TREE META

(WORKING DRAFT)

29 December 1967

A META COMPILER SYSTEM

'FOR THE SPS 940

. By
D, I. Andrews and J, F. Rulifson

Stanford Research Institute
Menlo Park, California

Note: This work was supported jointly by:

. 1) National Aeronautics and Space Administration
Langley Research Center

2) Rome Air Development Center
. Griffiss Air Force Base

3) Advanced Réseafch Projects Agency
Department of Defense

A

Copy No. & ‘

Tree Meta - ABSTRACT - 29 DEC., 1967

0a Tree Meta is a céﬁpiler-compiler system for context-free
languages, Parsing statements of the metalanguage resemble
Backus-Naur Form with embedded tree-building directives. Unparsing
rules include exfensive trgenscanning and code-generation éonstrﬁcts.
Examples are drawn from vélgebraic and sﬁéciai-purpose languages, as
well as the process of bootstrappingv the compréhensive,
self-defining, tree language from a simpler ﬁetalanguage. Thorough
implémentation documentation for the Scientific Data System 940
appears in the ‘discussioﬁ of tﬁe support subroutines and in the
appendices. A bistory 6% §6;§uter metalanguages, a tutorial guide to
Tree Meta, and the practical usefulness and scope of the system are
. : s : . |
other topics of the report. igkvjﬁ”s) rd~<{~ /x e

Ob This is an interim project report and reflects the current status

of a portion of a constantly evolving programming system.

Oc Documentation level as of 29 December 1967 is TM1.3. .newp

" Tree Meta -~ CONTENTS -~ 29 DEC. 1967

1 Introduction

2 Basic Svntax

3 Program Environﬁent

4 TFormal Description «\ -7
5 Detailed Lxamples

6 Conclusions and Future Plans
7 ﬁibliography

8 Tree Meta in Tree Meta

9 Tree Meta Support Package

10 Metalib

11 Meta IT in aMac?o Language (not included)

12 Extended Meta in Meta II (not included)

Tree Meta - CONTENTS - 29 DEC. 1967

13 Outline for a 30 Minute talk on Meta (not included)

Tree Meta - INTRODUCTION - 29 DEC, 1967

1 Terms such as "metalanguage'" and "metacompiler' have a variety of

meanings. Their usage within this report, however, is well defined.

la "Language," without the prefix '"meta,'" means any formal computer
language, These are generally languages like ALGOL or FORTRAN. Any

metalangauge is also a language,

1b A compiler is a computer program which reads a formal-language
program as input and translates that program into instructions which
may be executed by a computer. The term 'compiler" also means a

listing of the instructions of the compiler.

1c A language which can be used to describe other languages is a
metalanguage. [English is an ihformal, general metalanguage which can
describe any formal language. Backus-Naur Form or BNF (NAURT) is a
formal metalanguage used to define ALGOL. BNF is weak, bfor it
describes only the syntax of ALGOL, and says nothing about the
semantics or meaning., English, on the other hand, is powerful, yet

its informality prohibits its translation into computer programs,

1d A metacompiler, in the most general sense of the term, is a
program which reads. a metalanguage program as input and translates
that program into a set of instructions., If the input program is a

complete description of a formal language, the translation is a

101

Tree Meta - INTRODUCTION - 29 DEC, 1967

compiler for the language,

2 The broad meaning of the word "metacompiler," the strong, divergent
views of many people in the field, and our restricted use of the word
necessitate a formal statement of the design standards and scope of Tree

Meta.

2a Tree Meta is built to deal with a specific set of languages and
an even more specific set of users., This project, therefore, adds to
the ever-increasing problem of the proliferation of machines and
languages, rather than attempting to reduce it. There is no attempt
‘to design universal languages, or machiﬁe independent languages, or

any of the other goals of many compiler-compiler systems,

2b Compiler-compiler systems may be rated on two almost independent
features: .the syntax they can handle and the features within the

system which ease the compiler-building process.

2513 Tree Meta 1is intended to parse context-free laguages using
limitéd backup. There ié no inteﬁt or desire on the part of the
usérs to deal with such problems as the TFORTRAN '"continue"
statement, thelPL/I "gnough ends tokmatch," or the ALGOL "is it
procedure or 1is it a variable" QUestioﬂ. Trée Meta ;s onl& one
part of aAsfstemubuildiﬁg Atéchniqué} There is flexibility at all

“levels of the system and the design philosophy has been to take

v102 ,

“Tree Meta - INTRODUCTION - 29 DEC. 1967

L
J

the easy way out rather than fight old problens,

2b2 Many of the features considered‘ necessary for a
compiler-comﬁilcr system are absent in Tree Meta. Such things as
syﬁbolntables that handle ALGOL-style blocks and variable types
are not included. Neither are there features for multidimensional
subscripts or higher level macros., These féatQXQQJ;£é nétmpresent
because the users have not yet needed them. None, however, would

~be difficult to add.

2b3 Tree Meta translates directly from a high-levei language to
machine code. This is not for the faint of heart, There is a
very small number of users (approximately 3); all are
machine-language coders of about the same high level 6f
proficiency. The nature of the Specialopurpnée languages dgalt
with is such that general formal systems will not work., The data

structures and operations are too diverse to prodice appropriate

code with current state-of-the~art formal compiling techniques,

There are two classes of formal-definition compiler-writing schemes.

3a In terms of usage, the productive or synthetic approach to
language definition is the most common, A productive grammar
consists primarily of a set of rules which describe a method of

generating all the possible strings of the language.

103

‘Tree Meta - INTRODUCTION - 29 DEC. 1967

3b The reductive or analytic technique states a set 6f rules which
describe a method of analyzing any string of characters and deciding
whcthér that string is in the language. This approach simultaneously
produces a structure for the input string so that code may be

compiled.

3c The metacompilers are a combination of both schemes. They are
neither purely productive nor purely reductive, but merge both

techniques. into a powerful working system.

4 The metacompiler class of compiler-compiler systems may be
characterized by a common top-down parsing algorithm and a common
syntax. These compilers are expressible in their own language, whence

the prefix "meta.,"

4a The following is a formal discu#sion of top-down parsing
algorithms, It relies heavily on definitions ané formalisms which
areistandard in the litera{ure and may be skipped by the lay reader.
For a ianguage L, with vocabulary V, nonterminal vocabulary N,
productions P, and head S, the 'topfdown parse of a string u in L
starts with S éndrlooks for a sequence of productions such fhat S=>u
(S produces u), |

~"4al Let

104

‘Tree Meta - INTRODUCTION - 29 DEC, 1967

V= [E T, F, 4% (), X
N=[E, T, F] |
P = [B 1= T / T+ F

T it=F /F*T

Fe=X/ (E)]
L = (V,N,P,E)

4a2 The following intentionally incémpletevALCOL procedures will

perform a top-down analysis of strings in L,

4a2a boolean procedure E; E := if T then (if issymbol('+')

then E else true) else false; comment issymbol (arg) is a

Boolean procedure which compares the next symbol in the input

string with its argument, arg. If there is a match the‘input

stream is advanced;

:4a2b boolean procedure T; T := if F then (if issymbol('*')

then T else true) else false;

4a2¢ boolean procedure F; F := if issymbol('X')' then true

“else if issymbol('(') then (if E then (if issymbol(')') then

true else false) else false) else false;

4a3 The left-recursion problem can readily be seen by a slight

- ‘modification of L. Change the first‘production to

105

Tree Meta - INTRODUCTION - 29 DEC. 1967

4b

Ewe=T/E+T

and the procedure for E in the corresponding way to

E ¢= iﬁ T then true else iﬁ E veas

4a3a Parsing the string "X+X", the procedure E will call T,
which calls F, which tests for "X'" and gives the result '"true."
E is then true but oﬁly the first element of the string is in
the analysis, and the parse stops before completion, If the
input string is not a membef of the language, T is false and E
loops infinitely,

'

4a3b The solution to the problem used in Tree Meta is the
arbitrary number operator., In Tree Meta the first pfoduction
could be

E = T§S("+" T)

where the dollar sign and the parentheses indicate that the

quantity can be repeated any number of times, including 0.

4a3c Tree Meta makes no check to ensure that the compiler it
is producing Ylacks syntax rules containing left recursion.
»

This problem 'is one of the more common mistakes made by

inexperienced metalanguage programmers.,

The input language to the metacompiler closely resembles BNF,

The primary difference between a BNF rule

106

Tree Meta - INTRODUCTION - 29 DEC. 1967

{go to> ::= go to <iapel>
and aAmetalanguage rule

GOTO = "GO “TO" ,ID;
is that the metalangﬁage has been designed to use a computer-oriented
character set 'and simply delimited basic' entities, The
arbitrary-number operator and parenthesis construction of the
metalanguage are lacking in BNF, For example:

TERM = FACTOR S(("*" / "/' / ") FACTOR)

is a metalanguage rule that would replace 3 BNF rules.

4c The ability of the compilers to be expressed in their own
language has resulted in the proliferation of metacompiler systems.,
Each one is easily bootstrapped from a more primitive version, and

complex compilers are built with little programming or debugging

effort.

5 The early history of metacompilers is closely tied to the history of
SIG/PLAN Working Group 1 on Syntax Driven Compilers, The group was
started in the Los Angles area primarily through the effort of loward

Metcalfe (SCHMIDT1).

S5a In the fall of 1962, he designed two compiler-writing
interpreters (METCALFE1), One used a bottom-to-top analysis
technique based on a method déscribed by Ledley and Wilson (LEDLEY1),

The other used a top-to-bottom approach based on a work by GTennie_

107

Tree Meta - INTRODUCTION - 29 DEC., 1967

(GLENNIE1) to generate random English sentences from a context-free

grammar.

5b At the same time, Val Schorre described two "metamachines'--one
generétive and one analytic, The generative machine was implemented,
and produced random algebraic expressions. Schorre implementgd Meta
I, the first metacompiler, on an IBM 1401 at UCLA in .January 1963
(SCHORRET), His original interpreters and metamachines were written
directly in a pseudo-machine language. Meta i, however, was written
in a higher-level syntax language able to describe its own
compilation into the pseudo-machine language. Meta I is described in

an unavailable paper given at the 1963 Colorado ACM conference.

Sc Lee Schmidt at Bolt, Beranek, and Newman wrote a metacompiler in
March 1963 that utilized a CRT display on the time-sharing PDP-1
(SCHMIDT2). This compiler produced actual machine code rather than

interpretive code and was partially bootstrapped from Meta I,

6 Schorre bootstrapped Meta II from Meta I during the Spring of 1963
(SCHORRE2), The paper on the refined metacompiler system presented at
the 1964 Philadelphia ACM conference is the first paper on a
metacompiler available as a general reference. The syntax and
implemnentation techﬁique ‘of Schorre's system laid the foundation for
most of the systems that followed. Again the system was imp]emented on

a small 1401, and was used to implement a small ALGOL-like language.'

108

Tree Meta - INTRODUCTION - 29 DEC., 1967

7 Many similar systems immediately followed. ~

7a Roger Rutman of A, C. Sparkplug developed and implemented LOGIK,
a language for logical design simulation, on the IBM 7090 in .January
1964 (RUTMAN1). This compiler used an algorithm which produced

efficient code for Boolean expressions.

7b Another paper in the 1964 ACM proceedings describes Meta III,
developed by Schneider and Johnson at UCLA for the IBM 7090
(SCHNEIDER1), Meta III represents an attempt to producg efficient
machine code for a large class of languagés. It was implemented
completely in assembly language. Two compilers were writteh in Meta
II1--CONOL, a compiler-writing demonstration compiler, and PUREGOL,
a dialect of ALGOL 60, (It was pure gall to call it ALGOL). The

rumored METAFORE, able to compile full ALGOL, has never been

announced,

7c¢ Late in 1964, Lee Schmidt bootstrapped a metacompiler from the
PDP-1 to the Reckman 420 (SCHMIDT3). It was a logic equation

generating language known as EQGEN.,

8 Since 1964, System Development Corporation has supported a major

effort in the development of metacompilers. This effort includes

3

powerful metacompilers written in LISP which have extensive

109

Tree Meta - INTRODUCTION - 29 DEC. 1967

tree-searching and backup capability (BOOK1) (BOOK2).

9 An outgrowth of one of the Q-32 systems at-SDC is Meta 5 (OPPENHEIMI)
(SCHAFFER1), This system has been successfully released to a wide
number of users and has had many string-manipulation applicafions other
than compiling. The Meta 5 sysfem incorboraies backup of the input
stream and enough other facilities to parse any context-sensitive
language. It has many elaborate push-dOWn.stacks, attribute setting and
testing facilities, and output mechanismé. The fact that Meta 5

successfully translates JOVIAL programs to PL/1 programs clearly

demonstrates its power and flexibility.

10 The LOT system was developed during 1966 at Stanford Research
Institute and was modeled very closely after Meté 11 (KIRKLEYI).‘It had
new special-purpose constructs allowing it to geﬁerate a compilér which
woﬁld in turn be able to compile a subset of PL/1. This system had
extensive statistic-gathering facilities énd was used to study te
characteristics of top-down apalysis, It also embeddéa systen contfol,

normally relegated to control cards, in the metalanguage.

1{ The concept of the metamachine originally put forth by GLENNIE is SO
siﬁple that three hardware versions have been designed and one actually
implemented. The latter at Washington University in St, L;uis. © This
machine was built‘from macroméduiar cémpbhents and has for instructions

the codes described by Schorre (SCHORREZ).

110

Tree Meta - BASIC SYNTAX - 29 DEC., 1967

1 A metaprogram is a set of metalanguages rules, Each rule has the

form of a BNF rule, with output instructions embedded in the syntactic

description,

la The Tree Meta compiler converts each of the rules to a set of

instructions for the computer,

1b As the rules (acting as instructions) compile a program, they
read an input stream of characters one chafacter at a time. Each new
character is subjected to a series of tests until ah appropriate
syntactic description is found for that ‘ character. The next

character is then read and the rule testing moves forward through the

input.

2 The following four rules illustrate the basic constructs in the

system., They will be referred to later by the reference numbers R1A

through R4A,

.null

R1A EXP = TERM (M+" EXP / "= EXP / .EMPTY);
.nuil |

R2A TERM = FACTOR $(''*'" FACTOR / "/' FACTOR);
qnull ‘

R3A FACTOR = """ FACTOR / PRIM;

.null

201

Tree Meta - BASIC SYNTAX - 29 DEC., 1967

R4A PRIM = .ID / JNUM / "(" EXP)"

.null

2a The identifier to the left of the initial equal sign names the
rule, This name is used to refer to the rule from other rules. The

name of rule RIA is EXP,

2b The right part of the rule--everything between tﬁe initial equal
sign and the trailing semicolon--is the part of the rule which
effects the scanning of the input. Five basic types of entities may
occur in a right part. Each of the entities represents some sort of
a test which results in setting a genmeral flag to either "true" or

“false',

2b1 A string of characters between quotation marks (") represents
a literal string. These literal strings are tested against the

input stream as characters are read.

2b2 Rule names may also occur in a right part. If a rule is
processing input and a name is reached, the named rule is invoked.
R3A defines a FACTOR as being either a minus sign followed by a

FACTOR, or just a PRIM.

2b3 The right part of the rule FACTOR has just been defined as "a

string of elements," "or'" "another string of elements." The

202

Tree Meta - BASIC SYNTAX - 29 DEC, 1967

"or's" are indicated by slash marks (/) and each individual string

is called an alternative, Thus, in the above example, the minus
sign and the rule name FACTOR are two elements in R3A., These two

elements make up an alternative of the rule,

2b4 The dollar sign is the arbitrary number operator in the
metalanguage. A dollar sign must be followed by a single
element, and it indicates that this element may occur an.arbitrary
number of times ~(including zero). Paréntheses may be used to

group a set of elements into a single element as in R1A and R2A,

2b5 The final basic entities may be seén in rule R4A, These
represent the basic recognizers' éf the metacompiler system., A
basic recognizer is a program in Tree Meta that may be called updn
to test the input stream for an occurrence of'a particular entity.
In Tree Meta the three recognizers are "identifier" as .ID,
"number" as NUM, and "string" as .SR, There is anothér basic
entity which is treated as a recognizer but does not look for

anything. It is ,EMPTY and it always returns a value of "true,"

3 Suppose that the input stream contains the string X+Y when the rule

EXP is invoked during a compilation,

3a EXP first calls rule TERM, which calls FACTOR, which tests for a

minus sign. This test fails and FACTOR then tests for a plus éign

203

‘Tree Meta -~ BASIC SYNTAX - 29 DEC, 1967

and fails again, Finally FACTOR calls PRIM, which tests for an
identifier. The character X is an identifier; it is recognized and

the input stream advances one character,

\

3b PRIM returns a value of "true" to FACTOR, whiéh in turn returns
to TERM., TERM tests for an asterisk and fails, It then tests for a
slash and fails. The dollaf sign in front of the parenthesized group
in TERM, however, means that the rule has succeeded because TERM has
found a FACTOR followed by zero occurrences of "asterisk FACTOR" or
"slash FACTOR.'" Thus TERM returns a '"true'" value to EXP. EXP now
tests for a plus sign and finds it. The input strean advances

another character.

3c EXP now calls on itself., All necessary information is saved so
‘that the return may be made to the right place. In calling on itself,

it goes through the sequence just described until it recognizes the

Y. .

3d Thinking of the rules in this way is confusing and tedious, It
is best to think of each rule separately, For example: one should
think of R2A as defining a TERM to be a series of FACTORs separated
by asterisks and slashes and not attempt to think of ail the pbssible

things a FACTOR could be.

4 Tree Meta is different from most metacompiler systems in that it

204

Tree Meta - BASIC SYNTAX - 29 DEC. 1967

builds a parse tree of the input stream before producing any output,

Before we describe the syntax of node generation, let us first discuss

parse trees,

4a A parse tree is a structural description of the input stream in

terms of the given grammar.

4al Using the four rules above, the input.stream
.null
.null) X+Y*Z
.null
has the following parse tree
«null
.null EXP

.null

.nﬁll
.null
.null FACTOR VTERM
.null |
.null : - PRIM ACTOR FACTOR

.null

.null X PRIM PRIM

snﬁil

null Y - 7

205

" Tree Meta = BASIC SYNTAX - 29 DEC, 1967

4a2 In this tree each node is either the name of a rule or one of

the primary entities recognized by the basic recognizer routines.

4a3 In this tree there is a great deal of subcategorization, For
example, Y is a PRIM which, is a FACTOR, which is the left member

of a TERM. This degree of subcatégorization is generally

undesirable,

4b The tree produced by the metacompiler program is simpler than the

one above, yet it contains sufficient information to complete the

compilation.

4bl1 The parse tree actually produced is
.ﬁull |
.null ‘ ADD
.nﬁll
gull X ULT
.null

.null Y Z

4b2 In this tree the names of the nodes are not the rule names of
the syntactic definitions, but rather the names of rules which

will be used to generate the code from the tree.

- "4b3 The rules which produce the above tree are the same as the

206

Tree Meta - BASIC SYNTAX - 29 DEC. 1967

.Jnull
R1B
.null
R2B
[21);
.null
R3B
.null

R4B

four previous rules with new syntax additions to perform the

appropriate node generation, The complete rules are:
EXP = TERM (“+'" EXP :ADD/ "-' EXP :SUB) [2] .EMPTY);

TERM = FACTOR $(('"*" FACTOR :MULT/ "/" FACTOR :DIVD)

FACTOR = "-" FACTOR :MINUS[1] / PRIM;

PRIM = ,ID / JNUM / "(" EXP "),

4c As these rules scan an input stream, they perform just like the

first set, As the entities are recognized, however, they are stored

on a push-down stack until the node-generation elements remove them

to make trees. We will step through these rules with the same sample

input stream:

.null

X+Y*Z
4cl EXP calls TERM, which calls FACTOR, which calls PRIM, which
recognizes the X. The input stream moves forward and the X is put

on a stack,

4c2 PRIM returns to FACTOR, which returns to TERM, which returns

to EXP., The plus sign 1is recognized and EXP is again called.

207

Tree Meta - BASIC SYNTAX - 29 DEC. 1967

Again IXP calls TERM, which calls FACTOR, which calls PRIM, which
recognizes the Y, The input stream is advanced, and Y is put on
the push-down stack, The stack now contains Y X, and the next

character on the input stream is the asterisk,

4c3 PRIM returns to FACTOR, which returns to TERM, The asterisk

is recognized and the input is advanced another character.

4c4 The yule TERM now calls FACTOR, which calls PRIM, which
recognizes the Z, advances the input stream, and puts the Z on the

push-down stack.

4c5 The :MULT in now processed., This names the next n&de to be
put in the tree, Later we will see that in a complete
metacompiler program there will be a rule named MULT which will be
processcd when the time comes to produce code from the tree,
Next, the [2] in the rule TERM is processed, This tells the
system to construct a portion of a tree. The branch 1is to have
two nodes, and they are to be the last two entities recognized
(they are on the stack)., The name of the branch is to be MULT,
since that was the last name given, The branch is constructed and

the top two items of the stack are replaced by the new node of the

tree.,

4c5a The stack now contains

-208

‘Tree Meta - BASIC SYNTAX - 29 DEC. 1967

.null

.null

.null
.null
.null

.null

MULT
X

4c5b The parse tree is now

MULT

4c5¢ Notice that the nodes ére assembled in a left-to-right

order, and that the original order of recognition is retained.

4c6 Rule TERM now returns to EXP whicﬁ names the next node by
executing the :ADD, i,e., names the next node for the tree. The
[2] in rule EXP is now executed. A branch of the tree is
generated which contains the top two items of the stack and whose
name is ADD. The top two items of the stack are removed, leaving
it as it was initially, empty. The tree is now complete, as first

shown, and all the input has been passed over,

5 The unparsing rules have two functions: they produce output and they

test the tree in much the same way as the parsing rules test the input

stream, This testing of the tree alows the output to be based on the

deep structure of the input, and hence better output may be produced.

- 209

Tree Meta ~ BASIC SYNTAX - 29 DEC, 1967

~5a Before we discuss the node-testing features, let us first
describe the various types of output that may be produced. The
following 1list of output-generation features in the metacompiler

system is enough for most examples,

5a1 The output is line-oriented, and the end of a line is
determined by a carriage return, To instruct the system to

produce a carriage return, one writes a backslash (upper-case L on

a Teletype) as an element of an unparse rule,

5a2 To make the output more readable, there is a tab feature, To
put a tab character into the output stream, one writes a comma as

an element of an output rule.

5a3 A literal string can be inserted in the output sfream by
merely writing the literal string in the unparse rule. Notice
that in the unparse rule a literal string becomes output, while in
the parse rules it becomes aﬁ entity to be testea for in the input
stream., To output a 1line of code which haswL as a label, ADD as
an operation cbde, and SYS as an address, one would write the
following string of elements in an unparse rule:

.null "Lll" "ADD" s NSYSH

Sa4 As can be seen in the last example of a tree, a node of the

~tree may be either the name of an unparse rule, such as ADD, or

210

Tree Meta -~ BASIC SYNTAX -~ 29 DEC. 1967

.null

one of the basic entities recognized during the parse, such as the

identifier X.

S5ad4a Suppose that the expression X+Y*Z has been parsed and the
‘program is in the ADD unparse rule processing the ADD node‘
(later we will see how this state is reached). To put the
identifier X into the output stream, one writes '"*1" (meaning
“"the first node below") as an element. For example, to
generate a line of code with the operation code ADA and ‘the
operand field X, one would write:

YADA", *1

S5a4b To generate the codé‘fér the left-hand node of the tree
one merely mentions "*1" as an element of the unparse rule.
Caution must be taken to ensure that no'attemp; is made) to
append a nonterminal node to the output stream; each node nust
be tested to be’sure that it is the right type before it can be

evaluated or output.

5a5 Generated labels are handled automatically., As each unparse
rule is entered, a new set of labels is generated. A 1label is

referred to by a number sign (upper-case 3 on a Teletype) followed

by a number. Every time a label is mentioned during the execution

of a rule, the label is appended to the output stream. If another

rule is invoked in the middle of a rule, all the labels are saved

211

Tree Meta - BASIC SYNTAX - 29 DEC, 1967

and new ones generated, When a return is made the previous labels

are restored.

6 As trees are being built during the parse phase, a time comes when it
is necessary to generate code from the tree, To do this one writes an
asterisk as an element of a parse ryule, for example

RSB PROGRAM = ".PﬁOGRAM" $(ST *) ",END";

which generates code for each statement after it has been entirely
parsed. When the asterisk is executed, control of the program is
transferred to the rule whose name is the root (top node or last
generated node) of the tree, When return is finally made to the rule

which initiated the output, the entire tree is cleared and the

generation process begins anew,

6a An unparse rule is a rule name followed by a series of output
rules, Each output rule begins with a test of nodes., The series of
output rules make up a set of highest-level alternatives. When an
unparse rule is called the test for the first output rule is made.
If it is satisfied, the remainder of the alternative is executed; if
it 1is false, \the next alternative output rule test is made, This
process continues until either a successful test is made or all the
alternatives have been tried. If a test 1is successful, the

alternative is executed and a return is made from the unparse rule

with the general flag set "true.!" If no test is successful, a return

is made with the general flag "false "

212

Tree Meta -~ BASIC SYNTAX - 29 DEC, 1967

6b

The simplest test that can be made is the test to ensure that the

correct number of nodes emanate from the node being processed. The

ADD rule may begin

.null

ADD[-,-] =>

The string within the brackets is known as an out-test. The hyphens

are individual items of the out-test. Each item is a test for a

node, All that the hyphen requires is that a node be present. The

name of a rule need not match the name of the node being processed.

.null

6b1 If one wishes to eliminate the test at thé head of the
out-rule, one may write a slash instead of.the bracketed string of
items, The slash, then, take;'thé place of the’test and is always
true. Thus, a rule which begins with a slash immediately,aftér
the rule name may have only one out-rule, Thé rule
MT / => .EMPTY;

is frequently used to flag the absence of an optional item in a
list of items, It may be tested in other unparse rules but it

itself always sets the general flag true and returns,

6b2 The nodes emanating from the node being evaluated ére
referred to as *1, *2, etc., counting from left to right., To test
for equaiity bétweeﬁ nodes, one merely writes *i for some i‘ as
the desired item in an out-test. Tor example, to see if node 2 is

the same as node 1, one could write either"[~,*1] or [*2,~-]. To

213

Tree Meta - BASIC SYNTAX - 29 DEC. 1967

see if the third node is the same as the first, one could write

[-,*2,*1]. In this case, the *2 could be replaced by a hyphen.

6b3 One may test to see if a node is an element which was
genérated by one of the basic.recognizers by mentioning the name
of the recognizer. Thus to see if the node is an identifier one
writes .ID; to test for a nuﬁber one writes NUM, To test whether
the first node emanating from the ADD is an identifier énd.if the

~second node exists, one writes [.ID,-].

6b4 To check for a 1literal string on a node onevmay write a
string as an item in an out-test., The construct [-,"1"] tests to
be sure that there are two nodeé agd that the second node is a 1.
The second node will have been recognized by the .NUM basic

recognizer during the parse phase,

6b5 A generated label may be inserted into the tree by using it
in a call to an unparse rule in another unparse rule., This
process will be explained later. To sée if a node is a previously
generated label one writes a number sign followed by a number. If
the mnode is not a generated label the test fails., If it is a
generated iabel the test is successful and the label is associated
with the number‘ foliowing the number signf To refer to the label
in the unparse ruie, one writes the number sign followed by the

number,

214

Tree Meta - BASIC SYNTAX - 29 DEC. 1967

.null

.,qnull
.null
.null
qnull
.null
qnull

.null

6¢

6bo Finally, one may test to see if the naﬁe matches a specified
name. Suppose that one had generated a node named STORE. The
left node emanating from it is the name of aavariaﬁle and on the
right is the tree for an expression. An unparse rule may begin as
follows:

STORE[= ,ADD[*1,"1"]] => , "MIN " #1
The *1 as an item of the ADD refers to the left node of the STORE.

Only a tree such as
STORE

JID ADD

b

ID

would satisfy the test, where the two identifiers must be the same
or the test fails. An expression such as X « X + 1 meets all the
requirements, The code generated (for the SDS 940) would be the

single instruction MIN X, which increments the cell X by one,

Each out-rule, or highest-level alternative; in an unparse rule

is also made up of alternatives. These alternatives are separated by

slashes, as are the alternatives in the parse rules.

215

Tree Meta - BASIC SYNTAX - 29 DEC. 1967

6¢l The'alterhatives of the out-rule are called "oﬁt»cxpfs." The
out-expr may begin with a test; or it may begin withiinstructions
to output characters. If it begins with a test, the test is made.
If it fails the next out-expr in the out-rule is tried. If the
test is‘successful; control proceeds to the. next element of the
out-expr. When the out-expr is done, a return is made from the

unparse rule.

6c2 The test in an out-expr resembles the test for the out-rule,

There are two types of these tests,

6c2a Any nonterminal node in the tree may be transferred to by
its position in the tree rather than its name. TFoxr example, *2
would invoke the éecond node from thé right, This oPEration
not only transfers control to the specific node, but it makes
“that node the one from which the next set of nodes tested

jemanate. After control is returned to the position immediately
following the *2, the general flag is tested; If it is "true"
the out-expr proceedes to the next element, If it is 'false"
aﬁd the *2 is thé first element of the out-expr the next
"alternative of the out-expr is tried. If the flag is "false"
and the *2 is not the first elemént of the out-expr, a compiler

error is indicated and the system stops.

6¢c2b The other type of test is made by invoking another

216

Tree Meta ~ BASIC SYNTAX - 29 DEC. 1967

onull

‘unparse rule by name and testing the flag on the completion bf

the rule, To call another unparse rule from an out-expr, one
writes the name of the rule followed by an argument list

enclosed in brackets, The argument list is a list of nodes in

the tree. These nodes are put on the node stack, and when the

call is made the rule being called sees the argument list as
its set of nodes to analyze, For example:

ADD[MINUS[-],-] => SUB[*2,*1:*1]

6¢c2b1 Only nodes and generatea labels can be written as
arguments. Nodes are written as *1, *2; etc; "To reach
other nodeé of the tree one may write such things as *1:%2,
which means "the second .noﬁe emanating f?om the fifst node
emanating from the node being evaluated." Referring to the
tree for the expression X+Y*Z, if ADD is heingr evaluated,
*2:*1 is Y, To go up the tree one may write an '"uparrow" ($)
followed by a number before the asterisk-number-colon
sequence. The uparrow means to go up that many levels
before the search is made down the tree. If MULT were being

evaluated, *1*1 would be the X.

6¢c2b2 If a generated label is written as an argument, it is
generated at that time and passed to the called unparse rule
so that that rule may use it or pass it on to other rules,

The generated 1label is written just as it is in an ouéput

217

Tree Meta - BASIC SYNTAX - 29 DEC, 1967

element--a number sign followed by a number.

6¢3 The calls on other unparse rules may occur anywhere in an
out-expr. If they occur in a place other than the first element
they are executed in the same way, except that after the return
the flag is tested; if it is false a compiler error is indipated.
This wuse of extra rules helps in making the output rules more

concise.

6c4 The rest of an out-expr is made up of output elements

appended to the output stream, as discussed above,

6d Somtimes it is necessary to set the general flag in an out-expr,
just as it is sometimes necessary in the parse rules, .EMPTY may be

used as an element in an out-expr at any place.

6e Out-exprs may be nested, using parantheses, in the same way as

the alternatives of the parse rules,

7 There are a few features of Trec Meta which are not essential but do

make programming easier for the user.

7a If a literal string is only one character long, one may write an
apostrophe followed by the character rather than writing a quotation

mark, the character, and another quotation mark. For example: 'S and

218

Tree Meta - BASIC SYNTAX - 29 DEC. 1967

"S" are interchangeable in either a parse rule or an unparse rule,

7b As the parse rules proceed through the input stream they may come
to a point where the} are in the middle of a parse alternative and
there is a failure. This may happen for two reasons: backup is
necessary to parse the input, or there is a syntax error in the
inpht. Backup will not be éovered in this introductory chapter., If
a Syntax error occurs the system prints out the line in error with an
arrow pointing to the character which cannot be parsed, The system
then stops. To eliminate this, one may write a question mark
followed by a number followed by a rule name after any test except

the first in the parse equations. TFor example:

.null ST = ,ID '= question 2 E EXP question 3 E ';
.null question 4 E :STORE[2] ;

Suppose this rule is executing and has called rule EXP, and EXP
returns with the flag false, Instead of stopping Tree Meta prints
the line in error, the arrow, and an error comment which contains the

number 3, and transfers control to the parse rule E,

7¢ Comments may be inserted anywhere in a metalanguage program where
~blanks may occur. A comment begins and ends with a percent sign,

and may contain any character except--of course, a percent sign.

7d In addition to the three basic recogniiers JID, JNUM and (SR,

there are two others which are occasionally very useful,

219

Tree Meta -~ BASIC SYNTAX - 29 DEC. 1967

7d1 The symbol L(LET indicates a single letter., It could be

thought of as a one-character identifier,

7d2 The symbol .CHR indicates any character.A In the pérse rules,
+,CHR causes the next character on the ihpuf stream to be taken as
input regardless of what it is. Leading blanks are not discarded
as for {ID, NUM, etc. The character is stored in a special way,
and hence references to it are not exactly the same as for the
éther basic recognizers. In node testing, if one wishes to check
for the occurrence of a particular character that was recognized
by a .(CHR, one uses the single quote-character construct, vhen
outputting a node item which is a character recognized by a .CHR,

one adds a :C to the node indicator. For example, *1:C,

7e¢ Occasionally some parts of a compilation are very simple and it
is cumbersome to build a parse tree and then output from it. For this
reason the abilitby to output directly from parse rules has been

added.

~ 7el The syntax for outputting from parse rules is generally‘ the
same as for unparse rules, The output expression is written
vwithin square brackets, however. The items from the ;nput étream
which normally are pﬁt in the parse tree may be copied to the

- ‘output stream by referencing them in the output expression. The

220

Tree Meta - BASIC SYNTAX - 29 DEC. 1967

most recent item recognized is referenced as * or *S0, Items

recognized previous to that are *S1, *82, etc., counting in

reverse order--that is, counting down from the top of the stack

they are kept in,

7e2 Normally the items are removed from the stack and put intoa
the tree. However, if they are just copied directly to the output
stream, they remain in the stack. They are removed by wri;ing an
ampersand at the end of the parse rule (just before the
semicolon). This causes all input items‘added to the stack by that

rule to be removed. The input stack is thus the same as it was

when the rule was called,

221

Tree Meta - PROGRAM ENVIRONMENT - 29 DEC 1967

1 When a Tree Meta program is compiled by the metacdmpiler, a
machine~language version of the program is generated, However, it is not
a complete program since several routines are missing. All Tree Meta
programs have common functions such as reading input, generating output,
and manipulating stacks., It would be cumbersome to have the
metacompiler duplicate theseA routines for each program, so they are
containéd in a library package for all Tree Meta programs. The Ilibrary
of routines must be loaded with the machine-language version of the Tree

Meta program to make it complete.

1la The environment of the Tree Meta program, as it is running, is

the library of routines plus the various data areas.

1b This section describes the environment in its three logical

parts: input, stack organization, and output.

1bt This is a description of the current working version, with

some indications of planned improvements,
2 Input Machinery

2a The input stream of text 1is broken into lines and put into an
input buffer. Carriage returns in the‘text are used to determine the

ends of lines. Any line longer than 80 characters is broken into two

- 301

Tree Meta - PROGRAM ENVIRONMENT - 29 DEC 1967

~lines, This line orientation is necessary for the following:

2al Syntax-error reporting

2a2 A possible anchor mode (so the compiler can sense the end of

a line)
2a3 An interlinear listing option.

2a4 In the future, characters for the input buffer will be

obtained from another input buffer of arbitrary block size, but at
present they are obtained from the system with a Character 1/0

command.

2b It is the job of routine RLINE to £ill the input line buffer. If
Fhe listing flag is on, RLINE copies the new line to the output filé
(prefixed with a commeﬁt character--an asteriskvfor our assembler).
It also checks for an End-éf—File, and for 5 multiple blank
chafacter, which is a system feature built into our text files.
There is a buffer pointer which indicates whicﬁ character is to be
read from the line buffer next, and RLINE resets that pointer to the

first character of the line.

2¢ Input characters for the Tree Meta program are not obtained from

the inpﬁt line buffer, but from an input window, which is actually a

. 302

Tree Meta - PROGRAM ENVIRONMENT - 29 DEC 1967

character ring buffer., Such a buffer is necessary for backup. There

are three pointers into the input window, A program~charact¢r.
counter (PCC) points to the next character to be read by the program.
This may be moved back by the program to effect backup., A
librafy-character countexr (LCC) is never changed except by a library
routine when a new character is stored in the input window, PQC is
used to compute the third pointer, the input-window pointer (IWP),
Actually, PCC and LCC are counters, and only IWP points into the
array RING which is the character ring buffer.b LCC is never backed
up and always indicates the next position.in the window where a new
character must be obtained from the input 1line buffer. Backup is
registered in BACK, and is simply the differeﬁce between PCC and LCC.

BACK is always negative or zero,

2d There are several routines which deal directly with the input

window.

2d1 The routine PUTIN takes the next character from the input
line buffer and stores it at the input-window position indicated
by IWP, This involves incrementing the input-buffer pointer, or

calling RLINE if the buffer is empty. PUTIN does not change IWP,

2d2 The routine INC is used to put a character into the input
window, It increases IWP by one by calling a routine, UPIWP,

which makes IWP wrap around the ring buffer correctly. If there is

[
=
w

Tree Meta - PROGRAM ENVIRONMENT - 29 DEC 1967

backup (i.e.,, if BACK 1is less than 0), BACK is increased by one
and INC returns, since the next character is in the window
already. Otherwise, LCC is increased by one, and PUTIN is called

to store the new character.

2d3 A routine called INCS is similar to INC except that it
deletes all blanks or comménts which may be at the current point
in the input stream. This youtine implements the comment and
blank deletion for .ID, .NUM, .SR, and other basic recognizers.
INCS first calls INC to get the next chéracter and increment IWP,
From then on, PUTIN is called to store succeeding éharacters in
the input window in the same slot. As long as the current
character (at IWP) is a blank, INCS calls PUTIN to replace it with
the next character. The nonblank character is then compared with
a comment character, INCS returns if the cqmbarison fails, but
otherwise skips to the next comment character. When the end of

the comment is located, INCS returns to its blank-checking loop.

2d3a Note that comments do not get into the input window, For
this reason, BACK should be zero when a comment is found in the
loop described above, and this provides a good opportunity for

an error check.

2d4 Before beginning any input operation, the IWP pointer must be

reset, since the program may have set PCC back. The routine WPREP

304

Tree Meta - PROGRAM ENVIRONMENT - 29 DEC 1967

computes the value of BACK from PCC~LCC., This value must be

between 0 and the negative of the window size. IWP is then

computed from PCC modulo the window size.

2d5 The program-library inferface for inputting items from the
input stream consists of the routines ID, NUM, SR, LET, and CHR,
The first four are qﬁite similar. ID is typical of them, and
works as follows: TFirst MFLAG is set false. WPREP is called to
set up IWP, then INCS is called to get the first character. If
the character at IWP is not a letter, ID returns (MFLAG is still
false); otherwise a loop to input over letter-digits is executed.
When the letter-digit test fails the flag is set true, and the
identifier is stored in the string storage area., The class of
characters is determined by an array (indexed by the character
itself) of integers indicating ghe class. Before returning, 1ID
calls the routine GOBL which updates PCC to the last character
read in (which waﬁ not part of the identifier). That is, PCC is

set to LCC+BACK-1,

2d6 The occurrence of a given literal string in the input stream
is tested for by calling routine TST. The character count and the
string follow the call instruction, TST deletes leading blanks and
inputs characters, comparing them éne at a time with the B
characters of the literal string. If at any point the match

fails, TST returns false. Upon reaching the end of the string, TST

305

Tree Meta -~ PROGRAM ENVIRONMENT - 29 DEC 1967

sets the flag true, sets PCC to LCC+BACK, and returns. In
addition to TST, there is a simple routine to test for a single
character string (TCH). It inputs one character (deleting
blanks), compares it to the given character and returns false, or

adjusts PCC and returns true,
3 Stacks and Internal Organization

3a Three stacks are available to the program, A stack called MSTACK
is used to hold " return locations and generated 1labels for the
‘prbgram's recursive routines, Another stack, called KSTACK, contains
‘references to input items. When a basic récognizer is executed, the
reference to that input item is pushed into KSTACK. The third stack
is called NSTACK, and contains the actual tree: The three staeks are
declared in the Tree Meta program rather than the libraryz the

program determines the size of each.

3a1 The operation of MSTACR is very simple, At the beginning of
each routine, the current generéted labels and the location that
the routine was called from are put onto MSTACK. The routine is
then free to use the generated labels or’call other routines,
The routine ends by restoring the generated labels from MSTACK and

returning.

"3a2 KSTACK contains single-word entries. Each entry will

306

Tree Meta - PROGRAM ENVIRONMENT - 29 DEC 1967

eventually be placed in NSTACK as a node in the tree, The format

of the node words is as follows: There are two kinds of nodes,
terminal and nonterminal. Terminal nodes are references to input
items, Nonterminal nodes are generated by the parse rules, and

have names which are names of output rules,

3a2a A terminal node 1is a 24-bit word with either a
string-storage index or a character in the address portion of
the word, and a flag in the top part of the word. The flag
indicates which of the basic recogniiers (Ib, N, SR, LET, or

CHR) is to read the item from the input stream. .newp

Tree Meta - PROGRAM ENVIRONMENT - 29 DEC 1967

3aZ2b A nonterminal node consists of a word with the address of
- an output rule in the address portion, and a flag in the top
part which indicates that it "is é nonterminal mnode. A node
pointer is 'a word with an NSTACK index in the address and a
pointer flag in the top part of the word, FEach nonterminal
node in NSTACK consisfs of a nonterminal node word followed by
a word containing the number of subnodes on that node, followed
by a terminal node word or node pointers for each subnode. For
example,
.null TREE NSTACK J KSTACK
.null
.null ADD

.null

.null node ptr. ‘\\

.null SS item X

.null X MULT 2 node ptr.
: } P ;

.null node ADD

.null SS item Z

.null SS item Y

.null 2

.null

<
N~

node MULT

.null

3a2c KSTACK | contains terminal nodes (input items) and

- 308

Tree Meta - PROGRAM ENVIRONMENT - 29 DEC 1967

nonterminal node pointers which point to nodes already in

NSTACK, NSTACK contains nonterminal nodes.

3b String Storage is another stack-like area. . All the items read
from the input stream by the basic recognizers (except CHR) are
stored in the string-storage area (S5). This consists of a series of
character strings prefixed by their character counts. An index into
SS consists of the address of the character count for a string.
Strings in SS are wunique. A routine called STORE will search SS for

a given string, and enter it if it is not already there, returning

the SS index of that string.

3¢ Other routines perform housekeeping- functions 1like paéking and
unpacking strings, etc. There are three error-message writing
routines to write the three types of error messages (syntax, system,
and compiler). The syntax error routine copies the current input
line to the teletype and gives the line number. A routine called
FINISH closes the files, writes the number of cells used for each of
the four stack areas (KSTACK, MSTACK, NSTACK, and S85), and terminates

the progranm.

3¢l At many points in the 1library routines, parameters are
checked to see if they are within their bounds. The system error
routine is called if there 1is something wrong. This routine

writes a number indicating what the error is, and terminates the

1309

Tree Meta - PROGRAM ENVIRONMENT - 29 DEC 1967

program., In the current version, the numbers correspond to the

following errors.
3cla (1) Class codes are illegal
3cib (2) Backup too far
Sclc‘ (64) Character with code gfeater‘than 63 in ring buffer
3cld (4) Tesf for string longer than ring size

3cle (5) Trying to output a string longer than maximum string

length

3cif (6) String-storagg overflow
S 3clg (7) Illegal charagfer code

3¢1h (8) Trying to store SS element of length zero
" 3cli (1?) wSTACK overflow

3clij (12) NSTACK overflow

3¢tk (13) KSTACK overflow

310

Tree Meta ~ PROGRAM ENVIRONMENT - 29 DEC 1967

3d There is a set Qf routines used by Tree Meta which are not
aétuélly part of the 1library, but are loaded with the library for
Tree-Meta, Theybarevnot included in the library since they are not
necessarily required for every Tree Meta pfogram, but more likely
only for Tree Meta, They are called "“support routines'. The
routines perform short butlfrequently needed operations and serve to
increase code density in the metacompiler. Examples of the
operations are generating labels, saving and restoring labels and

return addresses on MSTACK, comparing flags in NSTACK, generating

nodes on NSTACK, etc,
4 Output Facilities

4a The output from a Tree Meta proéram consists of a string of
characters, In the future it might be a string of bits constituting a
binary program, but at any rate it can be thought of as a stream of
data. The output facilities available to tﬁe program consist of a set

- of routines to append characters, strings, and numbers to the output

strean,

4al A string in SS can be written on the output stream by calling
the routine OUTS with the SS index for that string. OUTS checks

the SS index and generates a system-error message if it is not

reasonable,

311

Tree Meta = PROGRAM ENVIRONMENT - 29 DEC 1967

4a2 A literal string of characters is written by calling the

routine LIT. The literal string follows the call as for TST.

4a3 A number is written using routine OUTS, The binary
representation is given, and is written as a signed decimal

integer.

4a4 All of the above routiﬁes keep track of the number of
characters written on the output stream (in CHNO). Based on this
count, a routine called TAB will output enough spaces to advance
the current output line to the next tab stop. Tabs are set at
8-character intervals, The voutine CRLF will output a carriage

return and a line feed and reset CHNO,
4a5 There are several routines that are convenient for debugging.

One (WRSS) will print the contents of SS, Another (WRIW) will

print the contents of the input window.

312

Tree Meta -~ FORMAL DESCRIPTION - 29 DEC 1967

1 This chapter is a formal description of the complete Tree Meta

language, It is designed as a reference guide.

la For clarity, strings which would normally be delimited by
quotation marks in the metalanguage are capitalized instead, in this

chapter only.

b Certain characters cannot be printed on the report-generating
output media but are on the teletypes and in the metalanguage--their
names, preceeded by periods, are used instead. They are
.exclamation, .question, .pound, .ampersand, .backslésh, and

.percent,
2 Programs and Rules

2a Syntax

2al program = ,META ,id (.LIST / .empty) size / .CONTINUE S$rule

.END;
2a2 size = '(siz $(', siz) ') / .empty;

2a3 siz = .chr '= ,num;

401

Tree Meta - FORMAL DESCRIPTION - 29 DEC 1967

2a4 rule = .id ('= exj (.ampersand / .empty) /'] "=>" genl /
outrul) '; ;

2b Semantics

2b1 A file of symbolic Tree Meta code may be either an original
main file or a continuation file. A compiler may be composed of

. any number of files but there may be only one main file.

2bta The mandatory identifier follbwing the string META in a

main file names the rule at which the parse will begin,

2blb The optional .LIST, if prﬁsent, will cause the compiler
currently being generated to 1list input when it is compiling a

program,

2blc The size construct sets the allocation parameters for the
thrée stacks and string storage used by the Tree Meta library.
The default sizes are those used by the Tree Meta compiler. M,
K, N, and S are the only valid characters; the size is
something which must be determined by experience. The maximum
number of cells uéed during each compilgtion is printed out at

the end of the compilation.

402

Tree Meta - FORMAL DESCRIPTION - 29 DEC 1967

2b2 When a

file begins with ,CONTINUE, no initialization or

_Sstorage~-allocation code is produced.

2b3 There are three different kinds of rules in a Tree Meta

program., All three begin with the identifier which names the rule,

2b3a Parse
identifier.
during the

tree, they

rules are distinguished by the = following the
If all the elements which generate possible nodes
execution of a parse rule are not built into the

must be popped from the kstack by writing an

ampersand immediately before the semicolon.

2b3b Rules with the string / => following the identifier may

only be composed of elements which produce output. There is no

testing of flags within a rule of this type,

2b3c Unparse rules have a left bracket following the

identifier. This signals the start of a series of node tests,

3 Expressions

3a Syntax

3al exp = '« suback ('/ exp / .empty) / subexp ('/ exp / .émpty);

403

Tree Meta - FORMAL DESCRIPTION - 29 DEC 1967

3b

1]

3a2 suback = ntest (suback / .empty) / stest (suback / .empty);

it

3a3 subexp (ntest / stest) (noback / empty) g

3a4 noback (ntest / stest ('.question .num (,id / '.question)

/ .empty)) (noback / .empty);
Semantics

3b1 The expressions in parse ‘rules are composed entirely of
ntest, stest, .and error-recoverv constructs, The four rules
above, which define the allowable alternation and concatention of
the test, are necessary to reduce the instructions executed when

there is no backup of the input stream,

.3b2 An expression is essentially a series of subexpressioné
separated by slashes. Each subexpression is an alternative of the
expression, The alternatives are executed iﬁ a left-to-right
order until a successful one is found.” The 7rest of that
alternative is then executed and the rule returns to the rule

which invoked it.

3b3 The subexpressions are series of tests. Only subexpressions

which begin with a leftarrow are allowed to back up the input

- stream and rescan it.

404

Tree Meta - FORMAL DESCRIPTION - 29 DEC 1967

3b3a Without the arrow at the head of a subexpression, any
test other than the first within the subexpression may be
followed by an error code, If the error code is absent and the
stest fails during compilation, the system prints an error
comment and stops. if the error code is present and the stest
fails, the system prints the number following the '.question in
the error code, and if the optioﬁal identifier is given the

system then transfers control to that rule; otherwise it stops.

3b3b If the test fails, the input stream is restored to the

position it had when the subexpression began to test the input

stream and the next alternative is tried., The input stream may
never be moved back more characters than are in the ring

buffer. Normally, backup is over identifiers or words and the

‘buffer is long enough.

4 Elements of Parse Rules

4a

Syntax

4al

ntest = (': ,id/ '[(.num '] / genp '] ('.backslash /

.empty) / '< genp '> ('.backslash / cempty) / (LCHR / '%) / =)

/ comm;

Tree Meta

4b

- FOPMAL DESCRIPTION -~ 29 DEC 1967

4a2 genp = genpl / ,empty;

4a3 genpl = genp2 (genpl / .empty);

4a4 genp2 = '* (S ,num / .empty) (L / C/ N/ .emptv) / genu;
4a5 comm = LEMPTY / '.exclamation .sr;

4a6 stest = ', ,id / ,id / .sr / '(exp ') / ''.chr / (.num '$ /
'$) (.num / .empty) stest / '- (.sr / '‘.chr);

Semantics

4bl1 The ntest elements of a parse rule cannot change the value of
the general flag, and therefore need not be followed by
flag-checking code in the compiler.

4bla The : .id construct names the next node to be put into

the tree, The identifier must be the name of another rule,

4b1b The [.num] constructs a node with the name used in the
last : .,id construct, and puts the number of nodes specified

after the arrow on the new node in the tree.

- 4blc The [genp] is wused to write output into the normal

406

Tree Meta -~ FORMAL DESCRIPTION - 29 DEC 1967

output stream during the parse phase of the compilation,

4bld The < genp > is used to print output back on the user
teletype instead of the normal output stream. This is
generally used during long compilations to assure the user that

the system is still up and running correctly.

4ble The occurrence of a .chr causes one character to be read
from the input stream into a special register which may be put
into the tree just as the terminal symbols recognized by the

other basic recognizers are.

4b1f An asterisk causes the rule currently in execution to
perform a subroutine call to the rule named by the top of the

tree.

4blg The "=>" ntest construct causes the input stream to be
moved from its current position past the first occurrence of
the next stest. This may be used to skip over comments, or to

move the input to a recognizable point such as a semicolon

‘after a syntax error.
4b2 The comm elements are common to both parse and unparse rules,

4b2a The .EMPTY in any rule sets the general flag true,

- 407

Tree Meta - FORMAL DESCRIPTION - 29 DEC 1967

4b2b The .exclamation-string construct is used to insert
patches into the compiler curreﬁtly being produced, The‘string
following the ,exclamation is immediately copied to the output
.stream as a new line., This allows the insertion of any special

code at any point in a progran,

4b3 Stests always test the input stream for a literal string or
basic entity. If the entity is found it is removed from the input
stream and stored in string storage. Its position in string

storage is saved on a push-down stack so that the entity may later

be added as a terminal node to the tree.

Ab3a A .id construct provides a standard machine-~language
subroutine call to the identifier. Suppliea with the Tree Meta
library are subroutines for .,id, .num, .sr, .chr, and .lef
wvhich check for identifier, number, string, character, and

letter respectively.

4b3b An identifier by itself produces a call to the rule with

the name of the identifier.

4b3c A literal string merely tests the input stream for the
string, If it is found it is discarded. The

apostrophe-character construct functions like the literal

408

Tree Meta - FORMAL DESCRIPTION - 29 DEC 1967

5

.string, except that the test is limited to one character.

4b3d The number-$-number construct is the arbitrary-number
operation of Tree Meta, m$n preceding an element in a parse
.rule means that there must be between m and n occurrences of»
the next element coming up in the input., The default options

for m and n are zero and infinity respectively.

4b3e The hyphen-string and hyphen-character constructs test in
the same way as the literal string and apostrophe-character
constructs., After the test, however, the flag is complemented

and the input-stream pointer is never moved forward, This
permits a test to be sure that something does not occur.
Unparse Rules

S5a Syntax

5al outrul = '[outr (outrul / .empty);
5a2 outr = items '] "=>" outexp;
5a3 items = item (', items / .empty);

b

5a4 ditem = '~ /v.id ‘[outest / nsimp? / '. .id / .sr / ",chr /

409

Tree Meta - FORMAL DESCRIPTION - 29 DEC 1967

'.pound;
Sb Semantics

Sbf The unparse rules are similar to the parse rules in that they
test something and return a true or false value in the general
flag, The difference is ‘that the parse rules test the input
stream, delete characters from the input stream, and build a tree,
while the unparse rules test the tree,'collapse sections of the

tree, and write output,

5b2 There are two levels of alternation in the unparse rules. The
highes; level is not written in the normal style of Tree Meta as a
series of expressions separated by slashes; rather, it is written
in a way intended to reflect the matching pf.nodes and structure
within the tree. FEach unparse rule is a series of theée
highest-level alternations. The tree-matching parts of the
alternations are tried in sequence until one is found that
successfully matches the tree, The rest of the alternation is
then executed., There may be further test within the alternation,

but not complete failure as with the parse rules.,

S5b3 The syntax for a tree-matching pattern is a left bracket, a
series of items separated by commas, and a right bracket, The

items are matched against the branches emanating from the current

410

Tree Meta - FORMAL DESCRIPTION - 29 DEC 1967

top node. The matching is done in a left-to-right order. As soon

as a match fails the next alternation is tried.
5bd If no alternation is successful a false value is returned.

5bS Each item of an unparse alternation test may be one of five

different kinds of test.

5bSa A hyphen is merely a test to be sure that a node is
there, This sets up appropriate flags and pointers so that the
node may be refered to later in the unparse expression if the

complete match is successful,

5b5b The name of the node may be tested by writing an
identifer which is the name of a rule, The identifer must then

be followed by a test on the subnodes.

5bSc A nonsimple construct, primarily an asterisk-number-colon
sequence, may be used to test for node equivalence. Note that
this does not test for complete substructure equivalence, but
merely to see if the node being tested has fhe same name as the

node specified by the construct,

5b5d The .id, .num, .chr, .let, or .sr checks to see if the

node is terminal and was put on the tree by a .id recognizer,

41

6

Tree Meta -~ FORMAL DESCRIPTION - 29 DEC 1967

.num recognizer, etc. during the parse phase. This test is
very simple, for it merely checks a flag in the upper part a
word,

5b5e If a node is a terminal node in the tree, and if it has

been recognized by one of the basic recognizers in meta, it may

" be tested against a literal string. This is done by writing

the string as an item., The literal string does not have to be
put into the tree with a .sr recognizer; it can be any string,

even one put in with a ,let.

5b5f If the node is terminal and was generated by the .chr

recognizer it may be matched against another specific character

by writing the apostrophe-character construct as an item,

5bSg Finally, the node may be tested to see if .it is a
generated label, The labels may be generated in the unparse

expressions and then passed down to other unparse rules, The

"~ test is made writing a .pound-number construct as an item, If

the. node is a generated label, not only is this match

"successful but the label is made available to the elements of

the unparse expression as the number following the .pound,

Unparse Expressions

412

Tree Meta - FORMAL DESCRIPTION - 29 DEC 1967

6a Syntax

"

6al outexp = subout ('/ outexp / .empty);

6a2 subout = outt (rest / .empty) / rest;

6a3 rest

i

outt (rest / .empty) / gen (rest / .empty);

6ad outt

i

.id '[arglst '] / '(outexp ') / nsimpl (': (S / L/

N/ C) / empty);

6a5 arglst

"

argmnt (', arglst / .empty) (.empty;

6a6 argmmt = nsimp / '.pound .num;

6a7 nsimpl = '* nsimp / nsinmp;

6a8 nsimp = '* nun (': nsimp / .empty);
6a9 genl = (out / comm) (genl / .empty);

6al0 gen = comm / genu / '/ '>

6b Semantics

413

Tree Meta ~ FORMAL DESCRIPTION - 29 DEC 1967

6b1 The rest of the unparse rules follow more closely the style
of the parse rules., Each expression is a series of alternations

separated by slash marks,

6b2 Lach alternation is a test followed by a series of output
instructions, calls of other unparée rules, and parenthesized
expressions, Once an unﬁarse expression has begun executing calls
on other rules, elements may not fail; if they do a compiler error

is indicated and the system stops.

6b3 The first element of the expression is the test, This
element is a call on another rule, which returns a. true or false
value, The call is made by writing the name of the rule ,followed
by a series of nodes. The nodes are put together to appear as
part of the tree, and when the call is made the unparse rule
called views the nodes specified as the current part of the tree;

and thus the part to match against and process.

6b3a Two kinds of things may be put in as nodes for the calls,
The simplest is a generated label, This is done by writing a
.pound followed by a number, Oﬁly .thg,numbers 1 and 2 may be
used in the current system. If a label has not yet been
generated one is made up. This label is then put into the

tree.

414

Tree Meta ~ FORMAL DESCRIPTION - 29 DEC 1967

6b3b Any already constructed node also may be put into the

tree in this new position. The old node is not removed--rather
a copy is made., An asterisk-number construct refers to nodes

in .the same way as the highest-level alternation,

6b4 This process of making new structures from the
already-existing tree is a very powerful way of optimizing the
compiler and condensing the number of rules needed to handle

compilation,

6b5 The rest of the unparse expression is made up of output
commands, and more calls on unparse rules, As noted above, if any
except the first call of a expression fails a compiler error is

indicated and the system stops.

6b6 Just as in the parse rules, brokets may be used to send

immediate printout to the user Teletype.

6b7 The aéterisk-humber~colon construct is used frequently in the
Tree Meta system. It appears in the node-matching syntax as well
as in the form of an element in the unparse expressions, When it
is in an expression it must specify a node which exists in the

tree.

6b7a If the node specified is the name of another rule, then

415

Tree Meta - FORMAL DESCRIPTION - 29 DEC 1967

control is transferred to that node by the standard subroutine

linkage. -

6b7b If the node is terminal, then the terminal string

associated with the node is copied onto the output stream,

6b7c The simplest form of the construct is an asterisk
followed by a number; in which casé the node is found by
counting the appropriate number of nodes from left to right,.
This may be followed by a colbn-number construct which means to
go down one level in the tree after performing the
Aasterisk-number choice and count over the number of nodes
specified by the number following the colon. This brocess may
be repeated as oftén as desired, and’one may therefnré go as
deep as one wishes, All of this specification may be ﬁreceded
by an 4-number construct which means to go up in .the tree;
through parent nodes, a specifiéd number of times before

starting down.

6b7d After the search for the node has been completed, a
‘number of different types of output may be specified if the
node is terminal., There is a compiler error if the node is not

terminal,

6b7d1 :s puts out the literal string

416

Tree Meta - FORMAL DESCRIPTION - 29 DEC 1967

6b7d2 :1 puts out the length of the string as a decimal

nunber

6b7d3 :n puts out the string-storage index pointer 1if the
node is a string-storage element; otherwise it puts out the

decimal code for the node if it is a .chr node.

6b7d4 :c puts out the character if the node was constructed

with a .chr recognizer,

7 Output

7a Syntax

7b

7al genu = out / '...id '] ((.id / onum) / ,empty) '] / '.pouﬁd

num (': / .empty);

7a2 out

L]

(*.backslash / ', / .sr / '".chr / "sw' / Vew" / " w"/

" ‘poundﬂ

we

Semantics

7b1 The standard primitive output features include the following:

417

Tree Meta - FORMAL DESCRIPTION - 29 DEC 1967

7bla Write a carriage return with a backslash

7b1b Write a tab with a comma
7blc Write a literal string by giving the literal string

7b1d Write a single character wusing the apostrophe-character

construct

7ble Write references to temporary storage by using a working
counter. Three types of action may be performed with the
counter., +W adds one to the counter and writes the current
value of the counter onto the output stream, -W subtracts one
from the counter and does not write énything. Rl wriies the
‘current value without changing it. Finally, .pﬁund W writes the
“maximum value that the counter ever xeached during the

compilation,

7b2 The .id [(.num/.id)] is used to generate a call (940 BRM
instruction) with a single arguﬁent in the A register., It has
been used mostly as a debugging tool during various bootstrap
sessions with the system. For examp}e, .CERR[5] generates a call

to the subroutine CERR with a 5 in the A register.

--7b3 .pound 2 means "define generated label 2 at this point in the

418

Tree Meta - FORMAL DESCRIPTION - 29 DEC 1967

program being compiled.,'" It writes the generated label in the

output stream followed by an EQU *, This construct is added only

to save space and writing.

419

Tree Meta - DETAILED EXAMPLES - 29 DEC 1967

1 This section of the report is merely the 1listings of compilers for

two languages,

2 The first language, known as SAL for "small algebraic language,' is a

straightforward algebraic ALGOL-1like language,

3 The second example resembles Schorre's META II, This is the original
metacompiler that was used to bootstrap Tree Meta, It is a one-page

compiler written in its own language (a subset of Tree Meta).

- Q-

%TREE META SMALL ALGEBRAIC LANGUAGE - 29 SEPTEMBER 1967 %
«META PROGRAM LIST

PROGRAM = "+PROGRAM®"™ DEC * $(DEC *) $STARINCOI ST * $('s ST %)
“"+FINISH" ?1E :ENDNCLO] * FINISH 3

DEC = "e+DECLARE" +ID $('s> +ID :DOfQ]) '; ¢DECNL 113

E = RESET => '3 $(ST %) "<END" ?99E :ENDNLO] % FINISH;

ST = IFST / WHILEST / FORST / GOST / 10ST / BLOCK /
«ID (': :LBLL1] ST :DOL2] / ‘'« EXP $STOREL2]1)3

IFST = “oIF'" EXP "o THEN" ST ("<ELSE" ST $SIFTEL3] / «EMPTY :SIFTL21)3
WHILEST = ".WHILE" EXP "eDO" ST :WHL([213

FORST = "eFOR" VAR '« EXP "+BY" EXP ".TO" EXP "«DO" ST :FORLSI13

GOST M"e GO "eTOM™ oID :GOL1]:

"« OPEN" ("INPUT" «ID 'L «ID '] :OPNINPL2] /
“OQUTPUT®" «ID °C «ID *3 :OPNOUTL21) /

"o CLOSE" «ID ¢CLSFILLC11 /

"eREAD™ «ID ': IDLIST $BRS38L2]1 /

Yo INPUT" +ID ': IDLIST :$XCIOC21 /

"« WRITE"™ oID 't WLIST :0UTNUML21 /

YeOUTPUT®™ «ID *': VWLIST :QUTCARL2] 3

IDLIST = VAR (IDLIST :DOL2] / «EMPTY);

10ST

il

- 0

1]

VLIST CeID / «NUM / «SR) (WLIST :DOL2]1 / «EMPTY)S

BLOCK

I

TeBEGIN'" ST $(*'; ST :DOCL2]1) "END*;

EXP = "“eIF"™ EXP "eTHEN'" EXP ".ELSE" EXP :AIF[3] / UNION;

UNION INTERSECTION ('\'/ UNION :0RC21 / « EMPTY) 3

INTERSECTION = NEG ('& INTERSECTION :ANDL2] / «EMPTY);
NEG = “NOT * NEGNEG / RELATION;
NEGNEG = "NOT " NEG / RELATION :NOTL11:

RELATION = SUM(C '<=" SUM :LE /
met <" SUM :LT /
ML= SUM :GE /
vst SUM ¢ GT /
v=t SUM :EQ /
\F SUM ¢NE) [21 / +EMPTY);

- e 1~~

SUM = TERM (('+ SUM ¢ ADD/ "= SUM :SUBIXCLR21/ «EMPTY);
TERM = FACTOR ((f* TERM ¢MULT/ */ TERM ¢DIVID/ "t TERM :REM)EQ]/;EMPTY)B
FACTOR = f- FACTOR $MINUSL 1Y /7 *+ FACTOR / PRIMARY;

PRIMARY = VARIABLE / CONSTANT / *C EXP 'J;

VARIABLE = «ID :VAR[C133
CONSTANT = «NUM ¢ CONC 135

SIFTEL=s=5=1 => LOPRL#*1s#1,#21 BRF(*1,#2] #1,"EQU #™\ %2 SIFTE1[#2,%313
SIFTEIL#15=1 => ,"BRU", £2\ #1,"EQU %"\ %2 #2,"EQU *"\}
SIFTL=s~1 => LOPRL%1,#1s#2] BRFL*1s#£2]1 #1,"EQU #'\ *2 #2,"EQU #'\3;
VHLL=5=7 => #1,"EQU %"\ WHL1L%15#21 %2 »"BRU", #1\ #2,"EQU *'\3
VHL1[=»#2] => LOPRC*1,#1,#2] BRFU*1s#2] #1,"EQU %'\3 '
GOL=-1 => H»YBRU™s*x1i\}
FOR[=s=s=3=3=1 => <D0 NOT USE FOR STATEMENTS">3
LBLL=1 => %1:;"EQU *"3
AIF(-s=5-1 => LOPRC*1,#1,#2] BRF{#1,#2]1 #1,"EQU *"\ ACCL#2] AIF1[#£2:%313
AIFIL #1511 =‘> s TBRU, #2\ #1,YEQU %"\ ACCLx21 #2’"EQU'*"\5
LOPRLORL=5~7s #1s=1 => LOPRC*12%1s#1,#2] BRTI#1:%1,#1]
: £0,"EQU *"\ LOPRC*1:%2s #1431
CANDL=s=3s~5#11 => LOPRL*13%1s #0s#11 BRFC®1s%1,#1]
, : #25s"EQU %"\ LOPRC*1:%0s%2s #1]
[NOTL~Js#1s #21 => LOPRIk13%1s#2s£1]
(=s=a=1 => oFMPTYS
BRTLORC=s=Ts#11 => BRTC#13%2s #1]
CEANDC=s=1s#13 => BRT{®1:%2s#1]
[NOTC-15#13 => BRF[*1:%1s#1]
(LE[=»=15#11 => BLE[*1s%1s%1s%2s #1]

[LTC=5-=35#11 => BLTI%xiskxisk1e%25#1]
[EQL=s=35#11] BEQL*k1sx1s%18%2, #1]

1]

[GEL=s=12#1] => BOECxwlisxl,%x11%2, #1]

LETL=s=ds#11 => BLE[®12%2,%13%1s5#1]

INE[=s=1,s#11 => DBNE[*kiskls%12%2,s #1]

[~5#13 . => ACCL#1] 5"SKE =0""\ »"BRU", #1\;
BRFLORL=~s=-1,#11 => BRF[%1:%2,#1]

[ANDL=s-35#11 => BRF[*x12%25#1)

ENCTC-3s#11 BRTL®*ies*k1s #11)

D-aum

[LEC~»=1s#11 => BLEC*1s%2s%12%1s #1]
[LTL=s=3s#11 => BGECk1s#1s%1:2%2s #1]
[EQL=s=3s#11 => BNE[*12%1,%13%25 #1]
[GEC=»=1s#11 => BLTO*1s%1,%18%2s #1]
CGTC=s=7s#11 => BLE[*1:%1s%12%2, #11
[NEC=5=35#11 => BEQ[#12%1s%1:%2, #1]
L-s#13 => ACCL*1] s"SKA ==1"\ ,"BRU"s #1\;}

BLTL{=s=5#11 => (TOKENL#1] ACCE#BJ s SKEMs k I1Ns "SKGYs k1IN /
WORKL#13 ACCL*2] 5 "SKE", " T+"o W\, " SKG"5 "T+"e W=\
2 U"BRU *®+2"\ H"BRU"s #1\3 '

BLEL[=»=~>#1] => (TOKENL#21 ACCL#1] 5" SKG"s*2\ /
TOKENC#*11 ACCC*21 5 “SKG"s %1\ "BRU #+2"\ /
WORKL#2] ACCL*11 5"™SKG"s "T+" oY=\)
s "BRU"s #1\3

BEQL=s=» #13 => (TOKENL#21 ACCI*1] »"SKE"s*2\ /
’ TOKENL#®1]1 ACCL#21 »"SKEYa.*ki\ /
WORKL*21 ACCL*1] »"SKEYs "T+"eW=W\)
s "BRU *+2"™\ »"BRUY, #1\3

BGEL-»~»#11 => (TOKENTD*1] ACCI*%2J s"SKEYs *xI\,"SKG"sx1\ /
WORKL#13 ACCL*21 .»"SKE"s “T+%e W\s "SKG"s "T+" e W=U\
2 UBRU"s #1N\3 : '

BNEL=s=5#11 => (TOKEN{*2]1 ACCL*1] »"SKE"s#%2\ /
‘ TOKENL*11 ACCL*21 »"SKEYs %1\ /
WORKL*2] ACCL*1] »"SKE"s "T+"e =W\)
s VBRU™s #1N\3 ' ’

STOREL~=»VARL*1]1] => "%ITS ALREADY THERE"\
. [~s ADDLVARE%135CONC™ITII] => 5 "MIN"s %1\
L= ADDIVAREL*x135-1] => ACCL=*2¢%2]1 »"ADM™s & 1IN\
C~» SUBLVARL*132~]33 => ACCL=x22%2] »"CNAs ADM “#iN
Lep=13 => BREGL*2] 5>%YSTBYs %I\ /
, ACCL#23 »"STA"s*x1N\3
ADDLMINUSL-3s=1 => SUBL*2s%k12%11]
[=s=~1] => TOKENC*21 ACCL*11 5"ADDY,*%2\ /
o WORKEL*13 ACCL*21 »"ADD'» " T+ e W-U\;

SUBL=5=1 => TOKENL*21 ACCL*1] »"SUB",%2\ /
TOKENL*1] (BREGL*21 ,"CBA3 CNA3 ADD %I\ /.
‘ ACCL*21 »'"CNA5 ADD *"xiN) /
WORKO*21 ACCL*11 " SUBYS T+ e Wi=UW\3

CMINUSC=1 => TOKENL*11 5" LDAY,%1\ 5"CNA"\ /
" BREGL*11 »¥CBAs CNAY™ /
ACCE*11 5 ''CNA'S

DIVIDL=5s=~1 => TOKENL*2] (BREGLx11 5"CRBA"™\ /
ACCC*11) 5*™RSH £33 DIV "%oN /
WORKL %21 (BREGL#13 »“CBA"\ /
ACCI#13) s YRSH 235 DIV T+ UW~-WN3 -

- Qe o

BREGIMULTL=»=133 => TOKENL*1:%2] ACCL*1s%x1]1 »"MUL",%1:%2%5; RSH 1"\ / -
TOKENC*12%11 ACCU*x1:2%2] »'"MUL"sk13%1"3 RSH 1'™ /
WORKC#18%11 ACCL*12%21 »"MUL", “T+"sW-Y"; RSH 1"\
[REML~»~11 => TOKEN[{#1:%23 (BREGL¥*1:%x11 »'"CBA"N\ /
ACCL*131) »"RSH 235 DIV "xlsk2\ /
WORKI*1:%21 (BREGL*12%x1] »'"CBA"\ /
ACCL*x12%1]1) »"RSH 235 DIV T+"
e WY RSH 1%\;
ACCL-1 => TOKENL*11 »YLDAYs%I\ /
o BREGC*11 »"CBA"\ /
*13

WORKL=1 => BREGL*11 »"STB">"T+"+W\ /
"ACCL*%13 »™STA"» "T+"+UW\3

TOKENLVARL«ID11 => «EMPTY
[CONL«NUMI1 => o MPTY3

MULT / => «EMPTY;

REM / => «EMPTY;

AND / => oEMPTY;

OR / => «EMPTY;

NOT /7 => «EMPTY;

ENDN / => "TY,“BSS",1W\ »"“END"\;
VARLoID1 => %13

CONCNUMI => '= #13

LE / => «EMPTY;

LT / => «EMPTY;

EQ / => <EMPTYS

GE / => <EMPTY;

GT / => <EMPTY;

NE / => EMPTY:

'Doce,-J => %1 %23

COPNINPC=»=1 => s"CLEAR; BRS 15; BRU "%2% BRS 165 BRU "%2"3 STA SN

OPNOUTL=-»~] => ,"CLEAR; BRS 185 BRU "#2"; LDX =33 BRS 193 BRU "
23 STA TN .

e [o

CLSFILL=1 => »"LDA "™k1"3 BRS 20"\;

BRS38L=~5ID1 => H,"LDA "#1%; LDB =105 BRS 383 STA "%2\
[=»=-1. => BRS38BL#*1,%2:%1] BRS38L%1,*2:%233

XCI0L=5+1ID]1 => H,YCIO "*1"; STA "%2\
=s-1 => XCIOL*1,%23%1] XCIOL*1s*23%2]33

OUTCARL=51ID] => »"LDA ¥%2%3 CIO "ki\
[=soNUMI => L"LDA ="%2"3 CIO "'#1\
L=»¢SR] => »"LDA ="#1"3 LDB ="%2:L"; LDX "%x1";
T #1,‘IASC "e 9*2' V\
L=5=1 => QUTCARI*1,%22%13 OUTCARL*1,%2:%235

OUTNUML=»¢ID] => L"LDA "™%1'3; LDA =103 BRS 385"\
[=5eNUM] => 5"LDA ="%2'"; CIO "*xI\
[-5e¢SR1 => »"LDA ="#1"3 LDB ="%2:L"; LDX "%1"3
#i’"ASC T e '*2' ’\
L~2-1 => OUTNUMI*k1,%22%1] OUTNUML*1,%2¢%2]3

STARTN / => '“START", "EQU","*"\3

DECNL - ID3 => *1,"BSS 1"\ T
=1 => DECNC*1:%13 DECNC*x12%21 3

« END

BRS 363 BRU "=x2\

BRS 363 BRU "™:x2\

--U«-

+META PROGEM %5%

PROGRM = ".META™ oID 217 <"META I1 1e1%>

ST

i

EXP

SUBEXP

REST =

GEN

0uT

i

(" NOLIST EXT»NUL3$START BRM INITL"I

LYSKSTKSZ EQU 13 SMSTKSZ EQU 1005 $NSTKSZ EQU 15 $SSSIZE EQU 550%3

("eLISTY™ (»'CLA5 STA LISIFG™) / <EMPTY)
L»"BRM RLINE; BRM "%"3; BRM FINISH"]

'€ SIZ 3C%, SIZ) ') ?17E / <EMPTY)

$ST "<END" ?22E
['"STAR BSS 15 SSTOP DATA SS+SSSIZE-5;$SS BSS SSSIZE™]
["$MSP DATA MSTK; $MSPT DATA MSTK+MSTKSZ~-55 $MSTK BSS MSTKSZ™]
["SNSP DATA NSTK; $NSPT DATA NSTK+NSTKSZ- 53 SNSTK BSS NSTKSZ'™]
[Y$KSP DATA KSTK; $KSPT DATA KSTK+KSTKSZ=-S35 SKSTK BSS KSTKSZ™]
[>"END"™] <"DONE">;
o«ID *= ?3E <"ST"> [*%»,"ZRO; LDA %=1 BRM CLL™]
EXP ?4E *; ?25E [5"BRU RIN"J;
SUBEXP $(*/. [s"LDA MFLAG; SKE =03 BRU "x1]
' SUBEXP) [*1,"EQU *"13 o
(GEN 7/ ELT (,"LDA MFLAG; SKE =13 BRU "%11)
SREST [*1,"EQU *"3; : C
GEN / ELT [,"LDA MFLAGs; SKE =05 BRU #%+4"]
('? oNUM ?12E [."LDA ="%"; BRM ERR"™1’
CeID [+"BRM"™>%1/ '? [s"BRS EXIT"1)?13E/
« EMPTY [,"CLA; BRM ERR; BRS EXIT™1);
« «ID ?26E [,"BRM",%"; STA STAR"1 /

«ID [VBRM"Ys %1/

«SR [s"BRM TST; DATA “%L™3 ASC "*°*%°'°]3 /
*(EXP ?7E ') ?8E / ;
** oCHR [>"™LDA =""%N'"3; BRM TCH"1;
£ $0UT *1 ?210E ([s"BRM CRLF"] /
'$ [*1,"EQU x™1 ELT ?9E
Ls"LDA MFLAGs SKE =03 BRU "&%1"; MIN MFLAG™] /
e EMPTY™ [o"LDA =15 STA MFLAG"] /
"o CHR"™ L{s»"BRM WPREPF:; BRM INC; LDA%x IWPs STA STARs MIN NCCP¥]1 7/
«SR ?212E *> ?13E [»"BRM LITT3 DATA "xL®; ASC "''%°*'"; BRM CRLFTYZ
P>t [%x1,"EQU *"1 ELT ?14E ,
£>"LDA MFLAG; SKE =035 BRU *+35; MIN NCCP; BRU "%x13/
I «SR ?15E [s%13 ' A
«SR {s"BRM LIT; DATA "%L%3 ASC "'*x*'] /
‘s [»"BRM TAB"1 /
% C(oNUM [,"LDA =47B3 CIO FNUMO3; MIN CHNO3 LDA GNY
*%'; BRM GENLAB; STA GN"=%"; BRM OUTN®"1 /
'L [s“LDA% STAR; BRM OUTN"1 /
'N [s"LDA STAR; BEM OUTN"] /
'C [-"LDA STAR; CIO FNUMOs MIN CHNO'™] /
« EMPTY [s"LDA STAR3; BRM OUTS"1)/
'' SCHR [»"LDA ="%N"; CI0O FNUMO5; MIN CHNO®"1/
*: [5"BRM CRLF"J; ' .
s [sYBRU RTN™] $ST ".END"™ 211E [»"END"1 FINISH;
K=" oNUM ["$KSTKSZ EQU “*x3 /
PM=t dNUM LYEMSTKSZ "EQU %1 /-
UN=T SNUM [USNSTKSZ EQU "x1 /

MG=T sNUM L[*$SSSIZE EQU "33

o END

Tree Meta - DETAILED EXAMPLES - 29 DEC 1967

502

Tree Meta - CONCLUSIONS and FUTURE PLANS - 29 DEC 1967

1 Since the work on Tree Meta 1is still in progress, there are few

conclusions and plentiful future plans,

2 (TAKE THIS BRANCH OUT FOR THE ROME REPORT.) This report needs
extension in two areas, as well as constant updating as the systen

evloves.

2a Section 5 should be completed., This was intended to be a
detailed example of a small algebraic-language compiler written in
Tree Meta. The language is essentially completed, but the

accompanying explanations are not.

2b Somewhere within the report there 'shoﬁld be a thorough

discussion of the bootstrap technique of meta,

3 There are many research projects that could be undertaken to improve

the Tree Meta system.

‘3a Something which has never been done, and which we feel is very
important, is a complete study of the compiling characteristics of
top-down analysis‘techniqnes. This would include an accurate study of
where all the time goes during a coﬁpilatibn as wéll as a studf of

the flow of control during both parse and unparse phases for

601

!

Tree Meta - CONCLUSIONS and FUTURE PLANS - 29 DEC 1967

different Kinds of compilers and languages, At the same time it

would be worthwhile to try to get similiar statistics from other
compilers. It may be possible to interest some jeople at Stanford in

cooperating on this,

3b SDC has added an intermediate phase to their metacompiler system.
They call it a bottom-up phase, and it has the effect of putting
various attributes and features on the nodes of the tree, This
allows one to write simpler and faster node-matching instructions in
the unparse rules. We would like to investigate this scheme, for it
appears to hold the potential for allowing the compiler writer to
conceptualize more complex tree patterns and thus utilize the

node-matching features to a fuller extent,

3c Yet another intermediate phase éould be added to Tree Meta which
would do transformations on the tree before the unparse rules produce
the final code. In attempts to write compilers in Tree Meta to
compile code for languages with. complex data structures (such as
algebraic languages with matrix operations or string-oriented
languages with tree operations) and to make these compilers produce
efficient code, we have found that tree transformations similar to
those used for natural-language translation allow one to specify »
easily and simply the rules for tree manipulation which permit the
unparse rules to produce efficient, dense code, Implementation of

the tree-transformation phase into the Tree Meta system would be an

602

1

Tree Meta - CONCLUSIONS and FUTURE PLANS - 29 DEC 1967

extensive research project, but could add a completely new dimension

to the power of Tree Meta,

3d There are a series of additions, some very small and some major,

which we intend to add to Tree Meta during the next year.

3d1 Other metacompiler.systems have had a construct which allows
nodes to have an arbitrary number of nodes emanating from them,
This requires additions in parse rules to specify such a search,
additions in the node-matching syntax, and additions in the output

syntax to scan and output any number of branches,

»3d2 We have always felt that it would be nice to have %he basic
recognizers such as "identifie?" defined in the metalanguage.
There have been systems with this feature, but the addition has
always had very bad effects on the speed of compilation., We feel
that this new freedom can be added to Tree Meta without having

telling effects on the compilation speed.

3d3 The ervor scheme for unparse rules is rather crude--the
compiler just stops. We would 1like to find a reasonable way of
accommodating such errors and putting the recovery-procedure

control in the metalanguage,

3d4 Currently the unparse rules expand into 6 times as many

603

Tree Meta - CONCLUSIONS and FUTURE PLANS - 29 DEC 1967

machine-language instructions as the parse rules. This happens

because we did not choose the most appropriate set of subroutines
and common procedures for the unparse rules, Without changing the
syntax of Tree Meta or the way the stacks work, we feel that we
can reduce the size of the unparse rules by a factor of 4. This
would free a'considerably larger amount of core storage for stacks
and enlarge the size of programs which Tree Meta could handle., It

would also make it run faster in time-sharing mode since less

would have to be swapped into core to run it,

3d5 In doing some small tests on the speed of Tree Metg we found
that better than 80 percent of the compilation time is spent
outputting strings of characters to the system, The code that
Tree Meta now produces is the simplest form of assembly code. It
would be a very simple task to make Tree Meta able to directly
produce binary code for the loader rather than symbolic code for
the assembler, A similar ‘change could also be made to output
absolute code directly into cofe so that Tree Meta could be used

as the compiler for systems that do incremental compilation.

3e Finally, there is the following 1list of minor additions or

changes to be made to the Tree Meta system,

3el Make the library output routines do block I/0 rather than

character I/0. This could cut compilation times by more that 70

604

Tree Meta - CONCLUSIONS and FUTURE PLANS -~ 29 DEC 1967

percent,

3e2 Fix Tree Meta so that strings can be put into the tree and
passed down to other unparse rules, This would allow the unparse
rules to be more useful as subroutines and thus cut down the

number of unparse rules needed in a compiler.

3e3 Finally, we Qould like to add the ability to associate a set
of attributes with»each terminallentity as it 1is recognized, to
test these attributes later, and to add more or change them if
lnecessary. To do this we would associate a single 24-bit word
with the string when it is put into string storage and add syntax

to the metalanguage to set, reset, and test the bits of the word.

605

Tree Meta - BIBLIOGRAPHY - 29 DEC 1967

1 (BOOK1) Erwin Book, "The LISP Version of the Meta Compiler,' TECH
MEMO TM-2710/330/00, System Development Corporation, 2500 Colorado

Avenue, Santa Monica, California 90406, 2 November 1965,

2 (BOOK2) Erwin Book and D. V, Schorre, "A Simple Compiler Showing
Features of Extended META," SP-2822, System Development Corporation,

2500 Colorado Avenue, Santa Monica, California 90406, 11 April 1967,

3 (GLENNIET) A. E., Glennie, "On the Syntax Machine and the
Construction of a Universal Computer,” Technical Report Number 2, AD

240-512, Computation Center, Carnegie Institute of Technology, 1960,

4 (KIRKLEY1) Charles R, Kirkley and Johns F. Rulifson, "The LOT Systen
of Syntax Directed Compiling," Stanford Research Institute Internal

Report ISR 187531-139, 1966,

5 (LEDLEY1) Robert Ledley and JJ., B, Wilson, "Automatic programming
language translation through syntactical analysis," Communications of
the Association for Computing Machinery, Vol. 5, No. 3 pp. 1452155,

March 1962,

6 (METCALFE1) Howard Metcalfe, "A Parameterized Compiler Based on
Mechanical Linguistics,' Planning Research Corporation R-311, March 1,

1963, also in Annual Review in Automatic PrOgramming, Vol. 4, 125-165,

-701

Tree Meta - BIBLIOGRAPHY - 29 DEC 1967

7 (NAUR1) Peter Naur et al,, "ropert on the algorithmic language ALGOL
60," Communications of the Association for Compting Machinery, Vol. 3,

No. 5, pp.299-384, May 1960,

8 (OPPENHEIM1) D, Oppenheim and D, Haggerty, "META 5: A Tool to
Manipulate Strings of Data,"” Proceedings of the 21st National

Conference of the Association for Computing Machinery, 1966,

9 (RUTMAN1) Roger Rutman, "LOGIK, A Syntax Directed Compiler for

Computer Bit-Time Simulation,' Master Thesis, UCLA, August 1964.

10 (SCHMIDT1) L. O. Schmidt, "The Status Bit," Special Interest Group

on Programming Languaggs Working Group 1 News Letper, 1964,

11 (SCHQIDsz PDP-1

12 (SCHMIDT3) EQGEN

13 (SCHNIEDERT) F. W, Schneider and G, D; Johnson, '"A Syntax-Directed
Compiler-Writing Compiler to Generate ﬁfficient Code," Proceedings of

the 19th National Conference of the Association for Computing Machinery,

1964,

14 (SCHORRE1) D. V. Schorre, "A Syntax-Directed SMALGOL for the 1401,

702

Tree Meta - BIBLIOGRAPHY - 29 DEC 1967

proceedings of the 18th National Conference of the Association for

COmputing Machinery, Denver, Colorado, 1963.
15 (SCHORRE2) b, V., Schorre, "META 1II, A Syntax-Directed Compiler

Writing Language," Proceedings of the 19th National Conference of the

Association for COmputing Machinery, 1964,

703

hadhudl & daadhnd

+META PROGRM ZTREE 163%

PROGRM = ("META"™ ID ?1? ("LIST" :LISTLO01/ «EMPTY :MTLO01)> SIZE
‘ ¢BEGINL 31 7/
"o CONTINUE" :MTLO]) <"TREE 1e3"> :SETUPL11 % $(RULE *)
"o END ?2E :ENDNLOI % <'™DONE'>3

SIZE '(C SIZ $(*s SIZ :DOL21) *) ?7S50E / «FEMPTY :MTCLOD;

SIZ = oCHR '= ?54E «NUM ? S55E ¢SIZS[233

RULE

]

oID :

¢ '= EXP ?3E (& ¢KPOPKL 11l / «EMPTY) :0UTPTL2] /
*/ Y=>" 23E GEN1 ¢SIMPL2] /

OUTRUL :OUTPTL23) ?25E ' ?6E 3

EXP = '« SUBACK ?7E ('/ EXP ?8E ¢BALTER[2] / «EMPTY ¢BALTERL13) /
SUBEXP ('/ EXP ?9E $ALTERL21/ <EMPTY);

SUBACK = NTEST (SUBACK :DOL2] / EMPTY) /
STEST (SUBACK :CONCATL2] / «EMPTY);

SUBEXP = (NTEST / STEST) (NOBACK :CONCATL2] / «EMPTY)S

NOBACK = (NTEST / STEST (°? oNUM ?10E :LOADL1] (.ID / '2 $ZROLO1) ?11E
¢ERCODL31 / «EMPTY ¢ERL[13) D
(NOBACK ¢DOL23 / «EMPTY);

NTEST = '3 1D 712E sNDLBL11 /

'L oNUM *1 7 14E :MKNODEL 11 7/

GENP '3 752E (*t1/.EMPTY :QUTCRLOQI :B0CL21>) /
*< GENP %> ?53E ('t /.EMPTY :QUTCRLOI :DOL21)> ¢TTYLi11 /
(e CHR"™ :GCHR / : ' ,
% ¢GO)Y LO] /
Y= STEST ?15FE $SCANL11 /
COMM 3

GENP = GENP1 / «EMPTY :MTLO1;
GENP1 = GENP2 (GENP! :DOL2]) / «EMPTY)S

GENP2 = '% ('S oNUY ?51E tPAROGUTL1] / «EMPTY $ZROLOJ :PAROUTL13)
('L :0L 7/ °C :0C / °N 2:ON / <EMPTY :0S)C0] :NOPTL[2]1/ GENUS

COMM = "eEMPTY™ :SETCO1 /
'l «SR ?718E :IMEDC115

STEST = ‘e oID ?19E ¢PRIM[1] /
oID 2CALLL11/
«SR $STSTC11 7/ o
*¢ EXP ?20E ') ?21E/ -~ - - -
** CHR :CTSTL11/ ' :
(eNUM 'S ?23E /'S :ZROLOI) (oNUM /«EMPTY sMTLO1) STEST ?24EF $ARBL 31/
'~ (oSR INSRC1] / '°' «CHR :NCHRCL11) 226E sNTSTC 133

OUTRUL = 'C OUTR ?27E (OUTRUL s$ALTERL2] / oEMPTY) tOSETL11;5
OUTR = OUTEST "=>% ?229E OUTEXP ?30E :CONCATL2]3

OUTEST = C (*1 :MT / "=13" (ONE / "=,-1" $TWO / "=5-5-1%" $THRE) [0] /
ITEMS *3 > ¢CNTCKL11; '

ITEMS = ITEM ('s ITEMS ?32E $ITMSTRL2Y / <EMPTY sLITEMC13) 3
ITEM = *= $MTLO3 /
«ID 'L ?33FE OUTEST ?34E :RITEML[21/
NSIMP1 eNITEML1] 7/
‘e oID ?33E FITEML1] /
¢SR ¢TTSTL 13 7/
*'" oCHR ¢CHTSTL11 /
'# oNUM ?37E ¢GNITEML 113
OUTEXP = SUBOUT ('/ OUTEXP $ALTERL2] / «EMPTY);
SUBOUT = OUTT (REST :CONCATL21 / «EMPTY) / REST:
REST = OQUTT (REST :0ERL21/ «EMPTY) / GEN (REST :DOL21/ «EMPTY);
OUTT = «ID 'L 7?3%9E ARGLST 'l ?740E :0UTCLLL2] / *(OUTEXP ') 241E /
NSIMP]1 ('s (*S :0S / 'L :OL / °'N 0N/ 'C :00>C01 :NOPTL2] /
e EMPTY ¢DOITL 13)3 ' ' '
ARGLST = ARGMNT $ARGL 11 (', ARGLST :DOL23 7/ «EMPTY) / <EMPTY :MTLO13

ARGMNT = NSIMP :ARGLDL11 / *# oNUM :GENARGL 113

i

NSIMP1 « %1 NSIMP ¢UPL2] / NSIMP ¢LKTC11;

NSIMP = 'k oNUM (« ': NSI¥MP 2CHASEL2] / oEMPTY ¢LLCHASEL 113
GEN1 = (0OUT/COMM) (GEN1 $DOL2) / EMPTY)S
GEN = COMM / GENU / °*< ¢TTYLOl /. ‘> $FILLOI1;

GENU = -0UT / : ,
"o oID ?42E '[?43E ((«ID / «NUM) :$LOADL1] :CALLC2] /
‘ : «EMPTY :CALLC11) '1 /
'# «NUM $GNLBLL 1) (': $DEFL1] / «EMPTY) ;

OUT = (°\ :0UTCR / 's :OQUTAB) L0l /
«SR :OUTSRC11 / ~
** +CHR $OUTCHL 1] /
"+YT S UPWRKLOI :OUTWRKC11 /
"™ : DUNWRKLOI /
o™ $MTLOI $OUTYRK /
Y1°W sMAXVURKLO33

E = JEMPTY RESET => '; $C RULE %) ".FND" ?90F FINI SH;

#0UT RULESZ%

SETUP [=1 => ,"NOLIST NUL,EXT5GEN OPD 101BSs 15 13BF OPD 102B5s15 1"\

-"BT OPD 103B5» 15 13 PSHN OPD 104B5» 15 13PSHK OPD 105BS5s 151"\

"MKND OPD 106BSs 1. 13NDLBL OPD 107B55 15 13GET OPD 110BSs 151"\
"BPTR OPD 111BSs 15 13 BNPTR OPD 112BSs1s13RI1 OPD 113B55 1, 1"\

“RI2 OPD 114B5,23FLGT OPD 115B5,1,1;BE OPD 116B5, 1, 1™
“"LAB OPD 117B551,13CE OPD 120B5s 15, 13LDKA OPD 121B5, 151"\

"SKSTKSZ EQU 1003 $MSTKSZ EQU 1305 SNSTKSZ EQU 13005 $SSTKSZ EQU 1400"\

*13

BEGIN[=s~s~-1 => “S$START BRM INITL3 CLA3; STA WRK; STA XWRK™\ %3 %2
+"BRM BLINE; BRM "%1'"; BRM FINISH"\;

LIST /7 => " CLA; STA LISTFG:3";

OUTPTL=-s-1 => %18S »"ZROs LDA %=-13 BRM CLLO"\ #*2 »%"BRU RTNO"\3;
SIMPL=,~1 => %1 »"ZRO"\ %2 ,"BRR "*1\;

BALTER[=1 => »"BRM SAV"N\ 1 »"BRM RSTR"\ A
L=»=1 => s"BRM SAUY\ %1 L"BRM RSTR; BT "#i\ *2 #1.D[1;

D /7 => L"EQU *"\3
ALTER[=» SETLI1 => *x1 *2

LCONCATL=s=1s=1 =>PMTIXx18%1s#11 %*1:%2 L, BRU "#2\ #1.D[] *2
[=s=1 => %1 o"BT "#1I\ *2 #1.D[1;

#2. DL 1

PMTLPRIMI=1s#13 => "BRM "x1gkx13S"; BF "#1"5 MRG "*x1:%1:5"FLG5 PSHK =0"\

[=s=3 => %1 »"BF "#1\3

e

ERCALTERL~» SETC113 => %1
[=] => %1 »"BE ==1"\}

DOL=s=1 => *1 #23
CONCATL=s-1 => %1 »"BF "#I\ %2 #1eDC1;

LOADL«NUM] => ,"LDA ="%1:S\
LeID] => ,"LDA "k1s5\3

CALLL=1 => ,“BRM “%1\
[=s=1 => %2 »""BREM "Xxi\;
MT 7/ => «EMPTY;
CLA / => VCLAY; e

ZRO / => "Q%;

TEIITT

ERCODL=sms=1 => %1 %2 ,"BE "%x3\3%
'NDLBL=1 => "NDLBL ="%1\}
MKNODEC=] => ,"MKND ="%1\3
ARBLZROLI>MTL1s=1 => #1eDLJ %3, "BT "#1'; MIN MFLAG"\
[«NUMsMTLIs>=1 => ARBIL*11 #1.DL1 %3
sV SKR¥ MSP; BT “#1"3 SKN#* MSP; BRU #+33 BT "#1"; MIN MFLAG'"\
¢ ARB3L I ; :
[~seNUMs»=] => ARBIL%2] #1.DLJ %3
2" SKR¥ MSP; BT "#1"3 SKN#% MSP\ ARB2I%1,%213
ARB1[~-1 => ,"BRM SAV: LDA ="%1:S"+13 MIN MSP; STA% MSP'\;
ARB2L =5 «NUM1 => »"BRU %+43 CLA; STA MFLAGS BRU *+43 LDA%* MSP; SKG =%"%2
ey itts MIN MPFLAGYN\ «ARB3L1
(-1 => ,"BRU *%+35 CLA 3 STA MFLAG"\ «ARB3[13
ARB3 / => s",DA =-13 ADM MSP; BRM RSTR'\;
GCHR /=> s"BRM WPREP; BRM INC3 LDA% IWPs MRG CHRFLG: MIN NCCP; PSHK =0°%
GO / => ,“BRM OUTREE; BT #%+33 LDA =2; BRM CERR"\3
SET / => ,"LDA =13 STA MFLAG"\;

TTYL=-1 => TTYL1l %1 FILL]
- [=> LYLDA =13 STA FNUMO"N\ XCHCHLIJ:;

FILLI => »VLDA XFNUMOS STA FNUMO™\;

XCHCH/ => ,"LDA TCHNO; XMA CHNO; STA TCHNQ"\;
STRINGL=1 => " DATA "#1:L"; ASC " '%1°'\; '

OSETL=1 => ,"BRM BEGN'\ %13

CNTCKL=1 => %1 »"CLB; SKE NCNT3 STB MFLAG™\3

ONE / => ,"LDA =1"\;

TWO / => s"LDA =2'\3

THRE / => s"LDA =3"\}

ITMSTR [=s=1 => %1 »"MIN CNT} EAx,e1,é"\ *23
LITEM -1 => %1 ,"MIN CNT; LDA CNT'\; » |

| RITEME=5~1 => »URI1 ="#1%3 BRU “#1\ %2 »"RI2™ #1eDL33

-OER(=s=1 => 31, “CE =1"\ *25 .

S BT

OUTCLL [=»=~3 => s"LDA NSP; STA SNSP; NDLBL ="#1"3 CLA; STA CNTN
sTLDA KT3 STA ME™\ #2
s "MKND CNT3: PSHEN SNSP3 LDX KT: BRM* 0s23 BRM POPK'™\
s"LDA% NSP$ STA NSP"\;
ARGLDL -1 => s%LDA ME"\ %13
ARG [-1 => %1 ,"PSHK =05 MIN CNT"\;
CHASE [=s=] => »"GET ="%1%; BPTR %+33 LDA =33 BRM CERR"\ %2;
LCHASE [=1 => »"GET ="%1\;
DOIT [~1 => %1 s"BNPTR “#1 -
“; CAX3 PSHK =03 BRM* 0-2; BRM POPK; BRU %+2'\
#1+DLJ1 »"BRM OUTS"\3
NOPT [=»=1 => %1 »"BNPTR %+3; LDA =43 BRM CERR;"™ %2;
SCAN [~3 => #1eDL1 %1 s"BT *+33 MIN NCCP; BRU "#1\:
PRIM [=1 => +“BRM "%1"; BF %+3; MRG “%1"FLG; PSHK =0"\;
STST [=~1 => >"BRM TST:;" STRINGL*113
CTST [-1 => >"LDA ="%1:N"; BRM TCH"\3
0S / => " BRM OUTS"\}
ON / => " ETR =77777B; BRM OUTN'™\:
"OL / => " CAX: LDA 0525 BRM OUTN"\;
0C 7/ => " ETR =377B3 CIO FNUMO: MIN CHNO™\;
GNLBL [=1 => »"GEN GNLB™xI\:
DEF [-1 => %1 »“BRYM LIT; DATA 63 ASC ™11% EQU %"’ I\}
QUTCR / =» »"BRil CRLF™\;
OUTAB / => »"“BEM TAB"\}
OUTSR [=3 => ,"BRM LIT; " STRINGL#11;
OUTCH [=1 => ,"LDA ="%1:N"; CIO FNUMO; MIN CHNO'\;
ENDN / => “SSTOP DATA SS+SSTKSZ-53$SS BSS SSTKSZ™\
"MSP DATA MSTK: SMSPT DATA MSTK+MSTKSZ- 53 SMSTK BSS WSTKSL"\
"NSP DATA NSTK; SNSPT DATA NSTK+NSTKSZ- 53 SNSTK BSS NSIKSZO\
YKSP DATA KSTK3; $KSPT DATA KSTK+KSTXSZ- 93 SKSTK BSS KSTKSZ ™\
YYRK BSS 13 XWRK BSS 13 ENDUNS :

SAVG [=3 => ,"BRM SAVGN'™S *x1 SUBRM RSTEN"N\:

AT

IMED [=1 => »%1\;.

NITEML=] => »"STX INDX3 LDA KT\ %1 _
>"CLBs; LDX INDX; SKE 0,23 STB MFLAGY\;

FITEML=3 => L,"FLGT "#12S5"FLG"\3

.TTSTC-] => :"BﬁM SST_EST_S " STRINGL*133

CHTSTL~1 => ,"CLB; LDA ="x1:"; MRG CHRFLG; SKE 0,23 STB MFLAG"\;
GNITEML=1 => L,"FLGT GENFLG; ETR =77777B; STA CGNLB"*1:5\;
GENARGL=-1 => »"LAB GNLB™x1:5"; MRG GENFLGf’\s

NTSTL~1 => s"LDA NCCP3 STA SNCCP"\ x1i
»"LDA =13 SKR MFLAGS BRU *+2; STA MFLAGS; LDA SNCCP; STA NCCP'\3

NCHRL =1 => »"LDA ="#1:N"; BRM TCH"\3
NSRL=-1 => “BRM TST; "“STRINGL*13;

UPL™1"5~1 => »>"LDAX KSP"\ %2 '
E=s~3 => L,"LDX KSP3 LDA 1=-""k1:S%,2%"\ %23

LKTC=1 => ,"LDA KT\ #*1;

UPVWRK 7/ => »"MIN WRK; LDA WRK; SKG XWRK3; LDA XWRK;> STA XWRK™\3
DUNWRK / => s"LDA =~13 ADM WRK"\3

OUTWRKL=-1 => #1, “LDA WRK; BRM OUTN"\S

MAXWRK / => ,"LDA XURK: BRM OUTN'\3

SIZSLeCHRs =1 => %x12C"STKSZ EQU ""%2285\3

KPOPKL~1 => ,"MIN MSP; LDA KT5; STA* MSP; MIN I‘éSP‘: LDA KSP; STA*x MSP'™
%1 »YLDX MSPs LDA 05,23 STA KSP; LDA =152; STA KT; LDA ==25 ADM MSP'\;

PAROUTLZROLII => »%LDA KT\
L0071 => »"LDA KT\
=1 => L"LDKA ="%1\3

« END

sTuT

*POPS, SUEBROUTINES FOR TREE META.

%

GEN

PSEN

OVN

P SHK

OVK

MKND

POPD
LDA

‘C10

MIN
LDA
SKE
BRU
MIN
LDA
STA%
BRM
BRR

POPD
LDR
SKR
BRR
BRU*

POPD
LDE
SKE
BRU=*
BRR

POPD
LDB
SKBx*
LDA*
MIN
STh=*
L.DA
SKG
BRR
LDa&
BRM

POPD
LDB
SKB*
LDA %
MIN
XMA
STA*
LDa
SKG
BRR
DA
BRM

POPD
LDAx

10100000E»151 CGENERATE LABEL
=478
FNUNO
CENO
0

=0
X4+ 4
CN

CN

0
OUTN
0

10200000Es15s1 EBRANCH FALSE
=77777777B

MFLAG

0

)

103C0000E»151 BRANCH TRUE
=77T77177717B

MFLAG

0

¢

1040C0000Bs1,1 PUSH THE N STACK
=77777777B
0

0

NSP

NSP

NSP

NSPT

0

=12

SERR

10500000E51-1 PUSE THE K STACK
=77177711R

0

0

KSP

KT

KSP

KSP

KSPT

0

=13

SERR - .o

1060000CB,1,1 MAKE A NODE
0 . .

_..I‘-..

MK2

MK1L.

MKND1
*
NDLBL

CGET

BPTR

BNPTR

* RI1

sTA
BRU
BRM
MIN
STa*
SKR
ERU
LDa
MR G
MIN
XMA
STA*x
LDA
MIN
XMA*
STA
BRU
BSS

POPD
LDA*
MIN
STA*®
LDaA
xha
MIN
STA*
BRU

POPD
Cax
ADD
Sup=*
C&X
LDA

. BRR

POPD
LDB -
SKM
BRR

" BRU#*

POPD
LDB
SKM
BRU*
BRR

POPD
Lba
LDE
SKM¥
BRU

MKND1
MK1
POPK
NSP
NSP
MKND1

- MK2

MERK
PTRFLG
KSP
KT
KSP
0
MARK
MARK
MARK
OVN
1

10700000E5 151
0

NSP

NSP

NSP

MARK

NSP

NSF

OVN

11000000Bs151

11100000Bs1»1
FLEMSK
PTRFLG

0

it

11200000Bs1,1

FLEMSK
PTRFLG
0
0

0s2
FLGMSK
FTRFLG

RIF2

1130000085151

NODE LAREL

GET & NODE

BRANCH IF (£) A POINTER
RRANCH IF NO FOINTER

REC§ ITEM 1

<

STX RINDX

. LDX 0,2
LDA* 0
SKE 0s2
‘BRU RIF1
LDA CNT
MIN MSP
STA* MSP
MIN MSP
LDa . NCNT
STA* MSP
MIN MSP
LDa RINDX
STAH* MSP
LDA MSP
SKG MSPT
BRU *+3
LDA =11
BRM SERR
CxA
BRM SETA
cLA
StTA CNT
MIN 0 :
i BRR 0 SKIP 1IF ITENM MATCHES
RIF1 LDX RINDX
RIF2 CLA
: STA MFLAG
BRR 8]
RINDX RSS 1
RICNT BSS 1
%k
RI2 POPD 1140000082 - RECe. ITEM 2
v LDA ==1 .)
LD X% MSP
ADM MSP
LDB* MSP
STB NCNT
ADM MSP
LDBx* MSP
STE CNT
ADWM MSP
BRR 0
* | N
FLCT POPD 115ES»151 FLAG TEST
L.ba 0.2
LDB FLGMSK
SKM* 8]
BRU FLGTF
. BRR 0
FLGTF CLA
STA CMFLAG

BRR 0

BE

LAB

LDKA

*
*SUES
*

$POPK

$SETA

POPD
LDB
SKB
BRR
LDAx
SKE
BRU
CLA
BRM
LDA*
SKE
SKG
BRS
BRU=

POPD
LDA*
SKE
ERR
MIN
Lps
STAx*
BRR

POFD
LDB
SKE
ERR
LDA
BRN

PCFD
LD
SUB#*
cex
LEA
BRR

ZRO
LDE*
LDe
ADWM
CBa
XMp
BRR

ZRO
CaX
LDE

~ADD

Cex
STEB

116B5,151
=777777778
MFLAG

0

0

==1

*+2

ERR
o

0

=0
EXIT
0

117BS,151
0

=0

0

GN

GN

0

0

120B551,1
=717T17T77R
MFLAG

0

0

CERR

121BS51,1
KSP
¢

152
0

KSP
=-1

KSP

KT
POPK

0 SET X TO TOP OF NODE CGROUP, COUNT IN NCNT

152
i,2

NCNT

- o Ly -

§CLLS

*‘
$RTNS

$SAV

* .
$RSTR

EAX

BRR

ZRO
MIN
SThA*
LDA
SKG
BRR
LDA
BRM

NOP
LD
LDB*
ADM
STR
BRR
BSS

ZRO
Lba
MIN
STAX
LDA
MIN
STe*
1.DAa

MIN

STA*
LDA
MIN
STa*
LDA

- SKG
BRR

LDA
BRM-

ZRO
BT
LDaA
LDB*
ADM
STR
LDB*
STB
ADM

LDB*

STB
ADM
LDB*

STB

1.2
SETA

MSP
MSP
MSP
MSPT
CLLS
=11
SERR

MSP
MSP
*+D
x4 1

NCCP
MSP
MSP
NSP
MSP
MSP
KSP
MSP
MSP
KT
MSP
MSP
MSP
MSPT
SAV

SERR

RSTT
=-1
MSP
MSP

KT

MSP
KSP
MSP

MSP

NSP
MSP
MSP
NCCP

ADM MSP

BRR RSTR
RSTT LDa =4
: ADM MSP
- BRR RSTR
*
$OUTREE ZRO
LDA KT
BNPTR OUTERR
LDX* KT
BRM 0,2
BRM POPK
LDaA =NSTK
STA NSP
BRKR OUTREE
OUTERR LDA =2
BRM CERR
%
$RESET ZRO
LDA =MSTK
STA MSP
DA =KSTK
STA KSP
LDA =NSTK
STA NSP
CLA
STA KT
BRR RESET
*
$SAVEN ZRO
LDA CNLB1
MIN MSP
STA* MSP
LDa GNLE2
MIN MSP
STA=* MSP
cLA
STa CNLE1
STA CNLE2
Lba MSP
SKG MSPT
BRR SAVCEN
Lba =11
BRM SERR
*
$RSTGN ZRO
LbBA ==1
LDBx* MSP
STR CNLE2
ADM MSP
LDBx MSP
STB GNLE1
ADM MSP

BRR RSTGN

Rl & Saifiail

*

SSTT1

SSTP1R
SSTCNT
SSTLDS
*
$BEGN

$CLLO

* .
$RTNO

*
*CELLS

$SSTEST ZRO

MIN
LDA
STA
BRM
L.DB
ADM
STA
STR
MIN
LDA
BRPTR
LDA*
SKE
BRU
STX
LDa
ADD
LDR
LDX
BRM
BRU
LDa
LDX
BRR
LDX
cLA
STA
BRR
BSS
BSS
BSS

ZRO
LDA
STA
LDA
BRM
cLA

STA

BRR

ZRO
BRM
RRM
BRR

NOP
BRM
BRU
NOP

SSTEST
SSTEST
SSTCNT
MOD3
SSTEST
SSTEST
SSTWDS
SSTPTR
SSTPTR
0,2
SSTT1+41
0:2
SSTCNT
SSTT1+1
INDX
0,2

=1 .
SSTPTR
SSTWDS
SKSE
SSTT1
CNT
INDX
SSTEST
INDX

MFLAC
SSTEST
1

1

1

=1
MFLAG.
KT
SETA

CNT
BEGN

CLLS
SAVCEN
CLLO

RSTEN

RTNS

LI

*

$ME
$INDX
$CNT
SNCNT
$SNSP
KT

BSS

BSS
BSS
BSS
BSS
BSS

$SRFLG DATA

$CHRFLCG Da1p
$1DFLG DATA

SNUMFLG DATA
SPTRFLG DATA
EFLGMSK DATA
$GENFLG DATA

$MARK
EGN
E$CNLE1
$CNLR2
$SAVKT
SSAVKP

SLETFLG

BSS
DATA
DATA
DaTA
BSS
BSS
DATA
END

L I R e)

10ES

12B5
4B5
6B5
2BS
T76B5
16B5
1

¢
o
0
1
1
1

4B5S

oo o (Joom wo

* ARPAS LIBRARY FOR
* PARAMETERS FOR SIZFE OF Ko

GOBL

STORE

s

SST

SFUT

ZRO
LDA
ADD
SUB
STA
BRR

ZRO
LDA
STA
LA
SKE
BRU
LDaA
BRM
Lba
LDRB
LD¥
BRM
LDA
SKG
BRU
LbA
STA
LDA%
BhM
MIN
ADM
LDAx
SKE
BRU
BRM
CAX
LDB
LDA
ADD
BRM
BRU
LDA
BRR

L DA
STA
LDA
STA*
MIN
LDA
LDB
LDX
BRM
LDA
BRM

MCCP
BACK
=1

NCCP
GO BL

=SS
sSSP
LEN
=0
*+ 3
=8
SERR
=STR ~

=STEST-

LEN
PACK
SSL
SSP
SPUT
SSP
SX
SSP
MOD3
SSP
SSP
SX
LEN

M

N STACKSs

940 META II AND TREE SYSTEMS.

AND SS AREA.

-]

*
SSP
$SSL
SX

ADM
LDA
SKG
BRU

LDA

BRU

DATA
DATA

BSS

$MXSTR EQU
STPTR BSS

STR

STEST

BSS

BSS

$LISTFG
$RLINE ZRO

R1

R15

R2

FILL
FILL2

R3

REQF

R4

MIN
LDA
SKE
BRU
LDA
SKN
CcI10
LDX
BRU
BRX
cIo
SKN
BRU
STA
SKE
BRU
LDA
SKN
cIio
BRU
SKE
BRU
LDa
STA
CL&a
STA
BRX
BRU
LDA
STA
BRR
BRM
BRM
DATA
ASC
BRM
BRS
SKE

SSL
SSL
SSTOP
SST
=6
SERR

SS
SS
1
80

1

MXSTR

MXSTR
DATA -1

LINCNT
EOFLG
=0
REOF
=128
LISTFG
FNUMO
BUFNO
Ri+1
R3
FNUMI
LISTFG
R4
IBUFs2
=155B
R2
=152B
LISTFG
FNUMO
FILL2
=1378B
R1

=1
FOFLG

IBUFs2
R3
FILL
BUFNO
IBP
RLINE
CRLFT

“LITT

18

*END OF FILE INPUTs' - -
CRLFT

EXIT

=152B

- O

EOFLG
$INC

*
PUTIN

Pl
P11

P2

P3

*
PCHK

CHER

SWPREP

CIi0
BRU
DATA
ZRO
BRM
SKN
BRU
MIN
BRR
MIN
BRM
BRR

ZRO
BRY
LDX
MIN
LDA
SKE
BRU
BRM
CLA
STA%
BRR
SKE
BRU
BRM
MIN
BRU
SKG
BRU
BRU

ZRO
LDaA
SKG
BR
BRR

ZRO
LDXx
LDa
SKG*
BRU
LDX
CXxA
SKG
SKG
BRU
BRR
LDA
BRU
ZRO
CL.a

FNUMO
R15
0

UPIWP
BACK
*+ 3
BACK
INC
MCCP
PUTIN
INC

PCHK
IBP
IBP
IBUFs 2
=155B
P2
RLINE

1wWpP
PUTIN
=135B
P3

PCHK
iBP

P1

=63

P11
PUTIN+ 1

MXIB
IBP
RLINE -
PCHK

IwP
=64
IWP
SERR
CLASS, 2.

=5
=0
*+2
CHER

SERR

—=Rew

$TaA

LDA

STA

LDA

SUB

STA

SKG

SKG

BRU

LDA

ETR

ADD

STA

BRR

WPER LDA
BRU

*

$INCS ZRO
INCS2 BRY
L DA%

SKE

. BRU

BRU

SKE

BRR

L DA

SKN

BRU

BRM

BRM

LDA%

SKE

. BRU
INCS3 BRM
BRU

%k

$ID ZRO
CLA

STA

BRM

BRY

BRM

BRU

D1 BRM
BRM

BRM

BRU

IDF LDA
STA

{ BrM

IDT1 BRU
' BRER

LEN
=STR
STPTR
NCCP
MCCP
BACK
=0
MRSIZ
WPER
NCCP
MODRSZ
=RING
1wp
WPREP
=2
SERR

INC
IWP
=0
K2
INCS3
CuMNT
INCS
=9
BACK
%+ 2
SERR
PUTIN
1wp
CMNT
*=3
PUTIN
INCSe+1

MFLAG
WPREP
INCS
CHER
IDTi1s2
CiCe
ING
CHER
1DT252
=1
MFLAG

GOBL

STORE
1D
STER
1D

oo flow

IDT2

cicC

*
LLEN

b S
UPIVP

$TOUTS

$0UTS

0uUTSA

ouTtp

BRU
BRR
BRR
BRR

‘BRU

BRU
BRU
BRU
BRU
BRU

ZRO
L DA%
STAx*
MIN
MIN
BRR

BSS

7RO
MIN
LDA
SKG
ERR
LDA
STA
BRR
ZRO
STA
LDA
STA
LbA
STA
BRU
ZRO
STA
LDA
STA
L DA%
SKG
BRU
LDA
BRU
ADY
CAB
MIN
LDA
ETR
LDX

‘BRS
~ BRR

' BSS

1Dl
1b
1b
1D
STER
I1DF
iD1
ID1
IDF
IDF

1WP
STPTR
STPTR
LEN
Ccic

IWpP
IWP
MXI1¥
UPIWP
=RING
1wp
UPIWP

ouTP
s 2

OUTS
TELNO
LITF
0UTSA

OUTP
FNUMO
LITF
ouTP
RS1Z
*+ 3
=5
SERR
CHNO

ouTP
OUTP
=T77777B
LITF

34

OUTS

1

-m G e

%

<k

$0UTN ZRO
SKG =1
: BRU OUTNN
OUINP STA OUTNB
LDB =10
L DX FNUMO
BRS 36
LDA =1
SKG OUTNB
BRU k4 O
BRR OUTN
MIN CHNO
MUL =10
RSH 1
CBA :
BRU %*=7
OUINN MIN CHNO
CNA o
STA OUTNB
LDA =15B
cIlo FNUMO
LDA OUINB
- BRU QUTNP+ 1
OUINB BSS 1
*,
$WRSS NOP
LDA =38
STA WRSPT
¥RS1 BRM CRLFT
LDA® WRSPT
STA WRSS1
BRM WoUT
MIN WRSPT
LDA VRSS1
BEM MO D3
" LDB WRSPT -
ADY WRSPT
LDA - WRSS1
XAB :
- LDX TELNO
BRS 34
LDA ¥RSPT
SKG SSL
BRU WRS1
BRM CRLFT
BRS EXIT
WRSS1 BSS 1
WRSPT BSS 1
$CRLFT ZRO .
LA =1558
CIo TELNO

LpA =152R

- e

CI10 TELNO
BRR CRLFT
*k
$CRLF ZRO
LDa =155B
CIO FNUMO
LDA =152B
cio FNUMO
LDA =1
STA CHNO
BRR CRLF
&
SLITT ZRO
LDa T |
STA LIT
LDA TELNO
STA LITF
MIN LIT
LDA% LIT
BRU LITW+3
F3
SLIT ZRO
LDA FNUMO
STA LITF
LITW MIN LIT
L Dax LIT
ADM CHNO
STA LIT1
CAB
MIN LIT
LDA LIT
ETR =77777B
LDX LITF
BRS 34
LbA LIT1
BRM MOD3
SUB =1
ADM LIT
BRR LIT
LITF BSS 1
LITH BSS 1
$TABT ZRO
L.DA ke g
STA TAB
LDA TELNO
STA LITF
- BRU TABA
$TAB ZRO
LDA FNUMO
STA LITF
TARA LDA CHNO
' ADD =10B
ETR =77708

STA TABS

o T o

TAB2 MIN CHNO

CLA
C10 LITF
LDA TAB3
SKE CHNO
BRU TAB2
BRR TAB
TAB3 BSS 1
SWRIW NOP
LDA =RING
STA WRI 1
NLIN BRM CRLFT
LDA BUFNO
ADD =10
CAX
WRCK LDA WRI 1
SUB MXIY
SKG =0
BRU *+ 2
BRS EXIT
L DA% WRI 1
C10 TELNO
MIN WRI1
BRX NLIN
BRU WRCK
WRI1 BSS 1
$INITL ZRO
AGAIN BRM CRLF T
BRY LITT
DATA 7
ASC *INPUT: *
CLEAR
BRS 15
BRU AGAIN
STA FNUMI
cBA
SKE =168
BRU #+ D
BRU AGAINZ
LDA . FNUMI
BRS 20
BRU AGAIN
AGAIN2 BRM CRLFT
BRM LITT
DATA 8
ASC *0UTPUT: °
CLEAR
LDA =03000000B
BRS 16
BRU AGAINZ
STA FNUMO
STA XFNUMO
CBA |

SKE =168

B Rt & e

BRU %42
BRU ot 4
L.DA FNUMO
BRS 20
BRU AGAIN2
BRM CRLFT
BRR INITL
$FNUMO BSS 1
$FNUMI BSS 1
$XFNUMO BSS 1
$TELNO DATA 1
$CHNO DATA 1
$TCHNO DATA 1
% A=UNPACKED POINTERs B=PACKED, X=LENGTH
PACK ZRO
STA UPP
STB PP
STX PLEN
PK1 BRM SKOK
BRR - PACK
L DA% UPP
MIN UPP
STA PX
BRM SKOK
BRU FKR1
LDB% UPpP
MIN UPP
L SH 16
LDA PX
LSH g
STA PX
BRM SKOK
BRU PKR2
LDBx* UFPP
MIN UPP
LSH 16
LDA PX
LSH 8
STA* PP
MIN PP
BRU PK1
k
SKOX ZRO
SKR PLEN
MIN SKOK
BRR SKOK
b3
PKR1 LDA PX
: ~ CLB-
LSH 16
STAx FP
BRR PACK

PKR2 LDA PX
‘ - CLB

= Qo

LSH 8

STA% PP
BRR PACK

*

UPACK ZRO
STA upPP
STB PP
STX PL EN
SKR PLEN
BRU *+ 2
BRR UPACK

PK2 LDAx% PP
RSH 16
BRM PST
RSH 8 -
BRM PST
BRM PST
MIN PP
BRU PK2

*

PST ZRO
ETR =377B
STax 18)2=
MIN UFP
L DA% PP
SKR PLEN
BRR PST
BRR UPACK

ES

PX BSS 1

UPP BSS 1

PP BSS 1

PLEN BSS 1

%k

SKSE ZRO
STA PP
STE UPP

' STX PLEN

SKS1 SKR PLEN
BRU *+2
BRU SKST
LDA% PP
SKEx UPP
'BRR SKSE
MIN UPP
MIN PP
BRU SKS1

SKST . MIN SKSE
BRR SKSE

ES

$MOD3 ZR0
SUB =1
RSH 23

CLA

v e] om o

I1BUF
BUFNO
$IWP
IBP
MXIB
MXIW
BACK
$NCCP
¥MCCP
RING
SEXIT
CLASS

$ERR

ERRC
- ERRY
EREN

ERR1

ERR2

DIV
ADD
BRR
BES
DATA
DATA
DATA
DATA
DATA
BSS
DATA
DATA
BSS
EQU
DATA
DATA
DATA
ZRO
S5TA
BRM
BRM
DATA
ASC
L.DA
MH
BRM
BRM
DATA
ASC
L.DX
LLDB
LDA
BRS
BRM
L.DX
BRU
MIN
CI1O
BRX
CXAa
SKE
BRU
LDA
STA
LDA
SKE
BRU
BRU
SKE
BRU
BRU
SKE
BRU
CIO

80
3766 0B
RING=1

37660B

400008

RING+255

1
0

0

256
10)

155545 555555595 555559555 555552555535 35835323:s3535323,3
555555555555 5520202525852 2225252525252525252225252
2252525252525 5555 52595505050 v

ERENO
CRLFT
LITT
13
*SYNTAX ERKOR °
=-1
ERRNO
WOuT
LITT

5
'LINE *
TELNO
=10
LINCNT
36
CRLFT
BUFNO
ERRN+ 1
ERENO -
TELNO
ERRF

1BP
*4+ 3
ERRNO
ERRX
IBUF> 2
=155B
ERR1
ERRF
=152B
ERR2
ERRN
=1358
ERRC
TELNO

.-..11..-

BRX ERRF
LDA IBUF, 2
ALM ERRNO
BRU ERRY
ERRF BRM CRLFT
cLA
BRU *+2
Cio TELNO
SKR ERRX
BRU *=2
LDA ARROWY
c10 TELNO
BRM CRLFT
BRR ERR
E3
ERRNO BSS 1
ERRX BSS 1
ARROW DATA 76B
$SERR NOP
STA SE1
LDA =SEY
LDB =13
BRU SERR1
$CERR NOP
STA SE1
LDA =CEM
LDB =15
SERR1 LDX TELNO
BRS 34
LDA SE1
LDB =10
LDX TELNO
BRS 36
BRM CRLFT
BRS EXIT
SEM ASC *SYSTEM EREOR °*
CEM ASC *COMPILER EREOR '
SE1 BSS 1
¥
RSIZ DATA 256
MRSIZ DATA =256
MODRSZ DATA 3778
$MFLAG BSS 1 ‘
CMNT DATA 5 ‘
SLINCNT DATA ' 0
x®
$WOUT ZRO
LDB =10
LDX TELNO
BRS 36
LDA =148
cIo TELNO
CLA |

CIO -TELNO

"'flg""

BRR WOUT
“ ‘
$TST ZRO
"~ CLA
-STA MFLAG
MIN TST
BRM WPREP
BRM INCS
LDa%* TST
SKG RSIZ
BRU s+ 3
LDA =4
BRU SERR
STA TSTL
BRM MOD3
LDB TST
ADM TST
CBA
ADD =1
CAB
LDA =STEST
LDX TST2
STA TST1
BRM UPACK
SKR TST2
BRU TSTS1
BRR TST
TSTS BRM INC
MIN TST1
TSTS1 LDA% TST1
SKEs* 1WP
BRR TST
SKR TST2
BRU TSTS
LDA MCCP
ADD BACK
STA NCCP
LDA =1
STA MFLAG
BRR TST
TST1 BSS 1
TST2 BSS 1
%
*
$SR ZRO
CLA
STA MFLAG
BRM WPREP
BRM INCS
BRM CHER
BRU STT1,2
STR1 BREM cIic -
 BRM INGC

BRM CHER

== 13==

STR2

STT1

STT2

NM1

NMF

NT1

NT2

SLET

BRU
BRM
MIN
LDA

STA

BRM
BRR

BRU
BRR
BRR
BRR
BRU
BER
BRU
BRU
BRU
BRU
BRU

BRU'

LDA
BRU

ZRO
CLA
STA
BRM

BRM

BRHM
BRU
BRM
BRM
BRM
BRU
LDA
STA
BRM
BRM
BRR

BRU
BRR
BRR
BRU
BRR
BRR
BRU
BRU
BRU
BRU
BRU
BRU
ZRO

STT2s 2
GOBL
NCCP
=1
MFLAG
STORE
SR

STER

SR

SR

SR :
STR1+1 DON'T COPY QUOTE
SR

STER

STR1

STR1

STR1

STR2

STR1

=7
SERR

MFLAG
WPREP
INCS
CHER
NT1.2
Cic
INC
CHER
NT2s 2

MFLAG
GOBL
STORE
NUM

STER
NUM
N UM
NM1
NUM
NUM
STER
NMEF
NMF
NM 1
NMEF
NMF

e] Lo

CLA
STA MFLAG
BRM WPREP
BRM INCS
-BRM CHER
BRU LET1,2
LET2 BRM CicC
LDA =1
STA MFLAG
BRM GOBL
MIN NCCP
BRM STORE
BRR LET
LET1 BRU STER
BRR LET
BRU LET?2
BRR LET
BRR LET
. BRR LET
*
%k
E
SFINISH NOP
' LDA =1378B
CIO FNUMO
CIo FNUMO
CcIo FNIMO
CiQ FN1MO
CIlo FNUMO
Lba FNUMO
BRS 20
- BRU LIMITS
*
$TCH ZRO
STA TCH1
cCLA
STA MFLAG
BRM WPREP
BRM INCS
LDAXx IWP
SKE TCH1
BRR TCH
MIN MFLAG
LDA MCCP
ADD BACK
STA NCCP
BRR TCH
TCH1 BSS 1
*
TOP MACRO D
Lba DC1).SPT
STA DC1%SP
LDA e]

ATH DC1)e SP

- on 15-»-»

LDA%
SKE
BRU
BRU
LDA
SUB
SKG
CLA
BRM
ENIM

E 3

SLIMITS BRM
BRM
DATA
ASC
TOP
TOP
TOP
LDA
SUB
BRM
BRM
BRS
END

D(1)eSP
=0

*+2

*=5

DC1)e SP

=¢ D(1)e STK
=0

wouT

CRLFT
LITT
5
*USED °®
K

M

N

SEL
=55
wWouT
CRLFT
EXIT

	0000
	0001
	001
	002
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	501
	501a
	501b
	501c
	501d
	501e
	501f
	502
	601
	602
	603
	604
	605
	701
	702
	703
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	B-00
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	C-00
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15

