Ly Proceagon

< LP, MCS4.uLS8;150, >, 21~MAR=-75 19:04 RLHZ f%o+1co‘

rrre
(protocol) Protocol for TENEX <=> Line Processor interactions
Introduction
This document is5s a detailed description of the Line Processor
protocol. It is intended to serve as a guide to anyone wishing
to implement the Line Processor protocol, as well as, a piece of
documentation for the Line Processor.
It should be pointed out here that the Line Processor contains a
very small, slow microcomputer with little reads/write memory.
For this reason the protocol is terse and error reports and/or
recovery almost non=-existant. The Line Processor terminal is
treated more as a hardware cevice than an intelligent terminal,
There are two types of line processors = alpha and graphic,
Alpha line processors are used in configurations consisting of
the line processor alpha/s/numeric display, mouse, Keyset, and
possibly a hard copy printer or a cassette drive, Grapnics line
processcrs are used 1in the the minimum graphics configuration
consisting of a/n display, mouse, Keyset, and either a Tektronix
4012 or 4014 storage tube displav.
Conventions
Coordinates
Alpha
Coordinates designate character positions. For example
(1,1) 1s the second character on the second line up from
the bottom.
The origin 1s at the lower left corner ot the screen.
As components of the protocol, coordinates are passed as
one pyte of X and one of Y and always have 40B added to
tnem to get them in the printing character range. This
limits the maXxXx coordinate value to 1373 which is 95
decimal.
Graphics
The mouse is used to track the cursor on either the a/n
display or the Storage tube, A switch acts as a togglie to
select which screen 1s to be tracked. Coordinate values
are identical tec the alpha line processor when they
originate from the a/s/n display, although they are sent as
two bytes each of X and y. Graphics coordinates from the
storage tube are sent as 10 bit values in the range 1024 to
2047, with 1024 at the lower left of the screen,
TIY Simulation
Iin TTY simulation, scrolling always takes place on & line feed
(LF) not a carriage return (CR). Carriage return does the
obvious thing and no more.:
Special and Control Characters
Protocol strings begin with 33E end are followed with an
operation type character in the range 40B to 120B,
when outside a protocol string, all control characters (0 thru
37B) are ignored by the Line Processor, except:
When the cursor is being tracked:
~“G which rings a bell if possibple
CR and LF whicn do the right thing
Notice that backspace character (~H) 1is not inmplemented in
TTY sinulation (i.e. when the cursor is being tracked).
when tne cursor has been positioned:
~“G whicn rings a bell if possiple

TAK#ER TébmilDibe?7&® 1A*A7 C 1.0 MOS4d NI.Q*1S0 S 3

“H which does a backspace cursor
Wwhen inside a protocol string, RUBOUT is NUOT ignored. When
outside, it is ignored.
Conventions for this document
In this document, octal numkbers are followed by "B",
"Unescorted" means that characters are sent as is without
wrapping them in an protocol sequence,
Line Processor to Main Computer Protocol
Communication in this direction will adhear generally to the
IMLAC protocol as outlined in (1JOURNAL,14345,).
In particular:
Keyboard characters 408 thru 177B are unescorted.
Keyboard characters 0 thru 376 are sent as:
34B, 43B, char+140B, coordinates
NUTE: An alternate (and preferred) way is to send these
control characters as 1s (unescorted) except for 2B, 4B and
30B. Those are sent as above,
Mouse button changes are send as:
348, 43B, buttons+100B, coordinates
where buttons is tne binary image of button positons (000
thru 111 binary).
Keyset strokes 1 thru 32B are send as:
stroke+1408 (e.g., 1 => a)
kKeyset strokes 33B thru 37B are sent as:
33B => 548
34 => 568

(o3
()

35B => 738 (;)
(2)
(

RO PR S

36B ~> 778
37B => 40B (space)
For alpha line processors coordinates are X + 408, Y + 40B,
For dgraphics line processors coordinates are X(bits 10 =~ 6
(MSB’'s)) + 40B, x(bits 5 = 0 (LSB’)) + 40B, Y(pbits 10 = 6) +
40B, Y(bits 5 = Q).
when not in coordinate mode the mouse puttons are ignored and
Keypoard control characters (0 thru 37B) are sent in unescorted
fashion.
At power=~up and after the "system=reset" button is pushed, the
Line Processor signals the Main computer by sending:
(1768, 1778)
The purpose of this is to indicate to the applications
program that the Line Procesor is now in a "power=up" state
(see pbelow).
When the Line Processor detects an error that it cannot live
with, it sends a string to the applications prorgam and dies with
an error code flashing in the lights. The user is then forced to
nit "system~reset", The string is as follows: '
(176B, 418, Ccount”’, Chars)
where Ccount’ is 40B more than the number of characters
that follow, Currently 8 characters are sent, and the
string looks like:
(17é8, 41B, 50B, err’, ctl*, trxk’, rpt*, sw*, obuf’, bl’, b2°
)
where the ° indicates that 40B has been added.
err: Tne error code, one of
108 = output buffer to display overun (impropper
padding).

ITAKERE T imiADRw™N 1A*47 C [(e d IS iS00S Pl

11B = some other buffer overun (e,g, vrinter buffer)
12B = strange error relating to aisplay output
buffer,
13B = protocol seauence error (e.g. bad comand)
14B = protocol value error (e,g, bad coordinate).
ctl: control state parameter (0 = not in a command)
trk: mouse tracking code: -
= positioned
tracking
cursor in small TTY window
: cursor at unknown position
2B = Cursor in tull screen window
rpt: repeat code, normally zero
sw: sense switch immage 1in order O=1=2-=-3 (sw3=LSB)
obuf: display output buffer character count
bl: possibly low order 4 bits of last input char
b2: possioly nigh order 4 pits of last input char
From Main Computer to the Line Processor
The followinag functions are sent by the applications program and
performed by the Line Processor. All codes, except the escape
(33B) shoula be printing characters. Fadding characters should
be RUBOUTs (177B). The paud rate factor (f) and and display type
are obtained by the applications program by sending an interogate
command.
Note:
The cursor is generally used to track the mouse, Some
conmands stop the tracking and allow the cursor to be used
for display manipulation. "Tracking mode" refers to
whether the mouse is being tracked by the cursor or not,
Displav=terminal dependent parameters:
The foliowing table vields the timing and other factors
required by the protocol that depend on the type of
terminal connected to the Line Procesor,., That type, DItype,
is obtained from the interrogate command (see below).

[

nu

o TN = O

param Ditype=

1 Z 3 4
bel 80 7 1 17
Ins 0 7 30 17
Clr 5 ® 3 17
Xmark No Yes Yes Yes

Del is the time to delete a line,
Iins 1s the time taken to insert a new line,
Clr is the time taken to clear the screen.
Xmark indicates if a marked cnaracter needs to be
re-written after the mark is removed,
See the interrogate response command for other display
paraineters,
Position cursor on alpha display and stop tracking mouse,
Send(33B, 40B, X', ¥")
X = X coord (0 thru Xmax) + 40B
Y* = ¥ ceoord (0 thru Ymax) + 40E
result:
Positions cursor to specified location. Tracking stops
until & "resume tracking" or & reset is received, Any
unescorted characters will be written on the screen and
the cursor will be advanced once after each character,

ITAKE 1 e AL TR f+eATT < T D #Meced wWhrT s« 180 0N A

MTAWK W

writing bevond the end of the line is not advised as the
result depends on the terminal manufacturer and model,
Specify (small) TTY simulation window on alpha display
Send(33B, 41B, top, bottom)
top = Y* for top line of window
pottom = Y' for bottom line ot window
result:
Invokes a small TTY simulation window of specified size
and location, This window will be used until & new one
is specified or a reset 1s received, This does not
change tne tracking mode,
Reset
Send(33B, 518)
result:
sCreen cleared
TTY simulation window set to full screen
bug selection stack reset
resume tracking (see)
padding:
Send pads as for clear screern,
Resume tracking mouse
Send(33p, 44B)
result:
The cursor is used to track the mouse. Any unescorted
characters will go into the TTY simulation window
currently in use.
Write string of blanks
Send(33B, 43B, N’)
N* = number of planks to be written.
result:
The specified number of blanks are written starting at
the current cursor position., The cursor is left at the
cnaracter position tollowing the last blank. Assumes the
cursor nhas been positioned appropriately beforehnhand.
This command is a no-op if N’ is not »>= 41B AND <= 177B.
padding:
This command must have N/f padding characters following
ilt.
Push pug selection
s5end(338, 46B, X', ¥’)
result:
The coordinates are pushed on a stack and the character
at that location is somehow brought to the user’s
attention. The stack will hold a maximum of 8
selections. This command includes a resume tracking,
padding:
This command must have 8/f padding characters following
it.
Pop bug selection
Send(33B, 47B)
result:
The top entry on the bug selection stack is popped. The
corresponding character on the screen 1s no longer
marked in a special way. If the stack is empty, this
command is a no=-op. This command includes a resume
trackinag operation.

1 e Al D e 760 {2 AT7 C 1D MOCA MIiCe1RKO S [~

JAKR

For some DItypes, tne applications program must restore
tne character or the marked position will be replaced by
4 space,
padding:
This command must have 8/f padding characters following
it.
Delete selected line
Send(33B, 44B)
result:
The cursor position selects a line to be removed from
the screen, All following lines are moved up one line.
The contents of the last line are undefined. The X
coordinate should be zero, otherwise the results are
undefined.
padding:
This command requires Del/f padding characters (Del is
obtained from the table),
Insert selected line
Send(33B, 45B)
result:
The line which the cursor is on, and all following
lines, are moved down one line. The cursor is not
moved, and hence 1is on a pblank line. Lines above the
cursor are not altered, The last line (before the
execution of this command) should be considered "lost,"
The X coordinate should be zero, otherwise the results
are undefined.
padding:
This command requires Ins/f padding characters (lns is
obtained from the table),
Clear screen
Send(33B, 508)
result:
The entire screen is cleared, The cursor position is
not generally known, The TTY simulation window location
and the bug selection stack are not altered. The
tracking mode is not chanaged, :
padding:
This command requires Clr/f pad characters;
Interrogate line processor
Send(33B, 55B)
result:
A response to the interrogate command is sent as a
protocol string of this form:
34B, 46B, Xmax+40B, Ymax+40B, LPtype, Dtim Rate
Where
Xmax 1s the maximum X coordinate
Ymax is the maximum y coordinate
LPtype 1is in (4UB=-177B] and designates type
The least significant four bits of LPtype
designate display terminal type (call it
Dltype)
Currently defined are:
(1) Delta Data 5200
(2) Hazeltine H2000
(3) Data Media Elite 2500

1A iDL E 1 hsAT € 1D weCd Niced&O 5 A

TAK L

(4) Lear Siegler ADM=~Z2
The most significant three bits designate Line
Processor type (call it Type)
Currently defined are:
(0) Complete alpha line processor with
copyY printer receiver for cassette drive
(2) Line Processor with Mouse, Keyset,
Printer
(6) Graphics line processor with
Tektronix 4014
(7) Graphics line processor with
Tektronix 4012
Dtim is a characteristic delay time, For proper
scrolling, a line feed (LF) must be followed by
(btim+14)/f pad characters.
Rate indicates the Line Processor receive baud
rate:
300 buad: 100B, £=32 decimal
600 baud: 60B, f£=16
1200 baud: 50b, £=8
2400 baua: 44B, f=4
4800 pbauds 42B, t=2
9600 baud: 41B, f=1
The baud rate factor, f - Rate=40b;
Note: Any additions to LbPtype should be assigned
by ARC personel for best results. See DIA or CHI
This command does not change the tracking mode,
Turn off coordinate mode
Send(33B, 60B)
result:
Turns off the coordinate mode in the Line Processor.
This does not change the tracking mode,.
Mouse buttons become inactive, keyboard control
characters sent to main computer without protocol
formating.
Turn on coordinate mode
Send(33B, 61B)
result:
Turns on the coordinate mode in the Line Processor,
This does not change the tracking mode.
Mouse buttons become active, Keyboard control characters
are sent in input protocol format,
Begin standout mode
send(33B, 56B)
result:
All following text written on the screen will be altered
is some way from "normal" text., This unfortunately
“includes characters which go into the TTY simulation
window also, so don‘’t leave the line processor in this
state indefinitely. Does not change the tracking mode,
End standout mode
Send(33B, 57B)
result:
Subsequent text written on the screen will be in
"normal" mode, Does not change the tracking mode,

1 b m A w7 160 A" e IO MOCA MIT Cer 1%§) N ~

TENEX RESTARTING
The Line Processor will detect a TENEX restart, by looking
for the ten 33B's it sends out at startup time. At that
time it will place itself in a state as tnouagh the hardware
reset button had been pushed,
Open printer (alpha line processor only)
Send(33B, 53B)
Result: ’ :
Opens the printer for output. Protocol to the printer
must be observed: (1) open it,., (2) wait for protocol
string "regquest" (below), (3) send strings in response
to requests. (4) close it,
"Request" string, sent back to the main computer:
0B NULL
kach request enables the application program to
send an additional 16 characters via the
printer string protocol below,
Note: The count indicates the Line Processor storage
allocated for the next printer string. Sending a longer
string will result in & "receive error" (error light on
panel).
Close printer (alpha line processor only)
Send(33B, 54B)
Result:
Closes the printer. Actual close wilil not take place
until all characters in the output buffer are printed,
That is, the close may follow the last string of
characters immediately. It is possible (but very
unlikely) that a "reguest" protocol string may be sent
to the main computer after the close 1is sent to the Line
Processor. '
Printer string (alpha line processor only)
send(33B, 528, Dev, Count+40B, <characters>)
Result:
The Dev is normally 40B and is ignored by Line
Processors with one printer. The Count must not be
greater than the sum of the counts in all "request"
protocol string not already fulfilled. It may be less.
The actual character string may contain any characters,
They will pe sent to the printer without translation or
special handling,
Note:
Strings may be sent to the printer without opening it if
timing constraints are observed carefully, In this case
the applications program must know the baud rate of the
printing device a well as the Line Processor = Main
computer line. The program just issues printer strings
and no reguests are sent back to the Main computer by
the Line processor. This was a deliberate implementation
to allow higher speed printing over networks without
waiting for the response. Ubserve that if strings are
sent too fast the printer buffer in the Line Processor
will overflow: data will be lost and the Line Processor
will die. The printer buffer normally holds 47
characters..
Open graphics display (graphics line processor only)

TJAKR 1 AfmADLReTR 16462477 < T.D MOCCA NT.Qe1 RN N Q

Send(33B, 53B)
Result: :
Disables mouse tracking on the graphics display.
Close graphics display (graphics line processor only)
S5end(33B, 54B)
Result:
Ensables mouse tracking on the graphics display.
Write graphics display (graphics line processor only)
Send(33B, 52B, Dev, Count+40B, <characters>)
Result:
The Dev 1s normally 40B and 1is ignored by Line
Processors. Characters from the application program are
written directly on the graphics display. Since the
characters are not pbutffered, the graphics display must
pe connected at a nigner baud rate than the external
processor,
Set graphics cursor resolution (graphics line processor only)
send(33B, 62B, N’)
Result:
N controls the mask applied to the cursor coordinates
before they are used to position the cursor on the
graphics display:

N = 0 Mask = 0
= 1 = 1 LSE is cleared (etc)
= 2 = 3
= 3 = 7
= 4 = 178
=5 = 37B

Application notes:
Avoid writing text (or "string of blanks") beyond the end of a
line: the display may insert an unwanted line or drop the
eXtra characters.
Avoid positioning the cursor to anv x>xXmax or y>Ymax.,
Avold doing an insert line on the last line: the display may
scroll the entire screen,
Delta Data (DItype=1) must be treated as a special case in the
following respect:
When writing text at (x,y) on a line which does not already
have text on it up to position x (e.g. after a clear screen
or Insert line), the applications program must send x/f pad
characters after the first character written at position
(x,v). The display takes that long to move a CR symbol
into the proper display memory location, (Our thanks to
Delta Data). ;
We expect to stop supporting Delta Datas soon.
NOTE:
The Line Processor has a reset button on it (which will be
used only on rare occations). After power up or a hardware
reset, the following state prevails:
The screen is clear, the mouse tracking in operation.
The bug selection stack is empty.
The full screen TTY simulation 1s in effect,
Coordinate mode is NUT in effect,
Printer is closed
All TTY simulation windows currently work as follows: Text is
inserted in the last line and "scrolling!" occurs on each line

YR 47 Ay MM A S e ST 1 T YV T R = ~ Py

feed (i.e. it does not start on the top line of the window as
you may prefer). A CR moves the cursor to left margin, a LF
effects a line break, Tvypinag beyond the last character of the
line causes a line "wrap" =~ i.e, new text replaces the old
line, starting from the left margin., The only way to clear a
small TTY window is to send N line feeds into it, where N is
the number of lines in the window.
The usual sequence from the applications program will be to
position the cursor and perform some function, or write text,
or both, It must end such a sequence with a "resume tracking"
command. Any broadcast messages, links, etc. that come down
the line between the cursor position and the "resume tracking"
will go wherever the cursor happens to be,
Normally, broadcast messages and the like will go into the
TTY simulation window. The difference being that they are
not preceeded by a position cursor command.
REENTER code in NLS will clear and repaint the entire screen
Mouse tracking will bpe done by the Line Processor under the
following conditions: _
IF the terminal has received a '"resume tracking" command
since the last position curscor command, AND
I[F there is no input from the TEN, AND
the mouse coords have changed since the last mouse tracking
operation, or the cursor has been moved since the last
mouse tracking operation,
Tracking stops under the following conditions:
A position cursor command comes f{rom the TEN,

Summaries
Line processor to Exernal processor

MTAK L

CHAR SEQUENCE MEANING

(all line processors)

CHARACTER Normal Character
(Ascii values 1B to 177B except ¢ (String request), 2 (*B),
4 (~D), 34B (BCESC), and 176B (Reset))

BCESC 46 MX MY TP DT BD Interrogate Response

176 177 System Reset

176 41 CCNT CCHRS Error report

(alpha line processors)

BCESC 43 CC X ¥ Uptional Segquence For Control
Chars

BCESC 43 CC X ¥ Sequence For ~i (Cid), ~8 (CDOT),
~X (CD)

BCESC 43 MB X Y Sequence For Mouse Buttons

0 (NULL) String request

(graphics line processors)

BCESC 45 CC X1 X2 Y1 Y2 Uptional Sequence For Control
Chars

BCESC 45 CC Xi X2 Y1 Y2 Seqguence For “D (CA), ~B (CDOT),
~X (CD)

BCESC 45 MB X1 X2 Y1 Y2 Sequence For Mouse Buttons
Where:

All numbers are in octal

Y e A DD 7 6.0 A7 1D mOCA NMI Qe XD ~ LAY

CCNT = number of CCHRS + 40
CCHRS = CCNT=-40 data bytes; each byte 1s offset by 40
CC control character + 140
current mojse button state + 1060
= current X corrdinate + 40
Y = current y corrdinate + 40

=
o
nou

X1 = top 6 significant pvits of X coordinate + 40

X2 = least significant 6 bits of X coordinate + 40

Y1 = top & significant bits of y coordinate + 40

Y2 = least significant 6 bits of y coordinate + 40

MX = maximum X coordinate + 40

MY = maximum ¥ coordinate + 40

TP = line processor type and version + 4¢

DT = terminal delay time characteristic + 40

BD = line processor receive baud rate + 40

Exernal processor to Line processor

COMMAND CODE PADDING
position 33B, 40B, X, Y¥* none
TTY wincow 338, 41B, Y TOP*, Y BOTIUM"’ none
resume tracking 33B, 4B none
write blanks 338, 43, Nf N/F
delete line 335, 44B DEL/F
insert line 33B, 45B INS/F
push bug 33B, 46B, X', Y’ 8/F
pop bug 33B, 47bB 8/F
clear screen 33B, 50B CLR/F
reset 33B, 51B CLR/F
printer string 33, 52B, DEV, CNT', String see text
open printer port 33b, 53k see text
close printer port 338, 54B none
interrogate 33B, 55B none
standout mode on 33B, 56B none
standout mode off 338, 57B none
coordinate mode off 33B, 60B none
coordinate mode on 33B, o61B none
cursor resolution 33B, 62B, N’ none
remote resart 10 ~ 33B's none

(mcs4) MCS=4 Assembler in TREE META
FILE msc4 CHECK
META file
ERROR: => *; $st :endil*;
S1ZE: S=1000 M=100 K=50 R=1000 L=10 G=10;
DUMMY: add mt lh neg:;
FIELDS: 0OP=[4:8] OPA=[4:4] OP8=[8:4) TYPE=[4:18] P=[4:8]
AD1=[4:81 AD2={4:4] AD3={4:0] AD8=(8:01];
ATTRIBUTES: reg pair:
% declarations vparsing %
file = ("FILE" 7/ => "FILE"™) 1D <"=M(CS~4 ASSMBLER 12/11/73">
<"=FILE "%1> @8 defned &DISCARD

[>*mcs4]

$declare s$st :end(]*;

end =>
>~mcsend $SYMS(?@ defned ¥$ / <'"undefined symbol: " *$ >)
&TABLES;)

TAKL 2 o A e 7E 4w AT T 1D MOTA dfCeo1EREND ~ 1 4

declare =
"SET" #<*,> (¢ JID ¢/ L,UID) *= _NUM :decl2lx) '; /
"REGISTER" #<*,> (.ID '= g8 reg .NUM :dec(2]¥) '
YPAIR" #<*,> (LID ’= @S pair .NUM :regpairlzlx)
dec [=,=] => >%1_%N2; '
regpair (=,=] => >%1 _ LSH(*¥NZ2)1;
% statements %
st = ["EwD" &FAIL 1
«S(JID “: &LABEL) :labell(s)] * instr ‘*/ => *; % ;
lapel [8] => s(>%s5)3
instr = opl / op2 / op3 / JUID (sym4 :simpi2] / :simpl1]1);
simp % simple: UP and optional address %
[=) => *v1~0P8 \O;
{=,=]) => %V1~0P stopal*2] \0;
sym =
(.ID
(7@ defned / <*! " undefined" LUC>)
/ «NUM :conf1})) ([".LH" :lhii] 7/ ",RH" 1 /
‘= sym :negtll ;
symé = sym $("+ sym :add{(2)/ ‘= sym :negll] :taddl2l);
stopa
i=] => + val4a(x1]~0rPA;
vals
fadd] 2= 0 + vald4i*xi:1] + val4ai*1:2];
% above is ugly prut canft start exp with construct that
appears to be a node test %
{con] := *nNl:l;
{0) = 0y
(neg] s:= =val4l*1:1]1 ;
(lhiconjl]l := *Ni:l:1 ;
[1n] := *Vi:1 3/ 167
[=] 1= xV1;
val
[=] => +vald4(*x1];
opl =
"JCN" sym4 (°*,] adr :twol=1, "JdCn", 21 /
"ISZ" sym4 [*,] adr :twol=1, "isz", 2} /
"FIM" regpr (’,] data :twofl=1, "FIM", 2] ;
op2 =
"JUN" adr :twoli=2, "JUN",
"JM8" adr :twof{=2, "JMs",
op3 =
"FIN" regpr :onel(=3, "FInN", =0, 1) /
"SRC" regpr :onel=3, "SRC", =1, 11 /
"JIN" regpr :onel=3, "JIn", =1, 1] /
"DATA" data :gendata{i] /
"ADR" adr :genadrlll] /
"PAGE" :pagel] /
"ZERQO" JNUM :zrolil;
regpr = ,ID ?8 pair;
data = adr / ‘(
sym4 (*, symd :doublel2] / :vallll) *) :
con
(=] => *N1;
double
{=,=] => + vald4{*1]1°ADZ + valaix*x21~AD3;

» N

/

.
’ ’

/ 165

1]

0, 1]
1]

il
<
-~
we N

JAKER 1 A DRwe 7S 1A*47T < T, MOSA NILSeT1TRK0 . S 172

adr = ,ID / .NUk tconlli;
page => &BSS MASK(lc+255)7400B=1lc, ;
% instruction generation %
gendata
L.ID] => 4~TYPE *I\1; % 8 bit reloc adaress
{doublel => 4°TYPE *1\1:
icon] => *%N1:1~0P8 \0; % 8
{vall => +val4{*1:11°0P8 \
genadr
{=1 => 4°TYPE %i\l: % address =- 8 bits %
one [=,=,~,~] => % one & bit instruction %
¥*N1~TYPE % instruction type %
¥V2°0P % opcode %
stopai*4] ¢ 0UPA field %
{?2%N340 20B] \0; % special opcode bit 3%
two [=,~,=,=)] => % two words, UP OPA adr %
¥*N1~"TYPE % opcode type %
*V2°0P % opcode %
stopal*3] \0 % OPA field ends first oyte
¥4\1 ; % address %
zro [=] => &BSS *i1,;
END of MCS5~4
(pprog) Program
{punch) FILEK
(puncn.rel,)
% declarations %
(oprec) RECUORD ugnii4}, opaldl, opld];
(adrec) RECORD ad3l4), adcei4l), acll(4], gléel]l, typel4dl;
EXTERNAL sysovr;
DECLARE intel=1001, prolog=i002, 1lprolog=1003; 3% codes for
programmer type %
DECLARE progend=1010, progcr=1011; % codes for Pro=log
DECLARE
110stk(50],
ugly=7777770000018B, % add to Li10 string to make TENEX string %
lc, % location counter %
cell, % address of last cell sent to programmer 3%
pdevice, % punch device %

o\¢

bit data word %
:

0 % data word (& pits) %

\

o\

0 punch tapes for programmer board
to punch tape for MCS=-4 prodgrammer (110,)

o\0 o\° ¢t

o\¢

pifn, % jfn for paper tape punch %
ojfn, % jEfn for printer listing %
ijfn, % dfn for listing input %
adrl, % first address %

adr2, % last address to program plus 1 %

stringl20), % line buffer %

leadch=377B, % rubout for leader character $%

one=’N, % INTEL one character %

zero=‘P, % INTEL zero character %

direct=1, %0=paper tape, #0 = directly to programmer %
monitor, % =1 means echo programmer stuff on TTY %
progtype, % programmer type (intel or prolog)l) %
adrerr=0, % address errors count %

comflyg=0, % comment flag, true=inside comment in 1jfn text
lastf=0, % flag, TRUE means we have butfered one char %
lastchar, % this is the buffered char %

laste, % this 1s the end code for confirm %

lastcell, % tnis is the location for the char %

o\®

TAL L P o A I TE 1 e AT L YD irte A T Coed) N 4 2

tabs=34; % number of chars to tab if no binary stuff %
REGISTER
stack=9, mark=10, ri1=i, r2=2:
SET 110s8z=50;
SET loader=761265%B, loadexit=761321B;
% symbols for TENLDR are at 777332,,764332
% procedures %
(main) PRUOCEDURE; % main entry points in here

(sysovr):
stack.LH . =$110sz; stack.RH . $110stk;
error(s'"stack overfliow");

(jump): GUTU loadereturn;

(envect): GUTU start:; GUTU rstart;

(init): % set entry vector %
!sevec (485, 2Be+senvect);
‘thaltf:;

(start): % starting location
lreset; lclzff(4B5);
stack.LH -~ =8110s2; stack.RH .. $110stk:
adrerr .. 0;

[Sloadexit] -~ jump:
!psout(s"specify REL file = end with ALT = "+ugly):
GOTO loader;
% NOTICE:
loader is the reenter location of TENLDR and loadeXxit is
the location of the JSYS HALTF in TENLDR (just pefore
sysovr). They must be fixed up each time TENLDR is
changed !!! %
(loadereturn): % return point from loader %
LOOP BEGIN
!psout(s"punch file: "+ugly);
IF NOT SKIP !gtjifn(060003B6, 1000001018) THEN

BEGIN

jerror(ri);

REPEAT LOOP;

END;

piftn - ri;

pdevice . ldvchr(pjifn); % device designator %
direct . 0;

CASE pdevice,LH OF

=600012B, =0: % TTY: %

BEGIN % directly to TTY port, hence to programmer

°

direct .. 17
progtype . 1?
IF NOT SKIP l!asnd(pdevice) THEN jerror(ri);
END
=600005B: % PTP: %
BEGIN
IF NOT SKIP lasnd(pdevice) THEN jerror(ri):
progtype - 1;

o\C

oe

o\e

\O

END;
=¢00015B: % NIL: %
progtype .. O

ENDCASE % file
progtype . 1

we O\C ws ss

OJAKK 1AADRe7R 147 < LR, MOCS4A4 NI.S*1S850. > 14

IF progtype THEN CASE !pbin(!psout(s$"programmer type is
(L, I, or P) "+ugly)) OF
='L, ='1: % Lineprocessor and 1200 baud prolog %
BEGIN
!psout(s"ineprocessor and 1200 baud prolog"+ugly):;
CASE !pbin() OF
=CR, =EOL, =CA: NULL;
ENDCASE
BEGIN
!psout (s"? "+ugly);
REPEAT CASE 2;
END;
progtype .. lprolog:;
END;
=TI, =71 % Intel %
BEGIN
ipsout(s"ntel"+ugly):;
CASE !pbin() OF
=CR, =ECL, =CA: NULL;
ENDCASE
BEGIN
Ipsout(s"7? "+ugly):
REPEAT CASE 27
END;
progtype . intel;
END;
='P, ='p: % Pro~log %
BEGIN
ipsout(s"ro-log"+ugly);
CASE !pbin() OF
=CR, =EOL, =CA: NULL;
ENDCASE
BEGILN
lpsout ($"? "+ugly);
REPEAT CASE 2;
END;
progtype . prolocg;
END;
ENDCASE
BEGIN
ipsout(s"? "+ugly)s
REPEAT CASE ;
END;
IF progtype THEN
CASE !pbin(!psout(s"want to see echo from
programmer?"+ugly)) OF
=CR, ='Y, ='y, =EOL, =CA: monitor . 1;
ENDCASE
BEGIN
!bout (1018, EGL);
monitor .. 0;
END
ELSE monitor .. 0;
IF NOT SKIP l!openf(pjfn, 10B10+3BS5) THEN
BEGIN
jerror(rij;

OJAKE T e mAD 7R 1647 € 1.D O NMOCA MICOs1IRN N 1K

TAK W

REPEAT LOOP;
END;
EXIT LOGP;
END;
!psout(s"entire tile to be programmed?"+ugly);
CASE !pbin() UGF
=CA, ='Y, =y, =EOL:
BEGIN
ijfn o
open(s$"seguential listing input: ",
16000366, 7Bi0+2B5);

IF ldvenr(ijtn).LH = 6000158 THEN
% 1., 1jfn is NIL: %
BEGIN
ijtn ~ 03
IF NOUT SKIP lgtjfn(400CG01B56, $"NIL:"+ugly) THEN
BEGIN

jerror(rill;
error(s$"cannot proceed");
END;
ojfn ~ ri; % Nl1L: also %
IF NOT SKIP lopent(ojfn,7B10+1B5) THEN
BEGIN
jerror(ril);
error(s"cannot proceed");
END?
ERND
ELSE
ojfn . opren(s"listing output: ", 660003B6,
7B10+1R5);
adril .. smcs4;
adr2 .. smcsend;
END;
ENDCASE
(sstart): BEGIN % restart entry point %
adrl . inputi(s"from: ")+smcs4;
adrz .. MIN(inputl(s"thru ")+smcs4+1, smcsend);
(rstart): % restart entry point adri,2 setup %
lastf - 0;
tbout(101B, ECL)?
IF NOT SKIP !qgtjfn(400001B6, s$"NiL:"+ugly) THEN
BEGIiN
jerror(ri);
error(s"cannot proceed");
END;
0jfn .. ri; : :
IF NOT SK1F l!openf(cifn,7B10+1B5) THEN
BEGIN
jerror(ril);
error(s"cannot proceed"):;
END;
iifn - O3
END;
IF direct THEHN
BEGIN
lctibf(pjfn);

1 e ADDalR 1o Ad” C T MOQA NI Ce18END N 1A

ictopt(pjfn);
END;
stack.LH -~ =$110s2; stack.RH .. $110stk;
output():
findline();
lsout(ojfn, sstring .V 18M6, 0);
IF NOT SKIP !nout(ojfn, adrerr, 10) THEN jerror(r3):
!sout(ojfn, s" address errors"+ugly, 0):
IF NOT SKIP Iclosf(pjfn) THEN jerror(ril);
IF NOT SKIiP iclosf(ojfn) THEN jerror(ril);
IF NOT SKIP !{closf(ijtn) THEN jerror(ri):;
IF NOT SKIP !nout(101B, adrerr, 10) THEN jerror(r3):;
Ipsout(s" address errors"'"+uqgly);
!pbout (EQL):
Ipsout(s"successtul completion"+ugly);
IF direct THERN
BEGIN
ipsout(s'"deassign device? "+ugly);
CASE lpbin() OF
=g0L, =CKR, ='Y, ="y:
IF nOT SKIP lreld(pdevice) THEN jerror(ril);
ENDCASE NULL;
END;
thaltg;
END.
(inputl) PROUCEDURE % input & number from the user %

=
S

% arguments %
{(s): % an optional string to be typed %
LOOP
BEGIN
IF s THEN
BEGIN
ipbout (EOL); !psout(s+ugly):
END;
IF HOT SKIP !nin(100B, C, 10) THEN jerror(r3)
ELSE EXIT END;
RETURN(r2) END,
(open) PRUCEDURE % open a file %
% formals %
(s, % string %
getw, % gtjfn word %
opnw); % openf word %
LOCAL jfn;
LOOP BEGIN
lpsout(s+uglyl;
IF NOT SKIP !gtifn(getw, 10000010iB) THEN
BEGIN
jerror(ri);
REPEAT LOUP;
END;
jtn . ri;
IF NOT SKIP l!openf(jfn, opnw) THEN
BEGIN
jerror(ri);
REPEAT LOUOP;
END;

TAWK L 4 0 A w15 1A A7 < P D NI T A WNT Ce 12N ~ 4 "7

RETURN(Jfn);
END;
END.
(output) PROCEDURE; % main output procedure %
LOCAL w»;
1C - cell . adrl; % first symbol 1n program %
leader();
IF lc#smcs4 THEN % not at start of prog = check for split
instr %
CASE (lc~1i.type OF
=1, =23 ’
BEGILN % special case = start of 2nd halt of 2 byte
instr %
W -~ [lcl=smCs4; % relocate addr %
punchst(};
punchbyte(w,ad2,0);
punchbyte(w,ad3,1);
punchend();
BUMP 1c, cell;
checklc();
END;
ENDCASE WULL;
WHILE lc<adrZ DO
BEGIN
findline();
punchlc();
W - [1Cc];
punchl (),
!sout(ojfn, $string .V 18M6, 0);
IF w=0 THEN % string of zeros case : keep listing aligned
WHILE [(lcCcell.lc+1)]=0 AND lc<adr2 0O
BEGIN
checklc();
punchlc():
punchi():
!'bout(ojfn,EQL);
END
ELSE BUMP 1lc,cell:
checklc();
END;
leader();
RETURN EAD.
(checklc) PROCEDURE; % check for edge of ROM page %
IF (lc=smcs4) .A 8M = O THEN leader();
RETURN END,
(leader) PROCEDURE; % punch leader or setup programmers%
LOCAL 1,
IF direct THEN
BEGIN
IF lastf THEN
confirm(lastcell, lastchar, laste);
lastf . 07
IF lc>=adr2 THEN RETURN;
!psout(s"type CR when PROM is ready"+ugly):;
CASE binchr() UF
=CR, =EQL, =CA: NULL;

AAK R L mADRw TS 1RA247 C .0 NS4 nNILR*1&80. S 1R

ove

TAK D

ENDCASE REPEAT CASE;
CASE progtype OF
=zintel:

BEGIN
lbout(pjfn, ‘'P);
!disms(750);

IF NOT S8KIP !lnout(pjfn,(lc-$mcs4) .A 8M,140003B6+10)

THEN jerror(r3);

tdisms(750);

IF NUOT SKIP lnout(pjfn,MIN((adr2=-smcs4 =i},
(lc=smcs4) .V 255) .A 8M, 140003B6+10) THEN
jerror(r3);

ldisms(750);

END;

=prolog:

BEGIN

!bout(pjfn, “*¥); confirm(smcs4, ‘*, progcrl:
'bout(pifn,‘P); confirm(smcs4, P, progcrl;
1 - lc=-smcs4;

‘bout(pjfn,hex(i.,adz2)); confirm(smcs4,hex(i.ad2),
ibout(pjfn,hex(i.ad3)); confirm(smcs4,hex(i.ad3),
i . MIN((adr2-smcs4 ~1), (lc-smcs4) .V 8M) .A BM;
bout(pjfn,hex(i.ad2)); contirm(s$mcs4,hex(1.,ad2),
'bout(pifn,hex(i.ad3));
confirm{smcs4,’ ,0); % 7232927227277 %
END;

=lprolog:
BEGIN

lpout(pjfn, *x); contirm(smcs4d, ¥, progcr);
lpout(pjfn, ‘P); confirm(smcs4,'P, proger);

i - lc~smcsé4;

lpout(pjfn,hex(i.ad2)); contirm(smcséd,hex(i,ad2),
lpout(pjfn,hex(i.ad3)); contirm(smcs4,hex(i.ad3),
i - MIN((adr2~smcs4 ~1), (lc-smcs4) .V 8M) ,A 8M;
lpout(pjfn,hex(i.ad2)); contirm(smcs4,hex(i.ad2),
lpout(pjfn,hex(i.ad3));

confirm(smcs4,’ ,0); % 27?27727?227?%? %

END;

ENDCASE NULL;

END

ELSE FUR

i~0 UP 1 UNTIL = 75 DO lbout(pjfn,leadch);

RETURN END,
(bincnr) PRUCEDURE; % do a pbin %

'poin();

RETURN(r1) END.

{punchlc) PROCEDURE; % put location on listings

LOCAL 17

% location %

i - lc=smcsé4;
CASE progtype OF
=intel:
BEGIN

IF

i JA 2M = 0 THEN

BEGIN

'bout(pjfn, CR); !bout(pjfn,LF); |
IF NOT SKIP !nout(pjfn,i,140004B6+10) THEN
jerror(r3);

‘bout(pjtn,’” J;

1 A eTTE s e AT s I D Wil C A T Ce 1N ~ 10

0);
0);

0);

0):
0);

0);

Enl;
END;
=prolog:
NULL;
=lprolog:
NULL;
ENDCASE NULL7;
IF NOT SKIP !nout(ojfn, 1,140004B6+10) THEN jerror(r3);
% put hex address on listing %
‘bout(ojtn, *); lbout(ojfn,’P);
IF NOT SKIP !nout(ojftn,(i.adl),140001Be+10) THEN jerror(r3);
!bout(ojfn, ":);
ibout(ojfn,hex(i.ad2));
lbout(ojfn,hex(i.adi));
RETURN END.
(punchlil) PROCEDURE:; % punch instr. (meybe two bytes) %
LOCAL
w, % the instruction word %
ty % flag for opcode FIM or not %
w . Llcl;
CASE wl.type OF
=0, =37 % B bit instr (UP UPA) %
BEGIN
punchst();
punchbyte{w.op,0);
puncnbyte(w,opa,l);
punchend();

!sout(ojftn, s" "+1 .V 18M6, Q)3
END;

=1: % 16 pit instr (P UPA + 8 pit adr 3%
BEGIN

punchst();
punchbyte(w.op,0);
punchbyte(w,opa,i);
punchend();
f - (IF w.op=2 2FIM% THeN 1 ELSE 0);
BUMP lc,cell:;
checkic();
IF lc>=adr?2 THEN RETUKRN;
W — [lcl=smcs4;
punchst(}:
punchbyte(w,ad2,0);
punchbyte(w.ad3,1);
IF w.,adl #
(CASE (lc=-smcs4) A 8M OF
=255: (lc=smcsd+1)/74008;
ENDCASE (lc=%$mcs4)/7400B)
AND £=0 THEN punchrr()
ELSE punchend();
% adr err if address not within next PROM if at 255
or this PRUM, put not on FIM instr in any case %
END;
=2: % 16 pbit instr OUP + 12 bit adr %
‘BEGIN
punchst();
punchbyte(w,op,0);

JAKE 1AmADPR=T7% 1R*47 C 1 P MOS<4 AT.S*1850N0. S S50

BUMP lc;
W - [lcl=8Smcs4;
punchbyte(w.adl,1);
punchend();
BUMP cell; % only rlace 1lc¢ and cell diverge
checklc();
IF lc>=adr?z THEN RETURN;
punchst ()
punchbyte(w.,ad2,0);
punchbyte(w,ad3,1);
punchend();
END;
% relocatable address = 8 bits %
BEGIN
W -~ W=SmCs4;
punchst();
punchbyte(w.ad2,0);
punchbyte(w.ad3,1);
punchend():
!sout(ojfn, s" "+1 .V 18M6, 0);
END;
ENDCASE
error(s"illegal instr type");
puneol():
RETURN END.
{hex) PRUCEDURE(X); % convert x to HEX character %
CASE x QF
I L0,9]: RETURN(X+70);
IN (10,15} : KETURN(Xx=10+"A);
ENDCASE error(s"illegal hex value");
END,
(punchst) PROCEDURE; % punch starting char, if any %
CASE progtype OF
=intel:
BEGIN
lbout(pitn,’'B);
END;
=prolog: NULL:;
=lprolog: NULL;
ENDCASE WULL:
!bout(ojtn, *):
RETURN END,
(punchend) PRUCEDURE; % punch ending char if any %
CASE progtype OF
=intel:
BEGIN
tbout(pjtn,'F);
confirm(cell,0,0);
END;
sprolog: WNULL;
=lprolog: NULL;
ENDCASE NULL;
!bout(ojfn,* J;
RETURN END,

1
.
28

<

3

(punchrr) PROCEDURE: % like punchend, but address error

B

JAKE T hemADRw " dT6Head7 E 1.0 MOCOLd nr.S+*+1 80

~N

displaved

1

CASE progtype OF
=intel:
BEGIN
‘bout(pjfn, 'F);
confirm(cell,0,0);
END;
=prolog: NULL;
=lprolog: NULL;
ENDCASE NULL;
!bout(ojfn, “4);
BUMP adrerr;
RETURN END,
(confirm) PROCEDURE %confirm response from programmer %

(addr, % the address being programmed %
c, % the return character if progtype=prolog,lprolog %
X); % echo confirmation code %

LOCAL t, £, waitine;
IF direct AND l!lavchr(pjfn).LH # 600015B THEN
% l1.e. pjfn is not NIL: %
BEGIN
£ - 02
CASE progtype UF
=intel:
BEGIW
1disms(1000);: % at least 10 chars to send %
waltime . 600;
END;
=prolog:
BEGIN
waitime .. 0;
tdisms(
(CASE x OF
=progend: 25;
=progcrs: 20
ENDCASE 0)

)\

)
END;
=lprolog:
BEGIN
waitime . 07
tdisms (
(CASE x OF
=progend: 25;
=progcr: 20
ENDCASE 0)
JH
END;
ENDCASE NULL;
LCOP BEGIN

t - !time();

WHILE SKIP !sibe(pjfn) DO
IF (!ftime()=t) > waitime AND £=2 OR (l!time()~t) >
5000 THEN '

BEGIN
I £=2 THEN RETURN;
IF NOT SKIP !sibe(pjftn) THEN EXIT;

MTAKE 4 e A DD R 14547 e T.D MOCA KMI.C»18N0N ~N O Rp)

% give ’'m one more chance %
'psout(s" no confirmation for word "“"+ugly):
IF NOT SKIP !nout(l101B, addr=-smcs4,140004B6+10)
THEN jerror(r3);
tpbout(ECL);
!psout(s" type CR, S8, R, P or ? for help"+ugly);
CASE binchr() OF
=CA, =EO0L, =CR: NULL;
=*'5, ='s:
BEGIN
!pbout (EQL);
!psout(s"hit reset on the programmer boX
pefore proceeding "+ugly);
‘pbout (EOL);
GOTO sstart;
END;
='R, ='r:
BEGIN
{pbout (EGL);
!psout(s"hit reset on the programmer box
before proceeding "+ugly);
!pbout (EQL);
adrl . addr;
GOTO rstart;
END;
='p, ='p:
BEGIN
!pbout (EOL):
!psout($"hit reset on the programmer box
before proceeding "+ugly):
!pbout (EQL);
adrl .. (addr-smcs4) ,A 777400B + sincsé4;
GOTO rstart:
END;
=71
BEGIN
lpbout (EQL);
tpsout(s”"type CR to continue"+ugly):;
!pbout (EGL);
Ipsout(s"S to start over (respecify start
and finish)"+ugly); !pbout(EOQOL);
ipsout(s"R to restart from this word"+ugly):;
lpbout (EOL);
ipsout(s"pP to restart at first word of this
prom"+ugly); !pbout(EOCL);
REFEAT CASE;
END;
ENDCASE
BEGIN
!psout(s"type ? for help, fella"+ugly);
{pbout (EQL);
REPEAT CASE;
END;
RETURN?
END?
WHILE NOT SKIP !sipe(pifn) DO

™ L Y Y all: DU Aol I B Y - ~ Yy

TALWY O 4 L6 MY "ML A L e A™ P

BEGIN

lbin(pitn);

T2

- T2

A TM;

IF monitor THEN

1F

ELSE

r2 < 40B THEN

BEGIN

Sipbout("");% %to get your control characters
printeds

Sipbout(r2+40B):%

tbout (101B);

ERD

lbout (101B):

CASE progtype OF
=intei:

=prolog,
BEGIN
CASE X OF

IF r2 IN (40B,’'z] THEN
CASE £ OF
= IF r2='B THEN £ . 1:

IF r2='F THEN £ . 23

IF r2='r AND done(addr)
THEN £ . 2 ELSE £ ~ 3;
ENDCASE NULL;
z=lprolog:

0:
1:
23

=progend: %
CASE oF
=02 IF r2=c THEN f.1;
IF r2=LF THEN f.4
ELSE IF r2=CR UR r2=E0L
IF r2=*' THEN f.2
ELSE IfF r2='/ AND done(addr) THEN
£..2;
ENDCASE NULL;
=progcr: % demand CR,
CASE £ OF
=02 IF r2=c THEN f.l:;
=i: IF r2=E0L THEN f.2;
ENDCASE NULL;
ENDCASE % demand the char %
CASE £ OF
=0: IF r2=c THEN f.2;
=2: £.3;
ENDCASE NULL;

demand CR, string space $%

-
a0 »s

THEN f.3;

3:

LE %

END3;

ENDCASE NULL;

END?
END?;
END;
RETURN END,

(done) PRCOCEDURE(addrl); %

RETURN (

iF (addr+i=smcs4)

return true if end of PROMS

.A 8M = 0

OR addr=adrz~1 THEN 1

ELSE 0);
END,

(punchbyte) PROCEDURE(bits,e); %

TAKER 1A mADD w7k

1T e AT Ve

punch one 4 bit byte and list it

TD MOCA NT C21 8N N A

o\°

% bits=pyte to punch,

LOCAL w,i, x;

IF proatype=intel GR ijfn#0 THEN
BEGIN
rl .. bits;
FOR 1.0 UP 1 UNTIL =

BEGIN

r2 - X?

W - I'l; X - I2;

1F w THEN
BEGIU
1F progtype=intel THEN
ibout(ojfn, ‘1):

END

ELSE
BEGIN
IF progtype=intel THEN
'bout(ojftn, "0):

END;

END;
lbout(ojtn, ° J;
END?

CASE progtype OF
=intel: ANULL;
=prolog:

BEGIN

IF lastf THEN contirm(lastcell,

lastchar.hex(4M=bits);

‘bout (pjtn,hex(4M=~bits)):

lastf - 1: .

laste . (F e THEN progend LELSE 0;

lastcell . cell;

END;

=lprolog:

BEGIN

IF lastf {HEN confirm(lastcell,

lastchar..nex(4M=~bits);

lpout(piftn,hex(4M=pits));

lastf - 1;

laste . IF e THEN progend ELSE 0;

lastcell . cell;

END;

ENDCASE NULL;
RETURN END.,
(puneol) PROCEDURE; %
CASE progtype (OF
=intel:

% IF (lc-smcsé4)
!bout(pjtn,
ibout(pjtn,
END:%

NULL:

=prolog: WNULL;
=lprolog: WNULL;
ENDCASE NULL3;

LS8H r1,32; x . rl;
4 DO

ri - 0; ILSHC ri,1:;

LA 2M =
CR);
LF);

TAK I 1 b A D D TR 4w A7 & D YTk« i

lastchar,

punch end of instruction stufft,

e=true if 2nd 4-bit byte %

!bout(pjftn,one);

lbout(pjitn,zero);

laste);

lastchar, laste);

if any %

0 THEN BEGIN

MY C o 4 -

RETURN ERND,
(lpout) PROCEDURE (jfn,char):

% output a character to the copy printer port of a
lineprocessor %

ibout(jftn,338):

tbout(jftn,52B);

‘bout(jtn,40B);

tbout(jfn,41B);

‘bout(jfn,chary;

RETURN;
END.

(findline) PROCEDURE; % scan 1jfn text for next instr 3%
LOCAL

X, % character %
slasnflg, % true 1f line nad "/ on 1t %
i? % index into string %
IF 1jfn=0 THEN RETURN(string-174B9);
slashflg . 07
LOOP
BEGIN
lgtsts(ijfn);
IF r2 .A 1B9 THEN % end of ftille %
BEGIN
string - 174b9; % EOL,0 %
RETURN;
END
{sin(ijtn, sstring .,V i8mé, 100, L¥);
“r2 -~ 0; % ensure null %
i .- $string .V 4407B8;
LOOP CASE (x-"1) OF
=*'/: 1IF comflg=0 THEN slashflg.1;
=LF, =0: BEGIN
IF slashfla THEN RETURE;
FOR 1.0 UP 1 UNTIL >= tabs DU !bout(ojfn,’)
tsout(ojtn, sstring .V 18M6, 0);
REPEAT LOOP 2;
END;
='%: comflg . IF comflg THEN 0 ELSE 1;
ENDCASE NULL;
END
END.
(error) PROCEDURE % general error routine %
% argument %
(s); % a atring %
!pbout(EQL); ipsout(s"error: "+ugly);
ipsout(s+ugly); !pbout(EOL);
‘haltf;
RETURN END.

(jerror) PROCEDURE % jsys error writing procedure %

% argument %
(errorn); % error nurber %
lerstr(101B8, 4Bll+errorn, 0):
VJFCL; L{JFCLy lipobout(ECL);
RETURN END.,
FINISH
(directions) How to program a PRUOM

\

YAKE 16 mADReTE 1@edd € TU . MOSA NI.C*s1BA. S 26

To compile the program (and obtain a REL file)
Go 1into NLS.
Load the desired NLS file containing the program,
From the programs subsystem CUOMPILE FILE using (MCS4,) to the rel
file of your choice.
Quit. :
You are now at TEWNEX EXEC (@).
Write a PRUM set and/or obtain an assembly listing
The routine <LP>MCSLDR>SAV drives PRUM programmers and creates
assembly listings,
To obtain an assembly listing before programming PROMS.
Get a rel file as above.
Get & sequential ftile coresponding to the source of the rel
file. (For example, OUTPUT SEQUENTIAL FILE)
From EXEC run <LP>MCSLDR.SAV
Answer guestions namely:
Give vour rel file followed by <ESC>
Punch file is NIL: <CR>
Provide the name of he text file <CR>
Provide the name of & file to save the 1iisting <CR>
when MCSLDR finishes copy the listing file tto a printer
(Paper tape and the Intel programmer are essentially obsolete)
To obtain a prom set from & PROLUOG programmer connected as a
terminal to the host machine or connected to a line processor
with a copy printer recejiver,
Get a rel file as acove.
From EXEC run <LP>MCSLDR.SAV:
Answer guestions namely:
Give your rel file followed by <ESC>
Punch file is TTy¥Y: <Ck> (for a line processor)
TTYnn: <CRK> (for a local terminal)
Programmer type is L. for a line processor <Ck>
P for a local terminal <CR>
Either echce mode is (K
If less than the full file is to be programmed provide
the inclusive bounds in DECIMAL!
The PRUOM boundaries are:
prom 0O 0 - 255
256 - 511
512 167
768 = 1023
1024 -~ 1279
1280 = 1535
1536 -~ 1791
1792 -~ 2047
Provide the name o0f he text file <CR> or NIL: <CR>
Provide the name of a file to save the listing <CR> or
NiL: <CR>
With the PRUOLOG power off insert a erased PROM into the
COPY socket, turn he power, and press KESET. Enter a
<CR> to the terminal. The MCSLDR will continue to drive
the PROLOG until complete by requesting a <CR> for each
new PRUM as apove.
Create a new MCSLDR
MCSLDR is a stand alone tenex routine, The source is stored in
(LP,MCS4,PPRUG). Ubtain a rel file named punch.rel (for example)

~NOU e WK e

T ALK LY 1 L A TE d s AT e 1 i3 ALY A R Qe i) N 7

then Goto TeneX,
<arcsubsys>TENLDR <CR>
/8 <cr>
punch <cr>
<andrews>11i0run <cr>
arcsubsys>stenex <cr>
<altmode>
(there will be two undefined referances)
DDT <CR>
init <KESC> g (initializes MCSLDR and exits ddt)
SSAVE <ESC> <ESC> <ESC> <LP>MCSLDR.SAV <CR>
OLD INTEL DOCUMENTATION
Setup to Program the PROM
Setup the INTEL programming board
Connect the INTEL board to TEN tty port Xx (currently using
26 octal).
Connect a terminal to the grey box (if desired) and set the
grey box switches for INTEL <=> TEN connection,
On tnhe TEKEX terminal, say ,
ASSIGN <altmode> TTYxX: <cr> (e.g. 11Y26: <cr>)
Run the punch program
On the TENEX terminal, type
DDT <Lcr»>
start<altmode>G
{punch file: } TTYxx: <cr>
[entire file Lo be punched?] <cr>
[sequential text input:] <prog>.TXT <cr>
or, if no listing 1s desired, type NIL:
{listing output:] LPT: <Cr>
or, if no listing is desired, type NIL:
the program will say "type CR wnen PROM is ready"
Double check the setup, and type CR when you are ready.
Did it work correctly?
Expect to see the following on the TENEX terminal (and on the
terminal connected to the grey box, 1f connected)
P
000
yyy (in decimal)
where yyy 1s the last cell of the PROM to be programmed
then a bunch of things like BNPPNNPKPF
Where N=1, P=0, and the whole thing represents a PROM
word.
There may be either one or two of these per line.
Locations appear in the left margin. They are progranm
locations, not PRUOM locations: These are the same for
the first PROM, but program location 256 is PROM
location zero for the second PROM, etc.
A final "F" on'a line by itself means the PROM . is done.
Look for the following on the TENEX terminal:
"Type CR when PROM is ready" when a PRUM 1s finished means
that the program wants to do another PROM., Remove the
finished one, put in & new one, and type CR when ready,
The message "successful completion" means you are done,
The message "file not closable" is standard when using the
TTYXX: port.
If you are unable to program a PRUOM word, you will see $887

TAKR I AN ADR 7l 1A*47 1D WMEOCA WNI.C»180 S "R

atter the BiNPP...F thing for the word that failled, The TENEX
terminal should say "can't program that cell" and quit.
Programming will fail it:

1) the PROM is not erased

2) the programming switch is set to disabled (on INTEL

board)

3) INTEL board is not setup right

4) the PROM is not seated in the socket
If TENEX crashed or the programming is stoppred somehow, you
may re=-program without erasing the PROM - i.e, YOUu may
re-write the PROM if you write the same tnhing again,

Variations:

You may punch a paper tape by giving PTP: as the punch file
rather than TTYxx:,. In that case, just type CR when tne punch
program says "type CR when PROM 1s ready".
You may just obtain a listing of the program by giving NIL: as
the punch file, and giving the TXT file as sequential test
file and LPT: as the listing file.
You may program only certain locations py savying no when the
punch program asks "entire program to be punch?". In that
case, you provide two program locations x1 thru X2, and only
locations x1i thru x2 will be programmed,

