Z-80 ASSEMBLY LANGUAGE
UNDER TurboDOS

Fourth Edition

R. Roger Breton

Z-80 Assembly Language Programming under TurboDOS
Fourth Edition

First edition: copyright © 1984 by R. Roger Breton
Second edition: copyright © 1987 by R. Roger Breton
Third edition: copyright © 1990 by R. Roger Breton
Fourth edition: copyright © 2009 by R. Roger Breton

Portions copyright Zilog, Inc.
Portions copyright Microsoft, Inc.
Portions copyright Digital Research, Inc.
Portions copyright Software 2000, Inc.
Portions copyright Intel Corporation

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Table of Chapters

Abbreviations, Terms, and Symbols ----------=----m oo 1-1
Microsoft Macro-80 Assembler ---------m--mmm o 2-1
Microsoft Link-80 LiNKer ---------mmmmmm oo oo oo 3-1
Microsoft Cross-Reference Utility ------------==--mmmmmmmm oo 4-1
Microsoft Lib-80 Library Utility ----------=--mmmmm oo 5-1
Software 2000 GEN Utility -------==-mmmmm oo 6-1
Software 2000 Package Utility ------=--mmmmmmmmm oo 7-1
Digital Research ZSID Debugger -----=-======mmmmmmmm oo 8-1
Assembly under TUrbODOS------m-mmmmmmm oo o-1
C-Function LiStiNg ----------mmmmmm oo oo e 10-1
T-Function LiSting------m-mmmmmmm oo oo 11-1
Zilog Z-80 Microprocessor OVEerVIeW -----=-=--m-mmmmmmmmmm oo oo 12-1
Zilog Z-80 INStruction Set -------m-mmmmmm oo 13-1
Machine Code Disassembly -------------mmmm oo oo 14-1
Cross Reference by Zilog MNemonic --------=--===mmmmmmmm oo 15-1
Cross Reference by TDL MN@mMONIC ------=--=mmmmmmmm oo 16-1
Cross Reference by MAC MNemonNiC ------=---==-mmmmmmmmmmmm oo oo 17-1
Cross Reference by Intel 8080 MNeMONIC ---====-====mmmmmmmmmmmm oo 18-1
Byte Tyme Flag Table ---------------- e 19-1
Base CONVEISION ==-s=mmnemmmeeom oo e oo e e e e e e e 20-1
Source Codes for DSTAT Utility -------mmmmmmmmm oo oo 21-1
Character Tables ------smeommmmm oo eceeeee 22-1

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Table of Contents

Abbreviations, Terms, and Symbols ----------=----m oo 1-1
Microsoft Macro-80 AsSembler —---mmmmmmmm oo 2-1
DS Pt 0N =mmmmmmmm oo oo e 2-1
COMMANAS —-m-mm oo 2-1
SW I C N B S - m e o e e 2-2
/IC 2-2
H 2-2

/l 2-2
/L 2-2
M 2-2
10 2-2
IP 2-2
IR 2-2
IX 2-3
1Z 2-3
Statement FOrmat ~-——---=-~=====mmmmmmmm oo e 2-3
WhileSPace ==-=-=n=nmmmm e oo e e e e e e e e e 2-3
Labels —-mmm e e o 2-3
0 o= - 1 [0 Fo R 2-4
ATGUMENTS ~~=mmmmmmmmmmm e e e e e e e e e e e e e e e e 2-4
COMMI BN S == m o m oo oo e e 2-4
Number Base ReferenCe —-------m-mmmmmm oo e 2-4
Arithmetic and Logical Operators --------=mmmmmm oo oo e 2-5
SYyMbOl Tabl@ ---mmmmemem e e 2-5
Assembler DireCtives —----m--mmmmmm oo oo 2-6
.8080 2-6
.COMMENT delim text delim 2-6
.CREF 2-6
.DEPHASE 2-6
LALL 2-7
.LFCOND 2-7
LIST 2-7
.PHASE arg 2-7
.PRINTX delim text delim 2-7
.RADIX arg 2-8
.REQUEST filename,filename,... 2-8
SALL 2-8
.SFCOND 2-8
.TFCOND 2-8
XALL 2-9
XCREF 2-9
XLIST 2-9
.Z80 2-9
Pseudo Operations -------mmmmmmme oo 2-9
$EJECT argument 2-10
$INCLUDE filename 2-10
$TITLE text 2-10
ASEG 2-10
COMMON /name/ 2-10
COND argument [Z-80] 2-10
CSEG 2-11
DB argument,argument,... 2-11
DC string 2-11
DEFB argument,argument,... [Z-80] 2-11
name DEFL argument [Z-80] 2-11
DEFM string [Z-80] 2-12
DEFS argument [Z-80] 2-12

—iv —
Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

DEFW argument,argument,... [Z-80]
DS argument
DSEG
DW argument,argument,...
ELSE
END argument
ENDC [Z-80]
ENDIF
ENDM
ENTRY name,name,...
name EQU argument
EXITM
EXT name,name,...
EXTERNAL name,name,... [Z-80]
EXTRN name,name,...
GLOBAL name,name,...
IF argument
IF1
IF2
IFB <argument>
IFDEF name
IFDIF <string1>,<string2>
IFE argument
IFF argument
IFIDN <string1>,<string2>
IFNB <argument>
IFNDEF name
IFT argument
INCLUDE filename
IRP dummy,<arg-list>
IRPC dummy,<string>
LOCAL <dummy-list>
MACLIB filename
name MACRO dummy-list
NAME (‘name’)
ORG argument
PAGE argument
PUBLIC name,name,...
REPT argument
name SET argument
SUBTTL text

I\JNI\JI\JI\)l\)NNNNI\JI\JI\JI\JI\)I\JI\)NNNNIT)I\JI\JI\JI\JI\JNI\)I\JI\)I\)I\)NNNI\JI\)I\JI\JNNI\)
NRONRNRONNNNNNNNNNNNNNRPRPRRRRRRRRRRRPRRRRRERERRERRRERRE
WWOWWRNNNNRPRRPPPOOOOOWMOMMOWMONNNOOOUIUCIUAMRMRMRAEARNWWWWNNNN

TITLE text —
TYPE argument —
ErrOr COdES —-mmmmmmmmmm s oo oo e e e e e s 2-24

A Argument Error 2-24
C Conditional Nesting Error 2-24
D Double Definition Error 2-24
E External Error 2-24
M Multiple Definition Error 2-24
N Number Error 2-24
(0] Opcode or Syntax Error 2-24
P Phase Error 2-24
Q Questionable Error or Warning 2-24
R Relocation Error 2-24
U Undefined Symbol Error 2-24
Vv Value Error 2-24
REL File FOrmat-------mm-mmm oo oo oo 2-24
Sample SoUrce Code---mmmmmmmmmm oo e 2-26
Sample PRN Fil@--------mmm oo 2-27
Sample REL Fil@ ---mmmmemmmm oo 2-29
Microsoft Link-80 LinKer -------mmmmmmmm oo oo 3-1
DS P ON —-mmmm oo e 3-1

J— V J—
Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

COMMANAS ===-mmmmmmm e e e e e e e e e e e e oo 3-1
8 oY [[3-1
FileNam @S —- - e 3-4
SW I C N B S oo e e 3-4
/D:addr Set Data Segment Address 3-4
/E Exit 3-5
/[E:name Set Start Address and Exit 3-5
1G Execute and Exit 3-5
/G:name Set Start Address, Execute and Exit 3-5
H Set Radix to Hexadecimal 3-6
M Display All Globals 3-6
/N Save Output File as COM File 3-6
IN:P Save Code Segment of COM File 3-6
/10 Set Radix to Octal 3-6
/P:addr Set Code Segment Address 3-6
/R Reset Link-80 3-7
IS Perform Library Search 3-7
/U Display Undefined Globals 3-7
IX Save HEX file 3-7
Y Save SYM file 3-7
Error MesSSages --=--=-==-==mmmommm e e e e e e e 3-7
%2nd COMMON Larger /XXXXXX/ 3-7
%lIntersecting Data Area 3-7
%lIntersecting Program Area 3-7
%Mult. Def. Global YYYYYY 3-7
%0Overlaying Data Area 3-7
%Overlaying Program Area 3-7
?<filename> Not Found 3-7
?Can't Save Object File 3-8
?Command Error 3-8
?Loading Error 3-8
?No Start Address 3-8
?Nothing Loaded 3-8
?0ut of Memory 3-8
?Start Symbol—<name>—Undefined 3-8
Origin above Loader Memory 3-8
Origin below Loader Memory 3-8
Microsoft Cross-Reference Utility ------------==--mmmmm oo 4-1
DS P ON —-mmmm oo e 4-1
AL O —mmmmmmm oo oo e e 4-1
CoNtrol DireCtiVeS —----mmmmm o m o rmmoooeeeeeeeeeeeeeeeeeeeee 4-1
Sample Cross Reference Listing Fil@---------m-mmmmmmmom oo 4-1
Microsoft Lib-80 Library Utility ---------==--mm-mmmm oo 5-1
DS P ON —-mmmm oo e 5-1
(076 11111 = 1 [0 Ko 5-1
Output Field -==s-mmmmememm oo e e e e 5-1
SOUICe Field--mmmmmmmm oo oo 5-1
Module DesSignatioNs =------=-mmmmmm oo oo 5-2
SWILCH Field —--mmmmmmemm oo 5-3
/IC Cancel 5-3
/IE Exit 5-3
/H Hexadecimal 5-3
/L List 5-3
/O Octal 5-3
/R Rename 5-3
/U List Undefined 5-3

Software 2000 GEN ULtility ------m-mmmmmmmm oo oo oo 6-1
INErOAUCTION =-mmm oo 6-1
BasiC Operation -=-m-mmmmmmmm oo oo e e s 6-1

— Vi —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

10 o { o] R 6-1
1T L 6-1

1] T R e EEEEEE 6-2
T e 6-2

S e 6-2

0] 3T | 6-2

K 6-2
Generation Fil@-------m-mmmmm oo 6-2
Parameter File -------m--mmmmm oo 6-2
SerialiZation —----m-m-mm e 6-4
Software 2000 Package Utility ------=-=mmmmmmmmm oo 7-1
Digital Research ZSID Debugger -=-=======m=mmmmmmmm oo 8-1
DS CrIPTION =mmmmmmmmemem e e e e e e e e e 8-1
Command Line FOrmat ---------m-mmm e oo 8-1
Special Characters -=-==ss-mmmmm oo e e e e 8-1

Command Level Prompt:
Decimal Value:

. Symbol: —
@ 16-Bit Value: —
= 8-bit value: —
+ Addition:

+ Incremental offset: —

— Subtraction:
- Decremental Offset:

CDCDOJOOCDOIOG)OOmCDCD
NNNNNNNRERPRREPPRE

" String: —
' Short String: —
COMM AN A S = m oo o o e e 8-2
A Assemble 8-2
As Assemble from “s” 8-2
-A Disable Assembly 8-3
Cs Call Subroutine “s” 8-3
Cs,b Load BC, Call Subroutine “s” 8-3
Cs,bd Load BC, Load DE, Call Subroutine “s” 8-3
D Display Memory 8-3
D.f Display Memory to “f” 8-3
Ds Display Memory from “s” 8-3
Ds.f Display Memory from “s” to “f” 8-3
DW Display Word Memory 8-3
DW f Display Word Memory to “f” 8-3
DWs Display Word Memory from “s” 8-3
DWs,f Display Word Memory from “s” to “f” 8-3
Fs,f,d Fill Memory from “s” to “f” with “D” 8-3
G Go to (Run Program) 8-3
G,a Go to Breakpoint “a” 8-3
G,a,b Go to Breakpoint “a” or “b” 8-3
Gp Go from “p” 8-4
Gp,a Go from “p” to Breakpoint “a” 8-4
Gp,a,b Go from “p” to Breakpoint “a” or “b” 8-4
-G Go to until passpoint=01 84
-G,a Go to Breakpoint “a@” or until passpoint=01 84
-G,a,b Go to Breakpoint “@” or “b” or until passpoint=01 8-4
-Gp Go from “p” or until passpoint=01 8-4
-Gp,a Go from “p” to Breakpoint “a” or until passpoint=01 8-4
-Gp,a,b Go from “p” to Breakpoint “a” or “b” or until passpoint=01 8-4
H Dump Symbol Table 84
Ha Displays “a” in Hexadecimal, Decimal, ASCII, and Symbol 8-4
Ha,b Displays “a+ b” and “a—-b” 8-4
Ifilename.typ Initializes Default FCB to “filename.typ” 8-4
I*filename.SYM Initializes Default FCB for “filename.SYM” Symbols 8-5
L Lists Disassembly 8-5

— vii —
Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Ls Lists Disassembly from “s” 8-5
Ls,f Lists Disassembly from “s” to “f” 8-5
-L Lists Absolute Disassembly 8-5
-Ls Lists Absolute Disassembly from “s” 8-5
-Ls,f Lists Absolute Disassembly from “s” to “f” 8-5
Ms,f,d Move Memory from “s” through “f” to “d” 8-5
P Display All Passpoints 8-5
Pp Set Passpoint to “p” and passcount to 01 8-5
Pp,c Set Passpoint to “p” and passcount to “c” 8-5
-P Clear All Passpoints
-Pp Clear Passpoint at “p” 8-5
R Read File into Memory at 0100h 8-5
Rb Read File into Memory at 0100h+"b” 8-5
Ss Store Bytes into Memory Starting at “s” 8-5
SWs Store Words into Memory Starting at “s” 8-6
T Trace Next Step 8-6
T,c Trace Next Step and Call “c” 8-6
Tn Trace Next “n” Steps 8-6
Tn,c Trace Next “n” Steps and Call “c” 8-6
-T Trace Next Step w/o Symbols 8-6
-T,c Trace Next Step and Call “c” w/o Symbols 8-6
-Tn Trace Next “n” Steps w/o Symbols 8-6
-Tn,c Trace Next “n” Steps and Call “c” w/o Symbols 8-6
™ Trace Next Step Locally 8-6
TW,c Trace Next Step Locally and Call “c” 8-6
TWn Trace Next “n” Steps Locally 8-6
TWn,c Trace Next “n” Steps Locally and Call “c” 8-6
-TW Trace Next Step Locally w/o Symbols 8-6
-TW,c Trace Next Step Locally and Call “c” w/o Symbols 8-7
-TWn Trace Next “n” Steps Locally w/o Symbols 8-7
-TWn,c Trace Next “n” Steps Locally and Call “c” w/o Symbols 8-7
U Untrace Next Step 8-7
u,c Untrace Next Step and Call “c” 8-7
Un Untrace Next “n” Steps 8-7
Un,c Untrace Next “n” Steps and Call “c¢” 8-7
-U Untrace Next Step w/o Intermediate Passpoints 8-7
-U,c Untrace Next Step and Call “c” w/o Intermediate Passpoints 8-7
-Un Untrace Next “n” Steps w/o Intermediate Passpoints 87
-Un,c Untrace Next “n” Steps and Call “c” w/o Intermediate Passpoints 8-7
uw Untrace Next Step Locally 8-8
uw,c Untrace Next Step Locally and Call “c” 8-8
Uwn Untrace Next “n” Steps Locally 8-8
UWn,c Untrace Next “n” Steps Locally and Call “c” 8-8
-uw Untrace Next Step Locally w/o Intermediate Passpoints 8-8
-UwW,c Untrace Next Step Locally and Call “c” w/o Intermediate Passpoints 8-8
-UWn Untrace Next “n” Steps Locally w/o Intermediate Passpoints 8-8
-UwWn,c Untrace Next “n” Steps Locally and Call “c” w/o Intermediate Passpoints -------------------- 8-8
X Examine CPU State 8-8
Xr Examine/Change Register “r” 8-8
Xf Examine/Change Flag “f” 8-8
ZSID UTILITIES --m-m-mmmmmm e oo o oo e e e 8-8
[Y I 8-9
TRACE . UT L -mmmmmmmm e m o oo oo e e 8-9
Z S AV E M A C m e e oo 8-10
Assembly under TUrboDOS--------m-mmmm oo o-1
= 1T - L 9-1
Base Page ~~---—-rmmmmmmmm e e e e e e e e e 9-1
0000h—-0002h Warmstart Jump 9-1
0003h I/O Byte 9-1
0004h Drive and User 9-2
0005h-0007h C-Function (BDOS) Jump 9-2
0008h—000Fh Restart 08 9-2
0010h-0017h Restart 10 9-2

— viii —
Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

0018h—001Fh
0020h—0027h
0028h—002Fh
0030h—0037h
0038h—-003Fh
0040h—-004Fh
0050h-0052h
0053h—005Bh
005Ch-007Fh
005Ch-006Bh
006Ch-007Bh
0080h—00FFh
0080h—00FFh

Restart 18 9-2
Restart 20 9-2
Restart 28 9-2
Restart 30 9-2
Restart 38 9-2
Reserved 9-2
T-Function Jump 9-2
Reserved 9-2
Default File Control Block (FCB) 9-2
Primary Partial Default File Control Block 9-3
Secondary Partial Default File Control Block 9-3
Command Tail Buffer 9-3
Default Direct Memory Access (DMA) Buffer 9-3

Pseudo-BIOS Branch Table------=mseeom e oo e e eeeeeeeeeee 9-3
nnOO0h Coldstart 9-3
nn03h Warmstart 9-3
nn06h Get Console Status in A 9-3
nn09h Get Console Inputin A 9-3
nnOCh Put Console Output from C 9-3
nnOFh Put List Output from C 9-3
nnl2h Put Raw Console Output from C 9-3
nnl5h Get Raw Console Inputin A 9-3
nnl8h Home Drive to Track O 9-3
nnlBh Select Drive from C 9-3
nnlEh Set Drive Track from BC 94
nn21h Set Drive Sector from BC 9-4
nn24h Set DMA Address from BC 9-4
nn27h Read Drive Sector 9-4
nn2Ah Write Drive Sector 9-4
nn2Dh Get List Status in A 9-4
nn30h Translate Drive Sector from BC to HL 9-4

Command Tail Parsing ----------mmmmmmmmm oo 94

Program Termination =---m-mosmemememe oo oo e oo 9-4

File Control BIOCK —------m-m s m oo 9-5
dr Drive Code 9-5
fn Filename and Attributes f1-f8 9-5
ft Filetype and Attributes t1-t3 9-6
ex Extent Counter 9-6
sl System Byte 1 — Flag Byte 9-6
s2 System Byte 2 — Extended Extent Counter 9-6
rc Record Count 9-6
mp Allocation Map 9-6
cr Current Record Number 9-6
rr Random Record Number 9-6

File Specification ParSing -----------=-=-mmmmm oo 9-7
“uud:” 9-7
“filename” 9-7
“typ” 9-7

File Attributes ----------mmsm oo 9-7

f1 FIFO 9-8
f2 MS-DOS Directory 9-8
f3 Not Assigned 9-8
f4 Not Assigned 9-8
f5-f6 File Locking Mode 9-8
f7-f8 Not Assigned, Reserved 9-8
t1 Read only 9-8
t2 Global 9-8
t3 Archived 9-8
USEr Ar@as ---=======mmmmmm e oo oo e e e e e e e e 9-9
File Locking and Sharing ----------m-mmmmmm oo 9-9
Exclusive Mode 9-9
Shared Mode 9-9
Read Only Mode 9-9

— X —
Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Permissive Mode 9-9
COMP A T mmmm oo e e 9-10
bit 7 Permissive Flag 9-10
bit6 Suspend Flag 9-10
bit5 Global Write Flag 9-10
bit4 Mixed Mode Flag 9-10
bit3 Logical Flag 9-10
bit2 Global Inhibit Flag 9-10
FIFO Fil@S -mmmmmmmmm e oo oo 9-11
C-FUN i ON S = mmmmm e m oo e e e 9-11
T-FUNCHIONS —-mmmm oo e 9-11
C-Function LiStiNg ----------mmmmmmm oo oo 10-1
C-Function O System ReSet —---m-mmmm oo 10-2
C-Function 1 COoNSO0lE INPUL ===mmmmmm e e e e e e e e eeee 10-3
C-Function 2 CoNSO0lEe OULPUL m-mmmmmm e oo oo 10-4
C-Function 3 Raw Console INPUt -=-=-=nmmemmmm e e e e e 10-5
C-Function 4 Raw Console OUtpUL---m-m-m-mmmmm e oo 10-6
C-Function 5 LiSt OUEPUL ===mmmmm e e e e e e e e e e e e e e 10-7
C-Function 6 Direct Console I/O ---m-mmmmmmm oo 10-8
C-Function 7 Get /O Byl --m-mmmmemmme e e e e e e e 10-9
C-Function 8 Set /O Byt =-mmmmmmmmmm e e 10-10
C-Function 9 Print String-------m--mmmmm s 10-11
C-Function 10 Read Console Buffer ------=-m-m-mmmmmmmmm oo 10-12
C-Function 11 Get Console Status ------====mmmmmmmm oo 10-13
C-Function 12 Return CP/M VErSiON —---m-mmmmmmmmm oo oo 10-14
C-Function 13 Reset Disk SyStem —-------mmmmmm oo 10-15
C-Function 14 Select DiSk -------m-mmmmemmmm oo oo o 10-16
C-Function 15 Open File ----m-mmmmmmmm oo 10-17
C-Function 16 CloSe Fil@---m-m-mmmmmme oo 10-18
C-Function 17 Search for First -------m--mmmmm oo 10-19
C-Function 18 Search for NexXt ----------mmmmm oo 10-20
C-Function 19 Delete Fil@ ------m-mmmmmmm oo 10-21
C-Function 20 Read Sequential-------=-=-m-mmmmmmmm oo 10-22
C-Function 21 Write Sequential -----------mmmmm oo 10-23
C-Function 22 Create Fil@------m-mmmmmm oo e 10-24
C-Function 23 Rename Fil@ --------mmmmmmm oo 10-25
C-Function 24 Return LOgin VECIOr ---m-m-mmmmmmmm oo 10-26
C-Function 25 Return Current DiSK-------m-mmmmmmmmm oo 10-27
C-Function 26~ Set DMA Address -------mmmmmmmmmm oo 10-28
C-Function 27 Get ALV AdAress ----m--mmmmmmmmm oo oo oo oo 10-29
C-Function 28 Write Protect DiSK ------m-mmmmmmm oo oo 10-30
C-Function 29 Get Read-Only VECtOr -=-=-mmmmmmm oo 10-31
C-Function 30 Set File Attributes --------m-m-mmmmmmm oo 10-32
C-Function 31 Get DPB Address -=-=-==m=mmmmmmm e 10-33
C-Function 32 Get/Set User NUMDEr —-----m-mmmmm oo 10-34
C-Function 33 Read RaN0OM -====mmmmmmmm oo 10-35
C-Function 34 Write RanNdOm ------mmmmmmmmmm oo 10-36
C-Function 35 Compute File Size -----m-mmmmm e 10-37
C-Function 36 Set Random ReCOrd -----=-=-=mmmmmmmm oo oo 10-38
C-Function 37 ReSet DriVe ----m--mmmmmmm oo 10-39
C-Function 40 Write Random with Zero Fill ---------mmmommmmm oo 10-40
C-Function 42 LoCK ReCOId ---m--mmmmmmm oo oo e 10-41
C-Function 43 Unlock Record ---------m-mmmmmmmm oo 10-42
C-Function 44 Set Multi-Record Count--------=-=mmmmmmm oo 10-43
—x—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-Function 46

Get Disk Free Space ----------mm-mmmmm oo 10-44

C-Function 47 Chain t0 Program ---------mmmmmm oo 10-45
C-Function 104 Set Date and Time ------mmmmmmm oo oo 10-46
C-Function 105 Get Date and Time@--------mmmnmmm oo 10-47
C-Function 107 Return CP/M Serial Number ---------=-mmemmm e 10-48
C-Function 108 Get/Set Program Return Code---------=-=-=-m-m-mmmmmmmmomm oo 10-49
C-Function 110 Get/Set Program Output Delimiter ---------=-=-mmmmemmmmm oo 10-50
C-Function 111 Print BIOCK -----m-mmmmmmemm oo e 10-51
C-Function 112 List BIOCK----m-mmmm oo 10-52
C-Function 134 Create QUEUE --------m-mmmm e oo 10-53
C-Function 135 Open QUEUE -=--=====smsmmmm e e e oo e 10-54
C-Function 136 Delete QUEeUE ------m-mmmmmm oo e 10-55
C-Function 137 Read QUEUE ---m-mmmmmmmmmm oo 10-56
C-Function 138 Conditional Read QUEUE -----=-=-=-m-mmmmmmmm oo 10-57
C-Function 139 WIrite QUEUE -=-m=m=mmmmm e e e 10-58
C-Function 140 Conditional Write QUEUE -----=-===-m-mmmmmmem oo 10-59
C-Function 141 Delay -----=-=c=smnmmmem e e e e e e 10-60
C-Function 142 DispatCh --------m-mmmmmm oo 10-61
C-Function 143 Terminate-------m--mmmmmmm oo oo oo e 10-62
C-Function 152 Parse Filename ---------m-mmmmmm oo 10-63
C-Function 153 Get Console Number —-----m-mmmmm s 10-64
C-Function 155 Get Date and Tim@------mmmmmmmmm oo oo 10-65
C-Function 159 Detach LiSt DeVICE ---m--mmmmmmmmmmm oo 10-66
C-Function 160 Set LiSt —-m-mmnmmmmmm oo oo oo 10-67
C-Function 161 Conditional Attach LiSt --------=-=mmmmmmmm oo 10-68
T-Function LiSting--------mmmmmmm oo oo 11-1
T-Function O Reset Operating SyStem ---------m-m-mmm oo 11-2
T-Function 1 Create ProCess ---m-mmmmmmmmm e oo 11-3
T-Function 2 Delay ProCess ----m-m-mmmmmmmm oo oo e 11-4
T-Function 3 Allocate MemOry ==---===nmmeeem e e e e e e e eee 11-5
T-Function 4 Deallocate Memory --------m-mmemmmm oo 11-6
T-Function 5 Send Interprocess MeSSage ---------======m=mmmmmmmmommm oo 11-7
T-Function 6 Receive Interprocess Message -----------------=-mmmmmmmmm oo 11-8
T-Function 7 Set Error Address ---------m-mmmmmm oo 11-9
T-Function 8 Set Abort Address ----=-=-=-mmmmm oo 11-10
T-Function 9 Set Date and Tim e -------mmmmmmm oo 11-11
T-Function 10 Get Date and TimMeE---------mmmmm oo 11-12
T-Function 11 Rebuild Disk Map ------=-==-==mmm oo oo 11-13
T-Function 12 Return TurboDOS Serial Number ---------=-m-m-momommmmo oo 11-14
T-Function 13 Set Compatibility Flags ------------=--====-mmmm oo 11-15
T-Function 14 L0og-ONn/LOg-Off --mmmmmmmmmm oo 11-16
T-Function 15 Load Fil@---m--mmrmmm oo 11-17
T-Function 16 Activate/Deactivate DO-File --------=-=-m-mmmmmmmmm oo 11-18
T-Function 17 Disable/Enable Autoload -------------==--—-m o s 11-19
T-Function 18 Send Command LiNe -------mmmmmmmm oo 11-20
T-Function 19 Return Disk Allocation Information-----------=--=-==-mmmmmmmmmm - 11-21
T-Function 20 Return Physical Disk Information ---------=-=-===-mmemememmmm oo 11-22
T-Function 21 Get/Set Drive Status ----------=--mmmmm oo 11-23
T-Function 22 Physical Disk ACCESS ------mmmmmmmmm oo 11-24
T-Function 23 Set Buffer Parameters--------------mmm oo oo 11-25
T-Function 24 Get Buffer Parameters ---------=-m-mmmmmmmmm oo 11-26
T-Function 25 Lock/UNIOCK Drive -----m-mmmmmmm oo oo oo 11-27
T-Function 26 Flush/Free Buffers-----------m-m-mmmmmmm oo 11-28
—Xi—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

T-Function 27

Get/Set Print MOde ----------m-m oo 11-29

T-Function 28 Signal End-of-Print ----------mmmmm oo 11-30
T-Function 29 Get/Set De-Spo0l MOde ------=-=mmmmmmm oo 11-31
T-Function 30 Queue a Print Fil@---------mmmmm oo 11-32
T-Function 31 Flush List Buffer -------m-mmmm oo 11-33
T-Function 32 Network LiSt OUt ------m-mmmmmmmm oo 11-34
T-Function 33 Remote CoNnsSole [/O--m-mmmmmmmmmmm oo 11-35
T-Function 34 Get Comm Channel Status ----------------m-mmmm oo 11-36
T-Function 35 Comm Channel INPut ----=-==-mmmmmm oo 11-37
T-Function 36 Comm Channel OULPUL ------m-m-mmmmm oo 11-38
T-Function 37 Set Comm Channel Baud Rate -------------=-m-m-mmmmmm oo 11-39
T-Function 38 Get Comm Channel Baud Rate---------------=-=-m-m-mommmmm oo 11-40
T-Function 39 Set Comm Channel Modem Controls --------=-=-===-mmmmmmememm oo 11-41
T-Function 40 Get Comm Channel Modem Status -----------=-=-=-=-m-m-mommmmemememmo- 11-42
T-Function 41 User-Defined FUNCHION =-=-mmmmmmmm oo oo 11-43
T-Function 42 Reorganize Disk DireCtory ----------=-=-m-mmmmmmmmm oo 11-44
T-Function 43 Select Memory Bank -----------m-mmmm oo 11-45
T-Function 44 Open MS-DOS Fil@------m-mmmmmmm oo oo 11-46
T-Function 45 Create MS-DOS Fil@--------m-mmmmm oo 11-47
T-Function 46 Lock MS-DOS File Region ------=-=-m-mmmmmmmmm oo 11-48
T-Function 47 Unlock MS-DOS File Region —-------mmmmmmmmm oo 11-49
T-Function 48 Set MS-DOS File Length -------=-=-m-mmmmmm oo 11-50
T-Function 49 Get MS-DOS File Length ----------mmmmmm oo 11-51
Zilog Z-80 Microprocessor OVEerVIeW -----=----m-mmmmmmmmmm oo oo 12-1
Z-80 versus Z-180 ------====mmmmmm oo oo 12-1
REQIS Ol S —-m oo e 12-1
A Accumulator 12-2
F Status or Flag Register 12-2
AF Processor Status Word 12-2
B General Purpose Register/Counter 12-2
C General Purpose/Port-Indirect Register 12-2
BC General Purpose Register Pair/Counter 12-2
D General Purpose Register 12-2
E General Purpose Register 12-2
DE General Purpose Register Pair 12-2
H General Purpose Register 12-2

L General Purpose Register 12-2
HL General Purpose/Memory-Indirect Register/16-Bit Accumulator 12-2
IX Index/Memory-Indirect Register/16-Bit Accumulator 12-3
Y Index/Memory-Indirect Register/16-Bit Accumulator 12-3
SP Stack Pointer 12-3
PC Program Counter 12-3

I Interrupt Vector Register 12-3
R Memory Refresh Register 12-3
INterrupt OPeration —-----mmm oo e e 12-3
IFF1 Primary Interrupt Status Flip-Flop 12-3
IFF2 Secondary Interrupt Status Flip-Flop 12-3
IMFa and IMFb Interrupt Mode Flip-Flops 12-3
Non-Maskable Interrupts 12-4
Status Byte— Instruction Status Flags ------------m-mmmmmm oo 12-4
SF Sign Flag (bit 7) 12-4
ZF Zero Flag (bit 6) 12-4
HF Half-Carry Flag (bit 4) 12-5
PF Parity/Overflow (P/V) Flag (bit 2) 12-5
NF Subtraction Flag (bit 1) 12-5
CF Carry Flag (bit 0) 12-5
General OperatioN —-m--mmmmm o 12-5
Conditional BranChing------=-=-=-m-mmmmm oo 12-6

— Xii —
Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Flag Operation
Basic Flag Operation 1
CF Carry Flag, bit O: 1
NF Subtraction Flag, bit 1: 1
PF Parity/Overflow Flag, bit 2: 1
HF Half-carry Flag, bit 4: 1

ZF Zero Flag, bit 6: 12-
SF Sign Flag, bit 7: 12-9
Flag Operations Table -=-----s-smememme oo e e e e oo 12-9
Instruction Index in Functional Order -------=-=-mmmmmmmm oo 12-12
Data Transfer Instructions 12-12
Data Exchange Instructions 12-12
Block Transfer Instructions 12-12
Block Search Instructions 12-12
Arithmetic Instructions 12-12
Logical Instructions 12-12
CPU Control Instructions 12-12
Rotate and Shift Instructions 12-12
Bit Manipulation Instructions 12-13
Program Transfer Instructions 12-13
Input and Output Instructions 12-13
Zilog Z-80 INStruction Set --------mmmmmm oo oo 13-1
Header 13-1
Instruction 13-1
Operation 13-1
Description 13-1
Flags 13-2
Clocking 13-2
Encoding 13-2
ADC dest,source add source operand plus carry to destination operand---------------- 13-4
ADD dest,source add source operand to destination operand -----------=--=--=-=-nmcumn-- 13-6
AND source AND source operand with accumulator ------------=-==-------oocmecme- 13-8
BIT bit,source test source operand Dit ------==-==m oo 13-10
CALL addr unconditional call---------=--=====-m - 13-13
CALL cond,addr conditional call----=-=-====== == e 13-13
CCF compliment carry flag --------=-=====-= = m o 13-15
CP source compare source operand with accumulator ------------=--===mmnueuov 13-16
CPD compare accumulator with (HL) and decrement ---------------------- 13-17
CPDR compare accumulator with (HL), decrement, and repeat ----------- 13-18
CPI compare accumulator with (HL) and increment ---------------------—- 13-19
CPIR compare accumulator with (HL), increment, and repeat ------------ 13-20
CPL one's compliment accumulator ----------==-==-= = oo s 13-21
DAA decimal adjust accumulator ------=-=====mmm oo 13-22
DEC dest decrement destination operand ----------=-==--m-mmm s 13-23
DI disable maskable interrupts ------=-====mmmmmmmm e 13-25
DJNZ disp decrement and jump ON NOt ZErQ -----------=-==-==mmmmmmmm oo 13-26
El enable maskable interrupts-------=-=====mm oo 13-27
EX left,right exchange left and right operands ----------------=------mmmmcm e 13-28
EXX exchange general register Sets-----------=mmmmmmmmm s 13-29
HALT halt operation --------==-==-= = m e 13-30
IM mode set interrupt MO ---------=mm s 13-31
IN A,(port) input port-direct byte --------=-mmm o 13-33
IN reg,(C) input port-iNdireCt DYe ------=--mmm e e 13-33
~INO reg,(port) input port-direct byte —-------=--mmm oo 13-35
INC dest increment destination operand -------=-==-===mm s s 13-36
IND input port-indirect byte and decrement --------------=--=- s co oo 13-38
INDR input port-indirect byte, decrement, and repeat ----------------------- 13-39

— xiii —
Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

INI

INIR

JP addr

JP (reg16)
JP cond,addr
JR disp

JR cond,disp
LD dest,source
LDD

LDDR

LDI

LDIR

~MLT regpr
NEG

NOP

OR source
~OTDM
~OTDMR
OTDR

~OTIM
~OTIMR
OTIR

OUT (port),A
OuUT (C),reg
~OUTO (port),reg
OuUTD

OUTI

POP regl6
PUSH reg16
RES bit,source
RET

RET cond
RETI

RETN

RL dest

RLA

RLC dest
RLCA

RLD

RR dest

RRA

RRC dest
RRCA

RRD

RST vector
SBC dest,source
SCF

SET bit,source
SLA dest
~SLP

SRA dest
SRL dest
SUB source
~TST source

input port-indirect byte and increment ---------------=----- - 13-40

input port-indirect byte, increment, and repeat ------------------------ 13-41
unconditional direct absolute jump ------=-=-===-==m-mmmem oo 13-42
unconditional indirect absolute jump ------------=-=-=-m-mcmmmm oo 13-42
conditional absolute jump------=========mmmm e 13-42
unconditional relative jJump -------========mmmmmmmm o 13-44
conditional relative jump -------=-==-mmm oo 13-44
load destination operand with source operand ------------------------ 13-46
load (DE) with (HL) and decrement ------------=--=--m-mmmmmmmm e 13-52
load (DE) with (HL), decrement, and repeat --------------------------- 13-53
load (DE) with (HL) and increment ----------==-=-=msmmmmmmmmmm oo 13-54
load (DE) with (HL), increment, and repeat ---------------------------- 13-55
multiply bytes of 16-bit register pair -----------------=----m-moomm e 13-56
negate (two's compliment) accumulator--------------=-====------enem--- 13-57
(ol o =] =11 o] B 13-58
inclusive-OR source operand with accumulator----------------------- 13-59
output port-indirect memory and decrement ---------=-=-=-=-=--------- 13-60
output port-indirect memory, decrement, and repeat ---------------- 13-61
output port-indirect byte, decrement, and repeat --------------------- 13-62
output port-indirect memory and increment ----------=-=-=-=-=--------- 13-63
output port-indirect memory, increment, and repeat ----------------- 13-64
output port-indirect byte, increment, and repeat ---------------------- 13-65
output port-direct byte ---------=-m-mmemmm o 13-66
output port-indirect byte ------------mm-memm 13-66
output port-direct byte -----------m-mmmmmm o 13-68
output port-indirect byte and decrement ------------=-=-=-=-m-momomemnmm 13-69
output port-indirect byte and increment ---------------=---m-m-momemmeee 13-70
pop 16-bit register/register pair from stack ----------------------------- 13-71
push 16-bit register/register pair onto stack---------------------------- 13-72
reset source operand Dit --------=-=---mmm s s oo 13-73
unconditional return -=---=-=----mmm oo 13-76
conditional refurn--=-=-=-=-=eemem oo eeee 13-76
return from maskable interrupt -----------------mmmem o 13-78
return from non-maskable interrupt ------------=-==--m-mmsm oo 13-79
rotate destination operand left ------------------memmmrm o 13-80
rotate accumulator left---------=-=-m-mmmmmmm e 13-82
rotate destination operand left circular -------------=-=-=---momomoemeeeo- 13-83
rotate accumulator left circular --------===-==---mmmemm oo 13-85
rotate left digit---------------mmmm oo 13-86
rotate destination operand right ---------==-=-=-=-mm-memsmm oo 13-87
rotate accumulator right -------=-=-=-=-=-mmmmm oo 13-89
rotate destination operand right circular------------=-=-=====----nenom--- 13-90
rotate accumulator right circular--------------=-=-=-mm-mrmmm oo 13-92
rotate right digit -=-=-=-======s=smememm e e e 13-93
(=0 = | R 13-94
subtract source operand less carry from destination operand----- 13-95
set carry flag -----------=-mmmmm 13-97
set source operand Dit--------=-m=m=mmmmmmm e 13-98
shift destination operand left arithmetic -------------------------------- 13-101
enter sleep or system stop mode ----------=-=-====m-mmmmmmomomm oo 13-103
shift destination operand right arithmetic ------------------------------ 13-104
shift destination operand right logical ----------=-=-=-=-===--=emememeee- 13-106
subtract source operand from accumulator --------------------------- 13-108
test source operand against accumulator ---------=-=-=-=-==---------- 13-110

— Xiv —
Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

~TSTIO immed test immediate byte against I/O byte -------------------m-emrmmm - 13-111

XOR source exclusive-OR source operand with accumulator --------------------- 13-112
Machine Code Disassembly -------=-=-mmmmmmmmmmm e 14-1
Cross Reference by Zilog MNemonic -----=-========mmmmmmmmmmm oo 15-1
Cross Reference by TDL MN@mMONIC -------==-=mmmmmmmm oo oo 16-1
Cross Reference by MAC MNEMONIC -----=-=-=mmmmmmmmmmmmm oo oo 17-1
Cross Reference by Intel 8080 MNemMoONiC --------=-=--=mmmmmmmmmmmom oo 18-1
Byte Tyme Flag Table ------------om s 19-1
Base CONVerSiON —-mmmmmmmmm oo oo 20-1

Signed and Unsigned Values---------m-mmmmm oo 20-1

Binary to Octal CONVErSiON ==-=-=s=smsmmmee e e e e e e e e e e 20-2

Unsigned Binary to Decimal CONVErSiON --------mnmnmmmmm oo oo 20-3

Signed Binary to Decimal CONVEerSiON ----m-mmmmmmmmmm oo oo 204

Binary to Hexadecimal CONVErSion —-----m-m-mmmmmmmmm oo 20-6

Octal to Binary CONVErSION ==mmmmmmmmmm oo oo oo 20-7

Unsigned Octal to Decimal CONVErSiON -------mmmmmmmmmmm oo oo oo 20-8

Signed Octal to Decimal CONVErSiON ==-=-mmmmmmmmmm oo 20-9

Octal to Hexadecimal CONVErSiOn -------mnmmmm oo oo 20-10

Unsigned Decimal to Binary CONVerSiOn --------mm-mmmmmmm oo 20-11

Signed Decimal to Binary CONVEerSiOn -----m-mmmmmmmmm oo oo 20-12

Unsigned Decimal to Octal CONVErSioN =-----mmmmmmmmmmm oo 20-14

Signed Decimal to Octal CONVErSiON =----m-mnmmmmmmm oo oo 20-15

Unsigned Decimal to Hexadecimal CONVersion -------======mmmmmmmmmmmm oo 20-16

Signed Decimal to Hexadecimal CONVErsSion ----------mmmmmmmmmmmo oo 20-17

Hexadecimal to Binary CONVErsion =---m-m-mmmmmmmme oo 20-18

Hexadecimal to Octal CONVErSiON —-m-m-mmmmmm oo oo 20-19

Unsigned Hexadecimal to Decimal CONVersion -------======mmmmmmmmmmmm oo 20-20

Signed Hexadecimal to Decimal CONVErSioNn ---------mmmmmmmmmmmm oo oo 20-21
Source Codes for DSTAT Utility ------mmmmmmmmmm oo 21-1

Obtain Directory Status Utility --------m-m-mmmmmm oo 21-1

Initialization ROULINE =----mmmmm oo e 21-3

Scan Directory ROULINE =-s-smmmommm oo oo 21-6

OUutpUt MOAUIE —m-mmm e 21-8

Error ROUTIN@ES -mmmmmmm e m oo oo oo 21-10

MeSSage ROULINES —---m-mnmmmmmm e oo oo 21-11

Extent Counting ROULINES =-=-mmmmmmmmm s e eeee 21-15

Display BUSYWOrk ROULINES ---m-mmmmmmmmmm oo oo o 21-17

20-Bit Conversion and Output ROULINES --=-=====mmmmmmm e 21-18

Console/List Output ROULINES ---mmmmmmmmme oo oo 21-20
Character Tables ------smeomommmm oo eceeeee 22-1

D NIt 0N S =mm e 22-1

USASCII Character Set 22-1
ISO 646 Character Set 22-1
Latin 1 (ISO 8859-1) Character Set 22-1
Microsoft WinLatinl Character Set 22-2

US-ASCII (ISO 646) Character Set ----------m-mmmmmmmm oo 22-3

WinLatinl Character Set Variations --=-=-====mmm e 22-6

Latin 1 (ISO 8859-1) Character Set EXteNSiONS =-------mmmmmm oo 22-7

v —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Abbreviations, Terms, and Symbols

(BC) A memory indirect address: the byte or word in memory whose address is in the BC register pair.

© A port-indirect address: the 1/0 port whose address is in the C register.

(DE) A memory-indirect address: the byte or word in memory whose address is in the DE register pair.

(HL) A memory-indirect address: the byte or word in memory whose address is in the HL register pair.

(IX) A memory-indirect address: the byte or word in memory whose address is in the IX index register.

(IX+d) An indexed memory-indirect address: the byte in memory whose address is the sum of in index register IX plus
the value of the sign-extended displacement byte.

(1Y) A memory-indirect address: the byte or word in memory whose address is in the 1Y index register.

(IY+d) An indexed memory-indirect address: the byte in memory whose address is the sum of in index register 1Y plus
the value of the sign-extended displacement byte.

(li+d) A non-specific indexed memory-indirect operand. The byte in memory whose address is the sum of a non-
specific index register (either IX or 1Y) plus the value of the sign-extended displacement byte.

(SP) A memory-indirect address: the byte or word in memory whose address is in the stack pointer register.

(port) An 8]:bit i(;nmediate port-direct address value. The address of the I/O port from or to which data is to be
transferred.

(regl16) A non-specific 16-bit memory-indirect operand. The word in memory whose low-order byte is “reg16” and
whose high-order byte is “regl6 + 1”, where “reg16” is a register pair or 16-bit register, usually HL, IX or IY.

(regpr) A non-specific memory-indirect operand. The byte in memory whose address is in a register pair, usually HL,
DE or BC.

* A symbol representing multiplication.

+ A symbol representing addition.

- A symbol representing subtraction.

-high A suffix to a 16-bit operand indicating that only the high-order byte of the operand is affected or significant.
-low A suffix to a 16-bit operand indicating that only the low-order byte of the operand is affected or significant.
< A symbol representing the expression: “is less than.”

- A symbol representing the expression: “is made equal to.”

o A symbol representing the expression: “is exchanged with.”

A symbol representing the expression: “is not equal to.”

= A symbol representing the expression: “is equal to.”

A The accumulator (8-bit A register).

AF The 16-bit processor status word, consisting of the 8-bit A and F registers taken together.
AF' The alternative 16-bit processor status word.

AND A symbol representing a bitwise logical AND.

B The 8-bit B register.

BC The 16-bit BC register pair, consisting of the 8-bit B and C registers taken together.

BC' The alternative 16-bit BC register pair.

BITSUM A symbol representing the one-bit result of adding the bits of a bitstream together, ignoring any carry, the
starting and stopping bits being those before and after the BITSUM.

The expression “A[7 BITSUM 0]” is identical to the expression “A[7] + A[6] + A[5] + A[4] + A[3] + A[2] +
A[1] + A[0]”, and is O if an even number of bits are set (zero itself is even), or 1 if an odd number are set.

C The 8-bit C register.
C A condition statement meaning “execute on carry: execute if the carry flag is set.”
CF The carry flag, bit 0 of the flag register.

—1-1—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

DE
DE'

NOT

NZ

OR
ORSUM

PC
PE
PF
PO

SF
SP

ZF
ab
addr
ah
al

cond

The 8-bit D register.

The 16-bit DE register pair, consisting of the 8-bit D and E registers taken together.
The alternative 16-bit DE register pair.

The 8-bit E register.

The 8-bit flag or status register.

The 8-bit H register.

The half-carry flag, bit 4 of the flag register.

The 16-bit HL register pair, consisting of the 8-bit H and L registers taken together.
The alternative 16-bit HL register pair.

The 8-bit interrupt vector register.

The interrupt status flip-flop “1”.

The interrupt status flip-flop “2”.

The interrupt mode flip-flop “a”.

The interrupt mode flip-flop “b”.

The 16-bit IX index register.

The 16-bit 'Y index register.

A non-specific index register: either IX or IY.

The 8-bit L register.

A condition statement meaning “execute on minus (negative): execute if the sign flag is set.”
A condition statement meaning “execute on not carry: execute if the carry flag is not set.”
The subtraction flag, bit 1 of the flag register.

A symbol representing a bitwise logical NOT (one's compliment).

A condition statement meaning “execute on not zero: execute if the zero flag is not set.”
A symbol representing a bitwise logical inclusive-OR.

A symbol representing the 1-bit result of executing an inclusive-OR on all bits of a bitstream, the starting and
stopping bits being those before and after the ORSUM. The expression “A[7 ORSUM 0]” is identical to the
expression “A[7] OR A[6] OR A[5] OR A[4] OR A[3] OR A[2] OR A[1] OR AJ[0]”, and is if none of the bits
are set, or 1 if any of the bits are set.

A condition statement meaning “execute on plus (positive): execute if the sign flag is not set.”
The 16-bit program counter register.

A condition statement meaning “execute on parity even: execute if the parity/overflow flag is set.”
The parity/overflow flag, bit 2 of the status register.

A condition statement meaning “execute on parity odd: execute if the parity/overflow flag is not set.”
The 8-bit memory refresh register.

The sign flag, bit 7 of the flag register.

The 16-bit stack pointer register.

A condition statement meaning “execute on zero: execute if the zero flag is set.”

The zero flag, bit 6 of the flag register.

An address-displacement op-code byte.

An immediate 16-bit address value.

The high-order op-code byte of an address word.

The low-order op-code byte of an address word.

A conditional program transfer condition statement, usually one of the following (only the first four are used in
relative instructions): NZ, Z, NC, C, PE, PO, P and M.

—1-2 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

db
disp

o[b]
op
pb
reg
reg'
regl6
regpr
right

source

temp

An immediate-byte displacement: used in the expressions (li+d), (IX+d) and (I'Y+d).
A indexed-memory displacement op-code byte.

An immediate 8-bit address displacement value, used in relative program transfer instructions. This value is
sign-extended and added to the then-current contents of the program counter to determine the 16-bit address
value. Because the byte containing the displacement value is the second byte of the instruction, an offset occurs,
causing the displacement to be valid for +126 to —129 bytes from the beginning of the instruction. Furthermore,
the byte stored in the instruction op-code is the displacement value less 2.

A non-specific destination operand. An operand in which one of the parameters of an arithmetic or logical
operation resides, and in which the result resides. This operand is usually altered by the operation.

An 8-bit immediate value op-code byte.

The high-order op-code byte of a 16-bit immediate value.
The low-order op-code byte of a 16-bit immediate value.
An 8-bit immediate value.

A 16-bit immediate value.

A non-specific operand, used where both the left and right operands are of equal status, as in the EX (exchange)
instruction.

A symbol representing the expression: “bit 'b' of operand '0".”

An op-code byte containing some variable portion.

An 8-bit port address op-code byte.

An 8-bit register operand, usually one of the following registers: A, B, C, D, E, H or L.

An 8-bit register operand, identical to “reg”. Used in the LD instruction as the second register operand.

A 16-bit register or register pair operand.

A 16-bit register or register pair operand, usually (but not always) one of the following: AF, BC, DE, HL or SP.

A non-specific operand, used where both the left and right operands are of equal status, as in the EX (exchange)
instruction.

A non-specific source operand. An operand in which one of the parameters of an arithmetic or logical operation
resides. This operand is usually left unchanged by the operation.

An internal 16-bit/8-bit pseudo-register for the processor's arithmetic/logic unit. This pseudo-register is used by
virtually all operations to store transient values during multi-step operations, and contains the result of virtually
all arithmetic and logical operations. It is not available to the user, and is only indicated where knowledge of its
contents is fundamental to the understanding of a particular operation.

A 1-, 2-, or 3-bit variable portion of an op-code byte, usually representing the register coding bits.

A 3-bit variable portion of an op-code byte. Identical to v in structure, and used in the LD instruction to
represent the second register value.

A non-specific operand containing a restart vector value of 00, 08, 10, 18, 20, 28, 30 or 38, which represents the
low-order byte of the vector address (the high-order byte being 00).

A 1-bit variable portion of an op-code byte, representing the index register determination bit. If w is 0, then the
op-code byte is DD and the index register is IX. If w is 1 then the op-code byte is FD and the index register is
Y.

A 3-bit variable portion of an op-code byte, representing a specific bit operand.

A 2- or 3-bit variable portion of an op-code byte, usually representing the particular condition of conditional
program transfer instructions.

A 3-bit portion of an op-code byte representing a reset vector.

A symbol used to indicate an instruction that is a Z-180 instruction, rather than a Z-80 instruction.

—1-3—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Microsoft Macro-80 Assembler

Description

Microsoft's Macro-80 assembler, also called M80, is a fully relocatable macro assembler written in 8080 mnemonics and
intended for use with the CP/M operating system. Even with this limitation, it is still one of the best assemblers for use under
TurboDOS.

The object files produced by Macro-80 are in Microsoft REL file format, and must be linked via a suitable linker, such as
Microsoft's Link-80 linker or Software 2000's GEN linker, in order to produce an executable COM or SYS file. The structure
of a REL file is such that a series of routines or subroutines containing global (public) entrypoints and external references
may be linked into a homogenous whole at any given address, thus making them truly relocatable.

Version 3.** of Macro-80 is about 20K in size and assembles at the rate of about 1000 lines per minute.

Commands

The basic command structure of Macro-80 is as follows:
M80 obifile,prnfile=srcfile/s1/s2/s3.../sn
M80 obijfile=srcfile/s1/s2/s3.../sn
M80 ,=srcfile/s1/s2/s3.../sn
M80 =srcfile/s1/s2/s3.../sn

M80
* command
* command
* attention abort

Where:
“srcfile” = the source code file, usually of type MAC.
“prnfile” = the print/listing file of type PRN.
“objfile” = the relocatable object file of type REL.
“s1”, etc = optional switches

There are several interesting things to note about the command line. In the full command,
“objfile,prnfile=srcfile/s1/s2/s3.../sn”, the object file is separated from the print file by a comma, and the print file from the
source file by an equals. It stands to reason then that neither a comma nor an equals may be a part of any filename. This is in
fact the case and TurboDOS, like CP/M, defines the comma and equals as reserved characters, like the period and colon.

What is not so obvious is that because the switches are separated by slashes, the slash may not be used in any filename, even
though so allowed by TurboDOS! To do so produces an error.

Interpretation of the commands is as follows:
M80 obifile,prnfile=srcfile

Assemble “srcfile. MAC” into “objfile.REL”, producing “prnfile.PRN”. This is the standard command structure. A
drive designation may be used with any of the filenames to allow flexibility, but all files must be on the current user
area.

M80 objfile=srcfile

Assemble “srcfile. MAC” into “objfile.REL”. This is the command structure to use when the source and object files
have different names or drives.

M80 ,=srcfile

Assemble nothing, but do a syntax check of “srcfile.MAC”. This command structure allows the checking of a source
file for errors even though it is not yet ready for assembly. Typically, certain known errors (those caused by the file's
state of unreadiness) would be ignored while other errors would be noted and corrected.

M80 =srcfile

Assemble “srcfile. MAC” into “srcfile. REL”. This is the standard shorthand command when the source and object
files have the same names and drives.

— 21—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

It is interesting to note that because the comma and the equals are reserved characters, the last two command forms may be
entered without whitespace:

M80,=srcfile
M80=srcfile

If the command “M80” is entered with no arguments or with illegal arguments, an interactive mode is entered and an asterisk
prompt appears. Command lines may then be entered one after the other for as long as desired.

Under CP/M, the proper method of exiting the interactive mode was via a warmboot (control-C). As TurboDOS does not
have a warmboot in the same manner, it is necessary to enter an attention-abort sequence (typically break/control-C or
control-@/control-C). If the console in use disallows attention, then there is no exit from the interactive mode short of
resetting the processor in use.

Switches

Switches are command parameters that allow certain optional operations to take place:

IC
The /C switch forces generation of a cross reference file of type CRF. This file is used by the Microsoft C-REF utility to
produce a cross reference listing of all symbols.

See the .CREF assembler directive.

H
The /H switch prints all PRN file listing addresses in hexadecimal (default). This switch is for the most part superfluous, as
hexadecimal is the normal number base used.

See the /O switch.
/l

The /1 switch forces assembly using the Intel 8080 mnemonics (default). This switch is for the most part superfluous as 8080
mnemonics are the norm for Macro-80.

Under TurboDOS, only the Z-80 processor and its clones may be used, the 8080 processor is not allowed, and the Z-80
mnemonic set is thus the instruction set of choice.

See the /Z switch and the .8080 and .Z80 assembler directives.

/L
The /L switch forces generation of a print file of type PRN.

The following two commands are identical in function:
M80 =srcfile/L

MB&8O srcfile,srcfile=srcfile

IM
The /M switch initializes all DS or DSEG bytes to 00h. If this switch is used, then any bytes allocated by the DS or DSEG
pseudo-operation are initialized to 00h at assembly time. Otherwise, those bytes contain whatever was in memory at the time.

See the DS and DSEG pseudo-operations.

/0
The /O switch prints all listing addresses in octal.

See the /H switch.

/P
The /P switch allows an extra 256 (100h) bytes of stack space during assembly. This switch is used if a stack overflow error
occurs during assembly.

Multiply switches may be used: /P/P allocates 512 bytes.

/IR
The /R switch forces generation of an object file of type REL. This switch cancels the effect of a leading comma in the
command line.

The following two commands are identical in operation:
M80 ,=srcfile/R

—22__

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

M80 =srcfile

IX
The /X switch suppresses listing of false conditionals.

See the .LFCOND, .SFCOND, and .TFCOND assembler directives.

1z
The /Z switch causes assembly using Zilog Z-80 op-codes.

See the /I switch and the .8080 and .Z80 assembler directives.

Statement Format

The Macro-80 assembler is a somewhat loose column oriented assembler. Considerable tolerance is given in the size and
positions of the columns; however, historical and standardization practices dictate two columns of 8, one column of either 16
or 24, and one column of undefined spaces or equivalent whitespace be used:

8 8 16 or 24 spaces
0 1 2 4 or 5tabs
label: operand arguments ;comments

This convention arises from the traditional tabbing of terminals at every 8 spaces, thus allowing columns at the 0, 1, 2, and 4
or 5 tab position. It is considered very poor programming form to modify this traditional structure.

The four columns are dedicated to the following structures:
Column 1: labels

Column 2: operands, pseudo-operands, and assembler directives
Column 3: arguments

Column4 comments, preceded by a semicolon

In any given statement any given column or combination of columns may be omitted, with the exception that the arguments
column is never used when the operands column is not (arguments of what?).

Whitespace

Whitespace, the space separating the columns, may be either spaces or tabs in any combination. All whitespace is ignored
during operation, but is required to separate the columns unless another delimiter is used, such as a colon or semicolon.

Labels

Column 1 should be limited to labels or whitespace. A label is defined by being in column 1.

A label may be from 1 to 6 characters and must begin with a letter, period, or underline (never a number). A label may not be
a reserved word: any of the assembler directives, pseudo-operations, Z-80 operands, or register names. When in column 1, a
label always ends with a colon unless it is followed by the EQU pseudo-operation.

If a label in column 1 is followed by a double colon “::”, it is a global or public entrypoint; otherwise, it is a local label,
defined within the current module. See the ENTRY, GLOBAL, and PUBLIC pseudo-operations.

A label is usually used in column 3 as an argument of a JUMP or CALL operand. In this case, the JUMP or CALL is to the
line where the label is defined (in column 1), or to the address whose value is the same as the label.

If the label in column 3 is followed by a double number sign “##”, it is a reference to an external label; that is a label that is
global in another module, and is not found locally.

Examples of various labels are:

FOO EQU 12 ;Define FOO as the wvalue 12
OPSYS EQU 0000H ;Define OPSYS as the address 0000H
START : ;Define local label START
LD A, FOO ;Load accumulator with 12
JR DONE ;Jump to label DONE
OUTSID: :NOP ;Define global label OUTSID
CALL OTHER## ;Call external label OTHER
—2-3__

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

DONE : ;Define local label DONE
JP OPSYS ;Jump to address 0000H
END

Operands

An operand in column 2 may be any of the following: an assembler directive, a pseudo-operation, or a Z-80 operand. Most
but not all operands require one or more arguments in column 3.

Arguments

An argument or arguments in column 3 are often required to fulfill or complete the operand in column 2. An argument may
be of the following types: a register, a memory location (either direct or indirect), an immediate numerical value, a character,
a displacement, or a label. Not all operands accept all types of arguments.

Comments

A comment may be placed in column 4, preceded by a semicolon. Any such comment has no effect upon the final object
code.

If fact, a semicolon by definition causes itself and anything following it on the same line to be ignored. A semicolon is often
used at the very beginning of a line to allow a “comment line” to be inserted into the code. When used alone in the first
position, it produces a “blank” line, useful for code legibility.

It is considered bad programming form to have truly blank lines in the code.

Comments may also be entered via the .COMMENT assembler directive.

Number Base Reference

The default number base is decimal: that is, all numerical values are assumed to be decimal unless special care is taken to
indicate otherwise.

The .RADIX assembler directive allows the number base to be altered:

.RADIX 2 ;Number base is binary
.RADIX 8 ;Number base is octal
.RADIX 10 ;Number base is decimal
.RADIX 16 ;Number base is hexadecimal

Once the base has been changed via the .RADIX assembler directive, it remains at the new base unless changed again. Any
number of base changes may be made in a given module.

In order to enter a number not in the current base, a special form of the number may be used:
0000B for Binary

LD A,10111010B ;Load A with binary 10111010 (decimal 186)
0000D for Decimal
LD A,0123D ;Load A with decimal 123

0000 for Octal (last character is letter “O”, not number “0”)

LD A,3770 ;Load A with octal 377 (decimal 255)
000Q for Octal

LD A,376Q ;Load A with octal 376 (decimal 254)
0000H for Hexadecimal

LD A, OABH ;Load A with hexadecimal AB (decimal 171)
X'0000" for Hexadecimal

LD A,X'0D2' ;Load A with hexadecimal D2 (decimal 210)

Note that a number must always begin with a digit, never a letter: this injunction affect hexadecimal values:

— 24—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

L
L
L

RADIX 16 ;All values in hexadecimal

D A,D ;Load A with register D
D A,0D ;Load A with the value D (decimal 13)
D A,0003D ;Load A with decimal 3

Notice that the “0D” in the above example did not require an “H” suffix since the base radix was hexadecimal already.

Notice also that the leading zeroes in “0003D” were NOT ignored, but caused the value to be treated as decimal 3 rather than
hexadecimal 3D. Extreme care must be taken when dealing with decimal numbers in this manner. Earlier versions of Macro-

80 had subtle

bugs in this area.

When dealing with binary values in any base all 8 digits of a byte (16 digits for a binary word) must be used to avoid

problems.

Arithmetic and Logical Operators

There is a generous collection of arithmetic and logical operators allowed in an argument:

$ current assembly address
n +m addition

n - m subtraction

n * m multiplication

n / m division

n MOD m modulus

n AND m bitwise AND

n OR m bitwise inclusive OR

n XOR m bitwise exclusive OR
NOT n bitwise inversion (one's compliment)
n SHL m shift left

n SHR m shift right

HIGH n high byte of word

LOW n low byte of word

n EQ m true if equal

n GE m true if greater than or equal
n GT m true if greater than

n LE m true if less than or equal
n LT m true if less than

n NE m true if not equal

NUL n true if null

symbol:
|

space

*

Return with the current assembly address

Return the sum of n plus m.

Return the difference of n minus m.

Return the unsigned product of n times m.

Return the unsigned integer quotient of n divided by m.
Return the unsigned remainder of n divided by m.
Return the bitwise logical AND of n and m.

Return the bitwise logical inclusive OR of n and m.
Return the bitwise logical exclusive OR of n and m.
Return the bitwise logical inversion of n.

Return n shifted left by m with zero fill.

Return n shifted right by m with zero fill.

Return the high-order byte of word n.

Return the low-order byte of word n.

Return true (-1) if n is equal to m, else return false (0).

Return true (-1) if n is greater than or equal to m, else
return false (0).

Return true (-1) if n is greater than m, else return false
(0).

Return true (-1) if n is less than or equal to m, else return
false (0).

Return true (-1) if n is less than to m, else return false (0).
Return true (-1) if n is not equal to m, else return false (0).

Return true (-1) if nis null, else return false (0).

Symbol Table

During assembly a symbol table is generated: if a PRN file is created, the symbol table is printed as a part of this file.
Following each symbol in the table is its value, and following the value is a designator indicating the location/status of the

global label
absolute value

external label

— 2 5__

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

code relative label
data relative label

! common relative label
C common block name

U undefined symbol

Assembler Directives

An assembler directive is an operand (column 2) that is used to convey an instruction to the assembler itself, rather than the
final code. All assembler directives begin with a period.

.8080
The .8080 directive causes the assembler to accept Intel 8080 op-codes instead of Zilog Z-80 opcodes. This is the default
condition and is equivalent to the /I command switch. See the .Z80 assembler directive and the /I and /Z switches.

.8080 ;Use Intel mnemonics
.COMMENT delim text delim
The .COMMENT directive causes the first non-whitespace character after COMMENT to be treated as a delimiter character,

then everything between that delimiter and the next delimiter to be treated as a comment text. Comment texts have no affect
on assembly. The comment text need not be limited to a single line.

.COMMENT *This is a comment*
.COMMENT *
This is also a comment,
but is stretched over several lines.
Note that no semicolon is required for each line.*

’

.CREF

The .CREF directive causes a cross reference file of type CRF to be created during assembly. This is equivalent to the /C
command switch. The . XCREF directive cancels the effect of a .CREF directive. Any number of .CREF/.XCREF pairs may
be encountered in the same module. See the . XCREF assembler directive and the /C switch.

’

.CREF ;Begin cross-reference
;Body of code

.XCREF ;End cross-reference
;Body of code

.CREF ;Begin cross-reference again

’

.DEPHASE

The .DEPHASE directive cancels the effect of a .PHASE directive, defining the end of the relocated block of code. See the
.PHASE assembler directive.

’

CSEG ;Locate in code segment
;Body of code

.PHASE 0100H ;Place code at 0100H
;Out-of-phase code

.DEPHASE ;Return to code segment

— 26—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

;Body of code

’

.LALL
The .LALL directive causes the entire text of every macro to be listed. The output of the MACRO, REPT, IRP, and IRPC
pseudo-ops are controlled by the three directives .LALL, .SALL, and .XALL.

See the .SALL and .XALL assembler directives and the MACRO, REPT, IRP, and IRPC pseudo-operations.
.LALL ;List all macro text

.LFCOND

The .LFCOND directive lists conditionals that evaluate as false.

See the .SFCOND and .TFCOND assembler directives.
.LFCOND ;List false conditionals

’

.LIST
The .LIST directive lists output to PRN file (default).

See the .XLIST assembler directive.

.LIST ;List output

r

.PHASE arg
The .PHASE directive allows code to be assembled in one area but executed in another.

See the .DEPHASE assembler directive.

’

CSEG ;Locate in code segment
;Body of code

.PHASE 0100H ;Place code at 0100H
;Out-of-phase code

.DEPHASE ;Return to code segment

;Body of code

’

.PRINTX delim text delim

The .PRINTX directive causes the first non-whitespace character after .PRINTX to be treated as a delimiter character, then
everything between that delimiter and the next delimiter to be treated as a comment-to-screen text. Comment-to-screen texts
have no affect on assembly. The comment-to-screen text need not be limited to a single line.

Comment-to-screen texts are displayed during assembly. Unless the IF1 and IF2 pseudo-operations are use, display occurs
during both passes.

’

IF1

.PRINTX +Performing pass 1+
ELSE

.PRINTX +Performing pass 2+
ENDIF

IF MEMSIZE LT 32

.PRINTX *File is less than 32K*
ENDIF

— 27—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

.RADIX arg
The .RADIX directive sets the default radix to the base specified: 2, 8, 10, or 16. The default if .RADIX is not used is 10
(decimal).

’

LD A,10 ;Load A with decimal 10

LD B,0F1H ;Load B with hexadecimal F1
.RADIX 16 ;All values in hexadecimal
LD A,10 ;Load A with decimal 16

LD B, 0F1 ;"H" not required

All the following are the same:

’

.RADIX 2 ;All values in binary

LD A,10111010 ;Load A with decimal 186
.RADIX 8 ;All values in octal

LD A,272 ;Load A with decimal 186
.RADIX 10 ;All values in decimal

LD A,186 ;Load A with decimal 186
.RADIX 16 ;All values in hexadecimal
LD A, 0BA ;Load A with decimal 186

’

.REQUEST filename,filename,...
The .REQUEST directive sends a request to the Link-80 linker to search the listed files for undefined external global labels.
The filenames specified must not include filetypes or drive designations.

.REQUEST INIT, SUBMAR,MYFILE

’

SALL
The .SALL directive suppresses the listing of all macro text. The output of the MACRO, REPT, IRP, and IRPC pseudo-ops
are controlled by the three directives .LALL, .SALL, and .XALL.

See the .LALL and .XALL assembler directives and the MACRO, REPT, IRP, and IRPC pseudo-operations.
.SALL ;Suppress all macro text listing
.SFCOND
The SFCOND directive suppresses listing of conditionals that evaluate as false.
See the .LFCOND and TFCOND assembler directives.
.SFCOND ;Do not list false conditionals

’

.TFCOND

The .TFCOND directive toggles the listing of conditionals that evaluate as false: if listing is active it is suppressed; if
suppressed, it is made active.

If a /X command switch is in effect, the effect of . TFCOND is reversed.
See the .LFCOND and .SFCOND assembler directives and the /X switch.

’

.LFCOND ;List false conditionals
. TFCOND ;Do not list false conditionals
—2-8__

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

.SFCOND ;Do not list false conditionals
.TFCOND ;List false conditionals

.TFCOND ;Do not list false conditionals

’

XALL
The .XALL directive lists of all macro text that is expanded (default). The output of the MACRO, REPT, IRP, and IRPC
pseudo-ops are controlled by the three directives .LALL, .SALL, and .XALL.

See the .LALL and .SALL assembler directives and the MACRO, REPT, IRP, and IRPC pseudo-operations.

.XALL ;List all expanded macro text

’

XCREF
The .XCREF directive suppresses the creation of a cross reference file of type CRF. The .CREF directive cancels the effect of
the . XCREF directive. Any number of .CREF/.XCREF directive pairs may be encountered in the same module.

See the .CREF assembler directive and the /C switch.

’

.CREF ;Begin cross-reference
;Body of code
. XCREF ;End cross-reference
;Body of code
.CREF ;Begin cross-reference again

’

XLIST
The .XLIST directive suppresses list output to PRN file.

See the .LIST assembler directive.

.XLIST ;Suppress list output

’

.Z80
The .Z80 directive causes the assembler to accept Zilog Z-80 op-codes instead of Intel 8080 opcodes. This is equivalent to the
/Z command switch.

See the .8080 assembler directive and the /I and /Z switches.

’

.280 ;Use Zilog mnemonics

Pseudo Operations

A pseudo-operation is an “op-code” that is a property of the Macro-80 assembler rather than the processor. Except for a
couple of minor exceptions, all pseudo-operations are treated as and act like normal op-codes.

Just as the Macro-80 assembler accepts and recognizes both Intel 8080 and Zilog Z-80 op-codes, there are “8080” and “Z-80"
pseudo-operations. For the most part, all pseudo-operations work with the Zilog Z-80 mnemonic set, while those indicated
“[Z-80]" not work with the Intel 8080 mnemonic set.

— 20—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

$EJECT argument

The $EJECT pseudo-op causes the assembler to start a new output page in the listing file. The value of the argument, if
present, becomes the new page size. The value of the argument is measured in lines per page, with a minimum of 10, a
maximum of 255, and a default of 50.

Be aware that the assembler outputs a formfeed character (control-L) at the end of each page rather than counting lines.
TurboDOS's TYPE utility properly outputs the PRN file to a printer, other utilities may not.

The $EJECT pseudo-op is identical with the PAGE pseudo-op and is provided for historical reasons: the PAGE pseudo-op is
preferred.

See the PAGE pseudo-operation.
SEJECT 40 ;Eject, set page to 40 lines
$INCLUDE filename

The $INCLUDE pseudo-op assembles the specified source file into the current module at the location of the SINCLUDE
pseudo-op. This eliminates the need to repeat an often used sequence of statements in every module.

Identical with the INCLUDE and MACLIB pseudo-ops, the SINCLUDE pseudo-op is provided for historical reasons: the
INCLUDE pseudo-op is preferred.

See the INCLUDE and MACLIB pseudo-operations.
SINCLUDE EQUATES ;Include equates file

’

$TITLE text
The $TITLE pseudo-op specifies a title of “text” to be listed on the first line of each page of the PRN listing file. If the
NAME pseudo-op is missing, the current module is defined (named) as the first six characters of “text”.

The $TITLE pseudo-op is provided for historical reasons and is identical with the TITLE pseudo-op, which is preferred.
STITLE MYPROG routine main module

’

ASEG

The ASEG pseudo-op sets the current location counter to an absolute segment of memory. The location of the absolute
segment counter is that of the last value of ASEG (default is 0000H) unless the ASEG pseudo-op is immediately followed by
the ORG pseudo-op to change the counter.

See the ORG, CSEG, DSEG, and COMMON pseudo-operations.
START: ASEG ;Locate in absolute segment
ORG 2000H ;Absolute segment is 2000H

’

COMMON /name/

The COMMON pseudo-op sets the current location counter to a common segment of memory designated “name”. Unlike the
code, data, and absolute segments, controlled by the CSEG, DSEG, and ASEG pseudo-ops, a segment designated by
COMMON must be in a single contiguous block of code per module: .PHASE and .DEPHASE assembler directives are not
allowed. Multiple modules may use the same common block designations, however, and like blocks are concatenated during
linking.

The ORG pseudo-op may be used to place the common segment at any desired location.
See the ORG, ASEG, CSEG, and DSEG pseudo-operations.

COMMON /?INIT?/ ;Locate in ?INIT? segment
ORG 0000H ;Init at 0000H

Macro-80 COMMON memory blocks are compatible with the FORTRAN COMMON statement.

COND argument [Z-80]
The COND pseudo-op causes the code between itself and a following ENDC pseudo-op to be assembled if and only if
“argument” evaluates to true (not 0).

—2-10 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

If an ELSE pseudo-op is included between the COND and ENDC, then the COND pseudo-op causes the code between itself
and ELSE to be assembled if “argument” is true and between ELSE and ENDC if “argument” is false (0).

The COND pseudo-op is identical with the IF and IFT pseudo-ops. The IFT pseudo-op is preferred.
See the IF and IFT pseudo operations.

’

COND USART ;Do 1f USART <> 0
LD A,QFFH ;Initialize the USART
ouT (PORT1) ,A

1D A, OBEH

ouT (PORT2) , A

ENDC

COND argument

e ;Do 1f argument <> 0
ELSE

RN ;Do if argument = 0
ENDC

’

CSEG

The CSEG pseudo-op sets the current location counter to the code relative or program relative segment of memory. The
location of the code segment counter is that of the last value of CSEG (default is 0000H) unless the CSEG pseudo-op is
immediately followed by the ORG pseudo-op to change the counter.

See the ORG, ASEG, DSEG, and COMMON pseudo-operations.

CSEG ;Locate in code segment

’

DB argument,argument,...
The DB pseudo-op defines a series of bytes in memory whose values are the values of the arguments. If the arguments are
strings, the values of the defined bytes are the ASCII values of the string characters.

The DB pseudo-op is identical with the DEFB and DEFM pseudo-ops, but is preferred.
See the DEFB and DEFM pseudo-operations.

’

DB 6,42,129 ;Defines 06H, 2AH,81H
DB "TEST! ;Defines 54H,45H, 53H, 54H
DC string

The DC pseudo-op defines a series of bytes in memory whose values are the ASCII values of the string characters of the
arguments, with the most significant (sign or parity) bit of the last character in the string being set.

DC 'TEST' ;Defines 54H,45H,53H, 0D4H

’

DEFB argument,argument,... [Z-80]
The DEFB pseudo-op defines a series of bytes in memory whose values are the values of the arguments. If the arguments are
strings, the values of the defined bytes are the ASCII values of the string characters.

The DEFB pseudo-op is identical with the DB and DEFM pseudo-ops. The DB pseudo-op is preferred.
See the DB and DEFM pseudo-operations.

’

DEFB 6,42,129 ;Defines 06H,2AH,81H
DEFB 'TEST' ;Defines 54H, 45H,53H, 54H
name DEFL argument [Z-80]

The DEFL pseudo-op assigns the value of the argument to the associated name. If the argument is external, an error occurs.

—2-11 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

The DEFL pseudo-op is identical to the SET pseudo-op, which is preferred. DEFL is also very similar to EQU, save that no
error occurs if an attempt is made to redefine an already existing name.

See the EQU and SET pseudo-operations.

’

CR DEFL 13 ;ASCII carriage return
LF DEFL 10 ;ASCII linefeed
DEFM string [Z-80]

The DEFM pseudo-op defines a series of bytes in memory whose values are the ASCII values of the string characters of the
arguments.

The DEFM pseudo-op is identical with but a subset of the DB and DEFB pseudo-ops. The DB pseudo-op is preferred.
See the DB and DEFB pseudo-operations.

DEFM 'TEST' ;Defines 54H, 45H,53H, 54H

’

DEFS argument [Z-80]
The DEFS pseudo-op reserves an area of memory “argument” bytes in size. This area of memory is not initialized unless the
/M command switch is used.

The DEFS pseudo-op is identical to the DS pseudo-op, which is preferred.
See the DS pseudo-op and the /M switch.

DEFS 128 ;Reserve 128 bytes of memory
DEFW argument,argument,... [Z-80]
The DEFW pseudo-op defines a series of words in memory whose values are the values of the arguments.
The DEFW pseudo-op is identical with the DW pseudo-op, which is preferred.
See the DW pseudo-operation.

DEFW 6,42,6129 ;Defines 0006H,002AH,17F1H

’

DS argument
The DS pseudo-op reserves an area of memory “argument” bytes in size. This area of memory is not initialized unless the /M
command switch is used.

The DS pseudo-op is identical to the DEFS pseudo-op and is preferred.
See the DEFS pseudo-op and the /M switch.
DS 128 ;Reserve 128 bytes of memory

’

DSEG

The DSEG pseudo-op sets the current location counter to the data relative segment of memory. The location of the data
segment counter is that of the last value of DSEG (default is 0000H) unless the DSEG pseudo-op is immediately followed by
the ORG pseudo-op to change the counter.

See the ORG, ASEG, CSEG, and COMMON pseudo-operations.

DSEG ;Locate in data segment

’

DW argument,argument,...
The DW pseudo-op defines a series of words in memory whose values are the values of the arguments.

The DW pseudo-op is identical to the DEFW pseudo-op and is preferred.
See the DEFW pseudo-operation.

’

—2-12 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

DW 6,42,6129 ;Defines 0006H,002AH,17F1H
ELSE
Each conditional pseudo-operation may include an ELSE pseudo-op between itself and its ENDIF or ENDC pseudo-op. The

statements between the conditional pseudo-op and the ELSE are assembled if the condition is met, and those between the
ELSE and the ENDIF or ENDC if the condition is not met.

’

IF argument

. ;Do if argument <> 0
ELSE

e ;Do 1f argument = 0
ENDIF

’

END argument
The END pseudo-op specifies the end of the program or module and must be the last statement in the module.

If present, the value of “argument” is retained by Macro-80 and passed to Link-80 as the start address of the code (program)
segment of the module. If argument is missing, the module retains its relocatability.

It is important that the END pseudo-op not only be included in a module, but that it be on a terminated line. Many
programmers have developed the habit of failing to terminate the last line of a program with a CR-LF pair. This is tolerable in
most BASIC's and many other languages, but intolerable in Macro-80 (it is also very sloppy programming practice).

’

;Code body

END

ENDC [2-80]
The ENDC pseudo-op is used to terminate a conditional assembly started by the COND pseudo-op.

See the COND pseudo operation.

’

COND USART ;Do if USART <> 0
LD A, OFFH ;Initialize the USART
ouT (PORT1) , A
LD A, OBEH
ouT (PORT2) , A
ENDC
COND argument
. ;Do if argument <> 0
ELSE
e ;Do 1f argument = 0
ENDC
ENDIF
The ENDIF pseudo-op is used to terminate a conditional assembly started by any IFxx pseudo-op.
IFT USART ;Do if USART <> 0
LD A, OFFH ;Initialize the USART
ouT (PORT1) , A
LD A, OBEH
ouT (PORT2) , A
ENDIF
IFT argument
e ;Do 1if argument <> 0
ELSE
RN ;Do if argument = 0
ENDIF
—2-13 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

ENDM

The ENDM pseudo-op is used to terminate all macros. Macros are those statement groups started by the MACRO, REPT,
IRP, and IRPC pseudo-ops.

See the MACRO, REPT, IRP, and IRPC pseudo-operations.

DIV MACRO X

ce ;Body of macro
ENDM

ENTRY name,name,...

The ENTRY pseudo-op declares that every name in the list is internal and global, and therefore available for use by the
current and all other modules linked with the current module. All the listed names must be defined within the current module.

The ENTRY pseudo-op is identical with the GLOBAL and PUBLIC pseudo-ops, but the GLOBAL pseudo-op is preferred.
See the GLOBAL and PUBLIC pseudo-operations.

Where defined elsewhere in the module, the names must not have a double colon “::”. They are defined as global either by
the ENTRY pseudo-op or the double colon, but not both. The following are identical:
ENTRY GLBL1,GLBL2
GLBL1:
GLBL2:

’

GLBL1::
GLBL2::

’

name EQU argument
The EQU pseudo-op assigns the value of the argument to the associated name. If the argument is external or the name already
was defined, an error occurs.

See the DEFL and SET pseudo-operations.

CR EQU 13 ;ASCII carriage return
LF EQU 10 ;ASCII linefeed
EXITM

The EXITM pseudo-op is intended for use inside the body of a macro, and causes an early termination of the assembly of the
macro.

If the block containing the EXITM pseudo-op is nested within another block, the outer block continues to be assembled.

’

SUB MACRO X
IFT X LT O
EXITM ;Terminate assembly if X<0
ENDIF
ENDM

’

EXT name,name,...
The EXT pseudo-op declares that every name in the list is external, that is, defined as global in a different module. The same
name may not appear in the current module.

The EXT pseudo-op is identical with the EXTRN and EXTERNAL pseudo-ops. The EXTERN pseudo-op is preferred.
See the EXTRN and EXTERNAL pseudo-operations.

Elsewhere in the module, the names must not have a double number sign “##”. They are defined as external either by the
EXT pseudo-op or the double number sign but not both. The following are identical:

’

—2-14 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

EXT ELBL1,ELBL2

CALL ELBL1
JP ELBL2
CALL ELBL1##
JP ELBL2##
EXTERNAL name,name,... [Z-80]

The EXTERNAL pseudo-op declares that every name in the list is external, that is, defined as global in a different module.
The same name may not appear in the current module.

The EXTERNAL pseudo-op is identical with the EXT and EXTRN pseudo-ops. The EXTERN pseudo-op is preferred.
See the EXT and EXTRN pseudo-operations.

Elsewhere in the module, the names must not have a double number sign “##”. They are defined as external either by the
EXTERNAL pseudo-op or the double number sign but not both. The following are identical:

’

EXTERNAL ELBL1,ELBL2

CALL ELBL1
Jp ELBL2
CALL ELBLL1##
JP ELBL2##

’

EXTRN name,name,...
The EXTRN pseudo-op declares that every name in the list is external, that is, defined as global in a different module. The
same name may not appear in the current module.

The EXTRN pseudo-op is identical with the EXT and EXTERNAL pseudo-ops and is preferred.
See the EXT and EXTERNAL pseudo-operations.

Elsewhere in the module, the names must not have a double number sign “##”. They are defined as external either by the
EXTRN pseudo-op or the double number sign but not both. The following are identical:

’

EXTRN ELBL1,ELBL2

CALL ELBL1
JP ELBL2
CALL ELBL1##
JPp ELBL2##

’

GLOBAL name,name,...
The GLOBAL pseudo-op declares that every name in the list is internal and global, and therefore available for use by the
current and all other modules linked with the current module. All the listed names must be defined within the current module.

The GLOBAL pseudo-op is identical with the ENTRY and PUBLIC pseudo-ops and is preferred.
See the ENTRY and PUBLIC pseudo-operations.

When defined elsewhere in the module the names must not have a double colon “::”. The names are defined as global either
by the GLOBAL pseudo-op or the double colon, but no both. The following are identical:

GLOBAL GLBL1,GLBL2

GLBL1:

GLBL2:

’

’

—2-15—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

GLBL1::
GLBL2::

’

IF argument
The IF pseudo-op causes the code between itself and a following ENDIF pseudo-op to be assembled if and only if
“argument” evaluates to true (not 0).

If an ELSE pseudo-op is included between the IF and ENDIF, then the IF pseudo-op causes the code between itself and
ELSE to be assembled if “argument” is true and between ELSE and ENDIF if “argument” is false (0).

The IF pseudo-op is identical with the COND and IFT pseudo-ops. The IFT pseudo-op is preferred.
See the COND and IFT pseudo-operations.

’

IF USART ;Do if USART <> 0

LD A, QFFH ;Initialize the USART
oUT (PORT1) , A

1D A, OBEH

oUT (PORT2) , A

ENDIF

IF argument

. ;Do 1if argument <> 0
ELSE

e ;Do if argument = 0
ENDIF

’

IF1
The IF1 pseudo-op causes the code between itself and a following ENDIF pseudo-op to be assembled if and only if the
assembler is currently executing pass 1 of the assembly.

If an ELSE pseudo-op is included between the IF1 and ENDIF, then the IF1 pseudo-op causes the code between itself and
ELSE to be assembled during pass 1 and between ELSE and ENDIF during pass 2.

See the IF2 pseudo-operation.

r

IF1

.PRINTX S$Hi there! 1I'm halfway through pass 1!$
ENDIF

IF1

RN ;Do during pass 1

ELSE

e ;Do during pass 2

ENDIF

’

IF2
The IF2 pseudo-op causes the code between itself and a following ENDIF pseudo-op to be assembled if and only if the
assembler is currently executing pass 2 of the assembly.

If an ELSE pseudo-op is included between the IF2 and ENDIF, then the IF2 pseudo-op causes the code between itself and
ELSE to be assembled during pass 2 and between ELSE and ENDIF during pass 1.

See the IF1 pseudo-operation.

IF2
.PRINTX +Whew! I am now halfway through pass 2!+
ENDIF

—2-16 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

IF2

RN ;Do during pass 2
ELSE
e ;Do during pass 1

ENDIF

IFB <argument>
The IFB pseudo-op causes the code between itself and a following ENDIF pseudo-op to be assembled if and only if
“argument” is blank. The angle brackets around “argument” are required.

If an ELSE pseudo-op is included between the IFB and ENDIF, then the IFB pseudo-op causes the code between itself and
ELSE to be assembled if “argument” is blank and between ELSE and ENDIF if “argument” is not blank.

The IFB pseudo-op is intended for use where parameters have been passed.

See the IFNB pseudo-operation.
MULTI MACRO X,Y,7Z
IFB <X>
EXITM
ENDIF

... ;Body of macro
ENDM

IFB <argument>
RN ;Do if blank
ELSE
e ;Do if not blank
ENDIF
IFDEF name
The IFDEF pseudo-op causes the code between itself and a following ENDIF pseudo-op to be assembled if and only if
“name” has been defined or declared external.

If an ELSE pseudo-op is included between the IFDEF and ENDIF, then the IFDEF pseudo-op causes the code between itself
and ELSE to be assembled if “name” has been defined or declared external and between ELSE and ENDIF if “name” has
neither been defined nor declared external.

See the IFNDEF pseudo-operation.
IFDEF START

LD HL, START
ENDIF

IFDEF name

ce ;Do 1f defined

ELSE

cen ;Do 1f not defined
ENDIF

IFDIF <stringl>,<string2>

The IFDIF pseudo-op causes the code between itself and a following ENDIF pseudo-op to be assembled if and only if

“string1” is different from “string2”. The angle brackets around “string1” and “string2” are required.

If an ELSE pseudo-op is included between the IFDIF and ENDIF, then the IFDIF pseudo-op causes the code between itself
and ELSE to be assembled if “stringl” is different from “string2” and between ELSE and ENDIF if “stringl” if identical to
“string2”.

See the IFIDN pseudo-operation.

IFDIF <X>,<Y>
.PRINTX +The strings are different!+

— 217 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

ENDIF

IFDIF <stringl>,<string2>

RN ;Do 1f different

ELSE

RN ;Do if identical

ENDIF
IFE argument
The IFE pseudo-op causes the code between itself and a following ENDIF pseudo-op to be assembled if and only if
“argument” evaluates to false (0).

If an ELSE pseudo-op is included between the IFE and ENDIF, then the IFE pseudo-op causes the code between itself and
ELSE to be assembled if “argument” is false and between ELSE and ENDIF if “argument” is true (not 0).

The IFE pseudo-op is identical with the IFF pseudo-op, which is preferred.

See the IFF pseudo-operation.

’

IFE USART ;Do if USART = 0

LD A, QFFH ;Initialize the USART
oUT (PORT1) , A

1D A, OBEH

oUT (PORT2) , A

ENDIF

IFE argument

e ;Do 1f argument = 0
ELSE

RN ;Do if argument <> 0
ENDIF
IFF argument

The IFF pseudo-op causes the code between itself and a following ENDIF pseudo-op to be assembled if and only if
“argument” evaluates to false (0).

If an ELSE pseudo-op is included between the IFF and ENDIF, then the IFF pseudo-op causes the code between itself and
ELSE to be assembled if “argument” is false and between ELSE and ENDIF if “argument” is true (not 0).

The IFF pseudo-op is identical with the IFE pseudo-op and is preferred.

See the IFE pseudo-operation.

r

IFF USART ;Do if USART = 0

LD A,OFFH ;Initialize the USART
ouUT (PORT1) , A

1D A, OBEH

oUT (PORT2) , A

ENDIF

IFF argument

e ;Do 1f argument = 0
ELSE

. ;Do if argument <> 0
ENDIF

IFIDN <stringl1>,<string2>

The IFIDN pseudo-op causes the code between itself and a following ENDIF pseudo-op to be assembled if and only if

“string1” is identical to “string2”. The angle brackets around “stringl” and “string2” are required.

—2-18 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

If an ELSE pseudo-op is included between the IFIDN and ENDIF, then the IFIDN pseudo-op causes the code between itself
and ELSE to be assembled if “stringl1” is identical to “string2” and between ELSE and ENDIF if “string1” if different from
“string2”.
See the IFDIF pseudo-operation.

IFIDN <X>,<Y>

.PRINTX +The strings are identicall!+
ENDIF

IFIDN <stringl>,<string2>

e ;Do if identical
ELSE
... ;Do if different

ENDIF

IFNB <argument>
The IFNB pseudo-op causes the code between itself and a following ENDIF pseudo-op to be assembled if and only if
“argument” is not blank. The angle brackets around “argument” are required.

If an ELSE pseudo-op is included between the IFNB and ENDIF, then the IFNB pseudo-op causes the code between itself
and ELSE to be assembled if “argument” is not blank and between ELSE and ENDIF if “argument” is blank.

The IFNB pseudo-op is intended for use where parameters have been passed.

See the IFB pseudo-operation.
MULTI MACRO X,Y,Z

IFNB <X>
. ;Body of macro
ENDIF
ENDM

IFNB <argument>
ce ;Do 1f not blank
ELSE
e ;Do if blank
ENDIF
IFNDEF name
The IFNDEF pseudo-op causes the code between itself and a following ENDIF pseudo-op to be assembled if and only if
“name” has neither been defined nor declared external.

If an ELSE pseudo-op is included between the IFNDEF and ENDIF, then the IFNDEF pseudo-op causes the code between
itself and ELSE to be assembled if “name” has neither been defined nor declared external and between ELSE and ENDIF if
“name” has been defined or declared external

See the IFDEF pseudo-operation.
IFNDEF START

LD HL, OTHER
ENDIF

IFNDEF name
... ;Do if not defined
ELSE
... ;Do if defined
ENDIF

—2-19 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

IFT argument
The IFT pseudo-op causes the code between itself and a following ENDIF pseudo-op to be assembled if and only if
“argument” evaluates to true (not 0).

If an ELSE pseudo-op is included between the IFT and ENDIF, then the IFT pseudo-op causes the code between itself and
ELSE to be assembled if “argument” is true and between ELSE and ENDIF if “argument” is false (0).

The IFT pseudo-op is identical with the COND and IF pseudo-ops and is preferred.
See the COND and IF pseudo operations.

’

IFT USART ;Do if USART <> 0

LD A, QFFH ;Initialize the USART
ouT (PORT1) ,A

LD A, OBEH

ouUT (PORT2) , A

ENDIF

IFT argument

. ;Do if argument <> 0
ELSE

e ;Do if argument = 0
ENDIF

’

INCLUDE filename
The INCLUDE pseudo-op assembles the specified source file into the current module at the location of the INCLUDE
pseudo-op. This eliminates the need to repeat an often used sequence of statements in every module.

Identical with the SINCLUDE and MACLIB pseudo-ops, the INCLUDE pseudo-op is preferred.
See the $SINCLUDE and MACLIB pseudo-operations.

INCLUDE EQUATES ;Include equates file

’

IRP dummy,<arg-list>
The IRP pseudo-op repeats the block of statements as many times as there are arguments in “arg-list”, substituting the
argument-at-hand for every occurrence of dummy. The angle brackets around “arg-list” are required.

The following code:

’

IRP X,<0,2,4,6,8>
DB X, X+1
ENDM

assembles as:

r

DB 0,1
DB 2,3
DB 4,5
DB 6,7
DB 8,9

’

IRPC dummy,<string>
The IRPC pseudo-op repeats the block of statements as many times as there are characters in “string”, substituting the
character-at-hand for every occurrence of dummy. The angle brackets around “string” are optional.

The following code:

SIZE SET 10
IRPC X,<01234>
DB X+1
DS X+SIZE

— 2-20 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

ENDM
assembles as:

’

DB 1
DS 10
DB 2
DS 11
DB 3
DS 12
DB 4
DS 13
DB 5
DS 14

’

LOCAL <dummy-list>
The LOCAL pseudo-op creates a unique symbol for each “dummy” in the “dummy-list” and substitutes that symbol for each
occurrence of the “dummy” in the statement block.

The LOCAL pseudo-op is allowed only inside a macro and must be the first statement in the macro.

The following macro:
MACRO X,Y
LOCAL A,B,C

A JR B
NOP

B: JP C
NOP

C: JR A
ENDM

assembles properly no matter how many time it is expanded within the body of the module (no duplicate labels occur).

MACLIB filename
The MACLIB pseudo-op assembles the specified source file into the current module at the location of the MACLIB pseudo-
op. This eliminates the need to repeat an often used sequence of statements in every module.

Identical with the $INCLUDE and INCLUDE pseudo-ops, the MACLIB pseudo-op is provided for historical reasons: the
INCLUDE pseudo-op is preferred.

See the $INCLUDE and INCLUDE pseudo-operations.

MACLIB EQUATES ;Include equates file

’

name MACRO dummy-list
The MACRO pseudo-op generates a sequence of macro statements from differing places in the module while allowing
different parameters to be passed each time the macro is used. The “name” must conform to the label conventions and is used
to invoke the macro itself. The “dummy-list” provides the parameters that are passed into the macro and are different each
time the macro is expanded.
ADDVAR MACRO T,U

LD A, T

ADD A,U
ENDM

4

’

NAME (‘'name’)
The NAME pseudo-op defines the module name as “name”. The “name” argument must conform to the rules of labels.

If the NAME pseudo-op is omitted, the module is defined by the $TITLE or TITLE pseudo-op. If all are omitted, the module
is defined by the first six character of the source file name.

If some versions of Macro-80, the parentheses are optional, in others they are required.

—2-21 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

See the $TITLE and TITLE pseudo-operations.

NAME ("MYPROG") ;Module ID

’

ORG argument
The ORG pseudo-op set the current location counter to the value of “argument”, and the assembler then assigns code to
addresses beginning at that value.

The value of “argument” may be absolute or in the same area as the current location counter (ASEG, DSEG, CSEG, or
COMMON). All expressions used in “argument” must be recognized on pass 1 of the assembler.

See the ASEG, CSEG, DSEG, and COMMON pseudo-operations.

CSEG ;Locate in code segment
BEGIN: ORG 0100H ;Set code segment at 0100H

’

;Body of code

END BEGIN ;Chain code segment to linker

’

PAGE argument

The PAGE pseudo causes the assembler to start a new output page in the listing file. The value of the argument, if present,
becomes the new page size. The value of the argument is measured in lines per page, with a minimum of 10, a maximum of
255, and a default of 50. Be aware that the assembler output a formfeed character (control-L) at the end of each page rather
than counting lines. TurboDOS's TYPE utility properly outputs the PRN file to a printer, other utilities may not.

The PAGE pseudo-op is identical with the $SEJECT pseudo-op and is preferred.
See the $EJECT pseudo-operation.
PAGE 40 ;Eject, set page to 40 lines

’

PUBLIC name,name,...
The PUBLIC pseudo-op declares that every name in the list is internal and global, and therefore available for use by the
current and all other modules linked with the current module. All the listed names must be defined within the current module.

The PUBLIC pseudo-op is identical with the ENTRY and GLOBAL pseudo-ops, but the GLOBAL pseudo-op is preferred.
See the ENTRY and GLOBAL pseudo-operations.

When defined elsewhere in the module the names must not have a double colon “::”. The names are defined as global either
by the PUBLIC pseudo-op or the double colon, but no both. The following are identical:

PUBLIC GLBL1l,GLBL2
GLBL1:
GLBL2:

GLBL1::

GLBL2::

’

REPT argument
The REPT pseudo-op repeats the statement block between itself and ENDM “argument” times, where “argument” must
resolve to a 16-bit unsigned integer.

The following code:

’

SET 0
REPT 6
SET X X+1

— 2-22 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

DB X
ENDM

assembles as:
DB
DB
DB
DB

DB
DB

o U W N

name SET argument
The SET pseudo-op assigns the value of the argument to the associated name. If the argument is external, an error occurs.

The SET pseudo-op is identical to the DEFL pseudo-op and is preferred. SET is also very similar to EQU, save that no error
occurs if an attempt is made to redefine an already existing name.

See the DEFL and EQU pseudo-operations.

CR SET 13 ;ASCII carriage return
LF SET 10 ;ASCII linefeed

’

SUBTTL text
The SUBTTL pseudo-op specifies a subtitle of “text” to be listed on the second line of each page of the PRN listing file.

TITLE MYPROG routine main module
SUBTTL Copyright (C) 1990, R. Roger Breton

TITLE text
The TITLE pseudo-op specifies a title of “text” to be listed on the first line of each page of the PRN listing file.
If the NAME pseudo-op is missing, the current module is defined named) as the first six characters of “text”.
The TITLE pseudo-op is identical with the $TITLE pseudo-op and is preferred.

TITLE MYPROG routine main module

’

TYPE argument
The TYPE pseudo-op returns a single byte that describes the mode of the assembler and indicates whether “argument” is
locally or externally defined. If “argument” is invalid, TYPE returns a zero.

The returned byte is evaluated on a bit basis as follows:

XXXXxX00 absolute mode
XXXXxx01 code relative mode
XXXXXX10 data relative mode
XXXXXX11 common relative mode
XXOXXXXX undefined or external
XXLIXXXXX locally defined
OXXXXXXX “argument” is local
LIXXXXXXX “argument” contains an external
TEST MACRO X
LOCAL 7
7 SET TYPE X
IFT Z

— 2-23 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Error Codes

Macro-80 responds to an assembly error via an error code.

A Argument Error
The argument of a pseudo-op or directive is out of range or not in correct form.

C Conditional Nesting Error
A conditional is improperly nested, such as ELSE without IFxx, ENDIF without IFxx, or two ELSE's on one IFxx.

D Double Definition Error
A symbol has been defined more than once.

E External Error
There has been illegal use of an external label.

M Multiple Definition Error
A label has been defined more than once.

N Number Error
An illegal digit was used, such as 8Q (octal uses the digits 0-7).

O Opcode or Syntax Error
An illegal use of a pseudo-op has occurred, such as ENDM or LOCAL outside of a macro, or SET, EQU, or MACRO
without an attendant name.

A syntax error in an op-code has occurred, such as “LD A,DE”.

A syntax error in an expression has occurred, such as mismatched parentheses, quotes, concatenated operators, etc.

P Phase Error
A label or symbol has different values during each assembler pass.

Q Questionable Error or Warning
A line is usually improperly terminated. This is a warning error.

R Relocation Error
An illegal use of relocation in an expression has occurred, such as an attempt to relocate an absolute label. Only code, data,
and common areas are relocatable.

U Undefined Symbol Error
An attempt was made to use a symbol that has not been defined.

For certain pseudo-ops, a V error occurs on pass 1 and a U error on pass 2.

V Value Error
An attempt was made to perform a pass-1 assembly of a pseudo-op whose value is unknown at the time of assembly. If the
value remains unknown, a U error occurs on pass 2. If the value is later defined, there is no pass-2 error.

REL File Format

Microsoft REL files consist of a bit stream, as contrasted to the byte stream of normal object (COM) files. Individual field
within the bit stream are NOT aligned on byte boundaries, except as indicated below. The use of a bit steam was chosen to
keep file size to a minimum.

There are two basic types of bit stream fields: absolute and relocatable.

Absolute fields consist of a 0 bit, followed by the 8-bits of the absolute byte.

0 11000011 ;absolute C3h JP 0050h
0 01010000 ;absolute 50h
0 00000000 ;absolute 00h

Relocatable field consist of a 1 bit, followed by 2 bits indicating the type of relocatable item, followed by the relocatable
item. The two bits indicating the type of relocatable item are:

1 00 ... ;special item
1 01 nnnnnnnn nnnnnnnn ;code-relative item

—2-24—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

1 10 nnnnnnnn nnnnnnnn ;data-relative item
1 11 nnnnnnnn nnnnnnnn ;common-relative item

With the code, data, and common relative items, the relocation address is determined by adding the following 16 bits to the
code, data, or common base address.

With the special items, the format is as follows:

1 ;relocatable field

00 ;special item

Yy NNNNNNNN NNNNNNNN ;Optional "A" subfield

ZZZ CCCCCCCC CCCCCCCC CCCCCCCC ... ;Optional "B" subfield

The “A” subfield consists of a 2-bit address field type (yy) followed by a 16-bit value (nnnnnnnn nnnnnnnn):

00 nnnnnnnn nnnnnnnn ;absolute address

01l nnnnnnnn nnnnnnnn ;code-relative address
10 nnnnnnnn nnnnnnnn ;data-relative address
11 nnnnnnnn nnnnnnnn ;common-relative address

The “B” subfield consists of a 3-bit symbol length (1-6 bytes) followed by the symbol:

001 cccccecce ;1-byte symbol
010 cccccecee cccccccce ;2-byte symbol

The sixteen special items are as follows:

1 00 0000 "B" ;Entry symbol (name for search).

1 00 0001 "B"™ ;Select common block.

1 00 0010 "B"™ ;Program/module name.

1 00 0011 "B" ;Request library search.

1 00 0100 special ;Extension item.

1 00 0101 "A"™ "B" ;Define common size.

1 00 0110 "A"™ "B" ;Chain external: "A" is head of address chain, "B"

is

; name of external symbol.

1 00 0111 "A™ "B" ;Define entry point: "A" is address, "B" is name.

1 00 1000 ™A™ ;External - offset: wused for JP and CALL.

1 00 1001 "A" ;External + offset: "A" will be added to the two
; bytes starting at the current location counter
; immediately before execution.

1 00 1010 "A" ;Define data size.

1 00 1011 "A" ;Set loading location counter.

1 00 1100 "A"“ ;Chain address: "A" is head of chain. Replace all
; entries in chain with current location counter.
; Last entry in chain has address field of

absolute

; zero.

1 00 1101 "A" ;Define code size.

1 00 1110 "A" ;End program/module.

1 00 1111 ;End file.

An extension item has the format:
1 00 0100 zzz ssssssss bbbbbbbb bbbbbbbb

where “zzz” is a 3-bit item length, followed by an 8-bit subtype identifier, followed by 1-7 bytes of special information or
symbol (symbols limited to 6 bytes):

1 00 0100 001 ssssssss ;no info/symbol
1 00 0100 010 ssssssss bbbbbbbb ;1-byte info/symbol

At present, only the following extension item subtypes are allowed:

00110101 ;COBOL overlay segment sentinel

01000001 ;Arithmetic fixup (arithmetic operator)

01000010 ;Arithmetic fixup (external reference)

01000011 ;Arithmetic fixup (area base + offset)
—2-25—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Sample Source Code

A sample source code follows (some comments have been eliminated to shorten code:

; CONDRV .MAC

’

;Authors: R. Roger Breton
;Version: 3.00

NAME ("CONDRV") ;Module ID

.280 ;Z2ilog mnemonic set
STRING MACRO A,B,C,D

IFNB <D>
DB A,B,C,D+128
ELSE
IFNB <C>
DB A,B,C+128,128
ELSE
IFNB
DB A,B+128,128,128
ELSE
IFNB <A>
DB A+128,128,128,128
ELSE
DB 128,128,128,128
ENDIF
ENDIF
ENDIF
ENDIF
DB 128,128,128,128
DB 128,128,128,128
DB 128,128,128,128
ENDM
DSEG ;Locate in data segment
CONBR:: DB OCFH ;Baud-rate code
FFCHR: : ;0ld-style formfeed label
CONFF:: DB 12 ;Formfeed character
CONCLS: :STRING 26 ;Clear-screen string
CONSOS::STRING 13,10 ;Shift-out string
CONSIS::STRING 13,10 ;Shift-in string
CONOFF': : DB 0 ;Output-disable byte
CONON:: DB 0 ;Output-enable byte
CSEG ;Locate in prog area
; Note: The "JP IN.O" is replaced by "LD A,E" and "SUB 2"
; by initialization.
CONDR@: :
DR.O: Jp IN.O ;Skip to initialization
; LD A,E ;Get function code
; SUB 2 ;Function 0 or 1: get status or character
JP C,SERIAL##
JP Z,F2.0 ;Function 2: output character
SUB 6 ;Function 8: shift out for error message
JP Z,F8.0
DEC A ;Function 9: shift in from error message
JP Z2,F9.0
DEC A ;Function 10: conditional output character
JP z,F2.0
RET ;Illegal function, done
—2-26 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

IN.O: PUSH DE ;Save parameters

PUSH BC
LD A, 7BH ;Make 1st byte of router "LD A,E"
1D (DR.0) ,A
LD A, 0D6H ;Make 2nd & 3rd bytes of router "SUB 2"
LD (DR.0+1),A
LD A,?2
LD (DR.0+2),A
XOR A ;Preclear output-disable key byte
LD (F2.1),A
LD A, (CONBR) ;Set the Baud rate
1D C,A
1D E, 03
CALL SERIAL##
CALL F2.3 ;Clear the screen
POP BC ;Restore parameters
POP DE
JR DR.O ;Go to router
F2.0: LD A, (CONOFF) ;Output-disable enabled?
OR A
JR Z2,F2.2 ;If no, skip
CP C ;Disable output?
JR Z,F2.4 ;If yes, skip
LD A, (CONON) ;Enable output?
CP C
JR Z,F2.5 ;If yes, skip
F2.1: NOP ;Output-disable key byte
F2.2: LD A, (CONFF) ;Formfeed disabled?
OR A
JP Z,SERIAL## ;If yes, output the character
CP C ;Formfeed?
Jp NZ, SERIAL## ;If no, output the character
F2.3: LD HL, CONCLS ;Output clear-screen string
JP DMSHL# #
F2.4: LD A, 0C9H ;Set key byte to "RET"
1D (F2.1),A
RET ; Done
F2.5: XOR A ;Clear key byte
LD (F2.1),A
RET ; Done
F8.0: LD HL, CONSOS ;Output error shift-out string
JP DMSHL##
F9.0: LD HL,CONSIS ;Output error shift-in string
JP DMSHL##
END

Sample PRN File

The preceding source code assembles into the following PRN file (all comments have been removed to shorten code):

NAME ('CONDRV'")
.7Z80
0000" DSEG
oooo" CF CONBR:: DB OCFH
ooo1" FFCHR: :
ooo1" 0ocC CONFF:: DB 12
ooo2" CONCLS: : STRING 26
ooo2" 9A 80 80 80 + DB 26+128,128,128,1
0006™ 80 80 80 80 + DB 128,128,128,128
000A"™ 80 80 80 80 + DB 128,128,128,128
— 227 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

000E" 80 80 80 80 DB 128,128,128,128
oo12" CONSOS::STRING 13,10

+

oo12" 0D 8A 80 80 + DB 13,10+128,128,12
001e6" 80 80 80 80 + DB 128,128,128,128
001Aa" 80 80 80 80 + DB 128,128,128,128
001E" 80 80 80 80 + DB 128,128,128,128

00z2" CONSIS::STRING 13,10

0022" 0D 8A 80 80 + DB 13,10+128,128,12

0026" 80 80 80 80 + DB 128,128,128,128

ooz2a" 80 80 80 80 + DB 128,128,128,128

002E" 80 80 80 80 + DB 128,128,128,128

0032" 00 CONOFF: : DB 0

0033" 00 CONON:: DB 0

0034" CSEG

0000 CONDRQ@: :

0000 C3 0017 DR.O: JP IN.O

0003" DA 0000* JP C, SERIAL##

0006" CA 003C! JPp Zz,F2.0

0009 D6 06 SUB 6

000B' CA 0068 JP Z,F8.0

000E" 3D DEC A

000F" CA 006E’ JP Z,F9.0

0012" 3D DEC A

0013" CA 003C’ Jp Zz,F2.0

0016’ Cc9 RET

0017'" D5 IN.O: PUSH DE

0018" C5 PUSH BC

0019" 3E 7B LD A, 7BH

001B' 32 0000" LD (DR.O) , A

O01E" 3E D6 LD A, 0D6H

0020 32 0001" LD (DR.0O+1),A

0023" 3E 02 LD A,2

0025" 32 0002° LD (DR.0+2),

0028" AF XOR A

0029' 32 004B' LD (F2.1),

002cC' 3A 0000" LD A,(CONBR)

002F" 4F 1D c,A

0030 1E 03 LD E,03

0032" CD 0000* CALL SERIAL##

0035" CD 0057 CALL F2.3

0038" Cc1l POP BC

0039" D1 POP DE

003A" 18 Cc4 JR DR.O

003C’ 3A 0032" F2.0: LD A, (CONOFF)

003F' B7 OR A

0040 28 OA JR z,F2.2

0042" B9 CP C

0043" 28 18 JR Z,F2.4

0045" 3A 0033" LD A, (CONON)

0048" B9 CP C

0049' 28 18 JR Z,F2.5

004B" 00 F2.1: NOP

004cC’ 3A 0001" F2.2: LD A, (CONFF)

004F" B7 OR A

0050 CA 0000* JP 7, SERIAL##

0053 B9 CP C

0054" c2 0000* JP NZ, SERIAL##

0057" 21 0002" F2.3: LD HL, CONCLS

005A" C3 0000* Jp DMSHL##

005D' 3E C9 F2.4: LD A, 0C9H

005F" 32 004B' LD (F2.1),A

0062" Cc9 RET

0063 AF F2.5: XOR A

0064" 32 004B' LD (F2.1),A

0067"' Cc9 RET

0068" 21 0012" F8.0: LD HL, CONSOS
—2-28 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

006B"' C3 0000* JP DMSHL##

006E" 21 0022" F9.0: LD HL,CONSIS
0071" C3 0000* Jp DMSHL##
END

Sample REL File

The preceding source code also assembles into the following REL file. The source code has been laid aside the REL code to
show the relationship. Special attention should be paid to the method used to control externals.

85 1....... / 0000' Program name —--——---——- NAME ('CONDRV')
.00..... |
0010. |
90 1 10...... | 6 chrs
D3 ..010000 11...... | e
D3 ..010011 11...... | "o"
91 ..010011 10...... | "N
14 ..010001 00...... | "p"
95 ..010100 10...... | "R"
AQO ..010101 10...... \ "y
... / 0000' Entry Symbol name
...00... |
54 000 O....... |
101.... | 5 chrs
340100 0011.... | e
F40100 1111.... | "o"
E40100 1110.... | "N
250100 0010.... | "B"
280101 0010.... \ "R"
... / 0000' Entry Symbol name
..... 00. |
15 0 000..... |
...101.. | 5 chrs
19 01 000110.. | "F"
19 01 000110.. | "E"
0D 01 000011.. | e
3 01 001000.. | "H"
4A ..., 01 010010.. \ "R"
...... 1. / 0000' Entry Symbol name
05 0 0. |
0000... |
..... 101 | 5 chrs
43 01000011 | e
4F 01001111 | "o"
4E 01001110 | "N
46 01000110 | "E"
46 01000110 \ "E"
81 1....... / 0000' Entry Symbol name
.00..... |
0000 |
90 ... 1 10...... | 6 chrs
D3 ..010000 11...... | e
D3 ..010011 11...... | "o"
90 ..010011 10...... | "N
D3 ..010000 11...... | e
14 ..010011 00...... | "L
EO ..010100 11...... \ "s"
.. / 0000' Entry Symbol name
...00... |
64 000 O....... |
110.... | 6 chrs
340100 0011.... | e
F40100 1111.... | "o"
E50100 1110.... | "N"
340101 0O011.... | "s"
—2-29 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

F5 0100 1111.... | "o"
38 .0101 0011.... \ "sr
I / 0000' Entry Symbol name
..... 00. |
19 0 000..... |
110.. | 6 chrs
0D 01 000011.. | n"e"
3D 01 001111.. | "o"
39 ... 01 001110.. | "N
4D 01 010011.. | "s"
25 ..., 01 001001.. | "n
4E 01 010011.. \ "s"
...... 1. / 0000' Entry Symbol name
06 0 0....... |
0000... |
..... 110 | 6 chrs
43 01000011 | "e"
4F 01001111 | "o"
4E 01001110 | "N
4 01001111 | "o"
46 01000110 | "
46 01000110 \ "E"
81 1....... / 0000' Entry Symbol name
.00..... |
0000. |
50 1 01...... | 5 chrs
D3 ..010000 11...... | n"e"
D3 ..010011 11...... | "o"
93 ..010011 10...... | "N
D3 ..010011 11...... | "o
AO .010011 10...... \ "N
.. / 0000'" Entry Symbol name
.00... |
64 000 O0....... |
110.... | 6 chrs
34 0100 0011.... | "e"
F4 0100 1111.... | "o"
E4 0100 1110.... | "N
45 0100 0100.... | "p"
24 0101 0010.... | "R"
09 .0100 0000.... \ "e"
I / 0000'" Define data size
..... 00. |
41 1 010..... |
.00... | absolute
AO 001 10100... | 0034
04 000 00000... \
..... 1.. / 0000'" Define code size
...... 00 |
D5 1101.. |
.01.. | code-relative
DO 01 110100.. | 0074
02 00 000000.. \
...... 1. / 0000' Set location counter - DSEG
5C 0 0....... |
1011... |
..... 10. | data-relative
00 0 0000000. | 0000
00 0 0000000. \
....... 0 / 0000" absolute ————————————-— DB OCF
CF 11001111 \ CF
06 0....... / 0001" absolute —-——————————-—-— DB 0cC
26 .0000110 O....... \ ocC
O / 0002" absolute ————————————- DB 9a,80,80,80
90 ..100110 10...... \ oA
0... .. / 0003" absolute
—2-30 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

08

04

02

01

00

80

40

20

10

08

04

02

01

80

80

40

03

51

48

04

02

01

00

80

40

20

10

08

04

02

01

00

80

40

03

51

48

00000...

000000..

0000000.

00000...

000000..

0000....

00000...

000000..

0000000.

0000....

00000...

000000..

0000000.

0004"

0005"

0006™"

0007"

ooo8"

ooo09"

oooAa"

000B"

oooc"

oooD"

000E"

000F™

0o010"

oo11"

oo1z2"

0013"

0014"

0015"

001e6"

0017"

oo18"

0019"

001Aa"

001B"

oo1lc"

001D"

001E"

001F"

0o020"

0o021"

00z2"

0023"

N N N N N N I N g N N N g Nl N N N N N N N N N g N Y N N

0024"

80
absolute
80
absolute
80
absolute - ———————————-
80
absolute
80
absolute
80
absolute
80
absolute - ————————-——-
80
absolute
80
absolute
80
absolute
80
absolute - ———————---——-
80
absolute
80
absolute
80
absolute
80
absolute -————-——-———-
0D
absolute
8A
absolute
80
absolute
80
absolute - ———————--——-
80
absolute
80
absolute
80
absolute
80
absolute - —-——————————-
80
absolute
80
absolute
80
absolute
80
absolute - - ——————-———-
80
absolute
80
absolute
80
absolute
80
absolute - - ——————-————-
0D
absolute
8A
absolute

DB

DB

DB

DB

DB

DB

DB

DB

80,80,80,80

80,80,80,80

80,80,80,80

0D, 8A,80,80

80,80,80,80

80,80,80,80

80,80,80,80

0D, 8A,80,80

—2-31—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

04 .1000 0000.... \ 80
.0... / 0025" absolute
02 100 00000... \ 80
..... 0.. / 0026" absolute —-—-——————————-— DB 80,80,80,80
01 10 000000.. \ 80
...... 0. / 0027" absolute
00 1 0000000. \ 80
....... 0 / 0028" absolute
80 10000000 \ 80
40 0....... / 0029" absolute
20 .1000000 O....... \ 80
O / 002A" absolute ————————————-— DB 80,80,80,80
10 ..100000 00...... \ 80
O I / 002B" absolute
08 .10000 000..... \ 80
.0.... / 002C" absolute
04 .1000 0000 \ 80
.0... / 002D" absolute
02 100 00000... \ 80
..... 0.. / 002E" absolute ————————————-— DB 80,80,80,80
01 10 000000.. \ 80
...... 0. / 002F" absolute
00 1 0000000. \ 80
....... 0 / 0030" absolute
80 10000000 \ 80
40 O0....... / 0031" absolute
00 .1000000 O....... \ 80
O / 0032" absolute ————————————-— DB 00
00 ..000000 00...... \ 00
0... .. / 0033" absolute ————————————-— DB 00
12 .00000 000..... \ 00
I / 0033 Set location counter - CSEG
.00.. |
DO 10 11...... |
.01.... | code-relative
00 0000 0000.... | 0000
06 .0000 0000.... \
.0... / 0000' absolute ————————————-— DR. JP IN.O
1D 110 00011... \ C3
..... 1.. / 0001' code-relative offset
...... 01 |
17 00010111 | 0017"
00 00000000 \
0. / 0003'" absolute ————————————-— JP C, SERIAL##
00 .1101101 O....... \ DA
O / 0004' absolute
00 ..000000 00...... \ 00
O I / 0005' absolute
0cC .00000 000..... \ 00
.0.... / 0006' absolute ————————————— JP Z,F2.0
AA .1100 1010 \ CA
1., / 0007'" code-relative offset
..... 01. |
78 ..., 0 0111100. | 003C"
00 0 0000000. \
....... 0 / 0009'" absolute ————————————-— SUB 6
Do 11010110 \ D6
03 0....... / O000A' absolute
32 .0000011 O....... \ 06
SO I / 000B' absolute ————————————— JP Z,F8.0
AB ..110010 10...... \ CA
B / 000C' code-relative offset
.01... |
40 ... 011 01000... | 0068"
00 000 00000... \
..... 0. / O0OE' absolute ———————————-—- DEC A
—2-32 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

FS ..., 00 111101.. \ 3D
...... 0. / 000F' absolute ————————————-— JPp Z,F9.0
95 1 1001010. \ CA
....... 1 / 0010' code-relative offset
5B 01...... |
80 ..011011 10...... | 006E"
07 000000 00...... \
0... .. / 0012' absolute ————————————-— DEC A
AC ...00111 101..... \ 3D
.0.... / 0013' absolute ————————————-— JP Z,F2.0
AA1100 1010.... \ CA
1., / 0014' code-relative offset
..... 01. |
78 ..., 0 0111100. | 003cC'’
00 0 0000000. \
....... 0 / 0016' absolute —-———————————-— RET
c9 11001001 \ Cc9
6A O....... / 0017' absolute ————————————-— IN. PUSH DE
B1 .1101010 1....... \ D5
SO I / 0018' absolute ————————————-— PUSH BC
47 ..110001 O1...... \ C5
0... .. / 0019' absolute ————————————-— LD A,7B
Cc7 .00111 110..... \ 3E
.0... / 001A' absolute
Bl .0111 1011 \ 7B
.0... / 001B' absolute —————-———————- LD (DR.O) , A
95 001 10010 \ 32
..... 1.. / 001C' code-relative offset
...... 01 |
00 00000000 | 0000"
00 00000000 \
1IF O0....... / 001E' absolute ————————————-— LD A, 0D6
35 .0011111 O0....... \ 3E
O I / 001F' absolute
86 ..110101 10...... \ D6
.0... .. / 0020' absolute ————————————-— LD (DR.0O+1),A
54 .00110 010..... \ 32
1., / 0021' code-relative offset
.01.. |
04 00 000001.. | 0001"
00 00 000000.. \
...... 0. / 0023' absolute ————————————-— LD A,2
7C ... 0 0111110. \ 3E
....... 0 / 0024' absolute
02 00000010 \ 02
19 0....... / 0025'" absolute —————-———————- LD (DR.0+2) ,A
50 .0011001 O0....... \ 32
S / 0026' code-relative offset
.01.... |
20 0000 0010.... | 0002"
05 .0000 0000.... \
.0... / 0028'" absolute - ——————————-—-— XOR A
78 101 01111... \ AF
..... 0.. / 0029' absolute - ———————————-— LD (F2.1),A
CA 00 110010.. \ 32
...... 1. / 002A' code-relative offset
A5 0O 1....... |
80 .0100101 1....... | 004B"
OE .0000000 O....... \
SO I / 002C'" absolute ————————————— LD A, (CONBR)
BO ..001110 10...... \ 3A
B / 002D'" data-relative offset
10... |
00 000 00000... | 0000"
0L 000 00000... \
..... 0. / 002F' absolute ————————————-— LD C,A
—2-33—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

3C
3C
03

66
DO

40

06

6D

57

00

60

B4

43

0C

41

D6

32

00

5B

8A

01

4B

91

40

60

75

8C

co

17

22

80

co

00

75

80

40

16

EC

01010111
00000000

00110010
00000000

..001100
..000000

..000000
..000000

001111..

0011110.

N TN N N T

0100.... |
0000....

01101...

~N N S

NN TN N N S

01000...

011000..

0111010.

N P N N N N g N

11000...

000000..

0111010.

~N N TN SN N N S

0030

0031"

0032"

0033"

0035"

0036"

0038"

0039

003A"

003B'

003cC’

003D

003F"

0040

0041"

0042"

0043"

0044"

0045"

004¢6'

0048"'

0049"

004A"

004B"'

004c'

004D'

4F

absolute --—————————-—-

1E
absolute
03

absolute -———————————-

CD
code-relative offset

0004"

absolute --—————————-—-

CD
code-relative offset

0057"

absolute --—————————-—-

Cl

absolute ————————————v

D1

absolute --—————————-—-

18
absolute
Cc4

absolute -—-———————————-

3A
data-relative offset

oo32"

absolute --———————————-

B7

absolute --————————-—-

28
absolute
0A

absolute --————————-—-

B9

absolute ————————————nv

28
absolute
18

absolute --————————-—-

3A
data-relative offset

0033"

absolute ————————————nv

B9

absolute --———————————-

28
absolute
18

absolute —-———————————-

00

absolute --————————-—-

3A
data-relative offset

ooo1"

absolute --————————-—-

B7

absolute —-———————————-

LD

CALL

CALL

POP

POP

JR

LD

OR

JR

CP

JR

LD

CP

JR

NOP

LD

OR

Jp

SERIAL##

F2.3

BC
DE

DR.O

A, (CONOFF)

Z,F2.2

Z,F2.4

A, (CONON)

Z,F2.5

A, (CONFF)

A

7, SERIAL##

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

—2-34—

AA .1100 1010.... \ CA
I / 0051'" code-relative offset
..... 01. |
66 ... 0 0110011. | 0033"
00 0 0000000. \
....... 0 / 0053'" absolute —-———————————- CP C
B9 10111001 \ B9
61 O....... / 0054' absolute ————————————-— Jp NZ, SERIAL##
55 .1100001 O....... \ C2
S / 0055'" code-relative offset
01.... |
10 0101 0001.... | 0051"
01 .0000 0000.... \
.0... / 0057'" absolute ————————————- F2 LD HL, CONCLS
OE 001 00001... \ 21
..... 1.. / 0058' data-relative offset
...... 10 |
02 00000010 | 0002"
00 00000000 \
61 O....... / 005A' absolute ————————————- JP DMSHL# #
80 .1100001 1....... \ C3
O / 005B' absolute
00 ..000000 00...... \ 00
O I / 005C' absolute
03 00000 000..... \ 00
0... / 005D' absolute —-———————————-— F2 LD A,0C9
E6 .0011 1110.... \ 3E
.0... / 005E' absolute
48 110 01001... \ Cc9
..... 0.. / 005F' absolute ————————————— LD (F2.1),A
CA 00 110010.. \ 32
...... 1. / 0060' code-relative offset
A5 ..., 0O 1....... |
80 .0100101 1....... | 004B"
32 .0000000 O....... \
O / 0062' absolute ————————————-— RET
55 ..110010 01...... \ C9
O I / 0063' absolute ————————————-— F2 XOR A
E3 .10101 111..... \ AF
.0... / 0064' absolute ————————————— LD (F2.1),A
2A .0011 0010 \ 32
I / 0065"'" code-relative offset
..... 01. |
96 0 1001011. | 004B"
00 0 0000000. \
....... 0 / 0067' absolute ————————————-— RET
c9 11001001 \ Cc9
10 O0....... / 0068' absolute ————————————— F8 LD HL, CONSOS
E1 .0010000 1....... \ 21
S R / 0069' data-relative offset
10.... |
20 0001 0010.... | 0012"
06 .0000 0000.... \
.0... / 006B' absolute ————————————-— JP DMSHL##
1D 110 00011... \ C3
..... 1.. / 006C'" code-relative offset
...... 01 |
5B 01011011 | 005B'
00 00000000 \
10 O0....... / 006E' absolute —-———————————— FO9 LD HL, CONSIS
E2 .0010000 1....... \ 21
S / 006F' data-relative offset
10.... |
200010 0010.... | 0022"
060000 0000.... \
.0... / 0071' absolute ————————————-— JP DMSHL##
—2-35—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

1D 110 00011... \ C3
..... 1.. / 0072' code-relative offset
...... 01 |
6C 01101100 | 00e6C"
00 00000000 \
8F 1....... / 0072' Define Entry Point
.00..... |
0111. |
00 1 0....... | data-relative
00 .0000000 O....... | oooo"
54 .0000000 O0....... |
.101. ... | 5 chrs
34 ..0100 0011 | "en
F4 ..0100 1111 | "o"
E4 ..0100 1110 | "N
25 .0100 0010 | "B"
28 .0101 0010 \ "R"
I / 0072' Define Entry Point
..... 00. |
FO 0 111..... |
10... | data-relative
10 000 00010... | ooo2"
06 000 00000... |
..... 110 | 6 chrs
43 01000011 | "cn
4F 01001111 | "o"
4E 01001110 | "N
43 01000011 | "cn
4C 01001100 | "L"
53 01010011 \ "s"
8E 1....... / 0072' Define Entry Point
.00..... |
0111. |
80 0O 1....... | code-relative
00 .0000000 O....... | 0000
64 .0000000 O....... |
.110. ... | 6 chrs
34 ..0100 0011 | "en
F4 ..0100 1111 | "o"
E4 ..0100 1110 | "N
45 ..0100 0100 | "p"
24 .0101 0010 | "R"
08 .0100 0000 \ RICA
... / 0072' Define Entry Point
..... 00. |
FO 0 111..... |
10... | data-relative
08 000 00001... | 0001
05 000 00000... |
..... 101 | 5 chrs
43 01000011 | "cn
47 01001111 | "o"
4F 01001110 | "N"
46 01000110 | "g"
46 01000110 \ "E"
8F 1....... / 0072' Define Entry Point
.00..... |
0111. |
19 ..., 1 0....... | data-relative
00 .0011001 O....... | 0032"
64 .0000000 O....... |
.110. ... | 6 chrs
34 ..0100 0011 | "en
F4 ..0100 1111 | "o"
E4 ..0100 1110 | "N
F4 .0100 1111 | "o"
—2-36 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

64
68

Fl

98
05

43
4F
4E
4F
4E

11
00
64

34
F4
ES5
34
95
38

FO

90
06

43
4F
4E
53
4F
53
8C

B9
00
54

44
D5
34
84
Cc8

FO

08
05

46
46
43
48
52
8C

01000011
01001111
01001110
01001111
01001110

.0010001
.0000000
.110. ...
..0100
..0100
..0100
..0101
.0100

01000011
01001111
01001110
01010011
01001111
01010011

.0111001
.0000000
.101....
..0100
..0100
..0101
.0100

01000110
01000110
01000011
01001000
01010010

0110.... | "E"
0110.... \ n"pr
/ 0072' Define Entry Point

|
111..... |
| data-relative
10011... | 0033"
00000... |
| 5 chrs
| "cn
| "o"
I "
I non
\ "N"
/ 0072' Define Entry Point
|
|
O | data-relative
O, | 0022"
Ocevnnn. |
| 6 chrs
0011 | "c"
1111 | "o"
1110 | "N"
0011 | "s"
1001.... | ""
0011.... \ "
/ 0072' Define Entry Point
|
111..... |
| data-relative
10010... | oo12"
00000... |
| 6 chrs
| "cn
| "o"
I "N"
| "S"
| "O"
\ "o
/ 0072' Chain External
|
|
..., | code-relative
O..on... | 0072"
0o |
| 5 chrs
0100 | "D"
1101 | "M"
0011 | "s"
1000.... | "H"
1100.... \ """
/ 0072' Define Entry Point
|
111..... |
| data-relative
00001... | ooo1"
00000... |
| 5 chrs
| "E"
| "E"
I non
| ngn
\ "R"

/ 0072' Chain External
|

—2-37—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

code-relative

|
|
80 .0101010 1....... | 0055"
65 .0000000 O....... |
.110.... | 6 chrs
340101 0011.... | "s"
550100 0101.... | "E"
240101 0010.... | "R"
940100 1001.... | "I"
140100 0001.... | "A"
c90100 1100.... \ "L"
I / 0072' End module —-——————-—--—- END
..... 00. |
CoO 1 110..... |
...00... | absolute
00 000 00000... | 0000
00 000 00000... \
000..... -
9E 1....... / 0072' End of file
00..... |
1111. \
....... 0 -
—2-38 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Microsoft Link-80 Linker

Description

Microsoft Link-80 (L80) is a comprehensive linking loader designed especially for use with Microsoft’s family of relocatable
language compilers/assemblers: FORTRAN-80, COBOL-80, BASCOM, and Macro-80. The purpose of Link-80 is to resolve
all addresses and data references in a standard Microsoft REL file into executable code, usually a COM (command) or SYS
(system) file. All commands and utilities used under the TurboDOS operating system are COM files, while the operating
system itself is a SYS file. SYS files are difficult to create using Link-80, though it is possible, and should not be attempted
under normal circumstances: TurboDOS' GEN linking loader should be used instead.

“LOADING” is the process of placing into memory a REL file and rationalizing every internal relocatable address and data
reference in the file into an absolute address relative to the beginning of the file.

“LINKING” is the process of rationalizing all address and data references that are external to a given REL file with the
corresponding global addresses and data references in another REL file being simultaneously loaded.

After loading and linking, the resultant object file may be saved and/or executed.

Commands

The basic command structure for Link-80 is as follows:
L80 commandlist
or

L8O
* command
* command

* command
* |E or attention-abort

The individual commands in a Link-80 operation consist of either a file reference (filename) or a switch.

Usage

In normal operation, Link-80, unless specifically instructed otherwise, loads a file's data segment first at the default address
of 0103h, followed by any COMMON segments, and then followed by the code segment. Proper operation is maintained by
placing a “routing jump” at 0100h, which cause execution to jump around the data and COMMON segments to the code
segment. Several potential problems arise concerning this routing jump. TurboDOS's GEN linker eliminates these problems
by always placing the code segment first at 0100h, followed by the data and COMMON segments.

The following sample source code is typical of TurboDOS (but not CP/M) code:

; HELLO.MAC
NAME ("HELLO")
.Z80 ;Use Zilog mnemonics
CR EQU 13 ;ASCII carriage return
LF EQU 10 ;ASCII linefeed
DSEG ;Locate in data segment
MSG: DB CR,LF,LF
DB 'Hello, this is a test message.'
DB CR,LF,LF, 'S’
CSEG ;Locate in code segment
LD DE, MSG ;Output the test message to the console
1D C,9
JP 0005H

—3-1—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

END

Ultimately, the above source code would be used to create a command file of type COM which, when executed, would cause
the message “Hello, this is a test file.” to appear on the console. The heart of this operation is the three lines of code between
the CSEG and the END pseudo-operations. These three lines should become the C-function (BDOS) operation that causes a

string to be passed to the console, exactly as desired.

When TurboDOS' GEN command is used, the resultant COM file code (as seen through a debugger) would be:

0100 LD DE, 0108
0103 LD c,09

0105 JP 0005

0108 message begins here
012C message ends here

This code, like all COM file code, would begin execution at 0100h and would perform exactly as desired.
Unfortunately, if the exact same source code is used with Link-80 in the standard manner for CP/M:
L80 HELLO,HELLO/N/E

the following code would result:

0100 NOP

0101 NOP

0102 NOP

0103 message begins here
0127 message ends here
0128 LD DE, 0103
012B LD C,09

012D JP 0005

This code would also begin execution at 0100h, but would not produce the desired results: the bytes of the message would
attempt to execute as though they were code! Chaos would result!

The solution to this problem is simple. If the source code is available, a slight modification would correct the situation:
; HELLO.MAC

’

NAME ('HELLO')

.280 ;Use Zilog mnemonics
CR EQU 13 ;ASCII carriage return
LF EQU 10 ;ASCITI linefeed

DSEG ;Locate in data segment
MSG: DB CR,LF,LF

DB 'Hello, this is a test message.'

DB CR,LF,LF, 'S’

CSEG ;Locate in code segment
BEGIN: LD DE, MSG ;Output the test message to the console

LD C,9

JP 0005H

END BEGIN

The addition of the label “BEGIN” and the reference to the label in the END pseudo-operation causes the generation of a
proper routing jump:

0100 JP 0128

0103 message begins here
0127 message ends here
0128 LD DE, 0103
012B LD c,09

—3-2

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

012D JP 0005
In a similar manner, a slightly different modification:
;HELLO.MAC

’

NAME ('HELLO'")

.Z80 ;Use Zilog mnemonics
CR EQU 13 ;ASCII carriage return
LF EQU 10 ;ASCII linefeed

DSEG ;Locate in data segment
MSG: DB CR,LF,LF

DB 'Hello, this is a test message.'

DB CR,LF,LF,'$"'

CSEG ;Locate in code segment
BEGIN:: LD DE, MSG ;Output the test message to the console

LD C,9

JP 0005H

END

coupled with a slight command variation:
L80 HELLO,HELLO/N/E:BEGIN
has the exact same effect and produces a proper routing jump.

A third solution involves the somewhat more drastic modification of making the source code “segmentless,” with neither
CSEG nor DSEG, nor COMMON specified, and with the code already in the exact order required by the COM file:

; HELLO.MAC

’

NAME ('HELLO'")

.Z80 ;Use Zilog mnemonics
CR EQU 13 ;ASCII carriage return
LF EQU 10 ;ASCII linefeed
LD DE, MSG ;Output the test message to the console
LD C,9
JP 0005H
MSG: DB CR,LF,LF
DB 'Hello, this is a test message.'
DB CR,LF,LF,"'S"'
END

When used with the normal Link-80 command:
L80 HELLO,HELLO/N/E

this approach produces the following code:

0100 NOP

0101 NOP

0103 NOP

0104 LD DE, 0108
0107 LD C,09

0109 JP 0005

010cC message begins here
012F message ends here

—3-3—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

In this manner, the entire file is placed in the default segment (data) and loaded at 0103h, without a routing jump. The three
NOP's at the beginning do nothing, and the remainder is exactly as desired.

If the source code is unavailable (only the REL file is present), the routing jump problem can still be conquered via some
creative loading. First, load the file so the code segment is at 0100h and the data segment is obviously well beyond the end of
the code segment:

L80 /P:0100/D:1000,HELLO,HELLO/N/E

Data 1000
Program 0100 <look here!

Link-80 faithfully reports that the first byte following the code (program) segment is 0108. Reload the file with the code
segment at 0100h and the data segment immediately following:

L80 /P:0100/D:0108,HELLO,HELLO/N/E

This method produces the following code:

0100 LD DE, 0108
0103 LD C,09

0105 JP 0005

0108 message begins here
012C message ends here

which is identical with that produced by TurboDOS' GEN linker.

Obviously, creating source code with proper labels and END pseudo-ops is the optimum way to proceed when Link-80 is to
be used.

Filenames

The term “filename” and its variations used with regard to Link-80 may be taken to mean a full file reference:
{d:}ilename{.typ}

where the braces indicate optional. The filename may have a drive designation but may not have a user designation. Link-80
is a CP/M program and cannot cross user boundaries in its searches.

The minimal (and normal) Link-80 command list is:
L8O relfil,outfil/N/E

where “relfile” is the name of the REL file to be loaded and “outfile” is the name of the COM file to be created. The two
filenames must be separated by a comma.

If more than one REL file is to be linked, the minimal command list becomes:
L8O relfilel,relfile2,relfil3,...,relfilen,outfile/N/E
The filenames must be separated by commas, and the first relfile encountered should be the “main module.”

All relfiles are assumed to be of type REL unless another filetype is specified. Even then, the file must be a type-REL file in
format and structure though it has a different filetype. Only REL-format files are acceptable for linking and loading.

The output file “outfile” is assumed to be of type COM unless another filetype is designated.

There are exceptions to this: it is the /N switch that causes a COM or COM-like file to be created. If the /X switch is used
instead, the output file is presumed to be an Intel HEX file; if the /Y switch is used, a ZSID SYM file.

The most often-committed error when using Link-80 is fail to specify at least two filenames, the relfile and the outfile, even
though the two names are identical. Attempting to execute Link-80 with only one filename is at best a waste of time: either
there is no relfile loaded or no output file created.

Switches

Link-80 uses a series of switches to perform operation upon the filename specified in the command list. Do not confuse Link-
80 switches with Macro-80 switches: they are completely unrelated.

/D:addr Set Data Segment Address
The /D:addr switch sets the origin for the data segment (actually the segment defined by DSEG, followed by any segments
defined by COMMON), as distinct from the code (program) segment (the segment defined by CSEG). If the /D:addr switch is

— 34—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

not entered, Link-80 automatically assigns both the data and code segments to the address defined by the /P:addr switch or, if
there is no /P:addr switch, to 0103h. “addr” must be in the current radix: the default radix is hexadecimal.

The /D:addr switch takes effect as soon as it is encountered and has no effect on file already loaded. It is important that the
/D:addr switch be placed before the file(s) it is to affect.

The /P:addr and /D:addr switches may be concatenated, but must be separated from a following filename by a comma:
L80 /P:0100/D:0108,HELLO,HELLO/N/E

You may enter more than one /D:addr switch in a given command list. This allows the placement of data and code segments
at addresses that are not end-to-end. This multiple use is restricted as follows:

1. One data or code segment may not overlay another.
2. Data segments may not be separated by a code segment.

3. Data or code segments that are not contiguous may have garbage data present in the gaps between segments. This
garbage data is whatever happens to be in memory at link time, and may or may not cause operational problems,
depending upon code structure and logic.

It may be possible to load and link a file or series of files that are technically too big for memory. By using both the /P:addr
and /D:addr switches the need is eliminated for Link-80 to build a relocation address table in memory which, with large
numbers of relocation address, can be a significant memory savings.

To determine the proper load addresses for this memory-saving possibility, determine the size of the data segment (the
combined sizes of segments designated by DSEG and COMMON) from a PRN file, add 0204h (0103h for the data segment
base and 0101h for the code segment offset), and the result is the address for the /P:addr switch: the /D:addr switch should be
/D:0103.

See the /P:addr switch.

IE Exit
The /E switch causes Link-80 to exit to the operating system when the linking/loading session is finished.

When linking and loading is finished, Link-80 displays certain information:

Data $SSS nnnn <>
Program SSSS nnnn < IllI>

fffff Bytes Free
[bbbb eeee rrrr]

where:

ssss = segment absolute start address

nnnn = segment absolute end address + 1 (next byte)

Il = segment length

fffff = number of byte of TPA above program (decimal)
bbbb = program relative start address (usually 0000h)

eeee = program absolute end address + 1

rrrr = number of 128-byte records used to save the program

See the /E:name, /G, and /G:name switches.

/E:name Set Start Address and Exit
The /E:name switch sets the routing jump to the address of the global label “name” and then causes Link-80 to exit to the
operating system when the linking/loading session is finished. “name” must be defined in one of the REL files loaded.

See the /E, /G, and /G:name switches.

G Execute and Exit
The /G switch causes Link-80 to execute the loaded and linked program from memory and then exit to the operating system
when the linking/loading session is finished.

See the /E, /E:name, and /G:name switches.

/IG:name Set Start Address, Execute and Exit

The /G:name switch sets the routing jump to the address of the global label “name”, then causes Link-80 to execute the
loaded and linked program from memory, and then exit to the operating system when the linking/loading session is finished.
“name” must be defined in one of the REL files loaded.

See the /E, /E:name, and /G switches.

—3-5—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

/H Set Radix to Hexadecimal
The /H switch sets or resets the current radix to hexadecimal. The default radix is hexadecimal.

See the /O switch.

IM Display All Globals
The /M switch directs Link-80 to display all globals, both defined and undefined, on the console screen. Defined globals are
followed by their addresses in the current radix. Undefined globals are followed by an asterisk.

See the /U switch.

/N Save Output File as COM File

The /N switch causes the filename immediately prior to it to be the name of the output file to be created. The output file is
assumed to be of type COM, or COM-like in structure with a different (specified) filetype, unless either the /X or /Y switch is
also present.

The /N switch has no effect until a /E, /E:name, /G, or /G:name switch is encountered.

The single most common error in using Link-80 is a failure to specify at least two filenames, even if they are alike. In the
following command:

L80 TEST,TEST/N/E
the input is the file TEST.REL and the output is the file TEST.COM.

It is the switches and not the order that determine which is the input and which is the output file. The following two
commands are identical:

L80 TSTIN,TSTOUT/N/E

L80 TSTOUT/N,TSTIN/E
Both have the input file TSTIN.REL and the output file TSTOUT.COM.
See the /E, /E:name, /G, /G:name, /N:P, /X, and /Y switches.

IN:P Save Code Segment of COM File

The /N: switch causes Link-80 to save the code (program) segment only into the file whose name is immediately prior to the
switch. By saving the code segment only, a small COM file can be created for a program with a large but undefined data area,
such as a big buffer defined and initialized on-line during execution.

The output file is assumed to be of type COM, or COM-like in structure with a different (specified) filetype, unless either the
/X or Y switch is also present.

The /N:P switch has no effect until a /E, /E:name, /G, or /G:name switch is encountered.
See the /E, /[E:name, /G, /G:name, /N, /X, and /Y switches.

/10 Set Radix to Octal
The /O switch sets or resets the current radix to octal. The default radix is hexadecimal.

See the /H switch.

/P:addr Set Code Segment Address

The /P:addr switch sets the origin for both the data segment (actually the segment defined by DSEG, followed by any
segments defined by COMMON) and the code (program) segment (the segment defined by CSEG). If the /P:addr switch is
not entered, Link-80 automatically assigns both the data and code segments to 0103h. “addr” must be in the current radix: the
default radix is hexadecimal.

The /P:addr switch takes effect as soon as it is encountered and has no effect on file already loaded. It is important that the
[/P:addr switch be placed before the file(s) it is to affect.

The /P:addr and /D:addr switches may be concatenated, but must be separated from a following filename by a comma:
L80 /P:0100/D:0108,HELLO,HELLO/N/E

You may enter more than one /P:addr switch in a given command list. This allows the placement of data and code segments
at addresses that are not end-to-end. This multiple use is restricted as follows:

1. One data or code segment may not overlay another.
2. Code segments may not be separated by a data segment.

3. Data or code segments that are not contiguous may have garbage data present in the gaps between segments. This
garbage data is whatever happens to be in memory at link time, and may or may not cause operational problems,
depending upon code structure and logic.

— 3-6—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

See the /D:addr switch.

/IR Reset Link-80
The /R switch causes Link-80 to cancel all previous loading and linking and restore it to initial condition.

IS Perform Library Search
The /S switch causes Link-80 to search the library file immediately preceding it for routines, subroutines, global definitions,
etc.

In a command line, the filename with the /S switch must be separated from the rest of the command list by commas:
L80 TEST/N,TSTLIB/S, TEST/G

The /S switch suppresses the display of undefined globals. The display may be restored via the /U switch.

See the /U switch.

/U Display Undefined Globals

The /U switch directs Link-80 to display all undefined globals on the console screen. Undefined globals are followed by an
asterisk.

The /U switch operates only in command lists that contain neither a /E, /E:name, /G, nor /G:name switch: this switch is
primarily for use in conjunction with the /S switch, which normally suppresses the display of undefined globals (the display
of undefined globals is normally automatic).

See the /E, /E:name, /G, /G:name, /M, and /S switches.

IX Save HEX file

The /X switch, when used in conjunction with the /N switch, causes the filename immediately prior to it to be the name of the
output file to be created as an Intel HEX file. Intel HEX files are primarily used as code for EPROM programmers and
similar devices.

The /N/X switch pair has no effect until a /E or /E:name switch is encountered.
See the /E, /E:name, /N, and /N:P switches.

1Y Save SYM file
The /Y switch, when used in conjunction with the /N switch, causes the filename immediately prior to it to be the name of the
output file to be created as a special SYM symbol-table file for use with Digital Research's SID or ZSID debuggers.

The /N/Y switch pair has no effect until a /E or /E:name switch is encountered.
See the /E, /E:name, /N, and /N:P switches.

Error Messages

%2nd COMMON Larger /XXXXXX/
The first definition of a specific COMMON segment encountered was not the largest definition of that COMMON. Reorder
the modules so the largest definition is first or redefine the COMMON segments involved.

%lntersecting Data Area
The data areas intersect and an external chain entry is in this intersection, preventing the final value from being converted to a
current value.

%lIntersecting Program Area
The code (program) areas intersect and an external chain entry is in this intersection, preventing the final value from being
converted to a current value.

%Mult. Def. Global YYYYYY
The global symbol “YYYYYY?” has been defined in more than one linked module.

%0Overlaying Data Area
The /P:addr and /D:addr switches were set with addresses too close together, causing the data segment to be overlain.

%Overlaying Program Area
The /P:addr switch is set to an area already filled or an area reserved by Link-80, causing the code (program) segment to be
overlain.

?<filename> Not Found
The REL format file <filename> does not exist, is not on the current user area, is locked by another process, or otherwise
cannot be found.

—3-7—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

?Can't Save Object File
The directory is full, the disk is full, or the object file already exists as read only or is locked by another process.

?Command Error
An illegal command was issued.

?Loading Error
The last file loaded was not a standard Microsoft REL format file.

?No Start Address
The /G or /G:name switch was issued but no main program has been loaded.

?Nothing Loaded
The /E, /E:name, /G, /G:name, or /S switch was encountered but nothing has been loaded.

?0ut of Memory
Not enough memory available to load the current module/file.

?Start Symbol—<name>—Undefined
An /E:name or /G:name switch was encountered but the global symbol “name” has not been defined.

Origin Above Loader Memory
An /E, [E:name, /G, or /G:name was encountered and the program requirements or a /D:addr or /P:addr switch exceed the
upper limit of Link-80's memory space.

This error prompts the operator with a “Move Anyway (Y or N)?” message, if “Y” is entered Link-80 attempts to move the
program and proceed. If the /N switch is present, the output file is saved regardless of operator response.

Origin Below Loader Memory
An /E, /[E:name, /G, or /G:name was encountered and a /D:addr or /P:addr switch is set below the minimum address of 0100h.

This error prompts the operator with a “Move Anyway (Y or N)?”

message, if “Y” is entered Link-80 attempts to move the program and proceed. If the /N switch is present, the output file is
saved regardless of operator response.

—3-8—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Microsoft Cross-Reference Utility

Description

The Microsoft cross reference utility, Cref-80 (CREF80), is designed to process a special assembly file into a cross reference
listing file. The special assembly file is created by Macro-80 when its /C switch is used.

The cross reference listing file has the type PRN, and is similar to the PRN listing file created by Macro-80 with two
additional features:

1. Each source statement is numbered with a cross reference line number.

2. Atthe end of the listing, variable names appear in alphanumeric order, with each name followed by the numbers of
every line where it is referenced or defined (the line where it is defined is flagged by a “#”).

Creation
A cross reference listing file is created in two operations. The first operation is the creation of the CRF file via Macro-80:
M80 =CONDRV/C
The second is the creation of the cross reference listing PRN file from the CRF file via Cref-80:
CREF80 =CONDRV
The exact format of a Cref-80 command is:
CREF80 {o:}={d:}filename{.typ}

where:
{0} = the drive of the PRN file if not the current drive
{d:} = the drive of the CRF file if not the current drive
filename = the name of the CRF file
{.typ} = the type of the CRF file if not CRF

Confusion often arises between the PRN files created directly with Macro-80 and the PRN files created via Cref-80. They are
indeed very similar, but those created with Cref-80 contain the additional cross reference information and provide a superior
troubleshooting and debugging tool.

Control Directives

Occasionally, it may be desirable to create a cross reference listing for all or part of a file on an ongoing basis. This may be
done via Macro-80's .CREF and .XCREF assembler directives. these directives are covered in detail in the Macro-80 chapter.

Sample Cross Reference Listing File

A sample file based upon the code sampled in the Macro-80 chapter follows (again, comments have been removed to shorten
code), compare this file with the PRN listing file:

1 NAME ('"CONDRV")

2 .7Z80

3 STRING MACRO A,B,C,D

4 IFNB <D>

5 DB A,B,C,D+128

6 ELSE

7 IFNB <C>

8 DB A,B,C+128,128

9 ELSE
10 IFNB
11 DB A,B+128,128,128
12 ELSE
13 IFNB <A>
14 DB A+128,128,128,128
15 ELSE

—4-1—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

16 DB 128,128,128,128

17 ENDIF

18 ENDIF

19 ENDIF

20 ENDIF

21 DB 128,128,128,128

22 DB 128,128,128,128

23 DB 128,128,128,128

24 ENDM

25 0000" DSEG

26 0000" CF CONBR:: DB OCFH

27 0001" FFCHR: :

28 0001" 0cC CONFF:: DB 12

29 0002" CONCLS: : STRING 26

30 0002" 9A 80 80 80 + DB 26+128,128,128,128

31 0006™ 80 80 80 80 + DB 128,128,128,128

32 000A"™ 80 80 80 80 + DB 128,128,128,128

33 000E"™ 80 80 80 80 + DB 128,128,128,128

34 0012" CONSOS: :STRING 13,10

35 0012" 0D 8A 80 80 + DB 13,10+128,128,128

36 001e" 80 80 80 80 + DB 128,128,128,128

37 001A" 80 80 80 80 + DB 128,128,128,128

38 001E"™ 80 80 80 80 + DB 128,128,128,128

39 0022" CONSIS::STRING 13,10

40 0022" 0D 8A 80 80 + DB 13,10+128,128,128

41 0026" 80 80 80 80 + DB 128,128,128,128

42 002A" 80 80 80 80 + DB 128,128,128,128

43 002E" 80 80 80 80 + DB 128,128,128,128

44 0032" 00 CONOFF: : DB 0

45 0033" 00 CONON:: DB 0

46 0034" CSEG

47 0000 CONDRQ@: :

48 0000 C3 0017" DR.O: JP IN.O

49 0003" DA 0000* JP C, SERIAL##

50 0006" CA 003C' JP Z,F2.0

51 0009 D6 06 SUB 6

52 000B' CA 0068" JP Z,F8.0

53 000E’ 3D DEC A

54 Q000F' CA 006E' JP Z,F9.0

55 0012" 3D DEC A

56 0013" CA 003C' JP Z,F2.0

57 0016’ C9 RET

58 0017" D5 IN.O: PUSH DE

59 0018' C5 PUSH BC

60 0019' 3E 7B LD A, 7BH

61 001B' 32 0000 LD (DR.O) , A

62 O001E’ 3E D6 LD A, OD6H

63 0020" 32 0001" LD (DR.0+1) ,A

64 0023" 3E 02 LD A,2

65 0025" 32 0002" LD (DR.0+2),A

66 0028' AF XOR A

67 0029' 32 004B' LD (F2.1),

68 002C' 3A 0000™ LD A,(CONBR)

69 002F' 4F LD C,A

70 0030 1E 03 LD E,03

71 0032" CD 0000~ CALL SERIAL##

72 0035" CD 0057" CALL F2.3

73 0038! Cl POP BC

74 0039" D1 POP DE

75 003A! 18 C4 JR DR.O

76 003C! 3A 0032" F2.0: LD A, (CONOFF)

77 003F" B7 OR A

78 0040 28 0A JR Zz,F2.2

79 0042 B9 CP C

80 0043" 28 18 JR Z,F2.4

81 0045" 3A 0033" LD A, (CONON)
—4-2 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

82 0048" B9 CPp C
83 0049" 28 18 JR Z2,F2.5
84 (004B' 00 F2.1: NOP
85 004cC’ 3A 0001" F2.2: LD A, (CONFF)
86 004F" B7 OR A
87 0050" CA 0000~ JP Z,SERIAL##
88 0053" B9 CP C
89 0054" Cc2 0000~ JP NZ, SERIAL##
90 0057 21 0002" F2.3: LD HL, CONCLS
91 O0O05A" C3 0000~ JP DMSHL# #
92 005D' 3E C9 F2.4: LD A, 0C9H
93 005F! 32 004B" LD (F2.1),A
94 0062" C9 RET
95 0063 AF F2.5: XOR A
96 0064' 32 004B' LD (F2.1) ,A
97 0067 C9 RET
98 0068" 21 0012" F8.0: LD HL, CONSOS
99 006B' C3 0000~ JP DMSHL##
100 O0O06E" 21 0022" F9.0: LD HL, CONSIS
101 0071° C3 0000~ JP DMSHL# #
102 END
Macros:
STRING
Symbols:
oooo1" CONBR 00021 CONCLS 00001" CONDR(@
ooo1l1" CONFF 00321" CONOFF 00331" CONON
00221" CONSIS 0o0121" CONSOS 0072* DMSHL
0000 DR.O 003C! F2.0 004B' F2.1
0o04c! F2.2 0057 F2.3 005D F2.4
0063 F2.5 0068" F8.0 006E" F9.0
ooo1l1" FFCHR 0017" IN.O 0055~* SERIAL
CONBR 26%# 68
CONCLS 29# 90
CONDR@ 474
CONFF 284# 85
CONOFF 444 76
CONON 454 81
CONSIS 394 100
CONSOS 344 98
DMSHL 91 99 101
DR.O 484# 6l 63 65 75
F2.0 50 56 704
F2.1 67 844 93 96
F2.2 78 854#
F2.3 72 90+
F2.4 80 924
F2.5 83 954
F8.0 52 o84
F9.0 54 1004#
FFCHR 27#
IN.O 48 584#
SERIAL 49 71 87 89
STRING 3# 29 34 39
—4-3—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Microsoft Lib-80 Library Utility

Description

Microsoft's LIB-80 (LIB80 or LIB) library utility is a powerful but simple library manager that allows the programmer to
perform several distinct but related tasks:

Concatenate multiple Microsoft REL format files into a single REL format file.
List the contents, global entrypoints, and external references of a library file.
Extract one or more modules from a library file.

Replace a module in a library file with another.

IMPORTANT: LIB-80 is potentially destructive, so NEVER OPERATE ON THE ONLY COPY OF A LIBRARY FILE. It
is surprisingly easy to overwrite or otherwise destroy a file with L1B-80.

Commands

The basic command structures of L1B-80 are:
LIB8O libfile=srcfile,srcfile,.../s1/s2/s3.../sn
LIB8O libfile=srclbry<modules>,.../s1/s2/s3.../sn
LIB8O0 srclbry/s1/s2/s3.../s4

LIB8O
* command
* command

*

* attention abort

where:
“libfile” = the output library file, either type LIB or REL
“srcfile” = an individual REL file
“scrlbry” = a REL library file
“<modules>“ = one or more modules within a REL library file
“/s1”, etc. = optional switches

Output Field

The output field “libfile=" is optional, but the equal sign is required if the field is present.

If a command structure or switch is used that produces an output library, but the output library field is not present, LIB-80
produces an output library of the default filename “FORLIB.LIB” or, if the /E switch is used, “FORLIB.REL”.
“FORLIB.REL is also the name of the standard library file provided with FORTRAN-80, so be especially careful if you have
this language.

When an output library file is created, any existing file of the same name is destroyed.

Source Field

The source field is that portion of the command line between the optional output field and the optional switches: an entry of
some type is required in the source field (the source field may be the only field).

The source field may consist of:
One or more filenames.
One or more modules within one or more filenames.

A combination of the above.

— 51—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

If the source field consists of one or more simple (one module) REL files, or one or more library REL files taken in entirety,
separate the filenames by commas:

filel,file2,file3,...

If the source field consists of one or more modules within one or more library REL files, follow each filename immediately
(no space) with its module designation in angle brackets and separate the filename/module groups with commas:

filel<modules> file2<modules>,file3<modules>,...
Of course, the two forms may be combined:
filel,file2<modules>file3<modules> file4,...
If the direct entry (asterisk prompt) form of command entry is chosen, the last example would become:

* filel
* file2<modules>
* file3<modules>
* file4

*

Module Designations

The “<modules>* designator can be in any of several distinct syntaxes.
1. To extract a single module from a file, the syntax is:
file<mod1>
2. To extract more than one distinct modules:
file<modl1,mod2,mod3,mod4>
The named modules need not be contiguous.
3. To extract all modules from the first module through a specified module:
file<..mod1>
Notice that there are TWO periods.
4. To extract all modules from a specific module through the last module:
file<mod1..>
5. To extract all modules from one specific module through another specific module:
file<modl..mod2>
6. To extract n modules following a given module, but not the given module itself:
file<mod1+4>
The four modules following “mod1” are extracted, “mod1” is not.
7. To extract n modules before a given module, but not the given module itself:
file<mod1-1>
The module ahead of “mod1” is extracted, “mod1” is not.
8. To extract all modules between to given modules:
file<mod1+1..mod2-1>
Al
9. To extract all modules EXCEPT a given module:

modules between “mod1” and “mod2” are extracted, but neither “mod1” nor “mod2”.

file<..mod1-1,mod1+1..>
All modules except “mod1” are extracted.
10. To extract all modules:
file

Other combinations are of course possible.

—5-2__

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Switch Field

An entry in the switch field instructs LIB-80 to perform a specific task. Each switch is a letter preceded by a slash.

IC Cancel
The /C switch cancels all LIB-80 actions taken so far, without exiting to the operating system. Use /C if you are operating
interactively and have specified the wrong modules or the wrong order.

IE Exit
The /E switch exits to the operating system, finishing whatever work is in process. The current output library is renamed from
type LIB to type REL, and any previous copy of the library is deleted in the process.

If it is desired that the library retain the LIB filetype, exit via an attention abort rather than /E.

WARNING: THE /E SWITCH CAN EASILY DESTROY YOUR LIBRARY. Because the /E switch is so dangerous,
several recommendations are made here:

ALWAYS work from a copy of a library, never the only copy.

ALWAYS use a name in the output field, even if one is not needed: “GARBAGE” is a good name. This covers you in
case of error.

ALWAYS exit LIB-80 via an attention abort, rather than /E, unless you specifically want the /E rename.

In addition to the above recommendations, it is further recommended that master copies of a library be renamed to a type
other than LIB or REL.

/H Hexadecimal
The /H switch sets the listing mode to hexadecimal (default) and cancel the effects of a previous /O switch. This switch is
normally used in conjunction with the /L or /U switch.

/L List
The /L switch lists all the modules in a library, and all the global entrypoints and external references in each module.

All listing is to console: attention echo or some other means must be used to route the listing to a printer or file.

/10 Octal
The /O switch sets the listing mode to octal and cancels the effects of a previous /H switch. This switch is normally used in
conjunction with the /L or /U switch.

/IR Rename
The /R switch renames the current output library from type LIB to type REL. This switch performs exactly like the /E switch
save that it does not exit to the operating system.

WARNING: ALL THE WARNINGS APPLIED TO THE /E SWITCH APPLY TO THE /R SWITCH AS WELL.

/U List Undefined
The /U switch lists all those external references which could be left undefined by a single pass through a file or library. Since
this is a single pass operation, those external references that refer “backwards” to a module already passed are listed.

— 53—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Software 2000 GEN Utility

Introduction

GEN is a specialized two-pass linker utility for the Z-80 processor provided by Software 2000, Inc., for use with the
TurboDOS operating system. GEN links together relocatable Microsoft format object code modules of type “.REL” to
produce a command file of type “.COM?”, a TurboDOS system file of type “.SYS”, or an absolute code file of any type.

Basic Operation

The GEN linker may be operated in either a direct or interactive mode. GEN is invoked via the command line:
GEN srcfile {destfile} {;options}

The “srcfile” argument identifies the two input files used by the linker: a configuration or generation file “srcfile. GEN” and a
parameter file “srcfile.PAR”. Either “srcfile. GEN” and/or “srcfile.PAR” may be missing. If “srcfile. GEN” is missing, then
GEN enters an interactive mode. If “srcfile.PAR” is missing, no parameters are modified from their default values.

If the file “srcfile. GEN” is found, it must contain a list of the relocatable object code modules to be linked. Each line of the
“srcfile. GEN” must contain one of the following two forms:

objfile {,obffile} ... {;comments}
; {comments}
Whitespace may be liberally used, but blank lines are NOT permitted and may cause premature “srcfile. GEN” termination.

If the file “srcfile. GEN” is not found, then GEN enters an interactive mode, presenting an asterisk “*” prompt. The syntax of
each directive in the interactive mode is:

objfile {,obffile} ...
A null entry (carriage return only) terminates input and cause linking to commence.

All “objfile” entries, whether from “srcfile. GEN” or from interactive mode, are presumed to have type “.REL” unless an
explicit filetype is specified.

After obtaining the list of “objfile” modules, whether from “srcfile. GEN” or interactively from the console, the GEN linker
links the modules into an executable “destfile” output file, using a two-pass linking process that displays the encoded name of
each module (as defined by the “MODULE” pseudo-instruction in the TASM assembly language source file) as it is linked.

During the linking process, each module is checked for a magnetically encoded serial number consisting of two parts: an
“origin” number, indicating the TurboDOS OEM from whom the module was obtained, and a “unit” number indicating the
specific TurboDOS from that OEM. GEN does not link modules with differing serial numbers or from OEM's other than
GEN's own. No restrictions are place on non-serialized modules, which may be freely linked with each other or with
serialized modules.

After linking, GEN looks for a “srcfile.PAR” parameter file and, if found, patches the global parameters of “destfile”
according to the instructions contained in “srcfile.PAR”.

Finally, after linking and patching, “destfile” is written to disk.

The “destfile” argument specifies the name of the executable output file to be created. If “destfile” is omitted, then “srcfile” is
taken as “destfile”.

The “destfile” argument should have an explicit filetype. The filetypes recognized are “.COM” and “.SYS”. If the filetype is
missing, type “.COM?” is assumed. If the filetype is not “.SYS” a file identical with a type “.COM”

file is created, regardless of filetype, unless options are used to force a non-".COM” file.

Options

The options for GEN are always preceded by a semicolon prefix “;”, and must be the last entries on the command line. Any
number of options may be concatenated after a single semicolon. The options recognized by GEN are:

:Knnnn
Defines the lower limit of the common area in a bankswitched environment as “nnnn” hex.

—6-1 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

;Lnnnn
Defines the lower limit of a “.COM?” or other non-".SYS” output file as “nnnn” hex. The default value is “L0100”, which is
standard for “.COM” files.

;M

Lists a load map.

'S

Lists a sorted symbol table.

:Unnnn
Defines the upper limit of a “.SYS” output file as “nnnn” hex. The default is “UFFFF”, which is the 64KB upper memory
boundary.

;X
Diagnose undefined references.

Generation File

The GEN generation file “srcfile. GEN” consists of a list of the relocatable object code modules, produced by the TASM
assembler, to be linked together. This file may be created using any ordinary text editor or word processor, as long as the text
editor or word processor output is a true ASCII file. ASCII is a 7-bit code, and GEN may fail if the generation file contains
any character with bit 8 set.

A sample generation file follows:
; OSSINGLE .GEN

;Generic single-user system without spooling

;February 15, 1987

STDSINGLE ;Standard non-spooled single-user package

PATCH ;Patch area

CPMSUP ; Support for C-fnc 7,8,24,28,29,31,37,107

; MPMSUP ;Support for C-fnc 141-143,153,159-161

; QUEMGR ; Support for C-fnc 134-140

; SUBMIT ;Support for CP/M $$$.SUB files

; USRSUP ; Support for user-defined functions

HDWNIT ;Hardware initialization

SPDCPU ;Serial/parallel driver

RTCCPU ;Real-time clock driver

INTCPU ;Interrupt-controller driver

CON192 ;Console driver

LSTCTS ;Serial list driver with CTS handshaking

; LSTXON ;Serial list driver with Xon/Xoff handshaking
; LSTETX ;Serial list diver with ETX/ACK handshaking
LSTPAR ;Parallel list driver

DSKFLP ;Floppy disk driver

DSKHRD ;Hard disk driver

’

;End of GENeration file

Please note the liberal use of whitespace and comments to increase legibility, and that there are NO blank lines (there are,
instead, many blank comment lines containing only a semicolon). GEN would interpret this file as:

STDSINGLE, PATCH, CPMSUP, HDWNIT, SPDCPU, RTCCPU, INTCPU, CON192, LSTCTS, LSTPAR, DSKFLP, DSKHR
D

Parameter File

GEN includes a very powerful symbolic patch facility that may be used to alter global parameters (those with “::” labels in
the M80 assembly language source file) in the linked system or command file from their default value to whatever value is

—6-2 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

appropriate for the output file at hand. This patching is performed via a parameter file “srcfile.PAR” as the final step in the
linking process. The syntax of each parameter file must be in one of two forms:

location = value {,value} ... {;comment}
; {comment}

where the “value” assignments are to be found in consecutive locations in memory, starting at the address specified by
“location”.

The “location” argument may be the name of a public or global symbol, an integer constant, or an expression composed of a

[T1]

public symbol name plus or minus an integer constant, and must be followed by an equal sign “=".

The “value” arguments may be a public symbol name, an integer constant, an expression composed of a public symbol name
plus or minus an integer constant, or an ASCII string.

The “value” expression is stored as a word value (two bytes, least significant byte first) if its value exceeds 255 or if it is
enclosed in parentheses (...), otherwise it is stored as a byte. Public symbol names are always treated as words.

All integer constants must be in hexadecimal and must start with a digit to distinguish them from names.

ASCII strings must be enclosed in double quotes “...” and are stored as a series of bytes. Control characters may be entered as
“nc” (circumflex character) in a one character string, but not in a multi-character string. The circumflex character may not be
entered in a string, and must be entered as the hex value 5E.

It may be mentioned at this time that either a comma “,” or a carriage return/linefeed pair may be used as a value separator.
Strings and discrete hex values may be entered on the same line or not, as desired.

A sample parameter file follows:
;OSSINGLE.PAR

;Generic single-user system without spooling
;15 February 1987

’

BUFSIZ = 03 ;Buffer size, 1024 bytes
NMBUFS = 02 ;Number of disk buffers
MEMRES = (0800) ;Reserved operating system scratch area
SRHDRV = OFF ;Search drive
AUTUSR = 80 ;Automatic log-on
ATNCHR = 00 ;Attention character
WARMEFN = 00, "WARMSNGL", "SyYys" ;Filename to warmstart
CONAST = 00, CONDRA ;Console = serial port O
CONBR = 8E ;Console Baud rate
FFCHR = 1A ;Console formfeed chr
PTRAST = 01,LSTDRA ;Printer A = CTS serial port 1
00, LSTDRB ;Printer B = parallel port O
CTSBR = 67 ;CTS printer Baud rate
CTSFEF = 0C ;CTS printer auto formfeed
LSTPFF = 0C ;Parallel printer auto formfeed
DSKAST = 00, DSKDRA ;Drive A = floppy
01, DSKDRA ;Drive B = floppy
= hard

00, DSKDRB ;Drive C

;End of PARameter file

Again, as in the generation file, note the liberal use of whitespace and comments to increase legibility. GEN would treat this
parameter file as:

BUFSIZ = 03
NMBUEF'S 02
MEMRES (0800)

—6-3—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

SRHDRV = OFF

AUTUSR = 80

ATNCHR = 00

WARMFN = 00, "WARMSNGL", "SYS"
CONAST = 00, CONDRA

CONBR = 8E
FFCHR = 1A
PTRAST = 01,LSTDRA,00,LSTDRB
CTSBR = 67
CTSFF = 0C

LSTPFF = 0C
DSKAST = 00,DSKDRA, 01, DSKDRA, 00, DSKDRB

Serialization

The Software 2000 GEN linker is a serialization sensitive linker. That is, it may link either serialized or unserialized modules
together or to each other indiscriminately, providing the serialized modules have identical serial numbers and match the
partial serial number of GEN itself.

In the TurboDOS environment, a module may be serialized by means of an origin and unit number defined in the source code
as:

GLOBAL ORIGIN,UNIT
ORIGIN EQU nnnnH ;Origin number
UNIT EQU nnnnH ;Unit number

Note that the definition is that of a GLOBAL EQUATE, which produces a word value for each variable that is readable by
GEN during the linking process. GEN itself is partially serialized with the ORIGIN value.

If an attempt is made to execute GEN with serialized modules with ORIGIN values different from GEN's own, a serialization
error occurs and linking is denied. Likewise, if an attempt is made to link serialized modules with either differing ORIGIN or
UNIT values, a similar error occurs. The solution is to use properly serialized modules, or either remove or change the serial
numbers causing conflict.

WARNING: It is unethical (as well as illegal) to reserialize any module unless you are legally authorized to have that
module. Remember always the Golden Rule: Semper Non Rippus Offus.

Individual REL modules may be reserialized via the RELSER public domain utility provided as part of the Z80 manual
library.

The serial number for GEN.COM is located in a word at address 01BBH (assuming GEN.COM starts at 0100H). Since this
word is stored, like all words, least significant byte first, and since the maximum ORIGIN value was under 64 or 0040H, only
the single byte located at 01BBH need be changed. This may be accomplished via ZSID or any other debugger, via the
TurboDOS MONITOR utility, of via the GENSER utility provided as part of the Z80 manual library. Source code for the
GENSER utility follows:

NAME ('GENSER')

.280 ;Use Zilog mnemonics

ek kk kK E t Ak Ak hkkhkhAhkhAhAhAhkhkdAhhdAkhrhhkdAhhdhrhkhdAhhdhrhhdhhdhrhkhkhdhkhkdrhkkhkhrhkhkkdrhkhkxhkhkx*%
; quates

’

BEL EQU 7 ;Bell
FF EQU 10 ;Formfeed
CR EQU 13 ;Carriage Return
BDOS EQU 0005H ;C-function entry address
TDOS EQU 0050H ;T-function entry address
SERBYT EQU 00BBH ;GEN.COM serial number address
WRCNB EQU 9 ;C-9: write console buffer
RDCNB EQU 10 ;C-10: read console buffer
OPFIL EQU 15 ;C-15: open file
CLFIL EQU 16 ;C-16: close file
WRSEQ EQU 21 ;C-21: write sequential

— 64 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

WRATT
RDRAN

WRCPT

;*****

TFCB:

’

INPBUEF:

’

IINMSG:
INPMSG:

MSDSER:
LSDSER:

OUTMSG:

FNFMSG:

;*****

S1:

EQU
EQU

EQU

Data

DSEG

DB
DB
DB
DB
DB
DB

DB

DB
DB
DB
DB
DB
DB
DB
DB

DB
DB
DB

DB
DB
DB

Code

CSEG

LD
LD
CALL

LD
LD
CALL

OR
JR

LD
LD
Jp

LD
LD
CALL

LD
LD
CALL

LD
LD
RRCA
RRCA

30 ;C-30: write file attributes
33 ;C-33: read random

13 ;T-13: write COMPAT byte

KA AR A A A R AR A IR A A I A A I A I A A I A A I AR I AR I AR I AR AR A AR A AR A AR A AR A AR AR KA K

;Locate in data segment

0 ;File control block

2,0,0,0,0 ; Input Buffer

BEL,CR, FF,FF

'Tllegal entry, try again!'

CR,FF,FF

! The HEXADECIMAL value of the old serial number is: !
lOl

lOl

CR,FF,FF

'Enter the HEXADECIMAL value of the new serial number: S

CR, FF, FF
'The serial number has been changed.'
CR,FF, 'S’

BEL,CR, FF, FF
'GEN.COM has not been found.'
CR,FF, 'S’

KA A IA A A I A A AR AR A A I A A I A AR A A I A A I A A I AR I AR I A A A A AR A AR A AR A AR A AR AR KA K

;Locate in code segment

E, 04H ;Inhibit global access
C,WRCPT

TDOS

DE, TFCB ;Clear all GEN.COM attributes
C,WRATT

BDOS

A ;Was file found?

Z, Sl ;If yes, skip

DE, FNFMSG ;Display file not found and exit
C, WRCNB

BDOS

DE, TFCB ;Open GEN.COM

C,OPFIL

BDOS

DE, TFCB ;Read 1st record

C, RDRAN

BDOS

A, (SERBYT) ;Get current serial number

B,A ;Save 1ls digit

;Shift ms digit

— 6-5—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

S2:

S3:

S4:

S5:

S56:

S7:

RRCA
RRCA
AND
OR
CP
JR

ADD
LD
LD
AND
OR
CP
JR

ADD
LD
LD
LD
CALL

LD
LD
CALL

LD
CP
JR

LD
LD
CALL

JR

LD
CP
JR

CP
JR

SUB
CP
JR

CP
JR

AND
RLCA
RLCA
RLCA
RLCA
LD
LD
CP
JR

CP
JR

SUB
CP
JR

A, 7
(MSDSER) , A
A,B

OFH

0

l:l

c, s3

A, 7
(LSDSER) , A
DE, INPMSG
C, WRCNB
BDOS

DE, INPBUF
C, RDCNB
BDOS

A, (INPBUF+1)
2

Z, S6

DE, IINMSG

C, WRCNB
BDOS

S4

A, (INPBUF+2)
lOl

OFH

INPBUF+3)

;Mask it

;Make it ASCII
;0-97

;If yes, skip

;Convert to A-F
;Stuff ms digit

;Get 1s digit

;Mask it

;Make it ASCII

;0-97

;If yes, skip

;Convert to A-F
;Stuff 1s digit
;Display input message

;Get new serial number

;Were 2 digits entered?
;If yes, skip

;Display illegal input message

;Try again

;Get ms digit
;Below 07
;If yes, error

;0-9?
;If yes, skip

;Convert A-F
;Below A?
;If yes, error

;A-F?
;If no, error

;Mask ms digit
;Shift to upper nybble

;Save it
;Get 1s digit
;Below 07
;If yes, error

;0-9?
;If yes, skip

;Convert A-F
;Below A?
;If yes, error

— 6-6 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

CP '@’ JA-F?

JR NC, S5 ;If no, error
_S8: AND OFH ;Mask 1ls digit
OR B ;Bring in ms digit
LD (SERBYT) , A ;Stuff new serial number
LD DE, TFCB ;Write it to disk
1D C,WRSEQ
CALL BDOS
LD DE, TFCB ;Close GEN.COM
1D c,16
CALL BDOS
LD DE, OUTMSG ;Display exit message
LD C, WRCNB
JP BDOS

2
PR i I S b S b S b e S b e S b S b S b b S b b Sb b I S b b db b S Sb I Sb S Sb e S Sb S S b S b S Ib S b b S db I Sb b b Sb JE I Sb b I Sb 3b 3
’
2

END

—6-7 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Software 2000 Package Utility

The Software 2000 PACKAGE utility provided with TurboDOS allows the programmer to concatenate a collection of related
Microsoft format REL files into a single REL file. This has two advantages:

Modules critical to each other cannot inadvertently be omitted from the linking procedure.

Modules can still be distributed in REL file format, offering full protection while still allowing the flexibility of the GEN
linker's PARameter file feature.

The PACKAGE utility has the following command formats:
PACKAGE {srcefile} destfile

PACKAGE destfile
* relfile{ relfile}{ relfile}{,...}
* relfile{,...}

* relfile{,...}

In the first command format, the PACKAGE ultility searches for a file with the name “srcefile.PKG” or, if “srcefile” was not
specified, “destfile.PKG”, and processes this file, concatenating the REL file modules listed, and produce an output file of
name “destfile.REL”.

The PKG file is merely an ASCII file containing a list of the REL file modules to be concatenated (similar in structure to the
GEN file used by the GEN linker).

In the second command format, there is no PKG file to be found, so PACKAGE enters an interactive mode (again, similar to
the GEN linker), allowing the REL file modules to be entered one at a time, in groups, or however. Entering a carriage return
at the prompt terminates input and causes the entered modules to be concatenated into “destfile.REL".

The final, concatenated REL file is indistinguishable from a library module created by the Microsoft LIB-80 utility, and can
be decatenated and manipulated by that utility

Error messages displayed by the PACKAGE utility are:
File name missing from command
Invalid input file name
Non-privileged user
Unexpected EOF in input file
Disk is full
Can't make output file
Can't open input file

No input files

—7-1—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Digital Research ZSID Debugger

Description

A debugger is a program that allows another program to be inspected and/or modified. Its primary task is for use in
debugging a new program, but it can also be used to analyze and understand the operation of a program, or as an aid in
disassembly.

The Digital Research ZSID debugger allows the debugging and analyzing of programs written in Zilog Z-80 code. The code
set of ZSID is a true representation of the Z-80 instruction set with only a couple of minor glitches (which are covered later),
thus is an ideal debugger for use with the Z-80 processor.

Command Line Format

There are several means of entering ZSID from the operating system:
0A>ZSID
This method enters ZSID without loading any file.
0A>ZSID filename.typ

This method enters ZSID, loading the file “filename.typ” at 0100h. Notice the “filename.typ” is loaded as though it
were a COM file, regardless of the filetype (with the exceptions of HEX, UTL, and SYM files covered below), but
the file, once loaded, can be moved in memory very easily.

0A>ZSID filename.HEX
This method enters ZSID, loading the Intel HEX file “filename.HEX" at the address specified within the file itself.
0A>ZSID filename.UTL

This method enters ZSID, loading the UTiLity file “filename.UTL" created by either TRACE or UTIL, the ZSID
utilities.

0A>ZSID filename.typ filename.SYM

This method enters ZSID, loading the file “filename.typ” at 0100h, and its symbol table file “filename.SYM” at the
top of TPA.

Once within ZSID, with or without a file loaded, analysis and debugging may proceed with ZSID's internal command
structure.

Special Characters

There are several characters that have a special meaning in a ZSID command:

Command Level Prompt:
Starts a command.

Decimal Value:
When placed in front of a number or expression, “#” means decimal. The following two commands are identical:

#D0103

Display starting at 0103h
#D#259

Display starting at 0103h

Symbol:
When symbols have been installed, “.” references the 16-bit value of the symbol’s address.

#D.START
Display the value of START

@ 16-Bit Value:
16-bit values a symbol location.

—8-1—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

#D@START
Display 16-bit value (word) at START

= 8-bit value:
8-bit value at a symbol location.

#D=START
Display 8-bit value (byte) at START

+ Addition:
Adds the value that follows to the previous value. The result can be no larger than 16 bits, so wraparound may take place
(FFFFh +0001h = 0000h, not 10000h).

#D.START+5
Displays the value of (START+0005)

+ Incremental offset:
Adds the value that follows to the previous value for that parameter.
#D+20

Displays from current display counter plus 20h.

- Subtraction:
Subtracts the value that follows from the previous value (actually, adds the complement of the value that follows to the
previous value). The result can be no larger than 16 bits, so wraparound may take place.

#D@START-10
Displays word at START-10

- Decremental Offset:
Subtracts the value that follows from the previous value for that parameter.

#D-20

Displays from current display counter less 20h.

String:
Accepts graphic ASCII characters after a double quote.

#S.MESSAGE 0234 23 “This string is going into memory 0255 D1 . #

' Short String:
Accepts one or two graphic characters within paired single quotes. An attempt to insert more than two characters results in
truncation. An apostrophe must be paired for storage.

#S0080 0080 12 ‘ab' 0082 34 'C™ 0084 56 'defg' 0086 78 'h' 0087 90 . #

Stores “a” at 0080, “b” at 0081

Stores “C” at 0082, “ ' “ at 0083 ('C"is'+C+'+'+")
Stores “d” at 0084, “e” at 0085

Stores “h” at 0086

Note that values within single quotes are TWO BYTES, not one word, and do not reverse during storage. “ LD HL 'mn*“
loads H with “m” and L with “n”.

Commands

A Assemble
Begins in line assembly at the current pointer position, as was left from the last assembled, listed or traced address: the Z-80
mnemonics may be entered directly in assembly language, and data fields may consist of symbolic expressions.

As Assemble from “s”
Begins in line assembly at location “s”; the Z-80 mnemonics may be entered directly in assembly language and data fields
may consist of symbolic expressions.

“s” may be either an address or a symbol.

— 82—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

-A Disable Assembly
Removes the assembler and disassembler from ZSID, gaining about 4K of debugging room, and disabling subsequent “A”
and “L” commands.

This command rarely requires execution under a bank-switched TurboDOS system, due to the large TPA involved.

Cs Call Subroutine “s”
Performs a direct subroutine call to location “s” without disturbing the CPU state of the program under test.

“s” may be either an address or a symbol.

Cs,b Load BC, Call Subroutine “s”
Loads register pair BC with “b”, then performs a direct subroutine call to location “s” without disturbing the CPU state of the
program under test.

“s” may be either an address or a symbol, and “b” may be either a value or a symbol.

Cs,b,d Load BC, Load DE, Call Subroutine “s”
Loads register pair DE with “d”, register pair BC with “b”, then performs a direct subroutine call to location *s” without
disturbing the CPU state of the program under test.

“s” may be either an address or a symbol, and “b” and “d” may be either values or symbols.

D Display Memory
Displays 11 lines of memory as bytes from the last address displayed.

D.f Display Memory to “f”
Displays memory as bytes from the last address displayed through location “d”.

“f” may be either an address or a symbol.

Ds Display Memory from “s”
Displays 11 lines of memory as bytes from location “s”.

“s” may be either an address or a symbol.

Ds,f Display Memory from “s” to “f”
Displays memory as bytes from location “s” through location “d”.

“s” and “f” may be either addresses or symbols.

DW Display Word Memory
Displays 11 lines of memory as words from the last address displayed.

DW.,f Display Word Memory to “f”
Displays memory as words from the last address displayed through location “d”.

“f” may be either an address or a symbol.

DWs Display Word Memory from “s”
Displays 11 lines of memory as words from location “s”.

“s” may be either an address or a symbol.

DWs,f Display Word Memory from “s” to “f”

Displays memory as words from location “s” through location “d”.

“s” and “f” may be either addresses or symbols.

Fs.f,d Fill Memory from “s” to “f” with “d”
Fill memory from location “s” through location “f” with the byte “d”

“s” and “f” may be either addresses or symbols, and “d” may be either a value or an expression.

G Go to (Run Program)
Runs the program under test from the current register PC location.

G,a Go to Breakpoint “a”
Runs the program under test from the current register PC location until breakpoint “a” is reached.

“a” may be either an address or a symbol.

G,a,b Go to Breakpoint “a” or “b”
Runs the program under test from the current register PC location until either breakpoint “a” or breakpoint “b” is reached.

—8-3—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

“a” and “b” either addresses or symbols.

Gp Go from “p”
Runs the program under test from location “p”

TP 1]

p” may be either an address or a symbol.

Gp,a Go from “p” to Breakpoint “a”
Runs the program under test from location “p” until breakpoint “a” is reached.

“p” and “a” may be either addresses or symbols.

Gp,a,b Go from “p” to Breakpoint “a” or “b”

Runs the program under test from location “p” until either breakpoint “a” or breakpoint “b” is reached.

“

p”, “a” and “b” may be either addresses or symbols.

-G Go to until passpoint=01
Runs the program under test from the current register PC location, or until a passpoint decrements to 01.

-G,a Go to Breakpoint “a” or until passpoint=01
Runs the program under test from the current register PC location until breakpoint “a” is reached, or until a passpoint
decrements to 01.

“a” may be either an address or a symbol.

-G,a,b Go to Breakpoint “a” or “b” or until passpoint=01
Runs the program under test from the current register PC location until either breakpoint “a” or breakpoint “b” is reached, or
until a passpoint decrements to 01.

“a” and “b” may be either addresses or symbols.

-Gp Go from “p” or until passpoint=01

Runs the program under test from location “p”, or until a passpoint decrements to 01.

[TPS 1]

p” may be either an address or a symbol.

-Gp,a Go from “p” to Breakpoint “a” or until passpoint=01
Runs the program under test from location “p” until breakpoint “a” is reached, or until a passpoint decrements to 01.

“p” and “a” may be either addresses or symbols.

-Gp,a,b Go from “p” to Breakpoint “a” or “b” or until passpoint=01
Runs the program under test from location “p” until either breakpoint “a” or breakpoint “b” is reached, or until a passpoint
decrements to 01.

pr,

H Dump Symbol Table
Dumps the values for all symbols currently contained in the symbol table: use DELETE to abort.

a” and “b” may be either addresses or symbols.

Ha Displays “a” in Hexadecimal, Decimal, ASCII, and Symbol
Performs number conversion in the format:

HHHH #DDDDD 'C' .SSSSSS
where:

HHHH = hexadecimal value
#DDDDD = decimal value

'C' = ASCII character value
.SSSSSS = symbol (if one exists)

“a” may be either a hexadecimal or decimal value, an ASCII character, or a symbol.

Ha,b Displays “a+b” and “a—-Db”
Produces the hexadecimal sum and difference in the format:

SSSS DDDD

“a” and “b” must be either hexadecimal or decimal values.

Ifilename.typ Initializes Default FCB to “filename.typ”
Parses “filename.typ” into the default FCB at address 005C. Does NOT load the file: a subsequent “R” command does that.

— 84—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

I*filename.SYM Initializes Default FCB for “filename.SYM” Symbols
Parses “filename.SYM?” into the default FCB at address 005C and sets a flag so that a subsequent “R” command loads the
symbols only and not the file.

L Lists Disassembly
Diassembles and lists 11 lines of machine code from the last listed, traced, or assembled location.

Ls Lists Disassembly from “s”
Diassembles and lists 11 lines of machine code from location “s”.

“s” may be either an address or a symbol.

Ls,f Lists Disassembly from “s” to “f”
Diassembles and lists machine code from location “s” through location “f”.

“s” and “f” may be either addresses or symbols.

-L Lists Absolute Disassembly
Diassembles and lists 11 lines of machine code from the last listed, traced, or assembled location. Labels and symbolic
operands are not displayed.

-Ls Lists Absolute Disassembly from “s”
Diassembles and lists 11 lines of machine code from location “s”. Labels and symbolic operands are not displayed.

“s” may be either an address or a symbol.

-Ls,f Lists Absolute Disassembly from “s” to “f”
Diassembles and lists machine code from location “s” through location 'f'. Labels and symbolic operands are not displayed.

“s” and “f” may be either addresses or symbols.

Ms,f,d Move Memory from “s” through “f” to “d”
Moves an area of memory from location “s” through location “f” to an area of memory beginning at location “d”.

“s” “f” and “d” may be either addresses or symbols.

P Display All Passpoints

Displays all active passpoints and passcounters. A passpoint is a program counter location which is monitored during
execution of a test program. A passpoint has an associated passcounter in the range of 01h through FFh, which is
decremented each time the test executes the passpoint address. When the passcount equals 01, the passpoint address becomes
a permanent breakpoint.

The maximum number of active passpoints that can be set is eight.

Pp Set Passpoint to “p” and passcount to 01

Sets a passpoint at location “p” with a passcount of 01.

“p” may be either an address or a symbol.

Pp,c Set Passpoint to “p” and passcount to “c”
Sets a passpoint at location “p” with a passcount of “c”.

“p” may be either an address or a symbol, and “c” may be either a hexadecimal or decimal value.

-P Clear All Passpoints
Clears all passpoints currently active.

-Pp Clear Passpoint at “p”

TPl

Clears the passpoint at location “p”.

“p” may be either an address or a symbol.

R Read File into Memory at 0100h
Reads the file currently indexed by the default FCB at address 005Ch into memory starting at address 0100h.
Rb Read File into Memory at 0100h+"b”

Reads the file currently indexed by the default FCB at address 005Ch into memory starting at address 0100+”b”, where “b” is
an offset bias.

Ss Store Bytes into Memory Starting at “s”
Stores subsequent bytes or byte-strings into memory starting at location “s”. Enter a period to terminate the command.

“s” may be either an address or a symbol.

— 85—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

SWs Store Words into Memory Starting at “s”
Stores subsequent words into memory starting at location “s”. Enter a period to terminate the command.

“s” may be either an address or a symbol.

T Trace Next Step
Executes a single instruction at the current register PC location, showing the CPU status in full.

T,C Trace Next Step and Call “c¢”
Executes a single instruction at the current register PC location, showing the CPU status in full, then calls location “c”
without disturbing the CPU status.

“c” may be either an address or a symbol.

Tn Trace Next “n” Steps
Executes “n” instructions at the current register PC location, showing the CPU status in full at each step.

“n” may be either a hexadecimal or a decimal value.

Tn,c Trace Next “n” Steps and Call “c”
Executes “n” instructions at the current register PC location, showing the CPU status in full at each step, calling location “c”
at each step without disturbing the CPU status.

“n” may be either a hexadecimal or a decimal value, and “c” may be either an address or a symbol.

-T Trace Next Step w/o Symbols
Executes a single instruction at the current register PC location, disabling the symbols, showing the CPU status in full.

-T,c Trace Next Step and Call “c” w/o Symbols
Executes a single instruction at the current register PC location, disabling the symbols, showing the CPU status in full, then
calls location “c” without disturbing the CPU status.

“C” may be either an address or a symbol.

-Tn Trace Next “n” Steps w/o Symbols
Executes “n” instructions at the current register PC location, disabling the symbols, showing the CPU status in full at each
step.

“n” may be either a hexadecimal or a decimal value.

-Tn,c Trace Next “n” Steps and Call “c” w/o Symbols
Executes “n” instructions at the current register PC location, disabling the symbols, showing the CPU status in full at each
step, calling location “c” at each step without disturbing the CPU status.

“n” may be either a hexadecimal or a decimal value, and “c” may be either an address or a symbol.

TW Trace Next Step Locally
Executes a single instruction at the current register PC location, showing the CPU status in full. Only local execution is
displayed.

TW,c Trace Next Step Locally and Call “c”
Executes a single instruction at the current register PC location, showing the CPU status in full, then calls location “c”
without disturbing the CPU status. Only local execution is displayed.

“c” may be either an address or a symbol.

TWn Trace Next “n” Steps Locally
Executes “n” instructions at the current register PC location, showing the CPU status in full at each step. Only local execution
is displayed.

“n” may be either a hexadecimal or a decimal value.

TWn,c Trace Next “n” Steps Locally and Call “c”
Executes “n” instructions at the current register PC location, showing the CPU status in full at each step, calling location “c”
at each step without disturbing the CPU status. Only local execution is displayed.

“n” may be either a hexadecimal or a decimal value, and “c” may be either an address or a symbol.

-TW Trace Next Step Locally w/o Symbols
Executes a single instruction at the current register PC location, disabling the symbols, showing the CPU status in full. Only
local execution is displayed.

— 86—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

-TW,c Trace Next Step Locally and Call “c” w/o Symbols
Executes a single instruction at the current register PC location, disabling the symbols, showing the CPU status in full, then
calls location *“c” without disturbing the CPU status. Only local execution is displayed.

“C” may be either an address or a symbol.

-TWn Trace Next “n” Steps Locally w/o Symbols
Executes “n” instructions at the current register PC location, disabling the symbols, showing the CPU status in full at each
step. Only local execution is displayed.

“n” may be either a hexadecimal or a decimal value.

-TWn,c Trace Next “n” Steps Locally and Call “c” w/o Symbols
Executes “n” instructions at the current register PC location, disabling the symbols, showing the CPU status in full at each
step, calling location “c” at each step without disturbing the CPU status. Only local execution is displayed.

“n” may be either a hexadecimal or a decimal value, and “c” may be either an address or a symbol.

U Untrace Next Step
Executes a single instruction at the current register PC location.

u,c Untrace Next Step and Call “c”
Executes a single instruction at the current register PC location, then calls location “c” without disturbing the CPU status.

“c” may be either an address or a symbol.

un Untrace Next “n” Steps
Executes “n” instructions at the current register PC location.

“n” may be either a hexadecimal or a decimal value.

un,c Untrace Next “n” Steps and Call “c”
Executes “n” instructions at the current register PC location, calling location “c” at each step without disturbing the CPU
status.

“n” may be either a hexadecimal or a decimal value, and “c” may be either an address or a symbol.

-U Untrace Next Step w/o Intermediate Passpoints
Executes a single instruction at the current register PC location, disabling the intermediate passpoints.

-U,c Untrace Next Step and Call “c” w/o Intermediate Passpoints
Executes a single instruction at the current register PC location, disabling the intermediate passpoints, then calls location “c”
without disturbing the CPU status.

“c” may be either an address or a symbol.

-Un Untrace Next “n” Steps w/o Intermediate Passpoints
Executes “n” instructions at the current register PC location, disabling the intermediate passpoints.

“n” may be either a hexadecimal or a decimal value.

-Un,c Untrace Next “n” Steps and Call “c” w/o Intermediate Passpoints
Executes “n” instructions at the current register PC location, disabling the intermediate passpoints, calling location “c” at
each step without disturbing the CPU status.

“n” may be either a hexadecimal or a decimal value, and “c” may be either an address or a symbol.

uw Untrace Next Step Locally
Executes a single instruction at the current register PC location. This is a “trace without call” operation.

UWw,c Untrace Next Step Locally and Call “c”
Executes a single instruction at the current register PC location, then calls location “c” without disturbing the CPU status.
This is a “trace without call” operation.

“c” may be either an address or a symbol.

UWn Untrace Next “n” Steps Locally
Executes “n” instructions at the current register PC location. This is a “trace without call” operation.

“n” may be either a hexadecimal or a decimal value.

UWn,c Untrace Next “n” Steps Locally and Call “c”
Executes “n” instructions at the current register PC location, calling location “c” at each step without disturbing the CPU
status. This is a “trace without call” operation.

—8-7—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

“n” may be either a hexadecimal or a decimal value, and “c” may be either an address or a symbol.

-Uw Untrace Next Step Locally w/o Intermediate Passpoints
Executes a single instruction at the current register PC location, disabling the intermediate passpoints. This is a “trace without
call” operation.

-UW,c Untrace Next Step Locally and Call “c” w/o Intermediate Passpoints
Executes a single instruction at the current register PC location, disabling the intermediate passpoints, then calls location “c”
without disturbing the CPU status. This is a “trace without call” operation.

“c” may be either an address or a symbol.

-UWn Untrace Next “n” Steps Locally w/o Intermediate Passpoints
Executes “n” instructions at the current register PC location, disabling the intermediate passpoints. This is a “trace without
call” operation.

“n” may be either a hexadecimal or a decimal value.

-UWn,c Untrace Next “n” Steps Locally and Call “c” w/o Intermediate Passpoints
Executes “n” instructions at the current register PC location, disabling the intermediate passpoints, calling location “c” at
each step without disturbing the CPU status. This is a “trace without call”” operation.

“n” may be either a hexadecimal or a decimal value, and “c” may be either an address or a symbol.

X Examine CPU State
Displays all registers and flags.

Xr Examine/Change Register “r”
Displays register “r: at display, enter a new value to change or <return> to leave as is.

r = A =register A

r = A'=register A'

r = B = register pair BC

r = B' = register pair BC'
r = D = register pair DE

r = D' = register pair DE'
r = H = register pair HL

r = H' = register pair HL'
r =P =register PC

r =S =register SP

r = X = index register 1X
r =Y = index register I'Y

Xf Examine/Change Flag “f”
Displays flag “f”, as a dash if clear or a letter if set: at display, enter a 0 to clear the flag, a 1 to set the flag, or <return> to
leave as is.

f=C=carry

f = C' = alternative carry

f=2Z=zero

f=Z' = alternative zero

f =M =sign (minus)

f = M' = alternative sign (alternative minus)

f = E = parity/overflow (parity even)

f = E' = alternative parity/overflow (alternative parity even)
f =1 = half-carry (intercarry)

f = I' = alternative half-carry (alternative intercarry)

ZSID UTILITIES

ZSID has a pair of utilities to allow more powerful debugging. These utilities are HIST.UTL and TRACE.UTIL.
When either utility is loaded, ZSID responds with the following information:

ANITIAL = i
.COLLECT =cccc
.DISPLAY = dddd

—8-8—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

where “iiii”, “cccc” and “dddd” are three absolute address entries to the utility for (re)initialization, collecting debug data, and
displaying collected information, respectively. These labels are entered into a symbol table and may be referenced whenever
desired. The normal method for running a utility is to call it by name or address.

To initialize the system and get addresses, execute:
#C.INITIAL
To collect data, use either the trace or untrace command, as:

#T100,.COLLECT
#U,.COLLECT

To increase user control, use pass points while monitoring:

#P120,15
#U1000,.COLLECT

To display collected data, execute:
#C,.DISPLAY

HIST.UTL

This utility creates a histogram of program execution between two locations given during initialization. Program addresses
are monitored during Trace and Untrace commands. Summary data is displayed by using the display command. For this
utility, the operator performs the following three steps:

1. INITIALize (get address bounds)
2. COLLECT the data
3. DISPLAY the data

Example:

0A>ZSID HIST.UTL
TYPE HISTOGRAM BOUNDS 100,115
INITIAL = 3E03
.COLLECT = 3E06
.DISPLAY = 3E09
#ISAMPLE.COM SAMPLE.SYM
#R
SYMBOLS
#U32,.COLLECT
(The registers are displayed; wait a second, and prompt returns.)
#C.DISPLAY
(The histogram is displayed.)

TRACE.UTL

This utility provides a dynamic backtrace of up to 256 instructions, which end at the current breakpoint address. Instruction
address collection occurs only in the Trace and Untrace commands. Passpoints can be used to increase operator control.

Example:

0A>ZSID
#ITRACE.UTL
#R
READY FOR SYMBOLIC BACKTRACE
#ISAMPLE.COM SAMPLE.SYM
#R
NEXT PC
0200 0100
#U100,.COLLECT
(The registers are displayed; wait a second, and prompt returns.)
#C.DISPLAY
(Symbolic backtrace appears.)

—8-9—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

ZSAVE.MAC

One major problem with ZSID (or any other CP/M debugger) is the fact that there is no practical way to save the debugged
file back onto disk from memory: under CP/M, the built in SAVE command is used, but TurboDOS has NO built in
commands.

The author has corrected this problem by the creation of ZSAVE.MAC, which, when assembled and linked, provides a
simple and elegant solution to the save problem.

Instructions for ZSAVE are contained in the source code as comments:
; ZSAVE .MAC

;Routine to save file from debugger memory
;Copyright (C) 1990, R. Roger Breton
iAuthor:R. Roger Breton

iVersion: 1.00

iEdit History:

; 03/13/90 rrb 1.00 Created

7
,-***
2

.COMMENT ~

This routine is meant to be used with Digital Research's ZSID debugger when
operating under TurboDOS, and takes the place of CP/M's SAVE command.

Normally, use this routine in the following manner:
1. Enter ZSID bringing this routine along with you:

2SID ZSAVE.RTN (or whatever name you chose)
#

2. Run this routine within ZSID:
#G
3. Note the "SAVE" value:

SAVE = D700
#

4. Load the file to be debugged:

#IMYFILE.COM
#R

5. Note its "NEXT" wvalue:
NEXT
0680
#

6. Debug your file:

7. Run the saver (use "SAVE" address from above):
#GD700
8. Enter your program's "NEXT" value:

Enter NEXT: 0680

—8-10 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

File "ZSAVE.TMP" saved.

(E)xit to operating system or return to debugger?

9. Enter "E" or "e" to exit to TurboDOS, or anything else to stay in ZSID.

If you have debugged a program and THEN wish to save it:

1. Load ZSAVE at the program's NEXT address
#IZSAVE.RTN
#R680
#

2. Add 100 hex (to get past COM-file offset) and set the program counter:
#XP
PC = nnnn 780
#

3. Execute "2T" to get past 0100 hex initialization:

4. Stuff NEXT+0100 into 0080 and 0081 in proper word order:
#580
0080 = nn 80
0081 = nn Q7
0082 = nn
#

5. Execute "G":
#G

6. Note the "SAVE" value:

SAVE = D700

#
7. Run the saver:
#GD700
8. Enter your program's "NEXT" value:

Enter NEXT: 0680
File "ZSAVE.TMP" saved.
(E)xit to operating system or return to debugger?

9. Enter "E" or "e" to exit to TurboDOS, or anything else to stay
in ZSID.

Conversely, special load-later versions of this routine may be generated by
setting ORIGIN to the desired load address and re-assembling and linking.

After assembling with Macro-80, either link via TurboDOS's GEN linker:

OA>GEN ZSAVE
*ZSAVE

—8-11 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

*

0A>
or Link-80 with the special command line:
0A>1.80 /P:0100,ZSAVE, ZSAVE/N/E

Either of these methods will produce a COM file without the 3-byte routing
jump, which is absolutely essential in this case.

Since this is NOT a standard COM file and should NEVER be run from a system
prompt, I suggest renaming the filetype (I use RTN, for "RouTiNe").

PR I S S b S I S b e S b S b S b Sh b b Sb b S Sb b b Sb b S Sb b S Sb b S Sb b S Sb S b S b e S b b Sb b b Sb b b 2b 2b b Sb Jb 3b Sb 2b Sb 3b 3b 4
7

’

NAME ("ZSAVE")
.Z80 ;Use Zilog mnemonics
.RADIX 16 ;All values in hex

’

¥xxxk Equates

ORIGIN EQU 0100 ;Load address inside debugger
BEL EQU 07 ;Bell

LF EQU 0A ;Linefeed

CR EQU 0D ;Carriage return

OPSYS EQU 0000 ;Warm-start entrypoint address
BDOS EQU 0005 ;C-function entrypoint address
ORGADR EQU 0080 ;Origin address

FILLEN EQU 0082 ;File length in records

DMAADR EQU 0084 ;Saver DMA address

INPBUF EQU 0086 ; Input buffer

’
;***** Transfer Routine R S e I b b I b S I S b b S b S b S b S b S 2b S b b S db b S b S S b I Sb db S Sb b I Ib 2 4

’

CSEG ;Locate in code segment
START: LD HL, ORIGIN ;Stuff origin
LD (ORGADR) , HL
LD HL, (BDOS+01) ;Get bottom of debugger
DEC HL ;Convert to top of TPA
DEC HL ; Insurance
DEC HL ;Room for save-module page
PUSH HL ;Save SM-page address
LD DE, SMLEN ;Room for save module
OR A
SBC HL, DE
LD L,00 ;Set to page boundary
EX (SP) , HL ;Save SM page
POP DE
1D (HL),D
LD A,D ;Get MS digit of page
RRCA
RRCA
RRCA
RRCA
AND OF ;Make it ASCII
CP 0A
JR C,TR1
ADD A, 07
TR1: ADD A,'0"
—8-12 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

LD HL, (ORGADR) ;Stuff it

LD BC, TRMD
ADD HL, BC
LD (HL) , A
LD A,D ;Get LS digit of page
AND OF ;Make it ASCII
CP 0A
JR C,TR2
ADD A, 07
TR2: ADD A,'0"
INC HL ;Stuff it
LD (HL) , A
LD HL, (ORGADR) ;Transfer save module
LD BC, SMBEG
ADD HL, BC
LD BC, SMLEN
LDIR
LD HL, (ORGADR) ;Display transfer message
LD DE, TRM1
ADD HL, DE
EX DE, HL
LD c,09
CALL BDOS
RST 38 ;Return control to debugger

;****x% Transfer message

TRM1 EQU $—-START
DB CR,LF
DB 'SAVE = !

TRMD EQU $-START
DB 'XX00'!
DB CR,LF,LF
DB 'After loading main program, note '
DB 'its "NEXT" address. Save the debugged'
DB CR,LF
DB 'program by the command "Gssss" where '
DB 'ssss is the "SAVE" above. Answer the'
DB CR,LF
DB "save modules question with your program's "
DB '"NEXT".'
DB CR,LF, 'S’

;***** Save Module KA A KA A KA A AR A A AR A AR A A A A A A A A AR A IR A IR A IR A IR AR A AR A AR A A KA KK

SMBEG EQU $-START
LD HL, (BDOS+01) ;Get bottom of debugger
DEC HL ;Get save-module page
DEC HL
DEC HL
LD D, (HL)
LD E, 00 ;Make it an address
LD (ORGADR) , DE ;Save it in default DMA
LD DE, SMM2 ;Get entry message offset
SM1: LD HL, (ORGADR) ;Display message
ADD HL, DE
EX DE, HL
LD c,09
CALL BDOS
LD HL, INPBUF ;Get "NEXT"
LD (HL) , 04
EX DE, HL

—8-13 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

SM2 :

SM3:

SM4 :

SM5:

LD
CALL

LD
LD
CP
LD
JR

LD
LD
INC
LD
CP
JR

CP
JR

AND
CP
JR

CP
JR

SUB
SUB
RLA
RLA
RLA
RLA
LD
RLA
RL
RL
DEC
JR

DJINZ

DEC
LD
OR
JR

LD
DEC
OR
SBC
JR

DEC
RL
RL
LD
LD
RL
INC
PUSH
LD
LD
LD
LD
LDIR
LD

C,0A
BDOS

HL, INPBUF+01
A, (HL)

03

DE, SMM1

C, SM1

B,A
DE, 0000
HL

A, (HL)
lOl

C, SM2

NZ, SM5
SM3

DE
A,D
A
Z,SM2

HL, (ORGADR)
HL

A

HL, DE

C, SM2

o O

~

HL, 005C
DE, 005D
BC, 23

(HL), 00

HL, (ORGADR)

;Check on actual entry
;Get number of characters
;At least 37

; (Get invalid entry message offset)

;If no, try again

;Set count to number of characters

;Preset savefile length to zero
;Get entry character

;Before "0O"?
;If yes, try again

;110_911?
;If yes, skip

;Convert any "a-z" to "A-Z"
;Before "A"?

;If yes, try again

;After "F"?

;Adjust for "A-F"

;De-ASCII the character
;Shift it into savefile length

;Do next character

;Convert "NEXT" to "LAST"
;Enough to save?

;If no, try again

;Too much to save?

;If yes, try again

;Adjust for start at 0100
;Convert to number of records

;Save savefile length in records
;Initialize FCB

;Transfer savefile name

—8-14—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

SM6 :

PUSH
LD
ADD
LD
LD
LDIR
LD
CALL

LD
LD
CALL

LD
LD
CALL

POP
LD
POP
LD
LD
CP
JR

LD
LD
CALL

LD
OR
JR

LD
LD
LD
LD
CALL

LD
LD
CALL

LD
LD
ADD
LD
LD
DEC
LD
LD
OR
JR

LD
LD
CALL

LD
LD
ADD
EX
LD
CALL

LD

HL
DE, SMFN
HL, DE

DE, 005D
BC, 000B

C,0D
BDOS

DE, 005C
C,13
BDOS

DE, 005C
c,11
BDOS

HL
(ORGADR) , HL
HL
(FILLEN) , HL
DE, SMM5

OFF

NZ, SM7

DE, 005C
C,16
BDOS

DE, SMM6
A
NZ, SM7

HL, 0100
(DMAADR) , HL
DE, (DMAADR)
c, 1A

BDOS

DE, 005C
C,15
BDOS

HL, (DMAADR)
DE, ORGADR
HL, DE
(DMAADR) , HL
HL, (FILLEN)
HL
(FILLEN) , HL
A H

L

NZ, SM6

DE, 005C
C,10
BDOS

HL, (ORGADR)
DE, SMM3

HL, DE

DE, HL

Cc,09

BDOS

c,01

;Set DMA to default

;Delete any existing old savefile

;Check for one still out there

;Restore beginning address
;Restore savefile length
;Was savefile found?

;If yes, error

;Create new savefile

;Good create?
;If no, error

;Set DMA to file to be saved
;Save DMA address
; Set DMA

;Write a record

;Increment DMA pointer

;Decrement record counter

;Last record written?
;If no, do next record

;Close savefile

;Display saved message

;Get exit character

—8-15—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

SM7:

;*****

SMEFN

SMM1

SMM2

SMM3

SMM4

SMM5

SMM6

SMLEN

’

,-***

’

CALL

PUSH
LD
LD
ADD
EX
LD
CALL

POP
CP
Jp

CP
JP

RST

LD
ADD
EX
LD
CALL

RST

BDOS

AF ;Save it

HL, (ORGADR) ;Display cr-1f

DE, SMM4

HL, DE

DE, HL

C,09

BDOS

AF ;Restore exit character

'E' ;Exit?

Z,0PSYS ;If yes, go to operating system
'e! ;Still exit?

Z,0PSYS ;If yes, go to operating system
38 ;Return control to debugger

HL, (ORGADR) ;Display error message

HL, DE

DE, HL

C,09

BDOS

38 ;Return control to debugger

Save Module Data

EQU
DB

EQU
DB
DB
DB
EQU
DB
DB

EQU
DB
DB
DB
DB

EQU
DB

EQU
DB
DB
DB

EQU
DB
DB
DB

EQU

END

$-START-SMBEG
'ZSAVE ', "TMP'

$—-START-SMBEG

BEL, CR, LF

'Invalid "NEXT" hex address.'
CR,LF

$—-START-SMBEG

CR,LF

'Enter value of "NEXT" byte: $'

$-START-SMBEG

CR,LF,LF

'File "ZSAVE.TMP" saved.'

BEL,CR, LF

'(E)xit to operating system or return to debugger? S$'

$-START-SMBEG
CR,LF, 'S’

S-START-SMBEG

BEL,CR, LF

'Unable to delete existing "ZSAVE.TMP" File.'
CR,LF,'S"

$S-START-SMBEG

BEL,CR, LF

'Unable to create "ZSAVE.TMP" File.'
CR,LF,'S"

$-START-SMBEG

START

—8-16 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Assembly under TurboDOS

General

Assembly language under the TurboDOS operating system is unique only in the facilities provided the programmer by the
operating system. These facilities fall into two broad areas: memory usage and function calls.

Memory usage deals with the way TurboDOS utilizes the system memory, most notably the base page and pseudo-BIOS
table.

Function calls deal with the CP/M BDOS functions supported by TurboDOS (C-functions), as well as those functions unique
to TurboDOS (T-functions).

It must be emphasized that the object here is to cover general programming under TurboDQOS, and not the programming of
modules or drivers within TurboDOS itself. The “hooks” necessary for module and driver programming are covered in the
TurboDOS Z-80 Implementer’s Guide from Software 2000.

Base Page

Like CP/M, TurboDOS reserves the first 0100 hex (256 decimal) bytes of memory for operating system use. This base page
(256 bytes = 1 page) contains many special entrypoints and values:

0000h-0002h Warmstart Jump

A 3-byte jump instruction to the pseudo-BIOS table warmstart vector is located at address 0000h. Because the pseudo-B10S
table always starts on a page boundary and the warmstart vector is the second 3-byte entry in the table, the byte at 0001h is
always 03, and the byte at 0002h is always the page address of the pseudo-BIOS table (if this byte is FCh, the table resides at
FCOO0h, and the warmstart vector is at address FCO3h).

An application program usually terminates by executing a jump to 0000h.

0003h /0 Byte
The CP/M 1/0O byte is located at address 0003h. This byte is seldom used by TurboDOS systems, but can be used by an
application program according to CP/M 1/O Byte rules.

The 1/0O byte is used by a CP/M system to control the routing of its input/output devices. Each 2-bits of the 1/0 byte
determine the routing of a different device:

Bits 1,0 — CON: Console

00 TTY:=CON: console is teletype

01 CRT:=CON: console is terminal

10 BAT:=CON: console input is reader console output is list
11 UC1:=CON: console is user-defined console 1

Bits 3,2 — RDR: Reader

00 TTY:=RDR: reader is teletype

01 RDR:=RDR: reader is high speed reader
10 UR1:=RDR: reader is user-defined reader 1
11 UR2:=RDR: reader is user-defined reader 2

Bits 5,4 — PUN: Punch

00 TTY:=PUN: punch is teletype

01 PUN:=PUN: punch is high speed punch
10 UP1:=PUN: punch is user-defined punch 1
11 UP2:=PUN: punch is user-defined punch 2

Bits 7,6 — LST: List Device

00 TTY:=LST: list is teletype

01 CRT:=LST: list is terminal

10 LPT:=LST: list is line printer

11 UL1:=LST: list is user-defined list device

Many if not most of the 1/O devices mentioned above do not exist any longer and are not supported by TurboDOS (or later
versions of CP/M).

— 01 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

0004h Drive and User

The CP/M drive and user byte is located at address 0004h. Like the I/O byte, the drive and user byte is really a CP/M
phenomenon of limited use under TurboDOS. The lower nybble (bits 3-0) of the drive and user byte contains the current
drive assignment:

0000 Drive A: 1000 Drive I:
0001 Drive B: 1001 Drive J:
0010 Drive C: 1010 Drive K:
0011 Drive D: 1011 Drive L:
0100 Drive E: 1100 Drive M:
0101 Drive F: 1101 Drive N:
0110 Drive G: 1110 Drive O:
0111 Drive H: 1111 Drive P:

The upper nybble (bits 7-4) contain the current user area assignment as a modulo-16 value. Under CP/M, this was sufficient
as there were only 16 user areas, but under TurboDOS with its 32 user areas, this value is only semi-useful:

0000 User 0: or 16: 1000 User 8: or 24:
0001 User1l:or17: 1001 User 9: or 25:
0010 User 2: or 18: 1010 User 10: or 26:
0011 User 3:0r19: 1011 User 11: or 27:
0100 User 4: or 20: 1100 User 12: or 28:
0101 User 5: or 21: 1101 User 13: or 29:
0110 User 6: or 22: 1110 User 14: or 30:
0111 User 7: or 23: 1111 User 15: or 31:
0005h—-0007h C-Function (BDOS) Jump

A 3-byte jump instruction to the C-function entrypoint is located at address 0005h. An application program invokes a C-
function by placing the function number in the C register and executing a “CALL 0005” instruction.

The value contained in addresses 0006h and 0007h is one greater than the top of the transient program area: inspection of this
value allows an application program to determine the amount of memory available for its own use.

0008h—000Fh Restart 08
Addresses 0008h—000Fh are reserved for use by the “RST 08” instruction.

0010h-0017h Restart 10
Addresses 0010h—0017h are reserved for use by the “RST 10” instruction.

0018h-001Fh Restart 18
Addresses 0018h—-001Fh are reserved for use by the “RST 18” instruction.

0020h—-0027h Restart 20
Addresses 0020h—-0027h are reserved for use by the “RST 20" instruction.

0028h-002Fh Restart 28
Addresses 0028h—-002Fh are reserved for use by the “RST 28” instruction.

0030h—0037h Restart 30
Addresses 0030h—0037h are reserved for use by the “RST 30” instruction.

0038h—-003Fh Restart 38
Addresses 0038h—003Fh are reserved for use by the “RST 38" instruction. This instruction is often used by a debugger to trap
operation and allow single stepping through a program or routine.

0040h—-004Fh Reserved
The addresses 0040h—004Fh are unused by TurboDOS, but re-initialized by certain internal operations. Hence, these
addresses may not be reliably used for other purposes.

0050h—-0052h T-Function Jump
A 3-byte jump instruction to the T-function entrypoint is located at address 0050h. An application program invokes a T-
function by placing the function number in the C register and executing a “CALL 0050” instruction.

0053h—-005Bh Reserved
The addresses 0053h—005Bh are unused by TurboDQS, but re-initialized by certain internal operations. Hence, these
addresses may not be reliably used for other purposes.

005Ch-007Fh Default File Control Block (FCB)
The 36-byte system default file control block is located at address 005Ch. This is a full FCB and may be used for any file
operation or function call.

— 092 _

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

When the command tail contains a file specification as its first entry, that file specification is automatically parsed into the
default FCB.

005Ch—-006Bh Primary Partial Default File Control Block
The 16-byte primary partial default file control block is located at addresses 005Ch—006Bh. This partial FCB may be easily
and automatically converted into a full FCB through the use of any of several file operations and function calls.

When the command tail contains two file specifications as its first two entries, the first of those file specifications is
automatically parsed into the primary partial default FCB.

006Ch—-007Bh Secondary Partial Default File Control Block

The 16-byte secondary partial default file control block is located at addresses 005Ch—-006Bh. This partial FCB is overwritten
by an expansion of the primary partial FCB into a full FCB, and it is the responsibility of the application programmer to move
the data in this area to an alternative FCB prior to implementing any file operations or function calls.

When the command tail contains two file specifications as its first two entries, the second of those file specifications is
automatically parsed into the secondary partial default FCB.

0080h—00FFh Command Tail Buffer
The 128-byte command tail buffer is located at address 0080h. The command tail is fully parsed into this buffer up to a
maximum length of 126 bytes. If the command tail exceeds 126 bytes, it is truncated.

This command tail buffer is overwritten by the first file read that takes place at the default DMA address, which is also
0080h, and it is the responsibility of the application programmer to either set the DMA to another buffer address or to either
fully process or move the parsed command tail data into another area.

0080h—-00FFh Default Direct Memory Access (DMA) Buffer
The 128-byte default direct memory access buffer is located at address 0080h. This buffer is used by the system for disk reads
and writes and other DMA functions unless the DMA address is intentionally changed to another location via C-function 26.

The default DMA buffer occupies the same memory as and overwrites the command tail buffer. It is the responsibility of the
application programmer to take steps to prevent this from happening.

Pseudo-BIOS Branch Table

For compatibility with CP/M, TurboDQOS provides a full simulated “BIOS Branch Table” to support applications that make
direct BIOS calls. The branch table is compatible with CP/M 2.2, and always begins on a page boundary (address is always
nn0Oh) as in CP/M. BIOS calls are for the most part equivalent to C-function calls and unless there is some compelling
reason they should not be used under TurboDOS.

nn00h Coldstart
Executes C-function 255, System Cold Reset.

nn03h Warmstart
Executes C-function 0, System Reset.

nn06h Get Console Status in A
Executes C-function 11, Get Console Status.

nn09h Get Console Inputin A
Executes C-function 3, Raw Console Input.

nnOCh Put Console Output from C
Moves C to E and executes C-function 4, Raw Console Output.

nnOFh Put List Output from C
Moves C to E and executes C-function 5, List Output.

nnl2h Put Raw Console Output from C
Moves C to E and executes C-function 4, Raw Console Output.

nnl15h Get Raw Console Input in A
Executes C-function 3, Raw Console Input.

nnl18h Home Drive to Track 0
Indexes current drive track pointer to 0000.

nniBh Select Drive from C
Moves C to E and executes C-function 14, Select Drive.

— 93—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

nnlEh Set Drive Track from BC
Indexes current drive track pointer to BC.

nn21h Set Drive Sector from BC

Indexes current drive sector pointer to BC — 1.

nn24h Set DMA Address from BC

Moves BC to DE and executes C-function 26, Set DMA Address.
nn27h Read Drive Sector

Executes several functions to read current sector.

nn2Ah Write Drive Sector

Executes several functions to write current sector.

nn2Dh Get List Status in A

Not supported under TurboDOS, always returns list ready.

nn30h Translate Drive Sector from BC to HL
Moves BC+1 to HL.

Base page addresses 0001h and 0002h contain the address of the pseudo-BIOS table warmstart entrypoint. Therefore, the
table address can always be obtained by taking the word at 0001h and subtracting 0003h.

Command Tail Parsing

The command tail is that part of the command line following the command itself until either a carriage return or a command
separator is reached. In the command:

M80 MYPROG,MYPROG=MYPROG/Z

The command is “M80” and the command tail is “ MYPROG,MYPROG=MYPROG/Z". Note that the space following the
command is a part of the command tail.

The command tail is parsed into the command tail buffer, located at base page address 0080h, in the following manner:
0080h The length of the command tail is placed here, and is a value between 0 and 126.
0081h-00nnh The command tail is parsed into the buffer exactly as it was entered, starting at address 0081h.
00nnh+1 The command tail is terminated with a null byte (0).

The remainder of the command tail buffer is unused and is not initialized: it contains whatever was in it prior to command
execution.

If the first entry in the command tail (ignoring leading whitespace) meets the requirements of a file specification, it is also
parsed into the default file control block at base page address 005Ch.

If the first two entries in the command tail meet the requirements of a file specification, they are parsed into the primary and
secondary partial file control blocks at base page addresses 005Ch and 006Ch.

If there are more than two file specifications in the command tail, or if a file specification is not the first or second entry, it is
the sole responsibility of the programmer to parse the file specification into the desired file control block. File specification
parsing may be automatically accomplished via C-function 152.

Program Termination

An application program may terminate in any of several different ways, all of which are equivalent:
By jumping to location 0000h, which causes a system warmstart.
By executing a C-function 0, which causes a system warmstart.
By executing a C-function 143, which causes a system warmstart.
By executing a T-function 0, which causes a system warmstart.
By executing a “RET” when the stack is balanced (in the same condition as on entry), causing a system warmstart.

By executing a “JP 0005” rather than a “CALL 0005” when the stack is balanced, which causes a system warmstart after
executing the C-function invoked.

By executing a “JP 0050 rather than a “CALL 0050” when the stack is balanced, which causes a system warmstart after
executing the T-function invoked.

— 04—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

By executing a C-function 47, which causes a system warmstart then executes the passed command line.

File Control Block

A file consists of a sequence of up to 1,048,576 128-byte physical records, and may be accessed only in integral increments
of these physical records: up to 128 contiguous physical records may be read or written at one time, either sequentially or
randomly. The maximum size of a file is thus defined as 134,217,728 bytes.

These physical records must not be confused with a logical or data record as specified by some programs and which may be
of any length.

Files may be altered in size at any time, and TurboDOS automatically allocates and deallocates disk space to fit, but only in
allocation block sized pieces. An allocation block may be 2048, 4096, 8192, or 16384 bytes long (1024 bytes on single sided,
single density floppy disks only). Therefore, storing a new file containing one byte of data requires a 128-byte (1-record)
write and occupies at least 2048 bytes on the disk!

All C-function and T-functions that operate upon a file require the existence of a file control block (FCB) whose address is
passed in the DE register pair. This FCB consists of 36 bytes in the following format:

0l1]2|3|4]5]6|7]8|]9|A|B|C|D|E]|F
0x | dr fn ft ex | s1 | s2 | rc
1x mp
2x | cor | rr |

As can be seen, the FCB contains 10 fields:

fld bytes description

dr 00h drive code

fn 01h-08h filename and attributes f1-f8
ft 09h-0Bh filetype and attributes t1-t3
ex 0Ch extent counter

sl 0Dh system byte 1 — flag byte
s2 OEh system byte 2 — extended extent counter
rc OFh record count

mp 10h-1Fh allocation map

cr 20h current record number

rr 21h-23h random record number

Each of these ten fields serves a specific purpose:

dr Drive Code
The drive code (dr) field contains a value indicative of the drive upon which the file is (to be) located:

00h = current drive

01h =drive A: 09h =drive I:
02h = drive B: 0Ah =drive J:
03h =drive C: 0Bh =drive K:
04h = drive D: 0Ch =drive L:
05h = drive E: 0Dh = drive M:
06h =drive F: OEh =drive N:
07h =drive G: OFh = drive O:
08h =drive H: 10h = drive P:

fn Filename and Attributes f1-f8
The filename (fn) field contains the ASCII filename of the file. If the filename is less than 8 characters, the remaining bytes
of the field are set to ASCII space (20h).

Since an ASCII character requires only 7 bits, the remaining (most significant) bits of each byte of the filename field contain
file attributes f1 through f8:

attr byte description

fl 01h FIFO attribute

2 02h MS-DQOS directory attribute
f3 03h Unassigned attribute

f4 04h Unassigned attribute

5 05h File locking attribute

6 06h File locking attribute

f7 07h System attribute

—0-5—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

8 08h System attribute

ft Filetype and Attributes t1-t3
The filetype (ft) field contains the ASCII filetype of the file. If the filetype is less than 3 characters, the remaining bytes of the
field are set to ASCII space (20h).

As in the filename field, the remaining bits of each byte in the filetype field contain attributes t1 through t3:

attr byte description

t1 09h Read only attribute
t2 0Ah Global attribute

t3 0Bh Archived attribute

ex Extent Counter
The extent counter (ex) field contains a modulo-32 number indicating the current extent of the file.

A file may contain 134,217,728 bytes (1,048,576 128-byte records). As an extent is usually 16K or 16,384 bytes (larger
extent sizes are possible under some circumstances), there may be a maximum of 8192 extents in a file. A modulo-32 (5-bit)
number is insufficient for this value: a 13-bit number is required. The problem is solved by using the system byte 2 (s2) field
as an extended extent counter in the following manner:

s2|7]6|5]4|3|2[|1]0
ex
s2+ex |C|B|A|9|8|7]6]5]4(3]2]1]0

D
w
N
=
o

sl System Byte 1 — Flag Byte
The system byte 1 (s1) field contains the system flag byte. Do not alter this byte under any circumstances or unpredictable
errors may occur.

s2 System Byte 2 — Extended Extent Counter
The system byte 2 (s2) field contains the extended extent counter, and is used with the extent counter field as described
above.

rc Record Count
The record count (rc) field contains the number of records in the current extent of the file. If the extent is full, this byte
contains 80h.

mp Allocation Map

The allocation map (mp) field contains the allocation map as loaded from the directory. Do not alter this field in any way or
reading and/or writing a record may access the wrong spot on the disk. An extreme danger exists in that if this field or any
portion of it is set to zeros, the directory may be overwritten.

cr Current Record Number
The current record number (cr) field contains the number of the record in the current extent to which the file is currently
positioned. This is the next record accessed by a sequential read or write.

rr Random Record Number
The random record number (rr) field contains the number of the absolute record (1 out of 1,048,510) which the file accesses
at the next random read or write. The file may or may not be positioned to this record before, by, or after the access.

The random record number is a 20-bit number (occasionally interpreted as a 24-bit number with 0000 in the most significant
four bits) arranged as follows:

23h[3]2]1]0
22h 7]6]5]4[3]2]1]0
21h 7]6]5]4]3]2]1]0
rrl13[12]11]10]oF [oE|OoD[OC|[0B]OA[09] 08|07 |06[05]04]03]02]01]00

In general, the application program must initialize bytes 0-12 of the FCB before opening, creating, or searching for a file. It
must also zero FCB byte 32 before reading or writing a file sequentially from the beginning. In practice, the entire FCB is
usually initialized.

When a file is opened or created, TurboDOS fills bytes 0-31 with information from the directory. When the file is closed,
TurboDOS updates the directory with information from the FCB. It is critical, therefore, that the application program does not
alter bytes 0-31 on an open file or the directory may be scrambled or damaged by file closure. Unlike CP/M, TurboDOS
automatically closes any files a processor has open at warmstart.

A directory entry has the same basic structure as the first 32 bytes of an FCB, with the exception of byte O: in a directory byte
0 contains the user area code, and in an FCB it contains the drive code.

— 06—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

When a file is deleted, byte 0 of its directory entry is made equal to E5h and its disk space is marked for reallocation: no other
action takes place at that time. This means that changing byte 0 back to its original user area code and reallocating the disk
space allows a deleted file to be restored, PROVIDED THAT NO OTHER DISK WRITES HAVE OCCURRED WHICH
MAY ALTER OR OVERWRITE THE DIRECTORY OR THE DATA ON THE DISK. In a hashed directory, only the
original user code may be used or the hashing algorithm will fail to find the file properly: in a non-hashed directory, any user
file may be used.

File Specification Parsing

At the command line, a file specification must be in the following format:

uud:filename.typ

“uud:”
This is an optional user area/drive designation in one of the following six forms:

uu: d: uud: duu: uu:d: d:uu:
If either the user area or the drive is missing, the current user area or drive is assumed.

“filename”
This is the filename itself, which may be from one to eight characters in length, and may consist of any characters except
control codes, space, comma, period, semicolon, colon, equals, or the TurboDOS command separator (usually a
backslash).

113 _typ”

This is an option filetype designation, which may be from one to three characters in length and is set off from the
filename by a period. The characters of the filetype are subject to the same rules as the filename.

At the command level, all lower case letters are converted to upper case.

The file specification is parsed into the first 16 bytes of the FCB as follows:

0l1]2]3]4a]s5]6]7]8]9]A]B|JC|DJE]F
d| f i | e/ njajmje|t y p

00 = current drive
01 =drive A:

10 = drive P:
filename right padded with spaces

| | | | _filetype right padded with spaces
| always 00

00 = current user area or user area 0
01 =userareal

1F = user area 31

| always 00
00 = current user area
FF = specific user area

It should be noted that even though a file specification parsed from a command line disallows all lower case letters and
control-codes, as well as certain special characters, any character at all may be placed into an FCB when programming, and
that character becomes a part of the file name. Special care must be taken if control-codes are used, however, as they at
minimum distort the screen display of the DIR command, and at worst may send the terminal south for the winter.

File Attributes

File attributes are stored in the high-order bits of the FCB name field (fn) and type field (ft), and are used to control how a file
may be accessed:

Byte Attr aka Description

1 fl F FIFO attribute
2 f2 D MS-DOS directory attribute
3 f3 — Not assigned, available for private use
4 fA — Not assigned, available for private use (used by COPY)
5 5 — File locking mode attribute
6 6 — File locking mode attribute
— 97—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

7 7 — Not assigned, reserved

8 8 — Not assigned, reserved
9 t1 R Read only attribute

10 t2 G Global attribute

11 3 A Archived attribute

Normally, only attributes f1-f4 and t1-t3 are recorded in the directory. A newly created file has all attributes cleared to 0, and
no attribute is set unless intentionally so by C-function 30, Set File Attributes.

Under normal circumstances, the application program does not set the attributes in the FCB, the exceptions being attributes f5
and f6 under special circumstances, prior to opening or crating a file. Once opened, the attributes are automatically copied
into the FCB from the directory, and should not be altered unless specifically for C-function 30.

f1 FIFO

Attribute f1, the FIFO attribute, denotes a special FIFO (first-in, first-out) file structure, not unlike that of an MP/M queue or
a Unix pipe. FIFO files not only send and receive data in a special manner, they also have a unique header record that
indicates the content and structure of the FIFO. Do not set the FIFO attribute on a normal file, but create the file as a FIFO in
the first place by creating the file, creating and writing the special header record, then setting the FIFO attribute.

FIFO files may not be deleted, renamed, or copied unless the FIFO attribute is first cleared.

f2 MS-DOS Directory
Attribute f2, the MS-DOS directory attribute, marks a file as a special MS-DOS directory file, used to allow recognition of
the drive and user area as a directory when operating under MS-DOS on a system networked in via TurboDOS/PC. There are

usually two of these directory files per user per drive, with the special names “.” and “..”.

MS-DOS directory files cannot be deleted or renamed unless the MS-DOS directory attribute is first cleared.

f3 Not Assignhed
Attribute 3 is not assigned and is free for use by an application program.
f4 Not Assigned

Attribute f4 is not assigned and is free for use by an application program.

There is an exception to this: when a very large file is fractionated and copied to a series of floppy disks using the “B” option
of the COPY command, the file segments have attribute f4 set on the floppies in order to allow reconcatenation at a later
time.

f5-f6 File Locking Mode
Attributes f5 and f6 work together to determine the file locking mode. Setting and/or clearing these attributes in the FCB prior
to opening or creating a file causes that file to be opened or created in one of the four file locking modes:

f5_f6 Mode

0 0 Exclusive or Permissive (default)
1 0 Shared

0 1 Read only

1 1 Permissive or Exclusive

The operation of file and record locking is covered later.

Attributes f5 and f6 are not recorded in the directory.

f7-f8 Not Assigned, Reserved
Attributes f7 and f8 are not assigned, but are reserved for system use and are not recorded in the directory.

tl Read only
Attribute t1, the read only attribute, marks a file as being read only. Read only files may not be written to, deleted, or
renamed.

t2 Global

Attribute t2, the global attribute, marks a file as a system global file. If a global file is located on user area 0 of a given drive,
then any user area on that drive may access the file. If a global file is located on user area 0 of the system (boot) drive, then
any user area of any drive may access the file.

t3 Archived
Attribute t3, the archived attribute, marks a file as having been archived (copied via the “A” option of the COPY command).
TurboDOS automatically clears the archived attribute during any write or rename operation.

—0-8—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

User Areas

TurboDOS provides 32 distinct user areas: numbered 0-31. When programming, only the current user area of each drive is
accessible. In order to do something on a different user area, the programmer must explicitly move to the desired user area,
then explicitly return, via C-function 32.

Even though the current version of TurboDOS returns to the “current” or “original” user area when a program terminates,
some earlier versions did not, and it is considered bad practice not to do your own housekeeping when programming.

When a file specification is parsed into an FCB, if the specification contains a user designation, that designation is parsed into
byte 13 and an FFh is placed in byte 15 as a flag. It is the responsibility of the programmer to inspect byte 15 for an FFh and,
if it is found, to extract the user area from byte 13 prior to any file process. Opening, creating, or searching for a file causes
bytes 13 and 15 to be overwritten.

File Locking and Sharing

In a TurboDOS system, it is possible for more than one operator to access the same file at the same time. It is the
responsibility of the programmer to prevent conflict when this multiple access occurs. This is accomplished in one of two
ways: creating files that inherently do not cause a conflict; and implementing file and/or record locking.

The file locking and sharing facilities of TurboDQOS are compatible with those used in MP/M-II, but offer considerable
improvement over the basic MP/M-I1 scheme.

File level interlocks are provided through the use of four distinct file opening modes: exclusive, shared, read only, and
permissive. These modes are dually controlled through the use of file attributes f5 and 6 and the system COMPAT
(compatibility) flag byte.

Exclusive Mode
A file opened in exclusive mode by one process cannot be opened by any other process in any mode whatever until it is
closed by the original process. The opening process is allowed to read, write, or extend the file.

A file cannot be opened in exclusive mode if it is already opened by another process in any mode whatever.

Shared Mode
A file opened in shared mode by one process may be opened in shared mode by any number of other processes
simultaneously. All processes may read, write, or extend the file.

If a process extends the file in shared mode, the new records are immediately available to all other processes that have
the file open.

Shared mode is the only mode in which record locking may occur.

Read Only Mode
A file opened in read only mode by one process may be opened in read only mode by any number of other processes
simultaneously. All processes may read the file, but no process may write or extend the file.

It is important that the read only file opening mode not be confused with the read only attribute of a file.

Permissive Mode
A file opened in permissive mode by one process may be opened in permissive mode by any number of other processes
simultaneously. All processes may read the file at any time, but if any process writes or extends the file then that process
gains an exclusive write lock on the file and only that process and no other may write or extend the file until that process
closes the file, releasing the exclusive write lock.

If a process extends the file in permissive mode, the new records are immediately available to all other processes that
have the file open.

Record locking is controlled by the use of explicit record locking requests in the application program. These requests are
honored only in shared file opening mode. Each process must explicitly lock a record or records via C-function 42, then
explicitly unlock the record or records via C-function 43 after updating.

If an attempt is made to lock a record already locked by another process, the calling process either receives an error code,
which it must trap and process, or is suspended until the lock can take place, depending upon the status of the suspend bit of
the COMPAT byte.

Extension of a file in shared mode should be accomplished by locking record n+1, where n is the last record in the file. The
new record may then be appended safely, then unlocked.

—0-9—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

COMPAT

TurboDOS' file and record locking is designed to be compatible with MP/M-II, yet still offer a considerable degree of
flexibility. This is accomplished though the use of the COMPAT (compatibility) byte, which is a series of six flags, one for
each of the bits in the byte (bits 1 and 0 are not used).

bit 7 Permissive Flag
If the permissive flag is not set, then MP/M-II rules are followed and the file opening mode attributes f5 and f6 act as
follows:

5 6 Mode

0 0 Exclusive (default)
1 0 Shared

0 1 Read Only

1 1 Permissive

If the permissive flag is set, then the file opening mode attributes act as follows:

5 6 Mode

0 0 Permissive (default)
1 0 Shared

0 1 Read Only

1 1 Exclusive

In this manner, the permissive flag controls the default opening mode of a file, the mode in which neither f5 nor 6 is set,
and provides basic file locking automatically.

bit 6 Suspend Flag
If the suspend flag is not set, then MP/M-II rules are followed and an attempt to lock a record already locked by another
process results in an error. The application program must trap and process this error, or the process is dropped to the
operating system error prompt with a possibility of warmstart.

If the suspend flag is set, then an attempt to lock a record already locked by another process results in a suspension of the
calling process until the other process has released the lock, at which time the calling process may proceed. Multiple
process queuing can occur as required.

The suspend flag is limited to record locking errors in files opened in shared mode, and has no effect on file lock
conflicts, which always return an error.

bit 5 Global Write Flag
If the global write flag is not set, then MP/M-II rules apply and a process not in user area 0 may read but not write or
extend global files in user area 0.

If the global write flag is set, then a process not in user area 0 may, read, write, or extend global files in user area 0.

bit 4 Mixed Mode Flag
If the mixed mode flag is not set, then MP/M-II rules apply and a process may not open a file in read only mode that
another process has open in shared mode or vice versa. Read only and shared modes are mutually exclusive.

If the mixed mode flag is set, then any number of processes may have files open in either shared or read only mode
simultaneously.

bit 3 Logical Flag
If the logical flag is not set, MP/M-II rules apply and the FCB random record number (bytes 33-35) is interpreted by C-
functions 42 and 43 (lock and unlock record) as the relative number of a 128-byte record, and causes the file to be
positioned to that record.

If the logical flag is set, then the FCB random record number is interpreted by C-functions 42 and 43 as an arbitrary 24-
bit logical record number which is not validated and does not cause file positioning.

bit 2 Global Inhibit Flag
If the global inhibit flag is not set, then MP/M-II rules apply and a process not in user area 0 may access global files in
user area 0.

If the global inhibit flag is set, then a process not in user area 0 may not access global files in user area 0.

The default settings of the COMPAT byte may be altered for any given program through the use of T-function 13, but return
to the default settings upon program termination or any warmstart.

—9-10 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

FIFO Files

To facilitate communications between processes, TurboDOS supports a special kind of file called a FIFO (first-in, first-out),
similar in concept to a Unix pipe. FIFO files are opened, closed, read and written exactly like ordinary sequential files.
However, a record written to a FIFO file is always appended to the end, and a record read from a FIFO file is always taken
from the beginning and removed.

A FIFO file is differentiated from other files by the presence of the FIFO attribute. The first record of a FIFO file contains a
special header:

byte function

0 type of FIFO: 0 = RAM; -1 = disk

1 mode: 0 = return error; —1 = suspend
2-3 maximum size (records)

4-5 current size (records)

6-7 number of last record read

8-9 number of last record written

The rest of the header record is unused but reserved.

RAM-resident FIFO files provide high speed but limited size, no more than 127 data records, usually much less, and occupy
memory space in the disk buffer area of the system file server. A RAM-resident FIFO file may be lost in the event of system
failure, as only the header resides on the disk.

A disk-resident FIFO file is slower, but may contain up to 65535 data records, and is flushed from the buffers in a normal
manner.

Unlike other files, FIFO files are of fixed length (even when empty) and cannot be extended. Normally, reading an empty
FIFO file returns an end of file error, while writing to a full FIFO file returns a disk full error. However, if the FIFO file is set
to suspend, the reading an empty FIFO file or writing to a full FIFO file causes the calling process to be suspended until the
FIFO file is not empty or not full.

A FIFO file may be accessed directly, bypassing normal FIFO operation, by the use of C-functions 33 and 34 (read and write
random). Only the disk-resident header of a RAM FIFO file may be accessed in this manner.

An attempt to create a FIFO file via C-function 22 is treated as an open, C-function 15. An attempt to delete a FIFO file via
C-function 19 is ignored. A FIFO file may only be deleted by first clearing the FIFO attribute.

TurboDOS supports programs that use MP/M-11 queue files by simulating those files through the use of RAM FIFO files. The
simulated queue files are created via C-function 134 (create queue), giving the FIFO file the designated name and the filetype
“.QUE”.

C-Functions

The C-functions supported by TurboDOS are analogous to the corresponding CP/M and MP/M BDOS functions with minor
exceptions.

To invoke a C-function, a program executes a “CALL 0005” instruction with the function number in register C.
Byte length arguments are normally passed in register E. Word length arguments are normally passed in register pair DE.

Byte length arguments are normally returned in register A and duplicated in register L. Word length arguments are normally
returned in register pair HL, with register H duplicated in register B and register L duplicated in register A.

All C-functions must be assumed to destroy the current contents of all normal registers except IX, 1Y, and the alternative
register set.

If a C-function call is made to an unsupported function, a 00h is returned in register A.

A listing of supported C-functions in numerical order is given separately.

T-Functions

The T-functions, TurboDOS unique functions, supplement the C-functions.

To invoke a T-function, a program executes a “CALL 0050 instruction the function number in register C. Arguments are
passed and values returned in the other registers, as described below for each T-function.

All T-functions must be assumed to destroy the current contents of all normal registers except 1X, 1Y, and the alternative
register set.

If a T-function call is made to an unsupported function, a 00h is returned in register A.

—9-11 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

A listing of T-functions in numerical order is given separately.

—9-12 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-Function Listing

A listing of all supported C-functions in numerical order, one function per page.

—10-1 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-0 System Reset C-0

C-Function O System Reset

Call: Return:
C =00h

The System Reset function terminates the calling program and executes a warmstart. Program termination is more commonly
performed by executing a “JP 0000”, which has exactly the same effect.

Program termination ends any active print job, close any open files, release any locked records, and restore the user number
and drive that were in effect at the time the program was originally loaded into TPA.

—10-2 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-1 Console Input C-1

C-Function 1 Console Input
Call: Return:
C=01h A = input character

The Console Input function fetches the character available from the console keyboard, waiting if necessary, and returns it in
register A. All printable (graphic) characters, carriage return, linefeed, and backspace are echoed to the console screen.
Horizontal tabs are expanded into multiple spaces based upon tab stops at every eighth column.

—10-3 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-2 Console Output C-2

C-Function 2 Console Output

Call: Return:

E = output character

C=02h
The Console Output function sends the character passed in register E to the console screen. Horizontal tabs are expanded into
multiple spaces based upon tab stops at every eighth column.

—10-4 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-3 Raw Console Input C-3

C-Function 3 Raw Console Input
Call: Return:
C=03h A = input character

The Raw Console Input function fetches the next available character from the console keyboard, waiting if necessary, and
returns it in register A. Input characters are not echoed to the console screen.

This function is compatible with MP/M: in CP/M 2.2, it is Input from Reader Device; in CP/M 3.x, it is Auxiliary Input.

—10-5—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-4 Raw Console Output C-4

C-Function 4 Raw Console Output

Call: Return:
E = output character
C =04h

The Raw Console Output function sends the character passed in register E to the console screen. Horizontal tabs are not
expanded.

This function is compatible with MP/M: in CP/M 2.2, it is Output to Punch Device; in CP/M 3.x, it is Auxiliary Output.

— 106 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-5 List Output

C-5

C-Function 5 List Output

Call: Return:
E = output character
C =05h

The List Output function sends the character passed in register E to the list device. Horizontal tabs are not expanded.

—10-7 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-6 Direct Console I/O C-6

C-Function 6 Direct Console I/O
Call: Status/Input Return:
E =FFh A = input chr; 00h if no chr available
C =06h A =00h if no chr available
Call: Return:
E = FEh (status) A = 00h if no chr available
C=06h A = FFh if chr available
Call: Return:
E = FDh (input) A = input character
C =06h
Call: Return:
E = character (output)
C=06h

The Direct Console 1/0 function performs one of four possible sub-functions, depending upon the argument passed in register
E.

If E = FFh (-1), then the function fetches any currently available character from the console keyboard, without waiting, and
return it in register A. If no character is currently available, a 00h is returned in register A. Input characters are not echoed to
the console screen.

If E = FEh (-2), then the function returns the console status in register A: 00h if a character is available; FFh (-1) if it is not.
This is equivalent to C-function 11 (Get Console Status).

If E = FDh (-3), then the function fetches the next available character from the console keyboard, waiting if necessary, and
return it in register A. Input characters are not echoed to the console screen. This is equivalent to C-function 3 (Raw Console
Input).

For other values of E, the function sends the character passed in register E to the console screen. Horizontal tabs are not
expanded. This is equivalent to C-function 4 (Raw Console Output).

—10-8 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-7 Get I/0 Byte

C-7

C-Function 7 Get 1/0O Byte
Call: Return:
C=07h A = current 1/O byte

The Get 1/0 Byte function returns the current value of the 1/0 byte, located at address 0003h, in register A.

This function is supported only if the module CPMSUP has been incorporated into the operating system.

—10-9 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-8 Set 1/0 Byte

C-8

C-Function 8 Set 1/0O Byte
Call: Return:

E = new I/O byte
C=08h

The Set 1/0 Byte function sets the 1/0 byte, located at address 0003h, to the value passed in register E.

This function is supported only if the module CPMSUP has been incorporated into the operating system.

— 10-10 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-9 Print String C-9

C-Function 9 Print String

Call: Return:
DE = string address
C=09h

The Print String function sends a string of characters to the console screen. The string may be of any length, and must be
terminated by a reserved delimiter, which is normally the dollar sign “$”, but which may be changed via C-function 110
(Get/Set Output Delimiter). Horizontal tabs are expanded into multiple spaces, based upon tab stops at every eighth column.

—10-11 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-10 Read Console Buffer C-10

C-Function 10 Read Console Buffer

Call: Return:
DE = buffer address
C =0Ah

The Read Console Buffer function fetches an entire line of edited input from the console keyboard. The input buffer whose
address must be passed in register DE has the following structure:

Bytes Direction Description

00h passed max input size (n)
01h returned actual input (0 —n)
02hton+l returned input characters

The first byte of the buffer must be preset to the maximum number of characters allowed in the input line. Input is accepted
until either a carriage return is entered. A full buffer is indicated by a console “beep,” and excess characters are ignored. Input
characters are echoed to the console screen, but tabs are not expanded.

The input line may be edited via the input line editor incorporated into the operating system. TurboDOS' default input line
editor allows the erasure of a character from the end of the line via the backspace (control-H) or delete keys, or the erasure of
the entire line via the control-U or control-X keys.

Upon return, the second byte of the buffer contains the actual number of input characters entered.

The input characters begin at the third byte of the buffer. The terminating carriage return is neither stored in the buffer nor
included in the count.

—10-12 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-11 Get Console Status C-11

C-Function 11 Get Console Status
Call: Return:
C=0Bh A = 00h if no chr available

A = FFh if chr available

The Get Console Status function checks the console to see whether or not a character is available for input, and return an FFh
(1) in register A if one is, or a 00h if one is not. The character is neither fetched nor consumed.

— 10-13 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-12 Return CP/M Version C-12

C-Function 12 Return CP/M Version
Call: Return:
C=0Ch H = 00h: CP/M (not MP/M)

L = 31h: CP/M version
DE = network address

The Return Version function returns a CP/M compatibility code, the CP/M version number and the network address of the
calling process.

A 00h is always returned in register H, indicating compatibility with CP/M but not MP/M.

The compatible CP/M version, usually 31h for version 3.1, is returned in register L. The value returned in register L is
dependent upon the value of the CPMVER patch point set during system generation.

The network address of the calling process is returned in register pair DE (circuit in D and node in E). This address is
identical to the first address in the circuit assignment table (CKTAST) established during system generation, and is unique
in a properly configured network.

—10-14 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-13 Reset Disk System C-13

C-Function 13 Reset Disk System

Call: Return:
C =0Dh

In TurboDQS, the only effect of the Reset Disk System function is to reset the current DMA address to its default of 0080h.

— 10-15 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-14 Select Disk C-14

C-Function 14 Select Disk

Call: Return:

E = disk drive code

C=0Eh
The Select Disk function causes the disk drive whose code is passed in register E to become the current (default) drive. This
drive is the drive used in subsequent file operation where the FCB drive code is 00h.

The disk drive code to be passed in register E must be:

00h = A: 04h =E: 08h =1: 0Ch=M:

01lh =B: 05h =F: 0%h =J: 0Dh = N:

02h =C: 06h = G: 0Ah =K: 0Eh = 0O:

03h =D: 07h =H: 0Bh=L: OFh =P:
—10-16 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-15 Open File C-15

C-Function 15 Open File
Call: Return:
DE = FCB address A = 00h if opened
C=0Fh A = FFh if file not found

The Open File function opens the file specified by the FCB whose address is passed in register pair DE. The file must exist
on the specified drive, and must exist either on the current user area, or as a global file on user area 0.

Only bytes 0 through 12 of the FCB (drive, filename, filetype, and extent) need be initialized, with byte 12 (extent) normally
set to 00h. After opening, the remainder of the FCB contains information derived from the directory.

If a file is to be opened in other than the default file locking mode, then attributes f5 and f6 must be set in the FCB prior to
calling this function. See the section on file and record locking to determine attribute settings.

If the FCB current record field (byte 32) is set to FFh (-1), this function returns the byte count of the last record of the file in
the current record field. The calling program should zero the current record field before executing sequential reads or writes.

—10-17 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-16 Close File C-16

C-Function 16 Close File
Call: Return:
DE = FCB address A = 00h if closed
C=10h A = FFh if file not found

The Close File function closes the previously opened file specified by the FCB whose address is passed in register pair DE.
The directory is updated as required, and any locks on the file or its records are released.

If the FCB attribute 5 is set, this function performs a partial close, updating the directory but leaving the file open.

— 10-18 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-17 Search for First C-17

C-Function 17 Search for First
Call: Return:
DE = FCB address A = entry number if found
C=11h A = FFh if file not found

The Search for First function scans the directory for the first entry which matches the file specified by the FCB whose address
is passed in register pair DE. The file is searched for only on the specified drive, and on the current user area or as a global
file on user area 0.

Only bytes 0 through 12 of the FCB (drive, filename, filetype, and extent) need be initialized, with byte 12 (extent) normally
set to 00h. If any character of the filename or filetype is an ASCII question mark (3Fh), it is treated as a wildcard and
provides a match to any character in that position.

If the search is successful, this function returns a directory record, containing four 32-byte directory entries, at the current
DMA address, and also returns a value of 00h through 03h in register A, indicating which of the four directory entries
provided the match. If the search is not successful, FFh (-1) is returned in register A.

If this function is successful, then C-function 18 (Search for Next) may be called repeatedly to locate all remaining matches
in the directory.

A special case exists if an ASCII question mark (3Fh) is placed in byte 0 of the FCB: the remainder of the FCB is ignored and
the first directory entry of the current drive (usually the drive label) is returned. C-function 18 (Search for Next) then finds
each subsequent directory entry, regardless of user area. Even deleted entries are returned in this case.

— 10-19 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-18 Search for Next C-18

C-Function 18 Search for Next
Call: Return:
DE = FCB address A = entry number if found
C=12h A = FFh if file not found

The Search for Next function scans the directory, starting at the current location, for the next entry which matches the file
specified by the FCB whose address is passed in register pair DE. The file is searched for only on the specified drive, and on
the current user area or as a global file on user area 0.

Only bytes 0 through 12 of the FCB (drive, filename, filetype, and extent) need be initialized, with byte 12 (extent) normally
set to 00h. If any character of the filename or filetype is an ASCII question mark (3Fh), it is treated as a wildcard and
provides a match to any character in that position.

If the search is successful, this function returns a directory record, containing four 32-byte directory entries, at the current
DMA address, and also returns a value of 00h through 03h in register A, indicating which of the four directory entries
provided the match. If the search is not successful, FFh (-1) is returned in register A.

— 10-20 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-19 Delete File C-19

C-Function 19 Delete File
Call: Return:
DE = FCB address A = 00h if deleted
C=13h A = FFh if not deleted

The Delete File function deletes the file specified by the FCB whose address is passed in register pair DE. The file must exist
on the specified drive, and must exist either on the current user area, or as a global file on user area 0.

Only bytes 0 through 11 of the FCB (drive, filename, and filetype) need be initialized. If any character of the filename or
filetype is an ASCII question mark (3Fh), it is treated as a wildcard and provides a match to any character in that position.

A process may delete a file that it has open, in which case an implicit close is executed before the file is deleted. It is not,
however, permitted to delete a file that another process has open, nor a file that has the read only, FIFO, or MS-DOS
directory attributes set.

If attribute f5 is set, this function performs no operation, yet returns 00h in register A: this provides compatibility with M/PM,
where the 5 attribute causes XFCBs to be deleted.

—10-21 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-20 Read Sequential C-20

C-Function 20 Read Sequential
Call: Return:
DE = FCB address A =00h if good read
C=14h A =01hif at end of file

A = 80h if current record invalid

The Read Sequential function reads into memory at the current DMA address the next 1 to 128 sequential records from the
previously opened file specified by the FCB whose address is passed in register pair DE.

The FCB extent and current record fields are used to determine the record to be read. After a record is read, the current record
field is incremented and the file is positioned to that record. If the increment causes a current record field overflow, the next
extent is opened and the current record field is reset prior to positioning.

The number of records to be read at one time is previously set via C-function 44 (Set Multi-Record Count): the default is one
record.

If the file to be read is a FIFO file, a record is read from the beginning and removed from the FIFO file. Reading from an
empty FIFO file either suspends or returns an end of file code (01h) in register A, depending upon the mode byte in the FIFO
file header. However, if FCB attribute f5 is set, reading from an empty FIFO file always returns an end of file code.

— 10-22 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-21 Write Sequential C-21

C-Function 21 Write Sequential
Call: Return:
DE = FCB address A = 00h if good write
C=15h A =01h if file too large

A =02h if disk full or

A = file read only

A =08h if record locked

A = 80h if current record invalid
A = FFh if directory full

The Write Sequential function writes from memory at the current DMA address the next 1 to 128 sequential records to the
previously opened file specified by the FCB whose address is passed in register pair DE.

The FCB extent and current record fields are used to determine the record to be read. After a record is read, the current record
field is incremented and the file is positioned to that record. If the increment causes a current record field overflow, the next
extent is opened or created and the current record field is reset prior to positioning.

The number of records to be read at one time is previously set via C-function 44 (Set Multi-Record Count): the default is one
record.

If the file to be written is a FIFO file, a record is appended to the end of the FIFO file. Writing to a full FIFO file either
suspends or returns a disk full code (02h) in register A, depending upon the mode byte in the FIFO file header. However, if
FCB attribute f5 is set, writing to a full FIFO file always return a disk full code.

— 10-23 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-22 Create File C-22

C-Function 22 Create File
Call: Return:
DE = FCB address A = 00h if created
C=16h A = FFh if directory full, file already exists, or FCB invalid

The Create File function creates a new (empty) file specified by the FCB whose address is passed in register pair DE. The file
must not exist on the specified drive and current user area.

Only bytes 0 through 12 of the FCB (drive, filename, filetype, and extent) need be initialized, with byte 12 (extent) set to 00h.
After creation, the file is left open.

If a file is to be created in other than the default file locking mode, then attributes f5 and f6 must be set in the FCB prior to
calling this function: a file may not be created in read only mode. See the section on file and record locking to determine
attribute settings.

The calling program should zero the current record field before executing sequential reads or writes.

— 10-24 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-23 Rename File C-23

C-Function 23 Rename File
Call: Return:
DE = FCB address A = 00h if renamed
C=17h A = FFh if file not found, in use or invalid name

A program may rename a file that it has open, in which case a close is performed implicitly before the file is renamed.
However, a program is not permitted to rename a file that another process has open, nor a file that has the read only attribute.

Bytes 00h through OBh (0 through 11) of the FCB are used to specify the current drive, name and type of the file, while bytes
11h through 1Bh (17 through 27) are used to specify the new name and type: all remaining bytes of the FCB are ignored.
Both specifications must be explicit: wildcard characters are not permitted. The special FCB format is as follows:

o 1 2 3 4 5 6 7 8 9 A B C D E F

Ox | d current filename filetype
1x new filename filetype
2x []

A process may rename a file that it has open, in which case an implicit close is executed before the file is renamed. It is not,
however, permitted to rename a file that another process has open, nor a file that has the read only, FIFO, or MS-DOS
directory attributes set.

If attribute f5 is set, this function performs no operation, yet returns 00h in register A: this provides compatibility with M/PM,
where the 5 attribute causes XFCBs to be deleted.

— 10-25 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-24 Return Login Vector C-24

C-Function 24 Return Login Vector
Call: Return:
C=18h HL = login vector

The Return Login Vector function tests the status of all sixteen possible logical drives and return a 16-bit vector in register
pair HL denoting the results.

Each bit of the returned vector designates the status of a different drive, with bit 0 indicating drive A: status and bit 15
indicating drive P: status. A 1 in the appropriate bit indicates the drive is on line and ready for access: a 0 indicates the drive
is not ready or not assigned.

This function is supported only if the module CPMSUP has been incorporated into the operating system.

— 10-26 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-25 Return Current Disk C-25
C-Function 25 Return Current Disk

Call: Return:

C=1%h A =disk drive code

The Return Current Disk function returns the identity of the current (default) disk drive in register A.

The disk drive code to be returned in register A is:

00h = A: 04h = E: 08h=1: 0Ch =M:
01h =B: 05h=F: 09%h =1J: 0Dh =N:
02h=C: 06h = G: 0Ah=K: O0Eh=0:
03h =D: 07h =H: 0Bh=L: OFh=P:

— 10-27 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-26 Set DMA Address C-26

C-Function 26 Set DMA Address

Call: Return:
DE = DMA address
C=1Ah

The Set DMA Address function causes the memory address passed in register pair DE to become the start of the DMA record
buffer to be used for subsequent file read and write operations. In a banked memory system, the DMA address is always
interpreted as an address in the same memory bank as the TPA.

Whenever a program is loaded into the TPA, the DMA address is initialized to 0080h, the address of the command tail and
default DMA record buffer. The DMA address is returned to this default via C-function 13 (Reset Disk System).

— 10-28 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-27 Get ALV Address C-27

C-Function 27 Get ALV Address
Call: Return:
C=1Bh HL = 0000h

The Get ALV Address function performs no operation under TurboDOS: under CP/M, it returns the address of the memory
resident allocation vector for the current disk.

— 10-29 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-28 Write Protect Disk C-28

C-Function 28 Write Protect Disk

Call: Return:
C=1Ch

The Write Protect Disk function sets the current (default) disk drive as read only, preventing any program from writing to the
disk. C-function 37 (Reset Drive) must be used before the disk again allows writes.

Unlike CP/M, TurboDOS does not re-enable writing after a warmstart or C-functions 0 (System Reset) or 13 (Reset Disk
System). Consequently, write protection of a disk drive is not nearly as transient as it is under CP/M.

This function is supported only if the module CPMSUP has been incorporated into the operating system.

— 10-30 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-29 Get Read only Vector C-29

C-Function 29 Get Read-Only Vector
Call: Return:
C=1Dh HL = read only vector

The Get Read only Vector function tests the read only status of all sixteen possible logical drives and return a 16-bit vector in
register pair HL denoting the results.

Each bit of the returned vector designates the read only status of a different drive, with bit O indicating drive A: status and bit
15 indicating drive P: status. A 1 in the appropriate bit indicates the drive is read only: a 0 indicates the drive is read/write.

This function is supported only if the module CPMSUP has been incorporated into the operating system.

— 10-31 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-30 Set File Attributes C-30

C-Function 30 Set File Attributes
Call: Return:
DE = FCB address A =00h if set
C=1Eh A = FFh if file not found or in use

The Set File Attributes function searches the directory for the file specified by the FCB whose address is passed in register
pair DE, and updates the directory attributes for that file to those found in the FCB.

Only bytes 0 through 11 of the FCB (drive, filename, and filetype) need be initialized. Wildcard characters are not permitted.

A process may set attributes on a file that it has open, in which case an implicit close is executed before the attributes are
updated. It is not, however, permitted to delete a file that another process has open.

If attribute f6 is set, this function updates the last record byte count of the file. The count is obtained from the current record
field (byte 32) of the FCB, and stored in the flag field (byte 13) of the directory entry.

— 10-32 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-31 Get DPB Address C-31

C-Function 31 Get DPB Address
Call: Return:
C=1Fh HL = DPB address

The Get DPB Address function causes TurboDOS to construct a CP/M-style Disk Parameter Block (DPB) for the current
drive and return its address in register pair HL.

This function is supported only if the module CPMSUP has been incorporated into the operating system.

— 10-33 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-32 Get/Set User Number C-32

C-Function 32 Get/Set User Number

Call: Return:
E = FFh (Get) A = user area number
C=20h

Call: Return:
E = user number (Set)
C=20h

The Get/Set User Number function returns the current user area number in register A if FFh (=1) is passed in register E.

This function sets the current user area to the number passed in register E if the modulo-32 number passed in register E is not
FFh and the calling process is privileged: a request by a non-privileged process is ignored.

— 10-34 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-33 Read Random C-33

C-Function 33 Read Random
Call: Return:
DE = FCB address A =00h if good read
C=21h A = 01h if unwritten data

A = 03h if extent change error
A = 04h if unwritten extent
A =80h if random record invalid

The Read Random function reads into memory at the current DMA address the next 1 to 128 consecutive records from the
previously opened file specified by the FCB whose address is passed in register pair DE.

The 20-bit FCB random record number (bytes 33 through 35) is used to determine the record to be read. After a record is
read, the random record field is incremented and the file is positioned to that record. In addition, the FCB extent and current
record field are set to correspond with the random record that was read. Unlike C-function 20 (Read Sequential), this function
does not increment the current record field after reading. Thus, if the Read Random function is followed by a Read Sequential
or Write Sequential, the same record is re-accessed.

The number of records to be read at one time is previously set via C-function 44 (Set Multi-Record Count): the default is one
record.

— 10-35 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-34 Write Random C-34

C-Function 34 Write Random
Call: Return:
DE = FCB address A =00h if good read
C=22h A = 02h if disk full or write protected

A = 03h if extent change error

A = 05h if directory full

A = 06h if random record invalid
A =08h if record locked

The Write Random function writes from memory at the current DMA address the next 1 to 128 consecutive records to the
previously opened file specified by the FCB whose address is passed in register pair DE.

The 20-bit FCB random record number (bytes 33 through 35) is used to determine the record to be written. After a record is
written, the random record field is incremented and the file is positioned to that record. In addition, the FCB extent and
current record field are set to correspond with the random record that was written. Unlike C-function 20 (Read Sequential),
this function does not increment the current record field after writing. Thus, if the Write Random function is followed by a
Read Sequential or Write Sequential, the same record is re-accessed.

The number of records to be written at one time is previously set via C-function 44 (Set Multi-Record Count): the default is
one record.

— 10-36 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-35 Compute File Size C-35

C-Function 35 Compute File Size
Call: Return:
DE = FCB address A = 00h if size computed

A = FFh if file not found

The Compute File Size function searches the directory for the file specified by the FCB whose address is passed in register
pair DE. If the file is found, this function sets the FCB random record field (bytes 33 through 35) to a value one greater than
the record number of the last record in the file. Thus, a succeeding Write Random function (34) appends an additional record
at the end of the file.

This function produces correct results whether or not the file is open. If the file is closed, only bytes 0 through 11 of the FCB
(drive, filename, and filetype) need be initialized.

— 10-37 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-36 Set Random Record C-36

C-Function 36 Set Random Record

Call: Return:
DE = FCB address
C =24h

The Set Random Record function returns the current file position of a previously opened file in the random record field (bytes
33-35) of the FCB. The file position is determined from the values of the FCB extent, spec2, and current record fields (bytes
12, 14, and 32). Since the Read Sequential (20) and Write Sequential (21) functions do not update the random record field of
the FCB, this function is useful when switching from sequential to random access.

— 10-38 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-37 Reset Drive C-37

C-Function 37 Reset Drive

Call: Return:
DE = reset vector
C =25h

The Reset Drive function write enables any of the sixteen possible logical drives according to a 16-bit reset vector passed in
register pair DE.

Each bit of the passed vector designates a different drive, with bit 0 indicating drive A: status and bit 15 indicating drive P:
status. A 1 in the appropriate bit indicates the drive is to be reset: a 0 indicates it is not.

This function is supported only if the module CPMSUP has been incorporated into the operating system.

— 10-39 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-40 Write Random with Zero Fill C-40

C-Function 40 Write Random with Zero Fill
Call: Return:
DE = FCB address A =00h if good read
C=28h A = 02h if disk full or write protected

A = 03h if extent change error

A = 05h if directory full

A = 06h if random record invalid
A =08h if record locked

Under TurboDQOS, the Write Random with Zero Fill function is identical to C-function 34 (Write Random) and writes from
memory at the current DMA address the next 1 to 128 consecutive records to the previously opened file specified by the FCB
whose address is passed in register pair DE.

The 20-bit FCB random record number (bytes 33 through 35) is used to determine the record to be written. After a record is
written, the random record field is incremented and the file is positioned to that record. In addition, the FCB extent and
current record field are set to correspond with the random record that was written. Unlike C-function 20 (Read Sequential),
this function does not increment the current record field after writing. Thus, if the Write Random function is followed by a
Read Sequential or Write Sequential, the same record is re-accessed.

The number of records to be written at one time is previously set via C-function 44 (Set Multi-Record Count): the default is
one record.

— 10-40 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-42 Lock Record C-42

C-Function 42 Lock Record
Call: Return:
DE = FCB address A = 00h if record locked
C=2Ah A = 01h if unwritten data

A = 03h if extent change error

A = 04h if unwritten extent

A = 06h if random record invalid
A =08h if already locked

The Lock Record function attempts to obtain a lock on 1 to 128 consecutive records of a previously opened shared mode file
specified by the FCB whose address is passed in register pair DE, starting with the record designated by the 20-bit FCB
random record number (bytes 33 through 35). If the file is not opened in shared mode, no operation takes place but a 00h is
returned in register A.

The file is positioned to the specified record, unless the COMPAT byte logical flag (bit 3) is set or the file is a FIFO file. If
the record is already locked by another process, this function either suspends or returns an error depending on the setting of
the COMPAT byte suspend flag (bit 6).

The number of records to be locked at one time is previously set via C-function 44 (Set Multi-Record Count): the default is
one record.

If the FCB random record field is set to the 24-bit value OFFFFFFH, then this function attempts to obtain an all inclusive lock
on all records of the file at once. In this case, no positioning is performed.

— 10-41 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-43 Unlock Record C-43

C-Function 43 Unlock Record
Call: Return:
DE = FCB address A = 00h if record unlocked
C=2Bh A = 01h if unwritten data

A = 03h if extent change error
A = 04h if unwritten extent
A = 06h if random record invalid

The Unlock Record function unlocks 1 to 128 consecutive records of a previously opened shared mode file specified by the
FCB whose address is passed in register pair DE, starting with the record designated by the 20-bit FCB random record
number (bytes 33 through 35). Attempting to unlock a record not previously locked does not produce an error. If the file is
not opened in shared mode no operation takes place but a 00h is returned in register A.

The file is positioned to the specified record, unless the COMPAT byte logical flag (bit 3) is set or the file is a FIFO file. If
the record is already locked by another process, this function either suspends or returns an error depending on the setting of
the COMPAT byte suspend flag (bit 6).

The number of records to be unlocked at one time is previously set via C-function 44 (Set Multi-Record Count): the default is
one record.

If the FCB random record field is set to the 24-bit value OFFFFFFH, then this function releases an all inclusive lock, but does
not affect any records individually locked. In this case, no positioning is performed.

— 10-42 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-44 Set Multi-Record Count C-44

C-Function 44 Set Multi-Record Count
Call: Return:
E = number of records A =00h
C=2Ch

The Set Multi-Record Count function enables a process to manipulate from 1 to 128 records at one time during subsequent
file operations. This function affects the following C-functions:

20 Read Sequential

21 Write Sequential

33 Read Random

34 Write Random

40 Write Random with Zero Fill
42 Lock Record

43 Unlock Record

and determines the number of consecutive 128-byte records to be read, written, locked or unlocked.

Once set, the specified record count remains in effect until changed by another Set Multi-Record Count function. The initial
default value is one record.

— 10-43 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-46 Get Disk Free Space C-46

C-Function 46 Get Disk Free Space

Call: Return:
E = disk drive code A =00h
C=2Eh

The Get Disk Free Space function determines the amount of free space on the specified disk drive, and returns a 24-bit binary
value (the number of free 128-byte records) as a three byte quantity stored at the current DMA address, least significant byte
first.

The disk drive code is as follows:

00h =drive A: 04h =drive E: 08h =drive I: 0Ch =drive M:

01h =drive B: 05h =drive F: 09h =drive J: 0Dh =drive N:

02h =drive C: 06h = drive G: 0Ah =drive K: OEh =drive O:

03h =drive D: 07h =drive H: 0Bh =drive L: OFh = drive P:
— 1044 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-47 Chain to Program C-47

C-Function 47 Chain to Program

Call: Return:
E = 00h (reversion)
C =2Fh

Call: Return:
E = FFh (retention)
C=2Fh

The Chain to Program function allows chaining from one program to another. The calling program must pass a valid
TurboDOS command line, terminated by a null byte, in the current DMA buffer. This function then terminates the calling
program, revert to the original drive and user area if 00h is passed in register E or retain the current drive and user area if FFh
(-1) is passed in register E, and then execute the passed command line. The commands are echoed to the console as they are
executed, unless the command line starts with a command separator character.

— 10-45 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-104 Set Date and Time C-104

C-Function 104 Set Date and Time
Call: Return:
DE = date/time packet address
C =68h

The Set Date and Time function sets the system date and time to that contained in a 4-byte date/time packet whose address is
passed in register pair DE. The date/time packet has the following structure:

byte Description

0-1 Julian date: 0000h = 31 December 1977
2 Hours: 2 BCD digits

3 Minutes: 2 BCD digits

Seconds are set to zero.

— 10-46 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-105 Get Date and Time C-105

C-Function 105 Get Date and Time
Call: Return:
DE = date/time packet address A =seconds: 2 BCD digits
C =6%h

The Get Date and Time function returns the system date and time and in a 4-byte date/time packet whose address is passed in
register pair DE. The date/time packet has the following structure:

byte Description

0-1 Julian date: 0000h = 31 December 1977
2 Hours: 2 BCD digits

3 Minutes: 2 BCD digits

Seconds are returned in register A. C-function 155 (Get Date and Time) is identical save that seconds are returned in the
date/time packet.

— 10-47 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-107 Return CP/M Serial Number C-107

C-Function 107 Return CP/M Serial Number
Call: Return:
DE = s/n field address
C=6Bh

Under TurboDOS, the Return Serial Number function returns six zeros to the 6-byte CP/M serial number field whose address
is passed in register pair DE.

This function is supported only if the module CPMSUP has been incorporated into the operating system.

— 10-48 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-108 Get/Set Program Return Code C-108

C-Function 108 Get/Set Program Return Code
Call: Return:
DE = FFFFh (Get) HL = program return code
C=6Ch
Call: Return:
DE = program return code (Set)
C=6Ch

The Get/Set Program Return Code function allows one program to pass a value to another program via the 16-bit program
return code.

If FFFFh is passed in register pair DE, this function gets the current program return code and returns it in register pair HL.

If any value except FFFFh is passed in register pair DE, this function sets the current program return code to that value.

— 10-49 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-110 Get/Set Program Output Delimiter C-110

C-Function 110 Get/Set Program Output Delimiter
Call: Return:
DE = FFFFh (Get) A = output delimiter
C =6Eh
Call: Return:
E = output delimiter (Set)
C=6Eh

The Get/Set Output Delimiter function allows a process to inspect or alter the output string delimiter used by C-function 9
(Print String). The default output string delimiter is the ASCII dollar sign “$” (24h).

If FFFFh is passed in register pair DE, this function gets the current output delimiter and returns it in register A.

If any value other than FFFFh is passed in register pair DE, this function sets the current output string delimiter to the value
passed in register E.

— 10-50 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-111 Print Block C-111

C-Function 111 Print Block

Call: Return:
DE = CCB address
C =6Fh

The Print Block function sends a string of characters to the console screen. The string may be of any length, and is defined by
a 4-byte Character Control Block (CCB) whose address is passed in register DE. The CCB has the following structure:

bytes description
0-1 starting address of string
2-3 byte length of string

Horizontal tabs are expanded into multiple spaces, based upon tab stops at every eighth column.

— 10-51 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-112 List Block C-112

C-Function 112 List Block

Call: Return:
DE = CCB address
C =70h

The List Block function sends a string of characters to the list device. The string may be of any length, and is defined by a 4-
byte Character Control Block (CCB) whose address is passed in register DE. The CCB has the following structure:

bytes description
0-1 starting address of string
2-3 byte length of string

Horizontal tabs are not expanded.

— 10-52 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-134 Create Queue C-134

C-Function 134 Create Queue
Call: Return:
DE = QD address A = 00h if queue created
C =86h A = FFh if unable to create

The Make Queue function emulates the creation of an MP/M queue defined by a 14-byte Queue Descriptor (QD) whose
address is passed in register pair DE. The QD has the following structure:

bytes description

0-1 zeroes (internal use)

2-9 queue name in ASCII (8 chars)
10-11 message length

12-13 maximum number of messages

This function causes the creation of a global RAM FIFO file having the given queue name and type “.QUE” on user area 0 of
the disk determined by the system patch QUEDRYV. Any pre-existing file with the same name and type is deleted.

Within the FIFO file , the message length is rounded up to the next multiple of 128 bytes, not to exceed 256 bytes if accessed
from a banked TPA. The maximum number of messages must not exceed the capacity of a RAM FIFO (16,256 bytes) and is
rounded down as necessary.

This function is supported only if the modules MPMSUP and QUEMGR have been incorporated into the operating system.
WARNING: Do not confuse emulated MP/M queue FIFO files with TurboDOS print queue files.

— 10-53 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-135 Open Queue C-135

C-Function 135 Open Queue
Call: Return:
DE = QPB address A =00h if opened
C=87h A = FFh if unable to open

The Open Queue function opens an emulated MP/M queue defined by a 12-byte Queue Parameter Block (QPB) whose
address is passed in register pair DE. The QPB has the following structure:

bytes description

0-1 gueue pointer

2-3 buffer address

4-11 queue name in ASCII (8 chars)

This function causes the opening of a RAM FIFO file having the given queue name and type “.QUE” as previously created
by C-function 134 (Make Queue). The Open Queue function fills in the “queue pointer” field of the QPB, and ignores the
“buffer address” field.

This function is supported only if the modules MPMSUP and QUEMGR have been incorporated into the operating system.
WARNING: Do not confuse emulated MP/M queue FIFO files with TurboDOS print queue files.

— 10-54 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-136 Delete Queue C-136

C-Function 136 Delete Queue
Call: Return:
DE = QPB address A =00h if deleted
C=88h A = FFh if unable to delete

The Delete Queue function deletes an emulated MP/M queue defined by a 12-byte Queue Parameter Block (QPB) whose
address is passed in register pair DE. The QPB has the following structure:

bytes description

0-1 gueue pointer

2-3 buffer address

4-11 queue name in ASCII (8 chars)

The queue must have been previously opened via C-function 135 (Open Queue) so that the QPB “queue pointer” field is
valid. The Delete Queue function closes the queue and deletes the associated RAM FIFO file . The “buffer address” and
“queue name” fields of the QPB are ignored.

This function is supported only if the modules MPMSUP and QUEMGR have been incorporated into the operating system.
WARNING: Do not confuse emulated MP/M queue FIFO files with TurboDOS print queue files.

— 10-55 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-137 Read Queue C-137

C-Function 137 Read Queue
Call: Return:
DE = QPB address A =00h if read
C=89%h A = FFh if queue not open

The Read Queue function reads a message from an emulated MP/M queue defined by a 12-byte Queue Parameter Block
(QPB) whose address is passed in register pair DE. The QPB has the following structure:

bytes description

0-1 gueue pointer

2-3 buffer address

4-11 queue name in ASCII (8 chars)

The queue must have been previously opened via C-function 135 (Open Queue) so that the QPB “queue pointer” field is
valid. The Read Queue function reads a message from the queue into memory starting at the buffer address specified by the
QPB. If the queue is empty, the calling process is suspended until a message becomes available. The “queue name” field of
the QPB is ignored.

This function is supported only if the modules MPMSUP and QUEMGR have been incorporated into the operating system.
WARNING: Do not confuse emulated MP/M queue FIFO files with TurboDOS print queue files.

— 10-56 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-138 Conditional Read Queue C-138

C-Function 138 Conditional Read Queue
Call: Return:
DE = QPB address A =00h if read
C=8Ah A = FFh if queue not open or empty

The Conditional Read Queue function reads a message from an emulated MP/M queue defined by a 12-byte Queue Parameter
Block (QPB) whose address is passed in register pair DE. The QPB has the following structure:

bytes description

0-1 gueue pointer

2-3 buffer address

4-11 queue name in ASCII (8 chars)

The queue must have been previously opened via C-function 135 (Open Queue) so that the QPB “queue pointer” field is
valid. The Read Queue function reads a message from the queue into memory starting at the buffer address specified by the
QPB. If the queue is empty, an FFh (-1) is returned in register A. The “queue name” field of the QPB is ignored.

This function is supported only if the modules MPMSUP and QUEMGR have been incorporated into the operating system.
WARNING: Do not confuse emulated MP/M queue FIFO files with TurboDOS print queue files.

— 10-57 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-139 Write Queue C-139

C-Function 139 Write Queue
Call: Return:
DE = QPB address A = 00h if written
C=8Bh A = FFh if queue not open

The Write Queue function writes a message to an emulated MP/M queue defined by a 12-byte Queue Parameter Block (QPB)
whose address is passed in register pair DE. The QPB has the following structure:

bytes description

0-1 gueue pointer

2-3 buffer address

4-11 queue name in ASCII (8 chars)

The queue must have been previously opened via C-function 135 (Open Queue) so that the QPB “queue pointer” field is
valid. The Write Queue function writes a message to the queue from memory starting at the buffer address specified by the
QPB. If the queue is full, the calling process is suspended until a message becomes available. The “queue name” field of the
QPB is ignored.

This function is supported only if the modules MPMSUP and QUEMGR have been incorporated into the operating system.
WARNING: Do not confuse emulated MP/M queue FIFO files with TurboDOS print queue files.

— 10-58 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-140 Conditional Write Queue C-140

C-Function 140 Conditional Write Queue
Call: Return:
DE = QPB address A = 00h if written
C=8Ch A = FFh if queue not open or full

The Conditional Write Queue function writes a message from an emulated MP/M queue defined by a 12-byte Queue
Parameter Block (QPB) whose address is passed in register pair DE. The QPB has the following structure:

bytes description

0-1 gueue pointer

2-3 buffer address

4-11 queue name in ASCII (8 chars)

The queue must have been previously opened via C-function 135 (Open Queue) so that the QPB “queue pointer” field is
valid. The Conditional Write Queue function writes a message to the queue from memory starting at the buffer address
specified by the QPB. If the queue is full, an FFh (=1) is returned in register A. The “queue name” field of the QPB is
ignored.

This function is supported only if the modules MPMSUP and QUEMGR have been incorporated into the operating system.
WARNING: Do not confuse emulated MP/M queue FIFO files with TurboDOS print queue files.

— 10-59 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-141 Delay C-141

C-Function 141 Delay

Call: Return:
DE = tick count
C=8Dh

The Delay function is identical to T-function 2 (Delay Process) and causes the calling process to be suspended for the period
of time specified by the tick count passed in register pair DE. A system “tick” is an implementation dependent time interval,
usually 1/50 or 1/60 of a second. The actual delay may vary from the requested tick count by plus or minus one tick.

If the specified tick count is zero, then the calling program is suspended only long enough to allow any other ready processes
to run (a so called “courtesy” dispatch).

This function is supported only if the module MPMSUP has been incorporated into the operating system.

— 10-60 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-142 Dispatch C-142

C-Function 142 Dispatch

Call: Return:
C =8Eh

The Dispatch function causes the calling process to be suspended only long enough to allow any other ready processes to run
(a so called “courtesy” dispatch). This is identical to executing a C-function 141 (Delay) or a T-function 2 (Delay Process)
with 0000h passed in register pair DE.

This function is supported only if the module MPMSUP has been incorporated into the operating system.

— 10-61 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-143 Terminate C-143

C-Function 143 Terminate

Call: Return:
C =8Fh

The Terminate function terminates the calling program and executes a warmstart. It is honored for transient programs only,
and is equivalent to C-function 0 (System Reset).

This function is supported only if the module MPMSUP has been incorporated into the operating system.

— 10-62 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-152 Parse Filename C-152

C-Function 152 Parse Filename
Call: Return:
DE = PFCB address HL = 0000h if parse & line end
C=98h HL = FFFFh if parse error

HL = delimiter address otherwise
DE = delimiter address

The Parse Filename function parses an ASCII file specification into an FCB: the addresses of the ASCI| file specification
string and the FCB are contained in a 4-byte Parse Filename Control Block (PFCB) whose address is passed in register pair
DE. The PFCB has the following structure:

bytes description
0-1 address of ASCII input string
2-3 address of destination FCB

This function parses the first file specification it finds in the input string, ignoring leading whitespace. Parsing stops upon
encountering a space, comma, semicolon, equals sign, or any ASCII control character. This function parses an ASCI| file
specification of the form:

{uud:}ilename{.typ}

where “filename” is a name up to 8 characters long, “.typ” is an optional type up to 3 characters long, and “uud:” is an
optional user/drive prefix taking one of the following six forms:

uu: d: uud: duu: uu:d: d:uu:
where “uu” is a decimal user number (0-31) and “d” is a drive letter (A to P).
The FCB drive, name, and type fields (bytes 0 through 11) are initialized according to the parsed file specification. FCB bytes
12 and 14 are set to 00h. In the absence of a user number prefix, FCB bytes 13 and 15 are also set to 00h. If the file

specification includes a user number prefix, however, FCB byte 13 is set to the given user number, and FCB byte 15 is set to
FFh (-1).

— 10-63 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-153 Get Console Number C-153

C-Function 153 Get Console Number
Call: Return:
C=9% A = console number

The Get Console Number function returns a console number in register A. This console number is constructed by taking the
network node number from the first entry of the circuit assignment table (CKTAST), adding a constant (RCNOFF), default
00h, and masking with another constant (RCNMSK), default FFh. The resulting console number should be unique in most
simple (one circuit) networks.

This function is supported only if the module MPMSUP has been incorporated into the operating system.

— 10-64 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-155 Get Date and Time C-155

C-Function 155 Get Date and Time
Call: Return:
DE = date/time packet address
C =9Bh

The Get Date and Time function returns the system date and time and in a 5-byte date/time packet whose address is passed in
register pair DE. The date/time packet has the following structure:

byte Description
0-1 Julian date: 0000h = 31 December 1977

2 Hours: 2 BCD digits
3 Minutes: 2 BCD digits
4 Seconds: 2 DCB digits

This is a variation of C-function 105 (Get Date and Time) where the seconds are returned in the date/time packet instead of
register A.

— 10-65 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-159 Detach List Device C-159

C-Function 159 Detach List Device

Call: Return:
C =9Fh

The Detach List Device function is identical to T-function 28 (Signal End of Print) and causes an end of print condition. If
spooling is in effect, the current print file is closed and (if appropriate) enqueued for background printing.

An end of print condition may also occur as the result of a warmstart, attention request, or end of print character.

This function is supported only if the module MPMSUP has been incorporated into the operating system.

— 10-66 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-160 Set List C-160

C-Function 160 Set List

Call: Return:

E = list device number

C=A0h
The Set List function saves the list device number passed in register E for use by a subsequent C-function 161 (Conditional
Attach List). The list device may be either a printer or a queue, but not a file or the console. The list device number is:

00h =A 4h=E 8h=1 Ch=M

0lh=B 5h=F %h =] Dh=N

02h=C 6h=G Ah=K Eh=0

03h=D 7Th=H Bh=L Fh=P

This function is supported only if the module MPMSUP has been incorporated into the operating system.

— 10-67 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C-161 Conditional Attach List C-161

C-Function 161 Conditional Attach List
Call: Return:
C=Alh A = 00h

The Conditional Attach List function sets the current list device to the device specified by a prior C-function 160 (Set List).
The list device may be a printer or a queue, but not a file or the console. The print mode and spool drive are not affected.

This function is supported only if the module MPMSUP has been incorporated into the operating system.

— 10-68 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

T-Function Listing

A listing of all T-functions in numerical order, one function per page.

—11-1—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

T-0 Reset Operating System T-0

T-Function 0 Reset Operating System
Call: Return:
C=00h

The Reset Operating System function unlocks all locked records, close all open files, unlock all locked drives, and terminate
any network sessions involving the calling process.

TurboDOS automatically performs this function at each program termination (warmstart), so it is almost never necessary for
a program to call this function explicitly.

—11-2 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

T-1 Create Process T-1

T-Function 1 Create Process
Call: Return:
HL = workspace address A = 00h if process created
DE = entrypoint address A = FFh if insufficient memory
C=01h

The Create Process function creates a new process which starts execution at the entry point address passed in register pair
DE. The new process is assigned a TurboDOS work area whose address appears to the new process in index register 1X, and
a 64-word stack area whose address appears in the register SP. If the process requires a re-entrant work area (usually

allocated dynamically using T-function 3), its address should be passed in register pair HL and appears to the new process in
index register 1Y.

If this function is called with register pair DE set to 0000h, it causes the calling process to terminate.

NOTE: This function is not intended for use by transient programs, and must be used with great care.

—11-3 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

T-2 Delay Process T-2

T-Function 2 Delay Process

Call: Return:
DE = tick count
C=02h

The Delay Process function causes the calling process to be suspended for the period of time specified by the tick count
passed in register pair DE. A system “tick” is an implementation dependent time interval, usually 1/50 or 1/60 of a second.
The actual delay may vary from the requested tick count by plus or minus one tick.

If the specified tick count is zero, then the calling program is suspended only long enough to allow any other ready processes
to run (a so called “courtesy” dispatch).

—11-4—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

T-3 Allocate Memory T-3

T-Function 3 Allocate Memory
Call: Return:
DE = segment length HL = segment address
C=03n A =00h if allocated

A = FFh if insufficient memory

The Allocate Memory function allocates a contiguous memory segment of the byte length passed in register pair DE. If
successful, the starting address of the allocated segment is returned in register pair HL.

NOTE: This function is not intended for use by transient programs, and must be used with great care. If a memory segment is
allocated by a transient program and not deallocated before the program terminates, then the space is lost permanently.

—11-5—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

T-4 Deallocate Memory T-4

T-Function 4 Deallocate Memory

Call: Return:
DE = segment address
C =04h

The Deallocate Memory function restores a previously allocated memory segment to the pool of available memory space.

NOTE: This function is not intended for use by transient programs, and must be used with great care. The address passed in
DE must be a segment starting address returned via a prior C-function 3 (Allocate Memory); otherwise, a system crash may
occur.

—11-6 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

T-5 Send Interprocess Message T-5

T-Function 5 Send Interprocess Message

Call: Return:
HL = message address

DE = message node address

C =05h

The Send Interprocess Message function provides a means to send messages from one process to another. Register pair DE
must specify the address of a 10-byte message node which must be initialized as follows:

MSGNOD: DW 0000h ; semaphore count
DW MSGNOD+2 ; semaphore head
DW MSGNOD+2 ; " "
DW MSGNOD+4 ;msg chain head
DW MSGNOD+4 ;" " "

Register pair HL must specify the address of the message to be sent, which must be prefixed by a 4-byte linkage as follows:

MESSAG: DW 0000h ;message linkage
DW 0000h ; " "
DB .. ;message text (any length)

NOTE: This function is not intended for use by transient programs, and must be used with great care.

—11-7—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

T-6 Receive Interprocess Message T-6

T-Function 6 Receive Interprocess Message
Call: Return:
DE = message node address HL = message address
C =06h

The Receive Interprocess Message function provides a means to receive messages sent by another process using C-function 5
(Send Interprocess Message). Register pair DE must specify the address of a 10-byte message node which must be initialized
as follows:

MSGNOD: DW 0000h ; semaphore count
DW MSGNOD+2 ; semaphore head
DW MSGNOD+2 ; " "
DW MSGNOD+4 ;msg chain head
DW MSGNOD+4 ;" " "

If no message is available from the specified message node, the calling process is suspended until a message arrives. This
function returns in HL the address of the received message prefixed by a 4-byte linkage as follows:

MESSAG: DW 0000h ;message linkage
DW 0000h ; " "
DB .. ;message text (any length)

NOTE: This function is not intended for use by transient programs, and must be used with great care.

—11-8 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

T-7 Set Error Address T-7

T-Function 7 Set Error Address
Call: Return:
DE = error address (Set)
C=07h
Call: Return:
DE = 0000h (Reset)
C=07h

The Set Error Address function enables a program to establish its own error intercept routine to intercept and process
unrecoverable disk errors. The address of the intercept routine is passed in register pair DE. Normal TurboDQOS error
diagnosis is suppressed.

The error intercept routine must not call any TurboDOS functions, and must return via a RET instruction with register A set
to the desired error recovery alternative:

A = 00h retry operation
A =01h ignore error
A = FFh abort program

If the Set Error Address function is called with register pair DE set to 0000h, normal TurboDOS error diagnosis is restored.
This also happens automatically when the program terminates.

—11-9 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

T-8 Set Abort Address T-8

T-Function 8 Set Abort Address
Call: Return:
DE = abort address (Set)
C =08h
Call: Return:
DE = 0000h (Reset)
C =08h

The Set Abort Address function enables a program to establish its own abort intercept routine to intercept and process user
requested aborts (in response to attention requests or disk errors). The address of the intercept routine is passed in register pair
DE.

The abort intercept routine may exit via a RET instruction to resume execution of the program at the point of interruption.
Alternatively, it may proceed with any desired wrap up processing and then terminate the program.

If the Set Abort Address function is called with register pair DE set to zero, normal TurboDOS abort handling is restored.
This also happens automatically when the program terminates.

—11-10 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

T-9 Set Date and Time T-9

T-Function 9 Set Date and Time

Call: Return:
HL = Julian date: 0000h = 31 Dec 1947

D = hours: binary

E = minutes: binary

B = seconds: binary

C=0%n

The Set Date and Time function sets the system date and time. The Julian date passed in register pair HL is the number of
days since the base date of 31 December 1947. Dates prior to the base date are represented by negative values.

The system date and time may also be set by means of C-function 104 (Set Date and Time), but the format of arguments is
considerably different.

—11-11 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

T-10 Get Date and Time T-10

T-Function 10 Get Date and Time
Call: Return:
C =0Ah HL = Julian date: 0000h = 31 Dec 1947

D = Hours: binary

E = Minutes: binary
B = Seconds: binary
C = system tick count

The Get Date and Time function returns the system date and time. The Julian date returned in register pair HL is the number
of days since the base date of 31 December 1947. Dates prior to the base date are represented by negative values.

If the system is freshly booted and the date and time has not been set, 8001h is returned in register HL, and hours, minutes,
seconds and system ticks count elapsed time from the boot.

The system tick count returned in register C is incremented every system tick. It counts from zero to 255, then wraps around
to zero. A system tick is an implementation dependent time interval, usually 1/50 or 1/60 of a second.

The system date and time may also be interrogated by means of C-functions 105 and 155, but the format of returned values is
considerably different.

—11-12 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

T-11 Rebuild Disk Map T-11

T-Function 11 Rebuild Disk Map
Call: Return:
E = disk drive code A = 00h if map regenerated
C=0Bh A = FFh if files open or disk read only

The Rebuild Disk Map function regenerates the allocation map on the disk drive Whose code is passed in register E. The disk
drive codes for this function are:

00h =drive A: 04h =drive E: 08h =drive I: 0Ch =drive M:
01h =drive B: 05h =drive F: 09h =drive J: 0Dh =drive N:
02h = drive C: 06h = drive G: 0Ah =drive K: OEh = drive O:
03h =drive D: 07h =drive H: 0Bh =drive L: OFh =drive P:

The principal purpose of this function is to support the FIXMAP command.

—11-13 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

T-12 Return TurboDOS Serial Number T-12

T-Function 12 Return TurboDOS Serial Number
Call: Return:
C=0Ch HL = origin number

DE = unit number

B = 00h if non-privileged
B = 80h if privileged
C=14h

The Return Serial Number function returns the origin and unit numbers with which this particular copy of TurboDOS was
serialized, and may be used in application programs to help prevent unauthorized use.

This function also returns the TurboDOS version number, and a flag which indicates whether or not the current log-on is
privileged.

—11-14 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

T-13 Set Compatibility Flags T-13

T-Function 13 Set Compatibility Flags
Call: Return:
E = COMPAT byte
C=0Dh

The Set Compatibility Flags function allows a program to modify the rules by which file locking is done. The meaning of
each compatibility flag within the COMPAT byte is explained in the sections on COMPAT and file locking previously
described.

When the program terminates, the COMPAT byte automatically reverts to its default value assigned at system generation.

—11-15 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

T-14 Log-On/Log-Off T-14

T-Function 14 Log-On/Log-Off

Call: Return:

D = disk drive code (Log-on) A = 00h if logged-on

E = user area + status A = FFh if invalid request
C=0Eh

Call: Return:
DE = FFFFh (Log-off)
C =0Eh

The Log-On/Log-Off function is provided to support log-on security via the LOGON and LOGOFF commands.

If a value other than FFFFh is passed in register pair DE, this function causes a log-on to the user area and status passed in
register E, and with a change in current drive to that passed in register D. The user and status codes for register E are:

user non- priv user non- priv user non- priv user non- priv
0 00h 80h 8 08h 88h 16 10h 90h 24 18h 98h
1 01h 81h 9 09h 89h 17 11h 91h 25 19h 99h
2 02h 82h 10 OAh B8Ah 18 12h 92h 26 1Ah 9Ah
3 03h 83h 11 0Bh 8Bh 19 13h 93h 27 1Bh 9Bh
4 04h 84h 12 0Ch 8Ch 20 14h 94h 28 1Ch 9Ch
5 05h 85h 13 0Dh 8Dh 21 15h 95h 29 1Dh 9Dh
6 06h 86h 14 OEh 8Eh 22 16h 96h 30 1Eh 9Eh
7 07h 87h 15 OFh 8Fh 23 17h 97h 31 1Fh 9Fh
The drive codes for register D are.

00h = drive A: 08h =drive I:

01h = drive B: 09h = drive J:

02h = drive C: 0Ah =drive K:

03h = drive D: 0Bh =drive L:

04h = drive E: 0Ch =drive M:

05h = drive F: 0Dh =drive N:

06h = drive G: OEh = drive O:

07h = drive H: OFh = drive P:

FFh = no change in current drive
If FFFFh is passed in register pair DE, this function causes a log-off.
After a log-off, another log-on request is not honored until a warmstart has occurred.

NOTE: When this function is called from a resident system process, the D register argument is ignored.

—11-16 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

T-15 Load File T-15

T-Function 15 Load File
Call: Return:
DE = FCB address A = 00h if file loaded
C=0Fh A = 01h if insufficient memory

A = FFh if file not found

The Load File function loads the file specified by the FCB drive, name, and type fields (bytes 0 through 11) into memory
starting at the current DMA address. The file need not have been opened. If the top of the TPA is reached before the end of
file is encountered, the loading stops and an error is returned.

If the specified drive is local to the processor in which the call is made and the TPA is non-banked, the program load
optimizer is used. If the drive is not local or the TPA is banked, multi-sector operations are used to optimize performance.

This function is used by the TurboDOS command interpreter to load .COM files into the TPA, and may also be used by
application programs to fetch overlays.

—11-17 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

T-16 Activate/Deactivate DO File T-16

T-Function 16 Activate/Deactivate DO-File
Call: Return:
DE = FCB address (Activate) A =00h if DO file activated
C=10h A = FFh if file not found
Call: Return:
DE = 0000h (Deactivate)
C=10h

The Activate/Deactivate DO File function causes the file specified by the FCB drive, name, and type fields (bytes 0 through
11) to be activated as a DO file. The file need not have been opened. Any currently active DO file and/or command line is
stacked (to be reactivated when the new DO file has been processed to completion). The principal purpose of this function is
to support the DO command.

This function may also be called with 0000h passed in register pair DE to cancel all active and stacked DO files.

—11-18 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

T-17 Disable/Enable Autoload T-17

T-Function 17 Disable/Enable Autoload
Call: Return:
E = 00h (Disable)
C=11h
Call: Return:
E = FFh (Enable)
C=

The Disable/Enable Autoload function may be used to disable the warmstart autoload feature of TurboDQOS, or to re-enable
the feature after it has been disabled.

TurboDOS automatically disables the warmstart autoload feature whenever it fails to find the file WARMSTRT.AUT on the
current disk during a warmstart. Creating such a file on disk (or changing the current disk to one that contains such a file)
does not result in autoloading unless the autoload feature is explicitly re-enabled by means of this function.

—11-19 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

T-18 Send Command Line T-18

T-Function 18 Send Command Line
Call: Return:
DE = buffer address (Send)
C =12h:
Call: Return:
DE = 0000h (Cancel)
C=12h

The Send Command Line function allows a program to specify the next command line to be processed by TurboDOS after
the program terminates. The buffer address is passed in register pair DE. The first byte of the buffer must contain the
command line byte length, and the command line text must occupy the second and succeeding bytes of the buffer. Any
currently active command line is stacked, and the new command line is activated.

The commands are echoed to the console, unless the command line starts with a leading command separator (backslash)
character.

If 0000h is passed in register pair DE this function cancels all active and stacked command lines.

—11-20 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

T-19 Return Disk Allocation Information T-19

T-Function 19 Return Disk Allocation Information
Call: Return:
E = disk drive code HL = number of blocks
C=13h DE = number of unused blocks

C = number of directory blocks
A = block size code
A = FFh if network error

The Return Disk Allocation Information function returns various parameters concerning the logical organization of the drive
whose code is passed in register E. The register E drive code is:

00h =drive A: 04h =drive E: 08h =drive I: 0Ch =drive M:
01h =drive B: 05h =drive F: 09h =drive J: 0Dh = drive N:
02h = drive C: 06h = drive G: 0Ah =drive K: OEh = drive O:
03h =drive D: 07h =drive H: 0Bh =drive L: OFh = drive P:

The total number of allocation blocks on the drive is returned in register pair HL.

The number of unused (free) allocation blocks on the disk is returned in register pair DE.

The number of allocation blocks dedicated to the directory is returned in register C.

A code is returned in the least significant nybble of register A indicating the size of an allocation block:

3= 1024 bytes
4= 2048 bytes
5= 4096 bytes
6= 8192 bytes
7= 16384 bytes

Bit 7 of register A is used to indicate the type of media:

0 = removable 1 = fixed
Bit 6 of register A is used to indicate EXM status:
0 = EXM=0 not forced 1 = EXM=0 forced

—11-21 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

T-20 Return Physical Disk Information T-20

T-Function 20 Return Physical Disk Information
Call: Return:
E = disk drive code HL = number of sector/track
C=14h DE = number of tracks

BC = number of reserved tracks
A = sector size
A = FFh if network error

The Return Physical Disk Information function returns various parameters concerning the format and physical organization of
the disk drive whose code is passed in register E. The register E drive code is:

00h =drive A: 04h =drive E: 08h =drive I: 0Ch =drive M:
01h =drive B: 05h =drive F: 09h =drive J: 0Dh = drive N:
02h = drive C: 06h = drive G: 0Ah =drive K: OEh = drive O:
03h =drive D: 07h =drive H: 0Bh =drive L: OFh = drive P:

The number of sectors per track is returned in register pair HL.
The total number of tracks on the drive is returned in register pair DE.
The number of reserved (boot) tracks is returned in register pair BC.

A code designating the physical sector size is returned in register A:

00h = 128 bytes 04h = 2048 bytes
0lh= 256 bytes 05h = 4096 bytes
02h = 512 bytes 06h = 8192 bytes
03h= 1024 bytes 07h = 16384 bytes

—11-22 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

T-21 Get/Set Drive Status T-21

T-Function 21 Get/Set Drive Status
Call: Return:
D = 00h (Set read/write) A = 00h if set read/write
E = drive code A = FFh if files open
C=15h
Call: Return:
D = 01h (Set read only) A = 00h if set read only
E = drive code A = FFh if files open
C=15h
Call: Return:
D = FFh (Get status) H = 00h if drive read/write
E = drive code H = FFh if drive read only
C=15h L = 00h if drive not ready

L = FFh if drive ready

The Get/Set Drive Status function may be used to interrogate the ready and write protect status of the drive whose code is
passed in register E. This function may also be used to change the write protect status of the drive. The code passed in register
D controls which of these operations is performed. The register E drive code is:

00h =drive A: 04h =drive E: 08h =drive I: 0Ch =drive M:
01h =drive B: 05h =drive F: 09h =drive J: 0Dh =drive N:
02h =drive C: 06h = drive G: 0Ah =drive K: OEh = drive O:
03h =drive D: 07h =drive H: 0Bh =drive L: OFh =drive P:

Warning: This function may produce a false ready on a remote drive. C-function 24 (Return Login Vector) produces correct
cross-network results.

—11-23 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

T-22 Physical Disk Access T-22

T-Function 22 Physical Disk Access

Call: Return:
DE = PDR packet address A = 00h if accessed or drive not ready
C=16h A = FFh if access denied or drive ready

The Physical Disk Access function provides direct access to the physical disk drivers. The principal purpose of this function
is to support the BOOT, BACKUP, FORMAT, and VERIFY commands. It is honored for privileged log-ons only, and may
be used only for local disk drives and non-banked TPA.

Register DE must pass the address of a 14-byte physical disk request (PDR) packet with the following structure:

Bytes Description
00h disk operation code (00h—04h)
01h disk drive code
02h-03h physical track number (base 0)
04h-05h physical sector number (base 0)
06h-07h number of sectors to read or write
08h-09h number of bytes to read or write
0Ah-0Bh DMA address for read or write
0Ch-0Dh disk specification table address
The drive code specified by PDR byte 01h is as follows:
00h =drive A: 04h =drive E: 08h =drive I: 0Ch =drive M:
01h =drive B: 05h =drive F: 09h =drive J: 0Dh =drive N:
02h = drive C: 06h = drive G: 0Ah =drive K: OEh = drive O:
03h =drive D: 07h =drive H: 0Bh =drive L: OFh =drive P:

The physical operation to be performed depends upon the disk operation code in PDR packet byte 00h.

If the PDR opcode is 00h, the specified number of physical sectors (or bytes) is read from the specified drive, track, and
sector into the specified DMA address.

If the PDR opcode is 01h, the specified number of physical sectors (or bytes) is written to the specified drive, track, and
sector from the specified DMA address.

If the PDR opcode is 02h, the type of the specified disk is determined, and an 11-byte disk specification table (DST) is
returned at the specified DMA address, structured as follows:

Bytes Description Bytes Description

00h block size code 05h-06h number of sectors per track
01h-02h total number of blocks on disk 07h-08h number of tracks on the disk
03h number of directory blocks 09h—-0Ah number of reserved (boot) tracks
04h sector size code

The block size code and sector size code in bytes 00h and 04h of the DST are as follows:

Blocks: Size Removable Fixed Sectors Size Removable Fixed Sectors
128 — — 00h 2048 04h 84h 04h
256 — — 01h 4096 05h 85h 05h
512 — — 02h 8192 06h 86h 06h
1024 03h 83h 03h 16384 07h 87h 07h

If the PDR opcode is 03h, the ready status of the specified drive is returned in register A:
A = 00h if not ready; FFh if ready

If the PDR opcode is 04h, the specified track of the specified drive is formatted, using hardware dependent formatting
information provided at the specified DMA address.

NOTE: Opcodes 00h (read) and 01h (write) require that the PDR packet contain the address of a valid DST for the specified
disk. Therefore, opcode 02h (return DST) should be invoked first to obtain the DST.

—11-24 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

T-23 Set Buffer Parameters T-23

T-Function 23 Set Buffer Parameters

Call: Return:
D = number of buffers

E = buffer size code

C=17h

The Set Buffer Parameters function enables the number and size of disk buffers to be changed. The principal purpose of this
function is to support the BUFFERS command.

The specified number of buffers must be at least 2. If the specified number of buffers cannot be allocated due to insufficient
memory, then TurboDOS allocates as many as it can.

The specified buffer size must be as least as large as the largest physical disk sector size being used. The buffer size code
passed in register E is:

00h = 128 bytes 04h = 2048 bytes
01h = 256 bytes 05h = 4096 bytes
02h = 512 bytes 06h = 8192 bytes
03h = 1024 bytes 07h = 16384 bytes

If this function is called from a slave processor without local disk storage, then the function is passed over the network to be
processed in the master.

—11-25 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

T-24 Get Buffer Parameters T-24

T-Function 24 Get Buffer Parameters
Call: Return:
C=18h H = number of buffers

L = buffer size code
A = number of memory pages

The Get Buffer Parameters function enables the number and size of disk buffers to be interrogated. The principal purpose of
this function is to support the BUFFERS command.

The number of buffers is returned in register H, and a code indicating their size is returned in register L:

00h = 128 bytes 04h = 2048 bytes
01h = 256 bytes 05h = 4096 bytes
02h = 512 bytes 06h = 8192 bytes
03h= 1024 bytes 07h = 16384 bytes

The size of memory in pages is returned in register A.

If this function is called from a slave processor without local disk storage, then the function is passed over the network to be
processed in the master.

—11-26 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

T-25 Lock/Unlock Drive T-25

T-Function 25 Lock/Unlock Drive

Call: Return:
D = 00h (Unlock)
E = disk drive code

C=1%h

Call: Return:

D = FFh (Lock) A = 00h if drive locked

E = disk drive code A = FFh if drive in use or already locked
C=1%

The Lock/Unlock Drive function enables a program to secure a lock on a drive whose code is passed in register E. The
register E drive code is:

00h = drive A: 04h = drive E: 08h =drive I: 0Ch = drive M:
01h =drive B: 05h = drive F: 09h = drive J: 0Dh =drive N:
02h = drive C: 06h = drive G: 0Ah =drive K: OEh = drive O:
03h =drive D: 07h =drive H: 0Bh =drive L: OFh =drive P:

If this function is called with FFh in register D, then the specified drive is unlocked if previously locked by the calling
process.

This function is used by many TurboDOS commands such as BACKUP, CHANGE, FIXDIR, FIXMAP, FORMAT, and
VERIFY to ensure that they cannot compromise the processing of other users.

—11-27 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

T-26 Flush/Free Buffers T-26

T-Function 26 Flush/Free Buffers

Call: Return:
D = subfunction code

E = disk drive code

C=1Ah

The Flush/Free Buffers function causes all written-to disk buffers for the drive whose code is passed in register E to be
written out (flushed) to the disk. This function may cause disk buffers for the specified drive to be freed, conditionally or
unconditionally, according to the subfunction flags passed in register D:

Bit Subfunction

7=1 flush buffers unconditionally
6=1 flush buffers after disk error abort
5=1 continue after disk error abort
4=1 return after disk error abort

The drive code passed in register E is:

00h =drive A: 04h = drive E: 08h =drive I: 0Ch = drive M:
01h =drive B: 05h =drive F: 09h =drive J: 0Dh = drive N:
02h =drive C: 06h =drive G: 0Ah =drive K: OEh =drive O:
03h =drive D: 07h =drive H: 0Bh =drive L: OFh = drive P:

It is suggested that this function be used prior to media changes and physical disk access (T-function 22).

—11-28 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

T-27 Get/Set Print Mode T-27

T-Function 27 Get/Set Print Mode

Call: Return:
E = print mode (Set)

D = printer/queue assignment

B = spool drive code

C=1Bh

Call: Return:

E = FFh (Get) H = printer/queue assignment
D =FFh L = print mode

B =FFh A = spool drive

C=1Bh

The Get/Set Print Mode function allows a program to set or interrogate the list device, and is provided to support the PRINT
command.

The desired print mode may be passed in register E:

00h = direct printing, list device is a printer

01h = spooled printing, list device is a queue
02h = console printing, list device is the console
FFh = leave print mode unchanged

If the print mode is direct or spooled, the printer/queue assignment may be passed in register D:

00h = list output is discarded if printing is direct; list device is unqueued file if printing is spooled
01h = list device is printer/queue A
02h = list device is printer/queue B
03h = list device is printer/queue C
04h = list device is printer/queue D
05h = list device is printer/queue E
06h = list device is printer/queue F
07h = list device is printer/queue G
08h = list device is printer/queue H
09h = list device is printer/queue I
0Ah = list device is printer/queue J
0Bh = list device is printer/queue K
0Ch = list device is printer/queue L
0Dh = list device is printer/queue M
OEh = list device is printer/queue N
OFh = list device is printer/queue O
10h = list device is printer/queue P
FFh = leave list device unchanged

If print mode is spooled, the spooling drive code may be passed in register B:

00h =drive A: 04h = drive E: 08h =drive I: 0Ch = drive M:
01h =drive B: 05h =drive F: 09h =drive J: 0Dh =drive N:
02h = drive C: 06h = drive G: 0Ah =drive K: OEh = drive O:
03h =drive D: 07h =drive H: 0Bh =drive L: OFh = drive P:

If FFh is passed in registers E, D and B, this function returns the current print mode in register L, the current printer/queue
assignment in register H, and the current spooling drive code in register A.

—11-29 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

T-28 Signal End of Print T-28

T-Function 28 Signal End-of-Print

Call: Return:
C=1Ch

The Signal End of Print function causes an end of print condition. If spooling is in effect, the current print file is closed and
(if appropriate) enqueued for background printing.

An end of print condition may also occur as the result of a warmstart, attention request, or end of print character.

—11-30 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

T-29 Get/Set Despool Mode T-29

T-Function 29 Get/Set De-Spool Mode
Call: Return:
E = despool mode (Set) A = 00h if mode set
D = despool queue assignment A = FFh if invalid request
B = printer
C=1Dh
Call: Return:
E = FFh (Get) L = despool mode
D =FFh H = despool queue assignment
B = printer
C=1Dh

The Get/Set Despool Mode function controls background printing, and is provided to support the PRINTER command. The
printer to be set or queried is passed in register B:

00h = printer A 04h = printer E 08h = printer | 0Ch = printer M
01h = printer B 05h = printer F 09h = printer J 0Dh = printer N
02h = printer C 06h = printer G 0Ah = printer K OEh = printer O
03h = printer D 07h = printer H 0Bh = printer L OFh = printer P

Its despool mode is passed in register E:

00h = process print job

01h = suspend print job

02h = begin print job

03h = terminate print job

FFh = leave despool mode unchanged

Its despool queue assignment is passed in register D:

00h = printer is set to offline. 09h = printer is set to queue |

01h = printer is set to queue A 0Ah = printer is set to queue J

02h = printer is set to queue B 0Bh = printer is set to queue K

03h = printer is set to queue C 0Ch = printer is set to queue L

04h = printer is set to queue D 0Dh = printer is set to queue M
05h = printer is set to queue E OEh = printer is set to queue N

06h = printer is set to queue F OFh = printer is set to queue O

07h = printer is set to queue G 10h = printer is set to queue P

08h = printer is set to queue H FFh = leave assignment unchanged

If FFh is passed in both registers D and E, this function returns the current despool mode in register L and the current despool
assignment in register H.

—11-31 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

T-30 Queue a Print File T-30

T-Function 30 Queue a Print File
Call: Return:
DE = FCB address (Enqueue) A =00h if file queued
H = print queue A = FFh if invalid request
L = user area + delete flag
C=1Eh
Call: Return:
L = FFh (Verify validity) A = 00h if drive and queue valid
DE = FCB address A = FFh if invalid request
H = print queue
C=1Eh

The Queue a Print File function enqueues a text file on a specified print queue for background printing. The file to be
enqueued is identified by the drive, name and type fields (bytes 0 through 11) of the FCB whose address is passed in register
pair DE, together with the user number passed in register L.

The print queue passed in register H is as follows:

00h = queue A 04h = queue E 08h = queue I 0Ch = queue M

01h = queue B 05h = queue F 09h = queue J 0Dh = queue N

02h = queue C 06h = queue G 0Ah = queue K OEh = queue O

03h = queue D 07h = queue H 0Bh = queue L OFh = queue P
Bit 7 of the user area number passed in register L acts as a flag determining deletion status of the file(s) after
enqueuing:

bit7 description

0 file is not deleted

1 file is deleted

The drive specified by the FCB must be accessible by the processor in which the specified queue resides; otherwise, the
request is invalid. To check this, the function may be called with register L set to —1, in which case the FCB drive and
requested queue are checked for validity but no file is queued.

—11-32 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

T-31 Flush List Buffer T-31

T-Function 31 Flush List Buffer

Call: Return:
C=1Fh

The Flush List Buffer function is used by TurboDOS during direct printing over the network to force any remaining buffered
characters to be printed. There should be no need for an application program to call this function.

—11-33 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

T-32 Network List Out T-32

T-Function 32 Network List Out

Call: Return:
E = output character
C=20h

The Network List Out function is used by TurboDOS during direct printing over the network. There should be no need for an
application program to call this function.

—11-34 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

T-33 Remote Console I/O T-33

T-Function 33 Remote Console I/O
Call: Return:
D = FFh (Attach) A =00h if CONREM not present
E = 00h if no input character A =01h if attached
E = console input character A = FFh executing in master
C=21h
Call: Return:
D = 00h (Detach)
C=21h

The Remote Console 1/0 function works in conjunction with the CONREM console driver to support the MASTER
command.

If FFh is passed in register D, it attaches to the master, passes one byte of console input in register E (if available), and returns
a count byte and up to 127 bytes of console output at the current DMA address.

If O0h is passed in register D, it detaches from the master.

There should be no need for an application program to call this function.

—11-35 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

T-34 Get Comm Channel Status T-34

T-Function 34 Get Comm Channel Status
Call: Return:
D = channel + remote flag A = 00h if byte not available
C=22h A = FFh if byte available

The Get Comm Channel Status function checks to see whether or not an input byte is available on the comm channel whose
number is passed in register D. If a character is available, FFh (-1) is returned in register A; otherwise, 00h is returned.

Bit 7 of the channel number acts as a remote flag:

bit 7 description
0 channel is local
1 channel is remote

— 11-36 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

T-35 Comm Channel Input T-35

T-Function 35 Comm Channel Input
Call: Return:
D = channel + remote flag A =input byte
C=23h

The Comm Channel Input function obtains the next input byte from the comm channel whose number is passed in register D,
waiting if necessary, and returns it in register A.

Bit 7 of the channel number acts as a remote flag:

bit 7 description
0 channel is local
1 channel is remote

—11-37 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

T-36 Comm Channel Output T-36

T-Function 36 Comm Channel Output

Call: Return:
E = output byte

D = channel + remote flag

C=24h

The Comm Channel Output function outputs the byte passed in register E on the comm channel whose number is passed in
register D..

Bit 7 of the channel number acts as a remote flag:

bit 7 description
0 channel is local
1 channel is remote

—11-38 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

T-37 Set Comm Channel Baud Rate T-37

T-Function 37 Set Comm Channel Baud Rate

Call: Return:
E = Baud rate/control code

D = channel + remote flag

C =25h

The Set Comm Channel Baud Rate function sets the Baud rate and control options whose code is passed in register E for the
comm channel whose number is passed in register D.

Bit 7 of the channel number acts as a remote flag:

bit 7 description
0 channel is local
1 channel is remote

Each nybble of the Baud rate/control code acts independently. The least significant nybble (bits 3—-0) determine the Baud rate:

Oh = 50 Baud* 4h =150 Baud 8h = 1800 Baud Ch = 4800 Baud
1h =75 Baud 5h = 300 Baud 9h = 2000 Baud Dh = 7200 Baud
2h =110 Baud 6h = 600 Baud Ah = 2400 Baud Eh = 9600 Baud

3h =134.5 Baud 7h = 1200 Baud Bh = 3600 Baud* Fh = 19200 Baud
* may be 38400 Baud in some configurations

Bits 7-4 for the Baud rate/control code act independently to control various parameters:

Bit7 0 = attention detection disabled
1 = attention detection enabled
Bit6 0= CTS handshaking disabled
1 = CTS handshaking enabled
Bit5 0 =datainput suppression disabled
1 = data input suppression enabled
Bit4 0= Xon/Xoff handshaking disabled
1 = Xon/Xoff handshaking enabled

—11-39 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

T-38 Get Comm Channel Baud Rate T-38

T-Function 38 Get Comm Channel Baud Rate
Call: Return:
D = channel + remote flag A = Baud rate/control code
C =26h

The Get Comm Channel Baud Rate function returns the Baud rate and control options code in register A for the comm
channel whose number is passed in register D.

Bit 7 of the channel number acts as a remote flag:

bit 7 description
0 channel is local
1 channel is remote

Each nybble of the Baud rate/control code acts independently. The least significant nybble (bits 3—-0) determine the Baud rate:

Oh = 50 Baud* 4h =150 Baud 8h = 1800 Baud Ch = 4800 Baud
1h =75 Baud 5h = 300 Baud 9h = 2000 Baud Dh = 7200 Baud
2h =110 Baud 6h = 600 Baud Ah = 2400 Baud Eh = 9600 Baud

3h =134.5 Baud 7h = 1200 Baud Bh = 3600 Baud* Fh = 19200 Baud
* may be 38400 Baud in some configurations

Bits 7-4 for the Baud rate/control code act independently to control various parameters:

Bit7 0 = attention detection disabled
1 = attention detection enabled
Bit6 0= CTS handshaking disabled
1 = CTS handshaking enabled
Bit5 0 =data input suppression disabled
1 = data input suppression enabled
Bit4 0= Xon/Xoff handshaking disabled
1 = Xon/Xoff handshaking enabled

— 11-40 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

T-39 Set Comm Channel Modem Controls T-39

T-Function 39 Set Comm Channel Modem Controls

Call: Return:
E = modem control vector

D = channel + remote flag

C=27h

The Set Comm Channel Modem Controls function sets the modem control signals according to the vector passed in register E
for the comm channel whose number is passed in register D.

Bit 7 of the channel number acts as a remote flag:
The modem control vector uses bit 7 and 6 as follows (other bits are unassigned):

bit description
7 set for RTS
6 set for DTR

—11-41 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

T-40 Get Comm Channel Model Status T-40

T-Function 40 Get Comm Channel Modem Status
Call: Return:
D = channel + remote flag A = modem status vector
C=28h

The Get Comm Channel Modem Status function returns the modem status vector in register A for the comm channel whose
number is passed in register D.

Bit 7 of the channel number acts as a remote flag:

bit 7 description
0 channel is local
1 channel is remote

Bits 7-4 of the modem status vector are as follows (the remaining bits are unassigned):

bit description

7 set for CTS
6 set for DSR
5 set for DCD
4 set for RI

—11-42 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

T-41 User-Defined Function T-41

T-Function 41 User-Defined Function
Call: Return:
HL = user-defined argument HL = user-defined value
DE = user-defined argument DE = user-defined value
DE = network address if B=FEh BC = user-defined value
B = network routing A = user-defined value
C=2%

The User-Defined Function provides a means for adding user-defined extensions to the operating system, taking full
advantage of the TurboDOS networking facilities. On entry, register B defines how the request is to be routed over the
network. Registers DE and HL plus the 128-byte record at the current DMA address are all passed (over the network if
necessary) to a user-defined module with the public entrypoint symbol USRFCN. Upon entry to the USRFCN routine,
register BC contains the address of the 128-byte record that was passed. The USRFCN routine may return information to the
caller in any of the seven registers A, B, C, D, E, H, and L, and in the 128-byte record.

The network routing byte passed in register B is as follows:

B description

00h function processed locally

1xh function routed per drive “x”

2xh function routed per printer “x”

3xh function routed per queue “x”

FEh function routed to network address passed in DE
FFh function routed to default network address

—11-43 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

T-42 Reorganize Disk Directory T-42

T-Function 42 Reorganize Disk Directory
Call: Return:
E = disk drive code A = 00h if directory reorganized
C=2Ah A = FFh if files open or drive read only

The Reorganize Disk Directory function reorganizes the directory on the disk drive whose code is passed in register E. If the
hashed directory flag bit in the volume label has been changed, this function converts a hashed directory into linear format (or
vice versa). The principal purpose of this function is to support the FIXDIR command.

The drive code passed in register E is:

00h =drive A: 04h =drive E: 08h =drive I: 0Ch =drive M:
01h =drive B: 05h =drive F: 09h =drive J: 0Dh = drive N:
02h =drive C: 06h =drive G: 0Ah =drive K: OEh =drive O:
03h =drive D: 07h =drive H: 0Bh =drive L: OFh = drive P:

NOTE: In certain cases, this function may take a very long time to complete (possibly hours), and cannot be interrupted once
invoked.

—11-44 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

T-43 Select Memory Bank T-43

T-Function 43 Select Memory Bank

Call: Return:

E = 00h (Select Bank 0) A =00h
C=2Bh

Call: Return:

E = 01h (Select Bank 1) A=01h
C=2Bh

Call: Return:

E = FFh (Return bank) A = current bank
C=2Bh

The Select Memory Bank function selects the memory bank in which the TPA resides, according to the bank number passed
in register E. If FFh is passed in register E, this function simply interrogates the current bank mode and returns the current
bank number in register A. This function is honored for privileged log-ons only, and is provided primarily to support the
BANK command.

A request to select bank 0 is ignored if there is not enough free memory in bank 0 for a minimum size TPA, as defined by the
patchable symbol MEMBLL. (More specifically, bank 0 cannot be selected unless MEMBAS — MEMRES-3 is greater than
or equal to MEMBLL.)

This function has no effect in a non-banked system, and always shows that bank 0 is selected.

— 11-45 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

T-44 Open MS-DOS File T-44

T-Function 44 Open MS-DOS File
Call: Return:
DE = FCB address A =00h if file opened
B = sharing/access vector A = FFh if unable to open
L = 3-way flag
C=2Ch

The Open MS-DOS File function opens an MS-DOS file specified by the FCB whose address is passed in register pair DE.

If 00h is passed in register L, the file is opened in a manner similar to C-function 15, save that FCB field s2 (byte 14) is not
zeroed, attributes 5 and f6 are ignored, and file locking/sharing is as defined by the sharing/access vector passed in register
B.

If 01h is passed in register L, the file is opened as above plus the directory field s1 (byte 13) is returned in FCB field cr (byte
32).

If FFh is passed in register L, the file is opened as above plus the exact byte length of the file is returned as a 32-bit value in
FCB fields cr and rr (bytes 32-35).

File locking is in accordance with MS-DOS rules as defined in the sharing/access vector passed in register B. The
sharing/access vector is defined as follows:

group bit name __ description

sharing 7 DR deny read

6 DW deny write

5 DC deny compatibility

4 DP deny permissive
access 3 AR access read

2 AW access write

1 AC access compatibility

0 AP access permissive

TurboDOS/PC maps the MS-DOS sharing and access modes as follows:

group mode map description
sharing 0 AC compatibility

1 DR+DW+DC deny read/write

2 DW+DC deny write

3 DR+DC deny read

4 DC deny none
access 0 AR read access

1 AW write access

2 AR+AW read/write access

TurboDOS maps the MP/M-I1-style file open modes into the sharing vector as follows:

mode map
exclusive DR+DW+DC+AR+AW
shared DC+AR+AW

read only (MP/M) DW+DC+AR
read only (mixed) DC+AR
permissive AR+AP

It is recommended that this function not be used in general application programs, as it is intended for the use of
TurboDOS/PC across a mixed network

This function is not supported from bank 1 of a bankswitched processor.

— 11-46 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

T-45 Create MS-DOS File T-45

T-Function 45 Create MS-DOS File
Call: Return:
DE = FCB address A = 00h if file created
B = sharing/access vector A =FFh if unable to create
C=2Dh

The Create MS-DOS File function creates an MS-DOS file specified by the FCB whose address is passed in register pair DE.

The file is created in a manner similar to C-function 22, save that FCB field s2 (byte 14) is not zeroed, attributes f5 and 6 are
ignored, and file locking/sharing is as defined by the sharing/access vector passed in register B.

File locking is in accordance with MS-DOS rules as defined in the sharing/access vector passed in register B. The
sharing/access vector is defined as follows:

group bit name description

sharing 7 DR deny read

6 DW deny write

5 DC deny compatibility

4 DP deny permissive
access 3 AR access read

2 AW access write

1 AC access compatibility

0 AP access permissive

TurboDOS/PC maps the MS-DOS sharing and access modes as follows:

group mode map description
sharing 0 AC compatibility

1 DR+DW+DC deny read/write

2 DW+DC deny write

3 DR+DC deny read

4 DC deny none
access 0 AR read access

1 AW write access

2 AR+AW read/write access

TurboDOS maps the MP/M-II-style file open modes into the sharing vector as follows:

mode map
exclusive DR+DW+DC+AR+AW
shared DC+AR+AW

read only (MP/M) DW+DC+AR
read only (mixed) DC+AR
permissive AR+AP

It is recommended that this function not be used in general application programs, as it is intended for the use of
TurboDOS/PC across a mixed network

This function is not supported from bank 1 of a bankswitched processor.

— 11-47 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

T-46 Lock MS-DOS File Region T-46

T-Function 46 Lock MS-DOS File Region
Call: Return:
DE = FCB address A =00h if region locked
C=2Eh A = FFh if lock denied

The Lock MS-DOS File Region function locks that region specified in an 8-byte Region Lock Block (RLB) passed at the
current DMA address, of an MS-DQOS file specified by the FCB whose address is passed in register pair DE.

The RLB consists of two 32-bit integers and has the following structure:

bytes description
00h-03h region byte offset
04h-07h region byte length

It is recommended that this function not be used in general application programs, as it is intended for the use of
TurboDOS/PC across a mixed network

This function is not supported from bank 1 of a bankswitched processor.

— 11-48 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

T-47 Unlock MS-DOS File Region T-47

T-Function 47 Unlock MS-DOS File Region
Call: Return:
DE = FCB address A = 00h if region unlocked
C=2Fh A = FFh if unlock denied

The Unlock MS-DOS File Region function unlocks that region, previously locked by T-function 46 (Lock MS-DOS File
Region), specified in an 8-byte Region Lock Block (RLB) passed at the current DMA address, of an MS-DOS file specified
by the FCB whose address is passed in register pair DE.

The RLB consists of two 32-bit integers and has the following structure:

bytes description
00h-03h region byte offset
04h-07h region byte length

It is recommended that this function not be used in general application programs, as it is intended for the use of
TurboDOS/PC across a mixed network

This function is not supported from bank 1 of a bankswitched processor.

— 11-49 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

T-48 Set MS-DOS File Length T-48

T-Function 48 Set MS-DOS File Length
Call: Return:
DE = FCB address A = 00h if length set
C=30h A = FFh if not set

The Set MS-DOS File Length function sets the exact byte length of an MS-DOS file specified by the FCB whose address is
passed in register pair DE. The exact byte length is passed as a 32-bit integer at the current DMA address.

It is recommended that this function not be used in general application programs, as it is intended for the use of
TurboDOS/PC across a mixed network

This function is not supported from bank 1 of a bankswitched processor.

— 11-50 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

T-49 Get MS-DOS File Length T-49

T-Function 49 Get MS-DOS File Length
Call: Return:
DE = FCB address A = 00h if length fetched
C=31h A = FFh if not fetched

The Get MS-DOS File Length function gets the exact byte length of an MS-DOS file specified by the FCB whose address is
passed in register pair DE. The exact byte length is returned as a 32-bit integer at the current DMA address.

It is recommended that this function not be used in general application programs, as it is intended for the use of
TurboDOS/PC across a mixed network

This function is not supported from bank 1 of a bankswitched processor.

—11-51 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Zilog Z-80 Microprocessor Overview

Z-80 versus Z-180

This chapter is specific to the Zilog Z-80 microprocessor. However, some systems use the Zilog Z-180 microprocessor or
variants (such as the Hitachi HD 64180 microprocessor). The Z-180 microprocessor is (or may be considered for our
purposes here) a superset of the Z-80. That is, it is fully compatible with the Z-80 and its instruction set, but does have a few
extra instructions of its own. These extra instructions are:

~ INO reg,(port) input port-direct

~ MLT regpr multiply

~ OTDM output memory and decrement

~ OTDMR output memory, decrement, and repeat
~ OTIM output memory and increment

~ OTIMR output memory, increment, and repeat
~ OuUTO output port-direct

~ SLP sleep

~ TST source test

~ TSTIO test I/O port

These extra instructions have been included here, and are indicated by a tilde “~” (which is NOT a part of the instruction).

Care should be taken in the use of these extra instructions. Any code using one or more of these instructions will NOT run
properly on a Z-80 based system! It is suggested, therefore, that these instructions not be used except for machine-specific
utilities.

Registers

The Zilog Z-80 microprocessor and its clones contain 208 bits of random accessed memory arranged as two groups of eight
8-bit registers and one group of two 8-bit registers and four 16-bit registers, all of which are directly accessible to the
programmer. In addition, there are also four flip-flops used to control interrupt functions which are also, to a limited degree,
controllable by the programmer.

This register set provides a significant improvement over that of its predecessor, the Intel 8080 microprocessor. The register
set may be depicted as being arranged in the following manner.

1T T T 17T 171 1T 17T 17T 17T 171 1T T T 1T 171 1T 17T 17T 17T 171
A F A' E'
1 1 1 1 [N I N | 1 1 1 1 1 [N I I |
1T 1T T 1T 1T 1T 1T T 1T 1T 1T 1T T 1T 1T 1T 1T T 1T 1T
B cC B' c'

[N N I I A | [N I I A | [N I N A | I I N A |
1T T 1T 1T 1T 1T T 1T 1T 1T T 1T 1T 1T T 1T 1T
D E D E'
[I I A 1 1 1 | 1 1] [I I A 1 1 1 1 1 |
1T 1T T 17T 171 1T 1T T 17T T 1T 1T T 17T 171 1T 1T 1T 17T T
H L H' L'
L1 1 1 1 1 1 L1 1 1 1 1 1 L1 1 1 1 1 1 L1 1 1 1 1 1

171717 1 17 17T 17T 17T 17 1T 1T T T°1
IX

[s s B B L IFF1 IFF2
1Y

[N I IS S I S A I N A

—rTrTrTrTr1T 1T 1T 1T 1T1T1T71T"71
SP

I B B s B s e IMFa TMFb
PC

[N I S [I IS N Ay

T TrTr 11T 17T 1T 171717177177

I R
[N IS IS I S AN A

The two groups of eight 8-bit registers are known as the main and alternative register sets, and serve absolutely identical
functions; in fact, only one group may be used at one time, and that group, whichever it may be, becomes the “main” register
set, while the other group is the “alternative” register set. Each group consists of an accumulator, “A,” a status or flag register
“F” (the accumulator and status register are collectively known as the processor status word), and three pairs of general
purpose registers “B” and “C,” “D” and “E,” and “H” and “L,” which may be used as six 8-bit registers or three 16-bit

—12-1—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

registers, depending upon the operations being performed. The “HL” register pair also may serve as a 16-bit accumulator for
certain special functions.

In addition to the above groups, there is single group consisting of two 8-bit registers and four 16-bit registers. The 8-bit
registers are the interrupt vector register “I” and the memory refresh register “R”. The 16-bit registers are the index registers
“IX” and “lY,” the stack pointer “SP,” and the program counter “PC.”

Standard usages for the registers are:

A Accumulator
The 8-bit A register is the accumulator, is used to store a byte value prior to an operation, and normally contains the results of
the operation when done (the compare instructions are an exception).

This is the primary register for all 8-bit arithmetic and logical operations.

F Status or Flag Register
The 8-bit F register contains the six operation status flags. The operation and functions of these flags are discussed in detail in
a following section.

AF Processor Status Word
The 16-bit AF processor status word consists of the accumulator and the status register taken as a register pair, and is used
primarily by the PUSH, POP, and EX instructions.

It is important to remember that if the AF processor status word is taken as a true 16-bit register pair, the A register is the
upper byte and the F register is the lower byte. This distinction becomes critical if a set of false flags are generated in another
register then moved to the F register via a PUSH and POP.

B General Purpose Register/Counter
The 8-bit B register may be used as a general purpose 8-bit register.

The B register is also used as an 8-bit unsigned loop counter for the DJNZ instruction or 8-bit unsigned repetition counter for
the INIR, INDR, OTIR and OTDR instructions.

C General Purpose/Port-Indirect Register
The 8-bit C register may be used as a general purpose 8-bit register.

The C register is also the register that must contain the 8-bit I/O port address for port-indirect instructions. No other register
may be used for port-indirect addressing.

BC General Purpose Register Pair/Counter
The 16-bit BC register pair consists of the B and C registers taken together and may be used as a general purpose 16-bit
register.

The BC register pair may also be used as an unsigned 16-bit repetition counter for the LDIR, LDDR, CPIR and CPDR
instructions.

D General Purpose Register
The 8-bit D register may be used as a general purpose 8-bit register.

E General Purpose Register
The 8-bit E register may be used as a general purpose 8-bit register.

DE General Purpose Register Pair
The 16-bit DE register pair consists of the D and E registers taken together, and may be used as a general purpose 16-bit
register.

H General Purpose Register
The 8-bit H register may be used as a general purpose 8-bit register.

L General Purpose Register
The 8-bit L register may be used as a general purpose 8-bit register.

HL General Purpose/Memory-Indirect Register/16-Bit Accumulator
The 16-bit HL register pair consists of the H and L registers taken together, and may be used as a general purpose 16-bit
register.

The HL register pair also serves as the primary memory-indirect addressing register (other register pairs may only be used
with the accumulator and the LD instruction).

With 16-bit arithmetic instructions the HL register pair serves the function of a limited accumulator.

—12-2 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

IX Index/Memory-Indirect Register/16-Bit Accumulator
The 16-bit IX register serves as the indexed memory base address pointer for indexed memory operations. Traditionally, the
IX register serves as the “source” index in multi-indexed operations.

For a few limited instructions, the IX register may also serve as a memory-indirect addressing register or a limited 16-bit
accumulator.

Y Index/Memory-Indirect Register/16-Bit Accumulator
The 16-bit 'Y register serves as the indexed memory base address pointer for indexed memory operations. Traditionally, the
1Y register serves as the “destination” index in multi-indexed operations.

For a few limited instructions, the 1Y register may also serve as a memory-indirect addressing register or a limited 16-bit
accumulator.

SP Stack Pointer
The 16-bit SP register is used as the stack pointer, maintaining at all times the current bottom of the stack address. Note that
the stack is inverted (bottom to top).

PC Program Counter
The 16-bit PC register is used as the program counter. After each instruction not explicitly manipulating the PC register, the
PC register is incremented the appropriate number of times so that it points to the next instruction.

I Interrupt Vector Register
The 8-bit | register serves as the interrupt vector register for mode 2 interrupts. A detailed explanation of the use of interrupts
in the three modes is given later.

R Memory Refresh Register

The 8-bit R register serves as a memory refresh register for user transparent dynamic random access memory refresh. This
register is initialized to 00 at reset, then increments once and is placed on the address bus for refresh purposes during each
machine fetch cycle. It is the responsibility of the memory arbitration circuitry or of the memory controller to initiate a
refresh cycle at this time.

Since, in a normal application program environment, it is virtually impossible to predict the value of this register, fetching
that value with the LD AR instruction provides a reasonably reliable “random” number.

Interrupt Operation

The Z-80 processor has an elegant yet simple interrupt mechanism, controlled by the four interrupt flip-flops. The four flip-
flops are divided into two pairs: the interrupt status flip-flops “IFF1” and “IFF2,” used to control and/or indicate the current
interrupt status, and the interrupt mode flip-flops “IMFa” and “IMFb,” used to control the current interrupt mode.

IFF1 Primary Interrupt Status Flip-Flop

The IFF1 flip-flop status determines whether or not the maskable interrupts are enabled. If IFF1 is set to 0, then interrupts are
disabled. If IFF1 is set to 1, then interrupts are enabled. The programmer has full control over this flip-flop through the use of
the El and DI instructions. Current status may be obtained by executing the LD A,l or LD A,R instruction, then querying the
parity flag, which is set to the status of IFF1.

The non-maskable interrupt, by definition, cannot be disabled, and ignores the status of IFF1.

IFF2 Secondary Interrupt Status Flip-Flop

The IFF2 flip-flop serves as a backup to IFF1 in order to preserve interrupt status through a non-maskable interrupt. Assertion
of a non-maskable interrupt causes the transfer of the state of IFF1 into IFF2, then processes according to the interrupt
instructions, which should end with a RETN (return from non-maskable interrupt) instruction. The RETN instruction restores
the original interrupt status by transferring the state of IFF2 into IFF1.

Execution of the El or DI instructions sets IFF2 to the same state as IFF1: O for the DI instruction and 1 for the El instruction.

IMFa and IMFb Interrupt Mode Flip-Flops
The IMFa and IMFb flip-flops operate together to determine the interrupt mode:

IMFa __IMFb__Interrupt Mode

0 0 Mode 0
0 1 Not used
1 0 Mode 1
1 1 Mode 2

In interrupt mode 0, assertion of an interrupt causes the processor to fetch the instruction code placed on the data bus by the
interrupting peripheral and execute that instruction six times. This instruction would normally be one of the RST instructions,
causing the processor to restart operation at the vector address passed in the instruction.

—12-3 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

In interrupt mode 1, assertion of an interrupt causes the program counter to be set to 0038, causing the processor to
commence executing the code found at that address. This is similar to execution of an RST 38 instruction, save that pointers
are NOT saved. Interrupt mode 1 is often used by debuggers and other diagnostic programs to allow simple single step

trapping.

In interrupt mode 2, assertion of an interrupt causes the interrupting peripheral to select the address for the interrupt vector.
This is done by having the processor take the byte placed on the data bus by the interrupting peripheral as the lower 8-bits of
the address and the | (interrupt vector) register as the upper 8-bits of the address. In this manner, the interrupt routine may be
located anywhere in memory, indeed, there may be multiple interrupt routines for differing circumstances within the same
body of code, selection being made via the LD I,A instruction at varying places in the parent program.

Non-Maskable Interrupts

All discussions of enabling or disabling interrupts, interrupt modes, and the like presume maskable interrupts. If a non-
maskable interrupt is received, the processor sets the state of IFF2 to that of IFF1, clears IFF1 (disabling maskable interrupts
for the duration of the non-maskable interrupt routine), sets the program counter to 0066, and executes the code at that
location.

Under TurboDQOS, having an interrupt service routine at that location would clash with the “base page” (discussed under
programming). Therefore, in a TurboDOS environment either the non-maskable interrupt is not used (usual case) or special
hardware considerations must take place, such as replacing the non-maskable interrupt with a reset.

Status Byte— Instruction Status Flags

Each 8-bit register, except the status register, may be further depicted as having eight bits arranged as follows:

7 6 5 4 3 2 1 0

In like manner, a 16-bit register may be depicted as:

F E D C B A 9 8 7 6 5 4 3 2 1 0

The status register is somewhat different, as rather than standard data bits its contents are the operation status flags. These
flags are each one bit in the status register, and program operation directly affects and depends upon the status of the flags at
any given time.

SFE ZF - HF - PF NF CF
7 6 5 4 3 2 1 0

The six flags (bits 5 and 3 are not used) represented in the flag register fulfill the following functions:

SF Sign Flag (bit 7)
The sign flag represents the sign of the result of an arithmetic or logical operation. Since all operations are presumed to
be on signed integers, the sign flag is identical to the most significant bit of the operation result, and is set (1) for a
negative value and cleared (0) for a positive value.

ZF Zero Flag (bit 6)
The zero flag is set or cleared based upon the results of certain arithmetic and logical operations. If the result of one of
these operations is zero, then the flag is set, else the flag is cleared.

NOTE: The zero flag is always opposite the status of the result. If the result is O, the flag is 1: if the result is not 0, the
flag is 0.

HF Half-Carry Flag (bit 4)
The half-carry flag is set or reset according to the results of bits 3 or 4 (or 11 or 12) after certain operations. The half-
carry flag is, unlike the other flags, not directly available to the programmer for conditional operations. It is used,
however, by the DAA instruction to allow correction of BCD addition or subtraction results.

PF Parity/Overflow (P/V) Flag (bit 2)
The parity/overflow flag is set or reset depending upon the operation being performed.

For arithmetical operations, this flag is set (1) to indicate an overflow condition, that is, when the result is greater than
the maximum possible integer (+127) or less than the minimum possible integer (-128).

For logical operations, this flag indicates the parity of the result; if the number of 1s in the result is odd (1,3,5,7), this flag
is reset (0), if the number of 1s is even (0,2,4,6), this flag is set (1).

—12-4—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

NF Subtraction Flag (bit 1)
The subtraction flag is set (1) if a subtraction or like operation is performed, and reset (0) is an addition or like operation
is performed. Like the half-carry flag, this flag is used by the DAA operation, but is also available to the programmer for
certain conditional functions.

CF Carry Flag (bit 0)
The carry flag is set (1) for any addition function that causes a “carry” beyond the accumulator, or for any subtraction
function that does not cause a “borrow.” This flag is reset if the reverse is true.

Often it is desirous to set the status of one or more flags prior to executing a particular instruction. The SCF instruction sets
the carry flag to 1, and the CCF instruction compliments the carry flag. Various “null” instructions sets or clear particular
flags without changing the values of the operands. The AND A instruction, for example, sets the sign, zero and
parity/overflow flags to the conditions of the accumulator value, sets the half-carry flag, and clears the subtraction and carry
flags. Similarly, the OR A instruction does exactly the same thing except that the half-carry flag is cleared.

General Operation

The Z-80 instruction set consists of operation upon the above registers and flags. These instructions are stored in memory as
op-codes of one, two, three, or four bytes. The program counter always points to the next op-code to be executed.

For some operations more than one set of op-codes is possible. In these cases simple and virtually self explanatory tables may
be found in the instruction code chapter.

A highly simplified diagram indicating the method in which the Z-80 operates is:

L.

>| accumulator ——J

| ALU

>| 2nd operand |—> >| status flags

switching and steering logic <—

Registers —————J
>| Decoder
Memory I

< program counter |<—

In a super-simplified fashion, to perform a given function, say execute the AND D instruction, the logic unit looks to the
program counter for the current memory address, fetches a byte from that address and passes it to the instruction decoder. The
instruction decoder sees that it is the instruction AND D, and tells the steering and switching logic to place the “D” register
into the 2nd operand buffer (this could just as easily be an indirect or indexed memory byte or immediate byte, according to
the requirements of the instruction) and to set the ALU (Arithmetic and Logic Unit) to convert to an AND operation logic
unit. The ALU then ANDs the accumulator, acting as the 1st operand, and the 2nd operand, placing the result in the
accumulator and setting the appropriate status flags. The steering and switching logic then bumps the program counter so that
it points to the next memory address, ready for the next instruction.

This type of operation continues, with variations, throughout the length of the code. In fact, unless some looping provision is
made, or a HALT instruction is executed, this process is infinite, with the program counter constantly cycling through
memory. The processor must read and act upon the next byte in memory, whatever it is.

In essence, a microprocessor, such as the Z-80, can be defined as a logic circuit that can read an instruction, logically alter its
internal structure in a manner conditional upon what it read, perform the logical or arithmetic function defined by that
structure, save the result, and read its next instruction.

—12-5—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Conditional Branching

By checking the status of the various flags to determine current conditions, the conditional program transfer instructions
allow for conditional branching. These conditional program transfer instructions are:

JP cond,addr Jump absolute on condition
JR cond,disp Jump relative on condition
CALL cond,addr Call on condition

RET cond Return on condition

The conditions that may be checked are:

cond branchif: description comments

NZ ZF=0 branch on not zero

z ZF=1 branch on zero

NC CF=0 branch on not carry

C CF=1 branch on carry

PO PF=0 branch on parity odd no relative branching
PE PF=1 branch on parity even no relative branching
P SF=0 branch on plus/positive no relative branching
M SF=1 branch on minus/negative no relative branching

Since there are only a limited number of flags, the various mathematical and logical conditions required to meet all normal
cases sometimes require more than one instruction. The following code segments may be used to provide the required
functionality, with the required values in the accumulator and the B register (obviously, the second value may be in any
register, in memory, or immediate), and are non-destructive (A and B are left unchanged):

;Branch if A < 0:
CP 00 ;Is A negative?

JP C,addr ;If yes, branch

;Branch if A <= 0
OR A ;Is A negative or zero?
JP Z,addr ;If A is zero, branch
JP M, addr ;If A is negative, branch

;Branch if A = 0:
OR A ;Is A zero?

JP Z,addr ;If yes, branch

’

;Branch if A >= 0:
OR A ;Is A positive or zero?
JP P, addr ;If yes, branch
;Branch if A > 0:
OR A ;Is A positive, but not zero?
JR Z,5$+05 ;If no, continue
JP P, addr ;If yes, branch

;Branch if A <> O:
OR A ;Is a zero?
JP NZ,addr ;If no, branch

;Branch if A < B:

— 126 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

’

;Branch

’

;Branch

;Branch

’

;Branch

;Branch

;Branch

’

;Branch

’

;Branch

;Branch

CPp B

JP C,addr
if A <= B:

CPp B

Jp Z,addr
JP C,addr
if A = B:

CPp B

Jp Z,addr
if A >= B:

CP B

JP NC, addr
if A > B:

CP B

JR Z,$+05
JP NC, addr
if A <> B:

CP B

JP NZ,addr
if A[0] = O:
RRCA

RLCA

JP NC, addr
if A[0] = 1:
RRCA

RLCA

JP C,addr
if A[7] = 0:

OR A

JP P, addr
if A[7] = 1:

OR A

JP M, addr

;Is A less than B?

;If yes, branch

;Is A less than or equal to B?
;If A equals B, branch

;If A is less than B, branch

;Is A equal to B?

;If yes, branch

;Is A greater than or equal to B?

;If yes, branch

;Is A greater than B?
;If A is equal to B, continue

;If A is greater than B, branch

;Is A equal to B?

;If no, branch

;Fetch A[0]
;Restore A

;If A[0]1=0, branch

;Fetch A[0]
;Restore A

;If A[O]l=1, branch

;Fetch A[7]
;If A[71=0, branch

;Fetch A[7]
;If A[7]=1, branch

—12-7—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

;Branch if r[b] = 0:

BIT b, r ;Fetch r[b]

JP NZ, addr ;If r[bl=0, branch
;Branch if r[b] = 1:

BIT b, r ;Fetch r[b]

JP Z,addr ;If r[b]l=1, branch

There are many other possibilities, especially if the test does not have to be non-destructive, allowing branching for almost
any combination of conditions.

Flag Operation

Basic Flag Operation
The Z-80 flag register is an 8-bit register (actually the low-order byte of the processor status word register pair, with the
accumulator as the high-order byte), with each of the six flags represented by a single bit:

SF ZF -- HF -- PF NF CF
7 6 5 4 3 2 1 0

Notice that bits 3 and 5 are not used.
Any given instruction may affect a given flag in one of six ways:

The instruction may manipulate the flag in a normal manner, in keeping with the flag definition and according to the
general rules.

The instruction may manipulate the flag in a non-standard manner, not in keeping with the flag definition and/or
according to rules peculiar to that instruction.

The instruction may manipulate the flag in an undefined manner, where the condition of the flag is unpredictable.
The instruction may set the flag (make the bit a 1).

The instruction may clear the flag (make the bit a 0).

The instruction may ignore the flag and leave it unchanged.

Normal operation of each of the six flags is as follows:

CF Carry Flag, bit O:
When functioning in a normal carry manner, the carry flag is set whenever an operation causes a carry from the most
significant bit of the result; otherwise, it is cleared.

When functioning in a normal borrow manner, the carry flag is set whenever an operation causes a borrow into the most
significant bit of the result; otherwise, it is cleared.

When functioning in a normal shifting manner, the carry flag is set whenever the bit shifted out of the result is a 1; otherwise,
it is cleared.

NF Subtraction Flag, bit 1:
When functioning in a normal manner, the subtraction flag is set whenever a subtraction or like operation takes place;
otherwise, it is cleared.

PF Parity/Overflow Flag, bit 2:
When functioning in a normal parity manner, the parity/overflow flag is set whenever a logical operation causes an even
number of 1 bits to appear in the result; otherwise, it is cleared. This is seen as:

PF < NOT result[7 BITSUM 0]

Since BITSUM is a 1-bit addition, even numbers of 1's produce a 0 and odd numbers of 1's produce a 1. Then, since the
parity flag is NOT the BITSUM function, the parity/overflow flag is set whenever the BITSUM function yields a 0, and
cleared whenever the BITSUM function yields a 1.

When functioning in a normal overflow manner, the parity/overflow flag is set whenever an addition or like operation causes
an overflow to occur; otherwise, it is cleared. An overflow occurs whenever there is a transition from a value of 00-7F to a

—12-8 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

value of 80—FF (0000-7FFF to 8000—FFFF for 16-bit operations) during an addition or like operation. This condition is
flagged as an error because while 7F = +127 decimal, 80 = -128, not +128 decimal.

When functioning in a normal underflow manner, the parity/overflow flag is set whenever a subtraction or like operation
causes an underflow to occur; otherwise, is cleared. An underflow occurs whenever there is a transition from a value of FF-
80 to a value of 7F-00 (FFFF-8000 to 7FFF-0000 for 16-bit operations) during a subtraction or like operation. This
condition is flagged as an error because while 80 = -128 decimal, 7F = +127, not —129 decimal.

HF Half-carry Flag, bit 4:
When functioning in a normal half-carry manner, the half-carry flag is set whenever an addition or like operation causes a bit-
3 carry; otherwise, it is cleared. A bit-3 carry indicates a carry from bit 3 into bit 4 of the result.

When functioning in a normal half-borrow manner, the half-carry flag is set whenever a subtraction or like operation causes a
bit-4 borrow; otherwise, it is cleared. A bit-4 borrow is a borrow from bit 4 into bit 3 of the result.

The half-carry flag is not normally used directly by the programmer, but is used to provide a “look ahead” operation when
cascading instructions, most notably if the second instruction is the DAA instruction.

ZF Zero Flag, bit 6:
When functioning in a normal zero manner, the zero flag is set whenever an operation sets the result to zero; otherwise, it is
cleared. This is seen as:

ZF < NOT result[7 ORSUM 0] for 8-bit operations
ZF < NOT result[15 ORSUM 0] for 16-bit operations

Since, when ORing if ANY bitis a 1 the result is a 1, the ORSUM expression yields a 0 if and only if ALL the bits are 0, else
it yields a 1. Then, since the zero flag is NOT the ORSUM function, the flag is set if and only if all bits of the result are 0,
else the flag is cleared.

SF Sign Flag, bit 7:
When functioning in a normal sign manner, the sign flag is set if the value of the result of the operation is negative;
otherwise, it is cleared. Since a negative value has its most significant bit set, this means:

SF < result[7] for 8-bit operations
SF < result[15] for 16-bit operations

Flag Operations Table

The following table contains the flag operation parameters for every instruction in alphanumeric order. Those instructions
with a “~" are Z-180 instructions, not part of the Z-80 instruction set.

The following special codes are used:

#n Flag is manipulated in a non-standard manner, see note “#n”.

— Flag is ignored.

0 Flag is cleared.

1 Flag is set.

B Carry flag is manipulated in a normal borrow manner.

C Carry flag is manipulated in a normal carry manner.

P Parity/overflow flag is manipulated in a normal parity manner.

S Sign flag is manipulated in a normal sign manner.

U Parity/overflow flag is manipulated in a normal underflow manner.

\% Parity/overflow flag is manipulated in a normal overflow manner.

X Flag is manipulated in an undefined manner.

4 Zero flag is manipulated in a normal zero manner.

b Half-carry flag is manipulated in a normal borrow manner.

c Half-carry flag is manipulated in a normal carry manner.
Instruction SE ZF HF PFE NF CF
ADC ,source S Z c \Y% 0 C
ADC HL,source S Z # Vv 0 C
ADD A,source S Z o V 0 C
ADD regl16,source — — #1 — 0 C
AND source S Z 1 P 0 0
BIT bit,source X # 1 X 0 —
CALL addr —_ = = = = =

CALL cond,addr —

—12-9 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

CCF

CP source
CPD
CPDR

CPI
CPIR
CPL
DAA

DEC (mem)
DEC reg
DEC regl6
DI

DJNZ disp —_ - - - - =
El —_ - = = = =
EX AF,AF #5 #5 #5 #5 #5 #5
EX leftright —_ = = = = =

EXX —_ = = = = =
HALT —_ = = = = =
IM mode —_ = = = = —
IN A, (port) —_- -

IN reg,(C)
INO reg,(port)
INC (mem)
INC reg

INC regl6
IND
INDR

INI

INIR

JP (reg16)
JP addr

JP cond,addr

JR cond,disp —_ —
JR disp —_- —
LD dest,source —_ —
LD A\l #1 #7
LD AR #1 #1

LDD —_- -
LDDR — -
LDl —
LDIR —

MLT regpr
NEG
NOP
OR source

OTDM
OTDMR
OTDR
OoTIM

OTIMR
OTIR

OUT (port),A
OUT (C),reg

OUTO (port),reg
OouTD

OuUTI

POP AF

w5
|

#4
#4

#4

|NN NlNN NNNl
oo ORPOCOT TOOH
| cc P E
| PPP PR PoO
|

|
| »F
|

numumuwm

NN NN

O 0O O o

<<7T7DT

ocooo
|

| X XXX |

ST & |

| X XXX |

| X XXX |

| = =
|

OO OO oo
o o
OO0 OO oo

gxog ©| @
BreE NN
gxog = | |
Ex~g ®|C

=

=

o
EX°% ©| B |

| X<
IHH
| X+
| X+
| X<

H XX |
5
HX X |
5 X |

—12-10 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Notes:

#1

#2
#3

#4
#5
#6
#7

#8
#9

#10
#11

#12
#13
#14

POP reg16
PUSH regl6
RES bit,source
RET

RET cond
RETI
RETN

RL dest

RLA
RLC dest
RLCA
RLD

RR dest
RRA
RRC dest
RRCA

RRD

RST vector
SBC A,source
SBC HL,source

SCF
SET bit,source
SLA dest

~ SLP

SRA dest

SRL dest

SUB source
~ TST source

~ TSTIO immed
XOR source

@ |
N

| NNONN
ol 2]7]

-

(/)(/)l(/)
NN|N
o

CC|'U

| = 0w

#12

T+
[iaN
w

| @ |
| N
I
| |

#13
#13

nMm ununwm
NN NNNN
Pk PTOO
U TCTUT
oo or oo
oo ow

HF = 1 if bit-11 carry, else 0

CF =1if bit-15 carry, else 0

ZF = NOT source[bit]
HF = CF before instruction

CF = NOT CF before instruction

PF=1if BC<>0,else 0.
All flags assume the values previously held by the F' register.
ZF=1ifB=0,else0.

SF=1iflorR<0,else0.
ZF=1iflorR=0,else0.

PF = status of IFF2.
CF = 1if A <> 0 before operation, else 0.
SF=1ifB<0,else0.

HF =1 if B bit-4 borrow, else 0.
PF =1 if B parity even, else 0.
CF =1 if B bit 8 borrow, else 0.

NF=1if (HL) <0, else 0.

SF = (SP-2)[7]

ZF = (SP - 2)[6]

HF = (SP - 2)[4]

PF = (SP-2)[2]

NF = (SP - 2)[1]

CF = (SP-2)[0]

CF = dest[7] before operation.
CF = dest[0] before operation.
HF = 1 if bit-12 borrow, else 0.

CF =1 if bit-16 borrow, else 0.

—12-11 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Instruction Index in Functional Order

Data Transfer Instructions

LD dest,source

PUSH reg16
POP reg16

Load destination operand with source operand

Push 16-bit register/register pair
Pop 16-bit register/register pair

Data Exchange Instructions

EX left,right
EXX

Exchange left and right operands

Exchange general register sets

Block Transfer Instructions

LDI
LDIR

LDD
LDDR

Load (DE) with (HL) and increment
Load (DE) with (HL), increment and repeat

Load (DE) with (HL) and decrement
Load (DE) with (HL), decrement and repeat

Block Search Instructions

CPI
CPIR

CPD
CPDR

Arithmetic Instructions
ADD dest,source
ADC dest,source
INC dest

SUB source

CP source

SBC dest,source
DEC dest

NEG
~ MLT regpr
DAA

Logical Instructions
AND source
~ TST source
OR source
XOR source
CPL

Compare accumulator with (HL) and increment
Compare accumulator with (HL), increment and repeat

Compare accumulator with (HL) and decrement
Compare accumulator with (HL), decrement and repeat

Add source operand to destination operand
Add source operand plus carry to destination operand
Increment destination operand

Subtract source operand from accumulator
Compare source operand with accumulator
Subtract source operand less carry from destination
Decrement destination operand

Negate (two's compliment) accumulator
Multiply bytes of 16-bit register pair

Decimal adjust accumulator

AND source operand with accumulator

Test source operand against accumulator
Inclusive-OR source operand with accumulator
Exclusive-OR source operand with accumulator
One's compliment accumulator

CPU Control Instructions

NOP

HALT
~ SLP

SCF
CCF

El
]|

IM mode

No operation

Halt operation
Enter sleep or system stop mode

Set carry flag
Compliment carry flag

Enable interrupts
Disable interrupts

Set interrupt mode

Rotate and Shift Instructions

RLA
RLCA

RRA
RRCA

RL dest
RLC dest

Rotate accumulator left
Rotate accumulator left circular

Rotate accumulator right
Rotate accumulator right circular

Rotate destination operand left
Rotate destination operand left circular

13-46

13-72
13-71

13-28
13-29

13-54
13-55

13-52
13-53

13-19
13-20

13-17
13-18

13-6
13-4
13-36

13-108
13-16
13-95
13-23

13-57
13-56
13-22

13-8
13-110
13-59
13-112
13-21

13-58

13-30
13-103

13-97
13-15

13-27
13-25

13-31

13-82
13-85

13-89
13-92

13-80
13-83

—12-12 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

RR dest
RRC dest

RLD
RRD

SLA dest

SRA dest
SRL dest

Rotate destination operand right
Rotate destination operand right circular

Rotate left digit
Rotate right digit

Shift destination operand left arithmetic

Shift destination operand right arithmetic
Shift destination operand right logical

Bit Manipulation Instructions

SET bit,source
RES bit,source
BIT bit,source

Set source operand bit
Reset source operand bit
Test source operand bit

Program Transfer Instructions

JP addr
JP (reg16)
JP cond,addr

JR disp
JR cond,disp

DJINZ disp

CALL addr
CALL cond,addr

RET
RET cond

RETI
RETN

RST vector

Unconditional direct absolute jump
Unconditional indirect absolute jump
Conditional absolute jump

Unconditional relative jump
Conditional relative jump

Decrement and jump on not zero

Unconditional call
Conditional call

Unconditional return
Conditional return

Return from interrupt
Return from non-maskable interrupt

Restart

Input and Output Instructions

IN A, (port)
INO reg,(port)

IN reg,(C)

INI
INIR

IND
INDR

OUT (port),A
OUTO (port),reg

OUT (C),reg

OUTI
OTIR

OUTD
OTDR

OTIM
OTIMR

OTDM
OTDMR

TSTIO immed

Input port-direct byte
Input port-direct byte

Input port-indirect byte

Input port-indirect byte and increment
Input port-indirect byte, increment and repeat

Input port-indirect byte and decrement
Input port-indirect byte, decrement and repeat

Output port-direct byte
Output port-direct byte

Output port-indirect byte

Output port-indirect byte and increment
Output port-indirect byte, increment and repeat

Output port-indirect byte and decrement
Output port-indirect byte, decrement and repeat

Output port-indirect memory and increment
Output port-indirect memory, inc and repeat

Output port-indirect memory and decrement
Output port-indirect memory, decrement, and repeat

Test immediate byte against 1/0 byte

13-87
13-90

13-86
13-93

13-101

13-104
13-106

13-98
13-73
13-10

13-42
13-42
13-42

13-44
13-44

13-26

13-13
13-13

13-76
13-76

13-78
13-79

13-94

13-33
13-35

13-33

13-40
13-41

13-38
13-39

13-66
13-68

13-66

13-70
13-65

13-69
13-62

13-63
13-64

13-60
13-61

13-111

—12-13 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Zilog Z-80 Instruction Set

Each instruction entry in this chapter consists of seven different sections of information: Header, Instruction, Operation,
Description, Flags, Clocking, and Encoding.

Header
The Header is located at the top of each page and consists of one or two lines of information and a doubled separator line.

The first line contains the instruction base mnemonic at both the left and right margins, and a brief description of the
instruction in the center. This line provides a fast look up when fanning pages either to the right or the left, much as the guide
words in a dictionary.

The second line, if used, contains the inscription “~ Z-180 ~”, indicating an instruction that is unique to the Z-180 processor,
and not available with the Z-80 processor. These instructions are included here to provide for Z-180 programming over and
above Z-80 programming.

The Header is set off from the rest of the entry by a doubled separator line. If a given instruction should require more than
one page, an identical header is placed on each page of the instruction.

Instruction
The Instruction section consists of the mnemonics for the instruction, in generic form, along with a brief description.

For example, the Instruction section for the “AND” instruction is:
AND source AND source operand with accumulator

It can be seen here that the instruction operand is “source.” with no attempt made at a finer differentiation. This
differentiation is clearly expressed in other areas, the final and exact operands always being given in the Encoding section.

The Instruction section is set off from the rest of the instruction data by a single separator line.

Operation
The Operation section consists of a detailed in-order functional and/or mathematical listing.

The Operation section for the “AND” instruction is:

AJ0] < AJ0] AND source[0]
A[1] < A[1] AND source[1]
A[2] < A[2] AND source[2]
A[3] < A[3] AND source[3]
A[4] < A[4] AND source[4]
A[5] < A[5] AND source[5]
A[6] < A[6] AND source[6]
A[7] « A[7] AND source[7]

All flag operations are performed AFTER the arithmetic or logical operations, unless specifically indicated otherwise, and are
not listed unless the flag operation is fundamental to the understanding of the operation of the basic instruction (such as in
reiterative operations), or if the flag operation is special (not a normal use of the flag).

There are some special terms used that might need some explanation:

« This symbol should be read as “is made equal to.”
© This symbol should be read as “is exchanged with.”
(...) Parentheses indicate the expression “the memory byte whose address is” or “the memory byte whose

address is in.” The expression “A < (HL)” means that register A is made equal to the byte whose address is
in the HL register pair.

NOT This reverses the condition: a 0 becomes a 1 and a 1 becomes a 0.
op[bit] This expression resolves to a logical 0 or 1 equal to the value of bit “[bit]” of operand “op”.

These and all other special terms and abbreviations are discussed in detail in the “Abbreviations, Terms, and Symbols”
chapter of this document.

Description
The Description section provides a detailed, in-order, formal description of the operation of the instruction, affirming in
words what was given logically/mathematically in the operation section.

The description for the “AND” instruction is:

—13-1—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

The accumulator is bitwise ANDed with the source operand.
The source operand is left unchanged.

As in the Operation section, the description of flag operation is not given unless germane to the understanding of the overall
operation of the instruction.

Flags
The Flags section provides a flag by flag indication of the post operation status of the various flags.
The Flags section of the “AND” instruction is:

SF: 1ifA<O0,else0
ZF: 1ifA=0,else0

HF: 1
PF: 1 if parity even, else 0
NF: 0
CF: 0

The Flags section represents a clean, concise and orderly depiction of the flag status AFTER the operation is performed. In
order to improve clarity and understanding, the Flags section gives the post operation status of all six flags, not just those
manipulated by the instruction.

Detailed descriptions of the operations of each of the six flags are to be found in the “Flag Operation” portion of the Zilog Z-
80 Processor Overview chapter of this document.

Clocking

The Clocking section contains two parameters, the number of machine cycles taken by the instruction and the number of
tymes (timing states or processor clock cycles, also known as T-states) taken. The tymes for complex instructions are further
divided into their interrupt sequence values as specified by Zilog (Z-180 instructions are not subdivided).

The Clocking section for the “AND” instruction is:

M-cycles Tymes

AND reg 1 4

AND (HL) 2 7(4,3)

AND (li+d) 5 19 (4,4,3,5,3)
AND immed 2 7(4,3)

The actual time an instruction takes is a function of the number of tymes for that instruction divided by the clock speed of the
processor.

Encoding
The Encoding section contains the actual bytes and op-codes for the instruction in a self-evident manner.

The Encoding section for the “AND” instruction is:

| 1 | 0 | 1 | 0 ' 0 ' <———y-——> op
| |
vV op-code
AND B 000 AO
AND C 001 Al
AND D 010 A2
AND E 011 A3
ANDH 100 A4
AND L 101 A5
AND (HL) 110 A6
AND A 111 A7
1 1 W 1 1 1 0 1 DD or FD
1 0 1 0 0 1 1 0 A6
<————- displacement byte----- > db
L L L | | | |
w op-code
AND (IX+d) 0 DD A6 db
AND (1Y+d) 1 FD A6 db
—13-2 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

1 1 1 0 0 1 1 0 E6

<——————- immediate byte------ > ib
| | | | | | |
op-code
AND immed E6 ib

It is in the Encoding section that all forms of the operand are explicitly shown, and are in boldface to emphasize this fact.
These forms are also shown in the several supplementary tables elsewhere in this manual.

One note of comment. Inspection of the Encoding sections would lead one to believe that memory-indirect operands via the
HL register pair are treated somewhat like a special register. This is indeed true. In the TDL instruction set, (HL) is “register
M.

Nowhere does more than one instruction appear on the same page. Whenever possible, only whole sections for a given

instruction are presented on a given page. When this is impossible, section division is at logical boundaries. This practice
improves clarity, but causes varying amounts of data to be given on each page. Clarity is more important than paper.

All instructions are given in alphanumeric order.

—13-3 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

ADC Add with Carry ADC

ADC dest,source add source operand plus carry to destination operand

Operation
dest < dest + source + CF

Description
The destination operand is made equal to the sum of the destination operand plus the source operand plus the status of the
carry flag.

The source operand is left unchanged.

Flags

If 8-bit Instruction: If 16-bit Instruction:
SF: lifresult<0,else 0 lifresult<0,else 0
ZF: lifresult=0,else 0 lifresult=0,else 0
HF: 1 if bit-3 carry, else 0 1 if bit-11 carry, else 0
PF: 1 if overflow, else 0 1 if overflow, else 0
NF: 0 0
CF: 1 if bit-7 carry, else 0 1 if bit-15 carry, else 0
Clocking

M-cycles Tymes

ADC Areg 1 4
ADC A,(HL) 2 7(4,3)
ADC A, (li+d) 5 19 (4,4,3,5,3)
ADC A,immed 2 7 (4,3)
ADC HL,regpr 4 15 (4,4,4,3)

— 13-4 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

ADC Add with Carry ADC
Encoding
T T
1]lololo] 1] <—=v-—-—> op
| |
vV op-code
ADC AB 000 88
ADCA,C 001 89
ADCADD 010 8A
ADC AE 011 8B
ADC AH 100 8C
ADCA,L 101 8D
ADC A,(HL) 110 8E
ADC A A 111 8F
1 1 w 1 1 1 0 1 DD or FD
1 0 0 0 1 1 1 0 8E
<————- displacement byte----- > db
1 1 L L L
w op-code
ADC A, (IX+d) 0 DD 8E db
ADC A, (IY+d) 1 FD 8E db
[[[[[[[
1|1|o|o 1'1'1'0 CE
T T T | | |
<——————- immediate byte------ > ib
l l | | | |
op-code
ADC A,immed CEib
1 1 1 0 1 1 0 1 ED
ol 1| <v>]1]o0]1]o0 op
1
V_ op-code
ADC HL,BC 00 ED 4A
ADC HL,DE 01 ED 5A
ADC HL,HL 10 ED 6A
ADC HL,SP 11 ED 7A
—13-5—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

ADD Add ADD
ADD dest,source add source operand to destination operand
Operation

dest < dest + source

Description
The destination operand is made equal to the sum of the destination operand plus the source operand.
The source operand is left unchanged.

Flags
If 8-bit Instruction: If 16-bit Instruction:
SF: lifresult<0,else 0 Not Affected
ZF: lifresult=0,else 0 Not Affected
HF: 1 if bit-3 carry, else 0 1 if bit-11 carry, else 0
PF: 1 if overflow, else 0 Not Affected
NF: 0 0
CF: 1if bit-7 carry, else 0 1if bit-15 carry, else 0
Clocking
M-cycles Tymes
ADD A,reg 1 4
ADD A,(HL) 2 7 (4,3)
ADD A, (li+d) 5 19 (4,4,3,5,3)
ADD A,immed 2 7(4,3)
ADD HL,regpr 3 11 (4,4,3)
ADD li,regpr 3 11 (4,4,3)

—13-6 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

ADD Add ADD

Encoding
T T
1]loloflo] o] <——v--> op
| |
vV op-code
ADDAB 000 80
ADD A,C 001 81
ADD AD 010 82
ADD AE 011 83
ADD AH 100 84
ADD AL 101 85
ADD A,(HL) 110 86
ADD A A 111 87
1 1 w 1 1 1 0 1 DD or FD
1 0 0 0 0 1 1 0 86
<————- displacement byte----- > db
L l l L L L L
w op-code
ADD A,(IX+d) 0 DD 86 db
ADD A,(IY+d) 1 FD 86 db
[[[[[I I I]
1 | 1 | 0 | 0 ' 0 ' 1 ' 1 ' 0 C6
T T T | | | |
<——————- immediate byte------ > ib
L L L | | | |
op-code
ADD A,immed C6ib
T
o] o] <-v->1]11]01]0o0]1 op
L
v op-code
ADD HL,BC 00 09
ADD HL,DE 01 19
ADD HL,HL 10 29
ADD HL,SP 11 39
[[[[[I I I]
1 1 W 1 1 1 0 1 DD or FD
T
o]l o] <v->]1]o0]o0o]1 op
L
w Vv op-code
ADD IX,BC 0 00 DD 09
ADD IX,DE 0 01 DD 19
ADD IX,HL 0 10 DD 29
ADD IX,SP 0 11 DD 39
ADD IY,BC 1 00 FD 09
ADD IY,DE 1 01 FD 19
ADD IY,HL 1 10 FD 29
ADD IY,SP 1 11 FD 39

—13-7—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

AND AND AND
AND source AND source operand with accumulator
Operation

A[0] < A[0] AND source[0]
A[1] < A[1] AND source[1]
A[2] < A[2] AND source[2]
A[3] < A[3] AND source[3]
A[4] < A[4] AND source[4]
A[5] < A[5] AND source[5]
A[6] < A[6] AND source[6]
A[7] « A[7] AND source[7]

Description
The accumulator is bitwise ANDed with the source operand.
The source operand is left unchanged.

Flags
SF: 1ifA<O0,else0
ZF: 1ifA=0,else0

HF: 1
PF: 1 if parity even, else 0
NF: 0
CF. 0
Clocking
M-cycles Tymes
AND reg 1 4
AND (HL) 2 7 (4,3)
AND (li+d) 5 19 (4,4,3,5,3)
AND immed 2 7(4,3)

—13-8 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

AND AND AND

Encoding
T T
1lo]l1]lo] o] <—=v-—--> op
| |
vV op-code
AND B 000 A0
AND C 001 Al
AND D 010 A2
AND E 011 A3
AND H 100 A4
AND L 101 A5
AND (HL) 110 A6
AND A 111 A7
1 1 w 1 1 1 0 1 DD or FD
1 0 1 0 0 1 1 0 A6
<————- displacement byte----- > db
1 1 L l L L L
w op-code
AND (I1X+d) 0 DD A6 db
AND (IY+d) 1 FD A6 db
[[[[[[[[|
1|1|1|o|o'1'1'0 E6
T T T T | | |
<——————- immediate byte------ > ib
l l l L | | |
op-code
AND immed E6 ib
—13-9—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

BIT Test Bit BIT

BIT bit,source test source operand bit

Operation
ZF < NOT source[bit]

Description
The zero flag is set if the specified bit of the source operand is 0, otherwise, the zero flag is cleared.
The source operand is left unchanged.

Flags
SF: Undefined
ZF: 1if reg[bit] =0, else 0

HF: 1
PF: Undefined
NF: 0
CF: Not Affected
Clocking
M-cycles Tymes
BIT bit,reg 2 8 (4,4)
BIT bit,(HL) 3 12 (4,4,4)
BIT bit,(li+d) 5 20 (4,4,3,5,4)

— 13-10 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

BIT Test Bit BIT

Encoding

1 1 0 0 1 0 1 1 CB

0 1 <—T—x—T—> <—T—v—T—> op

X v op-code

BIT0,B 000 000 CB 40
BIT 0,C 000 001 CB 41
BIT 0,D 000 010 CB 42
BIT O,E 000 011 CB 43
BIT O,H 000 100 CB 44
BITO,L 000 101 CB 45
BIT 0,(HL) 000 110 CB46
BIT 0,A 000 111 CB 47
BIT1,B 001 000 CB 48
BIT 1,C 001 001 CB 49
BIT 1,D 001 010 CB 4A
BIT 1,E 001 011 CB 4B
BIT 1,H 001 100 CB 4C
BIT 1,L 001 101 CB 4D
BIT 1,(HL) 001 110 CB 4E
BIT 1,A 001 111 CB 4F
BIT 2,B 010 000 CB 50
BIT 2,C 010 001 CB 51
BIT 2,D 010 010 CB 52
BIT 2,E 010 011 CB 53
BIT 2,H 010 100 CB 54
BIT 2,L 010 101 CB 55
BIT 2,(HL) 010 110 CB 56
BIT 2,A 010 111 CB 57
BIT 3,B 011 000 CB 58
BIT 3,C 011 001 CB 59
BIT 3,D 011 010 CB 5A
BIT 3,E 011 011 CB 5B
BIT 3,H 011 100 CB5C
BIT 3,L 011 101 CB5D
BIT 3,(HL) 011 110 CBS5E
BIT 3,A 011 111 CB 5F
BIT 4,B 100 000 CB 60
BIT 4,C 100 001 cB61
BIT 4,D 100 010 CB 62
BIT 4,E 100 011 CB 63
BIT 4,H 100 100 CB 64
BIT 4,L 100 101 CB 65
BIT 4,(HL) 100 101 CB 66
BIT 4,A 100 111 CB 67
BIT 5,B 101 000 CB 68
BIT 5,C 101 001 CB 69
BIT 5,D 101 010 CB 6A
BIT 5,E 101 011 CB 6B
BIT 5,H 101 100 CB6C
BIT5,L 101 101 CB 6D
BIT 5,(HL) 101 110 CB 6E
BIT 5,A 101 111 CB 6F

—13-11 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

BIT Test Bit BIT
BIT 6,B 110 000 CB 70
BIT 6,C 110 001 CB71
BIT 6,D 110 010 CB 72
BIT 6,E 110 011 CB 73
BIT 6,H 110 100 CB 74
BIT 6,L 110 101 CB 75
BIT 6,(HL) 110 110 CB 76
BIT 6,A 110 111 CB 77
BIT 7,B 111 000 CB 78
BIT 7,C 111 001 CB 79
BIT 7,D 111 010 CB7A
BIT 7,E 111 011 CB 7B
BIT 7,H 111 100 CB7C
BIT 7,L 111 101 CB 7D
BIT 7,(HL) 111 110 CB 7E
BIT 7,A 111 111 CB 7F

1 1 w 1 1 0 DD or FD

1 1 0 0 0 1 CB

<—T———?isp}acementlbyte———T— db

I T T | |
| 0 | 1 | <——-x——-> | 1 | 1 | 0 ' op
|
w X op-code

BIT O,(IX+d) 0 000 DD CB db 46
BIT 1,(IX+d) 0 001 DD CB db 4E
BIT 2,(IX+d) 0 010 DD CB db 56
BIT 3,(IX+d) 0 011 DD CB db 5E
BIT 4,(IX+d) 0 100 DD CB db 66
BIT 5,(IX+d) 0 101 DD CB db 6E
BIT 6,(IX+d) 0 110 DD CB db 76
BIT 7,(IX+d) 0 111 DD CB db 7E
BIT O,(IY+d) 1 000 FD CB db 46
BIT 1,(IY+d) 1 001 FD CB db 4E
BIT 2,(IY+d) 1 010 FD CB db 56
BIT 3,(IY+d) 1 011 FD CB db 5E
BIT 4,(IY+d) 1 100 FD CB db 66
BIT 5,(IY+d) 1 101 FD CB db 6E
BIT 6,(IY+d) 1 110 FD CB db 76
BIT 7,(IY+d) 1 111 FD CB db 7E

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

—13-12 —

CALL Call CALL

CALL addr unconditional call
CALL cond,addr conditional call

Operation
If unconditional:
do call

If conditional:

NZ: if ZF = 0 then do call.
Z: if ZF = 1 then do call.
C: if CF = 0 then do call.
C: if CF =1 then do call.
PO: if PF = 0 then do call.
PE: if PF = 1 then do call.
P: if SF = 0 then do call.
M: if SF = 1 then do call.

If do call:
temp « PC + 2
SP«<SP-1
(SP) « temp-high
SP«SP-1
(SP) « temp-low
PC <« addr

Description
If unconditional:
The call is done.

If conditional:
A test is made of the appropriate flag.
If the condition is met, the call is done.
If the condition is not met, execution continues with the next instruction.

If the call is done:

The stack pointer is decremented.

The memory byte whose address is in the stack pointer is made equal to the high-order byte of the sum of the program
counter plus 2.

The stack pointer is again decremented.

The memory byte whose address is in the stack pointer is made equal to the low-order byte of the sum of the program
counter plus 2.

The program counter is made equal to the value of the immediate memory operand.

Execution continues at the address that is in the program counter.

Flags

SF: Not Affected
ZF: Not Affected
HF: Not Affected
PF: Not Affected
NF: Not Affected
CF: Not Affected

Clocking
If condition is met: If condition is not met:
M-cycles Tymes M-cycles Tymes
CALL addr 5 17 (4,3,4,3,3)
CALL cond,addr 5 17 (4,3,4,3,3) 3 10 (4,3,3)
—13-13 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

CALL Call CALL
Encoding
1 1 0 0 1 1 0 CD
<——————— address low—--------— al
—t—t—+—1+—+—
Lmmmm——— address high------—- ah
| | I I I I |
op-code
CALL addr CD al ah
T T T T T T T T
1 | 1 | ey ———> ' 1 ' 0 ' op
| |
T T T T T T T
<= address low-------- al
—t—t—+—1+—+—
<—————— address high------- ah
I I I | | | I
y op-code
CALL NZ,addr 000 C4 al ah
CALL Z,addr 001 CC al ah
CALL NC,addr 010 D4 al ah
CALL C,addr 011 DC al ah
CALL PO,addr 100 E4 al ah
CALL PE,addr 101 EC al ah
CALL P,addr 110 F4 al ah
CALL M,addr 111 FC al ah
—13-14 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

CCF Compliment Carry Flag CCF

CCF compliment carry flag

Operation
HF « CF
CF « NOT CF

Description
The half-carry flag is set to the status of the carry flag.
The carry flag is complimented.

Flags

SF: Not Affected

ZF: Not Affected

HF: 1 if CF =1 before operation, else 0
PF: Not Affected

NF: 0

CF: 1 if CF = 0 before operation, else 0

Clocking
M-cycles Tymes
CCF 1 4
Encoding
0 0 1 1 1 1 1 1 3F
op-code
CCF 3F
—13-15—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

CP Compare CP

CP source compare source operand with accumulator

Operation
temp < A —source

Description
The source operand is subtracted from the accumulator.

The accumulator is left unchanged.
The source operand is left unchanged.

Flags

SF: lifresult<0,else 0
ZF: lifresult=0,else 0
HF: 1 if bit-4 borrow, else 0
PF: 1 if underflow, else 0
NF: 1

CF: 1 if bit-8 borrow, else 0

Clocking
M-cycles Tymes
CP reg 1 4
CP (HL) 2 7(4,3)
CP (li+d) 5 19 (4,4,3,5,3)
CP immed 2 7(4,3)
Encoding
T T
1]lolr 1] 1] <——v-—--> op
| |
vV op-code
CPB 000 B8
CPC 001 B9
CPD 010 BA
CPE 011 BB
CPH 100 BC
CPL 101 BD
CP (HL) 110 BE
CPA 111 BF
[[[[[[[[|
1 1 w 1 1 1 0 1 DD or FD
1 0 1 1 1 1 1 0 BE
<————- displacement byte----- > db
1 1 l L L L
w op-code
CP (IX+d) 0 DD BE db
CP (IY+d) 1 FD BE db
1l 1]1]1]o FE
<——————- immediate byte------ > ib
l l l | | | |
op-code
CP immed FE ib

— 13-16 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

CPD Compare and Decrement CPD

CPD compare accumulator with (HL) and decrement

Operation
temp « A—(HL)

HL<HL-1
BC«<BC-1

PF < BC[15 ORSUM 0]

Description
The memory byte whose address is in the HL register pair is subtracted from the accumulator.

The HL register pair is decremented.
The BC register pair is decremented.

If the BC register pair is zero, the parity/overflow flag is cleared; otherwise, the parity/overflow flag is set.

The accumulator is left unchanged.

Flags

SF: lifresult<0,else 0
ZF: 1lifresult=0, else 0
HF: 1 if bit-4 borrow, else 0
PF: 1ifBC<>0,else 0
NF: 1

CF: Not Affected

Clocking
M-cycles Tymes
CPD 4 16 (4,4,3,5)
Encoding
[[[[I I I I]
121 lo]1]1]o]1 ED
1]lolrlo]l1]o]ol1 A9
op-code
CPD ED A9
—13-17 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

CPDR Compare, Decrement, and Repeat CPDR

CPDR compare accumulator with (HL), decrement, and repeat

Operation
temp « A—(HL)

HL<HL-1
BC«<BC-1

PF < BC[15 ORSUM 0]

If PF =1, repeat operation

Description
The memory byte whose address is in the HL register pair is subtracted from the accumulator.

The HL register pair is decremented.
The BC register pair is decremented.

If the BC register pair is zero, the parity/overflow flag is cleared; otherwise, the parity/overflow flag is set.
If the parity/overflow flag is set, the operation is repeated.

The accumulator is left unchanged.

Flags

SF: lifresult<O0,else 0
ZF: lifresult=0,else 0
HF: 1 if bit-4 borrow, else 0

PF: 0 after final iteration
NF: 1
CF: Not Affected
Clocking
While PF = 1: When PF = 0:
M-cycles Tymes M-cycles Tymes
CPDR 5 21 (4,4,3,5,5) 4 16 (4,4,3,5)
Encoding
1 1 1 0 1 1 0 1 ED
1 0 1 1 1 0 0 1 B9
op-code
CPDR ED B9
—13-18 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

CPI Compare and Increment

CPI

CPI compare accumulator with (HL) and increment

Operation
temp « A—(HL)

HL<HL+1
BC«<BC-1

PF < BC[15 ORSUM 0]

Description
The memory byte whose address is in the HL register pair is subtracted from the accumulator.

The HL register pair is incremented.
The BC register pair is decremented.

If the BC register pair is zero, the parity/overflow flag is cleared; otherwise, the parity/overflow flag is set.

The accumulator is left unchanged.

Flags

SF: lifresult<0,else 0
ZF: 1lifresult=0, else 0
HF: 1 if bit-4 borrow, else 0
PF: 1ifBC<>0,else 0
NF: 1

CF: Not Affected

Clocking
M-cycles Tymes
CPI 4 16 (4,4,3,5)
Encoding
[[[[I I I I]
121 lo]1]1]o]1 ED
1]lolrlo]lo]o]ol1 Al
op-code
CPI ED Al
—13-19 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

CPIR Compare, Increment, and Repeat CPIR

CPIR compare accumulator with (HL), increment, and repeat

Operation
temp « A—(HL)

HL<HL+1
BC«<BC-1

PF < BC[15 ORSUM 0]

If PF =1, repeat operation

Description
The memory byte whose address is in the HL register pair is subtracted from the accumulator.

The HL register pair is incremented.
The BC register pair is decremented.

If the BC register pair is zero, the parity/overflow flag is cleared; otherwise, the parity/overflow flag is set.
If the parity/overflow flag is set, the operation is repeated.

The accumulator is left unchanged.

Flags

SF: lifresult<O0,else 0
ZF: lifresult=0,else 0
HF: 1 if bit-4 borrow, else 0

PF: 0 after final iteration
NF: 1
CF: Not Affected
Clocking
While PF = 1: When PF = 0:
M-cycles Tymes M-cycles Tymes
CPIR 5 21 (4,4,3,5,5) 4 16 (4,4,3,5)
Encoding
1 1 1 0 1 1 0 1 ED
1 0 1 1 0 0 0 1 B1
op-code
CPIR ED B1
— 13-20 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

CPL Compliment Accumulator CPL
CPL one's compliment accumulator
Operation

A[0] < NOT A[0]
A[1] < NOT A[1]
A[2] < NOT A[2]
A[3] < NOT A[3]
A[4] < NOT A[4]
A[5] < NOT A[5]
A[6] < NOT A[6]
A[7] < NOT A[7]

Description
The accumulator is bitwise complimented (one's complement).

Flags
SF: Not Affected
ZF: Not Affected

HF: 1
PF: Not Affected
NF: 1
CF: Not Affected
Clocking
M-cycles Tymes
CPL 1 4
Encoding
[[[[[[[[|
|o|o|1|o|1|1|1|1' 2F
op-code
CPL 2F
—13-21 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

DAA Decimal Adjust Accumulator DAA

DAA decimal adjust accumulator

Operation
xx = 00 if:

(NF=0and CF =0and HF = 0 and A[hi] = 0-9 and A[lo] = 0-9) or (NF =1 and CF = 0 and HF = 0)
xx =06 if:

(NF=0and CF =0 and HF = 0 and A[hi] = 0-8 and A[lo] = A-F) or (NF =0 and CF = 0 and HF = 1 and A[hi] = 0-9)
XX = 60 if:

(NF=0and CF =0and HF = 0 and A[hi] = A-F and A[lo] =0-9) or (NF =0 and CF =1 and HF = 0 and A [lo] = 0-9)
XX = 66 if:

(NF =0and CF =0 and HF = 0 and Afhi] = 9-F and A[lo] = A-F) or (NF =0 and CF = 0 and HF = 1 and A[hi] = A-F)
or

(NF=0and CF=1and HF = 0 and A[lo] = A-F) or (NF =0 and CF =1 and HF = 1)
xx = 9A if:

(NF=1and CF=1and HF =1)
xx = AQ if:

(NF=1and CF=1and HF=0)
xx = FAif:

(NF=1land CF=0and HF=1)

A < A+ XX

CF=0if:
X =00 or xx =06 or xx = FA
CF=1if:
=60 or xx =66 or xx = 9A or xx = A0
HF =0 if:
xx =00 or xx =60 or xx = A0 or
(xx =06 or xx =66 or xx = 9A or xx FA) and there is no carry from bit 3
HF = 1if:
(xx = 06 or xx = 66 or xx = 9A or xx FA) and there is a carry from bit 3

Description
This operation is executed only after an addition or subtraction with valid packed-BCD operands, and is used to adjust the
accumulator to produce a valid packed-BCD result.

A specific hex value “xx” is added to the accumulator, and the accumulator is set to the result.

The half-carry flag is cleared if “xx” is 00, 60 or A0, otherwise, the half-carry flag is set if there is a carry from bit-3 and
cleared if there is no carry from bit 3.

The carry flag is cleared if “xx” is 00, 06 or FA, otherwise, the carry flag is set.

Flags

SF: 1ifA<0,else0

ZF: 1ifA=0,else0

HF: See operation/description
PF: 1 if parity even, else 0
NF: Not Affected

CF: See operation/description
Clocking
M-cycles Tymes
DAA 1 4
Encoding
[[[[I I I I]
|o|o|1|o|o|1|1|1' 27
op-code
DAA 27
— 13-22 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

DEC Decrement DEC

DEC dest decrement destination operand
Operation
dest < dest—1
Description
The destination operand is decremented by one.
Flags

If 8-bit Instruction: If 16-bit Instruction:
SF: lifresult<0,else 0 Not Affected
ZF: lifresult=0,else 0 Not Affected
HF: 1 if bit-4 borrow, else 0 Not Affected
PF: 1 if underflow, else 0 Not Affected
NF: 1 Not Affected
CF: Not Affected Not Affected
Clocking

M-cycles Tymes

DEC reg 1 4
DEC (HL) 3 11 (4,4,3)
DEC (li+d) 6 23 (4,4,354,3)
DEC regpr 1 6
DEC i 2 10 (4,6)

— 13-23 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

DEC Decrement DEC
Encoding
00| <—==v-—=->] 1 op
vV op-code
DECB 000 05
DECC 001 0D
DECD 010 15
DECE 011 1D
DECH 100 25
DECL 101 2D
DEC (HL) 110 35
DECA 111 3D
1 1 w 1 1 1 DD or FD
0 0 1 1 0 1 35
<————- displacement byte db
L l L
w op-code
DEC (IX+d) 0 DD 35 db
DEC (IY+d) 1 FD 35 db
[[[[I
| 0 | 0 | <-v-> ' 1 ' 0 ' op
L
v op-code
DEC BC 00 0B
DEC DE 01 1B
DEC HL 10 2B
DEC SP 11 3B
1 1 W 1 1 1 DD or FD
0 0 1 0 1 0 2B
w op-code
DEC IX 0 DD 2B
DEC IY 1 FD 2B

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

—13-24 —

Dl Disable Interrupts

DI disable maskable interrupts

Operation
IFF1 < 0
IFF2 < 0

Description
Both interrupt flip-flops are reset.

Maskable interrupts occurring during or at the end of this instruction are ignored.

Flags

SF: Not Affected

ZF: Not Affected

HF: Not Affected

PF: Not Affected

NF: Not Affected

CF: lifresult=0,else 0

Clocking

M-cycles Tymes
DI 1 4
Encoding

1 1 1 1 0 0 1 1 F3
op-code
DI F3
—13-25 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

DJNZ Decrement and Jump on Not Zero DJNZ

DJNZ disp decrement and jump on not zero

Note: in most assemblers, this instruction takes the form “DJNZ addr”. The assembler then computes the displacement
dynamically as though it were the expression “addr — PC”.

Operation
B«<B-1

If B[7 ORSUM 0] = 1 then PC « PC + disp

Description
The B register is decremented.

If the B register does not equal zero:
The program counter is made equal to the sum of the program counter plus the sign-extended address-displacement byte.
Execution continues at the address in the program counter.

If the B register equal zero:
Execution continues with the next instruction.

The displacement byte is referenced to the address of the instruction, and has a range of —126 to +129 bytes. Compensation is
automatically made for the double program counter increment.

Flags

SF: Not Affected
ZF: Not Affected
HF: Not Affected
PF: Not Affected
NF: Not Affected
CF: Not Affected

Clocking
If B<>0: If B=0:
M-cycles Tymes M-cycles Tymes
DJNZ disp 3 13 (5,3,5) 2 8 (5,3)
Encoding
0 0 0 1 0 0 0 0 10
address displacement byte - 2 ab
l l l l l 1 l
op-code
DJINZ disp 10 ab
— 13-26 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

El

Enable Interrupts

El

El

enable maskable interrupts

Operation
IFF1 < 1
IFF2 < 1

Description

Both interrupt flip-flops are set.

Maskable interrupts occurring during or at the end of this instruction are ignored.

Flags
SF: Not Affected
ZF: Not Affected
HF: Not Affected
PF: Not Affected
NF: Not Affected
CF: Not Affected
Clocking
M-cycles Tymes
El 1 4
Encoding
1 1 1 0 1 1 FB
op-code
El FB
—13-27 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

EX Exchange EX
EX left,right exchange left and right operands
Operation
left © right
Description
The left operand is exchanged with the right operand.
Flags
If not EX AF,AF' If EX AF.AF'
SF: Not Affected All flags assume the values previously
ZF: Not Affected held by the alternative flag register
HF: Not Affected
PF: Not Affected
NF: Not Affected
CF: Not Affected
Clocking
M-cycles Tymes
EX DE,HL 1 4
EX (SP),HL 5 19 (4,3,4,3,5)
EX (SP),li 6 23 (4,4,3,4,3,5)
EX AF,AF' 1 4
Encoding
[[[I I I I]
Lo o] o
Vv op-code
EX (SP),HL 0 E3
EX DE,HL 1 EB
1 | w1 1 1 0 1 DD or FD
1 1 0 0 0 1 1 E3
w op-code
EX (SP),IX 0 DD E3
EX (SP),IY 1 FD E3
0 0 0 1 0 0 0 08
op-code
EX AF,AF' 08
— 13-28 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

EXX Exchange General Registers

EXX

EXX exchange general register sets

Operation
BC ¢ BC'
DE ¢ DE'
HL & HL'

Description
The primary general registers are exchanged with the alternative general registers.

Flags

SF: Not Affected
ZF: Not Affected
HF: Not Affected
PF: Not Affected
NF: Not Affected
CF: Not Affected

Clocking

M-cycles Tymes
EXX 1 4
Encoding

1 1 0 1 1 0 0 1 D9
op-code
EXX D9
—13-29 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

HALT Halt HALT
HALT halt operation

Operation

CPU halted.

Description

The CPU halts operation until reset or until an interrupt is received.

The CPU automatically performs NOP instructions while halted in order to maintain memory refresh logic.

Flags

SF: Not Affected
ZF: Not Affected
HF: Not Affected
PF: Not Affected
NF: Not Affected
CF: Not Affected

Clocking

M-cycles Tymes
HALT 1 4
Encoding

0 1 1 1 0 1 1 0 76
op-code
HALT 76
— 13-30 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

IM Set Interrupt Mode M

IM mode set interrupt mode

Operation

If mode =0:
IMFa < 0
IMFb < 0

Upon interrupt:
CPU executes instruction on data bus six times.

If mode = 1:
IMFa < 1
IMFb < 0

Upon interrupt:
PC < 0038

If mode = 2:
IMFa « 1
IMFb « 1

Upon interrupt:
PC-low < data bus
PC-high « |

Description
The interrupt mode flip-flops “a” and “b” are cleared or set as indicated.

In interrupt mode 0:
The interrupting peripheral places an 8-bit instruction the data bus.
The CPU implements that instruction six times.

The instruction is usually one of the RST instructions, which would then initiate an unconditional jump to the appropriate
vector address.

In interrupt mode 1:
When an interrupt is received, the program counter is made equal to 0038.
Execution continues at address 0038.

This operation is identical to executing an RST 38 instruction.
This mode is most often used by a debugger or similar program.

In interrupt mode 2:
The interrupting peripheral places an 8-bit address vector on the data bus.
The low-order byte of the program counter is made equal to the data bus.
The high-order byte of the program counter is made equal to the interrupt vector register (I).
Execution continues at the address in the program counter.

Flags

SF: Not Affected
ZF: Not Affected
HF: Not Affected
PF: Not Affected
NF: Not Affected
CF: Not Affected

Clocking
M-cycles Tymes
IM mode 2 8 (4,4)

—13-31 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

IM Set Interrupt Mode

Encoding

111]o]1r]1]o]1 ED

ol 1]o|<v>]1]|1]0 op

|
v op-code
IM O 00 ED 46
IM 1 10 ED 56
IM 2 11 ED 5E
—13-32 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

IN Input IN

IN A,(port) input port-direct byte
IN reg,(C) input port-indirect byte
Operation

If direct:

address-bus-low < port
address-bus-high « A
A « (address-bus-low)

If indirect:
address-bus-low < C
address-bus-high < B
reg < (address-bus-low)

Description

If direct:
The low-order byte of the address bus is made equal to the immediate port operand value.
The high-order byte of the address bus is made equal to the accumulator

The accumulator is made equal to the byte present at the input port whose address is the low-order byte of the address
bus.

If indirect:
The low-order byte of the address bus is made equal to the C register.
The high-order byte of the address bus is made equal to the B register.
The register operand is made equal to the byte present at the input port whose address is the low-order byte of the address
bus.
The B register is left unchanged unless the register operand is the B register.
The C register is left unchanged unless the register operand is the C register.

Flags

If IN A, (port): If IN reg,(C):
SF: Not Affected lifreg<0,else0
ZF: Not Affected lifreg=0,else0
HF: Not Affected 0
PF: Not Affected 1 if parity even, else 0
NF: Not Affected 0
CF: Not Affected Not Affected
Clocking

M-cycles Tymes

IN A,(port) 3 11 (4,3,4)
IN reg,(C) 3 12 (4,4,4)

— 13-33 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

IN Input IN

Encoding
1 1 0 1 1 0 1 1 DB
<---immediate port address--> pb
1 l L 1 L L
op-code
IN A,(port) DB pb
1 1 1 0 1 1 0 1 ED
| 0 | 1 | <——-v-—-> ' 0 ' 0 ' 0 ' op
1 |
v op-code
IN B,(C) 000 ED 40
IN C,(C) 001 ED 48
IN D,(C) 010 ED 50
IN E,(C) 011 ED 58
IN H,(C) 100 ED 60
INL,(C) 101 ED 68
110 ED 70
IN A,(C) 111 ED 78

NOTE: The instruction whose op-code is “ED 70" has no mnemonic, and sets the flags in a normal manner without affecting
register contents. This instruction may be used to determine the status of an input port byte without actually fetching the byte.

—13-34 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

INO Input Port-direct INO
~7-180 ~

INO reg,(port) input port-direct byte

Operation
address-bus-low < port
address-bus-high < 00
reg < (address-bus)

Description

The low-order byte of the address bus is made equal to the immediate port operand value.

The high-order byte of the address bus is made equal to 00.

The register operand is made equal to the byte present at the input port whose address is the low-order byte of the address
bus.

Flags
SF: lifreg<0,else0
ZF: lifreg=0,else0

HF: 0
PF: 1 if parity even, else 0
NF: 0
CF: Not Affected
Clocking
M-cycles Tymes
INO reg,(port) 4 12
Encoding
1 1 1 0 1 1 0 1 ED
0ol 0] <———v-——->]0]| 0] o0 op
| |
| |
<---immediate port address--> pb
L 1 L I | | |
v op-code
INO B, (port) 000 ED 00 pb
INO C,(port) 001 ED 08 pb
INO D,(port) 010 ED 10 pb
INO E,(port) 011 ED 18 pb
INO H,(port) 100 ED 20 pb
INO L,(port) 101 ED 28 pb
110 ED 30 pb
INO A, (port) 111 ED 38 pb

NOTE: The instruction whose op-code is “ED 30 pb” has no mnemonic, and sets the flags in a normal manner without
affecting register contents. This instruction may be used to determine the status of an input port byte without actually fetching
the byte.

— 13-35 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

INC Increment INC

INC dest increment destination operand
Operation
dest «< dest + 1
Description
The destination operand is incremented by one.
Flags

If 8-bit Instruction: If 16-bit Instruction:
SF: lifresult<O,else0 Not Affected
ZF: lifresult=0,else0 Not Affected
HF: 1 if bit-3 carry, else 0 Not Affected
PF: 1 if overflow, else 0 Not Affected
NF: 0 Not Affected
CF: Not Affected Not Affected
Clocking

M-cycles Tymes

INC reg 1 4
INC (HL) 3 11 (4,4,3)
INC (li+d) 6 23 (4,4,354,3)
INC regpr 1 6
INC i 2 10 (4,6)

— 13-36 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

INC Increment INC

Encoding
T T
o]l o| <——v-—-->]1]0]o0 op
L L
vV op-code
INC B 000 04
INCC 001 oC
INC D 010 14
INC E 011 1C
INCH 100 24
INC L 101 2C
INC (HL) 110 34
INC A 111 3C
1 1 | w1 1 1 0 1 DD or FD
0 0 1 1 0 1 0 0 34
<————- displacement byte----- > db
L l l L L L L
w op-code
INC (IX+d) 0 DD 34 db
INC (IY+d) 1 FD 34 db
[[[[[I I I]
| 0 | 0 | <-v-> ' 0 ' 0 ' 1 ' 1 ' op
L
Vv op-code
INC BC 00 03
INC DE 01 13
INC HL 10 23
INC SP 11 33
1 w 1 DD or FD
0 1 0 23
w op-code
INC IX 0 DD 23
INC 1Y 1 FD 23

— 13-37 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

IND Input and Decrement IND

IND input port-indirect byte and decrement

Operation
address-bus-low < C
address-bus-high < B
(HL) « (address-bus-low)

HL<HL-1
BeB-1

ZF « B[7 ORSUM 0]

Description

The low-order byte of the address bus is made equal to the C register.

The high-order byte of the address bus is made equal to the B register.

The memory byte whose address is in the HL register pair is made equal to the byte present at the input port whose address is
the low-order byte of the address bus.

The HL register pair is decremented.
The B register is decremented.

If the B register is zero, then the zero flag is set; otherwise the zero flag is cleared.

The C register is left unchanged.

Flags

SF: Undefined

ZF: 1ifB=0,else0
HF: Undefined

PF: Undefined

NF: 1

CF: Not Affected

Clocking
M-cycles Tymes

IND 4 16 (4,5,3,4)
Encoding

1 1 1 0 1 1 0 1 ED

1 0 1 0 1 0 1 0 AA

op-code
IND ED AA
—13-38 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

INDR Input, Decrement, and Repeat INDR

INDR input port-indirect byte, decrement, and repeat

Operation
address-bus-low < C
address-bus-high < B
(HL) « (address-bus-low)

HL<HL-1
BeB-1

ZF < NOT B[7 ORSUM 0]
If ZF = 0, repeat operation.

Description

The low-order byte of the address bus is made equal to the C register.

The high-order byte of the address bus is made equal to the B register.

The memory byte whose address is in the HL register pair is made equal to the byte present at the input port whose address is
the low-order byte of the address bus.

The HL register pair is decremented.
The B register is decremented.

If the B register is zero, then the zero flag is set; otherwise, the zero flag is cleared.
If the zero flag is not set, the operation is repeated.

The C register is left unchanged.

Flags
SF: Undefined
ZF: 1 after final iteration

HF: Undefined
PF: Undefined
NF: 1

CF: Not Affected

Clocking
IfB<>0: IfB=0:
M-cycles Tymes M-cycles Tymes
INDR 5 21 (4,5,3,4,5) 4 16 (4,5,3,4)
Encoding
1 1 1 0 1 1 0 1 ED
1 0 1 1 1 0 1 0 BA
op-code
INDR ED BA
—13-39 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

INI Input and Increment INI

INI input port-indirect byte and increment

Operation
address-bus-low < C
address-bus-high < B
(HL) « (address-bus-low)

HL<HL+1
BeB-1

ZF « B[7 ORSUM 0]

Description

The low-order byte of the address bus is made equal to the C register.

The high-order byte of the address bus is made equal to the B register.

The memory byte whose address is in the HL register pair is made equal to the byte present at the input port whose address is
the low-order byte of the address bus.

The HL register pair is incremented.
The B register is decremented.

If the B register is zero, then the zero flag is set; otherwise, the zero flag is cleared.

The C register is left unchanged.

Flags

SF: Undefined

ZF: 1ifB=0,else0
HF: Undefined

PF: Undefined

NF: 1

CF: Not Affected

Clocking
M-cycles Tymes

INI 4 16 (4,5,3,4)
Encoding

1 1 1 0 1 1 0 1 ED

1 0 1 0 0 0 1 0 A2

op-code
INI ED A2
— 13-40 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

INIR Input, Increment, and Repeat INIR

INIR input port-indirect byte, increment, and repeat

Operation
address-bus-low < C
address-bus-high < B
(HL) « (address-bus-low)

HL<HL+1
BeB-1

ZF < NOT B[7 ORSUM 0]
If ZF = 0, repeat operation.

Description

The low-order byte of the address bus is made equal to the C register.

The high-order byte of the address bus is made equal to the B register.

The memory byte whose address is in the HL register pair is made equal to the byte present at the input port whose address is
the low-order byte of the address bus.

The C register is left unchanged.

The HL register pair is incremented.
The B register is decremented.

If the B register is zero, the zero flag is set; otherwise, the zero flag is cleared.
If the zero flag is not set, the operation is repeated.

The C register is left unchanged.

Flags
SF: Undefined
ZF: 1 after final iteration

HF: Undefined
PF: Undefined
NF: 1

CF: Not Affected

Clocking
IfB<>0: IfB=0:
M-cycles Tymes M-cycles Tymes
INIR 5 21 (4,5,3,4,5) 4 16 (4,5,3,4)
Encoding
1 1 1 0 1 1 0 1 ED
1 0 1 1 0 0 1 0 B2
I I I e e I I
op-code
INIR ED B2
—13-41 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

JP Absolute Jump JP

JP addr unconditional direct absolute jump
JP (regl16) unconditional indirect absolute jump
JP cond,addr conditional absolute jump
Operation
If unconditional and direct:

PC < addr

If unconditional and indirect:
PC < (regl6)

If conditional:

NZ:if ZF =0 then PC « addr
Z: if ZF =1 then PC <« addr
C:if CF =0 then PC « addr
C: if CF=1then PC « addr
PO: if PF =0 then PC « addr
PE: if PF = 1 then PC « addr
P: if SF =0 then PC « addr
M: if SF = 1 then PC <« addr

Description

If unconditional and direct:
The program counter is made equal to the value of the immediate address operand.
Execution continues at the address in the program counter.

If unconditional and indirect:
The program counter is made equal to the 16-bit register/register pair operand.
Execution continues at the address in the program counter.

If conditional:
A test is made of the indicated flag.
If the condition is met:
The program counter is made equal to the value of the immediate address operand.
Execution continues at the address in the program counter.

If the condition is not met:
Execution continues with the next instruction.

Flags

SF: Not Affected
ZF: Not Affected
HF: Not Affected
PF: Not Affected
NF: Not Affected
CF: Not Affected

Clocking
M-cycles Tymes
JP addr 3 10 (4,3,3)
JP (HL) 1 4
JP (li) 2 8(4,4)
JP cond,addr 3 10 (4,3,3)
—13-42 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

JP Absolute Jump

Encoding
1 1 0 0 0 0 1 1 C3
<mmmmm - address low--—------ > a
——————
Lo address high------- > ah
l L L L 1 L L
op-code
JP addr C3al ah
[[[[[[[[|
|1|1|1|O|1'0'0'1'E9
op-code
JP (HL) E9
1 1 s 1 1 1 0 1 DD or FD
1 1 1 0 1 0 0 1 E9
w op-code
JP (IX) 0 DD E9
JP (1Y) 1 FD E9
T T
1 1 <—=——y———> 0 1 0 op
| |
| |
<m—mmm - address low-------- > a
1
<m—mm———- address high------- > ah
1 l 1 L ! | |
y op-code
JP NZ,addr 000 C2alah
JP Z,addr 001 CAal ah
JP NC,addr 010 D2 al ah
JP C,addr 011 DA al ah
JP PO,addr 100 E2 al ah
JP PE,addr 101 EA al ah
JP P,addr 110 F2 al ah
JP M,addr 111 FA al ah
— 13-43 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

JR Relative Jump JR

JR disp unconditional relative jump
JR cond,disp conditional relative jump

Note: in most assemblers, this instruction takes the form “JR addr” or “JR cond,addr”. The assembler then computes the
displacement dynamically as though it were the expression “addr — PC”.

Operation
If unconditional:
PC < PC +disp

If conditional:
NZ: if ZF = 0 then PC < PC + disp
Z: if ZF =1then PC « PC + disp
NC:if CF=0then PC < PC + disp
C: ifCF=1thenPC « PC +disp

Description

If unconditional:
The program counter is made equal to the sum of the program counter plus the sign-extended address-displacement byte.
Execution continues at the address in the program counter.

If conditional:
A test is made of the specified flag.
If the condition is met:
The program counter is made equal to the sum of the program counter plus the sign-extended address-displacement
byte.
Execution continues at the address in the program counter.

If the condition is not met:
Execution continues with the next instruction.

The address-displacement byte is referenced to the address of the instruction, and has a range of —126 to +129 bytes.
Compensation is automatically made for the double program counter increment.

Flags

SF: Not Affected
ZF: Not Affected
HF: Not Affected
PF: Not Affected
NF: Not Affected
CF: Not Affected

Clocking
If condition is met: If condition is not met:
M-cycles Tymes M-cycles Tymes
JR disp 3 12 (4,3,5)
JR cond,disp 3 12 (4,3,5) 2 7(4,3)
—13-44 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

JR

Relative Jump

Encoding
0 0 0 1 1 0 0 0 18
address displacement byte - 2 ab
]]]]]]
op-code
JR disp 18 ab
I
0 0 1 <—y-> 0 0 0 op
]
1
address displacement byte - 2 ab
| | |] |] |
y op-code
JR NZ,disp 00 20 ab
JR Z,disp 01 28 ab
JR NC,disp 10 30 ab
JR C,disp 11 38 ab
—13-45 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

LD

Load Data

LD dest,source

load destination operand with source operand

Operation
dest < source

Description

The destination operand is made equal to the source operand.

The source operand is left unchanged.

Flags

If source <> 1 or R:

SF: Not Affected
ZF: Not Affected
HF: Not Affected
PF: Not Affected
NF: Not Affected
CF: Not Affected

Clocking

LD reg,reg

LD reg,(HL)
LD (HL),reg
LD reg,immed
LD (HL),immed
LD reg,(li+d)
LD (li+d),reg
LD (li+d),immed
LD (regpr),A
LD A,(regpr)
LD (addr),A

LD A,(addr)

LD ILA

LD RA

LD A/l

LD AR

LD regpr,imwrd
LD li,imwrd

LD (addr),HL
LD HL,(addr)
LD (addr),regpr
LD regpr,(addr)
LD (addr),li

LD li,(addr)

LD SP,HL

LD SP,li

If source =l or R:
1ifsource<0,else0
1lifsource=0,else0
0

Status of IFF2

0

Not Affected

-cycles Tymes
4
7 (4,3)
7(4,3)
7(4,3)
10 (4,3,3)
19 (4,4,3,5,3)
19 (4,4,3,5,3)
19 (4,4,3,5,3)
7 (4,3)
7 (4,3)
13 (4,3,3,3)
13 (4,3,3,3)
9 (4,5)
9 (4,5)
9 (4,5)
9 (4,5)

10 (4,3,3)

14 (4,4,3,3)

16 (4,3,3,3,3)
16 (4,3,3,3,3)
20 (4,4,3,3,3,3)
20 (4,4,3,3,3,3)
20 (4,4,3,3,3,3)
20 (4,4,3,3,3,3)
6

10 (4,6)

— 13-46 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

LD Load Data

Encoding
[[[[
v v op-code

LD B,B 000 000 40
LD B,C 000 001 41
LD B,D 000 010 42
LD B,E 000 011 43
LD B,H 000 100 44
LD B,L 000 101 45
LD B,(HL) 000 110 46
LDB,A 000 111 47
LDC,B 001 000 48
LDC,C 001 001 49
LDC,D 001 010 4A
LD C,E 001 011 4B
LDCH 001 100 4C
LDC,L 001 101 4D
LD C,(HL) 001 110 4E
LD CA 001 111 4F
LD D,B 010 000 50
LD D,C 010 001 51
LD D,D 010 010 52
LD D,E 010 011 53
LDD,H 010 100 54
LD D,L 010 101 55
LD D,(HL) 010 110 56
LD D,A 010 111 57
LD E,B 011 000 58
LD E,C 011 001 59
LD E,D 011 010 5A
LD E,E 011 011 5B
LD EH 011 100 5C
LD E,L 011 101 5D
LD E,(HL) 011 110 5E
LD EA 011 111 5F
LD H,B 100 000 60
LD H,C 100 001 61
LDH,D 100 010 62
LD H,E 100 011 63
LD H,H 100 100 64
LD H,L 100 101 65
LD H,(HL) 100 110 66
LD H,A 100 111 67
LDL,B 101 000 68
LDL,C 101 001 69
LDL,D 101 010 6A
LD L,E 101 011 6B
LDL,H 101 100 6C
LDL,L 101 101 6D
LD L,(HL) 101 110 6E
LD L,A 101 111 6F

— 13-47 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

LD Load Data

LD (HL),B 110 000 70
LD (HL),C 110 001 71
LD (HL),D 110 010 72
LD (HL),E 110 011 73
LD (HL),H 110 100 74
LD (HL),L 110 101 75
LD (HL),A 110 111 77
LDAB 111 000 78
LD A,C 111 001 79
LD A,D 111 010 7A
LD AE 111 011 7B
LDAH 111 100 7C
LDA,L 111 101 7D
LD A,(HL) 111 110 7E
LD AA 111 111 7F
T T
ol o <oy 1l 1]o op
T T
<—T———T—imTedi?te ?yte:———7—> ib
v op-code
LD B,immed 000 06 ib
LD C,immed 001 OEib
LD D,immed 010 16 ib
LD E,immed 011 1E ib
LD H,immed 100 26 ib
LD L,immed 101 2Eib
LD (HL),immed 110 36ib
LD A,immed 111 3Eib
1 1 w 1 1 1 0 1 DD or FD
0] 1 <> 1] 1o op
T |
<—T———?isp}aceTentlbyt?———T—> db
w v op-code
LD B,(IX+d) 0 000 DD 46 db
LD C,(IX+d) 0 001 DD 4E db
LD D,(IX+d) 0 010 DD 56 db
LD E,(IX+d) 0 011 DD 5E db
LD H,(IX+d) 0 100 DD 66 db
LD L,(IX+d) 0 101 DD 6E db
LD A,(IX+d) 0 111 DD 7E db
LD B,(IY+d) 1 000 FD 46 db
LD C,(IY+d) 1 001 FD 4E db
LD D,(IY+d) 1 010 FD 56 db
LD E,(IY+d) 1 011 FD 5E db
LD H,(IY+d) 1 100 FD 66 db
LD L,(IY+d) 1 101 FD 6E db
LD A,(IY+d) 1 111 FD 7E db

— 13-48 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

LD Load Data LD
1 1 w 1 1 1 0 1 DD or FD
ol 1|1 |1]o0] <—=v-—-> op
| |
T T
<————- displacement byte----- > db
1 1 1 1 | | |
w v op-code
LD (IX+d),B 0 000 DD 70db
LD (IX+d),C 0 001 DD71db
LD (IX+d),D 0 010 DD 72 db
LD (IX+d),E 0 011 DD73db
LD (IX+d),H 0 100 DD 74 db
LD (IX+d),L 0 101 DD 75 db
LD (IX+d),A 0 111 DD 77 db
LD (IY+d),B 1 000 FD70db
LD (IY+d),C 1 001 FD71db
LD (IY+d),D 1 010 FD72db
LD (IY+d),E 1 011 FD73db
LD (IY+d),H 1 100 FD 74 db
LD (IY+d),L 1 101 FD 75db
LD (IY+d),A 1 111 FD 77 db
1 1 w 1 1 1 0 1 DD or FD
0 0 1 1 0 1 1 0 36
<——=—- displacement byte-—---- > db
| | | | | | |
T T T T T T T
<——————- immediate byte------ > ib
1 1 1 | | | |
w op-code
LD (IX+d),immed 0 DD 36 dbib
LD (IY+d),immed 1 FD 36 db ib
T
ololo|<~v>]o0]1]o0 op
1
V_ op-code
LD (BC),A 00 02
LD A,(BC) 01 0A
LD (DE),A 10 12
LD A,(DE) 11 1A
olo| 1|1 v]o|1]o op
<——————— address low-----——-- > al
—t—t—1+—+—+—
<——————— address high------- > ah
1 l 1 1 1 L L
Vv op-code
LD (addr),A 0 32 al ah
LD A,(addr) 1 3A al ah
—13-49 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

LD Load Data

LD

1 1 1 0 1 1 0 1 ED
0 1 0 <-v-> 1 1 1 (o]
DEDESNEER
vV op-code
LD LA 00 ED 47
LDRA 01 ED 4F
LD A, 10 ED 57
LD AR 11 ED 5F
I
olo|<v>]o0o|lo|o]1 op
|
I
<——————- immediate low------- > il
—t—t—F+—1+—+—
<——————- immediate high------ > ih
| | | | | | |
vV op-code
LD BC,imwrd 00 01ilih
LD DE,imwrd 01 11ilih
LD HL,imwrd 10 211ilih
LD SP,imwrd 11 3lilih
1 1 w 1 1 1 0 1 DD or FD
0 0 1 0 0 0 1 0 21
<——————- immediate low------- > il
—t—t—F+—1+—1+—
<——m———- immediate high------ > ih
| | | | | | |
w op-code
LD IX,imwrd 0 DD 21 ilih
LD IY,imwrd 1 FD 21ilih
olol1|lo|v]|]o|1]o op
<m—m—— address low--—-—-—--— > al
| | | | | | |
I I I I I I I
<——m—— address high------- > ah
| | | | | | |
Vv op-code
LD (addr),HL 0 22 al ah
LD HL,(addr) 1 2A al ah
— 13-50 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

LD Load Data LD
1 1 1 0 1 1 0 1 ED
ol 1| <——=v-—-->1]01]1]1 op
| |
T T
<m—mmm———- address low-------- > a
—t—t—+—F+—+—
<mmmmm - address high------- > ah
1 L L | | |
vV op-code
LD (addr),BC 000 ED 43 al ah
LD BC,(addr) 001 ED 4B al ah
LD (addr),DE 010 ED 53 al ah
LD DE,(addr) 011 ED 5B al ah
LD (addr),HL 100 ED 63 al ah
LD HL,(addr) 101 ED 6B al ah
LD (addr),SP 110 ED 73 al ah
LD SP,(addr) 111 ED 7B al ah
1 1 w 1 1 1 0 1 DD or FD
olo|l1lo]lv]o]1]o op
<mm——— address low--—---—---— > a
| | | | I I I
| | | | | | |
<m———— address high------- > ah
1 l L L L L L
w Vv op-code
LD (addr),IX 0 0 DD 22 al ah
LD IX,(addr) 0 1 DD 2A al ah
LD (addr),lY 1 0 FD 22 al ah
LD IY,(addr) 1 1 FD 2A al ah
1 1 1 1 1 0 0 1 Fo9
op-code
LD SP,HL F9
1 1 W 1 1 1 0 1 DD or FD
|1|1|1|1|1|O|0|1'F9
w op-code
LD SP,IX 0 DD F9
LD SP,IY 1 FD F9
—13-51 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

LDD Load and Decrement LDD

LDD load (DE) with (HL) and decrement

Operation
(DE) « (HL)
HL < HL-1
DE < DE-1
BC«<BC-1

PF « BC[15 ORSUM (]
Description

The memory byte whose address is in the DE register pair is made equal to the memory byte whose address is in the HL
register pair.

The HL register pair is decremented.
The DE register pair is decremented.
The BC register pair is decremented.

If the BC register pair is zero, the parity/overflow flag is cleared; otherwise, the parity/overflow flag is set.

Flags
SF: Not Affected
ZF: Not Affected

HF: 0
PF: 1ifBC<>0,else0
NF: 0
CF: Not Affected
Clocking
M-cycles Tymes
LDD 4 16 (4,4,3,5)
Encoding
[[[[[[[[|
1 1 1 0 1 1 0 1 ED
1 0 1 0 1 0 0 0 A8
op-code
LDD ED A8
— 13-52 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

LDDR Load, Decrement, and Repeat LDDR

LDDR load (DE) with (HL), decrement, and repeat until (BC) is 0

Operation
(DE) « (HL)

HL<HL-1
DE « DE-1
BC«<BC-1

PF « BC[15 ORSUM 0]
If PF = 1, repeat operation.

Description
The memory byte whose address is in the DE register pair is made equal to the memory byte whose address is in the HL
register pair.

The HL register pair is decremented.
The DE register pair is decremented.
The BC register pair is decremented.

If the BC register pair is zero, the parity/overflow flag is cleared; otherwise, the parity/overflow flag is set.

If the parity/overflow flag is set, the operation is repeated.

Flags
SF: Not Affected
ZF: Not Affected

HF: 0
PF: 0 after final iteration
NF: 0
CF: Not Affected
Clocking
While PF = 1: When PF=0:
M-cycles Tymes M-cycles Tymes
LDDR 5 21 (4,4,35,5) 4 16 (4,4,3,5)
Encoding
1 1 1 0 1 1 0 1 ED
1 0 1 1 1 0 0 0 B8
op-code
LDDR ED B8
— 13-53 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

LDI

Load and Increment

LDl

LDI

load (DE) with (HL) and increment

Operation
(DE) « (HL)

HL<HL+1
DE «DE+1
BC«<BC-1

PF « BC[15 ORSUM (]
Description

The memory byte whose address is in the DE register pair is made equal to the memory byte whose address is in the HL

register pair.

The HL register pair is incremented.
The DE register pair is incremented.
The BC register pair is decremented.

If the BC register pair is zero, the parity/overflow flag is cleared; otherwise, the parity/overflow flag is set.

Flags

SF: Not Affected
ZF: Not Affected
HF: 0

PF: 1ifBC<>0,else0

NF: 0

CF: Not Affected
Clocking
M-cycles Tymes
LDI 4 16 (4,4,3,5)
Encoding
[[[[[[[|
1 1 1 1 0 1 ED
1 0 1 0 0 0 A0
op-code
LDI ED AO
—13-54 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

LDIR Load, Increment, and Repeat LDIR

LDIR load (DE) with (HL), increment, and repeat until (BC) is O

Operation
(DE) « (HL)

HL<HL+1
DE «DE+1
BC«<BC-1

PF « BC[15 ORSUM 0]
If PF = 1, repeat operation.

Description
The memory byte whose address is in the DE register pair is made equal to the memory byte whose address is in the HL
register pair.

The HL register pair is incremented.
The DE register pair is incremented.
The BC register pair is decremented.

If the BC register pair is zero, the parity/overflow flag is cleared; , the parity/overflow flag is set.

If the parity/overflow flag is set, the operation is repeated.

Flags
SF: Not Affected
ZF: Not Affected

HF: 0
PF: 0 after final iteration
NF: 0
CF: Not Affected
Clocking
While PF = 1: When PF =0:
M-cycles Tymes M-cycles Tymes
LDIR 5 21 (4,4,3,5,5) 4 16 (4,4,3,5)
Encoding
1 1 1 0 1 1 0 1 ED
1 0 1 1 0 0 0 0 BO
op-code
LDIR ED BO
— 13-55 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

MLT Multiply MLT
~7-180 ~

MLT regpr multiply bytes of 16-bit register pair

Operation
regpr < regpr-low * regpr-high

Description
The 16-bit register pair operand is made equal to the product of the low-order byte of the register pair operand times the high-
order byte of the register pair operand.

Flags

SF: Not Affected
ZF: Not Affected
HF: Not Affected
PF: Not Affected
NF: Not Affected
CF: Not Affected

Clocking
M-cycles Tymes
MLT regpr 13 17
Encoding
1 1 1 0 1 1 0 1 ED
0 1 <-v-> 1 1 0 0 op
L
v op-code
MLT BC 00 ED 4C
MLT DE 01 ED 5C
MLT HL 10 ED 6C
MLT SP 11 ED 7C
— 13-56 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

NEG Negate Accumulator NEG

NEG negate (two's compliment) accumulator

Operation
temp < A

A <00

A < A-temp

Description
The accumulator is made equal to the difference of zero minus the accumulator.

Flags

SF: 1ifA<O0,else0

ZF: 1ifA=0,elsel

HF: 1 if bit-4 borrow, else 0

PF: 1 if underflow, else 0

NF: 1

CF: 1 if A <> 0 before operation, else 0

Clocking
M-cycles Tymes
NEG 2 8 (4,4)
Encoding
1|1 l1]ol1]2]|]o0]1 ED
ol1lolo]lo]1]o]o 44
op-code
NEG ED 44
—13-57 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

NOP

No Operation

NOP

NOP no operation
Operation
None
Description
The CPU performs no operation during this machine cycle.
Flags
SF: Not Affected
ZF: Not Affected
HF: Not Affected
PF: Not Affected
NF: Not Affected
CF: Not Affected
Clocking
M-cycles Tymes
NOP 1 4
Encoding
0 0 0 0 0 0 00
op-code
NOP 00
— 13-58 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

OR Inclusive-OR OR
OR source inclusive-OR source operand with accumulator
Operation

AJ0] < AJ0] OR source[0]
A[1] < AJ[1] OR source[1]
A[2] < A[2] OR source[2]
A[3] < A[3] OR source[3]
A[4] < AJ4] OR source[4]
A[5] < AJ5] OR source[5]
A[6] < A[6] OR source[6]
A[7] « A[7] OR source[7]

Description
The accumulator is made equal to the accumulator bitwise inclusive-ORed with the source operand.

The source operand is left unchanged.

Flags
SF: 1ifA<O,else0
ZF: 1ifA=0,¢else0
HF: 1
PF: 1 if parity even, else 0
NF: 0
CF: 0
Clocking
M-cycles Tymes
OR reg 1 4
OR (HL) 2 7 (4,3)
OR (li+d) 5 19 (4,4,3,5,3)
OR immed 2 7(4,3)
Encoding
| |
1]lo|l1]1]o0] <—=-v-—-—> op
l l
v op-code
ORB 000 BO
ORC 001 Bl
ORD 010 B2
ORE 011 B3
ORH 100 B4
ORL 101 B5
OR (HL) 110 B6
ORA 111 B7
1 1 w 1 1 1 0 1 DD or FD
1 0 1 1 0 1 1 0 B6
w op-code
OR (IX+d) 0 DD B6 db
OR (IY+d) 1 FD B6 db
1 1 1 1 0 1 1 0 F6
<——————- immediate byte------ > ib
L L L | | | |
op-code
OR immed F6 ib
—13-59 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

OTDM Output Memory and Decrement OTDM
~7-180 ~

OTDM output port-indirect memory and decrement

Operation
address-bus-low < C
address-bus-high < 00
(address-bus) < (HL)

HL<HL-1
CeC-1
BeB-1

ZF «< NOT B[7 ORSUM 0]

Description

The low-order byte of the address bus is made equal to the C register.

The high-order byte of the address bus is made equal to 00.

The memory byte whose address is in the HL register pair is sent to the output port whose address is the low-order byte of the
address bus.

The HL register pair is decremented.
The C register is decremented.
The B register is decremented.

If the B register is zero, the zero flag is set; otherwise, the zero flag is cleared.

Flags

SF: 1ifB<0,else0

ZF: 1ifB=0,else0

HF: 1 if B bit-4 borrow, else 0
PF: 1 if B parity even, else 0
NF: 1if (HL)<0,else 0

CF: 1 if B bit-8 borrow, else 0

Clocking
M-cycles Tymes

OTDM 6 14
Encoding

1 1 1 0 1 1 0 1 ED

1 0 0 0 1 0 1 1 8B

op-code
OTDM ED 8B
— 13-60 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

OTDMR Output Memory, Decrement, and Repeat OTDMR
~7-180 ~

OTDMR output port-indirect memory, decrement, and repeat

Operation
address-bus-low < C
address-bus-high < 00
(address-bus) < (HL)

HL<HL-1
CeC-1
BeB-1

ZF < NOT B[7 ORSUM 0]
If ZF =0, repeat operation.

Description

The low-order byte of the address bus is made equal to the C register.

The high-order byte of the address bus is made equal to 00.

The memory byte whose address is in the HL register pair is sent to the output port whose address is the low-order byte of the
address bus.

The HL register pair is decremented.
The C register is decremented.
The B register is decremented.

If the B register is zero, the zero flag is set; otherwise, the zero flag is cleared.

If the zero flag is not set, the operation is repeated.

Flags

SF: 0 after final iteration
ZF: 1 after final iteration
HF: 0 after final iteration
PF: 1 after final iteration

NF: 1if(HL)<0,else 0
CF: 0 after final iteration

Clocking
If B <>00: If B =00:
M-cycles Tymes M-cycles Tymes
OTDMR 8 16 6 14
Encoding
1 1 1 0 1 1 0 1 ED
1 0 0 1 1 0 1 1 9B
op-code
OTDMR ED 9B
— 13-61 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

OTDR Output, Decrement, and Repeat OTDR

OTDR output port-indirect byte, decrement, and repeat

Operation
address-bus-low < C
address-bus-high < B
(address-bus-low) < (HL)

HL<HL-1
BeB-1

ZF < NOT B[7 ORSUM 0]
If ZF = 0, repeat operation.

Description

The low-order byte of the address bus is made equal to the C register.

The high-order byte of the address bus is made equal to the B register.

The memory byte whose address is in the HL register pair is sent to the output port whose address is the low-order byte of the
address bus.

The HL register pair is decremented.
The B register is decremented.

If the B register is zero, the zero flag is set; otherwise, the zero flag is cleared.
If the zero flag is set, the operation is repeated.

The C register is left unchanged.

Flags
SF: Undefined
ZF: 1 after final iteration

HF: Undefined
PF: Undefined
NF: 1

CF: Undefined

Clocking
IfB<>0: IfB=0:
M-cycles Tymes M-cycles Tymes
OTDR 5 21 (4,5,3,4,5) 4 16 (4,5,3,4)
Encoding
1 1 1 0 1 1 0 1 ED
1 0 1 1 1 0 1 1 BB
op-code
OTDR ED BB
— 13-62 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

OTIM Output Memory and Increment OTIM
~ Z-180 ~

OTIM output port-indirect memory and increment

Operation
address-bus-low < C
address-bus-high < 00
(address-bus) < (HL)

HL<HL+1
CeC+1
BeB-1

ZF «< NOT B[7 ORSUM 0]

Description

The low-order byte of the address bus is made equal to the C register.

The high-order byte of the address bus is made equal to 00.

The memory byte whose address is in the HL register pair is sent to the output port whose address is the low-order byte of the
address bus.

The HL register pair is incremented.
The C register is incremented.
The B register is decremented.

If the B register is zero, the zero flag is set; otherwise, the zero flag is cleared.

Flags

SF: 1ifB<0,else0

ZF: 1ifB=0,else0

HF: 1 if B bit-4 borrow, else 0
PF: 1 if B parity even, else 0
NF: 1if (HL)<0,else 0

CF: 1 if B bit-8 borrow, else 0

Clocking
M-cycles Tymes

OTIM 6 14
Encoding

1 1 1 0 1 1 0 1 ED

1 0 0 0 0 0 1 1 83

op-code
OTIM ED 83
— 13-63 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

OTIMR Output Memory, Increment, and Repeat OTIMR
~7-180 ~

OTIMR output port-indirect memory, increment, and repeat

Operation
address-bus-low < C
address-bus-high < 00
(address-bus) < (HL)

HL<HL+1
CeC+1
BeB-1

ZF < NOT B[7 ORSUM 0]
If ZF =0, repeat operation.

Description

The low-order byte of the address bus is made equal to the C register.

The high-order byte of the address bus is made equal to 00.

The memory byte whose address is in the HL register pair is sent to the output port whose address is the low-order byte of the
address bus.

The HL register pair is incremented.
The C register is incremented.
The B register is decremented.

If the B register is zero, the zero flag is set; otherwise, the zero flag is cleared.

If the zero flag is not set, the operation is repeated.

Flags

SF: 0 after final iteration
ZF: 1 after final iteration
HF: 0 after final iteration
PF: 1 after final iteration

NF: 1if(HL)<0,else 0
CF: 0 after final iteration

Clocking
If B <>00: If B =00:
M-cycles Tymes M-cycles Tymes
OTIMR 8 16 6 14
Encoding
1 1 1 0 1 1 0 1 ED
1 0 0 1 0 0 1 1 93
op-code
OTIMR ED 93
— 13-64 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

OTIR Output, Increment, and Repeat OTIR

OTIR output port-indirect byte, increment, and repeat

Operation
address-bus-low < C
address-bus-high < B
(address-bus-low) < (HL)

HL<HL+1
BeB-1

ZF «< NOT B[7 ORSUM 0]

If ZF =0, repeat instruction.

Description

The low-order byte of the address bus is made equal to the C register.

The high-order byte of the address bus is made equal to the B register.

The memory byte whose address is in the HL register pair is sent to the output port whose address is the low-order byte of the
address bus.

The HL register pair is incremented.
The B register is decremented.

If the B register is zero, the zero flag is set, otherwise, the zero flag is cleared.
If the zero flag is set, the operation is repeated.

The C register is left unchanged.

Flags
SF: Undefined
ZF: 1 after final iteration

HF: Undefined
PF: Undefined
NF: 1

CF: Undefined

Clocking
IfB<>0: IfB=0:
M-cycles Tymes M-cycles Tymes
OTIR 5 21 (4,5,3,4,5) 4 16 (4,5,3,4)
Encoding
1 1 1 0 1 1 0 1 ED
1 0 1 1 0 0 1 1 B3
op-code
OTIR ED B3
— 13-65 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

OuT Output

OouT

OUT (port),A output port-direct byte
OUT (C),reg output port-indirect byte
Operation

If direct:

address-bus-low < port
address-bus-high « A
(address-bus-low) < A

If indirect:
address-bus-low < C
address-bus-high < B
(address-bus-low) < reg

Description
If direct:
The low-order byte of the address bus is made equal to the immediate port operand value.
The high-order byte of the address bus is made equal to the accumulator.
The output port whose address is the low-order byte of the address bus is made equal to the accumulator.

The accumulator is left unchanged

If indirect:
The low-order byte of the address bus is made equal to the C register:
The high-order byte of the address bus is made equal to the B register.

The output port whose address is the low-order byte of the address bus is made equal to the register operand.

The register operand is left unchanged.
The B register is left unchanged.
The C register is left unchanged.

Flags

SF: Not Affected
ZF: Not Affected
HF: Not Affected
PF: Not Affected
NF: Undefined
CF: Not Affected

Clocking
M-cycles Tymes
OUT (port),A 3 11 (4,3,4)
OuUT (C),reg 3 12 (4,4,4)
— 13-66 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

ouT Output OouT

Encoding
1 1 0 1 0 0 1 1 D3
<---immediate port address--> pb
l l L 1 L L
op-code
OUT (port),A D3 pb
1 1 1 0 1 1 0 1 ED
| 0 | 1 | <——-y———> ' 0 ' 0 ' 1 ' op
L !
v op-code
OUT (C),B 000 ED 41
OuUT (C),C 001 ED 49
OUT (C),D 010 ED 51
OUT (C),E 011 ED 59
OUT (C),H 100 ED 61
OUT (C),L 101 ED 69
OUT (C),A 111 ED 79
— 13-67 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

OUTO Output Port-direct OUTO
~ Z-180 ~
OUTO (port),reg output port-direct byte

Operation
address-bus-low < port

address-bus-high < 00

(address-bus) <« reg

Description
The low-order byte of the address bus is made equal to the immediate port operand.
The high-order byte of the address bus is made equal to 00.

The output port whose address is the low-order byte of the address bus is made equal to the register operand.

The register operand is left unchanged.

Flags

SF: Not Affected
ZF: Not Affected
HF: Not Affected
PF: Not Affected
NF: Not Affected
CF: Not Affected

Clocking
M-cycles Tymes
OUTO (port),reg 5 13
Encoding
1 1 1 0 1 1 0 1 ED
ol o] <—==v-=->] 0] o0] 1 op
| |
| |
<---immediate port address--> pb
L 1 L I | | |
v op-code
OUTO (port),B 000 ED 01 pb
OUTO (port),C 001 ED 09 pb
OUTO (port),D 010 ED 11 pb
OUTO (port),E 011 ED 19 pb
QOUTO (port),H 100 ED 21 pb
OUTO (port),L 101 ED 29 pb
OUTO (port),A 111 ED 39 pb
— 13-68 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

OUTD Output and Decrement OUTD

OUTD output port-indirect byte and decrement

Operation
address-bus-low < C
address-bus-high < B
(address-bus-low) < (HL)

HL<HL-1
BeB-1

ZF «< NOT B[7 ORSUM 0]

Description

The low-order byte of the address bus is made equal to the C register.

The high-order byte of the address bus is made equal to the B register.

The memory byte whose address is in the HL register pair is sent to the output port whose address is the low-order byte of the
address bus.

The HL register pair is decremented.
The B register is decremented.

If the B register is zero, the zero flag is set; otherwise, the zero flag is cleared.

The C register is left unchanged.

Flags

SF: Undefined

ZF: 1ifB=0,else0
HF: Undefined

PF: Undefined

NF: 1

CF: Not Affected

Clocking
M-cycles Tymes

OuUTD 4 16 (4,5,3,4)
Encoding

1 1 1 0 1 1 0 1 ED

1 0 1 0 1 0 1 1 AB

op-code
OuUTD ED AB
— 13-69 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

OUTI Output and Increment OUTI

OUTI output port-indirect byte and increment

Operation
address-bus-low < C
address-bus-high < B
(address-bus-low) < (HL)

HL<HL+1
BeB-1

ZF «< NOT B[7 ORSUM 0]

Description

The low-order byte of the address bus is made equal to the C register.

The high-order byte of the address bus is made equal to the B register.

The memory byte whose address is in the HL register pair is sent to the output port whose address is the low-order byte of the
address bus.

The HL register pair is incremented.
The B register is decremented.

If the B register is zero, the zero flag is set; otherwise, the zero flag is cleared.

The C register is left unchanged.

Flags

SF: Undefined

ZF: 1ifB=0,else0
HF: Undefined

PF: Undefined

NF: 1

CF: Not Affected

Clocking
M-cycles Tymes
OUTI 4 16 (4,5,3,4)
Encoding
1|1 1lo]1]1]o]1 ED
1 lol1]lo]lo]o]1]1 A3
op-code
OUTI ED A3
—13-70 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

POP Pop POP

POP regl16 pop 16-bit register/register pair from stack

Operation
regl6-low < (SP)
SP«SP+1
regl6-high < (SP)
SP«SP+1

Description

The low-order byte of the 16-bit register/register pair operand is made equal to the memory byte whose address is in the stack
pointer.

The stack pointer is incremented.

The high-order byte of the 16-bit register/register pair operand is made equal to the memory byte whose address is in the
stack pointer.

The stack pointer is again incremented.

The memory bytes are left unchanged.

Flags
If wrdreg <> AF: If wrdreg = AF:
SF: Not Affected Bit 7 of (SP - 2)
ZF: Not Affected Bit 6 of (SP -2)
HF: Not Affected Bit 4 of (SP -2)
PF: Not Affected Bit 2 of (SP - 2)
NF: Not Affected Bit 1 of (SP -2)
CF: Not Affected Bit 0 of (SP-2)
Clocking
M-cycles Tymes
POP regpr 3 10 (4,3,3)
POP li 4 14 (44,33
Encoding
[[[[I I I I]
| 1 | 1 | <-v-> ' 0 ' 0 ' 0 ' 1 ' op
L
vV op-code
POP BC 00 C1
POP DE 01 D1
POP HL 10 El
POP AF 11 F1
1 1 W 1 1 1 0 1 DD or FD
1 1 1 0 0 0 0 1 El
w op-code
POP IX 0 DD E1
POP IY 1 FD E1
—13-71 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

PUSH Push PUSH

PUSH reg16 push 16-bit register/register pair onto stack

Operation
SP«<SP-1

(SP) < regl6-high
SP<SP-1

(SP) < regl6-low

Description

The stack pointer is decremented.

The memory byte whose address is in the stack pointer is made equal to the high-order byte of the 16-bit register/register pair
operand.

The stack pointer is again decremented.

The memory byte whose address is in the stack pointer is made equal to the value of the low-order byte of the 16-bit
register/register pair operand.

The 16-bit register/register pair operand is left unchanged.

Flags

SF: Not Affected
ZF: Not Affected
HF: Not Affected
PF: Not Affected
NF: Not Affected
CF: Not Affected

Clocking
M-cycles Tymes
PUSH regpr 3 11 (5,3,3)
PUSH li 4 15(4,5,3,3)
Encoding
[[[[I I I I]
| 1 | 1 | <-v-> ' 0 ' 1 ' 0 ' 1 ' op
L
vV op-code
PUSH BC 00 C5
PUSH DE 01 D5
PUSH HL 10 E5
PUSH AF 11 F5
1 1 | w1 1 1 0 1 DD or FD
1 1 1 0 0 1 0 1 ES
w op-code
PUSH IX 0 DD E5
PUSH IY 1 FD E5
— 13-72 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

RES Reset Bit RES

RES bit,source reset source operand bit

Operation
source[bit] « 0

Description
The specified bit of the source operand is cleared.

Flags

SF: Not Affected
ZF: Not Affected
HF: Not Affected
PF: Not Affected
NF: Not Affected
CF: Not Affected

Clocking
M-cycles Tymes

RES bit,reg 2 8 (4,4)
RES bit,(HL) 3 12 (4,4,4)
RES bit, (li+d) 5 20 (4,4,3,5,4)
Encoding

1 1 0 0 1 0 1 1 CB

1 O <_T_X_T_> <_T_V_T_> Op

X v op-code

RES 0,B 000 000 CB 80
RES 0,C 000 001 cB81
RES 0,D 000 010 CB 82
RES O,E 000 011 CB 83
RES O,H 000 100 CB 84
RES O,L 000 101 CB 85
RES 0,(HL) 000 110 CB 86
RES 0,A 000 111 CB 87
RES 1,B 001 000 CB 88
RES 1,C 001 001 CB 89
RES 1,D 001 010 CB 8A
RES 1,E 001 011 CB 8B
RES 1,H 001 100 CB 8C
RES 1,L 001 101 CB 8D
RES 1,(HL) 001 110 CBSE
RES 1,A 001 111 CB 8F
RES 2,B 010 000 CB 90
RES 2,C 010 001 CBoa1
RES 2,D 010 010 CB 92
RES 2,E 010 011 CB 93
RES 2,H 010 100 CB 94
RES 2,L 010 101 CB 95
RES 2,(HL) 010 110 CB 96
RES 2,A 010 111 CB 97

— 13-73 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

RES Reset Bit RES
RES 3,B 011 000 CB 98
RES 3,C 011 001 CB 99
RES 3,D 011 010 CB 9A
RES 3,E 011 011 CB 9B
RES 3,H 011 100 CB oC
RES 3,L 011 101 CB 9D
RES 3,(HL) 011 110 CBOYE
RES 3,A 011 111 CB 8F
RES 4,B 100 000 CB A0
RES 4,C 100 001 CB Al
RES 4,D 100 010 CB A2
RES 4,E 100 011 CB A3
RES 4,H 100 100 CB A4
RES 4,L 100 101 CB A5
RES 4,(HL) 100 101 CB A6
RES 4,A 100 111 CB A7
RES 5,B 101 000 CB A8
RES 5,C 101 001 CB A9
RES 5,D 101 010 CB AA
RES 5,E 101 011 CB AB
RES 5,H 101 100 CB AC
RES 5,L 101 101 CB AD
RES 5,(HL) 101 110 CB AE
RES 5,A 101 111 CB AF
RES 6,B 110 000 CB BO
RES 6,C 110 001 CBB1
RES 6,D 110 010 CB B2
RES 6,E 110 011 CB B3
RES 6,H 110 100 CB B4
RES 6,L 110 101 CB B5
RES 6,(HL) 110 110 CB B6
RES 6,A 110 111 CB B7
RES 7,B 111 000 CB B8
RES 7,C 111 001 CB B9
RES 7,D 111 010 CB BA
RES 7,E 111 011 CB BB
RES 7,H 111 100 CB BC
RES 7,L 111 101 CB BD
RES 7,(HL) 111 110 CB BE
RES 7,A 111 111 CB BF

— 13-74 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

RES Reset Bit
1 1 w 1 1 1 DD or FD
1 1 0 0 1 0 CB
<————= displacement byte-----> db
| |
| |
10| <——=x—--> | 1 op
| |
w X op-code
RES 0,(IX+d) 0 000 DD CB db 86
RES 1,(IX+d) 0 001 DDCBdbS8E
RES 2,(IX+d) 0 010 DD CB db 96
RES 3,(IX+d) 0 011 DD CB db 9E
RES 4,(IX+d) 0 100 DD CB db A6
RES 5,(IX+d) 0 101 DD CB db AE
RES 6,(IX+d) 0 110 DD CB db B6
RES 7,(IX+d) 0 111 DD CB db BE
RES 0,(1Y+d) 1 000 FD CBdb 86
RES 1,(IY+d) 1 001 FD CBdb 8E
RES 2,(IY+d) 1 010 FD CB db 96
RES 3,(IY+d) 1 011 FD CB db 9E
RES 4,(IY+d) 1 100 FD CB db A6
RES 5,(IY+d) 1 101 FD CB db AE
RES 6,(IY+d) 1 110 FD CB db B6
RES 7,(IY+d) 1 111 FD CB db BE

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

— 13-75 —

RET Return RET

RET unconditional return
RET cond conditional return.

Operation
If unconditional:
do return

If conditional:
NZ: if ZF = 0 then do return.

Z: if ZF = 1 then do return.
NC: if CF = 0 then do return.
C: if CF = 1 then do return.

PO: if PF = 0 then do return.
PE: if PF = 1 then do return.
P: if SF = 0 then do return.
M: if SF =1 then do return.

If do return:
PC-low < (SP)
SP<SP+1
PC-high < (SP)
SP<SP+1

Description

If unconditional:
The low-order byte of the program counter is made equal to the memory byte whose address is in the stack pointer.
The stack pointer is incremented.
The high-order byte of the program counter is made equal to the memory byte whose address is in the stack pointer.
The stack pointer is again incremented.
Execution continues at the address that is in the program counter.

If conditional:

The appropriate flag is tested.

If the condition is met:
The low-order byte of the program counter is made equal to the memory byte whose address is in the stack pointer.
The stack pointer is incremented.
The high-order byte of the program counter is made equal to the memory byte whose address is in the stack pointer.
The stack pointer is again incremented.
Execution continues at the address that is in the program counter.

If the condition is not met:
Execution continues with the next instruction.

Flags

SF: Not Affected
ZF: Not Affected
HF: Not Affected
PF: Not Affected
NF: Not Affected
CF: Not Affected

Clocking
If condition is met: If condition is not met:
M-cycles Tymes M-cycles Tymes
RET 3 10 (4,3,3)
RET cond 3 11 (5,3,3) 1 5
— 13-76 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

RET Return RET

Encoding
1 1 0 0 1 0 0 1 Co
op-code
RET (@2°]
T T
1 1 | <——=y--—> | © 0 0 op
l L
y op-code
RET NZ 000 Co
RET Z 001 Cc8
RET NC 010 DO
RET C 011 D8
RET PO 100 EO
RET PE 101 E8
RET P 110 FO
RET M 111 F8
— 13-77 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

RETI Return from Interrupt RETI

RETI return from maskable interrupt

Operation
PC-low < (SP)
SP<SP+1
PC-high < (SP)
SP<SP+1

interrupting device < end of interrupt signal

IFF1 <0
IFF2 <0

Description

The low-order byte of the program counter is made equal to the memory byte whose address is in the stack pointer.
The stack pointer is incremented.

The high-order byte of the program counter is made equal to the memory byte whose address is in the stack pointer.
The stack pointer is again incremented.

The interrupting device is signaled with an end of interrupt signal.
Both interrupt flip-flops are cleared.

Execution continues at the address that is in the program counter.

Flags

SF: Not Affected
ZF: Not Affected
HF: Not Affected
PF: Not Affected
NF: Not Affected
CF: Not Affected

Clocking
M-cycles Tymes

RETI 4 14 (4,4,3,3)
Encoding

1 1 1 0 1 1 0 1 ED

0 1 0 0 1 1 0 1 4D

op-code
RETI ED 4D
—13-78 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

RETN Return from Non-Maskable Interrupt RETN

RETN return from non-maskable interrupt

Operation
PC-low < (SP)
SPeSP+1
PC-high < (SP)
SPeSP+1

IFF1 « IFF2

Description

The low-order byte of the program counter is made equal to the memory byte whose address is in the stack pointer.
The stack pointer is incremented.

The high-order byte of the program counter is made equal to the memory byte whose address is in the stack pointer.
The stack pointer is again incremented.

Interrupt flip-flop #1 is made equal to interrupt flip-flop #2.

Execution continues at the address that is in the program counter.

Flags

SF: Not Affected
ZF: Not Affected
HF: Not Affected
PF: Not Affected
NF: Not Affected
CF: Not Affected

Clocking
M-cycles Tymes

RETN 4 14 (4,4,3,3)
Encoding

1 1 1 0 1 1 0 1 ED

0 1 0 0 0 1 0 1 45

op-code
RETN ED 45
—13-79 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

RL Rotate Left RL
RL dest rotate destination operand left

Operation

temp < dest

dest[0] < CF

dest[1] < temp[0]
dest[2] < temp[1]
dest[3] < temp[2]
dest[4] < temp][3]
dest[5] < temp[4]
dest[6] < temp[5]
dest[7] < temp[6]
CF « temp[7]

Description
The bits of the destination operand plus carry are rotated left.

Graphically, this is:

Flags
SF: lifreg<0,else0
ZF: lifreg=0,else0

HF: 0
PF: 1 if parity even, else 0
NF: 0
CF: Content of bit-7 before operation
Clocking
M-cycles Tymes
RL reg 2 8 (4,4)
RL (HL) 4 15 (4,4,4,3)
RL (li+d) 6 23 (4,4,3,5,4,3)

— 13-80 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

RL Rotate Left RL
Encoding
1 1 0 0 1 0 1 1 CB
0 0 0 1 0 | <-—-v---> op
L L
v op-code
RL B 000 CB 10
RL C 001 CB 11
RL D 010 CB 12
RL E 011 CB 13
RL H 100 CB 14
RL L 101 CB 15
RL (HL) 110 CB 16
RL A 111 CB 17
1 1| w1 1 1 0 1 DD or FD
1 1 0 0 1 0 1 1 CB
<————- displacement byte----- > db
| | | | | | |
| | | | | | |
|o|o|o|1'o'1'1'o'16
w op-code
RL (IX+d) 0 DD CB db 16
RL (1Y+d) 1 FD CB db 16

— 13-81 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

RLA Rotate Left Accumulator RLA
RLA rotate accumulator left

Operation

temp < A

A[0] « CF

A[1] < temp[0]
A[2] < temp[1]
A[3] < temp[2]
A[4] < temp[3]
A[5] < temp[4]
A[6] < temp[5]
A[7] « temp[6]
CF « temp[7]

Description
The bits of the accumulator plus carry are rotated left.

Graphically, this is:

A
[1 [[[[[I I I
rCF4—7464544434241404—l
| | | | | | | | | | |

Flags
SF: Not Affected
ZF: Not Affected

HF: 0
PF: Not Affected
NF: 0
CF: Content of bit-7 before operation
Clocking

M-cycles Tymes
RLA 1 4
Encoding

0 0 0 1 0 1 1 1 17
op-code
RLA 17
— 13-82 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

RLC Rotate Left Circular RLC
RLC dest rotate destination operand left circular

Operation

temp < dest

dest[0] < temp[7]
dest[1] < temp[0]
dest[2] < temp[1]
dest[3] < temp[2]
dest[4] < temp][3]
dest[5] < temp[4]
dest[6] < temp[5]
dest[7] < temp[6]
CF « temp[7]

Description
The bits of the destination operand are rotated left circular.

Graphically, this is:

[
CF 4—F— 7
|

A
o
A
o
A
D

— A
w
A
N
A
[
A
o

Flags
SF: lifreg<0,else0
ZF: lifreg=0,else0

HF: 0
PF: 1 if parity even, else 0
NF: 0
CF: Content of bit-7 before operation
Clocking
M-cycles Tymes
RLC reg 2 8 (4,4)
RLC (HL) 4 15 (4,4,4,3)
RLC (li+d) 6 23 (4,4,3,5,4,3)

— 13-83 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

RLC Rotate Left Circular RLC
Encoding
1 l1lolo]l1]o]1]1 CB
olo]o|lo] o] <——-v-—--> op
| |
vV op-code
RLCB 000 CB 00
RLCC 001 CBO1
RLC D 010 CB 02
RLCE 011 CB 03
RLCH 100 CB 04
RLCL 101 CB 05
RLC (HL) 110 CB 06
RLC A 111 CB 07
11| w1 2]212]o0]1 DD or FD
1 l1lolo]l1]o]1]1 CB
<-----displacement byte----- > db
| | | | | | |
| | | | | |
|o|o|o|o'o'1'1'o'06
w op-code
RLC (IX+d) 0 DD CB db 06
RLC (IY+d) 1 FD CB db 06

— 13-84 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

RLCA Rotate Left Circular Accumulator RLCA
RLCA rotate accumulator left circular

Operation

temp < A

A[0] < temp[7]
A[1] < temp[0]
A[2] < temp[1]
A[3] < temp[2]
A[4] < temp[3]
A[5] < temp[4]
A[6] < temp[5]
A[7] « temp[6]
CF « temp[7]

Description
The bits of the accumulator are rotated left circular.

Graphically, this is:

A
[[[[[[I I
CF4——7464544434241404—l
| | | | | | | | |

Flags
SF: Not Affected
ZF: Not Affected

HF: 0
PF: Not Affected
NF: 0
CF: Content of bit-7 before operation
Clocking

M-cycles Tymes
RLCA 1 4
Encoding

0 0 0 0 0 1 1 1 07
op-code
RLCA o7
— 13-85 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

RLD Rotate Left Digit RLD

RLD rotate left digit

Operation
temp < A

A[3] « (HL)[7]
A[2] « (HL)[6]
A[l] « (HL)[5]
A[0] « (HL)[4]
(HL)[7] < (HL)[3]
(HL)[6] < (HL)[2]
(HL)[5] < (HL)[1]
(HL)[4] < (HL)[0]
(HL)[3] < temp[3]
(HL)[2] < temp[2]
(HL)[1] < temp[1]
(HL)[0] < temp[0]

Description

The accumulator is temporarily saved.

The low-order nybble of the accumulator is made equal to the high-order nybble (bits 7-4) of the memory byte whose address
is in the HL register pair.

The high-order nybble of the memory byte whose address is in the HL register pair is made equal to the low-order nybble of
the same memory byte.

The low-order nybble of the memory byte whose address is in the HL register pair is made equal to the low-order nybble of
the temporarily saved accumulator.

The high-order nybble of the accumulator is left unchanged.
The HL register pair is left unchanged.

Graphically, this is:
A (HL)

| [| |
7-4 | 3-0 «— 7-4 < 3-0
1) T_l

Flags
SF: 1ifA<O0,else0
ZF: 1ifA=0,else0

HF: 0
PF: 1 if parity even, else 0
NF: 0
CF: Not Affected
Clocking
M-cycles Tymes
RLD 5 18 (4,4,3,4,3)
Encoding
1 1 1 0 1 1 0 1 ED
0 1 1 0 1 1 1 1 6F
op-code
RLD ED 6F
— 13-86 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

RR Rotate Right RR
RR dest rotate destination operand right

Operation

temp < dest

dest[7] < CF
dest[6] < temp[7]
dest[5] < temp[6]
dest[4] < temp[5]
dest[3] < temp[4]
dest[2] < temp][3]
dest[1] < temp[2]
dest[0] < temp[1]
CF « temp[0]
Description
The bits of the destination operand plus carry are rotated right.

Graphically, this is:

dest
[[[[[[[[1 [1
I—T7T6757473727170|—TCF|—l

Flags
SF: lifreg<0,else0
ZF: lifreg=0,else0
HF: 0
PF: 1 if parity even, else 0
NF: 0
CF: Content of bit-0 before operation
Clocking

M-cycles Tymes
RR reg 2 8 (4,4)
RR (HL) 4 15 (4,4,4,3)
RR (li+d) 6 23 (4,4,3,54,3)

— 13-87 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

RR Rotate Right RR

Encoding
1 1 0 0 1 0 1 1 CB
ololo| 1] 1] <—=v-—-=> op
L L
vV op-code
RR B 000 CB 18
RR C 001 CB 19
RR D 010 CB 1A
RR E 011 CB 1B
RR H 100 CB 1C
RR L 101 CB 1D
RR (HL) 110 CB 1E
RR A 111 CB 1F
1 1 w 1 1 1 0 1 DD or FD
1 1 0 0 1 0 1 1 CB
<————- displacement byte-----> db
0 0 0 1 1 1 1 0 1E
w op-code
RR (IX+d) 0 DD CB db 1E
RR (1Y+d) 1 FD CB db 1E

— 13-88 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

RRA Rotate Right Accumulator RRA
RRA rotate accumulator right

Operation

temp < A

A[7] « CF

A[6] < temp[7]
A[5] < temp[6]
A[4] < temp[5]
A[3] < temp[4]
A[2] < temp[3]
A[1] « temp[2]
A[0] « temp[1]
CF « temp[0]

Description
The bits of the accumulator plus carry are rotated right.

Graphically, this is:

[[[
l—b 7> 6 50 4
| | | |

Flags
SF: Not Affected
ZF: Not Affected

A
[
>
1

HF: 0
PF: Not Affected
NF: 0
CF: Content of bit-0 before operation
Clocking

M-cycles Tymes
RRA 1 4
Encoding

0 0 0 1 1 1 1 1 1F
op-code
RRA 1F
— 13-89 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

RRC Rotate Right Circular RRC
RRC dest rotate destination operand right circular

Operation

temp < dest

dest[7] < temp[0]
dest[6] < temp[7]
dest[5] < temp[6]
dest[4] < temp[5]
dest[3] < temp[4]
dest[2] < temp][3]
dest[1] < temp[2]
dest[0] < temp[1]
CF « temp[0]

Description
The bits of the destination operand are rotated right circular.

Graphically, this is:

Flags
SF: lifreg<0,else0
ZF: lifreg=0,else0

HF: 0
PF: 1 if parity even, else 0
NF: 0
CF: Content of bit-0 before operation
Clocking
M-cycles Tymes
RRC reg 2 8 (4,4)
RRC (HL) 4 15 (4,4,4,3)
RRC (li+d) 6 23 (4,4,3,5,4,3)

— 13-90 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

RRC Rotate Right Circular RRC
Encoding
1|12 lo]o|l1]o]|1]1 CB
ololo]o| 1] <—=-v—-—> op
| |
vV op-code
RRC B 000 CB 08
RRC C 001 CB 09
RRC D 010 CB OA
RRCE 011 CB 0B
RRCH 100 CB 0C
RRC L 101 CB 0D
RRC (HL) 110 CB OE
RRC A 111 CB OF
1| 1| w221 2]]o0]1 DD or FD
1|12 lo]o|l1]o]|1]1 CB
<————- displacement byte----- > db
| | | | |
| | | | |
|o|o|o|o'1'1'1'o'0E
w op-code
RRC (IX+d) 0 DD CB db OE
RRC (IY+d) 1 FD CB db OE

—13-91 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

RRCA Rotate Right Circular Accumulator RRCA

RRCA rotate accumulator right circular

Operation
temp < A

A[7] < temp[0]
A[6] < temp[7]
A[5] < temp[6]
A[4] < temp[5]
A[3] < temp[4]
A[2] < temp[3]
A[1] « temp[2]
A[0] « temp[1]
CF « temp[0]

Description
The bits of the accumulator are rotated right circular.

Graphically, this is:

[[[
l—b 7> 6> 50 4
| | | |

Flags

SF: Not Affected

ZF: Not Affected

HF: 0

PF: Not Affected

NF: Not Affected

CF: Content of bit-0 before operation

A
[[[[1
» 3»2p» 1p» 0 —>» CF
| | | | |

Clocking

M-cycles Tymes
RRCA 1 4
Encoding

0 0 0 0 1 1 1 1 OF
op-code
RRCA OF
—13-92 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

RRD Rotate Right Digit RRD
RRD rotate right digit

Operation

temp < A

A[0] « (HL)[0]
A[1] « (HL)[1]
Al2] « (HL)[2]
A[3] « (HL)[3]
(HD)[0] « (HL)[4]
(HD)[1] « (HL)[9]
(HD)[2] « (HL)[6]
(HD)[3] « (HL)[7]
(HL)[4] < temp[O]
(HL)[5] « temp[1]
(HL)[6] « temp[2]
(HL)[7] « temp[3]

Description
The accumulator is temporarily saved.

The low-order nybble of the accumulator is made equal to the low-order nybble (bits 7-4) of the memory byte whose address

is in the HL register pair.

The low-order nybble of the memory byte whose address is in the HL register pair is made equal to the high-order nybble of

the same memory byte.

The high-order nybble of the memory byte whose address is in the HL register pair is made equal to the low-order nybble of

the temporarily saved accumulator.

The high-order nybble of the accumulator is left unchanged.
The HL register pair is left unchanged.

Graphically, this is:

A (HL)

1 I T 1
7-4 3-0 —»— 7-4 » 3-0 \l
I

1 | |

]
<

Flags
SF: 1ifA<O0,else0
ZF: 1ifA=0,else0

HF: 0
PF: 1 if parity even, else 0
NF: 0
CF: Not Affected
Clocking
M-cycles Tymes
RRD 5 18 (4,4,3,4,3)
Encoding
[[[[I I I I]
1 1 1 0 1 1 0 1 ED
0 1 1 0 0 1 1 1 67
op-code
RRD ED 67
— 13-93 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

RST Restart RST

RST vector restart

Operation
SP«SP-1
(SP) < PC-high
SPeSP-1
(SP) < PC-low

PC-low « vector
PC-high < 00

Description

The stack pointer is decremented.

The memory byte whose address is in stack pointer is made equal to the high-order byte of the program counter.
The stack pointer is again decremented.

The memory byte whose address is in the stack pointer is made equal to the low-order byte of the program counter.

The low-order byte of the program counter is made equal to the immediate restart vector operand.
The high-order byte of the program counter is made equal to zero.

Execution continues at the address which is in the program counter.

Flags

SF: Not Affected
ZF: Not Affected
HF: Not Affected
PF: Not Affected
NF: Not Affected
CF: Not Affected

Clocking
M-cycles Tymes
RST vector 3 11 (5,3,3)
Encoding
T T
1 1 <———z——=> 1 1 1 op
I |
z op-code
RST 00 000 C7
RST 08 001 CF
RST 10 010 D7
RST 18 011 DF
RST 20 100 E7
RST 28 101 EF
RST 30 110 F7
RST 38 111 FF
—13-94 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

SBC Subtract with Carry SBC

SBC dest,source subtract source operand less carry from destination operand

Operation
dest < dest — source — CF

Description
The destination operand is made equal to the difference of the destination operand minus the source operand minus the status
of the carry flag.

The source operand is left unchanged.

Flags
If 8-bit Instruction: If 16-bit Instruction:

SF: lifresult<0,else 0 lifresult<0,else 0
ZF: lifresult=0,else 0 lifresult=0,else 0
HF: 1 if bit-4 borrow, else 0 1 if bit 12 borrow, else 0
PF: 1 if underflow, else 0 1 if underflow, else 0
NF: 1 1
CF: 1 if bit-8 borrow, else 0 1 if bit 16 borrow, else 0
Clocking

M-cycles Tymes
SBC A reg 1 4
SBC A,(HL) 2 7(4,3)
SBC A,(li+d) 5 19 (4,4,3,5,3)
SBC A,immed 2 7 (4,3)
SBC HL,regpr 4 15 (4,4,4,3)

— 13-95 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

SBC Subtract with Carry SBC

Encoding
T T
1lofo 1] 1] <—v-—-—> op
| |
vV op-code
SBCAB 000 98
SBCA,C 001 99
SBCAD 010 9A
SBCAE 011 9B
SBC AH 100 aC
SBCAL 101 aD
SBC A,(HL) 110 9E
SBCAA 111 9F
1 1 w 1 1 1 0 1 DD or FD
1 0 0 1 1 1 1 0 9E
<————- displacement byte----- > db
1 1 L l L L L
w op-code
SBC A, (IX+d) 0 DD 9E
SBC A,(IY+d) 1 FD 9E
[[[[[I I I]
1 | 1 | 0 | 1 ' 1 ' 1 ' 1 ' 0 DE
T T T | | | |
<——————- immediate byte------ > ib
l l | | | | |
op-code
SBC A,immed DE ib
1 1 1 0 1 1 0 1 ED
ol 1| <v>]o0o]o]1]o0 op
1
v op-code
SBC HL,BC 00 ED 42
SBC HL,DE 01 ED 52
SBC HL,HL 10 ED 62
SBC HL,SP 11 ED 72
— 13-96 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

SCF Set Carry Flag SCF

SCF set carry flag

Operation
CFe1l

Description
The carry flag is set.

Flags
SF: Not Affected
ZF: Not Affected

HF: 0
PF: Not Affected
NF: 0
CF: 1
Clocking

M-cycles Tymes
SCF 1 4
Encoding

0 0 1 1 0 1 1 1 37
op-code
SCF 37
— 13-97 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

SET Set Bit SET

SET bit,source set source operand bit

Operation
source[bit] « 1

Description:
The specified bit of the source operand is set.

Flags

SF: Not Affected
ZF: Not Affected
HF: Not Affected
PF: Not Affected
NF: Not Affected
CF: Not Affected

Clocking
M-cycles Tymes

SET bit,reg 2 8 (4,4)
SET bit,(HL) 3 12 (4,4,4)
SET bit,(li+d) 5 20 (4,4,3,5,4)
Encoding

1 1 0 0 1 0 1 1 CB

1 1 <_T_X_T_> <_T_V_T_> op

X v op-code

SET 0,B 000 000 CB CO
SETO,C 000 001 CBC1
SET 0,D 000 010 CBC2
SET O,E 000 011 CBC3
SET O,H 000 100 CBC4
SETO,L 000 101 CB C5
SET 0,(HL) 000 110 CB C6
SET0,A 000 111 CB C7
SET1,B 001 000 CB C8
SET1,C 001 001 CB C9
SET 1,D 001 010 CB CA
SET 1,E 001 011 CBCB
SET 1,H 001 100 CBCC
SET1,L 001 101 CB CD
SET 1,(HL) 001 110 CB CE
SET 1,A 001 111 CB CF
SET 2,B 010 000 CB DO
SET 2,C 010 001 CB D1
SET 2,D 010 010 CB D2
SET 2,E 010 011 CB D3
SET 2,H 010 100 CB D4
SET 2,L 010 101 CB D5
SET 2,(HL) 010 110 CBD6
SET 2,A 010 111 CB D7

— 13-98 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

SET Set Bit SET
SET 3,8 011 000 CBDS
SET 3,C 011 001 CBD9
SET 3,D 011 010 CBDA
SET 3,E 011 011 CBDB
SET 3,H 011 100 CBDC
SET 3L 011 101 CBDD
SET 3,(HL) 011 110 CBDE
SET 3,A 011 111 CBDF
SET 4,B 100 000 CBEO
SET 4,C 100 001 CBE1l
SET 4,D 100 010 CBE2
SET 4,E 100 011 CBES3
SET 4,H 100 100 CBE4
SET 4,L 100 101 CBES5
SET 4,(HL) 100 101 CBES6
SET 4,A 100 111 CBE7
SET5,B 101 000 CBES
SET5,C 101 001 CBE9
SET5,D 101 010 CBEA
SET 5,E 101 011 CBEB
SET 5,H 101 100 CBEC
SET5,L 101 101 CBED
SET 5,(HL) 101 110 CBEE
SET5,A 101 111 CBEF
SET 6,8 110 000 CBFO
SET 6,C 110 001 CBF1
SET 6,D 110 010 CBF2
SET 6,E 110 011 CBF3
SET 6,H 110 100 CBF4
SET 6,L 110 101 CBF5
SET 6,(HL) 110 110 CBF6
SET 6,A 110 111 CBF7
SET 7,8 111 000 CBFS8
SET7,C 111 001 CBF9
SET 7,D 111 010 CBFA
SET 7,E 111 011 CBFB
SET 7.H 111 100 CBFC
SET7,.L 111 101 CBFD
SET 7,(HL) 111 110 CBFE
SET7,A 111 111 CBFF

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

— 13-99 —

SET Set Bit SET
1 1 W 1 1 1 0 1 DD or FD
1 1 0 0 1 0 1 1 CB
<————= displacement byte-----> db
| |
I I
1|1] <—==x—->] 1]1]o0 op
| |
w X op-code
SET 0,(1X+d) 0 000 DD CB db C6
SET 1,(IX+d) 0 001 DD CB db CE
SET 2,(IX+d) 0 010 DD CB db D6
SET 3,(IX+d) 0 011 DD CB db DE
SET 4,(IX+d) 0 100 DD CB db E6
SET 5,(IX+d) 0 101 DD CB db EE
SET 6,(IX+d) 0 110 DD CB db F6
SET 7,(IX+d) 0 111 DD CB db FE
SET 0,(IY+d) 1 000 FD CB db C6
SET 1,(IY+d) 1 001 FD CB db CE
SET 2,(IY+d) 1 010 FD CB db D6
SET 3,(IY+d) 1 011 FD CB db DE
SET 4,(IY+d) 1 100 FD CB db E6
SET 5,(IY+d) 1 101 FD CB db EE
SET 6,(IY+d) 1 110 FD CB db F6
SET 7,(1Y+d) 1 111 FD CB db FE

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

— 13-100 —

SLA Shift Left Arithmetic SLA
SLA dest shift destination operand left arithmetic

Operation

temp < dest

dest[0] < 0

dest[1] < temp[0]
dest[2] < temp[1]
dest[3] < temp[2]
dest[4] < temp][3]
dest[5] < temp[4]
dest[6] < temp[5]
dest[7] < temp[6]
CF « temp[7]

Description
The bits of the destination operand are shifted left arithmetic.
The carry flag is made equal to the most significant bit of the destination operand.

Graphically, this is:

Flags
SF: lifreg<0,else0
ZF: lifreg=0,else0

HF: 0
PF: 1 if even parity, else 0
NF: 0
CF: Content of bit-7 before operation
Clocking
M-cycles Tymes
SLA reg 2 8 (4,4)
SLA (HL) 4 15 (4,4,4,3)
SLA (li+d) 6 26 (4,4,3,5,4,3)

—13-101 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

SLA Shift Left Arithmetic SLA
Encoding
1 1 0 0 1 0 1 1 CB
ool 1|o] o] <——=-v---> op
L L
v op-code
SLAB 000 CB 20
SLAC 001 CB21
SLAD 010 CB 22
SLAE 011 CB 23
SLAH 100 CB 24
SLAL 101 CB 25
SLA (HL) 110 CB 26
SLA A 111 CB 27
1 1 | w1 1 1 0 1 DD or FD
1 1 0 0 1 0 1 1 CB
<-----displacement byte----- > db
| | | | | | |
| | | | | |
|o|o|1|o'o'1'1'o'26
w op-code
SLA (IX+d) 0 DD CB db 26
SLA (IY+d) 1 FD CB db 26

—13-102 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

SLP Sleep SLP

~ /-180 ~
SLP enter sleep or system stop mode
Operation
If IOSTP = 0: (IOSTP is 10reg[5])
Enter SLEEP mode.
If IOSTP = 1:

Enter SYSTEM STOP mode.

Description

If the IOSTP bit is cleared:
The CPU enters the sleep mode and halt operation until reset or until an interrupt is received.
The sleep mode differs from the halt mode in that memory refresh is not maintained and power consumption is
minimized.

If the IOSTP bit is set:
The CPU enters the system stop mode.
The system stop mode is identical to the sleep mode, with the addition that I/O access is also halted, prohibiting an 1/O
device interrupt from terminating system stop.

Flags

SF: Not Affected
ZF: Not Affected
HF: Not Affected
PF: Not Affected
NF: Not Affected
CF: Not Affected

Clocking
M-cycles Tymes
SLP 2 8
Encoding
[[[[I I I I]
121 lo]1]1]o]1 ED
ol 1|1 |1]o]1]1]o 76
op-code
SLP ED 76
— 13-103 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

SRA Shift Right Arithmetic SRA
SRA dest shift destination operand right arithmetic

Operation

temp < dest

dest[7] < temp[7]
dest[6] < temp[7]
dest[5] < temp[6]
dest[4] < temp[5]
dest[3] < temp[4]
dest[2] < temp][3]
dest[1] < temp[2]
dest[0] < temp[1]
CF « temp[0]

Description
The bits of the destination operand are shifted right arithmetic.
The carry flag is made equal to the least significant bit of the destination operand.

Graphically, this is:

Flags
SF: lifreg<0,else0
ZF: lifreg=0,else0

HF: 0
PF: 1 if even parity, else 0
NF: 0
CF: Content of bit-0 before operation
Clocking
M-cycles Tymes
SRA reg 2 8 (4,4)
SRA (HL) 4 15 (4,4,4,3)
SRA (li+d) 6 26 (4,4,3,5,4,3)

—13-104 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

SRA Shift Right Arithmetic SRA
Encoding
1 0 0 1 0 1 1 CB
0 1|lo| 1| <——v--—> op
L L
v op-code
SRA B 000 CB 28
SRAC 001 CB 29
SRAD 010 CB 2A
SRA E 011 CB 2B
SRAH 100 CB 2C
SRA L 101 CB 2D
SRA (HL) 110 CB 2E
SRA A 111 CB 2F
1 w | 1 1 1 0 1 DD or FD
1 0 0 1 0 1 1 CB
< displacement byte----- > db
| | | |
| | | | |
|o|o|1|o'1'1'1'0'2E
w op-code
SRA (IX+d) 0 DD CB db 2E
SRA (IY+d) 1 FD CB db 2E

—13-105 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

SRL Shift Right Logical SRL
SRL dest shift destination operand right logical

Operation

temp < dest

dest[7] < 0

dest[6] < temp[7]
dest[5] < temp[6]
dest[4] < temp[5]
dest[3] < temp[4]
dest[2] < temp][3]
dest[1] < temp[2]
dest[0] < temp[1]
CF « temp[0]

Description
The bits of the destination operand are shifted right logical.
The carry flag is made equal to the least significant bit of the destination operand.

Graphically, this is:

Flags

If 8-bit Instruction: If 16-bit Instruction:
SF: lifreg<0,else0
ZF: lifreg=0,else0

HF: 0
PF: 1 if even parity, else 0
NF: 0
CF: Content of bit-0 before operation
Clocking
M-cycles Tymes
SRL reg 2 8 (4,4)
SRL (HL) 4 15 (4,4,4,3)
SRL (li+d) 6 26 (4,4,3,5,4,3)

— 13-106 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

SRL Shift Right Logical SRL

Encoding
1 1 0 0 1 0 1 1 CB
ool 1| 1] 1] <——v-——> op
L L
v op-code
SRL B 000 CB 38
SRL C 001 CB 39
SRL D 010 CB 3A
SRL E 011 CB 3B
SRL H 100 CB 3C
SRL L 101 CB 3D
SRL (HL) 110 CB 3E
SRL A 111 CB 3F
1 1 w 1 1 1 0 1 DD or FD
1 1 0 0 1 0 1 1 CB
<————- displacement byte----- > db
| | | | | | |
| | | | | | |
|o|o|1|1'1'1'1'0'3E
w op-code
SRL (IX+d) 0 DD CB db 3E
SRL (IY+d) 1 FD CB db 3E

—13-107 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

SUB Subtract SUB
SUB source subtract source operand from accumulator
Operation

A < A -source

Description
The accumulator is made equal to the difference of the accumulator minus the source operand.

The source operand is left unchanged.

Flags

SF: 1ifA<O0,else0

ZF: 1ifA=0,else0

HF: 1 if bit-4 borrow, else 0
PF: 1 if underflow, else 0
NF: 1

CF: 1 if bit-8 borrow, else 0

Clocking
M-cycles Tymes
SUB reg 1 4
SUB (HL) 2 7(4,3)
SUB (li+d) 5 19 (4,4,3,5,3)
SUB immed 2 7(4,3)

—13-108 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

SUB Subtract SUB
Encoding
T T
1lolo|l1]o0]| <—=-v-—> op
| |
vV op-code
SUB B 000 90
SUB C 001 91
SUB D 010 92
SUB E 011 93
SUB H 100 94
SUB L 101 95
SUB (HL) 110 96
SUB A 111 97
1 1 4 1 1 1 0 1 DD or FD
1 0 0 1 0 1 1 0 96
<————- displacement byte----- > db
1 1 1 1 L L L
w op-code
SUB (IX+d) 0 DD 96
SUB (IY+d) 1 FD 96
[[[[[[[[
1|1|o|1'o'1'1'0 D6
T T T | | | |
<——————- immediate byte------ > ib
l l | | | | |
op-code
SUB immed D6 ib
—13-109 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

TST Test TST
~ /-180 ~
TST source test source operand against accumulator

Operation

temp[0] < A[0] AND source[0]
temp[1] < A[1] AND source[1]
temp[2] < A[2] AND source[2]
temp[3] < A[3] AND source[3]
temp[4] < A[4] AND source[4]
temp[5] < A[5] AND source[5]
temp[6] < A[6] AND source[6]
temp[7] < A[7] AND source[7]

Description
The source operand is bitwise ANDed with the accumulator.

The accumulator is left unchanged
The source operand is left unchanged.

Flags
SF: lifresult<O0,else 0
ZF: 1lifresult=0, else 0

HF: 1
PF: 1 if parity even, else 0
NF: 0
CF: 0
Clocking
M-cycles Tymes
TST reg 3 7
TST (HL) 4 10
TST immed 3 9
Encoding
1 1 1 0 1 1 0 1 ED
| 0 | 0 | <———y———> ' 1 ' 0 ' 0 ' op
l |
vV op-code
TSTB 000 ED 04
TSTC 001 ED OC
TSTD 010 ED 14
TSTE 011 ED 1C
TSTH 100 ED 24
TSTL 101 ED 2C
TST (HL) 110 ED 34
TSTA 111 ED 3C
1 1 1 0 1 1 0 1 ED
0 1 1 0 0 1 0 0 64
<——————- immediate byte------ > ib
1 1 1 | | | |
op-code
TST immed ED 64 ib

—13-110 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

TSTIO Test 1/O TSTIO
~ 7-180 ~

TSTIO immed test immediate byte against I/O byte

Operation
address-bus-low < (C)
address-bus-high < 00

temp[0] <« (address-bus)[0] AND immed[0]
temp[1] <« (address-bus)[1] AND immed[1]
temp[2] <« (address-bus)[2] AND immed[2]
temp[3] < (address-bus)[3] AND immed[3]
temp[4] < (address-bus)[4] AND immed[4]
temp[5] < (address-bus)[5] AND immed[5]
temp[6] < (address-bus)[6] AND immed[6]
temp[7] < (address-bus)[7] AND immed[7]

Description

The low-order byte of the address bus is made equal to the C register.

The high-order byte of the address bus is made equal to 00.

The 1/0 byte whose address is the low-order byte of the address bus is bitwise ANDed with the immediate byte operand.

The C register is left unchanged.

Flags
SF: lifresult<0,else 0
ZF: lifresult=0,else 0

HF: 1
PF: 1 if parity even, else 0
NF: 0
CF: 0
Clocking
M-cycles Tymes

TSTIO immed 4 12
Encoding

1 1 1 0 1 1 0 1 ED

0 1 1 1 0 1 0 0 74

<————— - immediate byte------ > ib

L L l L L L L
op-code
TSTIO immed ED 74 ib
—13-111 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

XOR Exclusive-OR XOR

XOR source exclusive-OR source operand with accumulator

Operation

A[0] < AJ0] XOR source[0]
A[1] < A[1] XOR source[1]
A[2] < A[2] XOR source[2]
A[3] < A[3] XOR source[3]
A[4] < A[4] XOR source[4]
A[5] < A[5] XOR source[5]
A[6] < A[6] XOR source[6]
A[7] « A[7] XOR source[7]

Description
The accumulator is made equal to the source operand bitwise exclusive-ORed (XORed) with the accumulator.

The source operand is left unchanged.

Flags
SF: 1ifA<O0,else0
ZF: 1ifA=0,else0

HF: 1
PF: 1 if parity even, else 0
NF: 0
CF: 0
Clocking
M-cycles Tymes
XOR reg 1 4
XOR (HL) 2 7 (4,3)
XOR (li+d) 5 19 (4,4,3,5,3)
XOR immed 2 7(4,3)

—13-112 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

XOR Exclusive-OR XOR

Encoding
T T
1ol 1]o] 1] <—=v---> op
| |
vV op-code
XOR B 000 A8
XOR C 001 A9
XOR D 010 AA
XOR E 011 AB
XORH 100 AC
XOR L 101 AD
XOR (HL) 110 AE
XOR A 111 AF
1 1 " 1 1 1 0 1 DD or FD
1 0 1 0 1 1 1 0 AE
<————- displacement byte----- > db
I I I | I I I
w op-code
XOR (IX+d) 0 DD AE db
XOR (IY+d) 1 FD AE db
[[[[[[[[|
1|1|1|0'1'1'1'0 EE
T T T T T T T
<——————- immediate byte------ > ib
I I I I I I I
op-code
XOR immed EE ib
—13-113 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Machine Code Disassembly

Following is a disassembly from machine code to Zilog, TDL and MAC mnemonics. This table can be of great assistance in
translation. The pages given contain the detailed instructions for the op-codes

Those Zilog mnemonics indicated by a “~” and missing in TDL and MAC mnemonics are unique to the Z-180 processor.

Those TDL mnemonics that are indicated by an “*” are the Intel 8080 processor subset, and usually use the TDL or MAC
mnemonics (identical for all 8080 instructions).

Disassembly Zilog TDL MAC Page

00 NOP * NOP NOP 13-58
01ilih LD BC,imwrd * LXI B,imwrd LXI B,imwrd 13-46
02 LD (BC),A *STAX B STAX B 13-46
03 INC BC *INX B INX B 13-36
04 INC B *INR B INR B 13-36
05 DECB *DCR B DCR B 13-23
06 ib LD B,immed * MVI B,immed MVI B,immed 13-46
07 RLCA *RLC RLC 13-85
08 EX AF,AF EXAF EXAF 13-28
09 ADD HL,BC * DAD B DAD B 13-6

0A LD A,(BC) * LDAX B LDAX B 13-46
0B DEC BC *DCXB DCX B 13-23
0oC INCC *INRC INRC 13-36
oD DECC *DCRC DCRC 13-23
OE ib LD C,immed * MVI C,immed MVI C,immed 13-46
OF RRCA * RRC RRC 13-92
10ab DJNZ disp DJNZ disp DJNZ disp 13-26
11ilih LD DE,imwrd * LXI D,imwrd LXI D,imwrd 13-46
12 LD (DE),A *STAX D STAX D 13-46
13 INC DE *INX D INX D 13-36
14 INCD *INR D INRD 13-36
15 DECD * DCR D DCRD 13-23
16 ib LD D,immed * MVI D,immed MVI D,immed 13-46
17 RLA * RAL RAL 13-82
18 ab JR disp JMPR disp JR disp 13-44
19 ADD HL,DE *DADD DAD D 13-6

1A LD A,(DE) * LDAX D LDAX D 13-46
1B DEC DE *DCXD DCX D 13-23
1C INCE *INR E INRE 13-36
1D DECE *DCRE DCRE 13-23
1Eib LD E,immed * MVI E,immed MVI E,immed 13-46
1F RRA * RAR RAR 13-89
20 ab JR NZ,disp JRNZ disp JRNZ disp 13-44
21ilih LD HL,imwrd * LXI H,imwrd LXI H,imwrd 13-46
22 al ah LD (addr),HL * SHLD addr SHLD addr 13-46
23 INC HL *INXH INX H 13-36
24 INCH *INRH INRH 13-36
25 DECH *DCRH DCRH 13-23
26 ib LD H,immed * MVI H,immed MVI H,immed 13-46
27 DAA * DAA DAA 13-22
28 ab JR Z,disp JRZ disp JRZ disp 13-44
29 ADD HL,HL *DADH DAD H 13-6

2A al ah LD HL,(addr) * LHLD addr LHLD addr 13-46
2B DEC HL * DCXH DCXH 13-23
2C INC L *INR L INR L 13-36
2D DECL *DCRL DCRL 13-23
2E ib LD L,immed * MVI L,immed MVI L,immed 13-46
2F CPL * CMA CMA 13-21

—14-1—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Disassembly
30 ab

31ilih
32alah
33

34

35

36 ib
37

38ab
39
3Aal ah
3B

3C

3D
3Eib
3F

40
4
42
43
44
45
46
47

48
49
4A
4B
4C
4D
4E
4F

50
51
52
53
54
55
56
57

58
59
5A
5B
5C
5D
SE
SF

60
61
62
63
64
65
66
67

Zilog

JR NC,disp
LD SP,imwrd
LD (addr),A
INC SP

INC (HL)
DEC (HL)

LD (HL),immed

SCF

JR C,disp
ADD HL,SP
LD A,(addr)
DEC SP
INC A
DECA

LD A,immed
CCF

LD B,B
LDB,C
LD B,D
LD B.E
LD BH
LD B,L
LD B,(HL)
LD B,A

LDC,B
LDC.C
LD C,D
LD CE
LD CH
LDC,L
LD C,(HL)
LDCA

LDD,B
LDD,C
LD D,D
LD D,E
LD D,H
LD D,L
LD D,(HL)
LDD,A

LDE,B
LDEC
LD E,D
LD EE
LD EH
LDEL
LD E,(HL)
LDEA

LD H,B
LD H,C
LD H,D
LD H,E
LD H,H
LD H,L
LD H,(HL)
LD H,A

TIDL

JRNC disp

* LXI SP,imwrd

* STA addr
* INX SP
*INRM
*DCR M

* MVI M,immed

*STC

JRC disp
* DAD SP
* LDA addr
* DCX SP
*INR A
*DCR A

* MVI A,immed

*CMC

* MOV B,B
* MOV B,C
* MOV B,D
* MOV B,E
* MOV B,H
* MOV B,L
* MOV B,M
* MOV B,A

*MOV C,B
*MOV C,C
* MOV C,D
* MOV C,E
* MOV C,H
*MOV C,L
* MOV C,M
* MOV C,A

* MOV D,B
* MOV D,C
*MOVD,D
* MOV D,E
* MOV DH
* MOV D,L
* MOV DM
* MOV DA

* MOV E,B
* MOV E,C
* MOV E,D
* MOV E,E
* MOV EH
* MOV E,L
* MOV EM
* MOV E A

* MOV H,B
* MOV H,C
* MOV H,D
* MOV H,E
* MOV HH
* MOV H,L
* MOV HM
* MOV HA

MAC
JRNC disp

LXI SP,imwrd

STA addr
INX SP
INR M
DCRM

MVI M,immed

STC

JRC disp
DAD SP
LDA addr
DCX SP
INR A
DCR A

MVI A,immed

CMC

MOV B,B
MOV B,C
MOV B,D
MOV B,E
MOV B,H
MOV B,L
MOV B,M
MOV B,A

MOV C,B
MOV C,C
MOV C,D
MOV C,E
MOV CH
MOV C,L
MOV C,M
MOV C,A

MOV D,B
MOV D,C
MOV D,D
MOV D,E
MOV D,H
MOV D,L
MOV DM
MOV D,A

MOV E,B
MOV E,C
MOV E,D
MOV EE
MOV EH
MOV E,L
MOV EM
MOV E,A

MOV H,B
MOV H,C
MOV H,D
MOV H,E
MOV H,H
MOV H,L
MOV H,M
MOV H,A

Page

13-44
13-46
13-46
13-36
13-36
13-23
13-46
13-97

13-44
13-6

13-46
13-23
13-36
13-23
13-46
13-15

13-46
13-46
13-46
13-46
13-46
13-46
13-46
13-46

13-46
13-46
13-46
13-46
13-46
13-46
13-46
13-46

13-46
13-46
13-46
13-46
13-46
13-46
13-46
13-46

13-46
13-46
13-46
13-46
13-46
13-46
13-46
13-46

13-46
13-46
13-46
13-46
13-46
13-46
13-46
13-46

—14-2 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Disassembly
68

69
6A
6B
6C
6D
6E
6F
70

71
72
73
74
75
76
77

78
79
TA
B
7C
7D
T7E
TF

80
81
82
83
84
85
86
87

88
89
8A
8B
8C
8D
8E
8F

90
91
92
93
94
95
96
97

98
99
9A
9B
9C
9D
9E
9F

Zilog

LDL,B
LDL.C
LDL,D
LDL,E
LD L,H
LDL,L
LD L,(HL)
LDL,A
LD (HL),B

LD (HL),.C
LD (HL),D
LD (HL),E
LD (HL),H
LD (HL),L
HALT

LD (HL),A

LD A,B
LD A,C
LD AD
LD AE
LD AH
LDAL
LD A,(HL)
LD AA

ADD AB
ADD A,C
ADD A,D
ADD AE
ADD AH
ADD AL
ADD A,(HL)
ADD A A

ADC AB
ADC AC
ADC A,D
ADC AE
ADC AH
ADC AL
ADC A,(HL)
ADC AA

SUB B
SUB C
SUB D
SUBE
SUB H
SUB L
SUB (HL)
SUB A

SBC AB
SBC A,C
SBCA,D
SBC A,E
SBC AH
SBCA,L
SBC A,(HL)
SBCAA

TDL

*MOV LB
* MOV L,C
*MOV LD
* MOV L,E
* MOV L H
* MOV L,L
* MOV LM
* MOV LA
* MOV M,B

* MOV M,C
* MOV M,D
* MOV M,E
* MOV MH
* MOV M,L
*HLT

* MOV M,A

* MOV AB
* MOV AC
* MOV AD
* MOV AE
* MOV AH
* MOV AL
* MOV AM
* MOV AA

*ADD B
*ADDC
*ADDD
*ADDE
* ADD H
* ADD L
* ADD M
*ADD A

* ADC B
*ADCC
* ADCD
*ADCE
* ADCH
*ADC L
* ADC M
* ADC A

*SUB B
*SUBC
*SUBD
*SUBE
* SUB H
*SUB L
*SUB M
*SUB A

*SBB B
*SBB C
*SBB D
*SBBE
*SBBH
*SBB L
*SBBM
*SBB A

MAC

MOV L,B
MOV L,C
MOV L,D
MOV L,E
MOV L,H
MOV L,L
MOV LM
MOV LA
MOV M,B

MOV M,C
MOV M,D
MOV M.E
MOV MH
MOV M,L
HLT

MOV M,A

MOV AB
MOV AC
MOV AD
MOV AE
MOV AH
MOV AL
MOV AM
MOV A A

ADD B
ADDC
ADD D
ADD E
ADDH
ADD L
ADD M
ADD A

ADC B
ADCC
ADCD
ADCE
ADCH
ADC L
ADCM
ADC A

SUBB
SuBC
SUBD
SUBE
SUBH
SUBL
SUB M
SUB A

SBB B
SBBC
SBB D
SBB E
SBB H
SBB L
SBB M
SBB A

Page

13-46
13-46
13-46
13-46
13-46
13-46
13-46
13-46
13-46

13-46
13-46
13-46
13-46
13-46
13-30
13-46

13-46
13-46
13-46
13-46
13-46
13-46
13-46
13-46

13-6
13-6
13-6
13-6
13-6
13-6
13-6
13-6

13-4
13-4
13-4
13-4
13-4
13-4
13-4
13-4

13-108
13-108
13-108
13-108
13-108
13-108
13-108
13-108

13-95
13-95
13-95
13-95
13-95
13-95
13-95
13-95

—14-3 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Disassembly Zilog TDL MAC Page

A0 AND B * ANA B ANA B 13-8
Al AND C * ANA C ANA C 13-8
A2 AND D * ANAD ANA D 13-8
A3 AND E * ANA E ANA E 13-8
Ad AND H * ANAH ANA H 13-8
A5 AND L * ANA L ANA L 13-8
A6 AND (HL) * ANA M ANA M 13-8
A7 AND A * ANA A ANA A 13-8
A8 XOR B * XRA B XRA B 13-112
A9 XORC * XRAC XRAC 13-112
AA XORD * XRAD XRA D 13-112
AB XORE * XRAE XRAE 13-112
AC XORH * XRA H XRAH 13-112
AD XOR L * XRA L XRA L 13-112
AE XOR (HL) * XRAM XRA M 13-112
AF XOR A * XRA A XRA A 13-112
BO ORB * ORAB ORA B 13-59
B1 ORC *ORAC ORAC 13-59
B2 ORD * ORAD ORAD 13-59
B3 ORE *ORAE ORAE 13-59
B4 ORH * ORAH ORAH 13-59
B5 ORL *ORAL ORA L 13-59
B6 OR (HL) * ORAM ORA M 13-59
B7 OR A * ORA A ORA A 13-59
B8 CPB *CMPB CMP B 13-16
B9 CPC *CMPC CMPC 13-16
BA CPD *CMP D CMP D 13-16
BB CPE *CMPE CMPE 13-16
BC CPH * CMP H CMPH 13-16
BD CPL * CMP L CMP L 13-16
BE CP (HL) *CMP M CMP M 13-16
BF CPA *CMP A CMP A 13-16
Co RET NZ * RNZ RNZ 13-76
C1 POP BC *POP B POP B 13-71
C2al ah JP NZ,addr * JNZ addr JNZ addr 13-42
C3al ah JP addr * JMP addr JMP addr 13-42
C4 al ah CALL NZ,addr * CNZ addr CNZ addr 13-13
C5 PUSH BC * PUSH B PUSH B 13-72
C6ib ADD A,immed * ADI immed ADI immed 13-6
C7 RST 00 *RSTO RSTO 13-94
Cc8 RET Z *RZ RZ 13-76
C9 RET * RET RET 13-76
CAal ah JP Z,addr * JZ addr JZ addr 13-42
CB 00 RLCB RLCR B RLCR B 13-83
CB 01 RLCC RLCR C RLCR C 13-83
CB02 RLC D RLCR D RLCRD 13-83
CB 03 RLCE RLCRE RLCRE 13-83
CB 04 RLCH RLCR H RLCR H 13-83
CB 05 RLC L RLCR L RLCR L 13-83
CB 06 RLC (HL) RLCR M RLCR M 13-83
CB 07 RLC A RLCR A RLCR A 13-83

—14-4 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Disassembly
CB 08

CB 09
CB 0OA
CB 0B
CBOC
CB 0D
CB OE
CB OF

CB 10
CB11
CB 12
CB 13
CB 14
CB 15
CB 16
CB 17

CB 18
CB 19
CB 1A
CB 1B
CB1C
CB 1D
CB 1E
CB 1F

CB 20
CB21
CB 22
CB 23
CB 24
CB 25
CB 26
CB 27

CB 28
CB 29
CB2A
CB 2B
CB2C
CB 2D
CB 2E
CB 2F

CB 38
CB 39
CB 3A
CB 3B
CB3C
CB 3D
CB 3E
CB 3F

CB 40
CB 41
CB 42
CB 43
CB 44
CB 45
CB 46
CB 47

Zilog TDL
RRC B RRCR B
RRC C RRCR C
RRC D RRCR D
RRC E RRCR E
RRC H RRCR H
RRC L RRCR L
RRC (HL) RRCR M
RRC A RRCR A
RL B RALR B
RLC RALR C
RL D RALR D
RLE RALR E
RL H RALR H
RL L RALR L
RL (HL) RALR M
RL A RALR A
RR B RARR B
RRC RARR C
RRD RARR D
RRE RARR E
RRH RARR H
RRL RARR L
RR (HL) RARR M
RR A RARR A
SLAB SLAR B
SLAC SLARC
SLAD SLAR D
SLAE SLARE
SLAH SLARH
SLAL SLAR L
SLA (HL) SLAR M
SLAA SLAR A
SRAB SRARB
SRAC SRARC
SRAD SRARD
SRAE SRARE
SRAH SRAR H
SRA L SRAR L
SRA (HL) SRAR M
SRA A SRAR A
SRL B SRLR B
SRLC SRLR C
SRL D SRLR D
SRLE SRLRE
SRL H SRLR H
SRL L SRLR L
SRL (HL) SRLR M
SRL A SRLR A
BIT 0,B BIT 0,B
BITO,C BIT 0,C
BIT 0,D BIT 0,D
BIT 0,E BIT 0,E
BIT O,H BIT O,H
BITO,L BITO,L
BIT 0,(HL) BIT O,M
BIT 0,A BIT 0,A

MAC

RRCR B
RRCR C
RRCRD
RRCRE
RRCR H
RRCR L
RRCR M
RRCR A

RALR B
RALR C
RALR D
RALR E
RALR H
RALR L
RALR M
RALR A

RARR B
RARR C
RARR D
RARR E
RARRH
RARR L
RARR M
RARR A

SLARB
SLARC
SLARD
SLARE
SLARH
SLARL
SLAR M
SLAR A

SRAR B
SRARC
SRARD
SRARE
SRAR H
SRARL
SRAR M
SRAR A

SRLR B
SRLRC
SRLR D
SRLRE
SRLR H
SRLR L
SRLRM
SRLR A

BITO,B
BITO0,C
BIT0,D
BIT O,E
BITOH
BITO,L
BIT O,M
BIT0,A

Page

13-90
13-90
13-90
13-90
13-90
13-90
13-90
13-90

13-80
13-80
13-80
13-80
13-80
13-80
13-80
13-80

13-87
13-87
13-87
13-87
13-87
13-87
13-87
13-87

13-101
13-101
13-101
13-101
13-101
13-101
13-101
13-101

13-104
13-104
13-104
13-104
13-104
13-104
13-104
13-104

13-106
13-106
13-106
13-106
13-106
13-106
13-106
13-106

13-10
13-10
13-10
13-10
13-10
13-10
13-10
13-10

—14-5—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Disassembly
CB 48

CB 49
CB 4A
CB 4B
CB4C
CB 4D
CB4E
CB 4F

CB 50
CB51
CB 52
CB 53
CB 54
CB 55
CB 56
CB 57

CB 58
CB 59
CB 5A
CB 5B
CB5C
CB 5D
CB 5E
CB 5F

CB 60
CB6l1
CB 62
CB 63
CB 64
CB 65
CB 66
CB 67

CB 68
CB 69
CB 6A
CB 6B
CB6C
CB 6D
CB 6E
CB 6F

CB 70
CB71
CB 72
CB73
CB74
CB75
CB 76
CB 77

CB 78
CB 79
CB7A
CB7B
CB7C
CB7D
CBT7E
CB7F

Zilog

BIT 1,B
BIT 1,C
BIT 1,D
BIT 1.E
BIT 1,H
BIT 1L
BIT 1,(HL)
BIT 1,A

BIT 2,B
BIT 2,C
BIT 2,D
BIT 2,E
BIT 2,H
BIT 2,L
BIT 2,(HL)
BIT 2,A

BIT 3,B
BIT3,C
BIT 3D
BIT 3E
BIT 3,H
BIT3,L
BIT 3,(HL)
BIT 3,A

BIT 4B
BIT 4,C
BIT 4D
BIT 4,E
BIT 4,H
BIT 4L
BIT 4,(HL)
BIT 4,A

BIT 5B
BIT5,C
BIT 5D
BIT 5,E
BIT 5,H
BIT5,L
BIT 5,(HL)
BIT5,A

BIT 6,8
BIT 6,C
BIT 6,D
BIT 6,E
BIT 6,H
BIT 6,L
BIT 6,(HL)
BIT 6,A

BIT7,B
BIT7,C
BIT 7,.D
BIT7.E
BIT 7,H
BIT7,.L
BIT 7,(HL)
BIT7,A

TDL

BIT1,B
BIT 1,C
BIT1,D
BIT 1,E
BIT1H
BIT1.L
BIT 1,M
BIT 1,A

BIT 2,B
BIT 2,C
BIT 2,D
BIT 2,E
BIT 2,H
BIT 2,L
BIT 2,M
BIT 2,A

BIT 3,B
BIT 3,C
BIT 3D
BIT 3,E
BIT 3,H
BIT 3,L
BIT 3,M
BIT 3,A

BIT 4B
BIT 4,C
BIT 4D
BIT 4,E
BIT 4H
BIT 4,L
BIT 4M
BIT 4,A

BIT 5B
BIT5,C
BIT5D
BIT 5,E
BIT 5,H
BIT5,L
BIT 5M
BIT5A

BIT 6,B
BIT 6,C
BIT 6,D
BIT 6,E
BIT 6,H
BIT6,L
BIT 6,M
BIT 6,A

BIT7,B
BIT7,C
BIT 7,D
BIT 7,E
BIT7H
BIT 7,L
BIT 7,M
BIT 7,A

MAC

BIT1B
BIT1,C
BIT1D
BIT 1,E
BIT1H
BIT1.L
BIT 1,M
BIT 1,A

BIT 2,B
BIT 2,C
BIT 2,D
BIT 2,E
BIT 2,H
BIT 2,L
BIT 2,M
BIT 2,A

BIT 3,B
BIT 3,C
BIT 3D
BIT 3,E
BIT 3,H
BIT 3,L
BIT 3,M
BIT 3,A

BIT 4,B
BIT4,C
BIT 4D
BIT 4,E
BIT4H
BIT 4,L
BIT 4,M
BIT 4,A

BIT5,B
BIT5,C
BIT 5D
BIT 5,E
BIT 5,H
BIT5,L
BIT 5M
BIT 5A

BIT 6,B
BIT 6,C
BIT 6,D
BIT 6,E
BIT 6,H
BIT6,L
BIT 6,M
BIT 6,A

BIT7,B
BIT7,C
BIT 7,D
BIT 7,E
BIT 7H
BIT 7,L
BIT 7\M
BIT 7,A

Page

13-10
13-10
13-10
13-10
13-10
13-10
13-10
13-10

13-10
13-10
13-10
13-10
13-10
13-10
13-10
13-10

13-10
13-10
13-10
13-10
13-10
13-10
13-10
13-10

13-10
13-10
13-10
13-10
13-10
13-10
13-10
13-10

13-10
13-10
13-10
13-10
13-10
13-10
13-10
13-10

13-10
13-10
13-10
13-10
13-10
13-10
13-10
13-10

13-10
13-10
13-10
13-10
13-10
13-10
13-10
13-10

—14-6 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Disassembly
CB 80

CB 81
CB 82
CB 83
CB 84
CB 85
CB 86
CB 87

CB 88
CB 89
CB 8A
CB 8B
CB8C
CB 8D
CB 8E
CB 8F

CB 90
CB91
CB 92
CB 93
CB 9%
CB 95
CB 96
CB 97

CB 98
CB 99
CB %A
CB 9B
CB9C
CB 9D
CB 9E
CB 9F

CB A0
CB Al
CB A2
CB A3
CB A4
CB A5
CB A6
CB A7

CB A8
CB A9
CB AA
CB AB
CB AC
CB AD
CB AE
CB AF

CB BO
CB Bl
CB B2
CB B3
CB B4
CB B5
CB B6
CBB7

Zilog

RES0,B
RES 0,C
RES 0,D
RES 0,E
RES O,H
RES O,L
RES 0,(HL)
RES 0,A

RES 1,B
RES1,C
RES 1,D
RES 1,E
RES 1,H
RES 1,L
RES 1,(HL)
RES 1A

RES 2,B
RES 2,C
RES 2,D
RES 2,E
RES 2,H
RES 2,L
RES 2,(HL)
RES 2,A

RES 3,B
RES 3,C
RES 3,D
RES 3,E
RES 3,H
RES 3,L
RES 3,(HL)
RES 3,A

RES 4,B
RES4,C
RES 4,D
RES 4,E
RES 4,H
RES 4,L
RES 4,(HL)
RES 4,A

RES 5,B
RES 5,C
RES 5,D
RES 5,E
RES 5,H
RES 5,L
RES 5,(HL)
RES 5,A

RES 6,B
RES 6,C
RES 6,D
RES 6,E
RES 6,H
RES 6,L
RES 6,(HL)
RES 6,A

TIDL

RES 0,B
RES 0,C
RES 0,D
RES 0,E
RES O,H
RES O,L
RES O,M
RES 0,A

RES 1,B
RES1,C
RES1,D
RES 1,E
RES1H
RES1,.L
RES 1,M
RES 1A

RES 2,B
RES 2,C
RES 2,D
RES 2,E
RES 2,H
RES 2,L
RES 2,M
RES 2,A

RES 3,B
RES 3,C
RES 3,D
RES 3,E
RES 3,H
RES 3,L
RES 3,M
RES 3,A

RES 4,B
RES 4,C
RES 4,D
RES 4,E
RES 4,H
RES4,L
RES 4,M
RES 4,A

RES 5,B
RES 5,C
RES 5,D
RES5,E
RES5H
RES5,L
RES 5,M
RES5A

RES 6,B
RES 6,C
RES 6,D
RES 6,E
RES 6,H
RES 6,L
RES 6,M
RES 6,A

MAC

RES 0,B
RES 0,C
RES 0,D
RES 0,E
RES O,H
RES O,L
RES O,M
RES 0,A

RES 1,B
RES1,C
RES1,D
RES 1,E
RES1H
RES1,.L
RES 1,M
RES 1A

RES 2,B
RES 2,C
RES 2,D
RES 2,E
RES 2,H
RES 2,L
RES 2,M
RES 2,A

RES 3,B
RES 3,C
RES 3,D
RES 3,E
RES 3,H
RES 3,L
RES 3,M
RES 3,A

RES 4,B
RES 4,C
RES4,D
RES 4,E
RES 4,H
RES4,L
RES 4,M
RES 4,A

RES 5,B
RES 5,C
RES 5,D
RES5,E
RES5H
RES5,L
RES 5,M
RES5A

RES 6,B
RES 6,C
RES 6,D
RES 6,E
RES 6,H
RES 6,L
RES 6,M
RES 6,A

Page

13-73
13-73
13-73
13-73
13-73
13-73
13-73
13-73

13-73
13-73
13-73
13-73
13-73
13-73
13-73
13-73

13-73
13-73
13-73
13-73
13-73
13-73
13-73
13-73

13-73
13-73
13-73
13-73
13-73
13-73
13-73
13-73

13-73
13-73
13-73
13-73
13-73
13-73
13-73
13-73

13-73
13-73
13-73
13-73
13-73
13-73
13-73
13-73

13-73
13-73
13-73
13-73
13-73
13-73
13-73
13-73

—14-7—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Disassembly
CB B8

CB B9
CB BA
CB BB
CB BC
CB BD
CB BE
CB BF

CB CO
CBC1
CBC2
CBC3
CB C4
CB C5
CB C6
CBC7

CB C8
CB C9
CB CA
CBCB
CBCC
CBCD
CBCE
CBCF

CB DO
CBD1
CB D2
CB D3
CB D4
CB D5
CB D6
CB D7

CB D8
CB D9
CB DA
CB DB
CBDC
CBDD
CB DE
CB DF

CB EO
CBE1l
CB E2
CBE3
CB E4
CBE5
CBE6
CBE7

CBES8
CB E9
CB EA
CB EB
CB EC
CB ED
CB EE
CBEF

Zilog

RES 7,B
RES 7,C
RES 7,D
RES 7.E
RES 7,H
RES 7,L
RES 7,(HL)
RES 7,A

SET0,B
SETO,C
SET 0D
SETO,E
SETOH
SETO,L
SET 0,(HL)
SET0,A

SET1,B
SET1,C
SET1,D
SET 1,E
SET 1H
SET1,L
SET 1,(HL)
SET 1,A

SET 2,B
SET 2,C
SET 2,D
SET 2,E
SET 2,H
SET2,L
SET 2,(HL)
SET 2,A

SET 3,B
SET 3,C
SET 3,D
SET 3,E
SET 3H
SET 3L
SET 3,(HL)
SET 3,A

SET 4,B
SET4,C
SET 4,D
SET 4,E
SET 4,H
SET 4,L
SET 4,(HL)
SET 4,A

SET5,B
SET5,C
SET5,D
SET 5,E
SET 5,H
SET5,L
SET 5,(HL)
SET 5,A

TIDL

RES 7,B
RES7,C
RES 7,D
RES 7,E
RES 7,H
RES7,L
RES 7,M
RES 7,A

SETO0,B
SETO0,C
SET0,D
SET O,E
SET O,H
SETO,L
SET 0O,M
SET0,A

SET1,B
SET1,C
SET 1,D
SET 1,E
SET1,H
SET1L
SET 1,M
SET1,A

SET 2,B
SET 2,C
SET 2,D
SET 2,E
SET 2,H
SET 2,L
SET 2,M
SET 2,A

SET 3,B
SET 3,C
SET 3,D
SET 3,E
SET 3,H
SET 3L
SET 3M
SET 3,A

SET 4,B
SET4,C
SET 4,D
SET4,E
SET 4,H
SET4,L
SET 4,M
SET 4,A

SET 5,B
SET5,C
SET 5,D
SET 5,E
SET5H
SET5,L
SET5M
SET 5,A

MAC

RES 7,B
RES7,C
RES 7,D
RES 7,E
RES 7,H
RES7,L
RES 7,M
RES 7,A

SETO0,B
SETO0,C
SET0,D
SET O,E
SETO,H
SETO,L
SET 0,M
SETO,A

SET1,B
SET1,C
SET 1,D
SET 1,E
SET1,H
SET1L
SET 1,M
SET 1A

SET 2,B
SET 2,C
SET 2,D
SET 2,E
SET 2,H
SET 2,L
SET 2,M
SET 2,A

SET 3,B
SET 3,C
SET 3,D
SET 3,E
SET 3,H
SET 3L
SET 3M
SET 3,A

SET 4,B
SET 4,C
SET 4,D
SET4,E
SET 4,H
SET4,L
SET 4,M
SET 4,A

SET 5,B
SET5,C
SET5,D
SET5,E
SET5H
SET5,L
SET5M
SET 5,A

Page

13-73
13-73
13-73
13-73
13-73
13-73
13-73
13-73

13-98
13-98
13-98
13-98
13-98
13-98
13-98
13-98

13-98
13-98
13-98
13-98
13-98
13-98
13-98
13-98

13-98
13-98
13-98
13-98
13-98
13-98
13-98
13-98

13-98
13-98
13-98
13-98
13-98
13-98
13-98
13-98

13-98
13-98
13-98
13-98
13-98
13-98
13-98
13-98

13-98
13-98
13-98
13-98
13-98
13-98
13-98
13-98

—14-8 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Disassembly
CBFO

CBF1
CBF2
CBF3
CBF4
CBF5
CB F6
CBF7

CB F8
CBF9
CBFA
CBFB
CBFC
CBFD
CBFE
CB FF

CCal ah
CDal ah
CEib
CF

DO

D1

D2 al ah
D3 pb
D4 al ah
D5

D6 ib
D7

D8

D9

DA al ah
DB pb
DC al ah

DD 09
DD 19

DD 21ilih

DD 22 al ah
DD 23

DD 29

DD 2A al ah
DD 2B

DD 34 db
DD 35db
DD 36 dbib
DD 39

DD 46 db
DD 4E db

DD 56 db
DD 5E db
DD 66 db
DD 6E db

Zilog

SET6,B
SET 6,C
SET6,D
SET 6,E
SET 6,H
SET 6,L
SET 6,(HL)
SET 6,A

SET7,B
SET7,C
SET 7,D
SET 7,E
SET 7,H
SET7,L
SET 7,(HL)
SET7,A

CALL Z,addr
CALL addr
ADC A,immed
RST 08

RET NC

POP DE

JP NC,addr
OUT (port),A
CALL NC,addr
PUSH DE
SUB immed
RST 10

RETC

EXX

JP C,addr

IN A,(port)
CALL C,addr

ADD IX,BC
ADD IX,DE

LD IX,imwrd
LD (addr),IX
INC IX
ADD IX,HL
LD IX,(addr)
DEC IX

INC (IX+d)

DEC (IX+d)

LD (IX+d),immed
ADD IX,SP

LD B,(IX+d)

LD C,(IX+d)

LD D,(IX+d)
LD E,(IX+d)
LD H,(1X+d)
LD L,(IX+d)

* %k % X

% % ok X 3k X %

*

*

*

*

TIDL

SET 6,B
SET 6,C
SET 6,D
SET6,E
SET 6,H
SET6,L
SET 6,M
SET 6,A

SET7,B
SET7,C
SET7,D
SET 7,E
SET7,H
SET7,.L
SET 7,M
SET7,A

CZ addr
CALL addr
ACI immed
RST 1

RNC

POP D
JNC addr
OUT port
CNC addr
PUSH D
SUI immed
RST 2

RC
EXX
JC addr
IN port
CC addr

DADX B
DADX D

LXI1 X,imwrd
SIXD addr
INX X
DADX H
LIXD addr
DCX X

INR d(X)

DCR d(X)

MV d(X),immed
DADX SP

MOV B,d(X)
MOV C,d(X)

MOV D,d(X)
MOV E,d(X)
MOV H,d(X)
MOV L,d(X)

MAC

SET 6,B
SET 6,C
SET 6,D
SET6,E
SET 6,H
SET6,L
SET 6,M
SET 6,A

SET7,B
SET7,C
SET7,D
SET 7,E
SET7,H
SET7,.L
SET 7,M
SET7,A

CZ addr
CALL addr
ACI immed
RST 1

RNC

POP D
JNC addr
OUT port
CNC addr
PUSH D
SUI immed
RST 2

RC
EXX
JC addr
IN port
CC addr

DADX B
DADX D

LXIX imwrd
SIXD addr
INXX
DADX H
LIXD addr
DCXX

INRX d

DCRX d
MVIX d,immed
DADX SP
LDX B,d

LDX C,d

LDXD,d
LDX E,d
LDX H,d
LDXL,d

Page

13-98
13-98
13-98
13-98
13-98
13-98
13-98
13-98

13-98
13-98
13-98
13-98
13-98
13-98
13-98
13-98

13-13
13-13
13-4

13-94

13-76
13-71
13-42
13-66
13-13
13-72
13-108
13-94

13-76
13-29
13-42
13-33
13-13

13-6
13-6

13-46
13-46
13-36
13-6

13-46
13-23

13-36
13-23
13-46
13-6

13-46
13-46

13-46
13-46
13-46
13-46

—14-9 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Disassembly
DD 70 db

DD 71 db
DD 72 db
DD 73 db
DD 74 db
DD 75 db
DD 77 db
DD 7E db

DD 86 db
DD 8E db
DD 96

DD 9E

DD A6 db
DD AE db
DD B6 db
DD BE db

DD CB db 06
DD CB db OE
DD CB db 16
DD CB db 1E
DD CB db 26
DD CB db 2E
DD CB db 3E

DD CB db 46
DD CB db 4E
DD CB db 56
DD CB db 5E
DD CB db 66
DD CB db 6E
DD CB db 76
DD CBdb 7E

DD CB db 86
DD CB db 8E
DD CB db 96
DD CB db 9E
DD CB db A6

DD CB db AE

DD CB db B6

DD CB db BE

DD CB db C6

DD CB db CE

DD CB db D6

DD CB db DE

DD CB db E6
DD CB db EE
DD CB db F6
DD CB db FE

DD E1
DD E3
DD E5
DD E9
DD F9

DE ib
DF

Zilog

LD (IX+d),B
LD (1X+d),C
LD (1X+d),D
LD (1X+d),E
LD (1X+d),H
LD (1X+d),L
LD (1X+d),A
LD A,(IX+d)

ADD A, (IX+d)
ADC A, (IX+d)

SUB (IX+d)

SBC A, (IX+d)

AND (IX+d)
XOR (IX+d)
OR (IX+d)
CP (1X+d)

RLC (IX+d)
RRC (1X+d)
RL (IX+d)

RR (IX+d)

SLA (IX+d)
SRA (IX+d)
SRL (IX+d)

BIT 0,(IX+d)
BIT 1,(IX+d)
BIT 2,(IX+d)
BIT 3,(IX+d)
BIT 4,(IX+d)
BIT 5,(IX+d)
BIT 6,(IX+d)
BIT 7,(IX+d)

RES 0,(IX+d)
RES 1,(IX+d)
RES 2,(IX+d)
RES 3,(IX+d)
RES 4,(IX+d)
RES 5,(IX+d)
RES 6,(1X+d)
RES 7,(IX+d)

SET 0,(IX+d)
SET 1,(IX+d)
SET 2,(IX+d)
SET 3,(IX+d)
SET 4,(IX+d)
SET 5,(IX+d)
SET 6,(IX+d)
SET 7,(1X+d)

POP IX
EX (SP),IX
PUSH IX
IP (IX)

LD SP,IX

SBC A,immed

RST 18

TIDL

MOV d(X),B
MOV d(X),C
MOV d(X),D
MOV d(X),E
MOV d(X),H
MOV d(X),L
MOV d(X),A
MOV A,d(X)

ADD d(X)
ADC d(X)
SUB d(X)
SBB d(X)
ANA d(X)
XRA d(X)
ORA d(X)
CMP d(X)

RLCR d(X)
RRCR d(X)
RALR d(X)
RARR d(X)
SLAR d(X)
SRAR d(X)
SRLR d(X)

BIT 0,d(X)
BIT 1,d(X)
BIT 2,d(X)
BIT 3,d(X)
BIT 4,d(X)
BIT 5,d(X)
BIT 6,d(X)
BIT 7,d(X)

RES 0,d(X)
RES 1,d(X)
RES 2,d(X)
RES 3,d(X)
RES 4,d(X)
RES 5,d(X)
RES 6,d(X)
RES 7,d(X)

SET 0,d(X)
SET 1,d(X)
SET 2,d(X)
SET 3,d(X)
SET 4,d(X)
SET 5,d(X)
SET 6,d(X)
SET 7,d(X)

POP X
XTIX
PUSH X
PCIX
SPIX

SBI immed
RST 3

MAC

STX Bd
STXCd
STXD,d
STXE.d
STXH,d
STXL,d
STXAd
LDX Ad

ADDXd
ADCX d
SuBXd
SBBXd
ANAXd
XRAXd
ORAXd
CMPXd

RLCXd
RRCX d
RALX d
RARX d
SLAX d
SRAX d
SRLXd

BITX0,d
BITX 1,d
BITX 2,d
BITX 3,d
BITX 4,d
BITX 5,d
BITX 6,d
BITX7,d

RESX 0,d
RESX 1,d
RESX 2,d
RESX 3,d
RESX 4,d
RESX 5,d
RESX 6,d
RESX 7,d

SETX0,d
SETX 1,d
SETX 2,d
SETX 3,d
SETX 4,d
SETX 5,d
SETX 6,d
SETX 7,d

POPX
XTIX
PUSHX
PCIX
SPIX

SBI immed
RST 3

Page

13-46
13-46
13-46
13-46
13-46
13-46
13-46
13-46

13-6
13-4
13-108
13-95
13-8
13-112
13-59
13-16

13-83
13-90
13-80
13-87
13-101
13-104
13-106

13-10
13-10
13-10
13-10
13-10
13-10
13-10
13-10

13-73
13-73
13-73
13-73
13-73
13-73
13-73
13-73

13-98
13-98
13-98
13-98
13-98
13-98
13-98
13-98

13-71
13-28
13-72
13-42
13-46

13-95
13-94

—14-10 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Disassembly
EO

E1l

E2 al ah
E3

E4 al ah
E5

E6 ib
E7

ES
E9
EA al ah
EB
EC al ah

ED 00 pb
ED 01
ED 04
ED 08 pb
ED 09
ED OC

ED 10 pb
ED 11
ED 14
ED 18 pb
ED 19
ED 1C

ED 20 pb
ED 21
ED 24
ED 28 pb
ED 29
ED 2C

ED 30 pb
ED 34
ED 38 pb
ED 39
ED 3C

ED 40
ED 41
ED 42
ED 43 al ah
ED 44
ED 45
ED 46
ED 47

ED 48
ED 49
ED 4A
ED 4B al ah
ED 4C
ED 4D
ED 4F

ED 50
ED 51
ED 52
ED 53 al ah
ED 56
ED 57

Zilog

RET PO

POP HL

JP PO,addr
EX (SP),HL
CALL PO,addr
PUSH HL
AND immed
RST 20

RET PE

JP (HL)

JP PE,addr

EX DE,HL
CALL PE,addr

INO B, (port)
OUTO (port),B
TSTB

INO C,(port)
OUTO (port),C
TSTC

INO D, (port)
OUTO (port),D
TSTD

INO E,(port)
OUTO (port),E
TSTE

INO H,(port)
OuUTO (port),H
TSTH

INO L,(port)
OUTO (port),L
TSTL

TST (HL)

INO A, (port)
OUTO (port),A
TSTA

IN B,(C)
OUT (C),B
SBC HL,BC
LD (addr),BC
NEG

RETN

IM 0

LD 1A

IN C,(C)
OuUT (C),C
ADC HL,BC
LD BC,(addr)
MLT BC
RETI
LDRA

IN D,(C)
OuT (C),D
SBC HL,DE
LD (addr),DE
IM 1

LD A

TIDL

* RPO

* POP H

* JPO addr

* XTHL

* CPO addr
* PUSHH

* ANI immed
*RST 4

* RPE

* PCHL

* JPE addr
* XCHG

* CPE addr

INP B
OUTP B
DSBC B
SBCD addr
NEG
RETN

IMO

STAI

INPC
OUTPC
DADC B
LBCD addr

RETI
STAR

INP D
OUTPD
DSBC D
SDED addr
IM1

LDAI

MAC

RPO
POPH
JPO addr
XTHL
CPO addr
PUSHH
ANI immed
RST 4

RPE
PCHL
JPE addr
XCHG
CPE addr

INP B
OUTP B
DSBC B
SBCD addr
NEG
RETN

IMO

STAI

INPC
OUTPC
DADC B
LBCD addr

RETI
STAR

INP D
OUTPD
DSBC D
SDED addr
IM1

LDAI

Page

13-76
13-71
13-42
13-28
13-13
13-72
13-8

13-94

13-76
13-42
13-42
13-28
13-13

13-35
13-68
13-110
13-35
13-68
13-110

13-35
13-68
13-110
13-35
13-68
13-110

13-35
13-68
13-110
13-35
13-68
13-110

13-35
13-110
13-35
13-68
13-110

13-33
13-66
13-95
13-46
13-57
13-79
13-31
13-46

13-33
13-66
13-4

13-46
13-56
13-78
13-46

13-33
13-66
13-95
13-46
13-31
13-46

—14-11 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Disassembly
ED 58

ED 59
ED 5A
ED 5B al ah
ED 5C
ED 5E
ED 5F

ED 60

ED 61

ED 62

ED 63 al ah
ED 64 ib
ED 67

ED 68
ED 69
ED 6A
ED 6B al ah
ED 6C
ED 6F

ED 70

ED 72

ED 73 al ah
ED 74 ib
ED 76

ED 78
ED 79
ED7A
ED 7B al ah
ED7C

ED 83
ED 8B
ED 93
ED 9B

ED AO
ED Al
ED A2
ED A3
ED A8
ED A9
ED AA
ED AB

ED BO
ED B1
ED B2
ED B3
ED B8
ED B9
ED BA
ED BB

EE ib
EF

Zilog

IN E,(C)
OUT (C),E
ADC HL,DE
LD DE,(addr)
MLT DE

IM 2

LD AR

IN H,(C)
OUT (C)H
SBC HL,HL
LD (addr),HL
TST immed
RRD

IN L,(C)
OuT (C),L
ADC HL,HL
LD HL,(addr)
MLT HL
RLD

SBC HL,SP
LD (addr),SP
TSTIO immed
SLP

IN A,(C)
OUT (C),A
ADC HL,SP
LD SP,(addr)
MLT SP

OTIM
OTDM
OTIMR
OTDMR

LDl
CPI
INI
OUTI
LDD
CPD
IND
OuTD

LDIR
CPIR
INIR
OTIR
LDDR
CPDR
INDR
OTDR

XOR immed
RST 28

TIDL

INP E
OUTPE
DADCD
LDED addr

IM2
LDAR

INPH
OUTPH
DSBCH
SHLD addr

RRD

INP L
OUTP L
DADC H
LHLD addr

RLD

DSBC SP
SSPD addr

INP A
OUTP A
DADC SP
LSPD addr

LDl
CCl
INI
OUTI
LDD
CCD
IND
OuTD

LDIR
CCIR
INIR
OTIR
LDDR
CCDR
INDR
OTDR

XRI immed
RST 5

MAC

INP E
OUTPE
DADCD
LDED addr

IM2
LDAR

INPH
OUTPH
DSBCH
SHLD addr

RRD

INP L
OUTP L
DADC H
LHLD addr

RLD

DSBC SP
SSPD addr

INP A
OUTP A
DADC SP
LSPD addr

LDl
CCl
INI
OUTI
LDD
CCD
IND
OouTD

LDIR
CCIR
INIR
OTIR
LDDR
CCDR
INDR
OTDR

XRI immed
RST 5

Page

13-33
13-66
13-4

13-46
13-56
13-31
13-46

13-33
13-66
13-95
13-46
13-110
13-93

13-33
13-66
13-4

13-46
13-56
13-86

13-34
13-95
13-46
13-111
13-103

13-33
13-66
13-4

13-46
13-56

13-63
13-60
13-64
13-61

13-54
13-19
13-40
13-70
13-52
13-17
13-38
13-69

13-55
13-20
13-41
13-65
13-53
13-18
13-39
13-62

13-112
13-94

—14-12 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Disassembly
FO

F1

F2 al ah
F3

F4 al ah
F5

F6 ib
F7

F8
F9
FA al ah
FB
FC al ah

FD 09
FD 19

FD 21ilih

FD 22 al ah
FD 23

FD 29

FD 2A al ah
FD 2B

FD 34 db
FD 35db
FD 36 dbib
FD 39

FD 46 db
FD 4E db

FD 56 db
FD 5E db
FD 66 db
FD 6E db

FD 70 db
FD 71 db
FD 72 db
FD 73 db
FD 74 db
FD 75 db
FD 77 db
FD 7E db

FD 86 db
FD 8E db
FD 96

FD 9E

FD A6 db
FD AE db
FD B6 db
FD BE db

FD CB db 06
FD CB db OE
FD CBdb 16
FD CBdb 1E
FD CB db 26
FD CB db 2E
FD CB db 3E

Zilog

RET P

POP AF

JP P,addr

DI

CALL P,addr
PUSH AF
OR immed
RST 30

RET M

LD SP,HL

JP M,addr

El

CALL M,addr

ADD 1Y,BC
ADD IY,DE

LD IY,imwrd
LD (addr),lY
INC 1Y
ADD IY HL
LD 1Y, (addr)
DECIY

INC (1'Y+d)

DEC (IY+d)

LD (l'Y+d),immed
ADD IY,SP

LD B,(IY+d)

LD C,(IY+d)

LD D,(IY+d)
LD E,(IY+d)
LD H,(1Y+d)
LD L,(IY+d)

LD (1Y+d),B
LD (1Y+d),C
LD (IY+d),D
LD (1Y+d),E
LD (1Y+d),H
LD (IY+d),L
LD (1Y+d),A
LD A,(1Y+d)

ADD A (1Y+d)
ADC A,(1Y+d)
SUB (IY+d)
SBC A,(IY+d)
AND (1Y +d)
XOR (1Y+d)
OR (1Y+d)

CP (1Y +d)

RLC (1Y+d)
RRC (IY+d)
RL (IY+d)

RR (1Y+d)

SLA (1Y+d)
SRA (IY+d)
SRL (IY+d)

TIDL

*RP

* POP PSW
* JP addr

* DI

* CP addr

* PUSH PSW
* ORI immed
*RST6

* RM

* SPHL

* JM addr
* E|

* CM addr

DADY B
DADY D

LXIY,imwrd
SIYD addr
INXY
DADY H
LI'YD addr
DCXY

INR d(Y)

DCR d(Y)

MVI1 d(Y),immed
DADY SP

MOV B,d(Y)
MOV C,d(Y)

MOV D,d(Y)
MOV E,d(Y)
MOV H,d(Y)
MOV L,d(Y)

MOV d(Y),B
MOV d(Y),C
MOV d(Y),D
MOV d(Y),E
MOV d(Y),H
MOV d(Y),L
MOV d(Y),A
MOV Ad(Y)

ADD d(Y)
ADC d(Y)
SUB d(Y)
SBB d(Y)
ANA d(Y)
XRA d(Y)
ORA d(Y)
CMP d(Y)

RLCR d(Y)
RRCR d(Y)
RALR d(Y)
RARR d(Y)
SLAR d(Y)
SRAR d(Y)
SRLR d(Y)

MAC

RP

POP PSW
JP addr

DI

CP addr
PUSH PSW
ORI immed
RST 6

RM
SPHL
JM addr
El

CM addr

DADY B
DADY D

LXIY imwrd
SIYD addr
INXY
DADY H
LIYD addr
DCXY

INRY d
DCRY d

MVIY d,immed

DADY SP
LDY Bd
LDY Cd

LDY D,d
LDY E,d
LDY H,d
LDY L,d

STY Bd
STy Cd
STY D,d
STY Ed
STY H,d
STY L,d
STY Ad
LDY A,d

ADDY d
ADCY d
SUBY d
SBBY d
ANAY d
XRAY d
ORAY d
CMPY d

RLCY d
RRCY d
RALY d
RARY d
SLAY d
SRAY d
SRLY d

Page

13-76
13-71
13-42
13-25
13-13
13-72
13-59
13-94

13-76
13-46
13-42
13-27
13-13

13-6
13-6

13-46
13-46
13-36
13-6

13-46
13-23

13-36
13-23
13-46
13-6

13-46
13-46

13-46
13-46
13-46
13-46

13-46
13-46
13-46
13-46
13-46
13-46
13-46
13-46

13-6
13-4
13-108
13-95
13-8
13-112
13-59
13-16

13-83
13-90
13-80
13-87
13-101
13-104
13-106

— 14-13 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Disassembly
FD CB db 46

FD CB db 4E
FD CB db 56
FD CB db 5E
FD CB db 66
FD CB db 6E
FD CB db 76
FD CB db 7E

FD CB db 86
FD CB db 8E
FD CB db 96
FD CB db 9E
FD CB db A6
FD CB db AE
FD CB db B6
FD CB db BE

FD CBdb C6
FD CBdb CE
FD CB db D6
FD CB db DE
FD CB db E6
FD CB db EE
FD CB db F6
FD CB db FE

FD E1
FD E3
FD E5
FD E9
FD F9

FE ib
FF

Zilog

BIT 0,(IY~+d)
BIT 1,(1Y+d)
BIT 2,(1Y+d)
BIT 3,(IY+d)
BIT 4,(1Y+d)
BIT 5,(1Y+d)
BIT 6,(1Y+d)
BIT 7,(IY+d)

RES 0,(1Y+d)
RES 1,(1Y+d)
RES 2,(1Y+d)
RES 3,(IY+d)
RES 4,(1Y+d)
RES 5,(1Y+d)
RES 6,(1Y+d)
RES 7,(1Y+d)

SET 0,(1Y+d)
SET 1,(1Y+d)
SET 2,(1Y+d)
SET 3,(IY+d)
SET 4,(1Y+d)
SET 5,(1Y+d)
SET 6,(1Y+d)
SET 7,(1Y+d)

POP IY
EX (SP),IY
PUSH IY
P (1Y)

LD SP,IY

CP immed
RST 38

TIDL

BIT 0,d(Y)
BIT 1,d(Y)
BIT 2,d(Y)
BIT 3,d(Y)
BIT 4,d(Y)
BIT 5,d(Y)
BIT 6,d(Y)
BIT 7,d(Y)

RES 0,d(Y)
RES 1,d(Y)
RES 2,d(Y)
RES 3,d(Y)
RES 4,d(Y)
RES 5,d(Y)
RES 6,d(Y)
RES 7,d(Y)

SET 0,d(Y)
SET 1,d(Y)
SET 2,d(Y)
SET 3,d(Y)
SET 4,d(Y)
SET 5,d(Y)
SET 6,d(Y)
SET 7,d(Y)

POP Y
XTIY
PUSH Y
PCIY
SPIY

* CPIl immed
*RST7

MAC

BITY 0,d
BITY 1,d
BITY 2,d
BITY 3,d
BITY 4,d
BITY 5,d
BITY 6,d
BITY 7,d

RESY 0,d
RESY 1,d
RESY 2,d
RESY 3,d
RESY 4,d
RESY 5,d
RESY 6,d
RESY 7,d

SETY 0,d
SETY 1,d
SETY 2,d
SETY 3.d
SETY 4,d
SETY 5,d
SETY 6,d
SETY 7,d

POPY
XTIY
PUSHY
PCIY
SPIY

CPI immed
RST7

Page

13-10
13-10
13-10
13-10
13-10
13-10
13-10
13-10

13-73
13-73
13-73
13-73
13-73
13-73
13-73
13-73

13-98
13-98
13-98
13-98
13-98
13-98
13-98
13-98

13-71
13-28
13-72
13-42
13-46

13-16
13-94

— 14-14 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Cross Reference by Zilog Mnemonic

Following is an op-code cross reference from Zilog to TDL and MAC mnemonics and machine codes. This table can be of
great assistance in translation. The page given contains the detailed instructions for the op-codes.

Those Zilog mnemonics indicated by a “~” and missing in TDL and MAC mnemonics are unique to the Z-180 processor.

Those TDL mnemonics that are indicated by an “*” are the Intel 8080 processor subset, and usually use the TDL or MAC
mnemonics (identical for all 8080 instructions).

Zilog TDL MAC Disassembly Page
ADC A,(HL) * ADC M ADC M 8E 13-4
ADC A,(IX+d) ADC d(X) ADCX d DD 8E db 13-4
ADC A,(IY+d) ADC d(Y) ADCY d FD 8E db 13-4
ADC A A * ADC A ADC A 8F 13-4
ADC AB * ADC B ADCB 88 13-4
ADC A,C * ADC C ADCC 89 13-4
ADC AD * ADCD ADCD 8A 13-4
ADC AE * ADCE ADCE 8B 13-4
ADC A H * ADCH ADCH 8C 13-4
ADC AL * ADC L ADC L 8D 13-4
ADC A,immed * ACIl immed ACI immed CEib 13-4
ADC HL,BC DADC B DADC B ED 4A 13-4
ADC HL,DE DADC D DADC D ED 5A 13-4
ADC HL,HL DADCH DADCH ED 6A 13-4
ADC HL,SP DADC SP DADC SP ED 7A 13-4
ADD A,(HL) * ADD M ADD M 86 13-6
ADD A, (IX+d) ADD d(X) ADDX d DD 86 db 13-6
ADD A, (IY+d) ADD d(Y) ADDY d FD 86 db 13-6
ADD A A * ADD A ADD A 87 13-6
ADD AB * ADD B ADD B 80 13-6
ADD A,C *ADDC ADD C 81 13-6
ADD AD * ADD D ADD D 82 13-6
ADD AE * ADD E ADD E 83 13-6
ADD AH * ADDH ADDH 84 13-6
ADD AL * ADD L ADD L 85 13-6
ADD A immed * ADI immed ADI immed C6ib 13-6
ADD HL,BC *DAD B DAD B 09 13-6
ADD HL,DE * DAD D DAD D 19 13-6
ADD HL,HL * DADH DADH 29 13-6
ADD HL,SP * DAD SP DAD SP 39 13-6
ADD IX,BC DADX B DADX B DD 09 13-6
ADD IX,DE DADX D DADX D DD 19 13-6
ADD IX,HL DADX H DADX H DD 29 13-6
ADD IX,SP DADX SP DADX SP DD 39 13-6
ADD 1Y,BC DADY B DADY B FD 09 13-6
ADD IY,DE DADY D DADY D FD 19 13-6
ADD IY,HL DADY H DADY H FD 29 13-6
ADD 1Y,SP DADY SP DADY SP FD 39 13-6
AND (HL) * ANA M ANA M A6 13-8
AND (I1X+d) ANA d(X) ANAX d DD A6 db 13-8
AND (1Y+d) ANA d(Y) ANAY d FD A6 db 13-8

—15-1 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Zilog

AND A
AND B
AND C
AND D
AND E
AND H
AND L

AND immed

BIT 0,(HL)
BIT 0,(1X+d)
BIT 0,(1Y+d)

BITO0,A
BITO0,B
BITO,C
BIT 0,D
BIT O,E
BIT OH
BITO,L

BIT 1,(HL)
BIT 1,(1X+d)
BIT 1,(1Y+d)

BIT 1,A
BIT 1B
BIT 1,C
BIT 1D
BIT 1,E
BIT1H
BIT1.L

BIT 2,(HL)
BIT 2,(1X+d)
BIT 2,(1Y+d)

BIT 2,A
BIT 2,B
BIT 2,C
BIT 2,D
BIT 2,E
BIT 2,H
BIT 2,L

BIT 3,(HL)
BIT 3,(IX+d)
BIT 3,(IY+d)

BIT 3,A
BIT 3,B
BIT 3,C
BIT 3,D
BIT 3,E
BIT 3,H
BIT 3,L

BIT 4,(HL)
BIT 4,(IX+d)
BIT 4,(1Y+d)

TIDL

* ANA A
* ANA B
*ANA C
* ANAD
*ANAE
*ANAH
* ANA L

* ANI immed

BIT O,M
BIT 0,d(X)
BIT 0,d(Y)

BIT0,A
BITO,B
BITO,C
BITO,D
BIT O,E
BIT OH
BITO,L

BIT 1,M
BIT 1,d(X)
BIT 1,d(Y)

BIT 1,A
BIT1B
BIT1,C
BIT1D
BIT 1,E
BIT1H
BIT1.L

BIT 2,M
BIT 2,d(X)
BIT 2,d(Y)

BIT 2,A
BIT2,B
BIT 2,C
BIT 2,D
BIT 2,E
BIT 2,H
BIT 2,L

BIT 3,M
BIT 3,d(X)
BIT 3,d(Y)

BIT 3,A
BIT 3,B
BIT3,C
BIT 3,D
BIT 3,E
BIT 3,H
BIT 3,L

BIT 4,M
BIT 4,d(X)
BIT 4,d(Y)

MAC

ANA A
ANA B
ANAC
ANAD
ANA E
ANA H
ANA L

ANI immed

BIT O,M
BITX0,d
BITY 0,d

BIT0,A
BITO,B
BITO,C
BITO,D
BIT O,E
BIT OH
BITO,L

BIT 1,M
BITX 1,d
BITY 1,d

BIT 1,A
BIT1B
BIT1,C
BIT 1D
BIT 1,E
BIT1H
BIT1,L

BIT 2,M
BITX 2,d
BITY 2,d

BIT 2,A
BIT2,B
BIT 2,C
BIT 2,D
BIT 2,E
BIT 2,H
BIT 2,L

BIT 3,M
BITX 3,d
BITY 3,d

BIT 3,A
BIT 3,B
BIT3,C
BIT 3,D
BIT 3,E
BIT 3,H
BIT 3,L

BIT 4,M
BITX 4,d
BITY 4,d

Disassembly
A7

AQ
Al
A2
A3
A4
A5

E6 ib

CB 46
DD CB db 46
FD CB db 46

CB 47
CB 40
CB 41
CB 42
CB 43
CB 44
CB 45

CB4E
DD CB db 4E
FD CB db 4E

CB 4F
CB 48
CB 49
CB 4A
CB 4B
CB 4C
CB 4D

CB 56
DD CB db 56
FD CB db 56

CB 57
CB 50
CB51
CB 52
CB 53
CB 54
CB 55

CB 5E
DD CB db 5E
FD CB db 5E

CB 5F
CB 58
CB 59
CB5A
CB 5B
CB5C
CB5D

CB 66
DD CB db 66
FD CB db 66

Page
13-8
13-8
13-8
13-8
13-8
13-8
13-8

13-8

13-10
13-10
13-10

13-10
13-10
13-10
13-10
13-10
13-10
13-10

13-10
13-10
13-10

13-10
13-10
13-10
13-10
13-10
13-10
13-10

13-10
13-10
13-10

13-10
13-10
13-10
13-10
13-10
13-10
13-10

13-10
13-10
13-10

13-10
13-10
13-10
13-10
13-10
13-10
13-10

13-10
13-10
13-10

—15-2 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Zilog

BIT 4,A
BIT 4,B
BIT 4,C
BIT 4,D
BIT 4,E
BIT 4,H
BIT 4,L

BIT 5,(HL)
BIT 5,(1X+d)
BIT 5,(1Y+d)

BIT5A
BIT 5B
BIT 5,C
BIT 5,D
BIT 5,E
BIT5H
BIT5,L

BIT 6,(HL)
BIT 6,(1X+d)
BIT 6,(1Y+d)

BIT 6,A
BIT 6,B
BIT6,C
BIT 6,D
BIT 6,E
BIT 6,H
BIT 6,L

BIT 7,(HL)
BIT 7,(IX+d)
BIT 7,(1Y+d)

BIT 7,A
BIT7,B
BIT7,C
BIT 7.D
BIT 7,E
BIT 7,H
BIT 7,L

CALL addr

CALL C,addr
CALL M,addr
CALL NC,addr
CALL NZ,addr
CALL P,addr
CALL PE,addr
CALL PO,addr
CALL Z,addr

CCF

CP (HL) *
CP (IX+d)
CP (IY+d)

%k X 3k o X F X

*

TIDL

BIT 4,A
BIT 4,B
BIT4,C
BIT 4D
BIT 4,E
BIT4H
BIT 4,L

BIT 5,M
BIT 5,d(X)
BIT 5,d(Y)

BIT5A
BIT 5,B
BIT5,C
BIT 5D
BIT 5,E
BIT5H
BIT5,L

BIT 6,M
BIT 6,d(X)
BIT 6,d(Y)

BIT 6,A
BIT6,B
BIT6,C
BIT 6,D
BIT 6,E
BIT 6,H
BIT 6,L

BIT 7,M
BIT 7,d(X)
BIT 7,d(Y)

BIT 7,A
BIT7,B
BIT7,C
BIT 7,.D
BIT 7,E
BIT 7,H
BIT 7,L

CALL addr

CC addr
CM addr
CNC addr
CNZ addr
CP addr
CPE addr
CPO addr
CZ addr

CMC

CMP M
CMP d(X)
CMP d(Y)

MAC

BIT 4,A
BIT 4,B
BIT4,C
BIT 4D
BIT 4,E
BIT 4H
BIT 4,L

BIT 5M
BITX 5,d
BITY 5,d

BIT5A
BIT5,B
BIT5,C
BIT 5D
BIT 5,E
BIT5H
BIT5,L

BIT 6,M
BITX 6,d
BITY 6,d

BIT 6,A
BIT6,B
BIT6,C
BIT 6,D
BIT 6,E
BIT 6,H
BIT 6,L

BIT 7,M
BITX 7,d
BITY 7,d

BIT 7,A
BIT7,B
BIT7,C
BIT 7,D
BIT 7,E
BIT 7,H
BIT 7,L

CALL addr

CC addr
CM addr
CNC addr
CNZ addr
CP addr
CPE addr
CPO addr
CZ addr

CMC

CMP M
CMPXd
CMPY d

Disassembly
CB 67

CB 60
CB61
CB 62
CB 63
CB 64
CB 65

CB 6E
DD CB db 6E
FD CB db 6E

CB 6F
CB 68
CB 69
CB 6A
CB 6B
CB6C
CB 6D

CB 76
DD CB db 76
FD CB db 76

CB 77
CB70
CB71
CB 72
CB 73
CB 74
CB75

CBT7E
DD CB db 7E
FD CB db 7E

CB7F
CB 78
CB 79
CB7A
CB7B
CB7C
CB7D

CDal ah

DC al ah
FC al ah
D4 al ah
C4 al ah
F4 al ah
EC al ah
E4 al ah
CCal ah

3F

BE
DD BE db
FD BE db

Page

13-10
13-10
13-10
13-10
13-10
13-10
13-10

13-10
13-10
13-10

13-10
13-10
13-10
13-10
13-10
13-10
13-10

13-10
13-10
13-10

13-10
13-10
13-10
13-10
13-10
13-10
13-10

13-10
13-10
13-10

13-10
13-10
13-10
13-10
13-10
13-10
13-10

13-13

13-13
13-13
13-13
13-13
13-13
13-13
13-13
13-13

13-15

13-16
13-16
13-16

—15-3 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Zilog TDL MAC Disassembly Page

CPA *CMP A CMP A BF 13-16
CPB *CMPB CMPB B8 13-16
CPC *CMPC CMPC B9 13-16
CPD *CMPD CMP D BA 13-16
CPE *CMPE CMPE BB 13-16
CPH *CMPH CMPH BC 13-16
CPL *CMP L CMP L BD 13-16
CP immed * CPIl immed CPI immed FE ib 13-16
CPD CCD CCD ED A9 13-17
CPDR CCDR CCDR ED B9 13-18
CPI CClI CClI ED Al 13-19
CPIR CCIR CCIR ED B1 13-20
CPL * CMA CMA 2F 13-21
DAA * DAA DAA 27 13-22
DEC (HL) * DCR M DCR M 35 13-23
DEC (IX+d) DCR d(X) DCRX d DD 35db 13-23
DEC (IY+d) DCR d(Y) DCRY d FD 35db 13-23
DEC A *DCRA DCR A 3D 13-23
DECB *DCRB DCR B 05 13-23
DECC *DCRC DCRC oD 13-23
DEC D *DCRD DCR D 15 13-23
DECE *DCRE DCRE 1D 13-23
DECH *DCRH DCRH 25 13-23
DECL *DCR L DCRL 2D 13-23
DEC BC *DCXB DCX B 0B 13-23
DEC DE *DCXD DCX D 1B 13-23
DEC HL * DCX H DCXH 2B 13-23
DEC IX DCX X DCXX DD 2B 13-23
DEC 1Y DCXY DCXY FD 2B 13-23
DEC SP * DCX SP DCX SP 3B 13-23
DI * DI DI F3 13-25
DJNZ disp DJNZ disp DJNZ disp 10 ab 13-26
El * El El FB 13-27
EX (SP),HL * XTHL XTHL E3 13-28
EX (SP),IX XTIX XTIX DD E3 13-28
EX (SP),IY XTIY XTIY FD E3 13-28
EX AF,AF EXAF EXAF 08 13-28
EX DE,HL * XCHG XCHG EB 13-28
EXX EXX EXX D9 13-29
HALT *HLT HLT 76 13-30
IMO IMO IMO ED 46 13-31
IM1 IM1 IM1 ED 56 13-31
IM 2 IM2 IM2 ED 5E 13-31
IN A,(C) INP A INP A ED 78 13-33
IN B,(C) INP B INP B ED 40 13-33
IN C,(C) INPC INP C ED 48 13-33
IN D,(C) INP D INP D ED 50 13-33
IN E,(C) INP E INP E ED 58 13-33
IN H,(C) INP H INP H ED 60 13-33
IN L,(C) INP L INP L ED 68 13-33
IN A,(port) * IN port IN port DB pb 13-33

—15-4 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Zilog

~ INO A, (port)
~ INO B, (port)
~ INO C,(port)
~ INO D, (port)
~ INO E,(port)
~ INO H,(port)
~ INO L,(port)

INC (HL)
INC (IX+d)
INC (1Y+d)

INCA
INC B
INCC
INCD
INCE
INCH
INC L

INC BC
INC DE
INC HL
INC IX
INCIY
INC SP

IND
INDR
INI
INIR
JP addr

JP (HL)
IP (IX)
PP (1Y)

JP C,addr
JP M,addr
JP NC,addr
JP NZ,addr
JP P,addr
JP PE,addr
JP PO,addr
JP Z,addr

JR disp

JR C,disp
JR NC,disp
JR NZ,disp
JR Z,disp

LD (BC),A
LD (DE),A

LD (HL),A
LD (HL),B
LD (HL),.C
LD (HL),D
LD (HL),E
LD (HL),H
LD (HL),L

% % ok X % %

*

INR M
INR d(X)
INR d(Y)

INR A
INR B
INRC
INR D
INR E
INRH
INR L

INX B

*INXD

% % ok X 3k X

INXH
INX X
INX'Y
INX SP

IND
INDR
INI

INIR
JMP addr

PCHL
PCIX
PCIY

JC addr
JM addr
JNC addr
JNZ addr
JP addr
JPE addr
JPO addr
JZ addr

JMPR disp

JRC disp
JRNC disp
JRNZ disp
JRZ disp

*STAXB
*STAXD

* % ok ok 3k % %

MOV M,A
MOV M,B
MOV M,C
MOV M,D
MOV M,E
MOV M,H
MOV M,L

INI
INIR
JMP addr

PCHL
PCIX
PCIY

JC addr
JM addr
JNC addr
JNZ addr
JP addr
JPE addr
JPO addr
JZ addr

JR disp

JRC disp
JRNC disp
JRNZ disp
JRZ disp

STAX B
STAXD

MOV M,A
MOV M,B
MOV M,C
MOV M,D
MOV M,E
MOV M,H
MOV M,L

Disassembly
ED 38 pb

ED 00 pb
ED 08 pb
ED 10 pb
ED 18 pb
ED 20 pb
ED 28 pb

34
DD 34 db
FD 34 db

3C
04
0C
14
1C
24
2C

03
13
23
DD 23
FD 23
33

ED AA
ED BA
ED A2
ED B2
C3alah

E9
DD E9
FD E9

DA al ah
FA al ah
D2 al ah
C2al ah
F2 al ah
EA al ah
E2 al ah
CAal ah

18 ab

38 ab
30 ab
20 ab
28 ab

02
12

77
70
71
72
73
74
75

Page

13-35
13-35
13-35
13-35
13-35
13-35
13-35

13-36
13-36
13-36

13-36
13-36
13-36
13-36
13-36
13-36
13-36

13-36
13-36
13-36
13-36
13-36
13-36

13-38
13-39
13-40
13-41
13-42

13-42
13-42
13-42

13-42
13-42
13-42
13-42
13-42
13-42
13-42
13-42

13-44

13-44
13-44
13-44
13-44

13-46
13-46

13-46
13-46
13-46
13-46
13-46
13-46
13-46

—15-5 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Zilog

LD (HL),immed

LD (1X+d),A
LD (IX+d),B
LD (1X+d),C
LD (1X+d),D
LD (1X+d),E
LD (1X+d),H
LD (1X+d),L

LD (IX+d),immed

LD (1Y+d),A
LD (1Y+d),B
LD (1Y+d),C
LD (1Y+d),D
LD (IY+d),E
LD (1Y+d),H
LD (1Y+d),L

LD (I'Y+d),immed

LD (addr),A

LD (addr),BC
LD (addr),DE
LD (addr),HL
LD (addr),IX
LD (addr),IY
LD (addr),SP

LD A,(BC)
LD A,(DE)
LD A,(HL)
LD A, (IX+d)
LD A,(IY+d)
LD A,(addr)

LD AA
LD AB
LD AC
LD AD
LD AE
LD AH
LD A/l

LD AL
LD AR

LD A,immed

LD B,(HL)
LD B,(1X+d)
LD B,(1Y+d)

LD B,A
LD B,B
LD B,C
LD B,D
LD B,E
LD B,H
LD B,L

LD B,immed

LD C,(HL)
LD C,(1X+d)
LD C,(1Y+d)

TIDL

* MVI M,immed

MOV d(X),A
MOV d(X),B
MOV d(X),C
MOV d(X),D
MOV d(X),E
MOV d(X),H
MOV d(X),L

MVI d(X),immed

MOV d(Y),A
MOV d(Y),B
MOV d(Y),C
MOV d(Y),D
MOV d(Y),E
MOV d(Y),H
MOV d(Y),L

MVI1 d(Y),immed

* STA addr

SBCD addr
SDED addr
* SHLD addr
SIXD addr
SIYD addr
SSPD addr

* LDAX B

* LDAX D

* MOV AM
MOV A,d(X)
MOV A,d(Y)

* LDA addr

*MOV AA
*MOV AB
* MOV AC
* MOV AD
* MOV AE
* MOV AH
LDAI
* MOV AL
LDAR

* MVI A,immed

* MOV B,M
MOV B,d(X)
MOV B,d(Y)

* MOV B,A
* MOV B,B
* MOV B,C
* MOV B,D
* MOV B,E
* MOV B,H
* MOV B,L

* MVI B,immed

* MOV C,M
MOV C,d(X)
MOV C,d(Y)

MAC

MVI M,immed

STXAd
STX B,d
STXCd
STXDd
STXE.d
STX H,d
STXL,d

MVIX d,immed

STY Ad
STY Bd
STy Cd
STY D,d
STY Ed
STY Hd
STYL,d

MVIY d,immed
STA addr

SBCD addr
SDED addr
SHLD addr
SIXD addr
SIYD addr
SSPD addr

LDAX B
LDAX D
MOV AM
LDX A,d
LDY A,d
LDA addr

MOV A A
MOV AB
MOV A,C
MOV AD
MOV AE
MOV AH
LDAI

MOV AL
LDAR

MVI A,immed

MOV B,M
LDX Bd
LDY Bd

MOV B,A
MOV B,B
MOV B,C
MOV B,D
MOV B,E
MOV B,H
MOV B,L

MVI B,immed

MOV C,M
LDXCd
LDY Cd

Disassembly
36ib

DD 77 db
DD 70 db
DD 71 db
DD 72 db
DD 73 db
DD 74 db
DD 75 db

DD 36 dbib

FD 77 db
FD 70 db
FD 71 db
FD 72 db
FD 73 db
FD 74 db
FD 75 db

FD 36 db ib
32 al ah

ED 43 al ah
ED 53 al ah
22 al ah

DD 22 al ah
FD 22 al ah
ED 73 al ah

0A

1A

7E

DD 7E db
FD 7E db
3Aal ah

TF
78
79
TA
B
7C
ED 57
7D
ED 5F

3Eib

46
DD 46 db
FD 46 db

47
40
41
42
43
44
45

06 ib

4E
DD 4E db
FD 4E db

Page
13-46

13-46
13-46
13-46
13-46
13-46
13-46
13-46

13-46

13-46
13-46
13-46
13-46
13-46
13-46
13-46

13-46
13-46

13-46
13-46
13-46
13-46
13-46
13-46

13-46
13-46
13-46
13-46
13-46
13-46

13-46
13-46
13-46
13-46
13-46
13-46
13-46
13-46
13-46

13-46

13-46
13-46
13-46

13-46
13-46
13-46
13-46
13-46
13-46
13-46

13-46

13-46
13-46
13-46

— 156 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Zilog

LD CA
LDC,B
LD C,C
LDCD
LD CE
LD CH
LD C,L

LD C,immed

LD D,(HL)
LD D,(IX+d)
LD D,(IY+d)

LD D,A
LD D,B
LDD,C
LD D,D
LD D,E
LD D,H
LD D,L

LD D,immed

LD E,(HL)
LD E,(IX+d)
LD E,(IY+d)

LD EA
LDEB
LDE,C
LDED
LD E,E
LD EH
LD EL

LD E,immed

LD H,(HL)
LD H,(IX+d)
LD H,(IY+d)

LD HA
LD H,B
LD H,C
LD H,D
LD H,E
LD H,H
LD H,L

LD H,immed
LD LA

LD L,(HL)
LD L,(IX+d)
LD L,(IY+d)

LD LA
LDL,B
LDL,C
LDL,D
LD L,E
LD L,H
LDL,L

LD L,immed

TIDL

* MOV CA
* MOV C,B
* MOV C,C
* MOV C,D
* MOV C,E
* MOV C,H
*MOV C,L

* MVI C,immed

* MOV DM

MOV D,d(X)
MOV D,d(Y)

* MOV DA
* MOV D,B
*MOV D,C
*MOVD,D
* MOV D,E
* MOV D,H
* MOV D,L

* MVI D,immed

* MOV E,M

MOV E,d(X)
MOV E,d(Y)

* MOV E A
* MOV E,B
*MOVEC
* MOV ED
* MOV E,E
* MOV EH
* MOV E,L

* MVI E,immed

* MOV HM

MOV H,d(X)
MOV H,d(Y)

* MOV H,A
* MOV H,B
* MOV H,C
*MOV HD
* MOV H,E
* MOV HH
* MOV H,L

* MVI H,immed

STAI
* MOV LM

MOV L,d(X)
MOV L,d(Y)

* MOV LA
*MOV LB
* MOV L,C
*MOV LD
* MOV L,E
* MOV L,H
* MOV L,L

* MVI L,immed

MAC

MOV CA
MOV C,B
MOV C,C
MOV C,D
MOV C,E
MOV CH
MOV C,L

MVI C,immed

MOV D,M
LDX D,
LDY D,d

MOV D,A
MOV D,B
MOV D,C
MOV D,D
MOV D,E
MOV D,H
MOV D,L

MVI D,immed

MOV E,M
LDXE,d
LDY E,d

MOV E,A
MOV E,B
MOV E,C
MOV E,D
MOV E,E
MOV EH
MOV E,L

MVI E,immed

MOV H,M
LDX H,d
LDY H,d

MOV H,A
MOV H,B
MOV H,C
MOV H,D
MOV H,E
MOV H,H
MOV H,L

MVI H,immed

STAI

MOV LM
LDX L,d
LDY L,d

MOV LA
MOV L,B
MOV L,C
MOV L,D
MOV L,E
MOV L,H
MOV L,L

MVI L,immed

Disassembly
4F

48
49
4A
4B
4C
4D

OE ib

56
DD 56 db
FD 56 db

57
50
51
52
53
54
55

16 ib

5E
DD 5E db
FD 5E db

5F
58
59
5A
5B
5C
5D

1Eib

66
DD 66 db
FD 66 db

67
60
61
62
63
64
65

26 ib
ED 47

6E
DD 6E db
FD 6E db

6F
68
69
6A
6B
6C
6D

2E ib

Page

13-46
13-46
13-46
13-46
13-46
13-46
13-46

13-46

13-46
13-46
13-46

13-46
13-46
13-46
13-46
13-46
13-46
13-46

13-46

13-46
13-46
13-46

13-46
13-46
13-46
13-46
13-46
13-46
13-46

13-46

13-46
13-46
13-46

13-46
13-46
13-46
13-46
13-46
13-46
13-46

13-46
13-46

13-46
13-46
13-46

13-46
13-46
13-46
13-46
13-46
13-46
13-46

13-46

—15-7 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Zilog

LD R,A

LD BC,(addr)
LD BC,imwrd
LD DE,(addr)
LD DE,imwrd
LD HL,(addr)
LD HL,imwrd

LD IX,(addr)
LD IX,imwrd
LD 1Y, (addr)
LD IY,imwrd

LD SP,(addr)
LD SP,HL
LD SP,IX
LD SP,IY

LD SP,imwrd
LDD

LDDR

LDI

LDIR

MLT BC
MLT DE
MLT HL
MLT SP

NEG
NOP

OR (HL)
OR (IX+d)
OR (IY+d)

ORA
ORB
ORC
ORD
ORE
ORH
ORL

OR immed
OTDM
OTDMR
OTDR
OTIM
OTIMR
OTIR

OUT (C),A
OUT (C),B
OUT (C),C
OUT (C),D
OUT (C),E
OUT (C)H
OUT (C),L

TIDL

STAR

LBCD addr
LXI B,imwrd
LDED addr
LXI D,imwrd

* LHLD addr

ok X 3k X X F

LXI H,imwrd

LIXD addr
LXI X,imwrd
LIYD addr
LXIY,imwrd

LSPD addr
SPHL
SPIX
SPIY

LX1 SP,imwrd
LDD

LDDR

LDI

LDIR

NOP

ORA M
ORA d(X)
ORA d(Y)

ORA A
ORAB
ORAC
ORAD
ORAE
ORAH
ORAL

ORI immed

MAC
STAR

LBCD addr
LXI B,imwrd
LDED addr
LXI D,imwrd
LHLD addr
LXI H,imwrd

LIXD addr
LXIX imwrd
LIYD addr
LXIY imwrd

LSPD addr
SPHL
SPIX
SPIY

LXI1 SP,imwrd
LDD

LDDR

LDI

LDIR

NOP

ORA M
ORAXd
ORAY d

ORA A
ORAB
ORAC
ORAD
ORAE
ORAH
ORAL

ORI immed

Disassembly
ED 4F

ED 4B al ah
01ilih

ED 5B al ah
11ilih

2A al ah

21 il ih

DD 2A al ah
DD 21ilih

FD 2A al ah
FD 21 ilih

ED 7B al ah
F9

DD F9

FD F9

31ilih
ED A8
ED B8
ED A0
ED BO

ED 4C
ED 5C
ED 6C
ED7C

ED 44
00

B6
DD B6 db
FD B6 db

B7
BO
Bl
B2
B3
B4
B5

F6 ib

ED 8B
ED 9B
ED BB
ED 83
ED 93
ED B3

ED 79
ED 41
ED 49
ED 51
ED 59
ED 61
ED 69

Page
13-46

13-46
13-46
13-46
13-46
13-46
13-46

13-46
13-46
13-46
13-46

13-46
13-46
13-46
13-46

13-46
13-52
13-53
13-54
13-55

13-56
13-56
13-56
13-56

13-57
13-58

13-59
13-59
13-59

13-59
13-59
13-59
13-59
13-59
13-59
13-59

13-59
13-60
13-61
13-62
13-63
13-64
13-65

13-66
13-66
13-66
13-66
13-66
13-66
13-66

—15-8 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Zilog

OUT (port),A

OUTO (port),A
OUTO (port),B
OUTO (port),C
OUTO (port),D
OUTO (port),E
OUTO (port),H
OUTO (port),L

OouTD
OUTI

POP AF
POP BC
POP DE
POP HL
POP IX
POP IY

PUSH AF
PUSH BC
PUSH DE
PUSH HL
PUSH IX
PUSH IY

RES 0,(HL)
RES 0,(IX+d)
RES 0,(1Y+d)

RES 0,A
RES0,B
RES0,C
RES 0,D
RES 0,E
RES O,H
RESO,L

RES 1,(HL)
RES 1,(IX+d)
RES 1,(1Y+d)

RES 1A
RES 1,B
RES1,C
RES 1,D
RES 1,E
RES 1,H
RES 1,L

RES 2,(HL)
RES 2,(1X+d)
RES 2,(1Y+d)

RES 2,A
RES 2,B
RES 2,C
RES 2,D
RES 2,E
RES 2,H
RES 2,L

RES 3,(HL)
RES 3,(IX+d)
RES 3,(IY+d)

*

* ok %

* ok % X

TIDL

OUT port

OuTD
OUTI

POP PSW
POP B
POP D
POPH
POP X
POPY

PUSH PSW
PUSH B
PUSH D
PUSH H
PUSH X
PUSHY

RES O,M
RES 0,d(X)
RES 0,d(Y)

RES 0,A
RES0,B
RES0,C
RES 0,D
RES 0,E
RES O,H
RESO,L

RES 1,M
RES 1,d(X)
RES 1,d(Y)

RES 1A
RES 1,B
RES1,C
RES 1,D
RES 1,E
RES 1,H
RES 1,L

RES 2,M
RES 2,d(X)
RES 2,d(Y)

RES 2,A
RES 2,B
RES 2,C
RES 2,D
RES 2,E
RES 2,H
RES 2,L

RES 3,M
RES 3,d(X)
RES 3,d(Y)

MAC
OUT port

OuTD
OUTI

POP PSW
POP B
POP D
POP H
POPX
POPY

PUSH PSW

PUSH B
PUSH D
PUSH H
PUSHX
PUSHY

RES O,M
RESX 0,d
RESY 0,d

RES 0,A
RES 0,B
RES 0,C
RES 0,D
RES 0,E
RES O,H
RESO,L

RES 1,M
RESX 1,d
RESY 1,d

RES 1A
RES1,B
RES1,C
RES 1,D
RES 1,E
RES 1,H
RES 1,L

RES 2,M
RESX 2,d
RESY 2,d

RES 2,A
RES 2,B
RES 2,C
RES 2,D
RES 2,E
RES 2,H
RES 2,L

RES 3,M
RESX 3,d
RESY 3,d

Disassembly
D3 pb

ED 39
ED 01
ED 09
ED 11
ED 19
ED 21
ED 29

ED AB
ED A3

F1
C1
D1
El
DD E1
FD E1

F5
C5
D5
E5
DD E5
FD E5

CB 86
DD CB db 86
FD CB db 86

CB 87
CB 80
CB 81
CB 82
CB 83
CB 84
CB 85

CB 8E
DD CB db 8E
FD CB db 8E

CB 8F
CB 88
CB 89
CB 8A
CB 8B
CB 8C
CB 8D

CB 96
DD CB db 96
FD CB db 96

CB 97
CB 90
CB91
CB 92
CB 93
CB 94
CB 95

CB 9E
DD CB db 9E
FD CB db 9E

Page
13-66

13-68
13-68
13-68
13-68
13-68
13-68
13-68

13-69
13-70

13-71
13-71
13-71
13-71
13-71
13-71

13-72
13-72
13-72
13-72
13-72
13-72

13-73
13-73
13-73

13-73
13-73
13-73
13-73
13-73
13-73
13-73

13-73
13-73
13-73

13-73
13-73
13-73
13-73
13-73
13-73
13-73

13-73
13-73
13-73

13-73
13-73
13-73
13-73
13-73
13-73
13-73

13-73
13-73
13-73

—15-9 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Zilog

RES 3,A
RES 3,B
RES 3,C
RES 3,D
RES 3,E
RES 3,H
RES 3,L

RES 4,(HL)
RES 4,(IX+d)
RES 4,(1Y+d)

RES 4,A
RES 4,B
RES 4,C
RES4,D
RES 4,E
RES 4,H
RES 4,L

RES 5,(HL)
RES 5,(IX+d)
RES 5,(IY+d)

RES5A
RES 5,B
RES5,C
RES5,D
RES5,E
RES5H
RES 5,L

RES 6,(HL)
RES 6,(1X+d)
RES 6,(1Y+d)

RES 6,A
RES 6,B
RES 6,C
RES 6,D
RES 6,E
RES 6,H
RES 6,L

RES 7,(HL)
RES 7,(IX+d)
RES 7,(1Y+d)

RES 7,A
RES 7,B
RES7,C
RES 7,D
RES 7,E
RES 7,H
RES7,L

RET

RETC
RET M
RET NC
RET NZ
RET P
RET PE
RET PO
RET Z

*

Ok X 3k X % % X

TIDL

RES 3,A
RES 3,B
RES 3,C
RES 3,D
RES 3,E
RES 3,H
RES 3,L

RES 4,M
RES 4,d(X)
RES 4,d(Y)

RES 4 A
RES 4,B
RES 4,C
RES4,D
RES 4,E
RES 4,H
RES 4,L

RES 5,M
RES 5,d(X)
RES 5,d(Y)

RES5A
RES 5,B
RES5,C
RES5,D
RES5,E
RES5H
RES 5,L

RES 6,M
RES 6,d(X)
RES 6,d(Y)

RES 6,A
RES 6,B
RES 6,C
RES 6,D
RES 6,E
RES 6,H
RES 6,L

RES 7,M
RES 7,d(X)
RES 7,d(Y)

RES 7,A
RES7,B
RES7,C
RES7,D
RES 7,E
RES 7,H
RES7,L

RET

RC
RM
RNC
RNZ
RP
RPE
RPO
RZ

MAC

RES 3,A
RES 3,B
RES 3,C
RES 3,D
RES 3,E
RES 3,H
RES 3,L

RES 4,M
RESX 4,d
RESY 4,d

RES 4,A
RES 4,B
RES 4,C
RES4,D
RES 4,E
RES 4,H
RES 4,L

RES 5M
RESX 5,d
RESY 5,d

RES5A
RES 5,B
RES5,C
RES5,D
RES5,E
RES5H
RES 5,L

RES 6,M
RESX 6,d
RESY 6,d

RES 6,A
RES 6,B
RES 6,C
RES 6,D
RES 6,E
RES 6,H
RES 6,L

RES 7,M
RESX 7,d
RESY 7,d

RES 7,A
RES 7,B
RES 7,C
RES 7,D
RES 7,E
RES 7,H
RES7,.L

RET

RC
RM
RNC
RNZ
RP
RPE
RPO
RZ

Disassembly
CB9F

CB 98
CB 99
CB 9A
CB 9B
CB9C
CB 9D

CB A6
DD CB db A6
FD CB db A6

CB A7
CB A0
CB Al
CB A2
CB A3
CB A4
CB A5

CB AE
DD CB db AE
FD CB db AE

CB AF
CB A8
CB A9
CB AA
CB AB
CB AC
CB AD

CB B6
DD CB db B6
FD CB db B6

CB B7
CB B0
CBB1
CB B2
CBB3
CB B4
CB B5

CBBE
DD CB db BE
FD CB dh BE

CB BF
CB B8
CB B9
CB BA
CB BB
CBBC
CBBD

C9

D8
F8
DO
Co
FO
E8
EO
C8

Page

13-73
13-73
13-73
13-73
13-73
13-73
13-73

13-73
13-73
13-73

13-73
13-73
13-73
13-73
13-73
13-73
13-73

13-73
13-73
13-73

13-73
13-73
13-73
13-73
13-73
13-73
13-73

13-73
13-73
13-73

13-73
13-73
13-73
13-73
13-73
13-73
13-73

13-73
13-73
13-73

13-73
13-73
13-73
13-73
13-73
13-73
13-73

13-76

13-76
13-76
13-76
13-76
13-76
13-76
13-76
13-76

— 15-10 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Zilog

RETI
RETN

RL (HL)
RL (IX+d)
RL (IY+d)

RL A
RL B
RLC
RLD
RLE
RLH
RLL

RLA

RLC (HL)
RLC (IX+d)
RLC (1Y+d)

RLC A
RLC B
RLCC
RLCD
RLCE
RLCH
RLCL

RLCA
RLD

RR (HL)
RR (IX+d)
RR (1'Y+d)

RR A
RR B
RRC
RRD
RRE
RRH
RRL

RRA

RRC (HL)
RRC (IX+d)
RRC (IY+d)

RRC A
RRCB
RRCC
RRCD
RRCE
RRCH
RRC L

RRCA
RRD

TIDL

RETI
RETN

RALR M
RALR d(X)
RALR d(Y)

RALR A
RALR B
RALRC
RALR D
RALRE
RALR H
RALR L

RAL

RLCR M
RLCR d(X)
RLCR d(Y)

RLCR A
RLCR B
RLCR C
RLCR D
RLCRE
RLCRH
RLCRL

RLC
RLD

RARR M
RARR d(X)
RARR d(Y)

RARR A
RARR B
RARR C
RARR D
RARR E
RARRH
RARR L

RAR

RRCR M
RRCR d(X)
RRCR d(Y)

RRCR A
RRCR B
RRCRC
RRCR D
RRCR E
RRCRH
RRCR L

RRC
RRD

MAC
RETI

RETN

RALR M
RALXd
RALY d

RALR A
RALRB
RALRC
RALR D
RALR E
RALR H
RALR L

RAL

RLCRM
RLCXd
RLCY d

RLCR A
RLCR B
RLCR C
RLCR D
RLCRE
RLCRH
RLCRL

RLC
RLD

RARR M
RARX d
RARY d

RARR A
RARR B
RARR C
RARR D
RARR E
RARRH
RARR L

RAR

RRCR M
RRCX d
RRCY d

RRCR A
RRCR B
RRCRC
RRCR D
RRCR E
RRCRH
RRCR L

RRC
RRD

Disassembly
ED 4D

ED 45

CB 16
DD CB db 16
FD CBdb 16

CB 17
CB 10
CB11
CB 12
CB 13
CB 14
CB 15

17

CB 06
DD CB db 06
FD CB db 06

CB 07
CB 00
CB 01
CB 02
CB 03
CB 04
CB 05

07
ED 6F

CB1E
DD CB db 1E
FD CBdb 1E

CB 1F
CB 18
CB 19
CB 1A
CB 1B
CB1C
CB 1D

1F

CBOE
DD CB db OE
FD CB db OE

CB OF
CB 08
CB 09
CB 0A
CB 0B
CBo0OC
CBOD

OF
ED 67

Page
13-78

13-79

13-80
13-80
13-80

13-80
13-80
13-80
13-80
13-80
13-80
13-80

13-82

13-83
13-83
13-83

13-83
13-83
13-83
13-83
13-83
13-83
13-83

13-85
13-86

13-87
13-87
13-87

13-87
13-87
13-87
13-87
13-87
13-87
13-87

13-89

13-90
13-90
13-90

13-90
13-90
13-90
13-90
13-90
13-90
13-90

13-92
13-93

— 15-11 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Zilog

RST 00
RST 08
RST 10
RST 18
RST 20
RST 28
RST 30
RST 38

SBC A,(HL)
SBC A,(IX+d)
SBC A,(1Y+d)

SBCAA
SBCAB
SBCAC
SBCAD
SBC AE
SBCAH
SBCA,L

SBC A,immed

SBC HL,BC
SBC HL,DE
SBC HL,HL
SBC HL,SP

SCF

SET 0,(HL)
SET 0,(1X+d)
SET 0,(1Y+d)

SET 0,A
SETO0,B
SETO,C
SETO0,D
SETO,E
SETO,H
SETO,L

SET 1,(HL)
SET 1,(1X+d)
SET 1,(1Y+d)

SET1,A
SET1,B
SET1,C
SET 1,D
SET 1,E
SET 1,H
SET1L

SET 2,(HL)
SET 2,(IX+d)
SET 2,(1Y+d)

SET 2,A
SET 2,B
SET 2,C
SET 2,D
SET 2,E
SET 2,H
SET 2,L

TIDL

*RSTO
*RST1
*RST 2
*RST3
*RST 4
*RSTS
*RST6
*RST7

* SBB M
SBB d(X)
SBB d(Y)

*SBB A
*SBB B
*SBB C
*SBB D
*SBBE
*SBBH
*SBB L

* SBIl immed

DSBC B
DSBC D
DSBCH
DSBC SP

*STC

SET O,M
SET 0,d(X)
SET 0,d(Y)

SET0,A
SETO0,B
SETO,C
SET0,D
SETO,E
SETO,H
SETO,L

SET1,M
SET 1,d(X)
SET 1,d(Y)

SET1,A
SET1,B
SET1,C
SET 1,D
SET 1,E
SET 1,H
SET1.L

SET 2,M
SET 2,d(X)
SET 2,d(Y)

SET 2,A
SET 2,B
SET 2,C
SET 2,D
SET 2,E
SET 2,H
SET 2,L

MAC
RSTO
RST 1
RST 2
RST 3
RST 4
RST 5
RST 6
RST 7

SBB M
SBBXd
SBBY d

SBB A
SBB B
SBBC
SBB D
SBB E
SBB H
SBB L

SBI immed

DSBC B
DSBC D
DSBCH
DSBC SP

STC

SET 0,M
SETX 0,d
SETY 0,d

SETO,A
SET0,B
SETO,C
SET0,D
SETO,E
SETO,H
SETO,L

SET 1,M
SETX 1,d
SETY 1,d

SET 1A
SET 1B
SET1,C
SET 1,D
SET 1,E
SET 1H
SET1,.L

SET 2,M
SETX 2,d
SETY 2,d

SET 2,A
SET 2,B
SET 2,C
SET 2,D
SET 2,E
SET 2,H
SET 2,L

Disassembly
C7

CF
D7
DF
E7

EF
F7

FF

9E
DD 9E
FD 9E

9F
98
99
9A
9B
9C
9D

DE ib

ED 42
ED 52
ED 62
ED 72

37

CB C6
DD CB db C6
FD CB db C6

CBC7
CB CO
CBC1
CBC2
CBC3
CB C4
CBC5

CB CE
DD CB db CE
FD CB db CE

CBCF
CBC8
CBC9
CB CA
CBCB
CBCC
CBCD

CB D6
DD CB db D6
FD CB db D6

CB D7
CB DO
CB D1
CB D2
CB D3
CB D4
CB D5

Page

13-94
13-94
13-94
13-94
13-94
13-94
13-94
13-94

13-95
13-95
13-95

13-95
13-95
13-95
13-95
13-95
13-95
13-95

13-95

13-95
13-95
13-95
13-95

13-97

13-98
13-98
13-98

13-98
13-98
13-98
13-98
13-98
13-98
13-98

13-98
13-98
13-98

13-98
13-98
13-98
13-98
13-98
13-98
13-98

13-98
13-98
13-98

13-98
13-98
13-98
13-98
13-98
13-98
13-98

— 15-12 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Zilog

SET 3,(HL)
SET 3,(1X+d)
SET 3,(1'Y+d)

SET 3,A
SET 3,B
SET 3,C
SET 3,D
SET 3,E
SET 3H
SET 3L

SET 4,(HL)
SET 4,(IX+d)
SET 4,(1Y+d)

SET4,A
SET 4,B
SET 4,C
SET 4,D
SET4,E
SET 4,H
SETA4,L

SET 5,(HL)
SET 5,(IX+d)
SET 5,(1Y+d)

SET5,A
SET 5,B
SET5,C
SET5,D
SET5,E
SET5H
SET5,L

SET 6,(HL)
SET 6,(IX+d)
SET 6,(1Y+d)

SET 6,A
SET 6,B
SET 6,C
SET 6,D
SET 6,E
SET 6,H
SET6,L

SET 7,(HL)
SET 7,(IX+d)
SET 7,(1Y+d)

SET 7,A
SET7,B
SET7,C
SET7,D
SET 7,E
SET 7,H
SET7,L

SLA (HL)
SLA (IX+d)
SLA (1Y+d)

TIDL

SET 3,M
SET 3,d(X)
SET 3,d(Y)

SET 3,A
SET 3,B
SET 3,C
SET 3,D
SET 3,E
SET 3,H
SET 3L

SET 4,M
SET 4,d(X)
SET 4,d(Y)

SET4,A
SET 4,B
SET 4,C
SET 4,D
SET4,E
SET 4,H
SET4,L

SET 5,M
SET 5,d(X)
SET 5,d(Y)

SET5,A
SET 5,B
SET5,C
SET5,D
SET5,E
SET5H
SET5,L

SET 6,M
SET 6,d(X)
SET 6,d(Y)

SET 6,A
SET 6,B
SET 6,C
SET 6,D
SET 6,E
SET 6,H
SET6,L

SET 7,M
SET 7,d(X)
SET 7,d(Y)

SET 7,A
SET 7,B
SET7,C
SET7,D
SET 7,E
SET7,H
SET7,L

SLAR M
SLAR d(X)
SLAR d(Y)

MAC

SET 3,M
SETX 3,d
SETY 3.d

SET 3,A
SET 3,B
SET 3,C
SET 3,D
SET 3,E
SET 3,H
SET 3,L

SET 4,M
SETX 4,d
SETY 4,d

SET4,A
SET 4,B
SET 4,C
SET 4,D
SET4,E
SET 4,H
SET4,L

SET 5,M
SETX 5,d
SETY 5,d

SET5,A
SET 5,B
SET5,C
SET5,D
SET5,E
SET5H
SET5,L

SET 6,M
SETX 6,d
SETY 6,d

SET 6,A
SET 6,B
SET 6,C
SET 6,D
SET 6,E
SET 6,H
SET6,L

SET7,M
SETX 7,d
SETY 7.d

SET 7,A
SET 7,B
SET7,C
SET7,D
SET 7,E
SET7,H
SET7,L

SLAR M
SLAX d
SLAY d

Disassembly
CB DE

DD CB db DE
FD CB db DE

CB DF
CB D8
CB D9
CB DA
CB DB
CB DC
CBDD

CBE6
DD CB db E6
FD CB db E6

CBE7
CBEO
CB E1
CBE2
CB E3
CB E4
CB E5

CBEE
DD CB db EE
FD CB db EE

CBEF
CBES
CBE9
CBEA
CBEB
CB EC
CB ED

CB F6
DD CB db F6
FD CB db F6

CBF7
CBFO
CBF1
CBF2
CBF3
CBF4
CBF5

CBFE
DD CB db FE
FD CB db FE

CB FF
CBF8
CBF9
CBFA
CBFB
CBFC
CBFD

CB 26
DD CB db 26
FD CB db 26

Page

13-98
13-98
13-98

13-98
13-98
13-98
13-98
13-98
13-98
13-98

13-98
13-98
13-98

13-98
13-98
13-98
13-98
13-98
13-98
13-98

13-98
13-98
13-98

13-98
13-98
13-98
13-98
13-98
13-98
13-98

13-98
13-98
13-98

13-98
13-98
13-98
13-98
13-98
13-98
13-98

13-98
13-98
13-98

13-98
13-98
13-98
13-98
13-98
13-98
13-98

13-101
13-101
13-101

— 15-13 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Zilog TDL MAC Disassembly Page

SLAA SLARA SLAR A CB 27 13-101
SLAB SLAR B SLAR B CB 20 13-101
SLAC SLARC SLARC CB21 13-101
SLAD SLAR D SLAR D CB 22 13-101
SLAE SLARE SLARE CB 23 13-101
SLAH SLAR H SLAR H CB 24 13-101
SLAL SLAR L SLAR L CB 25 13-101
SLP — — ED 76 13-103

SRA (HL) SRAR M SRAR M CB 2E 13-104
SRA (IX+d) SRAR d(X) SRAX d DD CB db 2E 13-104
SRA (IY+d) SRAR d(Y) SRAY d FD CB db 2E 13-104
SRA A SRAR A SRAR A CB 2F 13-104
SRA B SRAR B SRAR B CB 28 13-104
SRAC SRARC SRARC CB 29 13-104
SRA D SRAR D SRAR D CB 2A 13-104
SRAE SRAR E SRAR E CB 2B 13-104
SRAH SRARH SRARH CB2C 13-104
SRA L SRAR L SRAR L CB 2D 13-104
SRL (HL) SRLR M SRLR M CB 3E 13-106
SRL (IX+d) SRLR d(X) SRLX d DD CB db 3E 13-106
SRL (I'Y+d) SRLR d(Y) SRLY d FD CB db 3E 13-106
SRL A SRLR A SRLR A CB3F 13-106
SRL B SRLR B SRLR B CB 38 13-106
SRLC SRLR C SRLRC CB 39 13-106
SRL D SRLR D SRLR D CB 3A 13-106
SRL E SRLR E SRLR E CB 3B 13-106
SRL H SRLRH SRLRH CB3C 13-106
SRL L SRLR L SRLR L CB 3D 13-106
SUB (HL) *SUB M SUB M 96 13-108
SUB (IX+d) SUB d(X) SUBX d DD 96 13-108
SUB (I'Y+d) SUB d(Y) SUBY d FD 96 13-108
SUB A *SUB A SUB A 97 13-108
SUB B * SUB B SUB B 90 13-108
SUB C *SUBC SUB C 91 13-108
SUB D *SUB D SUB D 92 13-108
SUB E *SUBE SUBE 93 13-108
SUBH *SUB H SUB H 94 13-108
SUB L *SUB L SUB L 95 13-108
SUB immed * SUI immed SUI immed D6 ib 13-108
TST (HL) — — ED 34 13-110

TSTA — — ED 3C 13-110
TSTB — — ED 04 13-110
TSTC — — ED 0OC 13-110
TSTD — — ED 14 13-110
TSTE — — ED 1C 13-110
TSTH — — ED 24 13-110
TSTL — — ED 2C 13-110

TST immed — — ED 64 ib 13-110
TSTIO immed — — ED 74 ib 13-111

XOR (HL) * XRA M XRA M AE 13-112
XOR (IX+d) XRA d(X) XRAX d DD AE db 13-112
XOR (1Y+d) XRA d(Y) XRAY d FD AE db 13-112

—15-14 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Zilog TDL MAC Disassembly Page

XOR A * XRA A XRA A AF 13-112
XOR B * XRA B XRAB A8 13-112
XORC *XRAC XRAC A9 13-112
XORD * XRAD XRAD AA 13-112
XORE * XRAE XRAE AB 13-112
XORH * XRAH XRAH AC 13-112
XOR L * XRAL XRAL AD 13-112
XOR immed * XRI immed XRI immed EE ib 13-112
— 15-15 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Cross Reference by TDL Mnemonic

Following is an op-code cross reference from TDL to Zilog and MAC mnemonics and machine codes. This table can be of

great assistance in translation. The page given contains the detailed instructions for the op-codes.

Those TDL mnemonics that are indicated by an “*” are the Intel 8080 processor subset, and usually use the TDL or MAC

mnemonics (identical for all 8080 instructions).

TIDL

* ACIl immed

* ADC A
* ADC B
*ADCC
*ADCD
* ADCE
* ADCH
* ADC L
* ADCM

ADC d(X)
ADC d(Y)

* ADD A
* ADD B
*ADD C
*ADD D
*ADD E
*ADDH
*ADD L
*ADD M

ADD d(X)
ADD d(Y)

* ADI immed

* ANA A
* ANA B
* ANA C
* ANAD
*ANA E
*ANAH
* ANA L
* ANA M

ANA d(X)
ANA d(Y)

* ANI immed

BIT 0,A
BIT 0,B
BIT0,C
BIT0,D
BIT O,E
BITOH
BITO,L
BITO,M

BIT 0,d(X)
BIT 0,d(Y)

Zilog

ADC A,immed

ADC AA
ADC AB
ADC AC
ADC A,D
ADC AE
ADC AH
ADC AL
ADC A,(HL)

ADC A, (IX+d)
ADC A,(1Y+d)

ADD AA
ADD AB
ADD A,C
ADD A,D
ADD AE
ADD AH
ADD AL
ADD A,(HL)

ADD A, (IX+d)
ADD A,(1Y+d)

ADD A,immed

AND A
AND B
AND C
AND D
AND E
AND H
AND L
AND (HL)

AND (IX+d)
AND (1Y +d)

AND immed

BIT 0,A
BIT 0,B
BIT 0,C
BIT0,D
BIT0,E
BIT O,H
BITO,L
BIT 0,(HL)

BIT 0,(1X+d)
BIT 0,(1Y+d)

MAC

ACI immed

ADC A
ADCB
ADCC
ADCD
ADCE
ADCH
ADC L
ADC M

ADCX d
ADCY d

ADD A
ADD B
ADD C
ADD D
ADD E
ADDH
ADD L
ADD M

ADDXd
ADDY d

ADI immed

ANA A
ANA B
ANA C
ANAD
ANA E
ANAH
ANA L
ANA M

ANAXd
ANAY d

ANI immed

BIT 0,A
BIT 0,B
BITO0,C
BIT 0,D
BIT O,E
BIT OH
BITO,L
BITO,M

BITX0,d
BITY 0,d

Disassembly
CEib

8F

88

89

8A

8B

8C

8D

8E

DD 8E db
FD 8E db

87
80
81
82
83
84
85
86

DD 86 db
FD 86 db

C6ib

AT
A0
Al
A2
A3
A4
A5
A6

DD A6 db
FD A6 db

E6ib

CB 47
CB 40
CB 41
CB 42
CB 43
CB 44
CB 45
CB 46

DD CB db 46
FD CB db 46

Page
13-4

13-4
13-4
13-4
13-4
13-4
13-4
13-4
13-4

13-4
13-4

13-6
13-6
13-6
13-6
13-6
13-6
13-6
13-6

13-6
13-6

13-6

13-8
13-8
13-8
13-8
13-8
13-8
13-8
13-8

13-8
13-8

13-8

13-10
13-10
13-10
13-10
13-10
13-10
13-10
13-10

13-10
13-10

—16-1 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

TDL

BIT 1,A
BIT1,B
BIT1,C
BIT 1,D
BIT 1,E
BIT1H
BIT1.L
BIT 1,M

BIT 1,d(X)
BIT 1,d(Y)

BIT 2,A
BIT 2,B
BIT 2,C
BIT 2,D
BIT 2,E
BIT 2,H
BIT 2,L
BIT 2,M

BIT 2,d(X)
BIT 2,d(Y)

BIT 3,A
BIT 3,B
BIT 3,C
BIT 3,D
BIT 3,E
BIT 3,H
BIT 3,L
BIT 3,M

BIT 3,d(X)
BIT 3,d(Y)

BIT 4,A
BIT 4,B
BIT 4,C
BIT 4D
BIT 4,E
BIT4H
BIT 4,L
BIT 4,M

BIT 4,d(X)
BIT 4,d(Y)

BIT5A
BIT5,B
BIT5,C
BIT 5D
BIT5E
BIT5H
BIT5,L
BIT 5,M

BIT 5,d(X)
BIT 5,d(Y)

Zilog

BIT 1A
BIT 1,B
BIT 1,C
BIT 1,D
BIT 1,E
BIT 1,H
BIT 1L
BIT 1,(HL)

BIT 1,(1X+d)
BIT 1,(1Y+d)

BIT 2,A
BIT 2,B
BIT 2,C
BIT 2,D
BIT 2,E
BIT 2,H
BIT2,L
BIT 2,(HL)

BIT 2,(1X+d)
BIT 2,(1Y+d)

BIT 3A
BIT 3B
BIT 3,C
BIT 3D
BIT 3,E
BIT 3,H
BIT 3,L
BIT 3,(HL)

BIT 3,(1X+d)
BIT 3,(1Y+d)

BIT 4,A
BIT 4B
BIT 4,C
BIT4,D
BIT 4,E
BIT 4,H
BIT 4L
BIT 4,(HL)

BIT 4,(IX+d)
BIT 4,(1Y+d)

BIT5,A
BIT 5B
BIT5,C
BIT5,D
BIT5,E
BIT 5,H
BIT5,L
BIT 5,(HL)

BIT 5,(IX+d)
BIT 5,(1Y+d)

MAC

BIT 1,A
BIT1B
BIT1,C
BIT 1D
BIT 1,E
BIT1H
BIT1.L
BIT 1,M

BITX 1,d
BITY 1,d

BIT 2,A
BIT2,B
BIT 2,C
BIT 2,D
BIT 2,E
BIT 2,H
BIT 2,L
BIT 2,M

BITX 2,d
BITY 2,d

BIT 3,A
BIT 3,B
BIT3,C
BIT 3,D
BIT 3,E
BIT 3,H
BIT 3,L
BIT 3,M

BITX 3,d
BITY 3,d

BIT 4,A
BIT 4,B
BIT4,C
BIT 4D
BIT 4E
BIT 4H
BIT 4,L
BIT 4,M

BITX 4,d
BITY 4,d

BIT5A
BIT5,B
BIT5,C
BIT 5D
BIT5E
BIT5H
BIT5,L
BIT 5,M

BITX 5,d
BITY 5,d

Disassembly
CB4F

CB 48
CB 49
CB 4A
CB 4B
CB 4C
CB 4D
CB4E

DD CB db 4E
FD CB db 4E

CB 57
CB 50
CB51
CB 52
CB 53
CB 54
CB 55
CB 56

DD CB db 56
FD CB db 56

CB 5F
CB 58
CB 59
CB5A
CB5B
CB5C
CB 5D
CB 5E

DD CB db 5E
FD CB db 5E

CB 67
CB 60
CBo61
CB 62
CB63
CB 64
CB 65
CB 66

DD CB db 66
FD CB db 66

CB 6F
CB 68
CB 69
CB 6A
CB 6B
CB6C
CB 6D
CB 6E

DD CB db 6E
FD CB db 6E

Page

13-10
13-10
13-10
13-10
13-10
13-10
13-10
13-10

13-10
13-10

13-10
13-10
13-10
13-10
13-10
13-10
13-10
13-10

13-10
13-10

13-10
13-10
13-10
13-10
13-10
13-10
13-10
13-10

13-10
13-10

13-10
13-10
13-10
13-10
13-10
13-10
13-10
13-10

13-10
13-10

13-10
13-10
13-10
13-10
13-10
13-10
13-10
13-10

13-10
13-10

—16-2 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

TDL Zilog MAC Disassembly Page

BIT 6,A BIT 6,A BIT 6,A CB77 13-10
BIT 6,B BIT 6,B BIT 6,B CB 70 13-10
BIT6,C BIT6,C BIT6,C CB71 13-10
BIT 6,D BIT 6,D BIT 6,D CB 72 13-10
BIT 6,E BIT 6,E BIT 6,E CB73 13-10
BIT 6,H BIT 6,H BIT 6,H CB 74 13-10
BIT6,L BIT6,L BIT6,L CB 75 13-10
BIT 6,M BIT 6,(HL) BIT 6,M CB 76 13-10
BIT 6,d(X) BIT 6,(I1X+d) BITX 6,d DD CB db 76 13-10
BIT 6,d(Y) BIT 6,(1Y+d) BITY 6,d FDCBdb 76 13-10
BIT7A BIT7A BIT7A CB7F 13-10
BIT7B BIT7B BIT7B CB78 13-10
BIT7,C BIT7,C BIT7,C CB79 13-10
BIT7,D BIT7,D BIT7,D CB7A 13-10
BIT7,E BIT7,E BIT7,E CB7B 13-10
BIT7,H BIT7,H BIT7,H CB7C 13-10
BIT7,.L BIT7,.L BIT7,.L CB 7D 13-10
BIT7,M BIT 7,(HL) BIT7,M CB7E 13-10
BIT 7,d(X) BIT 7,(IX+d) BITX7d DD CB db 7E 13-10
BIT 7,d(Y) BIT 7,(1Y+d) BITY 7,d FDCBdb 7E 13-10
* CALL addr CALL addr CALL addr CD al ah 13-13
* CC addr CALL C,addr CC addr DC al ah 13-13
CCD CPD CCD ED A9 13-17
CCDR CPDR CCDR ED B9 13-18
CClI CPI CClI ED Al 13-19
CCIR CPIR CCIR ED B1 13-20
* CM addr CALL M,addr CM addr FC al ah 13-13
* CMA CPL CMA 2F 13-21
* CMC CCF CMC 3F 13-15
*CMP A CPA CMP A BF 13-16
*CMPB CPB CMPB B8 13-16
*CMPC CPC CMPC B9 13-16
* CMP D CPD CMPD BA 13-16
*CMPE CPE CMPE BB 13-16
* CMP H CPH CMPH BC 13-16
* CMP L CPL CMP L BD 13-16
*CMP M CP (HL) CMP M BE 13-16
CMP d(X) CP (IX+d) CMPX d DD BE db 13-16
CMP d(Y) CP (IY+d) CMPY d FD BE db 13-16
* CNC addr CALL NC,addr CNC addr D4 al ah 13-13
* CNZ addr CALL NZ,addr CNZ addr C4 al ah 13-13
* CP addr CALL P,addr CP addr F4 al ah 13-13
* CPE addr CALL PE,addr CPE addr EC al ah 13-13
* CPl immed CP immed CPI immed FE ib 13-16
* CPO addr CALL PO,addr CPO addr E4 al ah 13-13
* CZ addr CALL Z,addr CZ addr CCal ah 13-13
* DAA DAA DAA 27 13-22
*DAD B ADD HL,BC DAD B 09 13-6
*DAD D ADD HL,DE DAD D 19 13-6
*DADH ADD HL,HL DAD H 29 13-6
* DAD SP ADD HL,SP DAD SP 39 13-6

—16-3 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

IDL

DADCB
DADC D
DADCH
DADC SP

DADX B
DADX D
DADX H
DADX SP

DADY B
DADY D
DADY H
DADY SP

*DCRA
*DCRB
*DCRC
*DCRD
*DCRE
*DCRH
*DCRL
*DCR M

DCR d(X)
DCR d(Y)

*DCX B
*DCXD
*DCXH
* DCX SP
DCX X
DCXY

* DI
DJNZ disp

DSBC B
DSBC D
DSBCH
DSBC SP

* El
EXAF
EXX

*HLT

IMO
IM1
IM2

*IN port
IND
INDR
INI
INIR

Zilog

ADC HL,BC
ADC HL,DE
ADC HL,HL
ADC HL,SP

ADD IX,BC
ADD IX,DE
ADD IX,HL
ADD IX,SP

ADD IY,BC
ADD IY,DE
ADD IY,HL
ADD 1Y,SP

DEC A
DEC B
DEC C
DEC D
DEC E
DEC H
DEC L
DEC (HL)

DEC (IX+d)
DEC (IY+d)

DEC BC
DEC DE
DEC HL
DEC SP
DEC IX
DEC IY

DI
DJNZ disp

SBC HL,BC
SBC HL,DE
SBC HL,HL
SBC HL,SP

El

EX AF,AF
EXX
HALT

IMO
M1
IM 2

IN A,(port)
IND
INDR

INI

INIR

MAC

DADC B
DADC D
DADCH

DADC SP

DADX B
DADX D
DADX H

DADX SP

DADY B
DADY D
DADY H

DADY SP

DCR A
DCRB
DCRC
DCR D
DCRE
DCRH
DCR L
DCR M

DCRXd
DCRY d

DCXB
DCXD
DCXH
DCX SP
DCXX
DCXY

]|

DJNZ disp

DSBC B
DSBC D
DSBCH
DSBC SP

El
EXAF
EXX
HLT

IMO
IM1
IM2

IN port
IND
INDR
INI
INIR

Disassembly
ED 4A

ED 5A
ED 6A
ED7A

DD 09
DD 19
DD 29
DD 39

FD 09
FD 19
FD 29
FD 39

3D
05
0D
15
1D
25
2D
35

DD 35db
FD 35db

0B
1B
2B
3B
DD 2B
FD 2B

F3
10 ab

ED 42
ED 52
ED 62
ED 72

FB
08
D9
76

ED 46
ED 56
ED 5E

DB pb
ED AA
ED BA
ED A2
ED B2

Page
13-4
13-4
13-4
13-4

13-6
13-6
13-6
13-6

13-6
13-6
13-6
13-6

13-23
13-23
13-23
13-23
13-23
13-23
13-23
13-23

13-23
13-23

13-23
13-23
13-23
13-23
13-23
13-23

13-25
13-26

13-95
13-95
13-95
13-95

13-27
13-28
13-29
13-30

13-31
13-31
13-31

13-33
13-38
13-39
13-40
13-41

—16-4 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

TDL Zilog MAC Disassembly Page
INP A IN A,(C) INP A ED 78 13-33
INP B IN B,(C) INP B ED 40 13-33
INPC IN C,(C) INPC ED 48 13-33
INP D IN D,(C) INP D ED 50 13-33
INP E IN E,(C) INP E ED 58 13-33
INPH IN H,(C) INPH ED 60 13-33
INP L INL,(C) INP L ED 68 13-33
*INR A INC A INR A 3C 13-36
*INR B INC B INR B 04 13-36
*INRC INCC INRC oC 13-36
*INR D INCD INRD 14 13-36
*INR E INCE INRE 1C 13-36
*INRH INCH INRH 24 13-36
*INR L INC L INR L 2C 13-36
*INRM INC (HL) INR M 34 13-36
INR d(X) INC (IX+d) INRX d DD 34 db 13-36
INR d(Y) INC (1Y+d) INRY d FD 34 db 13-36
* INX B INC BC INX B 03 13-36
* INX D INC DE INX D 13 13-36
* INX H INC HL INXH 23 13-36
* INX SP INC SP INX SP 33 13-36
INX X INC IX INXX DD 23 13-36
INXY INCIY INXY FD 23 13-36
* JC addr JP C,addr JC addr DA al ah 13-42
* JM addr JP M,addr JM addr FA al ah 13-42
* JMP addr JP addr JMP addr C3al ah 13-42
JMPR disp JR disp JR disp 18 ab 13-44
* JNC addr JP NC,addr JNC addr D2 al ah 13-42
* JNZ addr JP NZ,addr JNZ addr C2 al ah 13-42
* JP addr JP P,addr JP addr F2 al ah 13-42
* JPE addr JP PE,addr JPE addr EA al ah 13-42
* JPO addr JP PO,addr JPO addr E2 al ah 13-42
JRC disp JR C,disp JRC disp 38 ab 13-44
JRNC disp JR NC,disp JRNC disp 30ab 13-44
JRNZ disp JR NZ,disp JRNZ disp 20 ab 13-44
JRZ disp JR Z disp JRZ disp 28 ab 13-44
* JZ addr JP Z,addr JZ addr CAal ah 13-42
LBCD addr LD BC,(addr) LBCD addr ED 4B al ah 13-46
* LDA addr LD A,(addr) LDA addr 3Aal ah 13-46
LDAI LD A\l LDAI ED 57 13-46
LDAR LD AR LDAR ED 5F 13-46
* LDAX B LD A,(BC) LDAX B 0A 13-46
* LDAX D LD A,(DE) LDAX D 1A 13-46
LDD LDD LDD ED A8 13-52
LDDR LDDR LDDR ED B8 13-53
LDED addr LD DE,(addr) LDED addr ED 5B al ah 13-46
LDI LDI LDI ED A0 13-54
LDIR LDIR LDIR ED BO 13-55
—16-5—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

IDL

* LHLD addr
LIXD addr
LIYD addr
LSPD addr

* LXI B,imwrd
* LXI D,imwrd
* LXI H,imwrd
* LXI SP,imwrd
LXI X,imwrd
LXIY,imwrd

* MOV AA
* MOV AB
* MOV AC
* MOV AD
* MOV AE
* MOV AH
* MOV AL
* MOV AM

MOV A,d(X)
MOV A,d(Y)

* MOV B,A
* MOV B,B
* MOV B,C
* MOV B,D
* MOV B,E
* MOV B,H
* MOV B,L
* MOV B,M

MOV B,d(X)
MOV B,d(Y)

* MOV C,A
* MOV C,B
* MOV C,C
* MOV C,D
* MOV C,E
* MOV C,H
* MOV C,L
* MOV CM

MOV C,d(X)
MOV C,d(Y)

* MOV DA
* MOV D,B
*MOV D,C
* MOV D,D
* MOV D,E
* MOV D,H
* MOV D,L
* MOV DM

MOV D,d(X)
MOV D,d(Y)

Zilog

LD HL,(addr)
LD IX,(addr)
LD IY,(addr)
LD SP,(addr)

LD BC,imwrd
LD DE,imwrd
LD HL,imwrd
LD SP,imwrd
LD IX,imwrd
LD IY,imwrd

LDAA
LDAB
LDA,C
LD A,D
LD AE
LD AH
LDAL
LD A,(HL)

LD A,(IX+d)
LD A,(IY+d)

LD B,A
LD B,B
LDB,C
LD B,D
LD B,E
LD BH
LDB,L
LD B,(HL)

LD B,(IX+d)
LD B,(1Y+d)

LD C,A
LDC,B
LDC,.C
LDCD
LDCE
LD CH
LDC,L
LD C,(HL)

LD C,(IX+d)
LD C,(IY+d)

LDD,A
LDD,B
LDD,C
LD D,D
LD D,E
LD DH
LD D,L
LD D,(HL)

LD D,(IX+d)
LD D,(1Y+d)

MAC

LHLD addr

LIXD addr
LIYD addr
LSPD addr

LXI B,imwrd
LXI D,imwrd
LXI H,imwrd

LXI1 SP,imwrd

LXIX imwrd
LX1Y imwrd

MOV A A
MOV AB
MOV A,C
MOV AD
MOV AE
MOV AH
MOV AL
MOV AM

LDX Ad
LDY Ad

MOV B,A
MOV B,B
MOV B,C
MOV B,D
MOV B,E
MOV B,H
MOV B,L
MOV B,M

LDX B,d
LDY Bd

MOV C,A
MOV C,B
MOV C,C
MOV C,D
MOV C,E
MOV CH
MOV C,L
MOV C.M

LDX Cd
LDY Cd

MOV DA
MOV D,B
MOV D,C
MOV D,D
MOV D,E
MOV D,H
MOV D,L
MOV DM

LDXD,d
LDY D,d

Disassembly
2A al ah

DD 2A al ah
FD 2A al ah
ED 7B al ah
01ilih

11il ih
21ilih
31ilih

DD 21ilih
FD 21il ih

TF
78
79
TA
7B
7C
7D
T7E

DD 7E db
FD 7E db

47
40
41
42
43
44
45
46

DD 46 db
FD 46 db

4F
48
49
4A
4B
4C
4D
4E

DD 4E db
FD 4E db

57
50
51
52
53
54
55
56

DD 56 db
FD 56 db

Page

13-46
13-46
13-46
13-46

13-46
13-46
13-46
13-46
13-46
13-46

13-46
13-46
13-46
13-46
13-46
13-46
13-46
13-46

13-46
13-46

13-46
13-46
13-46
13-46
13-46
13-46
13-46
13-46

13-46
13-46

13-46
13-46
13-46
13-46
13-46
13-46
13-46
13-46

13-46
13-46

13-46
13-46
13-46
13-46
13-46
13-46
13-46
13-46

13-46
13-46

— 166 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

TDL

* MOV EA
* MOV E,B
*MOVEC
* MOV E,D
* MOV E,E
* MOV EH
* MOV E,L
* MOV E,.M

MOV E,d(X)
MOV E,d(Y)
* MOV H,A

* MOV H,B
* MOV H,C
*MOV HD
* MOV H,E
* MOV HH
* MOV H,L
* MOV HM

MOV H,d(X)
MOV H,d(Y)

* MOV LA
* MOV L,B
* MOV L,C
* MOV L,D
* MOV L,E
*MOV LH
* MOV L,L
* MOV LM

MOV L,d(X)
MOV L,d(Y)

* MOV M,A
* MOV M,B
* MOV M,C
* MOV M,D
* MOV M,E
* MOV M,H
* MOV M,L

MOV d(X),A
MOV d(X),B
MOV d(X),C
MOV d(X),D
MOV d(X),E
MOV d(X),H
MOV d(X),L

MOV d(Y),A
MOV d(Y),B
MOV d(Y),C
MOV d(Y),D
MOV d(Y),E
MOV d(Y),H
MOV d(Y),L

Zilog

LDEA
LDE,B
LDEC
LDED
LDEE
LD E,H
LDE,L
LD E,(HL)

LD E,(IX+d)
LD E,(IY+d)
LD H,A

LDH,B
LDH,C
LD H,D
LD H,E
LD HH
LD H,L
LD H,(HL)

LD H,(IX+d)
LD H,(IY+d)

LDLA
LDL,B
LDL,C
LDL,D
LD LE
LD LH
LDL,.L
LD L,(HL)

LD L,(IX+d)
LD L,(IY+d)

LD (HL),A
LD (HL),B
LD (HL),C
LD (HL),D
LD (HL),E
LD (HL),H
LD (HL),L

LD (1X+d),A
LD (1X+d),B
LD (1X+d),C
LD (IX+d),D
LD (1X+d),E
LD (IX+d),H
LD (1X+d),L

LD (1Y+d),A
LD (1Y+d),B
LD (1Y+d),C
LD (1Y+d),D
LD (1Y+d),E
LD (1Y+d),H
LD (1Y+d),L

MAC

MOV E,A
MOV E,B
MOV E,C
MOV E,D
MOV E,E
MOV EH
MOV E,L
MOV E,M

LDX E,d
LDY E,d
MOV H,A

MOV H,B
MOV H,C
MOV H,D
MOV H,E
MOV H,H
MOV H,L
MOV HM

LDX H,d
LDY H,d

MOV LA
MOV L,B
MOV L,C
MOV L,D
MOV L,E
MOV LH
MOV L,L
MOV L,M

LDXL,d
LDY L,d

MOV M,A
MOV M,B
MOV M,C
MOV M,D
MOV M.E
MOV MH
MOV M,L

STXAd
STXBd
STXCd
STXD,d
STXE,d
STXH,d
STXL,d

STY Ad
STY Bd
STy Cd
STYD,d
STY Ed
STYH,d
STYL,d

Disassembly
5F

58
59
5A
5B
5C
5D
5E

DD 5E db
FD 5E db
67

60
61
62
63
64
65
66

DD 66 db
FD 66 db

6F
68
69
6A
6B
6C
6D
6E

DD 6E db
FD 6E db

77
70
71
72
73
74
75

DD 77 db
DD 70 db
DD 71 db
DD 72 db
DD 73 db
DD 74 db
DD 75db

FD 77 db
FD 70 db
FD 71 db
FD 72 db
FD 73 db
FD 74 db
FD 75 db

Page

13-46
13-46
13-46
13-46
13-46
13-46
13-46
13-46

13-46
13-46
13-46

13-46
13-46
13-46
13-46
13-46
13-46
13-46

13-46
13-46

13-46
13-46
13-46
13-46
13-46
13-46
13-46
13-46

13-46
13-46

13-46
13-46
13-46
13-46
13-46
13-46
13-46

13-46
13-46
13-46
13-46
13-46
13-46
13-46

13-46
13-46
13-46
13-46
13-46
13-46
13-46

—16-7 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

IDL

* MVI A,immed
* MVI B,immed
* MVI C,immed
* MVI D,immed
* MVI E,immed
* MVI H,immed
* MVI L,immed
* MVI M,immed

MV d(X),immed
MVI d(Y),immed

NEG
* NOP

*ORAA
*ORAB
*ORAC
*ORAD
*ORAE
*ORAH
*ORAL
*ORAM

ORA d(X)
ORA d(Y)

* ORI immed
OTDR
OTIR

* OQUT port
OouTD
OUTI

OUTP A
OUTP B
OuUTPC
OUTPD
OUTPE
OUTPH
OUTP L

* PCHL
PCIX
PCIY

* POP B

* POP D

* POP H

* POP PSW
POP X
POP Y

* PUSH B

* PUSH D

*PUSHH

* PUSH PSW
PUSH X
PUSHY

* RAL

Zilog

LD A,immed
LD B,immed
LD C,immed
LD D,immed
LD E,immed
LD H,immed
LD L,immed
LD (HL),immed

LD (IX+d),immed
LD (I'Y+d),immed

NEG
NOP

ORA
ORB
ORC
ORD
ORE
ORH
ORL
OR (HL)

OR (IX+d)
OR (IY+d)

OR immed
OTDR

OTIR

OUT (port),A
OouTD

OUTI

OUT (C),A
OUT (C),B
OUT (C),C
OUT (C),D
OUT (C).E
OUT (C).H
OUT (C),L

JP (HL)
P (IX)
P (1Y)

POP BC
POP DE
POP HL
POP AF
POP IX
POP 1Y

PUSH BC
PUSH DE
PUSH HL
PUSH AF
PUSH IX
PUSH 1Y

RLA

MAC

MVI A,immed

MVI B,immed
MVI C,immed
MVI D,immed
MVI E,immed
MVI H,immed
MVI L,immed
MVI M,immed

MVIX d,immed
MVIY d,immed

NEG
NOP

ORA A
ORAB
ORAC
ORAD
ORAE
ORAH
ORAL
ORA M

ORAXd
ORAY d

ORI immed
OTDR
OTIR
OUT port
OouUTD
OUTI

OUTP A
OUTP B
OUTPC
OUTPD
OUTPE
OUTP H
OUTP L

PCHL
PCIX
PClY

POP B
POP D
POP H
POP PSW
POPX
POPY

PUSH B
PUSHD
PUSHH
PUSH PSW
PUSHX
PUSHY

RAL

Disassembly
3Eib
06ib
OE ib
16 ib
1Eib
26 ib
2Eib
36ib

DD 36dbib
FD 36 db ib

ED 44
00

B7
BO
Bl
B2
B3
B4
B5
B6

DD B6 db
FD B6 db

F6 ib
ED BB
ED B3
D3 pb
ED AB
ED A3

ED 79
ED 41
ED 49
ED 51
ED 59
ED 61
ED 69

E9
DD E9
FD E9

C1
D1
El
F1
DD E1
FD E1

C5
D5
ES
F5
DD E5
FD E5

17

Page

13-46
13-46
13-46
13-46
13-46
13-46
13-46
13-46

13-46
13-46

13-57
13-58

13-59
13-59
13-59
13-59
13-59
13-59
13-59
13-59

13-59
13-59

13-59
13-62
13-65
13-66
13-69
13-70

13-66
13-66
13-66
13-66
13-66
13-66
13-66

13-42
13-42
13-42

13-71
13-71
13-71
13-71
13-71
13-71

13-72
13-72
13-72
13-72
13-72
13-72

13-82

—16-8 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

IDL

RALR A
RALR B
RALR C
RALR D
RALR E
RALR H
RALR L
RALR M

RALR d(X)
RALR d(Y)

RAR

RARR A
RARR B
RARRC
RARR D
RARR E
RARRH
RARR L
RARR M

RARR d(X)
RARR d(Y)

RC

RES 0,A
RES 0,B
RES 0,C
RES 0,D
RES 0,E
RES O,H
RESO,L
RES O,M

RES 0,d(X)
RES 0,d(Y)

RES 1A
RES 1,B
RES1,C
RES1,D
RES 1,E
RES1,H
RES 1,L
RES 1M

RES 1,d(X)
RES 1,d(Y)

RES 2,A
RES 2,B
RES 2,C
RES 2,D
RES 2,E
RES 2,H
RES2,L
RES 2,M

RES 2,d(X)
RES 2,d(Y)

Zilog

RL A
RL B
RLC
RL D
RLE
RL H
RL L
RL (HL)

RL (1X+d)
RL (1Y+d)

RRA

RR A
RR B
RRC
RRD
RRE
RR H
RR L
RR (HL)

RR (IX+d)
RR (IY+d)

RETC

RES 0,A
RES 0,B
RES 0,C
RES 0,D
RES 0,E
RES O,H
RES O,L
RES 0,(HL)

RES 0,(IX+d)
RES 0,(Y+d)

RES 1,A
RES 1,B
RES1,C
RES 1,D
RES 1,E
RES 1,H
RES 1,L
RES 1,(HL)

RES 1,(IX+d)
RES 1,(1Y+d)

RES 2,A
RES 2,B
RES 2,C
RES 2,D
RES 2,E
RES 2,H
RES 2,L
RES 2,(HL)

RES 2,(IX+d)
RES 2,(1Y+d)

MAC

RALR A
RALR B
RALR C
RALR D
RALR E
RALR H
RALR L
RALR M

RALX d
RALY d

RAR

RARR A
RARR B
RARRC
RARR D
RARR E
RARRH
RARR L
RARR M

RARX d
RARY d

RC

RES 0,A
RES 0,B
RES0,C
RES 0,D
RES 0,E
RES O,H
RESO,L
RES 0,M

RESX 0,d
RESY 0,d

RES 1,A
RES 1,B
RES1,C
RES 1D
RES 1,E
RES1,H
RES 1,L
RES 1,M

RESX 1,d
RESY 1,d

RES 2,A
RES 2,B
RES 2,C
RES 2,D
RES 2,E
RES 2,H
RES2,L
RES 2,M

RESX 2,d
RESY 2,d

Disassembly
CB 17

CB 10
CB11
CB 12
CB 13
CB 14
CB 15
CB 16

DD CB db 16
FD CB db 16

1F

CB 1F
CB 18
CB 19
CB 1A
CB 1B
CB1C
CB 1D
CB 1E

DD CB db 1E
FD CB db 1E

D8

CB 87
CB 80
CB 81
CB 82
CB 83
CB 84
CB 85
CB 86

DD CB db 86
FD CB db 86

CB 8F
CB 88
CB 89
CB 8A
CB 8B
CB8C
CB 8D
CB 8E

DD CB db 8E
FD CB db 8E

CB 97
CB 90
CB91
CB 92
CB 93
CB9%4
CB 95
CB 96

DD CB db 96
FD CB db 96

Page

13-80
13-80
13-80
13-80
13-80
13-80
13-80
13-80

13-80
13-80

13-89

13-87
13-87
13-87
13-87
13-87
13-87
13-87
13-87

13-87
13-87

13-76

13-73
13-73
13-73
13-73
13-73
13-73
13-73
13-73

13-73
13-73

13-73
13-73
13-73
13-73
13-73
13-73
13-73
13-73

13-73
13-73

13-73
13-73
13-73
13-73
13-73
13-73
13-73
13-73

13-73
13-73

—16-9 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

IDL

RES 3,A
RES 3,B
RES 3,C
RES 3,D
RES 3,E
RES 3,H
RES 3,L
RES 3M

RES 3,d(X)
RES 3,d(Y)

RES 4,A
RES 4,B
RES 4,C
RES4,D
RES 4,E
RES 4,H
RES 4,L
RES 4,M

RES 4,d(X)
RES 4,d(Y)

RES5A
RES 5,B
RES5,C
RES5,D
RES5,E
RES5H
RES 5,L
RES 5M

RES 5,d(X)
RES 5,d(Y)

RES 6,A
RES 6,B
RES 6,C
RES 6,D
RES 6,E
RES 6,H
RES 6,L
RES 6,M

RES 6,d(X)
RES 6,d(Y)

RES 7,A
RES 7,B
RES7,C
RES 7,D
RES 7,E
RES 7,H
RES7,L
RES 7,M

RES 7,d(X)
RES 7,d(Y)

*RET

RETI
RETN

*RLC

Zilog

RES 3,A
RES 3,B
RES 3,C
RES 3,D
RES 3,E
RES 3,H
RES 3,L
RES 3,(HL)

RES 3,(IX+d)
RES 3,(IY+d)

RES 4,A
RES 4,B
RES 4,C
RES 4,D
RES 4,E
RES 4,H
RES 4,L
RES 4,(HL)

RES 4,(IX+d)
RES 4,(1Y+d)

RES 5,A
RES 5,8
RES 5,C
RES 5D
RES 5,E
RES 5,H
RES 5,L
RES 5,(HL)

RES 5,(IX+d)
RES 5,(1Y+d)

RES 6,A
RES 6,B
RES 6,C
RES 6,D
RES 6,E
RES 6,H
RES 6,L
RES 6,(HL)

RES 6,(1X+d)
RES 6,(1Y+d)

RES 7,A
RES 7,B
RES 7,C
RES 7,D
RES 7,E
RES 7,H
RES 7,L
RES 7,(HL)

RES 7,(1X+d)
RES 7,(1Y+d)

RET

RETI
RETN

RLCA

MAC

RES 3,A
RES 3,B
RES 3,C
RES 3,D
RES 3,E
RES 3,H
RES 3,L
RES 3,M

RESX 3,d
RESY 3,d

RES 4,A
RES 4,B
RES 4,C
RES4,D
RES 4,E
RES 4,H
RES 4,L
RES 4,M

RESX 4,d
RESY 4,d

RES5A
RES 5,B
RES5,C
RES5,D
RES5,E
RES5H
RES 5,L
RES 5M

RESX 5,d
RESY 5,d

RES 6,A
RES 6,B
RES 6,C
RES 6,D
RES 6,E
RES 6,H
RES 6,L
RES 6,M

RESX 6,d
RESY 6,d

RES 7,A
RES 7,B
RES 7,C
RES 7,D
RES 7,E
RES 7,H
RES7,.L
RES 7,.M

RESX 7,d
RESY 7,d

RET

RETI
RETN

RLC

Disassembly
CB9F

CB 98
CB 99
CB 9A
CB 9B
CB9C
CB 9D
CB 9E

DD CB db 9E
FD CB db 9E

CB A7
CB A0
CB Al
CB A2
CB A3
CB A4
CB A5
CB A6

DD CB db A6
FD CB db A6

CB AF
CB A8
CB A9
CB AA
CB AB
CB AC
CB AD
CB AE

DD CB db AE
FD CB db AE

CB B7
CB B0
CBB1
CB B2
CBB3
CB B4
CB B5
CB B6

DD CB db B6
FD CB db B6

CB BF
CB B8
CB B9
CB BA
CB BB
CBBC
CBBD
CBBE

DD CB db BE
FD CB dh BE

C9

ED 4D
ED 45

07

Page

13-73
13-73
13-73
13-73
13-73
13-73
13-73
13-73

13-73
13-73

13-73
13-73
13-73
13-73
13-73
13-73
13-73
13-73

13-73
13-73

13-73
13-73
13-73
13-73
13-73
13-73
13-73
13-73

13-73
13-73

13-73
13-73
13-73
13-73
13-73
13-73
13-73
13-73

13-73
13-73

13-73
13-73
13-73
13-73
13-73
13-73
13-73
13-73

13-73
13-73

13-76

13-78
13-79

13-85

— 16-10 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

TDL Zilog MAC Disassembly Page

RLCR A RLC A RLCRA CB 07 13-83
RLCRB RLCB RLCR B CB 00 13-83
RLCRC RLCC RLCRC CB 01 13-83
RLCRD RLCD RLCRD CB 02 13-83
RLCRE RLCE RLCRE CB 03 13-83
RLCRH RLCH RLCRH CB 04 13-83
RLCRL RLCL RLCRL CB 05 13-83
RLCR M RLC (HL) RLCR M CB 06 13-83
RLCR d(X) RLC (IX+d) RLCXd DD CB db 06 13-83
RLCR d(Y) RLC (I'Y+d) RLCY d FD CB db 06 13-83
RLD RLD RLD ED 6F 13-86
*RM RET M RM F8 13-76
* RNC RET NC RNC DO 13-76
* RNZ RET NZ RNZ Co 13-76
* RP RET P RP FO 13-76
* RPE RET PE RPE E8 13-76
* RPO RET PO RPO EO 13-76
* RRC RRCA RRC OF 13-92
RRCR A RRC A RRCR A CB OF 13-90
RRCR B RRC B RRCR B CB 08 13-90
RRCRC RRCC RRCRC CB 09 13-90
RRCR D RRCD RRCR D CB0A 13-90
RRCR E RRCE RRCR E CB 0B 13-90
RRCRH RRCH RRCRH cBoC 13-90
RRCR L RRC L RRCR L CB 0D 13-90
RRCR M RRC (HL) RRCR M CBOE 13-90
RRCR d(X) RRC (1X+d) RRCX d DD CB db OE 13-90
RRCR d(Y) RRC (I'Y+d) RRCY d FD CB db OE 13-90
RRD RRD RRD ED 67 13-93
*RSTO RST 00 RST 0 C7 13-94
*RST1 RST 08 RST 1 CF 13-94
*RST 2 RST 10 RST 2 D7 13-94
*RST 3 RST 18 RST 3 DF 13-94
*RST 4 RST 20 RST 4 E7 13-94
*RST 5 RST 28 RST 5 EF 13-94
*RST 6 RST 30 RST 6 F7 13-94
*RST7 RST 38 RST 7 FF 13-94
*RZ RET Z RZ C8 13-76
*SBB A SBC AA SBB A 9F 13-95
*SBB B SBCAB SBB B 98 13-95
*SBBC SBCAC SBB C 99 13-95
*SBBD SBC AD SBB D 9A 13-95
*SBBE SBC AE SBB E 9B 13-95
*SBBH SBC AH SBB H 9C 13-95
*SBBL SBCA.L SBB L 9D 13-95
*SBBM SBC A,(HL) SBB M 9E 13-95
SBB d(X) SBC A, (IX+d) SBBX d DD 9E 13-95
SBB d(Y) SBC A,(IY+d) SBBY d FD 9E 13-95
SBCD addr LD (addr),BC SBCD addr ED 43 al ah 13-46
* SBI immed SBC A,immed SBI immed DE ib 13-95
SDED addr LD (addr),DE SDED addr ED 53 al ah 13-46

—16-11 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

IDL

SET 0,A
SET 0,B
SETO0,C
SET0,D
SETO,E
SETO,H
SETO,L
SETO,M

SET 0,d(X)
SET 0,d(Y)

SET1,A
SET 1B
SET1,C
SET 1D
SET1,E
SET 1,H
SET1,L
SET 1M

SET 1,d(X)
SET 1,d(Y)

SET 2,A
SET 2,B
SET 2,C
SET 2,D
SET 2,E
SET 2,H
SET 2,L
SET 2,M

SET 2,d(X)
SET 2,d(Y)

SET 3,A
SET 3,B
SET 3,C
SET 3,D
SET 3,E
SET 3,H
SET 3L
SET 3,M

SET 3,d(X)
SET 3,d(Y)

SET 4,A
SET4,B
SET4,C
SET 4,D
SET4,E
SET 4,H
SET4,.L
SET 4M

SET 4,d(X)
SET 4,d(Y)

Zilog

SETO0,A
SET0,B
SET0,C
SET0,D
SET0O,E
SET O,H
SETO,L
SET 0,(HL)

SET 0,(IX+d)
SET 0,(IY+d)

SET 1,A
SET1,B
SET1,C
SET1,D
SET 1,E
SET 1,H
SET1,L
SET 1,(HL)

SET 1,(IX+d)
SET 1,(1Y+d)

SET2,A
SET 2,B
SET2,C
SET 2,D
SET 2,E
SET 2,H
SET 2,L
SET 2,(HL)

SET 2,(IX+d)
SET 2,(1Y+d)

SET3,A
SET3,B
SET3,C
SET 3D
SET3E
SET 3H
SET 3L
SET 3,(HL)

SET 3,(IX+d)
SET 3,(1Y+d)

SET 4,A
SET 4,B
SET 4,C
SET 4,D
SET 4,E
SET 4,H
SET 4,L
SET 4,(HL)

SET 4,(1X+d)
SET 4,(1Y+d)

MAC

SET 0,A
SET 0,B
SETO0,C
SET0,D
SETO,E
SETO,H
SETO,L
SETO,M

SETX 0,d
SETY 0,d

SET 1,A
SET 1B
SET1.C
SET 1D
SET 1,E
SET 1,H
SET1,L
SET 1M

SETX 1,d
SETY 1,d

SET 2,A
SET 2,B
SET 2,C
SET 2,D
SET 2,E
SET 2,H
SET 2,L
SET 2,M

SETX 2,d
SETY 2,d

SET 3,A
SET 3,B
SET 3,C
SET 3,D
SET 3,E
SET 3,H
SET 3L
SET 3,M

SETX 3,d
SETY 3,d

SET 4,A
SET4,B
SET 4,C
SET 4,D
SET4,E
SET 4,H
SET4,.L
SET 4,M

SETX 4,d
SETY 4,d

Disassembly
CBC7

CBCO
CBC1
CBC2
CBC3
CBC4
CBC5
CB C6

DD CB db C6
FD CB db C6

CBCF
CBC8
CBC9
CBCA
CBCB
CBCC
CBCD
CB CE

DD CB db CE
FD CB db CE

CB D7
CB DO
CBD1
CB D2
CB D3
CB D4
CB D5
CB D6

DD CB db D6
FD CB db D6

CB DF
CB D8
CB D9
CB DA
CB DB
CBDC
CBDD
CB DE

DD CB db DE
FD CB db DE

CBE7
CB EO
CBE1l
CBE2
CBE3
CBE4
CBES
CBE6

DD CB db E6
FD CB db E6

Page

13-98
13-98
13-98
13-98
13-98
13-98
13-98
13-98

13-98
13-98

13-98
13-98
13-98
13-98
13-98
13-98
13-98
13-98

13-98
13-98

13-98
13-98
13-98
13-98
13-98
13-98
13-98
13-98

13-98
13-98

13-98
13-98
13-98
13-98
13-98
13-98
13-98
13-98

13-98
13-98

13-98
13-98
13-98
13-98
13-98
13-98
13-98
13-98

13-98
13-98

—16-12 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

IDL

SET5,A
SET 5,B
SET5,C
SET5,D
SET5,E
SET5H
SET5,L
SET5M

SET 5,d(X)
SET 5,d(Y)

SET 6,A
SET 6,B
SET 6,C
SET 6,D
SET 6,E
SET 6,H
SET6,L
SET 6,M

SET 6,d(X)
SET 6,d(Y)

SET7,A
SET7,B
SET7,C
SET7,D
SET 7,E
SET7,H
SET7,L
SET7,M

SET 7,d(X)
SET 7,d(Y)

SHLD addr
SIXD addr
SIYD addr

SLARA
SLARB
SLARC
SLARD
SLARE
SLARH
SLAR L
SLAR M

SLAR d(X)
SLAR d(Y)

SPHL
SPIX
SPIY

SRAR A
SRAR B
SRARC
SRARD
SRARE
SRARH
SRARL
SRARM

Zilog

SET5,A
SET5,B
SET5,C
SET5,D
SET5,E
SET 5,H
SET5,L
SET 5,(HL)

SET 5,(IX+d)
SET 5,(1Y+d)

SET 6,A
SET 6,8
SET 6,C
SET 6,D
SET 6,E
SET 6,H
SET 6,L
SET 6,(HL)

SET 6,(IX+d)
SET 6,(1Y+d)

SET7,A
SET 7,B
SET7,C
SET7,D
SET 7,E
SET 7,H
SET 7,L
SET 7,(HL)

SET 7,(1X+d)
SET 7,(1Y+d)

LD (addr),HL
LD (addr),IX
LD (addr),IY

SLAA
SLAB
SLAC
SLAD
SLAE
SLAH
SLAL
SLA (HL)

SLA (IX+d)
SLA (1Y+d)

LD SP,HL
LD SP,IX
LD SP,IY

SRA A
SRA B
SRAC
SRAD
SRAE
SRAH
SRA L
SRA (HL)

MAC

SET5,A
SET 5,B
SET5,C
SET5,D
SET5,E
SET5H
SET5,L
SET5M

SETX 5,d
SETY 5,d

SET 6,A
SET 6,B
SET 6,C
SET 6,D
SET 6,E
SET 6,H
SET6,L
SET 6,M

SETX 6,d
SETY 6,d

SET 7,A
SET 7,B
SET7,C
SET7,D
SET 7,E
SET 7,H
SET7,L
SET7,M

SETX 7,d
SETY 7.d

SHLD addr
SIXD addr
SIYD addr

SLARA
SLARB
SLARC
SLARD
SLARE
SLARH
SLAR L
SLAR M

SLAXd
SLAY d

SPHL
SPIX
SPIY

SRAR A
SRAR B
SRARC
SRARD
SRARE
SRARH
SRARL
SRARM

Disassembly
CB EF

CBES
CBE9
CBEA
CB EB
CB EC
CB ED
CBEE

DD CB db EE
FD CB db EE

CB F7
CBFO
CBF1
CBF2
CBF3
CBF4
CBF5
CB F6

DD CB db F6
FD CB db F6

CB FF
CBF8
CBF9
CBFA
CBFB
CBFC
CBFD
CBFE

DD CB db FE
FD CB db FE

22 al ah
DD 22 al ah
FD 22 al ah

CB 27
CB 20
CB21
CB 22
CB 23
CB 24
CB 25
CB 26

DD CB dh 26
FD CB db 26

F9
DD F9
FDF9

CB 2F
CB 28
CB 29
CB 2A
CB 2B
CB2C
CB 2D
CB 2E

Page

13-98
13-98
13-98
13-98
13-98
13-98
13-98
13-98

13-98
13-98

13-98
13-98
13-98
13-98
13-98
13-98
13-98
13-98

13-98
13-98

13-98
13-98
13-98
13-98
13-98
13-98
13-98
13-98

13-98
13-98

13-46
13-46
13-46

13-101
13-101
13-101
13-101
13-101
13-101
13-101
13-101

13-101
13-101

13-46
13-46
13-46

13-104
13-104
13-104
13-104
13-104
13-104
13-104
13-104

— 16-13 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

TDL Zilog MAC Disassembly Page

SRAR d(X) SRA (I1X+d) SRAX d DD CB db 2E 13-104
SRAR d(Y) SRA (1Y+d) SRAY d FD CB db 2E 13-104
SRLR A SRL A SRLR A CB 3F 13-106
SRLR B SRL B SRLR B CB 38 13-106
SRLRC SRLC SRLRC CB 39 13-106
SRLR D SRLD SRLR D CB3A 13-106
SRLRE SRLE SRLRE CB3B 13-106
SRLRH SRLH SRLRH CB3C 13-106
SRLR L SRL L SRLR L CB3D 13-106
SRLR M SRL (HL) SRLR M CB3E 13-106
SRLR d(X) SRL (1X+d) SRLX d DD CB db 3E 13-106
SRLR d(Y) SRL (1Y+d) SRLY d FD CB db 3E 13-106
SSPD addr LD (addr),SP SSPD addr ED 73 al ah 13-46
* STA addr LD (addr),A STA addr 32 al ah 13-46
STAI LD LA STAI ED 47 13-46
STAR LDRA STAR ED 4F 13-46
* STAX B LD (BC),A STAX B 02 13-46
* STAXD LD (DE),A STAX D 12 13-46
*STC SCF STC 37 13-97
*SUB A SUB A SUB A 97 13-108
*SUB B SUB B SUB B 90 13-108
*SUBC SUB C SUBC 91 13-108
*SUB D SUBD SUBD 92 13-108
*SUBE SUB E SUB E 93 13-108
*SUBH SUB H SUB H 94 13-108
*SUBL SUB L SUB L 95 13-108
*SUB M SUB (HL) SUB M 96 13-108
SUB d(X) SUB (1X+d) SUBX d DD 96 13-108
SUB d(Y) SUB (1Y+d) SUBY d FD 96 13-108
* SUI immed SUB immed SUI immed D6 ib 13-108
* XCHG EX DE,HL XCHG EB 13-28
* XRA A XOR A XRA A AF 13-112
* XRA B XOR B XRAB A8 13-112
*XRAC XORC XRAC A9 13-112
*XRAD XOR D XRAD AA 13-112
* XRAE XORE XRAE AB 13-112
* XRAH XORH XRAH AC 13-112
* XRA L XOR L XRA L AD 13-112
* XRA M XOR (HL) XRAM AE 13-112
XRA d(X) XOR (IX+d) XRAX d DD AE db 13-112
XRAd(Y) XOR (lY+d) XRAY d FD AE db 13-112
* XRI immed XOR immed XRI immed EE ib 13-112
* XTHL EX (SP),HL XTHL E3 13-28
XTIX EX (SP),IX XTIX DDE3 13-28
XTIY EX (SP)IY XTIY FD E3 13-28

— 16-14 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Cross Reference by MAC Mnemonic

Following is an op-code cross reference from MAC to Zilog and TDL mnemonics and machine codes. This table can be of
great assistance in translation. The page given contains the detailed instructions for the op-codes.

Those MAC mnemonics that are indicated by an “*” are the Intel 8080 processor subset, and usually use the TDL or MAC
mnemonics (identical for all 8080 instructions).

MAC Zilog TDL Disassembly Page
ACI immed ADC A,immed * ACl immed CEib 13-4
ADC A ADC A A *ADC A 8F 13-4
ADCB ADC A,B * ADCB 88 13-4
ADCC ADCA,C *ADCC 89 13-4
ADCD ADCAD * ADCD 8A 13-4
ADCE ADC AE * ADCE 8B 13-4
ADCH ADC AH * ADCH 8C 13-4
ADCL ADCAL * ADCL 8D 13-4
ADC M ADC A,(HL) * ADC M 8E 13-4
ADCXd ADC A,(I1X+d) ADC d(X) DD 8E db 13-4
ADCY d ADC A,(lY+d) ADC d(Y) FD 8E db 13-4
ADD A ADD A A * ADD A 87 13-6
ADD B ADD AB * ADD B 80 13-6
ADD C ADD A,C *ADD C 81 13-6
ADD D ADD AD *ADD D 82 13-6
ADD E ADD AE *ADDE 83 13-6
ADDH ADD AH *ADDH 84 13-6
ADD L ADD AL * ADD L 85 13-6
ADD M ADD A,(HL) * ADD M 86 13-6
ADDX d ADD A,(IX+d) ADD d(X) DD 86 db 13-6
ADDY d ADD A,(IY+d) ADD d(Y) FD 86 db 13-6
ADI immed ADD A,immed * ADI immed C6ib 13-6
ANA A AND A * ANA A A7 13-8
ANA B AND B * ANA B A0 13-8
ANA C AND C * ANA C Al 13-8
ANA D AND D *ANAD A2 13-8
ANA E AND E * ANA E A3 13-8
ANAH AND H * ANAH A4 13-8
ANA L AND L * ANA L Ab 13-8
ANA M AND (HL) * ANA M A6 13-8
ANAX d AND (IX+d) ANA d(X) DD A6 db 13-8
ANAY d AND (I'Y+d) ANA d(Y) FD A6 db 13-8
ANI immed AND immed * ANI immed E6 ib 13-8
BITO0,A BITO0,A BITO0,A CB 47 13-10
BITO0,B BITO0,B BITO,B CB 40 13-10
BITO,C BITO,C BITO,C CB41 13-10
BITO0,D BIT 0,D BIT 0,D CB 42 13-10
BIT O,E BIT O,E BIT O,E CB 43 13-10
BITO,H BITO,H BITO,H CB 44 13-10
BITO,L BITO,L BITO,L CB 45 13-10
BIT O,M BIT 0,(HL) BIT O,M CB 46 13-10

—17-1 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

MAC

BIT 1,A
BIT1,B
BIT1,C
BIT 1D
BIT 1,E
BIT1H
BIT1.L
BIT 1,M

BIT 2,A
BIT 2,B
BIT 2,C
BIT 2,D
BIT 2,E
BIT 2,H
BIT 2,L
BIT 2,M

BIT 3,A
BIT 3,B
BIT 3,C
BIT 3,.D
BIT 3,E
BIT 3,H
BIT 3,L
BIT 3,M

BIT 4,A
BIT 4B
BIT 4,C
BIT 4D
BIT 4,E
BIT4H
BIT 4L
BIT 4,M

BIT5A
BIT 5B
BIT5,C
BIT 5,D
BIT 5,E
BIT 5,H
BIT5,L
BIT 5M

BIT 6,A
BIT 6,B
BIT 6,C
BIT 6,D
BIT 6,E
BIT 6,H
BIT6,L
BIT 6,M

BIT 7,A
BIT 7,B
BIT7,C
BIT 7,.D
BIT 7,E
BIT7H
BIT7,L
BIT 7\M

Zilog

BIT 1A
BIT 1,B
BIT 1,C
BIT 1,D
BIT 1,E
BIT 1,H
BIT 1L
BIT 1,(HL)

BIT 2,A
BIT 2,B
BIT 2,C
BIT 2,D
BIT 2,E
BIT 2,H
BIT2,L
BIT 2,(HL)

BIT 3,A
BIT 3B
BIT 3,C
BIT 3D
BIT 3,E
BIT 3,H
BIT 3L
BIT 3,(HL)

BIT 4,A
BIT 4,8
BIT 4,C
BIT 4,D
BIT 4,E
BIT 4,H
BIT 4L
BIT 4,(HL)

BIT5,A
BIT5,B
BIT5,C
BIT 5D
BIT 5,E
BIT 5,H
BIT5,L
BIT 5,(HL)

BIT 6,A
BIT 6,B
BIT 6,C
BIT 6,D
BIT 6,E
BIT 6,H
BIT 6,L
BIT 6,(HL)

BIT 7,A
BIT7,B
BIT7,C
BIT7,D
BIT7,E
BIT 7,H
BIT7,.L
BIT 7,(HL)

TIDL

BIT 1,A
BIT1B
BIT1,C
BIT 1D
BIT 1,E
BIT1H
BIT1.L
BIT 1,M

BIT 2,A
BIT2,B
BIT 2,C
BIT 2,D
BIT 2,E
BIT 2,H
BIT 2,L
BIT 2,M

BIT 3,A
BIT 3,B
BIT 3,C
BIT 3D
BIT 3,E
BIT 3,H
BIT 3,L
BIT 3,M

BIT 4,A
BIT 4,B
BIT 4,C
BIT 4D
BIT 4,E
BIT 4H
BIT 4,L
BIT 4M

BIT 5A
BIT5,B
BIT5,C
BIT 5,D
BIT 5,E
BIT 5,H
BIT5,L
BIT 5M

BIT 6,A
BIT 6,B
BIT 6,C
BIT 6,D
BIT 6,E
BIT 6,H
BIT6,L
BIT 6,M

BIT 7,A
BIT7,B
BIT7,C
BIT 7,D
BIT 7,E
BIT7H
BIT7,L
BIT 7\M

Disassembly
CB4F

CB 48
CB 49
CB 4A
CB 4B
CB 4C
CB 4D
CB4E

CB 57
CB 50
CB51
CB 52
CB 53
CB 54
CB 55
CB 56

CB 5F
CB 58
CB 59
CB5A
CB 5B
CB5C
CB5D
CB 5E

CB 67
CB 60
CB 61
CB 62
CB 63
CB 64
CB 65
CB 66

CB 6F
CB 68
CB 69
CB 6A
CB 6B
CB6C
CB 6D
CB 6E

CB 77
CB 70
CB71
CB 72
CB 73
CB 74
CB 75
CB 76

CB7F
CB 78
CB79
CB7A
CB7B
CB7C
CB7D
CB7E

Page

13-10
13-10
13-10
13-10
13-10
13-10
13-10
13-10

13-10
13-10
13-10
13-10
13-10
13-10
13-10
13-10

13-10
13-10
13-10
13-10
13-10
13-10
13-10
13-10

13-10
13-10
13-10
13-10
13-10
13-10
13-10
13-10

13-10
13-10
13-10
13-10
13-10
13-10
13-10
13-10

13-10
13-10
13-10
13-10
13-10
13-10
13-10
13-10

13-10
13-10
13-10
13-10
13-10
13-10
13-10
13-10

—17-2 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

MAC

BITX0,d
BITX 1,d
BITX 2,d
BITX 3,d
BITX 4,d
BITX 5,d
BITX 6,d
BITX 7,d

BITY 0,d
BITY 1,d
BITY 2,d
BITY 3,d
BITY 4,d
BITY 5,d
BITY 6,d
BITY 7,d

CALL addr
CC addr
CCD
CCDR

CClI

CCIR

CM addr
CMA
CMC

CMP A
CMP B
CMP C
CMP D
CMP E
CMPH
CMP L
CMP M

CMPXd
CMPY d

CNC addr
CNZ addr
CP addr

CPE addr

CPI immed

CPO addr
CZ addr

DAA

DAD B
DAD D
DADH
DAD SP

DADCB
DADC D
DADC H
DADC SP

Zilog

BIT 0,(IX+d)
BIT 1,(IX+d)
BIT 2,(IX+d)
BIT 3,(IX+d)
BIT 4,(IX+d)
BIT 5,(IX+d)
BIT 6,(IX+d)
BIT 7,(IX+d)

BIT 0,(IY+d)
BIT 1,(1Y+d)
BIT 2,(IY+d)
BIT 3,(IY+d)
BIT 4,(1Y+d)
BIT 5,(1Y+d)
BIT 6,(1Y+d)
BIT 7,(1Y+d)

CALL addr
CALL C,addr
CPD

CPDR

CPI

CPIR

CALL M,addr
CPL

CCF

CPA
CPB
CPC
CPD
CPE
CPH
CPL
CP (HL)

CP (IX+d)
CP (1Y+d)

CALL NC,addr

CALL NZ,addr
CALL P,addr
CALL PE,addr

CP immed

CALL PO,addr
CALL Z,addr

DAA

ADD HL,BC
ADD HL,DE
ADD HL,HL
ADD HL,SP

ADC HL,BC
ADC HL,DE
ADC HL,HL
ADC HL,SP

TIDL

BIT 0,d(X)
BIT 1,d(X)
BIT 2,d(X)
BIT 3,d(X)
BIT 4,d(X)
BIT 5,d(X)
BIT 6,d(X)
BIT 7,d(X)

BIT 0,d(Y)
BIT 1,d(Y)
BIT 2,d(Y)
BIT 3,d(Y)
BIT 4,d(Y)
BIT 5,d(Y)
BIT 6,d(Y)
BIT 7,d(Y)

* CALL addr

* CC addr
CCD
CCDR
CClI
CCIR

* CM addr

* CMA

*CMC

*CMP A
*CMP B
*CMPC
*CMPD
*CMPE
*CMPH
*CMP L
*CMP M

CMP d(X)
CMP d(Y)

* CNC addr
* CNZ addr
* CP addr

* CPE addr

* CPI immed

* CPO addr
* CZ addr

* DAA

*DAD B
*DAD D
*DADH
* DAD SP

DADC B
DADC D
DADC H
DADC SP

Disassembly
DD CB db 46

DD CB db 4E
DD CB db 56
DD CB db 5E
DD CB db 66
DD CB db 6E
DD CB db 76
DD CBdb 7E

FD CB db 46
FD CB db 4E
FD CB db 56
FD CB db 5E
FD CB db 66
FD CB db 6E
FD CB db 76
FD CBdb 7E

CD al ah
DCal ah
ED A9
ED B9
ED Al
ED B1
FCal ah
2F

3F

BF
B8
B9
BA
BB
BC
BD
BE

DD BE db
FD BE db

D4 al ah
C4 al ah
F4 al ah
EC al ah

FE ib

E4 al ah
CCal ah

27

09
19
29
39

ED 4A
ED 5A
ED 6A
ED7A

Page

13-10
13-10
13-10
13-10
13-10
13-10
13-10
13-10

13-10
13-10
13-10
13-10
13-10
13-10
13-10
13-10

13-13
13-13
13-17
13-18
13-19
13-20
13-13
13-21
13-15

13-16
13-16
13-16
13-16
13-16
13-16
13-16
13-16

13-16
13-16

13-13
13-13
13-13
13-13

13-16

13-13
13-13

13-22

13-6
13-6
13-6
13-6

13-4
13-4
13-4
13-4

—17-3 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

MAC
DADX B
DADX D
DADX H
DADX SP

DADY B
DADY D
DADY H
DADY SP

DCR A
DCRB
DCRC
DCRD
DCRE
DCRH
DCRL
DCR M

DCRXd
DCRY d

DCX B
DCXD
DCXH
DCX SP

DCXX
DCXY

DI
DJNZ disp

DSBC B
DSBC D
DSBCH
DSBC SP

El
EXAF
EXX
HLT

IMO
IM1
IM2

IN port
IND
INDR
INI
INIR

INP A
INP B
INPC
INP D
INP E
INPH
INP L

Zilog

ADD IX,BC
ADD IX,DE
ADD IX,HL
ADD IX,SP

ADD IY,BC
ADD IY,DE
ADD IY,HL
ADD IY,SP

DEC A
DEC B
DEC C
DEC D
DEC E
DEC H
DEC L
DEC (HL)

DEC (IX+d)
DEC (IY+d)

DEC BC
DEC DE
DEC HL
DEC SP

DEC IX
DECIY

DI
DJNZ disp

SBC HL,BC
SBC HL,DE
SBC HL,HL
SBC HL,SP

El

EX AF,AF
EXX
HALT

IMO
M1
IM 2

IN A, (port)
IND
INDR

INI

INIR

IN A,(C)
IN B,(C)
IN C,(C)
IN D,(C)
IN E,(C)
IN H,(C)
IN L,(C)

TIDL

DADX B
DADX D
DADX H

DADX SP

DADY B
DADY D
DADY H

DADY SP

*DCRA
*DCRB
*DCRC
*DCRD
*DCRE
*DCRH
*DCRL
*DCRM

DCR d(X)
DCR d(Y)

*DCX B
*DCXD
*DCXH
* DCX SP

DCX X
DCXY

* DI

DJNZ disp

DSBC B
DSBC D
DSBCH
DSBC SP

* El
EXAF
EXX

*HLT

IMO
IM1
IM2

*IN port
IND
INDR
INI
INIR

INP A
INP B
INPC
INP D
INP E
INPH
INP L

Disassembly
DD 09

DD 19
DD 29
DD 39

FD 09
FD 19
FD 29
FD 39

3D
05
0D
15
1D
25
2D
35

DD 35db
FD 35db

0B
1B
2B
3B

DD 2B
FD 2B

F3
10 ab

ED 42
ED 52
ED 62
ED 72

FB
08
D9
76

ED 46
ED 56
ED 5E

DB pb

ED AA
ED BA
ED A2
ED B2

ED 78
ED 40
ED 48
ED 50
ED 58
ED 60
ED 68

Page
13-6
13-6
13-6
13-6

13-6
13-6
13-6
13-6

13-23
13-23
13-23
13-23
13-23
13-23
13-23
13-23

13-23
13-23

13-23
13-23
13-23
13-23

13-23
13-23

13-25
13-26

13-95
13-95
13-95
13-95

13-27
13-28
13-29
13-30

13-31
13-31
13-31

13-33
13-38
13-39
13-40
13-41

13-33
13-33
13-33
13-33
13-33
13-33
13-33

—17-4 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

MAC
INR A
INRB
INRC
INR D
INR E
INRH
INR L
INR M

INRX d
INRY d

INX B
INX D
INX H
INX SP

INXX
INXY

JC addr
JM addr

JMP addr

JNC addr
JNZ addr
JP addr

JPE addr
JPO addr

JR disp

JRC disp
JRNC disp
JRNZ disp
JRZ disp

JZ addr
LBCD addr
LDA addr
LDAI
LDAR

LDAX B
LDAX D

LDD
LDDR
LDED addr
LDI

LDIR

LDX Ad
LDX Bd
LDXCd
LDX D,
LDX E,d
LDX H,d
LDX L,d

Zilog

INC A
INC B
INC C
INC D
INC E
INCH
INC L
INC (HL)

INC (IX+d)
INC (1Y+d)

INC BC
INC DE
INC HL
INC SP

INC IX
INC IY

JP C,addr
JP M,addr

JP addr

JP NC,addr
JP NZ,addr
JP P,addr

JP PE,addr
JP PO,addr

JR disp

JR C,disp
JR NC,disp
JR NZ,disp
JR Z disp

JP Z,addr

LD BC,(addr)
LD A,(addr)
LD A/l

LD AR

LD A,(BC)
LD A,(DE)

LDD
LDDR

LD DE, (addr)
LDI

LDIR

LD A,(IX+d)
LD B,(1X+d)
LD C,(IX+d)
LD D,(IX+d)
LD E,(IX+d)
LD H,(IX+d)
LD L,(IX+d)

TIDL

*INR A
*INR B
*INRC
*INRD
*INRE
*INRH
*INR L
*INRM

INR d(X)
INR d(Y)

*INXB
*INXD
*INXH
* INX SP

INX X
INX'Y

*JC addr
* JM addr

* JMP addr

* JNC addr
* JNZ addr
* JP addr

* JPE addr
* JPO addr

JMPR disp

JRC disp
JRNC disp
JRNZ disp
JRZ disp

* JZ addr
LBCD addr

* LDA addr
LDAI
LDAR

* LDAX B
* LDAX D

LDD
LDDR
LDED addr
LDI

LDIR

MOV A,d(X)
MOV B,d(X)
MOV C,d(X)
MOV D,d(X)
MOV E,d(X)
MOV H,d(X)
MOV L,d(X)

Disassembly
3C

04
0C
14
1C
24
2C
34

DD 34 db
FD 34 db

03
13
23
33

DD 23
FD 23

DA al ah
FA al ah

C3al ah

D2 al ah
C2al ah
F2 al ah
EA al ah
E2 al ah

18 ab

38 ab
30 ab
20 ab
28 ab

CAalah
ED 4B al ah
3Aalah
ED 57

ED 5F

0A
1A

ED A8
ED B8
ED 5B al ah
ED AO
ED BO

DD 7E db
DD 46 db
DD 4E db
DD 56 db
DD 5E db
DD 66 db
DD 6E db

Page

13-36
13-36
13-36
13-36
13-36
13-36
13-36
13-36

13-36
13-36

13-36
13-36
13-36
13-36

13-36
13-36

13-42
13-42

13-42

13-42
13-42
13-42
13-42
13-42

13-44

13-44
13-44
13-44
13-44

13-42
13-46
13-46
13-46
13-46

13-46
13-46

13-52
13-53
13-46
13-54
13-55

13-46
13-46
13-46
13-46
13-46
13-46
13-46

—17-5—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

MAC

LDY Ad
LDY Bd
LDY Cd
LDY D,d
LDY E,d
LDY H,d
LDY L,d

LHLD addr
LIXD addr
LIYD addr
LSPD addr

LXI B,imwrd
LXI D,imwrd
LXI H,imwrd

LXI SP,imwrd

LXIX imwrd
LXIY imwrd

MOV A A
MOV AB
MOV AC
MOV AD
MOV AE
MOV AH
MOV AL
MOV AM

MOV B,A
MOV B,B
MOV B,C
MOV B,D
MOV B,E
MOV B,H
MOV B,L
MOV B,M

MOV CA
MOV C,B
MOV C,C
MOV C,D
MOV C,E
MOV CH
MOV C,L
MOV C,M

MOV DA
MOV D,B
MOV D,C
MOV D,D
MOV D,E
MOV D,H
MOV D,L
MOV DM

MOV E A
MOV E,B
MOV E,C
MOV E,D
MOV E,E
MOV EH
MOV E,L
MOV EM

Zilog

LD A,(IY+d)
LD B,(IY+d)
LD C,(IY+d)
LD D,(1Y+d)
LD E,(IY+d)
LD H,(1Y+d)
LD L,(IY+d)

LD HL,(addr)
LD IX,(addr)
LD 1Y, (addr)
LD SP,(addr)

LD BC,imwrd
LD DE,imwrd
LD HL,imwrd
LD SP,imwrd
LD IX,imwrd
LD 1Y,imwrd

LDAA
LDAB
LDAC
LD AD
LD AE
LD AH
LDAL
LD A,(HL)

LDBA
LD B,B
LDB,C
LD B,D
LD BE
LD BH
LDB,L
LD B,(HL)

LDCA
LDC,B
LDC.C
LDC,D
LD C,E
LD CH
LDC,L
LD C,(HL)

LDD.A
LDD,B
LDD,C
LD D,D
LD D,E
LD D,H
LD D,L
LD D,(HL)

LDE,A
LDE,B
LDE,C
LDED
LDEE
LD E,H
LDE.L
LD E,(HL)

TIDL

MOV A.d(Y)
MOV B,d(Y)
MOV C,d(Y)
MOV D,d(Y)
MOV E,d(Y)
MOV H,d(Y)
MOV L,d(Y)

* LHLD addr
LIXD addr
LIYD addr
LSPD addr

* LXI B,imwrd
* LXI D,imwrd
* LXI H,imwrd
* X1 SP,imwrd
LXI X,imwrd
LXI Y, imwrd

* MOV AA
*MOV AB
*MOV AC
* MOV AD
* MOV AE
* MOV AH
* MOV AL
* MOV AM

* MOV B,A
* MOV B,B
* MOV B,C
* MOV B,D
* MOV B,E
* MOV B,H
* MOV B,L
* MOV B,M

* MOV CA
* MOV C,B
*MOV C,C
* MOV C,D
* MOV C,E
* MOV CH
* MOV C,L
* MOV C,M

* MOV DA
*MOV DB
*MOV D,C
*MOVD,D
* MOV D,E
*MOV DH
* MOV D,L
* MOV DM

* MOV EA
* MOV E,B
* MOV E,C
* MOV E,D
* MOV EE
* MOV EH
* MOV E,L
* MOV EM

Disassembly
FD 7E db

FD 46 db
FD 4E db
FD 56 db
FD 5E db
FD 66 db
FD 6E db

2A al ah
DD 2A al ah
FD 2A al ah
ED 7B al ah
01ilinh
11ilih
21ilih
31lilih

DD 21ilih
FD 21l ih

TF
78
79
TA
B
7C
7D
T7E

47
40
4
42
43
44
45
46

4F
48

49

4A
4B
4C
4D
4E

57
50
51
52
53
54
55
56

5F
58
59
5A
5B
5C
5D
5E

Page

13-46
13-46
13-46
13-46
13-46
13-46
13-46

13-46
13-46
13-46
13-46

13-46
13-46
13-46
13-46
13-46
13-46

13-46
13-46
13-46
13-46
13-46
13-46
13-46
13-46

13-46
13-46
13-46
13-46
13-46
13-46
13-46
13-46

13-46
13-46
13-46
13-46
13-46
13-46
13-46
13-46

13-46
13-46
13-46
13-46
13-46
13-46
13-46
13-46

13-46
13-46
13-46
13-46
13-46
13-46
13-46
13-46

— 176 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

MAC

MOV H,A
MOV H,B
MOV H,C
MOV H,D
MOV H,E
MOV H,H
MOV H,L
MOV HM

MOV LA
MOV L,B
MOV L,C
MOV L,D
MOV L,E
MOV LH
MOV L,L
MOV LM

MOV M,A
MOV M,B
MOV M,C
MOV M,D
MOV M.E
MOV M,H
MOV M,L

MVI A,immed
MVI B,immed
MVI C,immed
MVI D,immed

MVI E,immed

MVI H,immed

MVI L,immed

MVI M,immed

MVIX d,immed
MVIY d,immed

NEG
NOP

ORA A
ORAB
ORAC
ORAD
ORAE
ORAH
ORAL
ORA M

ORAXd
ORAY d

ORI immed
OTDR
OTIR
OUT port
OouTD
OUTI

Zilog

LD H,A
LD H,B
LDH,C
LD H,D
LD H,E
LD H,H
LD H,L
LD H,(HL)

LDLA
LDL,B
LDL,C
LDL,D
LDL,E
LD LH
LDL,L
LD L,(HL)

LD (HL),A
LD (HL),B
LD (HL),C
LD (HL),D
LD (HL),E
LD (HL),H
LD (HL),L

LD A,immed
LD B,immed
LD C,immed
LD D,immed
LD E,immed
LD H,immed
LD L,immed

LD (HL),immed

LD (IX+d),immed
LD (I'Y+d),immed

NEG
NOP

ORA
ORB
ORC
ORD
ORE
ORH
ORL
OR (HL)

OR (IX+d)
OR (IY+d)

OR immed
OTDR

OTIR

OUT (port),A
OouTD

OUTI

TIDL

* MOV H,A
* MOV H,B
* MOV H,C
* MOV H,D

* MOV H,E

* MOV H,H

* MOV H,L

* MOV HM
* MOV LA

*MOV LB
*MOV L,C
* MOV L,D
* MOV L,E
*MOV LH
* MOV L,L

* MOV LM

* MOV M,A
* MOV M,B
* MOV M,C
* MOV M,D
* MOV M,E
* MOV MH
* MOV M,L

* MVI A,immed
* MVI B,immed
* MVI C,immed
* MVI D,immed
* MVI E,immed
* MVI H,immed
* MVI L,immed
* MVI M,immed

MVI d(X),immed
MVI d(Y),immed

NEG
* NOP

*ORAA
*ORAB
*ORAC
*ORAD
*ORAE
*ORAH
*ORAL
*ORA M

ORA d(X)
ORA d(Y)

* ORI immed

OTDR
OTIR

* OUT port
OouTD
OUTI

Disassembly
67

60
61
62
63
64
65
66

6F
68
69
6A
6B
6C
6D
6E

77
70
71
72
73
74
75

3Eib
06 ib
OE ib
16 ib
1Eib
26 ib
2Eib
36ib

DD 36dbib
FD 36 db ib

ED 44
00

B7
BO
Bl
B2
B3
B4
B5
B6

DD B6 db
FD B6 db

F6 ib
ED BB
ED B3
D3 pb
ED AB
ED A3

Page

13-46
13-46
13-46
13-46
13-46
13-46
13-46
13-46

13-46
13-46
13-46
13-46
13-46
13-46
13-46
13-46

13-46
13-46
13-46
13-46
13-46
13-46
13-46

13-46
13-46
13-46
13-46
13-46
13-46
13-46
13-46

13-46
13-46

13-57
13-58

13-59
13-59
13-59
13-59
13-59
13-59
13-59
13-59

13-59
13-59

13-59
13-62
13-65
13-66
13-69
13-70

—17-7—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

MAC Zilog TDL Disassembly Page

OUTP A OUT (C),A OUTP A ED 79 13-66
OUTPB OUT (C),B OUTPB ED 41 13-66
OUTPC OUT (C),.C OUTPC ED 49 13-66
OUTPD OUT (C),D OUTPD ED 51 13-66
OUTPE OUT (C).E OUTPE ED 59 13-66
OUTP H OUT (C),H OUTP H ED 61 13-66
OUTPL OUT (C),L OUTPL ED 69 13-66
PCHL JP (HL) * PCHL E9 13-42
PCIX IP (IX) PCIX DD E9 13-42
PCIY P (Y) PCIY FD E9 13-42
POP B POP BC * POP B c1 13-71
POP D POP DE * POP D D1 13-71
POP H POP HL * POP H El 13-71
POP PSW POP AF * POP PSW F1 13-71
POPX POP IX POP X DD E1 13-71
POPY POP IY POP Y FD E1 13-71
PUSH B PUSH BC * PUSH B c5 13-72
PUSH D PUSH DE * PUSH D D5 13-72
PUSH H PUSH HL * PUSH H E5 13-72
PUSH PSW PUSH AF * PUSH PSW F5 13-72
PUSHX PUSH IX PUSH X DD E5 13-72
PUSHY PUSH IY PUSH Y FD E5 13-72
RAL RLA * RAL 17 13-82
RALR A RL A RALR A CB 17 13-80
RALR B RL B RALR B CB 10 13-80
RALR C RLC RALR C CB11 13-80
RALR D RL D RALR D CB 12 13-80
RALR E RLE RALR E CB 13 13-80
RALR H RL H RALR H CB 14 13-80
RALR L RL L RALR L CB 15 13-80
RALR M RL (HL) RALR M CB 16 13-80
RALX d RL (1X+d) RALR d(X) DD CB db 16 13-80
RALY d RL (1Y+d) RALR d(Y) FD CB db 16 13-80
RAR RRA * RAR 1F 13-89
RARR A RR A RARR A CB 1F 13-87
RARR B RR B RARR B CB 18 13-87
RARR C RRC RARR C CB 19 13-87
RARR D RRD RARR D CB 1A 13-87
RARR E RRE RARR E CB 1B 13-87
RARR H RR H RARR H CB1C 13-87
RARR L RRL RARR L CB 1D 13-87
RARR M RR (HL) RARR M CB 1E 13-87
RARX d RR (IX+d) RARR d(X) DD CB db 1E 13-87
RARY d RR (1Y+d) RARR d(Y) FD CB db 1E 13-87
RC RETC * RC D8 13-76
RES 0,A RES 0,A RES 0,A CB 87 13-73
RES 0,B RES 0,B RES0,B CB 80 13-73
RES 0,C RES 0,C RES0,C CB 81 13-73
RES 0,D RES 0,D RES 0,D CB 82 13-73
RES 0,E RES 0,E RES 0,E CB 83 13-73
RES O,H RES O,H RES O,H CB 84 13-73
RES O,L RES O,L RES O,L CB 85 13-73
RES 0,M RES 0,(HL) RES O,M CB 86 13-73

—17-8 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

MAC

RES 1A
RES 1,B
RES1,C
RES 1,D
RES 1,E
RES 1,H
RES 1,L
RES 1M

RES 2,A
RES 2,B
RES 2,C
RES 2,D
RES 2,E
RES 2,H
RES2,L
RES 2,M

RES 3,A
RES 3,B
RES 3,C
RES 3,D
RES 3,E
RES 3,H
RES 3,L
RES 3,M

RES 4,A
RES 4,B
RES 4,C
RES 4,D
RES 4,E
RES 4,H
RES 4,L
RES 4,M

RES5A
RES 5,B
RES5,C
RES5,D
RES5,E
RES5H
RES 5,L
RES 5M

RES 6,A
RES 6,B
RES 6,C
RES 6,D
RES 6,E
RES 6,H
RES 6,L
RES 6,M

RES 7,A
RES 7,B
RES7,C
RES 7,D
RES 7,E
RES 7,H
RES7,L
RES 7,M

Zilog

RES 1A
RES 1,B
RES 1,C
RES 1,D
RES 1,E
RES 1,H
RES 1,L
RES 1,(HL)

RES 2,A
RES 2,B
RES 2,C
RES 2,D
RES 2,E
RES 2,H
RES 2,L
RES 2,(HL)

RES 3,A
RES 3,B
RES 3,C
RES 3,D
RES 3,E
RES 3,H
RES 3,L
RES 3,(HL)

RES 4,A
RES 4,B
RES 4,C
RES 4,D
RES 4,E
RES 4,H
RES 4,L
RES 4,(HL)

RES 5,A
RES 5,8
RES 5,C
RES 5D
RES 5,E
RES 5,H
RES 5,L
RES 5,(HL)

RES 6,A
RES 6,B
RES 6,C
RES 6,D
RES 6,E
RES 6,H
RES 6,L
RES 6,(HL)

RES 7,A
RES 7,B
RES 7,C
RES 7,D
RES 7,E
RES 7,H
RES 7,L
RES 7,(HL)

TIDL

RES 1A
RES1,B
RES1,C
RES 1,D
RES 1,E
RES 1,H
RES 1,L
RES 1,M

RES 2,A
RES 2,B
RES 2,C
RES 2,D
RES 2,E
RES 2,H
RES2,L
RES 2,M

RES 3,A
RES 3,B
RES 3,C
RES 3,D
RES 3,E
RES 3,H
RES 3,L
RES 3,M

RES 4,A
RES 4,B
RES 4,C
RES 4,D
RES 4,E
RES 4,H
RES 4,L
RES 4,M

RES5A
RES 5,B
RES5,C
RES5,D
RES5,E
RES5H
RES 5,L
RES 5M

RES 6,A
RES 6,B
RES 6,C
RES 6,D
RES 6,E
RES 6,H
RES 6,L
RES 6,M

RES 7,A
RES 7,B
RES 7,C
RES 7,D
RES 7,E
RES 7,H
RES7,L
RES 7,M

Disassembly
CB 8F

CB 88
CB 89
CB 8A
CB 8B
CB 8C
CB 8D
CB 8E

CB 97
CB 90
CB91
CB 92
CB 93
CB9%4
CB 95
CB 96

CB 9F
CB 98
CB 99
CB %A
CB 9B
CB9C
CB 9D
CB9E

CB A7
CB A0
CB Al
CB A2
CB A3
CB A4
CB A5
CB A6

CB AF
CB A8
CB A9
CB AA
CB AB
CB AC
CB AD
CB AE

CB B7
CB B0
CB Bl
CB B2
CB B3
CB B4
CB B5
CB B6

CB BF
CB B8
CB B9
CB BA
CB BB
CBBC
CB BD
CBBE

Page

13-73
13-73
13-73
13-73
13-73
13-73
13-73
13-73

13-73
13-73
13-73
13-73
13-73
13-73
13-73
13-73

13-73
13-73
13-73
13-73
13-73
13-73
13-73
13-73

13-73
13-73
13-73
13-73
13-73
13-73
13-73
13-73

13-73
13-73
13-73
13-73
13-73
13-73
13-73
13-73

13-73
13-73
13-73
13-73
13-73
13-73
13-73
13-73

13-73
13-73
13-73
13-73
13-73
13-73
13-73
13-73

—17-9 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

MAC

RESX 0,d
RESX 1,d
RESX 2,d
RESX 3,d
RESX 4,d
RESX 5,d
RESX 6,d
RESX 7,d

RESY 0,d
RESY 1,d
RESY 2,d
RESY 3,d
RESY 4,d
RESY 5,d
RESY 6,d
RESY 7,d

RET

RETI
RETN

RLC

RLCR A
RLCRB
RLCRC
RLCR D
RLCRE
RLCRH
RLCR L
RLCR M

RLCX d
RLCY d

RLD

RM
RNC
RNz
RP
RPE
RPO

RRC

RRCR A
RRCR B
RRCRC
RRCR D
RRCRE
RRCRH
RRCR L
RRCR M

RRCX d
RRCY d

RRD

Zilog

RES 0,(IX+d)
RES 1,(IX+d)
RES 2,(IX+d)
RES 3,(IX+d)
RES 4,(IX+d)
RES 5,(IX+d)
RES 6,(IX+d)
RES 7,(IX+d)

RES 0,(IY+d)
RES 1,(1Y+d)
RES 2,(Y+d)
RES 3,(IY+d)
RES 4,(1Y+d)
RES 5,(1Y+d)
RES 6,(1Y+d)
RES 7,(1Y+d)

RET

RETI
RETN

RLCA

RLC A
RLCB
RLCC
RLC D
RLCE
RLCH
RLC L
RLC (HL)

RLC (IX+d)
RLC (IY+d)

RLD

RET M
RET NC
RET NZ
RET P
RET PE
RET PO

RRCA

RRC A
RRC B
RRC C
RRC D
RRC E
RRC H
RRC L
RRC (HL)

RRC (IX+d)
RRC (IY+d)

RRD

TIDL

RES 0,d(X)
RES 1,d(X)
RES 2,d(X)
RES 3,d(X)
RES 4,d(X)
RES 5,d(X)
RES 6,d(X)
RES 7,d(X)

RES 0,d(Y)
RES 1,d(Y)
RES 2,d(Y)
RES 3,d(Y)
RES 4,d(Y)
RES 5,d(Y)
RES 6,d(Y)
RES 7,d(Y)

*RET

RETI
RETN

*RLC

RLCR A
RLCRB
RLCRC
RLCR D
RLCRE
RLCRH
RLCR L
RLCR M

RLCR d(X)
RLCR d(Y)

RLD

RM
RNC
RNZ
RP
RPE
RPO

RRC

RRCR A
RRCR B
RRCRC
RRCR D
RRCRE
RRCRH
RRCR L
RRCR M

RRCR d(X)
RRCR d(Y)

RRD

% X ok X

*

Disassembly
DD CB db 86

DD CB db 8E
DD CB db 96
DD CB db 9E
DD CB db A6
DD CB db AE
DD CB db B6
DD CB db BE

FD CB db 86
FD CB db 8E
FD CB db 96
FD CB db 9E
FD CB db A6
FD CB db AE
FD CB db B6
FD CB db BE

C9

ED 4D
ED 45

07

CB 07
CB 00
CBO01
CB 02
CB 03
CB 04
CB 05
CB 06

DD CB db 06
FD CB db 06

ED 6F

F8
DO
Co
FO
E8
EO

OF

CB OF
CB 08
CB 09
CB 0A
CB 0B
CBo0OC
CBOD
CB OE

DD CB db OE
FD CB db OE

ED 67

Page

13-73
13-73
13-73
13-73
13-73
13-73
13-73
13-73

13-73
13-73
13-73
13-73
13-73
13-73
13-73
13-73

13-76

13-78
13-79

13-85

13-83
13-83
13-83
13-83
13-83
13-83
13-83
13-83

13-83
13-83

13-86

13-76
13-76
13-76
13-76
13-76
13-76

13-92

13-90
13-90
13-90
13-90
13-90
13-90
13-90
13-90

13-90
13-90

13-93

—17-10 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

MAC Zilog TDL Disassembly Page

RSTO RST 00 *RSTO C7 13-94
RST 1 RST 08 *RST1 CF 13-94
RST 2 RST 10 *RST 2 D7 13-94
RST 3 RST 18 *RST 3 DF 13-94
RST 4 RST 20 * RST 4 E7 13-94
RST5 RST 28 *RST5 EF 13-94
RST 6 RST 30 *RST 6 F7 13-94
RST 7 RST 38 *RST7 FF 13-94
RZ RET Z *RZ C8 13-76
SBB A SBC AA *SBB A 9F 13-95
SBB B SBC AB * SBB B 98 13-95
SBBC SBCAC *SBB C 99 13-95
SBB D SBC AD * SBB D 9A 13-95
SBB E SBC AE *SBBE 9B 13-95
SBBH SBC AH * SBB H oC 13-95
SBB L SBC AL *SBB L 9D 13-95
SBB M SBC A,(HL) *SBB M 9E 13-95
SBBX d SBC A,(IX+d) SBB d(X) DD 9E 13-95
SBBY d SBC A,(IY+d) SBB d(Y) FD 9E 13-95
SBCD addr LD (addr),BC SBCD addr ED 43 al ah 13-46
SBI immed SBC A,immed * SBI immed DE ib 13-95
SDED addr LD (addr),DE SDED addr ED 53 al ah 13-46
SETO,A SETO0,A SETO0,A CBC7 13-98
SET0,B SET0,B SET0,B CBCO0 13-98
SET0,C SETO0,C SETO0,C CBC1 13-98
SET 0,D SET 0,D SET 0,D CBC2 13-98
SETO,E SETO,E SETO,E CBC3 13-98
SETOH SETOH SETOH CBC4 13-98
SETO,L SETO,L SETO,L CBC5 13-98
SETO,M SET 0,(HL) SETO,M CBC6 13-98
SET LA SET LA SET LA CBCF 13-98
SET1,B SET 1B SET1B CBC8 13-98
SET1,C SET1,C SET1,.C CBC9 13-98
SET 1D SET 1,D SET 1,D CBCA 13-98
SET 1E SET 1,E SET 1,E CBCB 13-98
SET 1,H SET 1,H SET 1,H CBCC 13-98
SET1,L SET1,L SET1,.L CBCD 13-98
SET 1,M SET 1,(HL) SET 1,M CB CE 13-98
SET 2,A SET2,A SET2,A CB D7 13-98
SET2,B SET2,B SET2,B CB DO 13-98
SET2,C SET2,C SET2,C CBD1 13-98
SET2,D SET 2,D SET 2,D CB D2 13-98
SET 2,E SET 2,E SET 2,E CB D3 13-98
SET2H SET2H SET2H CB D4 13-98
SET2,L SET2,L SET2,.L CB D5 13-98
SET 2,M SET 2,(HL) SET 2,M CB D6 13-98
SET 3,A SET 3,A SET 3,A CB DF 13-98
SET 3,B SET 3,B SET 3,B CB D8 13-98
SET 3,C SET 3,C SET 3,C CB D9 13-98
SET3,D SET 3D SET3,D CB DA 13-98
SET3E SET 3,E SET 3,E CB DB 13-98
SET3H SET3H SET3H CBDC 13-98
SET3.L SET3,.L SET3,.L CB DD 13-98
SET 3,M SET 3,(HL) SET 3,M CB DE 13-98

—17-11 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

MAC

SET4,A
SET 4,B
SET4,C
SET 4,D
SET4,E
SET 4,H
SETA4,L
SET 4M

SET5A
SET 5,B
SET5,C
SET5,D
SET5,E
SET 5,H
SETS5,L
SET5M

SET 6,A
SET6,B
SET6,C
SET 6,D
SET 6,E
SET 6,H
SET6,L
SET 6,M

SET7,A
SET 7,B
SET7,C
SET7,D
SET7,E
SET7H
SET7,L
SET7,M

SETX0,d
SETX 1,d
SETX 2,d
SETX 3,d
SETX 4,d
SETX 5,d
SETX 6,d
SETX 7,d

SETY 0,d
SETY 1,d
SETY 2,d
SETY 3,d
SETY 4,d
SETY 5,d
SETY 6,d
SETY 7,d

SHLD addr
SIXD addr
SIYD addr

Zilog

SET 4,A
SET 4,B
SET 4,C
SET 4D
SET 4,E
SET 4,H
SET 4,L
SET 4,(HL)

SET5,A
SET5,B
SET5,C
SET5,D
SET5,E
SET5,H
SET5,L
SET 5,(HL)

SET 6,A
SET 6,8
SET6,C
SET6,D
SET6,E
SET 6,H
SET6,L
SET 6,(HL)

SET 7,A
SET7,B
SET7,C
SET7,D
SET7,E
SET 7,H
SET7.L
SET 7,(HL)

SET 0,(IX+d)
SET 1,(IX+d)
SET 2,(IX+d)
SET 3,(IX+d)
SET 4,(1X+d)
SET 5,(IX+d)
SET 6,(IX+d)
SET 7,(1X+d)

SET 0,(IY+d)
SET 1,(1Y+d)
SET 2,(1Y+d)
SET 3,(1Y+d)
SET 4,(1Y+d)
SET 5,(1Y+d)
SET 6,(1Y+d)
SET 7,(1Y+d)

LD (addr),HL
LD (addr),IX
LD (addr),l'Y

TIDL

SET4,A
SET 4,B
SET4,C
SET 4,D
SET4,E
SET 4,H
SET4,L
SET 4M

SET5A
SET 5,B
SET5,C
SET5,D
SET5,E
SET 5,H
SETS5,L
SET5M

SET 6,A
SET6,B
SET6,C
SET 6,D
SET 6,E
SET 6,H
SET6,L
SET 6,M

SET 7,A
SET 7,B
SET7,C
SET7,D
SET7,E
SET7H
SET7,L
SET7,M

SET 0,d(X)
SET 1,d(X)
SET 2,d(X)
SET 3,d(X)
SET 4,d(X)
SET 5,d(X)
SET 6,d(X)
SET 7,d(X)

SET 0,d(Y)
SET 1,d(Y)
SET 2,d(Y)
SET 3,d(Y)
SET 4,d(Y)
SET 5,d(Y)
SET 6,d(Y)
SET 7,d(Y)

* SHLD addr
SIXD addr
SIYD addr

Disassembly
CBE7

CBEO
CBEl
CBE2
CB E3
CB E4
CB E5
CB E6

CB EF
CBES8
CBE9
CBEA
CBEB
CBEC
CBED
CBEE

CBF7
CB FO
CBF1
CBF2
CBF3
CBF4
CBF5
CBF6

CB FF
CBF8
CBF9
CB FA
CB FB
CBFC
CBFD
CBFE

DD CB db C6
DD CB db CE
DD CB db D6
DD CB db DE
DD CB db E6
DD CB db EE
DD CB db F6
DD CB db FE

FD CB db C6
FD CB db CE
FD CB db D6
FD CB db DE
FD CB db E6
FD CB db EE
FD CB db F6
FD CB db FE

22 al ah
DD 22 al ah
FD 22 al ah

Page

13-98
13-98
13-98
13-98
13-98
13-98
13-98
13-98

13-98
13-98
13-98
13-98
13-98
13-98
13-98
13-98

13-98
13-98
13-98
13-98
13-98
13-98
13-98
13-98

13-98
13-98
13-98
13-98
13-98
13-98
13-98
13-98

13-98
13-98
13-98
13-98
13-98
13-98
13-98
13-98

13-98
13-98
13-98
13-98
13-98
13-98
13-98
13-98

13-46
13-46
13-46

—17-12 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

MAC

SLARA
SLARB
SLARC
SLARD
SLARE
SLARH
SLARL
SLAR M

SLAXd
SLAY d

SPHL
SPIX
SPIY

SRAR A
SRAR B
SRARC
SRARD
SRARE
SRARH
SRARL
SRARM

SRAX d
SRAY d

SRLR A
SRLR B
SRLRC
SRLR D
SRLRE
SRLRH
SRLR L
SRLRM

SRLXd
SRLY d

SSPD addr
STA addr

STAI
STAR

STAX B
STAXD

STC

STXAd
STX Bd
STXCd
STXD,d
STXE,d
STX H,d
STXL,d

STY Ad
STY Bd
STy Cd
STYDd
STYE.d
STY H,d
STY L,d

Zilog

SLAA
SLAB
SLAC
SLAD
SLAE
SLAH
SLAL
SLA (HL)

SLA (IX+d)
SLA (1Y+d)

LD SP,HL
LD SP,IX
LD SP,IY

SRA A
SRA B
SRAC
SRAD
SRAE
SRAH
SRA L
SRA (HL)

SRA (IX+d)
SRA (IY+d)

SRL A
SRL B
SRLC
SRL D
SRLE
SRL H
SRL L
SRL (HL)

SRL (IX+d)
SRL (1Y+d)

LD (addr),SP
LD (addr),A

LD LA
LD R,A

LD (BC),A
LD (DE),A

SCF

LD (IX+d),A
LD (IX+d),B
LD (IX+d),C
LD (IX+d),D
LD (IX+d),E
LD (IX+d),H
LD (IX+d),L

LD (1Y+d),A
LD (IY+d),B
LD (1Y+d),C
LD (1Y+d),D
LD (1Y+d),E
LD (1Y+d),H
LD (1Y+d),L

*

*

TIDL

SLARA
SLARB
SLARC
SLARD
SLARE
SLARH
SLAR L
SLAR M

SLAR d(X)
SLAR d(Y)

SPHL
SPIX
SPIY

SRAR A
SRAR B
SRARC
SRARD
SRARE
SRARH
SRARL
SRARM

SRAR d(X)
SRAR d(Y)

SRLR A
SRLR B
SRLRC
SRLR D
SRLRE
SRLRH
SRLRL
SRLRM

SRLR d(X)
SRLR d(Y)

SSPD addr
STA addr

STAI
STAR

STAX B
STAXD

STC

MOV d(X),A
MOV d(X),B
MOV d(X),C
MOV d(X),D
MOV d(X),E
MOV d(X),H
MOV d(X),L

MOV d(Y),A
MOV d(Y),B
MOV d(Y),C
MOV d(Y),D
MOV d(Y),E
MOV d(Y),H
MOV d(Y),L

Disassembly
CB 27

CB 20
CB21
CB 22
CB 23
CB 24
CB 25
CB 26

DD CB dh 26
FD CB db 26

F9
DD F9
FD F9

CB 2F
CB 28
CB 29
CB 2A
CB 2B
CB2C
CB 2D
CB2E

DD CB db 2E
FD CB db 2E

CB 3F
CB 38
CB 39
CB 3A
CB 3B
CB 3C
CB 3D
CB 3E

DD CB db 3E
FD CB db 3E

ED 73 al ah
32al ah

ED 47
ED 4F

02
12

37

DD 77 db
DD 70 db
DD 71db
DD 72 db
DD 73 db
DD 74 db
DD 75db

FD 77 db
FD 70 db
FD 71 db
FD 72 db
FD 73 db
FD 74 db
FD 75 db

Page
13-101

13-101
13-101
13-101
13-101
13-101
13-101
13-101

13-101
13-101

13-46
13-46
13-46

13-104
13-104
13-104
13-104
13-104
13-104
13-104
13-104

13-104
13-104

13-106
13-106
13-106
13-106
13-106
13-106
13-106
13-106

13-106
13-106

13-46
13-46

13-46
13-46

13-46
13-46

13-97

13-46
13-46
13-46
13-46
13-46
13-46
13-46

13-46
13-46
13-46
13-46
13-46
13-46
13-46

—17-13 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

MAC Zilog TDL Disassembly Page

SUB A SUB A *SUB A 97 13-108
SUB B SUB B *SUB B 90 13-108
SUBC SUBC *SUBC 91 13-108
SUB D SUB D *SUB D 92 13-108
SUBE SUBE *SUBE 93 13-108
SUBH SUBH *SUBH 94 13-108
SUB L SUB L *SUB L 95 13-108
SUB M SUB (HL) *SUB M 96 13-108
sSuBXd SUB (IX+d) SUB d(X) DD 96 13-108
SUBY d SUB (IY+d) SUB d(Y) FD 96 13-108
SUI immed SUB immed * SUI immed D6 ib 13-108
XCHG EX DE,HL * XCHG EB 13-28

XRA A XOR A * XRA A AF 13-112
XRA B XOR B * XRA B A8 13-112
XRAC XORC * XRA C A9 13-112
XRA D XORD * XRAD AA 13-112
XRAE XORE *XRAE AB 13-112
XRAH XORH * XRAH AC 13-112
XRA L XOR L * XRA L AD 13-112
XRA M XOR (HL) * XRAM AE 13-112
XRAX d XOR (IX+d) XRA d(X) DD AE db 13-112
XRAY d XOR (IY+d) XRA d(Y) FD AE db 13-112
XRI immed XOR immed * XRI immed EE ib 13-112
XTHL EX (SP),HL * XTHL E3 13-28

XTIX EX (SP),IX XTIX DD E3 13-28

XTIY EX (SP),IY XTIY FD E3 13-28

—17-14 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Cross Reference by Intel 8080 Mnemonic

Following is an op-code cross reference from Intel 8080 to Zilog mnemonics and machine codes. This table can be of great
assistance in translation. The page given contains the detailed instructions for the op-codes.

It should be borne in mind that the Intel 8080 mnemonic set is a subset of the TDL or MAC mnemonic sets (actually, the
reverse is true, the Z-80 op-codes, regardless of mnemonics, are a superset of the 8080 op-codes).

8080DL Zilog Disassembly Page
ACI immed ADC A,immed CEib 13-4
ADC A ADC A A 8F 13-4
ADCB ADC AB 88 13-4
ADCC ADC AC 89 13-4
ADCD ADC AD 8A 13-4
ADCE ADC AE 8B 13-4
ADCH ADC AH 8C 13-4
ADC L ADCA,L 8D 13-4
ADC M ADC A,(HL) 8E 13-4
ADD A ADD A A 87 13-6
ADD B ADD AB 80 13-6
ADD C ADD A,C 81 13-6
ADD D ADD AD 82 13-6
ADD E ADD AE 83 13-6
ADDH ADD AH 84 13-6
ADD L ADD AL 85 13-6
ADD M ADD A,(HL) 86 13-6
ADI immed ADD A,immed C6ib 13-6
ANA A AND A A7 13-8
ANA B AND B A0 13-8
ANA C AND C Al 13-8
ANA D AND D A2 13-8
ANAE AND E A3 13-8
ANA H AND H Al 13-8
ANA L AND L A5 13-8
ANA M AND (HL) A6 13-8
ANI immed AND immed E6 ib 13-8
CALL addr CALL addr CD al ah 13-13
CC addr CALL C,addr DC al ah 13-13
CM addr CALL M,addr FC al ah 13-13
CMA CPL 2F 13-21
CMC CCF 3F 13-15
CMP A CPA BF 13-16
CMP B CPB B8 13-16
CMPC CPC B9 13-16
CMP D CPD BA 13-16
CMPE CPE BB 13-16
CMPH CPH BC 13-16
CMP L CPL BD 13-16
CMP M CP (HL) BE 13-16
CNC addr CALL NC,addr D4 al ah 13-13
CNZ addr CALL NZ,addr C4 al ah 13-13
CP addr CALL P,addr F4 al ah 13-13
CPE addr CALL PE,addr EC al ah 13-13
CPI immed CP immed FE ib 13-16

—18-1 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

8080DL Zilog Disassembly Page

CPO addr CALL PO,addr E4 al ah 13-13
CZ addr CALL Z,addr CCal ah 13-13
DAA DAA 27 13-22
DAD B ADD HL,BC 09 13-6

DAD D ADD HL,DE 19 13-6

DADH ADD HL,HL 29 13-6

DAD SP ADD HL,SP 39 13-6

DCR A DEC A 3D 13-23
DCR B DECB 05 13-23
DCRC DECC 0D 13-23
DCR D DEC D 15 13-23
DCRE DECE 1D 13-23
DCRH DECH 25 13-23
DCR L DECL 2D 13-23
DCR M DEC (HL) 35 13-23
DCX B DEC BC 0B 13-23
DCX D DEC DE 1B 13-23
DCXH DEC HL 2B 13-23
DCX SP DEC SP 3B 13-23
DI DI F3 13-25
El El FB 13-27
HLT HALT 76 13-30
IN port IN A, (port) DB pb 13-33
INR A INC A 3C 13-36
INR B INC B 04 13-36
INRC INCC 0C 13-36
INRD INCD 14 13-36
INRE INCE 1C 13-36
INRH INCH 24 13-36
INR L INCL 2C 13-36
INR M INC (HL) 34 13-36
INX B INC BC 03 13-36
INX D INC DE 13 13-36
INXH INC HL 23 13-36
INX SP INC SP 33 13-36
JC addr JP C,addr DA al ah 13-42
JM addr JP M,addr FA al ah 13-42
JMP addr JP addr C3al ah 13-42
JNC addr JP NC,addr D2 al ah 13-42
JNZ addr JP NZ,addr C2 al ah 13-42
JP addr JP P,addr F2 al ah 13-42
JPE addr JP PE,addr EA al ah 13-42
JPO addr JP PO,addr E2 al ah 13-42
JZ addr JP Z,addr CA al ah 13-42
LDA addr LD A,(addr) 3Aal ah 13-46
LDAX B LD A,(BC) 0A 13-46
LDAX D LD A,(DE) 1A 13-46
LHLD addr LD HL,(addr) 2A al ah 13-46
LXI B,imwrd LD BC,imwrd 0l1ilih 13-46
LXI D,imwrd LD DE,imwrd 11ilih 13-46
LXI H,imwrd LD HL,imwrd 21il ih 13-46
LXI1 SP,imwrd LD SP,imwrd 31lilih 13-46

—18-2 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

8080DL Zilog Disassembly Page

MOV A A LDAA 7F 13-46
MOV A,B LDAB 78 13-46
MOV A,C LDA,C 79 13-46
MOV A,D LD AD 7A 13-46
MOV A E LD AE 7B 13-46
MOV AH LD AH 7C 13-46
MOV A L LDAL 7D 13-46
MOV AM LD A,(HL) 7E 13-46
MOV B,A LDBA 47 13-46
MOV B,B LDB,B 40 13-46
MOV B,C LDB,C 4 13-46
MOV B,D LD B,D 42 13-46
MOV B,E LD B,E 43 13-46
MOV B,H LD BH 44 13-46
MOV B,L LDB,L 45 13-46
MOV B,M LD B,(HL) 46 13-46
MOV C,A LDCA 4F 13-46
MOV C,B LDC,B 48 13-46
MOV C,C LDC,C 49 13-46
MOV C,D LD C,D 4A 13-46
MOV C,E LD CE 4B 13-46
MOV C,H LD CH 4C 13-46
MOV C,L LDC,L 4D 13-46
MOV C,M LD C,(HL) 4E 13-46
MOV D,A LDD,A 57 13-46
MOV D,B LD D,B 50 13-46
MOV D,C LD D,C 51 13-46
MOV D,D LD D,D 52 13-46
MOV D,E LD D,E 53 13-46
MOV D,H LD D,H 54 13-46
MOV D,L LDD,L 55 13-46
MOV D,M LD D,(HL) 56 13-46
MOV E,A LDEA 5F 13-46
MOV E,B LDE,B 58 13-46
MOV E,C LDE,C 59 13-46
MOV E,D LD E,D 5A 13-46
MOV E,E LD E,E 5B 13-46
MOV E,H LD E,H 5C 13-46
MOV E,L LDE,L 5D 13-46
MOV E,M LD E,(HL) 5E 13-46
MOV H,A LD H,A 67 13-46
MOV H,B LDH,B 60 13-46
MOV H,C LDH,C 61 13-46
MOV H,D LD H,D 62 13-46
MOV H,E LD H,E 63 13-46
MOV H,H LD H,H 64 13-46
MOV H,L LD H,L 65 13-46
MOV H,M LD H,(HL) 66 13-46
MOV LA LDL,A 6F 13-46
MOV L,B LDL,B 68 13-46
MOV L,C LDL,C 69 13-46
MOV L,D LDL,D 6A 13-46
MOV L,E LDLE 6B 13-46
MOV L,H LD L,H 6C 13-46
MOV L,L LDL.L 6D 13-46
MOV L,M LD L,(HL) 6E 13-46

—18-3 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

8080DL Zilog Disassembly Page

MOV M,A LD (HL),A 77 13-46
MOV M,B LD (HL),B 70 13-46
MOV M,C LD (HL),C 71 13-46
MOV M,D LD (HL),D 72 13-46
MOV M,E LD (HL),E 73 13-46
MOV M,H LD (HL),H 74 13-46
MOV M,L LD (HL),L 75 13-46
MVI A,immed LD A,immed 3Eib 13-46
MVI B,immed LD B,immed 06 ib 13-46
MVI C,immed LD C,immed OE ib 13-46
MVI D,immed LD D,immed 16 ib 13-46
MVI E,immed LD E,immed 1Eib 13-46
MVI H,immed LD H,immed 26 ib 13-46
MVI L,immed LD L,immed 2E ib 13-46
MVI M,immed LD (HL),immed 36ib 13-46
NOP NOP 00 13-58
ORA A OR A B7 13-59
ORAB ORB BO 13-59
ORAC ORC B1 13-59
ORAD ORD B2 13-59
ORAE ORE B3 13-59
ORAH ORH B4 13-59
ORA L ORL B5 13-59
ORA M OR (HL) B6 13-59
ORI immed OR immed F6 ib 13-59
OUT port OUT (port),A D3 pb 13-66
PCHL JP (HL) E9 13-42
POP B POP BC C1 13-71
POP D POP DE D1 13-71
POPH POP HL El 13-71
POP PSW POP AF F1 13-71
PUSH B PUSH BC C5 13-72
PUSH D PUSH DE D5 13-72
PUSHH PUSH HL E5 13-72
PUSH PSW PUSH AF F5 13-72
RAL RLA 17 13-82
RAR RRA 1F 13-89
RC RETC D8 13-76
RET RET C9 13-76
RLC RLCA 07 13-85
RM RET M F8 13-76
RNC RET NC DO 13-76
RNZ RET NZ Co 13-76
RP RETP FO 13-76
RPE RET PE E8 13-76
RPO RET PO EO 13-76
RRC RRCA OF 13-92

—18-4 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

8080DL Zilog Disassembly Page

RSTO RST 00 C7 13-94
RST 1 RST 08 CF 13-94
RST 2 RST 10 D7 13-94
RST 3 RST 18 DF 13-94
RST 4 RST 20 E7 13-94
RST 5 RST 28 EF 13-94
RST 6 RST 30 F7 13-94
RST 7 RST 38 FF 13-94
RZ RET Z C8 13-76
SBB A SBC A A 9F 13-95
SBB B SBC AB 98 13-95
SBB C SBC A,C 99 13-95
SBB D SBC AD 9A 13-95
SBB E SBC AE 9B 13-95
SBB H SBC AH 9C 13-95
SBB L SBC A,L 9D 13-95
SBB M SBC A,(HL) 9E 13-95
SBI immed SBC A,immed DE ib 13-95
SHLD addr LD (addr),HL 22 al ah 13-46
SPHL LD SP,HL F9 13-46
STA addr LD (addr),A 32 al ah 13-46
STAX B LD (BC),A 02 13-46
STAX D LD (DE),A 12 13-46
STC SCF 37 13-97
SUB A SUB A 97 13-108
SUB B SUB B 90 13-108
SUB C SUB C 91 13-108
SUB D SUB D 92 13-108
SUBE SUBE 93 13-108
SUB H SUB H 94 13-108
SUB L SUB L 95 13-108
SUB M SUB (HL) 96 13-108
SUI immed SUB immed D6 ib 13-108
XCHG EX DE,HL EB 13-28
XRA A XOR A AF 13-112
XRA B XOR B A8 13-112
XRAC XORC A9 13-112
XRA D XOR D AA 13-112
XRAE XORE AB 13-112
XRAH XORH AC 13-112
XRA L XOR L AD 13-112
XRA M XOR (HL) AE 13-112
XRI immed XOR immed EE ib 13-112
XTHL EX (SP),HL E3 13-28

—18-5—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Byte Tyme Flag Table

ADC A reg
ADC A,(HL)
ADC A, (li+d)
ADC A,immed
ADC HL,regpr

ADD A reg
ADD A,(HL)
ADD A, (li+d)
ADD A,immed
ADD HL,regpr
ADD li,regpr

AND reg
AND (HL)
AND (li+d)
AND immed

BIT bit,reg
BIT bit,(HL)
BIT bit,(li+d)

CALL addr

CALL cond,addr

CCF

CP reg
CP (HL)
CP (li+d)
CP immed

CPD
CPDR

CPI
CPIR

CPL
DAA

DEC reg
DEC (HL)
DEC (li+d)
DEC regpr
DEC i

DI
DJNZ disp

El

EX DE,HL
EX (SP),HL
EX (SP),li
EX AF,AF'

EXX

Size

Bytes Tymes

Condition

o]

SR
lodNey
nu un

O 0 0o

ctl

16
16
16
16

16

4
7 (4,3)

19 (4,4,3,5,3)
7(4,3)

15 (4,4,4,3)

4
7 (4,3)

19 (4,4,3,5,3)
7 (4,3)

11 (4,4,3)

11 (4,4,3)

4
7 (4,3)

19 (4,4,3,5,3)
7 (4,3)

8 (4,4)

12 (4,4,4)

20 (4,4,3,5,4)

17 (4,3,4,3,3)
17 (4,3,4,3,3)
10 (4,3,3)

4

4
7 (4,3)
19 (4,4,3,5,3)
7 (4,3)

16 (4,4,3,5)

21 (4,4,3,5,5)
16 (4,4,3,5)

16 (4,4,3,5)

21 (4,4,3,5,5)
16 (4,4,3,5)

4
4

4
11 (4,4,3)

23 (4,4,3,5,4,3)
6

10 (4,6)

4

13 (5,3,5)

8 (5,3)

4

4

19 (4,3,4,3,5)

23 (4,4,3,4,3,5)
4

4

WW ANDN NWEFRPEFEF NMNEPNWEFREEFE NDNWPRPE

N N NWORFR L PP

N

N P NRPORR P

P RPNRRER R

+ 4+ + + +|0
+ 4+ + + +|N

+ + + +
RPRRP RPRPREP XX+ +++ X+ + + +|T

+ + + +

c

+ + +
+ + 4+

+ + + +

+ + + +

+ + + +

+

+

+ P ++ 4+ + 4+ + ++ ++ X
OFr X OFr X + + + +
P PP P RPRRP RP RPRRE O

+

o+ o+
+ + +
R R

+

+ + + +|o

' + + + +

+ + 4+ +
OO0 OCOO0OO OCO0OO0OO0OO OO0 OOo|z

c

+ + + + +lo

OO0 + + 4+ + + +

+ 4+ 4+ 4+ x

True
False

BC<>0

BC<>0
BC=0

B<>0
B=0

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

—19-1 —

HALT
IM mode

IN A,(port)
IN reg,(C)

INO reg,(port)

INC reg
INC (HL)
INC (li+d)
INC regpr
INC i

IND
INDR

INI
INIR

JP addr
JP (HL)
JP (li)

JP cond,addr

JR disp
JR cond,disp

LD reg,reg

LD reg,(HL)
LD (HL),reg
LD reg,immed
LD (HL),immed
LD reg,(li+d)
LD (li+d),reg

LD (li+d),immed

LD (regpr),A
LD A,(regpr)
LD (addr),A
LD A,(addr)
LD ILA

LD R,A

LD Al

LD AR

LD regpr,imwrd

LD li,imwrd
LD (addr),HL
LD HL,(addr)

LD (addr),regpr
LD regpr,(addr)

LD (addr),li
LD li,(addr)
LD SP,HL
LD SP,li

LDD
LDDR

LDI

Bytes Tymes

Condition

OO HPEP 00O 0 0 o
[e2]Ne)]

o 0o

abs
abs
abs

abs

rel
rel

00 00 0O 00 00 0O 00 0O OO0 0O OO0 0O OO 00 OO OO

1
2
2
2
3
1
1
3
1
2
2
2

w NP W NN

NN

N N NRPRARRARDRMRMWWPRARWONNDNNNWWEREPRARWWNNRERPRPRE

4
8 (4,4)

11 (4,3,4)
12 (4,4,4)

1

4
11 (4,4,3)

23 (4,4,3,5,4,3)
6

10 (4,6)

16 (4,5,3,4)
21 (4,5,3,4,5)
16 (4,5,3,4)

16 (4,5,3,4)
21 (4,5,3,4,5)
16 (4,5,3,4)

10 (4,3,3)
4
8 (4,4)

10 (4,3,3)
10 (4,3,3)

12 (4,3,5)
12 (4,3,5)
7 (4,3)

4
7(4,3)

7(4,3)

7 (4,3)

10 (4,3,3)

19 (4,4,3,5,3)
19 (4,4,3,5,3)
19 (4,4,3,5,3)
7 (4,3)

7 (4,3)

13 (4,3,3,3)

13 (4,3,3,3)

9 (4,5)

9 (4,5)

9 (4,5)

9 (4,5)

10 (4,3,3)

14 (4,4,3,3)

16 (4,3,3,3,3)
16 (4,3,3,3,3)
20 (4,4,3,3,3,3)
20 (4,4,3,3,3,3)
20 (4,4,3,3,3,3)
20 (4,4,3,3,3,3)
6

10 (4,6)

16 (4,4,3,5)

21 (4,4,3,5,5)
16 (4,4,3,5)

16 (4,4,3,5)

+ + + o+

P OX PFRPOX

+++ o o

+ + +
'oocoo o o

o OO O

X Or X

RPRR PR !

O OO O

True
False

True
False

BC<>0
BC=0

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

—19-2 —

LDIR

~ MLT regpr
NEG
NOP

ORreg
OR (HL)
OR (li+d)
OR immed

OTDM
OTDMR

OTDR

OTIM
OTIMR

OTIR

OUT (port),A
OUT (C),reg

OUTO (port),reg
OUTD
OUTI

POP regpr
POP AF
PORP li

PUSH regpr
PUSH li

RES bit,reg
RES bit,(HL)
RES bit,(li+d)

RET
RET cond

RETI
RETN

RL reg
RL (HL)
RL (li+d)

RLA

RLC reg
RLC (HL)
RLC (li+d)

RLCA
RLD

RR reg
RR (HL)
RR (li+d)

Size Bytes Tymes SZHPNC Condition

8 2 21 (4,4,3,5,5) - - 010 - BC<>0
16 (4,4,3,5) - - 000 - BC=0

8 2 17 S

8 2 8 (4,4) + + + + 1 X

ctl 1 4 - - - - - -

8 1 4 ++1+00

8 1 7 (4,3) ++1+00

8 3 19 (4,4,3,5,3) ++1+00

8 2 7 (4,3) ++1+00

8 2 14 X X X X X X

8 2 16 X X X X X X B<>0
14 010110 B=0

8 2 21 (4,5,3,4,5) ux uuwu?lu B<>0
16 (4,5,3,4) uluuwu1lu B=0

2 14 X X X X X X

8 2 16 X X X X X X B<>0
14 010100 B=0

8 2 21 (4,5,3,4,5) ux uuoOuwu B<>0
16 (4,5,3,4) uluuwuOu B=0

8 2 11 (4,3,4) - - - - u -

8 2 12 (4,4,4) - - - - u -

8 3 13 S

8 2 16 (4,5,3,4) uxuu?l -

8 2 16 (4,5,3,4) ux uu?l -

16 1 10 (4,3,3) - - - - o

16 1 10 (4,3,3) X X X X X X

16 2 14 (4,4,3,3) - - - - oo

16 1 11 (5,3,3) - - - - - -

16 2 15 (4,5,3,3) - - - - oo

1 2 8 (4,4) - - - - o

1 2 12 (4,4,4) - - - - oL

1 4 20 (4,4,3,5,4) - - - - - -

abs 1 10 (4,3,3) - - - - - -

abs 1 11 (5,3,3) - - - - - - True
5 - - - - - False

abs 2 14 (4,4,3,3) - - - - -

abs 2 14 (4,4,3,3) - - - - o

1 2 8 (4,4) + + 0 + 0 x

1 2 15 (4,4,4,3) + + 0 + 0 x

1 4 23(443543) + + 0 + 0 x

1 1 4 + + 0 + 0 x

1 2 8 (4,4) + + 0 + 0 x

1 2 15 (4,4,4,3) + + 0 + 0 x

1 4 23(4,43543) + + 0 + 0 X

1 1 4 - - 0+ 0 x

4 2 18 (4,4,3,4,3) + + 0+ 0 -

1 2 8 (4,4) + + 0 + 0 x

1 2 15 (4,4,4,3) + + 0 + 0 x

1 4 23(4,43543) + + 0 + 0 x

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

—19-3 —

Size Bytes Tymes SZHPNC Condition
RRA 1 1 4 + + 0 + 0 x
RRC reg 1 2 8 (4,4) + + 0 + 0 x
RRC (HL) 1 2 15 (4,4,4,3) + + 0 + 0 x
RRC (li+d) 1 4 23(4,43543) + + 0 + 0 x
RRCA 1 1 4 + + 0 + 0 x
RRD 4 2 18 (4,4,3,4,3) + + 0+ 0 -
RST vector abs 1 11 (5,3,3) S
SBC Areg 8 1 4 + + + + 1 +
SBC A,(HL) 8 1 7(4,3) + + + + 1 +
SBC A,(li+d) 8 3 19 (4,4,3,5,3) + o+ + + 1+
SBC A,immed 8 2 7 (4,3) + + + + 1 +
SBC HL,regpr 16 2 15 (4,4,4,3) + + x+ 1 +
SCF 1 1 4 - - 0-01
SET bit,reg 1 2 8 (4,4) T
SET bit,(HL) 1 2 12 (4,4,9) - e e e e
SET bit,(li+d) 1 4 20 (4,4,3,5,4) - - - -
SLA reg 1 2 8 (4,4) + + 0 + 0 x
SLA (HL) 1 2 15 (4,4,4,3) + + 0 + 0 x
SLA (li+d) 1 4 26 (443543 + + 0 + 0 X
~ SLP ctl 2 8 - - - - - -
SRA reg 1 2 8 (4,4) + + 0 + 0 X
SRA (HL) 1 2 15 (4,4,4,3) + + 0 + 0 x
SRA (li+d) 1 4 26 (4,43543) + + 0 + 0 Xx
SRL reg 1 2 8 (4,4) + + 0 + 0 x
SRL (HL) 1 2 15 (4,4,4,3) + + 0 + 0 x
SRL (li+d) 1 4 26 (443543 + + 0 + 0 x
SUB reg 8 1 4 + + + + 1 +
SUB (HL) 8 1 7 (4,3) + + + + 1 +
SUB (li+d) 8 3 19 (4,4,3,5,3) + + + + 1 +
SUB immed 8 2 7 (4,3) + + + + 1 +
~ TST reg 8 2 7 ++ 1+ 00
~ TST (HL) 8 2 10 ++1+00
~ TST immed 8 3 9 ++1+00
~ TSTIO immed 8 3 12 ++1+00
XOR reg 8 1 4 + + 1 +00
XOR (HL) 8 1 7 (4,3) ++1+00
XOR (li+d) 8 3 19 (4,4,3,5,3) ++1+00
XOR immed 8 2 7 (4,3) ++1+00
Size: The operation size in bits (1, 8, or 16):
1 A bit operand.
4 A nybble operand.
8 A byte operand.
16 A word operand.
abs An absolute relocation operand.
ctl A cpu control operand.
rel A relative relocation operand.
Bytes: The operand size in bytes.
Tymes: The number of tymes (T-states) required for the operation:
Flags
S Sign flag
4 Zero flag
H Half-carry flag
P Parity/overflow flag
N Subtraction flag

—19-4 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

C Carry flag
Not affected.

+ Altered in a normal manner.

u Altered in an undefined manner.
X Altered in a special manner.

0 Cleared.

1 Set.

Condition: The condition of any conditional or looping operand.

—19-5—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Base Conversion

Signed and Unsigned Values

A value may be signed or unsigned.
Unsigned values are used for addressing, counting, and general data. Unsigned values have the following ranges:
8-Bit Values:

1111,1111¢ 3770 255p FFy
1111,1110g 3760 254, FE4
0000,00015 0010 1o 014
0000,00005 0000 Op 004
16-Bit Values:
1111,1111,1111,11115 1777774 65,535 FFFF,
1111,1111,1111,1110¢ 177,776¢ 65,534p FFFE4
0000,0000,0000,00015 000,001, 1o 00014
0000,0000,0000,00005 000,0000 Op 00004

Signed values are used for mathematics and other computational functions. Signed values have the following ranges:
8-Bit Values:

0111,11115 1776 +127, 7F,
0111,11105 1764 +126, 7E,
0000,0001 001, +1p 01,
0000,00005 0006 o 00,
11111111, 3776 “1p =
111111105 378, 25 FE,
1000,0001 201, _127, 81,
1000,00005 2006 128, 80,

16-Bit Values:
0111111111111111s O77.7770 +32,767 FFFF,,
011111111111.1110; 077.7770 +32.766, 7FFE,
0000,0000,0000,00015; 000,001, +1p 0001,
0000,0000,0000.0000; 000,000, o 00004,
1111111111111 177.777¢ 15 FFFF,
111111111111 1111, 177.776 25 FFFE,,
1000,0000,0000,0001s 100,001, -32.767 8001,
1000,0000000000005 100,000, —32.768 8000,

The most significant bit of signed values is the sign bit. If the sign bit is 0, the value is positive, if the sign bit is 1, the value is
negative.

At first glance, there appears to be an inconsistency in the binary, octal, and hexadecimal signed numbers as they shift from a
value of 0 to a value of —1. This inconsistency is not real. If you think of each number as a value X, then the next smaller
number has a value of X — 1. In binary, 00005 — 0001 = 1111g. It helps if you imagine that there is a 1 before the minuend:
the equation then becomes: 10000g — 0001z = 1111;.

When converting between binary and octal, binary and hexadecimal, or octal and hexadecimal, the signs automatically fall
into place. No special consideration need be given as to whether a value is unsigned or signed.

In assembly, decimal values are the odd ones. Therefore, when converting between decimal and binary, decimal and octal, or
decimal and hexadecimal, it becomes critical that you know if the value is unsigned or signed. More specifically, whether or
not the value is an unsigned negative value.

—20-1—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Binary to Octal Conversion

To convert a value from binary to octal, break the binary value into groups of three bits from right to left and convert each
group of three bits into the corresponding octal digit.

000=0 010=2 100=4 110=6
001=1 011=3 101=5 111=7

For example, to convert 1101,0110,1010,01115 to 153,247¢:
1101 0110 1010 0111 = 1 101 011 010 100 111

=]

153247

—20-2 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Unsigned Binary to Decimal Conversion

To convert an unsigned value from binary to decimal, multiply each bit by its appropriate power of 2 and add the results.
For example, to convert 1101,0010,1000,10115 to 53,899p:
1101 0010 1000 1011

LE:: 1 x 2% =1 x 1 = 1
1 x2t =1 x2 = 2
0 x 22 =0 x 4 = 0

1 x 2% =1 x 8 = 8

0 x 2 =0 x 16 = 0

0 x 2° =0 x 32 = 0

0 x 25 =0 x 64 0

1 x 27 =1 x 128 = 128

0 x 28 =0 x 256 = 0

1 x 2° =1 x 512 512

0 x 2% =0 x 1024 = 0

0 x 2 =0 x 2048 = 0

1 x 22 =1 x 4096 = 4096

0 x 2% =0 x 8192 = 0

1 x 2 =1 x 16384 = 16384

1 x 2 =1 x 32768 = 32768
53899

—20-3—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Signed Binary to Decimal Conversion

To convert a signed value from binary to decimal, determine first if the value is positive or negative. The most significant bit
of an 8- or 16-bit positive value is 0, while that of a negative value is 1. Be certain the value is either 8 or 16 bits:
1001,1100,1111,0100g is a negative value, while 1001,1100,1111g is not (1001,1100,11115 is actually
0000,1001,1100,1111g).

If a positive value, multiply each bit by its appropriate power of 2 and add the results.
For example, to convert 0110,0100,1011,0011g to 25,779p:
0110 0100 1011 0011

LE:: 1 x2° =1 x 1 = 1
1 x 2 =1 x 2 = 2
0 x 22 =0 x 4 = 0

0 x2% =0 x 8 = 0

1 x 2% =1 x 16 = 16

1 x 2° =1 x 32 = 32

0 x 2° =0 x 64 = 0

1 x 27 =1 x 128 = 128

0 x 28 =0 x 256 = 0

0 x 2° =0 x 512 = 0

1 x 219 =1 x 1024 = 1024

0 x 2 =0 x 2048 = 0

0 x 2% =0 x 4096 = 0

1 x 2% =1 x 8192 = 8192

1 x 2 =1 x 16384 = 16384

0 x 2¥ =0 x 32768 = 0
25779

If a 16-bit negative value, multiply each bit by its appropriate power of 2 and add the results, then subtract 65,536.
For example, to convert 1010,0011,1110,00015 to —23,583p:
1010 0011 1110 0001

LE:: 1 x2° =1 x 1 = 1
0 x2t =0 x 2 = 0
0 x 22 =0 x 4 = 0

0 x2° =0 x 8 = 0

0 x 2 =0 x 16 = 0

1 x2° =1 x 32 = 32

1 x 2% =1 x 64 = 64

1 x 27 =1 x 128 = 128

1 x 28 =1 x 256 = 256

1 x 2° =1 x 512 = 512

0 x 2% =0 x 1024 = 0

0 x 2 =0 x 2048 = 0

0 x 22 =0 x 4096 = 0

1 x 213 =1 x 8192 = 8192

0 x 2 =0 x 16384 = 0

1 x 2 =1 x 32768 = 32768
41953

-65536

-23583

—20-4 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

If an 8-bit negative value, multiply each bit by its appropriate power of 2 and add the results, then subtract 256.
For example, to convert 1101,01005 to —44p:
1101,0100

||:0x2°—0x1 = 0
0 x 2t =0 x 2 = 0
1 x22=1 x4 = 4
0 x2=0x 8 = 0
1 x2'=1x16 = 16
0 x 2° =0 x 32 0
1 x2°=1x 64 = 64
1 x 2" =1 x 128 = 128
212
-256
44
—20-5—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Binary to Hexadecimal Conversion

To convert a value from binary to hexadecimal, break the binary value into groups of four bits from right to left and convert
each group of four bits into the corresponding hexadecimal digit.

0000=0 0100=4 1000 =8 1100=C
0001=1 0101 =5 1001 =9 1101=D
0010=2 0110=6 1010=A 1110=E
0011=3 0111 =7 1011=B 1111=F

For example, to convert 101,1101,0100,0001g to 5D414:
0101 1101 0100 0001

—

5D41

— 206 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Octal to Binary Conversion

To convert a value from octal to binary, convert each octal digit into the corresponding group of three bits.

0=000 2=010 4=100 6=110
1=001 3=011 5=101 7=111
For example, to convert 153,247,: to 1101,0110,1010,01115:
153247

—

001 101 011 010 100 111 = 1101 0110 1010 0111

—20-7 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Unsigned Octal to Decimal Conversion

To convert an unsigned value from octal to decimal, multiply each octal digit by its appropriate power of 8 and add the
results.

For example, to convert 143,756¢ to 51,182p:
143756

LE: 6 x 89 =6 x 1 = 6
5 x 88 = 5 x 8 = 40
7 x 82 =7 x 64 = 448

3 x 8 =3 x 512 = 1536

4 x 8% = 4 x 4096 = 16384

1 x 8% =1 x 32768 = 32768
51182

—20-8—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Sighed Octal to Decimal Conversion

To convert a signed value from octal to decimal, determine first if the value is positive or negative.

8-bit octal values have 3 digits. If the most significant digit is 0 or 1, the value is positive. If the most significant digit is 2 or
3, the value is negative. If the most significant digit is more than 3, the value is 16-bit.

16-bit octal values have 6 digits. If the most significant digit is 0, the value is positive. If the most significant digit is 1, the
value is negative. If the most significant digit is more than 1, the value is more than 16 bits.

If a positive 8- or 16-bit value, multiply each bit by its appropriate power of 8 and add the results.
For example, to convert 026,103, to +11,331p:
026103

LE:: 3 x 80 =3 x 1 = 31
0 x 88 =0 x 8 = 0
1 x 82 =1 x 64 = 64

6 x 8 = 6 x 512 = 3072

2 x 8% =2 x 4096 = 8192

0 x 8° =0 x 32768 = 0
+11331

If a 16-bit negative value, multiply each bit by its appropriate power of 8 and add the results, then subtract 65,536.
For example, to convert 103,521 to —31,075p:

103521
LE:: 1 x 8% =1 x 1 = 1

2 x 88 =2 x 8 = 16

5 x 82 = 5 x 64 = 320

3 x 8 =3 x 512 = 1356

0 x 8% =0 x 4096 = 0

1 x 8% =1 x 32768 = 32768

34461

-65536

-31075

If an 8-bit negative value, multiply each bit by its appropriate power of 2 and add the results, then subtract 256.
For example, to convert 2464 to —90p:
246

LE:: 6 x 8 =6x1 = 6
4 x 8t =4 x 8 = 32
2 x 8% =2 x 64 = 128

166

-256

-90

— 209 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Octal to Hexadecimal Conversion

To convert a value from octal to hexadecimal is a two step process. First convert the octal value to binary, then convert the
binary value to hexadecimal.

To convert a value from octal to binary, convert each octal digit into the corresponding group of three bits.

0 =000 2=010 4 =100 6=110
1=001 3=011 5=101 7=111

Then, to convert the binary value into hexadecimal, break the binary value into groups of four bits from right to left and
convert each group of four bits into the corresponding hexadecimal digit.

0000=0 0100=4 1000 =8 1100=C
0001=1 0101=5 1001 =9 1101 =D
0010=2 0110=6 1010 =A 1110 =E
0011=3 0111 =7 1011=B 1111 =F
For example, to convert 153,247,: to D6AT7y:
153247

L[L______
001 101 011 010 100 111 = 1101 0110 1010 0111

—

D6AT7

— 20-10 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Unsigned Decimal to Binary Conversion

To convert an unsigned value from decimal to binary, continuously integer divides by 2: the remainders of each division are
the result, least significant bit first. Leading 0Os may be added to achieve a 16- or 8-bit result.

For example, to convert 42,567, to 1010,0110,0100,01115:

42567 + 2 = 21283 r 1
21283 =+ 2 = 10641 r 1
10641 = 2 = 5320 r 1
5320 + 2 = 2660 r O
2660 + 2 = 1330 r O
1330 + 2 = 665 r O
665 = 2 = 332 r 1
332 + 2 = 166 r O
166 = 2 = 83 r 0
83 =+ 2 = 41 r 1
41 + 2 = 200 r 1
20 + 2 = 10 r O
10 + 2 = 5r 0
5+ 2 = 2 r 1l
2 + 2 = 1 r 0

1+ 2 = 0r1 :;]

1010 0110 0100 0111

— 20-11 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Signed Decimal to Binary Conversion

To convert a positive signed value from decimal to binary, continuously integer divides by 2: the remainders of each division
are the result, least significant bit first. Leading Os may be added to achieve a 16- or 8-bit value.

For example, to convert +1418 to 101,1000,10105 (0000,0101,1000,1010g):

+1418 = 2 = 709 r O
709 =+ 2 = 354 r 1
354 + 2 =177 r O
177 =+ 2 = 88 r 1

88 + 2 = 44 r O
44 = 2 = 22 r O
22 =+ 2= 11 r O
11 =+ 2 = 5 r 1
5+ 2 = 2 r1l
2 + 2 = 1 r 0
1+ 2 = 0Or1 :;]

101 1000 1010 = 0000 0101 1000 1010

To convert a negative signed value from decimal to binary, first add 65536, then continuously integer divide by 2: the
remainders of each division are the result, least significant bit first. If required, leading 1s must then be added to achieve a 16-
or 8-bit value. If the most significant 8 bits are all 1s and the 8 least significant bits begin with a 1, then the most significant 8
bits may be dropped to produce an 8-bit value.

For example, to convert —213p to 1111,1111,0010,1011:

-213
+65536
65323 + 2 = 32661 r 1
32661 + 2 = 16330 r 1
16330 + 2 = 8165 r O
8165 + 2 = 4082 r 1
4082 + 2 = 2041 r O
2041 =+ 2 = 1020 r 1
1020 + 2 = 510 r O
510 =+ 2 = 255 r 0O
255 + 2 = 127 r 1
127 = 2 = 63 r 1
63 + 2 = 31 r 1
31 + 2 = 15 r 1
15 + 2 = 7 r 1
7+ 2 = 3 r1l
3+ 2 = 1 r1l
1+ 2 = 0Or1 :;]

1111 1111 0010 1011

— 20-12 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Similarly, to convert =100, to 1111,1111,1001,1100g or 1001,1100g:

-100
+65536
65436 + 2 = 32718 r O
32718 + 2 = 16359 r O
16359 =+ 2 = 8179 r 1
8179 + 2 = 4089 r 1
4089 + 2 = 2044 r 1
2044 = 2 = 1022 r O
1022 + 2 = 511 r O
511 + 2 = 255 r 1
255 + 2 = 127 r 1
127 = 2 = 63 r 1
63 + 2 = 31 r 1
31 + 2 = 15 r 1
15 + 2 = 7 r 1
7+ 2 = 3 r1l
3+ 2 = 1 r1l
1+ 2 = 0Or1 :;]

1111 1111 1001 1100 = 1001 1100

Notice that the last example produces a proper byte result: the eight most significant digits are 1111,1111 and the eight least
significant digits begin with a 1. The 1111,1111 of the most significant digits are merely carrying the sign forward: there is
actually an infinite string of “1™'s proceeding a negative value, just as there are an infinite string of “0™'s preceding a positive
value.

— 20-13 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Unsigned Decimal to Octal Conversion

To convert an unsigned value from decimal to octal, continuously integer divides by 8. The remainders of each division are
the result, least significant digit first.

For Example, to convert 57,834 to 160,7520:

57834 + 8 = 7229 r 2

7229 + 8 = 903 r 5

903 + 8 = 112 r 7

112 + 8= 14 r 0

14 + 8 = 1r6
1+ 8 = 0r1 :;]

160 752

— 20-14 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Sighed Decimal to Octal Conversion

To convert a positive signed value from decimal to octal, continuously integer divides by 8: the remainders of each division
are the result, least significant bit first.

For example, to convert +1418 to 013,042,:

+1418 = 8 = 177 ¢ 2

177 + 8 = 88 r 4

88 + 8 = 11 r 0

11 + 8= 1713
1+:8= 0rl :;]

13042 = 013042

To convert a negative signed value from decimal to binary, first add 65536, then continuously integer divide by 8: the
remainders of each division are the result, least significant bit first.

For example, to convert —213p to 177,453,:

-213
+65536
65323 + 8 = 8165 r 3
8165 + 8 = 1020 r 5
1020 + 8 = 127 r 4
127 + 8 = 15 r 7
15 + 8 = 1 r 7
1 + 8 = Orl:l

177453

— 20-15 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Unsigned Decimal to Hexadecimal Conversion

To convert an unsigned value from decimal to hexadecimal, continuously integer divide by 16. The remainders of each
division are the result, least significant digit first (remember that 10 is A, 11 is B, etc.). Leading 0s may be added to achieve a
16- or 8-bit result.

For Example, to convert 57834y to E1EAy:
57834 + 16 3614 10 =

r
3614 + 16 = 225 r 14 = E
225 + 16 = 14 r 1 =1
14 + 16 = 0r 14 =E :;]

E1EA

pd

— 20-16 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Signed Decimal to Hexadecimal Conversion

To convert a positive signed value from decimal to hexadecimal, continuously integer divide by 16. The remainders of each
division are the result, least significant digit first (remember that 10 is A, 11 is B, etc.). Leading 0s may be added to produce a
16 or 8-bit value.

For example, to convert +1418; to 058A:
+1418 + 16 = 88 r 10 A
88 -+ 16 = 5 r 8 =28
5+16= 0r 5=25 :;]
58A = 058A

To convert a negative signed value from decimal to hexadecimal, first add the value to 65536, then proceed as though it were
unsigned.

For example, to convert —213p to FF2By:

65536
-213
16 L_65323

4082 r 11 = B

255 r 2 =2

15 r 15 = F

0 r 15 = F—]

Similarly, to convert —100; to 9Cy:

65536
-100
16 L_65436

4089 r 12 = C

255 r 9 =9

15 r 15 = F

Or15=F—|

FFOC = 9C
Notice that the last example produces a proper byte result: the two most significant digits are FF and the two least significant
digits have a value greater than 7F (80 through FF). The FF of the most significant digits are merely carrying the sign
forward: there is actually an infinite string of “F”’s preceding a negative value, just as there are an infinite string of “0”s
preceding a positive value.

— 20-17 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Hexadecimal to Binary Conversion

To convert a value from hexadecimal to binary, simply convert each digit into its appropriate four bits. All digits convert
identically.

0 =0000 4 =0100 8 =1000 C=1100
1=0001 5=0101 9=1001 D =1101
2=0010 6 =0110 A =1010 E=1110
3=0011 7=0111 B =1011 F=1111
For example, to convert 6B27, to 0110,1011,0010,01115:
6B27

—

0110 1011 0010 0111

— 20-18 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Hexadecimal to Octal Conversion

To convert a value from hexadecimal to octal is a two step process. First convert the Hexadecimal value to binary, then
convert the binary value to octal.

To convert a value from hexadecimal to binary, convert each hexadecimal digit into the corresponding group of four bits.

0 =0000 4 =0100 8 =1000 C =1100
1=0001 5=0101 9=1001 D =1101
2=0010 6 =0110 A =1010 E =1110
3=0011 7=0111 B =1011 F=1111

Then, to convert the binary value into octal, break the binary value into groups of three bits from right to left and convert each
group of three bits into the corresponding octal digit.

000=0 010=2 100=4 110=6
001=1 011=3 101=5 111 =7

For example, to convert D6A7y to 153,247,
D6A7

—

1101 0110 1010 0111 =1 101 011 010 100 111

—)

153247

— 20-19 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Unsigned Hexadecimal to Decimal Conversion

To convert an unsigned value from hexadecimal to decimal, convert each digit to decimal, multiply by its appropriate power
of 16, and add the results.

0=0 2=2 4=4 6=6 8=8 A=10 Cc=12 E=14
1=1 2=2 5=5 7=7 9=9 B=11 D=13 F =15
For example, to convert EGDBy to 59,099,:
E6DB

LE: B =11 x 16° = 11 x 1 11

D =13 x 16 = 13 x 16 = 208

6 = 6 x 162 = 6 x 256 = 1536

E =14 x 16° = 14 x 4096 = 57344

59099

— 20-20 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Signhed Hexadecimal to Decimal Conversion

To convert a signed value from hexadecimal to decimal, determine first if the value is positive or negative. The most
significant digit of a positive value is less than 8, while that of a negative value is 8 or more. Be certain there is an even
number of digits (either four or two) present: 9CF4 is a negative value, while 9CF is not (9CF is actually 09CF).

If a positive value, convert each digit to decimal, multiply by its appropriate power of 16, and add the results.

0=0 2=2 4=4 6=6 8=8 A=10 c=12 E=14
1=1 2=2 5=5 7=7 9=9 B=11 D=13 F=15
For example, to convert 64B2y to +9394,:
64B2
LE: 2= 2 x16°= 2 x 1 = 2
B =11 x 16' = 11 x 16 = 176
4 = 4 x 162 = 4 x 256 = 1024
6 = 2 x 16> = 2 x 4096 = 8192
+9394
0=0 2=2 4=4 6=6 8=8 A=10 c=12 E=14
1=1 2=2 5=5 7=7 9=9 B=11 D=13 F=15

If a 16-bit negative value, convert each digit to decimal, multiply by its appropriate power of 16, add the results, and then
subtract 65536.

For example, to convert A3E1, to —23,583p:

A3E1l

LE: 1= 1x16°= 1 x 1 = 1

E =14 x 16' = 14 x 16 = 224

3= 3 x 162 = 3 x 256 = 768

A =10 x 16 = 10 x 4096 = 40960
+41953

-65536

-23583

If an 8-bit negative value, convert each digit to decimal, multiply by its appropriate power of 16, add the results, and then
subtract 256.

For example, to convert D4y to —44p:

D4
|L———4 =4 x 16°= 4 x1 = 4
D =13 x 16" = 13 x 16 = 208
+212
-256
44

— 20-21 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Source Codes for DSTAT Utility

; DSTAT .MAC

’

Obtain Directory Status Utility

;Utility to obtain directory status.

’

;Copyright (C) 1987, 1989, 1990, R. Roger Breton

r

;Author:R. Roger Breton

’

;Version:

’

;Edit History:

ok kk kK
’

10/16/87
02/17/89
04/20/90
05/12/90
NAME
. 280

SPECIAL

3.10

rrb
rrb
rrb
rrb

w w N -

('"DSTAT')

.00
.00
.00
.10

Created from scratch

Corrected allocation block bug

Rewrote from scratch to increase speed
Modularized to use generic code

;Program ID

;Z2ilog mnemonics

NOTE R SR R S SE R I b b S b b S S S b S S e S S S b e S Ib S S b S b I Sb b b db b S Sb b S Sb Jb S Sb 2b S 4b Jb S 4

; Those lines indicated by ";<<<" are to be used if linking is done via
; TurboDOS's GEN linker as follows:

; OA}GEN DSTAT.COM
; * DSTAT,DSTNIT, DSTSCN, DSTOUT, DSTERR, DSTMSG, DSTCNT
; * BSYWRK, CVTOUT, OUTDSP

*

; Those lines indicated by ";>>>" are to be used if linking is done via

; Microsoft's Link-80 (L80) linker as follows:

; OA}L80

; * DSTAT,DSTNIT, DSTSCN, DSTOUT, DSTERR, DSTMSG, DSTCNT
; * BSYWRK, CVTOUT, OQUTDSP

; * DSTAT/N/E

; Do not include both sets of lines.

;

PEE SR
r

AFF

;

OPSYS

’
;*****

’

’

CLSCHR:

’

BEGIN:

Equates
EQU

EQU

Main Rou
CSEG

Jp

:DB

LD
CALL

CALL

R R R I IR b S b S b I S b b S b b Sb b I Sb b b db b S Sb b S Sb b S Sb b S SE S b Sh b S Sh b b Sb b b db b S Sb db Sh Sb b 3 4

12

0000H

;"C —-— ASCII Formfeed

;Warm-start entry point

tine KA A IA AR I A A I AR I A I A A A A A A A A AR A AR A AR A AR A AR A A I A AR AR KA K KAk

BEGIN
AFF

SP, STACK
DSTNIT##

BSYNIT##

;Locate in code segment
;<<< ;Skip patch points
;<<< ;Clear-screen character

;Establish local stack
;Initialize parameters

;Initialize busywork routine

—21-1—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

CALL CVTNIT#4# ;Initialize conversion routine
CALL OUTNIT## ;Initialize output routine
CALL DSTSCNi## ;Scan directory and process data
CALL DSTOUT## ;Output results
JP OPSYS ;Exit to operating system
:-***** Data R R e b b b b b b dh db g b b b b b dh db db g g b b b Sb Sb db db g g b b b (db Ib db g g b b b b (Sb (Sb db db g g b b b Sb (Sb (db gb S b b b b b b 4
DSEG ;Locate in data segment
;CLSCHR: : DB AFF ;>>>Clear screen character
;¥*xxx% Qutput user offset table
OUOTBL: : DW 0,8,16,24,1,9,17,25
DW 2,10,18,26,3,11,19,27
DW 4,12,20,28,5,13,21,29
DW 6,14,22,30,7,15,23,31
;¥xxx% User extent counter table
EXTTBL: : DW 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
DW 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
DW 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
DW 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
jrx*x*x% User file counter table
FILTBL: :DW 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
DW 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
DW 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
DW 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
;¥***x% General data
FCBFIL: :DB 'S DIR' ;Directory file spec
DRVLBL: : DS 11 ;Drive label
HSHFLG: : DB 0 ;Hashed flag
TOTDAT: : DW 0,0 ;Total data capacity
USDDAT: : DW 0,0 ;Used data capacity
REMDAT : : DW 0,0 ;Remaining data capacity
TOTEXT: : DW 0,0 ;Total extents
SYSEXT: : DW 0,0 ;System extents
USDEXT: : DW 0,0 ;Used extents
REMEXT : : DW 0,0 ;Remaining extents
TOTFIL: :DW 0,0 ;Total Files
SIZCOD: :DB 0 ;Allocation block size code
BLKSIZ: :DB 0 ;Block size in KB
BLKEXT: : DW 0 ;Extents per block
DMAADR: : DW 0 ;DMA buffer address
DS 64

STACK:

’
PR I b S b S b S I e S b e S b S b S b b S b b Sb b b S b b Sb b S Sb b b Sb b S Sb b S Sb S S S b S b b Sb b b Sb b b Sb 2b b Sb JE 3h Sb 2b 3b Sb 38 3
’

’

—21-2 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

END ; <<<
END BEGIN ;>>>

Initialization Routine

;DSTNIT.MAC

’

;Initialization routine for DSTAT.MAC

’

;Copyright (C) 1990, R. Roger Breton

’

;Author:R. Roger Breton

’

;Version: 3.10
’
NAME ("DSTNIT'") ;Program ID
’
. 280 ;Z2ilog mnemonics
7
;***** Equates R e I b b b b b b b I b b b b b b b b b b b b b b b b b I b b b b b I b I b b b b b b db b b b b b b b Ib b b b b b 4

BDOS
TDOS
DECB
RDLIV
RDCDR
WRDMA
WRMSC

RDTSN
RDDAT

7
;*****

2
’
P RK KKK

’

DSTNIT:

r
ok Kk k kK
’

’

« kK k kKK

~e

ok Kk k kK
’

EQU 0005H ;C-function (BDOS) entry point

EQU 0050H ;T-function entry point

EQU 005CH ;Default file control block

EQU 24 ;C24 -- Get login vector

EQU 25 ;C25 —-- Get current drive

EQU 26 ;C26 -- Set DMA address

EQU 44 ;C44 -- Set multi-sector count

EQU 12 ;T12 —-- Return TurboDOS serial number
EQU 19 ;T19 —- Return drive allocation info

Initialization and DlSplay Tltle Ak Ak hkkhkAhkhkAk A hkkhkAhkhkAk Ak kA hkkh A hkhkkA ki hhk,%
CSEG ;Locate in code segment

Display operating title

:CALL OPTMS## ;Display operating title

Check for privileged operator

LD C,RDTSN ;Get operator status
CALL TDOS

BIT 7,B ;Privileged?

JP 7, NPUERR## ;If no, error

Set FCB drive

LD A, (DFCB) ;Get selected drive

OR A ;Current?

JR Nz, 1 ;If yes, skip

LD C, RDCDR ;Get current drive

CALL BDOS

INC A

LD (DFCB) , A ;Set FCB for proper drive

Check for drive ready

LD C,RDLIV ;Get log-in vector
CALL BDOS

—21-3 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

ok ok k kK
’

LD
LD
SRL
RR
DJINZ

Jp

NC, DNRERR# #

Initialize drive parameters

DEC
LD
LD
CALL

CP
Jp

LD
OR
SBC
LD
OR
SBC
LD
LD
AND
LD
LD
LD
LD
RLCA
DJINZ

LD
LD
SUB
JR

LD
LD
LD
SLA
RL
RL
DJINZ

LD
LD
LD
LD
LD
SLA
RL
RL
DJINZ

LD
LD
LD
LD
LD
SLA
RL
RL

A
E,A
C,RDDAI
TDOS

-1
7, NWEERR# #

B,0

A

HL, BC
(TOTDAT##) , HL
A

HL, DE
(USDDAT##) , HL
(REMDAT##) , DE
OFH

B,A

c,A
(SIZCOD##) ,A
A,20H

3

(BLKSIZ##),A
A,C

3

7, 7

HL, (TOTDAT##)
DE, 0

,A

[ea sl el ve]

(TOTDAT##) , HL
(TOTDAT#4#+2) ,DE
HL, (USDDAT##)
DE, O

B,A

L

H

E

5

(USDDAT##) , HL
(USDDAT##+2) , DE
HL, (REMDAT##)
DE, 0

B,A

L

H
E

;Get dri

;Is driv

;If no,

;Get dis

;Network
;If yes,

; Compute

; Compute

ve code

e ready?

error

k allocation information

error?
error

and save total data blocks

and save used data blocks

;Save remaining data blocks

; Compute

; Compute

;Get siz
;1KB blo
;If yes,

;Convert

;Save re

;Convert

;Save re

;Convert

and save block size code

and save block size in KB

e code
cks?
skip

total data blocks to KB

sult

used data blocks to KB

sult

remaining data blocks to KB

—21-4

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

;*****

ok kk kK
’

;*****

DJINZ

LD
LD

Initialize DMA buffer

LD
LD
LD
SLA
RL
DJINZ

LD
DEC
LD
OR
SBC
LD
LD
CP
Jp

PUSH
LD
LD
LD
LD
INC
DEC
LD
LDIR
POP
LD
CALL

(REMDAT##) ,

(REMDAT##+2) ,

A, (SIZCOD##)

DE, 128

B,A

E

D

8

HL, (BDOS+1)
HL

L,0

A

HL, DE

(DMAADR##) , HL

A, H
9
C, OOMERR# #

DE
C, WRDMA
BDOS

;Save result

;Convert block size to bytes

;Get bottom of o/s

;Make it top of TPA

;Put it on page boundary
;Compute DMA buffer address

;Save it
;At least 2K of TPA below DMA buffer?

;If no, error

;Save DMA address
;Purge DMA buffer

;Set system DMA address

Initialize multi-sector count

LD
ADD
ADD
ADD
LD
LD
PUSH
LD
CALL

Initialize extents per block

POP
SLA
RL
SLA
RL
LD

14

o X PP~

HL

L
H
L
H

(

Initialize FCB

LD
LD
LD
LDIR
LD
LD

HL, FCBEIL##

DE, DFCB+1
BC,11

H,D
L,E

14

BLKSIZ##)

BLKEXT##) , HL

;Convert block size to records

;Save result
;Set multi-sector count

;Convert records to extents

;Save extents per block

;Initialize filename and type

;Purge rest of FCB

—21-5—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

’

INC DE

LD BC, 23

LD (HL), O

LDIR

RET ; Done

,-***

’

END

Scan Directory Routine

; DSTSCN.MAC

’

;Directory scanning routine for DSTAT.MAC

’

;Copyright (C) 1990, R. Roger Breton

’

;Author:R. Roger Breton

’

;Version: 3.10
;
NAME ("DSTSCN'") ;Program ID
7
.280 ;Use Zilog mnemonics
7
;***** Equates hhkkhk Ak hkhkhkhhkkhhAhkhkhAhhkhkhrhkhkhAhhkhkhr kA hhkhkrhhkhkhhkhkhhkhkhkhhkhkrhkkhkdr ko hkxhkkx*x*%

’

BDOS EQU 0005H ;C-function (BDOS) entry point
DFCB EQU 005CH ;Default file control block
OPFIL EQU 15 ;C1l5 —-- Open file
CLFIL EQU 16 ;Cl6 —-- Close file
RDSEQ EQU 20 ;C20 -- Read sequential
:-***** Scan Directory and ProceSS Extents R e I b b b b b I S e b b b b b b b S I b b b b b b b S b b
CSEG ;Locate in code segment
j¥***%% Display scanning message
DSTSCN: : CALL SCNMS## ;Display scanning message
LD A, (DFCB) ;Display drive code
CALL DSPALF##
LD A, ' ;Display a colon
CALL DSPCHR##
LD A," ! ;Display two spaces
CALL DSPCHR##
CALL DSPCHR##
jX**%% QOpen directory as a file
LD DE, DFCB ;Open directory
LD C,OPFIL
CALL BDOS
OR A ;Good open?
JP NZ, UODERR## ;If no, error
;***%% Read an allocation block
_1: LD DE, DFCB ;Read a block
—21-6 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

;*****

ok kk kK
’

LD
CALL

OR
JR

CALL

C, RDSEQ

BDOS

A ; Good read?
NZ, 8 ;If no, skip
BSYWRK## ;Do busywork

Check for unused extent

LD
LD
PUSH
LD
CP
JR

Process
LD
CPp
JR
PUSH
PUSH
POP
INC
LD
LD
LDIR
POP
JR

Process

CP
JR

CALL

JR

Process

CALL

JR

Process

CALL

IX, (DMAADR##) ;Point to DMA buffer

BC, (BLKEXT##) ;Get number of extents/block
BC ; Save extent count

A, (IX+0) ;Is extent used?

0OES5H

NZ, 6 ;If yes, skip

label extent

A, (IX+15) ;Label extent?
OFFH
NZ, 3 ;If no, skip
BC ; Save counter
IX ;Transfer label and hash flag
HL
HL
DE, DRVLBL##
BC,12
BC ;Restore count
4 ;Update system extent counter

allocation map extents

OFEH ;Allocation map extent?

NZ, 5 ;If no, skip

SYSCNT## ;Bump system extent counter
7 ;Check for another extent

unused extents
UNUCNT # # ;Update unused extent counters
7 ;Check for another extent

extents in use

USRCNT## ;Bump count for appropriate user

Check for next extent

LD
ADD
POP
DEC
LD
OR
JR

JR

DE, 32 ;Point to next extent
IX,DE
BC ;Restore count
BC ;If more to do, do next extent
A,B
C
NZ, 2
1 ;Else, go read next block

Close directory

—21-7—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

’

LD DE, DFCB ;Close directory
LD C,CLFIL
JP BDOS ;... and done

PR I S Sk S b S S S S e S b e S b b S b b S b b Sb b S S b b db b S Sb b S Sb b S Sb b S Sb S S S S Sb S b b Sb b b Sb b b 2b 2b b Sb Jb Sb Sb 2b S Sb 3b 4
7

’

END

Output Module

; DSTOUT .MAC

’

;Output module for DSTAT.MAC

’

;Copyright (C) 1990, R. Roger Breton

’

;Author:R. Roger Breton

’

;Version: 3.10
NAME ("DSTOUT") ;Program ID
. 280 ;Z2ilog mnemonics
:-***** Equates R e I b b b b b b b I b I b b b b b b b b db A b b b b b b Ib b b b b b 4
DFCB EQU 005CH ;Default file control block
;***** Output Results R e e b b b b b Sb db A I b b b b i db db db S b b b b b b db S I I b b b (ab ab b db e I b b b b (b i i db i b b b
CSEG ;Locate in code segment
jx**%% Display list message
DSTOUT: : LD A, (LSTFLG##) ;Is list flag set?
OR A
JR Z, 1 ;If no, skip
CALL LSTMS## ;Display list message
pxFFFY OQutput heading
_1: CALL TTLMS## ;Output title
LD A, (DFCB) ;Output drive letter
CALL OUTALF##
LD HL, DRVLBL## ;Transfer label name
1D DE, LBLMS##+4
1D BC, 8
LDIR
INC DE ;Skip the period
LD BC, 3 ;Transfer label type
LDIR
CALL LBLMS## ;Output drive label
LD A, (HSHFLG##) ;Hashed?
AND 80H
CALL Z,NHSMS## ;If no, output non-hashed message
CALL NZ, HSHMS# # ;If yes, output hashed message
LD A, (BLKSIZ##) ;Get block size
CP 16 ;16 KB?
JR NZ, 2 ;If no, skip
—21-8 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

;*****

LD
CALL

LD
JR

LD
LD
CALL

LD
CALL

CALL

Output totalized data

LD
CALL

CALL

LD
CALL

CALL

LD
CALL

CALL

LD
CALL

CALL

LD
CALL

CALL

LD
CALL

CALL

LD
CALL

CALL

LD
CALL

A,'1"
OUTCHR##

A, 6

B, A
A,l A
OUTCHR# #

A,B
OUTDGT##

BSZMS##

IX, TOTDATH#
CVTOUT##

NDEMS ##

IX, TOTEXT#H#
CVTOUT##

DCUMS##

IX, USDDAT##
CVTOUT##

NSEMS ##

IX, SYSEXT##
CVTOUT##

DCRMS##

IX, REMDAT##
CVTOUT##

NEUMS ##

IX, USDEXT##
CVTOUT# #

NELMS ##

IX, TOTFIL4#
CVTOUT# #

NERMS ##

IX, REMEXT##
CVTOUT##

Output user data

CALL

LD
CALL

LD
LD
LD

HDRMS##

A,v_v
CVTSUB##

HL, OUOTBL##
B, 32
E, (HL)

;Output a "1"

;Set block size to 6
;Skip

;Save block size
;Output a space
;Restore block size

;Output block size

;Output block size message

;Convert/output total data capacity

;Output directory extents message

;Convert/output total extents

;Output data capacity in use message

;Convert/output data capacity in use

;Output system extents message

;Convert/output system extents

;Output capacity remaining message

;Convert/output capacity remaining

;Output extents in use message

;Convert/output extents in use

;Output number of files message

;Convert/output number of files

;Output extents remaining message

;Convert/output extents remaining

;Output header message
;Set substitute character to "-"
;Point to output user offset table

;Set count to 32 users
;Get current output user offset

—21-9 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

INC HL

LD D, (HL)

INC HL

PUSH DE ;Save user number

LD D,' ' ;Preset for space

LD A,E ;User 0-97

CP 10

JR c, 5 ;If yes, skip

LD D,'1l" ;Preset for msd=1

SUB 10 ;User 10-197?

CP 10

JR c, 5 ;If yes, skip

INC D ;Preset for msd=2

SUB 10 ;User 20-297?

CP 10

JR c, 5 ;If yes, skip

INC D ;Preset for msd=3

SUB 10 ;Set for user 30-31
_5: LD E,A ;Save lsd

LD A,D ;Output msd

CALL OUTCHR##

LD A,E ;Output 1lsd

CALL OUTDGT##

POP DE ;Restore user number

LD A,E ;Get it

PUSH AF ;Save it again

SLA E ;Convert it to offset

RL D

SLA E

RL D

LD IX,EXTTBL## ;Index to extent count

ADD IX,DE

CALL CVTOUT## ;Convert/output it

LD IX,FILTBL## ;Index to file count

ADD IX,DE

CALL CVTOUT## ;Convert/output it

POP AF ;Restore user number

CP 24 ;User 24 or above?

CALL C, SEPMS## ;If no, output separator

CALL NC, NLNMS## ;If yes, output new line

DJNZ 4 ;Repeat for all 32 users

RET ; Done

2
,-***

’

END

Error Routines

; DSTERR.MAC

’

;Error routines for DSTAT.MAC
;Copyright (C) 1990, R. Roger Breton

’

— 21-10 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

;Author:R. Roger Breton

’

;Version: 3.10

’

2
.ok ok ok ok ok
14

OPSYS

’
;*****

2
’
p KK KK

’

NPUERR:

’

2
g KKK

DNRERR:

’

2
pRK KKK

’

NWEERR:

’

7
ok Kok ok ok
14

’

OOMERR:

’

’
P RE KKK

’

UODERR:

’

1:

r

’

NAME ('DSTERR')

. 280

;Program ID

;Z2ilog mnemonics

Equates R R I b e I b e S b e S b S b b Sb 2 I Sb b I 2 b S b b S S b S b S b S S S db S S db b Sb db b Sb db I Sb db I Sb b 4

EQU 0000H

;Warm-start entry point

Error Routines KA A KA A KA A A AR A A AR A AR A A A A A A A A A A A A A A AR A AR A AR A AR A A KAk, K

CSEG

Non-privileged user

:CALL NPUMS ##

JR 1

Drive not ready

:CALL DNRMS# #

JR 1

Network error

:CALL NWEMS ##

JR 1

Out of memory

:CALL OOMMS ##

JR 1

Unable to open directory

:CALL UODMS##
CALL ERRMS##
POP HL

Jp OPSYS

;Locate in code segment

;Display primary message

;Display primary message

;Display primary message

;Display primary message

;Display primary message
;Display secondary message

;Balance the stack
;Exit to operating system

PR I b b S S S b b S I e S b e S b S b R S b b S b b Sb b b S b b Sb b S Sb b S Sb b S Sb b S Sb b S S S b e S b b Sb b I Sb b b 2b 2b b Sb Jb Sh Sb 2b Sb Sb 3b 4
7

’

END

Message Routines

; DSTMSG.MAC

r

;Messages for DSTAT.MAC

’

;Copyright (C) 1990, R. Roger Breton

’

;Author:R. Roger Breton

’

;Version: 3.10

’

—21-11 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

ok Kk k kK
’

ABEL
ALF
ACR
PLF

;*****

;*****

OPTMS: :

ok Kk k kK
’

SCNMS: :

;*****

LSTMS: :

;*****

;*****

NPUMS: :

;*****

DNRMS: :

NAME

. 280

Equates

EQU
EQU
EQU

EQU

('DSTMSG'") ;Program ID

;Z2ilog mnemonics

khkAhkhkhkkhhkhkhkhkhkhhkkhkhkhkhkhhkhAhhAhAhhAhhhAhhdhhhhhdkhkhkdkhkhhkhkhkhk kA hk Ak rkrhkrkkxkx%x%*

7 ;"G —-—- ASCII Bell

10 ;~J —-- ASCII Linefeed

13 ;"M -- ASCII Carriage return
ALF+80H ;~J+ -- ASCII Linefeed + parity

Operational Message Routines KA K AA I AR I AR ARk A h A A h Ak A r A A I A A XA A XA A XA XK K

CSEG

;Locate in code segment

Operational title

PUSH
LD
CALL

POP
CALL

DB
DB
DB
DB
DB
DB

RET

AF
A, (CLSCHR##) ;Clear the screen
DSPBYT#4#

AF
DSPMSGH##

'Directory Scan Utility'

ACR,ALF

'Version 3.10'

ACR,ALF

'Copyright (C) 1987,1989,1990, R. Roger Breton'
ACR, ALF, PLF

Scanning directory message

CALL

DC

RET

DSPMSGH##

A}

'Scanning directory of drive

List output message

CALL

DB
DC

RET

DSPMSG##

ACR
'Outputting to list device.

Error Message Routines KA A KA A I AR I AR I AR AR A A A A A A A AR A AR A AR A AR A AR AKX K A

Non-privileged message

CALL

DC

RET

DSPMSGH##

'Non-privileged user'

Drive not ready message

CALL

DC

DSPMSGH##

'Drive not ready'

—21-12 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

RET

prxExFF Qut of memory message

éOMMS:: CALL DSPMSGH##

’ DC 'Out of memory'

’ RET

;***** Network error message

&WEMS:: CALL DSPMSG##

’ DC 'Network error'

’ RET

i***** Unable to open directory

GODMS:: CALL DSPMSGH##

’ DC 'Unable to open directory'

’ RET

i***** Error message

ERRMS:: CALL DSPMSGH#

; DB ', program aborted.'’
DB ABEL, ACR, PLF

’ RET

::***** Output Message Routines R AR dh b g Ib b S db I b SR Sb b S dh S b SR Sb b S db S b db Sb b d db b db Ib b JE 9b b b JR Sb b g 4

i***** Title

;TLMS:: PUSH AF ;Save accumulator
LD A, (LSTFLG##) ;Output to list device?
OR A
JR Nz, S1 ;If yes, skip

’ LD A, (CLSCHR##) ;Clear console screen
CALL OUTBYT##

iSl POP AF ;Restore accumulator
CALL OUTMSGH# #

, DB ! Breton Directory Status Utility'
DB ACR,ALF
DB ! Version 3.10'
DB ACR,ALF, PLF

’ RET

::***** Label

£BLMS:: CALL OUTMSGH##

’ DC ' !

’ RET

—21-13 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

; ****x% Non-hashed message

NHSMS:: CALL OUTMSGH##
DC 'Non-Hashed !
RET

;***%% Hashed message

HSHMS:: CALL OUTMSGH##
DC ' Hashed '
RET

jXx*x%% Block-size message

BSZMS:: CALL OUTMSGH#
DB ' KB Block Size'
DB ACR,ALF,ALF
DC ' Data Capacity of Drive: !
RET

jX***x%% Directory extents message

NDEMS:: CALL OUTMSGH#
DC ' KB | Number of Directory Extents: '
RET

;¥***%*% Data in-use message

DCUMS:: CALL OUTMSGH#
DB ACR,ALF
DC ' Data Capacity in Use: !
RET

jrxxx%k System extents message

NSEMS:: CALL OUTMSGH##
DC ' KB | Number of System Extents: '
RET

jX**%% Data remaining message

DCRMS:: CALL OUTMSGH#
DB ACR,ALF
DC ' Data Capacity Remaining: !
RET

;¥*¥*xx% Tn-Use extents message
NEUMS:: CALL OUTMSGH##

DC ' KB | Number of Extents in Use: !

—21-14 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

RET

pXx*&%% Number of files message

NFLMS:: CALL OUTMSG##
DB ACR,ALF
DC ' Number of Files: !
RET

jX***%% Remaining extents message

NERMS:: CALL OUTMSG##

' DC ! | Number of Extents Remaining: '
RET

;***%% Header message

HDRMS:: CALL OUTMSG##
DB ACR, ALF, ALF
DB 'Usr Ext Fil | Usr Ext Fil | !
DB 'Usr Ext Fil | Usr Ext Fil'
DB ACR,ALF
DB ! | [
DB v | v
DB ACR, PLF
RET

’

prFFF, Field separator

éEPMS:: CALL OUTMSG##

; DC L
RET

j¥*x*x*x% New line

’

NLNMS:: CALL OUTMSGH##
DB ACR, PLF
RET

2
PR I b S S S b b S I S b e S b S b S b Sb b b Sb b b S b b Sb b S Sb b S Sb b S Sb b S Sb b S S S b e S b b Sb b b Sb b b 2b 2b b Sb Jb Ib Sb 2b 3 Sb 3b 4
’
’

END

Extent Counting Routines

; DSTCNT .MAC

iExtent counting subroutines for DSTAT.MAC
;Copyright (C) 1990, R. Roger Breton
;Author:R. Roger Breton

iVersion: 3.10

’

—21-15 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

NAME ('DSTCNT") ; Program ID
.7280 ;Z2ilog mnemonics

pF¥FFFF Extent Counter Incrementing Subroutines — Fxxkkkddkddkdkdkdkdkddddddtrrrrrrxs
CSEG ;Locate in code segment

j***x%% TIncrement system extent counter

SYSCNT: : LD HL, SYSEXT## ;Bump system extents
CALL 4
JR 3 ;Bump total extents

;***x*% Tncrement unused extent counter

’

UNUCNT: : LD HL, REMEXT## ;Bump remaining extents
CALL 4
JR 3 ;Bump total extents and done

’

jx**x*x% TIncrement user-—-area extent counter

USRCNT: : LD HL, EXTTBL## ;Point to extent counter table
ADD A,A ;Index to proper counter
ADD A,A
LD E,A
1D D, 0
ADD HL, DE
PUSH DE ;Save offset
CALL 4 ;Bump user extents
POP DE ;Restore offset

;*¥***x% Tncrement user—-area file counter

LD A, (IX+14) ;Get 2nd extent counter
OR A ;Extent 0-317?
JR NZ, 2 ;If no, skip
LD A, (BLKSIZ##) ;Get block size IN KB
SRL A ;1 KB blocks?
OR A
JR Nz, 1 ;If no, skip
INC A ;Set for 1 KB blocks

1 LD L,A ;Save block size code
LD A, (IX+12) ;Get 1lst extent counter
CP L ;"1lst extent?"
JR NC, 2 ;If no, skip
LD HL, FILTBL## ;Point to file counter table
ADD HL, DE ;Index to proper counter
CALL 4 ;Bump user files

jxx*%% Tncrement total file counter

LD HL, TOTFIL#4# ;Bump total files
CALL 4

;**F*x*%% Tncrement used extent counter

2: LD HL, USDEXT## ;Go bump used extents
CALL 4

— 21-16 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

’

Increment total extent counter

LD HL, TOTEXT## ;Point to total extent counter
LD A, (HL) ;Bump the counter
ADD A, 1l

1D (HL) , A

INC HL

1D A, (HL)

ADC 2,0

1D (HL) , A

INC HL

1D A, (HL)

ADC A,0

1D (HL) , A

RET ; Done

,-***

’

END

Display Busywork Routines

; BSYWRK.MAC

’

;Subroutine to display 32-dot busywork

’

;Copyright (C) 1990, R. Roger Breton

’

;Author:R. Roger Breton

’

;Version: 1.00

’

;Edit History:

’

’

05/12/90 rrb 1.00 Created
NAME ('"BSYWRK"'") ;Program ID

.280 ;Z2ilog mnemonics

;***** Equates khkAkhkhkhkAhkhkkhA A hkhkAhhdAhrhhkdAhhdAkhrhhdAhhdhrhhhAhhdrhkhkdhhkd o hkkhkdrhkhkdrhkhkxhkkxx*%
ABS EQU 8 ;"H -- ASCII backspace
;***** Busywork Initialization Routine R IR I b S b b S db b b SR Sb b b db Sb b S Sh b J db b b JE Ib b S db S i g S o 4
CSEG ;Locate in code segment
_DI1: DB 0 ;Busywork counter
BSYNIT: : PUSH AF ;Save registers
XOR A ;Clear busywork counter
1D (D1),A
POP AF ;Restore registers
RET ; Done
;***** Dlsplay BuSyWOrk Routine kA kA hkhkhkhkhkhkhAhkhkhkhhkkhkhrhkhkhkhhkhkrhkhkhkhhkkhkdrhkhkhk ok, kxkkkx*x*
BSYWRK: : PUSH BC ;Save registers
PUSH AF
LD A, ;Display a period
CALL DSPBYT##
LD A, (_DI1) ;Last one?
INC A
AND 1FH
—21-17 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

1D (D1),A

JR NZ, 3 ;If no, skip
CALL 1 ;Back up to busywork beginning
LD A," ! ;Clear busywork
CALL 2
LD BC, 3 ;Set return address
PUSH BC

1 LD A, ABS ;Get backspace

2t LD B, 32 ;Display byte 32 times
Jp DSPSER##

_3: POP AF ;Restore registers
POP BC
RET ; Done

2
PR i I S b S b S b e S b e S b S b S b b S b b Sb b I S b b db b S Sb I Sb S Sb e S Sb S S b S b S Ib S b b S db I Sb b b Sb JE I Sb b I Sb 3b 3
’
2

END

20-Bit Conversion and Output Routines

; CVTOUT .MAC
; Subroutine to convert and output a 20-bit hex number
;Copyright (C) 1990, R. Roger Breton

;Author:R. Roger Breton
;Version: 1.00

;Edit History:

; 05/12/90 rrb 1.00 Created
NAME ('CcvTouT") ;Program ID
.Z80 ;Z1ilog mnemonics

;***** Initialize conversion Routine khkAhkhkhkkhhkhkkhhkhkkhhkhkhkhkkhkhhkkhhkhrkhhkhrkhhrkhrkhhrkhrkhhhxkhrkx*x%

CSEG ;Locate in code segment
_DI1: DB 0 ;First character flag
_D2: DB 0 ;Leading zeros flag
_D3: DB '0’ ;Substitute character
CVTINIT: : PUSH AF ;Save registers

XOR A ;Clear leading zeros flag

1D (_D2),A

OR '0"’ ;Initialize substitute character

LD (_D3),A

POP AF ;Restore registers

RET ; Done

’

;***** Set Substltute Character Routine KAKA KA A I AR I AR AR AR A A XA A XA A XA AR AR KA KK

CVTSUB: : LD (_ D3),A ;Set substitute character
RET ; Done
;***** Set/clear Leading Zeros Routine Ak Ak hkkhkhkkhkhkhkhkhhkhhkhkhkhkhkhkhkhrkhkhrkhkhhkhkhhhkhhkxk*x*k

CVTLZR: :LD (. D2),A ;Set/clear leading zeros flag

—21-18 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

RET
7
;***** Data conversion and Output Routine R b b b b b b b b b b b b b b b b db b b b b b i b i b b b b b b g
7
p¥***% Tnitialize

’

CVTOUT: : PUSH HL ;Save registers
PUSH DE
PUSH BC
PUSH AF
LD A,-1 ;Set first-character flag
1D (_ D1),A
LD L, (IX+0) ;Get value to be converted
1D H, (IX+1)
1D A, (IX+2)

j***%% Process 1,000,000's

LD DE, 16960 ;15 * 65536 + 16960 = 1000000
LD C,15
CALL 3

jX**%% Process 100,000's

LD DE, 34464 ;65536 + 34464 = 100000
LD cC,1
CALL 3

jX**%% Process 10,000's

LD DE, 10000
CALL 3

;¥***% Process 1000's

LD DE, 1000 ;Do 1000's
CALL 3

;¥***% Process 100's

LD DE, 100 ;Do 100's
CALL 3

;¥***% Process 10's

LD DE, 10 ;Do 10's
CALL 3

j¥x**x% Process 1's

LD A,L ;Get 1's
OR A ;07
JR NZ, 1 ;If no, output it
LD A, (_DI1) ;First character?
OR A
JR Z, 1 ;If no, output 0
LD A, (_D3) ;Output substitute character
CALL OUTCHR##
JR 2 ;Skip
1: CALL OUTDGT## ;Output digit

jRxAx%F Exit routine

—21-19 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

’

POP AF ;Restore registers
POP BC

POP DE

POP HL

RET ; Done

,-***

’

END

Console/List Output Routines

; OUTDSP.MAC

’

;Subroutine to support console or list output

’

;Copyright (C) 1990, R. Roger Breton

’

;Author:R. Roger Breton

’

;Version: 1.00

’

;Edit History:

’

’

05/12/90 rrb 1.00 Created

NAME ("OUTDSP'") ;Program ID
.280 ;Z2ilog mnemonics
BDOS EQU 0005H ;C-function (BDOS) entry point
CTAIL EQU 0080H ;Command tail
WRRCN EQU 4 ;C4 -- Raw console output
WRLST EQU 5 ;C5 -- List output
p¥**x*x% Tist Device Flag Initialization Routine Fxxkkkddddkdddkdddkddddtrrrrrrxs
CSEG ;Locate in code segment
px¥**** Initialize list device flag
LSTFLG: : DB 0 ;List device flag
OUTNIT: :EXX ;Save registers
EX AF,AF'
LD HL,CTAIL ;Point to command tail
LD A, (HL) ;Is there one?
INC HL
OR A
JR Z, 1 ;If no, skip
LD C,A ;Set tail counter
LD B,0
LD A,';! ;Look for a semicolon
CPIR
JR NZ, 1 ;If not found, skip
LD A,'L' ;Look for list option
CPIR
JR NZ, 1 ;If not found, skip
LD A,-1 ;Set for output to list device
JR 2 ;Skip
—21-20 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

[y

2
p KKK

2
.ok ok ok ok ok
14

’

OUTMSG:

3:

ek kk kK
’

’

OUTSER:

4:

’

2
pRK KKK

OUTDGT :

;*****

’

OUTALF':

’
P KKK KK

OUTCHR:

2
pRK KKK

OUTBYT:

XOR A ;Set for output to console

LD (LSTFLG) , A ;Set list device flag accordingly
EX AF, AR’ ;Restore registers

EXX

RET ; Done

Output to Console or List Device Routines XFF & kkkxkkddkhhrkhddkkkxtkhkk

Output a message (parity-terminated character string)

:EX (SP) , HL ;Get message address

PUSH AF ;Save registers

LD A, (HL) ;Get a character

INC HL

CALL OUTCHR ;Output it

AND 80H ;Last character?

JR Z, 3 ;If no, do next character
POP AF ;Restore registers

EX (SP) , HL ;Put return address

RET ; Done

Output a series of identical bytes

: PUSH BC ;Save count

CALL OUTBYT ;Output byte

DJINZ 4 ;Do it required number of times
POP BC ;Restore count

RET ; Done

Output a de-ASCIIed digit

:EXX ;Save registers

LD D,A ;Save original byte
AND OFH ;ASCIT it

OR '’

LD E,A ;Save output digit

LD A,D ;Restore original byte
JR 5 ;Output digit

Output a de-ASCIIed alpha character from A to P

:EXX ;Save registers

LD D,A ;Save original byte

DEC A ;ASCIT it

AND OFH

INC A

OR '@'

LD E,A ;Save output alpha character
LD A,D ;Restore original byte

JR 5 ;Output alpha character

Output an ASCII character (strip parity bit)

:EXX ;Save registers

LD E,A ;Get output character
RES 7,E ;Strip parity bit

JR 5 ;Output character

Output a byte (preserve parity bit)

:EXX ;Save registers

LD E,A ;Get output byte

—21-21 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

5: EX AF, AF' ;Save accumulator

LD A, (LSTFLG) ;Is list flag set

OR A

JR Z, 9 ;If no, output to console

LD C,WRLST ;Else, output byte to list device
JR 10

;***** D:I.Splay (Output to Console Only) Routines KRRk AR A XK A AKX A ARk A A Ak Ak kA kkhkx%

;***%% Display a message (parity-terminated character string)

DSPMSG: : EX (SP), HL ;Get message address
PUSH AF ;Save registers
_6: LD A, (HL) ;Get a character
INC HL
CALL DSPCHR ;Display it
AND 80H ;Last character?
JR Z, 6 ;If no, do next character
POP AF ;Restore registers
EX (SP) , HL ; Put return address
RET ; Done

’

;x*x*%% Display a series of identical bytes

DSPSER: : PUSH BC ; Save count

T CALL DSPBYT ;Display byte
DJNZ 7 ;Do it required number of times
POP BC ;Restore count
RET ; Done

;***** Digplay a de-ASCIIed digit

’

DSPDGT: : EXX ;Save registers
LD D,A ;Save original byte
AND OFH ;ASCIT it
OR '0’
LD E,A ;Save output digit
LD A,D ;Restore original byte
JR 8 ;Display digit

jx**%% Display a de-ASCIIed alpha character from A to P

’

DSPALF: :EXX ;Save registers
LD D,A ;Save original byte
DEC A ;ASCIT it
AND OFH
INC A
OR '@’
LD E,A ;Save output alpha character
LD A,D ;Restore original byte
JR 8 ;Display alpha character

j¥***%*% Display an ASCII character (strip parity bit)

’

DSPCHR: : EXX ;Save registers
LD E,A ;Get output character
RES 7,E ;Strip parity bit
JR 8 ;Display character

;***x*% Display a byte (preserve parity bit)

— 21-22 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

DSPBYT: : EXX ;Save registers

LD E,A ;Get output character
_8: EX AF,AF' ;Save accumulator
_9: LD C, WRRCN ;Set for console
_10: CALL BDOS ;Display byte
EX AF, AR’ ;Restore accumulator
EXX ;Restore registers
RET ; Done

’
;***
2

END

— 21-23 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Character Tables

Definitions

Latin character tables are provided. Each character is made up of one byte (8 bits), giving a total of 256 characters. The
numerical value of each character is given in binary, octal, decimal, and hexadecimal values, followed by the control-code
(for ASCII control characters), the symbol, and a description of the character.

US-ASCII Character Set
The basic Latin character set is the 7-bit ASCII (American Standard Code for Information Interchange) character set. This is
the de-facto standard for all characters that may be directly typed upon a standard U.S. keyboard.

Please note that the ASCII character set is “standard” only for the U.S., and is often referred to as US-ASCI| to differentiate it
from other ASCII-like character sets used in other countries

In the US-ASCII character set, characters 00—1F and 7F (hex) are control characters and characters 20-7E (hex) are printable
characters. Control characters represent instructions used to control the flow of data, rather than printable characters.

Please note that the term “ASCII” has become a de-facto word, pronounced “ass’key,” meaning “pure text,” without regard as
to whether the text involved uses the ASCII character set or not. This practice has led to confusion, as an “ASCII file”
denotes a “pure text file” that may or may not be an ASCII file.

ISO 646 Character Set

The 1SO 646 standard defines an international character set similar to the US-ASCII character set, except that the characters
40, 5B, 5C, 5D, 7B, 7C, and 7D (hex) are specified as “national use” characters, and characters 23, 24, 5E, 5F, 60, and 7E
(hex) have some latitude in their use. These “variable” characters allow individual nations to redefine the characters to suit
their individual requirements. The most common (but not all) of these redefined characters are shown in an eighth “National
Variants” column.

The widespread use of the ISO 646 character set, while of great benefit within national borders, has led to considerable
confusion in the creation of “generic” text files. The redefinition of characters results in text that fails to read properly when
using a national character set other than the one in which it was created. Of the printable characters, only 20-22, 25-3F, 41—
5A, and 61-7A (hex) are safe to use (the space, the punctuation characters ' “% & ' () * +,—./:; <=>?, the digits 0-9, the
uppercase letters A-Z, and the lowercase letters a-z).

US-ASCII and ISO 646 character sets are 7-bit character sets, with the most significant bit of each character byte being
ignored. The rationale behind this was to allow the most significant bit to be used as a parity bit during data transfer. This
practice has long been abandoned, so for all practical purposes (such as these tables) the most significant bit of a US-ASCII
or ISO 646 character is considered to be “0”.

The 7-bit nature of the US-ASCII and ISO 646 character sets has led to some problems, especially when text is transferred
between programs.

Some ASCIlI-only (7-bit text) programs use the most significant character bit for their own purposes, thereby creating false 8-
bit characters where none existed. Wordstar is famous for this. Open any Wordstar file with a plain text editor to see the
resulting chaos.

Some 7-bit text programs arbitrarily clear the eighth bit. This completely destroys the integrity of any file with 8-bit
characters.

Worst of all, some 7-bit programs arbitrarily set the eighth bit. This not only destroys the integrity of any file with either 7-bit
or 8-bit characters, it renders that file usable only by the creating program or a like bit setting program.

It can be see from these problems that, ideally, text files should only be used with the programs that created them. When files
must be transferred between programs whose actions are unknown, only a copy of a text file should be opened in case the
opening program corrupts the file. The original text file should be preserved unopened.

The first table given here depicts characters 00-7F (hex), the US-ASCII and I1SO 646 character set, a subset of the Latin 1
character set.

Latin 1 (ISO 8859-1) Character Set

ISO 8859-1 defines an 8-bit 256 character set, known as the Latin 1 character set. In this definition, characters 00-7F (hex)
are identical to those of the ISO 646 7-bit character set, characters 80-9F (hex) are reserved for use as control characters, and
characters AO-FF (hex) are defined as various currency signs, punctuation marks, symbols, and Latin letters with accents and
other pronunciation marks used internationally.

Even though the Latin 1 character set includes virtually all the “national use” characters substituted for US-ASCII characters
under the 1SO 646 standard, many nations continue to use these substitutions.

—22-1—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

One important feature of the Latin 1 character set is the character A0 (hex), which is a nonbreaking space. This character has
all the characteristics of the space except that it does not automatically break over lines. This allows special designations,
such as model or part numbers, to be treated as a single word, even though they may contain spaces.

The Latin 1 character set is often referred to as the “extended ASCII” or “8-bit ASCII” character set. This is a complete
misnomer. The US-ASCII and 1SO 646 characters sets are, by definition, 7-bit character sets. There is no such thing as an
“extended ASCII” or “8-bit ASCII” character set.

The third table given here depicts the characters AO-FF (hex) of the Latin 1 (ISO 8859-1) character set, considered as
extensions on the 1SO 646 character set.

Microsoft WinLatinl Character Set
Microsoft developed the WinLatinl character set (Windows code page 1252) for use with Windows as a replacement of the
Latin 1 character set. Microsoft later back fitted the WinLatinl character set into some versions of DOS.

The WinLatinl character set is essentially identical to the Latin 1 character set except for characters 80-9F (hex). The Latin 1
character set specifically designates characters 80-9F (hex) as control characters, rather than as printable characters. The
WinLatinl characters set defines most (but not all) of characters 80-9F (hex) as printable characters. Characters 81, 8D, 8F,
90, and 9D remain undefined. Microsoft has handily filled this space with various punctuation marks, symbols, and accented
letters missing from the Latin 1 character set

The second table given here depicts characters 80-9F of the WinLatinl character set as variations of the Latin 1 character set.

—22-2 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

US-ASCII (ISO 646) Character Set

Binary Oct Dec Hex Ctrl Chr/Code Description National Variants
00000000 000 0 00 @ NUL Null

00000001 001 1 01 A SOH Start of Heading

00000010 002 2 02 "B STX Start of Text

00000011 003 3 03 " ETX End of Text

00000100 004 4 04 "D EOT End of Transmission

00000101 005 5 05 A"E ENQ Enquiry

00000110 006 6 06 F ACK Acknowledgement

00000111 007 7 07 "G BEL Bell

00001000 010 8 08 "H BS Backspace

00001001 011 9 09 Al HT Horizontal Tab

00001010 012 10 0A oy LF Linefeed

00001011 013 11 0B AKVT Vertical Tab

00001100 014 12 ocC AL FF Formfeed

00001101 015 13 0D "M CR Carriage Return

00001110 016 14 OE "N SO Shift Out

00001111 017 15 OF "o Sl Shift In

00010000 020 16 10 P DLE Data Link Escape

00010001 021 17 11 "Q DcC1 Device Control 1 (XON)

00010010 022 18 12 "R DC2 Device Control 2

00010011 023 19 13 S DC3 Device Control 3 (XOFF)

00010100 024 20 14 AT DC4 Device Control 4

00010101 025 21 15 U NAK Negative Acknowledgement
00010110 026 22 16 AV SYN Synchronous Idle

00010111 027 23 17 "W ETB End of Transmission Block
00011000 030 24 18 AX CAN Cancel Line

00011001 031 25 19 Y EM End of Medium

00011010 032 26 1A nZ SUB Substitute

00011011 033 27 1B N ESC Escape

00011100 034 28 1C N FS File Separator

00011101 035 29 1D N GS Group Separator

00011110 036 30 1E AN RS Record Separator

00011111 037 31 1F N US Unit Separator

00100000 040 32 20 Space

00100001 041 33 21 ! Exclamation Point

00100010 042 34 22 " Double Quotation Mark

00100011 043 35 23 # Number Sign £U
00100100 044 36 24 $ Dollar Sign o
00100101 045 37 25 % Percent Sign

00100110 046 38 26 & Ampersand

00100111 047 39 27 ' Apostrophe or Single Quotation mark
00101000 050 40 28 (Left Parenthesis or Left Curved Bracket
00101001 051 41 29) Right Parenthesis or Right Curved Bracket
00101010 052 42 2A * Asterisk

00101011 053 43 2B + Plus Sign

00101100 054 44 2C , Comma

00101101 055 45 2D - Hyphen or Minus Sign

00101110 056 46 2E . Period or Full Stop or Decimal Point
00101111 057 47 2F / Virgule or Slash or Solidus
00110000 060 48 30 0 Digit “0”

00100001 061 49 31 1 Digit “1”

00110010 062 50 32 2 Digit “2”

00110011 063 51 33 3 Digit “3”

00110100 064 52 34 4 Digit “4”

00110101 065 53 35 5 Digit “5”

00110110 066 54 36 6 Digit “6”

00110111 067 55 37 7 Digit “7”

—22-3 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Binary Oct Dec Hex Chr Description National Variants

00111000 070 56 38 8 Digit “8”
00111001 071 57 39 9 Digit “9”
00111010 072 58 3A : Colon
00111011 073 59 3B ; Semicolon

00111100 074 60 3C
00111101 075 61 3D
00111110 076 62 3E
00111111 077 63 3F

01000000 100 64 40
01000001 101 65 41
01000010 102 66 42
01000011 103 67 43
01000100 104 68 44
01000101 105 69 45
01000110 106 70 46
01000111 107 71 47

01001000 110 72 48
01001001 111 73 49
01001010 112 74 4A
01001011 113 75 4B
01001100 114 76 4C
01001101 115 77 4D
01001110 116 78 4E
01001111 117 79 4F

01010000 120 80 50
01010001 121 81 51
01010010 122 82 52
01010011 123 83 53
01010100 124 84 54
01010101 125 85 55
01010110 126 86 56
01010111 127 87 57

01011000 130 88 58
01011001 131 89 59
01011010 132 90 5A

Left Angle or Left Angle Bracket or Less Than Sign
Equals Sign

Right Angle or Right Angle Bracket or Greater Than Sign
Question Mark

Commercial At Sign E§Aa
Uppercase Latin “A”
Uppercase Latin “B”
Uppercase Latin “C”
Uppercase Latin “D”
Uppercase Latin “E”
Uppercase Latin “F”
Uppercase Latin “G”

NV oI AT

Uppercase Latin “H”
Uppercase Latin “I”

Uppercase Latin “J”

Uppercase Latin “K”
Uppercase Latin “L”
Uppercase Latin “M”
Uppercase Latin “N”
Uppercase Latin “O”

Uppercase Latin “P”
Uppercase Latin “Q”
Uppercase Latin “R”
Uppercase Latin “S”
Uppercase Latin “T”
Uppercase Latin “U”
Uppercase Latin “V”
Uppercase Latin “W”

Uppercase Latin “X”
Uppercase Latin “Y”
Uppercase Latin “Z”

P>=TTNKX s<CHOWITOT OZZIFrX<C~I OTMMOUO®>»E

01011011 133 91 5B Left Bracket or Left Square Bracket AE°ajyeé
01011100 134 92 5C Backslash or Reverse Solidus OB c¢N%Y¥
01011101 135 93 5D Right Bracket or Right Square Bracket AUsgeéy|
01011110 136 94 5E Circumflex or Carat ui
01011111 137 95 5F _ Underscore e

01100000 140 96 60 X Grave Accent gauou

01100001 141 97 61
01100010 142 98 62
01100011 143 99 63
01100100 144 100 64
01100101 145 101 65
01100110 146 102 66
01100111 147 103 67

01101000 150 104 68
01101001 151 105 69
01101010 152 106 6A
01101011 153 107 6B
01101100 154 108 6C
01101101 155 109 6D
01101110 156 110 6E
01101111 157 111 6F

Lowercase Latin “a”
Lowercase Latin “b”
Lowercase Latin “c”
Lowercase Latin “d”
Lowercase Latin “e”
Lowercase Latin “f”
Lowercase Latin “g”

Lowercase Latin “h”
Lowercase Latin “i”
Lowercase Latin “j”
Lowercase Latin “k”
Lowercase Latin “I”
Lowercase Latin “m”
Lowercase Latin “n”

Lowercase Latin “0”

OSB_X'_'_':T «Q DO o O T o

—22-4—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Binary Oct Dec Hex Chr Description National Variants
01110000 160 112 70 p Lowercase Latin “p”
01110001 161 113 71 q Lowercase Latin “q”
01110010 162 114 12 r Lowercase Latin “r”
01110011 163 115 73 S Lowercase Latin “s”
01110100 164 116 74 t Lowercase Latin “t”
01110101 165 117 75 u Lowercase Latin “u”
01110110 166 118 76 Y Lowercase Latin “v”
01110111 167 119 77 w Lowercase Latin “w”
01111000 170 120 78 X Lowercase Latin “x”
01111001 171 121 79 y Lowercase Latin “y”
01111010 172 122 7A z Lowercase Latin “z”
01111011 173 123 7B { Left Brace or Left Curly Bracket axéa°”
01111100 174 124 7C | Vertical Line 6guohnf
01111101 175 125 7D } Right Brace or Right Curly Bracket dlecYs
01111110 176 126 TE ~ Tilde 0 RTOT
01111111 177 127 TF DEL Delete
—22-5—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

WinLatinl Character Set Variations

Binary Oct Dec Hex Chr Description

10000000 200 128 80 € Euro Sign

10000001 201 129 81 Undefined

10000010 202 130 82 ‘ Left Single Low Quotation Mark
10000011 203 131 83 f Lowercase Latin “f” with hook
10000100 204 132 84 " Right Double Low Quotation Mark
10000101 205 133 85 . Ellipsis

10000110 206 134 86 t Obelisk or Dagger

10000111 207 135 87 ¥ Diesis or Double Dagger
10001000 210 136 88 " Circumflex

10001001 211 137 89 %0 Per Mille Sign

10001010 212 138 8A S Uppercase Latin “S” with Caron
10001011 213 139 8B < Left Single Angle Quotation Mark
10001100 214 140 8C E Uppercase Ligature “OE”
10001101 215 141 8D Undefined

10001110 216 142 8E z Uppercase Latin “Z” with Caron
10001111 217 143 8F Undefined

10010000 220 144 90 Undefined

10010001 221 145 91 ‘ Left Single Quotation Mark
10010010 222 146 92 ’ Right Single Quotation Mark
10010011 223 147 93 “ Left Double Quotation Mark
10010100 224 148 94 7 Right Double Quotation Mark
10010101 225 149 95 . Bullet

10010110 226 150 96 - En Dash

10010111 227 151 97 — Em Dash

10011000 230 152 98 ~ Small Tilde

10011001 231 153 99 ™ Trademark Sign

10011010 232 154 9A § Lowercase Latin “s” with Caron
10011011 233 155 9B > Right Single Angle Quotation Mark
10011100 234 156 9C 0] Lowercase Ligature “oe”
10011101 235 157 9D Undefined

10011110 236 158 9E Z Lowercase Latin “z” with Caron
10011111 237 159 9F Y Uppercase Latin “Y” with Dieresis

— 226 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Latin 1 (ISO 8859-1) Character Set Extensions

Binary Oct Dec Hex Chr Description

10100000 240 160 A0 Non-Breaking Space

10100001 241 161 Al i Inverted Exclamation Point

10100010 242 162 A2 ¢ Cent Sign

10100011 243 163 A3 £ Pound Sign

10100100 244 164 Ad o Currency Sign

10100101 245 165 A5 ¥ Yen Sign

10100110 246 166 A6 : Broken Vertical Bar

10100111 247 167 A7 8 Section Sign

10101000 250 168 A8 Dieresis

10101001 251 169 A9 © Copyright Sign

10101010 252 170 AA a Feminine Ordinal Indicator

10101011 253 171 AB « Left Double Angle Quotation Mark
10101100 254 172 AC - NOT Sign

10101101 255 173 AD - Soft Hyphen

10101110 256 174 AE ® Registered Sign

10101111 257 175 AF a Macron

10110000 260 176 BO ° Degree Sign or Ring

10110001 261 177 Bl + Plus-Minus Sign

10110010 262 178 B2 2 Superscript Digit “2”

10110011 263 179 B3 3 Superscript Digit “3”

10110100 264 180 B4 ’ Acute Accent

10110101 265 181 B5 V] Micro (Mu)

10110110 266 182 B6 1 Pilcrow

10110111 267 183 B7 . Middle Dot

10111000 270 184 B8 . Cedilla

10111001 271 185 B9 1 Superscript Digit “1”

10111010 272 186 BA ° Masculine Ordinal Indicator

10111011 273 187 BB » Right Double Angle Quotation Mark
10111100 274 188 BC Ya Vulgar Fraction One-Quarter

10111101 275 189 BD Y Vulgar Fraction One-Half

10111110 276 190 BE Ya Vulgar Fraction Three-Quarters
10111111 277 191 BF ¢ Inverted Question Mark

11000000 300 192 Co A Uppercase Latin “A” with Grave Accent
11000001 301 193 C1 A Uppercase Latin “A” with Acute Accent
11000010 302 194 C2 A Uppercase Latin “A” with Circumflex
11000011 303 195 C3 A Uppercase Latin “A” with Tilde
11000100 304 196 C4 A Uppercase Latin “A” with Dieresis
11000101 305 197 C5 A Uppercase Latin “A” with Ring or Angstrom Symbol
11000110 306 198 C6 i Uppercase Latin Ligature “AE”
11000111 307 199 C7 C Uppercase Latin “C” with Cedilla
11001000 310 200 C8 E Uppercase Latin “E” with Grave Accent
11001001 311 201 C9 E Uppercase Latin “E” with Acute Accent
11001010 312 202 CA E Uppercase Latin “E” with Circumflex
11001011 313 203 CB E Uppercase Latin “E” with Dieresis
11001100 314 204 cC I Uppercase Latin “I” with Grave Accent
11001101 315 205 CD i Uppercase Latin “I” with Acute Accent
11001110 316 206 CE) Uppercase Latin “I” with Circumflex
11001111 317 207 CF T Uppercase Latin “I” with Dieresis
11010000 320 208 DO b Uppercase Latin Eth

11010001 321 209 D1 N Uppercase Latin “N” with Tilde
11010010 322 210 D2 0 Uppercase Latin “O” with Grave Accent
11010011 323 211 D3 o} Uppercase Latin “O” with Acute Accent
11010100 324 212 D4 0 Uppercase Latin “O” with Circumflex
11010101 325 213 D5 0 Uppercase Latin “O” with Tilde
11010110 326 214 D6 o Uppercase Latin “O” with Dieresis
11010111 327 215 D7 X Multiplication Sign

—22-7—

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

Uppercase Latin “O” with Stroke
Uppercase Latin “U” with Grave Accent
Uppercase Latin “U” with Acute Accent
Uppercase Latin “U” with Circumflex
Uppercase Latin “U” with Dieresis
Uppercase Latin “Y” with Acute Accent
Uppercase Latin Thorn

Lowercase Latin Sharp “s” (German “ss”)

Lowercase Latin “a” with Grave Accent
Lowercase Latin “a” with Acute Accent
Lowercase Latin “a” with Circumflex
Lowercase Latin “a” with Tilde
Lowercase Latin “a” with Dieresis
Lowercase Latin “a” with Ring
Lowercase Latin Ligature “ae”
Lowercase Latin “c” with Cedilla

Lowercase Latin “e” with Grave Accent
Lowercase Latin “e” with Acute Accent
Lowercase Latin “e” with Circumflex
Lowercase Latin “e” with Dieresis
Lowercase Latin “i” with Grave Accent
Lowercase Latin “i” with Acute Accent
Lowercase Latin “i”” with Circumflex
Lowercase Latin “i” with Dieresis

Lowercase Latin “n” with Tilde
Lowercase Latin “0” with Grave Accent
Lowercase Latin “o0” with Acute Accent
Lowercase Latin “o0” with Circumflex
Lowercase Latin “o0” with Tilde
Lowercase Latin “o0” with Dieresis

Lowercase Latin “0” with Stroke
Lowercase Latin “u” with Grave Accent
Lowercase Latin “u” with Acute Accent
Lowercase Latin “u” with Circumflex
Lowercase Latin “u” with Dieresis
Lowercase Latin “y” with Acute Accent
Lowercase Latin Thorn

Binary Oct Dec Hex Chr Description
11011000 330 216 D8 (%]
11011001 331 217 D9 U
11011010 332 218 DA U
11011011 333 219 DB 0]
11011100 334 220 DC U
11011101 335 221 DD Y
11011110 336 222 DE p
11011111 337 223 DF R
11100000 340 224 EO a
11100001 341 225 El a
11100010 342 226 E2 a
11100011 343 227 E3 a
11100100 344 228 E4 a
11100101 345 229 E5 a
11100110 346 230 E6 *
11100111 347 231 E7 o
11101000 350 232 E8]
11101001 351 233 E9 é
11101010 352 234 EA é
11101011 353 235 EB e
11101100 354 236 EC i
11101101 355 237 ED i
11101110 356 238 EE T
11101111 357 239 EF)
11110000 360 240 FO 0 Lowercase Latin Eth
11110001 361 241 F1 f
11110010 362 242 F2 0
11110011 363 243 F3)
11110100 364 244 F4 0
11110101 365 245 F5 0
11110110 366 246 F6 0
11110111 367 247 F7 + Division Sign
11111000 370 248 F8 a
11111001 371 249 F9 u
11111010 372 250 FA u
11111011 373 251 FB 1]
11111100 374 252 FC U
11111101 375 253 FD y
11111110 376 254 FE b
11111111 377 255 FF y

Lowercase Latin “y” with Dieresis

—22-8 —

Z-80 Assembly Language Programming © 1984, 1987, 1990, 2009 by R. Roger Breton

