SO~ =y

MICROSYSTEaems

Software
Reference Library

-1he MacAdvantage™:
UCSD Pascal’

Thank you for your purchase of The MacAdvantage: UCSD
Pascal. You have selected a precision engineered product that
will allow you to write sophisticated applications on your
Macintosh. But before you start, please read the following:

REGISTRATION CARD. Please complete and return the
enclosed registration card immediately. Not only will it serve
as your "key" to our Customer Support Department, but it
will also allow us to keep you informed of new releases and
other information that may interest you. '

UPGRADES. We are continually making our software
better by adding new features and by correcting problems.
Customers who return their registration card will be eligible
to upgrade their software for a nominal charge to cover our
costs. You will be notified by mail when new releases are
available.

INSIDE MACINTOSH. Although we have documented our
software in detail, we highly recommend that you obtain a
copy of Inside Macintosh for more information on developing
Macintosh applications. Inside Macintosh is available
through:

Apple Computer, Inc.

467 Saratoga Avenue; Suite 621

San Jose, CA 95129 :

APPLICATIONS. If you plan to distribute applications
that you write using this product, you will be pleased to know
that we offer several economical licensing plans. . Please
contact our Customer Sales Department at (619) 451—1230
for more information. Additionally, we may be interested in
publishing your application through our distribution channels.
If you .are interested in having SofTech Microsystems market
your application, please contact our Applications Product
Marketing Manager.
‘BofTech Microsystems, Inc.

The MacAdvantage:
UCSD Pascal

SofTech Microsystems, Inc.
San Diego, California

1-182-MA

Copyright © 1984 by SofTech Microsystems, Inc.

All rights reserved. No part of this work may be reproduced in
any form or by any means or used to make a derivative work
(such as a translation, transformation, or adaptation) without the
written permission of SofTech Microsystems, Inc.

Finder, System, Imagewriter, RMaker and Editor are copyrighted
programs of Apple Computer, Inc. ‘that are licensed to SofTech
Microsystems, Inc. +to distribute for use only in combination with
The MacAdvantage: UCSD Pascal. Apple software shall not be
copied onto another diskette {except for archive purposes) or into
memory unless as part of the execution of The MacAdvantage:
UCSD Pascal. When The MacAdvantage: UCSD Pascal has
completed execution, Apple software shall not be used by any
other program.

Portions of this manual relating to Editor and RMaker have been
reproduced with permission of Apple Computer, Inc.

Apple is a registered trademark of Apple Computer, Inc.
Macintosh is a trademark licensed to Apple Computer, Inc. Lisa
is a registered trademark of Apple Computer, Inc.

UCSD and UCSD Pascal are registered trademarks of The
Regents of the University of California. Use thereof in
conjunction with any goods or services is authorized by specific
license only, and any unauthorized use is contrary to the laws of
the State of California.

The MacAdvantage is a trademark of SofTech Microsystems, Inc.

Printed in the United States of America.

Disclaimer

This document and the software it describes are subject to change
without notice. No warranty expressed or 1mplled covers their
use. Neither the manufacturer nor the seller is responsible or
liable for any consequences of their use.

APPLE COMPUTER, INC. MAKES NO WARRANTIES,
EITHER EXPRESS OR IMPLIED, REGARDING THE
ENCLOSED COMPUTER SOFTWARE PACKAGE, ITS
MERCHANTABILITY OR ITS FITNESS FOR ANY
PARTICULAR PURPOSE. THE EXCLUSION OF IMPLIED
WARRANTIES IS NOT PERMITTED BY SOME STATES.
THE ABOVE EXCLUSION MAY NOT APPLY TO YOU. THIS
WARRANTY PROVIDES YOU WITH SPECIFIC LEGAL
RIGHTS. THERE MAY BE OTHER RIGHTS THAT YOU
MAY HAVE WHICH VARY FROM STATE TO STATE.

PREFACE

Congratulations on your purchase of UCSD Pascal for your
Apple Macintosh computer!

The discussions in this manual assume that you are already
familiar with your Macintosh. If you are not, we suggest that
you first read the introductory chapters of Macintosh, your
owner’s guide.

The product you have purchased contains a UCSD Pascal
compiler and a group of program development tools. The tools
include a program and text file editor, a resource compiler, a
symbolic debugger, a librarian utility, a runtime option
configuration utility, and a set of interface units to the Macintosh

ROM.

With these tools, you can build sophisticated application
programs directly on a Macintosh with 128K or 512K of memory.
The Macintosh interface units give you access to virtually all of
the Macintosh ROM routines. Thus, you can write programs
that make use of overlapping windows, a menu bar and desk
accessories. We have included an example program that shows
you how to access some of these features.

The Pascal language supported by the compiler is an extended
version of UCSD Pascal designed for access to the Macintosh
ROM. The new language features include:

e Support for 32—bit integers (type integer2).

e A new setlength intrinsic that makes it easier to set the length
of a string.

1200301:00B : v

PREFACE

e New bit manipulation intrinsics: band, bor, bxor, shiftleft,

and shiftright.

e An enhanced sizeof intrinsic that allows you to specify the
units that sizeof counts in.

" e Pointer intrinsics that help you to make use of 32-bit
absolute addresses used by the Macintosh ROM: adr, pointer,
offset, ptrinc, absadr, reladr, absmove, derefhnd, and locate.

e A new type of external procedure that generates an in—line
call to a Macintosh ROM routine.

UCSD Pascal programs are supported by a sophisticated runtime
package that eliminates many of the worries associated with
writing large programs. The runtime package

e provides simplified I/O through the Pascal I/O intrinsics.

o supports dynamic memory management through the Pascal
intrinsics new and dispose.

e handles dynamic segment overlays automatically.

vi - 1200301:00B

TABLE OF CONTENTS

GETTING STARTED ittt it it iieie s 1-1
HARDWARE REQUIREMENTS 1-1
DISK.CONTENTS ... ittt iiin s 1-2
BACKINGUPDISKSottt iiceii i 1—-4
RUNNING APROGRAMciiiiiiiiinnn.n. 1—4
ORGANIZATION OF THE MANUAL 1-7

GENERAL OPERATIONSttt 2-1
CREATINGPROGRAMScoiiiiiiieiiicnnnns 2-2
RUNNING PROGRAMS ittt it iieniennns 2-9
USINGEXECUTIVEoiiiiiiiiiiiiinnnnns 2—-25
ACCESSINGFILESoiiviiiiiiiennniraennnns 2-28
BUILDING AN APPLICATIONcvl.. 2-38

EDITOR ..ottt ittt it ciininonaeann 3-1
USINGTHEEDITORccoiiiiiiiiiiiiiinenonnnn 3-2
SELECTING TEXTottt iiiiiiiiiannnenes 3-6
SCROLLING AND MOVING THE DISPLAY 3-8
THEFILEMENU iiiiiiiiiiiiiiennn., 3-10
THEEDITMENU0tiiiiiiiiienininnnnnnnn 3-11
THESEARCHMENUoiiiiiiiiiiiiinennen. 3—14
THEFORMAT MENUoiiiiiiiiiionnnnennss 3-16
THEFONTMENUoiiiiiiiiiiiiciienneonns 3—-17
THESIZEMENUiiiiiiiiniiininiiornennns 3—18

PASCALLANGUAGEciiiiiiiiiiiiiiiiiasncnanns 4-1
OVERVIEW iiiiiiiiitineiricnonneansoncons 4-1
USING THE HANDBOOK e eeeeeiieaaa 4—-4
INTEGERZDATATYPEo, 4-8
PASCAL INTRINSICSiviieiiiiiiiienennnnn 4-14
IN-LINE PROCEDURES AND FUNCTIONS 4-25

SELECTIVE USES DECLARATIONS 4-26

TABLE OF CONTENTS

CONFORMANT ARRAYS iiviiiiiiiiiee.. 4-30
COMPILER OPTIONScciiiiieinen, 4-36
CONDITIONAL COMPILATIONooivinnnn 4—43
MACINTOSHINTERFACEcoiiiiiiiiieinennen 5-1
HOW TO USE THE INTERFACEUNITS 5—3
DATA CONVENTIONS ittt ciiiennenns 5—-7
DIFFERENCES FROM INSIDE MACINTOSH 5—20
SPECIFICTECHNIQUEScoiiiiiiioinnnn, 5—-25
EXAMPLE APPLICATIONoiiiiiiiiinnenn, 5-31
RMAKER ... it ittt e cneencconnanns 6—-1
ABOUTRMAKERt iiiiiiiiinneincnsanns 6—-2
RMAKERINPUTFILESc.iiiiiieiiinionennns 6-2
DEFINED RESOURCE TYPESc..ooviintn. 6—5
CREATING YOUROWNTYPEScovevnen 6—10
USINGRMAKERciiiiiiiiicin i cinenens 6—12
LIBRARIAN ... it it ieievientcnnnnscnnacnss 7-1
USINGTHE LIBRARIAN0ciiiveniiecnennnns 7-2
LIBRARIAN COMMANDSiiiiviiiiiocnnienns 7-4
DEBUGGERttt iiiiiiiiiiienioneeencanennoens 8—-1
GENERAL INFORMATIONoveiiiiiienineinnnnn 8—2
DEBUGGER COMMANDSciiiiviiniannnnnns 87
EXAMPLES OF DEBUGGER USAGE 8—24
PERFORMANCE MONITORccvvviivennnes 8—26
MEMORY MANAGEMENToiivoconcrncncnnanse 9-—1
OVERVIEW ... it iincionnnocnocnsas 9-1
MEMORY ORGANIZATIONiieviieiinonnoonns 92
FAULTHANDLING it it iieiiiiiennansnans 9-—-9
‘RUNTIME SUPPORTLIBRARYcovvennnnnn. 913
P-MACHINE ARCHITECTUREccc0veunnens 10-1
OVERVIEW iiiieiiiiiienococonannnonns 10-1
STACKENVIRONMENTiiiiviveicoonosncs 10-2
CODEFILEFORMATiiiiiiiiiiiioonnonnne 10—-4
CODE SEGMENT ENVIRONMENT 1018

TASK ENVIRONMENTcociiiiiiiiiennnenn 10-20

TABLE OF CONTENTS

FAULTS AND EXECUTION ERRORS 10—24
P-MACHINE REGISTERScoioiieienienrnn 10-31
P—CODE DESCRIPTIONS iiiiiieieinnnenn 10-33
Constant Loadscoviieniiiiiniiiiiienes 10-38
Local Loads and Storescovivienian.., 10-39
Global Loads and Storescoviiviiieieann.. 10—41
Intermediate Loads.and Stores 10—42
Extended Loads and Storesovviieieenn. 10—44
Indirect Loads and Storeso iiiiiiiiiinnn 10—45
Multiple Word Loads and Storesocvvnen.. 10—46
Parameter Copyingcvovueeeeeceeereoanconens 10—48
Byte Load and Store..cciiiiiiiiiiiiiien, 10—49
Packed Field Loads and Storesc.ov0ts 10—49
Structure Indexing and Assignmentccc0.... 10-50
Logical Operators e s e 10-53
Shift Operators......ccovviiiiereernrocacoannns 10-55
Integer Arithmetic.......cccviieievonneronnns 10-57
Unsigned Arithmetic........c.c0viiiiiienereenns 10-63
Real Arithmeticovvieiiiiiiioncennnnennn 10—64
Set Operationscveviiiiiiieiieneeroneeonss 10—-66
Byte Array Comparisonscovvvevococaeeacons 10—69
JUMPS ¢t v vttt it e i i e 10-70
Routine Callsand Returnsoovevevinnnen, 10-72
Concurrency SUPPOrt « o ov v v venceenoencoaesonsos 10-76
String Operationsoccuoeeeereconesscaceasnns 10-77
Operand Type Conversion Operators.............. 10-79
Miscellaneous Instructionscoveeieniennn. 10—-83
STANDARD PROCEDURESc.covevvnee.. 10—87
LONGINTEGERScciiiiiiiiinintnnnnnnns 10-95
The DECOPS Routineccoviiiennneonns 10-99
APPENDICES ..t tiiiiiit ittt iiinicntennnsonnnnns A-1
A: MACINTOSHINTERFACEccivvceniaennn. A-1
A.1 Table of Compile Time Dependencies A-1
A.2 Identifier Cross—Reference List A-3
A.3. Control Manager (ControlMgr).............. A-17
A.4. Desktop Manager (DeskMgr).......ccoovennnn A—20
A.5. Dialog Manager (DialogMgr)covvnennn. A-21
A.6. Event Manager (EventMgr) A—24
A.7. File Manager (FileMgr)c.coeevenennns A-26
A.8. Font Manager (FontMgr)cco0vven.. A-29
A.9. Global Types (MacCore)covovuneen.s A-31

A.10. Global Data (MacData)covvvunnsn A-32

TABLE OF CONTENTS

A.11. Error Codes (MacErrors).........ccoeevnnn. A-33
A.12. Memory Manager (MemoryMgr) A-36
A.13. Menu Manager (MenuMgr)............c..... A-38
A.14. Operating System Types (OsTypes).......... A-41
A.15. Operating System Utilities (OsUtilities)....... A-44
A.16. Package Manager (Packages)............... A—47
A.17. Parameter Block I/O Manager (PBIOMgr). ... A-51
A.18. Print Manager (PrintMgr)...... e A—54
A.19. Printer Driver. (PrintDriver) A-57
A.20. Quickdraw Types (QdTypes).....ocovveennn A-58
A.21. Quickdraw (QuickDraw)...........coven.n. A—-60
A.22. Resource Manager (ResMgr)................ A—-67
A.23. Scrap Manager (ScrapMgr)oviioinen. A-70
A.24. Serial Driver (Serial)c.ccoenns A-71
A.25. Sound Driver (Sound)oivencannan. A-73
A.26. ToolBox Utilities (TBoxUtils)ovun. A-75
A.27. ToolBox Types (TBTypes)....c.ccvvvven... A-717
A.28. Text Edit {(TextEdit)covviennen. A-179
A.29. Window Manager (WindowMegr) A-81
B:ERRORMESSAGES ciivririivrrrcoanancnnn B-1
B.1. Program Startup Errorscccveveeccocnn.. B-1
B.2. Execution Errorscovonvnveconocnoconcan B-2
B3.I/JOEMmoOrs..ooovviiiiiieioeneconnncns ce... B-3
B.4. Syntax Errorsocvvenrvenieronncaccanaaas B-5
C:P-CODETABLESciiiiiiiieinrienrcnnnnns C-1
C.1. Numerical Listingcooniniiennnn.n. C-1
C.2. Alphabetical Listingc.viienin... C—-6
C3.p—Codelndexovoviiiiinnnnninnennnnn C-11

1 :
GETTING STARTED

This chapter gets you started writing UCSD Pascal programs for
your Macintosh. The chapter is organized into the following
sections:

HARDWARE REQUIREMENTS discusses the hardware
components that are required or recommended for effective use of
this product.

DISK CONTENTS details the composition of the disks you
received with this product.

BACKING UP DISKS tells you how to make back up copies of
your master disks.

RUNNING A PROGRAM guides you through the steps of
creating and running a simple UCSD Pascal program.

ORGANIZATION OF THE MANUAL introduces you to the
organization of the remainder of this user manual.

HARDWARE REQUIREMENTS

The product you have purchased is designed to work on the
Macintosh with 128K or 512K bytes of memory and on Lisa
under MacWorks. Programs may operate slightly differently in
different hardware environments, based on memory size. In
particular, when running on a machine with more memory,
programs will tend to run faster and be able to handle more data.

1200301:01B 1-1

GETTING STARTED Chapter 1

Although this product will run on a one drive Macintosh, if you
plan on developing programs that use the Macintosh interface we
strongly suggest that you use two disk drives.

One option of the Debugger allows you to interact with it using
an external terminal attached to the Printer port on the back of
your Macintosh. An external terminal is not necessary for using
the Debugger, but if you have one, it can make debugging easier,
particularly when writing programs which put up windows on the
screen.

DISK CONTENTS

You received two disks when you purchased this product. One of
the disks, labeled UCSD Pascal 1, is a bootable Macintosh disk.
The other disk, labeled UCSD Pascal 2, is not bootable.

The following files are located on UCSD Pascal 1:

e Set Options. Set Options is a utility program that allows
you to set the runtime options of a code file.

e ‘Mac Library. Mac Library is a collection of interface units
that are used by programs that access the Macintosh ROM
routines.

e Compiler. Compiler is the UCSD Pascal compiler.

¢ Editor. Editor is a program and text file editor.

¢ Executive. Executive provides menu style access to your
program development tools.

¢ Pascal Runtime. Pascal Runtime is the runtime support
package for Pascal programs.

e p-—Machine. p—Machine is the virtual machine emulator

that supports running the p—code generated by the UCSD
Pascal compiler.

1—2 1200301:01B

DISK CONTENTS

Empty Program. Empty Program contains the standard
program resources.

Three of the files, Pascal Runtime, p—Machine and Empty
Program, are located within a folder called Pascal Folder.

The fol]o‘wing files are located on UCSD Pascal 2:

RMaker. RMaker is a resource compiler program that allows
you to add your own resource definitions to a program.

Librarian. Librarian is a utility program that allows you to
combine UCSD Pascal units into a single library file.

Debug Runtime. Debug Runtime is a version of Pascal
Runtime that contains the Debugger and performance
monitor.

Errorhandl.CODE. Errorhandl.CODE is a utility unit that

provides various program control functions to the user.

Mac Interface. Mac Interface is a library of code files that
contain the interface to the Macintosh ROM routines.

Grow. Grow is the source to an example UCSD Pascal
program that accesses the Macintosh ROM to handle a menu
bar, windows and desk accessories.

Grow.R. Grow.R is the resource definition file for the Grow
program.

Two of the files, Grow and Grow.R, are located within a folder
called Example Folder.

1200301:01B 1-3

GETTING STARTED Chapter 1

BACKING UP DISKS

You should immediately make a backup copy of the disks that
you received with this product. This will insure that you don’t
accidentally loose any information contained on the disks.

Macintosh, your user’s guide, describes in detail how you make
backup copies of disks on the Macintosh. Here is a summary of
the steps:

1. Insert the disk you want to copy.
2. Insert the disk you want to copy to.

3. Drag the icon of the disk you want to copy to the icon of the
other disk.

If you have a one drive Macintosh it is faster for you to use the
Disk Copy program to make backup copies of your disks.

Once you have made the backup copies, put the copies in a safe
place.

WARNING: You cannot arbitrarily move UCSD Pascal
programs to different volumes and expect them to run. The
names of the two runtime support files are embedded in each
code file. If you move a code file to a different volume, you may
need to update the runtime support file names with the Set
Options utility. See the GENERAL OPERATIONS chapter for
details.

RUNNING A PROGRAM

This section guides you through the steps of compiling and
running a simple Pascal program. Even if you don’t know the
Pascal language, you should be able to follow the steps outlined
here.

1-4 1200301:01B

RUNNING A PROGRAM

Boot up your Macintosh with the UCSD Pascal 1 disk. All of
the operations described below will be done on this disk.

Editing the Program

First you must create a text file to compile. You create a text file
" by using the Editor. - Start the Editor by double—clicking its
icon.

You can probably figure out by yourself how to run the Editor,
based on your knowlege of MacWrite. If you are not familiar
with MacWrite, or if you have trouble using the Editor, refer to
the EDITOR chapter.

Enter the program listed below, or a program of your own
design:

rogram first;
egin

writeln(’hi there’);
reedin;
end.

Now exit the editor, saving what you have typed in a file called
FIRST.

Compiling the Program

The compiler translates the program you have edited into an
executable code file. You start the compiler by double—clicking
its icon. The compiler will ask you four questions:

1. Compile what text? Type FIRST, then press <Return>.

2. To what code file? Press <Return>. The output will be
put in FIRST.CODE, by default.

1200301:01B 1-5

GETTING STARTED Chapter 1

3. Use what resource file? Press <Return>. The compiler
will use the standard resources from the Empty Program file.

4. File for listing? Press <Return>. This disables listing
generation.

If all goes well, the compiler will write something like the
following to your screen:

< Oo>..
TEST
< 2>..

TEST
& lines compiled in 0:00:20, 16 -lines per minute

If the compiler finds a problem in your program, it will generate
a syntax error message. At this point, you should press
<Enter> to exit the compiler, then fix the problem using the
Editor. Check that you typed in the example program exactly
like it appears above, then recompile the program.

Running the Program

If the compiler has run to completion, you will find a file called
FIRST.CODE on your disk. This file contains the Pascal code
generated from your text file by the compiler. Running the
program Is easy—just double—click its icon. If you used the
example program listed above, you should see the words

hi- there

printed to the screen when you run the program. Press
<Return> to terminate the program.

This section showed you how to run a very simple Pascal
program. For more information about compiling and running
programs, refer to the GENERAL OPERATIONS chapter.

1—6 1200301:01B

RUNNING A PROGRAM

ORGANIZATION OF THE MANUAL

This section describes the content of each chapter in the manual
and gives some hints on how to use the manual.

Chapter 2, GENERAL OPERATIONS, discusses how to compile

and run a program and how to develop an application.

Chapter 3, EDITOR, covers how to run the program and text file
editor.

Chapter 4, PASCAL LANGUAGE, is a supplement to The UCSD
Pascal Handbook. It describes the new language features found in
this version of UCSD Pascal.

Chapter 5, MACINTOSH INTERFACE, discusses how to use the
Macintosh interface units to call the Macintosh ROM.

Chapter 6, RMAKER, describes the resource compiler program,
which allows you to add resources to a code file.

Chapter 7, LIBRARIAN, describes the Librarian utility, which
allows you to combine Pascal units into a single library file.

Chapter 8, DEBUGGER, describes the operation of the Pascal
debugger, which allows you to set break points, single step
p—code, and examine and patch memory.

Chapter 9, MEMORY MANAGEMENT, describes the memory
management of this implementation of UCSD Pascal. This
chapter will be useful if you need to understand Pascal’s memory
management in order to write an application program.

Chapter 10, P-MACHINE ARCHITECTURE, describes the
p—code instruction set that is supported by the underlying
p—Machine. You will need to refer to this chapter if you use the
Debugger. ‘

1200301:01B 1-7

GETTING STARTED Chapter 1

Appendix A, MACINTOSH INTERFACE, contains listings of the
Macintosh interface units, and index of interface identifiers and a
table of unit dependencies.

Appendix B, ERROR MESSAGES, lists the error messages that
may be generated by programs and the runtime support package.

Appendix C, P—CODE TABLES, contains numerical and
alphabetical p—code tables. An index is also provided which you
can use to locate the description for a p—code within the

P-MACHINE ARCHITECTURE chapter.

If you are not a Pascal programmer, we suggest that you read the
tutorial section (Part II) of The UCSD Pascal Handbook first.
This will give you a quick introduction the the Pascal language.
You can use some of the example programs to practice editing
and compiling programs on the Macintosh. WARNING: a few
of the programs are not appropriate for this version of UCSD
Pascal.

If you are already a Pascal programmer, start by reading the first
two sections of the GENERAL OPERATIONS chapter. This will
give you the details of compiling and running Pascal programs. .
Next, you should read the EDITOR and PASCAL LANGUAGE
chapters. The UCSD Pascal Handbook will be useful if you are
not familiar with the UCSD dialect of Pascal. You may want to
read the DEBUGGER chapter to learn how to use the Debugger.
Some further secions of the GENERAL OPERATIONS chapter
may be useful.

If you want to write programs that call the Macintosh ROM
routines to do graphics or to display windows and menu bars,
you.must first acquire a copy of the Inside Macintosh manual. As
of this printing, Inside Macintosh is only available in draft form
from Apple. Inside Macintosh gives you the definitions of the
Macintosh ROM routines. You must use Inside Macintosh in
conjunction with the MACINTOSH INTERFACE chapter of this
manual. Also, vou will need to be very familiar with the UCSD
Pascal extensions described in the PASCAL LANGUAGE
chapter.

1—8 1200301:01B

ORGANIZATION OF THE MANUAL

Finally, if you want to build sophisticated applications on the
Macintosh you will need to read the RMAKER chapter and the
later sections of the GENERAL OPERATIONS chapter.

1200301:01B 1-9

GETTING STARTED Chapter 1

1—-10 1200301:01B

2
GENERAL OPERATIONS

This chapter contains information and instructions on using The
MacAdvantage: UCSD Pascal. It explains how to use this
product to create UCSD Pascal programs for your Macintosh.
Your programs can take full advantage of the power of UCSD
Pascal and the Macintosh ROM to provide meaningful solutions
to the kind of applications the Macintosh was designed to solve.

This chapter consists of five sections as follows:
CREATING PROGRAMS instructs you on use of the compiler.

RUNNING PROGRAMS contains the information you need to
take full advantage of the UCSD Pascal runtime environment.

USING EXECUTIVE explains the operation of the Executive
utility which you can use to make your program development
process easier and faster.

ACCESSING FILES describes how your programs can interact
with Macintosh files and serial devices.

BUILDING AN APPLICATION outlines the steps you need to go
through in order to construct a sophisticated Macintosh
application.

1200301:02B 2-1

GENERAL OPERATIONS Chapter 2

CREATING PROGRAMS

This section discusses how to run the UCSD Pascal compiler to
- create programs for your Macintosh. For information on the

UCSD Pascal language, refer to The UCSD Pascal Handbook and
. the PASCAL LANGUAGE chapter.

Using the Compiler

The Compiler takes a text file as input and generates a code file
as output. The code file generated consists of two parts: the data
fork and the resource fork. The data fork contains p—code,
which is executed by a p—Machine emulator. The resource fork
contains information about the runtime environment required by
your program. More information on the resource fork of an
application can be found later in this chapter and in the chapter
RMAKER.

The Compiler will accept for input any standard Macintosh text
file. This file will usually be generated by the Editor supplied
with this compiler, but it could be generated by MacWrite or by
another Pascal program. If you use MacWrite files as input to
the compiler, you must specify that the output file from
MacWrite be stored in "text only" mode.

You start the Compiler by opening its icon:

Compiler

Figure 2—1. Compiler Icon.
Responding To Startup Questions

The Compiler begins by asking four questions to obtain file
names. Either the Macintosh or Pascal I/O conventions for file
names may be used. These conventions are defined in File

2—-2 1200301:02B

CREATING PROGRAMS

Naming Conventions later in this chapter.- The Compiler accepts
only 40 characters of input to each question, so be sure to enter
no more than 40 characters. Entering more than 40 characters
will cause a string overflow runtime error to occur.

The first question asked is:

Compile whet text?

The possible responses to this question are:

e Entering the name of the text file you wish to compile. The
Compiler uses the name exactly as you specify it, including
leading, embedded, and trailing blanks. It does not append
any kind of suffix to the name you specify in order to locate
the file.

e Pressing <Return> or <Enter> <Return> to terminate
the compilation without generating an output code file.

The second question asked is:

To what code file?

You should respond to this question in one of the following ways:

e Entering the name of the code file you wish the compiler to -
create. The Compiler will add a .CODE suffix to the name
you specify. (The suffix is added by the Compiler only as a
safeguard to prevent the accidental destruction of text files.
It is not necessary to maintain the suffix for execution of the
resulting code file.)

e Pressing <Return>. This causes the Compiler to generate
its output to a code file with the same name as the input file
with a .CODE suffix added. If you choose to use this default,
be sure that you did not specify an input text file name longer
than 35 characters.

1200301:02B 2-3

GENERAL OPERATIONS Chapter 2

¢ Pressing <Enter> <Return> to immediately terminate the
compilation.

The third question asked is:

Use what resource file?

This question is asking you to specify a source for the resources
that the Compiler should copy to the output code file. You
should respond to this question in one of the following ways:

e Entering the name of a file that contains the resources you
want copied.

e Pressing <Return>. This directs the Compiler to attempt to
copy the resources from the file Empty Program. (The file
Empty Program must be on the same disk as the Compiler.)
As supplied to you, Empty Program contains the standard set
of resources required by a UCSD Pascal program.

o Pressing <Enter> <Return> to terminate the compilation.

The resource file name you specify should either be Empty
Program or another file known to have valid UCSD Pascal
resources. Such files can be created either with the Compiler or
RMaker. The Compiler will use the resources of the file you
specify, regardless of whether they are valid UCSD Pascal
resources. Should the file you specify not have valid UCSD
Pascal resources, the resultant object code file will be unuseable.
For more information on creating resource files, see the

RMAKER chapter.

If the text file you are compiling is not a program (i.e. you are
compiling one or more units), the standard set of resources in
Empty Program will always be sufficient.

You cannot specify the same name for your resource file source as
you specified for the code file. This means that if you want to
preserve a unique set of resources for your program to be used
-each time it is compiled, these resources will have to be stored in

2—4 1200301:02B

CREATING PROGRAMS

a file which has a different name than that which you are giving
to your program.

The fourth question asked by the Compiler is:

File for listing?

You should respond to this question in one of the following ways:

e Pressing <Return> if you do not want the Compiler to
- generate a listing. '

¢ Entering the name of the file or Macintosh serial device to
which you want the compiled listing written. Unless the first
character of the file name is a period, the suffix .LIST will be
added.

e Pressing <Enter> <Return> to terminate the compilation.

After the Compiler is finished, you may examine or print the
listing file using the Editor. Note, however, that listing files
consume large amounts of disk space. Should the disk containing
the listing file become full during compilation, the Compiler will
abort and both the code and listing files will be lost. A common
listing output file is .BOUT, which directs the listing to the
printer. Other permissable listing output files include the other
serial devices: .AOUT, .CONSOLE, and .DBGTERM; the
characteristics of these files are discussed in Serial Devices later in
this chapter.

NOTE: When using the Apple Imagewriter in normal text mode,
some print lines generated by the Compiler will be longer than
8.5". The extra characters past the end of the page margin will
be over—printed on top of the beginning of the line. To avoid
this, you can change the character pitch selected when the printer
is powered on to ultracondensed. Page 40 of the Imagewriter
User’s Manual describes how to do this.

1200301:02B 2-5

GENERAL OPERATIONS Chapter 2

The $L compiler option can also be used to specify a name for the
listing file.

Evaluating Compiler Progress

While the Compiler is running, it displays a report of its progress
on the screen:

< O coeoencenasncconccns
INITIALI

...........

...................

INITIALI .
MYPROG .

166 lines compilad in 0:00:258, 396 |ines per minute

During the first pass, the Compiler displays the name of each
routine (INITIALI, AROUTINE and MYPROG in this example).
The numbers enclosed by angle brackets, < >, are current line
numbers. Each dot represents one source line compiled.

During the second pass, the names of the segments are displayed
(INITIALI and MYPROG in the example). Here, each dot
represents the compilation of one procedure or function.

You can suppress this output by using the $Q compiler option in
your input textfile.

Syntax Errors

If the Compiler detects an error while compiling a program, it
generates a syntax error. When this happens, the text where the
error occurred is displayed along with an error number and
message. Here is an example:

2—6 1200301:02B

CREATING PROGRAMS

q,r,s: string;
w,x,y: reel {---
Syntax Error 104:Undeclared identifier
Line 7
Type <{space) to continue, <(Enter) to terminate

For each syntax error, a message like the one above is displayed.

The Compiler gives you the option of pressing either <Space>

to continue the compilation or <Enter> to terminate the

compilation. Error numbers greater than 400 are always

considered fatal and the Compiler will abort regardless of your
input.

The Compiler issues three additional fatal error messages. Their
occurrance is rare, as they usually mean that some kind of
internal error condition has been detected. All three messages
wait for you to respond to them by pressing any key on the
keyboard. The actual response is immaterial; it is just an
acknowledgement that you have seen the message. This is done
because the screen contents will be erased by the Finder after the
Compiler terminates.

Compiiation asborted due to I/0 error XXX
Press any key to exit.

The Compiler was unable to perform an I/O operation on one of
the files it has open. XXX is the ioresult code passed back from
the Macintosh Operating System. A list of these result codes
appears in Appendix B. You should check that your Macintosh
and its peripherals are all working correctly and then retry the
compilation.

Error writing file, not enough room.
Press any key to exit.

The Compiler was unable to write a block of information to disk
because the disk it was trying to write to was full. This error
usually occurs when you are trying to write a listing file to disk.
It can also happen when trying to write out the .CODE file you
are creating. Make sure that the disk you are trying to write to
is not full. Alternatively, if you are making a listing file, try

1200301:02B 2~7

GENERAL OPERATIONS Chapter 2

sending it to the file . BOUT. Then retry the compilation.

Compilation sborted due to back-end error XXX
Press any key to exit.

The Compiler has detected an abnormal condition within the files
it creates while compiling your program. XXX is an internal
code signifying the error. Retry the compilation. Please contact
your technical support representative if the error appears again.

Compiled Listings

The Compiler optionally produces a compiled listing of the
program. This listing contains source text, along with
information about the compilation. Compiled listings are useful
when you’re using the Debugger.

You can produce a compiled listing in two ways. You can give a
file name to the compiler’s listing file question, or you can use the
$L compiler option.

Here is the entire compiled listing for a small program:

UCSD Pascal Compiler [1RO.0] 10/ 8/84
1 2 1:d i program Fsct;
2 2 i:d i var
3 2 1:d 1 i: integer;
4 2 1:d 2 prod: real;
1) 2 1:0 (o] begin
8 2 1:1 writeln(’n factorisl of n?);
7 2 1:1 18 prod:= 1.0;
8 2 1:1 23 for i:= 1 to 20 do
9 2 1:2 41 begin
10 2 1:3 41 prod:= prod = i;
11 2 1:3 60 writeln(i,’ ?,prod);
12 2 1:2 89 end;
13 2 :0 o end.

End of Compilation.

The numbers that precede each source line are:

2—-8 1200301:02B

CREATING PROGRAMS

e The first column is the line number. Line numbers start with
1 and are incremented for each line encountered by the
Compiler during compilation. Lines found in files which are
included by the $I compiler directive and the uses statement
are also counted. :

e The second column is the Pascal segment number. This entire
example is segment 2.

e In the third column is the procedure number followed by a
colon and the statement nesting level. All of the example is
procedure 1. Procedure numbers are important in
determining program locations either in the Debugger or when
a runtime error occurs. The statement nesting level is an
indication of how deeply the text is nested within Pascal
structured statements. The statement nesting level field of
data lines contains the letter "d".

e The fourth column contains the word offset of data or the
byte offset of code. Data word offsets are relative to either
the start of a segment for global data, or to the beginning of a
procedure’s activation record for a procedure’s local data.
Data offsets are useful for finding data using the Debugger.
Code offsets are useful for setting break points with the
Debugger.

RUNNING PROGRAMS

To run a program, either one that you have compiled or one
someone else compiled, you just double—click its icon. Executing
a program in this manner causes the disk it is on to become the
default disk.

Once you have become familiar with creating and running
programs as described here, you should also explore the faster
method offered by the Executive utility which is discussed in
USING EXECUTIVE.

1200301:02B 2-9

GENERAL OPERATIONS Chapter 2

Pressing the interrupt button on the programmer’s switch will
cause the currently executing UCSD Pascal program to be
interrupted. The button to the rear of the programmer’s switch
is the interrupt button. The button to the front of the
programmer’s switch is the reset button. Pressing the reset
button will cause the Macintosh to be restarted. Obviously, if
you are in the middle of a hard to reproduce situation, you don’t
want to accidently press the wrong button.

When a program is interrupted, a standard Runtime Error dialog
box will appear on the screen as described later on in the
Runtime Errors section. Refer to that section for instructions on
the options available when a Program interrupted by user
runtime error occurs.

NOTE: The Runtime Support Library disables the interrupt
button while it is starting up a program. Also, if you have one of
Apple Computer’s MacsBug debuggers installed, pressing the
interrupt button while running a UCSD Pascal program will
cause you to enter MacsBug. If you are running UCSD Pascal
programs under the MacWorks software on a Lisa, there is no
way to interrupt a program and receive the standard Runtime
Error dialog box.

You may need to do some more steps before a program you just
compiled is ready to run. You may need to run the Set Options
utility to change the default runtime environment for your
program; you may also need to run RMaker to install some
additional resources.

The p—code produced by the UCSD Pascal compiler resides
within the data fork of the output file. The resource fork of the
file usually contains a standard set of resources that are used to
start up (bootstrap) the p—code file. The standard resources are
explained in detail in the section Standard Resources.

The important thing you need to know about the standard
resources i1s that some of them define the runtime environment a
program starts up in. The effects of the settings of these
standard resources are explained in the next three sections.

2—-10 1200301:02B

RUNNING PROGRAMS

Required Files

In order to run a program that was compiled with the UCSD
Pascal compiler, two Pascal Runtime Files must be available to
the program. One of the files is named Pascal Runtime and the
other is named p—Machine. The p—Machine file is the
p—Machine emulator program, which allows p—code to run on
the Macintosh. The Pascal Runtime file is a group of Pascal and
assembly language routines that support running UCSD Pascal
on the Macintosh. The Pascal Runtime file is also called the
Runtime Support Library. Usually, these files are found in the
folder called Pascal Folder. As it is supplied to you, the Pascal
Folder is located on the UCSD Pascal 1 disk.

Fascal Runtime p-Machine
Figure 2—2. Pascal Runtime and p—Machine Icons.

The resource fork of every UCSD Pascal program contains
references which define the location and names of these files.
These references consist of file names which adhere to the
Macintosh file naming conventions. These conventions are
described in File Naming Conventions later in this chapter.
Should the Pascal Runtime Files be on the default disk, you can
omit the volume name. Note that the two files do not need to be
on the same disk. The p—Machine file is read only when your
program is started and not used thereafter. This means that you
can keep it on a separate disk which can be removed from the
Macintosh after the program starts.

Two versions of the Runtime Support Library were shipped to
you. The first, named Pascal Runtime, is on the UCSD Pascal
1 disk. It contains the necessary runtime support for executing
UCSD Pascal applications. The other, named Debug Runtime, is
on the UCSD Pascal 2 disk. It provides the same runtime
services as Pascal Runtime and in addition, provides the
Debugger and the Performance Monitor tools. The usage of these
additional tools is described in the DEBUGGER chapter.

1200301:02B 2—-11

GENERAL OPERATIONS Chapter 2

Empty Program, in its original form, as supplied to you on the
UCSD Pascal 1 disk, specifies no volume name in the references
to the Pascal Runtime Files. Hence, the resources in Empty
Program assume that the required files are located on the default
disk. Furthermore, the names of these files are assumed to be
Pascal Runtime and p—Machine.

Any program you compile that uses Empty Program as its source
for resources will inherit these references to the required Pascal
Runtime Files. Should this configuration (i.e. the names of the
files or their locations) not suit your requirements, you can use
Set Options to change the file names and locations in each
program you compile. Alternatively, Set Options can be used to
change the names and locations specified in Empty Program.

If one or the other of these Pascal Runtime Files is not available
to your program, an error message describing the problem will be
displayed when you attempt to start the program.

Startup Options

The settings of five Startup options are contained within a
program’s standard resources that specify the the runtime
environment in which your program executes. These option
settings are obtained by the Compiler from the resource file you
specify when a program is compiled. Each option is described
below, along with the default setting specified in Empty
Program.

e Create Default Window. The default value of this option is
enabled. If this option is enabled, a standard program
window is opened by the bootstrap. The title of the window
is the value of the version number string, if it is nonempty.
‘Otherwise, the title is the file name of the program. (The
version number string is another type of resource. See
Standard Resources for instructions on defining a non—empty
version number string.) If this option is disabled, no default
window is opened. To see how this affects which ROM
initialization routines are done by the bootstrap, see
Initialization in the MACINTOSH INTERFACE chapter.

2-—-12 1200301:02B

RUNNING PROGRAMS

Create .DBGTERM Device. The default value of this
option is disabled. If this option is enabled, the .DBGTERM
device is available to the program. See Special Devices for
details about the .DBGTERM device.

Startup in Debugger. The default value of this option is
disabled. If this option is enabled, the bootstrap calls the
Debugger before the program starts.. See the DEBUGGER
chapter for instructions on using the Debugger. The
Debugger interacts either by using the Macintosh screen and
keyboard through the .DBGTERM device, or by using an
external terminal, based on the setting of the Debug to
Modem Port option. The Startup in Debugger option must be
enabled if you intend to use the Debugger at all.

Enable Performance Monitor. The default value of this
option is disabled. If this option is enabled, the Performance
Monitor is enabled for the duration of your program. See the
DEBUGGER chapter for information on using the
Performance Monitor. The Performance Monitor writes
information about the faults that occur during the execution
of a UCSD Pascal program. This information is written
either to the .DBGTERM device or to an external terminal
based on the setting of the Debug to Modem Port option. See
the MEMORY MANAGEMENT chapter for an explanation of
the various kinds of faults.

Debug to Modem Port. The default value of this option is
disabled. This option has no meaning unless either the
Startup in Debugger option or the Enable Performance
Monitor option is enabled. If this option is enabled, the
Debugger interacts using an external terminal connected to
the modem port of the Macintosh. The modem port is the
one with the telephone icon, and corresponds to the channel
used for the serial devices .AIN and .AOUT.

In addition to using Set Options to change the option values

assigned to your program by the Compiler, you may also override
them by specifying the type which define them when using

RMaker. The implementation of the Runtime Options as

resources is discussed in Standard Resources.

1200301:02B 2—-13

GENERAL OPERATIONS Chapter 2

As with the required files, the default settings are obtained by the
Compiler from Empty Program. Should modifying your
program with Set Options after compilation become cumbersome,
you can use Set Options on Empty Program to change the
default settings. This way, every time you compile, the compiler
will automatically give you the file locations and option settings
that you prefer.

Library Files

All of the units that a program references with the uses
statement must be available to the program when it is executed
This can be accomplished three ways:

e Each unit can be moved into the same code file as the
program. The Librarian utility, described in the LIBRARIAN
chapter, does this.

¢ The units may be combined into a single library code file
using the Librarian. If this is done, you can then use Set
Options to add the name of your library code file to your
program’s Library Files list. The file Mac Library on UCSD
Pascal 1 is an example of such a library of units that can be
referenced by your program.

e You can use Set Options to add the names of all your code
files containing individual units to your program’s Library
Files list. This works provided that you don’t have more
than five code files that you want your program to reference
in this manner.

As outlined above, a program’s Library Files list is usually
specified using Set Options. Set Options allows you to specify up
to-five code files. It is also possible to augment a program’s
Library Files list by adding the appropriate resources using
RMaker, but using Set Options is easier and less error prone.

The Library Files list is used by the Runtime Support Library
when it needs to locate a referenced unit that it cannot find
inside your program’s code file. When it searches for a unit, the
Runtime Support Library examines the code files in the order in

2—14 1200301:02B

" RUNNING PROGRAMS

which you have listed them. If a library code file listed in your
program’s Library Files list cannot be found, the Runtime
Support Library simply ignores that entry in the list and
continues its search.

The limit of five code files in the Library Files list imposed by Set
Options is a practical limit rather than an absolute limit. The
Macintosh Operating System limits the number of files that a
program can have open simultaneously, and every code file that
must be opened and examined by the Runtime Support Library
increases the time required to start a program.

Using Set Options

Set Options is the utility program that you use to modify a
UCSD Pascal program’s Runtime Options. A program’s Runtime
Options specify the location of the Pascal Runtime Files, the
Library Files list, and the settings of the Startup options.

Set Options is executed just like any other application: just
double—click its icon.

Set Options initially presents you with a standard Macintosh file
selection box. See Figure 2—3. Select the file you wish to modify
by clicking its name in the selection box and then select the Open
button. You can cause the files residing on the disk in the other
drive to be shown by selecting the Drive button. Selecting the
Eject button causes the disk in the indicated drive to be ejected;
this allows you to insert another disk if you wish. To terminate
Set Options, select the Cancel button.

1200301:02B ’ 2—-15

GENERAL OPERATIONS Chapter 2

Compiler
Editor
Empty Program
Executive

Mac Library
Set Options

- UCSD Pascal 1

(Cancel | (Drive |

Figure 2—3. Set Options File Selection.

Once you have selected a file, a Macintosh dialog box is displayed
that presents you with the settings of the current Runtime
Options. See Figure 2—4.

Runtime Options for file Empty Program
[0 set Bundie for FINDER

Pascal Runtime Files Save

p-Machine ||n-Mathine |

[Cancel]

Runtime [Pascel Runtime]

Library Files Startup

Create Default Windouw
[CJCreate .DBGTERM Dewice
[startup in Debugger

[J Enabie Perf. Monitor

[Debug to Modem Port

Figure 2—4. Runtime Options.

Four option groups are available:

¢ Pascal Runtime Files. These entries are the program’s
specification of the names and locations of the required files.
Use the Mouse to move the cursor into the box for the name
you wish to change. Normal Macintosh editing rules and file

2—16 1200301:02B

RUNNING PROGRAMS

naming conventions apply.

e Startup. These check boxes are used to specify the settings of
the Startup options. An empty box indicates that the option
is disabled; an X through the box indicates that it is enabled.
To change the setting, move the cursor into the box and click
the mouse button.

e Library Files. These entries make up the program’s Library
Files list. As explained previously, the Library Files list can
identify the name and location of up to five library files.
Enter or change these boxes using the methods described for
changing the Pascal Runtime Files entries.

e Set Bundle for Finder. This check box is used to specify
the setting of the program’s Finder "bundle bit." The usage
of the bundle bit is explained in the Application Interface to
the Finder section later in this chapter. You should not
change this option unless you understand why you are doing
so. Indiscriminate setting of the bundle bit can cause the
Desktop to become "polluted" with conflicting icon and other
resource definitions. This is a condition which is often
evidenced by the Finder using the wrong icons to decorate
files.

To save the changes you have made, click the Save button, and
Set Options will update the program with the Runtime Options
shown on the screen and return you to the file selection box it
presented to you earlier. Clicking the the Cancel button causes
Set Options to return to the file selection box without updating
the program, effectively discarding any changes you have made.

Once you have been returned to the file selection box, you can
select another program and change its options, or click the
Cancel button to exit Set Options.

NOTE: Set Options will not allow you to change the Runtime
Options in the Set Options code file being used. To change the
settings of the Runtime Options within Set Options, first use the
Finder’s Duplicate command to create a copy of Set Options.
Then run the copy, and modify the original copy of Set Options.

1200301:02B 2—-17

GENERAL OPERATIONS Chapter 2

Finally, exit back to the Finder and drag the copy of Set Options
to the trash. '

Program Startup Errors

If the Runtime Support Library has trouble starting your
program, you will get a program startup error displayed within a
dialog box on your screen. Actually, there are two catagories of
program startup errors. The first catagory contains those
startup errors which are detected and reported by the initial
"bootstrap" program which is located in your program’s standard
resources. The second catagory contains the startup errors that
can be generated by the Runtime Support Library during its
construction of your program’s execution environment.

The startup errors generated by the bootstrap are:

e Could not open p—Machine file. This error occurs if the
file p—Machine could not be opened. The runtime
environment description for the program’s p—Machine file is
wrong. Execute Set Options to correct the reference and then
try the program again.

e :Could not allocate memory for p—~Machine. This error
occurs if the bootstrap cannot allocate memory to read in the
:p—Machine file. This error should not occur; if it does,
contact your technical support representative.

¢ Error reading p—Machine file. This error occurs if the
bootstrap has trouble reading the p—Machine file. It is likely
that your p—Machine file is damaged. Replace it, and try
again.

¢ ‘Could not locate MSTR resource. This error occurs if
-your program is missing the standard MSTR resource. You
must use RMaker in such a way that all the standard
program resources are in the resource fork of an application in
addition to any new resources you define.

2—18 ‘ 1200301:02B

RUNNING PROGRAMS

Could not open program data fork. This error occurs if
the bootstrap has trouble opening the p—code portion of your
application program. Make sure you have not done any
operation in building the application that might delete the
p—code generated by the Compiler.

Could not open Runtime Support Library file. This
error occurs if the bootstrap could not open the Pascal
Runtime file. Make sure that a Runtime Support Library file
is installed where the program’s runtime environment
description says it should be. The two runtime libraries are
Pascal Runtime and Debug Runtime.

Could not allocate stack/heap. This error occurs if the
bootstrap could not allocate a 64K byte area of memory for
the Pascal Data Area. This error also should not occur and
indicates a serious hardware or software failure.

The program startup errors generated by the Runtime Support
Library are:

Error reading segment dictionary. This error indicates
that an I/O error occurred reading the segment dictionary
within the program code file or a code file listed in the
Library File list.

Error reading library. This error indicates that an 1/O
error occurred reading a library code file.

Required unit not found (). The unit whose name
appears in the error message enclosed in parentheses is
referenced by your program, but it cannot be found in the
program code file or in any of the library code files listed in
the Library File list.

Duplicate unit (). This error indicates that there is more
than one instance of the indicated unit in the program, or the
unit’s name is the same as one of the Runtime Support
Library’s units.

1200301:02B 2—-19

GENERAL OPERATIONS Chapter 2

e Too many library code files referenced. This error
indicates that the units used by your program are distributed
into too many separate library code files. Use the Librarian
utility to combine library code files.

¢ Too many system units referenced. This error should not
occur. If it does, contact your technical support
representative.

e No program in code file to execute. This error indicates
that you have attempted to run a library code file that
doesn’t contain a program.

e Program or unit must be linked first. This error
indicates that your program or one of the units that you are
using needs to have one or more assembly language routines
linked into it before it can be used. If this error occurs, it
may be due to an improperly constructed Macintosh Interface
unit, so you should contact your technical support
representative.

¢ Obsolete code segment (). The indicated code segment
was either not created properly or it was created by an
incompatible version of the UCSD Pascal compiler.

¢ Insufficient memory to construct environment. There
isn’t enough memory for the Runtime Support Library to
construct your program’s environment. The best work
around for this error is to combine separate library code files
together into a fewer library code files. Another possible
remedy is to eliminate any unneccesary entries in your
program’s Library File list.

o Program environment too complicated: run
QUICKSTART first. This error indicates that the number
of units used by your program and the complexity of their
relationships is greater than can be handled directly by the
Runtime Support Library. The QUICKSTART remedy
suggested by the error message refers to a preprocessor
program that you can use to prepare your program for
execution. A version of this preprocessor utility is not
currently available for the Macintosh environment. If you get
this startup error, try using the Librarian utility to package

2—-20 : : 1200301:02B

RUNNING PROGRAMS

all of the units required by your program together with the
program’s code segments. If this doesn’t eliminate the error,
you may have to resort to merging the services provided by
several small units into a single unit.

e Error reading program code file. This error indicates an
1/O error reading your program code file.

e Error reading library code file. This error indicates an
I/O error reading one of your library files.

e Insufficient memory to allocate data segment. Your
program or one of the units it references has a large amount
of global variables, and the Runtime Support Library is
unable to allocate the storage for them in the Pascal Data
Area. The most likely cause of the trouble is a declaration of
one or more large array variables.

e Insufficient memory to load fixed position segment. A
code segment containing one or more nonrelocatable assembly
language routines cannot be loaded into the Pascal heap due
to a lack of space in the Pascal Data Area.

¢ Unknown environment construction error. This error
indicates an internal error in the Runtime Support Library’s
environment construction process. If you get this error,
contact your technical support representative.

Runtime Errors

When the p—Machine emulator and Runtime Support Library
detect certain errors, the Runtime Support Library will generate
an execution error. If the Debugger is enabled and currently in
its active state, then the Debugger is entered, and an error
message is printed. Otherwise, the system displays the execution
error message within a dialog box on the screen, and the user is
given a choice of how to procede. Here is a sample execution
error dialog box:

1200301:02B 2-21

GENERAL OPERATIONS Chapter 2

@ Ualue range error

Seg LONGTEST P#*3 0¥44

[ok]} [continue| [Debug |

Figure 2—5. Execution Error.

The first line is the error message. The second line gives the
p—code coordinates of where the error happened. In this
example, LONGTEST is the segment. The procedure number is
3 and the offset within the procedure is 444. The coordinates can
be checked against a compiled listing of the program to
determine where in the program the error occurred.

Depending on the error, there is either one or three continuation
buttons. If it is a fatal error, only the OK button is shown.

e OK button. Clicking this button will cause the program to
terminate.

o Continue button. Clicking this button will cause the
‘program to continue execution. Only some execution errors
may be continued from, so you cannot depend on continuing
from arbitrary errors.

o Debug button. Clicking this button will cause the Debugger
to be invoked if it is enabled in the Runtime Options. The
Debugger is enabled when the Start in Debugger runtime
option is true. If the Debugger is not enabled, this button
does nothing.

Here is a short explanation of each of the execution error
messages:

e Fatal runtime support error. This error indicates a
corrupted Runtime Support Library file.

2--22 ' 1200301:02B

RUNNING PROGRAMS

Value range error. This error occurs if (1) an array
subscript is out of range, or (2) an assignment to a subrange
variable is out of range. You can disable detection of this
error by using the $R compiler option.

No proc in segment table. This error should not occur on
the Macintosh.

Exit from uncalled proc. This error occurs when exit(A) is
executed and A is not in the dynamic call chain.

Stack overflow. This error occurs when there is no room in
memory to expand the runtime stack by the desired amount.

Integer overflow. This error occurs if (1) an integer2
operation overflows, or (2) a conversion to integer or integer2
is too large to fit in the destination type.

Division by zero. This error occurs whenever a divide or
mod operation is performed with a zero denominator.

Invalid memory reference. This error indicates an attempt
to access memory through a bad pointer or handle value.

Program interrupted by user. This error occurs if the user
presses the interrupt button on the programmer’s switch and
the Debugger is not enabled.

Runtime support I/O error. This message indicates an
I/O error was detected either during startup of the Runtime
Support Library, or later attempting to read in a program
segment. This is a fatal error.

I/O Error. This error occurs if an I/O operation detects an
error. You can disable I/O checking by using the $I compiler
option.

Unimplemented instruction. This error occurs if the
p—Machine attempts to execute an invalid p—code. If you get
this execution error, then something has gone drastically
wrong in your program.

1200301:02B 2—-23

GENERAL OPERATIONS Chapter 2

e Floating point error. This error occurs when a floating
point operation overflows the size of floating point numbers.

e String overflow. This error occurs if (1) the source string is
too large in string assignment, or (2) conversion of a number
to a string overflows the size of the string.

e Programmed halt. This error occurs upon execution of the
halt intrinsic.

e Illegal heap operation. This error indicates improperly
paired mark and release operations, or an illegal dispose
operation.

e Break point. This error occurs if a BPT p—code is executed
and the debugger is not enabled. The BPT p—code is used by
the debugger to implement break points.

e Incompatible real number size. This error cannot occur on
the Macintosh unless you use the $R2 compiler directive,
which is something you should not do.

o Set too large. This error occurs if an attempt is made to
create a set larger than the maximum allowed size of a set. A
:set 1s allowed to have 4080 members.

e Segment too large. This error occurs if an attempt is made
‘to load a segment that is over 32K bytes in size.

¢ Heap expansion error. This error occurs if there is no room
for the heap to expand. This is most likely to occur due to
-the presence of a nonrelocatable Macintosh heap block
immediately above the Pascal heap in memory. The
‘Compiler will likely terminate with this message if you try to
compile a program having too many symbols.

e Insufficient memory to load code segment. This error
occurs if there is no more room in memory to load a required
code segment. Again, the presence of locked or nonrelocatable
Macintosh heap blocks can interfere with the acquisition of
memory for code segments.

2—-24 1200301:02B

RUNNING PROGRAMS

Refer to the P-MACHINE ARCHITECTURE chapter for

additional information on execution errors.

USING EXECUTIVE

The Executive utility provides you with menu access to all of the
programs that comprise The MacAdvantage: UCSD Pascal.
That is, you can run the Editor, Compiler, RMaker, Set Options,
and Librarian programs by selecting the appropriate entry in a
pull-down menu. Other options on the Executive menu allows
you to run any other program, or return to the Macintosh Finder
program.)

The advantage of using the Executive to start programs instead
of the Finder is that a transition from one program to another is
considerably faster. = Moving between programs using the
Executive is faster, because the time consuming activities related
to the saving and recreation of the desktop display (done by the
Finder) are avoided.

For example, the time it takes to go from the Compiler to the
Editor should be reduced by approximately 50% if you use the
Executive instead of the Finder to accomplish the transition. Of
course, you may notice more or less time reduction depending on
the number of disks you have inserted, the number of files on
those disks, and the complexity of your current desktop
arrangement.

When a program started by the Executive terminates, the
Executive is restarted. This means that once you have started
the Executive, you effectively remain inside it until you use its
Quit option to reactivate the Finder.

The Executive isn’t intended to be a complete substitute for the
Finder. You will still need to use the Finder for a variety of
tasks. Most notably, these tasks include: transferring files
between disks, copying disks, maintaining the organization of the
folders on your desktop, and running the Desk Accessories.

1200301:02B 2—-25

GENERAL OPERATIONS Chapter 2

Note that it is possible to have your Macintosh start up in the
Executive utility instead of the Finder if you wish. (See how to
use the Finder "Set Startup" command in Macintosh, your user
guide.)

The operation of the Executive utility is described in the
following sections.

Starting The Executive

As it is supplied to you, the Executive is located on the UCSD
Pascal 1 disk. To start the Executive, double click its icon.
Since the Executive is not a UCSD Pascal program, it can be run
off of any disk without configuring it with Set Options.

The Executive Menu Bar
The Executive utility’s menu bar consists of the following menus:

Set. The Set menu allows you to set the locations of the
programs that comprise The MacAdvantage: UCSD Pascal.

Edit. The Edit menu will start the Editor program.

Compile. The Compile menu will start either the Compiler or
RMaker (the resource compiler).

Utilities. The Utilities menu will start either Librarian or Set
Options.

Run. The run menu puts up a standard file selection box. To
run a program, select the program file name and select the Open
button. (Or simply double—click the file name.)

Quit.The Quit menu allows you to exit back to the Macintosh
FINDER.

2—-26 ' 1200301:02B

USING EXECUTIVE

The Editor, Compiler, RMaker, Librarian, and Set Options can
also be started by entering a command key sequence from the
keyboard. This is done by holding down the command key and
typing the appropriate letter. The command key sequences
supported by the Executive are shown in its pull down menus.

Setting Program Locations

The Executive is preconfigured to know about the locations of the
Compiler, RMaker, Set Options, Editor and Librarian programs
as they are shipped on the UCSD Pascal 1 and UCSD Pascal
2 disks. If you wish to execute these programs from other
volumes (such as a hard disk) you must use the Set menu to
change the location of these programs.

In the Set menu, there is-one menu item for each program. Select
the item that corresponds to the program whose location you
wish to change. After you select the item, a dialog box will
appear that contains the current location setting for the program.
Type in the new location of the program, or click the Cancel
button to retain the previous location setting. When specifying
the location of a program, you must specify both a volume name
and a file name using the standard Macintosh file name
conventions. After typing in the new location, select the Save
button to make the change permanent.

NOTE: If you are moving the Compiler, Librarian or Set
Options programs to another volume don’t forget to move the
files in the Pascal Folder. You will also need to run the Set
Options utility on these programs to change the location of the
p—Machine and Pascal Runtime files.

If you receive the error message

Program XXX is not on-line

when attempting to start a program using Executive, check that
the location for the program is set correctly.

1200301:02B 2-27

GENERAL OPERATIONS Chapter 2

ACCESSING FILES

Your UCSD Pascal program can access Macintosh files two ways.
First, it can use the UCSD Pascal intrinsics described in The
UCSD Pascal Handbook. Second, Inside Macintosh describes the
interfaces to the Macintosh Operating System File Manager. By
using the UCSD Pascal interfaces to these ROM routines, your
program can have full access to all the file handling capability of
your Macintosh.

Programs which use UCSD Pascal intrinsics to access files
generally need to be aware of disk volume names or disk drive
assignments. Their user interface has to be tailored accordingly.
Two examples of programs like this are the Compiler and
Librarian. Programs which use the Macintosh Standard File
Package and File Management units generally don’t need to
worry about these details. Examples of this type of program are
Editor, Set Options, and RMaker.

Regardless of which method you choose to use, this section
provides you with information to help interface your program to
Macintosh files.

File Naming Conventions

File names can be specified using the conventions of the
Macintosh Operating System. These file naming conventions are
as follows. A file name consists of up to 255 characters. Any
character except a colon (:) may be used in a file name. In
particular, spaces are allowed in a file name. File names are not
case—sensitive for the purpose of comparison. However, the
original type case of the name is retained in the directory when a
file-is created. Here are some example file names:

MYFILE
A rather long file neme.
My File

2—-28 1200301:02B

ACCESSING FILES

The first and the third file names in the example are distinct
names, because of the presence of a space in one of them.
Remember that all spaces are considered part of the file
name—even trailing spaces.

NOTE: According to Inside Macintosh there is a practical limit
of about 40 characters for a file name.

A file name may be preceeded by an optional volume name,
separated from the file name by a colon. A volume name may be
up to 27 characters long, and may consist of any characters
except a colon (:). Volume names follow the same case
convention as file names. Here are some examples of file names
preceeded by volume names:

°

My Disk:My File
Mac Boot:PBOOT

Any file name that is opened using the Pascal reset or rewrite
calls may use some additional conventions supported only by the
Pascal Runtime Package. These conventions are called Pascal
I/0 file naming conventions.

A volume may be refered to by the drive number of the disk
drive it is mounted in. A drive number is represented by a
number sign (#) followed by a positive integer representing the
drive number. #1 refers to the internal drive. #2 refers to the
external drive. Higher numbers refer to other drives that your
Macintosh knows about. Which numbers correspond to which
drives is system—specific.

WARNING: Drive numbers are used to open the named file on
any disk in the specified drive. Should you be using multiple
disks in the specified drive, the use of drive numbers is
dangerous. A file will not be found or will be created on the
wrong disk if the disk in the disk drive changes before the file is
opened.

1200301:02B 2—-29

GENERAL OPERATIONS Chapter 2

Here are some file names preceeded by drive numbers:

#1:My File
#2 :RMaker

You may also specify a device by name. The syntax of a device
name is the same as for a volume name, except that a device
name may not be followed by a colon or a file name. All device
names begin with a period (.) character, by convention. Here is
a list of the standard Macintosh device names:

e AIN is used to receive input from the modem port.
e .AOUT is used to send output to the modem port.
e .BIN is used to receive input from the printer port.

e .BOUT is used to send output to the printer port.

The Runtime Support Library also supports some nonstandard
serial devices:

e .CONSOLE refers to a terminal—like device that uses the
keyboard and the current QuickDraw grafport on the
Macintosh screen.

e .SYSTERM refers to a device that is identical to characters
are not echoed to the screen on input.

e .DBGTERM refers to a terminal—like device that uses the
keyboard and the bottom eight lines of the Macintosh screen.

For more information on these devices, see Serial Devices.

2—-30 1200301:02B -

ACCESSING FILES

File Types

Disk files that are created by the Runtime Support Library are
one of three types. Each type has its own icon that distinguishes
the file type. It is possible to associate your own icons to these

file types. See BUILDING AN APPLICATION.

Using the facilities in the Error _Handling unit, your program
can exercise additional control over the file types and creator
identifiers for the files it creates. See Execution Environment
Control later in this chapter for more information. ’

The file types and standard icons are as follows:

=l

Temporary Text

Figure 2—6. File Icons.

e text file. A text file results when a program creates a file of
type text or file of char.

e data file. A data file results when any other type of file is
created.

e temporary file. A temporary file results when a file has not
been properly closed. A temporary file may not be opened
using the Runtime Support Library. Currently, there is no
utility program that will change a temporary file into a
permanent file.

1200301:02B 2-31

GENERAL OPERATIONS Chapter 2

Pascal I/0O Operation

This section is a collection of notes on how the Pascal I/O
operations work under the Macintosh. Most operations will
produce the result you would expect, but there are some
restrictions imposed by the Macintosh Operating System and by
this implementation of Pascal that you should be aware of.

When you read certain types of text data from one of the
special serial devices (.CONSOLE, .SYSTERM or
.DBGTERM) you may use the <Backspace> key to correct
typing errors. The data types that allow this are strings and
the numeric data types. This handling of the <Backspace>
key is independent of the general—purpose backspace
character handling that is done by the special serial device
driver, and works even if you are not using a fixed—pitch
font.

The standard file input defaults to the .CONSOLE device, as
does the standard file output. This means that read, readin,
write, and writeln intrinsics that do not specify a file name
will cause output to go to the current window and input to
come from the keyboard. If the program doesn’t have a
current window, output is written to the QuickDraw grafport
which defines the screen. A program which has the Create

Default Window runtime option enabled gets a current

window which satisfies the requirements for these intrinsics.

Tabs are expanded, as you would expect, on the special serial
devices. That is, writing a tab character to one of the special
serial devices causes the QuickDraw character drawing pen to
be positioned at the start of next column to the right of its
current position. FEach column has a width of eight space

characters. (This means that font and character size used

determines the actual width of the columns on the screen.)

‘Note that this same style of tab expansion may not occur

when you write text on an Imagewriter printer unless you
have set the tab stops on the printer.

2-—-32 1200301:02B

ACCESSING FILES

e A disk file that is opened with reset or rewrite is opened with
both read and write permission. Therefore, disk files may not
be opened more than once simultaneously within an
application. An important consequence of this is that none of
the files that the system opens automatically may be opened
by a program.

e Devices, on the other hand, are opened with whatever
permissions are available. Thus, one device (like .BOUT) may
be opened more than once simultaneously within an
application. There are however some anomalies regarding the
standard Macintosh devices .AIN and .BIN which you need to
be aware of. You must open the corresponding output device
first, before you open one of these input devices, otherwise the
system will crash. For example, if you want to open a file to
.AIN, first open it to .AOUT, close it, then re—open it to
.AIN.

e Disk files are stored as normal Macintosh files, and share all
the properties of Macintosh files. For instance, disk files may
be located in multiple extents on a disk. Thus, a file may
expand until the disk is completely full without the user
worrying about the placement of files on the disk.

e The Runtime Support Library returns an I/O result code for
each I/O operation. The codes that are returned correspond
to the I/O result codes used by the Macintosh Operating
System. Where possible, I/O result codes manufactured by
the Runtime Support Library will be one of the codes known
to the Macintosh Operating System. However, a few new
codes have been defined that are unique to the Runtime
Support Library.

e When the Runtime Support Library is reading a character
from one of the special serial devices, this condition is made
known to the user through the display of a block cursor at the
current pen position on the screen.

1200301:02B 2-33

GENERAL OPERATIONS Chapter 2

Limits On Open Files

A UCSD Pascal program can have a maximum of eight files open
at one time on the Macintosh. The Macintosh Operating System
imposes a limit of 12 open files, but the Pascal Runtime Library
keeps four files open while a normal program is running. These
are the files that the system keeps open:

1. Pascal Runtime (data fork)
2. Pascal Runtime (resource fork)
3. Application (data fork)

4. Application (resource fork)

In addition, each library code file that your program uses will be
open at runtime. Therefore, if you plan to have many files open
at once in your application, you will need to restrict your use of
library code files.

Special Keyboard Sequences

The Macintosh Operating System takes special actions on certain
keyboard inputs. These actions take the form of special key
sequences that the Macintosh Operating System recognizes. Your
application can disable these actions by using GetOSEvent to
retrieve keyboard input rather than GetNextEvent or Pascal I/0.
These key sequences are as follows:

o < command—shift—1> ejects the disk in the internal
drive.

o <command—shift—2> ejects the disk in the external
drive.

e < command-—shift—3> writes a copy of the current
window to a disk file that is suitable for input to MacPaint.
If <Caps Lock> is also down, then it writes the whole screen
contents. The file is written to the default disk.

2—-34 : : 1200301:02B

ACCESSING FILES

e < command—shift—4> writes a copy of the current
window to the printer. If <Caps Lock> is down, then it
writes the contents of the entire screen image (print screen).

Serial Devices

This section describes the special serial devices that are supported
by the Runtime Support Library. The Macintosh Operating
System does not treat the screen and keyboard as files at all, so
these are really just virtual devices to give the screen and
keyboard a file interface.

The Runtime Support Library uses QuickDraw to draw
characters on these virtual devices. Therefore, QuickDraw
terminology (eg. font, pen location) is used to describe the
output characteristics of these devices.

e .CONSOLE refers to a terminal—like device that uses the
Macintosh screen and keyboard. A write to .CONSOLE
writes characters to the current window in the currently
selected font. If the Create Default Window runtime option is
enabled, this default window is the current window when a
program starts. The default font is Geneva—12. A read from
.CONSOLE reads characters from the keyboard. These

characters are echoed on the screen in the current window.

o .SYSTERM refers to a device that is identical to
.CONSOLE, except that characters read from the keyboard
are not echoed on the screen.

e .DBGTERM refers to a terminal—like device that uses the
keyboard and the bottom eight lines of the Macintosh screen.
Characters written to .DBGTERM will appear in Monaco—9
font. The .DBGTERM device does not write to the screen
within a window. Instead, it destructively modifies the bits at
that position of the screen. Because the characters may be
superimposed over other information on the screen,
.DBGTERM draws its characters with some surrounding
white space. This device is used by the Debugger when the
External Terminal Debugging runtime option is disabled. It
is also useful for programs that want to display their own

1200301:02B 2—-35

GENERAL OPERATIONS Chapter 2

debugging information without interfering with the current
window. Like .SYSTERM, .DBGTERM does not echo
characters on input. @ When the .DBGTERM device is
available, the size of the default window created for the
.CONSOLE and .SYSTERM devices is made smaller so that
.DBGTERM output is not intermingled with .CONSOLE
output. Of course, if you are not using the default window
option, it depends on the current grafport as to whether or
not .CONSOLE output will ever conflict with .DBGTERM
output.

The three serial devices mentioned have. a number of
characteristics in common. All of them display a block cursor
when the program reads from the device. This block cursor is an
indication to the user that keyboard input is expected.

The following special characters are handled by the special serial
devices:

e carriage return. Writing a carriage return character (0D
hex) causes the current pen position to be moved to the
beginning of the next line. The vertical distance the pen is
moved is based on the height of the current font. The pen is
qmoved horizontally to coordinate 0. If the new pen location is
below the bottom of the grafport, the grafport is scrolled by
one line to accomodate the new line of characters.

¢ line feed. Writing a line feed character (0A hex) performs no
action. Line feed is ignored on output.

e tab. Writing a tab character (09 hex) aligns the pen location
at the next tab stop. The tab stops have a width of eight
spaces in the current font, and are spaced evenly across the
grafport starting at horizontal coordinate 0. If the pen is
currently at a tab stop, writing a tab advances the pen to the
next tab stop.

e backspace. Writing a backspace character (08 hex) erases a
character the width of a space (in the current font)
immediately before the current pen location, and moves the
pen location to the left by the width of a space. Backspace is
most useful 'if you are using a fixed—pitch font like

2—36 : - 1200301:02B

ACCESSING FILES

Monaco—89.

e bell. Writing a bell character (07 hex) causes an audible beep
to be generated. The volume of the beep can be controlled via
the Control Panel desktop accessory.

Disk Swapping

All of the disks having icons on the desktop prior to the start of a
program are accessible to the program. This means that files
may be opened or created on these disks, even if the disk is no
longer in the disk drive. Additionally, any disks inserted in a
disk drive while a program is executing are also accessible to the
program, provided that the disk is inserted prior to its being
accessed to open or create a file. Once a file has been opened, the
Macintosh Operating System will request that the disk it is on be
inserted into a disk drive whenever the file is referenced. This
capability increases the amount of disk storage available to
Macintosh programs, but at a severe cost in access speed.

If your application is going to depend on using multiple disks per
drive, you should be aware of several factors:

e Swapping disks places additional burdens on the amount of
stack slop required by your program. This is explained
further in How to Set Stack Slop in the MACINTOSH
INTERFACE chapter.

e Programs which use UCSD Pascal intrinsics to access files can
use either Macintosh or Pascal I/O file naming conventions in
the reset or rewrite statements. However, use of explicit drive
numbers in file names can be dangerous because there is no
assurance that the correct disk will be in the disk drive when
the file is actually opened.

e Programs which use the high—level Macintosh File Manager

unit can use Macintosh file naming conventions to open their
files.

1200301:02B 2—-317

GENERAL OPERATIONS Chapter 2

When they are requesting the names of the files that they are to
operate on, the Compiler and the Librarian accept file names
which contain explicit drive numbers. However, care should be
taken when using the explicit drive number notation with these
programs when using multiple disks in a drive.

BUILDING AN APPLICATION

This section discusses more advanced topics regarding putting
together an application using UCSD Pascal on the Macintosh.

Putting it All Together

This section describes the use of segments, units, and libriaries.
It presents some useful strategies for designing a large program.

Units and segments are used to divide large programs into
independent modules. On the Macintosh, the main bottlenecks in
developing large programs are:

e A large number of declarations that consume space while a
program is compiling.

e Large pieces of code that use up memory space while the
program is executing.

The use of units solves the first problem by: (1) allowing
separate compilation; and (2) minimizing the number of
identifiers needed to communicate between separate tasks. The
use of segments alleviates the second problem by allowing the
code for a large program to be partitioned into manageable
chunks in such a way that only portions of the program need to
be in main memory at any given time, and any unused portions
reside on disk.

You can write a program with runtime memory management and
separate compilations already planned, or you can write as a
whole and then break it into segments and units. The latter
approach is feasible when you’re unsure about having to use

2—-38 1200301:02B

BUILDING AN APPLICATION

segments or quite sure that they will be used only rarely. The
former approach is preferred and is easier to accomplish.

The following steps outline a typical procedure for constructing a
relatively large application program: -

1. Design the program (user and machine interfaces).

2. Determine needed additions to the library of units, both
general and applied tools.

3. Write and debug units and add them to libraries.
4. Code and debug the program.

5. Tune the program for better performance.

During the design of a program, try to use existing procedures to
decrease coding time and increase reliability. You can accomplish
this strategy by using units.

To determine segmentation, consider the expected execution
sequence and try to group routines inside segments so that the
segment routines are called as infrequently as possible.

While designing the program, consider the logical (functional)
grouping of procedures into units. Besides making the
compilation of a large program possible, this can help the
program’s conceptual design and make testing easier.

Units may contain segment routines within them. You should be
aware that a unit occupies a segment of its own; except, possibly,
for any segment routines it may contain. The unit’s segment,
like other code segments, remains disk resident except when its
routines are being called.

You can put into the interface section the headings for procedures
and functions that are needed by other units. Then you can hide
the implementation sectian from the users of the unit.

1200301:02B 2—-39

GENERAL OPERATIONS Chapter 2

Steps 2 and 3 of the typical construction procedure are aimed at
capturing some of the new routines in a form that allows them to
be used in future programs. At this point, you should review,
and perhaps modify, the design to identify those routines that
may be useful in the future. In addition, useful routines might be
made more general and put into libraries.

Write and test the Library routines before moving on to writing
the rest of the program. This adds more generally useful"
procedures to the library.

The interface part of a unit should be completed before the
implementation part, especially if several programmers are
working on the same project.

Tuning a program usually involves performance tuning. Since
segments offer greater memory space at reduced speed,
performance is improved by turning routines into segment
routines or turning segment routines back into normal routines.
Either route is feasible. Pay attention to the rules for declaring
segments.

Segmenting a Program

An entire program need not to be in main memory at runtime.
Most programs can be described in terms of a working set of code
that is required over a given time period. For most (if not all) of
a program’s execution time, the working set is a subset of the
entire program, sometimes a very small subset. Portions of a
program that are not part of the working set can reside on disk,
thus freeing main memory for other uses.

When your program executes, it is read into main memory.
When the code has finished running, or the space it occupies is
needed for some action having higher priority, the space it
occupies may be overwritten with new code. Code is swapped
into main memory a segment at a time.

2—40 1200301:02B

BUILDING AN APPLICATION

In its simplest form, a code segment includes a main program and
all of its routines. A routine may occupy a segment of its. own;
this is accomplished by declaring it to be a segment routine.
Segment routines may be swapped independently of the main
program; declaring a routine to be a segment is useful in
managing main memory.

Routines that are not part of a program’s main working set are
prime candidates for occupying their own segment. Such routines
include initialization and wrap—up procedures and routines that
are used only once or only rarely while a program is executing.
Reading a procedure in from disk before it is executed takes time.
Therefore, the way that you divide up a program is important.

The UCSD Pascal Handbook describes the syntax for creating
separate segments in a program.

Separate Compilation

Separate compilation is a technique in which individual parts of a
program are compiled separately and subsequently executed as a
coordinated whole.

Many programs are too large to compile within the memory
confines of the Macintosh. Such programs might comfortably
run though, especially if they are segmented properly. Compiling
small pieces of a program separately can overcome this memory
problem.

Separate compilation also allows small portions of a program to
be changed without necessarily affecting the rest of the code.
This saves time and is less error prone. Libraries of routines may
be built up and used in developing other programs. This
capability is important if a large program is being developed and
is invaluable if the project involves several programmers.

In UCSD Pascal, separate compilation is achieved by the unit
construct—a unit being a group of routines and data structures.
The contents of a unit usually relate to some common

1200301:02B 2—41

GENERAL OPERATIONS Chapter 2

application, such as screen control or data file handling. A
program or another unit may use the routines and data
structures of a unit by simply naming it in a uses declaration. In
addition to being a separately compiled module, a unit is also a
code segment; it can be swapped, as a whole, into and out of
memory.

A unit consists of two main parts: the interface section, where
constant, type, variable, procedure, process, and function
declarations, which are "public" (available to any client module)
are found; and the implementation section, where private
declarations are found.

The UCSD Pascal Handbook describes the syntax for creating and
using units.

Libraries

This section describes where you may place the code files that
contain units so those units are available at compile time or
runtime. At compile time, only the interface section of a called
unit is needed. At runtime, only the implementation section is
needed. (It is allowed, however, to have both the implementation
and interface sections available at both runtime and compile
time.) If you wish, a unit can be compiled with the complete
interface section, but with empty routines defined in the
implementation section. This allows clients which require the
interface section to be compiled before the unit has been fully
implemented. Also, for runtime purposes, the interface section
can be stripped out of a unit’s code file using the Librarian. This
leaves only the implementation section and saves disk space at
runtime.

A program or a unit which uses another unit is called a client of
that unit. An anology can be made with someone who offers a
service (the unit) and someone else who is a client of that service
(the using program or unit). At runtime, the Runtime Support
Library searches for a unit in the following places:

2—42 1200301:02B

BUILDING AN APPLICATION

e The Runtime Support Library
e The client code file

e The files listed in the client’s Library Files list.

The Runtime Support Library units reside in either Pascal
Runtime or Debug Runtime. DO NOT place units that you write
there.

To place a unit directly into a program’s code file, use the
Librarian. After the unit’s code and the program’s code are
unified, the unit will be available when the program is executed.
Refer to the LIBRARIAN chapter for more information on
placing units into a client’s code file.

A library can be a code file which is a collection of compiled units
(usually stitched together with the Librarian) or it can contain
just a simple unit within a code file created by the Compiler
when you compile that unit. The Library Files section in this
chapter describes how to modify the client’s runtime environment-
description to reference libraries.

At compile time, as opposed to runtime, the code for a unit
resides in a code file specified in the text you are compiling. The
UCSD Pascal Handbook describes how clients can use the interface

section of units at compile time.
Standard Resources

This section describes the RMaker input used to create the
generic resources for Empty Program. This is the file used by the
Compiler on the Macintosh to install resources into the program
code files that it creates. Various parts of the Runtime Support
Library expect to access these resources using the resource type
identifiers and numbers defined here. You should be careful
when defining resources for your program that you do not
accidently redefine the resources described here.

1200301:02B ' 2—43

GENERAL OPERATIONS Chapter 2

The first input specifies the RMaker output file name. Following
that is the file type and signature:

UCSD Pascal 1:Empty Program
APPLPROG

The next resource entry is the applications’s signature and
version number string. The generic application signature is
PROG; Generic version data is the empty string. (Used as the
title for the default screen 1/O window.) If you want the title of
the default screen 1/O window to be other than the name of the
program’s code file, change the third line of the following
example from the empty string to whatever string of characters
you want to use. See the RMAKER chapter for instructions on
how to append new resources onto an existing resource fork.

TYPE PROG = STR
32)

,0

The required Pascal Runtime Files location names are next. First
is the file name of file containing the Runtime Support Library.
Next is the file name of file containing the p—Machine.

TYPE SYSF = STR
32)

Pa;cal Runtime
s 1 2
p-Mschine

Next is the number of Macintosh Memory Manager master
pointer blocks to preallocate before the Pascal Heap Block is
allocated as a nonrelocatable heap block. (Master pointer blocks
are-nonrelocatable, and must never be allowed to reside above the
runtime support’s heap block. If any nonrelocatable blocks are
allocated above the Pascal Heap Block, it may not be possible for
the Runtime Support Library to extend the Pascal Heap Block,
even when sufficient free memory space is available. See the
MEMORY MANAGEMENT chapter for more details on the
Pascal Heap Block.)

2—44 1200301:02B

BUILDING AN APPLICATION

Each allocated master pointer block has room for 64 master
pointers. The Macintosh Finder starts any application with a
single master pointer block (i.e. 64 master pointers).

TYPE MSTR = GNRL
32)

,0

.H
0001

The Startup option settings are defined next. Options are
specified by individual characters in the string resource. A plus
(+) enables an option, a minus (—) disables it. The position of
the character in the string determines which option is set. The
following table lists the Startup options and their default settings
in Empty Program:

Option Position Default

Create Default Window 1
Create .DBGTERM Device 2
Startup in Debugger 3
Enable Performance Monitor 4
Debug to Modem Port 3

The following resource specifies the default settings:

TYPE OPTN = STR
32)

,0

- ————

The following strings define the text used in the bootstrap’s error
messages:

TYPE PRME = STR
,0 (32)
Could ngt open p-machine file

»
Could not allocate memory for p-machine

»2 (32)
Error reading p-machine file
2
Could not locate MSTR resource
»4 (32)
Could not open program data fork
Could not open Runtime Support Library file

Could not allocate stack/heap

1200301:02B 2—45

GENERAL OPERATIONS ‘ Chapter 2

The following resource definitions are used for the bootstrap’s

ALERT Dialog boxes:

TYPE DITL
» ,266 (32)

BtnItem Enebled
32 267 110 337

StetText Disabled
}8 60 70 380

TYPE ALRT

, 266 (32)
80 81 180 431
268 :
1333

One additional resource type is needed to complete the definition
of Empty Program. It causes the assembly language bootstrap
program to be included in the resource fork. This is the native
Macintosh application which begins executing when you open the
icon of a UCSD Pascal program. This bootstrap reads in the
p—Machine. The p—Machine builds a runtime environment and
reads in the Runtime Support Library. The Runtime Support
Library stitches the pieces of your program together and begins
executing it. The actual resource definition is not included here
because it does not follow the conventions and syntax of the
Macintosh RMaker.

Execution Environment Control

The Error _Handling unit may be used by a UCSD Pascal
program to control its execution environment, or perform certain
special functions. This unit may be found in the file
Errorhandl.CODE on the UCSD Pascal 2 disk. The entry
points to the Error _Handling unit allow a program to:

1. Override the standard handling of runtime errors performed
by the Runtime Support Library by installing a custom error
handling routine. Such an error handler routine can attempt
some corrective action for certain errors, or simply report
runtime errors in a different manner.

2—46 1200301:02B

BUILDING AN APPLICATION

2. Force entry into the Debugger.
3. Cancel a process.

4. Establish a procedure as the "interaction procedure" which is
activated by the Debugger’s "I" command.

5. Turn the Performance Monitor output ON and OFF.
6. Adjust the "stack slop" for the main task.

7. Establish a specific Macintosh file type identifier and
signature for an open file variable.

The following is the interface to the Error _Handling unit:

unit error_handling;
interface

type eh_resuits = (cant_handle, re_initialize, continue);
eh_info = record
fused internally by operating system}
a:tinteger; b:tinteger; c:integer;
d:tinteger; e:tinteger; f:tinteger;
end;

eh_file_ptr = tinteger; f$Actually o pointer to a
file voriable.}
eh_res_type = packed array[1..4] of char;
A Macintosh Resource Type
Identifier.}

fUser error handling facilities.}
procedure set_err_handler(

var info:eh_info;

function err_handler(err, ior: integer):
procedure clr_err_handler(var info: eh_info);
procedure err,to_messageierr: integer; var message: s(ring;;
procedure ior_to_message(ior: integer; var message: string
procedure debugger;

B

{Process control.}
procedure cancel(taskid: processid);

§{Performance monitor control.}
procedure set_pm_interaction(procedure pm_interactive);
procedure pm_start_stop(start: boolean);

§Stack space checking control.}
procedure set_stack_slop(slop: integer);
function get_stack_slop: integer;

{File type ond signature control.}
procedure set_file_type(f: eh_file_ptr; ftype: eh_res_type);
procedure set_file_signature(f: eh_file_ptr;

signature: eh_res_type);

1200301:02B 2—47

GENERAL OPERATIONS Chapter 2

The following paragraphs discuss each of the entry points to the
Error _Handling unit:

1.

The routine SetErrHandler establishes its parameter
ERR _ HANDLER as an error—handling function. After such
an error—handling function is established, the UCSD Pascal
Runtime Support Library will call it whenever a non—fatal
runtime error occurs. The runtime error number and the
current ioresult values are passed to an error—handling
function in its ERR and IOR parameters.

An error—handling function returns one of these possible
results:

Relnitialize. Causes immediate termination of the program.

Continue. Asks the UCSD Pascal Runtime Support Library
to attempt to continue execution.

CantHandle. Indicates that the particular runtime error
cannot be handled by this error—handling function, and that
it should be reported to any previously established
error—handling function (if any). If none of the established
error—handling functions can handle the error, the standard

-UCSD Pascal Runtime Support Library error—handling

mechanism is used to report the error.

The INFO parameter passed to SetErrHandler is an
information record which is used internally by the UCSD
Pascal Runtime Support Library. Each distinct

error—handling function you establish must have a separate

information record. To cancel the establishment of an
error—handling function, you should call ClrErrHandler

passing the appropriate information record.

‘The following is a simple example of how you might create

your own error—handling function and use it in a program:

PROGRAM no_interruptions;

USES éSU UCSD Passce! 2:Errorhandi .CODE}
rror_Hendling;

VAR info: eh_info;

2—48 1200301:02B

BUILDING AN APPLICATION

FUNCTION my_error_routine(
errnum; iorslt: integer): eh_results;

BEGIN -
IF errnum = 8 {User Break)} THEN
my error _routine := continue
ELsE- -

my_error_routine := cant_hendle;
END; {my_error_routine}

BEGIN

{Assume program is entering some critical
operation that shouldn’t ge interrupted.}

SetErrHendler (info, my_error_routine?;

{Do the critical operation}

{Restore User Break facility.}
ClrErrHandler (info);

EﬁRosumo normal processing.}
D. {no_interruptions}

In the example, an error—handling function is used to prevent
the user from interrupting the program during a certain
critical section of the program. All runtime errors except
User Break will be handled in the usual fashion by the UCSD
Pascal Runtime Support Library.

You can establish an error—handling function anywhere in
your program. However, be sure that you call ClrErrHandler
prior to leaving the context in which your function is
declared.

Error—handling functions may be nested, and the most
recently established function is called first. A unique
information record variable must be used each time

SetErrHandler is called.

WARNING: The exit intrinsic cannot be used to exit a
function that is established as an Error—handling function.

2. ErrToMessage and IorToMessage are routines that you can
call to obtain a textual message describing a particular
runtime error or ioresult value. Both routines return the text
of the message in the string variable you pass as the
MESSAGE parameter. The possible messages returned by
these routines are listed in Appendix B.

1200301:02B ' 2—49

GENERAL OPERATIONS Chapter 2

3. To enter the UCSD Pascal Debugger from an error—handling
function (or from anywhere else in a UCSD Pascal program),
you can call the routine Debugger. This facility is intended
for use only during the development and checkout of a
program. . If you call the Debugger without having the
appropriate runtime options set (those which are required in
order to use the Debugger), your program will fail
unpredictably.

4. The Cancel entry point cancels a process that was previously
started via the start intrinsic. You pass the processid value
returned by start to designate the process to be cancelled.
Cancel cancels the process immediately, interrupting
whatever was happening, and releases the space used for its
stack. The canceled process is effectively forced to do an
"exit(process)" statement, since the routine activations on
the process’s stack are "unwound" and any exit code for those
routines is executed.

5. SetPmlinteraction is used to establish a procedure within your
program as the Debugger’s "interaction procedure". The
interaction procedure is called when the Debugger "I"
command is typed from the Macintosh keyboard. (In order to
use the interaction procedure mechanism, the Performance
Monitor must be activated by setting the appropriate options
with Set Options.) One typical kind of interaction procedure
is one which produces a formatted display of the contents of
some variables or a complicated data structure. Using the
interaction procedure facility, you can make the debugging of
a large and complex program much easier, since you are
effectively customizing the Debugger to suit the needs of your
program .

6. PmStartStop is used to control the built—in Performance
Monitor. The Boolean value you pass as the parameter
START indicates whether the Performance Monitor output
should be enabled or disabled. If the Performance Monitor is
not active when your program starts its execution,
PmStartStop does nothing.

2—-50 1200301:02B

BUILDING AN APPLICATION

7. The routines SetStackSlop and GetStackSlop are used to
control the stack slop for the currently executing task.
SetStackSlop sets the stack slop to the number of words that
you specify. GetStackSlop returns the current stack slop
setting. SetStackSlop will not allow the slop setting to be less
than the minimum setting of 1024 (2Kb). For further details
concerning the usage of these routines, see the MACINTOSH
INTERFACE chapter.

8. SetFileType and SetFileSignature are used to specify the
permanent file type or signature for a Macintosh file being
created by your program using the standard Pascal file I/O.
The first parameter to these routines is a Pascal pointer value
that points to a file variable that you have opened using the
standard Pascal procedure rewrite. (Use the adr intrinsic to
obtain this pointer value.) The second parameter is the four
character file type or signature. When you close the file
variable with the LOCK option, the created file’s type and
signature are set as specified. If your program creates a
Macintosh file without calling SetFileType, the file type is set
according to the type of the file. If you don’t call
SetFileSignature, the signature of your program is used when
you close the file.

Application Interface to the Finder

The default interface between applications and the Macintosh
Finder program simply allows programs to be started by the
Finder. If you want your application to be started when an
associated document is clicked or you wish to have special
program and document icons displayed on the desktop then you
must go through a little extra work.

Associating Programs With Documents

In order for the Finder to associate a document with an
application two conditions must be met:

1200301:02B 2-51

GENERAL OPERATIONS Chapter 2

1. The application program must be "bundled" into the
Desktop.

2. The document must have the same "creator" as the
application.

For more details on these topics see the section entitled "FILE
INFORMATION USED BY THE FINDER" in the FILE
MANAGER chapter of Inside Macintosh.

To bundle a UCSD Pascal program into the desktop you run the
Set Options program and set the "Set Bundle for FINDER"
checkbox. The Set Options utility was described earlier in this
chapter.

Since UCSD Pascal programs normally have a creator of PROG
any document with the same creator that is double clicked from
the Finder will start your program (assuming no other programs
with the same creator have been bundled into the desktop). Note
that files created by the UCSD Pascal Runtime package do not
have a creator of PROG. You will have to use the File Manager
interface unit to create documents with the correct creator or use
the appropriate Error _Handler entry point.

In order to override the default application creator you use the
RMaker program to set a new creator. For example:

Example.Rsrc ;33 Output File Name
APPLEXMP 3; Type is APPL , Creator is EXMP

INCLUDE UCSD Pascal 1:Empty Program
;; Resources required by all
33 UCSD Pascal Programs

Running RMaker using the above example will produce a
resource file of type APPL with a creator of type 'EXMP’. Using
this as the resource input file to the UCSD Pascal compiler will
produce a UCSD Pascal program with the same creator and type.
In order to make this creator type known to the Finder you need
to run Set Options on the program and set the bundle bit.

2--52 1200301:02B

BUILDING AN APPLICATION

NOTE: Apple Computer would like to maintain a unique set of
creator identifiers. If you wish to bundle your application into
the desktop then you should call Apple Technical Support to get
a unique creator identifier.

Associating Icons With Files

In addition to being able to let the Finder know an application’s
creator, you can also bundle in other information into the
desktop. This is achieved by defining a resource of type 'BNDL’.

For example suppose you wanted to define two new file icons, one
for your application and another for the data files that your
application will create and use. You could create a resource file
for your program as follows:

Examp le.Rsrc ;; Resource Output File
APPLEXMP

INCLUDE UCSD Pascal 1:Empty Program

TYPE EXMP = STR ;3 Version String

;0 (32
Version 1 of Example Program

TYPE ICN# = GNRL 3; The program Icon
,2000 (32) ;; Defined later

OOOO 0000 0000 0000
00000000 0000 6600

TYPE ICN# = GNRL 33 The Date File Icon
,2001 (32) ;; Defined later

0000 0000 0000 0000
00000000 6000 6660

TYPE FREF ;3 File References

2000 33 for application file
APPL O i3 Type fot lowed by Local

33 con

2001 ;33 for dota file
DATA
TYPE BNDL ;; Bundle Resource

, 2000
EXMP 5; Signature and Version ID
ICN ;3 ICONs
0 2 1 2001 ;; Local IDs to Resource IDs
FREF ;3 File References
O 2000 1 2001 ;3 Local IDs to Resource IDs

1200301:02B 2—-53

GENERAL OPERATIONS Chapter 2

In the above example we have defined a Version String, two icon
lists, and two file references. A file is associated with a particular
icon list using the FREF resource. This resource defines a file
type and a local icon identifier. The mapping from resource

identifiers to local identifiers is accomplished in the BNDL

resource.

After you have created your program using the UCSD Pascal
compiler you still need to run the Set Options program and set
the bundle bit. After Set Options is run you will normally see
your program icon switch from the standard application icon to
the icon you defined as the program icon.

Defining Icons Using RMaker

An icon is defined as two 32 by 32 bit images. The first image is
the icon in its dormant (unclicked) state. The second image is an
icon mask which is used by the Finder to produce the image
representing the icon in its active (clicked) state. ~The mask
should be a filled in outline of the first icon.

The UCSD Pascal compiler icon is defined using the following
icon list:

TYPE ICN# = GNRL
QZOOO (32) ;3 Resource ID

0001 0000 0002 8000 P R
0004 4000 0008 2000

0010 1000 0020 4800
0040 0400 0081 0200
0100 0100 0204 0080
O4EO 0040 0820 1020

The first set of
of 168 rows define
the ICON.

e o we
e o wo

(o]
O
(e}
Py
B
[0
o
o
[*]
(%4
o
(o]
[+]
(o4
o
(o]

The next 168 rows
define the ICON
mesk .

o
-
n
m
mn
mn
o
o
o
o
mn
mn
n
mn
[+]
o

2—-54 1200301:02B

7FFF FFFF 3FFF
1FFF FFFC OFFF
O7FF FFFF O3FF
O1FF FFFF OOFF
007F FFFF OO3F
O01F FCO7 OOOF
0007 FOOO 0003
0001 CO00 0000

1200301:02B

FFFE
FFEF
FFFF
FFFF
FE1F
F800
EO0O
8000

BUILDING AN APPLICATION

;

H

GENERAL OPERATIONS

Chapter 2

1200301:02B

3
EDITOR

The Editor is used to create and modify text files. These files can
be used for many purposes including input to the Pascal
Compiler and creating textual data for Pascal program
consumption.

If the file you are editing is too big to fit on the screen, a portion
of the file is displayed. This "window" into the file can be moved
to display any part of the file you want. An example of the
Editor display is shown in Figure 3—1.

file Edit Search Fformat Font Size

lprogram Factorial;
war '
¥ integer;

procedure FACT (N integer
begin
iTN=0
then FACT = 1
else FACT = N * FACTI(N-1),
end; {FACT}

begin
write('enter ¥ '),
readin{x};

Figure 3—1. The Editor Display.

The basic editing operations are inserting characters, cutting a
portion of the text, and pasting text into a new location. Text
that is cut goes into a special window called the Clipboard. Text
in the Clipboard can be pasted into any place in the file or into

1200301:03B 3—-1

EDITOR - Chapter 3

another file. The Clipboard also allows you to transfer data
between applications.

All editing action takes place at the insertion point. The
insertion point is marked by a blinking vertical line where the
next character will be placed. Any characters typed or pasted
from the Clipboard are inserted at this point. This is true even if
the insertion point is not currently displayed in the window. The
window is automatically scrolled to show the insertion point.

The mouse is used to scroll the text in the wmdow, move the
insertion point, select text to be cut or copied, point to menus,
and select items on menus.

The Editor is disk based. This means that the size of a file you
can edit is limited only by the available space on the disk.
However, as a file grows larger it takes longer to do simple
editing operations on it. When a file becomes very large, you
should split it into multiple pieces.

USING THE EDITOR

Start the Editor by double—clicking the Editor icon. For more
information on starting applications refer to Maciniosh, your
owner’s guide.

You direct the Editor to work on a file by using the New or
Open... command in the File menu. Selecting a command from
a menu is discussed below in The Menus.

The file that you are working on is called the "active document."
Although you can have several documents open and accessible at
any one time, you can edit only the active document. The active
document appears in the "active window," which is indicated by
a darkened title bar and scroll bars, and is always on top of all
the other windows.

3—-2 1200301:03B

USING THE EDITOR

To leave the Editor, select Quit from the File menu, and you will
return to the Finder.

Entering and Deleting Text

Text is entered into the active window at the insertion point by
typing characters. Text is deleted at the insertion point by
typing the <Backspace> key. Large deletions are done by
selecting the text with the mouse and then typing <Backspace>.
You change text by selecting the text to change and then typing
the replacement text.

Editing Operations

The basic editing operations are cut, copy, and paste. To cut or
copy text, you must first select the text to be cut or copied, then
select either Cut or Copy from the Edit menu. Select text by
moving the mouse while holding down the button. See
SELECTING TEXT for complete information on selecting text.
Text that is selected and then cut is removed from the active
document and placed in a special window called the Clipboard.
Text that is copied is placed on the Clipboard and also left in
place in the active document.

The contents of the Clipboard can be pasted at any point in the
active document by placing the insertion point where you want
the text inserted and choosing Paste from the Edit menu.

The Menus

Operations are provided in six menus:

e The File menu is used to access files, print text, and exit the

Editor.

e The Edit menu is used to edit text.

1200301:03B 3-3

EDITOR Chapter 3

e The Search menu provides commands to find and change
strings in the active document.

o The Format menu handles setting the tab stops and enabling
auto indent mode. T

e The Font menu allows you to select the font of the current
document for display and printing.

e The Size menu allows you to set the size of the current font.

Each of these menus is described in more detail in the sections
that follow.

Creating, Opening and Closing Files

Files are created, opened and put away using the functions of the
File menu. The New command creates a new file. The Open...
command opens an existing file. The Close command puts away
the active document.

The Open... function uses the Open Box to help you select the
file to open. This dialog box is shown in Figure 3—2.

FACT
FIRST

[

Figures

(cancel]f Drive |

<

Figure 3—2. The Open Box.

To open a file, first scroll the file list by clicking the mouse in the
scroll arrows until the file you want to open is in the list. Next,
select the file by using the mouse to click its file name. Finally,

3—4 1200301:03B

USING THE EDITOR

click the Open button to open the file. An alternative method of
opening a file is to double—click its file name.

The file list displays only the files in the current drive that have
a file type of TEXT. The name of the disk in the current drive is
displayed above the Eject button. The other buttons are as
follows: Cancel aborts the operation, Drive switches to the other
drive, and Eject ejects the disk from the current drive.

Various File menu functions cause the active document to be
saved. If the Editor needs you to supply a file name it uses the
Save Box, shown in Figure 3-3.

Save document as Figures

[Figures:FIRST |

(save] (Cancel] (Drive]

Figure 3—3. The Save Box.

To save a file, first type its file name. Next, use the Eject and
Drive buttons to make the disk it is to be saved on the current
drive. (The current drive name is shown above the Eject button.)
Finally, click the Save button. The Cancel button is to abort the
save operation and return to the Editor.

The field where you type the file name is a standard Macintosh
editable text field. This means that you can use the mouse to
edit the file name until it is correct. See Macintosh for more
information on editing text fields.

1200301:03B 3—5

EDITOR Chapter 3

Editing Multiple Files

Up to four documents can be open at one time, but only one
document is the active document. To read in a document when
you already have an active document, choose Open... from the
File menu. It asks you for the document name. The new
document is read into a window on the screen and becomes the
active document. To make another document that is already
open the active document, use the mouse to move the pointer into
a portion of that document and click the mouse button. If you
have several documents open, you might have to move some out
of the way.

This capability of working with more than one document at a
time can be used to copy text from one document to another.

This process is described in detail in EDIT FUNCTIONS.

SELECTING TEXT

The basic editing functions are cut, copy and paste. Before you
can cut or copy text, you must select the text to be cut or copied.
Before you can paste, you place the insertion point by using the
mouse to move the pointer on the screen.

Within an active document, the pointer will have one of three
shapes:

e Text pointer in a document.
¢ Arrow pointer for menus and scroll bars.

e ‘Wrist watch when an operation will take some time.

Use the mouse to move the pointer on the screen. The shape of
the pointer changes when you move into and out of the document
window.

3—6 1200301:03B

SELECTING TEXT

Within the window, the text pointer is used to move the insertion
point and to select text.

In selecting text, you can select characters or words. You can
also select any number of characters or words. Selected text is
displayed in reverse video.

Moving the Insertion Point

The insertion point is indicated by a blinking vertical line where
the next character will be inserted. All insertion, whether from
typing or pasting, takes place at this point in the file, even if it is
not visible in the window.

To move the insertion point, move the mouse, directing the
pointer to where you want it to be and click. Note that the
insertion point moves when you select text. The insertion point
is never placed beyond the end of a document.

Selecting Characters

To select characters, move the text pointer to the beginning of
the characters you want to select, press and hold the mouse
button while moving to the last character you want to select.
You may select in either a forward or backward direction
through the file.

An alternate method of selecting characters that is especially
useful when selecting a large block of text is also available. Using
this method, you move the pointer to the beginning of the text
you want to select and click the mouse button. Then you move
the pointer to the end of the text you want selected and
shift—click. Shift—click means to hold down the shift key on the
keyboard and click the mouse button. You can use the scrolling
controls to display the end of the text you want selected if it is
too big to fit in the window.

1200301:03B 3-7

EDITOR Chapter 3

Selecting Words

To select a word, move the pointer into the word and click the
mouse button twice. To select multiple words, click the mouse
button twice and hold. Move the pointer to the last word you
want selected and release. If you double—click, and hold down
the mouse button while you move the insertion point to the left
or right, the selection expands or contracts by words.

Adjusting the Amount of Text Selected

To change the amount of text selected, move the pointer to the
position that you want the selection to extend to and shift—click.
This can be used to either expand or contract the selection.

SCROLLING AND MOVING THE DISPLAY

When a document is longer than will fit into the display window,
only part of the document is displayed at one time. You can
change what part is displayed by "scrolling" through the display
either horizontally or vertically. The vertical bars on the right
and bottom sides of the active window are the scroll bars. An
example of a text window showing the scroll bars is in Figure
3—-1.

The display window can be changed in size and moved on the
screen. This enables you to have multiple documents displayed
on the screen. These operations are done using the title bar. and
size control box (See Moving the Window, below.)

Scrolling the Display

There are three ways of moving the display window through the
document. In the first method you use the elevators. The
elevators are the white rectangles in each scroll bar. Its position
in the grey portion of the scroll bar (the "elevator shaft")
indicates the relative position of the currently displayed text
window in the document. If it is near the middle, the text

3—8 1200301:03B

SCROLLING AND MOVING THE DISPLAY

displayed in the window is near the middle of the document, and
so on. To change the position of the text window, you can move
the pointer into the elevator, click and hold the mouse button
down while you move the elevator to another position in the
elevator shaft. When you release the button, the window will
display the new position in the file.

The second way of moving the window uses the scroll arrows,
which are just to either side of the elevator shafts. If you move
the arrow pointer to the bottom scroll arrow and click, the
display window will move one line toward the end of the
document. If you hold the button down, the window will
continue to move a line at a time until you release it. The other
three arrows work in a similar way.

The third way of moving the window uses the gray regions to
either side of the elevators. Clicking the mouse in one of the gray
regions causes the Editor to scroll one window—full of
information. You can use this feature to page through a file.

Moving the Window

You can move the window on the screen and change its size. This
lets you display multiple documents on the screen. You can make
any visible window the active window by moving the pointer into
it and clicking.

To move the position of a window on the screen, move the
pointer to the title bar (but not in the close box!), press the
mouse button and hold it while you move the window. When
you release the button, the window is redisplayed at the new
location.

To change the size or shape of the active window, move the
pointer to the size control box, press the button, and move the
pointer until the window is the right size and shape. Release the
button and the resized window is displayed. The size control box
is the box in the lower right hand corner of the window. Only
the active window can be resized.

1200301:03B 3—9

EDITOR Chapter 3

THE FILE MENU

The File menu provides functions for reading in and writing out
documents, updating documents, printing documents, and exiting
the Editor. The File menu is-shown in Figure 3—4. Each
function is explained below.

r

Edit Search

Format Font Size

SRR

Figure 3—4. The File Menu.

New. The New command creates a new document with the
name Untitled and makes it the active document. You can

also execute the New command by typing N while holding

down the Command key.

Open... This tells the Editor to get a new document. It
prompts you for the document name using the Open Box,
then reads it in and makes it the active document. You can
also execute the Open... command by typing O while holding

‘down the Command key. Another method of opening a new

document is to type K while holding down the Command key,
and then type in the name of the document you want to open
followed by <Return>. This option does not appear in the
menu.

Open. This opens a file whose name corresponds to the
contents of the currently selected text in the active window.
This is used primarily to open an include file based on its
name in the current document. You can also execute the
Open command by typing D while holding down the

3—10 1200301:03B

THE FILE MENU

Command key.

e Close. This puts away the active document discarding any
changes that have been made. You are asked to confirm
whether the changes are to be discarded. If the document
does not have a name, you are asked to supply one using the
Save Box.

e Save. This writes out the active document, but does not close
it.

e Save as... This writes out a copy of the active document to
another document name. You are prompted for the name of
the document to write to with the Save Box.

e Revert to Original. This returns the document to the way it
was before you started editing it, or when you last saved it.
This is done by reading the document from the disk.

e Print. The Print command prints the active document using
the current font and font size. Executing the Print command
causes the standard Print dialog box to be displayed in which
you select various print options. If the Print dialog box fails
to appear, you probably do not have an Imagewriter file on
the same disk as the Editor. Refer to MacWnrite for more
information on the standard Print dialog box.

e Quit. This first asks you if you want to put away any
modified documents. If you answer yes, they are written out
to disk. Then it exits the Editor.

THE EDIT MENU

The Edit menu provides editing functions and tab setting. It is
shown in Figure 3—5.

The three basic edit functions are cut, paste and copy. These
make use of the special window called the Clipboard. The
Clipboard can hold only one piece of text. Text is put into the
Clipboard by selecting it in the active document, and either
cutting it or copying it. Text is copied from the Clipboard and

1200301:03B 3—11

EDITOR Chapter 3

inserted at the insertion point with the paste operation.

i kSearch Format Font Size

Cut F
Copy #C
Paste AL
Clear

Align ;
Move Left %L
Move Right i

oard

Hide Clipb

R

Figure 3—5. The Edit Menu.

For example, to move text from one place in a document to
another:

1. “Select the text to be moved.

2. Choose cut from the Edit menu. The text is removed from
the active document and placed on the Clipboard.

3. Place the insertion point where you want the text to be.

4. Choose Paste from the Edit menu. The text on the Clipboard
‘is inserted at the insertion point.

The Edit menu also enables you to adjust selected text left or
right by inserting or deleting spaces. Here are the Edit functions:

¢ Undo. This command puts the document back the way it was

before the previous operation, if possible. If there is no
change to undo, the function is called Can’t Undo.

3—-12 1200301:03B

THE EDIT MENU

e Cut. Cut places a copy of the currently selected text onto the
Clipboard and removes the text from the active document.
You can also Cut by pressing the X key while holding down
the Command key.

e Copy. Copy places a copy of the currently selected text onto
the Clipboard, but does not remove it from the active
document. You can also copy by presing the C key while
holding down the Command key.

e Paste. Paste inserts a copy of the text on the Clipboard at
the insertion point in the active document. If a section of text
is selected, Paste replaces it. You can also Paste by pressing
the V key while holding down the Command key.

e Clear. Clear removes the currently selected text from the
active document. The text is not placed in the Clipboard.

o Align. The Align command lines up the left edges of the
selected lines. The align command is most often used to undo
indentation in Pascal programs. You can also Align by
pressing the A key while holding down the Command key.

e Move Left. Move Left moves selected text left by deleting a
single space from the left of each line. It does not delete any
characters other than spaces. It is most often used to adjust
the left margin of a block of text. You can shift left by
pressing the L key while holding down the Command key.

e Move Right. Move Right is similar to Move Left, except that
it moves the selected text to the right by inserting spaces at
the beginning of each line. This can also be done by pressing
the R key while holding down the Command key.

e Show Clipboard. This enables the display of the Clipboard

window and selects it. If the Clipboard is already displayed,
this command is called Hide Clipboard.

1200301:03B 3—-13

EDITOR Chapter 3

THE SEARCH MENU

The Search menu gives you the ability to search for a text string
in the active document. The basic operation is Find, which
locates the next occurrence of the string and selects it. Change
allows you to find a string and replace occurrences of it with a
different string. Both of these operations search from the current
insertion point to the end of the document. If you want to search
from the beginning of a document, you must move the insertion
point to the beginning of the document. The Search menu is
. shown in Figure 3—86.

Size

Figure 3—6. The Search Menu.

All searches start at the insertion point, and go to the end of the
document. The search functions are as follows:

e Find. Find enables the Find Window, and displays it on the
screen. The Find command can also be executed by pressing
the F' key while holding down the Command key.

e Change. Change enables the Change Window and displays it
on the screen. The Change command can also be executed by
-pressing the S key while holding down the Command key.

¢ Hide Find. If the Find Window is enabled, the Hide Find
command will close the Find Window. If the Change Window
is enabled, this command is called Hide Change.

3—14 1200301:03B

THE SEARCH MENU

The Find Function

The Find function is performed using the Find Window, shown in
Figure 3—7. To find an occurrence of a string, first, you edit the
string to be found by using the standard Macintosh editing
functions. Next, select Whole Word search or Partial Word
search by clicking the appropriate box with the mouse. In Whole
Word search, the string will only match complete words
separated by spaces or other punctuation. In Partial Word
search, the string may match any part of a word. Finally, you
click the Find Next button.

Find What: [proc O whole word
[Find Next | [Partial Word

Figure 3—7. The Find Window.

If there is an occurrence of the string, it is selected. If no
occurrence can be found, the Editor gives a warning message.
Succeeding occurrences of the string can be found by just clicking
the Find Next button.

To put away the Find Window, click in the close box within the
title bar of the Find Window.

The Change Function

The Change function is performed using the Change Window,
shown in Figure 3—8. To change all occurrences of a string for
another, first edit the Find What and Change To strings in the
Change Window. This is done using the standard Macintosh
editing functions. Next, select Whole Word search or Partial
Word search. Whole Word search only allows the string to
match words separated by spaces. Partial Word search allows
the string to match any string of characters. Finally, you click
the Change All button.

1200301:03B 3—15

EDITOR Chapter 3

EO=
Find What: |x
Change To: [H+1
(findNewt] (2o " | [...| [Changenn

= (hange =

[0 whole Wword Partial Wovd

Figure 3—8. The Change Window

The other Change options are as follows: Find Next finds and
selects the next occurrence of the Find What string; Change,
Then Find changes the current selection, then finds the next one;
and Change changes the current selection.

To put away the Change Window, click in the close box within
the title bar of the Change Window.

THE FORMAT MENU

The functions in the Format menu allow you to set the spacing of
the tab stops, configure auto indenting mode, display nonprinting
characters, and set the printing page format. The Format menu
is shown in Figure 3—9.

% File
T

R

Edit Search BigulLidp Font Size
| Set Tabs
ARute Indent Off
Show Inuisibles

Figure 3—9. The Format Menu.

e Set Tabs. Set Tabs enables you to set the spacing of the tab
stops. You may only select a spacing between 1 and 20. Note
that the compiler listing pass assumes 8 spaces per tab stop.
If you create Pascal source text with different tab settings,

3—16 1200301:03B

THE FORMAT MENU

your listing won’t precisely match you source text.

e Auto Indent Off. This toggles the auto indent mode on and
off. In auto indent mode, carriage returns puts the insertion
point in line with the indenting of the previous line. This
option is especially useful for indenting Pascal programs. If
auto indenting is already off, this function is called Auto
Indent On.

e Show Invisibles. Show Invisibles will display the non—
printing characters (i.e. blanks, carriage returns, and tabs) in
the currently active window. If the non—printing characters
are currently being displayed, this command is called Hide
Invisibles.

e Printing Format. The Printing Format command brings up
the standard Page Setup dialog box. Refer to MacWrite for
more information.

THE FONT MENU

The Font menu enables you to change the display font. The
Font menu is shown in Figure 3—10. A check appears in front of
the font in which the active document is currently displayed.
You can change the font by selecting another font from the
menu.

& File Edit Search Format
A N PR

Chmégo
| Geneva
,2? vMonaco

Figure 3—10. The Font Menu.

The font selected affects how many characters can be displayed
on a line, and whether or not the display is proportionally
spaced. Different fonts can be active in different windows at the
same time. Which fonts can be selected depends on the fonts
available on the system disk that you booted with.

1200301:03B 3—-17

EDITOR Chapter 3

NOTE: The UCSD Pascal 1 disk has a System file that
contains only the Chicago—12, Geneva—12, and Monaco—9 fonts
installed on it. If you wish to use other fonts from the Editor,
you must replace the System file, or use the Font Mover program
to augment the font set of the System file.

THE SIZE MENU

The Size menu enables you to choose the size of the current font.
The Size menu is shown in Figure 3—11. A check appears in
front of the font in which the active document is currently
displayed. You can change the font size by selecting another size
from the menu.

r

Size A
O Poind
10 Point

Search Format Font

File Edit

S

i< Point
18 Point
24 Point

Figure 3—11. The Size Menu.

For each font, only certain sizes are available. These sizes are
shown within the size menu in hollow letters. The font will look
best if one of these sizes is selected. Otherwise, the Macintosh
must do "scaling" which can detract from the appearance of the
characters and slow down the speed of drawing characters.

3—18 1200301:03B

4
PASCAL LANGUAGE

OVERVIEW

This chapter is a supplement to The UCSD Pascal Handbook
which describes the version of the UCSD Pascal language
supported by The MacAdvantage: UCSD Pascal.

The UCSD Pascal Handbook contains a thorough description of
the basic UCSD Pascal language as it is implemented under
Version IV of the p—System. The MacAdvantage: UCSD
Pascal is an extended version of this UCSD Pascal language. In
the creation The MacAdvantage: UCSD Pascal, some major
new language features were introduced, and a few p—System
specific features were removed.

In addition to the language features added for interfacing to the
Macintosh, this supplement describes all of the enhancements to
UCSD Pascal that have been introduced since the publication of
The UCSD Pascal Handbook. There is also a section that identifies
material in The UCSD Pascal Handbook that is not applicable to
The MacAdvantage: UCSD Pascal environment. The last
two sections contain revised descriptions of the compiler options
and the conditional compilation facility.

Throughout the remainder of this chapter, the name UCSD
Pascal refers to The MacAdvantage: UCSD Pascal version of
the language.

1200301:04B 4—1

PASCAL LANGUAGE Chapter 4

Language Enhancements

The language features not described in The UCSD Pascal
Handbook include:

1.

The rules regarding the ordering of label, const, type, var,
procedure, and function declarations within a declaration
section have been relaxed. Identifiers must still be
appropriately declared before they are used, but the usage of
include files no longer influences the ordering that the
compiler will accept. This gives you considerable freedom in
the logical arrangement of large declaration sections.
However, the compiler does require that it be able to resolve
any accumulated forward references within pointer type
declarations upon encountering a procedure or function
declaration.

A new form of uses declaration called the "selective" uses
declaration has been added to the language. This form of
uses declaration is useful for economizing on symbol table
space and resolving name conflicts between units.

Procedural and functional parameters are supported. This is
a Standard Pascal construct for passing procedures and
functions as parameters which was not implemented in earlier
versions of UCSD Pascal.

‘Conformant arrays are supported. Conformant arrays are

array parameters in which the array bounds are not fixed.

The implementation follows the definition in the ISO Pascal

standard.

‘A variant of the conformant array parameter construct called
an "interface conformant array" is also supported. This

construct is primarily useful in system programming for
writing procedures which operate on parameters of arbitrary

types.

The sizeof and pmachine intrinsics have been enhanced to
make the writing of portable and efficient programs easier.
These enhancements make it possible to (1) obtain the size of
a variable or type in whatever units you wish, (2) store

4-2 1200301:04B

10.

11.

12.

OVERVIEW

pointer values in a size independent manner, and (3) easily
generate the set of two byte p—code opcodes used by The
MacAdvantage: UCSD Pascal.

Long integer arguments may be passed to the standard
functions pred, succ, ord, and abs.

Due to a need for a clean interface to the Macintosh
Operating System, a 32—bit integer data type, integer2, is
supported. Unlike the long integers in UCSD Pascal, this
data type may be used in all of the contexts where the integer
data type may be used. (Long integers are still available, and
have the same characteristics as before.)

Pointer manipulation intrinsics have been added to support
manipulation of 32—bit absolute addresses. These intrinsics
are: absadr, reladr, derefhnd, absmove, locate. Additional
pointer manipulation intrinsics were added which can be used
to manufacture or manipulate pointers in a size and
implementation independent manner. These intrinsics are:
adr, pointer, offset.

Bit manipulation intrinsics have also been added. These
include band, bor, bxor, bnot, shiftleft, shiftright. These new
intrinsics make efficient data manipulation operations easier
to write:

An intrinsic called setlength has been added for setting the
length of a string variable in an implementation independent
fashion.

A new type of external procedure, called an "in-line
procedure," is supported. A call to an in—line procedure
becomes a direct call to a Macintosh Operating System
routine.

1200301:04B 4-3

PASCAL LANGUAGE Chapter 4

Language Changes

The following are the language changes from the UCSD Pascal
language under the p—System:

1.. Two unadvertised constructs involving pointers are no longer
allowed: (1) The standard function ord does not accept
pointer arguments, and (2) pointers may only be compared
for equality (=) or inequality (< >).

2. The unit I/O intrinsics are not supported. These are:
unitread, unitwrite, unitstatus, unitbusy, unitwait, unitclear.

3. The gotoxy intrinsic is not supported due to the ambiguity of
such an operation when a proportionally spaced character
font is used for the .CONSOLE device.

USING THE HANDBOOK

This section is intended to bring to your attention certain
material in The UCSD Pascal Handbook which either does not
apply to you, or needs to be interpreted differently because you
will not be writing UCSD Pascal programs under the
p—System.

Using the Macintosh version of UCSD Pascal isn’t radically
different from what is described in the handbook. Most of the
differences involve small details which will become clearer after

you have absorbed the material in this chapter and the
GENERAL OPERATIONS chapter.

In the handbook, there are a number of places where you are
referred to manuals that are not included with the version of
UCSD Pascal that you have purchased. The following table may
give you some clues as to which chapter of this user manual to
read in order to look up some of the topics referred to in The
UCSD Pascal Handbook. The short explanations given here are
intended to help you quickly sort out the differences between the
descriptions in the handbook and the way things work with your
Macintosh version.

4—4 1200301:04B

p. 16: Library
handling

p. 17: Runtime
Errors

p- 19: Textfile
maintenance

p. 27: Predeclared
identifiers

p. 27: pmachine
intrinsic

p. 59: trunc(L)

p. 86: Character—
devices

p. 87: Keyboard
End Of File

p- 95: Space
Allocation

p- 97: Real numbers

p- 101: sizeof
intrinsic

p. 103: declaration
ordering

1200301:04B

USING THE HANDBOOK

See the LIBRARIAN chapter. _

See the GENERAL OPERATIONS
chapter.

See the EDITOR chapter.

List is not complete and includes
identifiers that are no longer
predeclared.

The pmachine intrinsic is described in
this chapter.

Produces overflow error if long integer L
is outside of the range —maxint2—1 .
maxint2.

The names of the character—devices are
slightly different. Redirection of I/O on
these devices is not supported. See the
GENERAL OPERATIONS chapter.

This feature is not available.

See the P-MACHINE
ARCHITECTURE chapter.

Only 64—bit real numbers are supported.

The warning about the sizeof intrinsic is
no longer accurate. See the revised
description of the sizeof intrinsic in this
chapter.

Include files no longer influence the
ordering of declarations that the

compiler will accept. See the discussion
of this topic in the OVERVIEW section

4-5

PASCAL LANGUAGE

p. 115: Library files

p. 133: Debugger

p. 135: input
and output

p. 140: File naming
conventions

p. 146: keyboard

p- 146: Device I/O

p. 151: ioresult values

p-152: Screen 1/0O

p. 153: Memory
Management

p. 163: Interrupts

Chapter 4
of this chapter.
There is no file called
*SYSTEM.LIBRARY. See the

GENERAL OPERATIONS
LIBRARIAN chapters.

and

See the DEBUGGER chapter.

The standard files input and output are
permanently opened to the .CONSOLE
device. See the GENERAL
OPERATIONS chapter.

The Macintosh file naming conventions
are similiar, but slightly different. See
the GENERAL OPERATIONS chapter.

The file keyboard is opened to the
.SYSTERM device. See the GENERAL
OPERATIONS chapter.

Material in this section is not applicable
to the Macintosh environment. Low
level device I/O can be done using the
Macintosh interface unit PBIOMGR
instead. See the MACINTOSH
INTERFACE chapter.

The ioresult intrinsic returns values
different from those listed. In fact,
ioresult can return negative values. See

the ERROR MESSAGES Appendix.
The

There is no screen control unit.
gotoxy intrinsic is not supported.

See the MEMORY MANAGEMENT

chapter.

No p—Machine events are supported.
Thus the attach intrinsic cannot be used.

1200301:04B

p. 167: Quiet
compile option

p. 167: Realsize
compile option

p. 170: Copyright
notices

p. 171: U(ser

restart command

p. 172: External
routines

p. 280: BOOT _ COPY
program

p. 307: ord(odd)

1200301:04B

USING THE HANDBOOK

Default setting is always "—". There is

no file SYSTEM.MISCINFO.

Only 64 bit real numbers are supported.

Up to 77 characters of copyright notice
can be placed into the segment
dictionary. The structure of the segment
dictionary 1is described in the

P-MACHINE ARCHITECTURE
chapter.

This feature is not available.

The compiler will allow the form of
external routine declaration shown
here; but you need the appropriate
assembler and linker to write external
routines in assembly language. See
IN-LINE PROCEDURES AND
FUNCTIONS.

This example program uses the
unsupported unit I/O intrinsics,
therefore it will not compile.

Technique discussed here still works with
type integer; but will not work with type
integer2. Use the bit manipulation
intrinsics instead. See Bit Manipulation
Intrinsics and Integer2 Routines.

PASCAL LANGUAGE Chapter 4

INTEGER2 DATA TYPE

UCSD Pascal supports a 32—bit integer data type called integer2,
which represents integral values in the range —2147483648 to
2147483647. The i nteger2 data type can be used in all contexts
where it is legal to use integer. The integer2 data type is an
extension to Standard Pascal.

Except for their differing sizes, the only difference in operation
between integer2 and integer is the way that overflow is handled.
Operations on the i integer data type do not report integer
overflow—the result of an overflow "wraps" back into the
integer range, producing strange arithmetic results. Operations
on integer2 report an execution error if the result of an expression
is out of range.

Since the type integer2 can be used anywhere it is legal to use
type integer, it is possible to:

o Index arrays with integer2 values.
e Use integer2 variables as for statement control variables.

e TUse integer2 constants as case label constants in record type
declarations and case statements.

o Use integer2 typed expressions as selectors in case statements.

e Define functions that return integer2 results.

Generally, you should use the integer2 type only when a
particular Macintosh interface requires that you use it, or when
the program you are writing requires the extended range of
values offered by the integer2 type. This is because integer2
variables occupy twice the amount of memory as integer
variables, and integer2 operations are somewhat slower than

integer operations.

4-8 1200301:04B

INTEGER2 DATA TYPE

Integer2 Format

An integer2 constant value is represented by a sequence of digits,
preceded by an optional '+’ or ’~’. If no sign is present, the

constant is positive.

Each of the following is an integer2 constant:

0]
7777777
-4582364

Integer2 constant values can be specifed in the range —maxint2 ..
maxint2. The identifier maxint2 is a UCSD Pascal predeclared
constant identifier that has the value 2147483647. The constant
identifier maxint2 is an extension to Standard Pascal. As with
the integer data type, there is a negative integer2 value
(—2147483648) that does not have a corresponding positive value.

An integer constant takes its type from the context in which it
appears. Thus, 0 may represent an integer constant in one
context and an integer2 constant in another, depending on what
the compiler judges to be the required type.

Integer constants outside the range of values —maxint2 .
maxint2 are considered to be long integer constants.

Type Compatibility

As with the standard type integer, additional 32—bit integer data
types may be declared via subrange type declarations. Any
integer subrange type which includes integer values outside the
range —maxint .. maxint is considered a subrange of the integer2
type. If either bound of such a subrange type lies outside of the
range —maxint2 .. maxint2, the compiler reports a syntax error,
since long integer subrange type declarations are not allowed.

1200301:04B 4-9

PASCAL LANGUAGE Chapter 4

The following example contains subranges of the integer and
integer2 types:

O..maxint an integer subrange)
. -56666. .4 an integer2 subrange
B..maxint2 an integer2 subrange

The integer2 data types are assignment compatible with the
integer data types, and vice versa. However, there can be a
difference in meaning between a use of integer2 and integer,
because the overflow conditions of the two types differ.

The type compatibility rules between the integer2 data types and
the long integer data types are identical to the compatiblity rules
between type integer and long integers. Briefly, these rules are as
follows:

e In an expression, any integer or integer2 operand is
compatible with a long integer operand. The conversion from
integer or integer2 to long integer is done automatically.

e Long integers may be assigned the values of expressions of
either integer or integer2 types. The conversion to long
integer is done automatically.

e A variable of type integer or integer2 cannot be assigned the
value of an expression of a long integer type. First, the long
‘integer must be converted to an integer2 using the standard
function trunc.

Integer2 Comparisons

All the comparisons legal for integer are also legal for the
integer2 data type:

... Means ... equal to
not equal to
grester than
?re-ter then or equal to
ess than
less than or equal to

AAVVA L
v

4-10 1200301:04B

" INTEGER2 DATA TYPE

Integer2 Operations

All the operations legal for integers are also legal for the integer2
data type.

These are the legal operations on a single integer:

+ ... means ... unary plus
- unary minus

A unary operator may not be strung together with a binary
operator. The following example shows this:

- il
ficts Sl

These are the legal operations on two integer2 operands:

+ plus

- minus

- times

div integer divide

mod remainder of integer divide

If the second operand of div is zero, a runtime error occurs. If
the seond operand of mod is less than or equal to zero, a runtime
error occurs. The integer2 div and mod operations are defined
to perform the same functions as the integer div and mod
operations.

The multiplicative operators *, div, and mod take precedence
over the additive operators + and —. To override operator
precedence, subexpressions may be grouped together with
parentheses.

1200301:04B 4—11

PASCAL LANGUAGE Chapter 4

Integer2 Routines

The following routines take an integer2 parameter and return an
integer2 result.

abs(I2) returns the absolute value of 12, which is an integer2.
sqr(I2) returns the square of 12, which is an integer2.
succ(I2) returns the 12+1, where 12 is an integer2.

pred(I2) returns the 12—1, where 12 is an integer2.

The standard functions (odd, chr, and ord) accept integer2
arguments. The functions ord, sqr, and abs will return type
integer2 values when passed integer2 arguments.

NOTE: The standard function odd, when supplied with an
integer2 argument produces exactly the Boolean values true and
false. That is, ord(odd(E)), where E is an expression of type
integer2, will always return zero (0) or one (1). This is not the
case when the argument to odd is an expression of type integer,
since odd only serves to change the type of the expression to
Boolean and does not change the value in any way. What this
implies is that you should NOT use odd as a type conversion
function. Use the bit manipulation intrinsics instead of tricks
which rely on the implementation of odd. For example, the
obscure statement

Y := ord(odd(X) and odd(Z))

should be written as:

Y := band(X, 2Z)

4—12 1200301:04B

INTEGER2 DATA TYPE

The standard procedures read, and readln can be used to read
values into integer2 variables. Similiarly, write and writeln can
be used to write integer2 values to text files.

The standard functions trunc and round return type integer2.

Integer2 Conversions

In arithmetic expressions involving a mixture of data types,
operands are automatically converted so the two operands of any
one operation are of the same type.

The result type of an operation is established from the type of the
operands. If both operands are of the same type, the type of the
expression is the same as the type of the operands. If on the
other hand the operands are of different types, the type of an
expression is the type of whichever operand has the highest type—
precedence.

The term "type—precedence" refers to a conceptual ordering of
the various arithmetic data types. The type—precedence of a
given type may be thought of as a measurement of the number of
different types whose values can be converted to that type. Type
real has the highest type—precedence, followed by integer2, and
integer, in that order.

NOTE: Long integers are not compatible with type real. In an
expression with a mixture of long integer operands and integer or
integer2 operands, the type—precedence ordering is as follows:
long integer, integer2, integer.

Two type conversion intrinsics called extend and reduce are
defined which provide the programmer with facilities for
controlling the type of an integer expression:

extend(X) causes the integer expression X to be converted to
integer2 type. If the expression X is of the integer2 type,
extend(X) is a null operation. It is natural to use extend in
situations where both operands are of type integer, but the result

1200301:04B 4—13

PASCAL LANGUAGE Chapter 4

of an operation is expected to be outside the range of type
integer. For example, the assignment statement

Grand_total := Last_year + This_year

could be written as

Grand_total := extend (Lest_year) + This_year

in order to force the calculation to be performed using 32—bit
integer arithmetic. In the situation depicted in the above
example, GRAND _TOTAL would be a variable of type integer2,
and the sum of the two integer values LAST_YEAR and
THIS _ YEAR is potentially larger than maxint.

reduce(X) causes the integer expression X to be reduced to type
integer. If the value of X is outside the range of values
—maxint—1 .. maxint an Integer Overflow execution error is
reported. If X is already an expression of integer type, reduce(X)

is a null operation.

PASCAL INTRINSICS
Setlength Intrinsic

A new string intrinsic called setlength is available in UCSD
Pascal. Its definition is as follows:

setlength(DESTINATION, SIZE) is a procedure. It sets the
current length of the string variable DESTINATION to the value
of the integer expression SIZE.

For example,

Y h(s, | h(S s
§‘t..33%§<§>j :Z"?:”f I+

4-—-14 1200301:04B

PASCAL INTRINSICS

appends an asterisk to S.

An advantage of using setlength as opposed to making an
assignment to the "length character" is that range checking does
not have to be disabled around the statement that sets the length
of the string.

Bit Manipulation Intrinsics

UCSD Pascal contains a set of bit manipulation intrinsics to aid
in disecting integer and integer2 values into fields. These are:
band, bor, bxor, bnot, shiftleft, shiftright. Each of these intrinsics
is a function. The four logical operations (band, bor, bxor, and
bnot) provide a clean alternative to the old style " ord(odd()
and odd(Y))" constructions.

band(P,Q) where P and Q are integer or integer2 expressions
returns the bit—wise and of P and Q as an integer or integer2. If
both P and Q are integer the result is an integer. Otherwise, the
result is an integer2.

Xi=m b.ndéX,ZSS) masks X to its lower byte)}
X:= band(X,-2) forces X to be even}

bor(P,Q) where P and Q are integer or integer2 expressions
returns the bit—wise or of P and Q as an integer or integer2. If
both P and Q are integers the result is an integer. Otherwise, the
result is an integer2.

X:i= bor§X,256) turns on bit 8 of X}
X:= bor(X,1) forces X to be odd}

bxor(P,Q) where P and Q are integer or integer2 expressions
returns the bit—wise ezclusive—or of P and Q as an integer or
integer2. If both P and Q are integers the result is an integer.
Otherwise, the result is an integer2.

Xs= bxoréx,-l) inverts the bits of X}
X:= bxor(X,1) changes the parity of X}

1200301:04B 4-15

PASCAL LANGUAGE Chapter 4

bnot(P) where P is an integer or integer2 expression returns the
bit—wise ones—complement of P as an integer or integer2. The
type of the result is the same as the type of P.

X:= bnot (X) {inverts the bits of X}

shiftleft(P,N) where P and N are integer or integer2 expressions
returns the value of P shifted left by N bits. The bits that are
shifted out of P are lost. The bits that are shifted into P are zero
bits. 1f P is an integer, the result is an integer. Otherwise, the
result is an integer2.

X:= shi ftleftﬁx »1) {doubles the value of X}
X:= shiftleft(band(X,6265),
{ch'ft the low byte of X}

shiftright(P,N) where P and N are integer or integer2 expressions
returns the value of P shifted right by N bits. The bits that are
shifted out of P are lost. The bits that are shifted into P are zero
bits. If P is an integer, the result is an integer. Otherwise, the
result is an integer2.

X:= shiftright(X,1) {halves the value of X}
X:= b.nd(shlftrlght(x 8) ,265)
{reburns the second byte of X}

Here is an example routine that uses the bit manipulation
intrinsics to multiply (the hard way) two positive integers.

function TIMES(X,Y: integer): integer;
var

RESULT,I: integer;

be
SESULT i= O
for I:= O to 15 do
begtn
if band(X,1) = 1
thon RESOLT = RESULT+Y;
X:e= chifbrught(x, 1);

Y:= shiftlett(Y,1);
end'
TIMES: RESULT;
end; {TI S)

4—16 1200301:04B

PASCAL INTRINSICS

Pointer Intrinsics

UCSD Pascal contains a set of pointer manipulation intrinsics.
These intrinsics were added to the language for the following
reasons.

o They eliminate much of the need. for the pmachine intrinsic
and the ord(POINTER) construct to do pointer manipulation.
This makes system—level pointer manipulation much cleaner
and in some instances more efficient.

e They make pointer manipulation code independent of the
representation or size of pointers. This paves the way for a
larger pointer size in UCSD Pascal.

e They make it possible to manipulate data outside the Pascal
Data Area. This is necessary in order to communicate with
the Macintosh Operating System. -

WARNING: The use of these intrinsics should be restricted to
use in systems and application programs that must do unusual
pointer manipulation or must call the Macintosh Operating
System. Many of these routines do little or no type checking, so
their use could be error—prone.

Besides the 16—bit representation of pointers used by UCSD
Pascal for pointer variables, there are two other representations
of pointers in UCSD Pascal. First, there is the "offset"
representation of a pointer. An offset is a 16—bit signed integer
that maps to a unique UCSD Pascal memory location. The
representation of pointers as offsets is undefined. However,
offsets have the following properties:

e Higher pointer addresses are represented by higher offset
values. Thus offsets may be compared to determine the
ordering of their respective pointers.

e A one word difference in pointer values is represented by an

offset value change of 1. Thus offsets may be subtracted to
determine the distance between two pointers in words.

1200301:04B 4—-17

PASCAL LANGUAGE Chapter 4

The routines pointer and offset map between pointers and offsets.

The second alternative pointer representation is the "absolute
pointer". An absolute pointer is represented by a positive
integer2 value which is a 68000 32—bit address. The absolute
pointer is provided in order to pass data to and from the
Macintosh Operating System. The routines absadr and reladr
map between pointers and absolute pointers.

Here are the pointer intrinsics:

offset(P) is a function which returns the word memory offset of
the pointer P. The parameter P can be any expression of a
pointer type. The result of offset(nil) is undefined.

pointer(O) is a pointer valued function which returns the
pointer indicated by the offset O. The type of the result is the
same type as the universal pointer constant nil.

adr(V) is a pointer valued function which returns a pointer to
the variable reference V. (V may not be a component of a
packed array or a field of a packed record. The variable
reference V may be a reference to a subcomponent of a variable,
as long as that subcomponent is word aligned and occupies at
least one word of storage.) The type of the result is the same
type as the universal pointer constant nil.

ptrinc(P,N) is a pointer valued function which returns the word
pointer value obtained by adding the positive word offset N to
the word pointer value P. The parameter P is an expression of
any pointer type. The value of the parameter P may not be the
same as the value of the pointer constant nil. The parameter N is
an sexpression whose type is compatible with type integer or
integer2. If the value of the parameter N is negative, the result of
this function is undefined. The type of the result is the same
type as the universal pointer constant nil.

418 \ 1200301:04B

PASCAL INTRINSICS

NOTE: ptrinc is designed to be an efficient mechanism for
stepping a pointer in short increments thru an allocated variable.
If it is necessary to "back up" a pointer (i.e. add a negative
offset) this can be done using offset and pointer.

absadr(P) is a function which returns the absolute address of the
word pointed to by pointer expression P. The result is undefined
if P is the pointer constant nil.

reladr(A) is a pointer valued function which returns a pointer to
the word at the absolute address A. The result is undefined if the
absolute address A is odd, or is not in the range of addresses that
can be represented by a pointer. The type of the result is the
same type as the universal pointer constant nil.

derefhnd(A) is an integer2 valued function which returns the
absolute address of the word pointed to by the Macintosh handle
A. (A handle is an abolute pointer to another absolute pointer
called a "master pointer." The function derefhnd returns the
low order three bytes of the master pointer.)

locate(V) is an integer2 valued function which returns the
absolute address of the variable reference V. (V may not be a
component of a packed array or a field of a packed record.
The variable reference V may be a reference to a subcomponent
of a variable, as long as that subcomponent is word aligned and
occupies at least one word of storage.) The construction
locate(V) is equivalent to absadr(adr(V)).

An alternative form of locate, locate(PROC, N), returns the
absolute address of a PME entry—point which will cause
activation of the routine specified by the procedure or function
identifier PROC. The parameter N is an integer expression
which specifies the number of the PME entry—point to be
associated with the routine PROC. N must be in the range 1 to
9. (PME entry—point 0 is reserved for use by the Runtime
Support Library.) The association of the entry—point with
PROC remains in effect until a subsequent locate operation uses
the same entry—point. The entry—point may only be called
during the execution of an assembly language routine or during

1200301:04B 4—19

PASCAL LANGUAGE Chapter 4

an in—line procedure call.

absmove(SRC,DEST,NBYTES) is a procedure that moves
NBYTES of data from SRC to DEST. SRC and DEST are
absolute addressesr NBYTES is an integer2 expression. The
action performed by absmove is equivalent the action of moveleft
intrinsic, except that it can move data that is outside the Pascal
Data Area. absmove is often used to move data into the Pascal
Data Area so that it can be manipulated in a Pascal variable.

(32 -bit absolute address J

. locate
reladr l absadr
- . variable
[16-bit P‘”nt"a " adr | reference
A
offset l pointer

16-bit offset

Figure 4—1. Pointer Intrinsics.

For more information on use of these pointer intrinsics, see the

examples in the MACINTOSH INTERFACE chapter.
Pmachine Intrinsic

This section describes the pmachine intrinsic. =~ The pmachine
intrinsic allows you to generate in—line p—code. Its primary use
is for performing tasks which the compiler does not ordinarily
allow. In—line p—code can be useful in very low—level system
programming. To use pmachine, you must understand the
p—code operators described in the P-—-MACHINE
ARCHITECTURE chapter.

4—20 1200301:04B

PASCAL INTRINSICS

The use of pmachine is discouraged for the following reasons:

1. In some cases, the p—codes you specify are altered by the
compiler at compile time, producing unpredicatable results.

2. Software written with pmachine is often less maintainable
than other software.

3. Software written using pmachine may be incompatible with
future UCSD Pascal environments.

WARNING: Absolutely no protection is provided by this
intrinsic or the system; use it with EXTREME CAUTION.

The following example shows the form of a call to pmachine:

"pmechine® " (" pmachine-item { "," pmachine-item } ")*

The parameters to pmachine are a list of one or more
p—Machine—items. A p—Machine—item describes a portion of
p—code, and causes one or more bytes to be generated.

The following list describes the four wvarieties of
p—Machine—item:

1. p—code syllable: The simplest item is a scalar constant. This
item produces a single p—code. If the constant is less than
255, the constant is the p—code. If the constant is greater
than or equal to 255, a two byte p—code is generated
consisting of a byte containing the value 255 followed by a
byte containing the value (constant—255).

2. Expression value: If the item is an expression enclosed in

parentheses, then a p—code sequence is generated which will
compute the value of the expression and leave it on the stack.

1200301:04B 4-21

PASCAL LANGUAGE ' Chapter 4

3. Address reference: If the first token of the item is a caret (*),
then the item is the specification of a variable, and p—code is
generated which leaves the address of that variable on the
stack. {The generated address is a pointer value, not an
absolute address.)

4. Indirect store of pointer value: If the item consists of the
Pascal assignment symbol, :=, the compiler is directed to
generate code which accomplishes the storing of a p—Machine
pointer value on the top of the stack into the pointer variable
pointed to by a second pointer value on the stack (see the
explanation below).

Given the following declarations:

const
STO = 196;

type
gEC = record
FIRST,SECOND: integer;
end;
RECP = “REC;

ver
VECTOR: erray[0..9] of RECP;
I: integer;

pmachine (“VECTOR[E]"~.FIRST, (IsI), STOD);

would cause the square of I to be stored in the first field of the
sixth element of the array VECTOR.

The fourth type of p—Machine—item is a syntactic mechanism for
directing the compiler to generate the correct p—code sequence
for an indirect store of a p—Machine pointer value regardless of
pointer size.

The following pmachine construct illustrates the old way of
storing a pointer value:

pmachine (*VECTOR[0], “MYREC, STO);

4—-22 1200301:04B

PASCAL INTRINSICS

The pmachine construct in the example pushes the address of
VECTOR[0] onto the stack; pushes the address of the variable
MYREC onto the stack; and finally uses the p—Machine STO
instruction to store the pointer into VECTOR[0].

The following example shows how this same operation could be
coded in a manner independent of the size of p—Machine pointer
values: '

pmachine ("VECTOR[0], “MYREC, :=);

The appearance of the Pascal assignment symbol, :=, as a
p—Machine—item causes the Pascal compiler to generate the
p—Machine STO instruction.

NOTE: Always use the assignment symbol syntax to store
pointer values into variables. This keeps your software
independent of the size of p—Machine pointers. Also, DO NOT
use the assignment symbol syntax to store anything other than
pointer values; otherwise, your software may be invalidated by
future UCSD Pascal implementations in which pointers are larger
in size than a single p—Machine word.

Sizeof Intrinsic

The sizeof intrinsic has been enhanced in two ways. First, you
may supply an optional units field, which allows you to select the
units in which sizeof is to return the size. Second, you may
supply optional tag fields, which allow sizeof to calculate the size
of a particular variant of a record.

The syntax for sizeof is as follows:

"sizeof"™ " (" Et*pe—identifier | variable)
," units { "," case-constant}] ")"

1200301:04B 4-23

N

PASCAL LANGUAGE Chapter 4

The optional UNITS parameter is an integer constant that
specifies the units in which the size of the type or variable is to be
returned. If UNITS is omitted, a default value of 8 (the number
of bits in a byte) is assumed. The units specification is a number
of bits. If the size of the specified type or variable is N bits, the
value returned is obtained by the following formula:

. (N + UNITS - 1) div UNITS

The UNITS parameter may be followed by a list of tag field
values that select a specific variant of a record type. The syntax
and rules used for the specification of a variant are the same as
for the standard procedure new.

The sizeof intrinsic may be used to determine the size of the
actual parameter which corresponds to a formal conformant
array parameter. When sizeof is used for this purpose, the
compiler generates code to calculate the size of the actual
parameter at runtime. In all other situations, the result is a
constant value calculated by the compiler at compile time.

The following examples illustrate the various forms of the syntax
for sizeof:

sizeof Vg Returns size of veriable V in bytes.
‘sizeof (T Returns size of type T in bytes.
sizeof (V, 1 Returns size of V in bits.

sizeof(V, 8 Returns size of V in bytes.

sizeof (V,16 Returns size of V in words.

sizeof (R, 8, T1, T2,

Returns size of the specified
variant of the record type or
variable R in bytes.

sizeof (P*.A[X], 18)

Returns size of the variable
P*.A[X] in words.

The following example also illustrates the use of tag fields in
sizeof:

tyge
= record
Fl: integer;
9
cese HAS_MORE_THINGS: boolean of
false:" ();

4—24 1200301:04B

PASCAL INTRINSICS

true: (F2, F3: integer);

end;
var
I: integer;
V: R;
P: “R;
begin
new (P, false);
V.F1 : 3

=
V.HAS_MORE_THINGS := false;
:oveloft(v, P", sizeof (R, 8, false));
end.

The moveleft call moves only the F1 field of R, because the tag
field of sizeof selected the false variant of R, which contains no
additional fields.

IN—-LINE PROCEDURES AND FUNCTIONS

UCSD Pascal has an alternative form of an external procedure
or function declaration that allows you to gain immediate access
to the Macintosh Toolbox routines. This form of external
routine declaration is called an "in—line" routine. The syntax for
declaring an in—line routine requires that you follow the reserved
word external in your declaration by an integer constant
enclosed in parentheses. The integer constant specifies the
Macintosh "trap" instruction for the routine you wish to call.
This syntax is illustrated by the following example:

procedure GetMouse(mouselLoc: PointPtr);
external (-22188) ; {A972)

The example shows the declaration of the interface to the
Macintosh Event Manager GETMOUSE routine, which is
accessed by executing the trap instruction A972 (hexadecimal).
The integer constant —22158 is the decimal value equivalent to
A972. (UCSD Pascal does not allow you to specify constants in
hexadecimal.)

When an in—line routine is called, the compiler generates code to
pass the indicated parameters on the stack and then generates a
special p—code which causes your program to execute the
Macintosh machine instruction you have specified.

1200301:04B : 4-25

PASCAL LANGUAGE Chapter 4

When you declare in—line routines, you do have to make sure
that the number and types of the parameters are correct for the
Macintosh routine you intend to call. It is also crucial that the
function result type (if any) and the trap instruction number be
correct. See the MACINTOSH INTERFACE chapter for detailed

information about interfacing to the Macintosh Toolbox routines.

Unlike ordinary external routines, in—line routines may be
declared within the interface section of a unit. Thus units can
be used to organize collections of Macintosh Toolbox interfaces
into manageable packages. This is precisely what was done to
create the Macintosh Interface listed in Appendix A.

SELECTIVE USES DECLARATIONS

A selective uses declaration is a special form of the UCSD Pascal
uses declaration that allows a client of a unit to select only
those declarations that it needs from the interface section of the
unit. (A client is a program or unit that uses another unit.)
Selective uses declarations have two primary purposes. First,
the client can better document which parts of a unit it is using
by only selecting the pertinent declarations. Second, by only
selecting declarations that are needed, symbol table space is
conserved, so larger programs may be compiled.

Declarations from the unit are selected by listing the appropriate
identifiers in parentheses after the unit name. The following
defines the complete syntax of a uses declaration.

uses~declaration = "uses" unit-identifier
["(" identifier-list ")"] ";"

unit-identifier = identifier .

identifier-list = { identifier } .

A selective uses declaration consists of a simple uses declaration
followed by a list of one or more identifiers enclosed in
parentheses. Each of the identifiers in the list must be defined in
the interface section of the unit being used. If a selected
declaration is not present in the interface section, a syntax error

4-26 1200301:04B

SELECTIVE USES DECLARATIONS

results.

Here is an example of a selective uses declaration:

uses MYUNIT (A_CONST, VAR1, VAR2, MY_ROUTINE);

A selective uses declaration specifies that only those declarations
whose identifiers are listed are imported from the unit. The
compiler first compiles the interface text for the unit, then
discards the portions of the symbol table that describe
declarations which were not selected. Thus, only the symbol
table entries for the selected declarations are retained in the
symbol table. The net result is a considerable savings in symbol
table space when a client only requires a few declarations from a
unit whose interface section is large. This makes it possible to
compile larger programs than would otherwise be possible
without selective uses.

While the primary advantage of the selective uses declaration is
that the compiler’s symbol table need not contain unnecessary
declarations, there are other advantages as well.

First, a selective uses declaration can be a valuable
documentation aid. The selective uses makes it easy to identify
the specific declarations that a client needs from the unit.

Second, a selective uses declaration can remedy situations where
there is a name conflict between units. This is done by not
selecting one of the colliding declarations.

For example, suppose your program has a procedure called
NEXT _LINE, and you decide to use a unit that also declares
NEXT _LINE in its interface section. If you try to compile
without a selective uses, you will get the syntax error
"101:Identifier declared twice". You can avoid this situation by
using a selective uses declaration to select only the identifiers
you need, thereby avoiding the conflict with NEW _ LINE.

1200301:04B 4-27

PASCAL LANGUAGE - Chapter 4

WARNING: Despite the advantages of selective uses
declarations, there are two anomalies which you should be aware

of:

1. You must still have enough memory to compile the interface
sections of the units that you use. Only after the interface for
the unit is fully compiled does the compiler eliminate the
declarations which are not selected.

2. Because selective uses declarations can be used to correct

conflicts due to multiple declarations of the same identifier, a
client which contains selective uses declarations may not
compile successfully if the selective uses declarations are
changed to simple uses declarations.

Here are the rules for inclusion of identifiers in a selective uses
clause: .

If a selected declaration is not present in the interface section
of the unit, a syntax error is issued by the compiler.

Many identifiers do not need to be named explicitly in the
selective uses list if they are referred to directly or indirectly
within a selected identifier. For instance, field identifiers of a
record are automatically included. An exception is that the
names of type identifiers are never included.

The following is an example of selective uses.

unit TOOLS;

interface

by
ALPHA = packed array[0..7] of ch

ar
SYM TYPE = (BAD_ SYMBOL, IBENTIFIER, OPERATOR) ;

SYM REC P = “SYM REC;
SYM_REC™= recordd
NAME: ALPHA;
LLINK, RLINK : SYM_REC_P;
END ;

function CLASSIFY (NAME: ALPHA): SYM_TYPE;
{ Classifies e ;ymbol as BAD SYMBOL, IDENTIFIER

or OPERATOR.

procedure ENTER (NAME: ALPHA; var P: SYM REC P);
{ Creates a symbol table record with symbol RAME

4—-28 1200301:04B

SELECTIVE USES DECLARATIONS

and installs it in the symbol table. }
imp lementation

.ﬂ&:)

TOOLS is a unit with two procedures that manipulate a symbol
table. Some clients of the unit call the procedure CLASSIFY
while others call ENTER. If a client does not call ENTER, then
the identifiers SYM _REC _P, SYM _REC, NAME, LLINK and
RLINK are not needed. Likewise, if a client does not call
CLASSIFY then the identifiers SYM _TYPE, BAD _ SYMBOL,
IDENTIFIER and OPERATOR are not needed.

The use of selective uses is demonstrated by two programs that
are clients of unit TOOLS. Here is the first client of TOOLS:

program EXAMPLE_A;
uses {3U TOOLS.CODE} TOOLS (CLASSIFY,ALPHA);

var
S: ALPHA;

begin
t= NewSymwws’;
if CLASSI%Y(S) = BAD_SYMBOL
d then writeln(’the symbol is bed’);
end.

EXAMPLE _ A selects declarations for CLASSIFY and ALPHA
from TOOLS. The following identifiers are imported from
TOOLS: CLASSIFY, ALPHA, BAD _SYMBOL, IDENTIFIER,
OPERATOR. The first two were specified explicitly in the
selective uses declaration. The last three were included
automatically because they are the constants of the scalar type
SYM TYPE, which is the function result type of CLASSIFY.
Note that SYM TYPE was not included, because 1nd1rectly
referenced type names are never mcluded That is why
EXAMPLE _ A needed to specify type ALPHA explicitly in the
selective uses declaration.

As expected, identifiers ENTER, SYM__REC_P, SYM_REC,
NAME, LLINK and RLINK were not included, since none of

them were even indirectly referenced.

1200301:04B 4—29

PASCAL LANGUAGE Chapter 4

EXAMPLE _B is a second client of TOOLS:

program EXAMPLE_B;
uses {3U TOOLS.CODE} TOOLS (ENTER,SYM_REC_P);

var
REC_P: SYM_REC_P;

be

gNTER(NewSym:-’ REC _P);

if REC_P”~.NAME) NewSymms’

g then™ wr.toln(’aymbol not entered?’);
end.

EXAMPLE _ B specifies identifiers ENTER and SYM__REC _P
in the selective uses declaration. The following identifiers are
imported from TOOLS: ENTER, SYM REC P, NAME,
LLINK, RLINK. As in EXAMPLE A, the first two 1dent1fiers
were named explicitly in the selective uses declaration. The last
three identifiers were included automatically because they are
fields of SYM REC, which is indirectly referenced by both
ENTER and SYM REC P. No other identifiers are imported
from TOOLS.

CONFORMANT ARRAYS

This section describes conformant array parameters.
Conformant arrays are array parameters in which the array
hounds are not known until the procedure is called. Different size
arrays of the same index type and base type may be passed on
each call. The size of the array is determined by the upper and
lower bound parameters, which are automatically passed to the
routine.

Since the rules for using conformant arrays are a bit complicated,
we :will start with a small example. Here is an example
conformant array parameter:

procedure A(var X: .rr.y[LO.,HI: integer] of integer);

4—30 1200301:04B

CONFORMANT ARRAYS

The occurrence of "array [...] of ..." signifies that x is a
conformant array parameter. This syntax should be familiar
from array declarations. However, instead of constant array
bounds this array definition contains bounds parameter
declarations (HI and LO in the example).

In the example, X is a conformant array parameter that may
take any array of integers indexed by integers as a parameter.
When procedure A is called, the bounds parameters LO and HI
are set to the constant bounds of the actual parameter. Here is
an example of two calls to A:

r
B: array integer;
C: orrnyE %0] of nnteg‘r,
boécn
A[B]; LO is O, HI is 9 }
AlCl; LD is -4, HI is 20 }
end;

Conformant arrays make it possible to write procedures that
perform the same function on an assortment of array sizes.
Consider the following example:

program CONFORMANT_ARRAYS;
var
X: array 10] of integer;
Y: array 100 100] of integer;
X1,Y1: nnbeger,

functlon SUM(A: array[LO..HI: integer] of integer): integer;
va
I RESULT: integer;

°3
ESULT 1= O;
I := LO to HI do
RESULT 1= RESULT + A[I];
SUM := RESULT
end; {S M)

begin
Assume the nrrays contain some values. }
X1 := SUM
Y1l := SUM
end. {CONFORMANT _ARRAYSY}

SUM is a general purpose function to calculate the sum of an
integer array. Because the parameter is a conformant array
parameter, SUM is able to calculate the SUM of any integer

1200301:04B A 4-31

PASCAL LANGUAGE Chapter 4

array it is passed. The first time SUM is called, LO will be 1
and HI will be 10. On the second call LO will be —100 and HI
will be 100. The bounds parameters may be used in the
procedure just as if they were normal integer parameters, except
that you cannot assign anything to them or pass them as var
parameters. The actual array parameter may be either a value
or var parameter as desired.

The syntax of a conformant array parameter definition is as
follows:

conformant-array-schema =
packed-conformant-array-schems |
unpecked-conformant-srray-schema

packed-conformant-array~schema =
"packed"” "array" ";" index-type-specification "]"
"of" type-identifier .

uneackeduconformant-nrr-y-‘chem- =
array™ "[" index-type-specification
" index-type-specification } "]"
"of" (type-identifier
conformant-erray~-schema)

index-type-specification =
identifier ".." identifier ":"
ordinal-type-identifier .

A conformant array may be multidimensional. A
multidimensional conformant array is specified by separating
multiple index type specifications by semicolons, or by declaring
an array of an array. The symbol ";" is a short—hand notation
for "] array of [". Here is an example of a multidimensional
conformant array parameter:

procedure A(var X: array[LOl..HI1l: integer;
LO2. .HI2: char] of integer);

Note that only the last index component of a conformant array
may be specified as packed. Thus, a two dimensional
conformant array with a packed second component must be
specified:

procedure A(var X:
array [LO1..HIl: integer] of
packed array[L02..HI2: char] of integer);

4—-32 1200301:04B

CONFORMANT ARRAYS

The short cut version using the semicolon notation may not be
used in this case.

Any array that "conforms" to the conformant array parameter
definition may be passed to the conformant array parameter.
An array conforms if:

1. It has the same base type as the conformant array.

2. It has the same number of dimensions as the conformant
array.

3. The type of each index is compatible with the index
components in the conformant array.

4. The range of values of each index is within the range of the
corresponding index type in the conformant array.

5. The array’s packing matches the packing of the conformant
array.

A conformant array may be passed to another conformant
array parameter as long as the parameter is declared as a var
parameter. This restriction is due to the fact that the size of the
value conformant array parameter must be known at compile
time in order to allocate temporary storage for a copy of the
actual parameter.

If more than one formal array parameter is named in an
identifier list sharing the same conformant array definition, the
actual parameters passed to those formal parameters must have
the same bounds. Standard Pascal requires that the actual
parameters be declared with the same type identifier. UCSD
Pascal is not so strict. Consider the following example. Some of
the calls are illegal:

program MORECONFORMANTARRAYS;
var
A,B: array[1..10] of integer;
C. array[0..99] of integer;
D: erray[1..10] of integer;

procedure SWAP (var X,
.rrny[LO .HI: integer] of integer);

1200301:04B 4-33

PASCAL LANGUAGE Chapter 4

var
I,TEMP: integer;

be
?or I := L0 to HI do
bog
EMP := X[I];
X[I] := Y[I];
Y[I] := TEMP;
end;
end; {SWAP}

begin
{Assume the arrays have some values.}
SWAP (A, B); {Legsl .}
SWAP (A, C ; Illegel--a and ¢ have different bounds.}
SWAP (A, D OK in UCSD Pascal,
$ Standard Pascal. >
end. {MORECONFDRMAN ARRAYS}

Interface.-Conformant Arrays

UCSD Pascal supports a variant of the conformant array
parameter called an interface conformant array that is even
more flexible than the conformant array in the type of
parameters it will accept. The interface conformant array is
used primarily in system programming, where the need to write
procedures that operate on arbitrary types is common.

WARNING: Because interface conformant arrays skirt all the
type checking inherent in Pascal, they should be used only when
necessary and with care.

An interface conformant array is declared just like a
conformant array, except that the reserved word interface
appears in front of the declaration. The following are some
restrictions on interface conformant arrays.

e An interface conformant array must be a var parameter.

4—34 1200301:04B

CONFORMANT ARRAYS

e An interface conformant array must be one dimensional.

Here is an example of an interface conformant array parameter
declaration:

procedure A(var X:)
interface array[LO..HI: integer] of integer);

Here are some calls to the procedure:

v

.9

e
P: set of cha

Q p.ckod urray[O .100] of (red,green,blue);
ﬂ

5!

o
0.))10

en

As this example shows, an interface conformant array will
accept absolutely any type of variable as an actual parameter.
Within procedure A, both P and Q are looked at as if they were
each an array of integers.

The bounds parameters in an interface conformant array
behave somewhat differently than in a conformant array. First,
the low bound parameter is always set to zero. Second, the high
bound parameter is set to the lowest value such that the
interface conformant array will access all of the actual
parameter. How large the high bound is set depends on the
storage size of the actual parameter and the base type of the
interface conformant array.

The following example shows how interface conformant arrays
might be used in order to calculate a check sum of various pieces
of data:

:rogram SHOWINTERFACECDNFORMANTARRAYS,
Y
gYTE = 0..265;

var
S: string
BLOCK: p.cked array[0..511] of 0..2855;
A: array[l..10] of |ntegor,

1200301:04B 4-35

PASCAL LANGUAGE Chapter 4

I: integer;

function CHECKSUM
(var X: interface packed arrey[L..H: integer] of
BYTE): integer;

var
I,SUM: integer;

begin
gUM t= 03
for I := L to H do
SUM := SUM + X[I];
CHECKSUM := SUM;
end; {CHECKSUM}

begin

{Assume the variables have some useful veslues.}
writeln (CHECKSUM(S)) ; L=0, H=80}>}
writeln(CHECKSUM(BLOCK)); { L = O, H = B11 }
writeln (CHECKSUM(A)) ; L=0, H= 19 }
write!ln (CHECKSUM(I)) ; H=1>53%

L=0
end. {SHOWINTERFACECONFORMANTARRAYSS

COMPILER OPTIONS

You may direct some of the compiler’s actions by the use of
compiler options embedded in the source code. Compiler options
are a set of commands that may appear within "pseudo
comments," and like any other Pascal comment, they are
surrounded by either of the following pairs of delimiters:

Eorenbhose./a-terisks é‘ -u;
races

The only difference is that a dollar sign ($) immediately follows
the left—hand delimiter, for example:

$I+,S-,L+}

$I+)
»3$U MOLD.CODEw)
»3R" »)

There are two kinds of compiler options: "switch" options and
"string" options. A switch option is a letter followed by a
plus (+), minus (—), or a caret (). A string option is a letter
followed by a string. (In the examples shown above, the second
one is a string option; the others are switch options.) A pseudo
comment may contain any number of switch options (separated
by commas), and zero or one string options.

4-36 1200301:04B

COMPILER OPTIONS

NOTE: If a string option is present in a pseudo comment, it
must be the last option. The string is delimited by the option
letter and the end of the comment. Also, if the pseudo comment
uses the parenthesis/asterisk delimiters, (* and *), the string in
the string option must not contain an asterisk.

Some options may appear anywhere within the source text.
Others must appear at the beginning of the file (before the
reserved word program or unit).

Switch options are either "toggles" or "stack" options. If a
switch option is a toggle, a plus (+) turns it ON, and a minus (=) -
turns it OFF. The options '1,” ’L,” and 'R’ are stack options, as
are the conditional compilation flags (see below).

With each stack option, the current state, either plus (+) or
minus (—), is saved on the top of the stack, which can be up to 15
states deep). The stack may be "popped" by a caret (") thus
enabling the previous state of that option again. If the stack is
"pushed" deeper than 15 states, the bottom state of the stack is
lost. If the stack is popped when it is empty, the value is always
minus ().

{8I-} ... current value is ’-’ — no I/0 checking
{3I+} ... current value is ’+°
{3I"} s current value is ’-’ again

‘e
SI“; cvo current value i

s ’+’, (this wes the default)
$I- . current value is ’-°,

the stack is now empty)

The individual compiler options are described below in
alphabetical order. If you do not use any compiler options, their
default values will be in effect. Here are the default values for
the compiler options:

{8Q-,R+,I+,L-,U+,P+,D~-,N-}

These remain in effect unless you override them. The settings of
the U and N options should not be changed.

1200301:04B 4-37

PASCAL LANGUAGE Chapter 4
Conditional compilation is also controlled by compile time
options as described below.

$B — Begin Conditional Compilation

$B is a string option. It starts compilations of a section of
conditionally compiled source code. See the section on
conditional compilation, below.

$C — Copyright Field

$C is a string option. It places the string directly into the
copyright field of the code file’s segment dictionary. The purpose
of this is to have a copyright notice embedded in the code file.

$D — Conditional Compilation Flag

There are two $D compiler options. This one is a string option.
It is used to declare or alter the value of a conditional
compilation flag. See the section on conditional compilation,
below.

$D — Symbolic Debugging

The second $D Compiler option is a switch option. $D+ turns on
symbolic debugging information. $D— turns off symbolic
debugging information. The default is $D—.

$E — End Conditional Compilation

$E‘is a string option. It ends a section of conditionally compiled

438 1200301:04B

COMPILER OPTIONS

source code.
$I — I/O Check Option

There are two options named by $I. The first is a stack switch
option (IOCHECK).

$I+, which is the default, instructs the compiler to generate code
after each I/O statement in a program. This code verifies, at
runtime, that the I/O operation was successful. If the operation
was not successful, the program terminates with a runtime error.

$I— instructs the compiler not to generate any I/O checking code.
In the case of an unsuccessful I/O operation, the program
continues.

When you use the $I— option, your programs should specifically
test joresult when there is the chance of an I/O failure. If $I— is
used and you don’t test ioresult, the effects of an I/O error are
unpredictable.

$I — INCLUDE File

This is a string option. The string (delimited by the letter 'I’ and
the end of the comment) is interpreted as the name of a file. If
that file can be found, it is included in the source file and
compiled. .

{31 PROG2)

The example shown above "includes" the file PROG2 into the
compilation unit’s source code.

If the attempt to open the include file fails, or if an I/O error
occurs while reading the include file, the compiler reports a fatal
syntax error.

1200301:04B 4—-39

PASCAL LANGUAGE "' Chapter 4

Include files may be nested up to a maximum of three files deep.

NOTE: Any leading spaces in a file name are discarded by the
compiler. On the Macintosh, trailing spaces are significant in file
names. Thus it is important that the end of comment delimiter
be immediately adjacent to the last character in the file name.
Furthermore, if a file name begins with a plus (+) or minus (-),
a space must be inserted between the letter 'I’ and the string.
For example:

(81 +PROG2w»)

$L — Compiled Listing

$L is a stack option. You may use $L option either as a toggle
switch option or as a string option. When used as a toggle, it
turns the listing ON or OFF at that point in the source text.
When used as a string option, it indicates the name of the listing
file.

When used as a toggle, $L+ turns the listing ON and $L— turns
it OFF. Using these options, you can list only parts of a
compilation if you wish. The default for the toggle is $L— if you
have not named a listing file using the compiler prompt or by
using $L with a string option. The default value is $L+ if you
have named a listing file in either of these ways. No matter

which way you name the listing file, you can switch the listing
ON or OFF by using $L+ or $L—.

If you do not specifically name a listing file and $L+ is in effect,
the compiler writes to the file *SYSTEM.LST.TEXT.

4—-40 1200301:04B

e

COMPILER OPTIONS

$N — Native Code Generation

This is a switch option. $N+ outputs compiler information
which allows native code generation to take place. $N— doesn’t
output this information. The default is $N—. Until such time as
a Native Code Generator is available for this version of UCSD
Pascal, you should not use $N+.

$P — Page and Pagination

The compiler can place page breaks in the compiled listing. It
does this so that listings sent to the printer break across page
boundaries. A form feed character (ASCII FF) is output every 66
lines if $P+ is in effect (this is the default). If you don’t want
this, use $P—.

You can cause a page break at any point in a compiled listing by
using the $P option without a plus or minus sign.

$Q — Quiet

This is used to suppress the compiler’s standard output to the
console. $Q+ causes the compiler to suppress this output and
$Q— causes it to resume outputting status information. If you
have specified $Q+ and are obtaining a listing, the compiler does
not pause when syntax errors are reported.

$R — Range Checking

$R is a stack switch option. The default value, $R+, causes the
compiler to output code after every indexed access (for example,
to Pascal arrays) to check that it is within the correct range.
This is called range checking. The value $R— turns range
checking off.

Programs compiled with the $R— are slightly smaller and faster
since they require less code. However, if an invalid index occurs
or a invalid assignment is made, the program isn’t terminated

1200301:04B 4—-41

PASCAL LANGUAGE Chapter 4

with a runtime error. Until a program has been completely
tested, it is suggested that you compile with the R+ option left
on.

$R2 and $R4 — Real Size

$R2 causes the code file’s floating point arithmetic operations to
be performed with two word (32—bit) precision. $R4 causes four
word (64—bit) precision. The default and only supported real
size for the Macintosh version of UCSD Pascal is four word reals.
Therefore, you cannot use the $R2 directive, and never need to
use the $R4 directive.. If you do use the $R4 directive, it must
occur before the first non—comment symbol in the compilation
unit.

$T — Title

$T is a string option. The string becomes the new title of pages
in the listing file.

$U — Use Library

Two options are indicated by $U. One is a string option (Use
Library). The other, described below, is a toggle switch option
(User Program).

With the Use Library option, the string is interpreted as a file
name. This file should contain the unit(s) that your program is
about to use. If the file is found, the compiler attempts to locate
the -unit(s) that it needs for the subsequent uses declarations. If
a particular unit isn’t found there the compiler issues a syntax
error.

If a client (program or unit) contains uses declarations but no
$U option, the compiler looks for the used units in the units (if
any) that were compiled previously in the same compilation
source file as the client.

4—42 1200301:04B

COMPILER OPTIONS

The following is an example of a valid USES clause using the $U
option:

USES UNIT1,UNIT2, { Found in current l|ibrary }

{3U A.COBE}
UNIT3, { Found in A.CODE }
{3U B.LIBRARY}

UNIT4,UNITE; { Found in B.LIBRARY }

NOTE: Any leading spaces in a file name are discarded by the
compiler. On the Macintosh, trailing spaces are significant in file
names. Thus it is important that the end of comment delimiter
be immediately adjacent to the last character in the file name.

$U — Uéer Program

The $U— directive is used to specify that you are compiling a
Runtime Support Library unit. This is how the Runtime Support
Library units are compiled using the set of reserved unit names.
$U~ also sets $R— and $I—. You should not use $U—, and you
never need to specify §U+. If you do specify $U+, it must
appear before the heading (that is, before the reserved word
program or unit).

CONDITIONAL COMPILATION

You may conditionally compile portions of the source text. At
the beginning of a program’s text you can set a compile time
flag which determines whether or not the conditionally compiled
text will be compiled.

In order to designate a section of text as conditionally compilable,
you must delimit it by the options $B (for begin) and $E (for
end). Both of these options must name the flag which determines
whether the code between them is compiled. The flag itself is
declared by a $D option at the beginning of the source. $D
options may be used at other locations in the source to change
the value of an existing flag.

1200301:04B 4—43

PASCAL LANGUAGE Chapter 4

Here is an example:

{30 DEBUG} {declares DEBUG and sets it TRUE}
rogram SIMPLE;
egin

{SB DEBUGY {if DEBUG is TRUE,

his sect-on is compaled}
writeln(’There is & bug.’);
{sE DEBUG)} <{this ends the section}

{SB DEBUG-}> {if DEBUG is FALSE,

this section ns compi led}
writeln(’Nothing has failed.?);
{$E DEBUG)

end {SIMPLE}.

Each flag in a program must appear in a $D option before the
source heading. The name of the flag follows the rules for Pascal
identifiers. If the flag’s name is followed by a minus (—), that
flag is set false. The flag may be followed by a plus (+), which
sets it true. If no sign is present, the flag is true. The flag’s
name may also be followed by a caret (") as shown below.

The state of a flag may be changed by a $D option which appears
after the source heading, but the flag must have first been
declared before the heading.

The $B and $E options delimit a section of code to be
conditionally compiled. The $B option may follow the flag’s
name with a minus (—), which causes the delimited code to be
compiled if the flag is false. In the absence of a minus (—), the
code is compiled if the flag is true. The flag’s name may also be
followed by a plus (+) or a caret ("); these are ignored. In a $E
option, the flag’s name may be followed by a plus (+), minus (—),
or a.caret (*); these symbols are ignored.

The state of each flag is saved in a stack, just as the state of a
stack switch option is saved. Thus, using a $D option with a
caret (*) yields the previous value of the flag. Each flag’s stack
may be as many as 15 values deep. If a 16th value is pushed, the
bottom of the stack is lost. If an empty stack is popped with a
caret ("), the value returned is always false.

4—44 1200301:04B

CONDITIONAL COMPILATION

If a section of code isn’t compiled, any pseudo comments it may
contain are ignored as well.

{80 DEBUG- édeclares DEBUG and sets it FALSE}
rogr.m SIM L

{30 DEBUG+} {changes DEBUG to TRUE}

{88 DEBUG} <{if DEBUG is TRUE, this section is
compiled}

writeln(’There is 2 bug.’);

{8E DEBUG} <{this ends the section}

o e

{SD DEBUG™) {r.ctores previous value of DEBUG)
in this case, FALSE}
{3%8 DEBUG-} {r ‘DEBUG is FALSE,
this section |s compvled}
writeln(’Nothing has failed.’);
{SE DEBUG)

end {SIMPLE}.

1200301:04B 4—45

PASCAL LANGUAGE Chapter 4

4—46 1200301:04B

5
MACINTOSH INTERFACE

-

This chapter describes the UCSD Pascal interface to the
Macintosh Operating System and Toolbox. Because it is so large

and complex, the Toolbox is not described in full here. You are

encouraged to reference the Macintosh technical guide,

Inside Macintosh, for a complete description of the Toolbox. The

intent of this chapter is to describe the differences between the

UCSD Pascal interface to the Toolbox and the Lisa Pascal

interface described in Inside Macintosh.

Throughout this chapter "Toolbox" will refer to both the
Macintosh Operating System and the Macintosh Toolbox. As far
as the interface units are concerned, there is little difference
between Toolbox routines and Operating System routines.

The Toolbox is a very complex piece of software. No one can be
expected to learn how to use it in one reading, or even a few
readings. The best thing to do is to learn the Toolbox in pieces,
writing small programs as you go.

The most important part of this chapter (as well as the most
complicated) is the section on DATA CONVENTIONS. You
should probably skim this section on your first reading, then refer
to it as necessary while writing programs that use the Toolbox
interface.

Overall, the UCSD Pascal Toolbox interface is quite consistent
with Inside Macintosh. However, for various reasons there are
some restrictions and omissions in the UCSD Pascal interface.
These are described in DIFFERENCES FROM INSIDE
MACINTOSH.

1200301:05B 5—1

MACINTOSH INTERFACE Chapter 5

The UCSD Pascal Toolbox interface is also quite consistent with
the organization of Inside Macintosh. In general, each manager
described in Inside Macintosh corresponds to a unit bearing the
same name. There are some differences in the organization,
however.

e There is a set of four "core" units that provide type
declarations that are shared by the other units. In
Inside Macintosh these declarations are included in the
interface units themselves. Separating out some declarations
saves having to use a whole unit where only some of its
declarations are needed.

¢ The file manager and device manager routines have been
redistributed as follows. High level file and device I/O have
been combined in a unit called FileMgr. Low level file and
device I/O have been combined in a unit called PBIOMgr
(Parameter Block I/O Manager).

e The routines CountAppFiles, GetAppFiles, and ClrAppFiles
have been moved from the Segment Loader to the OsUtility
unit. There is no Segment Loader unit.

The rest of this chapter is arranged as follows:

HOW TO USE THE INTERFACE UNITS discusses making the

interface units available to a program.

DIFFERENCES FROM INSIDE MACINTOSH discusses how use
of the Toolbox routines from UCSD Pascal differs from
Inside Macintosh.

DATA CONVENTIONS discusses issues regarding how Toolbox
data.is represented in UCSD Pascal. In particular, this affects
how parameters are passed to the Toolbox routines.

SPECIFIC TECHNIQUES contains a set of example
programming techniques that are helpful when using the Toolbox
interface.

5—2 1200301:05B

EXAMPLE APPLICATION contains a complete small
application that uses the interface units.

HOW TO USE THE INTERFACE UNITS

This section discusses how to use the Toobox interface units from
a UCSD Pascal program. There are two issues to consider.

1. How to make the interface sections of the units available at
compile time.

2. How to make the code of the units available at runtime.

The use of units in general is discussed in The UCSD Pascal
Handbook. This section focuses on the special considerations for
use of the Toolbox interface units.

Appendix A contains listings of the interface sections of the
interface units.

Compile Time Considerations

The interface units are contained in the file Mac Interface on the
disk UCSD Pascal 2. The Librarian utility can be used to
examine this file.

You make an interface unit available to yoﬁr application through
use of the uses statement. Often it is convenient to use the
selective uses feature. Suppose you need to use the EraseRect
and DrawChar routines from QuickDraw. Here is how you make
them available.

program APPLICATION;

uses

{3U UCSD Pascal 2:Mac Interface}
MacCore,
QDTypes,

QuickDraw (EraseRect,DrawChar);

1200301:05B 5—-3

MACINTOSH INTERFACE . Chapter 5

In the above example, the $U compiler option is used to open the
library file Mac Interface on the volume UCSD Pascal 2. The
volume prefix would not be needed if the library file were on the
same volume as the UCSD Pascal compiler (the default volume).
If you will not be swapping disks when compiling, you may also
use #1: (which specifies the internal drive) or #2: (which
specifies the external drive) to specify volume locations.

Nearly all of the interface units make use of other interface units.
If one unit wses another unit within its interface section, you
must include references to both units in your uses statement.
The order of the units in the uses statement is important. In the
example above, QuickDraw needs definitions from MacCore and
QDTypes. Thus, they are both included in the uses statement
before QuickDraw. QDTypes needs definitions from the MacCore
unit, so MacCore is included before QDTypes. The selective uses
declaration is discussed further in the PASCAL LANGUAGE
chapter.

Appendix A contains a table of dependencies among the interface
units. This table should help you to figure out which units are
needed by other units. The column called 'Compile Time
Dependencies’ contains codes that indicate the units that are
required by each unit.

The interface sections of the Toolbox interface units are very
large. One of the problems with developing programs on a
Macintosh with 128K bytes of memory is the lack of symbol table
space while compiling. This can critically limit the size of a
program that can be compiled unless steps are taken to conserve
symbol table space.

Here are the things you can do to conserve symbol table space.

5—4 1200301:05B

HOW TO USE THE INTERFACE UNITS

e Use selective uses to prevent unused definitions from being
kept in the symbol table.

e Use the largest units with selective uses first, so that there is
more symbol table space available while they are being
compiled.

e Divide your program into units to minimize the number of
interface units needed by each unit.

Here is an example of the first two points. Suppose you are using
the Control Manager and QuickDraw. These require the use of
MacCore, QDTypes and TBTypes. However, QuickDraw does
not need any definitions from TBTypes. Therefore, you should
arrange the units this way.

uses
{8V #2:Mac Interface)}
MecCore,
QDTyEes,
QuickDraw(.
TBTypes,
CntriMgr (.)

QuickDraw is much larger than the Control Manager, so it goes
first. MacCore and QDTypes are used by QuickDraw so they
must preceed QuickDraw. The Control Manager needs TBTypes
in addition to MacCore and QDTypes.

It is possible to do even better than this. By looking at the uses
declarations of QuickDraw and the Control Manager (in
Appendix A), it is possible to make selective uses with the
auxiliary units. QuickDraw needs all of MacCore and QDTypes,
so nothing can be gained there. The Control Manager needs
(GrafPort, GrafPtr, Point, VHSelect, FPoint, Rect, RectPtr)
from QDTypes, and (EvtRecPtr, EventRecord, windowptr,
windowhandle) from TBTypes. Therefore, the uses declaration
could be made as follows.

uses
{8U #2:Mac Interface}
MacCore,
QDTyEes,
QuickDraw),
TBTypes (EvtRechr,EventRecord windowptr,

1200301:05B 5—5

MACINTOSH INTERFACE Chapter 5

windowhandie),
CntriMgr(...);

You would add to the above uses statement any additional
symbols your program requires from the QuickDraw and
CntrlMgr units. This declaration makes optimum use of symbol
table space.

If you have used these methods, and you still have trouble with
running out of room while compiling, there is one other space—
saving method that will help.

e Use in—line Toolbox routines right in your application
without including a unit. This method is explained in detail
in the section SPECIFIC TECHNIQUES.

Runtime Considerations

At runtime you must make the interface units available to your
program. This is done by using the Library Files list facility in
the Set Options utility or by using the Librarian utility to
combine the units with your program. The Set Options utility is
described in the chapter GENERAL OPERATIONS. The
Librarian utility is described in the chapter LIBRARIAN.

Some of the interface units do not contain any code, and thus do
not need to be included at runtime. The table in Appendix A
indicates which units have code by a 'C’ in the column called
Code. The interface units that contain code are bound together
in a library called Mac Library on the disk UCSD Pascal 1.

While you are developing and testing your program, we suggest
that you use the Set Options utility to make Mac Library
available to your program. This has the advantage that you can
run the program immediately after compiling. When you
complete the final version of the program, you should probably
use the Librarian utility to include the interface units from Mac
Library directly in your program. This makes the program self—
contained, and reduces startup time.

5—6 1200301:05B

HOW TO USE THE INTERFACE UNITS

DATA CONVENTIONS

UCSD Pascal is a different dialect and implementation of Pascal
than Lisa Pascal, so there are differences in the interface units,
accordingly. Most of these differences stem from the differences
in the implementation of the Pascal language. Some of these
implementation differences are related to different
representations for data types, while others are a consequence of
the different storage allocation algorithms used in the two
implementations. Also, parameter passing methods differ
between the two implementations.

An attempt has been made to provide Toolbox interface units
whose interface is as close as possible to what is described in
Inside Macintosh. In particular, it is nearly always the case that
an interface routine takes the same number of parameters in the
same order as in Inside Macintosh.

This section describes the data representation scheme used in the
interface units. For information on the actual parameters of a
particular routine in an interface unit, you must look at the
description of the routine in nside Macintosh and the declaration
of the routine in Appendix A.

Passing Parameters to the ToolBox

Most of the ToolBox procedures in the Macintosh ROM were
designed to work with the Lisa Pascal data and parameter
passing conventions. In order to accommodate that interface,
UCSD Pascal was extended to produce The MacAdvantage:
UCSD Pascal. The extensions that are important to the
Macintosh interface units are:

1200301:05B 517

MACINTOSH INTERFACE Chapter 5

o A new type, integer2, was added to support 32—bit integers
and addresses.)

o The intrinsics locate and absadr were added to allow
conversion from 16-—bit UCSD Pascal addresses to 32—bit
Lisa Pascal addresses.

e The intrinsic derefhnd was added to enable programs to
dereference Macintosh Memory Manager handles.

¢ The intrinsic absmove was added to allow programs to move
data to and from the Pascal Data Area.

"o The new external procedure syntax externmal(...)] was added
to allow the UCSD Pascal compiler to generate in—line
ToolBox calls in much the same way as the Lisa Pascal
compiler.

In order to call the ToolBox procedures it is important that you
understand all of these features. They are all documented in the
PASCAL LANGUAGE chapter. Most of these features are used
in the example program, GROW, located at the end of this
chapter. They are also discussed with respect to their use in
calling the ToolBox procedures later in this chapter.

The primary difference between UCSD Pascal and Lisa Pascal is
that UCSD Pascal uses 16—bit addresses while Lisa Pascal uses
32—bit addresses. This affects the way in which you pass
parameters to most of the ToolBox procedures. For example, a
var parameter must be passed as a 32-—bit pointer value
parameter. Any Lisa Pascal value parameter that is larger than
32 bits must also be passed as a 32—bit pointer to the parameter.

Where necessary, the interface units make use of what are called
"substitution types" instead of types whose declaration exactly
matches those of Inside Macintosh. For example, the following
types are declared in the MacCore unit (which contains most of
the basic substitution type declarations):

type
MacPtr = integer2 ;
StringPtr = MacPtr ;

5—8 1200301:05B

DATA CONVENTIONS

MacPtr represents a 32—bit pointer, while StringPtr represents a
32—bit pointer to a string variable. The StringPtr type is
substituted in many of the interface unit procedures for the
Str255 type that appears in Inside Macintosh. When you see
StringPtr in a procedure declaration it means that you should be
passing a 32—bit pointer to a string variable. Note that MacPtr
and StringPtr types are the same type as integer2. Since the
UCSD Pascal compiler will allow any integer2 value to be passed
you must be careful to pass the correct value.

The following sections discuss all of the data representation and
parameter passing differences between Lisa Pascal and The
MacAdvantage: UCSD Pascal. After you read these sections,
study the GROW program source. By looking at GROW you
should begin to see how the ToolBox routines are called from a
UCSD Pascal program.

UCSD Pascal Pointers vs Lisa Pascal Pointers

Lisa Pascal pointers are 32—bit absolute addresses, while UCSD
Pascal pointers on the Macintosh are 16—bit offsets from the
68000 A6 register. This difference in pointer format between
UCSD Pascal pointers and Toolbox pointers must be thoroughly
understood in order to make use of the Toolbox interface.

An absolute address is represented in the Toolbox interfaces by
the substitution type integer2. Two intrinsics are provided in
UCSD Pascal to convert between pointers and absolute addresses:
absadr converts a pointer into an absolute address; reladr
converts an absolute address into a pointer.

NOTE: The pointer constant nil does not convert to the
Macintosh value of nil. The constant AbsNil, declared in the
MacCore unit, corresponds to a Lisa Pascal nil pointer. Also,
there is no pointer value that corresponds to a odd absolute
address.

The intrinsic adr takes a variable reference as a parameter and
returns a pointer to that variable. The intrinsic locate takes a
variable reference as a parameter and returns the absolute

1200301:05B 5—9

MACINTOSH INTERFACE Chapter 5

address of that variable. The variable reference may be a
reference to a sub—component of a variable, as long as that sub—
component is word—aligned and occupies at least one word of
storage. Locate(x) is equivalent to absadr(adr(x)).

Here are some examples of using absadr, reladr, locate,and adr.

var
X: integer;
P: “integer;

b A,B: MecPtr; {ectually an integer2}

egin
g:: adr (X); points p at the variable x}
A:= absadr (P); sets a to the absolute address of x}
B:= .absadr(adr(X)); {sets b to the same thing)}
B:=- locate (X); a shorter version of the last |ine}
::: reiadr (A); points p et the varisbie x}

end;

Two more intrinsics round out the set of intrinsics that deal with
pointer manipulation. The intrinsic derefhnd (dereference
handle) returns the absolute address of the location the handle
references. A handle is a Macintosh pointer—to—a—pointer used
to reference relocatable blocks on the Macintosh heap.

NOTE: Derefhnd returns only the iower three bytes of the
address. The upper byte, which contains Memory Manager
attribute bits, is set to zero. For more information on Memory
Manager attribute bits, see the Memory Manager chapter of
Inside Macintosh.

Finally, the routine absmove is a block move intrinsic that acts
like moveleft with absolute source and destination pointers. This
intrinsic is useful for moving Macintosh—created data into a

UCSD Pascal variable.

An example of the use of derefhnd and absmove is given below.
This example allocates a 256 byte relocatable block by using the
Memory Manager procedure NewHandle. It dereferences the
handle returned in order to get the 32—bit absolute address of the
block. Absmove is then used to move the string S into the block.

var
sHandle : Handle ;

5—10 1200301:05B

DATA CONVENTIONS

s : String ;
P : MacPtr ;
begin
s := ’Move this string to a relocatable block’ ;
sH-ndIe := NewHandle (266) ;
:= DeRefHnd (sHandle) ;
Abu Move (Locate (s), p, Sizeof (s)) ;
end ;
LonglInt

The Lisa Pascal type Longint is used throughout the Toolbox as
a parameter type and function result type. The UCSD Pascal
equivalent to Longlnt is integer2. In the MacCore unit there is a
type declaration for LonglInt:

type
LongInt = integer2;

Pointer Types

All pointers within the Toolbox are represented in the interface
units by the substitution type integer2 (interpreted as an absolute
address). Because all Toolbox pointer types are integer2, there is
effectively no type checking done when pointers are passed as
parameters to a Toolbox routine. You should be very careful
when passing pointer values to the Toolbox.

OpenPort in QuickDraw takes a pointer as a parameter. The
following code fragment shows how a locally declared GrafPort
could be passed to OpenPort:

var
GP: GrafPort;

be
gpenPort(lcc-te(GP));
end;

1200301:05B 5—-11

MACINTOSH INTERFACE Chapter 5

Call—by—reference Parameters

Call—by—reference parameters are parameters that are passed
indirectly by passing a pointer to the item. One example of call—
by—reference in Pascal is var parameters. Another example (one
which depends on the implementation) is passing value
(non—var) structures (e.g. arrays and records). In Lisa Pascal,
value structures that are over 32 bits in size are always passed by
reference.

Since call—by—reference parameters in UCSD Pascal are passed
as 16—bit pointers on the stack, they cannot be used in calls to
the Toolbox. Therefore, all call—by—reference parameters to the
Toobox are passed as value absolute addresses.

For example, the Lisa Pascal definition

procedure GetFontInfo(var info: FontInfo);

is transformed into the UCSD Pascal definition

type
FontInPtr = integer2;

procedure GetFontInfo(info: FontInPtr);

This calling mechanism is used for all var parameters and all
value structure parameters over 32 bits in size. Here is an
example call to GetFontInfo (declared in QuickDraw):

var
FI: FontInfo;

begin
etFontInfo (locate(FI));
end;

Var pointer parameters are an especially confusing case. Here is
an example:

var

5—12 1200301:05B

DATA CONVENTIONS

P: GrafPtr;
GP: GrafPort;

begin

etPortElocnte(P));

:bsmove P, locate(GP),sizeof (GP));
end;

This example loads the contents of the current GrafPort record
into the local copy GP. If you understand this example, you
should have no problems with call-by—reference parameters in
the Toolbox interface.

Boolean

The Lisa Pascal representation of type Boolean differs somewhat
from the UCSD Pascal representation, as follows:

e The UCSD Pascal Boolean is represented in a full 16—bit
word. Only bit 0 of the word is significant. Zero (0)
represents false. One (1) represents true.

e A Lisa Pascal Boolean value is represented in an 8—bit byte.
As a parameter it is passed in the upper byte (bits 8 to 15) of
a 16—bit word. All of these 8 bits are significant. Zero (0)
represents false. Any nonzero value represents true. As a field
in a record, a Boolean value is automatically packed into a
byte.

Because of these differences, type Boolean is represented by the
substitution types MacBool and SmallBool. MacBool is for
Boolean parameters and SmallBool is for Boolean fields in a
record. Unfortunately, MacBool and SmallBool are not
compatible types. It is necessary to use the conversion routines
when converting between them and UCSD Pascal Booleans.

Four conversion functions are available in the MacCore unit to
map between MacBool or SmallBool and UCSD Pascal Boolean
values:

TcMacBool%UB; converts UCSD format --> MacBool
FrMacBool (LB converts MacBool ~~> UCSD format
ToSmal | (UB) converts UCSD format --> SmallBool

1200301:05B 5—13

MACINTOSH INTERFACE Chapter 5

FrSma! ! (SB) {converts Smal! iBoo! -=-> UCSD fTormat}

GetPixel in Quickdraw returns a Boolean value. Here is a call to
GetPixel:

if FrMacBoo!l (GetPixel (100,100))
then ...

WARNING: When converting from SmallBool to MacBool it is
necessary to go through the intermediate type Boolean; there are
no provisions for converting directly between MacBool and
SmallBool.

For example, suppose you want to pass the contrlVis field of a
ControlRecord (a SmallBool) into the Visible parameter (a
MacBool) of the Control Manager procedure NewControl. It is
done as follows:

CH:= NeawControl (..., ToMacBee!l (FrSmall(CR.contr!IVie)), . ..);

Packed Data

Lisa Pascal packs data differently from UCSD Pascal. The
following differences have an effect on the Toolbox interface:

e Type Boolean within a record is automatically packed into a
byte in Lisa Pascal. UCSD Pascal does not automatically
pack any type.

e Lisa Pascal packs the fields of a record in a different order
from UCSD Pascal.

Because of these differences, packed data is represented
somewhat differently in the UCSD Pascal interfaces to the
Toolbox.

5—14 1200301:05B

DATA CONVENTIONS

First, records containing Booleans that will be automatically
packed by Lisa Pascal are declared packed. Second, the order of
declaration of fields in a packed record may be changed.

For example, the data type WindowRecord in the unit TBTypes
contains four SmallBool fields. They are represented thus:

type
WindowRecord = peacked record
port: GrafPort;
windowKind: integer;
hilited: Smal IBool ;
visible: Smal IBoo| ;
spareFlag: SmallBool;

goAwayFlag: SmaliBool;

end;

The record has been packed and the four SmallBool fields are
declared in a different order from the Lisa Pascal interface.

Procedure Pointers

Procedure pointers are used to implement a procedure data type
(including procedural parameters) in the Toolbox. Procedure
pointers are usually used to pass some sort of "action procedure”
to a Toolbox routine. For example, TrackControl in the Control
Manager takes a parameter called actionProc. Periodically
during a call to TrackControl, the Toolbox may call the user
procedure actionProc. This procedure is passed to TrackControl
as a procedure pointer, which is represented by the absolute
address of its entry point.

The procedure pointer concept is supported in UCSD Pascal by
an alternative form of the intrinsic locate. In this form, locate
takes two parameters: a procedure or function identifier and an
entry point number. It returns the absolute address of the entry
point.

There are nine entry point numbers available for use by
application programs. They are numbered one (1) through nine
(9)-

1200301:05B 5—15

MACINTOSH INTERFACE Chapter 5

Here is an example of how to use locate.

rocedure MYPROC;
egin
ené;.

begin
?:: TrackControl (CH,P, locate (MYPROC,1)) ;

ené;

CH and P are other parameters to TrackControl (which is
declared in the Control Manager unit) that can be ignored for the
purpose of this discussion. Locate installs MYPROC in entry
point 1, and passes the address of entry point 1 to TrackControl.
When TrackControl wants to call the actionProc, it calls entry
point 1, which causes MYPROC to be invoked.

Some action procedures are called immediately by the routine
they are passed to. Others are called at a later time, or are not
passed directly as parameters, but instead are installed in a data
structure. There is a convention for selection of entry point
numbers that will help eliminate some errors when using
procedure pointers.

The convention is as follows.

e Entry point 0 is reserved for UCSD Pascal’s grow zone
procedure. You may not use entry point O in your
application.

e Entry point 1 should be used for action procedures that have
very limited scope. The parameter to TrackControl is an
example. There, actionProc will only be called while
TrackControl is executing. When TrackControl returns

control to the user program, actionProc will no longer be
called.

5—16 1200301:05B

DATA CONVENTIONS

e The entry points greater than 1 should be used by action
procedures of larger scope—those that will be called long
after they are installed. The user is responsible for making
sure that there is no conflict of entry point numbers within an
application. Otherwise, serious errors will result.

Here is an example of using entry points greater than one. The
grafProcs field of a GrafPort contains an array of low—level
procedures that replace the default procedures in QuickDraw.
You can customize QuickDraw by installing your own version of
these procedures.

var
GP: GrafPort;
QDP: QDProcs;

begi
egeZdeProcs(lccabe(QDP));

QDP.rectProc:= locate (MYRECT,2);
QDP .rRectProc:= locate (MYRRECT, 3) ;
gP.grafProcszz locate (QDP) ;

end;

In the example, entry points 2 and 3 must not be reused until the
original rectangle and rounded rectangle primitives have been
restored.

Enumerated Types

Enumerated types are affected by the order in which Lisa Pascal
packs byte sized quantities. Lisa Pascal expects the small
enumerated types to be passed in the upper half of a word.
UCSD Pascal expects it in the lower half. Therefore, enumerated
type parameters are represented by the substitution type integer,
and the values of the enumerated type are represented by integer
constants. DateForm in the Package Manager and GrafVerb in
QuickDraw are two examples of enumerated types that have been
replaced with constants.

1200301:05B 5—-17

MACINTOSH INTERFACE Chapter 5

Packed Array of Bit

Packed arrays of bits also suffer from byte—order problems. Lisa
Pascal arranges the array indices in a word as follows:

7 6 5 4 3 2 1 015 14 13 12 11 10 9 8

3

UCSD Pascal arranges the indices in a word as follows:

1614 1312 11 10 9 8 7 6 6 4 3 2 1 0

The best way to handle this rearrangement is to write an index
mapping function from the Lisa Pascal index to the UCSD Pascal
index. Here is an example mapping function for type KeyMap
(declared in the Event Manager unit), which is a packed
array(1..128] of Boolean.

zungbicn MKI(i: integer): integer; {Map Key Index}
ag i n
?f (i-1) mod 16 < 8
then MepKeyIndex:= i+8
else MapKeyIndex:= i-8;
end;

This function works by "switching" the upper and lower halves of
each index range within a word. Suppose you want to set bits 32
and 55 in a KeyMap:

var
KM: KeyMap;

begin
bt (8837 2 Srus)
end;

Other bit arrays will require different mapping functions.

5—18 1200301:05B

DATA CONVENTIONS

OSType and Point

OSType and Point are two Toolbox data structures that require
special care when passed as value parameters. These two records
fall into the category of structures that are 32 bits in size. When
they are passed as value parameters, they are passed directly on
the stack, instead of by reference. OSType is declared in the
MacCore unit and Point is declared in the QDTypes unit.

Both these data types are represented by the substitution type
integer2. The UCSD Pascal declarations of OSType and Point are
case variant records that have a parameter field that is an
integer2. This field must be passed as the parameter.

EqualPt in QuickDraw takes two value point parameters.

var |
P,Q: Point;

begin
1f EqualPt(P.Param,Q.Param)
hen ...

end;

CountResources in the Resource Manager takes a value
parameter of type OSType.

var

theType: OSType;
x: integer;
begin

theType.c:= >STR ’;
x:= CountResources (theType.p);
end;

NOTE: If a Point or an OSType is passed as a var parameter,
you must not pass it by the method shown above. Instead, it
should be passed in the same way that other var parameters are
passed.

\

1200301:05B 5—19

MACINTOSH INTERFACE Chapter 5

DIFFERENCES FROM INSIDE MACINTOSH

The last section explained the differences between the UCSD
Pascal Toolbox interface and the Lisa Pascal interface with
regard to data representation. This section deals with the
differences from Inside Macintosh with regard to which Toolbox
routines may be called.

The differences explained here stem from three causes. First,
UCSD Pascal uses memory in a slightly different way than Lisa
Pascal does. Second, the UCSD Pascal implementation performs
many of the necessary initialization steps described in
Inside Macintosh. Finally, the implementation of procedure
pointers (ProcPtrs) imposes some restrictions.

Memory Restrictions

This section explains briefly how UCSD Pascal uses Macintosh
memory, and how this affects application programs. For a more
detailed description of memory usage see the chapter MEMORY
MANAGEMENT.

The important points about UCSD Pascal memory usage are as
follows:

e UCSD Pascal uses the Macintosh stack for its stack.
o The UCSD Pascal heap is implemented as a nonrelocatable
Macintosh block within the Application Heap Zone. This

block expands and contracts according to heap usage. All
data allocated with new or varnew is allocated here.

5—20 1200301:05B

DIFFERENCES FROM INSIDE MACINTOSH

e The boundary between the end of the Application Heap and
the stack (ApplLimit) moves to accomodate the growth of the
stack.

The rule to remember when making Memory Manager calls from

UCSD Pascal is:

e DON’T allocate a nonrelocatable block immediately above the
UCSD Pacal heap if you plan to make use of the Pascal heap.
The nonrelocatable block you allocate will most likely be
positioned immediately above the heap by the Macintosh
Memory Manager. This will prevent expansion of the Pascal
heap. When you need to create a nonrelocatable memory
area, you should use the UCSD Pascal intrinsics new or
varnew. You can then convert the 16—bit pointer returned by
these intrinsics into a 32—bit address by using the function
absadr.

For reference, here is a list of the ways that a nonrelocatable
block can be created.

o A call to NewPtr creates a nonrelocatable block.
e A call to HLock makes a relocatable block nonrelocatable.

o A call to NewHandle can cause a new block of master pointers
to be allocated. These are put in a nonrelocatable block. The
UCSD Pascal runtime software preallocates a block of 64
master pointers. In order to increase this number you need to
define a new resource file for your program. The example
RMaker input below will allocate 2 master pointer blocks for
a total of 128 master pointers. The GNRL type MSTR
defines the number of master pointer blocks that should be
prellocated.

MY .RSRC ;3 Output file name
APPLPROG ;; Type = APPL, Creator = PROG

INCLUDE UCSD Pascal 1:Empty Program
;; Required resources

TYPE MSTR = GNRL
QO (32)

0002 ;; Allocates 2 master pointer blocks

1200301:05B 5—-21

MACINTOSH INTERFACE Chapter 5

Here is a list of which routines from the memory manager must
be used differently from what is described in Inside Macintosh.

SetGrowZone. You must not install your own grow zone
function for the Application Heap Zone. The Pascal runtime
system already has one. You may, however, use your own grow
zone function in a heap zone of your own creation.

InitApplZone. This routine is not supported, because calling it
will corrupt the UCSD Pascal code and data structures that are
kept in the Application Heap Zone.

SetAppiBase. This routine is not supported, because it will
interfere with Pascal’s use of the Application Heap Zone.

SetApplLimit. This routine is not supported, because the UCSD
Pascal runtime support software automatically adjusts the
Macintosh’s ApplLimit variable for you. Calling this routine will
interfere with Pascal’s use of the Application Heap Zone.

There are two general strategies of memory use that an
application can employ. An application could make use of the
Pascal heap. If so, the program must be especially careful about
use of the Macintosh memory management routines.
Alternatively, an application could avoid use of the Pascal heap
altogether. In this case, the program may use the Macintosh
memory management routines with a little less care than if the
Pascal heap were being used.

There are some special considerations regarding dereferencing a
handle under UCSD Pascal. In particular, there are more ways
that the Memory Manager can be called "behind your back"
when UCSD Pascal code is running. Here is a list of ways that
the memory manager may be called.

5—22 1200301:05B

DIFFERENCES FROM INSIDE MACINTOSH

e Calling a procedure (especially one with local data) can cause
a stack fault, which will result in some memory management
functions being performed. A stack fault can also occur when
using long integers and sets in UCSD Pascal.

e Calling an external procedure or a system intrinsic can cause
a segment fault, which causes a code segment to be read into
memory. This action will result in some memory
management functions being performed.

e Allocating data on the Pascal heap with new or mark can
cause a heap fault, which can result in memory management
functions being performed.

NOTE: Calling a Macintosh ROM routine that is declared as an
in—line procedure or is an external procedure implemented in
assembly language will never cause a stack fault. Thus, it is safe
to pass a dereferenced handle to most ROM routines.

Initialization

This section describes some initialization routines described in
Inside Macintosh that do not need to be called from a UCSD
Pascal program. Some of these routines are not available at all.

InitGraf. InitGraf is not available in the UCSD Pascal interface
to QuickDraw. The operations performed by InitGraf are done
automatically.

FlushEvents. FlushEvents(everyEvent,0) is done by the UCSD
Pascal runtime support initialization code. There is no need to
call FlushEvents in the initialization of your program.

InitDialogs. InitDialogs is done by the UCSD Pascal runtime
support initialization code. You may call InitDialogs yourself if
you want to install a restart procedure in the system.

1200301:05B 5—-23

MACINTOSH INTERFACE Chapter 5

InitFonts. InitFonts is done by the UCSD Pascal runtime
support initialization code. There is no need for your application
to call InitFonts.

InitWindows. InitWindows is done by the UCSD Pascal
runtime support initialization code. You should not call
InitWindows yourself, since it allocates a nonrelocatable block on
the Application Heap Zone.

TEInit. TEInit is done by the UCSD Pascal runtime support
initialization code. You must not call TEInit yourself.

The following calls are made for your program when the "Create
Default Window" option described by Runtime Parameters in
GENERAL OPERATIONS is enabled. In that case, you do not
need to call them.

SetPort. If the "Create Default Window" option (which can be
enabled or disabled by using the utility Set Options) is disabled,
you must call SetPort yourself before using any QuickDraw
routines.

NewWindow. If the "Create Default Window" option is
disabled, you must open a window yourself before you do any
writing to the screen.

InitCursor. If the "Create Default Window" option is turned off
you will need to call InitCursor from your application in order to
reset the cursor to be an arrow.

HideCursor. In order to make the cursor visible, call
ShowCursor.

5—24 1200301:05B

DIFFERENCES FROM INSIDE MACINTOSH

Procedure Parameter Restrictions

Due to the implementation of procedure parameters to the
Macintosh Toolbox, there are some restrictions on their use
beyond what is described in Inside Macintosh. These restrictions
are as follows.

e You may not supply an I/O completion routine to an
asynchronous 1/O call. Instead, you must poll the parameter
block to determine I/O completion.

e You may not implement a vertical retrace procedure.

These restrictions are due to the fact that the implementation of
ProcPtrs will not handle asynchronous calls to an action
procedure.

SPECIFIC TECHNIQUES

This section presents some techniques that will be of use in
writing applications that use the interface units. Some
complicated topics from earlier sections of this chapter were
postponed until this section, because a more thorough discussion
could be accomplished here.

Data Outside the Pointer Range

As discussed above, UCSD Pascal pointers have limited scope. In
particular, they are only able to address memory within the 64K
region that encompasses the Pascal Data Area. When it is
necessary to access some data outside the Pascal Data Area, there
are two ways it may be done.

1200301:05B 5—25

MACINTOSH INTERFACE Chapter 5

1. Copy the data into a Pascal variable. After it is copied into
the Pascal Data Area, it may be examined directly. If it is to
be modified, then the modified copy must be installed by
copying the data back into the original.

2. Access the data in place. Here, modification may be done
directly, although without the help of record field names.
With this method, you must know much more about how
data is represented in the interface units.

The routine absmove is used to move data from one location to
another within Macintosh memory.

Suppose you want to update the grafProcs field of the current
GrafPort. Using method 1, it would be done as follows:

var

GPP: GrafPtr; pointer to a graf port }

GP: GrafPort; will contain copy of grafport record }
b QQP: QDProcs; the graf procedures record }

egin

getPort locate (GPP)) ;

absmove (GPP , locate (GP), s-zeof(GP)),

GP. grafPracs = locste(Q

:bsmove(loc.te(GP) , GPP, s0zeof(GP)),
en

Using method 2, it would be done as follows:

var
GPP: GrafPtr;
QDPP: MacPtr;
QDP QDProcs;
begin
GetPort(locate(GPP)),
QDPP:= locate (QDP
;bsmovo(locate(QDPP),GPP+sizecf(Grachrt)—4,sizeof(QDPP);
end;

5—-26 1200301:05B

SPECIFIC TECHNIQUES

Accessing a Macintosh Operating System Global

Globals may be accessed by manufacturing a pointer to them.
For instance, the global ScrVRes is at location 102H. This word
may be accessed as follows:

var

CopyOfScrVRes: integer;
begin
absmove (268 {102H}, locete (CopyOfScrVRes) ,sizeof (integer));
end;

How to Dereference a Handle Safely

In UCSD Pascal, a handle is dereferenced into a pointer by using
the intrinsic derefhnd. However, you must be somewhat careful
when dereferencing a handle in UCSD Pascal, because there are
some additional places where memory management routines will
be called that may invalidate the dereferenced handle. Memory
management routines are called "behind your back" when Pascal
handles one of its internal faults (stack fault, heap fault or
segment fault).

The following actions may cause a fault to occur:
e Calling a procedure may cause a stack or segment fault.

e Calling a Toolbox interface procedure that is not declared
using the external(...) syntax may cause a stack or segment
fault. Procedures declared with the external(...) syntax will
never cause segment or stack faults. They may, however,
cause relocatable blocks to move.

e Allocating data on the Pascal heap with new or varnew may
cause a heap fault.

If you must dereference a handle across one of the dangerous calls
mentioned above (or across one of the dangerous calls mentioned
in Inside Macintosh), you must work on a copy of the data or use
the Memory Manager procedure HLock to position lock the data.

1200301:05B

w
|
[\
3

MACINTOSH INTERFACE Chapter 5

How to Set Stack Slop

UCSD Pascal operates its stack in an unusual way, by Macintosh
standards. In particular, UCSD Pascal moves the boundary
between the stack and the application heap. Most Macintosh
applications leave this boundary fixed.

In order to detect when the boundary needs to be moved, the
runtime system knows about a "stack slop" value that represents
the minimum distance between the top—of—stack and the top of
the application heap. This stack slop has a minimum size of 2K
(2048) bytes. '

Most of the time, 2Kb of slop is plenty of extra stack space for
calling Macintosh ROM routines. (ROM routines steal stack
space without telling UCSD Pascal or your program.) However,
there are some ROM routines that place an extra burden on stack
space.

If you are going to be calling one of these routines, you should
increase the stack slop by calling the routine SetStackSlop in the
Error _Handling unit. This unit is not in the Pascal Runtime
library, so you will have to make sure its code is available at
runtime by using the user library feature in Set Options, or by
using the Librarian utility to include its code in your application.

Suppose you need 6Kb of stack slop for a portion of your
program. This can be set as follows:

var
default_slop : integer ;

begin
default_slop := GetStackSlop ;

SetStackSlop(6+812 {words});
{ put code that needs large slop factor here }

3et$t.ck$!op(defnult_slop); { restore default slop }
end;

5—28 1200301:05B

SPECIFIC TECHNIQUES

Each separate UCSD Pascal process has its own stack slop. Many
programs do not use processes, so they only need to worry about
one stack slop. If your application uses processes, and you are
doing ToolBox calls from them, be sure that you keep in mind
that different processes have different slop factors. In particular,
the default slop factor for a subsidiary process is forty (40) words.
You set the slop factor for a process by calling SetStackSlop from
within that process.

When your program is started by the UCSD Pascal runtime
support software, it is running as the "main task", and the stack
slop is set to a default value of 5Kb. This amount of slop allows
the Macintosh Operating System to save the screen image bits for
the portion of the screen image that is obscured by "disk swap
boxes." A disk swap box appears when your program or the
runtime support software attempts to access a file on a volume
that is mounted, but not physically present in the appropriate
disk drive. After you supply the requested disk, the Macintosh
Operating System will restore the affected portion of the screen
image, provided there was enough space to save it.

If your program uses the Error _Handling unit to set the stack
slop below the default value of 5Kb, the disk swap boxes will still
appear, but will remain visible on the screen until the next time
your program or the runtime support software calls the Event
Manager routine GetNextEvent. GetNextEvent will fill the
affected area of the screen with the appropriate background
pattern. Usually, you would set the stack slop to less than 5Kb
only if there is a critical need to maximize your program’s
utilization of memory. For example, the UCSD Pascal compiler
sets the stack slop to its minimum value of 2Kb so as to
maximize the capacity of its symbol table.

The SetStackSlop routine will not let you set the stack slop below
the minimum of 2K bytes. (Otherwise your program would
probably crash, as discussed below.) A convenient way to set the
stack slop to its minimum setting, without placing the "magic"
2K byte number in your program is to pass zero (0) for the
argument to SetStackSlop.

1200301:05B 5—29

MACINTOSH INTERFACE Chapter 5

NOTE: Once you set the stack slop below the default setting of
5Kb, the saving of the screen contents underneath disk swap
boxes becomes permanently disabled (i.e. even if you later set the
slop back to 5Kb, disk swap boxes wll continue to remain on the
screen until GetNextEvent is called).

While your application is running as the main task, the
Macintosh’s "stack sniffer" is enabled. The stack sniffer detects
when the stack expands into the Macintosh heap. If your
application gets a stack sniffer error (a "bomb" with ID==28) you
have probably failed to provide enough stack slop to your
application. The stack sniffer is not enabled while you are within
a subsidiary task—you are on your own if you make use of
processes.

Declaring ToolBox Interface Procedures

There may be some instances when you need to use only one or
two procedures from an interface unit. If the declarations of
these procedures in the interface unit ends with an external
then you can declare them yourself. For example, the following
program calls the QuickDraw procedure InitCursor without using
the QuickDraw interface unit.

program doint ;
procedure InitCursor ; external (-22448) ;
begin

nitCursor ;
end.

The above program will compile much faster than the program
below which uses the QuickDraw unit.

program doint ;

Uses {QU Mac Interface}

MacCore,
QD Types,
QuickDraw (InitCursor) ;
begin
nitCursor ;
end.

5-30 1200301:05B

SPECIFIC TECHNIQUES

This technique would be particularly useful if the only procedure
you needed from QuickDraw was the InitCursor procedure, which
uses none of the type declarations found in MacCore or QDTypes.

EXAMPLE APPLICATION

This section presents an entire (although small) Macintosh
application complete with scroll bars, grow box, menu bar and
desk accessories. The source code for this example is located in
the files GROW and GROW.R on the UCSD Pascal 2 disk. In
order to see the application in action you must use RMaker, the
Compiler and the Set Options program as outlined in the
following steps.

1. Use the RMaker utility on GROW.R. This will create the file
GROW.RSRC.

2. Compile GROW. Use GROW.RSRC as the resource input
file.

3. Use the utility Set Options to set the locations of the Pascal
Runtime, p—Machine and Mac Library files. You must
disable the "Create Default Window" option (GROW creates
its own window).

The GROW.Code program puts up a single window in which you
can insert and edit text. The window can be sized and moved.
The text in the window can be scrolled horizontally and
vertically.

You should use the GROW program source as an example of:

1200301:05B 5—-31

MACINTOSH INTERFACE Chapter 5

e the handling of Macintosh events. Notice that window update
events are generated by the Macintosh ROM. The GROW
window is updated as a response to these events.

e the calling conventions for many of the ToolBox procedures.

e the relationship between resources defined in a resource file
and the program code that uses those resources.

In addition the GROW program demonstrates the use of the
ToolBox from UCSD Pascal. For example, in procedure Initialize
the line:

SetRect (locate(DragRect), 4, 24, 508, 338) ;

initializes the rectangle DragRect. The call to locate returns the
32—bit address of DragRect. This address is passed as a
parameter to the SetRect procedure.

In procedure CursorAdjust the line:

if FrMacBoo!l (PtinRect(mousePt.param, locate(TRect)) then

tests to see whether the point specified by mousePt is in the
rectangle specified by TRect. Notice the use of the param field of
the mousePt variable. This field is used to pass the value of
mousePt to the procedure PtlnRect. FrMacBool is used to
convert the Lisa Pascal Boolean, returned by PtlnRect, to the
UCSD Pascal representation of Boolean.

Modifying data outside of the UCSD Pascal Data Area is
demonstrated by the following lines of code from the procedure
GrowWnd.

abs_move (derefhnd (hTE), locate (dummy), sizeof (dummy))
dummy .viewrect := TRect ;
sbs_move (lecnte (dummy), derefhnd (hTE), sizeof (dummy))

5—32 1200301:05B

H

H

EXAMPLE APPLICATION

The above code copies the first part of the text edit record,
pointed to by the handle hTE, to a local variable (dummy).
Dummy is updated and put back into the text edit record.

The use of ToolBox procedure pointers is demonstrated by the
following line of code in procedure DoMouseAction.

tc := TrackControl (whichControl, MouseEvent.where.param,
locete (Scrollup,l)) ;

The procedure Scrollup (declared earlier in the program) is being
passed to the ToolBox procedure TrackControl. Scrollup is
called by TrackControl to scroll the bits of the text edit window.

program Grow;

§ This example program is based on a program of the same name
written by Cary Clark of Macintosh Technical Support. }

$$L-1
Uses §$U UCSD Pascal 2:Mac Interface}
MacCore,
QDTypes,
TBTypes
($types} EvtRecPtr, EventRecord, WindowRecord, WindowPtr,
WindowHandle, TEHandle, TEPtr, TERec),
OsTypes
($types} QElemPtr, QHdrPtr),
MacData
($§vars } Arrow, thePort),
QuickDraw
{procs} SetCursor, SetRect, PtinRect, SetPort, GetPort,
EraseRect, GlobalTolLocal, ClipRect),

EventMgr
(§const} everyevent, mousedown, keydown, autokey, activateEvt,
updateEvt,
{procs} GetMouse, GetNextEvent, StillDown),
WindowMgr

(§const} inDesk, inMenuBar, inContent, inDrag, inGrow, inGoaway,
inSysWindow,
f{procs} GetNewWindow, FrontWindow, DrawGrowlcon, BeginUpdate,
EndUpdate, FindWindow, DragWindow, TrackGoAway, SelectWindow,
InvalRect, SizeWindow, GrowWindow),
MenuMgr
(Itypesi MenuHandle,
procsi InitMenus, GetMenu, AddResMenu, InsertMenu, DrawMenuBar,
MenuKey, MenuSelect, HiliteMenu, Getltem, Enableltem,
Disableltem) ,
ControlMgr
(iconsti inUpButton, inDownButton, inPageUp, inPageDown, inThumb,
types{ ControlHandle, ControlPtr, ControiRecord,
procsi GetNewControl, ShowControl, HideControl, DrawControls,
FindControl, TrackControl, GetCtiValue, SetCtiValue,
TestControl, MoveControi, SizeControl),
TBoxUtils
(§procs} GetCursor, HiWord, LoWord) ,
DeskMgr
(§procs} SystemTask, SystemClick, SystemEdit, OpenDeskAcc),
TextEdit
($§procs} TENew, TEIdie, TEKey, TEActivate, TEDeactivate,
TEUpdate, TEClick, TECut, TECopy, TEPaste, TEScroll) ,

1200301:05B 5—-33

MACINTOSH INTERFACE Chapter 5

OsUtilities
giprocsi Delay);

f$Lt
sonst
applemenu = 1, Menu ID for desk accessory menu }
filemenu = 1000 Menu 1D for my File Menu
edi tmenu = 1801; Menu ID for my Edit Menu
lastmenu = 3; there are 3 menu items
wndwid = 1000; Window ID for theWindow }
ibeamiD = 1, IBeam Cursor 1D
VScrol 11D = 1000; Control ID for Vertical Scrolting }
HScrol 11D = 10071; Control 1D for Horizontal Scrolling §
UnDol! tem = 1; ltem # for UNDO Menu |tem
rar
donefFlag: boolean;
MyMenus: ARRAY [1..lastMenu] OF MenuHandle;
Handles to Menu resources §
GrowRect: Rect; Limits the size of window during grow }
DragRect: Rect; Limits the dragging of the window
wRecord: WindowRecord; The window we operate on
theWindow: WindowPtr A pointer to the window }
tRect: Rect; Rectangle containing Text
hTE: TEHandie; handle to our edit record
ibeamCursor: Handle; Handle to IBeam Cursor System Resource }
VScraoll: ControlHandle; Vertical scrolling control
HScraol l: ControliHandle; Horizontal scrolling control i
TheQrigin: Point; Current Origin in the Window
rrocedure ResizeTRect; forward;
iegment procedure initialize;
ar
drvrtype: OsType; Used to pass parm to AddResMenu §
i integer; a counter
regin

donefFlag:= false;

§ initialize menu manager }
InitMenus;

$ pick up handles to menu resources }
mymenus [1]:= GetMenu(app!eMenu):
mymenus [2]:= GetMenu filemenug;
mymenus [3)]:= GetMenu(editmenu

$ pick up driver nomes of desk accessories }
drvrtype.c:= 'DRV
AddResMenu(mymenus[l] drvrtype.p);

§ insert menus into menu list }
for i:= 1 to lastmenu do
InsertMenu(mymenus[i],8);

DrawMenuBar ;

SetCursor(Arrow);
SetRect}VQca(eédragRect;,4,24,568,338);
SetRect(locate{growRect),108,60,512,302);

theWindow:= GetNewWindow(wndw!D, tocate(wRecord), -1);:
SetPort(thewindow);

{ set text edit window size }
ReSizeTRect;

} set window text font }
wRecord.port. txFont:= 2;

{ Allocate the Edit Record }
RTE:= TENew(locate(tRect),locate(tRect));

§ get I-beam cursor resource }

5—34 ' : ’ 1200301:05B

EXAMPLE APPLICATION

IbeamCursor:= GetCursor(ibeamiD);

§f establish scrolling controls }
vScroll:m= Ge(NewControlgchrolllD, (hewindow;;
hScroll:= GetNewControl(hScroll1D, theWindow
theOrigin.h:= 0,
theOrigin.v:= 9;

end finitiatize};

B

procedure ReSizeTRect:
{ Resets the bounds of the non-control portion of the window. }
begin §ReSizeTRect}
TRect:= wRecord.Port.PortRect;
with TRect do
begin
left:= left + 4; right:= right = 15;
bottom:= bottom - 15;
end;
end;

procedure CursorAdjust;
{ Makes the cursor an I-beam if the mouse is inside the application’s
content portion and an arrow otherwise.
var
mousePt: Point; § Current Mouse Location }
begin
GetMouse(locate(mousePt));
if theWindow = FrontWindow
then
it FrMacBool(PtinRect(mousePt.param, locate(TRect)))
then SetCursor€DeReand(iBeamCursor))
else SetCursor(Arrow);
end;

procedure GrowWnd(where: Point);
var
hw: Longint;
height, width:integer;
cRect: Rect; Rectangle used for movement calics
dummy: Record Dummy Record for updating Textedit record }
destRect:Rect;
viewRect:Rect;
end;
begin

§ Grow the entire window
hw:= GrowWindow(theWindow, where.param, locate(growRect));
height:= HiWord(hw); width:= LoWord(hw);

§ remove scroll bars from update region }
cRect:= wRecord.Port.PortRect;
cRect.left:= cRect.right - 16;
InvalRect(locate(cRect));

cRect:= wRecord.Port.PortRect;
cRect.top:= cRect.bottom - 16;
InvalRect(locate(cRect));

{ now draw the window }
SizeWindow(theWindow,width,height,MacTrue);

{ move the scroll bars }
With wRecord.port.PortRect do
begin

HideControl (vScroll);
MoveControl(vScroll,right=15,top-1);
SizeControl(vScroll,16,bottom—top-13);
ShowControl (vScroll);
HideControl(hScroll);
MoveControl hScroIl.lef(—T,botlom-15;;
SizeControl(hScroll,right—left-13,16
ShowControl (hScroll)

end;

1200301:05B 5—35

MACINTOSH INTERFACE Chapter 5

{ adjust text edit rectangle }

ResizeTRect;

abs move(derefhnd(hTE) locate(dummy) ,sizeof(dummy));
dummy .viewrect:= TRect

abs_move(locate(dummy), derefhnd(hTE) sizeof(dummy)):

§ add scroll bars to update region }
cRect:= wRecord.Port.PortRect;
cRect.left:= cRect.right - 16;
InvalRect(locate(cRect));

cRect:= wRecord.Port.PortRect;
cRect.top:= cRect.bottom - 16;
InvalRect(locate(cRect));

end: §GrowWwnd}

procedure DraowWindow;
Erase the current contents of theWindow and redraw it. 3}
begin
ClipRect(lcco!e(wRecord.porl.portrecl)gz
EraseRect(locate(wRecord.port.portrect))
DrawGrowlcon(theWindow) .
DrawControls(theWindow);
TEUpdate(locate(TRect) hTE);
end;

procedure ScrolliBits;
var
01dOrigin: Point;
dh, dv: integer;

degin
with wRecord do
begin

oldOrigin:= TheOrigin:

TheOrigin.h:= 4OGetCt|Volue§hScrollg;
TheOrigin.v:= 4sGetCtiValue(vScroll
dh:= o0l1dOrigin.h = theOrigin.h;

dv:= 01dOrigin.v — theOrigin.v;
TEScroll(dh,dv,hTE);

end;
and §ScrolIBits};

>rocedure ScrollUp(theControl: ControlHandle; theCode: integer);
>egin
?f theCode = inUpButton
then
begin
SetCtiValue(theControl, GetCtIValue(theControl)=1);
ScrollBits;

end;
:nd;
>rocedure ScrollDown(theControl: ControlHandle; theCode: integer);
regin
if theCode = inDownButton
then
begin
SetCtiValue(theCantrol, GetCtlValue(theControl)+1);
ScroliBits;
end;
'nd;
yrocedure PageScroll(code: integer; theControl: ControlHandle;
amount: integer);
‘ar
pt: Point;
regin
repeat
GetMaouse(locate(pt));
if TestControl(theControl,pt.param) = code
then
begin
SetCtiValue(theControl,GetCtiValue(theControl)+amaount);
ScrollBits;

5—36 ©1200301:05B

-

EXAMPLE APPLICATION

end;
until not FrMacBool(StillDown);
end;

procedure DoCommand(menu_command: Longint);
§ Execute a command from the menu bar. 3

var
theMenu: integer; the menu selected }
thel tem: integer; the item in themenu }
name : String[255]: Name of the desk accessory selected }
refNum: integer; Reference number of the desk accessory }
ticks: Longint;

begin

theMenu:= HiWordEmenu_commondg;
thel tem:= LoWord(menu_command
case theMenu of

B

applemenu:
begin
open Desk Accessory with item’'s name g
Getltem(myMenus[1],theitem, locate(name));
refNum:= OpenDeskAcc(locate(name));
end;

filemenu: doneflag:= true;

editmenu:
process edit command if not System's }
if not FrMacBool(SystemEdit(theltem—1)) then
begin
Delay is used to keep menu lit }
Delay (30, ticks);
Case theltem of
3: TECut(hTE);
4: TECopy(hTE);
5: TEPaste(hTE);
end;
end;

end; fcase}
{ unhilite the menu selected }
HiliteMenu(9);
end; §DoCommand}

procedure DoMouseAction(MouseEvent: EventRecord);

var
code: integer; where mouse was pressed }
whichWindow: WindowPtr; Window where mouse was pressed
mycontrol: integer; Part of control where mouse was pressed 3
whichControl: ControlHandle;} Control where mouse was pressed
te: integer; Code returned by TrackControl }

begin

code:= FindWindow(MouseEvent.where.parom,locate(whichwindow));
case code of

inMenuBar:
DoCommand(MenuSelect(MouseEvent.where.paraom));

inSysWindow:
SystemClick(locate(MouseEvent),whichWindaw);

inDrag:
DragWindow(theWindow, MouseEvent.where.param, locate(dragRect));

inGoAway:
doneflag:=
FrMacBool (TrackGoAway(whichWindow,MouseEvent.where.param));

inGrow:
if theWindow = FrontWindow
then GrowWnd(MouseEvent.where)
else SelectWindow(theWindow);

1200301:05B 5—37

MACINTOSH INTERFACE Chapter 5

inContent
if theWindow <> FrontWindow
then SelectWindow(theWindow)

else
begin
GlobalToLocal(locate(MouseEvent.where));
I'f FrMacBool (PtInRect(MouseEvent.where.param, locate(TRect)))
then
if BAnd(MouseEvent modifiers,512) <> 0
then TEClick(MouseEvent.where.param,MacTrue,hTE)
else TEClick(MouseEvent.where.param,MacFalse, hTE)
else
begin
mycontrol =
FindControl (MouseEvent.where.param, theWindow,
locate(whichcontraol));
Case mycontrol of
inUpButton:
tc:=
TrackControl(whichControl, MouseEvent.where.param,
locate(ScroliUp,1));
inDownButton:
tec: =
TrackControl(whichControl, MouseEvent.where.param,
locate(ScrollDown,1));
inPageUp:
PageScroll(mycontrol, whichcontrol, =10);
inPageDown:
PageScroll(mycontrol, whichcontrol, 10);
inThumb:
begin
tc:=
TrackControl (whichControl, MouseEvent.where.param,
Abs_Nil);
Scrollbits;
end;
end; fcasel
end;
end;

end; jcase}
'nd; {DoMouseActioni

rrocedure CheckEvents;
Handle one event from the event queue. 3

‘ar
myevent: EventRecord;
theChar: Char;
savepor t: GrafPtr;
egin
if FrMacBoo!(GetNextEvent(everyevent, locate(myevent))) then

case myevent.what of
mousedown: DoMouseAction(myEvent);

keydown, autokey:
if theWindow = FrontWindow then
begin
theChar:= Chr(myEvent.message mod 256);
if BAnd(myEvent.modifiers,256) <> ©
then DoCommand(MenuKey(theChar))
else TEKey(theChar , hTE);
end;

activateEvt:
begin
DrowGrowlcon(theWindow);
if Band(myevent.modifiers,1) = 1

5—38 1200301:05B

EXAMPLE APPLICATION

then
begin
SetPort(theWindow);
TEActivate(hTE):
ShOwControlfchroll;;
ShowControl (hScrol!
end
else
begin
TEDeactivate(hTE):
HideControl(chroll;;
HideControl (hScroll
end;

B

end;

updateEvt:

begin
GetPor(§tocote(scveport));
SetPort(theWindow);
BeginUpdate(theWindow);
DrawWindow;
EndUpdate(theWindow);
SetPort(saveport);

end;

end;
end §CheckEventsi;

begin §Grow}
Initialize;

repeat
CursorAdjust; adjust cursor shape to location }
SystemTask; allow desk accessories to run }
TEldlie(hTE): blink insertion point
CheckEvents; check for events
until DonefFlag;
end.

RMAKER Input for the GROW Program

The following text defines the resources used by the GROW
program. The first two lines define the output resource file and
the file type/Creator. The INCLUDE statement pulls in the
resources that are required for all UCSD Pascal programs. The
rest of the text defines resources that are specific to the GROW
program.

GROW.RSRC
APPLPROG

INCLUDE UCSD Pascal 1:Empty Program
TYPE MENU

1
\ia
, 1000
ile

Fil

Quit

1200301:05B 5—39

MACINTOSH INTERFACE

Copy/C
Paste/V

TYPE WIND
, 1000
UCSD Pascal Sample
80 40 300 480
Visible GoAway

(o]

(o)
TYPE CNTL
1000

F
vertical scroill bar
-1 396 236 411
Visible
16
[o}
O BO O
TYPE CNTL

, 1001
horizontal scroll bar
236 -1 261 396
Visible
16

o]
O 80 O

Chapter 5

1200301:05B

6
RMAKER

This chapter describes RMaker, the utility program that is used
to produce resource files for UCSD Pascal programs. The use of
resources is described in Inside Macintosh. The sections of this
chapter are organized as follows:

ABOUT RMAKER describes the function of the RMaker utility.

RMAKER INPUT FILES describes the structure of RMaker

input files, including suggested file naming conventions.

DEFINED RESOURCE TYPES describes the syntax for
predefined resource types. This section will tell you the syntax
for defining menus, dialog boxes, alert boxes and other ToolBox
resources.

CREATING YOUR OWN TYPES describes how you use the
predefined type GNRL to create your own resource types.

USING RMAKER describes how to run the RMaker utility and
how to create resource files for input to the UCSD Pascal
compiler.

1200301:06B 6—1

RMAKER Chapter 6

ABOUT RMAKER

RMaker is the resource compiler supplied with The
MacAdvantage: UCSD Pascal. It is very similar to the
RMaker program in the Lisa Workshop, but some changes have
been made to the syntax. Be careful if you are converting
resource files from one system to the other.

RMaker takes a text file as input, and produces a resource file.
The text file contains an entry for each resource to be defined, as
described in the section DEFINED RESOURCE TYPES. The
input text file also specifies the location and type of the output
resource file.

The output from RMaker can be used as an input to the UCSD
Pascal compiler. The compiler will copy the resources from the
resource file specified to the UCSD Pascal program’s resource
fork. You can also use RMaker to append new resources to the
resource fork of an existing UCSD Pascal program.

RMAKER INPUT FILES

An RMaker input file is a text file, as created using the Editor.
By convention, RMaker input files have the extension .R. If you
follow this convention you will easily be able to tell which text
files on your disk are resource text files.

RMaker ignores all comment lines and blank lines between
resource definitions. It also ignores leading and embedded spaces
(except in lines defined to be strings). Comment lines begin with
an asterisk. To put comments at the end of other RMaker lines,
precede the comment with two consecutive semicolons (;;).

6—2 1200301:06B

RMAKER INPUT FILES

Creating New Resource Files

The first non—blank and non—comment line of the input file
specifies the name of the resource file to be created. The file
should have the extension .RSRC. The line following the file
name should either specify the file type and creator bytes for the
Finder, or be blank. For example, the first two lines below
designate the file NewResFile.Rsrc as the output file. The file is
an application (type APPL) with a creator of PROG. The
standard file type and creator for all UCSD Pascal programs is
"APPLPROG’. If you do not specify the type and creator, they
default to 0 (a null string).

NewResFile.Rsrc

APPLPROG
» The following include statement will read in the
* resources theat are required by all UCSD Pascal programs.

INCLUDE UCSD Pascal 1:Empty Program

» Program specific resources go here

The- RMaker output file NewResFile.Rsrc, created by the above
input file, can be used as input to the UCSD Pascal compiler.

Appending to an Existing Resource File

The other type of resource input file starts with an exclamation
point, followed by the name of the existing resource file that you
wish to change. For example

'MyProgram.Code ;33 must be followed by a blank line.

» New resource definitions go here

tells RMaker to add new resources to the UCSD Pascal program
called MyProgram.Code.

WARNING: You may not follow a file name with a comment
(the above example is illegal.)

1200301:06B 6—3

RMAKER Chapter 6

Include Statements

The rest of the resource input text file consists of INCLUDE
statements and TYPE statements.

INCLUDE statements are used to read in existing resource files.
An INCLUDE statement looks like this:

NewResF i le.Rsrc

APPLPROG
= The following include statement will read in
» the resources that are required by all UCSD Pascal

= programs.
INCLUDE UCSD Pascal 1:Empty Program

« Program specific resources go here

Typically you will use an INCLUDE statement to include the
standard UCSD Pascal resources into a resource file that contains
resources specific to your application program. Standard UCSD
Pascal resources are in the file Empty Program on the disk

UCSD Pascal 1.
Type Statements

TYPE statements consist of the word "TYPE" followed by the
resource type and, below that, one or more resource definitions.
The resource type must be capitalized to match a predefined
resource type.

The following statement creates three resources of type 'STR .

TYPE STR

1
This is = string
Another String

b
Another string resource

6—4 1200301:06B

RMAKER INPUT FILES

It is not necessary for all resources of a given type to be declared
together. However, all resources of a type must have unique
resource ID’s. If you specify a resource ID that is already in use,
the new resource replaces the old one.

A resource definition looks like this:

[resource name] ,resource ID [(resource attribute byte)]
type-specific data

The square brackets indicate that the resource name and resource
attribute bytes are optional. Don’t place these brackets in your
input file. The comma before the resource ID is mandatory.
Attribute byte numbers are given in decimal. Attribute byte
values are defined in the Resource Manager chapter of
Inside Macintosh. The default attribute byte value is 0. Here are
some sample resource definitions:

TYPE STR
NewStr ,4 (32) ;3 32 means resource is purgeable
This resource has a name and an attribute byte!!

28 32) .
This one has only an attribute byte.

KNowstr
This one has only a name (the sttribute byte is 0).

The type—specific data is different for each resource type. As
you have probably guessed, the type specific data for a "STR ’
resource is simply a string. The next section describes the type
specific data for the resource types defined by RMaker.

DEFINED RESOURCE TYPES

RMaker has 11 defined resource types: ALRT, BNDL, CNTL,
DITL, DLOG, FREF, GNRL, MENU, STR , STR# and WIND.
The format of the type—specific data for each type is shown by
example, below. The type GNRL is used to define your own
resource types. It is explained later.

1200301:06B 6—5

RMAKER Chapter 6

Syntax of RMaker Lines

There are just a few general rules that apply to lines read by
RMaker.

e Leading and embedded blanks are ignored, except when
necessary to separate multiple numbers on a line, or when
they are part of a string.

e Blank lines should not be placed inside a resource definition,
unless required (the exceptions are pointed out below).

e Numbers are decimal, unless specified otherwise.
e RMaker is sensitive to line breaks. Thus if a type description

shows four values on a single line, you must put four values
on a single line.

Two special symbols can be used in resource definition<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>