
· , , , ,

Introduction 1

The AUGMENT file system evolved from the NlS file system. This
document updates the NLS file documention in journal item
'(27292,). The updates reflect the changes made to the NlS file
system to create the AUGMENT file system. Ia

AUGMENT operates on a heirarchical, random file system with
several unique features evolved over the years that make possible
the efficient online interaction used by the OAD cOMmunity.
Having information stored within separate structure and data
blocks aids in rapid movement within and between _USMENT files: a
"partial copy" locking mechanism provides security against
attempted modification of a file by more than one user at the same
time and provides a high degree of backup security against system
failure or user error. This appendix includes a technical
description of the file system as well as a discussion of
motivating factors leading to its implementation. The design of
the file system provides room for further extensions. some of
which are also examined. Ib

Discussion of the heirarchical structure of AUGMENT files at a
user level, as well as a description of the user commands that
permit movement through the files. may be found in [1). Ie

This appendix is a revision of an earlier document which described
the NLS file system as of January, 1976 and is current to August
1980. The January 1976 additions to the NLS file system, included
property lists and inferior trees. which are currently used in the
new graphics subsystem and offer great potential for the creation
of new user entities. Id

General Considerations Leading to the Current Design 2

The format and structure of AUGMENT files were determined by
certain design considerations: 2a

It is desirable to have virtually no limit on the size of a
file. This means it is not practical to have an entire file in
core when viewing or editing it. 2a1

The time reauired for most operations on a file should be
independent of the file length. That is. small operations on a
large file should take roughl, the same time as the same
operations on a small file. The user and the system should not
be penalized for large files. 2a2

In executing a single editing function. there may be a large
number of structuraL DperatiGns. 2a3

A random file structure satisfies these considerations. Each file
is divided into logical blocks that may be accessed in randOm
order. 20

An early version of the file system was implemented on the
XOS-940. Minor changes in the logical structure of the fi le
system were made in the conversion of the system from the)(OS-94-0
to the pnp~10 for two reasons: 2c

1) The cur r e n t 0 AD pro 9 ram m ; n 9 la 09 u age. L 1. O. i s rn 0 r epa we rf u l
than the several languages it replaces. MOL and the SPLs. LIO
permits special purpose constructions anywhere in its code. It
is a higher Level language and provides greater compiler
optimization. 2cl

2) An effort has been made to further modularize the functions
within the system to ease development by a team of program~ers. 2c2

In Winter 1975 extensions to the file syst.m were made introducing
property lists as data elements at each structural node. The
first use of this capability was in the recently developed
graphics subsystem. Further discussion of these changes may be
found below. 2d

Reliability and the AUGMENT File System 3

The reliability and security of file data both against system
crashes and in face of the possibility of attempted simultaneous
modification by more than one user were central goals in the
design of the AUGMENT file system. An attempt was made to
minimize the amount of work which would be lost due to both
hardware and operating system difficulties. 3a

Unlike the sequential file systems of some editors which require
copying large sections of a file whenever an edit is made. AUGMENT
modifies copies of pages in which structural or data changes are
made: all data in the original file is secure and a minimum of
unaffected data is copied. still other editors maintain recent
changes in a dynamic butfer which may not be incorporated into the
file in the event of a system crash; in AUGMENT. barring a major
hardWare collapse. all changes other than those specified by the
command being processed c,trepres.ent in the copied pages. A,gain.
the original file is untouched. 3b

Other techniques to assure high reliability have been used such as
or gani z in9 the code and sequen ce of o,perat ions in a way to
minimize time windows of high vulnerability. 3c

An important probtem in an online team environment such as that at
GAD involves g~oup collaboration on the sam& data files. The
current file system permits multiple r~aders and a singl~wr1ter
to a file. The person obtaining write access to a file locks it
in a manner described below; no other user is then perm1tt~dto
write on the file. though they may read the original material.
Reade~s ~it~out write aeces~ do not see the ch.anges of the user
currently editing the file until the file is expli,eitLy "updated,"
c a us 1 n ~ the incorporation of edits and the unl 0 c Ie i n 9 0 f . t h .e.f i , e •

1

Thus there can be no conflict between the edits of more than one
writer.

Details on the partial copy locking mechanism which implements
these features of the AUGMENT file system are discussed below
in section (XXX).

Recent Extensions to the AUGMENT File System

GAD recently extended the AUGMENT file system to include a list of
data bLocks fa property list) rather than the single textual data
block which existed before. These property lists are now
associated with AUGMENT structural nodes in the same manner that
the single data block had been associated before. There is no
restriction on the types of data nodes: for instance, graphic or
numerical information may be possible as well combinations of data
types within a single node. Additionally. data nodes may
themselves have structure in the form of "inferior trees". The
extended file system is upwardly compatable with the older file
system: old files are still useable on the new file system
without conversion.

Short Technical Overview

This section gives a brief overview of the implementation of
AUGMENT files. For more detail see section (XXX).

Block Header and Types of Blocks

An AUGMENT file is made up of a file header block. and up to a
fixea number (currently 465) of 512-word (=equals one TfNEX
page) structure blocks (up to 95), and data blocks 'up to 370).

There are several types of blotks. each with its 0." structure:

File header block--always page 0: contains general
information about the file.

structure (ring) blocks--contain ring elements that
implement the AUGMENT structure: there currently may be a
maximum of 95 of these blockS. each containing 102 five-word
ring elements. They may appear in file pages 6 through 100.

Data blocks--contain the data (in linked property lists
associated with structural nodes) of AUGMENT statements:
each data block is composed of individual data elements made
up of a. five-word header followed by text strings or other
data. There currently maybe a maximum of 310 data blocks.
They may appear in file pages 101 through 471.

Miscellaneous blocks--not used in the current
implementation.

2

3d

3dl

4

4a

5

5a

50

5bl

5b2

5b2a

5b2b

5b2c

5b2d

F i l e He ad e r B l 0 C k 5 C

In each file there is a header block that contains general
information about that particular file. The header block
remains in memory while the file is in use. 5el

The file header is read into core by the procedure fnlsbesrc.
ioexec, rdhdr). This procedure checks for the validity of
certain keywords. If the file is locked and has a partial
cOPY' the header is read in from the partial copy. If the
partial copy header block is invalid in the key spots. the file
is unlocked and the header read in from the original file. If
that is bad, the file may be initialized. 5c2

ROHOR sets the value of the FILENO-th element in the table
FILEHEAD. FILENO is the AUGMENT file number of the file. (It is
an index into the file status table that provides. among other
things. a correlation between JFNs for the original and partial
copy and the single AUGMENT file number). Sc3

Procedures in (nlsbesrc. f1tmnp,) are responsible for reading,
manipulating, creating. garbage collecting. and storing into
ring blocks and ring elements within those blocks. and data
blocks and statement data blocks within them. 5c4

Structure Blocks -- Ring Elements 5d

Conceptually an AUGMENT file is a tree. Each node has a
pointer to its first subnode and a pointer to its successor.
If it has no subnode, the sub-pointer points to the node
itself. If the node has no successor. the successor pointer
points to the node 9 s parent. (Tbese conventions are used to
aid in providing a set of primitives for rapidly moving around
in AUGMENT files.> Each node is c,urrently' represented by a
ring element. These ring elements point in turn tG the first
data block in the node-s prop~rty list. 5dl

Structure blocks contain five-word ring elements with a free
list connecting those not in use. 5d2

Data Block -- Property Lists and (~e~tual) statement Data Blocks 5e

Data blocks are composed of variable sized elements called
(Textual) statement Data Blocks (SOBs) that contain the text of
AUGMENT statements and other types of data elements. Other
data element types are currently used in the AUGMfNT graphics
system though the number of available types and uses may be
easily extended. All data elements have a five word header
followed by data appropriate to the element type. Each SDB has
this five-word header with node related information followed by
the text made up of 1-bit ASCII characters packed five to a
word. New data elements are allocated in the free space at the
end of a data block page. Oata elements no lDnger in use

(because of editing changes) are marked for garbage collection
when the free space is exhausted. 5el

Data elements associated with ryode are linked together in a
property list. This property list may in turn have a
structured inferior tree associated with it; the nodes on the
inferior tree structure of a data element may also have
associated property lists. This feature maY'prove to be useful
in the creation of a comment entity in AUGMENT for comments
associated with a particular AUGMENT statement. 5e2

statement (or String) Identifiers (STIDS) and Text Pointers 5f

A statement identifier (SrID) is a data structure used ~ith1n
AUGMENT to identify AUGMENT statements (structural nodes) or
strings.

If the string is in an AUGMENT statement, the STID contains
a file identifier field (STFIlE) and a ring .ele~ent
i de n t i fie r (S T PSI 0) •

The presence of a file identifier within the SlID permit all
editing functions to be carried out between files.

Text pointers are two-word data structures used with the string
analysis and construction features of LiO. They consist of an
SlID and a character count.

Locking Mechanism -- Partial Copies

The AUGMENT file system under TENEX provides a locking
mechanism that protects against inadvertent overwrite when
several people are working on the same file. Once a user
starts modifying a filet it is "locked" by him against changes
by .otherusers until he deems his changes consistent and
complete ~nd issues one of the commands: Update File, Update
File Compact, or Delet.e Modifications. whi'ch unlock the file.
A user can leave a file locked indefin1tely--th1s protection is
not limited to one console sessiCn.

Whe.n a file is locked (isbe;ng modified), the user who has
modification rights sees all of the changes that he is
making. However, others w~o read the file will see it in
its original, unaltered state. If. .they try to modify it.
they wilt be told that it is ~ocked by a particular User.
Thus the users can negotiate for modification rights to the
-file.

This feature is implemented through the use of flags in the
status table in the File Header and through the part.ial COpy
mechan; sm.

5f1

5fla

5flb

5f2

59

5g1

5g1a

592

All modifications to a file are contained in a partial copy
file. These include modified ring elements and data blocks.

Any file page that is to be and that is not in the partial
copy (discovered through a ~rite pseudo-interrupt) is copied
into the partial copy_ All editing takes place there. The
TENEX user-settable word in the FOB (TENEX file data block)
for the original file contains locking information.

The AUGMENT Update file command merely replaces those structure
and data pages in the original file that have been su~erseded
by those in the partial copy. unlocks the fiLe, and deletes the
partial copy. For Update file old, this is done in the
original file; for Update to new version. the pages are mapoed
to a new file from the original or partial copy where
necessary. The Update file compact command garbage collects
unused space; the update file command does not.

Core Management of File Space

When space is needed for more data, the following steps are
taken, in order. until enough is found to satisfy the request
(See (nlsbesrc. filmnp, nwrngb), (nlsbesrc. filsnp, newdb), and
related routines):

1) Core-resident pages are checked for sufficient free
space.

2) Other pages are checked tor free space. If one has
sufficient space, it is brought in.

3) If garbage collection on any page in the file will yield
a page with sufficient free space, then the page that will
give the most free space is brought into core and
garbage-collected; otherwise a new page is created.

5

5g2a

5g2b

593

5h

5hl

5hla

Shlb

5hlc

Detailed Technical Discussion 6

Note on F1eldsin AUGMENT Records and Other LID Language Features 6a

Several parts of this section are taken directly fro. record
declarations in the code of the AUGMENT system written in the
LIO programming language.

Record declarations in the LIO language serve as templates on
data structures declared in the system. Byte pointer
instructions are dropped out by the compiler permitting access
to specified parts of the array. Multi~ord records are filled
from the lowest to the highest address of the array. Within
words. bits are allocated from the first bit on the right. If
several fields fail to fill a 36-bit word and the next field
definition would go over the remaining bits in the word, the
field is allocated in the next word available.

Example:

Pit 0 is the leftmost bit in the word; bit 35 the
rightmost. Suppose there is a recora declaration of the
form:

(newrecord> RECORD % A two word record I
fieldl[lOl. Xbits 26 through 35 (rightmost) of
first wordt
field2r25J. %bits I through 25 of first word %
field3[15J; Ibits 21 through 35 of second word
(field would not fit in remainder of first wordS

DECLARE array[2J;

There may be code within a ~rogram of the form:

variable _ array.field2:
array.field3 20;

In LIOy false is zero and true is nonzero.

See the Ltn manual for further information.

6

Gal

6a2

6a2a

6a2al

&a2ala

6a2alal
Ga2ala2

6a2ala3
&a2alb

6a2a2

6a2a2a
6a2a2b

6a3

6a4

Block Header and Types of Blocks

An AUGMFNT file is made up of a file header block page and up
to a fixed number (currently .65) of 512-word f: one TENEX
page) structure bLock pages (up to 95) and data block pages (up
to 370l.

Each page has a two-word header telling the type and giving the
file page number and an index into a core status table. Tbe
record declaration from {nlsbesrc, brecords.J follows:

(fileblockheader) RECORD %fbhdl = 2 is lengthX
fbnull[36], XunusedX
fbind[9], tstatus table indexl
fbpnum[9J, %page number in file of tbis blockX
fbtype[5J: %type of this block (types declared in
(nlsbesrc, bconst.))

hdtyp = 0 = header
sdbtyp = 1 = data
rngtyp = 2 = ring
jnktyp = 3 = mise (such as keyword. viewchange, etc.
Not currently used.)1

PAGE HEADER BLOCK
XX
X free X
X 36 X

x--x
X free • Type • Page * status X
X * * Number * Table X
X 13 * 5 * 9 * 9 X
XX

There are several types of block pages. each with its own
structure.

File header block pages--always page 0: contains general
information about the file.

structure (ring) block pages--contain ring elements that
implement the AUGMENT structure: there currently may be a
maximum of qS of these blocks, each containing 102 five-word
ring elements. They may appear in file pages 6 through 100.

Data block pages--conta1n the data properties of AUGMENT
statements: each data page has properties with five~word
headers followed by data (text. graphics instructions,
etc.). There currently may be a maximum of 370 data pages.
They may appear in file pages 101 through 471.

Miscellaneous blocks--not used in the current
implementation.

7

6b

6bl

6b2

6b2a
6b2al
6b2a2
6b2a3

6b2a4
6b2a4a
6b2a4b
6b2a4c

6b2a4d

6b3

6b4

6b4a

6b4b

6b4c

6b4d

File Header Page

In each file, there is a header block page that contains
general information about that pa~ticular file. The header
block remains in memory while the file is in use.

FILE HEADER CONTENTS (taken from (nlsbesrc, bdata,»:

DECLARE EXTERNAL
X ••• file header ••• l

X DONT CHANGE THE ITEMS IN THE HEADER I
(filhed) EXTERNAL [4] ;

% these extra words may be taken for additions to
header%

(fprot) EXTERNAL; I protection word I
(fcredt) EXTERNAL; % file creation date X
(nlsvwd) EXTERNAL = 1; X nls version word (keyword)
%
(s1dcntl EXTER~Al; Icount for generating SIO-sl
(finit) EXTERNAL; % initials at last write %
(funo) EXTERNAL ; % user number (file owner) %

lif <0. RH is pointer to string in fileheaderl
(lwtim) EXTERNAL; X last write time ~
(namdll) EXTERNAL; X left name delimiter default
character %
(namdl2) EXTERNAL; % right name delimiter default
character %
(rngl) EXTERNAL;
blocks %
(dtbl) EXTERNAL;
blocks X
(ribs) EXTERNAL [6) ;
status tables I

% upper bound on data ring file

% upper bound on data file

~ start of random file block

(rngst) EXTERNAL [95] ;
(dtbst) EXTERNAL [370J ;
Cmkrtxn) ExTERNAL - 20 ;
length %

X ring block status table %
% data bto~k status table %

% marker table maximum

(mkrtbl) EXTERNAL ;
table %

leach marker takes
(~krtb) EtTERNAL [20]
(filhde) EXTERNAL;

Notes on File Header

% number of markers in marker

MKRL wordsX
; r marker table %
%end of the file headerS

The file header is read into c~re by the procedure
Cnlsbesrc, iopxec. rdhdr). This procedure checks for the
validity of certain keywords. If the file is locked and
has a partial copy (the fil~ that includes current
modifications--see below), the header is read in from the
partial copy. If the partial copy header blo~k is
invalid in the key spots. the file is unlocked and the
header read in from the original file. If that is bad,

8

6c

Gcl

6cla

6clal
6tla2

6cla2a
6cla2b

6cla2bl
6cla2c
6cla2d

6cla2e
6tla2f
6cla2g
6cla2h

6cla2hl
6cla21

6cla2j

6cla2k

6cla2t

6cla2m

6cla2n
6cla20
6cla2p

6cla2q

6cla2r
6cla2rl
6cla2s
6cla2t

6clb

the file may be initialized. RDHOR sets the value of
fileheadffileno] where fileno is the AUGMENT file number
of the file (an index into the file status table which
provides, among other things. a correlation between JFNs
for the original and partial copy and the single AUGMENT
file number; see description of the file status table
below.)

(nlsbesrct ioexec. setfil) initializes a file header.

It should be noted that fields within a file header are
accessed by full word indexing rather than by record
pointers for speed. Thus we have the following typical
code (from (nlsbesrcy filmnp. crepr2» that reads the
default name delimiters from an AUGMENT file header:

•
•
•
X Must calculate the delimiters X
IF stid.stpsid = origin THEN

BEGIN luse standard delimiters for that fileX
fhdloc f1lehead[st1d.stf1teJ - Sfilhed;
sdbnew.slnmdl [fhdloc + $namdllJ;
sdbnew.srnmdl [fhdloc + $namdl2J;
END

•
•
•

Alsot code from (nlsbesrc. ioexec, rdhdr) that gets the
address of the word in core that contains the nls version
word for the file whose header has been read in order to
check its validity:

•
•
&vwd _ (header filhdrCfileno) - Sfilhed + Snlsvwd;
f1lehead[fileno) header;
•
•

The file header is initialized by fnlsbesrc. ioexec.
rdhdr) which fills up contiguous words declared in
(nlsbesrc. bdata.) and then moves the contents of those
words to page zero of the file.

6clbl

6clb2

6clb3

6clb3a
6clb3b
6clb3c
6clb3d
6clb3e

6clb3el
&clb3e2
5clb3e3
6clb3e4
6clb3e5
6elb3f
6clb3g
6clb3h

Selb.

6clb4a
6clb4b
6clb4c
6clb4d
6clb4e
6clb4f

6clb5

FILE HEADER BLOCK (FULL WORDS)
XXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
X free[4J X X Max structure pages X

y---------------------------x X----------------------------X X Protection word x X M~x data pages

y---------------------------x X----------------------------X X Creation data x X start of block tables[6]

x---------------------------x X----------------------------x x Version Number (=1) x X Ring black status table[95JX

x---------------------------y x----------------------------x
X SID Count x X Data blck status table[370JX

x---------------------------x X----------------------------X X Initials last write y X ~arker tabLe size (=20) x
x---------------------------x x----------------------------x X File Owner x X Marker tabLe[20J x
x---------------------------x X----------------------------X X Time last write x X End of file header x
x---------------------------x X----------------------------X X Left name delimiter x X x
x---------------------------x X----------------------------X x Right name delimiter X X X
YXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Procedures in (nlsbesrc, filmnp,) are responsible for reading,
manipulating, creating, garbage coLlecting. and storing into
ring blocks and ring eLements within those blocks. and data

6clc

blocks and statement data blocks within them. 6c2

10

Random File Block status Table Entries in file Header

The random file block status tables appear in the file header.
there is one word per ring block or data block page. Each
entry contains the following: record declaration and comments
from (ntsbesrc, brecords,).

(rfstr) RECORD % random file block status record X
rfexis [IJ. X true if the block exists in the file
%
rfpart
%
rfnull
rfused
rffree
rfcore

(2 J,
[10l,
[10 J.
[9];

true if block comes from partial copy

unused %
used word count for the block %
free pointer for the block I
o then not in cor~, else page index Y

I unallocated if entirely zero X

BLOCK STATUS TABLE ENTRIES (STRUCTURE OR DATA)
XX
X * Page index else * Free * Used * * Part-*Existx
Xfree* =0 if not in * pointer * word *free* ial • ? X
X * core * or * count * * copy? X
X * * count * * * * y
x 3 * 9 • 10 • 10 * 2 * 1 • 1 X
xxxxxxxxxxxxxXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXIXXXXXXXXXXXXXX

Notes on Random File Btock status Tables

The table RFBS in the file header is broken into two
sections, each of which contains a colLection of records of
the above type. The first section includes RNGM entries
from RFBS[RNGBAS] up to and fncluding RfBS[RNGBAS+RNGM-IJ
and contains information about tt)e ring block pages in the
f i l e • (R N G B ~; Sis cur r en t l y 6 and is. the first page ina
file that may be a ring page; RNGM is currently 95 and is
the maximum number of ring block pages per.itted.)

The second section includes .OTBMentries from RFBSCDTBBASl
up to and including RFBS[OTBBAS.OTBM-IJ and contains
information about tbe data block pages in the tile. (DTBBAS
is currently 101 and is. the first page in a file that may be
a data block page; OTBM is currently 370 a,nd is the maximu.
number of data block pages permitted.) The. entry
RFBS[RNGBAS+i] may also be referenced as RNGST[i]; likewise
RFBS[OTBBAS.1) may be referenced as OT85T[1]. The index in
RFBS is the actual page number of a data page in the file.

A pointer to a data element or property (PSDR) consists of a
nine-bit data page number in the range [O,OTBM) and a
nine-bit displacement from the start of the page. The

11

6d

6dl

6d1a

6dlal

6d1a2
6dla3
6dla4
6d1a5

6dla6
6dla6a

6d1b

6d2

6d2a

6d2b

variable OTBl is maintained in each file header as the
current upper bound on allocated data pages for that file.
This is used to limit the search for a Location fDr a new
data element. T.he variable DBlST contains the index of the
block from which a property was last allocated or freed.

A pointer to ring element (PSID) consists of a nine-bit ring
page number in the range [O,RNGM) and a nine-bit
displacement from the start of the page. The variable RNGl
is maintained in each file header as the current upper bound
on allocated ring pages for that file. This is used to
limit the search for a location for a new ring block. The
variable RNGST contains the index of the page from which a
ring was last allocated or freed.

12

6d2c

6d2d

structure Blocks -- Ring Elements

These blocks contain five-word ring elements with a free list
connecting those not in use.

(ring) RECORD % *** ringl is tength% I from (compsrc. rt-main.)
X

%psid of sub of this statment%
Xpsid of sue of this statement X
%psdb of sdb for thisstatement%
%DEX interpolation string-- scratch space%
tOrx interpolation string-- scratch space%
XDEX dummy flag-- scratch spaceX
XDEX repetition-- scratch space%
Xhead flag. true if this is head of plex2
%tail flag, true if tail of plexX
%name flag. true if statement has a namel
linfer10r tree origin flag. true if originl
%unusedX
Xname hash for this statement%
Xstatement identif1er%

rsub[18J,
rsuc(lB).
rsdb[18J,
rinstl[7J.
rinst2[7],
rdummy[lJ,
repet[3],
rhf[lJ,
rtf[l],
rnamefrlJ,
rtorgin[l],
rnutl(l],
rnamehr30J,
rsid[30]~

lalthough
to growl

onLy need four words. use five so that have room

RING ELEMENT
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXIXXXXXXXXXXXXXXXXXXXXXXXXXX
X DSIO of Successor * PSID of SUbstatement (Down) X
X 18 • 18 X

x--x X Scratch space used by DEX * PSDB (pointer to data block) X
X 18 * 18 X

x--x Xfree. Name Hash
Xl. 30

*free*org *name*tail*headX
* 1 * 1 * 1 • 1 * 1 X

X--x
X free * statement Identifier
X 6 * 30

x
X

x--x X free X
X 36 X
XXXXXXXXXXXXXXXXXXXXXXXXXX.XXXKXXX~XXXXXxxxxxxrxxxxxxXXXXXXXX

PSIDs and PSOBs are pointers to other ring or data blocks in a
file. They have two nine-bit fields: one (stblk) is a page
index; the other (stwc) is a word displacement within that
page. Procedures in (nlsbesrc, filmnp,) permit the traversal

be

Gel

6e2
6e2a
6e2b
6e2c
6e2d
6e2e
6e2f
6e2g
6e2h
6e2i
6e2j
6e2k
6e2l
6e2m
6e2n
6e20
6e2p

6e3

of a f1le··s structure. 6e4

Given an SlID (see below). one may use the primitive procedures
in (nlsbesrc, filmnp.)--e.g., {nlsbesrc, filmnp, getsuc)--or
the more elaborate procedures in that file--e.g., (nlsbesrc.

13

filmnp. getnxt)--to move around to related ring elements and
retrieve ,or change (disolay or edit) relevant data.

There are two "fixed" values for PSIDs for special

6e5

statements: 6e5a

The PSID of the origin statement is always 2. 6e5al

The entire SlID (and hence PSID) of the end of a file is
endfil (=-ll, which does not correspond to any real
statement in the file, but which is returned by the "get"
procedures in filmnp to indicate the end has been reached
or an error has been found. 6e5a2

Some other conventions implemented 1n the file structure
make possible special features in AUGMENT: 6e5b

The successor of a statement with no real successor is
its ·parent." 6e5bl

The substatement of a statement with no sub is itself. 6e5b2

The origin is at a unique level; thus statement 1 is the
sub of the origin. 6e5b3

14

Data Block -- Property Data and statement Data Blocks

Property lists are made up of linked lists of property data
blocks. An example of a property is the statement Data Block
(SDB) which contains the text of an AUGMENT statement.

Each prGperty has a five-word general header with the following
information. There then follows data appropriate to the
particular property type. For example, (Textual) statement
Data Blocks (~OBs) contain the text in AUGMENT statements; this
text follows the property header and is composed of seven-bit
ASCII characters packed five to a word. in a variable length
block. New properties are allocated in the free space at the
end of a data page. Properties no longer in use (because of
editing changes) are marked for garbage collection when the
free space is exhausted.

(sdbhead) RECORD %sdbhdl is lengthl % from (compsrcy rt-main,)
X

sgarb[lJ,
slength[9],
schars(11J.
slnmdl[7J,
srnmdl[7J,
spsid(18l.
sname[11J.
stime(36),
sinit(21],
sptype[15],

txttyp
dhdtyp
segtyp

%true if this sdb is garbage%
%number of words in this sdb~
Inumber of characters in this statement%
Xleft name delimiter for statement%
Xr1ght name delimiter for statementT
%psid of the statement for this sdb%
%position of character after namel
Idate and time when this sdb createa%
%initials of user who created this sdbX
Xproperty type of this data blockl

= text data block (SOBJ
- diagram header block
= segment data block

spsdb(18J, XPSDB of the next property data block O=tailX
s1tpsid[18]; XPSIO to head of inferior tree if anyX
~sgarb and slength must be in the first word of the header
for newsdb%

15

6f

6f1

612

6f3
6f3a
6f3b
5f3c
6f3d
6f3e
6f3f
6f39
6f3h
6f31
613j

6f3jl
61352
6f3j3
6f3j4
6f3j5

6f3k
6f3l
6f3m
6f3n

DATA BLOCK HEADER
XXXXXXXXXXXXXXXXXXXxxxxxxrXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
X *Right name *Left name *Character*Block *Garb-X
X free *del1miter *delimiter *count *length*age? X
Xl. 1 * 7 • 11 * 9 * 1 X

X--x X free * Position of char
X 7 * 11 after name

* PSID pointer to ring element X
* 18 for this statement X

x--x X Creation time
X36

x
X

x--x x Property
X 15 type

* Authors initials
'* 21

x
X

x--x X PSID of inferior tree * PSDB of the next property X
X 18 * 18 X
XXxxxxxx

STATEMENT DATA BLOCK (SOB-S) Text type block
XX
X Data block header X
)(5 full words

x--x X T'ext X

X Block length - 5 words of 5 characters each X
XX.XXX

16

6f4

6f5

statement (or string) Identifiers (STIDS) and. Text Fointers

A statement identifier (SlID) is a data structure used within
AUGMENT to identify .AUGMENT statements(st~uctlJral nodes) or
strings.

If the string is in an AUGMENT statement. the STIO contains
a file identifier field (STFIlE) and a ,ring element
identifier (STPSID). (See PSIO description above under
ring elements.)

The presence of a file identifier within the. SlID per,it all
editing functions to be carried out between files.

Procedures in (nlsbesrc. filmnp,) permit traversal through the
ring structure of a file given an STIO. See, for example,
(nlsbesrc, filmnp, getsuc), which gets theSTID of the
successor of a statement; see also tnls, filmnp, g'etsdb).
which returns the STOB for the state_ent whose STID 1s
provided as an argument. (An STOB has, like an STID, a file
number field and a pointer to the textual property block in
the property list, a STPSDB). Additional primitives are
available for other data properties.

Text pointers are used with the string analysis and
construction features of LIO. They consist of an STID and a
character count.,

17

69

691

6g1a

6g1b

6g2

693

other Relevant Arrays

The following arrays are used in system core and file
management. They are described here to facilitate the study of
the AUGMENT file-handling code.

F i l ehead

An array of pointers (each contained in a single word) to
the file headers of files currently in use is FILEHEAD. At
present, up to 26 files (and their partial copies. if any)
may be open simultaneously.

CORPST (Core Page status Table) and CRPGAD (Core Page. Address

6h

6hl

6h2

6h2a

Table) 6h3

The array CORPST provides the correspondence between the 100
(octaL) pages in core reserved for file pages and user
program buffer and the pages in files that are currently
Loaded into core. (This is really a maximum of 100 octal
since the user program buffer may be enlarged into this
a re at ; the m a x i mum i s 9 i ve n b y R F PM A X - R F PM I N + r.)

(corp gr) RE COR 0
c t fu II (1].
ctfile [5J,
ctpnum [9J.
ctfroz [3J;

%core page status recordX
X true if the page is in use !
% file to which the page belongs %
I page number within the file %
% number of reasons why frozen %
word; gives status for a given core page

6h3a

6h3al
6h3ala
6h3alb
6h3alc
Gh3ald

X a single
for randocm files % 6h3aldl

The array CORPST is the core page status table and is made
up of instances of the above record. (maxRFP-minRFP+l)
gives the number of core pages that may contain file pages.
The core pages are located at positions indicated by the
array CRPGAD (core page address). CORPST is indexed by
numbers in the range (RFPMINt RFPMAX). The elements in this
array are actual addresses. The starting location of paqe k
is given by crpgad[kJ. RFPMIN is initialized to be 7; six
pages are initially allocated for a user program buffer.
See (SSSfC, programs,) for the procedure that changes these
limits.

FIlST (File status Table)

An AUGMENT file number provides an index into the FILST, the
file status table. This lOO-word array is made up of 25
four-word entries and contains the following information for
files of interest that have AUGMENT file numbers at any time
(these mayor may not at that ttmebe open; they do.
however. have JFNs.) The information comes from the
record decLaration in (nlsbesrc, brecords,):

18

6h3b

6h4

6h4a

(f1lstr) RECORD XFile
- filstt = 4, max no.

flex1s [11, X
file X
flhead [9J. %
ftbrws [lJ, %
fllock [lJ, X
when loaded X
flpcread (11, X
(openpc) %
flaccID (8]. X
fldirno (12), %
file %
flnoctos (lJ. X
flinclude [11, %
included %
flhelp [lJ. %
by Help ~

floart (18], %
f l bp art [1 B J • X
floriq r181, %
flastr (18], I
ftpcst r 18], %
st ring %
f t bpc s t [18 J, I
name string %
flnsw (18]; X

status table record. entry length
entries = filmax = 251
true: entry represents an existant

crgpad index of the file header %
this file 1n browse mode I
file was locked by another user

PC read only-- write open failed

file access mask %
directory number for the original

do not close this file ~
do not close this file: it is

do not close this file: included

JFN for the partial copy %
JFN for the browse partial COpy

JFN for the original f'; le X
address of the file name string-
address of partial coPY name

address of browse pa rt i a l copy

address of nsw filename string %

(f1lstl) EXTERNAL = filstr.S!ZE;
(filmax) EXTERNAL = 25;

1..9

6h4al

6h4ala
6hlf.alb
6h4alc

6h4ald

6h 4ale
6h4alf

6h4alg
Gh4alh

6h4ali

6h4alj
6h4alk
6h4all
6h4alm
6hlfaln

6h4alo

6h4alp

6h4alq
5h4alq1
5h4alq2

Primitives for Use with Basic AUGMENT File Entities 61

Introduction 611

The following pr,imit;ves will be available for manipulation
of basic file entities. While they make use of even more
basic procedures. most programmers should have no reason for
accessing lo~er level routines. These primitives and lDwer
level procedures live in the file FILMNP. 6i1a

Property types must be assigned numbers by CAD. Code for
management and portrayal of properties not generally
available or useful for all AUGMENT users will be managed
and written by the prime users. The procedures listed below
will provide access to property blocks and nodes in the
files. 6i1b

The code vhich manages graphics file entities lives.
currently. in the graphics subsystem. 611b!

Entity types 6i2

Primitives will be available to operate on the following
+ile entity types: 6i2a

NODE -- a ring element and its associated data contained
in a property list. 612a1

PROPERTY -- a data bloc~ and any associated infe~ior tree
within the property list associated with a node. 6i2a2

INFERIOR TREE -- structure and data associated ~ith a
property block. 612a3

An example of the use of an 'nferior tree may be foun~
in the graphics subsystem in which diagrams have
structure reflected by the existence of this inferior
tree. Another possible use could be for impo~dn9 the
structure (AUGMENT Plex-like in nature) of comments
associated with a statement-s text. Normal AUGMENT
structural procedures for examining structure and
modifying it at the file level may be used at the
inferior tree level as well. 6i2a3a

Note that while no direct primitives are provided for
operating on property lists or portions of them. such
primitives exist at lower levels. It is not felt that
higher level primitives for such entities are necessary.
The operations listed below follow the currently existing
examples for text nodes in AUGMENT files. 612b

Operands and procedures 613

20

READ -- Most read functions are dependent on tbe property
type and are to be manag~d by formatters and other specific
application code. Thus a set of -get R and ·set- routines
are available for examining and setting fields in the
statement text nodes and similar procedures exist in the
graphics subsystem. A general primitive to load particular
property types into core is provided. Also. the usual
procedures for moving around in structure will be available. 6i3a

lodprop (stid, proptype) -- 6i3al

loads the indicated property block into core. Returns
three items: first is FALSE if error. page number in
core if success; second is address of block in core
(which must be frozen if you want to do anything with
it!). third is stdb of property block 6i3ala

Note change: as originally written. todprop also took
·occurence- of property in list. we nov will not permit
more than one property of a particular type in a
particular list. Multiple occurences may be handled by a
structural inferior tree hanging off the property block. 6i3a2

CREATE -- Allocate space for entity and link the blocks into
existing structure and/or data. 6i3b

crenod (stid, rlevcnt) --

Gets a new ring element ~ith no associated data blocks
and links it into the structure at the location
specified by stid and rlevcnt fa relative level count:
< 0 is down. =0 is successor, > 0 is UP by rlevcnt

6i3bl

levels}. Returns stid of ne~ rinq or 0 if error. 6i3bla

creprop (st1d. proptype, length. data) 6i3b2

Builds a data block of property type proptype which
must be a valid type assigned (and declared) by DAD
and links it into the property list associated with
the stid in the proper order (determined in the
procedure t1nkprop). If such a property already
exists in the nod~. we have an error: it must first
be deleted. Returns stdb of new block or 0 if error.
length is the length of the data and data is a pointer
to an ~r~ay of length words in which the data is
stored. 6i3b2a

creit (stid, proptype) -- 613b3

Creates the origin of an inferior tree and links it to
the data block property specified by stid and
proptype. Returns 0 if error or stid of origin of
inferior tree. 6i3b3a

21

DELETE -- Unlink entity frDm other structure and data.
Release space.

delprop r stid. proptyp) --

deletes the property block and any associated inferior
tree structure for the block proptype block of the

6i3c

613cl

indicated node. Returns TRUE if successful. 0 if not. 613cla

delit (stid. proptype) 6i3c2

deletes the inferior tree of the indicated property
block. Unlinks it and releases space. Returns True if
successful, 0 if not. 6i3c2a

Currently no primitive exists to directly delete a node.
though the primitives remgrp and delgrp perform this
function together. The x-routines which implement
structural deletes call these file system primitives. 6'3c3

MOVE -- Unlink entity and relink it at new location in file. 6i3d

movprop (stid. proptyp. destid) --

Moves the property indicated from node specifed by
stid to node specified by dest1d. Accomplishes this
by unlinking and relinking the block. If a property
type of the type being moved exists at the
destination. we have an error. Returns true if OK, 0

6i3dl

if error. 613dla

movit (stid, prop type. destid) -- 6i3d2

moves the inferior tree associated with property block
indicated by stid and proptype to the property block
proptype associated with node destid. Returns true if
OK, 0 if error 613d2a

X-routines currently exist to move and move filtered
other strucural entities. 613d3

COpy -- Allocate space for new entity. copy old entity. and
link the new entity into the file. 6i3e

copDrop (stid. proptype. destid) --

copies property block (and associated inferior tree if
any) from block indicated by stid and proptype to a
new block to be created on dest1d. Returns TRUE if

6i3el

OK. 0 if error 6i3ela

citree (st1d. proptyp. destid) -- 6i3e2

22

copies inferior tree of property block at node
indicated by stid and proptype to the proptype block
of destid. Returns TRUE if successful. n if error 6i3e2a

Primitives exist to do structural copies both in filtered
and unfiltered modes. 6i3e3

REPLACE -- In keeping with the mode which exists for text
statements, a replace primitive will not be provided for the
inferior tree entity or the node entity. These functions
may be accomplished using existing x-routines or orimitives
which delete nodes followed by a copy or create. 6131

reprop (stid. proptype, length, data)--

. replaces the property block indicated by stid and
proptyp

with a block with data as indicated. If length is the

613f1

613f1a

same as 6i3f1b

the length of data in the existing property block, a
short cut may

be taken and the data overwrites the old data. If.

6i3flc

however, 6i3fld

the length is different. a new block is built and
linked in.

The inferior tree is not replaced in any case: it
remains the

same. The inferior tree's pointer to the "owning­
property

block is changed to point to the new block. Uses
filesc if this is a text block.

23

6i3f1e

613flf

613f19

6i3flh

References 7

(17b2) Douglas C. Engelbart and Staff of ARC. Computer-Augmented
Management-System Research and Development of Augmentation
Facility [Final ReportJ. Augmentation Research center. Stanford
Research Institute, Menlo Park. California 94025. APR-7D.
(5139,) 7a

24

