran 8-42
8.6.2.1 ABLOCK 8-43
8.6.2.2 AREAD 8-43
8.6.2.3 ASTATUS 8-44

9 Profiling Programs
9.1 Profiling Programs 9-1
9.1.1 -ploop Option 9-2
9.1.2 Interpreting Profiled Programs 9-6
9.1.2.1 Other Timing Options for mkprof 9-8

9.1.3 -p Option 9-8
9.1.4 Special Notes 9-10
10 User Commands
10.1 Fortran User Commands 10-1
11 Library Functions
11.1 A Compendium of Library Functions 11-1
A Error Messages
A.11/0 Error Messages A-1
A.1.1 General Information on the I/O Error Messages A-1
A.1.2 Fortran I/O Error Message Library A-2

x Fortran Reference Manual

Contents

B

Data Layout and Calling Conventions

B.1 Data Layout B-1
B.1.1 Integer Format B-2
B.1.2 Short Integer Format B-2
B.1.3 Real Format B-2
B.1.4 Double Precision Format B-3
B.1.5 Complex Format B-4
B.1.6 Double Complex Format B-5
B.1.7 Logical Format B-5
B.1.8 Short Logical Format B-5
B.1.9 Character Format B-6
B.2 Language Calling Conventions B-6
B.2.1 Stack Allocation B-7
B.2.2 Scalar Arguments B-7
B.2.2.1 Scalar Floating Arguments B-7
B.2.2.2 Scalar Integer Arguments B-8
B.2.3 Structures and Unions B-9
B.2.3.1 Classification of Aggregates B-9
B.2.4 Fortran Character Variables B-11
B.2.5 Caller’s Stack Frame B-11
B.2.6 Vector Arguments B-11
B.2.7 Returning Mechanism B-12
B.2.7.1 Scalar Returns B-12
B.2.7.2 Aggregate Returns B-12
B.2.7.3 Vector Returns B-13
B.2.8 Register Conventions B-13
B.2.8.1 Integer Registers B-13
B.2.8.2 Floating Registers B-14
B.2.8.3 Vector Registers B-15
B.2.8.4 Special Registers B-15
B.2.9 Summary of Call/Return Conventions B-15
Index

Index to Stardent 1500/3000 Fortran Reference Manual I-1

List of Figures

Figure 2-1. Sample COMMON block storage
Figure 2-2. Typical Data References in Named COMMON
Figure 2-3. Typical Data References in Blank COMMON

2-22
2-23
2-23

Contents

Fortran Reference Manual xi

List of Tables
Table 1-1. Special Symbols 1-3
Table 1-2. Statement Keywords 1-3
Table 1-3. Predefined Intrinsic Function Names 1-6
Table 1-4. Data Types 1-7
Table 1-5. Properties of Integer-Types 1-8
Table 1-6. Operand Rankings 1-25
Table 1-7. Conversion of Mixed Type Operands 1-26
Table 1-8. Truth Table for Logical Operators 1-30
Table 1-9. Truth Table for Masking Operators 1-32
Table 2-1. Required Order Of Statements 2-6
Table 2-2. Conversion Rules — Assignment Statements 2-10
Table 2-3. Format Descriptors 2-58
Table 2-4. Edit Descriptors 2-59
Table 3-1. Carriage Control Characters 3-3
Table 3-3. Default Field Width Values for Format Descrlptors 3-9
Table 3-2. Format Descriptors 3-9
Table 3-4. Edit Descriptors 3-20
Table 4-1. INQUIRE Statement Spec1f1cat10ns 4-11
Table 6-1. Intrinsic Functions 6-2
Table 7-1. Command Line Preprocessor Options for Fortran 7-2
Table 7-2. Command Line Loader Options for Fortran 7-2
Table 7-3. Command Line Compiler Options for Fortran 7-3
Table 7-4. Suboptions for -standard option 7-9
Table 7-5. Form of Compiler Options 7-19
Table 8-1. BLAS Function Names 8-30
Table B-1. Integer Data Format (INTEGER*4) B-2
Table B-2. Short Integer Format (INTEGER#2) B-2
Table B-3. Real Format B-3
Table B-4. Double Precision Format B-4
Table B-5. Complex Format B-4
Table B-6. Double Complex Format B-5
Table B-7. Logical Data Format B-5
Table B-8. Short Logical Data Format B-6
Table B-9. Character Data Format B-6
Table B-10. VCU Scalar Floating Point Registers B-14

xii Fortran Reference Manual

Contents

PREFACE

This manual is a reference for the Stardent 1500/3000 Fortran pro-
gramming language. It is not a tutorial on the Fortran language.
However, it describes the elements of the language as well as
other elements that specifically address Stardent 1500/3000 For-
tran. These include programming statements, input/output state-
ments, file handling instructions, procedures and subprograms,
math and intrinsic functions, compiler options, user-controlled
parallelism, program transformations, inline functions, vector
reporting facility, compiler directives, asynchronous 1/0O, state-
ments on profiling programs, environment setting variables,
library functions, error messages, data layout, and finally, calling
conventions.

The manual has six sections and two appendices. Here is a short
description of each section and the appendices.

e Section 1 includes chapters 1 to 5 — Fortran Language Ele-
ments. It discusses everything concerning the language.

o Chapter 1 - Language Elements

This chapter describes the basics of the Stardent
1500/3000 Fortran language. The character set is
identified, keywords and symbolic names are defined,
and data types are described.

o Chapter 2 — Fortran Statements

This chapter provides information on all the statements
in the Stardent 1500/3000 Fortran language. The
required order of statements is defined, followed by an
alphabetical listing of the statements.

Structure of This
Manual

Preface

Fortran Reference Manual xiii

[o e]
Structure of This Manual

(continued)

o Chapter 3 — Fortran 1/O Statements

This chapter describes in detail the input/output state-
ments used in the Stardent 1500/3000 Fortran. All for-
mat and edit descriptors are defined with examples
showing their application.

o Chapter 4 - File Handling

This chapter describes the file handling statements and
procedures available in the Stardent 1500/3000 Fortran.
These include the READ, WRITE, OPEN, CLOSE,
INQUIRE, and file-positioning statements. In addition,
it also briefly describes the Stardent 1500/3000 environ-
ment setting variables which allow you to read or write
files imported from VMS and most BSD UNIX systems.

o Chapter 5 - Procedures and Subprograms

This chapter describes procedures and block data sub-
programs. The procedures include function subpro-
grams, subroutine subprograms, statement functions,
and intrinsic functions.

Section 2 consists of Chapter 6 — Intrinsic Functions. This
chapter provides a table of intrinsic functions. The table
includes the definition of each function, the number of argu-
ments, the generic name of each group of functions, the
specific name for each function, the types of arguments
allowed, and the type of result of intrinsic functions.

Section 3 contains Chapter 7 — Compiler Options. It concen-
trates on compiler options which the Stardent 1500/3000
supports. This chapter categorizes specific options together,
so that it is easy for you to refer directly to what you need.
Those categories are: standard compilation options,
input/output options, debugging options, optimization
options, porting aid options, and miscellaneous options.

Section 4 is a stand-alone chapter, Chapter 8, Stardent
1500/3000 Fortran Optimization Facilities. This chapter
specifically describes the Stardent 1500/3000 optimization
facilities such as vector reporting facility, program transfor-
mations, compiler directives, inline functions, user-
controlled parallelism, and asynchronous I/O.

xiv Fortran Reference Manual

Preface

Section 5 consists of Chapter 9, Profiling Programs. This
chapter covers profiling programs on the Stardent
1500/3000.

Section 6 covers user commands and library functions in two
separate chapters. The following provides a short descrip-
tion of each chapter.

o Chapter 10 — User Commands

This chapter describes several important user com-
mands in the Fortran programming environment.
Those include Fortran compiler and its options,
environment setting variables which allow you to read
or write VMS or BSD unformatted files on the Stardent
1500/3000 system, a filter to print Fortran files, a multi-
routine Fortran file splitter, and a conversion program
which can be used to convert a rational dialect of For-
tran into ordinary irrational Fortran.

o Chapter 11 — Library Functions

This chapter contains the UNIX manual pages that
describe the functions built into the Fortran support
library. These library functions include I/O functions,
file access functions, asynchronous I/O functions, sys-
tem functions, timing functions, UNIX utility functions,
and VMS compatibility functions. These functions may
be directly called from the source program. The loader
links the library functions into the executable file.

Appendix A contains a list of error messages that are pro-
vided to you during the compilation or execution of Fortran
programs.

Appendix B consists of two related topics, data layout and
language calling conventions in the Stardent 1500/3000 sys-
tem. Each topic is fully described to serve its useful purpose.

b]
Structure of This Manual

(continued)

Preface

Fortran Reference Manual xv

- - -~~~ ‘"“~“".“"-]
Structure of This Manual

(continued)
Related Documentation
More information on Fortran and the UNIX Operating System can
be found in the following manuals:
e Programmer’s Guide
* Programmer’s Reference Manual, Vol. 1
e Programmer’s Reference Manual, Vol. 2
* Commands Reference Manual
e System Administrator’s Guide
Intended Audience

This manual is written for users who have previous knowledge of
the Fortran programming language or for someone who at least
has been exposed to some similar high-level language. If you are
not familiar with the Fortran programming language or any simi-
lar languages, you should acquire some basics through other
available commercial materials.

xvi Fortran Reference Manual Preface

LANGUAGE
ELEMENTS

CHAPTER ONE

A Fortran program is a sequence of statements which, when exe-
cuted in a specified order, process data to produce desired results.
Because each program has different data needs, Fortran provides
nine data types for constants, variables, functions, and expres-
sions. Stardent 1500/3000 Fortran also provides three additional
constant formats, which are extensions to Fortran 77. All are
described in Data Types and Constants later in this chapter. Key-
words, special characters, special symbols, symbolic names, and
data make up the statements of a Fortran program. This chapter
describes the elements of statements.

1.1
Each language element is written using the letters A through Z, The Stardent 1500/3000
the digits 0 through 9, and the following special characters: Fortran Character Set

Blank = Equals

Plus - Minus

Asterisk / Slash

Exclamation point Underscore (break)
Left parenthesis) Right parenthesis
Percent sign & Ampersand
Comma . Decimal point
Dollar sign : Colon

Left angle bracket > Right angle bracket
Single quotation mark (apostrophe)

Double quotation mark

R x4+

S A/

The backslash escape, within character strings or Hollerith con-
stants, is used to permit normal file system communication (that is
“\n’’ to force a vertical tab).

Language Elements Fortran Reference Manual 1-1

-~]
The Stardent 1500/3000

Fortran Character Set
(continued)

As an extension to Fortran 77, the 26 lowercase letters (a through
z) are allowed. The compiler considers them identical to their
uppercase equivalents (unless -case_sensitive is used; refer to
Chapter 7, Compiler Options for detailed information on this
option), except in character or Hollerith constants. Note that this
differs from the C language, in which lowercase letters are distinct
from uppercase letters in identifiers. Lowercase letters improve
program readability. In addition, any printable ASCII character
can be used in a character or Hollerith constant or a comment.

Blanks can be used anywhere within a statement. However, the

first characters of a compiler directive must be exactly C$DOIT or
CDIRS.

A tab character in column 1 through 6 is treated as a tab to
column 7, and a tab character in any other column is treated as a
single blank. However, tab formatting for the entry of Fortran
statements is allowed as follows:

e A tab character following a statement number in columns 1
through 5 is treated as though you have spaced over to at
least column 7, the normal starting position of statement text.

e Ifyou begin a line with a tab character:

o if the first character following the tab is a numeral, then
it is treated as a continuation character (that is, as
though the numeral had been placed in column 6, the
normal continuation column). No normal Fortran key-
word begins with a numeral, so this is the indication of
a continuation.

o if the first character following a leading tab character is
other than a numeral, this character is treated as the
first character of a keyword or variable.

1.2
Special Symbols

The special symbols are groups of characters that define specific
operators and values. The special symbols of Fortran are shown
in Table 1-1 that follows.

1-2 Fortran Reference Manual

Language Elements

Special Symbols

(continued)
Table 1-1. Special Symbols
I Concatenation Exponentiation
.TRUE. Logical true JFALSE. Logical false
NOT. Logical negation Logical AND
.OR. Logical OR Logical equivalence
XOR. Synonym for .NEQV. Synonym for .NEQV.
.EQ. Equal Not equal
.LT. Less than Less than or equal
.GT. Greater than Greater than or equal
NEQV. Logical nonequivalence
(exclusive OR)
1.3
Keywords are predefined Fortran entities that identify a statement Keywords

or compiler option. Symbolic names can be identical to keywords
because the interpretation of a sequence of characters is implied
by the context in which it appears. The keywords for Fortran are

listed in Table 1-2.

Table 1-2. Statement Keywords

ACCEPT!

ASSIGN
BACKSPACE
BLOCK DATA
CALL

CHARACTER
CLOSE

COMMON
COMPLEX
CONTINUE

DATA

DATE

DECODE!
DIMENSION

DO

DO WHILE!
DOUBLE COMPLEX"
DOUBLE PRECISION
ELSE

ELSE IF

ENCODE!
END

END DO!
END IF
ENDFILE
ENTRY
EQUIVALENCE
EXTERNAL
FORMAT
FUNCTION
GOTO

IF
IMPLICIT
INCLUDE!
INQUIRE
INTEGER
INTRINSIC
LOGICAL
NAMELIST!
NONE

! Extension to Fortran 77.

OPEN
OPTIONS!
PARAMETER
PAUSE
PRINT
PROGRAM
READ

REAL
RETURN
REWIND
SAVE

STOP
SUBROUTINE
TYPE!

WRITE

Language Elements

Fortran Reference Manual 1-3

1.4
Symbolic Names

NOTE

Case is significant when
characters appear in Hollerith or
character constants, but not
otherwise.

Symbolic names are entities that define main program, procedure,
block data subprogram, common block, named constant, namelist,
or variable names. Each symbolic name consists of a sequence of
characters, the first of which must be a letter. The remainder can
be letters, digits, or, as an extension to Fortran 77, the underscore
character () or the dollar sign ($). The letters can be upper case
or, as an extension to Fortran 77, lower case. The name can be up
to 31 characters in length and all characters are significant.

External names are those names used by the linker. In Fortran,
external names are generated for subroutines, functions, entries,
and common blocks. The external name is the internal name with
lower case letters converted into their upper case equivalents.

Examples of Symbolic Names

INITIALIZATION SUBROUTINE REAL_VALUE
char_string : sum _of real values
NumBer of_ ERRors error_flag

Because upper- and lowercase letters are not distinguished within
symbolic names, the following are equivalent:

result3
RESULT3
ResulT3

The name that identifies a variable, named constant or a function
also identifies its default data type. A first letter of I, J, K, I, M, or
N implies type integer. Any other letter implies type real. This
default implied typing can be changed with an IMPLICIT state-
ment or by a type statement. A symbolic name that identifies a
main program, subroutine, block data subprogram, namelist, or
common block has no data type.

A keyword may be used as a symbolic name, but that is usually
bad practice. The symbolic name of a named constant or variable
can be the same as the symbolic name of a common block without
conflict. '

1-4 Fortran Reference Manual

Language Elements

EXAMPLES

READ = IF + DO * REAL

READ, IF, DO, and REAL are recognized as variables. They
can also be used elsewhere as keywords in statements.

IF (IF .EQ. GOTO) GOTO99

Within the logical expression, IF and GOTO are recognized
as variables. The IF and GOTO outside the expression are
recognized as statement keywords.

DO 10 § = 1.5

The symbol DO 10 j is recognized as a variable, even though
it contains blanks, mixed case, and the characters DO.

Although Stardent 1500/3000 Fortran permits these examples,
using them is poor programming practice because they inhibit
program readability.

Intrinsic functions have symbolic names that are predefined by
Fortran. Intrinsic functions are discussed in detail in Chapter 5,
Procedures and Block Data Subprograms and in Chapter 6, Intrinsic
Functions. A list of the intrinsic functions of Fortran is in the table
that follows. An asterisk marks those names which are extensions
to Fortran 77.

1.4.1.1 Predefined Symbolic Names (Intrinsic Functions)

A user-defined function can not have the same name as an intrin-
sic function when they are located in the same program unit. If
the user-defined function is located in a different program unit
than the intrinsic function, or if the name appears in an EXTER-
NAL statement, identical names may be used. Predefined intrin-
sic functions names are listed in table Table 1-3. (Also refer to
Chapter 2, Fortran Statements in the section EXTERNAL Statement).

1.4.1
Predefined Symbolic
Names

Language Elements

Fortran Reference Manual 1-5

Table 1-3. Predefined Intrinsic Function Names

ABS CLOG
ACOS CMPLX
ACOSD* CONIJG
AIMAG COS
AIMAX0* COSD*
AIMINO* COSH
AINT CSIN
AJMAX0* CSQRT
AJMINO* DABS
ALOG DACOS
ALOGI0 DACOSD*
AMAX0 DASIN
AMAX1 DASIND*
AMINO DATAN
AMIN1 DATAN?2
AMOD DATAN2D*
ANINT DATAND*
ASIN DBLE
ASIND* DCMPLX*
ATAN DCONJG*
ATAN2 DCOS
ATAN2D* DCOSD*
ATAND* DCOSH
BITEST* DDIM
BJTEST* DEXP

BTEST* DFLOAT*
CABS DFLOTI*
CCOS DFLOTJ*

CDABS* DIM
CDCOS* DIMAG*
CDEXP* DINT
CDLOG* DLOG
CDSIN* DLOGI10
CDSQRT* DMAXI1
CEXP DMIN1
CHAR DMOD

DNINT
DPROD
DREAL*
DSIGN
DSIN
DSIND*
DSINH
DSQRT
DTAN
DTAND*
DTANH
EXP
FLOAT
FLOATI*
FLOATJ*
IABS
IAND*
IBCLR*
IBITS*
IBSET*
ICHAR
IDIM
IDINT
IDNINT
IEOR*
TFIX
IABS*
ITAND*
IIBCLR*
TIBITS*
IIBSET*
IIDIM*
IIDINT*
IIDNNT*
IIEOR*
TIFIX*

* Extension to Fortran 77.

IINT*
IIOR*
IISHFTC*
IISHFT*
TISIGN*
IMAX0*
IMAX1*
IMINO*
IMINT*
IMOD*
INDEX
ININT*
INOT*
INT
IOR*
ISHFTC*
ISHFT*
ISIGN
IZEXT*
JIABS*
JIAND*
JIBCLR*
JIBITS*
JIBSET*
JIDIM*
JIDINT*
JIDNNT*
JIEOR*
JIFIX*
JINT*
JIOR*
JISHFTC*
JISHFT*
JISIGN*
TMAX0*
TMAX1*

JMINO*
JMINT*
JMOD*
JNINT*
JNOT*
JZEXT*
LEN
LGE
LGT
LLE
LLT
LOG
LOGI10
MAX
MAXO0
MAX1
MIN
MINO
MIN1
MOD
NINT
NOT*
RAN*
REAL
SIGN
SIN
SIND*
SINH
SNGL
SQRT
TAN
TAND*
TANH
ZEXT*

1-6 Fortran Reference Manual Language Elements

Except for Hollerith, octal, and hexadecimal constants, every con-
stant, variable, function, and expression is of one type only. Hol-
lerith constants are of no type and conform to the context in
which they appear, and octal and hexadecimal constants assume a
numeric data type based on the way they are used. The type

defines:

e The set of values an entity of that type may assume.

e The amount of storage variables of that type require.

e The set of permissible operations that which can be per-
formed on an entity of that type.

The eleven data types provided by Stardent 1500/3000 Fortran
are shown in Table 1-4, together with the range and storage of

each.

Table 1-4. Data Types

TYPE RANGE STORAGE
INTEGER*4 2147483648 to +2137483647 1 word/32 bits
INTEGER#2 -32768 to +32767 half word /16 bits
BYTE -128 to 127 1 byte/8 bits
REAL#4 -3.402823E+38 to -1.175495E-38 1 word/32 bits

0

1.175495E-38 to 3.402823E+38
REAL#8 or -1.79769313486231D+308 to 2 words/ 64 bits
DOUBLE PRECISION -2.22507385850721D-308

0

2.22507385850721D-308 to

1.79769313486231D+308
COMPLEX*8 Each component same as real 2 words/ 64 bits
COMPLEX*16 or Each component same as 4 words/128 bits
DOUBLE COMPLEX double precision
LOGICAL=*4 .TRUE. or .FALSE. 1 word/32 bits
LOGICAL#*2 .TRUE. or .FALSE. half word /16 bits
LOGICAL=*1 -128 to +127 1 byte/8 bits
character Entire 8-bit ASCII character set one byte/8 bits

(for each character)

1.5
Data Types

Language Elements

Fortran Reference Manual 1-7

Data Types
(continued)

A constant is a data element that represents one specific value,
such as -3, .TRUE,, “character constant’, 47.21E-8, and so on. With
the PARAMETER statement (described in PARAMETER State-
ment in Chapter 2, Fortran Statements) constants can be given sym-
bolic names.

Stardent 1500/3000 Fortran also provides three additional con-
stant formats, octal, hexadecimal, and Hollerith. These formats

- are extensions to Fortran 77. They differ from the data types in

that they cannot be associated with variables, functions, or expres-
sions. You can define up to 16 bytes for octal and hexadecimal
constants. Hollerith constants may specify up to 2,000 bytes. The
operations which can be performed on each of the types is dis-
cussed in the section Expressions later in this chapter.

1.5.1
Integer

NOTE

The IMPLICIT statement can
change the type associated with
the initial letter of a variable
name.

The integer data types include the types BYTE, INTEGER#2, and
INTEGER (also written INTEGER*4). All except INTEGER are
extensions to Fortran 77. A symbolic name can be given an
integer type by explicit appearance in BYTE, INTEGER#2,
INTEGER, or INTEGER#*4 type statement. Symbolic names begin-
ning with the letters I, J, K, L, M, or N are implicitly given the
type INTEGER unless otherwise defined; this implicit typing can
be modified by the IMPLICIT statement or by the -i4, -noi4, and
-implicit options.

Integer constants consist of an optional plus (+) or minus (-) sign
followed by one or more digits (0 through 9). Whole numbers
within the range —2147483 648 to +2147483 647 are represented
as integer constants. Constants outside this range generate
compile-time errors. If a value outside this range is generated
during execution, an overflow may occur. Computed results may
be in error. Refer to Table 1-5.

Table 1-5. Properties of Integer-Types

TYPE RANGE STORAGE ALIGNMENT
BYTE -128 - 127 8 bits/1 byte Byte boundary
INTEGER#*2 -32768 - +32767 16 bits/2 bytes Half-word

' boundary
INTEGER -2147483648 - +2147483647 32 bits/4 bytes/1
INTEGER*4 word Word boundary

1-8 Fortran Reference Manual

Language Elements

There is an alternative octal notation for integer constants that
may also be used. Be aware that this syntax has been included
only for compatibility with older Fortran programs and its use is
discouraged.

SYNTAX

",

nn
where

nn
is a string of digits between the value of 0 through 7.

Data Types
(continued)

Real numbers are approximated in Fortran by floating point
numbers. These come in single-precision and double-precision
forms; the first occupies one word of storage per data item and
the second occupies two words. Values representable by floating
point numbers are shown in Table 1-4. Double precision values
should be aligned on double word boundaries.

Variables can be explicitly typed as floating point by using the fol-
lowing declarations:

REAL single precision
REAL#*4 single precision
DOUBLE double precision
REAL#*8 double precision

Variables starting with the letters A-H or O-Z are implicitly typed
REAL#4 unless an IMPLICIT declaration is used or either the
-noimplicit or the -noi4 option to the compiler is used.

1.5.2.1 Real Constants

Real constants contain a decimal point or an exponent or both.
They can have a leading plus (+) or minus (-) sign. Normally,
floating point constants derive their precision from the context in
which they are used and appropriate conversions are applied
automatically. However, the use of D instead of E in the exponent
of a floating point constant forces use of a double precision value.

1.5.2
Real

Language Elements

Fortran Reference Manual 1-9

Data Types
(continued)

SYNTAX
sn.n sn.nEse
s.n s.nEse
SH. sn.Ese
snEse

sn.nDse sn.Dse
s.nDse snDse

where
n is astring of digits.
s isan optional sign.
e is the exponent, which must be a integer.

The construct Ese represents a power of 10.

EXAMPLE

3.48-4 = 3.4x10™ =.00034

12.82 =42x10* = 4200
Double precision constants contain an optional decimal point and
an exponent. They can have a leading plus (+) or minus (-) sign.

The exponent is specified with the letter D. The construct Dse
represents a power of 10.

EXAMPLE
14.p-5 =14.x10"°=.00014

5.834D2 = 5.834x10% = 583.4

1-10 Fortran Reference Manual

Language Elements

Data Types
{continued)

Complex numbers are represented in Fortran by one of the com-
plex data types. Single precision complex values are represented
by a pair of single precision floating point values with the real
component first, and occupy two words of storage. Double preci-
sion complex values are represented by a pair of double precision
floating point values with the real component first, and occupy
four words of storage. The double precision complex data type is
a Stardent 1500/3000 extension to Fortran 77.

A variable can be given a complex type by use of a type state-
ment. Following are the complex data types:

COMPLEX
COMPLEX#*8
DOUBLE COMPLEX
COMPLEX*16

single precision complex
single precision complex
double precision complex
double precision complex

The declaration of complex values may also be affected by use of
the IMPLICIT statement and by the -nor4 and - implicit options.

A complex constant is written as a pair of numeric constants
enclosed in parentheses and separated by a comma. The precision
of the constant is normally inferred from context; however, if
either numeric component is a double precision floating point
constant, the complex constant is also double precision.

EXAMPLES

(3.0, —2.5E3) (3.5, 5.4)

(0, 0) (-187, -160.5)
This is double
precision because one
of its components is

double precision.

(1.23D12, 3.4E-2)

1.5.3
Complex

An entity of the logical type can assume only the values true or
false. Entities of type logical are represented in one 32-bit word.
The value false is represented by a value of 0, and the value true is
represented by a nonzero value.

1.5.4
Logical

Language Elements

Fortran Reference Manual 1-11

Data Types
(continued)

The forms and values of a logical constant are:

Form

.TRUE.
.FALSE.

The periods must be included as shown when specifying a logical
constant.

A variable can be explicitly typed as logical by specifying it in a
LOGICAL*4 or LOGICAL type statement. You can also specify a
variable to be of a logical type, but cause it to occupy only a half
word or a byte by specifying it in a LOGICAL#2 (for half word
storage) or a LOGICAL#1 (for byte storage) statement respec-
tively.

1.5.5
Character

The character type is used to represent a string of characters. The
string can consist of any characters in the 8-bit ASCII character set.
Nonprintable characters can be included in a string. The blank
character is valid and significant in a character entity. Lowercase
characters are not identical to their uppercase equivalent in char-
acter entities. Characters otherwise difficult to write can be
specified using the CHAR intrinsic function. (Refer to Chapter 6,
Intrinsic Functions for additional information).

Each character in the string has a character position that is num-
bered consecutively: 1,2, 3, and so on. The number indicates the
sequential position of a character in the string, beginning at the
left and proceeding to the right. Entities of type character are
stored one character per byte (eight bits).

A variable can be explicitly typed as character by specifying it in a
CHARACTER type statement.

The form of a character constant is a single quotation mark (apos-
trophe, ”) followed by a nonempty string of characters and fol-
lowed by a single quotation mark. When single quote marks are
used to enclose a string, then double-quote marks within the
string are treated as ordinary characters.

If a single quotation mark is included in a string delimited by sin-
gle quotation marks, it must be written twice to distinguish it

1-12 Fortran Reference Manual

Language Elements

from the delimiting characters. The length of a character constant
is the number of characters between the delimiting characters
(which are not counted). Double apostrophes or double double
quotation marks (” or ") count as one character each. The length
of a character constant must be greater than 0.

Data Types
(continued)

EXAMPLES
Constant Comments
"Input the next item’ Fully enclosed in apostrophes.
" /usr/grk/lib/filel.c’ Fully enclosed in apostrophes.
‘Ttem #1 =>' Fully enclosed in apostrophes.
'NEEDED A "1 " OR A "2"’ Fully enclosed in apostrophes.
‘That’’s life!’ Two apostrophes in a row indicate
an apostrophe in the resultant string.
’She replied ‘Tell me another’’ The inner apostrophes enclosed by the

outer apostrophes become part of the string.

Hollerith constants are an extension to Fortran 77. A Hollerith
constant is a typeless bit pattern specified by a character string.
Hollerith constants do not substitute for character constants.

SYNTAX
nHc[c]...
where

n

is an unsigned integer (cannot be zero) that specifies how
many characters are in the string.

¢ (and subsequent characters)

are a character string. Spaces and tabs can be used as part of
the string and are included in the character count.

1.5.6
Hollerith Constants

Language Elements

Fortran Reference Manual 1-13

Data Types
(continued)

A maximum of 2000 characters can be specified for any Hollerith
constant.

EXAMPLES

Sample Length

2HXY 2

SHTEST 5 (a blank space is used

after the constant; it is
part of the constant)

17HA LONGER CONSTANT 17

When used with binary operators, the Hollerith constant assumes
a data type that is compatible with the context in which it is used.
This includes the assignment operator. For example, if a Hollerith
constant is added to or assigned to an INTEGER variable, then
this Hollerith constant is treated as an integer, of a length equal to
the length of the integer. '

EXAMPLES

1x = Jx + 4HEFABR If JX is INTEGER#*4,
then the constant is
treated as INTEGER*4.

DP = 8HXYZ12345 If DP is REAL*8, then
the constant is also

treated as REAL#*8.

If the length of the Hollerith constant is less than the length of the
data type that is implied by its use, blanks (ASCII hex 20) are
added to the right side of the constant to fill it out to correct the
length to match the implied length. If the Hollerith constant is too
long to be used in a particular context, Stardent 1500 /3000 Fortran
truncates the Hollerith constant at the right side to match the
implied length. Only blanks can be truncated without causing an
error.

1-14 Fortran Reference Manual

Language Elements

Data Types
(continued)

Octal constants are an extension to Fortran 77. An octal constant
can be used where any other constant can appear.

SYNTAX
"n[n]... O
where

n is any digit between the value of 0 through 7. The digit(s)
are specified between apostrophe characters and are fol-
lowed by an uppercase letter O.

An octal constant can specify up to 128 bits of data storage (16
bytes). This amounts to about 43 octal digits.

As with Hollerith constants, octal constants are treated as typeless
bit patterns that take on the characteristics of their surroundings.
That is, if used with integer calculations, they are treated as if
specified as integers and so on (see Hollerith Constants for typical
uses).

Unlike Hollerith constants, however, when an octal constant is
found to be longer than required by the data type with which it is
to interact, it is truncated from the left rather than from the right.
Also, if it is not wide enough, zeros are added to the left rather
than spaces to the right to pad the length of the constant to match
the size. If the octal constant is too long and truncation results in
removal of a nonzero digit, an error occurs.

EXAMPLES

r377'0 Occupies 3 bytes.

IX = '377'0 Extended to "00000000377°O
and treated as INTEGER*4.

CALL TEST(’37777777777'0) Largest octal constant which

can be passed because
limit is size of INTEGER#4.

1.5.7
Octal Constants

Language Elements

Fortran Reference Manual 1-15

Data Types
(continued)

1.5.8
Hexadecimal Constants

Hexadecimal constants are an extension to Fortran 77. A hexade-
cimal constant can be used where any other constant can appear.
The format of a hexadecimal constant is:

SYNTAX
"nln]..”X
where

n is any digit between the value of 0 through 9 or any letter
between A and F. The letters are specified between apos-
trophe characters, and followed by an uppercase letter X.

A hexadecimal constant can specify up to 128 bits of data storage
(16 bytes). This amounts to 32 hexadecimal digits.

As with Hollerith constants, hexadecimal constants are treated as
typeless bit patterns that take on the characteristics of their sur-
roundings. That is, if used with integer calculations, they are
treated as if specified as integers, and so on (see Hexadecimal Con-
stants for typical uses).

Unlike Hollerith constants, however, when a hexadecimal con-
stant is found to be longer than required by the data type with
which it is to interact, it is truncated from the left rather than from
the right. Also, if it is not wide enough, zeros are added to the
left rather than spaces to the right to pad the length of the con-
stant to match the size. If the hexadecimal constant is too long
and truncation results in removal of nonzero digit, an error
occurs.

EXAMPLES
"FA'X

IX = 'F4'X Extended to “000000F4"X
and treated as INTEGER=*4.

1-16 Fortran Reference Manual

Language Elements

CALL TEST('FFFFFFFF’'X) Largest hexadecimal constant
which can be passed because
limit is size of INTEGER#4.

Data Types
(continued)

A simple variable is used for processing a single data item. It
identifies a storage area that can contain only one value at a time.
Subscripted variables are treated everywhere within this manual
as simple variables unless stated otherwise.

EXAMPLES
total sum_of_ values
voltage ERROR_FLAG1

Final Score i

1.5.9
Simple Variables

An array is an ordered collection of data values, all of the same
type. An individual element of an array can be named and mani-
pulated by providing subscripts which select the element. In
some cases, the entire array may take part in an operation. Arrays
are declared in several ways.

1.5.10.1 Array Declarators

Array declarators are used in DIMENSION, COMMON, and
type statements to define the number of dimensions, the number
of elements per dimension (called bounds), the element type, and
(sometimes) the data to be stored in the elements of the array.

1.5.10
Arrays

Language Elements

Fortran Reference Manual 1-17

Data Types
(continued)

SYNTAX
name(dl1, d2,d3,...)
where

name
is the symbolic name of the array.

is a dimension declarator. There must be one dimension
declarator for each dimension in the array. The syntax of a
dimension declarator is

n
or
m:m

where
m is the lower dimension bound.
n isthe upper dimension bound.

If only the upper dimension bound is specified, the value
of the lower dimension bound is one. The value of either
dimension bound can be positive, negative, or 0; how-
ever, the value of the upper dimension bound must be
greater than or equal to the value of the lower dimension
bound.

[I\JIOTE o . The lower and upper dimension bounds are integer arithmetic
sing variables or asterisks in a ; ; : -
e sion declarator is Timitod to expressions. These expressions should not contain a us.er—deﬁned
declarators of formal arguments ~ function or array element reference. The upper dimension bound
to subprograms. This is of the last dimension in the array declarator of a formal argument
discussed in detail in Chapter 5, . o s
Procedures and Block Data can be an asterisk. The array bounds indicate the number of
Subprograms. dimensions of the array and the maximum number of elements in
each dimension. The number of elements in each dimension is
defined by n— m+1, where n is the upper bound and m is the lower

bound.

1-18 Fortran Reference Manual Language Elements

EXAMPLES

name (4,-5:5, 6) Specifies a three-dimensional
array. The first dimension has 4
elements, the second 11, and the
third 6.

decision_table(2,3,2,2,3,4,2) Specifies a seven-dimensional
array.

m(0:0) Specifies a one-dimensional
array of one element—m/(0).

list (10) Specifies a one-dimensional
array of 10 elements—
list(1)...1ist(10).

A complete array declarator for a particular array can be used
once only in a program unit, although the array name can appear
in several specification statements. For example, if the array
declarator is used in a DIMENSION statement, the array name
only (no dimensions or subscripts) can be used ina COMMON or
type statement. If the complete array declarator is used in a
COMMON or type statement, the array must not be mentioned in
a DIMENSION statement.

1.5.10.2 Subscripts

Subscripts designate a specific element of an array. An array ele-
ment reference (subscripted variable) must contain the array name
followed by as many subscripts as there are dimensions in the
array. The subscripts are separated by commas and the whole list
is enclosed in parentheses. Each subscript value must fall
between the declared lower and upper bounds for that dimension.
For example, if A is dimensioned (A1:3), A(I) is a subscripted ele-
ment and I must have a value in the range of 1 to 3. Even though
the compiler does not generate an error if a subscript is outside its
declared lower and upper bounds (unless the -fullsubcheck
option is specified; refer to Chapter 7, Compiler Options for addi-
tional information on the -fullsubcheck option), the results of
such a reference are unpredictable. A subscript can be any arith-
metic expression.

Data Types
(continued)

Language Elements

Fortran Reference Manual 1-19

Data Types
(continued)

EXAMPLES

arr(1,2) Represents the element (1,2) of the array
arr. If arr was declared by arr(10,20), arr
would describe a two-dimensional table,
and arr(1,2) would describe the element in
the second column of the first row.

chess_board(i, j, k) Subscripts i, j, and k are variables which,
taken together, select an element of array
chess_board.

arr(i+4, j-2) Subscripts i+4 and j-2 are expressions that
select specific elements of array arr when
evaluated.

1.5.10.3 Array Element Storage

The total number of elements in an array is calculated by multi-
plying the number of elements in each dimension. For example,
the array declarator, i(3,4,-3:5) indicates that array i contains 108
elements: ((B-THDX(E-D+Dx(G—-(=3+1) = 3x4x9 = 108. The
number of words of memory needed to store an array is deter-
mined by the number of elements in the array and the type of
data that the array contains.

Data Type Storage Requirement Per Element
INTEGER 4 Bytes
INTEGER+*4 4 Bytes
REAL 4 Bytes
REAL*4 4 Bytes
REAL#*8 8 Bytes
LOGICAL 4 Bytes

LOGICAL+*4 4 Bytes

LOGICAL=#2 2 Bytes

LOGICAL*1 1 Byte

COMPLEX 8 Bytes

COMPLEX*8 8 Bytes

COMPLEX#*16 16 Bytes

CHARACTER X-bytes (depends on character count)

A one-dimensional array is stored as a linear list. Arrays of
higher dimensions are stored in column major order, with the
first subscript from the left varying most rapidly; the second, next
most rapidly; and so forth, with the last varying least rapidly.

1-20 Fortran Reference Manual Language Elements

Data Types
(continued)

EXAMPLES
The addresses expressed below are examples only.
f\rray'declarator: Integer arr(2,0:1,-5:-4)

Array storage: arr(1,0,-5) lowest address = 10000204

arr(2,0,-5) address = 10000208
arr(1,1,-5) address = 10000212
arr(2,1,-5) address = 10000216
arr(l,0,-4) and soon..

arr(2,0,-4)

arr(l,1,-4)

arr(2,1,-4)

1.5.11
A character substring is a contiguous portion of a character vari- Character Substrings
able.
SYNTAX

name([first]:[last])
or

a(s1[,s2]...) ([first]:[last])

where

name is a character variable name.

a(s1[,s2]..) is a character array element name.

first is any arithmetic expression that specifies the
leftmost position of the substring; default value
is 1.

last is any arithmetic expression that specifies the

rightmost position of the substring; default value
is the length of name.

The values of first and last must be such that 1<first<last<len,
where len is the length of the character variable, named constant,
or array element. Notice that either first or last or both may be
dropped; the colon is always required.

Language Elements Fortran Reference Manual 1-21

T
Data Types
(continued)

EXAMPLES

name (2:5) If the value of name is SUSANNA, then
name(2:4) specifies USA.

address (:4) If the value of the address is 1452 NORTH,

then address(:4) specifies 1452.

city (6,2) (5:8) If the value of city(6,2) is SAN JOSE, then
city(6,2)(5:8) specifies JOSE.

title or title(:) These specify the value of the complete char-
acter variable.

1.6
Expressions

An expression represents a single value. An expression can con-
tain constants, simple or subscripted variables, function references
or combinations thereof, with operators acting on and among
these elements. The result of evaluating the expression is a single
value. There are four types of expressions; these are

Arithmetic
Character
Relational
Logical

Arithmetic expressions return a single value of type BYTE,
INTEGER#*2, INTEGER*4, REAL*4, REAL#8, COMPLEX*8 or
COMPLEX#16. Character expressions return character values.
Relational and logical expressions return logical values.

1.6.1
Arithmetic Expressions

Arithmetic expressions perform arithmetic operations. An arith-
metic expression can consist of a single operand, an arithmetic
constant, the symbolic name of an arithmetic constant, an array
element reference, or a function reference; or it can consist of two
or more operands together with arithmetic operators and
parentheses. The arithmetic operators are:

+ Addition; unary plus (positive or plus sign).

- Subtraction; unary minus (negation or minus sign).
* Multiplication.

/ Division.

ok Exponentiation.

1-22 Fortran Reference Manual

Language Elements

A unary operator is one that affects one operand only. For exam-
ple, the unary minus (also called a minus sign or sign of negation)
negates the expression following it. There is an extension to For-
tran 77 that allows a unary arithmetic operator to appear after
another arithmetic operator.

EXAMPLES
a num (1)
4. + z a**2
3.145 (c**4) *d
SQRT (r+d) total + sum _of values
arr(5,2)*45.5 number of_ successes/number of tries*100

Multiplication must be specified explicitly. Fortran has no impli-
cit multiplication that can be indicated by a(b) or ab; a*b must be
used.

1.6.1.1 Hierarchy of Arithmetic Operators

The order of evaluation of an arithmetic expression is established
by a precedence among the operators. This precedence deter-
mines the order in which the operands are to be combined. The
precedence of the arithmetic operators is

ok Exponentiation highest
+ - Unary plus or minus

X,/ Multiplication and division

+ ,— Addition and subtraction lowest

Evaluation of operations within parentheses occurs first.
Exponentiation precedes all arithmetic operations within an
expression; multiplication and division precede addition and sub-
traction.

EXAMPLE
Expression: -a#*b+c*d+6
Evaluation occurs as follows: a**b is evaluated to form the

operand opl. cxd is evaluated to form the operand op2.
opl+op2+6 is evaluated to determine the value of the expression.

Lo . . _ _______ |
Expressions

(continued)

Language Elements

Fortran Reference Manual 1-23

Expressions
(continued)

If an expression contains two or more operators of the same pre-
cedence, the order of evaluation is determined by the following
rules:

* Two or more exponentiation operations are evaluated from
right to left.

* Multiplication and division or addition and subtraction are
evaluated from left to right.

EXAMPLES
Expression: 2##3x*a

Evaluation occurs as follows: 3**a is evaluated to form opl.
2xx0p] is evaluated.

Expression: a/b*c

Evaluation occurs as follows: a/b is evaluated to form opl. opl*c
is evaluated.

Parentheses can control the order of evaluation of an expression.
Each pair of parentheses contains a subexpression that is
evaluated according to the rules stated above. When parentheses
are nested in an expression, the innermost subexpression is
evaluated first.

EXAMPLES
Expression: ((a+b)*c)**d

Evaluation occurs as follows: a+b is evaluated to form opl. opl*c
is evaluated to form op2. op2++*d is evaluated.

Expression: ((b**2-4*axc)**.5) / (2*a)
Evaluation occurs as follows: b##2-4#a*c this subexpression is

evaluated to form opl. opl#*.5 is evaluated to form op2. 2+a is
evaluated to form op3. op2/op3 is evaluated.

1-24 Fortran Reference Manual

Language Elements

1.6.1.2 Expressions with Mixed Operands

BYTE, INTEGER, INTEGER#2, REAL, DOUBLE PRECISION,
COMPLEX, and DOUBLE COMPLEX operands can be inter-
mixed freely in arithmetic expressions. Before an arithmetic
operation is performed, the lower type is converted to the higher
type. The type of the expression is that of the highest type
operand in the expression. Operand types rank from highest to
lowest in the order shown in Table 1-6.

Table 1-6. Operand Rankings

COMPLEX*16 highest
COMPLEX*8

REAL+*8

REAL+4

INTEGER*4
INTEGER*2

BYTE lowest

The conversion precedence for mixed type arithmetic expressions
is specified in Table 1-7. For example, if a and b are real variables
and i and j are integer variables, then in the expression a*b-i/j, a is
multiplied by b to form opI; i is divided by j with integer division,
converted to real, and subtracted from opI resulting in an expres-
sion of type real.

Table 1-7. Conversion of Mixed Type Operands

op2

12 14 R4 | R8 | C8 |Cl6| I L1 L2 | L4

12 12 14 R4 | R8 | C8 | Cl6 | I2 12 12 14

14 14 14 R4 | RE| C8 |Cl6| 14 14 14 14

R4 | R4 | R4 | R4 | R8 | C8 | Cl6| R4 | R4 | R4 | R4

R8 || R8 | R8 R8 | R8 | R8 | R8 [R8 | R8 | R8 | R8

opl C8 | C8 | C8 | C8 [Cl6| C8 |Cl6| C8 | C8 | C8 | C8

Cl6 || C16 | C16 | Cl16 | C16 | Cl16 | C16 | Cl16 | C16 | C16 | C16

1 12 14 R4 | R§ | C8 [Cl6| I1 I 12 14

L1 12 14 R4 | R8 | C8 | Cl6| I n 12 14

L2 12 14 R4 | RE | C8 | Cl6| I2 12 2 14

L4 14 14 R4 | RE| C8 |Cl6| 14 14 14 14

L]
Expressions

(continued)

NOTE
An exce}_)tlon to the operand
rankmg is that if the two
erands have ty
OMPLEX*S an REAL*S the
result is COMPLEX*16.

Language Elements

Fortran Reference Manual 1-25

Expressions
(continued)

(op1 operator op2; operators +,-*,/ ,**)

Il = BYTE

12 = INTEGER#*2
14 = INTEGER*4
R4 = REAL*4

R8 = REAL+*8

C8 = COMPLEX*8
Cl6 =COMPLEX*16
L1 = LOGICALx*1
L2 = LOGICAL=*2

L4 = LOGICAL=*4

1.6.1.3 Arithmetic Constant Expressions

An arithmetic constant expression is an arithmetic expression in
which each operand is an arithmetic constant, the symbol name of
an arithmetic constant, or an arithmetic constant expression
enclosed in parentheses. The exponentiation operator (**) is not
allowed in constant expressions unless the exponent is of type
integer. Note that variable, array element, and function refer-
ences are not allowed, with the following exception: as an exten-
sion to Fortran 77, the intrinsic function ICHAR can reference a
character constant expression; this use is limited to PARAME-
TER, statement function, and executable statements. See the
explanation of the PARAMETER statement for other extensions
to Fortran 77.

1.6.2
Character Expressions

A character expression is used to represent a character string.
Evaluation of a character expression produces a result of type
character.

The simplest form of a character expression is a character con-
stant, symbolic name of a character constant, character variable
reference, character array element reference, character substring
reference, or character function reference. More complicated char-
acter expressions can be formed by using two or more character
operands together with the concatenation operator and
parentheses. The concatenation operator is //.

When a concatenation operation is performed on two strings, the
two strings become a single string composed of all of the charac-
ters of the first followed by all of the characters of the second

1-26 Fortran Reference Manual

Language Elements

L]

string. The length of the resulting string is the sum of the lengths
of each string. For example, the value of "FOOT // "BALL’ is the
string FOOTBALL.

Parentheses have no effect on the value of a character expression.
For example, the expression “ab’//('CD’//’ef’) is the same as the
expression “ab//"CD’//"ef’. The result of either of these expressions
is "abCDef".

EXAMPLES

char string (5:9)

"constant string’
stringl//string2//"another string’
home//’ /' //filename

1.6.2.1 Character Constant Expressions

A character constant expression is a character expression in which
each operand is a character constant, the symbolic name of a char-
acter constant, or a character constant expression enclosed in
parentheses. Note that variable, array element, substring, and
function references are not allowed, with the following exception:
as an extension to Fortran 77, the intrinsic function CHAR can
reference an integer constant expression; this use is limited to
PARAMETER, statement function, and executable statements.
See the description of the PARAMETER statement in Chapter 2,
Fortran Statements for more information.

L. |
Expressions

(continued)

Relational expressions compare the values of two arithmetic
expressions or two character expressions. Evaluation of a rela-
tional expression produces a result of type logical.

SYNTAX
op1 relop op2
where

opl and op2

must both be either arithmetic expressions or character
expressions.

1.6.3
Relational Expressions

Language Elements

Fortran Reference Manual 1-27

Expressions
(continued)

relop
is a relational operator.

The relational operators are: .EQ. (fof equal), .NE. (for not
equal), .LT. (for less than), .LE. (for less than or equal to), .GT.
(for greater than), and .GE. (for greater than or equal to).

Each relational expression is evaluated and assigned the logical
value true or false depending on whether the relation between the
two operands is satisfied (true) or not (false).

1.6.4
Arithmetic Relational
Expressions

Arithmetic expressions as operands in a relational expression are
evaluated according to the previously defined rules governing
arithmetic expressions. If the expressions are of different types,
the one with the lower rank is converted to the higher ranking
type. Once the expressions are evaluated and converted to the
same type, they are compared. An arithmetic relational expres-
sion is interpreted as having the logical value true if the values of
the operands satisfy the relation specified by the operator. If the
operands do not satisfy the specified relation, the expression is
interpreted as the logical value false. Expressions of type complex
or double complex can be used as operands with .EQ. and .NE.
relational operators only. The concept of less than or greater than
is not defined for complex numbers.

EXAMPLES
a .GT. 237
b -c¢ .LT. num
i-3j .GE. z -1
o .GT. p

1.6.4.1 Character Relational Expressions

Character relational expressions compare two operands, each of
which is a character expression. The character expressions are
first evaluated; then the two operands are compared character by
character, starting from the left. The initial characters of the two
operands are first compared. If the initial character is the same in
both operands, the comparison proceeds with the second charac-
ter of each operand. When unequal characters are encountered,

1-28 Fortran Reference Manual

Language Elements

the greater of the two operands is determined by the greater of
these two characters. Thus, the ranking of the operands is deter-
mined only by the first character position at which the two
operands differ. If there is no such position, then the two
operands are equal.

For example, when the two expressions PEOPLE and PEPPER are
compared, the first expression is considered less than the second.
This is determined by the third character O, which is less the P in
the ASCII collating sequence. If the operands are of unequal
length, the comparison is as if the shorter string was padded with
blanks on the right to the length of the longer string.

EXAMPLES

IMPLICIT CHARACTER#*6 (a-n)
! Variables beginning with A-N are this type.

"the’ .LT. "there’

"MAY 23’ .GT. 'MAY 21°

name .LE. 'PETERSEN’

char strl .GE. char_str2

first .EQ. a_string(2:8) // 'COD’

O
Expressions
(continued)

Logical expressions produce results of type logical with values of
true or false. A logical expression can consist of a single operand,
a logical constant, the symbolic name of a logical constant, a logi-
cal variable, a logical array element reference, a logical function
reference, or a relational expression; or it can consist of one or
more operands together with the following logical operators:

NOT. Logical negation (unary)

AND. Logical AND

.OR. Logical OR

EQV. Logical equivalence

NEQV. Logical nonequivalence (exclusive OR)
XOR. Exclusive OR (same as .NEQV.).

The unary operator .NOT. takes the complement (that is, the
opposite) of the logical value of the operand immediately follow-
ing the operator.

The .AND. operator returns a value of true only if the logical
operands of the .AND. operator both evaluate as true.

1.6.5
Logical Expressions

Language Elements

Fortran Reference Manual 1-29

Expressions
(continued)

The .OR. operator returns a value of true if either of the logical
operands of the .OR. operator is true.

The .NEQV. operator returns a value of true only if exactly one
(but not both) of the logical operands of the .NEQV. operator is
true. As an extension to Fortran 77 , XOR. and .EOR. can be used
in place of .NEQV.

The .EQV. operator returns a value of true if the logical operands
of the .EQV. operator are both true or both false.

A truth table for the logicél operators is shown in Table 1-8.

The order of evaluation of a logical expression is established by
the following precedence of the logical operators:

NOT. highest
AND.

OR.

EQV., NEQV. lowest

Thus, .NOT. operations are performed before all other operations:
EQV., and .NEQV. operations are performed after all other
operations. If there is more than one operator of the same pre-
cedence, evaluation occurs from left to right.

Table 1-8. Truth Table for Logical Operators

a b NOT.a | a.AND.b | a.OR.b | a.NEQV.b | a.EQV.b
a.XOR.b
True | True False True True False True
True | False False False True True False
False | True True False True True False
False | False True False False False True

EXAMPLES
Expression: a .OR. b .AND. ¢

Evaluation proceeds as follows: b .AND. c is evaluated to form
lopl. a.OR. lopl is evaluated.

1-30 Fortran Reference Manual

Language Elements

Expression: z .LT. b .OR. .NOT. k .GT. z

Evaluation proceeds as follows: z.LT. b is computed to produce a
logical value lopl. k.GT. z is computed to produce a logical value
of lop2. .NOT. lop2 is computed to produce of logical value of
lop3. lop1 .OR. lop3 is evaluated to produce the final result. Either
lop1 or lop3 may be evaluated first. The operands of the expres-
sion (z, b, and k) may be evaluated in any order. If the evaluation
of lopl or lop3 has proceeded far enough to demonstrate that the
value is .TRUE.,, the other logical subexpression need not be
evaluated at all because the truth of one operand of .OR. is
sufficient to determine that the value of .OR. is . TRUE..

Expression: z .AND. d .OR. lsum(q,d) .AND. p .AND. i

Evaluation proceeds as follows: z .AND. d is evaluated to pro-
duce lop1. lsum(q,d) is evaluated to produce lop2. lop2 .AND. p is
evaluated to produce lop3. lop3 .AND. i is evaluated to produce
lop4. lopl .OR. lop4 is evaluated to produce the final result. The
values of z, d, p, i, and Isum(q,d) may be evaluated in any order.
The values lop1, lop2, lop3 and lop4 may be produced in any order
(as long as any expressions or subexpressions are evaluated first).
If one operand to an .AND. operator is evaluated and found to
have the value .FALSE., the other operand need not be evaluated
(because if one operand of .AND. is .FALSE., its value is
JFALSE.). In particular, the function call isum(q,d) need never be
made if, for example, p is .FALSE.. A similar discussion applies
to .OR..

Expression: a .AND. (b .OR. c)

Evaluation occurs as follows: b .OR. ¢ is evaluated to form lopl. a
AND. lop] is evaluated.

Parentheses, as shown in the example above, can be used to con-
trol the order of evaluation of a logical expression. As with arith-
metic expressions, the actual order of evaluation may be different
from that stated above, but the result is the same as if these rules
were followed.

L
Expressions
(continued)

As an extension to Fortran 77, the logical operators can be used
with BYTE, INTEGER*2, and INTEGER*4 operands to perform
bit-masking operations. The user must be aware of the internal
binary representations of the data to use the masking operators to
produce predictable results.

1.6.6
Bit-Masking Expressions

Language Elements

Fortran Reference Manual 1-31

N
Expressions
(continued)

A complete truth table is shown in Table 1-9 . A bit-by-bit com-
parison is done of the operands and the corresponding bit of the
expression result is set according to the truth table. Note that
Stardent 1500/3000 Fortran also supplies these bit-masking opera-
tions and other bit manipulation operations as intrinsic functions.
These are described in Chapter 6, Intrinsic Functions. These intrin-
sic functions comply with the MIL-STD-1753 extensions to Fortran
77.

Table 1-9. Truth Table for Masking Operators

i|j|.NOT.i[.NOT.j|i . AND.j|i.OR.j|i NEQV.j|i.EQV.]

1] o 0 1 1 0 1

1lo[o 1 0 1 1 0

ol1] 1 0 0 1 1 0

olo] 1 1 0 0 0 1
EXAMPLES

.AND. returns the logical product of two operands:

0111111111111111 op1=32767
0001011001011001 op2=5721
0001011001011001 result=5721

NEQV. returns the symmetric difference of two operands.

0000000011111111 op1=255
0001011001011001 op2=5721
0001011010100110 result=5798

1-32 Fortran Reference Manual

Language Elements

FORTRAN
STATEMENTS

Statements are the fundamental building blocks of Fortran pro-
gram units. This chapter describes the general form of a state-
ment and then discusses the different categories of statements.
Detailed descriptions of each statement follow in alphabetical
order. Each description includes statement syntax, applicable
rules, and examples.

CHAPTER TWO

A Fortran statement has the following general form:
[label] statement

The Iabel identifies a particular statement so that it can be refer-
enced from another portion of the program. A statement label
consists of one to five digits placed anywhere in columns 1
through 5. Each label must be unique within a program unit;
blanks and leading zeros are ignored and do not create distinct
labels. Labels are optional and need not appear in numerical
order.

The statement itself is written in columns 7 through 72. If a state-
ment is too long for one line, it may be continued on the next line.
This is indicated by placing some character other than a 0 (zero) or
a blank in column 6 (for practical purpose, you should select a
character that clearly identify your intention, perhaps, a plus
sign). Columns 1 through 5 of a continuation line are ignored,
except that column 1 cannot contain any one of the following
characters: $, C, !, or * (if one of these predefined characters
appears in column 1, the compiler will interpret the statement fol-
lows as a comment). Each statement can have a number of con-
tinuation lines. By using a command line option (refer to Compiler
Options in Chapter 7), you can specify the maximum number of
continuation lines that are to be allowed. The maximum you can
have is 99.

2.1
Fortran Statement
Format

NOTE

By specifying a compiler option
-extend_source on the command
line when you compile your
source program, you can have
Fortran statements written in
columns 7 through 132. Refer to
Chapter 7, Compiler Options for
additional information.

Fortran Statements

Fortran Reference Manual 2-1

S A S
Fortran Statement Format

(continued)

22
Statement
Classification

A Fortran statement can be one of two types: executable or nonex-
ecutable. Executable statements specify action that the program is
to take. Nonexecutable statements contain information such as
characteristics of operands, types of data, and format
specifications for'input/output. Each Fortran statement is categor-
ized in the tables below.

221
Executable Statements

ACCEPT Statement GOTO Statement

ASSIGN Statement GOTO (assigned) Statement
Assignment Statements GOTO (computed) Statement
BACKSPACE Statement IF (arithmetic) Statement

CALL Statement IF (block) Statement
CLOSE Statement IF (logical) Statement
CONTINUE Statement INQUIRE Statement
DECODE Statement OPEN Statement
DO Statement PAUSE Statement
DO WHILE Statement PRINT Statement
ELSE Statement READ Statement
ELSE IF Statement RETURN Statement
ENCODE Statement REWIND Statement
END Statement STOP Statement
END DO Statement TYPE Statement
ENDFILE Statement WRITE Statement
ENDIF Statement

222
Nonexecutable
Statements

BLOCK DATA Statement INCLUDE Statement
COMMON Statement INTRINSIC Statement

COMPLEX Statement NAMELIST Statement
DATA Statement OPTIONS Statement
DIMENSION Statement PARAMETER Statement
ENTRY Statement PROGRAM Statement

EQUIVALENCE Statement SAVE Statement
EXTERNAL Statement Statement Function Statement

FORMAT Statement SUBROUTINE Statement
FUNCTION Statement Type Statement
IMPLICIT Statement

2-2 Fortran Reference Manual

Fortran Statements

.|
Statement Classification

(continued)
2.3
Statements can also be grouped into six functional categories: Statement
Classification
¢ Program unit statements.
e Specification statements.
e Value assignment statements.
* Control statements.
e Input/output statements.
e Program halt or suspension statements.
The statements belonging to each of these categories are shown
below.
2.3.1
BLOCK DATA Identifies the program unit as a block data PROGRAM UNIT
subprogram. STATEMENTS
END Specifies the end of a program.
ENTRY Provides an alternate entry into a function
or subroutine.
FUNCTION Identifies the program unit as a function
subprogram.
INCLUDE Causes the compiler to include source state-
ments from a file.
OPTIONS Confirms or overrides command qualifiers
in a program unit.
PROGRAM Identifies the program unit as a main pro-
gram.
Statement Function = Defines a one-statement function.
SUBROUTINE Identifies the program unit as a subroutine
subprogram.
232
COMMON Reserves a block of memory which can be SPECIFICATION
used by more than one program unit. STATEMENTS
DIMENSION Defines the dimensions and bounds of an
array.
EQUIVALENCE Associates variables so that they share loca-

tions in memory.

Fortran Statements

Fortran Reference Manual 2-3

O s
Statement Classification

(continued)

EXTERNAL Identifies external subprogram names and
dummy procedure arguments.
IMPLICIT Specifies the type associated with the first
letter of a symbolic name.
INTRINSIC Identifies intrinsic function names used as
actual arguments.
NAMELIST Identifies groups of variables to be used in
namelist I/O statements.
SAVE Retains the value of an entity after execu-
tion of a RETURN or END statement in a
subprogram.
Type Assigns an explicit type to a variable.
PARAMETER Defines named constants.
2.3.3
VALUE ASSIGNMENT ASSIGN Assigns a label value to a variable used in a
STATEMENTS GOTO or asa FORMAT statement label.
Assignment Assigns values to variables at execution
time.
DATA Assigns values to variables before execu-
tion. |
Type Optionally assigns initial values to vari-
ables in addition to its primary function as
a specification statement.
2.3.4
CONTROL Arithmetic IF Transfers control based on a condition.
STATEMENTS Assigned GOTO Transfers control to an assigned label.
Block IF Executes optional groups of statements
based on one or more conditions.
CALL Transfers control to an external procedure.

Computed GOTO
CONTINUE

DO

Transfers control based on expression
evaluation.

Causes execution to continue; has no effect
of its own.

Causes a group of statements to be exe-
cuted a specified number of times.

2-4 Fortran Reference Manual

Fortran Statements

.. ________]
Statement Classification

(continued)

DO WHILE Causes a group of statements to be exe-

cuted while a logical expression is true.
END DO Terminates a DO statement.
END IF Terminates a block IF statement.
GOTO Transfers control to a specified statement.
Logical IF Conditionally executes a statement based

on a logical value.
RETURN Transfers control from a subprogram back

to the calling program.

2.3.5

ACCEPT Transfers data in. INPUT/OUTPUT
BACKSPACE Positions a file at the previous record. STATEMENTS
CLOSE Terminates access to a file.
DECODE Transfers data between variables.
ENCODE Transfers data between variables.
ENDFILE Writes an end-of-file.
FORMAT Describes how input/output information is

arranged.
INQUIRE Supplies information about files.
OPEN Allows access to a file.
PRINT Transfers data out.
READ Transfers data in.
REWIND Positions a file at beginning-of-file.
TYPE Transfers data out.
WRITE Transfers data out.

2.3.6

PAUSE Causes a program suspension. PROGRAM HALT
STOP Terminates program execution. STATEMENTS

Fortran Statements

Fortran Reference Manual 2-5

24
Order of Statemenis

The required order of statements is shown in Table 2-1. Vertical
lines delineate varieties of statements that can be interspersed.
For example, DATA statements can be interspersed with other
specification statements and PARAMETER statements. Horizon-
tal lines delineate varieties of statements that must not be inter-
spersed. For example, statement function statements must not be
interspersed with executable statements.

Table 2-1. Required Order Of Statements

OPTIONS Statement
PROGRAM,FUNCTION,SUBROUTINE, or BLOCK DATA Statements
IMPLICIT NONE Statement
IMPLICIT
Statements
PARAMETER
Comment Other Statements
Lines Specification
and - Statements
INCLUDE NAMELIST
Statements FORMAT
and DATA Statement Function
ENTRY Statements Definitions
Statements
Executable
Statements

END Statement

Each of the following statements can appear only as the first state-
ment in a program unit: PROGRAM, SUBROUTINE, FUNC-
TION, and BLOCK DATA, except that exactly one OPTIONS
statement may precede any of these. Statements within a
category are restricted as to where they can appear in a program
unit. FORMAT and ENTRY statements can appear anywhere
except first or last. Within the specification statements of a pro-
gram unit, IMPLICIT statements must precede all other
specification statements except PARAMETER statements. The
last line of a program unit must be an END statement.

2-6 Fortran Reference Manual

Fortran Statements

The ACCEPT statement transfers information from the standard
input unit (unit 5). This statement functions identically to the for-
matted input READ statement discussed in Chapter 3, Fortran I/O
Statements, except that it can only be used on implicitly connected
logical units. It can never be used with user- specified logical
units.

SYNTAX

ACCEPT fmt, list

where
fmt is the format designator. fmt must be one of the fol-
lowing:
e The statement label of a FORMAT statement.
° A variable name that has been assigned the state-
ment label of a FORMAT statement.
* A character expression.
e A character or noncharacter array name that con-
tains the representation of a format specification.
e An asterisk (indicating list-directed formatting).
list is the list of variables that specifies where the data is to

be transferred. The list may contain implied DO
loops. For syntax and detailed information on implied
DO loops, refer to Implied DO Loops under DO State-
ment in Chapter 2, Fortran Statements.

2.5
ACCEPT Statement

Fortran Statements

Fortran Reference Manual 2-7

(

2.6

ASSIGN Statement The ASSIGN statement assigns a statement label to an integer
variable.
SYNTAX

ASSIGN label TO wvariable

where
label is a statement label.

varigble is an integer variable .

The statement label can only be that of an executable statement or
a FORMAT statement. The variable defined as a label can then be
used in an assigned GOTO statement or as the format specifier in
an input/output statement.

A variable must be defined with a statement label value when
referenced in an assigned GOTO statement or as a format
identifier in an input/output statement. While defined with a
statement label value, the variable must not be referenced in any (
other way. An integer variable defined with a statement label

value may be redefined with the same or a different statement

label value or with an integer value.

EXAMPLES

"ASSIGN 200 TO nexttest
GOTO nexttest

The variable nexttest is assigned the statement label 200. The
label is that of an executable statement.

ASSIGN 75 TO currentfmt

C ... (more statements)
75 FORMAT (4I5,F8.2)
cC ... (more statements)

READ (5, currentfmt) testl, test2, test3, test4, width

The variable currentfmt is assigned the statement label 75. The
label is that of a FORMAT statement.

2-8 Fortran Reference Manual Fortran Statements

2.7

The assignment statement evaluates an expression and assigns the ~ Assignment Statement
resulting value to a variable. There are three kinds of assignment
statements:
e Arithmetic
Logical
* Character
2.7.1
An arithmetic assignment statement computes the value of its Arithmetic Assignment
right hand side expression according to the normal rules of Statement

expression evaluation. That value is then stored in the variable
named on the left hand side of the statement. This causes the
variable to become defined. If the types of the variable and the
expression differ, Table 2-2 describes the conversion that is
applied to the expression’s value before it is stored.

SYNTAX
var = expr

where

var is a variable or array element of one of the following types:

BYTE

INTEGER#*2

INTEGER or INTEGER*4

REAL or REAL#*4

DOUBLE PRECISION or REAL#8
COMPLEX or COMPLEX*8

DOUBLE COMPLEX or COMPLEX*16

expr is an arithmetic expression.

Fortran Statements

Fortran Reference Manual 2-9

Assignment Statement

(continued)

EXAMPLES
total = subtotall + subtotal2

Defines the value of total as the value of subtotall + subtotal2.
array(i) = interest_rate(i) * months

Defines the i-th element of the array as the value interest_rate(i)
multiplied by months.

Table 2-2. Conversion Rules - Assignment Statements

Variable Expression (D)
or Array
Element Integer or
) Logical REAL REAL*8 COMPLEX COMPLEX*16
Integer AssignDtoY D = INT(Y) D =INT(Y) Y = INT(REAL(D)) Y = INT(REAL(D))
or Logical
REAL Y = REAL(D) AssignDtoY Y = REAL(D) Y = REAL(D) Y = REAL(D)
REAL#8 Y = DBLE(D) Y = DBLE(D) AssignDtoY | Y =DBLE(D) Y = DBLE(D)
COMPLEX Y = (REAL(D),0) | Y=(D,0) Y = (REAL(D),0) | AssignDtoY Y = (REAL(D), AIMAG(D))
COMPLEX*16 | Y = (DBLE(D),0) | Y =(DBLE(D),0) | Y= (D,0) Y = (DBLE(REAL(D)), | Assign DtoY
DBLE(AIMAG(D)))
2.7.2
Logical Assignment A logical assignment statement computes the value of its right
Statement hand side expression according to the normal rules of expression

evaluation. That value is then stored in the variable named on the
left hand side of the statement. This causes the variable to become
defined. If the types of the variable and the expression differ,
Table 2-2 describes the conversion that is applied to the
expression’s value before it is stored.

SYNTAX

lvar = lexp

where
lvar is a variable element of type logical.

lexp is a logical expression.

2-10 Fortran Reference Manual

Fortran Statements

Assignment Statement
(continued)

EXAMPLES

LOGICAL logl
i =10
Logl = 1 .EQ. 10

logl is assigned the value true because i equals 10.

LOGICAL log res, flag set

num = 100

flag_set = .TRUE.

Log_res = num .GT. 200 .AND. flag set

log_res is assigned the value false because num is not greater than

200.

2.7.3
A character assignment statement computes the value of its right Character Assignment
hand side expression according to the normal rules of expression Statement

evaluation. That value is then stored in the variable named on the
left hand side of the statement. This causes the variable to become
defined. Both the variable and the expression must be of charac-

ter type.
SYNTAX
cvar = cexp
where
coar is a variable, array element, or substring of type char-
acter.
cexp is a character expression.

If the length of the variable is greater than the length of the
expression, the value of the expression is left-justified in the
variable and blanks are placed in the remaining positions. If
the length of the variable is less than the length of the expres-
sion, the value of the expression is truncated from the right
until it is the same length as the variable.

Fortran Statements Fortran F{eference Manualv 2-11

Assignment Statement
(continued)

EXAMPLES
CHARACTER*6 name

CHARACTER*4 effects(6), index
name = ’'CAUSES’

The variable name is assigned the character string CAUSES.

k = 'fire’
effects(2) = k

The second element of the array effects is assigned the character
string fire.

effects(3) = name(3:5)

The third element of the array effects is assigned the character
string USE followed by a blank.

CHARACTER*22 member
member = ‘ED JOINER’

The variable member is assigned the value ED JOINER with 13
blanks (that is, 22 - 9 blanks) on the right.

2-12 Fortran Reference Manual

Fortran Statements

2.8

The BACKSPACE statement positions a sequential file or device BACKSPACE
at the preceding record, and is allowed only for sequential files. Statement
SYNTAX

BACKSPACE unit
or

BACKSPACE ([UNIT=] unit [, IOSTAT=ios] [, ERR=label])

where

unit is an arithmetic expression (0 or positive) specifying a
unit.

i0s is an integer variable or array element (must be
INTEGER#*4) for error code return (refer to Appendix A
for IOSTAT error codes).

label is the statement label of an executable statement in the

same program unit as the BACKSPACE statement, to
which control will transfer upon error.

The unit is backspaced one record. If the unit is already posi-
tioned at the beginning of the file, there is no effect. If either IOS-
TAT or ERR is specified, control returns to the BACKSPACE
statement in the event of error; otherwise the program’s execution
is aborted. The variable named by ios will be given the value of
zero unless an error occurs; then the value will be non-zero and
may be interpreted using Appendix A. Control normally passes to
the statement following the BACKSPACE statement; however, if
an error occurs and an error label is specified, control transfers to
that label upon completion of the BACKSPACE statement.

Fortran Statements Fortran Reference Manual 2-13

L - |
BACKSPACE Statement

(continued)

EXAMPLES
BACKSPACE 10

The sequential file connected to unit 10 is backspaced one record.
BACKSPACE (UNIT=k+3, IOSTAT=j, ERR=100)

The file connected to unit k+3 is backspaced one record. If an

error occurs, control transfers to statement 100 and the error code
is stored in the variable j.

If the file pointer is positioned at the beginning of the file, a
BACKSPACE statement has no effect upon the file.

2-14 Fortran Reference Manual

Fortran Statements

2.9

The BLOCK DATA statement is the first statement in a block data BLOCK DATA
subprogram. Statement
SYNTAX

BLOCK DATA [name]

where

name is an optional subprogram name.

The name must not be the same as an external procedure, the main
program, a common block, or any other block data subprogram in
the same execution program, nor may it be the same as any local
name in this block data subprogram.

Block data subprograms provide initial values for variables and
array elements in labeled common blocks. (Blank common vari-
ables cannot be initialized). The BLOCK DATA subprogram
name must not conflict with other subprogram or common block
names. Refer to Chapter 5, Procedures and Subprograms for more
information on block data subprograms.

Fortran Statements Fortran Reference Manual 2-15

2.10
CALL Statement The CALL statement transfers control to a subroutine.

SYNTAX

CALL namel ([argll, arg2[, arg3..111)]

where

name is the name of the subroutine being referenced, or the
name of a dummy procedure.

arg is an actual argument or an asterisk followed by a

label, where the label is a statement label of an execut-
able statement in the same program unit as the CALL
statement.

When a CALL statement is executed, any expressions in the actual
argument list are evaluated, and then control is passed to the sub-
routine. For a normal return from the subroutine, execution con-
tinues with the statement following the CALL statement. When
an alternate return is taken, execution continues with the state-
ment label in the actual argument list that corresponds to the
return number specified in the subroutine’s RETURN statement.
Subroutine subprograms, referencing subroutines, and alternate
returns from a subroutine are all discussed in detail in Chapter 5,
Procedures and Subprograms.

2-16 Fortran Reference Manual Fortran Statements

EXAMPLES
CALL print_forms (top, lh, rh)

The subroutine print_forms is called. Three arguments are
passed.

CALL exit

The subroutine exit is called. No arguments are passed.

CALL checktaxable(m, n, cost, *35)

C (more statements)
35 withtax = cost*1.07
C (more statements)
END
SUBROUTINE checktaxable(]j, k, w, *)
C (more statements)
RETURN 1
C (more statements)
END

The subroutine checktaxable is called. Three arguments are
passed. *35 means that the return point is the statement labeled
35 if the subroutine executes the alternate return (RETURN 1).

CALL Statement
(continued)

Fortran Statements

Fortran Reference Manual 2-17

2.11
CLOSE Statement

The CLOSE statement terminates the connection of a file to a unit.

SYNTAX

CLOSE ([UNIT=] unit [, I0STAT=ios][, ERR=label][, STATUS=stat])

where

unit

108

label

stat

is an integer expression (0 or positive) specifying a unit
number.

is an integer variable or array element (must be
INTEGER*4) for error code return (refer to Appendix A
for IOSTAT error codes).

is the statement label of an executable statement in the
same program unit as the CLOSE statement. If an
error occurs during the execution of the CLOSE state-
ment, control is transferred to the specified statement
rather than aborting the program.

is a character expression that determines the disposi-
tion of the file; stat is one of the following:

"KEEP”’ The file continues to exist after the
execution of the CLOSE statement.
'KEEP is the default; that is,
specifying STATUS="KEEP” and not
specifying the STATUS= parameter
have the same effect.

'DELETE’ The file does not exist after the
execution of the CLOSE statement. The
STATUS specifier has no effect on scratch
files, as scratch files are always deleted on
CLOSE or normal program termination.

A CLOSE statement must contain a unit number and at most one
each of the other options. The CLOSE statement need not be in
the same program unit as the OPEN statement that connected a
file to the specified unit. If a CLOSE statement specifies a unit
that does not exist or has no file connected to it, no action occurs.
The CLOSE statement is discussed in detail in Chapter 4, File Han-

dling.

2-18 Fortran Reference Manual

Fortran Statements

If either IOSTAT or ERR is specified, control returns to the
CLOSE statement in the event of error. The variable named
by ios will be given the value of zero unless an error occurs;
then the value will be nonzero and may be interpreted using
Appendix A. Control normally passes to the statement fol-
lowing the CLOSE statement; however, if an error occurs
and an error label is specified, control transfers to that label
upon completion of the CLOSE statement.

EXAMPLES

CLOSE (10)

The file connected to unit 10 is disconnected. The file continues to
exist.

CLOSE (UNIT=6, STATUS='DELETE’)

The file connected to unit 6 is disconnected. The file no longer
exists.

CHARACTER*6 cstat

cstat = 'DELETE’
CLOSE (UNIT=6, STATUS=cstat)

This produces the same results as the preceding example.
CLOSE (5, IOSTAT=io_error, ERR=100)

The file connected to unit 5 is disconnected and kept. If an error
occurs, control is transferred to statement 100, and the error code
is stored in the variable io_error.

CLOSE Statement
(continued)

Fortran Statements

Fortran Reference Manual 2-19

2.12
COMMON Statement

The COMMON statement specifies a block of storage space which
may be used by more than one program unit.

SYNTAX

COMMON [/[blkname 1/ llist1 [[,] / [blkname2] I list2[,]...]

where

blkname is the name of a labeled common block. Each omitted
blkname specifies blank common.

list is one or more simple variables, array names, or array
declarators.

In each COMMON statement, the variables following a block
name are declared to be in common block blkname. If the first
block name is omitted, all variables that appear in the first list are
specified to be in blank common. Alternatively, the appearance of
two slashes with no block name between them declares the vari-
ables that follow to be in blank common.

The following data items must not appear in a COMMON state-
ment:

e The names of dummy arguments in a subprogram.

U] A function, subroutine, entry, statement function, or intrinsic
function name.

e A name used in a DATA statement, except in block data sub-
programs.

A variable cannot be specified more than once in the COMMON
statements within a program unit and all common block names
must be distinct from subprogram names.

2-20 Fortran Reference Manual

Fortran Statements

EXAMPLES

COMMON a, b, c

The variables a, b, and ¢ are placed in blank common.

COMMON pay, time /color/ red

The variables pay and time are placed in blank common; the vari-
able red is placed in common block color.

COMMON /a/ al, a2 // x(10), y /¢/ d

The variables al and a2 are placed in common block a; x and y are
placed in blank common; and d is placed in common block c.

Any common block name or blank common specification may
appear more than once in one or more COMMON statements in a
program unit. The variable list following each successive appear-
ance of the same common block name is treated as a continuation
of the list for that block name. For example, the COMMON state-
ments:

COMMON a, b, ¢ /x/ vy, 2, 4 // w, ¢
COMMON /cap/ hat,visor // tax /x/ o, t

are equivalent to the following COMMON statements:

COMMON a, b, ¢, w, r, tax
COMMON /x/ y, 2z, 4, o, t /cap/ hat, visor

The length of a common block is determined by the number and
type of the variables in the list associated with that block.

INTEGER*2 b (4)
COMMON /blkl/ b, arr(3)

The common block blk1 takes 5 words of storage, b uses 2 (half a
word per element) and arr uses 3 (1 word per element).

COMMON Statement
(continued)

Fortran Statements

Fortran Reference Manual 2-21

COMMON Statement
(continued)

Common block storage is allocated at link time. It is not local to
any one program unit. Data space within the common area for
arrays b and arr shown in the preceding example is allocated as
shown in Figure 2-1:

Word Common Block
1 b(1)
b(2)
2 b(3)
b(4)
3 arr(1)
4 arr(2)
5 arr(3)

Figure 2-1. Sample COMMON block storage

Each program unit which uses the common block must include a
COMMON statement that contains the block name (if a name was
specified). The list assigned to the common block by the program
unit need not correspond by name, type, or number of elements
with those of any other program unit. The size of an unlabeled
(blank) common block can differ between program units, but the
size of a labeled common block should be the same in all program
units. For example, the following appears in program unit 1:

INTEGER*2 i, j
COMMON /blocka/ i(4), j(6), ivory(2), sam
INTEGER*2 ivory

and the COMMON statement

INTEGER*2 india, jack
COMMON /blocka/ geo, m(10), india, jack

appears in program unit 2. blocka is the same size (7 words) in
both program units. Thus, referencing i(4) in program unit 1 is
equivalent to referencing m(2) in program unit 2, because both
variables refer to the same half word of the named common block.
The correspondence between the variables in common in the two
program units is shown in Figure 2-2.

The following example shows an unnamed, or blank, common
block in program unit 2 that is a different size from the common
block referenced in program unit 1:

2-22 Fortran Reference Manual

Fortran Statements

COMMON Statement
(continued)

Program1 | Common Block | Program 2
Reference Word Number | Reference
i 1 geo

i(2)
i(3) 2 m(1)
(4 m(2)
i 3 m(3)
j(2) m(4)
j[€)] 4 m(5)
j(@ m(6)
i(® 5 m(7)
j(6 m(8)
ivory(1) 6 m(9)
ivory(2) m(10)
sam 7 india
jack

Figure 2-2. Typical Data References in Named COMMON

Program unit 1:

INTEGER*4 i
COMMON i (12)

Program unit 2:

INTEGER*4 law
COMMON law (7)

The correspondence between the variables in blank common in
the two program units is shown in Figure 2-3.

Program 1 | Common Block | Program 2

Reference | Word Number | Reference
i(1) 1 law(1)
i(2) 2 law(2)
i(3) 3 law(3)
i(4) 4 law(4)
i(5) 5 law(5)
i(6) 6 law(6)
i(7) 7 law(7)
i(8) 8 Unused
i(9) 9 Unused
i(10) 10 Unused
i(11) 11 Unused
i(12) 12 Unused

Figure 2-3. Typical Data References in Blank COMMON

Fortran Statements Fortran Reference Manual 2-23

2.13
CONTINUE Statement

The CONTINUE statement creates a reference point in a program
unit.

SYNTAX

CONTINUE

The CONTINUE statement should always be written with a label;
it marks a point in the program where a label is needed but the
programmer does not want to associate the label with any specific
action.

In Fortran, the CONTINUE statement is usually the last statement
in a labeled DO loop that otherwise would end in a prohibited
statement such as a GOTO. If a CONTINUE statement appears
elsewhere in a program, or if it is not labeled, it performs no func-
tion and control passes to the next statement.

EXAMPLE

DO 45 i =1, 10
32 r=r+ 5
z = SQRT (r)
PRINT *, z
IF (r .LT. 42.) GOTO 45
GOTO 32
45 CONTINUE

Because the last useful statement in the loop is a GOTO state-
ment, a CONTINUE statement is used to terminate the loop.

2-24 Fortran Reference Manual

Fortran Statements

2.14
The DATA statement assigns initial values to variables before DATA Statement
execution begins.
SYNTAX

DATA varlistl/conlist1 /[, Jvarlist2 /conlist2 /[,]...]

where

varlist is one or more simple variable names, array names,
array element names, substring names, or implied DO
loops. For syntax and detailed information on implied
DO loops, refer to Implied DO Loops under DO State-
ment later in this chapter.

conlist is the list of constants that are to be assigned to the
corresponding items in varlist. The form of an item in
conlist is:

[num*]con
where

num is an integer or integer named constant; the
default is 1.

* is the repeat specifier.

con is a constant or named constant that is to be
repeated num times.

There must be the same number of items in each wvarlist and its
associated conlist. There is a relationship between the items in var-
list and the items in conlist, and there are rules that apply to
conversion of data types. Some of these conversions include
extensions to Fortran 77.

If the entities in both lists are numeric data types, the following
conversion rules apply:

e The constant value is converted to the data type being initial-
ized.

* The number of digits which may be assigned when using
octal or hexadecimal constants depends on the data type of
the data item being assigned. The constant is extended on

Fortran Statements Fortran Reference Manual 2-25

DATA Statement
(continued)

the left and filled with zeros if it contains fewer digits than
the capacity of the variable or array element. The constant is
truncated on the left if the constant contains more digits than
can be stored. The use of octal or hexadecimal constants is
an extension to Fortran 77.

If the entities in both lists are character data types, the following
conversion rules apply:

* When the constant contains fewer bytes than the length of
the entity, the constant has the rightmost character positions
initialized with spaces.

* The constant is truncated on the right when it contains more
bytes than the length of the entity.

If the constant has a numeric data type and the entity is character

data type, the following rules apply and are an extension to For-

tran 77:

® The character entity must have a length of one character.

* The constant must have a value in the range of 0 through 255
and must be either an integer, octal or hexadecimal constant.

If the constant is a Hollerith or character, and the entity is
numeric, the following rules apply, and are an extension to For-
tran 77:

e The constant is extended on the right with spaces if it con-
tains fewer characters than the entity.

e The constant is truncated on the right if it contains more
characters than can be stored.

EXAMPLES

DATA a, b, ¢, 4, /3.0, 3.1, 3.2, 3.3/

Data loading any part of a variable or part of a COMMON block
causes the entire thing to be data loaded. The following example
of a code fragment illustrates this concept.

REAL a (1000,1000)
DATA a(10,20) /1.1/

In the above example all one million elements of ““a” are loaded.

2-26 Fortran Reference Manual

Fortran Statements

The DECODE statement uses format specifiers to transfer data
between variables that are in internal storage, and then translates
the data from character to internal form. The syntax of the state-
ment is

SYNTAX

DECODE (¢, i, 7, [, IOSTAT=ios] [, ERR=label]) [list]

where

c is an integer expression that is the number of charac-
ters to be translated to internal form.

i is a format identifier.

r is any variable, array element, character substring,
constant, expression, or array name reference that con-
tains the characters to be translated to internal form.

i0s is an integer variable or array element. If no error has
occurred, ios = 0; otherwise i0s is not zero and indicates
an error condition.

label is a statement number of an executable statement.

list is an input/output list that receives the data after

translation to internal form.

This statement has been included only for compatibility with
older Fortran programs and its use is discouraged. Internal read
and write statements, with internal units, should be used instead
of ENCODE and DECODE.

2.15
DECODE Statement

Fortran Statements

Fortran Reference Manual 2-27

2.16
DO Statement

DO loops are used to control iteration in Fortran; each DO loop
causes some operation to be executed repeatedly. DO statements
control groups of other statements for repeated execution.
Implied DO loops appear in input/output statements and in
DATA statements and control transmission of data to and from
variables. In all DO loops, a standard DO loop control is used.

2.16.1
DO Loop Controls

A DO loop control controls the execution of a DO loop; either an
explicit loop or an implied DO loop.

SYNTAX

DO [labell ,] lindex = init, limit[, step]

where

label is the statement label of an executable statement. In a
labeled DO loop (refer to Labeled DO Loops later in this
section), this statement must follow the DO statement
in the sequence of statements within the same program
unit as the DO statement.

index is a simple integer or floating point variable.

init, limit, step
are each arithmetic expressions.

EXAMPLE

Let t1, t2, and t3 be temporary variables of the same type as the
variable index. (Note that t3 must not evaluate to zero). Let count
be a temporary variable of type integer. Then prior to the first
iteration of the loop controlled by this DO control, it is as if the
following code were executed (notice that the assignments may
require conversions as specified in Table 2-2).

tl = init
index = tl
t2 = limit
if step exists
t3 = step
else
t3 =1

2-28 Fortran Reference Manual

Fortran Statements

DO Statement
(continued)

count= INT((limit - init + step) /step)
count = max (count, 1)
GOTO 10

<label> <body of loop>
index = index + t3
count = count — 1
10 if (count .GT. 0) go to label
C next operation

NOTE

Modification of the variable index during the execution of the con- If the NOF77 switch of the

X i R A OPTIONS statement is on
trolled operations is an error. The value of the variable index may during compilation, every loop
be referenced and used within the controlled operations it will mﬁt‘;f s;‘l‘:-;;l:ﬁg 3;11525; QSnee o
contain a terminal value upon a normal exit from the bottom of '

the loop.

When a DO loop index has a floating point type, the final value of
the index may so somewhat surprising. Index values are usually
computed by the addition shown above; floating point addition is
subject to rounding. The number of loop trips, however, is con-
trolled by the computed count. Because of the rounding, the index
may be less than, equal to, or greater than the value of limit at ter-
mination.

DO loops controls are effected by the use of certain compiler
options. When the -onetrip option is used, all DO loops are
guaranteed to execute at least once. For additional information,
refer to Chapter 7, Compiler Options, or Chapter 10, User Com-
mands in this manual.

2.16.2
The labeled and block DO statements control execution of groups Labeled and Block DO
of statements by causing the statements to be repeated a specified Statements

number of times. The repeated statement or group of statements
is known as the range of the DO loop.

SYNTAX

DO label DO-loop-control
controlled statements
label statement

or
DO DO-loop-control

controlled statements
END DO

Fortran Statements Fortran Reference Manual 2-29

DO Statement
(continued)

Strictly, the controlled statements, the terminating statement of
the labelled DO statement, and the END DO statement are not
part of the syntax of the DO statement, but they must go together
and so are shown together. The index variable of the DO state-
ment must not be the index of any enclosing DO statement,
because that would be a redefinition of the index, prohibited by
the rules for DO controls. A block DO is an extension of Fortran
77. Each block DO must have its own END DO. The range of
any DO statement may be empty.

A labeled DO loop begins with a DO statement that specifies the
label of the terminating statement of the loop. The terminating
statement of a labeled DO loop must follow the DO statement. It
must not be one of the following:

¢ Anunconditional GOTO statement

e Anassigned GOTO statement

e An arithmetic IF statement

e Any of the four statements associated with the block IF state-
ment:

o AnIF THEN statement
o An ELSE statement

o An ELSE IF statement
o An ENDIF statement

° A RETURN statement

. A STOP statement

J An END statement

° Another DO statement

* Any nonexecutable statement

The terminating statement of a labeled DO loop may be a logical
IF statement. A labeled DO loop may be terminated with an
END DO statement. As in all labeled DO loops, this terminating
END DO statement must have a label, which must match the label

of the DO statement. (A DO loop terminated with an unlabeled
END DO statement is a block DO loop.)

2-30 Fortran Reference Manual

Fortran Statements

DO Statement
(continued)

2.16.3
If a DO statement appears within the range of another DO state- Proper Nesting
ment, within a THEN or ELSE block, or within the range of a DO
WHILE statement, the inner DO statement must have its termina-
tion statement within the same outer DO statement range, THEN
or ELSE block, or DO WHILE statement range. The terminal
statement of the inner DO statement may be the same as that of
the outer DO statement. If any part of a block IF statement
appears in a DO statement range, the entire block IF statement
must be within that range.

2.16.4
Control may transfer from inside the range of a DO statement to Transfers of Control
outside the range. Control may transfer from outside the range of
a DO statement into the range of a DO loop only if

* aprevious transfer took control out of the loop, and
* the index of the loop was not modified.

Statements executed in this way are in the extended range of the
DO statement; this is an extension of Fortran 77.

If a statement is the common termination of several DO state-
ments, then transfer of control to that statement may only be
made from the innermost range; otherwise, a prohibited transfer
to an inner range has occurred.

Labeled DO Loop Examples

DO 100 i =1, 10
C (more statements)
100 CONTINUE

The group of statements terminating with the one labeled 100 is
repeated ten times.

DO 200 j =1, 10, 2
C (more statements)
200 IF (a(j) .EQ. 0) STOP

The group of statements terminating with the one labeled 200 is
repeated five times. The final value of j is 11.

Fortran Statements Fortran Reference Manual 2-31

DO Statement
(continued)

NOTE

Use of block DO loops, instead of
the equivalent labeled DO loops,
can sometimes generate more
efficient object code.

DO 300 r = 1.0, 2.0, .1
C (more statements)
300 END DO

The group of statements ending with the one labeled 300 is exe-
cuted 11 times. Although this loop ends with an END DO state-
ment, it is not considered a block DO loop. Notice that the label
in the DO statement corresponds with the one in the END DO
statement.

Block DO Loop Examples
DO j = 10, 1, -2

C (more statements)
END DO

The group of statements terminating with the END DO statement
is executed five times.

DO j = 10, 1, 2
C (more statements)
END DO ’

The group of statements terminating with the END DO statement
is not executed. (The DO loop is entirely skipped unless the
-onetrip option is in effect.)

Loop Index Modification Example

DO 10 i =1, 10, 2
WRITE (6,’ ('’'i="',I2)')1i
i=1i-2
10 CONTINUE

The modification of the loop index in the body of the loop is
erroneous. The execution of the loop is unpredictable, although
many loops will execute as many times as if the modification had
not taken place. It is generally impossible for the compiler to
warn off this error, and it usually does not attempt to do so.

The value of the control variable, upon normal completion of the
DO loop, is defined to be the next value assigned as a result of the
incrementation. For example, in the loop:

DO 20 1 =1,5
C (more statements)
20 CONTINUE

2-32 Fortran Reference Manual

Fortran Statements

(,

the value of i after normal completion of the loop is 6. And, in the
loop

DO 55 i = 1,10,3

c {more statements)
55 CONTINUE

the value of i after normal completion of the loop is 13.

The value of the control variable from the loop, retains its value at
the time of any premature exit.

DO Statement
(continued)

Implied DO loops are found in input/output statements (READ,
WRITE, and PRINT) and in DATA statements. An implied DO
loop contains a list of data elements to be read, written, or initial-
ized, and a DO control. Inner implied loops can use the indexes
of outer loops. An index from an outer implied DO loop control
may be used in the control expressions of an inner implied DO
control. For DATA statements, only integer index variables and
expressions can be used.

2.16.5
Implied DO Loops

The implied DO loop acts like a labeled or block DO loop. The
range of the implied DO loop is the list of elements to be input or
output. The list may have any elements in it that would otherwise
be allowed in the context of the implied DO loop. Each iteration
of the implied DO loop causes the list to be traversed and the data
items to be transferred. :

SYNTAX

(list, DO loop control)

where

list is a input/output list. It may contain other implied
DO loops.

2.16.6
Implied DO Loops in
Input/Output Statements

Fortran Statements

Fortran Reference Manual 2-33

DO Statement
(continued)

EXAMPLES
PRINT *, (a,i = 1,3)

Write the value of a three times. If a is 35.6, the output consists of
one record as follows:

35.6 35.6 35.6

If the list of an implied DO contains several simple variables, each
of the variables in the list is read or written for each pass through
the loop. For example, the statement

READ *, (a,b,c,j = 1,2)
is equivalent to
READ *,a,b,c,a,b,c

An implied DO loop can also transmit arrays and array elements.
For example:

DIMENSION b (10)
PRINT *, (b(i), i =.1,10)

causes the array b to be written in the following order:
b(1) b(2) b(3) b(4) b(5) b(6) b(7) b(8) b(9) b(L0)

If an unsubscripted array name is used in the list, the entire array
is transmitted. For example, the result of the following state-
ments:

DIMENSION x(3)
PRINT *, (x,i=1,2)

is to write the elements of array x twice as follows:
x(1) x(2) x(3) x(1) x(2) x(3)

The list can contain expressions that use the index value. For
example:

DIMENSION a (10)
PRINT *, (i*2,a(i*2), i=1,5)

The preceding prints out the numbers 2, 4, 6, 8, 10 alternating
with array elements a(2), a(4), a(6), a(8), a(10).

2-34 Fortran Reference Manual

Fortran Statements

Implied DO loops can be nested. Nested implied DO loops fol-
low the same rules as other nested DO loops. For example, the
statement:

WRITE (6,*) ((a(i,]),1i=1,2),3=1,2)
produces the following output:
a(l,1) a(2,1) a(1,2) a(2,2)

Implied DO loops are useful for controlling the order in which
arrays are transferred. These two examples print an array a,
dimensioned as a(2,3), with values:

135
246
The statement:
WRITE (6, (3I2)") a
prints the array in column-major order, yielding;:

1 3
4 6

2
5
and the statement:
WRITE (6,’ (3I2) ") ((a(i,3),J=1,3),4i=1,2)
prints the array in row-major order, yielding:
135
246
Notice that the following statements both produce the same

result:

WRITE (6, (3I2)') ((a(i,3),1i=1,2),3=1,3)
WRITE (6, (3I2)') a

DO Statement
(continued)

Fortran Statements

Fortran Reference Manual 2-35

DO Statement
(continued)

Implied DO loops in input/output statements are not just used
with arrays. The following statement prints a table of degrees and
the sine of each, in steps of 10 degrees.

WRITE (6,' (I3,F9.5)") (1, SIN(i*3,14159/180.),i=0,360,10)

The statement produces the following output:

0 0.00000
10 0.17365
20 0.34202
30 0.50000
40 0.64279
50 0.76604
60 0.86602
70 0.93969
80 0.98481
90 1.00000

100 0.98481
110 0.93969
120 0.86603
130 0.76605
140 0.64279
150 0.50000
160 0.34202
170 0.17365
180 0.00000
190 -0.17365
200 -0.34202
210 -0.50000
220 -0.64279
230 -0.76604
240 -0.86602
250 -0.93969
260 -0.98481

270 -1.00000
280 -0.98481
290 -0.93969
300 -0.86603
310 -0.76605
320 -0.64279
330 -0.50000
340 -0.34202
350 -0.17365
360 -0.00001

2-36 Fortran Reference Manual

Fortran Statements

DO Statement
(continued)

2.16.7
The syntax of a DATA statement containing an implied DO loop Implied DO Loops in
is Data Statements

SYNTAX

DATA (dlist, DO control)/ clist/

where
dlist is a list of array element names and implied DO loops.
clist is the list of constants to be assigned to the correspond-

ing items in dlist.

The implied DO loop in a DATA statement acts like the implied
DO loop in an input/output statement. It is executed at compila-
tion time to initialize a variable list. The index can be used in
expressions for subscript values or position specifiers of character
substrings. Inner implied DO loops can use the indexes of outer
loops. The iteration count found in an implied DO loop in a
DATA statement must be positive.

EXAMPLES

DATA a, b, (vector(i), i=1,10), k /2.5, -1.0, 10*0.0, 999/
DATA ((matrix(i,j), 1i=0,5), 3j=5,10) /36*-1/

This example initializes parts of a one-dimensional character
array:

PROGRAM char

CHARACTER*5 char_array (5)

DATA (char_array (1),i=1,5)/5*" xxxxx'/

WRITE (6,’ (A)’) (char_array(l) (1:i), i=1,95)
END

The program produces this output:

X

XX
XXX
XXXX
XXXXX

Fortran Statements Fortran Reference Manual 2-37

DO Statement
(continued)

The following example initializes a square array to the identity
matrix (its main diagonal contains all ones, and the rest of the
array zeros). It uses a WRITE statement with an implied DO loop
to output the array in row order.

PROGRAM MAIN
DIMENSION id array (10, 10)

DATA ((id_array(i,3j), j = i+1,10), i = 1,9) /45*0/ ! upper
DATA (id array(i,i), i = 1,10) /10%1/ ! diagonal
DATA ((id_array(i,j), i = j+1,10), 3 1,9) /45%0/ ! lower

WRITE (6,’ (10I2) ') ((id_array(i,3), 3J

END

1,10), i =1,10)

The program produces this output:

O OO0 000000
O OO0 O0OO0OO0OO0COoOr o
O OO0 0O 000+ OOo
O OO0 0O O0OO0OFr OO0O0
0O C OO Oo0OFr OOoOOoOOo
OO COoORr OO0OO0OO0OOo
O OO0 OO0 0O O0OO0Oo
O OB OO O0OO0OO0OO0oOOo
O OO0OO0OO0OO0OO0OO0OOo
P OO OO0OO0OO0OO0OO0OOo

2.16.8
DO WHILE Statement

As a MIL-STD-1753 standard extension to Fortran 77, the DO
WHILE statement controls execution of a group of statements by
causing the statements to be repeated while a logical expression is
true. The DO WHILE construct is an important element of struc-
tured programming.

SYNTAX

DO [label[,1] WHILE (logical expression)
[controlled statements]
[label] END DO

Each DO WHILE loop must be terminated by a separate END DO
statement, which does not require a label. Note that if the DO
WHILE statement uses the label option, the END DO statement
that terminates the DO loop must have a label, and the labels
must match.

A DO WHILE operates like this: the logical expression is
evaluated and tested at the beginning of the DO WHILE loop. If
the expression evaluates to true, the group of statements between

2-38 Fortran Reference Manual

Fortran Statements

the DO WHILE and the corresponding END DO statement,
referred to as the range of the DO WHILE loop, is executed. Con-
trol then returns to the logical expression for another test and pos-
sible iteration. If the logical expression evaluates to false, the DO
WHILE loop terminates and execution continues with the state-
ment following the END DO statement. The rules for transfers
into the range of a DO WHILE loop are the same as for other DO
loops.

EXAMPLES

DO WHILE (i .NOT. 999)
READ (5,33) 1
C (more statements)
END DO

The example above repeatedly reads input until entry of a ter-
minating flag (999 in this case).

The next example repeatedly increments index while the condi-
tion of the DO WHILE statement is true.

index =1

DO WHILE (array(index) .NE. value .AND. index .LE. limit)

index = index + 1
END DO

DO Statement
(continued)

DO loops can contain other DO loops. This is called “‘nesting.”
The only restriction is that each level (that is, each nested loop)
must be completely contained within the surrounding loop. In a
nested DO loop, the last statement of an inner (nested) loop must
either be the same as, or occur before, the last statement of the
outer loop. (For programming clarity, you should always use a
separate terminating statement for each loop.)

EXAMPLE

Here is an example in which the terminating statement of the
innermost loop occurs before the last statement of the preceding
loop. The two outer loops have the same terminating statement.

2.16.9
Nesting DO Loops

Fortran Statements

Fortran Reference Manual 2-39

DO Statement
(continued)

DO 100 i =
DO 100 j
sum = 0
DO 90 k =1, 10
90 sum = sum + a(i,k)*b(k,Jj)
c(i,j) = sum
100 CONTINUE

1, 10
=1, 10

Control passes to the statement following statement 100 only after
all iterations of all three loops are executed.

In a block DO or DO WHILE loop, each level must be terminated
with an END DO statement.

NESTED EXAMPLE
DO WHILE (x .GE. 0)
C (more statements)
DO WHILE (y .LT. 10)
o} (more statements)
END DO
END DO

DO loops may be nested as long as the range of statements in any
DO loop does not overlap the range of the preceding loop.

The following example shows an illegal construction, one in
which the ranges of two loops overlap.

DO 100 i = 1,10
DO 500 j = 1,10 Range of first loop
100 x (i) = i**2 Range of second loop

500 z(j) = j**6

2.16.10
Ranges of DO Loops

The range of the DO loop is defined as the first statement follow-
ing the DO statement up to and including the terminating state-
ment.

EXAMPLES

This example shows the range of a labeled DO loop:

a==a6
DO 20 1 = 1,10
b = SQRT (a) ————- +
WRITE (6,200) b +--—-— Range of the DO loop
a=a+1 +
20 CONTINUE —===—=— +

2-40 Fortran Reference Manual

Fortran Statements

This example shows the range of a block DO loop. It produces
the same results as the preceding example.

a=6

DO i =1, 10
b = SQRT(a) —-————- +
WRITE (6, 200) b +--—-- Range of the DO loop
a=a+1l +

END DO === +

This example shows the range of a DO WHILE loop:

DO WHILE (i .NOT. 999)

READ (5,33) 1 ~ —-————- +
c (more statements) +-—--— Range of the DO loop
END DO e +

A DO loop can be exited at any time. Normal exit is accom-
plished by completion of the DO loop and continuation with the
statement following the termination statement of the loop. A DO
loop may be exited prematurely; for example, a GOTO statement
may transfer control out of the loop.

This example searches a list for a keyword. If the keyword is
found, control passes out of the DO loop to the statement labeled
60. If the keyword is not found, the loop terminates normally with
the STOP statement.

DO 50 i = 1,n

50 IF (list (i) .EQ. keyword) GOTO 60
STOP 'Not found.’

60 PRINT *, 'Match at’, i

It is illegal to transfer control into the range of a DO loop from
outside the range, for example by a GOTO statement. In the fol-
lowing example, the statement GOTO 20 is illegal.

DO 50 i =1, 10
20 n=n+1
50 CONTINUE

GOTO 20

DO Statement
(continued)

Fortran Statements

Fortran Reference Manual 2-41

DO Statement
(continued)

In the following example, the statement GOTO 10, which is inside
the logical IF statement, is illegal because control is transferred
into the inner loop from outside its range. (At first glance, this
may seem permissible, because statement 10 terminates both
loops. This is because the CONTINUE statement is within the
range of the inner loop. You can avoid this problem by using a
separate terminating statement for each nested loop.)

DO 10 i =1, n
IF (i .EQ. k) GOTO 10
DO 10 j =1, m
a(i,3) = b(i,3)
10 CONTINUE

2-42

Fortran Reference Manual

Fortran Statements

The ENCODE statement uses format specifiers to transfer data
between variables that are in internal storage, and then translates
the data from internal to character form. The syntax of the state-
ment is

SYNTAX

ENCODE (¢, i,7, [, IOSTAT=ios] [, ERR=label]) [list]

where

c is an integer expression that is the number of bytes to
be translated to character form.

1 is a format identifier.

4 is any variable, array element, character substring,
constant, expression, or array name reference that
receives the characters, after translation to external
form.

i0s is an integer variable or array element. If no error has
occurred, ios = 0; otherwise ios is not zero and indicates
an error condition.

label is a statement number of an executable statement.

list is an input/output list that contains the data to be

translated to character form.

The ENCODE statement has been included only for compatibility
with older Fortran programs and its use is discouraged. Internal
read and write statements, with internal units, should be used
instead of ENCODE and DECODE.

2.17
ENCODE Statement

Fortran Statements

Fortran Reference Manual 2-43

2.18
END Statement

The END statement indicates the end of a program unit, that is,
the end of a program, subroutine, function, or block data subpro-
gram. »

SYNTAX

END

If an END statement is executed in a subprogram, it has the same
effect as a RETURN statement. If an END statement is executed
in a main program, execution of the program is terminated. An
END statement can be labeled, and it can be continued if the word
END is all on one line. It must be the last statement in a program
unit. ‘

EXAMPLES

PROGRAM xtest

READ (5,*) a,b

IF (a .LT. b) a =b
PRINT *, a, b

END

The END statement terminates program xtest.

2-44 Fortran Reference Manual

Fortran Statements

The ENDFILE statement writes an end-of-file record to the
specified sequential file or device.

SYNTAX

ENDFILE unit
or
ENDFILE ([UNIT=]unit [,JJOSTAT=ios][,ERR=label})

where

unit is the unit number of a sequential file.

i0s is an integer variable or array element for error code
return (refer to Appendix A for IOSTAT error codes).

label is the statement label of an executable statement. It is

in the same program unit as the ENDFILE statement.
If an error occurs during the execution of the END-
FILE statement, control is transferred to the specified
statement.

An end-of-file record in a disk file must be the last record. After
execution of an ENDFILE statement, the file is positioned beyond
the end-of-file record. Some devices (magnetic tape units, for
example) may have multiple end-of-file records, with or without
intervening data records. An end-of-file record cannot be written
to a direct access file.

EXAMPLES
ENDFILE 10

An end-of-file record is written to the file connected to unit 10.
ENDFILE (UNIT=12, IOSTAT=j, ERR=100)

An end-of-file record is written to the file connected to unit 12. If
an error occurs, control is transferred to statement 100 and the
error code is stored in variable j.

2.19
ENDFILE Statement

Fortran Statements

Fortran Reference Manual 2-45

220
ENTRY Statement

The ENTRY statement provides an alternate name, argument list,
and starting point for a function or subroutine. It can appear only
in a subroutine or function subprogram (not in a main program or
block data subprogram).

SYNTAX

ENTRY name [(([argl,arg2,arg3,..D]

where
name is the name of the external entry.
arg is a dummy argument. arg can be a variable name,

dummy procedure name, or an asterisk. An asterisk is
permitted only in a subroutine.

The dummy arguments in an ENTRY statement can differ in
order, number, type, and name from the dummy arguments in
the FUNCTION statement, SUBROUTINE statement, or other
ENTRY statements. However, for each call to the subprogram
through a given entry point, only the dummy arguments of that
entry point can be used. If no dummy arguments are listed after a
particular ENTRY statement, no arguments are passed to the sub-
program when a call to that ENTRY name is made. The ENTRY
statement name cannot appear as a variable in any statement
prior to the ENTRY statement, except in a type statement in a
function subprogram. In particular, an ENTRY name can not be a
dummy argument for any other function, subroutine, or ENTRY
statement not can it be the name of or appear in any COMMON
block.

An ENTRY statement can appear anywhere in a subprogram after
the FUNCTION or SUBROUTINE statement, with the exception
that the ENTRY statement must not appear between a block IF
statement and its corresponding END IF statement or between a

‘DO statement and the end of its DO loop.

A subprogram can have zero or more ENTRY statements. An
ENTRY statement is considered a nonexecutable statement. If
control falls into an ENTRY statement, it is treated as an unla-
beled CONTINUE statement; that is, control falls through to the
next statement.

2-46 Fortran Reference Manual

Fortran Statements

ENTRY Statement
(continued)

EXAMPLES

SUBROUTINE linka(d, i, £f)
C (more statements)
ENTRY search (table, f)

END

search defines an alternate entry point into subroutine linka.

CHARACTER*10 FUNCTION compose (word, sent, para)

C (statements)
ENTRY search (document)
C (more statements)
RETURN

The ENTRY statement allows an alternate way of entering the
function compose.

The following example shows a function with entries of different

types.
REAL FUNCTION f (x)
INTEGER k, 1

C (more statements)
ENTRY k(i)

C (more statements)
END

Here is an example that creates a stack of integers. It shows the
use of ENTRY to group the definition of a data structure together
with the code that accesses it, a technique known as “encapsula-

tion”. NOTE
This subroutine,
manipulate_stack, cannot be

SUBROUTINE manipulate_stack Calle directly and Control can

IMPLICIT NONE not flow through the top,
INTEGER size, top, value randomly into the first entry
PARAMETER (size = 100) point.

INTEGER stack(size)
SAVE stack, top
DATA top /0/

STOP ;Manipulate stack’ ! Prohibits direct calls to
! manipulate_stack
C Push value onto the stack

ENTRY push (value)

IF (top .EQ. size) STOP ’Stack overflow’
top = top + 1

stack (top) = value

RETURN

Fortran Statements Fortran Reference Manual 2-47

ENTRY Statement
(continued)

Pop the top of the stack and place in value

ENTRY pop (value)

IF (top .EQ. 0) STOP ’Stack underflow’
value = stack (top)

top = top - 1

RETURN

END

Here are examples of CALL statements associated with the
preceding example: :

CALL push(10)
CALL push(15)
CALL pop (i)
CALL pop (J)

2-48 Fortran Reference Manual

Fortran Statements

, 2.21
The EQUIVALENCE statement associates variables so that they EQUIVALENCE
share the same storage space. Statement

SYNTAX

EQUIVALENCE (list1) [(list2), . . .]

where

list is two or more simple variables, array elements, array
names, or character substrings. All items in each list
entry share the same storage space.

Subprogram names, common block names, block data names,
namelist group names, dummy arguments, and program names
must not appear in an EQUIVALENCE statement. Each array or
substring subscript must be an integer constant expression.

The types of equivalenced data items can be different. The
EQUIVALENCE statement does not cause type conversion or
imply mathematical equivalence. If an array and a variable share
the same storage space through the EQUIVALENCE statement,
the array does not have the characteristics of a variable and the
variable does not have the characteristics of an array. They only
share the same storage space.

Care should be taken when data types of different sizes share the
same storage space because the EQUIVALENCE statement
specifies that each data item in a list has the same first storage
unit. For example, if an integer and a double precision real value
share the same storage space, the integer value shares the same
space as the most significant word of the two-word double preci-
sion real value.

EXAMPLE
EQUIVALENCE (a,b), (c(2),d,e)

The variables a and b share the same storage space; ¢(2), d, and e
share the same storage space.

Fortran Statements Fortran Reference Manual 2-49

1 O
EQUIVALENCE Statement

(continued)

2.21.1
Equivalence of Array
Elements

Array elements can share the same storage space with elements of
a different array or simple variables. For example:

DIMENSION a(3), c(5)
EQUIVALENCE (a (2), c(4))

specifies that array element a(2) shares the same storage space as
array element c(4). This implies that:

® a(1) shares storage space with ¢(3) and a(3) shares storage
space with c(5).

* No equivalence occurs outside the bounds of any of the
arrays.

The storage space for the above two arrays is shown in the follow-
ing example:

Storage Space
Arraya Word Number Array ¢
1 c(1)
2 c(2)
a(l) 3 c(3)
a(2) <memeelfme> c(4)
a(3) 5 c(5)

If the arrays are not of the same type, they may not line up ele-
ment by element. For example, the statements:

REAL*4 a

INTEGER*2 ibar

DIMENSION a(2), ibar (4)
EQUIVALENCE (a (1), ibar(l))

produce the following storage space allocation:

Storage Space
Arraya Word Number Array ibar
a(1) 1 ibar(1)
ibar(2)
a(2) 2 ibar(3)
ibar(4)

2-50 Fortran Reference Manual

Fortran Statements

If only an array name appears in an EQUIVALENCE statement, it
has the same effect as using an array element name that specifies
the first element of the array. Specifying EQUIVALENCE (a,ibar)
instead of EQUIVALENCE (a(1),ibar(1)), in the above example,
would produce the same results.

It is illegal to specify that the same storage space be occupied by
more than one element of the same array. The following example
is illegal because it specified the same storage space for a(1) and
a(2):

DIMENSION a (2)
EQUIVALENCE (a(l),b), (a(2),b)

An EQUIVALENCE statement must not specify that consecutive
array elements are to be noncontiguous. For example:

REAL a(2), r(3)
EQUIVALENCE (a(l), r(l)), (a(2), xr(3))

is prohibited because the EQUIVALENCE statement specifies that
r is noncontiguous.

. |
EQUIVALENCE Statement

(continued)

To determine equivalence between arrays with different dimen-
sions, Fortran contains an internal array successor function that
views all elements of an array in linear sequence. Each array is
stored as if it were a one-dimensional array. Array elements are
stored in ascending sequential column-major order. The leftmost
index varies the fastest, then the second leftmost, then the third,
and so on.

EXAMPLES

i(-2:4) The elements of i are stored in the following order:
i(-2) i(-1) 1(0) i(1l) i(2) 1i(3) i(4)

t(2,3) The elements of t are stored in the following order:
t(l,1) t(2,1) t(1,2) t(2,2) t(1,3) t(2,3)

k(2,2,3) The elements of k are stored in the following order (as
read left to right, top to bottom by row):

2212

Equivalence Between
Arrays of Different
Dimensions

Fortran Statements

Fortran Reference Manual 2-51

L -]
EQUIVALENCE Statement

(continued)

k(1,1,1) k(2,1,1) k(1,2,1) k(2,2,1)
k(1,1,2) k(2,1,2) k(1,2,2) k(2,2,2)
k(1,1,3) k(2,1,3) k(1,2,3) k(2,2,3)

The number of words each element occupies depends on the type
of the array. For example, these statements:

INTEGER*2 i
DIMENSION a(2,2), 1i(4)
EQUIVALENCE (a(2,1), 1i(2))

produce the following storage space allocation:

Storage Space
Arrava Word Number Arrayi
a(Ll 1 i(1)
a2,1) 2 i(2)
a(1,2) 3 i(3)
a(2,2) 4 i(4)

2.21.3
Equivalence of
Character Variables

As an extension to Fortran 77, character and noncharacter data
items may share the same storage space. For example, these state-
ments:

INTEGER 1i (5)

CHARACTER*16 ¢
EQUIVALENCE (i, c¢)

produce the following storage space allocation:

2-52 Fortran Reference Manual

Fortran Statements

(

Storage Space
Arrayi Word Number Variable ¢
i(1) 1 c(1:4)
i(2) 2 c(5:8)
i(3) 3 c(9:12)
i(4) 4 c(13:16)
i(5) 5 Unused

Another example shows sharing of the same storage space in
which variables do not begin and end on word boundaries. These
statements:

REAL a (3)

CHARACTER*16 c
EQUIVALENCE (a, c(4:4))

produce the following storage space allocation:

Storage Space
Array a Word Number Variable ¢
Unused 1 1 Unused byte, ¢(1:3)
a(1) 2 c(4:7)
a(3) 3 c(8:11)
a(4) 4 c(12:15)
Unused 5 3 unused bytes, c(16:16)

The Stardent 1500/3000 hardware requires data items to be allo-
cated on their “natural” storage boundaries or else hardware
operation faults are generated during program execution. For
example, the byte address of an INTEGER*4 variable should be a
multiple of 4 and the byte address of a double precision floating
point quantity should be a multiple of 8. It is possible, through
the use of EQUIVALENCE statements, to force data items off the
natural boundaries normally allocated by the compiler. When this
occurs, the compiler issues an error message. Good programming
practice suggests that all data be naturally aligned. Stardent
1500/3000 Fortran guarantees that all COMMON blocks begin on
a double-word boundary and that all local variables, in the
absence of EQUIVALENCE, are correctly aligned.

The lengths of the data items that share the same storage space are
not required to be the same. An EQUIVALENCE statement
specifies that the storage sequences of the character data items
whose names are specified in the list have the same first character

L]
EQUIVALENCE Statement

(continued)

Fortran Statements

Fortran Reference Manual 2-53

-]
EQUIVALENCE Statement

(continued)

storage unit. This causes the association of the data items in the
list and can cause association of other data items. Any adjacent
characters in the associated data items can also have the same
character storage unit and thus can also be associated. In the
example

CHARACTER*4 a, b

CHARACTER*3 c (2)
EQUIVALENCE (a,c(l)), (b,c(2))

the association of a, b and ¢ can be illustrated this way:

bytes 01 | 02 | 03]| o4 | 05 [06 | 07

2.21.4
Equivalence in Common
Blocks

Data elements can be put into a common block by specifying them
as equivalent to data elements mentioned in a COMMON state-
ment. If one element of an array shares the same storage space,
through the EQUIVALENCE statement, with a data element
within a common block, the whole array is placed in the common
block with equivalence maintained for storage units preceding
and following the data element in common. The common block
may be extended on the right when it is necessary to fit an array
that shares storage space into the common block.

No array can share storage space with a common block, however,
if storage elements would have to be prefixed to the common
block to contain the entire array. Equivalences cannot insert
storage into the middle of the common block or rearrange storage
within the block.

Because the elements in a common block are stored contiguously
according to the order in which they are mentioned in the COM-
MON statement, two elements in common cannot be made to
share the same storage space through the EQUIVALENCE state-
ment.

2-54 Fortran Reference Manual

Fortran Statements

EXAMPLE

In the following example, array i is in a common block and array
element j(2) is equivalent to i(3):

INTEGER*4 1i(6), J(6)
COMMON i
EQUIVALENCE (i(3), 3j(2))

The common block is extended to accommodate array j as fol-
lows:

Common Block
Arrayi Word Number Array j

i 1
i(2) 2 j@)
i(3) 3 j(2)
i(4) 4 j(3)
i(5) 5 j(4)
i(6) 6 j(5)

7 j(6)

The equivalence set up by the following example is not allowed:

DIMENSION i (6), 3j(6)
COMMON i
EQUIVALENCE (i(1), 3(2))

To set array j into the common block, an extra word must be
inserted in front of the common block. Element j(1) would be
stored in front of the common block; thus EQUIVALENCE (i(1),
j(2)) is not allowed.

. |
EQUIVALENCE Statement

(continued)

Fortran Statements

Fortran Reference Manual 2-55

2.22
EXTERNAL Statement

The EXTERNAL statement identifies a name as a subprogram
name and permits the name to be used as an actual argument in
subprogram calls.

SYNTAX

EXTERNAL procl [,proc2,...]

where

proc is the name of a subprogram. Each name can appear
once only in each EXTERNAL statement and in at
most one EXTERNAL statement in each program unit.

The EXTERNAL statement provides a means of using the names
of subroutine subprograms and function subprograms as actual
arguments. The EXTERNAL statement is necessary to inform the
compiler that these names are subprograms or function names,
not variable names. Whenever a subprogram name is passed as
an actual argument, it must be placed in an EXTERNAL statement
in the calling program. A dummy argument that is a procedure
argument should also appear in an EXTERNAL statement.

If an intrinsic function name appears in an EXTERNAL statement,
the compiler assumes that a user subprogram by that name exists;
the intrinsic function is not available to that program unit. A
name cannot appear in both an EXTERNAL and INTRINSIC
statement. A statement function name must not appear in an
EXTERNAL statement.

EXAMPLES

EXTERNAL bl

CALL sub(a, bl, c)
C (more statements)

END

SUBROUTINE sub(x, y, 2)
EXTERNAL y

z = y(z)

RETURN

END

2-56 Fortran Reference Manual

Fortran Statements

The EXTERNAL statement declares b1 to be a subprogram name.
The call to sub passes the values of a and ¢ and passes the name of
the subprogram (b1).

The reference to y causes b1 to be called.

PROGRAM my_sin
EXTERNAL sin
REAL sin, X, V¥
READ (5, %) y

x = sin(y) ! This call is to a user-written
WRITE (6, %) X ! function named sin, not to the
END ! intrinsic function sin.

EXTERNAL Statement
(continued)

Fortran Statements

Fortran Reference Manual 2-57

2.23
FORMAT Statement

The FORMAT statement describes how input and output infor-
mation is to be arranged.

SYNTAX

label FORMAT (item[,items,....])

where
label is a statement label.
item is a format item.

A FORMAT statement is a non-executable specification state-
ment. It may appear anywhere in a program unit subject to the
rules specified in Order Of Statements earlier in this chapter. The
label on a FORMAT statement may not be the target of any
transfer of control.

The allowed format descriptors are summarized in Table 2-3 and

the edit descriptors are summarized in the next table. A more
detailed explanation of the FORMAT statement is presented in (
Chapter 3, Fortran 1/O Statements. Each of the format descriptors

can be preceded by a repeat specifier (417, for example).

Table 2-3. Format Descriptors

Descriptor Data Type
Aw character or Hollerith
Dw.d real, double precision, complex
Ew.d[Ee] real, double precision, complex
Fw.d real, double precision, complex
Guw.d[Ee] real, double precision, complex
Iwl.m] decimal integer
Owl[.m] octal
Lw logical
Zw|[.m] hexadecimal

where

w is an integer specifying field width.

d is an integer specifying the number of digits to the

right of the decimal point.

2-58 Fortran Reference Manual

Fortran Statements

FORMAT Statement
(continued)

e is an integer specifying the number of digits in the
exponent.
m is an optional integer specifying the minimum number

of digits on output.

Table 2-4. Edit Descriptors

Descriptor Function
BN Ignore blanks
BZ Treat blanks as zeros
kP Scale factor
nHc Hollerith editing
nX Skip n positions
Tc Skip to column ¢
TLc Skip c positions to the left
TRc Skip c positions to the right
S Processor determines sign output
) ig Output optional plus signs
SS Inhibit optional plus sign output
/ Begin new record
Terminate format if list empty

! Literal editing

$ Suppress newline at end of output
EXAMPLE

10 FORMAT (I3, 5F12.3)

The specification is for an integer number with a field width of 3,
and five real numbers with a field width of 12 and three
significant digits to the right of the decimal point.

Fortran Statements Fortran Reference Manual 2-59

2.24
FUNCTION Statement

The FUNCTION statement identifies a program unit as a function
subprogram. ‘

SYNTAX

[type]l FUNCTION namel+m) ([argl, arg2,...])

where

type is the type of the function (see Type Statement later in
this chapter).

name is the name of the function (if type is not specified, the
name is typed in the same manner as variables are).

*m is an unsigned, nonzero integer constant that specifies
the length of the data type, and must be a valid length
specifier for the data type of type.

arg is a dummy argument of the function.

The dummy arguments in a FUNCTION statement can be used as

e Variables
* Array names
* Subprogram names

The dummy arguments should be of the same type as the actual
arguments that are passed to the function from the calling pro-
gram unit. If a dummy argument of type character has a length of
(*) declared, the dummy argument assumes the length of the asso-
ciated actual argument for each reference of the function.

If the function is of type characterx(+), it assumes the length
declared for it by the calling program.

Function subprograms are discussed in detail in Chapter 5, Pro-
cedures and Subprograms.

2-60 Fortran Reference Manual

Fortran Statements

FUNCTION Statement
(continued)

EXAMPLES

FUNCTION comp ()

Defines a single precision floating point function, comp, with no
arguments.

INTEGER FUNCTION timex(a,b,k)
Defines an integer function, timex, with three arguments.

CHARACTER*6 FUNCTION namex (1)

Defines a character function, namex, whose value is six characters
long, with one argument.

Fortran Statements Fortran Reference Manual 2-61

2.25
GOTO Statement

The GOTO statement transfers control to a labeled statement in

the same program unit. There are three kinds of GOTO state-
ments:

* Unconditional GOTO
e Computed GOTO
* Assigned GOTO

The statement can be written GOTO or GO TO. All GOTO state-
ments transfer control to other executable statements within the
same program unit. Any labels mentioned in any GOTO state-
ment must be attached to an executable statement within the same
program unit. Some transfers of control into or out of other con-
trol constructs are illegal; see the sections on the DO statement
and the IF statement.

2.25.1
Unconditional GOTO
Statement

The unconditional GOTO statement transfers control to the
specified statement.

SYNTAX

GOTO label

where
label is the label of an executable statement.
An unconditional GOTO statement causes immediate transfer of

control to the labeled executable statement.

EXAMPLE

GOTO 20

Control is passed to the statement labeled 20 when the GOTO
statement is executed. Statement 20 can be before or after the
GOTO statement, but must be present in the same program unit.

2-62 Fortran Reference Manual

Fortran Statements

GOTO Statement

(continued)
2.25.2
The computed GOTO statement transfers control to one of several Computed GOTO
statements depending on the results of the evaluation of an Statement
expression.
SYNTAX

GOTO (labell, label2,. . .)[,]exp

where

label is the label of an executable statement. The same label
can appear more than once.

exp is an arithmetic expression.

The computed GOTO statement passes control to one of several
labeled statements depending on the result of an evaluation. The
index expression exp is evaluated and truncated to an integer
value. The index selects the statement label in the label list. For
example, if the index is 1, control passes to the statement whose
label appears in the first position of the list of labels. If the index
value is 2, the second label in the list is used, and so on. If exp
evaluates to less than 1 or to a value greater than the number of
labels in the label list, control is passed to the statement following
the computed GOTO.

EXAMPLES

i=3.0
GOTO (30,60,50,100),1

Because i has a value Qf 3, control passes to statement 50.

b 1.5
z 1
GOTO (10,20,40,40) b + =z

o

Because INT(b + z) = 2, control passes to statement 20.

Fortran Statements Fortran Reference Manual 2-63

GOTO Statement
(continued)

2.25.3
Assigned GOTO
Statement

The assigned GOTO statement transfers control to the statement
whose label was most recently assigned to the variable in the
GOTO statement by the execution of an ASSIGN statement.

SYNTAX

GOTO ivar|[[,](labell, label2,. . .)]

where
ivar is an INTEGER#4 simple variable.
label is the label of an executable statement. The list of

labels is optional.

ivar must be given a label value of an executable statement
through an ASSIGN statement prior to execution of the GOTO
statement. When the assigned GOTO statement is executed, con-
trol is transferred to the statement whose label matches the label
value of ivar. The list of labels has no effect and there is no
requirement that the GOTO transfer to one of the labelled state-
ments.

EXAMPLES

ASSIGN 10 TO my_ age
GOTO my_age

Control is transferred to statement 10 when the GOTO statement
is executed.

ASSIGN 100 TO new_time
GOTO new_time, (90,100,150)

Control is transferred to statement 100 when the GOTO statement
is executed.

2-64 Fortran Reference Manual

Fortran Statements

The IF statement provides a means for decision making. There
are three types of IF statements:

. Arithmetic IF
. Logical IF
° Block IF

An arithmetic IF statement transfers control to one of three
labeled statements depending on whether an expression evaluates
to a negative, zero, or positive value. A logical IF statement
causes execution of a statement if an evaluated expression is true.
A block IF causes execution of one of a set of blocks of statements
depending on the value of one or more logical expressions.

The arithmetic IF statement transfers control to one of three state-
ments. The form of the arithmetic IF statement is

SYNTAX

IF (exp) labeln, labelz, labelp

where

exp is an arithmetic expression.

labeln are the statement labels of executable statements.
labelz

labelp

When an arithmetic statement is executed, exp is evaluated. If the
resulting value is negative, control passes to the statement whose
label is labeln. If the evaluated value is 0, control passes to state-
ment [abelz. If the value is positive, then control passes to the
statement whose label is labelp.

If the arithmetic expression is of complex or double complex type,
it is converted to a single or double precision floating point value
using the rules of Table 2-2 before the branch is taken. The effect
is to branch on only the real part of the complex number.

2.26
IF Statement

2.26.1
Arithmetic IF Statement

Fortran Statements

Fortran Reference Manual 2-65

IF Statement
(continued)

EXAMPLES
IF (a + b) 10, 20, 30

Control is passed to 10, 20, or 30, depending on whether the value
of a+b is negative, zero, or positive.

testa = 0
IF (testa) 50,100,50

Because testa equals 0, control passes to statement 100.

i 10
3= -(15)
IF (i+3j) 10, 20, 30

Because i + j is negative, control passes to statement 10.

IF (timex) 60,60,60

Control passes to statement 60 regardless of the value of timex.

z 10
a 60
IF (a+z) 100, 100, 60

Because a + z is positive, control passes to statement 60.

As illustrated in the examples, twq of the labels in the label list
may be the same; control branches to one of two possible state-
ments. In fact, all of the labels in the list may be the same and
control branches to the statement bearing this label regardless of
the results of the evaluation.

In many cases, logical IF statements can be substituted for arith-
metic IF statements and produce more readable code. For exam-

ple:

IF (a+b) 10, 10, 20
10 X = SQRT (y**2 + z**2)
20 .

can be written

IF (at+b .LE. 0.0) x = SQRT(y**2 + z**2)

with no need for either label, one less statement, and a cleaner

structure. Older programs may especially suffer from these prob- -

lems and profit from the improvement.

2-66 Fortran Reference Manual

Fortran Statements

IF Statement
(continued)

The logical IF statement evaluates a logical expression and exe-
cutes one statement if the result of the evaluated expression is
true.

SYNTAX

IF (exp) statement

where
exp is a logical expression.

statement is any executable statement other than a DO, END
DO, END, block IF, or another logical IF statement.

The logical IF statement is a two-way decision maker. If the logi-
cal expression contained in the IF statement is true, then the state-
ment contained in the IF statement is executed and control passes
to the next statement. If the logical expression is false, then the
statement contained in the IF statement is not executed and con-
trol passes to the next statement in the program.

EXAMPLES

a=>b
IF (a .EQ. b) GOTO 100

Because the expression a .EQ. b is true, control passes to state-
ment 100.

IF (p .AND. g) res = 10.5

If p and q are both true, the value of res is replaced by 10.5; other-
wise, the value of res is unchanged.

2.26.2
Logical IF Statement

Fortran Statements

Fortran Reference Manual 2-67

IF Statement
(continued)

(\,

2.26.3

Block IF Statement The block IF statement is an extension of the logical IF statement,
allowing one of a collection of blocks of statements to be executed
depending on the truth value of several logical expressions.

SYNTAX

IF (expl) THEN
[statement(s)]
[ELSE [IF(exp2) THEN
[statement(s)]
[ELSE
[statement(s)]]]
ENDIF

where
exp is a logical expression.
statement is any executable statement or a format statement.

ENDIF terminates the block IF. One ENDIF is required for
each nesting level.

One block IF statement can contain any number of ELSE IF sub- (
blocks, but only one ELSE sub-block.

A block IF statement must always begin with an IF-THEN state-
ment followed by a block of controlled statements. This first sec-
tion may be followed by zero or more instances of ELSE-IF-THEN
statements and their following controlled statements. There may
always be an optional ELSE statement at the end followed by its
controlled statements. Finally, the entire grouping must end with
an ENDIF statement. Any of the groups of controlled statements
may be empty.

Execution of the block IF proceeds in the following manner. The
logical expression in the IF statement is evaluated. If it is TRUE,
the associated controlled statements are executed. If control is not
otherwise transferred, then upon completion of the controlled
statements, control passes to the statements following the ENDIF.
If the expression evaluates to FALSE, then attention is turned to
the first ELSE IF (if there is one). The logical expression is
evaluated. If its value is TRUE, the controlled statements are exe-
cuted just as for the IF-THEN statements. If its value is FALSE,
control flows to the next ELSE-IF, the ELSE, or the ENDIF. Each
ELSE-IF follows the same pattern. If control ever reaches the
ELSE statement, its controlled statements are executed. Finally, if
control ever reaches the END-IF, control simply flows to the next
statement. (

2-68 Fortran Reference Manual Fortran Statements

EXAMPLES

X =Y

IF (x .EQ. y) THEN
x = x+1

ENDIF

Because x =y, the value of x is replaced by the value of x+1. Note
that this is equivalent to the logical IF statement:

IF (x .EQ. y) x = x+1
IF (x .LT. O0) THEN

Yy = SQRT (ABS (x))
z=x+1-y

ELSE
Yy = SQRT (x)
z =x -1
ENDIF

If x < 0, one block of code is executed; if x >= 0, a separate block of
code is executed.

IF (n(i) .EQ. 0) THEN
n(i) = n(3j)
j=3+1
IF (j .LT. k) THEN
k =%k -1

ELSE IF (j .EQ. k) THEN
k =%k +1

ENDIF

ELSE
m= 1
k = n(i)

ENDIF

IF Statement
(continued)

Fortran Statements

Fortran Reference Manual 2-69

2.27
IMPLICIT Statement

The IMPLICIT statement overrides or confirms the type associ-
ated with the first letter of a name. ‘

SYNTAX

IMPLICIT type(rangel,lrange2, ...)) [,type(rangel, lrange2, ...))]

where

type is the type to be associated with the corresponding
letter or list of letters in range (see Type Statement later
in this chapter).

range is either a single letter or a range of letters (for exam-

ple, A- Z, or I-N) to be associated with the specified
type. Writing a range of letters has the same effect as
writing a list of single letters.

An IMPLICIT statement specifies a type for all variables, arrays,
named constants, function subprograms, ENTRY names in func-
tion subprograms, and statement functions that begin with any
letter that appears in the IMPLICIT statement, and that are not
explicitly given a type; it does not change the type of any intrinsic
functions.

The IMPLICIT statement itself can be overridden for specific
names when these names appear in a type statement. For exam-
ple, IMPLICIT INTEGER (A) specifies that symbolic names start-
ing with the letter A are type integer. A type statement such as
REAL ABLE, however, indicates that the variable ABLE is type
real, overriding the IMPLICIT statement. Uppercase and lower-
case letters are equivalent in arguments to the IMPLICIT state-
ment. Thus IMPLICIT INTEGER (Q) and IMPLICIT INTEGER
(q) are the same.

An explicit type specification in a FUNCTION statement over-
rides an IMPLICIT statement for the function name. Note that the
length is also overridden when a particular name appears in a
CHARACTER or CHARACTER FUNCTION statement.

As a MIL-STD-1753 extension to Fortran 77, if IMPLICIT NONE
is specified, inherent typing is disabled and all variables, arrays,
named constants, function subprograms, ENTRY names, and
statement functions (but not intrinsic functions) must be explicitly
typed. The IMPLICIT NONE statement must be the only

2-70 Forfran Reference Manual

Fortran Statements

IMPLICIT statement in the program unit. Types of intrinsic func-
tions are not affected.

Within the specification statements of a program unit, IMPLICIT
statements must precede all other specification statements, except
PARAMETER statements. The IMPLICIT NONE statement
should always be used in a good structured program.

The same letter should not appear as a single letter, or be included
in a range of letters more than once in all of the IMPLICIT state-
ments in a program unit.

EXAMPLE

IMPLICIT COMPLEX (i, j,k), INTEGER(a-c)

All variables and function names beginning with i, j, or k are of
type COMPLEX; names beginning with a, b, or ¢ are of type
INTEGER.

IMPLICIT Statement
(continued)

Fortran Statements

Fortran Reference Manual 2-71

2.28
INCLUDE Statement

The INCLUDE statement is a MIL-STD-1753 extension to Fortran
77. Tt causes the compiler to include and process subsequent
source statements from a specified file or device file. When EOF is
read from this file or device file, the compiler continues process-
ing with the line following the INCLUDE statement. INCLUDE
statements cannot be continued. INCLUDE can be nested in a
non-recursive manner, that is, an INCLUDE cannot mention an
active include file. :

SYNTAX

INCLUDE "name’

where

name is the file name, enclosed in single quotation marks.

INCLUDE is also a compiler directive. The search path for the
INCLUDE directive starts from the directory where the caller is
located and moves to the directory [usr/include.

EXAMPLE

INCLUDE 'specs’

Line numbering within the listing of an included file begins with
1. When the included file listing ends, the include level decreases
appropriately, and the previous line numbering resumes. The
INCLUDE statement also allows the definition of a path. When
the following format of the INCLUDE is found

INCLUDE 'any...thing:more’

everything up to the rightmost colon is stripped off and used as
an environment variable name. The value of that variable name
then is substituted in before the file is searched for. This form of
the INCLUDE statement can be used to structure the layout of
your source files. For example, if the following is specified:

INCLUDE ’stuff:file.f’

and the environment variable stuff is set to /myfown, the file
searched for is /myfown/filef. This form of the statement allows
each include file to have a potentially different path.

2-72 Fortran Reference Manual

Fortran Statements

2.29
The INQUIRE statement ascertains properties of a particular file INQUIRE Statement
Or unit.

SYNTAX

INQUIRE ([[UNIT=] unit] [,FILE=name] [, JOSTAT=ios] [,[ERR=label] . . .others)

where

unit is the unit number of a file.

name is the name of the file (as a character expression).

108 is an integer variable or array element for error code.
Refer to Appendix A for IOSTAT error codes.

label is the statement label of an executable statement in the
same program unit as the INQUIRE statement. If an
error occurs during the execution of the INQUIRE
statement, control is transferred to the specified state-
ment rather than aborting the program.

others are other keyword specifiers which can follow. See the

listing of Inquire Statement Specifiers in the following
sub-section.

Either the UNIT or FILE keyword specifier must be present in the
keyword list, but not both. If the prefix UNIT= is omitted, and the
unit specifier is present, unit must be the first item in the list.

Most of the information returned by an INQUIRE statement is
assigned through the use of the OPEN statement, which is
described in OPEN Statement later in this chapter. Refer to
Chapter 3, Fortran I/O Statements for examples using the
INQUIRE statement.

In Stardent 1500/3000 Fortran, when a result is specified as
undefined, a variable may or may not be changed from its previ-
ous value by the INQUIRE statement. In any event, the value is
meaningless if the file or unit either does not exist or cannot be
accessed at the time the INQUIRE is executed.

Fortran Statements Fortran Reference Manual 2-73

INQUIRE Statement
(continued)

2.29.1
INQUIRE Statement
Specifiers

ACCESS=acc

BLANK-=blk

(Character variable, array element, or substring)
acc returns the string "SEQUENTIAL’, "ASYNC/,
or 'DIRECT’ depending upon whether specified
unit or file was connected for sequential, asyn-
chronous, or direct access, respectively. If the file
is not connected, acc is undefined.

Example: ACCESS=acc.

(Character variable, array element, or substring)
blk returns 'NULL’ if null blank control is is in
effect, and "ZERCQ’ is zero blank control is active. If
the connection does not exist or is not connected
for formatted I/O, the value assigned is
"UNKNOWN'.

Example: BLANK=Dblk.

CARRIAGECONTROL=cc

DIRECT=dir

ERR=label

EXIST=ex

(Character variable, array element, or substring).
cc returns ‘Fortran’ if the file uses Fortran carriage
control attributes, "LIST” if it uses the implied car-
riage control attribute, ‘'NONE’ if there are no
attributes, and "UNKNOWN’ if nothing else
applies.

Example: CARRTAGECONTROL=cc.

(Character variable, array element, or substring)
dir returns "YES’ if the file or unit is connected for
direct access, 'NO’ if not connected for direct
access, and is undefined if the processor is not
able to determine the access type.

Example: DIRECT=dir.

" (Statement number) Control is transferred to

specified executable statement if an error condi-

" tion on the named file or unit exists. This occurs

during execution of the INQUIRE statement.
Example: ERR=99. '
(Logical variable or array element; must be LOGI-

CAL) If the named file exists, ex = .TRUE.; other-
wise, ex = .FALSE.

Example: EXIST=lext.

2-74 Fortran Reference Manual

Fortran Statements

FILE=name

FORM=fm

(Character expression) Specifies the file name for
inquiry by file name.

Example: FILE="OUTPUT".

(Character variable, array element, or substring)
fm returns "TFORMATTED if the file or unit is con-
nected for formatted data transfer, UNFORMAT-
TED’ if connected for unformatted data transfer,
and is not defined if the file is not connected.

Example: FORM=for.

FORMATTED=fmt

IOSTAT=io0s

NAME=fn

NAMED=nmd

(Character variable, array element, or substring)
fmt returns the string "YES’ if the file or unit is
connected for formatted data transfer, 'NO’ if con-
nected for formatted data transfer, and is
undefined if the processor is unable to determine
the form of data transfer.

Example: FORMATTED=fm.

(Integer variable or array element) ios is assigned
the value zero if no error occurs; ios is assigned a
positive value if an error occurs. Be careful of
EOF, which can generate a negative value.

Example: IOSTAT=io_status.

(Character variable, array element, or substring).
fn is assigned the external name of the specified
unit; if the file has no name or is not connected, fn
is undefined.

Example: NAME=nam.
(Logical variable or array element; must be LOGI-

CAL) If the specified unit is not a scratch file, nmd
= .TRUE.; otherwise, nmd = .FALSE.

Example: NAMED=Inam.

INQUIRE Statement
(continued)

Fortran Statements

Fortran Reference Manual 2-75

INQUIRE Statement
(continued)

NEXTREC=nr

(Integer variable or array element) nr is assigned
the next record number to be read or written on
the specified unit or file. If no records have been
read or written, nr is one. If the file is not con-
nected or is a device file, or its status is indeter-
minate, nr is undefined. ’

Example: NEXTREC=nrec.

NUMBER=num

OPENED=0d

RECL=rcl

(Integer variable or array element) num is the For-
tran logical unit number of the external named
file; if no unit is connected to the named file, num
is undefined. -

Example: NUMBER=n.

(Logical variable or array element; must be LOGI-
CAL) If the named file or unit has been opened
then od = .TRUE. otherwise, od = .FALSE.

Example: OPENED=lopn.

(Integer variable or array element) rcl returns the
record length of the specified unit or file con-
nected for direct access, measured in characters
for formatted files and in 4-byte words for unfor-
matted files. If the file is not connected for direct
access, rcl is undefined.

Example: RECL=irec.

SEQUENTIAL=segq

(Character variable, array element, or substring)
seq returns "YES’ if the file or unit is connected for
sequential access, 'NO’ if not connected for
sequential access, and undefined if the processor
is unable to determine the access type.

Example: SEQUENTIAL=seq.

2-76 Fortran Reference Manual

Fortran Statements

INQUIRE Statement
(continued)

UNFORMATTED=unf
(Character variable, array element, or substring)
unf returns "YES' if the file or unit is connected for
unformatted data transfer, 'NO’ if connected for
formatted data transfer, and undefined if the pro-
cessor is unable to determine the form of data
transfer.

Example: UNFORMATTED=iunf.

UNIT=unit (Integer expression) Specifies unit number for
inquiry by unit.
Example: UNIT=7.

Fortran Statements Fortran Reference Manual 2-77

2.30
INTRINSIC Statement

The INTRINSIC statement identifies a name as representing an
intrinsic function and permits the name to be used as an actual
argument. '

SYNTAX
INTRINSIC funl [, fun2,. . .]

where

funl is the name of an intrinsic function. Each name can
appear only once in a given INTRINSIC statement,
and in at most one INTRINSIC statement within a
program unit.

The INTRINSIC statement provides a means of using intrinsics as
actual arguments. The INTRINSIC statement is necessary to
inform the compiler that these names are intrinsic names and not
variable names. Whenever an intrinsic name is passed as an actual
argument, it must be placed in an INTRINSIC statement in the
calling program.

The names of intrinsic functions for type conversion (INT, IFIX,
IDINT, IMAG, AIMAG, FLOAT, SNGL, REAL, DBLE, CMPLX,
ICHAR, and CHAR), logical relationships (LGE, LGT, LLE, and
LLT), for choosing the largest or smallest value (MAX0, AMAX1,
AMAX0, MAX1, MINO, AMIN1, AMINO, MIN1, MAX, and
MIN) and the logarithm intrinsics LOG and LOG10 must not be
used as actual arguments. Further, only specific function names
can be used as actual arguments; generic names must not be used.

EXAMPLE

INTRINSIC SIN, TAN
CALL MATH (SIN, TAN)

The INTRINSIC statement informs the compiler that SIN and
TAN are intrinsics.

2-78 Fortran Reference Manual

Fortran Statements

NAMELIST directed 1/O transfers data without specifying the

exact format or order of the data. Data is labeled with the variable

names. Variables eligible for NAMELIST-directed I/O are
defined in NAMELIST groups which are declared with a
NAMELIST statement. NAMELIST-directed I/O statements use
the group name to determine which variables are to be read or
written.

SYNTAX

NAMELIST /<group name>/<var list > [[,] /<group name>/ <varlist>] ...

where
group name is a symbolic name.

var list is a list of simple or array variable names, separated
by commas.

Variables appearing in <var list > may be of any type, but dummy
arguments are not allowed. A variable name may appear in
several NAMELISTs.

The <wvar list > explicitly defines which items may be read or writ-
ten in a NAMELIST-directed I/O statement. It is not necessary
for every item in <var list> to be defined during NAMELIST-
directed input, but every input item must belong to the NAMEL-
IST group. The order of items in <var list> determines the order
of the values written in NAMELIST-directed output.

2.31
NAMELIST Statement

Fortran Statements

Fortran Reference Manual 2-79

(|

2.32 _

OPEN Statement - The OPEN statement establishes a connection between a - unit
number and a file; it also establishes or verifies properties of a file.
SYNTAX

OPEN ([UNIT=]unit [,FILE=name] [,IOSTAT=ios] [,ERR=label] . . .others)

where

unit is the unit number for the file.

name is the file name of the file to be connected to the
specified unit; a character expression. A file name is
any character string not including a slash, and not
longer than 14 characters.

i0s is an integer variable or array element for error code

’ return (refer to Appendix Afor IOSTAT error codes).

label is the statement label of an executable statement in the
same program unit as the OPEN statement. If an error
occurs during the execution of the OPEN statement,
control is transferred to the specified statement. (

others are other keyword specifiers which can follow. See the"

listing of Inquire Statement Specifiers in the following
sub-section. ' ' '

The UNIT specifier is required in the keyword list. If the prefix
UNIT= is omitted, unit must be the first item in the list. At most
one each of the other items can appear in the keyword list.

If a unit is already connected to a file that exists, execution of
another OPEN statement for that unit is permitted. If the
FILE=name option is absent or the file name is the same, the
current file remains connected. Otherwise, an automatic close is
performed before the new file is connected to the unit. A redun-
dant OPEN call can be used to change only the value of the
BLANKS= option. However, attempts to change the values of any
other specifiers are ignored. A redundant OPEN does not affect
the current position of the file.

Refer to Chapter 3, Fortran 1/O Statements for additional details
and examples.

2-80 Fortran Reference Manual Fortran Statements

FILE=name »
(Character expression) name specifies a file name.

UNIT=unit
(Integer expression) unit specifies a unit number.

IOSTAT=ios
(Integer variable or array element) If no error has
occurred, then ios = 0; otherwise, if an error condition
exists, i0s is not zero and indicates the error condition.

ERR=Iabel (Statement number) Control is transferred to the
specified label statement if an error is encountered dur-
ing execution of the OPEN statement.

STATUS=sta

(Character expression) sta specifies a file as "OLD’,
'NEW’, ’SCRATCH’, or 'UNKNOWN’ (f not
specified, UNKNOWN is the default).

"OLD’ If a file is specified "OLD’, the file name must
already exist.

"NEW’ If a file is specified "'NEW’, a new file is created.

"SCRATCH’
If a file is specified "SCRATCH’, a new file is
created and it is deleted when the file is closed.

"UNKNOWN’
If a file is specified "'UNKNOWN’, the processor
first tries "OLD’; If the file is not found, the pro-
cessor uses "'NEW’, thus, creating a new file.

ACCESS=acc
(Character expression) acc specifies a file accessed to be

'DIRECT’, 'ASYNC or ’SEQUENTIAL’ (if not
specified, SEQUENTIAL is the default).

"SEQUENTIAL’
a file is opened for sequential access. RECL must
not be present.

'DIRECT” a file is opened for direct access. RECL is
required.

"ASYNC’ a file is opened for asynchronous access. UNIT
is required.

OPEN Statement
{continued)

2.32.1
OPEN Statement
Specifiers

Fortran Statements

Fortran Reference Manual 2-81

OPEN Statement
(continued)

BLANK=bink
(Character expression) bink specifies treatment of
blanks within numbers on input. If BLANK="NULL’
(default), blanks are ignored; if BLANK='ZEROQ’,
blanks are treated as zeros.

CARRIAGECONTROL=cc
(Character expression) cc specifies a value equal to
"FORTRAN’, "LIST’, or 'NONE'.

The CARRIAGECONTROL parameter specifies the
type of carriage control processing to be used when
printing a file. The default for formatted files is "FOR-
TRAN’; for unformatted files, the default is 'NONE’.
"FORTRAN’ specifies normal Fortran interpretation of
the first character, "LIST’ specifies single spacing
between records, and "NONE’ specifies no implied car-
riage control. :

DISPOSE=dis or DISP=dis
(Character expression) dis has a value equal to
"DELETE’, ’'KEEP’, ‘PRINT’, 'PRINT/DELETF,
"SAVE’, 'SUBMIT’, or 'SUBMIT/DELETE'.

The DISPOSE parameter specifies the disposition of
the file connected to the unit when the unit is closed.
For example, if "KEEP’ or "'SAVE’ is specified, the file
is retained after the unit is closed; this is the default
value. If "DELETEF’ is specified, the file is deleted. If
"PRINT’ is specified, the file is submitted to the system
line printer spooler and is not deleted; it is printed and
then deleted if you specify "PRINT/DELETE’. If "SUB-
MIT’ is specified, the file is submitted to the batch job
queue and is not deleted; it is submitted and then
deleted if you specify "SUBMIT/DELETE’.

A read-only file cannot be deleted. A scratch file can-
not be saved, printed, or submitted.

FORM-=fm (Character expression) fm specifies data format to be
'FORMATTED” or 'UNFORMATTED’. If not
specified, FORMATTED is the default.

ORGANIZATION=0rg
(Character expression) org specifies data format to be
'INDEX’, 'RELATIVE’, or 'SEQUENTIAL".

2-82 Fortran Reference Manual Fortran Statements

RECL=rcl

The ORGANIZATION parameter specifies the inter-
nal organization of the file. The default file organiza-
tion is sequential. However, if you omit the ORGANI-
ZATION keyword when you open an existing file, the
organization already specified in that file is used. If
you specify ORGANIZATION for an existing file, org
must have the same value as that of the existing file.

(Integer expression) rcl specifies record length for
direct access. Length is measured in characters for for-
matted files and in 4-byte words for unformatted files.
However, if environment variables are set at run-time
to indicate a BSD UNIX style of unformatted IO, the
field length is interpreted as measured in bytes rather
than words. Refer to Chapter 4, File Handling in the
section titled Environment Setting Variables for addi-
tional information.

RECORDTYPE=type

(Character expression) fype has a character value equal
to "FIXED’, "VARIABLE’, 'SEGMENTED’,
'STREAM’,'STREAM_CR’, or 'STREAM_LF".

The RECORDTYPE parameter indicates that the file
has fixed-length records, variable-length records, seg-
mented records, or stream-type variable-length
records. The default record type depends on the file
type. For example, if the file type is relative or
indexed, the default is fixed; if the file type is direct
access sequential, the default is also fixed; if the file
type is formatted sequential access, the default is vari-
able; and if the file type is unformatted sequential
access, the default is segmented.

A segment record consists of one of more variable-
length records. Use of segmented records allows a
Fortran logical record to span several records. Only
unformatted sequential access files with sequential
organization can use segmented records. ’SEG-
MENTED’ cannot be specified for any other type.

If the RECORDTYPE parameter is not specified when
accessing an existing file, the record type of the file is
used. However, there is an exception when unformat-
ted sequential files are accessed with sequential organ-
ization and variable-length records, these files have a
default of ' SEGMENTED".

OPEN Statement
(continued)

Fortran Statements

Fortran Reference Manual 2-83

OPEN Statement
(continued)

NOTE

The same file cannot be
connected to two different units.
An attempt to open a file that is
connected to a different unit may
cause undefined results.

If the RECORDTYPE parameter is specified when
accessing an existing file, the specified type must
match the type of an existing file. '

In fixed-length record files, if an output statement does
not specify a full record, the record is filled with spaces
(for a formatted file) or zeros (for an unformatted file).

You cannot use an unformatted READ statement to
access an unformatted sequential organization file con-
taining variable-length records, unless you specify the
corresponding RECORDTYPE value in your OPEN
statement.

Files containing segmented records can be accessed
only by unformatted sequential Fortran I/O state-
ments.

EXAMPLES

OPEN (10, FILE='inv’, ACCESS='SEQUENTIAL’, ERR=100,
+ I0STAT=ios)

The file inv is connected to unit 10 as a sequential file. If an error
occurs, control is transferred to statement 100 and the error code
is placed in the variable ios.

OPEN (ACCESS='DIRECT’, UNIT=4, RECL=50, FORM='FORMATTED’,
+ FILE=NEXT1)

The character variable NEXT1 contains the name of the file to be
connected to unit 4 as a formatted, direct access file with a record
length of 50 characters.

OPEN (6, FILE='/dev/console’)

The system device /dev/console is connected to Fortran unit 6.

When a file is opened with the unit parameter specified, but no
file parameter, a scratch file is opened. Thus, the following two
statements are equivalent:

OPEN (UNIT=19)

OPEN (UNIT=19, STATUS=’'SCRATCH')

2-84 Fortran Reference Manual

Fortran Statements

2.33
Options specified in the OPTIONS statement override any of the OPTIONS Statement
same options that you might have specified on the command line.
However, the options so specified are active only for the program
module in which they are located. The original command line
options again take effect for any other program module in the
compilation you have requested.

SYNTAX
OPTIONS qualifier [,qualifier...]
where

qualifier
is one of the following;:

/14 or INOI4
[F77 or INOF77

For detailed information on the qualifiers and their mean-
ings, refer to Chapter 7, Compiler Options in the section titled
Miscellaneous Options.

Fortran Statements Fortran Reference Manual 2-85

2.34
PARAMETER
Statement

The PARAMETER statement defines named constants. After the
definition of a name in a PARAMETER statement, subsequent
uses.of the name are treated as if the constant were used.

SYNTAX

PARAMETER (cnamel=cexp [,cname2=cexp]....)

where

cname is a symbolic name that represents a constant. This
name cannot appear in any statement before PARAM-
ETER except a type statement.

cexp is a constant expression.

If the symbolic name cname is of type integer, short integer, real,
double precision, complex, or double complex, the corresponding
expression cexp must be an arithmetic constant expression. If the
symbolic name cname is of type character or logical, the
corresponding expression cexp must be a character constant
expression or a logical constant expression, respectively. As an
extension to Fortran 77, character constant expressions can
include CHAR(value), in which case value must be an integer con-
stant expression, or ICHAR(cvalue), in which case cvalue must be a
character constant expression. As an extension to Fortran 77, the
following intrinsic functions can be used in the PARAMETER
statement:

ABS CHAR CMPLX CONJG DIM DPROD IAND
ICHAR IEOR IMAG IOR ISHFT LGE LGT
LLE LLT MAX MIN MOD NINT NOT

as can the logical operators (that is, .EQ., .NE., .LT., .LE., .GT. and
.GE.).

Any symbolic name of a constant that appears in an expression
cexp must have been defined previously in the same or a different
PARAMETER statement in the same program unit. A symbolic
name of a constant must not become defined more than once in a
program unit.

If a symbolic name of a constant is not of default implied type, its
type must be specified by a type statement or IMPLICIT state-
ment prior to its first appearance in a PARAMETER statement. If
the length specified for the symbolic name of a constant of type

2-86 Fortran Reference Manual

Fortran Statements

character is not the default length of 1, its length must be specified
in a type statement or IMPLICIT statement prior to the first
appearance of the symbolic name of the constant. Its type and
length must not be changed by subsequent statements, including
IMPLICIT statements. If a symbolic name of type CHARAC-
TER#(¥) is defined in a PARAMETER statement, its length
becomes the length of the expression assigned to it.

Once such a symbolic name is defined, that name may appear in
any subsequent statement of the defining program unit as a con-
stant in an expression or DATA statement. A symbolic name of a
constant can not be used as a constant in a format specification.

A symbolic name in a PARAMETER statement does not identify
the corresponding constant outside its program unit.

EXAMPLES

PARAMETER (minval=-10, maxval=50)
PARAMETER (debug=.TRUE.)

CHARACTER* (*) file
PARAMETER (file='WELCOM')

PARAMETER (lower=0, upper=7)
DIMENSION a (lower:upper)
DO 10 i=lower,upper
a(i) = 1.0
10 CONTINUE

PARAMETER (pi=3.14159)
C (more statements)
area = pi *(radius**2)

CHARACTER bell
PARAMETER (bell = CHAR(7))

INTEGER case_shift
PARAMETER (case_shift=ICHAR('a’)-ICHAR('A’))

COMPLEX complex two
PARAMETER (complex two = 2)

PARAMETER (limit = 1000)
PARAMETER (limit_plus_1 = limit+1)

L |
PARAMETER Statement

(continued)

Fortran Statements

Fortran Reference Manual 2-87

2.35
PAUSE Statement

The PAUSE statement causes a temporary break in program exe-
cution. :

SYNTAX

PAUSE [n]
where
n is an integer or a character constant.

The PAUSE statement suspends the execution of the program.
When the program suspends, the message printed at the terminal
depends on whether digits, characters, or nothing has been
specified in the PAUSE statement. If digits, the message “PAUSE
digits” is written to standard error. If a character expression, the
message “PAUSE character expression” is written to standard
error.

After displaying the appropriate message, the PAUSE statement
writes one of two messages that give information on resuming the
program. If the standard input device is a terminal, the message
is:

To resume program execution, type go.
Any other input will terminate job.

At this point the program is suspended and remains so until the
operator types go plus a carriage return. The program will ter-
minate if anything other than go is entered. If the standard input
device is other than a terminal, the message is:

To resume execution, execute a kill =15 pidcommand

where pid is the unique process identification number of the
suspended program. This command can be issued at any termi-
nal.

2-88 Fortran Reference Manual

Fortran Statements

EXAMPLES
PAUSE 7777

The message “PAUSE 7777” is written to standard error.
PAUSE ’Mount tape’

The message “PAUSE Mount tape” is written to standard error.
PAUSE

The message “PAUSE” is written to standard error.

After execution resumes, either by the operator typing go or exe-
cuting the kill command, this message is written to standard
error:

Execution resumes after PAUSE.

PAUSE Statement
(continued)

Fortran Statements

Fortran Reference Manual 2-89

2.36
PRINT Statement

The PRINT statement transfers data from memory to the standard
output unit. (Fortran unit 6 is preconnected to the UNIX “‘stan-

dard output.”)
SYNTAX
PRINT fmt[[list]
PRINT nml
where
fmt is the format designator. fmt must be one of the follow-
ing:

* The statement label of a FORMAT statement.

* A variable that has been assigned the statement
label of a FORMAT statement (this form requires
INTEGER*4 type).

. A character or non-character array name that
contains the representation of a format
specification.

* An asterisk, which specifies list-directed output
(refer to List-Directed Output in Chapter 3, Foriran
I/O Statements).

list is a list that specifies the data to be transferred. Each

item in [ist must be one of the following:

A constant.

A variable name.

An array element name.
A substring.

An array name.

An expression.

An implied DO loop.

nml is a namelist group previously defined in a NAMEL-
IST statement. Refer to NAMELIST-Directed Output in
Chapter 3, Fortran I/O Statements.

2-90 Fortran Reference Manual

Fortran Statements

EXAMPLES

PRINT 10,num,des

Prints num and des according to FORMAT statement 10.

PRINT *,’'x=',Xx

Prints the literal string x= and the value of the variable x accord-
ing to list-directed formatting.

ASSIGN 100 TO fmt
PRINT fmt, rat, cat

Prints rat and cat according to FORMAT statement 100.
PRINT ‘ (4I3)’, i, j, k*2, 330

Prints i, j, k#2 and the constant 330 according to the format
specification in the PRINT statement itself.

PRINT 100
100 FORMAT (’End of report’)

Prints the character constant in the FORMAT statement.

PRINT " (’'x SIN (x) COs(x)" (I3,2F7.3))",
1 (i, SIN(i/57.3), COS(i/57.3), i=0, 360,5)

Prints a literal heading and 73 rows of values as indicated by the
implied DO in the input/output list.

PRINT namelistl

Prints variables in NAMELIST group namelistl according to
NAMELIST-directed formatting.

The PRINT statement is used only for transferring data from
memory to the standard output unit. Refer to Chapter 3, Fortran
I/O Statements for a more detailed discussion of the PRINT state-
ment.

PRINT Statement
(continued)

Fortran Statements

Fortran Reference Manual 2-91

237
PROGRAM Statement

The PROGRAM statement defines the name of the program.

SYNTAX

PROGRAM name

where

name is the name of the program (and its entry point).

The name in a PROGRAM statement is used for documentation
purposes only. The program statement must be the first non-
comment statement in a module except for certain compiler direc-
tives.

EXAMPLE

PROGRAM main

This example specifies main as the name of the program.

2-92 Fortran Reference Manual

Fortran Statements

The READ statement transfers data from a file to program vari-
ables.

2.38
READ Statement

The READ from the standard input unit statement transfers data
from a unit designated to be the standard input unit to memory.
Fortran unit 5 is pre-connected to the UNIX “standard input,”
usually your terminal.

SYNTAX

READ fmt [[list]
READ nml

where

fmt is the format designator. fmt must be as specified in
the PRINT statement discussed earlier in this chapter.

list is a list of variables that specify where the data is to be
transferred. The items in list must be one of the follow-
ing:
e A variable name.
e Anarray element name.
e Anarray name.
e A substring.
. An implied DO loop containing the above items
only.
nml is a namelist group name previously defined in a

NAMELIST statement. Refer to NAMELIST-Directed
Input in Chapter 3, Fortran I/O Statements.

EXAMPLES

READ 10,num,des

The values of num and des are read according to FORMAT state-
ment 10.

2.38.1
Read from the Standard
Input Unit Statement

Fortran Statements

Fortran Reference Manual 2-93

READ Statement
(continued)

READ *,a,b,n

The values of a, b and n are read according to list-directed format-
ting.

READ 5

Skips a record on the standard input device.

READ namelistl

Values of variables in NAMELIST group namelistl are read
according to NAMELIST-directed formatting.

2.38.2
Read from File
Statement

The READ from file statement transfers data from a file to
memory. Refer to Chapter 4, File Handling for details on file han-
dling.

SYNTAX

READ ([UNIT=]unit [,[FMT:]fmt] [,INML=]1nml] [, IOSTAT=ios]
[,LERR=errlabel 1 [,END=endlabel] [,REC=rn]) [list]

where

unit is the unit number for the input device or file and is a
required parameter. If the prefix UNIT= is omitted,
then unit must be the first item in the list. Unit can be
an arithmetic expression of type integer, an asterisk, or
a character variable, array name, array element, or
substring. An asterisk indicates that the standard input
device (unit 5).

fmt is the format designator. fmt must be as specified in
PRINT Statement earlier in this chapter.

If the prefix FMT= is omitted, then fmt must be the
second item in the list and unit (without a prefix) must
be the first item. If neither fmt nor nml are present, the
access is unformatted.

2-94 Fortran Reference Manual

Fortran Statements

nml

108

errlabel

endlabel

rm

list

is a namelist group name previously defined in a
NAMELIST statement. fmt and nml may not appear in
the same READ statement. If the prefix NML= is
omitted, then nml must be the second item in the list
and unit (without a prefix) must be the first item. No
list is permitted in a NAMELIST-directed READ state-
ment.

is an integer variable or integer array element name
for error return (refer to Appendix A for IOSTAT error
codes).

is the statement label of an executable statement. If an
error occurs during the execution of the READ state-
ment, control is transferred to the specified statement.

is the statement label of an executable statement. If an
end-of-file is encountered in a sequential file during
the execution of the READ statement, control is
transferred to the specified statement. In this case, ios
has a negative value.

specifies the record number in a direct access file. A
record specifier must not be present if either: (a) fmt is
an asterisk, or (b) nml is present.

is a list that specifies the data to be transferred. The
items in list must be one of the following:

A variable name.

An array element name.

An array name.

A substring.

An implied DO loop containing the above items
only.

A READ from file statement must contain a unit number and at
most one of each of the other options. Note that REC=rn cannot
appear with END=endlabel or UNIT=+. If REC=rn appears, the
unit must be connected for direct access.

READ Statement
(continued)

Fortran Statements

Fortran Reference Manual 2-95

READ Statement
(continued)

EXAMPLES
READ (8, 10) a, b, ¢

The values of a, b and ¢ are read from the file connected to unit 8
according to FORMAT statement 10.

ASSIGN 4 TO num
READ (UNIT=3, ERR=50, FMT=num) =z

The value of z is read from the file connected to unit 3 according
to FORMAT statement 4. If an error occurs, control is transferred
to statement 50.

READ (10) x

The value of x is read from the file connected to unit 10. Because
fmt is omitted, the data is unformatted.

READ (10, FMT=#, END=60) b

The value of b is read from the file connected to unit 10 according
to list-directed formatting. If an EOF is encountered, control is
passed to statement 60.

READ (2, ’(13)’, REC=10) i

The value of i is read from the tenth record of the direct file con-
nected to unit 2 according to the format specification in the READ
statement itself.

READ (10)

This example skips a record in the file connected to unit 10.

CHARACTER*8 a

REAL b

a ="' 827.97"

READ (a(4:8), "(F5.2)') b

The value of b is read from the character variable a according to
the format specification in the READ statement itself.

READ (8, NML=namelistl)

Values of variables in NAMELIST group namelistl are read from
unit 8 according to NAMELIST-directed formatting.

2-96 Fortran Reference Manual

Fortran Statements

2.39
The RETURN statement transfers control from a subprogram RETURN Statement
back to the calling program unit.

SYNTAX

RETURN [rtnnum]

where

rtnnum is an integer expression specifying the alternate return
number.

Normally control is returned from a subroutine to the calling pro-
gram unit at the statement following the CALL statement. The
specification of alternate return statements allows return to the
calling program unit at any labeled executable statement in the
calling program unit.

When the RETURN statement occurs in a subroutine, and no
alternate return is specified, control returns to the first executable
statement following the CALL statement that referenced the sub-
routine. When the RETURN statement occurs in a FUNCTION
(alternate returns not allowed), control returns to the statement
containing the function call.

The optional integer expression takes the values rtnnum, where n
is the number of alternate returns specified by the number of
asterisks in the CALL statement. The value of rtnnum identifies
the number of the statement label in the actual argument list of
the CALL statement. The asterisks in the SUBROUTINE state-
ment are for documentation purposes. There should be the same
number of asterisks as there are statement labels in the CALL
statement.

If the value of exp is in the range 1 to N, the return is to the exp-th
label in the argument list. If exp is outside this range, the return is
to the statement following the call.

Fortran Statements Fortran Reference Manual 2-97

RETURN Statement
(continued)

EXAMPLES
PROGRAM main
(o} (more statements)
CALL matrx (*1, m, *2, n, k, *3)
C (more)
1 ... !first alternate return
C (more)
2 ... !second alternate return
C (more)
3 ... 'third alternate return
C (more)
END

The CALL statement specifies three possible return labels, plus
the normal return point (statement following the CALL). The
SUBROUTINE statement contains a number of asterisks equal to
the number of statement labels in the CALL statement.

SUBROUTINE matrx (*, m, *n, k, *)
C (more)

k=2

RETURN k

END

k evaluates to the value 2, causing control to pass to the second
alternate return label specified in the CALL statement (2). If k
evaluates to a value outside the range 1 < k <3, control returns to
the statement following the CALL statement.

2-98 Fortran Reference Manual

Fortran Statements

2.40
The REWIND statement positions a sequential file or device at the REWIND Statement
beginning-of-file.

SYNTAX

REWIND unit
or

REWIND ([UNIT=]unit [,IOSTAT=ios [,]ERR=label])

where

unit is the unit number of a sequential file or device.

i0s is an integer variable or array element for error code
return (refer to Appendix A for IOSTAT error codes).

label is the statement label of an executable statement. If an

error occurs during the execution of the REWIND
statement, control is transferred to the specified state-
ment.

If the file is already positioned at beginning-of-information, a
REWIND statement has no effect upon the file. The REWIND
statement cannot be used on direct access files.

EXAMPLES

REWIND 10

The file connected to unit 10 is positioned at the beginning- of-
information.

REWIND (UNIT=5, IOSTAT=j, ERR=100)

The file connected to unit 5 is positioned at the beginning-of-
information. If an error occurs, control is transferred to statement
100 and the error code is returned in j.

Fortran Statements Fortran Reference Manual 2-99

(\

2.41

SAVE Statement The variables in a subroutine that are mentioned in a SAVE state-
ment maintain their values after the execution of a RETURN or
END statement.
SYNTAX

SAVE [varl[,var2[,ovar3,...1]1

where

var’ is a simple variable name, an array variable name, or a
labeled common block name. The common block
name must be preceded and followed by a slash.

A SAVE statement causes all variables named to have their values
retained from one call of the subroutine to the next. Variables in
COMMON are saved even if all subroutines mentioning the
COMMON block are exited.

The following items must not be mentioned in a SAVE statement:
dummy argument names, procedure names, and names of vari- (
ables in a common block. A SAVE statement without a list of vari-

able names or common block names declares that all allowable
variables in the subprogram must be saved. When a common

block name is specified, all of the variables in that common block

are saved. Within an executable program, if a common block

name is mentioned in a SAVE statement, it must be mentioned in

a SAVE statement in each subprogram where it appears. A

SAVE statement is optional in a main program.

All variables are always saved in Stardent 1500/3000 Fortran pro-
grams.

2-100 Fortran Reference Manual Fortran Statements

SAVE Statement
(continued)

EXAMPLES

SUBROUTINE matrix
C (more statements)

SAVE a,b,c,/dot/
C (more)

RETURN

The SAVE statement saves the values of a, b, and ¢, and the
values of all of the variables in the common block dot.

SUBROUTINE fixit
SAVE

C (more statements)
RETURN

The SAVE statement saves the values of all of the variables in the
subroutine fixit.

Fortran Statements Fortran Reference Manual 2-101

(

2.42
Statement Function The statement function statement defines a one-statement local
Statement function.

SYNTAX

name ((parml, parm2,..])=exp

where

name is the user-specified name of the function.

parm is a dummy argument, which must be a simple vari-
able.

exp is an arithmetic, logical, or character expression.

A statement function is a user-defined, single-statement computa-

tion that applies only to the program unit where it is defined. A
statement function statement can appear only after the
specification statements and before the first executable statement

of the program unit. The expression defines the actual computa-

tional procedure which derives one value. When the statement (
function is referenced, this value is assigned to the function name. |
The expression must be an arithmetic, logical, or character expres-

sion.

The type of a statement function is determined by using the state-
ment function name in a type statement or by implicit typing. The
type of expression in a statement function statement must be com-
patible with the defined type of the name of the function. For
example, arithmetic expressions must be used in arithmetic state-
ment functions, logical expressions in logical statement functions,
and character expressions in character statement functions.

The arithmetic expression in an arithmetic statement function
need not be the same type as the function name. (For example, the
expression can be type integer and the function name can be
defined as type real.) The expression value is converted to the
statement function type at the time it is assigned to the function
name.

Statement functions may reference other previously defined state-
ment functions. Statement functions cannot contain calls to them-
selves nor can they contain indirect recursive calls.

2-102 Fortran Reference Manual Fortran Statements

The values of any dummy arguments in the expression are sup-
plied at the time the statement function is referenced. All other
expression elements are local to the program unit containing the
reference and derive their values from statements in the contain-
ing program unit.

Refer to Chapter 5, Procedures and Subprograms for additional
information about actual and dummy arguments and calling a
statement function.

EXAMPLES
disp(a, b, ¢) = a + b*c

A statement function with three arguments is defined by the state-
ment function statement.

tim(tl) = tl/2 + b

The statement function has one dummy argument. The value of b
is the current “program’” value of b when the function is invoked.

Statement Function
Statement
(continued)

Fortran Statements

Fortran Reference Manual 2-103

243
STOP Statement

The STOP statement terminates program execution.

SYNTAX
STOP [n]
where
n is an integer or character constant. The STOP state-

ment terminates program execution before the end of
the program unit.

EXAMPLES

STOP 7777

The message “STOP 7777" is written to standard error.

STOP ’'Program ended!’

The message “STOP Program ended!” is written to standard
error.

STOP

Nothing is written to standard error.

READ *,a,b
IF (a .LT. b) STOP 56789

If a is less than b, execution terminates.

10 b = b-1
IF (b .EQ. a) STOP ’‘All done’
GOTO 10
END

When b equals a, execution terminates.

2-104 Fortran Reference Manual

Fortran Statements

The SUBROUTINE statement identifies the program unit as a
subroutine suprogram.

SYNTAX

SUBROUTINE name [([arglarg2,...1[*,...1....)]

where

name is the name of the subroutine.

arg is a dummy argument of the subroutine.

o0 indicates one or more alternate returns.

The dummy arguments in a SUBROUTINE statement can be
variables, array names, or subprogram names. They must be of

the same type and structure as the actual arguments that are
passed to the subroutine.

One or more alternate returns can be specified by the presence of
asterisks (or ampersands) in the SUBROUTINE statement. Alter-
nate returns are described in RETURN Statement earlier in this
chapter. Refer to Chapter 5, Procedures and Subprograms for more
information on subroutine subprograms.

EXAMPLES
SUBROUTINE add

Begins a subroutine named add.
SUBROUTINE sub(z,i,d,*,*,*)

Begins a subroutine named sub with three arguments, and three
alternate return points.

2.44
SUBROUTINE
Statement

Fortran Statements

Fortran Reference Manual 2-105

2.45
TYPE Statement

The TYPE statement transfers data from memory to the standard
output unit. (Fortran unit 6 is preconnected to the UNIX “stan-

dard output.”)

SYNTAX

TYPE fmt [list]

TYPE nml

where

fmt is the format designator. fmt must be one of the follow-

ing:

The statement label of a FORMAT statement.

A variable that has been assigned the statement
label of a FORMAT statement.

A character or non-character array name that
contains the representation of a format
specification (use of a non-character array

is an extension to Fortran 77).

A character expression.

An asterisk, which specifies list-directed output
(refer to List-Directed Output in Chapter 3, Fortran
I/O Statements).

list is a list that specifies the data to be transferred. Each
item in list must be one of the following:

A constant.

A variable name.

An array element name.
A substring.

An array name.

An expression.

An implied DO loop.

nml is a namelist group previously defined in a NAMEL-
IST statement. Refer to NAMELIST-Directed Output in
Chapter 3, Fortran 1/O Statements.

2-106 Fortran Reference Manual

Fortran Statements

The type statement is a specification statement that assigns an
explicit type to symbolic names which would otherwise have their
type implicitly determined by the first letter of their names.

SYNTAX

type namel [,name2,...]

where
type is the type from the following list to be associated with
the specified variables:
LOGICAL BYTE
LOGICAL*1 INTEGER REAL
LOGICAL*2 INTEGER*2 REAL*4
LOGICAL*4 INTEGER*4 REAL#8
COMPLEX*8 COMPLEX*16 DOUBLE COMPLEX
DOUBLE PRECISION CHARACTER [*len]

The len parameter specifies the length of character
variables not having their own length specifications;
default value is 1. len can be one of the following:

. An unsigned nonzero integer constant.

. An integer constant expression with a positive
value. The integer expression must be enclosed
in parentheses, and cannot contain variable
names. Example: (-3 + 4).

. An asterisk enclosed in parentheses, (+).

If name has the *en length specification, it overrides the length n
in the CHARACTER#*n specification. Thus, CHARACTER%*6 q,
CHARACTER q*6, and CHARACTER#10 q+6 are all equivalent.
Each reserves space for a character variable of length 6.

name is a simple variable name, an array name, an array
declarator, a named constant, or a function name.
When type is CHARACTER, name may have *len as a
suffix to designate its length. Each name can appear in
a type statement only once.

If an array declarator is specified in a type statement, the declara-
tor for that array must not appear in any other specification

2.46
Type Statement

Fortran Statements

Fortran Reference Manual 2-107

Type Statement
(continued)

statement (such as DIMENSION). If only the array name is
specified, then an array declarator must appear within a DIMEN-
SION or COMMON statement.

The CHARACTERx*(x) form can be used only for named con-
stants, dummy arguments, function subprograms or ENTRY
names.

EXAMPLES

INTEGER run, time

The variables run and time are single-word integers.

CHARACTER*5 name (6)*10, zip(6)

The variables name and zip are character arrays with six elements
each. Each element in name has a length of 10; in zip, 5.

INTEGER*2 rn, hours(4,5)

The variable rn and each element of the two-dimensional array,
hours, are short integers.

REAL item
DIMENSION item(2,3,5)

item is a three-dimensional real array.

CHARACTER*6 var
CALL sub (var)

C (more statements)
SUBROUTINE sub (varl)
CHARACTER* (*) varl

The dummy argument var is defined as being of type character
and six characters long. The dummy argument varl is defined as
being of type character. At execution of the call to sub, the dummy
argument varl will be assigned the length of variable var for the
duration of the call.

2-108 Fortran Reference Manual

Fortran Statements

2.47
The WRITE statement transfers data from memory to a file or WRITE Statement
device.
SYNTAX

WRITE ([UNIT=]unit [,[FMT=]1fmt] [,[NML=]nml] [JOSTAT=ios]
[,ERR=lgbel] [,REC=rn]) [list] .

where

unit is the unit number for the file and is required. If the
prefix UNIT= is omitted, then unit must be the first
item in the list. unit may be an asterisk in which case
the write is done to the standard output device. (In
Stardent 1500/3000 Fortran, unit 6 is preconnected to
UNIX standard output.)

fmt is the format designator. fmt must be as specified in
PRINT Statement earlier in this chapter. If the prefix
FMT= is omitted, then fmt must be the second item in
the list and wunit (without a prefix) must be the first
item.

nml is a namelist group name previously defined in a
NAMELIST statement. fmt and nml may not appear in
the same WRITE statement. If the prefix NML= is
omitted, then nml must be the second item in the list
and unit (without a prefix) must be the first item. No
list is permitted in a NAMELIST-directed WRITE
statement, nor may unit specify internal 1/O.

i0s is an integer variable or array element for error code
return (refer to Appendix A for IOSTAT error codes).

rn specifies the number of the record in a direct access
file. A record specifier must not be present if either: (a)
fmt is an asterisk, or (b) nml is present.

label is the statement label of an executable statement. If an
error occurs during execution of the WRITE statement,
control is transferred to the specified statement rather
than aborting the program.

list is a list that specifies the data to be transferred. Each
item in list must be from the following:

Fortran Statements Fortran Reference Manual 2-109

WRITE Statement
(continued)

A variable name.

An array element name.
An array name.

A substring.

An expression.

The list may contain implied DO loops. For syntax and detailed
information on implied DO loops, refer to Implied DO Loops under
DO Statement earlier in this chapter.

A WRITE statement must contain a unit number and at most one
of each of the other options. REC=rn must appear for direct
access. The END= specifier cannot appear in a WRITE statement.

EXAMPLES
WRITE (7, 10) a, b, ¢

The values of a, b and ¢ are written to the file connected to unit 7
according to FORMAT statement 10.

ASSIGN 4 TO num
WRITE (UNIT=3, IOSTAT=j, ERR=5, FMT=num) z

The value of z is written to the file connected to unit 3 according
to FORMAT statement 4. If an error occurs, control is transferred
to statement 5 and the error code is returned in j.

WRITE (10) (x + y)

The value of the expression (x + y) is written to the file connected
to unit 10. Because fmt is omitted, the data is unformatted.

WRITE (10, FMT=*) b

The value of b is written to the file connected to unit 10 according
to list-directed formatting.

WRITE (2, ’(13)’, REC=10) i

The value of i is written to the tenth record of the direct file con-
nected to unit 2 according to the statement itself.

WRITE (*)

2-110 Fortran Reference Manual

Fortran Statements

One record is skipped on the standard output device.

WRITE (7, NML=namelistl)

Values of variables in NAMELIST group namelistl are written to
unit 7 according to NAMELIST-directed formatting.

Refer to Chapter 3, Fortran 1/O Statements, and Chapter 4, File Han-
dling for more information on the WRITE statement.

WRITE Statement
(continued)

Fortran Statements

Fortran Reference Manual 2-111

FORTRAN
[/0
STATEMENTS

Input/output (I/O) statements allow you to enter data into a pro-
gram and to transfer data between a program and a disk file, ter-
minal or other device. There are four types of input/output:

Formatted input/output.
Unformatted input/output.
List-directed input/output.
Namelist input/output.

For each type of input/output, there are one or more input state-
ments and corresponding output statements.

CHAPTER THREE

Formatted input/output allows you to control each character of a
data record. This control is specified by a format given in a FOR-
MAT statement or in a character expression.

3.1
Formatted Input/Output

Formatted input is specified by the input statements ACCEPT and
READ.

SYNTAX

ACCEPT fmt, list

Refer to Chapter 2, Fortran Statements for more specific syntax and
information specifying the optional keywords.

The ACCEPT statement transfers information from the standard
input unit (unit 5). This statement can only be used on implicitly
connected logical units; it can never be used with user-specified
logical units.

3.1.1
Formatted Input

Fortran 1/O Statements

Fortran Reference Manual 3-1

L]
Formatted Input/Output

(continued)

NOTE

As a Stardent 1500/3000 Fortran
extension, if the format item is an
A format, then blanks are
supplied to fill out the A format.

SYNTAX

READ [fmt,list]
READ (unit, fmt, ...optional keywords ') list

where

fmt is the format designator.

unit is the unit number of the file (discussed in Chapter 4,
File Handling).

list is the list of variables that specifies where the data is to

be transferred.

Refer to Chapter 2, Fortran Statements for more specific syntax and
information specifying the optional keywords.

The first READ statement syntax shown above transfers informa-
tion from the standard input unit (unit 5 in Stardent 1500/3000
Fortran). The second READ statement transfers data from a file
or device. (Files, along with other READ statement options, are
discussed in Chapter 4, File Handling.)

Reading always starts at the beginning of a record. Reading stops
when the list is satisfied, provided that the format specification
and the record length are in agreement with the list. If the list is
longer than the format specification, reading skips to the next
record, which is read using part or all of the format specification
again. This process continues until the list is satisfied. After the
READ, the file pointer is positioned at the beginning of the next
record.

Each READ statement begins reading values from a fresh record
of the file; any values left unread in records accessed by previous
READ statements are ignored. For example, if the record con-
tained six data elements, a READ statement such as

READ (4,100) i,3j

would only read the first two elements. The remaining four ele-
ments would not be read because any subsequent READ state-
ment would read values from the next record, unless the file
pointer was repositioned (with BACKSPACE or REWIND, for
example) before the next READ.

Array names in the list represent all the elements in the array.
Values are transferred to the array elements in accordance with

3-2 Fortran Reference Manual

Fortran I/O Statements

the standard array storage order (refer to Chapter 1, Language Ele-
ments).

TR
Formatted Input/Output

(continued)

Formatted output is specified by the following output statements:

SYNTAX

PRINT fmt, list
TYPE fmt, list
WRITE (unit,fmt,..optional keywords) list

where
fmt is the format designator.
list is a list of variables or expressions that specifies the

data to be transferred.

Refer to Chapter 2, Fortran Statements for more specific syntax and
information specifying the optional keywords.

The PRINT and TYPE statements transfer information to the stan-
dard output unit (unit 6 in Stardent 1500/3000 Fortran). The
WRITE statement transfers information to disk files or to output
devices. (Files, along with other WRITE options, are discussed in
Chapter 4, File Handling.)

Each WRITE statement begins writing values into a fresh record
of the destination file; any space left unused in records accessed
by previous write statements is ignored. The carriage control
characters are listed in Table 3-1. After the transfer is completed,
the file record pointer is advanced.

Table 3-1. Carriage Control Characters

Character Vertical Spacing

Blank One line (single spacing)

0 Two lines (double spacing)

1 To first line of next page (page eject)
+ No advance

Any other Device dependent

character

3.1.2
Formatted Output

Fortran 1/O Statements

Fortran Reference Manual 3-3

L -]
Formatted Input/Output

(continued)

Array names in the list represent all the elements of the array.
Array element values are transferred in accordance with the stan-
dard array storage order (refer to Chapter 1, Language Elements).

3.2
Format Specifications

A format specification is a list of format descriptors and edit
descriptors. The format descriptors describe how the data
appears and edit descriptors specify editing information.

Format specifications can be specified in FORMAT statements or
as character expressions in input/output statements. An empty
format specification of the form () can be used if no list items are
specified. In this case, one input record is skipped or one output
record is written.

3.2.1
Format Specifications in
Format Statements

A format specification can be placed in a FORMAT statement that
is referenced by a corresponding READ, WRITE or PRINT state-
ment. ‘

SYNTAX
label FORMAT (desl [,des2,...1)
where
label is a statement label.
des is a format or edit descriptor, or, within parentheses, a

list of descriptors.

A FORMAT statement can be referenced by several input/output
statements.

EXAMPLE

READ (5,10) a, i, d, e
10 FORMAT (A2, I3, D8.2, F1l2.2)

The format specification (A2, I3, D8.2, F12.2) corresponds with the
variables a, i, d and e in the READ statement. List element a
corresponds to the format descriptor A2, i to I3, d to D8.2 and e
corresponds to F12.2.

3-4 Fortran Reference Manual

Fortran /O Statements

The format specification can be contained in the input/output
statement as a character expression. Care must be taken when the
format specification in an input/output statement contains a sin-
gle apostrophe; two apostrophes must be written to represent
one. Whenever an apostrophe appears within a single apostrophe
edit descriptor, it must be represented by two consecutive apos-
trophes. Each of these, in turn, must be represented by two apos-
trophes if the format is a character literal contained in an
input/output statement. Notice, therefore, that four consecutive
apostrophes are required in the second example below.

EXAMPLES

WRITE (6, (3X,’’THIS IS THE END'’)’)
writes the following record:

THIS IS THE END

WRITE (6,7 (‘'Ain’’’’t it true!’’)’)
writes the following on the display screen:

Ain’t it true!

The variables a and z are read according to the format
specification A3, 3X, F10.2.

READ (UNIT = 4," (A3, 3X, F10.2)') a,z

The three integers, i, j, and k are printed according to the format
specification 313.

CHARACTER*6 a

DATA a /' (3I3)'/
PRINT a, i,3 , k

The variable d is written as a fixed-point number according to the
format specification F10.2.

WRITE (6,’ (F10.2)’) d

Format Specifications
{continued)

322
Format Specifications in
Input/Output Statements

Fortran 1/O Statements

Fortran Reference Manual 3-5

Format Specifications
(continued)

323
Repeat Specification

The repeat specification is a positive integer written to the left of
the format descriptor it controls.

The repeat specification allows one format descriptor to be used
for several list elements. It can also be used for nested format
specifications; thus edit descriptors can be repeated by enclosing
them in parentheses as shown above.

EXAMPLES
(3F10.5) is equivalent to (F10.5,F10.5,F10.5)
(213,2(3X,A5)) is equivalent to (I3,I3,3X,A5,3X,A5)

(L2,2(F2.0,2PE4.1),1I5)
is equivalent to
(L2,F2.0,2PE4.1,F2.0,2PE4.1,15)

(2P3G10. 4) is equivalent to (2PG10.4,G10.4,G10.4)

3.24
Nesting of Format
Specifications

The group of format and edit descriptors in a format specification
can include one or more other groups enclosed in parentheses
(called group(s)) at nested level n. Each group at nested level 1
can include one or more other groups at nested level 2; those at
level 2 can include groups at nested level 3, and so forth.

EXAMPLES

(£9.3,16, (2X,14)) One group at nested level 1.

(L2,A3/(E10.3,4(A2,L4)))

One group at nested level 1 and one at
nested level 2.

(A, (3%, (I2, (A3)),I3),R)

One group at nested level 1, one at level 2,
and one at level 3.

A formatted input/output statement references each element of a
series of list elements and the corresponding format specification
is scanned to find a format descriptor for each list element. If a

3-6 Fortran Reference Manual

Fortran 1/0O Statements

program does not provide a one-to-one match between list ele-
ments and format descriptors, execution continues only until a
format descriptor, an outer right parentheses, or a colon is
encountered, and there are no list items left. If there are fewer for-
mat descriptors than list elements, the following three steps are
performed:

(1) The current record is terminated.

(2) A new record is started.

(3) Format control is returned to the repeat specification for
the rightmost specification group at nested level 1. In the

event there is no group at level 1, control returns to the
first descriptor in the format specification.

EXAMPLES
(15,2(3%,12, (14))) Control returns to 2(3X,12,(14))
(F4.1,12) Control returns to (F4.1,12)

(A3, (3%X,12),4%,14) Control returns to (3X,12),4X,14

Format Specifications
(continued)

Variable format expressions allow you to use an arithmetic
expression, enclosed in angle brackets, wherever an integer can be
used in a FORMAT statement. Each time the format is scanned
the variable format expression is evaluated. If a value of a vari-
able used in the expression changes during execution of the I/O
statement, the new value is used the next time the expression is
processed.

The following rules apply to the use of variable format expres-
sions.

* The expression is converted to integer before being used, if it
is not originally an integer data type.

* The expression can be any valid Stardent 1500/3000 Fortran
expression.

* The value of the expression must obey magnitude restric-
tions that apply to its use in the format.

325
Variable Format
Expressions

Fortran 1/O Statements

Fortran Reference Manual 3-7

Format Specifications
(continued)

* These expressions are not permitted in run-time formats.

Example
The following is an example of a variable format expression.

FORMAT (/ <x+2>I3 / 2F<Y-3> . <G(2) - SIN(1.7)>)

3.3
Format Descriptors

A list of format and edit descriptors makes up a format
specification. The format descriptors describe how the data
appears and edit descriptors specify editing information.

The descriptors in a format specification must be separated by a
comma except before and after a slash (/) edit descriptor, a colon
(:) edit descriptor, and between a scaling (P) edit descriptor, and
an immediately following F, E, D or G edit descriptor. Format
descriptors may be preceded by a repeat specification.

A format may include another set of format or edit descriptors, or
both, enclosed in parentheses; this is called nesting. The nested
format specification may be preceded by a repeat specification.

When format descriptors are written without specifying a value
for field width, default values are supplied and are based on the
data type of the input/output list element. The default values are
listed in the table titled Default Field Width Values for Format
Descriptors later in this chapter. The format descriptors are sum-
marized in Table 3-2 and the edit descriptors in the table labeled
Edit Descriptors (later in this chapter). A detailed explanation of
the descriptors follows the tables.

3-8 Fortran Reference Manual

Fortran I/O Statements

Table 3-2. Format Descriptors

Format Explanation
Tw[.m] Integer and short integer
Fuw.d Fixed-point format descriptor for
real, double precision,
complex, and double complex
Dw.d Floating-point
Ew.d[Ee] Format descriptor
for real, double precision,
complex, and double complex
Guw.d[Ee] Fixed or floating-point format for
real, double precision, complex,
and double complex descriptors
Owl.m] Octal, any data type
Lw Logical and short logical
Alw] Character data is left-justified
in memory and external format
Zw[.m] Hexadecimal, any data type

Table 3-3. Default Field Width Values for Format Descriptors

Format List

Descriptor Element w d e
LOZ BYTE 7

Lo Z INTEGER*2,LOGICAL*2 7

Lo Z INTEGER+*4,LOGICAL*4 12

0,z REAL*4 12

0,z REAL~8 23

L LOGICAL 2

EE GD REAL,COMPLEX*8 15 7 2
FE G, D REAL#8,COMPLEX*16 26 17 2
A LOGICAL*1 1

A LOGICAL*2,INTEGER#*2 2

A LOGICAL*4,INTEGER+*4 4

A REAL#4,COMPLEX*8 4

A REAL+8,COMPLEX*16 8

A CHARACTER#*n n

Format Descriptors
(continued)

Fortran 1/O Statements

Fortran Reference Manual 3-9

Format Descriptors
(continued)

EXAMPLES

In the following format specification

(I3, 3X, 3F12.3)

the format descriptor I3 specifies an integer number with a field
width of three (the integer takes up a total of three character posi-
tions), the edit descriptor 3X specifies that three character posi-
tions are to be skipped, and the format descriptor 3F12.3 specifies
three real numbers, each with a field width of 12 and three
significant digits to the right of the decimal point. A PRINT state-
ment referencing this format specification could be of the form

PRINT 10, item, a, b, ¢
10 FORMAT (I3, 3X, 3F12.3)

The output data, as it might appear in the output record with the
field widths indicated, is shown in the example below.

345 65376453.324 14321.265 4765321.321

If a slash descriptor is used to indicate a new line of output, or a
new record on input, the comma that would separate the descrip-
tors is not necessary. These two are equivalent

31, F4.0, / 15, Fl2.6

and
3I, F4.0 / I5, Fl2.6

The information shown on the input record in the table below
could be accessed with a FORMAT statement like the following

10 FORMAT (I3,F7.4,3(F7.2,I3),F12.4)

2626.4336 342.26 242373.86439 649.79 4 4395.4972

A READ statement corresponding with the FORMAT statement
could be

READ 10, i, a, b, j, d, k, e, m, £

The READ statement would read values for i and a, then repeat
the nested format specification F7.2,I3 three times to read values
for b and j, d and k, and e and m, and, finally, read a value for f.

3-10 Fortran Reference Manual

Fortran I/O Statements

(

Format Descriptors
(continued)

The numeric format descriptors specify the input/output fields of
integer, short integer, byte, real, double precision, complex, and
double complex data. The following rules apply to all numeric
format descriptors:

e The field width, w, specifies the total number of characters
that a data field occupies, including any leading plus or
minus sign, and any decimal point or exponent.

e On input, leading blanks are not significant. Trailing and
embedded blanks are ignored only if the BN edit descriptor
is specified or if BLANK = NULL is specified. In all other
cases, embedded and trailing blanks are treated as zeros. A
field of all blanks is considered to be a 0. Input data can be
separated by commas if shorter than the specified field
length.

* On output, the data is right-justified in the field. If the data
length is less than the field width, leading blanks are inserted
in the field. If the data is longer than the field width for cer-
tain descriptors, the entire field is filled with asterisks, as
specified in the output examples of the particular descrip-
tors.

e A complex list item is treated as two real items and a double
complex list item as two double precision items.

* If a numeric list item is used with a numeric descriptor of dif-
ferent type, the value is converted where possible.

3.3.1
Numeric Format
Descriptors

The Iw or Iw.m format descriptor defines a field for an integer or
short integer number. The corresponding input/output list item
must be a numeric type. The optional m value specifies a
minimum number of digits to be output. If m is not shown, a
default value of 1 is assumed. The m value is ignored on input.

On input, the Iw format descriptor causes the interpretation of the
next w positions of the input record; the number is converted to
match the type of the list element currently using the descriptor.
A plus sign is optional for positive values. A decimal point or
exponent must not appear in the field.

3.3.2
Integer Format
Descriptors

Fortran 1/O Statements

Fortran Reference Manual 3-11

Format Descriptors
(continued)
On output, the Iw or Iw.m format descriptor causes output of a
numeric variable as a right-justified integer value. The field
width, w, should be one greater than the expected number of
digits to allow a position for a minus sign for negative values. If
m=0, a 0 value is output as all blanks.
Examples of Integer Format Descriptors
Descriptor _ Input Field Value Stored
14 ullu 100
I5 vuuuy 0
12 -1 -1
14 -123 -123
I3 L12 12
12 123 12
Descriptor Internal Value Qutput
12 +6234 sk
I5 -52 L u-52
I3 -124 sokok
16.3 3 L L 003
13.0 0 LUu
Qutput is expressed in integer notation.
3.3.3
Real and Double The Fw.d, Ew.d[Ee], Dw.d, and Gw.d[Ee] format descriptors define
Precision Format fields for real, double precision, complex, or double complex
Descriptors numbers. (Note that two descriptors must be specified for a com-

plex or double complex value.) The input/output list item
corresponding to a Fw.d, Ew.d[Ee], Dw.d, or Gw.d[Ee] descriptor
must be a numeric type.

The input field for these descriptors consists of an optional plus or
minus sign followed by a string of digits that may contain a
decimal point. If the decimal point is omitted in the input string,
the number of digits equal to d from the right of the string are
interpreted to be to the right of the decimal point. If a decimal
point appears in the input string and conflicts with the descriptor,
the decimal point in the input string takes precedence.

3-12 Fortran Reference Manual

Fortran /O Statements

This basic form can be followed by an exponent in one of the fol-
lowing forms:

e Asigned integer constant.
An E followed by an integer constant.
e AD followed by an integer constant.
All three exponent forms are processed in the same way.
The appearance of the output field depends on whether the for-

mat descriptor specifies a fixed- or floating-point format.

Examples of Real and Double Precision Descriptors and
Input Fields

Descriptor _ Input Field Value

F6.5 4.51E4 45100.0

G4.2 51-3 1.00051

D9.4 U U u45E+35 .0045x10%

BZ,F7.1 -54E34 -5.4x10%40
Error (overflow)

F2.10 34 34x10'°

where Value is the expected number

expressed in scientific notation.

The BZ edit descriptor is described later in this chapter in the sec-
tion, Blank Interpretation Edit Descriptors—BN and BZ. Note that
the value of 4 is used as a scale factor; it can be greater than the
number of digits in the field.

Format Descriptors
(continued)

Fortran [/O Statements

Fortrah Reference Manual 3-13

Format Descriptors
(continued)

3.3.4
Fixed-Point Format The Fw.d format descriptor defines a fixed-point field on output
Descriptor for real, double precision, complex, and double complex values.
The value is rounded to d digits to the right of the decimal point.
Examples of Fixed Point Descriptors and Input Fields
Descriptor Internal Value Output
F5.2 +10.567 10.57
F3.1 -254.2 ook
F6.3 +5.66791432 L5668
F8.2~ +999.997 1, 1000.00
F8.2 -999.998 -1000.00
F7.2 -999.997 kokokokok ok
F4.1 23 23.0
F2.0 7.9 8.
F2.1 0.3 3
F2.0 -7 **
3.3.5
Floating-Point Format The Ew.d[Ee] and Dw.d format descriptors define a normalized
Descriptors floating-point field on output for real, double precision, complex,

and double complex values. The value is rounded to d digits. The
exponent part consists of e digits. If Ee is omitted in an E format,
then the exponent occupies two positions. The field width, w,
should follow the general rule w d+7 or, if Ee is used, w d+e+5 to
provide positions for a leading blank, the sign of the value, (not
needed if positive), the decimal point, d digits, the letter D or E,
the sign of the exponent, and the exponent.

3-14 Fortran Reference Manual

Fortran /O Statements

Examples of Floating Point Descriptors and Input Fields

Descriptor Internal Value Output

D10.3 +12.342 L u-123D+02
E10.3E3 -12.3454 -.123E+002
E12.4 +12.340 L L - 1234E+02
D12.4 -.00456532 L u--4565D-02
D10.10 +99.99913 sk ok sk ok ok ok ok ok
E11.5 +999.997 .,-10000E+04
E10.3E4 +.624x10°%0 .624E-0030

Format Descriptors
(continued)

The Gw.d[Ee] format descriptor defines a fixed- or floating-point
field, as needed, on output for real, double precision, and complex
values. The Gw.d[Ee] format descriptor is interpreted as an Fw.d
descriptor for fixed-point form or as an Ew.d[Ee] descriptor for
floating-point form according to the magnitude of the data. If the
magnitude is less than 0.1 or greater than or equal to 10%*d (after
rounding to d digits), the Ew.d[Ee] format descriptor is used; oth-
erwise the Fw.d format descriptor is used. When Fw.d is used,
trailing blanks are included in the field where the exponent would
have been. The field occupies w positions; the fractional part con-
sists of d digits, and the exponent part consists of e digits. If Ee is
omitted, then the exponent occupies two positions. The field
width, w, should follow the general rule for floating-point
descriptors wd+7 or, if Ee is used, wd+e+5 to provide for a leading
blank, the sign of the value, 4 digits, the decimal point, and, if
needed, the letter E, the sign of the exponent, and the exponent.

3.3.6
Fixed- or Floating-Point
Format Descriptor

Fortran /O Statements

Fortran Reference Manual 3-15

Format Descriptors
(continued)

Examples of Fixed or Floating Point Descriptor

Field Internal Interpreted Output
Descriptor Value As

G10.3 +1234 E10.3 L L -123E+04
G10.3 -1234 E10.3 L --123E+04
G124 +12345 E12.4 U u u-1235E+05
G124 +9999 F8.0,4X Luu9999. L Luu
G124 -999 F8.1,4X L9990, Luu
G7.1 +.09 E7.1 -9E-01

G5.1 -09 E5.1 kR ok

G11.1 +9999 El11.1 Uuu L u-1E+05
G8.2 +9999 E8.2 L,-10E+04

G7.2 999 E7.2 st sk s e e ke

3-16 Fortran Reference Manual

Fortran 1/O Statements

Format Descriptors
(continued)

The Alw] format descriptor defines fields for character data. The
size of the list variable (byte length) determines the maximum
effective value for w. If w is not specified, the size of the field is
equal to the size of the input/output variable.

Using the Af[w] format descriptor for input and output, w can be
equal to, less than, or greater than the specified byte size of the
input or output variable. If w is equal to the length of the vari-
able, the character data field is the same as the variable.

3.3.7.1 Contents of Character Dala Fields

Input Length of
Descriptor Input Variable Result
Afw] w<len Left-justified in variable,
followed by blanks.
w>len Taken from right part of field.
Output Length of
Descriptor Output Variable Result
Alw] w<len Taken from left
part of variable.
w>len Output as the value,
preceded by blanks.

Examples of Character Input

In the following examples, || represents a blank.

Input Input Value Characters
Descriptor Characters Length Stored
A3 XYZ 3 XYZ
A5 ABC | 10 ABC, LLuuuu
A5 CHAIR 5 CHAIR
A4 ABCD 2 CD

3.3.7
Character Format
Descriptor

Fortran 1/O Statements

Fortran Reference Manual 3-17

Format Descriptors
(continued)

On output, if w is greater than or equal to the specified byte size
(len) of the output variable, the data is right-justified within a w
character field. If w is less than len, only the leftmost w characters
appear in the output field.

Examples of Character Output

Internal Variable
Descriptor Characters Length Output
A6 ABCDEF 6 ABCDEF
A4 ABCDE 5 ABCD
A8 STATUS 6 STATUS , |,
Ad NEXT 4 NEXT

3.3.8
Logical Format
Descriptor

The Lw format descriptor defines a field for logical data. The
input/output list item corresponding to a Lw descriptor must be
of type logical, LOGICAL+*4, LOGICAL#*2, or LOGICAL#*1.

On input, the field width is scanned for optional blanks followed
by an optional decimal point, followed by a T for true or an F for
false. The first nonblank character in the input field (excluding
the optional decimal point) determines the value to be stored in
the declared logical variable. After the period, if this first non-
blank character is other than a T or an F, an error is generated.

Examples of Logical Input Descriptors

Input Value
Descriptor Field Stored
L5 uuulu .TRUE.
L2 F1 .FALSE.
L2 F1 .FALSE.
14 uxyT Error
L5 uRT Error
L7 TFALSE .TRUE.
L7 FALSE. FALSE.

3-18 Fortran Reference Manual

Fortran /O Statements

On output, a T or an F is right-justified in the output field depend-
ing on whether the value of the list item is true or false. The logi-
cal value true or false is determined by the low order bit in the
internal data storage:

non-zero = true, 0 = false.

Examples of Logical Output Descriptors

Internal Value
Descriptor Format Output
L5 .FALSE. uuuuF
L4 .TRUE. uuul
L1 .TRUE. T
L2 .FALSE. uF

Format Descriptors
(continued)

As an extension to Fortran 77, the Ow descriptor defines a field for
octal data. This descriptor provides conversion between an exter-
nal octal number and its internal representation.

Legal octal digits are 0,1, 2, 3, 4, 5, 6 and 7. Plus and minus signs
are not permitted. If any nonoctal digit appears, an error occurs.

On output, the octal value of the I/O list element is transferred as
right justified, to a field w characters long. If the field is not filled,
leading spaces are inserted, and if the number is too large to
represent in w octal digits, w asterisks are printed. When m is
present, at least m digits appear in the field, and then the field is
zero filled on the left if necessary.

Examples of Octal Descriptors on Input

Descriptor Input Field Value Stored
05 376 254

3.3.9
Octal Format Descriptor

Fortran 1/O Statements

Fortran Reference Manual 3-19

Format Descriptors
(continued)
Examples of Octal Descriptors on Output
Descriptor Internal Value Output
Decimal
02 99 143
3.3.10
Hexadecimal Format As an extension to Fortran 77, the Zw descriptor defines a field for
Descriptors hexadecimal data, and can be used with any data type. The Zw

descriptor provides a means of converting hexadecimal data to its
internal binary representation, and vice versa.

On input, legal hexadecimal digits are 0,1, 2, 3,4,5,6,7,8,9,a, A,
b,B,c,C,d,D,e E, f, and F. An all- blank field is treated as a
value of 0. Plus and minus signs, commas, or any other symbols
are not permitted and will be flagged as an error.

Examples of Hexadecimal Format Descriptors

Descriptor Field Value Stored
74 FF3B 65339
72 A9 169
Z3 9.8 error: illegal character

On output, the field width required to fully represent the hexade-
cimal value of an item is twice its size in bytes. For example, a
CHARACTER#12 item would require a field w of 24 characters.

If the value does not fill the field specified, the outpuf is right-

justified. Negative values do not generate a minus sign because
the hexadecimal value contains the internal representation.

Examples of Hexadecimal Format Descriptors on Output

Descriptor Type Value Output
Z5 CHARACTER*2 171 L uab
78 INTEGER*4 27 LuLuwuulb
Z5 INTEGER#*2 27 Ly ulb

3-20 Fortran Reference Manual

Fortran I/O Statements

3.4

Edit descriptors specify editing between numeric, Hollerith, and Edit Descriptors
logical fields on input and output records. There are 15 edit
descriptors; two, BN and BZ, apply only to input, and six "...”, nH,
$, S, SP, and SS, only to output. The other seven descriptors, kP,
/, Tn, TLn, TRn, :, and nX apply to both input and output.
The edit descriptors are summarized below in Table 3-4. A
detailed explanation of the descriptors follows the table.
Table 3-4. Edit Descriptors
Descriptor Function
BN Ignore blanks
BZ Treat blanks as zeros
nH Hollerith editing
nX Skip n positions to the right
Tc Skip to column ¢
TRc Skip ¢ positions to the right
TLc Skip ¢ positions to the left
/ Begin new record
: Terminate format if remaining list empty
L Literal editing
S Processor determines sign output
Sp Output optional plus signs
SS Inhibit optional plus sign output
kP Scale factor
$ Suppresses carriage return

3.4.1
The BN and BZ edit descriptors control interpretation of embed- Blank Interpretation Edit
ded and trailing blanks in numeric input fields. At the beginning Descriptors

of the execution of an input statement, blank characters within
numbers are ignored. (An exception to this rule is when the unit
is connected with BLANK = "ZERO’ specified in the OPEN state-
ment. Note that BN and BZ override the BLANK= parameter for
the current READ statement. Refer to Chapter 4, File Handling for
more details.) If a BZ edit descriptor is encountered in the format
specification, trailing and embedded blanks in succeeding
numeric fields are treated as zeros. The BZ edit descriptor
remains in effect until a BN edit descriptor or the end of the for-
mat specification is encountered.

Fortran /O Statements

Fortran Reference Manual 3-21

Edit Descriptors
(continued)

The BN and BZ edit descriptors affect only I, O, F, E, and G for-
mat descriptors during the execution of an input statement.

Examples of Edit Descriptors

Input BN Editing BZ Editing
Descriptor Characters in Effect in Effect
14 1,2 12 102
F6.2 ud-u2 42 40.02
E7.1 5,.4E1, 5+10! 50.0+10'°
E5.0 3E4, ., 3x10% 3.#10'% (overflow)

3.4.2
Dollar Sign Edit
Descriptor

The $ edit descriptor modifies the carriage control specified by the
first character of the record. This descriptor applies to sequential
output only.

When the first character of a record is a space, the carriage return
is suppressed. When the first character is a plus sign (+), output
begins at the end of the previous line. The print position is then
left at the end of that line. The $ descriptor is ignored if the first
character of the record is a zero or one.

3.4.3
Q Edit Descriptor

The Q edit descriptor obtains the remaining number of characters
to be transferred from an input record during a READ operation.
The element that corresponds to the Q edit descriptor in the
READ statement must be of type integer or logical.

The length of the input record can be determined by placing a Q
first in the FORMAT specification. This edit descriptor has no
effect on output statements.

3.4.4
Plus Sign Edit
Descriptors

The S, SP, and SS edit descriptors control printing of optional
plus sign characters in numeric output. A formatted output state-
ment does not normally print optional plus signs. However, an
SP edit descriptor in the format descriptor prints an optional plus
sign in any subsequent numeric output. S and SS descriptors
inhibit printing of plus signs in subsequent numeric output.

3-22 Fortran Reference Manual

Fortran 1/O Statements

(\

Edit Descriptors
(continued)

The ’...” (single apostrophe) edit descriptor is used to write a char-
acter constant to the output record; literal editing must not be
used on input. The width of the field is the number of characters,
including blanks, contained between the delimiting apostrophes.
When used as edit descriptors, the apostrophes must appear in
pairs. If an apostrophe is used inside a literal edit descriptor, it
must be doubled.

Examples of Edit Descriptors

Descriptor Field Width Output

'BEGIN DATA INPUT’ 16 BEGIN DATA INPUT
"UuSPACES [/ 10 L uSPACES |
"Ain”’t’ 5 Ain’t

ey 1 77

17 1 "

3.4.5
Literal Edit Descriptors

The nH edit descriptor causes character information to be written
from the n characters, including blanks, following the H of the nH
edit descriptor in the format specification itself. Note that if an H
edit descriptor appears within a character constant and includes
an apostrophe, the apostrophe must be represented by two con-
secutive apostrophes, which are counted as one character when
specifying n.

Examples of Literal Edit Descriptor

Descriptors Output
12HJob complete Job complete
8hPurge? | Purge? |

3.4.6
Literal Edit Descriptor

The nX edit descriptor skips n positions of an input/output
record; n must be a positive nonzero integer. On input, the nX
edit descriptor causes the next n positions of the input record to

3.4.7
Position Edit Descriptor

Fortran 1/O Statements

Fortran Reference Manual 3-23

Edit Descriptors
(continued)

WARNING

Be careful of the distinction
between positioning the cursor
with X,Tn,TLn, and TRz and the
actual writing/reading of blanks
and/or nulls.

be skipped. The nX descriptor is identical to TRx.

Examples of Position Edit Descriptor on Input

Input Values
Descriptors Record Stored
F6.2,3X,12 673 ,21END45 673.21, 45
1X,12,A3 $6 ,END 60, "END"

On output, the nX edit descriptor causes the cursor to move, and
blanks appear only if there is more output. (If the positions were
already defined, they are left unchanged. This can happen when
Tc or TLc is used.)

Examples of Position Edit Descriptor on Output

Descriptors Values

F8.2,2X,13 15.87, 436
F4.2,3X,/TOTAL" 324

Internal Qutput

UL ub-87 3346
324, LTOTAL

3.4.8
Tab Edit Descriptors

WARNING

Be careful of the distinction
between positioning the cursor
with X,Tn, TLn, and TRn and the
actual writing/reading of blanks
and/or nulls.

The tab edit descriptors position the cursor on the input or output
record. The Tn edit descriptor references absolute column
numbers (1), while the descriptors TLn and TR#n reference a rela-
tive number of column positions to the left (TLn) or right (TRn) of
the current cursor position. Note that the TR#n descriptor is ident-
ical to the nX descriptor.

Examples of Tab Edit Descriptors on Output

Descriptors Values Output
T5,F3.1 1.0 LUuuulo
F3.1,TR4,F3.2 1.0,.11 10,y
T10,F3.1,TL12,F3.2 1.0,.11 A1 00000101110

3-24 Fortran Reference Manual

Fortran I/0O Statements

Example of a Tab Edit Descriptor on Input

Descriptors Record Stored
A4,T1,F4.0 1234 "1234", 1234.0

Edit Descriptors
(continued)

The / (slash) edit descriptor terminates the current record and
begins processing a new record. The / edit descriptor has the
same result for both input and output.

If a series of two or more / edit descriptors are written at the
beginning of a format specification, as many records as there are
slashes are skipped. If n, where n is greater than 1, / edit descrip-
tors appear other than at the beginning of a format specification, n
records are skipped. If a format contains only 7 slashes (and no
other format specifiers), n+1 records are skipped. The / edit
descriptor does not need to be separated by commas from other
descriptors.

3.4.9
Record Terminator Edit
Descriptor

If there are no more items in the input/output list, the colon ()
edit descriptor terminates format control (just as if the final right
parenthesis in the format specification had been reached). If more
items remain in the list, the colon edit descriptor has no effect.

Examples of Colon and Record Terminator Edit Descriptors

Format Stored Value Output
(10(value=',12)) 1,2 value= 1 value= 2 value=
(10¢:,/value=",12)) 1,2 value= 1 value= 2

In the first example, the descriptor “value="" is repeated a third
time because format control is not terminated until the descriptor
“I2” is reached and not satisfied. In the second example, the “*:”
descriptor terminates format control before the string “value="" is
output a third time.

3.4.10
Colon Edit Descriptor

Fortran I/O Statements

Fortran Reference Manual 3-25

Edit Descriptors
(continued)

3.4.11
Scale Factor Edit
Descriptor

The scale factor, nP (n is the scale value), is a-descriptor that
modifies the output of the Ew.d, Dw.d and Gw.d (interpreted as
Ew.d) format descriptors and the fixed-point output of the Fw.d
format descriptor. The scale factor also modifies the fixed-point
inputs to the Fw.d, Ew.d, Dw.d, and Gw.d format descriptors. A
scale factor has no effect on the output of the Gw.d (interpreted as
Fw.d) descriptor floating-point input.

When there is an exponent in the field, the scale factor has no
effect on input with F, E, D, and G editing. When an exponent
does not exist, the effect is that the external number equals the
internal number multiplied by 10+*n.

With E and D editing on output, the real constant part of the
quantity to be produced is multiplied by 10##n and the exponent
is reduced by n. With F editing on output, the quantity to be pro-
duced is multiplied by 10#*n. With G editing on output, the scale
factor has no effect unless the magnitude of the data being edited
is outside the range of F editing. If E editing is required, the scale
factor has the same effect as with E output editing.

For example, if a number of data items were stored without
decimal points, but were supposed to be interpreted as containing
an implied decimal point two positions from the right, using a
scale factor of -2 would cause the items to be printed that way.
Thus, with the format descriptor F7.2, the value 123 would be
printed 123.00, and, with the format descriptor -2PF7.2, 1.23.

When a format specification is interpreted, the scale factor is set to
0. Each time a scale factor descriptor is encountered in a format
specification, a new value is set. This scale value remains in effect
for all subsequent affected format descriptors until the format
specification ends or another P descriptor is seen.

EXAMPLES

(E10.3, F12.4, I9)
No scale factor change; previous value, O,
remains in in effect.

3-26 Fortran Reference Manual

Fortran I/0O Statements

Edit Descriptors
(continued)

(E10.3, 2PFl2.4, I9)
Scale factor for E10.3 remains at 0, changes to 2
for F12.4, has no effect on I9.

On input, the scale factor affects fixed-field (no exponent) input to
the Fw.d, Ew.d, Dw.d and Gw.d format descriptors. The external
value is multiplied by 10 raised to the (n)th power, as illustrated
in the examples that follow.

Scale Factor and

Format Descriptor Input Field Value Stored
E10.4 L 1 123.9678 123.9678

2PD10.4 L u123.9678 1.239678

-2PG11.5 L u123.96785 12396.785

-2PE12.5 123967.85E02 123967.85E02 (if the input

includes an exponent, the
scale factor has no effect)

On output, the scale factor affects Fw.d, Ew.d, Dw.d and Gw.d
(interpreted as Ew.d) format descriptors only. The scale factor has
no effect on the Gw.d (interpreted as Fw.d) field descriptor.

For Ew.d, Dw.d and Gw.d (interpreted as Ew.d) format descriptors,
the scale factor has the effect of shifting the decimal point of the
output number right n places while reducing the exponent by n
(the value of the mantissa remains the same) as illustrated below.
The number of significant digits printed is equal to: (d+scale fac-

tor).
Scale Factor and
Format Descriptor Stored Value Input Field
E124 12.345678 U U L-1235E+02
3PE12.4 12.345678 U U u 123.5E-01
-3PD12.4 12.345678 U U u-0001D+05
1PG10.3 1234 L u1.234E+03

Fortran I/0O Statements Fortran Reference Manual 3-27

Edit Descriptors
(continued)

For the Fw.d format descriptor, the internal value is multiplied by
10 raised to the (+n)th power, as illustrated below.

Scale Factor and
Format Descriptor Input Value Value Stored
F11.3 1234.500 U U u1234.500
-2PF11.3 1234.500678 LU Ly ul2345
2PF11.3 1234.500678 U

The scale factor need not immediately precede its format descrip-
tor. For example, the format specification

(3P,I2,F4.1,E5.2)

is equivalent to

(I2,3pP,F4.1,E5.2)

If the scale factor does not precede a Fw.d, Ew.d, Dw.d or Gw.d for-
mat descriptor, it should be separated from other descriptors by
commas or slashes. If the scale factor immediately precedes a
Fw.d, Ew.d, Dw.d or Gw.d format descriptor, the comma or slash
descriptor is optional.

For example, the format specification
(I2,3PF4.1,E5.2)

is equivalent to
(I2,3P,F4.1,E5.2)

The scale factor affects all F, E, D and G specifications until either
the end of the FORMAT statement or another scale factor is
encountered.

3.5
Unformatted
Input/Output

Unformatted input/output allows the transfer of data in internal
representation (binary). Each unformatted input/output state-
ment transfers exactly one record. Unformatted input/output to
devices is done in “binary” mode. (For more information, refer to
Appendix A, Error Messages.)

3-28 Fortran Reference Manual

Fortran I/O Statements

(

L ___________________ ____]
Unformatted Input/Output
(continued)

3.5.1
Unformatted input is specified by the following input statement Unformatted Input

SYNTAX
READ (unit, . ..optional keywords) list

where

unit is the unit number of the file (discussed in Chapter 4,
File Handling).

list is a list of variables that specifies where the data is to
be transferred. If list is omitted, the file is moved to
the next record without data transfer. The list can con-
tain implied DO loops, refer to Implied DO Loops under
DO Statement in Chapter 2, Fortran Statements.

None of the optional keywords can be FMT=. Refer to Chapter 2,
Fortran Statements for a detailed description of the syntax and
meaning of the optional keywords.

Because only one record is read when an unformatted READ
statement is executed, the number of list elements must be less
than or equal to the number of values in the record; a complex
item requires two real or double precision values.

The type of each input value should agree with the type of the
corresponding list item. A complex or double complex value in
the input record, however, can correspond to two real or double
precision list items, or two real or double precision values can
correspond to one complex list item. The data is transferred
exactly as it was written; thus, no precision is lost.

3.5.2
Unformatted output is specified by the following statement Unformatted Output

Fortran I/O Statements Fortran Reference Manual 3-29

L |
Unformatted Input/Output

(continued)

SYNTAX

WRITE (unit, .. .optional keywords) list

where

unit is the unit number of the file (discussed in Chapter 4,
File Handling).

list is a list of variables or expressions that specifies the

data to be transferred. It can contain implied DO
loops. For syntax and detailed information on implied
DO loops, refer to Implied DO Loops under DO State-
ment in Chapter 2, Fortran Statements. If list is omitted,
an empty record is written.

None of the optional keywords can be FMT=. Refer to Chapter 2,
Fortran Statements for a detailed description of the syntax and
meaning of the optional keywords.

The output list must not specify more values than can fit into one
record. If the specified values do not fill the direct access record,
the remainder of the record is undefined. (Because sequential
records are variable length, they have no “remainder”).

3.6
List-Directed Input

List-directed input is specified by the following input statements:

SYNTAX

READ *,list
READ (unit, *, . . .optional keywords) list

where

unit is the unit number of the file (discussed in Chapter 4,
File Handling).

list is a list of variables that specifies where the data is to

be transferred. If omitted, the file is positioned at the
next record without data transfer. The list can contain
implied DO loops. For syntax and detailed informa-
tion on implied DO loops, refer to Implied DO Loops
under DO Statement in Chapter 2, Fortran Statements.

3-30 Fortran Reference Manual

Fortran I/O Statements

Refer to Chapter 2, Fortran Statements for detailed information on
the syntax and meaning of the optional keywords.

The first READ statement syntax shown above transfers informa-
tion from the standard input device (unit 5). The second READ
statement transfers data from a disk file or device. (Files, along
with other READ statement options, are discussed in Chapter 4,
File Handling). Input data for list-directed input consists of values
separated by one or more blanks, or by a slash or comma pre-
ceded or followed by any number of blanks. An end-of-record
also acts as a separator except within a character constant. Lead-
ing blanks in the first record read are not considered to be part of
a value separator unless followed by a slash or comma. Input
data can also take the forms

r¥*c
or
¥

where
v is an unsigned, nonzero, integer constant.
c is a constant.

The r+c form means r repetitions of the constant ¢, and the r* form
means r repetitions of null values. Neither form can contain
embedded blanks, except where permitted in the constant c.

Reading always starts at the beginning of a new record. As many
records as required to satisfy the list are read unless a slash in the
input record is encountered.

Embedded blanks in input values are not allowed (they are
always interpreted as a value separator). The forms of values in
the input record are as follows:

Integers Same form as integer constants (see Chapter 1,
Language Elements).

Real and Double Precision

Any valid form for real and double precision con-
stants (see Chapter 1, Language Elements). In addition,
the exponent may be indicated by a signed integer
constant (the D or E can be omitted), and the decimal
point can be omitted for those values with no frac-
tional part.

List-Directed Input
(continued)

Fortran 1/O Statements

Fortran Reference Manual 3-31

List-Directed input
(continued)

Complex and Double Complex

Logical

Character

Two integer, short integer, real, or double precision
constants, separated by a comma and enclosed in
parentheses. The first number is the real part of the
complex or double complex number and the second
number is the imaginary part. Each of the numbers
can be preceded or followed by blanks or the end of a
record. :

Consists of a field of characters, the first nonblank
character of which must be a T for true or an F for
false. There can be an optional leading decimal point.

Same form as character constants. (This implies del-
imiting with apostrophes, which are discarded upon
input.) Character constants can be continued from
one record to the next; the end-of-record does not
cause a blank or any other character to become part
of the constant. If the length of the character constant
is greater than or equal to the length, len, of the list
item, only the leftmost len characters of the constant
are transferred. If the length of the constant is less
than len, the constant is left-justified in the list item
with trailing blanks.

The data in the input record is converted to that of the list item,
following the same assignment rules as given in Table 2-2 in
Chapter 2, Fortran Statements.

Encountering an end-of-line (end-of-record) in the input record
causes the read to be continued on the next record until the input
list items are satisfied. If a slash (/) is encountered, the read ter-
minates and the remaining items in the input list are unchanged.
An end-of-record is treated like a blank. An end-of-record is not
itself data and is not placed in a character item when a character
constant is continued on another line. (That is, character constants
can be continued.)

3-32 Fortran Reference Manual

Fortran I/O Statements

Examples of List-Directed Input
The statement:
READ *, s, t, X, ¥, Z
and the input record:
LU TOTAL | 242, ,D,TRUE |, 2362, ,563.63D6

cause the following assignments to take place, assuming the vari-
able is of the specified type:

Variable Type Value Assigned
s Character TOTAL
t Complex (42.,1.)
X Logical true.
y Real 362.
z Double Precision 563.63x10°

A null value can be specified in place of a constant when you do
not want the value of the corresponding list item to change; if the
value is defined, it retains its value or, if the value is undefined, it
remains undefined. A null value is indicated by two successive
value separators (two commas separated by any number of
blanks) or by placing a comma before the first input value on a
line.

The statement:

READ *, x, y, z
and the input record:
w20y

cause the following assignments to take place:

Variable Type Value Assigned
X Real Retains previous value
y Real 5.12
z Real Retains previous value

List-Directed Input
(continued)

Fortran 1/O Statements

Fortran Reference Manual 3-33

List-Directed Input
(continued)

3.7
List-Directed Output

List-directed output is specified by the following output state-
ments

SYNTAX
PRINT *, list

TYPE *,list
WRITE (unit,*, .. .optional keywords) list

where

unit is the unit number of the file (discussed in Chapter 4,
File Handling).

* is the list-directed formatting specifier, and may also
be specified as FMT=+*.

list is a list of variables or expressions that specifies the

data to be transferred. If list contains a function refer-
ence, that function must not contain any READ or
WRITE statements. The list can contain implied DO
loops. For syntax and detailed information on implied
DO loops, refer to Implied DO Loops under DO State-
ment in Chapter 2, Fortran Statements.

Refer to Chapter 2, Fortran Statements for details on the syntax and
meaning of the optional keywords.

The PRINT and TYPE statements transfer information to the stan-
dard output unit (unit 6). The WRITE statement transfers infor-
mation to external files or devices. (Files, along with other
WRITE statement options, are discussed in Chapter 4, File Han-
dling.) The forms of values in list-directed output records are as
follows:

Integers Output as integer constants.

Real and Double Precision
Output with or without an exponent depending on
the magnitude of the value.

Complex Output as two numeric values separated by commas
and enclosed in parentheses.

3-34 Fortran Reference Manual

Fortran I/O Statements

Logical A T is output for the value true and an F for the value
false.

Character A character value is not delimited by apostrophes
and each apostrophe within the value is represented
by one character.

Every value is preceded by exactly one blank except character
values. Trailing zeros after a decimal point are omitted. A blank
character is also inserted at the beginning of each record to pro-
vide carriage control when the file is printed. If the field is longer
than the number of character positions left in the record, the
current record is written and a new one started.

Examples of List-Directed Output

Internal Values Types
a=1115 REAL
b =.11145D DOUBLE PRECISION
¢ =(10,3.0) COMPLEX
d = (1.582D-03,4.9851) COMPLEX*16
e = .TRUE. LOGICAL
i=11250 INTEGER
j=-32799 INTEGER#*4
n ="PROGRAM NAME’ CHARACTER#*15
p = "test.out’ CHARACTER*8
Output
Statements Output Record
PRINT*,11.15 4 11.15,11250
(Output to the standard output unit
(unit 6))
WRITE (6, *) c (,(10.,3.)
WRITE (6,) j, e -32799bT
PRINT#*,b . 1.1145E-6
WRITE (6, *) d L, (1.582E-3,4.9851)
WRITE (6, *) n,p PROGRAM NAME |, testout

List-Directed Output
(continued)

Fortran 1/O Statements

Fortran Reference Manual 3-35

3.8
NAMELIST-Directed I/O

NAMELIST-directed I/O allows the transfer of data without
specifying the exact format or order of the data. Data is labeled
with the variable names. Variables eligible for NAMELIST-
directed I/O are defined in NAMELIST groups. You declare a
NAMELIST group containing several variables. Subsequent
READ and WRITE statements may do NAMELIST-directed I/O
by referencing the NAMELIST group name.

NAMELIST-directed I/O may occur only to or from sequential
external formatted files. I/O to or from direct access, internal, or
unformatted files is not supported.

EXAMPLE

PROGRAM MAIN

INTEGER I, J(10)
CHARACTER*10 C
NAMELIST /N1/ I, J, C
READ (UNIT=5, NML=N1)
WRITE (6, N1)

END

Consider the following input (note that column indicators are not
part of the input data. All input data must begin in column 2 in
your standard input device; refer to syntax rule #1 specified in the
NAMELIST-Directed Input in the following section):

(column 1 2 3...)
(123456789012345678901234567890...)

S$N1

J(8) =6, 7, 8
I=5

C = /' XXXXXXXXXX'
J = 50, -1, 2
C(2:6) = ’'abcde’
$END

The output are (assuming above input):

SN1

I = 5,

J= 0, 0, O, O, O, -1, 2, 6, 7, 8,
C = 'xabcdexxxx’

$SEND

3-36 Fortran Reference Manual

Fortran /O Statements

(

L]
NAMELIST-Directed I/0O
(continued)

3.8.1
NAMELIST-directed input is specified by the following state- NAMELIST-Directed
ments: Input

READ nml
or
READ (unit,nml, . . .optional keywords)

where
unit is the unit number of the file.
nml is the group-name namelist specifier.

The first READ statement syntax shown transfers information
from the standard input device (unit 5). The second READ state-
ment transfers data from a disk file or device.

No variable list is specified in a NAMELIST-directed READ state-
ment. The NAMELIST group name declaration determines
which variable values may appear in the input stream.

Input data for NAMELIST-directed input has the following form:
$group-name variable=value [, <variable=value>, ...] $[END]

where

$ is the special symbol used to delimit the beginning
and end of NAMELIST input. The ampersand sym-
bol (&) may be substituted for the $.

group-name is the NAMELIST group name specified in the READ
statement.

variable is a variable name appearing in the NAMELIST
declaration for <group name>. It may be optionally
followed by subscript and/or substring specifiers,
that is, variablel(subscripts)1[(substring)].

value is a list of zero or more constants separated by com-
mas, blanks, tabs, or newlines. The constants take the
same form as those for list-directed input including
count*constant and count* repetition factors. The type
of the constant must match the type of the variable.

Fortran 1/O Statements Fortran Reference Manual 3-37

e
NAMELIST-Directed 1/0

(continued)

END

is an optional ending for the terminating $.

Syntax rules for NAMELIST-directed input data:

ey

2)

3

4

®)

6)

Reading always starts at the beginning of a new record.
Records are read until a “$” or “&” is found in column 2,
immediately followed by a NAMELIST group name
matching the one specified in the READ statement.

All NAMELIST group name and variable name matching
is case-insensitive (mapped to uppercase).

At least one blank, tab, or newline character must separate
the $group-name from the first variable name.

Variables may appear in the input data in any order. Any
variable values not defined by the input will remain
unchanged.

No characters are permitted between the variable name
and the “(”” of the optional subscript. A subscript specifier
has the form

(subl,sub2,...,subn).

Each subscript must be an integer constant. Blanks, tabs,
or newline characters may appear before and after each
subscript. A single comma must appear between each pair
of subscripts. The number of subscripts must match the
number of array dimensions of the variable. Each sub-
script must be within the bounds of its dimension.

No characters are permitted between the variable name
and the (" of the optional substring specifier. If there is a
subscript specifier, the substring ““(”” must immediately fol-
low the “)”” closing the subscript list. A substring specifier
has the form

(position1:position2).

Each position specifier must be an unsigned integer con-
stant. Blanks, tabs, or newlines may appear before and
after each position specifier. If the first position specifier is
omitted, it is assumed to be 1. If the last position specifier
is omitted, it is assumed to be the length of the CHARAC-
TER variable. The position specifiers must obey the ine-
quality:

3-38 Fortran Reference Manual

Fortran I/O Statements

@)

(8)

)

(10)

(11

(12)

(13)

1charlchar2variable-length

A substring specifier may appear only with a variable of
type CHARACTER.

Blanks, tabs, or newlines may appear before and after the =
separating the variable name from the value list.

Constants in the value list are separated by blanks, tabs,
newlines, or a single comma.

Values in the value list are placed in ascending memory
locations starting with the one specified by the variable
with optional subscript and substring specifiers.

Example: INTEGER#4 I(4)Assume I is in a NAMELIST
group and NAMELIST input is

1(2) =1,2
Then 1(2) receives the value 1 and I(3) receives the value 2.

The number of constants in the value list must not exceed
the remaining memory locations in the variable.

Example: INTEGER*4 I(4) with NAMELIST input:
I(2) =1,2,3,4
generates a run-time error.

Repetition counts of the form count*constant or count* must
have no characters between the unsigned integer count and
the *, or between the * and the first character of the con-
stant.

Null constants may be specified by a leading comma, a
trailing comma, two successive commas, or the count* null
repetition form. Null constants cause memory locations in
the target variable to be skipped; the contents are not
altered in any way.

Constants take the same form as in list-directed input. Hol-
lerith, binary, octal, and hexadecimal constants are not per-
mitted.

L]
NAMELIST-Directed I/O

(continued)

Fortran 1/O Statements

Fortran Reference Manual 3-39

D
NAMELIST-Directed I/O

(continued)

(14)

(15)

(16)

(17)

Character constants may be split across input records by
immediately following the last character on a record by a
newline (don’t close the string with ” or "'). Leave the first
character of the next record blank (for carriage control) and
resume the string in column 2. No blank characters are
inserted in the string.

Logical constants consist of a string of characters, the first
of whichist, T, f, or F. A leading period is optional.

PARAMETER names may not appear in NAMELIST-
directed input.

If the type of the constant does not match that of the
receiving variable, type conversion takes place. See the

. Assignment Statement section for the valid type conver-

sions.

EXAMPLE

PROGRAM MAIN

INTEGER IARY (4)

CHARACTER*3 CARY (3, 2)

LOGICAL LOG

REAL R

NAMELIST /Ll1/ IARY, CARY, LOG, R
READ (*, L1)

WRITE (6, L1)

END

Consider the following input data (note that column indicators
are not part of the input data. All input data must begin in
column 2; refer to syntax rule #1 specified in NAMELIST-Directed
Input):

(column 1 2 3...)
(123456789012345678901234567890...)

&Ll IARY = 4,3,2,1

LOG = T,

CARY = 6%’ XXX’

R = 5.75E25, CARY(3,2)(1:2) = "ab’
SEND

After execution, variables have the following values:

3-40 Fortran Reference Manual

Fortran 1/0 Statements

IARY (1) = 4
IARY (2) =3
IARY (3) = 2
IARY (4) =1
CARY (1,1) = ’XXX'
CARY (2,1) = ’XXX'
CARY (3,1) = XXX’
CARY (1,2) = ’XXX'
CARY (2,2) = ’"XXX'
CARY (3,2) = "abX’
LOG =T

R = 5.75E+25

b]
NAMELIST-Directed I/0

(continued)

NAMELIST-directed output is specified by the following state-
ments

PRINT nml

TYPE nml

or

WRITE (unit,nml,...optional keywords)

where
unit is the unit number of the file.
nml is the group-name namelist specifier.

The PRINT and TYPE statements syntax shown transfers infor-
mation to the standard output device (unit 6). The WRITE state-
ment transfers data to a disk file or device.

No variable list is specified in a NAMELIST-directed PRINT or
WRITE statement. The NAMELIST group name declaration
determines which variable values will be printed to the output
file. The order of the values is also determined by the NAMEL-
IST declaration. NAMELIST-directed output is in a form suitable
for NAMELIST-directed input. The format of each value is the
same as for list-directed output.

EXAMPLE

PROGRAM MAIN

INTEGER IARY (4)

CHARACTER*3 CARY (3,2)

LOGICAL LOG

REAL R

NAMELIST /Ll1/ IARY, CARY, LOG, R
READ (*,L1)

3.8.2
NAMELIST-Directed
Output

Fortran 1/O Statements

Fortran Reference Manual 3-41

S A
NAMELIST-Directed I/O
(continued)

WRITE (6,1L1)
END

With the following input data (note that the column indicators are
not part of the input data; all inputs must begin in column 2):

(column 1 2 3...)
(123456789012345678901234567890...)

&L1 IARY = 4,3,2,1

LOG = T,

CARY = 6%’ XXX’

R = 5.75E25, CARY (3,2) (1:2) = 'ab’

$END
The following is printed:
(column 1 2 3...)

(123456789012345678901234567890...)

$L1

IARY = 4, 3, 2, 1,

CARY = 'XXX',’'XXX','XXX','XXX','XXX',"abX',
LOG = T,

R = 5.7500000E+25

SEND

3-42 Fortran Reference Manual Fortran 1/0O Statements

(

3.9

The items that follow should be noted and taken into account Special Programming
when programming,. Considerations
3.9.1

It is illegal for an I/O specifier or an item in an I/O list to call a
function that does any I/O. This is considered recursive 1/0,
because a statement that invoked the I/O library is now trying to
reinvoke it before finishing the original I/O call. A compiler and
run-time error is issued if recursive I/O is attempted.

This restriction requires that if you use explicit parallelism, you
must lock on a semaphore when doing 1/O, to avoid multiple
processors being in the I/O library at once. Refer to Chapter 8,
Stardent 1500/3000 Fortran Optimization Facilities under the section
called User-Controlled Parallelism for additional information.

EXAMPLE

C Recursive I/0 statement (because FUNCTION ’change’ does
WRITE (internal_ file, ' (A)’) change ()

CHARACTER*10 FUNCTION change ()
C Following statement causes recursive I/0 run-time error
OPEN (20, file='CHGFILE’)

RETURN
END

Recursion in I/O

I1/0)

Fortran I/O Statements

Fortran Reference Manual 3-43

Special Programming
Considerations
(continued)

3.9.2
ASA Carriage Control

The program asa (also described in Chapter 10, User Commands, in
the section called FPR(1)) interprets the output of a Fortran pro-
gram that uses ASA carriage control characters. It processes
either the file name arguments or the standard input if no argu-
ments are supplied. The output appears on standard output. The
first character of each line is interpreted as a control character.
Lines beginning with any other characters are interpreted as if
they begin with a blank and an appropriate diagnostic appears on
standard error. The first character of each line is not printed.
Each input file begins on a new page.

SYNTAX

asa [filenames]
where

filenames is a list of file names to be output with carriage control
characters interpreted according to ASA rules.

The carriage control characters and their meanings are:

(blank) single new line before printing

0 double new line before printing
1 new page before printing
+ overprint previous line

To view the output of programs that use ASA carriage control
characters, asa should be used as a filter. The following command
directs the output, properly formatted and paginated, to the line
printer:

a.out | asa | 1lpr

3-44 Fortran Reference Manual

Fortran I/O Statements

FILE
HANDLING

The input/output statements, (READ, WRITE and PRINT),
described in Chapter 3, Fortran 1/O Statements, reference a unit
number for a file. The unit number refers to a Fortran logical unit
number assigned to a disk file or to a peripheral input/output or
storage device. Fortran allows access to disk files and nondisk
units through two methods, and both assign a Fortran logical unit
number to the unit. The two methods are as follows:

. Preconnection uses the unit numbers 5, 6 and 0 which are
referred to as, respectively, standard input, standard output,
and standard error. This method does not require the use of
the OPEN statement.

* Assignment of a logical unit number within an OPEN state-
ment. The OPEN statement also can be used on devices to
assign standard Fortran unit numbers or to change certain
specifications.

This chapter provides details on the types of files, methods of
assigning a unit number, control specifications, and other file
status and manipulation procedures. The syntax and a limited
discussion of each file handling statement appears in Chapter 2,
Fortran Statements.

In addition, some run-time controls can be exercised over the I/O
facilities by setting specific environment variables. These vari-
ables, described at the end of this chapter, allow you to control the
file format used to read or write unformatted files.

CHAPTER FOUR

File Handling

Fortran Reference Manual 4-1

4.1
File Definition

A file in Fortran is defined to be a collection of related information
logically organized into records. A file can be stored on disk or
can reference nondisk peripheral devices by device file name.
Files on the UNIX operating system have no internal structure
(that is, no records); a UNIX file is a collection of bytes. Languages
(such as Fortran) impose a structure on the file by dividing the file
into records. The information in files can be programs or data.
For a detailed discussion of the types of files available, refer to the
appropriate system reference manual.

A record is defined as a sequence of data values or characters. A
record does not necessarily refer to a physical entity (such as a
punched card), but refers to a logical representation of data or
characters.

The three types of records are:
* Formatted.

* Unformatted.

* End-of-file.

A formatted record consists of data that is edited during both the
input and output processes. The length of a formatted record is
measured in characters . Formatted records should be read or
written only by formatted input/output statements. There is no
maximum limit to the length of a formatted record.

An unformatted record consists of data that can be read or written
without incurring the overhead of the editing process. The length
of an unformatted record is measured in 4-byte words. An unfor-
matted record should only be read or written by unformatted
input/output statements.

An end-of-file record is the last logical record of a sequential file.
This record is written by the ENDFILE statement and contains no
data.

The terms external file and internal file are defined as

external file

a file located on a storage medium external to the pro-
gram (such as disk) or an external device.

4-2 Fortran Reference Manual

File Handling

internal file

an area of storage, internal to the program, such as an
array in main storage.

Operations involving the movement of data from one internal
storage area to another, with the ability to convert data from one
form to another, are facilitated by the use of internal files. (Refer
to Internal Files later in this chapter.)

This chapter uses these terms to specify positioning within a file:

current record

is the record within which the pointer is currently
positioned.

file pointer
is the current position within a file.

initial point
is the position just before the first record of the file.

next record

is the next record to be read or written; if the file
pointer is at the terminal point, there is no next record.

preceeding record

is the record just read or written; if the file pointer is at
the initial point, there is no preceding record.

terminal point
is the position just after the last record of the file.

File Definition
(continued)

Records of sequential formatted external files are separated by a
newline character.

4.1.1
Sequential Formatted
File Format

Each record of a sequential unformatted file is preceded and suc-
ceeded by four bytes that contain the record length.

4.1.2
Sequential Unformatted
File Format

File Handling

Fortran Reference Manual 4-3

File Definition
(continued)

4.1.3
Direct Formatted File
Format

Records of direct formatted files are blank-filled to the specified
length of the record. Records are not physically separated.

4.1.4
Direct Unformatted File
Format

Records of direct unformatted files are null-filled to the specified
length of the record. Records are not physically separated.

4.2
File Access

External Fortran files are categorized by the method of access;
either sequential access or direct access.

Sequential access refers to the access of records in the order in
which they were written. A sequential file may be consisted of
either formatted records or unformatted records, but not both. It
totally depends on how the file is written.

Direct access refers to the access of the records in any order by
record number. Reading and writing records is accomplished by
direct access input/output statements (that is, READ and WRITE
statements containing a REC= specification). Each record of the
file is identified by a record number that is a positive integer.
Once established, a record number of a specific record cannot be
changed nor may the record be deleted, although the record may
be rewritten. The records may be read or written in any order.
For example, record 3 may be written prior to writing record 1.
The records of a direct access file cannot be read or written using
list-directed formatting. A direct access file does not contain an
end-of-file record as an integral part of the file with a specific
record number; therefore, when accessing a file with a direct
access read or write statement, the END= specification is not
allowed. :

4.3
File Existence and
Connection

A file is said to exist for an executable program if the program can
access it. There are also cases where the file may exist and be
known to the processor, but not to the executable program. At
any one time, there is a specific set of files that exist for a program.
All input/output statements can refer to files that exist, while the
INQUIRE, OPEN, and CLOSE statements can also refer to files
that do not yet exist for the program.

4-4 Fortran Reference Manual

File Handling

Files (devices) that are preconnected for use by a program can be
accessed in READ or WRITE statements without prior execution
of an OPEN statement. For more detailed information on the sys-
tem dependent devices, refer to the appropriate system reference
manual.

A unit cannot be connected to more than one file at the same time,
and conversely a file cannot be connected to more than one unit at
the same time. If a unit is disconnected in a program by a CLOSE
statement, the unit number is available to be reconnected to the
same file or connected to a different file in the program. Simi-
larly, a particular file that is disconnected by a CLOSE statement
can be reconnected to the same unit or to a different unit.

Note that the only means of referring to a disconnected file in an
OPEN or INQUIRE statement is by name; therefore, if a scratch
file is disconnected, it cannot be reconnected and data reclaimed
(because scratch files are purged on CLOSE or program termina-
tion).

The following input/output and file positioning statements must
reference a unit that is connected:

ACCEPT inputs data from external records.

BACKSPACE
moves the file pointer of the connected sequential file
to the position before the previous record.

ENDFILE writes an end-of-file record as the next record of the
sequential file.

PRINT outputs data to the preconnected default output device
file.

READ inputs data from a connected unit.

REWIND moves the file pointer of the connected sequential file
to the initial point of the file.

TYPE outputs data to external records.

WRITE outputs data to a connected unit.

File Existence and
Connection
(continued)

File Handling

Fortran Reference Manual 4-5

File Existence and
Connection
(continued)

The following three file control statements can reference a unit
that either is connected or not connected:

CLOSE disconnects a unit from a file (A CLOSE on an uncon-
nected unit has no effect.)

INQUIRE requests information about the properties of a particu-
lar named file or of the connection to a particular unit
(inquire either by file name or by unit number).

OPEN connects a file to a unit, (possibly) creates a file and

connects it to a unit, or changes certain specifiers of a

connection between a file and a unit.

4.4
File Control Specifiers

File control specifiers are used with various file input/output
statements or file positioning statements. Some of the specifiers
can be used with any file manipulation statement, while others
have meaning only in particular statements.

This section describes the file control specifiers allowed in each of
the file input/output statements, and describes any restrictions on
their position or occurrence. Detailed syntax requirements of the
file control statements are described in Chapter 2, Fortran State-
ments.

4.4.1
READ and WRITE
Statements

The following control specifiers have meaning in the READ and
WRITE statements:

END = endlabel
ERR = label
FMT = fmt
IOSTAT =ios
NML = namelist
REC =rn
UNIT = unit

The specification list must include exactly one unit specifier and at
most one each of the other specifiers. If a REC= specifier appears,
the statement is a direct access request. On a direct access request,
the END= specifier must not appear. The END= specifier is never
allowed in a WRITE request. Also, the FMT= specifier must not
indicate list-directed formatting (*) with a direct access file.

4-6 Fortran Reference Manual

File Handling

There are no positional requirements for the specifiers if all the
keywords are shown in the input/output statement. If the key-
word UNIT= is omitted, the unit number specifier must appear
first in the control list. If the optional keyword FMT= is omitted,
the format specifier must be the second item in the list, following
a unit specifier without the optional keyword UNIT=.

EXAMPLES

READ (5,33) a, b, ¢
READ (UNIT=5, FMT=33) a, b, ¢

The first two examples are identical: requesting input from logical
unit 5 controlled by the format statement labeled 33.

WRITE (17, 11, REC=irec, IOSTAT=ios, ERR=99) x, y, 2z

The third example specifies an output request to a direct access
unit 17, writing record number irec as specified in the format
statement labeled 11. If an error occurs, control transfers to the
statement labeled 99 and the error code is stored in the variable
ios.

File Control Specifiers
(continued)

The following control specifiers have meaning in the OPEN state-
ment:

ACCESS =acc
BLANK = bink

ERR = label
FILE = name
FORM =
IOSTAT =ios
RECL =rcl
STATUS =sta
UNIT = unit

The OPEN statement connects a unit number to a file or changes
certain features of the connection between a file and a unit. When
a file is opened, the file pointer is positioned at the beginning of
the file. A redundant OPEN does not affect the current position
of the file. For a detailed description of the syntax and meaning of
control specifiers, refer to Chapter 2, Fortran Statements.

4.4.2
OPEN Statement

File Handling

Fortran Reference Manual 4-7

File Control Specifiers
(continued)

EXAMPLES

The following statement connects Fortran logical unit number 9 to
a file called dat. If an error is encountered in the OPEN, save the

error code in the variable ios and transfer to statement 99.

OPEN(9, IOSTAT=ios, ERR=99, FILE='dat’)

(If file dat exists, it is connected to unit number 9. If dat does not
exist, it is created as a sequential access file in the user’s directory).

The following statement creates a file called fil1. Connect the new
file to Fortran unit number 2. Handle any OPEN errors the same
way as in the previous example.

OPEN(2, FILE='fill’, STATUS='NEW’, IOSTAT=ios, ERR=99)

The specification list must contain exactly one unit specifier and at
most one each of the other specifiers. There is no positional
hierarchy among the control specifiers, with one exception: when
the control specifier UNIT= does not appear, the unit number
must appear as the first specifier in the control list.

The FILE= name specification must be present for all named disk
files to be created or opened. (Refer to the appropriate system
reference manual for more detailed information on the file name.)

The STATUS=sta specifier determines whether or not the file
must already exist. If "OLD’ is specified, the file must already
exist, while if "NEW” is specified, an error is generated if the file
exists. The "'NEW’ specification directs that the file is to be created.
If 'SCRATCH!’ is specified, a file name must not be specified, and
a file with a unique name is created. If no STATUS=sta specifier
is shown, the status defaults to "UNKNOWN’. This means to
search for the file and to create a new file if it does not exist.

All the specifiers except the unit specifier are optional. If the file is
opened with ACCESS="DIRECT’, the RECL specifier must be
present to determine the record length of the file.

A file can be connected to a unit number by an OPEN statement
in any program unit of an executable program, and once con-
nected to a unit, can be referenced in any program unit.

The OPEN statement connects existing files to a unit number,
creates and connects a named or scratch file, or changes the con-
trol specifiers on a file already connected to a unit by referencing
the same file name or omitting it and specifying different

4-8 Fortran Reference Manual

File Handling

characteristics to the file. This is effectively the same as executing
a CLOSE statement on the file that was previously connected to
the unit number referenced in the OPEN statement. Conversely,
once a file has been connected with a unit number, that file cannot
be connected with a different number until the file is closed.

The specifiers that have default values if omitted from the control
list are:

STATUS ='UNKNOWN’

ACCESS ='SEQUENTIAL’

BLANK ='NULL’
EXAMPLES

Open a scratch file for direct access, with a user-defined record
length of 80 characters, defaulting the remaining parameters:

OPEN (13, ACCESS='DIRECT’, RECL=80, STATUS=’'SCRATCH')

Connect a file named outl to logical unit number 1. The file outl
exists as a sequential file for formatted input/output. Specify that
all blanks should be treated as zeros.

OPEN (1, FILE='outl’, STATUS='OLD’, BLANK='ZERO’)

Connect a direct access file named tree with a record size of 80
characters.

OPEN (8, FILE='tree’, ACCESS='DIRECT’, RECL=80)

Connect a direct access scratch file to Fortran unit 4.

OPEN (4, STATUS=’SCRATCH’, ACCESS='DIRECT')

File Control Specifiers
(continued)

The following control specifiers have meaning in the CLOSE
statement:

ERR = label
IOSTAT =ios
STATUS =sta
UNIT = unit

The CLOSE statement terminates the connection of a unit to a file.
For a detailed description of the syntax and meaning of each of
the control specifiers, refer to Chapter 2, Fortran Statements.

4.4.3
CLOSE Statement

File Handling

Fortran Reference Manual 4-9

File Control Specifiers
(continued)

Specifying a STATUS of KEEP or DELETE determines if the file
will continue to exist or will be purged from the disk. A file
whose status is SCRATCH is always deleted by the system when
the file is closed or at normal program termination, even if a
CLOSE statement is executed specifying STATUS="KEEP’. For
named files, if the STATUS= specifier is omitted, the default
specification is KEEP.

Stardent 1500/3000 Fortran offers extensions to Fortran 77 for the
STATUS specifier, in order to maintain compatibility with other
operating systems. These additional STATUS specifiers are
SAVE, PRINT, SUBMIT/DELETE, and PRINT/DELETE. If the
word DELETE is present the file will be deleted, otherwise the file
is saved, as in specifying KEEP.

A CLOSE statement referencing a unit that does not exist can be
executed, but no action is taken. If a file is not closed by a CLOSE
statement in the execution of a program, the file is closed
automatically upon normal program termination.

EXAMPLE

CLOSE (16, IOSTAT=ios, ERR=99, STATUS='DELETE’)

This example disconnects the file that was connected to unit
number 16 and specifies that the file should be deleted. If an error
occurs, control transfers to the statement labeled 99 and the error
code is stored in the variable ios.

4.4.4
INQUIRE Statement

The following control specifiers have meaning in the INQUIRE
statement:

ACCESS =acc
BLANK = blnk
CARRIAGECONTROL= cc
DIRECT =dir
ERR = label
EXIST =ex
FILE = name
FORM =fm
FORMATTED =fmt
IOSTAT =108
NAME =fn
NAMED =nmd
NEXTREC =nr
NUMBER =num

4-10 Fortran Reference Manual

File Handling

OPENED =od
RECL =rcl
SEQUENTIAL = seq
UNFORMATTED = unf
UNIT = ynit

The INQUIRE statement requests properties of a file or device by
either specifying the unit number or by specifying the file name in
the control list. The INQUIRE statement can return information
on a file that is not connected to a unit, as well as on a connected
file or device.

The INQUIRE-by-file version of the INQUIRE statement requires
exactly one file name specifier and any of the other specifiers
except the unit specifier. The INQUIRE-by-unit version requires
exactly one unit specifier and one each of the other optional
specifiers as desired, excluding the file name specifier. Refer to
Chapter 2, Fortran Statements for a general description of each of
the control specifiers. Table 4-1 lists all of the possible combina-

tions for each specification in the INQUIRE statement.

Table 4-1. INQUIRE Statement Specifications

File Control Specifiers
(continued)

CAUTION

It is true that you can execute a
Fortran INQUIRE statement on
an unopened file in the VMS
system because VMS appears to
carry around its file information.
Unfortunately, BSD and System
V systems do not implement this
kind of handling. If you execute
an INQUIRE statement on UNIX
data files, be sure that you open
those files first (by using OPEN
statement).

KEYWORD UNOPENED UNOPENED NONEXISTENT OPENED
UNIT FILE FILE UNIT
EXIST false true false true
OPENED false false false true
NAMED true true true false, if a
scratch file;
true otherwise
NUMBER FIN unit undefined undefined FTN unit
NAME undefined file name file name file name
(if named)
ACCESS undefined undefined undefined see OPEN
SEQUENTIAL UNKNOWN UNKNOWN UNKNOWN see OPEN
DIRECT UNKNOWN UNKNOWN UNKNOWN see OPEN
ASYNC UNKNOWN UNKNOWN UNKNOWN see OPEN
FORM undefined undefined undefined see OPEN
FORMATTED UNKNOWN UNKNOWN UNKNOWN see OPEN
UNFORMATTED UNKNOWN UNKNOWN UNKNOWN see OPEN
BLANK undefined undefined undefined see OPEN
RECL undefined undefined undefined bytes (if direct)
NEXTREC undefined undefined undefined record number
(if file)

File Handling

Fortran Reference Manual 4-11

File Control Specifiers
(continued)

In general, upon execution of an INQUIRE-by-file statement, if
the file name is illegal or if the file does not exist, the specifiers
NAMED, NAME, SEQUENTIAL, DIRECT, FORMATTED and
UNFORMATTED are defined. If the file exists and is connected
to a unit, ex and od return frue, num becomes defined, and the
variables acc, m, rcl, nr and blnk become defined if they are
included in the INQUIRE-by-file statement. Upon execution of
an INQUIRE-by-unit statement, if the unit exists and is connected
to a file, the specifiers num, nmd, fn, acc, seq, dir, fm and blnk
become defined.

The specifiers EXIST=ex and OPENED=o0d always become defined
with a true or false value if no error condition is encountered.

EXAMPLE

INQUIRE (FILE='exfl’, IOSTAT=ios,ERR=99, EXIST=ex,
OPENED=iop, NUMBER=num, ACCESS=acc)

This example requests information on the specified properties of
the file named exfl. If exfl exists and is connected to a unit in the
program, the variables ex and iop return the value frue , the unit
number is stored in num, and the character variable acc is
defined. If exfl does not exist, ex and iop return the value false, ios
is 0 if there was no error, ios is a system- determined value
greater than 0 if there was an error, and the other specifiers are
not defined.

4.5
File Positioning
Statements

The BACKSPACE, REWIND, and ENDFILE statements control
the position of the file pointer within a file. The following
specifiers have meaning in these statements:

UNIT = unit
IOSTAT =ios
ERR = label

Exactly one external unit specifier must be included in the control
list of the file positioning statements. The unit specified must be
connected for sequential access. The IOSTAT and ERR parame-
ters are optional.

The BACKSPACE statement causes the file pointer to be posi-
tioned before the preceding record. As a Stardent 1500/3000 For-
tran extension, backspacing over records written using list-

4-12 Fortran Reference Manual

File Handling

directed formatting is permitted. If the file is connected but does
not exist, the BACKSPACE statement is not allowed.

The REWIND statement causes the file pointer to be positioned at
the initial point of the file. The BACKSPACE and REWIND state-
ments are for sequential files and are not allowed on files con-
nected for direct access.

The ENDFILE statement writes an end-of-file record as the next
record of the file. If an ENDFILE statement is executed on a file
that is connected but does not exist, the file is created. The END-
FILE statement is not allowed on files connected for direct access.

EXAMPLES

BACKSPACE 10

Moves the file pointer of unit 10 to the previous record.
REWIND (13, I0STAT=ios,ERR=99)

This example moves the file pointer to the initial point in the file
connected to logical unit 13. If an error occurs, control is
transferred to statement 99 and the error code is stored in the vari-
able ios.

ENDFILE 13

Writes an end-of-file record as the next record of the file con-
nected to unit number 13.

T I RN
File Positioning Statements
(continued)

NOTE

If the 2nd and 3rd examples
appeared in sequence in a
program unit, the effect would be
to delete the information in the
file.

Internal files provide a means of memory-to-memory data
transfer and are used to perform formatting operations on charac-
ter variables. An internal file can be a character variable, a charac-
ter array element, a character substring, or a character array. Each
variable or array element is considered to be one record.

An internal file is accessed by a sequential formatted
input/output statement. The name of the internal file appearing
as the value of the UNIT parameter identifies the file.

4.6
Internal Files

File Handling

Fortran Reference Manual 4-13

Internal Files
(continued)

EXAMPLE
WRITE (UNIT=address_var,FMI=' (I10) ') street_address

writes the value of the variable street_address into the first 10
positions of the internal file address_var. (address_var must be a
variable or array of type CHARACTER). If address_var has a
length greater than 10, the rest of the record is filled with blanks.

Another example of writing to a character variable is shown in
this program, followed by the program’s output:

PROGRAM inl
CHARACTER*14 ifmt
INTEGER iarray (5)
DATA iarray/1,2,3,4,5/
n =10
m =5
WRITE (ifmt,10) n,m

10 FORMAT (' (',I2,'X,",I2,"(I2,X))")
WRITE (6,ifmt) iarray
WRITE (6,*) ifmt
END

The results of running this program are:

1 2 3 4 5
(10X, 5(I2,X))

In addition to becoming defined by a WRITE statement, a record
of an internal file can become defined in an assignment statement
as shown below. This example shows that an internal file record
can be manipulated in the same way as any other variable.

CHARACTER bufr*20

READ (10, " (A) ') bufr ! Input into bufr
READ (bufr,’ (I10)’,ERR=99) value ! bufr numerical?
IF (value .LT. O0) THEN. . . ! Yes
C (more)
99 IF (buffer .EQ. 'end’) THEN. . .! No

Internal files should be used in place of the DECODE and
ENCODE statements of some earlier versions of Fortran.

4-14 Fortran Reference Manual

File Handling

When a program is started, three files are opened automatically,
or preconnected. In Stardent 1500/3000 Fortran, unit numbers 5, 6
and 0 are initially preconnected to the UNIX standard input, out-
put and error units respectively. These preconnected files are all
connected for sequential formatted I/O. They are normally con-
nected to the terminal, but can be redirected to files or pipes, as
described in the appropriate system reference manual.

Standard preconnected files remain open for the duration of For-
tran program execution. A CLOSE statement executed on any of
these has no effect.

A standard unit number (5, 6 or 0) can be reused by performing
an OPEN statement that assigns it to a new file. However, error
messages and other items may still be written to standard output
or standard error and some control information may be received
from standard input (that is, after PAUSE).

4.7
Preconnected Files

The following examples demonstrate the use of several options of
the file manipulation statements.

4.8
General File Examples

File Handling

Fortran Reference Manual 4-15

General File Examples
(continued)

Example 1

The following program computes the mean of all the data items in
the disk file dat. The file contains an unknown number of records,
each containing one real number.

PROGRAM mwfil
sum = 0.0 !Initialize
n =20 tInitialize
OPEN (3, IOSTAT = ios, ERR = 99, FILE = ’'dat’,
+ ACCESS=’ SEQUENTIAL’ , STATUS='OLD’)
10 READ (3,22, END = 88, IOSTAT = ios,
+ ERR = 99) anum
22 FORMAT (F10.5)
sum = sum + anum !Add data entries
n=n+1 !Count entries
GO TO 10 ! Loop

C Out of loop

88 avg = sum/n

WRITE (6, 33) avg !Output to preconnected terminal
33 FORMAT ('The average is ‘', F12.6)

CLOSE (3)

STOP

C If output error in the OPEN or READ,
C output to a preconnected terminal.

99 WRITE(6,44) ios

44 FORMAT ('Error encountered =’,I16)
END

If file dat contains

Sw N
o O O o

Running mwfil produces

The average is 2.500000

However, if file dat does not exist, running mwfil produces

Error encountered = 69

4-16 Fortran Reference Manual

File Handling

Example 2

The following example inserts a single number data entry in the
proper position in a sorted sequential file. A direct access scratch
file stores the temporary results prior to rewriting the original

data file.

PROGRAM mgw
C Declare and initialize variables
IMPLICIT NONE
REAL anum, fnum
INTEGER nrec,wrec,iosl,ios2,i

nrec = 1
wrec = 1
iosl= 0

General File Examples
(continued)

C Open the scratch file to 17 and the sequential data file to 18

OPEN (18,FILE='mwdata’, STATUS='UNKNOWN’,

X IOSTAT=iosl,ERR=99)

OPEN (17,STATUS='SCRATCH’, ACCESS='DIRECT',

X IOSTAT=ios2,ERR=99,RECL=16)

READ *,anum ! Enter number and begin reading file

DO WHILE (iosl .GE. 0) ! EOF

READ (18,*,END=100, IOSTAT=iosl, ERR=99) fnum

nrec = nrec + 1
IF (anum .LE. fnum) THEN
WRITE (17,REC=wrec) anum
wrec = wrec + 1
20 WRITE (17, REC=wrec) fnum
wrec = wrec + 1

READ (18, *,END=150, IOSTAT=iosl,ERR=99)

nrec = nrec + 1
GOTO 20
ELSE
WRITE (17,REC=wrec) fnum
wrec = wrec + 1
END IF
END DO

fnum

C The file is empty or the item goes at the end of file

100 WRITE (17,REC=wrec) anum
C Copy the scratch file to the data file
150 REWIND 18
DO i = 1,nrec
READ (17, (F16.6)',REC=1i) fnum
WRITE (18,*) fnum
END DO
CLOSE (18)
CLOSE (17)
STOP "All Done’
C Error handling section
99 WRITE (6, ("ERROR = ",2I6)’) iosl,ios2
END

File Handling

Fortran Reference Manual 4-17

4.9
Environment Setting
Variables

To be compatible with the VMS Fortran compiler, the Stardent
1500/3000 Fortran compiler writes its unformatted files in the
same format the VMS compiler does. In both Stardent 1500/3000
format and VMS format defaults, all records are an even multiple
of words (in 4-byte quantites) in length. If you request that a
record be written which is not an even multiple of four bytes in
length, both systems pad that record so that it is an even multiple
of words in length. For variable length records, both Stardent
1500/3000 and VMS add extra 4-byte fields to the beginning and
the end of each record to hold the size of the record. The value
stored in these fields holds the record length in words. These
fields are only for variable length records; both Stardent
1500/3000 and VMS assume that you know the size of fixed length
records and need not to specify that record length in the file.

There are users who wish to write programs on the Stardent
1500/3000 that can read unformatted files that have been written
on other machines—most commonly, machines that run on BSD
UNIX. Because most UNIX compilers use a format that differs
from the Stardent 1500/3000 format, this cannot be done without
first converting the files to be read form BSD format to the Star-
dent 1500/3000 format. Most UNIX systems do not pad records to
a 4-byte multiple, and most attach fields to both fixed and variable
length records indicating the record size. Also, this record size is
usually measured in bytes rather than words.

4.9.1
UNFORMATTED_IO,

By using the IO library, the Stardent 1500/3000 system provides

UNFORMATTED _INPUT, you with a mechanism for reading or writing unformatted files
UNFORMATTED_OUTPUT from most BSD UNIX systems. When programs are relinked with

the IO library (there is no need to recompile), you can set three
environment variables to control the format used to read or write
unformatted files. At the time a program is run, the IO library
reads three environment variables:

UNFORMATTED_IO
UNFORMATTED_INPUT
UNFORMATTED_OUTPUT

If none of these are set, or if they are set to the value VMS, the IO
library uses its default format when reading or writing unformat-
ted files.

4-18 Fortran Reference Manual

File Handling

If the variables are set to the value BSD, the IO library uses instead
the format described above for BSD UNIX files.

If INPUT is set to BSD, read operations assume BSD format; if OUT-
PUT is set to BSD, write operations assume BSD format. Thus, by
setting INPUT to BSD and leaving OUTPUT unset, it is very easy to
write a program to convert a file from BSD format to Stardent
1500/3000 format. If the IO variable is set, its value overrides
INPUT and OUTPUT, and files are both read and written in the
specified format.

EXAMPLE

With the IO library, if you want to use unformatted files generated
on BSD systems, you need only type the command

setenv UNFORMATTED_INPUT BSD
or the command

setenv UNFORMATTED_OUTPUT BSD
or the command

setenv UNFORMATTED_IO BSD

depending on whether you just want to read files (if so, use the
first command), or to write files (if so, use the second command),
or to generate files to be read/written on a BSD system (if so, use
the third command) before running your program.

The Stardent 1500/3000 can handle files generated on most BSD
UNIX systems. However, note that while the Stardent 1500/3000
uses VMS style as its default for unformatted files, the Stardent
1500/3000 IO library cannot by default read unformatted files that
have been written on a VMS system or write unformatted files that
can be read on a VMS system. The VMS assumes an unusual for-
mat in its number representation that does not translate directly
to most machines, including the Stardent 1500/3000.

Environment Seiting
Variables
(continued)

NOTE

For additional information on the
environment setting variables,
please refer to Chapter 10, User
Commands, in the section called
FC(1).

File Handling

Fortran Reference Manual 4-19

PROCEDURES
AND
SUBPROGRAMS

A subprogram can be a procedure or a subprogram. It is a self-
contained computational or data unit that requires activation by
the main program or another subprogram. Fortran subprograms
perform special functions (such as solving a mathematical prob-
lem, performing a sort, outputting standard headings, and so on)
and provide initial values for variables and array elements in
named common blocks.

Block data subprograms initialize variables in labeled common
blocks and cannot contain executable statements. A block data
subprogram predefines, by means of DATA declarations, values
for variables listed in COMMON declarations. Preassignment of
data to common regions can be done only in a block data unit.

Procedures can be grouped into these two main categories:
* Subroutine subprograms.

. Functions:
o Function subprograms.
) Statement functions.

o Intrinsic functions.

Subroutine and function subprograms can be written in languages
other than Fortran and can come from the system library. For
more information, refer to the Programmer’s Guide in Chapter 10,
Language Interfacing, and also in this manual in Appendix B under
the section called Language Calling Conventions. Subroutines and
functions differ in how they are referenced and how their values
are returned.

CHAPTER FIVE

Procedures and Subprograms

Fortran Reference Manual 5-1

5.1
Subroutine
Subprograms

Subroutine subprograms are user-written procedures that per-
form a computational process or a subtask for another program
unit. Values can be passed to the subroutine and returned to the
calling program unit by using arguments or common blocks
(specified by COMMON declarations, described later in this
chapter). The subroutine subprogram is a program unit that has a
SUBROUTINE statement (refer to Chapter 2, Fortran Statements
for syntax) as its first statement.

A subroutine subprogram can contain any statement except
another SUBROUTINE statement, a BLOCK DATA, FUNC-
TION, or PROGRAM statement. The last line of a subroutine
subprogram must be an END statement. One or more RETURN
statements may be included to return control to the calling pro-
gram unit. If no RETURN statement is included in the subrou-
tine, the subroutine END statement returns control to the calling
program unit.

EXAMPLES

SUBROUTINE next (argl,arg2)
SUBROUTINE last(a, *, *, b, i, k, *)
SUBROUTINE noarg

Values are passed to a subroutine subprogram by dummy argu-
ments. Examples of dummy arguments as shown in the previous
example are

argl

arg2

a

b

* (alternate return form)

The alternate return form of dummy arguments is described later
in this chapter under the title, Alternate Returns from a Subroutine.

5-2 Fortran Reference Manual

Procedures and Subprograms

L
Subroutine Subprograms

(continued)
5.1.1
A subroutine subprogram is executed when a CALL statement Referencing a
(refer to Chapter 2, Fortran Statements for syntax) is encountered in Subroutine
a program unit.
EXAMPLES
CALL next (x, V)
CALL last (a, *10, *20, b, i, k, *30)
CALL noarg
When the subroutine is executed, its dummy arguments are
replaced by references to the actual arguments found in the call to
that subroutine subprogram. The above subroutine subprogram
calls reference the actual parameters to the subprogram: a, *10,
%20, b, i, k, and *30. Their values are used within the subroutine.
(Refer to Procedure Communication later in this chapter.)
5.1.2
Normally, control is returned from a subroutine to the calling pro- Alternate Returns from a
gram unit at the statement following the CALL statement. Speci- Subroutine

fying alternate return statements allows return to the calling pro-
gram unit at any labeled executable statement. An alternate
return is specified by the RETURN statement with an integer
expression (which can be an integer constant) that identifies the
number of a statement label in the CALL statement. The SUB-
ROUTINE statement must contain one or more asterisks
corresponding to alternate return labels in the CALL statement.
(Refer to CALL Statement and RETURN Statement in Chapter 2,
Fortran Statements for the syntax of calls with alternate return
statements.)

EXAMPLE

Following is an example of a CALL and its associated SUBROU-
TINE and alternate return statements. Upon execution of a
RETURN statement with an expression whose value is either less
than 1 or greater than the number of alternate return labels in the
CALL statement, control is returned to the statement following
the CALL statement.

Procedures and Subprograms Fortran Reference Manual 5-3

S
Subroutine Subprograms

(continued)

CALL sub (a, *10, %20, *30)

SUBROUTINE sub (a, *, *, *)

RETURN n
Control returns to statement 10, 20, or 30, depending on whether
n evaluatesto 1, 2, or 3.

52
Functions

A function can be intrinsic (refer to Intrinsic Functions later in this
chapter) or defined in a user-written function subprogram. Execu-
tion of a function reference in an expression causes the evaluation
of the specified function and a value to be defined for the function
name. As with a subroutine, a function can return values through
its arguments or common blocks.

When a function is evaluated, the function name is associated
with a value in the same manner as a variable. Because this
inherently types the function name, its type must be declared
explicitly or implicitly, just as with other data names.

52.1
Function Subprograms

A function subprogram is a user-written Fortran function incor-
porated in a Fortran program. A function subprogram is a pro-
gram unit that has a FUNCTION statement (refer to Chapter 2,
Fortran Statements for syntax) as its first statement. A function
subprogram can contain any statement except another FUNC-
TION statement, a BLOCK DATA, SUBROUTINE, or PRO-
GRAM statement.

Because a value is assigned to the function subprogram name, it
must have a type. The type associated with the function name is
determined in one of three ways:

e If the type is mentioned as the first part of the FUNCTION
statement, the name is assigned that type. If the type is
specified in the FUNCTION statement, it must not appear in
a type statement. A name must not have its type explicitly
specified more than once in a program unit.

e If the type is not mentioned in the FUNCTION statement,
the function name may be mentioned in a type statement
within the function subprogram. (A type statement is the
only nonexecutable statement in which a function name can

5-4 Fortran Reference Manual

Procedures and Subprograms

appear. Refer to Type Statement in Chapter 2, Fortran State-
ments.)

» If the function name is not mentioned in a type statement
and the type is not included in the FUNCTION statement
itself, the type is assigned implicitly according to the first
letter of its name.

The type associated with the function name in each referencing
program unit must agree with the type of the function as deter-
mined by the above methods.

A value must be assigned to the function subprogram name dur-
ing the execution of the function subprogram. The name may be
used as an ordinary variable. The value last assigned to the name
of the function at the time a RETURN statement is executed
within the subprogram is the value retained by the function name.

The last line of a function subprogram must be an END statement.
One or more RETURN statements can be included to return con-
trol to the calling program unit. If no RETURN statement is
included in the subroutine, the END statement returns control to
the calling program unit. Alternate returns are not allowed in
function subprograms. A function subprogram always returns to
the expression from which it was invoked.

EXAMPLES

FUNCTION time ()
INTEGER*¥4 FUNCTION add(k, 3j)
LOGICAL FUNCTION key search(char_string, key)

Values are passed to function subprograms by arguments (k and
j, char_string and key in the above examples). Refer to Using the
COMMON Statement later in this chapter. Note that an argument
list is not required.

INTEGER FUNCTION fact (n)
fact =1
DO 10 i = 2, n
fact = fact*i
10 CONTINUE
RETURN
END

The function name is associated with a value by appearing on the
left side of an assignment statement. This DO loop may execute
no times.

*
Functions
(continued)

Procedures and Subprograms

Fortran Reference Manual 5-5

Functions
(continued)

FUNCTION tot (num, sum)
REAL num
IF (num .GE. 0) THEN
tot = sum + num
ELSE
READ (5,*) tot
ENDIF
RETURN
END

The function name is associated with a value in one of two ways:
by appearing on the left side of an assignment statement or by
appearing in the input list of a READ statement.

FUNCTION nextl (back)
IF (back .GT. 1.5) THEN
CALL gtfwrd(nextl)
ELSE
CALL gtback (nextl)
ENDIF
RETURN
END

The function name is associated with a value in one of two sub-
routine subprograms. Within the subroutines, nextl must be
assigned a value.

522
Statement Functions

A statement function is a user-defined, single-statement computa-
tion that applies only to the program unit that defines it. Its form
is similar to that of an arithmetic, logical, or character assignment
statement. Only one value is derived from a statement function.
The statement function is referenced by using its symbolic name,
with an actual argument list, in an arithmetic, logical, or character
expression. A statement function can be referenced only in the
program unit that contains it.

In a given program unit, all statement function definitions must
precede the first executable statement of the program unit and
must follow any specification statements in the program unit. The
name of a statement function must not be a variable name or an
array name in the same program unit.

The type of a statement function is determined in the same way as
that of a variable. That is, it is either declared explicitly in a type
statement or determined implicitly by the name. If the type of the
statement function is not the same as that of the expression to the
right of the assignment operator (the equals sign), the expression
is converted to the proper type, following the rules in Table 2-2.

5-6 Fortran Reference Manual

Procedures and Subprograms

For example, in the following, i and j are integer expressions and
f is real. Thus, the statement function is converted to real. The
agreement rules are the same as those for assignment statements.

£(i) = 1 + 3

All arguments in the dummy argument list are simple variables,
and assume the value of the actual arguments in the same pro-
gram unit when the function is invoked. These variables are com-
pletely distinct from variable, array, function, subroutine or com-
mon block names in the program unit or in other statement func-
tions (that is, they are local to the statement function). Variables
in the statement function and not included in the argument list
assume the current value of the variable name in the program
unit. For syntax and more information about statement functions,
refer to Statement Function Statement in Chapter 2, Fortran State-
ments.

EXAMPLES

root (a,b,c)
disp(c,r,h)
indexqg(a, j)

(-b + SQRT (b*b — 4.*a*c))/(2.*a)
c*3.1416%r*xrxh
IFIX(a) + j - ic

o n

Functions
(continued)

An intrinsic function is one provided by Fortran and available to
any program. Intrinsic functions perform such operations as
value type conversions. Intrinsic functions also perform basic
mathematical functions, such as finding sines, cosines, and square
roots of numbers. Intrinsic functions available to Fortran are
listed in Table 6-1 in Chapter 6, Intrinsic Functions. The table gives
the definition of each function, the number of arguments, the gen-
eric name for each group of functions, the specific name for each
function, the types of arguments allowed, and the argument and
function type. Declaring an intrinsic function in a type statement
has no effect on the type of the intrinsic function.

In addition, note that the Stardent 1500/3000 compiler has its own
internal names for intrinsic functions that differ from those
specified in the source program (e.g. the single precision sin func-
tion is called _MA_SIN in the internal library). Thus, if you port
code which contain function names that are the same as some of
the Stardent 1500/3000 non-Fortran 77 intrinsics (e.g. ATAND),
you may have to make minor changes to the program.

523
Intrinsic Functions

Procedures and Subprograms

Fortran Reference Manual 5-7

|
Functions
(continued)

EXAMPLE

INTRINSIC float
INTEGER float
x = float (y)

The type of float is REAL, not INTEGER.

5.2.3.1 Generic Names

Generic names simplify the referencing of intrinsic functions
because the same name can be used with more than one type of
argument. '

The highest level of generic function name allows the use of one
name for any precision integer or real variable argument. For
example, in the function ABS(var), var can be an integer, short
integer, byte, real, double precision, complex, or double complex
constant, variable, or expression.

A second, lower level of generic function name allows the use of
one function name for any precision of a particular type of argu-
ment. For example, in the expression IABS(ivar), ivar is an integer,
short integer,or byte, constant, variable, or expression.

The type of the generic function result is determined by the type
of its arguments. An IMPLICIT statement or type declaration
does not change the type of an intrinsic function. If a generic or
specific name appears as a dummy argument, then that name
does not identify an intrinsic function in that program unit or
statement function.

EXAMPLE

SUBROUTINE x(log, f)
EXTERNAL log

f = log(f)
END

In this context, log is not an intrinsic function.

5-8 Fortran Reference Manual

P’rocedures ban‘d Subprograms

Functions

(continued)

A function is executed when its name appears in an expression.

SYNTAX

name ([argl, arg2, ...])

where
name is the name of the function.
arg is an actual argument.

A function reference returns a specific value of the type associated
with the function and is equivalent in usage to a variable refer-
ence of the same type. When a function reference is encountered
during the evaluation of an expression, control is passed to the
referenced function. The function is executed using the actual
arguments listed in the function reference. The function name is
assigned a value and is passed back to the referencing expression,
which continues its evaluation, using the passed value where the
function reference appeared.

The length of a character function in a character function reference

must be the same as the length of the character function in the
referenced function. A length of (*) matches all references.

EXAMPLES

o
]

z + root(a,b,c)

root is a user-defined function (defined in a function subpro-
gram) that uses the values of a, b, and ¢ to compute a value
for root.

)
I

SIN(6.5)
SIN is an intrinsic function that is used here to compute the
sine of 6.5.

o
i

Stuff ()
stuff is a user-defined function that has no arguments.

In the above examples, a real number is returned as the value of
SIN(6.5).

524

Referencing a Function

Procedures and Subprograms

Fortran Reference Manual 5-9

5.3
Procedure
Communication

Values are passed between a calling program and a procedure in
an argument list. In addition, values can be passed through com-
mon blocks to and from subprograms.

5.3.1
Using Arguments

The arguments passed by the calling program are called actual
arguments. The procedure, which is structured with dummy argu-
ments, uses the actual arguments passed to it to replace the
dummy arguments and perform the computation. For example,
when the call is made to the function subprogram from the fol-
lowing calling program unit:

6.5 -
8.3
rfunc(a,b)*3.14159

a
b
r

a and b are passed to the subprogram. The subprogram could be
the following:

FUNCTION rfunc{c,d)
rfunc = (c*d) + (d**3)
RETURN

END

Variables used as dummy arguments (like ¢ and d in the above
example) are said to be passed by reference. This means they refer
to the storage locations of the actual arguments. Changing the
values of the dummy arguments passed by reference changes the
actual arguments in the calling program unit.

Actual arguments in a subroutine call or function reference
should agree in number, order, and type with the corresponding
dummy arguments. An actual argument must be a variable (sim-
ple or subscripted), array name, substring, procedure name, con-
stant, or expression. The expression can be a character expression,
except for one involving concatenation of an operand whose
length specification is (¥), unless that operand is the symbolic
name of a constant. The actual arguments for statement functions
are limited to variables, constants, and expressions. The argu-
ment of a subroutine subprogram can also be an alternate return
specifier (described in Alternate Returns from a Subroutine earlier in
this chapter).

When a procedure name is used as an actual argument, it does not
pass a value as do other actual arguments. Instead, it passes the

5-10 Fortran Reference Manual

Procedures and Subprograms

actual subprogram name to the referenced subroutine or function.
A subprogram name used as an actual argument must appear in
an EXTERNAL statement. Intrinsic function names used as actual
arguments must appear in an INTRINSIC statement. A dummy
procedure argument that is never referenced should also appear
in an EXTERNAL statement.

EXAMPLES
func(q,r,s) = g*r/s

dummy parameters within a statement function can only be sim-
ple variables.

FUNCTION nect (z, i, j)

DOUBLE PRECISION*8
DIMENSION 3j(10)

z is a simple variable of type real, i is a double precision variable,
and j is a 10-element integer array.

SUBROUTINE add(q, £, get)
EXTERNAL get
q = get (f)

q and f are real variables and get is a function name.

Examples of Argument Correspondence

CALL subl(g, x, i, r(l), £fcn)

C .
END
SUBROUTINE subl (arry, r, inl, tmp,f)
DIMENSION arry (20)

C

r = £(inl,tmp)

q is an array name and the dummy parameter array must be
<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>