

Application Visualization
System

Developer’s Guide

MD - 2302

NOTICE

This document, and the software and other products described or referenced in it, are confidential and proprietary
products of Stardent Computer Inc. (Stardent) or its licensors. They are provided under, and are subject to, the
terms and conditions of a written license agreement between Stardent and its customer, and may not be transferred,
disclosed or otherwise provided to third parties, unless otherwise permitted by that agreement.

NO REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT, IN-
CLUDING WITHOUT LIMITATION STATEMENTS REGARDING CAPACITY, PERFORMANCE, OR SUITA-
BILITY FOR USE OF PRODUCTS OR SOFTWARE DESCRIBED HEREIN, SHALL BE DEEMED TO BE A
WARRANTY BY STARDENT FOR ANY PURPOSE OR GIVE RISE TO ANY LIABILITY OF STARDENT
WHATSOEVER. STARDENT MAKES NO WARRANTY OF ANY KIND IN OR WITH REGARD TO THIS
DOCUMENT, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE.

STARDENT SHALL NOT BE RESPONSIBLE FOR ANY ERRORS THAT MAY APPEAR IN THIS DOCU-
MENT AND SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION INCI-
DENTAL, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES, ARISING OUT OF OR RELATED TO
THIS DOCUMENT OR THE INFORMATION CONTAINED IN IT, EVEN IF STARDENT HAS BEEN AD-
"VISED OF THE POSSIBILITY OF SUCH DAMAGES.

The specifications and other information contained in this document for some purposes may not be complete, cur-
rent or correct, and are subject to change without notice. The reader should consult Stardent for more detailed and
current information. ' :

Copyright © 1989, 1990
-Stardent Computer Inc.
All Rights Reserved

STARDENT is a trademark of Stardent Computer Inc.
AVS is a trademark of Stardent Computer Inc.

ETHERNET is a registered trademark of Xerox Corporation.
FIGARO is a trademark of Megatek Corporation.
IBM is a trademark of International Business Machines.

DEC and VAX are registered trademarks of Digital Equipment Corporation,
NFS was created and developed by, and is a trademark of Sun Microsystems, Inc.
UNIX and DOCUMENTER’S WORKBENCH are registered trademarks of AT&T.
HP is a trademark of Hewlett-Packard.

TELETYPE is a trademark of AT&T.

X WINDOW SYSTEM is a trademark of MIT.

RESTRICTED RIGHTS LEGEND (U.S. Department of Defense Users)

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of
the Rights In Technical Data and Computer Software clause at DFARS 252.227-7013.

Stardent Computer Inc.
95 Wells Avenue
Newton, MA 02159

RESTRICTED RIGHTS NOTICE (U.S. Government Users excluding DoD)

Notwithstanding any other lease or license agreement that may pertain to, or accompany the delivery of this com-
puter software, the rights of the Government regarding its use, reproduction and disclosure are as set forth in the
Commercial Computer Software — Restricted Rights clause at FAR 52.227-19(c)(2).

Table of Contents

Chapter 1
Overview

1-1 Modules
1-1 Data Types
1-2 Networks
1-2 Data Flow

Chapter 2
AVS Data Types

2-2 Bytes
2-2 Integers
2-3 Floating-Point Numbers
2-3 Text Strings
2-3 Fields
2-16 Colormaps
2-17 Geometries
2-19 Pixel Maps

Chapter 3
AVS Modules

3-1 Modules
3-1 Module Components
3-6 Subroutines and Coroutines
3-9 Handling Errors in Modules
3-10 Selective Computation
3-11 Building and Linking Modules
3-12 Converting an Existing Application to a Module
3-13 Debugging Modules
3-15 Module Examples

Appendix A
AVS Routines

A-1 Routines for Module Description Functions
A-10 Routines for Modifying and Interpreting Parameters
A-12 Routines for Coroutine Modules
A-14 Routines for Selective Computation
A-15 Routines for Creating Fields
A-18 Routines for Module Initialization
A-19 Routines for Handling Errors

Stardent Application Visualization System | Developer's Guide — 002425-001 Rev A iii

v

B-1
B-1
B-2
B-3

C-1
C-3
C-4

D-1
D-1

Appendix B
AVS C Language Field Macros

Macros for Obtaining Field Dimensions

Macros for Obtaining Elements of a Scalar Data Array
Macros for Obtaining Elements of a Vector Data Array
Macros for Obtaining Rectilinear Coordinate Arrays
Macros for Obtaining Coordinates for 3D Data Elements

Appendix C
Examples of AVS Modules

A C Language Subroutine Module
A FORTRAN Subroutine Module
A C Language Coroutine Module

Appendix D
On-Line Help for Your Modules and Networks

Help Files — Format and Naming Conventions
Integrating Your Help Files into the Help System

Stardent Application Visualization System | Developer's Guide — 002425-001 Rev A

1

Overview

1-1

1-1

1-2

1-2

Table of Contents

Chapter 1
Overview

Modules
Data Types
Networks

Data Flow

The AVS system allows users to dynamically connect software modules to cre-
ate data flow networks for scientific computation. These modules pass data of
mutually agreed upon types between each other. Programmers can extend AVS
by developing new modules. There are a variety of ways in which modules can
be integrated into AVS. These allow the user a spectrum between dynamic
configuration and maximum efficiency.

This document describes what a programmer needs to know to write an AVS
module. The document assumes an elementary understanding of the concept of
a data flow network and a working knowledge of either the C or the FORTRAN
programming language. It also assumes familiarity with AVS on the user level.
For AVS user documentation, see the AVS User’s Guide.

Modules

The fundamental unit of computation in AVS is the module. Modules process
inputs to generate outputs. Modules are intended to be fairly high-level units of
computation. For example, a module might be designed to compute a threshold
for a scalar field, but it would be inappropriate to design a module to add two
numbers. Modules also have parameters that the user can adjust at run time to
affect the action of the computation.

A programmer can extend the capabilities of AVS conveniently by writing a
new module. Because AVS operates on fairly general data types, a new module
can work together with pre-existing modules to perform computation.,

Most modules consist of two functions: the description function and the compu-
tation function. These functions can be written in either the C language or
FORTRAN. The description function describes what data the module takes as
input and what data it produces as output as well as the parameters that control
its behavior. The computation function does the real work of the module. Itisa
function that is called with its inputs, parameters, and outputs as arguments.
The computation function typically operates on the inputs and parameters to
produce new output.

There are two kinds of modules, subroutine modules and coroutine modules. A
subroutine module is invoked by AVS, usually whenever its inputs or parame-
ters change. A coroutine module executes independently, obtaining inputs from
AVS and sending outputs to AVS whenever it wants. In this document, module
generally refers to a subroutine module, and coroutine refers to a coroutine
module.

Many existing simulations and other scientific applications can be converted
easily into AVS coroutine modules. Conversions steps include making the
application use AVS data types, inserting calls to transmit data to and from
AVS, and writing a description function.

Data Types

..

There are two general classes of data in the system: primitive data and aggre-
grate data. Primitive data items are simple objects such as floating point num-
bers and text strings. Aggregate data items are the large chunks of data that
characterize modern scientific applications. One fundamental type of aggregate
data is called fields. These implement array structures (either uniform or non-
uniform, scalar or vector) as well as unconnected and irregular structures. AVS
also has other types of aggregate data, including geometries, colormaps, and
pixel maps.

Stardent Application Visualization System | Developer's Guide — 002425-001 Rev A 1-1

Networks

In general, modules process aggregate data and use primitive data as parameters
(although there are exceptions, and usually any type of data can be used in any
situation). Parameters can be modified by the user at runtime using various
interactive mechanisms such as dials, sliders, and browsers.

..

Data Flow

An AVS user builds an application by constructing a network of modules. A
typical network might consist of modules performing three kinds of tasks:

O Importing data from outside AVS (or generating their own data) and con-
verting it into data of one of the AVS data types.

Q Transforming AVS data in some way, producing output data of the same or
of a different AVS type.

U Rendering or storing AVS data on an external device, such as the display
screen or a file.

A module can receive data through an input port and transmit data through an
output port. A user who connects two modules is actually connecting an output
port of one module to an input port of another module. Two ports can be con-
nected when they have matching AVS data types.

..

The purpose of constructing a network is to provide a data-processing pipeline
in which, at each step, the output of one module becomes the input of another.
In this way, data can enter AVS, flow through the modules of a network, and
finally be rendered on a display or stored outside AVS.

This process requires that each module in a network be invoked at the appropri-
ate time. For a subroutine module, the computation function must be executed
whenever the inputs or parameters change. AVS has a flow executive that is
normally active during the life of the application. The flow executive super-
vises data movement between modules, keeping track of which inputs and
parameters have changed and invoking modules in the correct order.

AVS uses a remote procedure call mechanism to establish communication
between modules. When the user starts up a module, AVS creates a new pro-
cess in which that module runs. It also sets up a connection between the
module and AVS. Both sides use remote procedure calls to communicate
through this connection.

AVS allows coroutine modules to execute independently. A coroutine is often a
simulation or animation, an application that executes multiple times to produce
a series of frames or data sets. AVS communicates with coroutine modules
through the same sort of remote procedure call mechanism it uses to communi-
cate with subroutine modules.

In this release, only one module executes at a time; modules do not execute in
parallel.

Stardent Application Visualization System | Developer's Guide — 002425-001 Rev A

2

AVS Data Types

2-2

2-2

2-3

2-3

2-3

2-3

2-5
2-10
2-12
2-12
2-13
2-15
2-15
2-15
2-16

2-16

2-17
2-17

2-19

Table of Contents

Chapter 2
AVS Data Types

Bytes

Integers

Floating-Point Numbers
Text Strings

Fields

Mapping Computational Space to Coordinate Space
Examples of Field Mappings

Field Components

Declaring Fields

Manipulating Fields from C
Manipulating Fields from FORTRAN
Creating Fields

Scatter Data

Image Data

Volume Data

Colormaps

Geometries
Manipulating Edit Lists

Pixel Maps

AVS promotes software reusability by defining a set of general, common data
types for module writers to use. Some of the data types have general and
specific versions; for example, a "field" is general, but a "2D field" is more
specific. The more general the data a module can handle for input, the more
modules it can be connected to and, therefore, the more reusable it is.

The data types supported in AVS can be broken into two categories: primitive
data and aggregate data. Primitive data types are bytes, integers, reals, and
strings. Aggregate types are fields, colormaps, geometries, and pixel maps. In
general, primitive data types are used for parameters and aggregate types are
used for data being passed between modules, but there are many exceptions to
this, and the system makes no distinction between the data types.

The currently supported AVS data types are these:

O Byte implements 8-bit bytes.

Integer implements standard 32-bit integers.

Real implements 32-bit IEEE single-precision floating-point numbers.

a
a
O String implements simple text strings.

Q Field implements n-dimensional arrays with scalar or vector data at each
point. Fields also have support for arbitrary rectilinear or irregular coordi-
nate systems, and they can represent lists of points in coordinate space.
Fields can contain floating-point, integer, or byte data.

Q Colormap implements a transfer function that can be used to map a func-
tional value into color and opacity values.

Q Geometry implements geometric descriptions which can be used by the
geometric renderer to view objects. Geometry objects are usually created
using calls to subroutines in the geom library; see the geom(3V) manual
page for more information.

O Pixel map is actually a reference to the X server’s representation of the ren-
dered form of an image.

Fields can be considered AVS’s fundamental data type. They use the full gener-
ality of AVS’s type system to span a set of commonly used data types. This
allows programmers to write modules that are as general as is appropriate for
the application while allowing optimized algorithms to be used for specific
cases. Typically the output data from a standard scientific simulation can be
represented as a field. AVS routines allow conversion of standard arrays of data
to fields.

‘When AVS calls a C language computational routine, it usually passes an ele-
ment of a certain data type as a pointer to that element. Most data types are rep-
resented as structures, which are defined in type-specific include files. Some
simple types, such as integers, are simply passed directly. C routines typically
get direct pointers to the data for inputs and parameters, but pointers to pointers
used to allocate the data for outputs. Therefore, a module that takes a field as
input and produces a field as output is called as follows:

module_compute (field in, field out)

/* note double indirection for field out */

AVSfield float *field in, **field out;

{

float *data_out;
AVSfield float *result;

dim0 = MAXX (field in);
diml = MAXY (field.in);
dim2 = MAXZ (field in);

Stardent Application Visualization System | Developer’s Guide — 002425-001 Rev A 2-1

compute

data_out = (float *) malloc(dimO*diml*dim2*sizeof (float));
result = AVSbuild 3d field(data_out, dim0, diml, dim2):;

*field out = result;
return(1l);

Since FORTRAN programs typically do not use structures in the same way as C
programs, FORTRAN computation routines get their arguments as separate
elements. For example, a subroutine that takes a 3D scalar field as input gets
arguments in this form:

FUNCTION COMPUTE(F, NX, NY, NZ,...)

where F is a 3D array with dimensions NX, NY, NZ. AVS attempts to make the
arguments to the computation function a natural representation of that data type
for the programmer. The implication of this is that the computation routine
written in FORTRAN often has more formal arguments than there are inputs,
outputs, and parameters, with multiple formal arguments representing a single
input, output, or parameter.

The following table summarizes the type declarations used for arguments to
module computation functions that correspond to input ports, parameters, and
output ports:

TABLE 2-1. C and FORTRAN Type Declarations for AVS Data Types

AVS CInput or Param- C Output FORTRAN Input or FORTRAN

Data Type eter Data Type Data Type Parameter Data Type Output Data Type

byte char char * BYTE BYTE

integer int int * INTEGER INTEGER

real float * float ** REAL Pointer to REAL

string char * char ** CHARACTER*(*) Pointer to CHARACTER*(*)
field AVSfield * AVSfield *x — —

colormap AVScolormap * AVScolormap ** — —_

geometry GEOMaedit_list GEOMedit_list* INTEGER INTEGER

pixel map AVSpixdata *

AVSpixdata ** — —

A field is passed to a FORTRAN computation routine as multiple arguments;
see the “Fields” section below. A FORTRAN computation routine cannot take
a colormap or a pixel map as an argument.

...

..

Bytes are declared using the data type "byte". A byte is passed to a computa-
tion routine in C as a char (char * for output) and to a subroutine in FORTRAN
asaBYTE.

...

Integers are declared using the type "integer”. On Stardent systems the most
significant bit is stored first. An integer is passed to a subroutine in C as an int
(int * for output) and to a subroutine in FORTRAN as an INTEGER. AVS has
a number of data types for parameters that are also represented as integers:
"boolean", "tristate", and "oneshot". See the documentation for the
AVSadd_parameter routine in the appendix “AVS Routines”.

Stardent Application Visualization System | Developer's Guide — 002425-001 Rev A

Floating-Point Numbers

..

AVS supports floating-point numbers in IEEE format. Single-precision
floating-point numbers are declared using the type "real". This corresponds to
the C type float and to the FORTRAN type REAL or REAL*4. A single-
precision floating-point number is passed to a computation routine in C as a
float * (float ** for output) and to a subroutine in FORTRAN as a REAL (a
pointer to a REAL for output).

Text Strings
Text strings are the standard one-dimensional character strings. A character
string is declared using the type "string". It is passed to a computation routine
in C as a char * (char ** for output) and to a subroutine in FORTRAN as a
CHARACTER *(*) (a pointer to a CHARACTER *(*) for output).
Fields

...

A field is a general representation for an array of data. The array can have any
number of dimensions, and the dimensions can be of any size. Each data ele-
ment in the array can consist of one value or a vector of values. All values in
the array are of one of four types: character (byte), integer, single-precision
floating-point, or double-precision floating-point.

A field is often used to represent data elements that correspond to points in
space. For example, each data element of a three-dimensional field might be a
vector of values representing temperature, pressure, and velocity at some point
in a volume of fluid. The field has an implicit or explicit mapping of data ele-
ments to coordinates that represent the corresponding points in space. In other
words, a field is a relation between two kinds of space: the computational space
of the field data and the coordinate space to which the field data is mapped.

Mapping Computational Space to Coordinate Space

..

................

AVS assumes that the computational space is logically rectangular. In the com-
putational domain, the mesh is similar to a uniformly spaced lattice in Cartesian
space. In this logical space, each dimension of the data array forms a perpendi-
cular axis beginning at the origin, and the interval between data elements is 1
for each dimension.

AVS supports three types of mapping between computational and coordinate
space: uniform, rectilinear, and irregular.

Uniform Fields

In uniform fields, the coordinate mapping is direct and implicit. Coordinate
space has the same number of dimensions as computational space. Each dimen-
sion of computational space is implicitly mapped to the corresponding axis of
coordinate space. The first dimension of computational space is implicitly
mapped to the X axis, the second dimension is implicitly mapped to the Y axis,
and so on. In each dimension, the coordinate that corresponds to a given data
element is the index of that element in the data array. The data is mapped to a
uniformly spaced lattice in Cartesian space. Each cell is a constant-length line
segment for a 1D field, a square for a 2D field, a cube for a 3D field, or a hyper-
cube for a field of higher dimensions. Because the coordinate mapping is
implicit, the field does not need any coordinate information separate from the
data array.

Stardent Application Visualization System | Developer's Guide — 002425-00] Rev A 2-3

2-4

Rectilinear Fields

In rectilinear fields, as in uniform fields, coordinate space has the same number
of dimensions as computational space. Each dimension of computational space
is explicitly mapped to the corresponding axis of coordinate space. The first
dimension of computational space is mapped to the X axis, the second dimen-
sion is mapped to the Y axis, and so on. As in uniform fields, the data is mapped
to a lattice in Cartesian space. However, each dimension of the data array has a
separate and explicit coordinate mapping. The spacing of data elements along
each axis need not be uniform. Each cell is a variable-length line segment for a
1D field, a rectangle for a 2D field, a rectangular parallelepiped for a 3D field,
and so on. The cell dimensions can vary from one cell to the next within the
field. '

Irregular Fields
In irregular fields, coordinate space might not have the same number of dimen-
sions as computational space. Each data element in computational space is

“explicitly mapped to a point in coordinate space. This allows for a variety of

mappings. For example, a 3D computational space can be mapped to a 3D
coordinate space in which each cell has curvilinear bounds. A 1D computa-
tional space can be mapped to a 2D or 3D coordinate space that does not have
cells, but rather consists of a set of “scattered’’ points with a data element at
each point.

AVS Mapping Information
AVS needs information in different forms to specify the three mappings.

For a uniform field AVS needs no explicit mapping information. The X coordi-
nate for a data element is simply the subscript of the data element along the first
dimension of computational space; the Y coordinate is the subscript of the data
element along the second dimension of computational space; and so on.

For a rectilinear field AVS needs a mapping from each dimension of computa-
tional space to the corresponding axis of coordinate space. The mapping con-
sists of one X value for each subscript along the first dimension of computa-
tional space, one Y value for each subscript along the second dimension of com-
putational space, and so on. The total number of values in the mapping is the
sum of the dimensions of the field in computational space.

For an irregular field AVS needs a mapping from each data element in computa-
tional space to a point in coordinate space. The mapping consists of a set of
coordinates (X, Y, and so on) for each data element. The total number of values
in the mapping is the product of each dimension in computational space and the
number of dimensions in coordinate space.

The following table summarizes these mappings:

Stardent Application Visualization System | Developer’s Guide — 002425-001 Rev A

Stardent Application Visualization System | Developer's Guide — 002425-00] Rev A

TABLE 2-2. Field Mappings of Computational to Coordinate Space

Coordinates for

Mapping Mapping Information Data Element (i, j, ...)
Uniform Implicit Computational Dimension X=i

to Coordinate Axis Y=j
Rectilinear Explicit = Computational Dimension X=X()

to Coordinate Axis Y=Y(j)
Irregular Explicit Computational Element X=X(@,j,..)

to Coordinate Point Y=Y(@,j,..)

Examples of Field Mappings

..

This section presents several examples of fields and their mappings from com-
putational to coordinate space.

Example 1
A data set consists of 25 data elements, each representing F (X) for a given
value of X. The field consists of 25 elements:

{F X @), i=1,25}

The computational space is one dimensional with 25 values for F (X). The
coordinate space is also one dimensional with 25 X coordinates, one for each
value of F (X). The spacing between points in X is not constant, so the field is
rectilinear or irregular.

Figure 1 shows the mapping between computational and coordinate space. It
also presents a line graph, F (X (i)) vs. X (i), of the relation between the data
elements and the coordinate values.

Figure 2-1. Example 1

""""""" F(X (D)
X(@@)
OO IITTTTITITITITTTIT) I A N O N N NN 1 o |
i X(@)
Computational Space Coordinate Space
Following is a summary of the field characteristics:
Data type: Floating-point
Number of values per data element: 1
Number of computational dimensions: 1
Computational dimensions: 50
Number of computational values: 1+¥50=150
Mapping type: Rectilinear or irregular
Number of coordinate dimensions: 1
Number of coordinate values: 50

Suppose that each data element in this example consisted of a two-component
velocity vector. In this case the field characteristics would be as follows:

Data type: Floating-point
Number of values per data element: 2
Number of computational dimensions: 1
Computational dimensions: 50
Number of computational values: 2%50=100
Mapping type: Rectilinear or irregular
Number of coordinate dimensions: 1
Number of coordinate values: 50
Example 2

A scalar field is defined as a two-dimensional mesh, with nonconstant spacing
between both X and Y values. The field consists of 500 elements:

{F X @), Y(()), i=1,20, j:1,25}
The field is rectilinear, with 20 X coordinates and 25 ¥ coordinates. Each cell in
coordinate space is rectangular. Figure 2 shows the mapping between

computational and coordinate space.

2-6 Stardent Application Visualization System | Developer's Guide — 002425-001 Rev A

i X(@)

Computational Space Coordinate Space

Following is a summary of the field characteristics:

Data type: Floating-point

Number of values per data element: 1

Number of computational dimensions: 2

Computational dimensions: 20%x25

Number of computational values: 1%20%25 = 500

Mapping type: Rectilinear

Number of coordinate dimensions: 2

Number of coordinate values: 20425 =45
Example 3

A two-dimensional mesh is mapped to a sphere. One dimension of the mesh, u,
corresponds to lines of equal longitude on the sphere. The other dimension of
the mesh, v, corresponds to lines of equal latitude on the sphere. The field con-
sists of 500 elements:

{F X w,v), Y(u,v), Z(u,v)), u=1,20, v=1,25}

The field is irregular, with 500 X coordinates, 500 Y coordinates, and 500 Z
coordinates. Each cell in coordinate space has curvilinear bounds. Figure 3
shows the mapping between computational and coordinate space.

Stardent Application Visualization System | Developer's Guide — 002425-001 Rev A 2-7

Figure 2-3. Example 3

Y(u, v)

u X(u, v)

Computational Space Z(u, V)

Coordinate Space

Following is a summary of the field characteristics:

Data type: Floating-point

Number of values per data element: 1

Number of computational dimensions: 2

Computational dimensions: 20x25

Number of computational values: 1%20%25 =500

Mapping type: Irregular

Number of coordinate dimensions: 3

Number of coordinate values: 3%20+25=1500
Example 4

A two-dimensional image is represented by a mesh of data elements, each of
which specifies the value of a pixel. Each data element is a vector of four bytes
that specify the three color components and an alpha channel. The field con-
sists of 65536 elements, each with four values:

{V,,(i,j), i=1,256, j=1,256, n=1,4}

The field is uniform.

Following is a summary of the field characteristics:

Data type: Byte

Number of values per data element: 4

Number of computational dimensions: 2

Computational dimensions: 256x%x256

Number of computational values: 4%256+256 = 262144
Mapping type: Uniform

Number of coordinate dimensions: 2

Number of coordinate values: 0

Stardent Application Visualization System | Developer’s Guide — 002425-001 Rev A

Example 5

A medical imaging data set contains 100 evenly spaced scan planes, each with a
resolution of 256x256 pixels. Each data element is a single byte. The field con-
sists of 6553600 elements:

{F @i.j.k), i=1,256, j=1,256, k=1,100}

The field is uniform.

Following is a summary of the field characteristics:
Data type: Byte
Number of values per data element: 1
Number of computational dimensions: 3
Computational dimensions: 256x256x100
Number of computational values: 1%256+ 256+ 100 = 6553600
Mapping type: Uniform
Number of coordinate dimensions: 3
Number of coordinate values: 0

Example 6

A fluid dynamics application is a three-dimensional simulation of fluid flow
through a nozzle. Each data element has five values: a three-component veloc-
ity vector, temperature, and density. The field consists of 576 elements, each
with five values:

{VA(X(i,j,k), Y(i.j.k), Z(i,j.k)), i=1,12, j=1,8, k=1,6, n=1,5}

The field is irregular, with 576 X coordinates, 576 ¥ coordinates, and 576 Z
coordinates. Many of the cells in coordinate space have curvilinear bounds.
Figure 4 shows the mapping between computational and coordinate space.

Figure 2-4. Example 6

1y

]
|

\ AT
Vit
Wt

Computational Space Coordinate Space

i X(@, j, k)

Z(i,j, k)

Following is a summary of the field characteristics:

Stardent Application Visualization System | Developer’s Guide — 002425-001 Rev A 2-9

Data type: Floating-point

Number of values per data element: 5)
Number of computational dimensions: 3 (
Computational dimensions: 12x8%6)
Number of computational values: 5%12%8+6 =2880

Mapping type: Irregular

Number of coordinate dimensions: 3

Number of coordinate values: 3%12+8+%6=1728

Field Components

..........................

...

As represented in AVS, a field has the following components:

a
]

2-10

The number of dimensions in computational space. This is an integer.

The dimensions in computational space. This is an array of integers whose
length is the number of dimensions in computational space. Each element
of the array is the number of data elements along the corresponding dimen-
sion of computational space.

The number of variables or values for each data element. This is an integer.
A field with one value for each data element is a scalar field. A field with
more than one value for each data element is a vector field. A field can also
consist only of coordinates, with no values for each data element; in this
case the field represents a list of points in coordinate space.

The data type of each value for the data elements. This is an.integer. The

data type can be character (byte), integer, single-precision floating-point, or
double-precision floating-point. AVS defines a constant to represent each

data type: AVS_TYPE_BYTE, AVS_TYPE_INTEGER,

AVS TYPE REAL, and AVS_TYPE_DOUBLE. These constants are (
defined in the include files <avs/avs.h> for C programs and <avs/avs.inc> ’
for FORTRAN programs. '

The array of data elements representing the computational space of the
field. Each element of the array is a value for a data element of the field.
For a vector field, this array has one more dimension than the number of
dimensions in computational space; the extra array dimension is the num-
ber of values per data element. The size of the array is the product of each
dimension in computational space and the number of values per data ele-
ment. The elements of the array are stored in “FORTRAN” order, with all
values for each data element kept together. The array subscript for the
value per data element varies fastest, followed by the subscript for the first
dimension, the subscript for the second dimension, and so on. If n_value is
the subscript for the value per data element and i, j, and & are the subscripts
for the first, second, and third dimensions, respectively, the array is
accessed in C as follows:

datalk] [J][i] [n_value]
The same array is accessed in FORTRAN as follows:
DATA (N_VALUE, I, J, K)

AVS has a number of macros to make access to this array more convenient
for C language programmers. See the appendix “AVS C Language Field
Macros”.

A flag indicating the type of mapping from computational space to ,
coordinate space. This is an integer, one of the following constants: (
UNIFORM, RECTILINEAR, or IRREGULAR. These constants are

defined in the include files <avs/field.h> for C programs and <avs/avs.inc>

Stardent Application Visualization System | Developer’s Guide — 002425-001 Rev A

for FORTRAN programs.

Q The number of dimensions in coordinate space. This is an integer. For a
uniform or rectilinear field, this is the same as the number of dimensions in
computational space. For an irregular field, this can differ from the number
of dimensions in computational space.

O For arectilinear or irregular field, an array of floating-point values
representing the coordinates of the field.

For a rectilinear field, this array contains one X value for each subscript
along the first dimension of computational space, one Y value for each
subscript along the second dimension of computational space, and so on.
The coordinate array has one dimension, and the size of the array is the sum
of the dimensions in computational space. All the X coordinates
corresponding to the first dimension of computational space are stored first;
all the Y coordinates corresponding to the second dimension of
computational space are stored second; and so on. If i, j, and k are the
subscripts for the first, second, and third dimensions of computational
space, and if idiml1, idim2, and idim3 are the first, second, and third
dimensions of computational space, the X, Y, and Z coordinates are
obtained in C as follows:

X = coords[i]
coords [idiml + j]
coords [idiml + idim2 + k]

[}

z

The coordinates are obtained in FORTRAN as follows:

X COORDS (I)
Y COORDS (IDIM1 + J)
Z = COORDS(IDIM1 + IDIM2 + K)

For an irregular field, this array contains a set of coordinates (X, Y, and so
on) for each data element in computational space. The coordinate array has
one more dimension than the number of dimensions in computational
space; the extra array dimension is the number of dimensions in coordinate
space. The size of the array is the product of each dimension in
computational space and the number of dimensions in coordinate space.
All the X coordinates are stored first, then all the ¥ coordinates, and so on.
The subscript for the first dimension of computational space varies fastest,
followed by the subscript for the second dimension of computational space,
and so on. The subscript for the dimension of coordinate space (X, Y, and
so on) varies most slowly. If n_coord is the subscript for the dimension of
coordinate space and i, j, and k are the subscripts for the first, second, and
third dimensions of computational space, the array is accessed in C as
follows:

coords[n_coord] [k] []][1]
The same array is accessed in FORTRAN as follows:
COORDS (I, J, K, N_COORD)

AVS has a number of macros to make access to this array more convenient
for C language programmers. See the appendix “AVS C Language Field
Macros™.

Stardent Application Visualization S ystem | Developer's Guide — 002425-001 Rev A 2-11

2-12

Declaring Fields

..

When declaring or allocating fields, a programmer uses a field type string. This
string consists of the word "field" followed by words describing each of the
ways in which the field is specialized, such as "field 3D scalar uniform float".
When declaring input and output ports (with AVSadd_input_port or
AVSadd_output_port), you can leave out particular specifications to indicate
that your module can accept or produce a more general data type. For example,
a module writer can declare an input port as accepting "field scalar” to indicate
that that module accepts any type of scalar field.

The AVS flow executive does not permit a user to connect a module’s output to
another module’s input if the output and input are declared to be conflicting
types of fields. For example, AVS does not allow a "field 2D" output to be con-
nected to a "field 3D" input. However, AVS does allow an output and an input
to be connected if one is a subtype of another. For example, AVS allows a
"field" output to be connected to a "field 2D" input.

If a module accepts some subtypes of fields but not all, it should check the
inputs and signal an error if the input is of a type it doesn’t accept. Thatis,if a
module accepts 2D and 3D scalar uniform fields of floating-point numbers, it
should declare the input as "field scalar uniform float", and then the module’s
computation routine should check the number of dimensions in the input field.

In a field declaration, the word "field" is mandatory and is always the first word
in the string. Specializing words are optional and can appear in any order. The
following table lists possible specializing words:

TABLE 2-3. Field Declarations

Field Component Value Specializing Words

Number of Dimensions n "nD"

Vector Length 1 "scalar"”, "1-vector"
n "n-vector"

Data Type byte "byte", "char”
integer "integer"”, "int"
real "real", "float"
double "double", "real*8"

Number of Coordinates n "n-coord", "n-space"

Mapping Type uniform "uniform"
rectilinear "rectilinear”
irregular "irregular”

For the number of dimensions of coordinate space, any string beginning with
"n-coord" is acceptable. For example, AVS recognizes "n-coords”, "n-
coordinate”, and "n-coordinates”.

Manipulating Fields from C

..

When a C language module has declared an input port, output port, or parame-
ter to be a field, the computation routine is called with one argument corre-
sponding to each field. If the field is an input port or parameter argument, the
subroutine parameter is declared as AVSfield*. If the field is an output port, the
subroutine parameter is declared as AVSfield *#.

The type AVSfield is a structure defined in <avs/field.h>. Actually, there are
four different kinds of field, one for each of the data types that fields support:

Stardent Application Visualization System | Developer's Guide — 002425-001 Rev A

Field Type Data Type

AVSfield_char Byte
AVSfield_int Integer
AVSfield_float Real
AVSfield_double Double

The only difference between these types is the type declaration for the data
array. For the generic type AVSfield, the data is defined to be a union. See
<avs/field.h> for more information.

An AVSfield structure laid out as follows (using AVSfield_char as an example):

typedef struct {

int ndim; /* no. of computational dimensions */

int nspace; /* no. of coordinate dimensions */

int veclen; /* no. of values per data element */

int type; /* data type */

int size; /* size of each value in data element */

int single_block; /* internal, true if field is single malloc */
int uniform; /* mapping type: UNIFORM, etc. */

int *dimensions; /* dimension along each axis; length is ndim */
float *points; /* coordinates for nonuniform fields */

unsigned char *data; /* the field data itself as chars (bytes)*/
} Avsfield char;

To illustrate the relation between field declarations and elements of the field
structure, we use the example of a field representing fluid flow through a nozzle.
The field has three dimensions in computational space, 12x8x6. Each data
element has five floating-point values. The field is irregular with a three-
dimensional coordinate space. The declaration for that field is as follows:

"field 3D 5-vector real 3-coordinate irregular"

The corresponding members of the AVSfield structure and their values are as

follows:
ndim 3
nspace 3
veclen 5
type AVS TYPE_REAL
size sizeof (float)
uniform IRREGULAR
dimensions dims[3] = { 12, 8, 6 }
points coords[3][6][8]([12]
data data[6][8]1([12][5

The include file <avs/field.h> defines preprocessor macros to help C
programmers gain access to the components of a field, including the dimensions
in computational space, the data array, and the coordinate array. See the
appendix “AVS C Language Field Macros” for more information.

Manipulating Fields from FORTRAN

...

In passing fields as arguments to FORTRAN subroutines, AVS generates sev-
eral arguments for each input port, output port, or parameter declared to be a
field. For example, a computation routine that takes as its first input port a
"field 3D 3-vector real rectilinear” is defined as follows:

FUNCTION COMPUTE (DATA, NX, NY, NZ, COORDS, ...)
DIMENSION DATA(3, NX, NY, NZ)
DIMENSION COORDS (NX + NY + NZ)

Stardent Application Visualization System | Developer’'s Guide — 002425-001 Rev A 2-13

In this example the single input port has generated five function arguments.
The argument DATA represents the data of the field, the arguments NX, NY, and
NZ represent the three dimensions of the field in computational space, and
COORDS provides the rectilinear mapping from computational space to
coordinate space. The coordinates for the data element DATA(N, I, J, K) are as
follows:

X = COORDS(I)
Y = COORDS(NX + J)
Z = COORDS(NX + NY + K)

To see how the subroutine arguments change based on how the input is defined,
assume that the function above takes two-dimensional data instead of three
dimensional data; it is declared as a "field 2D 3-vector real rectilinear”. Then
the computation function is defined as follows:

FUNCTION COMPUTE (DATA, NX, NY, COORDS, ...)
DIMENSION DATA(3, NX, NY)
DIMENSION COORDS (NX + NY)

Finally, assume that the field is irregular, with a two-dimensional coordinate
space. The field is declared as a "field 2D 3-vector real 2-coordinate irregular”.
Then the computation function is defined as follows:

FUNCTION COMPUTE (DATA, NX, NY, NCOORD,
+ COORDS, ...)

DIMENSION DATA (3, NX, NY)

DIMENSION COORDS (NX, NY, NCOORD)

The following table defines the arguments to a FORTRAN computation
function for the complete combination of possible field declaration strings:

TABLE 2-4. Field Arguments to FORTRAN Routines

Field Port Input or Parameter Output
Component Specification Argument(s) Argument(s)
Data Vector Length Not 0 Array: DATA(*) Pointer to DATA(*)
Vector Length =0 [No Argument] [No Argument]
Number of Not Specified NDIM NDIM
Dimensions Specified [No Argument] [No Argument]
Dimensions NDIM Not Specified Array: IDIMS(NDIM) Pointer to IDIMS(NDIM)
NDIM Specified IDIM1, IDIM2, IDIM3, ... IDIM1, IDIM2, IDIM3, ...
Not Specified IVLEN IVLEN
V
ector Length Specified [No Argument] [No Argument]
Data T Not Specified ITYPE ITYPE
pe Specified [No Argument] [No Argument]
Not Specified IFLAG, NCOORD, COORDS(*) IFLAG, NCOORD, Pointer to COORDS(*)
Mapping T Rectilinear COORDS(*) Pointer to COORDS (*)
PPIE VP yrregular NCOORD, COORDS(*) NCOORD, Pointer to COORDS (+)
Uniform [No Argument] [No Argument]
In this table, you can determine the order of the arguments by reading down the
left-hand column. Thus, for a field, if the vector length is declared to be other
than 0, the data array is always the first argument. If the number of dimensions
is not specified in the declaration string, the number of dimensions is always the
next argument. If there is a [No Argument] in the column specifying the
2-14 Stardent Application Visualization System | Developer's Guide — 002425-001 Rev A

(

condition that matches the declaration string you’re using, there is no argument
at all corresponding to that field component.

In the following example, a computation routine has a field input argument and
a field output argument. Both the input port and the output port are specified as
"field 3D scalar real uniform".

FUNCTION COMPUTE(F, NX, NY, NZ, GP, MX, MY, MZ)
DIMENSION F(NX, NY, NZ), G(NX, NY, N2Z)
POINTER (GP, G)

MX = NX

MY = NY
MZ = NZ

GP = MALLOC (NX*NY*NZ*4)

In this example, the computation routine maps one 3D field onto another. The
actual computation has been omitted; instead we focus on the setup and
allocation. The first four arguments to the subroutine represent the input port
and the second four arguments represent the output port. Note that the input
array is presented directly while the output array is presented via a pointer so
that we can allocate the space for it. We do this by setting MX, MY, and MZ and
then using the MALLOC(3C) routine to allocate the array. (In the call to
MALLOC, 4 is the number of bytes in a REAL data value.)

Creating Fields

array of coordinates. The general routine is AVSbuild_field.
AVSbuild_2d_field and AVSbuild_3d_field are simpler interfaces for scalar
uniform fields with floating-point data. These routines return a pointer to an
AVSfield structure. See the appendix “AVS Routines’ for more information.

Scatter Data

A scatter is a list of points in coordinate space with an optional scalar or vector
data element for each point. AVS represents scatters as 1D irregular fields. For
example, a scatter with scalar real data and 3D coordinates would be declared
as a "field 1D scalar real 3-coordinate irregular”. The one dimension of the field
in computational space is the number of points in the scatter. The length of the
data array is the product of the number of points in the scatter and the number
of values per data element at each point.

A module can declare a scatter to have no data by declaring the vector length to
be 0. For example, a scatter with no data and 3D coordinates would be declared
as "field 1D O-vector 3-coordinate irregular”. Such a field has no data array.
The number of dimensions should still be declared to be 1, and the one dimen-
sion of the field in computational space is still the number of points in the scat-
ter. This dimension is necessary to calculate the length of the coordinate array.

Image Data

AVS generally represents two-dimensional images as 2D uniform vector fields.
Each vector contains four elements of byte data, and each byte represents one
component of a pixel value. Thus, an image is usually declared as a "field 2D
4-vector byte". The following table shows which vector element corresponds to
each component of the pixel value. The table is zero-based, as in a C language
vector; in FORTRAN the vector index is one-based.

Stardent Application Visualization System | Developer’s Guide — 002425-001 Rev A 2-15

Byte Component

0 blue

1 green o
2 red ('
3 alpha

The alpha byte is not used in determining color; some modules use it to convey
other information, such as opacity.

Volume Data

...

AVS generally represents volumes as 3D scalar fields of bytes, usually declared
as "field 3D scalar byte". The value of each byte is between 0 and 255 inclu-
sive. Some modules use the field data as indices into colormaps. For many
AVS modules that deal with volumes, each dimension of the field must be less
than 256.

Colormaps

..

A colormap is a transfer function that assigns a color to each integer between an
upper and a lower bound. A colormap consists of four arrays of floating-point
values, one each for hue, saturation, value, and opacity. Each value is between
0.0 and 1.0 inclusive. A colormap also has an integer size or number of colors,
which is the length of each of the four arrays. A colormap has floating-point
lower and upper bounds that determine the resolution of the colormap. The
lower bound is an index that maps to the first element of each array. The upper
bound is an index that maps to the last element in each array.

In C a colormap is represented by an AVScolormap structure, defined in

<avsi/colormap.h> as follows: (|
typedef struct {
int size; /* number of entries in each array */
float lower; /* 0th entry maps to this value */
float upper; /* size-th entry maps to this value */
float *hue;

float *saturation;
float *value;
float *alpha;

} AVScolormap;

A Croutine declares a colormap input argument as AVScolormap * and a
colormap output argument as AVScolormap **.

A FORTRAN computation routine can input a colormap by declaring a series of
parameters:

INTEGER FUNCTION my module(size,lower,upper,hue,sat,val,alpha)

INTEGER size
REAL lower, upper
REAL hue (256), sat(256), val(256), alpha(256)

A FORTRAN routine can output a colormap as follows:

INTEGER FUNCTION my module(size, lower, upper, phue, psat, pval, palpha)
INTEGER size
REAL lower, upper
POINTER (phue,hue), (psat,sat), (pval,val), palpha,alpha) B
REAL hue (256), sat(256), val(256), alpha(256) ()

Note the use of POINTER variables to supply an extra level of indirection.

2-16 Stardent Application Visualization System | Developer's Guide — 002425-001 Rev A

Geometries

...

...................

A geometry object describes changes to the geometry of a particular scene that
is represented by a module input or output. AVS allows a user module to create
geometry objects as outputs. It is possible for a module to use geometry objects
as inputs, but this release of AVS does not support writing user modules that do
this. Geometry output is typically used as input to an AVS-supplied renderer
module such as the geometry viewer.

A geometry data object is called an edit list. This is an arbitrarily long list of
changes to be made in the current scene. Each change pertains to a particular
object, camera, or light source. Changes are made in the order specified in the
edit list. The AVS data type for an edit list is GEOMedit_list. A C language
module computation routine declares an argument representing an input port or
parameter as GEOMedit_list and an argument representing an output port as
GEOMedit_list * (note the single asterisk). In FORTRAN both kinds of argu-
ment are declared as INTEGER.

Each object, camera, or light is referred to by a name which is an ASCII string.
Any object that doesn’t already exist is created the first time an attempt to
change that particular object is made. By default, an object name is modified
by the port through which it is communicated. This prevents two different
modules from modifying each other’s objects. For example, two "plate”
modules would each try to modify the data for the object named "plate”. Since
the name is modified by the port, the first plate module modifies "plate.0", and
the second modifies "plate.1". When it is desirable for a module to use the
absolute name of an object, it can precede the object name by a % character
(e.g., "%plate").

Camera names are ASCII strings of the form: cameran, where n ranges from 1
to the number of views on the particular scene.

Light names are ASCII strings of the form lightn, where n ranges from 1 to 16.

AVS has routines that allow a module to change several properties of an object
in an edit list:

U The geometric data definining the object

Surface or line color

Render mode (Gouraud, Phong, wireframe, etc.)

Parent (the name of the parent object)

Object material properties

Object, camera, and light transformation

Object visibility, deletion

Object color, light source color and camera background color

Camera background color

000000000

Light source on/off, type

Manipulating Edit Lists

...

Each time a module is invoked, it starts with an empty edit list. It places into
the edit list changes that it wants to be made for this invocation. In creating and
using edit lists, geometry objects, and light sources, a module uses routines in
the geom library; see the manual page geom(3V). A module typically uses the
following steps in preparing an edit list for output:

Stardent Application Visualization System | Developer's Guide — 002425-001 Rev A 2-17

O Initialize the edit list, using GEOMinit_edit_list in C or
GEOM_INIT_EDIT_LIST in FORTRAN. This creates a new list or
empties an existing list.

U Create and modify geometry objects, cameras, or lights sources, using
routines in the geom library.

QO Modify the edit list, using routines whose names begin with GEOMedit in
C or GEOM_EDIT in FORTRAN (such as GEOMedit_geometry or
GEOM_EDIT_GEOMETRY).

Q For a coroutine module, use AVScorout_output to output the list, and then
use GEOMdestroy_edit_list in C or GEOM_DESTROY_EDIT_LIST in
FORTRAN to deallocate the list.

A module must deallocate an existing edit list before reusing the list. For a
subroutine module, the edit list passed to the module as an output argument is
the edit list the module created on its last execution. The module must
deallocate this list at the start of each invocation of the module, normally by
calling the GEOMinit_edit_list routine in C or GEOM_INIT_EDIT LIST in
FORTRAN before modifying the list:

/* C */
my module (output)
GEOMedit list *output;
{
/*
* Deallocate edit list from last invocation;
* initialize edit list for this invocation.
*/
*output = GEOMinit edit list (*output);

< rest of module >

C FORTRAN
FUNCTION MY MODULE (OUTPUT)
EXTERNAL GEOM INIT EDIT LIST
INTEGER OUTPUT, GEOM_INIT EDIT LIST
OUTPUT = GEOM_INIT EDIT LIST (OUTPUT)

< rest of module >

A coroutine module can use GEOMdestroy_edit_list in C or
GEOM_DESTROY_EDIT_LIST in FORTRAN to deallocate a list after
calling AVScorout_output:

2-18 Stardent Application Visualization System | Developer’s Guide — 002425-001 Rev A

/* C */

GEOMedit_list output;
< generate edit list "output™ >

AVScorout_output (output) ;
GEOMdestroy edit_list (output):

C FORTRAN

INTEGER OUTPUT
< generate edit list "OUTPUT"™ >

CALL AVSCOROUT_OUTPUT (OUTPUT)
CALL GEOM DESTROY_EDIT_LIST(OUTPUT)

Pixel Maps

...

A pixel map is a data structure that incorporates a reference to an X Window
System pixmap. An X pixmap is an array of pixel values that can be a destina-
tion for a rendered image. It resides in the X server. (In contrast, an image is a
data structure that includes an array of pixel values and resides in client mem-
ory.)

A pixel map includes an Xlib Pixmap id, the Xlib Window id of the window
associated with the pixmap, the Window id of that window’s parent window,
and a boolean flag indicating whether or not the pixmap is a buffer drawable
created by XdbUpdateWindows(3H). If the pixmap is a buffer drawable, a
routine should use XdbUpdateWindows instead of XCopyArea to copy the
pixmap to the window.

In C, a pixel map is defined as an AVSpixdata data type. A pixel map input
argument is declared as AVSpixdata *, and a pixel map output argument is
declared as AVSpixdata **. AVSpixdata is a structure defined in
<avslavs_pixdata.h> with the following components:

typedef struct _AVSpixdata {
int parent;
int window;
int pixmap;
int is_buffer; /* 1 if you should use XdbUpdateWindows */
/* to update */
} AVSpixdata;

A FORTRAN computation routine cannot take a pixel map as an argument.

Stardent Application Visualization System | Developer’s Guide —002425-001 Rev A 2-19

3

AVS Modules

3-12

3-13

3-15

Table of Contents

Chapter 3
AVS Modules

Modules

Module Components
Name

Type

Ports

Parameters

Functions

Subroutines and Coroutines
Subroutine Modules
Coroutine Modules

Handling Errors in Modules
Selective Computation

Building and Linking Modules
Writing Subroutines

Writing Coroutines

Include Files

Compiling and Linking Modules

Converting an Existing Application to a Module

Debugging Modules

Module Examples

Modules

..

A module is a fundamental building block in an AVS network. A module typi-
cally has one of three purposes:

Q To import data from outside AVS (or generate its own data) and convert it
into data of one of the AVS data types.

Q To transform AVS data in some way, producing output data of the same or
of a different AVS type.

O Torender or store AVS data on an external device, such as the display
screen or a file.

AVS has a library of modules that perform these tasks for many types of data.
This chapter describes how to write a new module.

Module Components

...

...

The name of a module is a string that identifies the module to the user. The
name appears on the module icon in the module palette and workspace.

A module is of one of four types, depending on its function:

Data A module that generates data or imports data from outside
AVS and converts it into one of the AVS data types.

Filter A module that transforms AVS data in some way, producing
" output data of the same or of a different AVS type.

Mapper A module that converts AVS data to a geometry data type.

Renderer A module that renders or stores AVS data, usually geometry,
on an external device, such as the display screen or a file.

These module type distinctions affect only the presentation of the module in the
AVS user interface. The module type determines in which menu the module
icon appears in the module palette.

...

A module may have zero or more input ports and zero or more output ports. A
port is a channel through which data passes to or from other modules. Each port
has a name and an AVS data type. An input port is represented in the Network
Editor by a colored bar at the top of the module icon, and an output port is rep-
resented by a colored bar at the bottom of the icon. The color or colors of each
bar indicate the port’s data type.

Data modules usually read or generate their own input data and therefore do not
have input ports. Renderer modules often display or write their own output data
and therefore do not have output ports.

When an instance of a module exists in AVS, each input port can be connected
to an appropriate output port of another module, and each output port can be
connected to an appropriate input port of another module. A pair of ports can
be connected only when the data types of the ports match. The data types
match when they are the same or when one is a subtype of the other. For
example, a port declared to be of type "field" matches a port of type "field 2D",

Stardent Application Visualization System | Developer's Guide — 002425-001 Rev A 3-1

but a port of type "field 2D" does not match a port of type "field 3D". An output
port cannot be connected to an input port of the same module.

For some input ports, a connection to an output port of another module is ()
required before the module can be invoked. For other input ports, a connection
is optional.

Parameters

A parameter is a variable that has a constant value during an invocation of the
module. The AVS user can change the value of the parameter between module
invocations by manipulating a user interface widget attached to the parameter.

A parameter has a name, a type, and an initial value. Some parameters also
have bounding information, such as a range of allowed values; AVS then
ensures that the value of the parameter remains within the bounds. Parameter
types include most primitive AVS data types along with constrained variants
such as "boolean" and "choice". For information on parameter types, see the
documentation for the AVSadd_parameter routine in the appendix “AVS Rou-
tines”’.

Each parameter is usually connected to a widget that enables the user to change

the value of the parameter between module invocations. A widget is a virtual

input device such as a dial, a file browser, or a Spaceball. A parameter can be

connected only to a widget that is compatible with the parameter’s type. Each

parameter type has a default widget type, but the module can override the

default and attach a parameter to another compatible widget. For information

on the permissible widget types and the default widget type for each parameter

type, see the documentation for the AVSconnect_widget routine in the appen-

dix “AVS Routines’’. -

A parameter can also have properties. A property usually determines some (
aspect of how the associated widget presents the parameter. By setting proper-

ties on a parameter, a module can customize how the user interface handles the

parameter. Each property is meaningful only with certain widgets. For a

description of the available properties, see the documentation for the
AVSadd_parameter_prop routine in the appendix “AVS Routines”’.

When appropriate, a module can alter the current value or bounds of a parame-
ter dynamically. AVS then updates any widget associated with the parameter.
See the documentation for the AVSmodify_parameter routine in the appendix
“AVS Routines™.

Functions

...

Each module has one or more functions associated with it. The module writer
supplies these functions, and AVS invokes them at various times during the life
of the module. Following are the functions and their purposes:

0 Each module has a description function. AVS invokes this procedure when
it first learns about a module’s availability and again when the user makes
an instance of the module, as by moving the module icon from the Network
Editor module palette to the workspace. The description function identifies
the module to AVS and declares its name, ports, and parameters.

Q Each subroutine module has a computation function. AVS invokes this pro-
cedure when the flow executive is active and the module’s input data or
parameters have changed. The arguments to the computation function cor-
respond to the module’s input ports, output ports, and parameters. This (
function does the computational work of the module, typically using the
input data and parameters to produce output data.

Stardent Application Visualization System | Developer’s Guide — 002425-001 Rev A

A coroutine module does not have a computation function; the module’s
main program itself determines when to perform its computation.

O A module may have an initialization function. AVS invokes this procedure
when the user makes an instance of the module, as by moving the module
icon from the Network Editor module palette to the workspace. The
initialization function may take such actions as allocating memory or
creating a window. The initialization function has no arguments and
returns no meaningful value.

O A module may have a destruction function. AVS invokes this procedure
“when the user destroys the module, as by moving the module icon from the
Network Editor workspace to the “hammer” icon. The destruction
function may take such actions as freeing memory or destroying a window.
The destruction function has no arguments and returns no meaningful
value.

The Description Function

The description function describes the module’s name, type, inputs, outputs and
parameters using a set of library functions. A C language file can contain more
than one module and therefore more than one description function. The file
must contain a routine called AVSinit_modules that refers to all the description
functions in the file. A FORTRAN file can contain only one module and there-
fore only one description function. A FORTRAN description function must be
named AVSINIT_MODULES. The description function has no arguments and
returns no meaningful value.

Following is the C language version of an example description function for a
module to compute the threshold of a 3-dimensional scalar field. The threshold
module is created with one input port, one output port, and two parameters.

{
int thresh compute();
int in_port, out_port;

AVSset_module_name ("threshold", MODULE_FILTER) :
in_port = AVScreate_ input_port ("Input Field", "field 3D scalar",
REQUIRED) ;

out_port = AVScreate_output_port ("Output Field", "field 3D scalar");
AVSinitialize output (in_port, out_port);
AVSadd_float_parameter ("thresh min", 0.0, FLOAT UNBOUND,

FLOAT_ UNBOUND) ;
AVSadd_float_parameter ("thresh max", 255.0, FLOAT_UNBOUND,

FLOAT UNBOUND) ;
AVSset_compute_proc(thresh compute);

Following is the FORTRAN version of the same routine:

SUBROUTINE AVSINIT MODULES
#include <avs/avs.inc>
EXTERNAL AVSCREATE_INPUT_ PORT, AVSCREATE OUTPUT_ PORT
INTEGER IN_PORT, AVSCREATE _INPUT_PORT
INTEGER OUT_PORT, AVSCREATE OUTPUT_ PORT
EXTERNAL THRESH COMPUTE
CALL AVSSET MODULE NAME ('threshold’, ’filter’)
IN_PORT = AVSCREATE INPUT PORT('Input Field’,

+ rfield 3D scalar’, REQUIRED)
OUT_PORT = AVSCREATE OUTPUT PORT (’Output Field’,
+ rfield 3D scalar’)

CALL AVSINITIALIZE_OUTPUT (IN_PORT, OUT_PORT)
CALL AVSADD_PARAMETER(’thresh min’, ‘real’, 0.0,

Stardent Application Visualization System | Developer's Guide — 002425-001 Rev A 3-3

34

+

+

RETURN
END

FLOAT UNBOUND, FLOAT_ UNBOUND)

CALL AVSADD PARAMETER (’thresh max’, "real’, 255.0,
FLOAT UNBOUND, FLOAT_UNBOUND)

CALL AVSSET_COMPUTE_PROC(THRESH_COMPUTE)

The most common steps in a description function are as follows:
a

Q

Set the module name and type using AVSset_module_name. A
description function must call this routine.

Create the input and output ports using AVScreate_input_port and
AVScreate_output_port. A description function may have zero or more
calls to each of these routines, depending on how many input and output
ports it has. Each routine returns an integer port identifier for use as an
argument to other routines, such as AVSinitialize_output.

Create the parameters using AVSadd_parameter or
AVSadd_float_parameter. A description function may have zero or more
calls to each of these routines, depending on how many parameters it has.
Each routine returns an integer parameter identifier for use as an argument
to other routines, such as AVSconnect_widget.

Set the computation function using AVSset_compute_proc. A description
function for a subroutine module must call this routine. A description
function for a coroutine module does not call this routine.

A description function can also take the following optional steps:

a

O

Use the AVSinitialize_output routine to tell AVS to preallocate memory
for output data before invoking the module computation function. This
routine pairs an output port with an input port. Before invoking the module
computation function, AVS frees data at the output port and allocates a new
data structure of the same size and dimensions as the data at the input port.
This frees the computation routine from the necessity of allocating memory
for the data structure.

Use the AVSautofree_output routine to tell AVS to free memory allocated
for output data before invoking the module computation function. By
default, AVS does not free the memory allocated for output data during the
previous invocation of the module computation function.
AVSautofree_output and AVSinitialize_output are mutually exclusive.

Set an initialization function using the AVSset_init_proc routine.
Set a destruction function using the AVSset_destroy_proc routine.

Use the AVSconnect_widget routine to declare a preference that a
parameter be attached to a widget of a given type. Each type of parameter
is associated with a default widget type. This routine allows the module to
override the default.

For example, a module can use a parameter of type "string" for a file
pathname. The default widget for a string parameter is a text type-in. The
module description function can use AVSconnect_widget to connect the
parameter to a file browser. Following is a C language example:

Stardent Application Visualization System | Developer’s Guide — 002425-001 Rev A

p = AVSadd parameter("Data File", "string", "/mydata”, ™", "");
AVSconnect_widget (p, "browser");

Following is a FORTRAN example:

EXTERNAL AVSADD PARAMETER

INTEGER P, AVSADD_ PARAMETER
P = AVSADD PARAMETER(’Data File’, ‘string’, ‘/mydata’, ', '')
CALL AVSCONNECT WIDGET (P, '"browser’)

Q Use the AVSadd_parameter_prop routine to add a property to a
parameter. By calling this routine, a module can customize how the user
interface handles the parameter.

The Computation Function

Each subroutine module must have a computation function in addition to a
description function. AVS invokes the computation function when the flow
executive is active and the module’s inputs or parameters change.

The computation function can have any name. The module identifies the com-
putation function to AVS by calling the AVSset_compute_proc routine in the
description function. The computation function should be declared to return an
integer. It should return a value of O to indicate an error. In this case the flow
executive does not invoke any other modules whose inputs depend on the erring
module’s outputs.

The arguments to the computation function correspond to the module’s inputs,
outputs, and parameters. A C language computation function has one argument
for each input port, output port, and parameter declared in the description func-
tion. In the parameter list, all the input ports are represented first, then all the
output ports, then all the parameters. Within each category, the arguments
appear in the order in which the ports or parameters are declared in the descrip-
tion function.

For a FORTRAN computation function, the arguments are presented in the
same order as the arguments to a C language computation function, but each
port or parameter can generate more than one argument to the computation rou-
tine. The number of arguments for each port or parameter depends on the data
type declared in the description function and, for a port, on whether the port is
input or output. For example, an input port declared as "field 3D scalar uni-
form" in the description function generates four arguments to a FORTRAN
computation routine. For more information on arguments to FORTRAN com-
putation functions, see the “AVS Data Types” chapter.

For a C language computation function, an argument that represents an input
port or a parameter is usually passed as a pointer to an object of the C storage
type that corresponds to the AVS data type of the port or parameter declared in
the description function. An argument that represents an output port is usually
passed as a pointer to a pointer to an object of the appropriate data type. This
double indirection is provided to allow the computation routine to allocate
memory for the output data. For example, a C language computation function
declares an input field argument as AVSfield * and an output field argument as
AVSfield **. Arguments that represent ports or parameters of some data types,
such as integer, are passed as the objects themselves.

Because FORTRAN arguments are passed by reference, a FORTRAN computa-
tion routine usually declares an argument to be of the FORTRAN type that cor-
responds to the AVS data type of the port or parameter. For example, an

Stardent Application Visualization System | Developer's Guide — 002425-001 Rev A 3-5

argument that represents a floating-point input port, output port, or parameter is
declared to be of type REAL.

The computation routine usually performs some operations on the input data
and parameters to produce output data. By default, the computation function is
responsible for freeing memory allocated for output data on previous
invocations of the module and for allocating memory for output data on the
current invocation. The module can use the AVSinitialize_output and
AVSautofree_output routines in the description function to eliminate the need
for some of this memory management.

Subroutines and Coroutines

................

3-6

AVS has two types of modules: subroutines and coroutines. The chief differ-
ence between the two is the way they interact with AVS to do their computa-
tional work. In essence, a subroutine module does its computation whenever
AVS asks it to, usually when the module’s input ports or parameters change. A
coroutine module does its computation whenever it wants.

Subroutines are the most common type of AVS module. They are used in the
demand-driven portions of a network where a module needs to compute only
when input data or a parameter has changed. Coroutine modules are typically
simulations or animations. A coroutine usually performs a number of indepen-
dent computations, each of which represents one iteration of a series, and sends
output to AVS after each iteration. For example, the AVS particle advector
module is a coroutine.

Subroutine Modules

wee . $080 600000000 000000000000006000000080000000000000000008050000090000000800s0tratncctocsenatcstscstnte

A basic subroutine module as written by a programmer consists of a description
function and a computation function, with optional initialization and destruc-
tion functions. The programmer does not supply a main program; instead, the
AVS library supplies the main program for a module’s executable file.

A C language executable file may contain more than one module, including
description and computation functions for each module, but it has only one
main program. In addition to the description and computation functions, a C
language programmer supplies a function called AVSinit_modules to invoke
the description functions for all modules in the file. This routine takes no argu-
ments and returns no meaningful value. It must make one call to
AVSmodule_from_desc for each module in the file. The AVSinit_modules
routine can call AVSmodule_from_desc either directly for each module in the
file or indirectly, for a list of modules, through a single call to
AVSinit_from_module_list. AVSmodule_from_desc invokes the given
module’s description function. Following is a simple example of an

{
/* threshold is the module description function */
int threshold():
/* this invokes the threshold routine */
AVSmodule from desc(threshold);

Following is an example of an AVSinit_modules routine for a file that contains
more than one module:

Stardent Application Visualization System | Developer's Guide — 002425-001 Rev A

int ((*mod_list[]){()) = {
module_1_ desc,
module_2 desc, -
module_3_desc

}i

#define NMODS (sizeof(mod list) / sizeof(char *))
AVSinit modules ()

{ .
AVSinit from module_list (mod_list, NMODS);

}

A FORTRAN executable file has only one module and one main program. A
FORTRAN module does not have a separate AVSINIT_MODULES function;
instead, its description function is itself named AVSINIT_MODULES.

AVS normally invokes the module’s main program twice: once when the user
reads the module into AVS, as by executing the Read Module Network Editor
command, and once when the user makes an instance of the module, as by
moving the module icon from the Network Editor palette to the workspace. In
both cases, AVS creates a new process and invokes the module executable file
in that process.

When AVS invokes the module’s main program the first time, it does so for
identification. The module’s main program then does the following:

QO Sets up a connection to AVS.

Q Invokes the AVSinit_modules routine. This routine in turn invokes the
description functions of all modules in the executable file.

Q Conveys to AVS the module declarations for all modules in the executable
file.

Q Terminates the module’s process.

When AVS receives the module declarations, it adds the module icons to the
Network Editor palette.

When AVS invokes the module’s main program a second time, it does so for
instantiation. The module’s main program then does the following:

Q Sets up a connection to AVS.

QO Invokes the AVSinit_modules routine. This routine in turn invokes the
description functions of all modules in the executable file.

Q Conveys to AVS the module declarations for all modules in the executable
file.

O Sets up an instance of the module that can receive data from and send data
to AVS.

Q Invokes the module initialization function, if any.

Q Enters a server routine that loops indefinitely, waiting for remote procedure
calls from AVS and then executing the requests.

When the flow executive is active, AVS issues a remote procedure call
whenever any of the module’s input ports or parameters change. When the
module’s server routine receives a computation request, it reads the module’s
inputs and parameters from AVS, invokes the module’s computation function,
and conveys the module’s outputs to AVS. If another module’s input port is
connected to the current module’s output port, AVS marks the other module’s
input port as having changed data. This may cause AVS to send a remote

Stardent Application Visualization System | Developer’s Guide — 002425-001 Rev A 3-7

3-8

procedure call to the second module.

AVS may issue remote procedure calls other than computation requests during
the lifetime of the module. For example, the user may destroy the module by
dragging the module icon to the “hammer” icon. AVS then issues a remote
procedure call that causes the module server routine to invoke the module’s
destruction function, if any, and then terminate the module’s process. The
module’s computation function may also issue callbacks to AVS, as when
reporting errors via the AVSmessage routine.

Coroutine Modules

...

A basic coroutine module as written by a programmer consists of a main pro-
gram and a description function, with optional initialization and destruction
functions. Each executable file can contain only one module. The description
function can have any name. ”

As with subroutine modules, AVS normally invokes the coroutine module’s
main program twice: once when the user reads the module into AVS, as by exe-

_cuting the Read Module Network Editor command, and once when the user

makes an instance of the module, as by moving the module icon from the Net-
work Editor palette to the workspace. In both cases, AVS creates a new process
and invokes the module executable file in that process.

When AVS invokes the module’s main program the first time, it does so for
identification. Because AVS does not supply the main program, the program-
mer is responsible for ensuring that the main program responds properly to this
invocation. The main program must call the AVScorout_init routine early on,
before attempting to do any computation. The AVScorout_init routine does the
following during the identification phase:

Q Setup aconnection to AVS.

Q Invoke the module’s description function.

Q Convey to AVS the module declarations for the module.
Q Terminate the module’s process.

When AVS receives the module declarations, it adds the module icon to the
Network Editor palette.

When AVS invokes the module’s main program a second time, it does so for
instantiation. When the main program invokes AVScorout_init during the
instantiation phase, that routine does the following:

QO Setup a connection to AVS.

Q Invoke the module’s description function.

O Convey to AVS the module declarations for the module.
Qa

Set up an instance of the module that can receive data from and send data
to AVS.

O Invoke the module initialization function, if any.
O Return.

The main program can then interact with AVS at any time it wants. For
example, the main program can behave like a subroutine module by looping
indefinitely, taking the following steps on each iteration:

Q Call the AVScorout_wait routine. This routine waits until one of the
module’s inputs or parameters changes and then returns.

Stardent Application Visualization System | Developer's Guide — 002425-001 Rev A

Q Call the AVScorout_input routine. This routine obtains the module’s
inputs and parameters from AVS.

Q Perform the module’s computation.

Q Call the AVScorout_output routine. This routine conveys the module’s
outputs to AVS.

More typically, a coroutine module performs a series of independent
computations, sending output to AVS after each iteration. The main program
can accomplish this by means of the loop described above, except that in order
to compute continuously it omits the call to AVScorout_wait. If a coroutine
module computes continuously, it should usually provide a parameter to allow
the user to stop the computation. The module should check the value of this
parameter after the call to AVScorout_input.

After calling AVScorout_init, a coroutine module might ensure that input is
available before beginning computation. It can do this in a loop, calling
AVScorout_wait and then AVScorout_input until the input data is not null.

A coroutine module can also use the AVScorout_exec routine. This routine
waits until the flow executive has stopped running and then returns. This allows
the module to ensure that the network has processed the output of each
computational iteration before sending more output so that no data is lost.

Handling Errors in Modules

... . csseces

..

AVS provides a mechanism for module computation routines and coroutine
main programs to report errors. The AVSmessage routine causes AVS to
present the user with a message from a module computation routine, along with
information about the module and function sending the message. If the sender
indicates that the message represents a wamning or error, AVS also stops execut-
ing and presents the message in a dialog box, along with a set of choices. The
user must acknowledge the message by selecting one of the choices before AVS
can continue. The icon for the module that sends the message is highlighted in
yellow in the Network Editor. The AVSmessage routine also records the mes-
sage in a log file for later review.

AVS treats error reports differently depending on their severity. The severity
that the module declares determines how AVS presents the message to the user
and whether or not the user must acknowledge the message before AVS can
continue. If the message appears in a dialog box, the border of the dialog box is
color coded to indicate the severity. Following are the possible levels of sever-
ity:

AVS Information The message does not indicate an error. The message is
written to stderr, and AVS continues executing. No
choices are presented to the user.

AVS Debug The message does not indicate an error; it conveys infor-
mation during module testing. The message is written to
stderr, and AVS continues executing. No choices are
presented to the user.

AVS_Warning The message indicates a problem that is not fatal to
module execution. The message and choices are
presented in a dialog box with a yellow border. The user
must make a choice before AVS can continue.

AVS Error The message indicates a serious problem that may cause
the module to produce erroneous results but is not perma-
nently fatal to module execution. The message and

Stardent Application Visualization System | Developer's Guide — 002425-001 Rev A 3-9

choices are presented in a dialog box with a red border.
The user must make a choice before AVS can continue.

AVS_Fatal The message indicates a problem that is permanently
fatal to module execution. The message and choices are
presented in a dialog box with a black border. The user
must make a choice before AVS can continue. The
module is marked as dead, and the module icon in the
Network Editor workspace turns black. The flow
executive no longer executes the module.

Whenever a subroutine module computation function encounters an error that

~ produces erroneous output, the computation function should return a value of 0.

A coroutine module should not call AVScorout_output. The flow executive
does not execute downstream modules that depend on output from the module
that encounters the error.

If a module encounters an error likely to be permanently fatal, such as a failure
to allocate memory, it usually should not terminate its process by calling
exit(2). Instead, it should call AVSmessage with a severity of AVS_Fatal. A
subroutine computation function should then return a value of 0. A coroutine
module should call AVScorout_wait and should not call AVScorout_input or
AVScorout_output again.

If a module exits or dies unexpectedly and AVS tries to communicate with that
module, AVS automatically generates a fatal error message. ’

AVS provides simple interfaces to AVSmessage for reporting errors of a given
severity. These routines are called AVSinformation, AVSdebug, AVSwarning,
AVSerror, and AVSfatal.

Selective Computation

3-10

..

When a module has more than one input port or parameter, it is likely that when
the module computation function is executed, some ports or parameters have
not changed since the previous execution of the computation function. The
module might be able to avoid some computation for posts or parameters that
have not changed.

AVS provides two routines, AVSinput_changed and AVSparameter_changed,
to determine whether a given input port or parameter has changed since the pre-
vious invocation of the computation function. These routines return 1 if the
input or parameter has changed and 0 if it has not. For a coroutine module,
these routines determine whether the input or parameter has changed since the
previous call to AVScorout_input.

When a module has more than one output port, it is possible that after the
module computation function is executed, some ports have not changed since
the previous execution of the computation function. By default AVS assumes
that all output ports have changed after each invocation of a module computa-
tion function. This can cause AVS to invoke downstream modules whose input
depends on the output of the current module, even if some output ports have not
changed.

AVS provides a routine, AVSmark_output_unchanged, to declare that a given
output port has not changed since the previous invocation of the computation
function. For a coroutine module, this routine declares that the output port has
not changed since the previous call to AVScorout_output.

Stardent Application Visualization System | Developer's Guide — 002425-001 Rev A

Building and Linking Modules

Each AVS module is a program that resides in a smgle executable file. (That
file can contain more than one C language subroutine module.) The source
code can be in either C or FORTRAN. The routines that the programmer pro-
vides depend on the source language and whether the module is a subroutine or
a coroutine. For more information on subroutines and coroutines, see the “Sub-
routines and Coroutines’’ section in this chapter.

Writing Subroutines

...

A basic subroutine module as written by a programmer consists of a description
function and a computation function, with optional initialization and destruc-
tion functions. The programmer does not supply a main program; instead, the
AVS library supplies the main program for a module’s executable file.

A C language executable file may contain more than one module, including
description and computation functions for each module, but it has only one
main program. In addition to the description and computation functions, a C
language programmer supplies a function called AVSinit_modules to invoke
the description functions for all modules in the file.

A FORTRAN executable file has only one module and one main program. A
FORTRAN module does not have a separate AVSINIT MODULES function;
instead, its description function is itself named AVSINIT_MODULES.

Writing Coroutines

...

A basic coroutine module as written by a programmer consists of a main pro-
gram and a description function, with optional initialization and destruction
functions. Each executable file can contain only one module. The description
function can have any name.

Include Files

..

AVS supplies a number of include files for both C language and FORTRAN
programs. Some include files are needed for nearly all modules, while others
are needed only if the module is using data of a particular type. The summary
in the appendix “AVS Routines” lists any include files needed for each AVS
routine.

The AVS include files are located in the directory /usr/avs/include. The file
lusrfincludelavs is a link to this directory, so that both C language and FOR-
TRAN programs can refer to an include file using the following syntax:

#include <avs/filename>

C Language Include Files
Most C language modules should include a single file, avs.h. This file contains

definitions not specific to particular data types. The following files are needed
when a module uses data of specific types:

avs_pixdata.h Definitions for pixel maps.
colormap.h Definitions for colormaps.
field.h Definitions for fields.

geom.h Definitions for geometries.

Stardent Application Visualization System | Developer’s Guide — 002425-001 Rev A 3-11

FORTRAN Include Files

Most FORTRAN modules should include a smgle file, avs.inc. This file con-
tains definitions not specific to particular data types as well as definitions
needed when using data of most AVS types.

FORTRAN modules that use geometries should include the file geom.inc.

Compiling and Linking Modules

To compile and link a module, use ce(1) for C language modules and £77(1) for
FORTRAN modules. AVS supplies four basic module libraries in the directory
lusr/avs/lib. Each module must be linked with one of these libraries. The
library to use depends on the source language and whether the module is a sub-
routine or a coroutine:

TABLE 3-1. Archive Libraries for Modules

Module Type Source Language Library
Subroutine C libflow _c.a
Subroutine FORTRAN - libflow f.a
Coroutine C libsim_c.a
Coroutine FORTRAN libsim_f.a

A module might need to be linked with other libraries, depending on what data
types it uses and what operations it performs. For example, a module that uses
geometries needs the geom (3V) library, which requires linking with a number

of library files. For details see the geom(3V) manual page.

Converting an Existing Application to a Module

3-12

...

Many existing simulations, batch data converters, and other scientific applica-
tions can be converted to AVS modules with little difficulty. Often such appli-
cations are most easily converted to coroutine modules. Following are some of
the essential steps in the conversion process: ‘

O Determine what data the application needs to obtain from AVS as inputs or
parameters-and what data it needs to send to AVS as outputs.

QO - Choose the AVS data type that is most appropriate for each input, output,
and parameter.

O Write a description function to declare the module and its inputs, outputs,
and parameters.

O Inthe application’s main program, insert a call to AVScorout_init and
calls to other AVS coroutine functions like AVScorout_input,
AVScorout_output, and AVScorout_wait as appropriate.

O Convert the program’s data structures to the corresponding AVS data types
for inputs, outputs, and parameters. AVSbuild_field is particularly useful
in converting arrays to fields.

Q Ensure that the program allocates and frees memory for AVS outputs where
necessary. The AVSinitialize_output and AVSautofree_output routines
make this task easier.

O Use AVSmessage or its variants to handle errors in the program.

O Ensure that the program uses appropriate AVS include files. Most C lan-
guage programs should include <avs/avs.h> and any files needed for partic-
ular data types. Most FORTRAN programs should include <avs/avs.inc>.

Stardent Application Visualization System | Developer's Guide — 002425-001 Rev A

Q Compile and link the program with the AVS coroutiné module archive
library that is appropriate for the program’s source language.

Converting an existing application to a subroutine module is similar, with these
differences:

Q Convert the application’s main program to a computation function. A
subroutine module does not supply its own main program.

Q Ensure that the computation function returns 1 if successful and 0 if
unsuccessful.

Q Do not insert calls to AVS coroutine functions. Instead, ensure that the
arguments to the computation function are the module inputs, outputs, and
parameters.

Q For a C language subroutine module, supply an AVSinit_modules routine.
For a FORTRAN subroutine module, name the description function
AVSINIT _MODULES.

Q Compile and link the module with the AVS subroutine module archive
library that is appropriate for the module’s source language. AVS has
different archive libraries for subroutine and coroutine modules.

Debugging Modules

AVS provides a facility for debugging a module during the execution of an AVS
network. The file /usr/bin/avs_dbx is a shell script that arranges for a module to
run under the dbx(1) debugger. A common sequence for using the debugging
facility is as follows:

..

O Compile the module using the —g option to cc(1) or £77(1). This causes the
compiler to.generate information needed by dbx.

O Inan xterm window, invoke the command avs_dbx. The last argument to
the command is the name of the executable file that contains the module
you want to debug. In the xterm window, the avs_dbx command invokes
dbx with the executable pathname as the last argument. When dbx has
started, you can set breakpoints and invoke other dbx commands. Do not
type run yet.

O Identify the module to AVS. In the Network Editor, you identify the
module by invoking the Read Module command. This installs the module
icon in the module palette.

0 - Create an instance of the module. In the Network Editor, move the module
icon from the module palette to the workspace.

Q Inthe xterm window, AVS prints the message:
file instance waiting, fire when ready...
Type run to cause dbx to run the executable file that contains the module.

O In the Network Editor, you can now make connections to other modules,
and you can adjust parameters by manipulating widgets for the module.
When the flow executive causes the module computation function to run, it
runs under dbx. Interaction with dbx takes place in the xterm window.

The syntax of avs_dbx is as follows:
avs_dbx [-id] [-mod module_name] [dbx_options] file

The file argument is the name of the executable file that contains the module. If
more than one option is present, the options must be given to avs_dbx in the

Stardent Application Visualization System | Developer’s Guide — 002425-001 Rev A 3-13

3-14

order listed here. The following options are available:

—id

If this option is present, the module runs under dbx
during an invocation of the module for identification as
well as during an invocation of the module for
instantiation. When you use the Read Module
Network Editor command, AVS invokes the module for
identification. The module description function is
called, and the module declarations are conveyed to
AVS. The module’s process then exits. If the —id
option is present this invocation of the module runs
under dbx; by default it does not run under dbx.

Note that when you create an instance of the module by
moving the module icon from the module palette to the
workspace, AVS invokes the module again, and this
invocation is run under dbx whether or not the —id
option is present. During this invocation the
description function is called again; the description
function then runs under dbx even if the —id option is
not present.

-mod module_name Some executable files may contain more than one

module. If the -mod option is present, only the module
named module_name is run under dbx. By default all
modaules in the file are run under dbx.

If the ~id option is also present, the description
functions for all modules in the executable file are run
under dbx when the executable is invoked for
identification. The description functions for all
modules in the executable file are always run under dbx
when the module is invoked for instantiation.

dbx_options These options are passed to dbx. For more information,

see the dbx(1) manual page.

Following are some notes on using avs_dbx:

Q

You can run more than one module under dbx by invoking avs_dbx in

- multiple xterm windows. However, if you want to run a module under

dbx, you cannot make more than one instance of the same module.

To run a module under dbx, you must invoke avs_dbx before you make the
instance of the module, as by moving the module icon from the Network
Editor module palette to the workspace. You can use the Read Module
Network Editor command to identify the module to AVS before invoking
avs_dbx. However,in this case the ~id option has no effect.

Do not type run under dbx until after AVS has printed its “fire when
ready” message. This message appears after you make an instance of the
module.

After you have made an instance of a module that is running under dbx,
you cannot manipulate any widgets for that module or make any Network
Editor connections to or from that module until after you have typed run
under dbx or have continued from a dbx breakpoint.

Avoid dbx commands that might disrupt the synchronization of the
module’s execution with AVS execution. For example, do not use the dbx
run command to restart a module from a breakpoint; use continue
instead.

Stardent Application Visualization System | Developer’s Guide — 002425-001 Rev A

Q If you recompile and relink a module after it has been identified to AVS,
you do not have to re-execute the Read Module command. However, you
should destroy all previous instances of the module before you make any
instances of the recompiled module. If you want to run the module under
dbx, you must reinvoke avs_dbx before making an instance of the
recompiled module. .

O You can use the avs_dbx command with both subroutine and coroutine
modules.

..

The appendix “Examples of AVS Modules™ contains example source code for
several AVS modules. Source code for these and other examples is also avail-
able in the directory /usr/avs/examples.

Stardent Application Visualization System | Developer’s Guide — 002425-001 Rev A 3-15

Routines for Module Description Functions

..

...

#include <avs/avs.h>
AVSset_module_name(name, type)

char *name,
int type;
FORTRAN:

AVSSET _MODULE_NAMENAME, TYPE)
CHARACTER+*(*) NAME, TYPE

This routine declares the name and type of the module being defined in the
current description function. The module name is set to the string name and the
type to type, where type is one of the following:

Module Type C Constant FORTRAN String
Data MODULE_DATA ’data’

Filter MODULE_FILTER “filter’

Mapper MODULE_MAPPER ’mapper’

Renderer MODULE_RENDER ‘renderer’

The module name appears in the module icon and other portions of the Network
Editor and Application Builder user interface. The module type determines the
category in the Network Editor module palette in which the module icon
appears.

AVScreate_input_port

...

#include <avs/avs.h>
int AVScreate_input_port(name, type, required)

char *name, *type,
int required;
FORTRAN:

#include <avs/avs.inc>
AVSCREATE_INPUT_PORT(NAME, TYPE, REQUIRED)
CHARACTER*(¥) NAME,TYPE
INTEGER REQUIRED

This routine declares an input port for the module being defined in the current
description function. The name of the port is set to the string name. The type
argument is a string that defines the data type of the port, as follows:

Stardent Application Visualization System | Developer's Guide — 002425-001 Rev A A-I

Data Type type String

byte "byte"
integer "integer"
real "real”
string "string"
field "field"
colormap "colormap"
geometry "geom"
pixel map "pixmap"

The "field" string can contain further specializing words; see the section
“Declaring Fields” in the “AVS Data Types” chapter.

The required argument is a constant indicating whether or not a connection to
the port is required before the module can be invoked. Possible values are
REQUIRED, meaning that a connection is required, and OPTIONAL,
meaning that a connection is not required.

This routine returns an integer identifier for the port that is used as an argument
to some other AVS routines, such as AVSinitialize_output.

AVScreate_output_port

................................

C:

int AVScreate_output_port(name, type)
char *name, *type;

FORTRAN:

AVSCREATE_OUTPUT_PORT(NAME, TYPE)
CHARACTER«*(*) NAME, TYPE

This routine declares an output port for the module being defined in the current
description function. The name of the port is set to the string name. The type
argument is a string that defines the data type of the port. For possible values of
the type argument, see the documentation for AVScreate_input_port.

This routine returns an integer identifier for the port that is used as an argument
to some other AVS routines, such as AVSinitialize_output.

AVSinitialize_output

C:

AVSinitialize_output(in_port, out_port)
int in_port, out_port;

FORTRAN:

AVSINITIALIZE_OUTPUT(IN_PORT, OUT_PORT)
INTEGER IN_PORT, OUT_PORT

This routine tells AVS to preallocate memory for output data before invoking
the module being defined in the current description function. Before each
invocation of the module, AVS frees output data from the previous invocation
and then allocates space for an output data structure of the same size and
dimensions as those of the specified input data structure. AVS does not copy
the input data to the output data. This is useful for modules that transform
fields, producing an output field of the same type and dimensions as the input
field. The in_port argument is a port identifier returned by

Stardent Application Visualization System | Developer's Guide — 002425-001 Rev A

AVScreate_input_port. The out_port argument is a port identifier returned by
AVScreate_output_port.

AVSautofree_output

...

...........

C: .
AVSautofree_output(out_port)

int out_port;
FORTRAN:

AVSAUTOFREE_OUTPUT(OUT_PORT)
INTEGER OUT PORT

This routine tells AVS to free output data from the previous invocation before
invoking the module being defined in the current description function. If
neither this routine nor AVSinitialize_output is called, AVS does not free
output data from the previous invocation when it invokes a module. The
out_port argument is a port identifier returned by AVScreate_output_port.

AVSset_compute_proc

..

C:
AVSset_compute_proc(comp_func)

int (*comp_func)();
FORTRAN:

AVSSET_COMPUTE_PROC(COMP_FUNC)
EXTERNAL COMP_FUNC

This routine declares the computation function for the module being defined in
the current description function.

AVSset _init_proc

...

C:
AVSset_init_proc(init_func)

int (*init_func)();
FORTRAN:

AVSSET_INIT_PROC(NIT_FUNC)
EXTERNAL INIT FUNC

This routine declares the initialization function for the module being defined in
the current description function. AVS invokes the initialization function when
the module is instantiated, usually when the user moves the module icon from
the module palette into the workspace. An initialization function might take
actions such as allocating memory or creating a window.

Stardent Application Visualization System | Developer’s Guide — 002425-001 Rev A A-3

AVSset _destroy_proc

...

C:

AVSset_destroy_proc(destroy_func)
int (*destroy _func)();

FORTRAN: :

AVSSET_DESTROY_ PROC(DESTROY FUNC)
EXTERNAL DESTROY FUNC

This routine declares the destruction function for the module being defined in
the current description function. AVS invokes the destruction function when
the module is destroyed, usually when the user moves the module icon from the
workspace to the “hammer” icon. A destruction function might take actions
such as freeing memory or destroying a window.

...

#include <avs/avs.h>
int AVSadd_parameter(name, type, init, minval, maxval)

char *name, *type;
int init, minval; maxval;
FORTRAN:

#include <avs/avs.inc>

AVSADD PARAMETER(NAME, TYPE, INIT; MINVAL, MAXVAL)
CHARACTER*(*) NAME, TYPE
INTEGER INIT, MINVAL, MAXVAL

This routine declares a parameter for the module being defined in the current
description function. Each parameter is usually connected to a widget in the
module control panel to allow the user to modify the value of the parameter.

The name argument is a string that appears as the name of the widget associated
with the parameter.

The init, minval, and maxval arguments are cast as ints in C and integers in
FORTRAN, but their storage type actually depends on the parameter type. For
any type of parameter, init, minval, and maxval all have the same storage type.
Each value must fit into an integer-size memory slot or must be a pointer to a
larger memory allocation. Values representing floats in C must be pointers to
allocated memory. The routine AVSadd_float_parameter handles this
allocation automatically.

For many parameter types, init is the initial or default value of the parameter,
and minval and maxval are the inclusive bounds for the acceptable range of
values. When this range is specified, AVS ensures that values passed to the
computation routine are inside this range.

The type argument is a string that represents the parameter type. The following
table lists the possible values for type. For each type, it lists the C and
FORTRAN data types for init, minval, and maxval. These are also the data
types for parameters passed as arguments to module computation routines.

Stardent Application Visualization System | Developer’s Guide — 002425-001 Rev A

C Data Type FORTRAN Data Type

type String

"integer" int INTEGER
"boolean” int INTEGER
"tristate" int INTEGER
"oneshot" int INTEGER

"real" float * real

"string" char * CHARACTER#*(*)
"choice" char *- CHARACTER*(*)
"colormap" AVScolormap * —

"field" AVSfield * —
"delta_matrix_4x4" AVSfield * =

AVS passes fields to FORTRAN computation functions as multiple arguments;
see the “AVS Data Types” chapter.

Following are notes on some of these types:

integer

boolean

tristate

oneshot

real

string

choice

colormap

field

The minval argument is the minimum value; the maxval
argument is the maximum value.

Possible values are 0 and 1. The minval and maxval
arguments are ignored.

Possible values are 0, 1, and 2. The minval and maxval
arguments are ignored.

This is a command-style signal counter. The current value is
incremented by 1 each time the value is set, often by means of
a mouse click on a widget. This allows the module to
determine how many times the user set the value. Setting a
value of 0, using AVSmodify_parameter, clears the counter.
The minval and maxval arguments are ignored.

To specify an unlimited range of possible values, set both
minval and maxval to the constant FLOAT_UNBOUND.
Both minval and maxval must be either bounded or
unbounded.

This is used for both simple strings and file pathnames. The
value must be NULL in C (0 in FORTRAN) or an allocated
string. Widgets often present NULL values as "$NULL". For
a text browser, minval is a comment character used to
suppress display of text lines that begin with that character.
For a file browser, maxval is a list of acceptable file types,
separated by periods. For example, if maxval is ".x.image",
only pathnames ending with .x or .image appear in the file
browser attached to this parameter.

The value is one of an enumerated set of strings. The minval
argument is the set of possible choices separated by a
delimiter character, such as "Alpha!BetalGamma". The
maxval argument is the delimiter character, in this case "!".

The minval and maxval arguments are ignored. A FORTRAN
computation routine cannot take a colormap as a parameter
argument.

The only supported field type is "field 2D scalar real". This is
used for handling 4 X 4 transformation matrices. The minval
and maxval arguments are ignored.

Stardent Application Visualization System | Developer's Guide — 002425-001 Rev A A5

delta_matrix_4x4
This is a synonym for "field 2D scalar real". This is used for
handling the 4 x 4 delta matrices used by the Spaceball. The
minval and maxval arguments are ignored.

This routine returns an integer parameter identifier that is used as an argument
to some other AVS routines, such as AVSconnect_widget.

AVSadd_float_parameter

C:

#include <avs/avs.h> A

int AVSadd_float_parameter(name, init, minval, maxval)
char *name;
double init, minval, maxval;

This routine declares a parameter of type "real” for the module being defined in
the current description function. The routine is an interface to the
AVSadd_parameter routine; it allocates space for the init, minval, and maxval
arguments automatically. The calling routine should declare these arguments as
float. In Stardent C, when a float is passed as an argument it is converted to a
double.

There is no FORTRAN equivalent for this routine; use
AVSADD PARAMETER instead.

AVSconnect_widget

...

C:

AVSconnect_widget(param_num, widget_type)
int param_num;
char *widget type;

FORTRAN:

AVSCONNECT _WIDGET(PARAM_NUM, WIDGET TYPE)
INTEGER PARAM _NUM

CHARACTER=*(*) WIDGET TYPE

This routine declares a preference that a parameter for a module being defined
in the current description function be connected to a specified widget. A
parameter can be connected only to a widget that is compatible with the
parameter’s type. If this routine is called with an impermissible widget type,
AVS ignores the preference and issues a warning.

The param_num argument is a parameter identifier returned by
AVSadd_parameter or AVSadd_float_parameter.

The widget_type argument is a string that indicates the type of widget to be
connected to the parameter. If widget type is "none", no widget is connected to
the parameter. The following table lists the available widgets for each
parameter type. If a parameter type has more than one possible widget, the
widget type that appears first is the default. For more information on parameter
types, see the documentation for AVSadd_parameter.

Stardent Application Visualization System | Developer’'s Guide — 002425-001 Rev A

Parameter

Type Widget Type Widget Description
[any] none [No widget.]
integer idial Round dial with pointer; may be
unbounded.
islider Fixed-length left-to-right slider; must
be bounded.
typein_integer Direct typein with title.
boolean toggle On/off toggle switch.
tristate tristate Variant of toggle switch with 3
highlight states.
oneshot oneshot Button to request single actions.
real dial Round dial with pointer; may be
unbounded.
slider Fixed-length left-to-right slider; must
be bounded.
typein_real Direct typein with title.
string typein Direct typein with title.
text String button, useful for titling; editable
only in the Layout Editor.
browser File browser. If the string is a
pathname, the initial directory is set to
the directory portion of the pathname.
text_browser ASCII file browser that displays the file
specified by the string. Skips comment
lines and filters out embedded nroff
directives.
choice radio_buttons Set of radio buttons, one for each
choice. The value is a copy of the
selected string or NULL if no string is
selected.
colormap color_editor Colormap editor.
field track Cursor-tracking virtual trackball.
delta_matrix_4x4 spaceball_client Spaceball.
AVSadd_parameter_prop
C:
AVSadd_parameter_prop(param_num, prop_name, prop_type, prop_value)
int param_num, .
char *prop_name, *prop_type;
int prop_value;
FORTRAN:
AVSADD_PARAMETER_PROP(PARAM _NUM,PROP_NAME, PROP_TYPE,
PROP_VALUE)
INTEGER PARAM NUM
CHARACTER#*(*) PROP_NAME,PROP TYPE
INTEGER PROP_VALUE

Stardent Application Visualization System | Developer's Guide — 002425-001 Rev A A-7

This routine adds a property to a parameter for the module being defined in the
current description function. A property usually determines some aspect of how

‘the user interface presents the parameter. By calling this routine, a module can

customize how the user interface handles the parameter.

The param_num argument is a parameter identifier returned by
AVSadd_parameter or AVSadd_float_parameter. The prop_name argument
is a string specifying the name of the property, and prop_type is a string
specifying the type of property value being provided. The property type must
be one of the parameter types. Each property has only one permissible property
type, and AVS verifies that the prop_type is permissible for the prop _name
supplied.

The prop_value argument is the value of the property. The storage type of
prop. value is the storage type that corresponds to the property type. For a
floating-point value, prop_type is a float rather than a float * in C.

As an example of using AVSadd_parameter_prop, assume that an integer
parameter is attached to a dial widget. By default, when the user manipulates
the widget, AVS reinvokes the module only when the user releases the mouse
button. To cause AVS to reinvoke the module continually as the user
manipulates the widget, the description function can use
AVSadd_parameter_prop toattach an "immediate" property to the parameter.
This property has a boolean value; a value of 1 causes continuous reinvocation
as the mouse moves.

Some properties are not meaningful with all possible widgets. For example, the
"immediate" property is not meaningful with a typein widget, since the module
should be reinvoked only when the user has finished typing in the new value. If
acall to AVSadd_parameter_prop requests a property or property value that a
widget does not support, AVS ignores the request when it creates that widget.
The property remains attached to the parameter, and AVS uses the property if
the user attaches an appropriate widget at a later time.

Some widgets may allow the user to change properties interactively. When the
user saves a network after making such a change, the property settings are saved
as the user has modified them. When the saved network is subsequently read,
the user’s property settings override the values set by the call to
AVSadd_parameter_prop.

The following table lists each available property name along with its property
type, the C and FORTRAN data types of the property value, and the widget
types that support the property:

;;(I):l)zrty g;:];erty C Data Type Il;gtl; ’I,;‘I;;;N Widget Types

title string char * character*(*) dial, idial, slider, islider, toggle,
tristate, oneshot, radio_buttons

immediate boolean int integer dial, idial, slider, islider

accumulator boolean int integer dial, idial

editable boolean int integer text

local_range real float real dial, idial

A-8 Stardent Application Visualization System | Developer's Guide — 002425-001 Rev A

width integer int

integer toggle, tristate, oneshot, typein,
text, browser, text_browser,
radio_buttons

height integer int integer toggle, tristate, oneshot, typein,
browser, text_browser,
radio_buttons

columns integer int integer radio_buttons

Following are notes on some of these types:

title

immediate

accumulator

editable

local_range

width

height

columns

This property specifies a title label for the widget. The default
title is the parameter name.

A value of 0 means that AVS should reinvoke the module
when the user has finished manipulating the widget (for
example, by releasing the mouse button for a dial or slider).
This is the default. A value of 1 means that AVS should
continually reinvoke the module as the user manipulates the
widget.

This property is used with dial widgets. When the parameter
bounds are fixed, a value of O means that the parameter range
should map to one complete rotation of the dial. This is the
default. A value of 1 means that the parameter range may
extend over multiple rotations of the dial. When the
parameter is unbounded, multiple dial rotations are always
allowed.

This property determines whether or not a text widget is

. editable in the Layout Editor. A value of 1, the default,

specifies that the string is editable. A value of O specifies that
the string is not editable. Text widgets are not editable
outside the Layout Editor.

This property is used with dial widgets when the parameter is
unbounded or when the "accumulator” property has a value of
1, allowing the parameter range to extend over multiple
rotations of the dial. The value of the "local_range" property
is the range that maps to one complete dial rotation. The
default is 200.0.

This property specifies the width of the widget. The value is
an integer between 1 and 10 inclusive and is interpreted as a
multiple of the standard button width, which is approximately
60 pixels. (The application panel is just over 4 units wide.)

This property specifies the height of the widget. The value is
an integer between 1 and 100 inclusive and is interpreted as a
multiple of the height of a text line.

This property specifies the number of columns of buttons in
the widget. The default is 1.

Stardent Application Visualization System | Developer's Guide — 002425-001 Rev A A-9

Routines for Modifying and Interpreting Parameters

A-10

AVSmodify_parameter

C:
#include <avs/avs.h>
AVSmodify_parameter(name, flags, init, minval, maxval)

char *name;
int flags, init, minval, maxval;
FORTRAN:

#include <avs/avs.inc> .
AVSMODIFY_PARAMETERWAME, FLAGS, INIT, MINVAL, MAXVAL)
CHARACTER«*(*) NAME
- INTEGER FLAGS, INIT, MINVAL, MAXVAL

This routine is called from a module computation routine to change the value or
bounds of a parameter. AVS first updates the parameter bounds and then checks
the new or existing value for validity against the new bounds. If a widget is
connected to the parameter, the widget is then updated to reflect the new
parameter bounds and value.

The name argument is the name of the parameter as declared in the call to
AVSadd_parameter or AVSadd_float_parameter in the module description
function.

The flags argument is a bit mask indicating which combination of value, upper
bound, and lower bound is to be changed. AVS defines the following constants
corresponding to the three items to be changed:

AVS_VALUE The init argument contains a new value for the parameter.

AVS_MINVAL The minval argument contains a new minimum value for
the parameter.

AVS _MAXVAL The maxval argument contains a new maximum value for

the parameter.

These constants can be combined using a bitwise OR operation to change more
than one item at a time. For example, to change the value and upper bound but
not the lower bound:

/* C language */
flags = AVS_VALUE | AVS_MAXVAL;

C FORTRAN
INTEGER FLAGS
FLAGS = IOR(AVS_VALUE, AVS_MAXVAL)

AVS changes the value or a bound of a parameter only if the corresponding bit
in the flags argument is on, or if a change in the bounds requires changing the
current value of the parameter to be within the new bounds.

The init, minval, and maxval arguments are interpreted in the same way as the
corresponding arguments to AVSadd_parameter. Note that the meaning and
type of these arguments depend on the parameter type; for more information,
see the documentation for AVSadd_parameter. If the call to
AVSmodify_parameter does not change the value, lower bound, or upper
bound, the corresponding init, minval, or maxval argument should be NULL in
C (0 in FORTRAN).

Stardent Application Visualization System | Developer’s Guide — 002425-001 Rev A

WARNING The arguments to the module computation routine are essentially a “snapshot” of
the parameter values at the time the computation routine is called. This means
that AVSmodify_parameter affects the value and range of the parameter the
next time the computation routine is called — it does not necessarily affect the
corresponding argument value within the current invocation of the routine. (It may
in some cases — floats and strings, in particular.)

If you intend to perform further computations on an argument whose
corresponding parameter you change with AVSmodify_parameter: make a local
copy of the argument; before calling AVSmodify_parameter, apply the same
changes to the copy argument; perform further computations with the copy, not
the original.

AVSmodify_float_parameter

..

#include <avs/avs.h>
AVSmodify_float_parameter(name, flags, init, minval, maxval)

char *name;
int flags;
double init, minval, maxval;

This routine is called from a module computation routine to change the value or
bounds of a parameter of type "real". The routine is an interface to the
AVSmodify_parameter routine; it allocates space for the init, minval, and
maxval arguments automatically. The calling routine should declare these
arguments as float. In Stardent C, when a float is passed as an argument it is
converted to a double.

There is no FORTRAN equivalent for this routine; use
AVSMODIFY PARAMETER instead.

WARNING See WARNING under AVSmodify_parameter above.

AVSchoice_number

.........................

C:

AVSchoice_number(name, string)
char *name, *string;

FORTRAN:

AVSCHOICE_NUMBERWNAME, STRING)
CHARACTER«*(*) NAME, STRING

This routine is called to interpret a value for a parameter of type "choice"
passed to a module computation routine. The name argument is the name of the
parameter as declared in the call to AVSadd_parameter in the module
description function. The string argument is the string passed to the
computation function as the value of the parameter.

This routine returns an integer that represents the position of the given choice in
the list of choices provided in the call to AVSadd_parameter in the module
description function. If the choice is the first in the list, this routine returns 1; if
the choice is the second in the list, this routine returns 2; and so on. If the
choice is not in the list of choices, this routine returns 0.

A module computation function can also interpret choices by means of direct
string comparisons of the parameter argument with expected literal strings.

Stardent Application Visualization System | Developer’s Guide — 002425-001 Rev A A-11

Routines for Coroutine Modules

..

..

C:

AVScorout_init(argc, argv, desc)
int argcy
char *argv(];
int (*desc)();

FORTRAN:

AVSCOROUT_INIT(DESC)
EXTERNAL DESC

This routine causes AVS to recognize and initialize the coroutine as a module
and sets up the connection between the coroutine and AVS. The coroutine must
call AVScorout_init before calling any other AVS routines. If this routine is
invoked during the module identification pass, it exits; if the routine is invoked
during module instantiation, it returns.

For a C coroutine, the argc and argv arguments are the corresponding
arguments to the coroutine main program. The desc argument is a pointer to the
module description function. For a FORTRAN coroutine, the only argument is
the module description function.

AVScorout_input

...

C:

int AVScorout_input(inputl, input2, ..., paraml, param2, ...
char **inputl, **input2, ...;
int *paraml, *param?2, ...;

FORTRAN:

AVSCOROUT _INPUT(UNPUTI,INPUT2, ..., PARAMI,PARAM?2, ...)
POINTER (INPUTI1,11), (INPUT2,12), ...
CHARACTER=*(*) 1,12, ...

INTEGER PARAMI1,PARAM?2, ...

A coroutine calls this routine to obtain inputs and parameters from AVS. There
is one argument for each input port and one argument for each parameter
declared in the module description function. All the input arguments appear
first in the arglist, followed by all the parameter arguments. For most data
types, the argument is a pointer to a pointer to a data item of the appropriate
type for the input or parameter declared. For some data types, such as integers,
the argument is a pointer to the data item itself. When the function returns,
each argument location contains a pointer to the corresponding input or
parameter value (or the value itself, for data types like integers).

The routine returns 0 if a required input or parameter is missing. Otherwise, it
returns the number of inputs and parameters supplied.

A-I12 Stardent Application Visualization System | Developer’s Guide — 002425-001 Rev A

AVScorout_output

...

C:

AVScorout_output(outputl, output2, ...)
char *outputl , *output2, ...;

FORTRAN:

AVSCOROUT_OUTPUT(OUTPUTI, OUTPUTZ, ...
CHARACTER%(*) OUTPUTI,OUTPUT2, ...

A coroutine calls this routine to send output data to AVS. There is one
argument for each output port declared in the module description function. For
most data types, the argument is a pointer to a data item of the appropriate type
for the output declared. For some data types, such as integers, the argument is
the data item itself.

If the user has disabled the module or the flow executive, this routine may hang
for an arbitrary time before returning.

AVScorout_wait

..

C:
AVScorout_wait()

FORTRAN:
AVSCOROUT_WAIT()

This routine waits until the user changes a parameter value or until an upstream
module sends more input. It then returns.

AVScorout _exec

...

AVScorout_exec()

FORTRAN:
AVSCOROUT_EXEC()

This routine waits until the flow executive has stopped running. It then returns.
The routine is useful for delaying output until the network has completely
processed the output of the previous computation.

Stardent Application Visualization System | Developer’s Guide — 002425-001 Rev A A-I3

A-14

...

AVSinput_changed (
C:
int AVSinput_changed(port_name, i)
char *port_name;
int i;
FORTRAN:

AVSINPUT_CHANGED(PORT NAME, I)
CHARACTER*(*) PORT NAME
INTEGER I

This routine determines whether or not input data has changed since the
previous invocation of the module. The port_name argument is the name of the
input port as declared in the module description function. The second argument
is the number of a connection to that port; the first connection is 0 for the C
routine and 1 for the FORTRAN routine. AVSinput_changed returns 1 if the
input data has changed for the specified port and connection. It returns O if the
input has not changed or if the specified connection does not exist.

AVSparameter_changed

..

C:
int AVSparameter_changed(param_name)

char *param_name; (
FORTRAN: |

AVSPARAMETER_CHANGED(PARAM_NAME)
CHARACTER*(*) PARAM _NAME

This routine determines whether or not a parameter value has changed since the
previous invocation of the module. The param_name argument is the name of
the parameter as declared in the module description function.
AVSparameter_changed returns 1 if the parameter value has changed. It
returns 0 if the parameter value has not changed.

AVSmark_output_unchanged

..

C:
AVSmark_output_unchanged(port_name)

char *port_name;
FORTRAN:

AVSMARK_OUTPUT_UNCHANGED(PORT NAME)
CHARACTER*(*x) PORT NAME

By default, AVS assumes that all output data has changed after each invocation
of a module. This can cause AVS to invoke downstream modules.
AVSmark_output_unchanged tells AVS that output data for a port has not
changed. The port_name argument is the name of the output port as declared in
the module description function.

Stardent Application Visualization System | Developer's Guide — 002425-001 Rev A

Routines for Creating Fields

...

...

#include <avs/avs.h>

#include <avs/field.h>

AVSfield * AVSbuild_field(ndim, veclen, uniform, ncoord, type, diml, dim2, ..., -
data, coords)

‘int ndim, veclen, uniform, ncoord, type;
int diml, dim2, ...;
unsigned char = *data;
float *coords,
FORTRAN:

#include <avs/avs.inc>
AVSBUILD_FIELD(NDIM, IVLEN, IFLAG, NCOORD, ITYPE, IDIM1,
IDIM2, ..., DATA, COORDS)
INTEGER NDIM, IVLEN, IFLAG, NCOORD, ITYPE
INTEGER IDIM1, IDIM2, ...
BYTE DATA(*)
REAL COORDS(*)

This routine is a utility that constructs a field from its components. The routine
returns a pointer to an AVSfield structure. Following is a description of the
arguments:

ndim A positive integer specifying the number of dimensions in the
computational space of the field.

veclen A positive integer specifying the length of the data vector at
each point. For a scalar field, the value is 1.

uniform A constant specifying whether the field is uniform, rectilinear,
or irregular. Possible values are UNIFORM,
RECTILINEAR, and IRREGULAR.

ncoord An integer specifying the number of dimensions in the
coordinate space of nonuniform fields. For uniform fields, the
value is 0. For rectilinear fields, the value is the same as
ndim.

type A constant specifying the type of data in the field. Possible
values are AVS_TYPE_BYTE, AVS_TYPE_INTEGER,
AVS_TYPE _REAL, and AVS_TYPE_DOUBLE.

diml, dim2, ... For each dimension, an integer specifying the size of the
dimension.

data The data array, in “FORTRAN" order. The subscript for
vector element varies fastest, then the subscript for the first
dimension, then the subscript for the second dimension, and
so on. The storage type for each element depends on the data
type of the field.

coords For a nonuniform field, an array of floating-point values
specifying the coordinates of the data points. For a rectilinear
field, the length of the array is the sum of the dimensions of
the field in computational space. For an irregular field, the
length of the array is the product of the dimensions of the field

Stardent Application Visualization System | Developer’s Guide — 002425-001 Rev A A-15

A-16

in computational space and the number of dimensions in
coordinate 'space. All the X coordinates are stored first, then
all the Y coordinates, and so on. For an irregular field, the
subscript for the first field dimension varies fastest. This
argument is omitted for uniform fields.

AVSbuild_2d_field

...

C:
#include <avs/field.h>
AVSfield * AVSbuild_2d_field(data, diml, dim2)

float *data;
int diml, dim2;
FORTRAN: »
AVSBUILD_2D_FIELD(DATA, IDIM1, IDIM2)
REAL DATA(IDIM1,IDIM?2)

INTEGER IDIM], IDIM2

This routine is a utility that builds a two-dimensional uniform scalar real field
from its components. The routine returns a pointer to an AVSfield structure.
The data argument is the data array, in “FORTRAN" order. The subscript for
the first dimension varies fastest. The diml and dim2 arguments are integers
specifying the size of the first and second dimensions, respectively.

AVSbuild_3d_field

..

C:

#include <avs/field.h>

AVSfield * AVSbuild_3d_field(data, diml, dim2, dim3)
float *xdata;
int diml, dim2, dim3;

FORTRAN:

AVSBUILD_3D_FIELD(DATA, IDIM1, IDIM2, IDIM3)
REAL DATA(IDIM1, IDIM2, IDIM3)

INTEGER IDIM1, IDIM2, IDIM3

This routine is a utility that builds a three-dimensional uniform scalar real field
from its components. The routine returns a pointer to an AVSfield structure.
The data argument is the data array, in “FORTRAN” order. The subscript for
the first dimension varies fastest, then the subscript for the second dimension.
The diml, dim2, and dim3 arguments are integers specifying the size of the first,
second, and third dimensions, respectively.

AVSfield_alloc

..

C:

#include <avs/field.h>

char * AVSfield_alloc(template, dims)
AVSfield *template;
int *dims;

This routine creates and allocates memory for a field. It returns a pointer to a
char, which should be cast to a pointer to an AVSfield.

The template argument is a pointer to a field to be used as a template for
creating the new field. The dims argument is an array of integers to be used as

Stardent Application Visualization System | Developer’s Guide — 002425-001 Rev A

the dimensions of the new field in computational space. The length of the array
must be the same as the number of dimensions in the template field. The dims
argument can also be O; in this case, the dimensions of the template field are
used to create the new field.

This routine copies the nspace, veclen, type, size, and uniform members of the
template field to the new field. If the dims argument is 0, it copies the
dimensions array of the template field to the new field; otherwise, it copies the
dims argument to the dimensions array of the new field. This routine allocates
memory for the points array of the new field. If the template field is rectilinear
or irregular and if the template field has a points array, this routine copies the
points array of the template field to the new field. This routine allocates
memory for the data array of the new field but does not copy the data array of
the template field to the new field.

The template field can be an existing field, such as an input argument to a
module computation routine, or a template created from an existing field by
AVSfield_make_template. A template created by AVSfield_make_template
is useful when the points array of the template field is not to be copied to the
new field.

There is no FORTRAN equivalent for this routine.

AVSfield_make_template

C:

#include <avs/field.h>

AVSfield_make_template(field_in, template)
AVSfield *field_in, *template;

This routine copies the ndim, nspace, veclen, type, size, and uniform members of
field_in to template. It allocates memory for the dimensions array of the
template field and copies the dimensions array of field_in to the template field.
This routine does not allocate memory for the data and points arrays of the
template field; it sets the value of those members of the template field to NULL.

This routine is intended to use an existing field, such as an input argument to a
module computation routine, to create a template for AVSfield_alloc. The
template argument can be created as follows:

AVSfield *template;
template = (AVSfield *) malloc(sizeof (AVSfield)):

There is no FORTRAN equivalent for this routine.

AVSfield_copy points

C:
#include <avs/field.h>

AVSfield_copy_points(field_in, field_out)
AVSfield *field_in, *field _out;

This routine copies the coordinates array from field_in to field_out. Memory
must be allocated for the coordinates array in field_out before this routine is

called. This routine is useful for passing the coordinates array from an input
field to an output field in a module computation routine that operates only on
the computational data of a field and ignores the coordinates.

There is no FORTRAN equivalent for this routine.

Stardent Application Visualization System | Developer's Guide — 002425-001 Rev A A-17

Rouﬁnes for Module Initialization

A-18

...

AVSinit_modules

C:
AVSinit_modules()

FORTRAN:
AVSINIT_MODULES()

This routine is defined by the AVS programmer. AVS invokes this routine when
it loads the modules defined in a file. Each executable file that defines
subroutine modules should have one and only one definition for
AVSinit_modules. The definition differs depending on whether the module
source is C or FORTRAN:

Q InC, each file can define more than one module. AVSinit modules should
contain one call to AVSmodule_from_desc to initialize each module
defined in the file. Alternately, AVSinit_modules can call
AVSinit_from_module_list to initialize a list of modules defined in the
file.

O InFORTRAN, each file can define only one module. The module
description function itself should be called AVSINIT_MODULES.

A file that defines a coroutine should not have a definition for this routine; a
coroutine calls AVScorout_init from its main program instead.

AVSmodule_from_desc

.................................

C:
AVSmodule_from_desc(desc)
int (*desc)();

AVSmodule_from_desc initializes a module from its description function. The
desc argument is a pointer to the description function.

For modules written in C, each file can define more than one module. The
programmer-supplied routine AVSinit_modules should contain one call to
AVSmodule_from_desc to initialize each module defined in the file.
Alternately, AVSinit_modules can call AVSinit_from_module_list to initialize
a list of modules defined in the file.

There is no FORTRAN equivalent for this routine. In FORTRAN, the module
description function itself is called AVSINIT_MODULES.

AVSinit_from_module_list

..

C:

AVSinit_from_module_list(AVSmodule_list, count)
int (**AVSmodule_list)();
int count;

AVSinit_from_module_list initializes a list of modules from their description
functions. The AVSmodule_list argument is a list of pointers, one to each
module description function defined in the file. The count argument is the
number of pointers in the list.

For modules written in C, each file can define more than one module. The
programmer-supplied routine AVSinit_modules should contain one call to

Stardent Application Visualization System | Developer’s Guide — 002425-001 Rev A

AVSmodule_from_desc to initialize each module defined in the file.
Alternately, AVSinit_modules can call AVSinit_from_module_list to initialize
a list of modules defined in the file.

There is no FORTRAN equivalent for this routine. In FORTRAN, the module
description function itself is called AVSINIT_MODULES.

Routines for Handling Errors

...

...

#include <avs/avs.h>
char * AVSmessage(version, severity, module, function_name, choices,
message_format, msgl, msg2, msg3, msg4, msgS, msgob)

char *yersion,

AVS MESSAGE_SEVERITY severity;

char *module;

char *function_name, *choices, *message_format;

char *msgl, *msg2, *msg3, *msgd, ¥msg5, *msgo;
FORTRAN:

#include <avs/avs.inc>
AVSMESSAGE(VERSION, SEVERITY, MODULE, FUNCTI ON_NAME,
CHOICES, MESSAGE)
CHARACTER*(*) VERSION
INTEGER SEVERITY
CHARACTER*(*) MODULE, FUNCTION_NAME
CHARACTER=*(*¥) CHOICES, MESSAGE

This routine causes AVS to present the user with a message from a module
computation routine, along with information about the module and function
sending the message. If the sender indicates that the message represents a
warning or error, AVS also stops executing and presents the message in a dialog
box, along with a set of choices. The user must acknowledge the message by
selecting one of the choices before AVS can continue. The icon for the module
that sends the message is highlighted in yellow in the Network Editor. The
AVSmessage routine also records the message in a log file for later review.

Following is a description of the arguments:

version A string indicating what version of the module is reporting the
error. This can be any string, but it should be a meaningful
identification for the code developer.

In some source code management systems, updating the
version string can be handled automatically. In SCCS, for
example, you can insert a line into a C source file declaring a
global string variable that matches SCCS id keywords. The
string is updated each time a delta is made. For example:

static char file version[] = "W SESM;

severity A value indicating the relative importance of the message
being sent. This determines how AVS presents the message to
the user and whether or not the user must acknowledge the
message before AVS can continue. If the message appears in
a dialog box, the border of the dialog box is color coded to
indicate the severity. Following are the possible values:

Stardent Application Visualization System | Developer's Guide — 002425-001 Rev A A-19

AVS_Information - The message does not indicate an error.
The message is written to stderr, and
AVS continues executing. No choices
are presented to the user.

AVS_Debug The message does not indicate an error;
it conveys information during module
testing. The message is written to
stderr, and AVS continues executing.
No choices are presented to the user.

AVS Warning The message indicates a problem that is
not fatal to module execution. The
message and choices are presented in a
dialog box with a yellow border. The
user must make a choice before AVS
can continue.

AVS_Error The message indicates a serious
problem that is not fatal to module
execution. The message and choices
are presented in a dialog box with a red
border. The user must make a choice
before AVS can continue.

AVS_Fatal The message indicates a problem that is
fatal to module execution. The
message and choices are presented in a
dialog box with a black border. The
user must make a choice before AVS
can continue. The module is marked as
dead, and the module icon in the
Network Editor workspace turns black.
The flow executive no longer executes
the module.

module The module sending the message. This value should always
be NULL in C (0 in FORTRAN). AVS automatically
identifies the module sending a message and highlights its
icon in yellow.

function The name of the function sending the message.

choices A string containing the names of options to be presented to
the user. The choices are separated by exclamation points (!).
For example, "Ok!Kill Module!Exit" is presented as three
choices: "Ok", "Kill Module", and "Exit". If the value is
NULL in C (0 in FORTRAN) or the empty string, AVS
presents a default choice, "Ok". AVS can add choices to those
specified in the choices argument.

message_format, msgl, msg2, msg3, msg4, msgs, msg6
' Clanguage: To produce the message to be presented to the
user, AVS calls sprintf(3S) with message format as the
format string and msg! through msg6 as the arguments. The
msgl through msg6 arguments can be of any type valid for
sprintf. Only as many arguments as the format string requires
need be supplied.

FORTRAN: The message to be presented to the user is the
message argument.

A-20 Stardent Application Visualization System | Developer’s Guide — 002425-001 Rev A

AVSmessage returns a string containing the choice the user made. A C
language routine can use stremp(3C) to identify the choice, as in this example:

char *answer:;

answer = AVSmessage(...,"Ok!Reset!Exit", ...)
if (!strcmp(answer,"Reset")) { /* reset action */ }
else 1f (!strcmp(answer,"Exit") { exit(l):; }

A FORTRAN routine should declare AVSMESSAGE to return
CHARACTER*n, where n is the maximum length of the string to be returned.
The string is padded on the right with spaces. The routine can use the .EQ.
operator to identify the choice, as in this example:

EXTERNAL AVSMESSAGE

CHARACTER*32 AVSMESSAGE

CHARACTER*32 RESPONSE

RESPONSE = AVSMESSAGE (’'Version 1’, AVS_Error, O,

+ ‘MY _ROUTINE’, ’Ok!Reset!Exit’,
+ "Attempt to divide by zero.’)
IF (RESPONSE(1:2) .EQ. 'Ok’) THEN

C Process 'Ok’ choice

ELSE IF (RESPONSE(l1:5) .EQ. ’Reset’) THEN
C Process 'Reset’ choice

ELSE IF (RESPONSE(1:4) .EQ. "Exit’) THEN
C Process 'Exit’ choice

ELSE
c Process other choices added by AVS

END IF

Because AVS can add choices to those supplied in the choices argument, the
returned value might not be one of the substrings in choices. For messages of
severity AVS_Information and AVS_Debug, no choices are presented to the
user, and the returned value is the empty string.

All messages sent through the AVS message mechanism are written to a log file
named avs_message.log in the current working directory. The log file may
contain additional information beyond that presented in the dialog box,
including the version string. When AVS starts up, any existing avs_message.log
file in the current working directory is renamed to avs_message.log™.

AVSinformation

Stardent Application Visualization System | Developer's Guide — 002425-001 Rev A

C:
AVSinformation(message_format, msgl, msg2, msg3, msg4, msg5s, msgo)
char *message_format;
char *msgl, *msg2, *msg3, *msgd, ¥msgS, *msgo,
FORTRAN:

AVSINFORMATION(MESSAGE)
CHARACTER#*(*) MESSAGE

This routine is an interface to the AVSmessage routine. It presents a message
of severity AVS_Information.

C language: To produce the message to be presented to the user, AVS calls
sprintf(3S) with message_format as the format string and msg! through msg6
as the arguments. The msgl through msg6 arguments can be of any type valid
for sprintf. Only as many arguments as the format string requires need be

A-21

A-22

supplied.
FORTRAN: The message to be presented to the user is the message argument.

This routine presents the user with no choices and returns no meaningful value.

AVSdebug

...

C:

AVSdebug(message_format, msgl, msg2, msg3, msg4, msg5, msg6)
char *message_format;
char *msgl, *msg2, *msg3, *msg4, *msgS, *msgo;

FORTRAN:
AVSDEBUG(MESSAGE)
CHARACTER#*(*¥) MESSAGE

This routine is an interface to the AVSmessage routine. It presents a message
of severity AVS_Debug.

C language: To produce the message to be presented to the user, AVS calls
sprintf(3S) with message_format as the format string and msg! through msg6
as the arguments. The msgl through msg6 arguments can be of any type valid
for sprintf. Only as many arguments as the format string requires need be
supplied.

FORTRAN: The message to be presented to the user is the message argument.

This routine presents the user with only the default choice, "Ok". It returns no
meaningful value.

AVSwarning

...

C:

AVSwarning(message_format, msgl, msg2, msg3, msg4, msg5, msgo)
char *message_format;
char *msgl, *msg2, *msg3, *msg4, *msg5, *msgo;

FORTRAN: :
AVSWARNING(MESSAGE)
CHARACTER#*(*) MESSAGE

This routine is an interface to the AVSmessage routine. It presents a message
of severity AVS_Warning.

C language: To produce the message to be presented to the user, AVS calls
sprintf(3S) with message_format as the format string and msg! through msg6
as the arguments. The msgl through msg6 arguments can be of any type valid
for sprintf. Only as many arguments as the format string requires need be
supplied.

FORTRAN: The message to be presented to the user is the message argument.

This routine presents the user with only the default choice, "Ok". It returns no
meaningful value.

Stardent Application Visualization System | Developer's Guide — 002425-001 Rev A

..

...

AVSerror

...............

C:

AVSerror(message_format, msgl, msg2, msg3, msg4, msg5, msgo)
char *message_format,;
char *msgl, *msg2, *msg3, *msg4, *msg5, *msgob;

FORTRAN:
AVSERROR(MESSAGE)
CHARACTER«*(*) MESSAGE

This routine is an interface to the AVSmessage routine. It presents a message
of severity AVS_Error.

C language: To produce the message to be presented to the user, AVS calls
sprintf(3S) with message_format as the format string and msgl through msg6
as the arguments. The msgl through msg6 arguments can be of any type valid
for sprintf. Only as many arguments as the format string requires need be
supplied.

FORTRAN: The message to be presented to the user is the message argument.

This routine presents the user with only the default choice, "Ok". It returns no
meaningful value.

AVSfatal

...

C:

AVSfatal(message_format, msgl, msg2, msg3, msgd, msg5, msgo6)
char *message_format;
char *msgl, *msg2, *msg3, *msg4, *msgs, *msgoé,

FORTRAN:
AVSFATAL(MESSAGE)
CHARACTER«*(¥) MESSAGE

This routine is an interface to the AVSmessage routine. It presents a message
of severity AVS_Fatal.

C language: To produce the message to be presented to the user, AVS calls
sprintf(3S) with message_format as the format string and msg1 through msg6
as the arguments. The msg! through msg6 arguments can be of any type valid
for sprintf. Only as many arguments as the format string requires need be
supplied.

FORTRAN: The message to be presented to the user is the message argument.

This routine presents the user with only the default choice, "Ok". It returns no
meaningful value.

Stardent Application Visualization System | Developer's Guide — 002425-001 Rev A A-23

#include <avs/field.h>
MAXX(field)
AVSfield *field,

MAXX provides the size of the first dimension of a field.

............................

......................................

#include <avs/field.h>
MAXY (field)
AVSfield *field;

MAXY provides the size of the second dimension of a field.

#include <avs/ﬁéld.h>
MAXZ(field)
AVSfield *field;

MAXZ provides the size of the third dimension of a field.

Macros for Obtaining Elements of a Scalar Data Array

...

...

......

#include <avs/field.h>
12D(field, i, j)
AVSfield *field;
int i,j;

For a two-dimensional field, I2D provides the element of the data array that
corresponds to index i of the first dimension and index j of the second
dimension. Note that the index “arguments’” are in order of the field
dimensions; if the indices were used directly as subscripts into the data array,
they would be in reverse order.

Stardent Application Visualization System | Developer's Guide — 002425-001 Rev A B-I

13D

14D

....................................

#include <avs/field.h>
13D(field, i, j, k)
AVSfield *field,
int i,j ks

For a three-dimensional field, I3D provides the element of the data array that
corresponds to index i of the first dimension, index j of the second dimension,
and index k of the third dimension. Note that the index “arguments’ are in
order of the field dimensions; if the indices were used directly as subscripts into
the data array, they would be in reverse order.

#include <avs/field.h>
14D(field, i, j, k, 1)
AVSfield *field,
int i,j k1,

For a four-dimensional field, 14D provides the element of the data array that
corresponds to index i of the first dimension, index j of the second dimension,
index k of the third dimension, and index !/ of the fourth dimension. Note that
the index “arguments’ are in order of the field dimensions; if the indices were
used directly as subscripts into the data array, they would be in reyerse order.

Macros for Obtaining Elements of a Vector Data Array

..

................

...

#include <avs/field.h>
I1DV(field, i)
AVSfield *field,
int i

For a one-dimensional field, I1DV provides a pointer to the first element of the
vector in the data array that corresponds to index i.

...

#include <avs/field.h>

12D V(field, i, j)
AVSfield *field,
int i,j;

For a two-dimensional field, I2DV provides a pointer to the first element of the
vector in the data array that corresponds to index i of the first dimension and
index j of the second dimension. Note that the index “arguments’ are in order
of the field dimensions; if the indices were used directly as subscripts into the
data array, they would be in reverse order, with the vector index as the last
subscript.

Stardent Application Visualization System | Developer's Guide — 002425-001 Rev A

.....................................

...

#include <avs/field.h>
I13DV(field, i, j, k)
AVSfield *field,
int i,j, k;

For a three-dimensional field, I3DV provides a pointer to the first element of the
vector in the data array that corresponds to index i of the first dimension, index j .
of the second dimension, and index k of the third dimension. Note that the
index “arguments’ are in order of the field dimensions; if the indices were used
directly as subscripts into the data array, they would be in reverse order, with
the vector index as the last subscript.

14DV
#include <avs/field.h>
14DV(field, i,j, k,)
AVSfield *field;
int ij.k I

For a four-dimensional field, I4DV provides a pointer to the first element of the
vector in the data array that corresponds to index i of the first dimension, index j
of the second dimension, index k of the third dimension, and index ! of the
fourth dimension. Note that the index “arguments” are in order of the field
dimensions; if the indices were used directly as subscripts into the data array,
they would be in reverse order, with the vector index as the last subscript.

Macros for Obtaining Rectllmear Coordmate Arrays

..

#include <avs/field.h>
RECT_X(field)
AVSfield *field;

For a rectilinear field, RECT_X provides a pointer to the first element of the
coordinate array that corresponds to the first dimension of computational space.

..

#include <avs/field.h>
RECT _Y(field)
AVSfield *field,

For a rectilinear field, RECT _Y provides a pointer to the first element of the
coordinate array that corresponds to the second dimension of computational
space.

Stardent Application Visualization System | Developer’s Guide — 002425-001 Rev A B-3

..

#include <avs/field.h>
RECT _Z(field)
AVSfield +field,

For a rectilinear field, RECT_Z provides a pointer to the first element of the
coordinate array that corresponds to the third dimension of computational
space.

Macros for Obtaining Coordinates for 3D Data Elements

........... . @eseacecsnnssnessescactsetsertsestscsansacacracrenssessansscsssnnssnes

..

..................

#include <avs/field.h>
COORD_X_3D(field, i, j, k)
AVSfield *field;
int i,j, k;
For a three-dimensional uniform field, COORD_X_3D “returns” i. For a
three-dimensional rectilinear or irregular field, COORD_X_3D provides the X

coordinate from the coordinate array that corresponds to the data element
specified by the indices i, j, and k.

COORD_Y_3D

...

#include <avs/field.h>
COORD_Y_3D(field, i, j, k)
AVSfield *field;
int i,j, k;
For a three-dimensional uniform field, COORD_Y_3D “returns” j. For a
three-dimensional rectilinear or irregular field, COORD _Y_3D provides the Y

coordinate from the coordinate array that corresponds to the data element
specified by the indices i, j, and k.

COORD_Z 3D

...

#include <avs/field.h>

COORD_Z _3D(field, i, j, k)
AVSfield *field;
int i,j, k;

For a three-dimensional uniform field, COORD_Z_3D “returns’ k. For a
three-dimensional rectilinear or irregular field, COORD_Z_3D provides the Z
coordinate from the coordinate array that corresponds to the data element
specified by the indices i, j, and k.

B4 Stardent Application Visualization System | Developer's Guide — 002425-001 Rev A

This appendix contains example source code for three AVS modules:

U A Clanguage subroutine module that computes the threshold of a field of
-floating-point numbers. ‘

O A FORTRAN version of the first example.
O A Clanguage coroutine module that creates a geometry object.

For files that contain source code for these and other examples, see the directory
lusrlavsiexamples .

A C Language Subroutine Module

..

#include <avs/avs.h>
#include <avs/field.h>

/3 sk ok ok ok ok ok sk sk ok ok ok ok ok sk s o o ok ok ok ok kb ok ok ok o o o ok ok ok o ok ok sk ok ok ok ok ok ok sk sk sk o o o o ok ok ok sk s ok o o ok Kok ok ok ok Kk sk sk ok ok /

/*

* This is a C example to compute the threshold of a 3D scalar field of
* floating point numbers.

*/

The threshold function examines each element of a field to see
whether it falls within the range specified by a minimum and maximum
parameter (controlled by dials). Elements in the range are passed
unchanged to the output field, elements outside the range are

set to zero in the output field.

* ¥ X X ¥ X ¥

/ *

* The function AVSinit _modules is called from the main() routine supplied
by AVS. 1In it, we call AVSmodule from desc with the name of our

* description routine.

*/

*

AVSinit modules ()
{
int threshold():;

AVSmodule_from_desc (threshold);
}

/* The routine "threshold" is the description routine. */

threshold()

{
int thresh compute(); /* declare the compute function (below) */
int in_port, out_port; /* temporaries to hold the port numbers */

/* Set the module name and type */
AVSset_module name ("exl-threshold"”, MODULE FILTER):

/* Create an input port for the required field input */

in _port =
AVScreate_input_port ("Input Field",

Stardent Application Visualization System | Developer's Guide — 002425-001 Rev A C-1

"field 3D uniform scalar float™, REQUIRED):;

/* Create an output port for the result */‘
out_port = AVScreate_output_port ("Output Field",
"field 3D uniform scalar float"):

/% Tell AVS to allocate space for the output data based on the size */
/* of the input data - note that this only works when the output */
/* port has the same type as the input port */

AvSinitialize output(in_port, out_port);

/* Add two floating point parameters, both unbounded. Min has */
/* an initial value of zero, max of 255 */

AVSadd_float_parameter ("thresh_min", 0.0, FLOAT_UNBOUND, FLOAT_UNBOUND) ;
AVSadd float_parameter ("thresh_max", 255.0, FLOAT UNBOUND, FLOAT_UNBOUND) ;

/* Tell avs what subroutine to call to do the compute */
AVSset_compute_proc(thresh_compute);

~

* X K ¥ ¥ X ¥ ¥

thresh compute is the compute routine. It is called whenever AVS wants to
compute new threshold results. The arguments are: the value of the input
field, the new output field (doubly indirected), the minimum parameter
value and the maximum parameter value. Note the order is always inputs,
outputs, parameters. The min comes before the max because in the
description routine above, the min is declared before the max.

/

thresh compute (input, output, pnin, pmax)
AVSfield flecat *input, **output;

float *pmin, *pmax;

{

register int 1, 3, ks

register float min = *pmin;
register float max = *pmax;
/*
* We use a triply nested loop to traverse the field. The macros MAXX,
* MAXY, and MAXZ determine the maximum extent of the field in each of
* the three dimensions. We know this will be a 3-dimensional
* field because of the declaration in the description routine, so
* we don’t need to check. When we want to reference an element of the
* field we use the I3D macro which picks an element of a 3D field.
* Note that the first index (i) varies the fastest in memory, so we
* make that the innermost loop.
*/

for (k = 0; k < MAXZ{(input); k++)
for (j = 0; j < MAXY(input); Jj++)
for (1 = 0; i < MAXX(input); i++)
if (I3D(input, i, Jj, k) > max) {

13D (*output, i, j, k) = 0.0;
} else if (I3D(input, i, Jj, k) < min) {
I3D (*output, i, Jj, k) = 0.0;
} else {
I3D (*output, i, j, k) = I3D(input, i, 3, k)

}

/* When we’re done, we return 1 to indicate success */
return(l);

C-2 Stardent Application Visualization System | Developer's Guide — 002425-001 Rev A

.. sseecscans cesenen csesee essesscescessrconcans

This 1s a FORTRAN example to compute the threshold of a 3D scalar field of
floating point numbers.

Qo0

The threshold function examines each element of a field to see
whether it falls within the range specified by a minimum and maximum
parameter (controlled by dials). Elements in the range are passed
unchanged to the output field, elements outside the range are

set to zero in the output field.

OO0O000

O

The AVS startup routines will call AVSinit modules to initialize the
modules. This is the description routine for the module.

Q

subroutine AVSinit modules
#include <avs/avs.inc>
integer iport, oport
external threshold
external AVScreate_input_port, AVScreate_output_port
integer AVScreate_input_port, AVScreate_ output_port

C Set the module name and type
call AVSset module name (’ex2-threshold’, ’filter’)

C Create an input port for the required field input

iport = AVScreate_ input_port (’input field’,
S "field 3D scalar uniform flocat’, REQUIRED)

C Create an output port for the result

oport = AVScreate_output port (’output field’,
S rfield 3D scalar uniform float’)

Tell AVS to allocate space for the output data based on the size
of the input data - note that this only works when the output
port has the same type as the input port

OO0

call AVSinitialize output (iport, oport)

C Add two floating point parameters, both unbounded. Min has
C an initial value of zero, max of 255

call AVSadd_parameter(‘min’, ffloat’, 0.0, 0.0, 255.0)
call AVSadd_parameter ('max’, ’'float’, 255.0, 0.0, 255.0)

C Tell AVS what function to call to do the compute
call AVSset compute proc(threshold)

return
end

Threshold is the compute function. The first four arguments represent
the input field: £, nx, ny, nz. The second four arguments represent
the output field: gp, mx, my, mz. Since we used AVSinitialize output
in the description routine, gp, mx, my, and mz will already have

the appropriate values. Note that for output field, we set up

the pointer declaration for the data field. The last two arguments
are the minimum and the maximum, read from dials manipulated by

the user. Note that they are presented to the subroutine in the

order they are declared in the description routine.

QOO0

integer function threshold(f, nx, ny, nz,
$ gp, mx, my, mz, fmin, fmax)
dimension f(nx, ny, nz)

pointer (gp, g)

Stardent Application Visualization System | Developer's Guide — 002425-001 Rev A C-3

dimension g(mx, my, nz)
real fmin, fmax

do k =1, nz
do j = 1, ny
do 1 =1, nx
if (£(i, 3, k) .gt. fmax) then
g(i, jr k) = 0.0
elseif (£f(i, j, k) .lt. fmin) then
g(i, J, k) = 0.0
else
g(i, 3, Xy = £(i, 3, k)
endif
enddo
enddo
enddo

C When we’re done, we return 1 to indicate success

threshold = 1
return
end

...

#include <stdio.h>
#include <avs/avs.h>
#include <avs/field.h>
#include <avs/geom.h>

/**/

/*

* This is a C example to create a geometry object. In this example,

* the "simulation™ program flow of control is used. Instead of providing
* a compute module function that is called whenver a parameter or input

* has changed, this module can determine when it wants to provide new

* data to the network. Many existing applications will fit into this

* model much more easily than the "compute function” model.

*/

/*

* The routine "qgix" is the description routine. It provides

* AVS some necessary information such as: name, input and output ports,
* parameters etc.

*/
qix ()
{
int polygon_ compute () ; /% declare the compute function (below) */
int out_port; /* temporary to hold the port number */
int parm; /* temporary to hold the parm number */

/* Set the module name and type */
AVSset module_name ("gix", MODULE_DATA);

/% There are no input ports for this module */

/% Create an output port for the result */
out_port = AVScreate output_port ("Output Geometry", "geom");

/* Add one parameter: an enable/disable toggle for the scope */
(void) AVSadd_parameter(“sleep", "boolean™, 1, 0, 1):

/% There is no compute function for this module */

}

#define MAXV 200

c+4 Stardent Application Visualization System | Developer’s Guide — 002425 -001 RevA

#define PERFRAME 6

typedef float FLOAT3([3];

main (argc,argv)
int argc;
char *argvl[]:
{
int qix ()
int count =

GEOMobj *obj

MAXV;
FLOAT3 verts([2],
int sleep = 1;

= NULL;

GEOMedit list output

moveO,

movel, colors[2], movec0O, movecl;

= NULL;

int 1i;
AVScorout_init (argc,argv,qix):;

while (1) {

/* If we are told to sleep, we’ll just wait until a parameter changes */

if (sleep) AVScorout wait():;

/* Get input parameter
AVScorout_input (&sleep);

for (1 = 0; i < PERFRAME; i++) {
if (count >= MAXV) {
start (verts,colors,movel, movel, movecO, movecl) ;
count = 0;
if (obj) GEOMdestroy obj(obj):

obj =
}

else next (verts,colors,move0,movel, movecO

GEOMcreate_obj (GEOM POLYTRI,NULL);

,movecl);

(any inputs would be here as well) */

GEOMadd_disjoint_line(obj,verts,colors,2,GEOM_COPY DATA);

count++;

}

output =

GEOMinit_edit_ list (output):

GEOMedit geometry (output, "gix",obj);

AVScorout_output (output) ;

}

#define RA 5.0
#define DD 0.2
#define DC 0.05

start (verts,colors,movel,movel, movecO, movecl)

FLOAT3

FLOAT3
FLOAT3
FLOAT3
{

*verts;
*colors;

move(O, movel;
movecO, movecl;

float ran():

verts[0] [0] = ran(RA); verts[0][1l] = ran(RA); verts[0][2] = ran(RA);
verts([1][0] = ran(RA); verts[1l][1l] = ran(RA); verts[l][2] = ran(RA);
moveO[0] = ran(DD); moveO[l] = ran(DD); move0O[2] = ran(DD);

movel (0] = ran(DD); movel([l] = ran(DD); movel[2] = ran(DD);
colors[0][0] = ran(1.0); colors[0][1l] = ran(l1.0); colors[0][2] =
colors[1l][0] = ran(1.0); colors[l][1l] = ran(l1.0); colors[l][2] =
movecO([0] = ran(DC); movecO[l] = ran(DC); movecO[2] = ran(DC):
movecl[0] = ran(DC); movecl[l] = ran(DC); movecl[2] = ran(DC);

}

next (verts,colors,move0,movel, movecQ, movecl)

Stardent Application Visualization System | Developer's Guide — 002425-001 Rev A

ran(l1.0);
ran(1.0);

FLOAT3 *verts;

FLOAT3 *colors;

FLOAT3 move0, movel;
FLOAT3 movecO, movecl;

{

}

int i;
for (i = 0; 1 < 3; 1i++) {
verts([0] [1] = verts[0][i] + moveO[i]:
verts[1l][1i] = verts[1l][i] + movel[i]:
colors[0][i] = colors([0][1i] + movecO[i];
colors[1l][i] = colors[1l][i] + movecl([i];
if (verts[0][i] > RA && moveO[i] > 0.0) {
verts[0] [i] = RA; moveO[i] = -moveO[i];
}
1f (verts[0][i] < -RA && moveO[i] < 0.0) {
verts[0][1] = -RA; moveO[i] = -moveO[i]:
}
if (verts[1][i] > RA && movel([i] > 0.0) {
verts[l][i] = RA; movel[i] = -movel[i];
}
1f (verts([1l][i] < -RA && movel[i] < 0.0) {
verts[1l][i] = -RA; movel[i] = -movel[i];

}

if (colors[0][i] < 0.0 && movecO[0] < 0.0) {
colors[0][i] = 0.0; movecO[i] = -movecO[i];

}

if (colors[0][i] > 1.0 && movecO[0] > 0.0) ¢{
colors([0][i] = 1.0; movecO[i] = -movecO[i];

}

if (colors[l][i] < 0.0 && movecl[l] < 0.0) {
colors[l][i] = 0.0; movecl[i] = -movecl[i];

}

if (colors[1][i] > 1.0 && movecl[0] > 0.0) {
colors[1l][i] = 1.0; movecl{i] = -movecl[i]:;

}

float
ran(n)
float n:

{

C—6

double drand48{():
return(n * drand48());

Stardent Application Visualization System | Developer's Guide — 002425-001 Rev A

AVS makes it easy to supplement the on-line help facility with documentation
for your own modules and/or networks. You can create a series of help files and
have them accessible through the Help buttons and the Show Module Docu-
mentation button in the Module Editor window.

You can also arrange for your help files to be visible to the man(1) shell com-
mand.

Help Files — Format and Naming Conventions

NOTE

...

Each help screen in AVS is implemented as an ASCII text file, with a .zxt
filename suffix. The file is displayed in a Help Browser window using a
monospace font (all characters have the same width). Thus, however you create
the help file using a text editor is exactly how it appears in the browser.

If you use TAB characters in help text files, be sure to set the tab stops in your
text editor to every 8 columns. It may be safer to use SPACE characters to align
columnar material instead.

The name of the help file must match the name of the associated module or net-
work. Replace SPACE characters in the module or network name with under-
scores. For example:

Module/Network Name Help Filename
clarify edge clarify_edge.txt
easy vu 2 easy_vu_2.txt

You can include comment lines in your help files. Any line that begins with a
period (.) character is suppressed when the file is displayed.

Integrating Your Help Files into the Help System

.......................................

AVS Help

................

..

...

There are two aspects to having your help files become part of the on-line help
system. First, we describe integrating the files into the AVS help facility. Then,
we describe integrating the files into the standard “man command” facility.

....................

By default, AVS searches for help files in the directories under
lusrlavs/runtimelhelp . It is not advisable to store your help files in this location
— in general, it is a bad idea to place user data in a “system” area. At many
installations, system areas are not backed up, since they can be rebuilt from dis-
tribution tapes. Moreover, mixing user data and system data can cause prob-
lems when installing AVS releases in the future.

Store your help files in a separate area, e.g. /usr/local/avs/helpﬁles. When you
invoke AVS, use the environment variable AVS_HELP_PATH to point to your
help data. For example, in the C shell:

Stardent Application Visualization System | Developer's Guide — 002425-001 Rev A D-1

% setenv AVS_HELP_PATH /usr/local/avs/helpfiles
% avs

You can include more than one directory in AVS_HELP_PATH, separating the
entries with colon (:) characters, e.g.:

% setenv AVS HELP_PATH /usr/john/avs/:/usr/cory/avs

You may want to set the environment variable in your shell startup file (.cshrc
for the C shell, .profile for the Bourne shell).

The AVS_HELP_PATH variable is used by the Network Editor as follows:

Q When you click the Help button in the Network Control Panel window
(along the left edge of the screen), the name of the current network is
converted to a filename by replacing SPACE characters with underscores
and appending a .zxt suffix. The help facility searches for that filename in
the entire directory hierarchy under the first entry in AVS_HELP_PATH. If
such a file exists, it is displayed in a Help Browser window. If not, the next
entry in AVS_HELP_PATH is used, and so on.

If no help file is found among all the AVS_HELP_PATH entries, a final
search is made in the default help location, /usr/avs/runtimelhelp . If this
fails, an error message window pops up.

Q The module icon for a user-written module includes the same small square
as the AVS-supplied icons. You can click this square with the middle or
right mouse button to bring up the Module Editor window. When you click
the Show Module Documentation button, the help facility converts the
module name to a filename and searches for the file, just as described in the
preceding paragraph.

The Help button in the Network Construction window does not use
AVS_HELP_PATH — it always looks in /usr/avs/runtime/help for help files.
Likewise for the Geometry Viewer.

The Image and Volume Viewers do use the first entry in AVS_HELP_PATH as
the initial help directory.

Man Command

...

The man(1) command can be used to view the help files for the AVS modules.
These files appear to-the man command to be in directory
{lusriman/catman/man6. This name is a symbolic link to the actual location of
the module help files, /usr/avs/runtimelhelp/modules .

Here is a suggested procedure for making manual pages for your own modules
visible to the man command;

O Create the manual pages as ASCII text files (with no TAB characters) in a
“non-system” location, e.g. /usr/locallavs/helpfile. You can use the .zxt
filename suffix. (Actually, the suffix is immaterial.)

Q Inthe manual page area, create a symbolic link to this location in the man
page area, e.g:

In -s /ust/local/avs/helpfiles /usr/man/catman/man6L
Here, Section “6L” has the mnemonic meaning “local version of Section
6”.

@ Use this form of the man command to view the module help files:

man 6L clarify_edge

Stardent Application Visualization System | Developer’s Guide — 002425-001 Rev A

