COFFICE=2y CLENe FILE~DOC.AUG3 29> 30-Jan=81 09312 CLEN 2333

—dh Tg.,t,, 237993 >

Introduction 1

The AUGMENT file system evolved from the NLS file systeme This

document updates the NLS file decumention in journal item

{27292+) The updates reflect the changes made to the NLS file

system to create the AUGMENT file system. la

BUGMENT operates on a heirarchicale randeom file system with
severzl unique features eveolved over the years that make possible
the efficient online interaction used by the JAD community.

Having information stored within separate structure and data
blocks aids in rapid movement within and between AFUGMENT filest a
"partial copy" lLlocking mechanism provides security against
attempted modification of a file by more than one user at the same
time and provides a high degree of backup security against system
failure or user error. This appendix includes a technical
description of the file system as well as a discussion of
motivating factors lLeading to its implementaticone The design of
the file system provides room for further extensionss some of
which are also examined. ib

Discussijon of the heirarchical structure of AUGMENT files at a3
user levely as well as a description of the user commands that
permit movement through the filese may be found in [1]. 1le

This appendix is & revision of an earlier document which described

the NLE file system as of Januarys 1976 and is current to August

1988, The January 1976 additions to the NLS file systemes included
property lists and inferior treess which are currently used in the

new grephics subsystem and offer great potential for the creation

of new user entities. 1id

General Considerations Leading to the Current Design 2

The format and structure of AUGMENT files were determined by
certain design considerations: 2a

It is desirable to have virtually no Limit on the size of a
files. This means it is not practical toc have an entire file in
core when viewing or editing it. 2al

The time regquired for most oeperations on a file should be

independent of the file tenoth. That iss small operations on a

Large file should take roughly the same time as the sanme

operations on a small file. The user and the system should not

be penalized for large filese. 2a?2

In executing a single editing functions there may be a large
number of structural operations. - 2a3l

£ random file structure satisfies these considerations. Fach file
is divided into Llogical blocks that mav be accessed in random
orderes 2b

~ An early version of the file system was implemented on the

. X0BS=940+ Minor changes in the logical structure of the file
system were made in the conversion cf the system from the xos-aan
to the PpP~10 for two reasons: ‘ : : ‘ S

1) The current 0AD programming languages L1080y ¥s more powerful
than the several lanouages it replacess MOL and the SPLs. L10
permits special purpose constructions anywhere in its code. It
is a higher level Language and provides greater compiler
optimization.

2 An effort has been made to further modularize the functions

within the system to ease develobment'by a team of proegrammerse

In Winter 1975 extensions to the file system were made introducing
property Lists as data elements at each structural nodes The
first use of this capability was ¥n the recently developed
graphifcs subsystems Further discussion of these changes may be
found belows ‘ :

Reliability and the AUGMENT File System

The reliability and security of file data both asainst systenm
crashes and in face of the possibility of attempted simultaneous
modification by more than one user were central goals in the
design of the AUGMENT file systeme An attemot was made to
minimize the amount of work which would be lost due to both
hardware and operating system difficulties.

Untike the sequential file systems of some editors which require
copying large sections of 3 file whenever an edit ¥s madees AUSBMENT
modifies copies of pages in which structural or data changes are
mace: all data in the original file is secure and a minimum of
unaffected data ¥s copied. Still other editors maintain recent
changes in a dynamic buffer which may not be incorporated into the
fite in the event of a system crashi in AUGMENT, barring a major
hardware collapses all changes other than those specified by the
command being processed are present in the copied pagese Again,
the original file is untouched. : '

Other technigues to assure high reliabilit?‘&ave been used such as
organizing the code and sequence of operations in a uay to
minimize time windows of high vulnerabilitye.

‘An important nrobhem in an antxne team environment such as that at
0AD involves group collaboration on the same data filess The
current file system permits multiple readers and a single writer
to a filee The person obtaining write access to 2 file locks it
in a manner described below$ no other user is then permitted to
write on the files though they may read the original materiale.
Readers without urite access do not see the changes of the user
currently editing the file until the file is explicitly "updated,”
causina the incerporation of edits and the unlocking of the fites

2¢

2¢l

2¢2

- 2d

3a

3b

3c

Thus there can be no conflict between the edits of more than one
wWwriter. ‘ 3d

Netails on the partial copy Locking mechanism which implements
these features of the AUGMENT file system are discussed below
in section (XXX}). 3d1

recent Extensions to the AUGMENT File System 4

0D recently extended the AUGMENT file system to ¥nclude a list of
data blocks (a property List) rather than the single textual data
block which existed befores These property lists are now
associated with AUGMENT structural nodes in the same manner that
the single data block had been associated before. There is no
restriction on the types of data nodest for instances grephic or
numerical information may be nossible as well combinations of data
types within a single nodes Additionallys data nodes may
themselves have structure in the form of "inferior trees®, The
extended file system 3s upwardly cempatable with the otder file
system: old files are still useable on the new file systenm
without conwversione. 4a

Short Technical OJverview 5

This section gives g brief overview of the implementation of
BUGMENT filess For more detail see section (XXX). Sa

Block Header and Types of Rlocks Sb

An AUGMENT file is made up of a file header blocks and up to a
fixed number (currently 465) of S12-word (=eguals one TFNEX
page) structure blocks (up to 9%)s and data blocks fup to 370}, 5b1

There are several types of blocksey each with its own structure:? 5b2

File header block=--always page 0 contains general
information about the file. Sh2a

Structure (ring) blocks~=-contain ring elements that

implement the AUGMENT structure: there currently may be a

maximum of 95 of these blockse each containing 102 five-word

ring eltementces They may appear in file pages & through 100. 53b2b

ftata blocks~=~contain the data (in Llinked preperty Lists

associated with structural nodes}) of AUGMENT statements:

each data block s composed of individual data elements made

up of a. five=-word header followed by text strings or other

datae There currently may be a maximum of 270 data blockss

They may appear in file pages 101 through 471. 5b2c¢

Miscellaneous blocks~=not used in the current
implementations 5b2d

File Header Block ' Sc

In each file there is a header block that contains general
information about that particular file. The header block
remains in memory while the file is in use. Sel

The file header is read into core by the procedure (nilsbesrce

foexecs rdhdr). This procedure checks for the validity of

certain keywords. If the file is locked and has a partial

copys the header 1s read in from the partial copye. If the

partial copy header block is invalid in the key spotss the file

is unlocked and the header read in from the original file. TIf

that is bads the file may be initialized. Sc2

RNOHOR sets the value of the FILENO-th element in the table

FILEHEADS FILENC %s the AUGMENT file number of the filees (It is

an index into the file status table that providess among other

thingse a correlation between JFNs for the originat and partial

copy and the single AUGMENT file number). S5¢3

Procedures in (nlsbesrce filmnpe) are responsible for readings
manipulatinge creatinges garbage collectinge and stoering into

ring blocks and ring elements within those blocksse and data

blocks and statement data blocks within them. 5¢4

Structure Blocks -~=- Ring Elements 54

Conceptually an AUGMENT file 1s a tree. FEach node has a
pointer to its first subnode and a pointer to its successor.
I1f it has no subnodes the sub=pointer points to the node
itself. If the node has no successors the successor pointer
points to the node's parente (These conventions are used to
aid in providing a set of primitives for rapidly moving around
in AUGMENT filese) Fach node is currently represented by a
ring elements These ring elements point in turn to the first

dats block in the node*s property List. 5d1

Structure blocks contain five-word ring elements with a free

List connecting those not $n uses 5d2
Data Block == Froperty Lists and (Textual) Statement Data Bloeks Se

Data blocks are composed of variable sized elements called
(Textual)» Statement Data Blocks (SDBRs) that contain the text of
EUGHENT statements and other types of data elements. Other
data element types are currently used in the AUGMENT graphics
system though the number of available types and uses may be
easily extended. ALl data elements have a five word header
followed by data appropriate to the element typees Lach SDB has
this five-word header with node related ¥information followed by
the text made up of 7-b¥t ASCII characters packed five to a
words. New data elements are allocated in the free space at the
end of a data block pages Data elements no longer 1in use

i

(because of editing changes) are marked for garbage cstlecttcn
when the free space is exhaustede.

Data elements associated with node are Linked together in a
property Llist. This property List may in turn have a
structured inferior tree associated with ¥t3 the nodes on the
inferior tree structure of a data element may also have
associated property Listse This feature may prove to be useful
in the creation of a comment entity §n AUGMENT for comments
asscciated with a particular AUGMENT statement.

Statement tor String) Tdentifiers (STIBS)Fand Text Pointers

A statement identifier (STID) ¥s a data structure used within
AUGMENT to identify AUGMENT statements (structura; nodes) or
stringse«

I1f the string i1s in an AUGMENT statement, the STID contains
a file identifier field (STFILE) and a ring element
identifier (STPSID).

The presence of a file identifier within the STID permit altl
editing functions to be carried out between filese.

Text pointers are two-word data structures used with the string
analysis and construction features of L10. They consist of an
STID and a character counte.

Locking Mechanism ~= Partial Copfes

The AUGKENT file system under TENEX provides a locking
mechanism that protects against inadvertent overwrite when
several people are working on the same file. Once a user
starts modifying a file, it is "locked" by him against changes
by other users until he deems his changes consistent and
complete and issues one of the commands: Update Filey Update
File Compacts or Delete Modificationss which unlock the file.

A user can leave a file locked indefinitety~-th1s protectzcn is
not Limited to one console sessione.

When a file is locked (is being modifiedYy the user who has
modification rights sees all of the changes that he is
makinge. Howevery others who read the file will see it in
its originals unattered state. 1If they try to modify ity
they witl be told that it is locked by a particular user.
Thus the users can negotiate for modification rights to the
file.

This feature is implemented through the use of flags in the
status table in the File Header and through the partial copy
mechanisme

Sel

5e2

5
5f1

5f1la

5f1b

5f2

5g

Sg1l

5gla

592

ALL modifications to a file are contained in a partial copy
files These Include modified ring elements and data blockse Sgla

Any file page that is to be and that is not in the partial

copy (discovered through a write pseudo-interrupt) is copied

into the partial conye. AlL editing takes place therees The

TENEX user-settable word in the FDB (TENEX file data block)

for the original file contains Locking informatione. Sg2b

The AUGMENT Update file command merely replacec those structure

and data pages in the original file that have been superseded

by those in the partial copye unlocks the filey and detetes the
partial copye For Update fite oldse this is done in the

original file; for Update to new versions the pages are mapped

to 2 new file from the original or partial copy where

necessarye The Update file compact command garbage collects

unused space} the update file command does not. 5a3

Core Management of File Space ‘ ' ‘ Sh

Yhern space is needed for more datae the following steps are

takene in orders until enouch is found to satisfy the request

(See €nlsbesrcy filmnpe nwrnebde (nlsbesrcey filmnpy newdb)s and
related routines): 5hi

1} fcore=-resident pages are checked for sufficient free
spaces Shla

2) other pages are checked ftor free spaces If one has
sufficient spacees it s broucht ine 5hilb

3y 1If garbage collection on any page in the file will yfeld

a page with sufficient free spaces then the page that will

give the most free space is brought into cere and :
garbage=~-collecteds otherwise a new page is created. Shilc

Detailed Technical Discussion
Note on Fields in AUGMENT Records and Other L10 Language Features

Several parts of this section are taken directly from record
decltarations in the code of the AUGMENT system written in the
L10 preogramming lancuagee.

Record declarations in the L1080 lLanguage serve as templates on
data structures declared in the systems. Byte pointer
instructions are dropped out by the compiler permitting access
to specified parts of the array. Multiword recsosrds are filled
from the lowest to the highest address of the array. Within
wordse bits are allocated from the first bit on the right.s If
several fields fail to fill a 36~-bit word and the next field
definition woutd go over the remaining bits in the words the
field is alleocated in the next word available.

Example:l

25t 0 is the Leftmost bit in the word: bit 35 the
rightmost, Suppose there is a record declaration of the
form:

(newrecord) RECORD X &£ two word record %
fieldif10l, %¥bits 26 through 35 (rightmost) of
first word¥%
field2r 257y %bits 1 through 25 of first word %
field3[151% Ybits 21 through 35 of second word
tfield would not fit in remainder of first word%

DECLARE arrayf21]s

There may be code within a program of the form:

variable _ array.field2:
array.fietd3 _ 203

In Li0« false 9s zero and true is nonzeroe

See the L1080 manual for further information.

6a

Gal

a2

tala

GaZal
tacdala

&a2alal
taZala?

fazalal
6aZalb

caZa?2

c€aZala
6a?a2b

&al

6a4

BlLoek Header and Types of Blocks &b

An BUGMENT file 1s made up of a fite head2r btock page and up

to a fixed number (currently 465) of 512=-word €= one TENEX

page) structure block pages (up to 95) and data block pages Cup

to 370). 6bl

Each page has a two-word header telling the type and giving the
file page number and an index into a core status tabltees The

record declaration from (nlsbesrce brecordss} follows: 6b2
(fiteblockheader) RECORD %fbhdl = 2 is lengthX &b2a
fonut LL36 3. ¥unused¥ &€h2al
foindl 9l ¥status table index¥ 6b2a2
fopnuml21s Zpage number in file of this blockX &£bh2al
fotypel 53t %Ztype of this block (types declared in
tntsbesrcy beconsts)) eb2a4
hdtyp = 0 = header Eb2a4a
sdbtyp = 1 = data 6bh2a4b
rngtyp = 2 = ring 6b2as4¢c
jnktyp = 32 = misc (such as keyworde viewchangee. etce
Not currently used«)¥% 6b2as4d

PAGE HEADER BLOCK
XX KERKKEXYXXNXXXKEXXXXK XXX KX XNK XXX AXAXKN KAEXHA XK XXX XK XX

X free X
X 2& ¥
X oo o o e o o e o O e o 2o
X free + Type * Page * Status X
X * * Mumber * Table X
X 13 + 5 * 9 = 9 X
IS0 SN S0 0080080988008 030000830098 9308808 0089088888894
6b3
There are several types of block pageses each with its cwn
structure. 6ba
File header block pages-=-always page 0! contains general

information about the files ‘ &b4a

Structure (ring) block pages-=contain ring etements that

implement the AUGMENT structure: there currently may be a

maximum of <5 of these blockss each containing 102 five-word

ring elementses They may appear in file pages & through 100. 6h4ab

Data block pages—-=contain the data properties of AUGMENT
statements: each data papce has properties with five~word

headers folltowed by data (texts graphics instructionse

etcede There currently may be a maximum of 370 data pagese

They may appear in file pages 10Y through 471. &b4c

#¥iscellaneous btocks--not used in the current
1mplementatwon. 6bad

File Header Page , ' 6¢

In each file, there is a header block page that contains
general information about that particular file. The header

block remains in memory while the file is in use. ‘ &cl
FILE HEADER CONTENTS (taken from (nlsbesrcy bdatae}): 6cla
DECLARE EXTERNAL tclatl
Zeeefile headersee® 6cla2
% DONT CHANGE THE ITEMS IN THE HEADER % 6cla2a
€filhed) EXTERNAL [4] 32 6cla2b
%X these extra words may be taken for additions to
header¥ &écla2bl
(fprot) EXTERNAL 3 % protection word % 6cla2c
€fcredt) EXTERNAL 3 %4 file creation date % 6cla2d
tnlsvucd) EXTERNAL = 1 3 ¥ nls version word (keyword}
% 6éclale
(sidcecnt) EXTERNAL 3 X%count for generating SID¥s% 6cla2t
(finit) EXTERNAL 3§ % initials at tast write % &cla2g
¢funo) EXTERNAL 3 % user number (file owner) % 6clazh
Xif <0+ RH is pointer to string in fileheader% &claz2hil
tlwtim) EXTERNAL 3 ¥ Last write time % 6cla2t
(namdl1) EXTERNAL 3 % Left name delimiter default
character % 6cla2j
(namdi2) EXTERNAL 3 ¥ right name delimiter defautt
character % 6clazk
(rngl) EXTERNAL 3§ % upper bound on data ring fite
blocks X% 6clazt
(dtbl)y EXTERNAL 3§ % upper bound on data file
blocks X &cla2m
(rfbs) EXTERNAL [&1 3§ ¥ start of randoem file block
status tables % 6cla2n

X ring block status table % 6cla2o
$ X data block status table % 6cla2p
H % marker table maximum

(rngst) EXTERNAL [251 @
(dtbst) EXTERNAL E3703
(mkrtxn) EXTERNAL = 20

Length X ‘ 6cla2g

(mkrthl) EXTERNAL 5§ % number of markers in marker

table % éclalr
Xeach marker takes MKRL wordsX tclaarl

(mkrtb) EXTERNAL [203 5 ¥ marker table % 6cla2s

(fithde) EXTERNAL 3 Yend of the file header¥% 6cla2t

Kotes on File Header ‘ 6cld

The file header is read into core by the procedure
(nlshbesrce foexecs rdhdrdes This procedure checks for the
val idity of certain keywordse If the file is lecked and
has a partial copy (the file that includes current
modificat fons~=-see below)s the header is read in from the
partial copys If the partial copy header block fis
invalid in the key spotse the file is unlocked and the
header read in from the original file. If that is bad.

the file may be initializeds RDHDR sets the wvalue of
fileheadl filenol where fileno is the AUGMENT file number
of the fite (an index into the file status table which
providess among other thingss a corretation between JFNs
for the original and partial copy and the single AUGMENT
file numbers see description of the file status table
belows)

{nlsbesrces iocexecy setfil) dnitializes a file headere.

Tt should be noted that fields within a file header are
accessed by full word indexing rather than by record
pointers for speede Thus we have the fellowing typical
code (from (nltshesrce filmnpe crepr2)) that reads the
default name delimiters from an AUGMINT file header:

% Must calculate the delimiters X
IF stidestpsid = origin THEN
BEGTN Xuse standard delimiters for that filex
fhdloc _ fileheadlstidestfilel - $filhkeds
sdbnewsslnmdl _ [fhdloc + $namdl133
sdbnewesrnmdtl _ [fhdloc + $namdl21:
END

hlsos code from (nlsbesrcs ioexecye rchdr) that gets the
address of the word in core that contains the nls wversion
word for the file whose header has been read in order to
check its validity:

&vwd _ (header _ filhdr(filenoc)) - $filhed + S$nlsvwd:
fileheadl fileno] _ headers

The file header is initialized by (nlsbesrce icexec,
rdhdr) which fitls up contiguous words declared in
{ntsbesrcs bdatas) and then moves the contents of those
words to page zero of the file.

£cibl

&clb2

6cib3

6cib3a
6cl1b3b
6clib3c
6clib3d
6clb3e
tcib3el
6clble?
fclbleX
5¢clbles
tclbleb
6cl1b3tf
&Eclb3g
6cl1b3h

6clb4

&clbda
&clb4b
6clb4c
6clbéad
&6clbbe
6clib4t

6c1bs

FILE HEADER BLOCK
ERXXXXXXNKXX AKX XXX XXAXXAX XXAXX

(FULL WORDS)

XAXXAXEXEEX AN K KX XX XXX XN XX XXX

X freef 4] ¥ X Max structure pages \ X
Y o o o - o =~ - -} X‘““"""'"" ------ u-‘u----q—uu--x
X Protection word X X Max data pages X
Y ------- --ﬂ--’,-------ﬁ-“----—x x----w— W . S W i . S . --x

¥ Creation data 4

X Version Number (=1} X

¥ o v e o e e P g U

X SID Count X

¥ Initials last write X

x-n------u-mn---—----- ------ x

X File Quner X

X Time Last write : X

W oo o o .- -}

¥ Left name delimiter X

Y o o mmmt wrm-— K

X Right name delimiter X
FUXXAXX XXX NAUX KA XXX KN X

X Start of btock tableslield X

x—-‘-----—-q——uvn-u—- - -

X Ring block status tablelL 257X

X - - o - - - oo Y

X Data blck status table[3701¥

x uuuuu u--o—---u—-nuc-n—uqonc-x

X ¥arker table size €=20) X

x ------- - - --u------‘

X Marker tab[e[Z&T X

| fmme e cm e m e nm—————————————)

X End of file header X

Xmmmememeecwmemmoon mo e wwoewwee)

X X

X oo o o wn oo o - ---——-—-—---—--—r----x

X X
XYXHXKX KAXXAXKE XXX XXX XXX XXYX

&6clce

Procedures in fnlsbesrcey filmnps) are responsible for readinge.
manipulatinge creatings garbage coltectings and storing into
ring blocks and ring elements within those blockse and data

bltocks and statement data blocks within theme. 6¢c?2

10

Random File RLock Status Table Entries in File Header ; 6d

The random file block status tables appear in the file header.

There is one word per ring btock or data block page. Fach

entry contains the following: record declaration and comments

from (nlsbesrcy brecordssl, ' : 6d1

{(rfstr) RECORD ¥ random file block status record X% 6dla
rfexis F1le % true if the block exists in the file
rfpart 1l % true if block comes from partial copy :
% &dla?
rfnull {21 % unused % ' 6dla3
rfused [10Je % used word count for the block % 6dla4
4
4

6dlal

rffree [101, free pointer for the block % 6diaS
rfcore [e1;s 0 then not in cores else page index ¥% ‘
‘ 6dlag
X unallocated if entirely zero % 6dlaba

BLOCK STATUS TABLE ENTRIES (STRUCTURE OR DATA)

L0329 808899033980 08380 089090885898 330088398 880988938838 088 98
X * Page index else * Free * Used * * Part=-*FxistX
¥Yfree* =0 if not in + pointer % word *free+ ial *» 7 X
X * core * or * count * * COpyT?* X
X * * count * * * * ¥
¥ 3 % 9 * 10 * 10 * 2 x 1 * 1 X
(90000808300 003 500830032030 05 0898389080889 8880888384850 809 ¢4

£dib

NMotes on Random File Block Status Tables 6d2

The table RFRES in the file header is broken into two

sectionss each of which contains a collection ef records of

the above typee. The first section includes RNGM entries

from RFBSLCRNGBASY up to and including RFES[RNGBAS+RNGM=11

and contains information about the ring block pages in the

fites (RNGBAS is currently 6 and s the first page in a

file that may be a ring pagef RNGM is currently 95 and is

the maximum number of ring block pages permitted.? 6d2a

The second section includes DTBM entries from RFBS[DTBBAS]

up to and including RFRSIDTBBAS+DTBM=11 and contains

information about the data block pages in the ftilee (DTRBAS

is currently 101 and s the first page in a file that may be

a data block page3 DTBM is currently 370 and is the maximus

number of data block pages permitted.) The entry

RFBSLRNGBAS+i] may also be referenced as RNGSTLil; likewise
RFRSEDTBEAS+1] may be referenced as DTBSTEi3s The index in

RFBS is the actual page number of a data page in the file. &d2b

ik pointer to a data element or property (PSDB) consists of a

nine-bit data page number 4in the range [04DTBM) and a
nine=bit displacement from the start of the page. The

11

variable DTEBL is maintained in each file header as the

current upper hound on allecated data pages for that file.

This s used to Limit the search fer a Location for & new

data etement. The variable DBLST contains the index of the

klock from which a property was last allocated or freede €d2c

A pointer to ring element (FSID) consists of a nine-bit ring

page number in the ranage [04RNGM) and a nine~-bit

displacement from the start of the page. The variable RNGL

is maintained in each file header as the current upper bound

on allocated ring pages for that file.« This 1s used to

Limit the search for a location for a new ring blocke The

variable RNEST contains the index of the page from which a

ring was last allocated or freed. 6d2d

12

Structure Blocks -=- Ring Elements - 6e

These blocks contain five~word ring elements with a free list
connecting those not in use. tel

tring) RECORD % *#*% rincl is length% X from (compsrce rtemaine?

y 4 ce2
rsubl 123, Xpsid of sub of this staetmentX Ee2a
rsucl 18], %psid of suc of this statementy te2b
rsdbf 1834 %psdb of sdb for this statementZ ce2c¢
rinstll 73, XDEX interpolatien string-- scratch spaceX 6e2d
rinst2l 71, %DEX interpolation string-- scratch space¥% 6ele
rdummyl 1 s XDEX dummy flag-=- scratch spaceX ce2f
repetl 3]y ADEYX repetition=-- scratch spaceZ ce2g
rhff 1. %head flag. true if this 1s head of plex¥ tez2h
rtfl1], %“tail flage true if tail of plex¥ ce2i
roamefl 1], Xname flage true ¥f statement has a name¥ ce2j
rtorginl1les Y¥Yinferior tree origin flags true if originX Ee2k
rnullf1de runused¥ se2l
rnamehl 303y ZXname hash for this statementX te2m
rsidl303% Xstatement identifier% ce2n
%“although only need four wordse use five so that have room &e20
to growk 6ce2p

RING ELEMENT
XXXEXXXXXAK AXKE KX AX XXX AXXN XX XHR X IR L XXX XX XXX Y XX KX XXX NN K

X PSID of Successor + PSID ef Substatement (Down) X
X 18 % 18 ‘ X
N mm e . - e — - - - - - ————————————————————————
X Scratch space used by DEX * PSDB (pointer to data block) X
X 18 * 18 ' X
oo s o v - - -0 X
Xfree+x Name Hash *freexorg =name+*tail+theadX
X. 1 =» 3¢ * 1 * 1 * 1 %31 * 1 X
Ko)
¥ free * Statement Identifier X
X 6 * 30 ; X
N = e e - = = =)
X free ; v
X 26 ‘ X
1008838823530 88 3009000388803 800 0088300033880 8838889803888 895 89!

' o cel
PSIls and PSDBs are pointers to other ring or data blocks in a
file, They have two nine=-bit fields: one ¢stblk) ¥s a page
indexs the other (stwec) is a word displacement within that
pagee Procedures in (nlsbesrcy filmnpe) permit the traversal
of & file*s structure. 624

Given an STID (see below)y one may use the primitive procedures
in (nlshbesrce filmnped=~=eegee (nlsbesrce filmnpe getsucl==or
the more elaborate procedures in that file--es.gey (nlsbhesrcy

filmnpe getnxtle==to move arcund to rela{ed ring etements and
retr feve .or change {display or edit}) relevant data.

There are two "fixed"™ values for PSIDs for special
statements?

The PSID of the origin statement is always 2.

The

entire STID (and hence PSIDY of the end of a file is

endfil (==1)y which dnes not correspond to any real
statement in the files but which is returned by the "get®

" procedures in fitmnp to dindicate the end has heen reached
or an error has been founde

come other conventions implemented in the file structure
make possible special features in AUGMENT:

The
its

The

The
sub

successor of a statement with no real successor is
"parent.” ‘

substatement of a statement with no sub is itself.

origin is at a unique levels thus statement 1 s the
of the origine.

14

&eS

teSa

6eSal

&eSa2
6eSh

6eSb1l

ceS5b2

6e5bh3

Data Block == Property Data and Statement Data Blocks | &f

Property lists are made up cf linked lists of property data
blockss &n example of a property is the Statement Data Block
€SDRY which contains the text of an AUGMENT statement, 6f1

tach property has a five~word general header with the following
information. There then follows data appropriate to the

particular property types. For exampley, (Textual) Statement

Data Blocks (SOBs}) contain the text in AUSMENT statementss this

text follows the property header and is composed of seven=bit

ASCII characters packed five to a words. in a variable length

btocke New properties are allocated in the free space at the

end of a data pege. Properties no longer in use (because of

editing changes) are marked for garbage collection when the

free space is exhaustede. 612

{sdbhhead) RECORD Xsdbhdl 1is lengthX ¥ from (compsrce rt=maine)

% 63
sgarbl 171, Ztrue %f this sdb is garbageX 6f3a
slengthf23sy Xnumber of words in this sdb¥ 6f3b
scharsf{11]y %number of characters in this statement¥ £f3c
stnedll 73y . Xleft name delimiter for statement% 6£3d
srnmdll 71,y ¥right name delimiter for statement¥ 613e
spsidligl, *psid of the statement for this sdb¥% 6fRf
snamel 11 1, Zposition of character after name¥ 6f3g
stimel 361y %¥date and time when this sdb created¥ 6f3h
sinitf 217y %2initials of user who created this sdb¥ 6f34
sptypel151y Z%property type of this data block? 6£f3§

% 61331
txttype = text data block €(SDBY 6f3j2
dhdtyp = diagram header block 5343
segtyp = segment data block 6f314
% 6131315
spsdb(1873, APSDR of the next property data block O=taijlX 613k
sitpsidf 1813 XPSID to head of inferior tree if any¥% £1f3L
Zsgarb and stength must be in the first word of the header &f3m
for newsdb¥ &f3n

15

DATA BLOCK HEADER
XXX UAXXKEKXRK XKL XXX KX NEXKUAAXXANLLKKXEEXEKEX XXX XXX KKEXXXX

X *Right name +lLeft name +*Character+Block #*GSarb-X
X free *delimiter *delimiter =count *length*age? X
X 1 » 7 * 7 * 11 *» g * 1 X
Xowm = e on oo o S - - - o Y
X free * Position of char * PSID pointer to ring element X
X 7 * 11 after name * 18 for this statement X
X oo o o o - - o Y
X Creation time ¥
X 36 X
(o] - - - o o oo)
X Property + Authors initials X
X 15 type % 21 X
X o o e e e e e o o Y
X PSID of inferior tree * PSDR of the next property X
X 18 * 18 X

XXEAXKEAXXKEXKXXXKLX AXXXX XXX XKL XXX XXAN XX AAN XXX AN XX XNXXYXX

STATEMEINT DATA BLOCK (SDB®*SY Text type block
MUEEXEAXX XX XEXEEXXKAXXX XXX KXLXX XKL XXXXEXXXK XX XXX XK XAXRXXAX

X Data block header X
¥ & full words ¥
K o o)
X Text v
¥ Bloegk Llength ~ 5 words of & characters each %

XXX XXEXX XXX XXX XXAEXKXXEEXAXXNEX A XEKXX XXX XXRKEAXK KN KK XXX

16

6f4

615

Statement (or String) Identifiers (STIDS) and Text Painters S -1 |

A statement identifier (STID) is a data structure. uséd within
AUGMENT to identify AUGMENT statements (structurat nodes) or ‘
stringse : o ‘ - 691

Tf the string is in an AUGMENT statements the STID contains

a file identifier field (STFILE) and a ring element

fdentifier (STPSID)e (See PSID descr1atton above under

ring elements.? : ‘ : €ala

The presence of a file identifier within the STID permit alL ‘
editing functions to be carried out between filese. 6glb

Procedures in (nlsbesrce filmnpse) permit traversal through the

ring structure of a file given an STID. Sees for examples

tnlsbesrce filmnpe getsuc)y which gets the STID of the

successor of a statements see also (nlsy filmnpe getsdbde

which returns the STDB for the 'statement whose STID is

provided as an argument. (An STDB hass like an STIDy a file

number field and a pointer to the textual property block in

the property Lists a STPSDB). Additional primitives are

available for other data properties, 692

Text pointers are used with the string analysis and

construction features of L10. They consist of an STID and a
character counte . 693

17

Other Relevant Arrays 6h

The following aréays are used in system core and file
management. They are described here to facilitate the study of
the AUGMENT file~handling cndee. ehl

Filehead 6h2

An array of pointers (each contained in a single word) to

the file headers of files currently in use is FILEHEAD, At
presente up to 26 files ftand their gpartial copiess if any)

may be open simultanecusiye. 6h2a

CORPST (Core Page Status Table}) and CRPGAD (Core Page &ddress
Table) &h3

The array CORPST provides the correspondence between the 1080
toctal) pages in core reserved for file pages and user
program buffer and the pages in files that are currently

Loaded into core. (This is really a maximum of 100 octal
since the user prograns buffer may be enlarged into this
areas the maximum is given by RFPMAY = RFPMIN +1%) £h3a
{corpagr) RECORD Xcore page status recordk &6h3al
ctfull [1Je ¥ true if the page is in use ¥ 6h3ala
ctfile [53e % file to which the page belongs % 6h3alb
ctpnum [9Je % page number within the fitle X 6h3alce
ctfroz [31% % number of reasons why frozen % 6h3ald
% a single words gives status for a given core page
for randem files ¥% &h3aldl

The array CORPST is the core page status table and is made
up of instances of the above recorde (maxRFP-minRFP+1)
cives the number of core pages that may contain file pages.
The cere pages are located at positions indicated by the
array CRFGAD (core page address). CORPST is indexed by
numbers in the range (RFPMIN¢ RFPMAX)e The elements in this
array are actual addressess The starting lLocation of page k
is given by crpgadlkl. RFPMIN is initialized to be 77 six
pages are initially allocated for a2 user program buffere.

See (sssrcey programses) for the procedure that changes these
Limitse &h3b

FILST (File Status Table) | 6hé

sn AUGMENT file number provides an index into the FILSTe the

file status table. This 100-word array is made up of 25

four-word entries and contains the following information for

files of interest that have AUGMENT file numbers at any time

(these may or may not at that time be opens they dos

howevers have JFNS4) The information comes from the

record declaration in (nlsbesrcy brecordse): &6h4a

18

(filstr) RECORD X¥File status table records. entry lencgth

-
-

filstl = 49 max noe.

ftexis L1
file %

fihead £91,
flborws [1]e
fltock i i
when loaded %
flpcread (11
{openpc) %
flacem [81s
fldirno [121s
file %
finoclos [13,
flinclude £13
included %
fthelnp £13
by Help %
flpopart [181s
ftbpart [128]3,
fltoric (1817
flastr E[£183,
floest (1817,
strinog %
flbpcst [183
name string %
filnsw f181s

%

%

%
X

" e

>

M2 28 2 M

%

X

e

(fitstl)y EXTERNAL
(filmax) EXTERNAL

ntries

true: entry represents an existant

-
-

tilmax = 25%

crgpad index of the file header %
this file in browse mode ¥
file was lLocked by another user

PC read onty--~ write open failed

file access mask %
directory number for the original

do not
do not

do not
JFN for
JFN for
JFN for
address
address
address

address

close this file %
cltose this file: it is

close this file: included
the partial copy ¥

the browse partial copy %
the original file %

of the file name string %
of partial copy name

of browse partial copy

of nsw filename string %

filstr.sSIZ2E3%

= 253%

&h4al

6htala
6h4alb
6haalc

6h4ald

Ehbale
&haalf

6h4alg
&h4alh

6h4ali

6h4alj
6h4alk
6hsall
6héalm
6h4aln

6h4alo
6h4alp
6h4tzalg

théalql
5h4alq?2

Primitives for Use with Basic AUGMENT File Entities 61
Introduction | €11

The following primitives will be available for manipulation

of basic file entities. While they make use of even more

basiec proceduress most programmers should have no reason for
accessing tower level routineses These primitives and lower

Level procedures Llive #n the file FILMNP, €ila

troperty types must be assigned numbers by 0ADe Code for
management and portrayal of properties not generally
available or useful for all AUBMENT users will be managed
and written by the prime userse The procedures listed below
will provide access to property blocks and nodes in the

filese 611b
The code which manages graphics file entities livesas

currentlyes in the graphics subsystem. 6i1b1

tntity types £32

Primitives will be avaitable teo operate on the following
file entity types: £i2a

MODE ~= a ring element and ¥ts associated data contained
in a property List. 632al

PROPTRTY == a data block and any associated inferior tree
within the property list associated with a nodee. 6i2a2

INFERIOR TREE == structure and data associated with a
property bltocke. ' 632a3

An example of the use of an inferior tree may be found

in the graphics subsystem in which diagrams have

structure reflected by the existence of this inferior

trees Another possible use could be for imposing the
structure (AUGMENT Plex=like in nature) of comments
associated with a statement®s text. Normal AUGMENT
structural procedures for examining structure and

modifying it at the file level may be used at the

inferior tree level as welle. &i2a3a

Note that while no direct primitives are provided for

operating on property Llists or portions of thems such

primitives exist at Lower levelse. It dis not felt that

higher Level primitives fer such entities are necessarye.

The operations Listed below follow the currently existing

examples for text nodes in BUGMENT files. 6i2b

Operands and procedures 613

28

READ == Host read functions are dependent on the property
type and are to be managed by formatters and other specific
application code. Thus a set of %"get®™ and "set"™ routines
are available for examining and setting fields in the
statement text nodes and similar procedures exist in the
graphics subsysteme« A general primitive to load particular
property types into core is provided. 2lsos the usual
procedures for moving around in structure witl be avajilable.

Lodprop (stides proptype) ~=-

Loads the indicated property block into cores Returns
three ftems?! first is FALSE if errore page number in
core if success$ second is address of bleck in core
({which must be frozen if you want to do anything with
itt1)e third is stdb of property block

vote change: as originally writtens Lodprop also took
"accurence® of property in liste we now will not permit
more than one property of a particular type in a
particular Lists Multiple occurences may be handled by a
structural inferior tree hanging off the property blocke

CREATE ~=- Allocate space for entity and Llink the blocks into
existing structure and/or datae.

crencd (stide rltevent } --

Gets a new ring etement with no asseciated data blocks
and Llinks it into the structure at the Location
specified by stid and rlevent (a relative level count?
< & §s downe =0 13 successors » 0 is up by rlevent
tevels)e Returns stid of new rinag or o if errore.

creprop (stide proptypes lengthe data)} -=

Builds a data btock of property type proptype which
must be a valid type assigned (and declared) by 0OAD
and Links it into the property list associated with
the stid in the proper order (determined in the
procedure linkprople If such a property altready
exists in the node. we have an error: 1t must first
be deleteds Returns stdb of new block or 0 ¥f error.
Length s the length of the data and data is a2 pointer
to an array of length words in which the data is
storede.

creit (stide proptype) =--

Creates the origin of an inferior tree and Links it ta
the data block property specified by stid and
proptypes Returns 0 if error or stid of origin of
inferior tree,

£i3a

6£13al

6i3ala

63i3a2

o
wabn
N
poa

6i3b1

6i3bla

&633b2

6i3b2a

£13b3

613b3a

DELETE == Unlink entity from other structure and data.
Release spaces 613c¢

delprop (stide proptyp)} == 613cl

deletes the property bleck and any associated inferior
tree structure for the block proptype black of the
indicaeted nodes. Returns TRUE 1f successfule 0 if not. £13cla

delit (stidy proptype 3} -=- 613c?2

deletes the inferior tree of the indicated property
blocks Unlinks it and releases spaces. Returns True if
successfuls 0 if not. &i3c2a

Currently no primitive exists to directly delete 2 nodeys
though the primitives remgrp and delgrp perform this
function togethers The x=routines which implement

structural deletes catl these file system primitives. 613c3
MOVE == Unlink entity and relink 3t at rnew location in file. 613d
movprop € stide proptyps destid ¥ -- 6i3d1

Moves the property indicated from node specifed by

stid to node specified by destidse Accomplishes this

by untinking and relinking the hlockse 1If & property

type of the type being moved exists at the

destinations we have an error. Returns true if 0Ke ©

if errcore. 6i3d1la

movit ¢ stide proptypes destid) == - 613d2
moves the inferior tree associated with property btock
indicated by stid and proptype to the property block
proptype associated with node destides FReturns true if
0Ky 0 if error 613d2a

Y~routines currently exist to move and move filtered
other strucural entitiese 633d3

COPY == Allocate space for new entitys copy old entitye and
Link the new entity inte the filee. &13e

copprop ¢ stide proptypes destid) == 6i3el
copies property block (and associated inferior tree if
any}) from block indicated by stid and proptype to a
new block to be created on destide Returns TRUE 4f
Ke 0 if error 6i3ela

citree € stide proptyps destid } == 613e2

22

copies inferior tree of property block at node
jndicated by stid and proptype to the proptype block
of destide Returns TRUE if successfule 0 if error

Primitives exist to do structural copies both in filtered
and unfiltered modes,

REPLACE == In keeping with the mode which exists for text
statementsey @ replace primitive will not be provided for the
inferior tree entity or the node entity. These functions
may be accomplished using existing x=-routines or primitives
which delete nodes followed by a copy or create.

reprop (stide proptypes lengthe data) =~

‘replaces the property block indicated by st¥d and
proptyp

with & block with data as indicateds If tength ts the
same as

the length of data in the existing property blaockse a
short cut may

be taken and the data overwrites the old datae Ife
however,

the length is differente a new block is built and
Linked ine

The inferior tree is not replaced in any casel it
remains the

sames The inferior tree®s pointer to the "owning®
property

hlock is changed to point to the new block. UlUses
filesc if this is a text blocka

&6i3e2a

&i3e3

6i3f

613f1

613fla

£13f1b

€613flc

£13f1d

6i3fle

6i3f1f

£i3flg

6i3f1lh

zeferences

(17b2) Dougltas Ce Engelbart and Staff of ARC. Computer-fugmented

Management-System Research and Nevelopment of 2fugmentation
Facitity [Final Reportl. Augmentation Research Centersy Stanford
Research Institutes Menlo Parke California 94025, APR-T70.

(51394

Ta

24

