beg”
~
-p L
P

om“

7S
‘m\.. w ”
\ (L) ..m
o = S,
B S £f
M S 8¢
M% P S§
§) G ‘- &
175 A
\.amhhu ”

| %
7S

.1
5577 : k
o
i

__..IlIlllllllllll.l'll.lll.:,_‘Lb



: IRIS Programming Tutorial

FORTRAN Edition
Version 1.0

- ‘ ﬁ% SiliconGraphics

Computer Systems

Document Number 007-1104-010



Technical Publications:

Amy B. W. Smith
Steve Locke
Marcia Allen
Robin Florentine
Susan Luttner
Robert Reimann
Diane Wilford

Technical Marketing:

Mason Woo
Michael J. Clark
Thant Tessman
Vince Uttley

Marketing Communications:
Gail Madison

Cover Design:
Lori Blessen

© Copyright 1986, Silicon Graphics, Inc.
All rights reserved.

This document contains proprietary information of Silicon
Graphics, Inc., and is protected by Federal copyright law.
The information may not be disclosed to third parties or be
copied or duplicated in any form, in whole or in part,
without prior written consent of Silicon Graphics, Inc.

The information in this document is subject to change
without notice.

IRIS Programming Tutorial, FORTRAN Edition
Version 1.0
Document Number 007-1104-010

UNIX is a trademark of AT&T Bell Laboratories.

e B e B B B e B B B L B B B B R B B R




About This Tutorial

This tutorial shows you how to create FORTRAN graphics programs
for your IRIS series 2000 or 3000 workstation. Several on-line
programs accompany this document to make this a hands-on learning
experience. In only one or two hours, you will learn how to write a
simple graphics program. In a few days, you will be able to write
interactive, 3D graphics programs.

What You Need to Get Started

To begin using this tutorial, you need an IRIS series 2000 or 3000
workstation that is up and running. If your system isn’t ready for you
to log in, consult your IRIS Series 3000 Owner’s Guide or IRIS
Workstation Guide, Series 2000.

To get the most out of this tutorial, you need these skills:

e Some knowledge of the structure of the UNIX operating system. If
you don’t know anything about UNIX, read Getting Started with
Your IRIS Workstation.

» A working knowledge of a text editor that runs on your system.
To learn the vi editor, see Getting Started with Your IRIS
Workstation.

e Familiarity with the FORTRAN programming language. Even if
you don’t know FORTRAN, you can still get a lot out of this
tutorial. Eventually, you’ll probably want to consult a FORTRAN
77 textbook such as A Structured Approach to FORTRAN 77
Programming by T. M. R. Ellis.

As you go through the tutorial, keep your IRIS User’s Guide handy. It
contains detailed information about the IRIS Graphics Library.




T




Contents

About This Tutorial
What You Need to Get Started

1 Learning to Program the IRIS
Using the Graphics Library
Understanding the Concepts .

2 The IRIS Window Manager
Logging In to the Tutorial Dlrectory

What Does the Window Manager Do? .

Using mex . .
Introducing .. Wmdow #2 .
Running Programs

Exiting from mex .
Summary

3 Using the Basic Drawing Routines ~ .
Program Template
Setting Up Your First Program
Drawing Points
Drawing Lines
Drawing Rectangles
Drawing Circles
Drawing Arcs .
Drawing Polygons
Text .
Summary

4 Using Color and Display Modes .
Understanding RGB Intensities
Color Maps
Display Modes
Writemasks
Modes and the Window Manager
Summary




5 Interacting with the User
Polling and Queueing
The Program Template ReV|S|ted
Your First Interactive Program .
Running More than One Double Buffered Program
Summary

6 Creating and Manipulating 3D Models .
Building 3D Models . ..
Checking Out All the Angles

" Transforming Coordinate Systems .
Models, Motion, and Matrices
Summary

7 Changing the Point of View
Projection Transformations
Viewing Transformations
More on Matrices
Summary

8 Where to Go from Here
The IRIS Graphics Library
General Graphics References
Advanced Graphics Labs .

75
76
77
81
90
94

95
95
101
106
112
116

117
117
130
134
135

137
137
138
139

- e e e mm e Rm mm M e e mm M MM mm mm R e mm A mm mm em e




1 Learning to Program the IRIS

_ This is a two-part learning process. You need to understand both the
— principles of computer graphics, and how the IRIS Graphics Library
o routines help you apply these principles in your programs.

Using the Graphics Library

This tutorial introduces a simple program that draws a black box. This
program is your template. You write programs by modifying and
o enhancing the template as you learn new concepts and routines. By
o the end of the tutorial, you will have transformed your template into a
— 3D graphics program.

The Graphics Library is your toolbox for building and manipulating
3D models. The IRIS thinks in terms of geometry, so you build
models by specifying points, lines, polygons, and solids, and you
transform models by moving them around in coordinate systems.

The Graphics Library consists of more than 200 routines that vary
greatly in sophistication and functionality. One call to the Graphics
Library produces a point on the screen; another rotates a model in 3D.
The routines fall into four major categories:

e drawing
e color and display
e interaction
e transformation
You will use routines in all four categories as you go through this

tutorial.

Learning to Program the IRIS



Understanding the Concepts

Because computer graphics is so visual, it’s sometimes difficult to
learn the concepts from a 2D, non-interactive, textual description (like
this book). This is why you are encouraged to use the template
described above as you work your way through this tutorial. The text
is accompanied by three other types of on-line learning aids:

o Graphics Labs
e Workshops
o Explorations

All of these learning aids help you learn by doing. Be sure to take
advantage of them.

Graphics Labs are interactive programs. They help you learn more
about a new concept that is introduced in the text. To use a Graphics
Lab, run it and follow the on-line instructions. You can find more
detailed instructions in IRIS User’s Guide, Programming Tutorial
Manual Pages. You have access to the source code for the Graphics
Labs, but it is very complex and it is written in C. You may find this
code useful after you complete the tutorial and move on to advanced
topics. The executable code for Graphics Labs is in the
lusripeopleltutoriallf.graphics/online directory; the source code is in
lusripeopleltutoriallf.graphics/srclonline.

Workshops are also programs. They help you learn to implement a
concept. To use a workshop, read the source code to understand how
it works, then compile and run it. The source code for Workshops is
in /usr/peopleltutoriallf.graphics/src/workshop; executable code is in
lusripeopleltutoriallf.graphics/workshop.

2 IRIS Programming Tutorial

HMHHH"NHHHHF‘!F!F-H—HHHHHHHHH‘HHH




Explorations

Most Explorations are not programs. They are suggestions for further
experimentation with the concepts and routines that you have learned.
To use them, make a copy of the template, rename it, and be creative.
There are a few programs that are also Explorations. They are a
handful of helpful demonstration programs and versions of the
template that the text describes. These programs and the template are
in /usripeopleltutoriallf.graphics/explore. Use this directory to work
on the template.

Learning to Program the IRIS

3






2 The IRIS Window Manager

This chapter shows you how to log in and access the files that you use
during this tutorial, and teaches you how to use the IRIS window
manager, mex.

Logging In to the Tutorial Directory

The starting point for this tutorial is an installed IRIS series 2000 or
3000 workstation, waiting for someone to log in. This is what you
should see on your screen:

r D

IRIS login:
\_ J

To begin the tutorial, type:

tutorf [RETURN

tutorf is a special account set up for the tutorial. When you log in as
tutorf, the current working directory is /usr/people/tutoriallf.graphics.
This directory contains all the sample and demonstration programs
you will need for the tutorial.

The IRIS Window Manager



What Does the Window Manager Do?

When you log in to the futorf account, the IRIS starts up its windowing
system, called mex for Multiple Exposure. mex allows you to run
several graphics programs at once. The images created by the
programs are contained in windows, which you can move around the
screen like pieces of paper on a desktop.

Using mex has several advantages:

¢ You can look at the source code for a program in one window
while running the program in another window.

e You can run two or more UNIX shells at one time. (This means
you can have several windows into the file system at once.)

e You can run two or more versions of a program at the same time in
different windows.

¢ You can keep debugging tools on the screen.

All the programs you write in this tutorial will use the window
manager. Although you need to add special mex code to your
programs, you’ll find mex makes program development faster and
easier.

Note: If you are using an account other than tutorf, or if you are
running the Bourne shell instead of the C shell, you must start up a
modified version of mex to use this tutorial. To do this, type:

whichmex

6 IRIS Programming Tutorial

e e e e e e e e e T i e B e B e s B e B e e B e e e e e R s R e B R e R




Using mex

Right now the only window you see is the console. It is always on the
screen; you cannot delete it, although you can move it, change its
shape, or cover it up with other windows.

In the console window, you are logged in to tutorf. You can execute
UNIX commands from here.

The following sections describe the default user interface for the
window manager.

Communicating with mex

You communicate with mex by pressing the right mouse button. Try
out mex on the console window.

 Move the mouse so the cursor arrow is located somewhere in the
console window.

¢ Press the right mouse button and hold it down.

You see this menu:

Emex=

attach

select

move

reshape

pop

push

kill

This is the window menu. It appears only when you press the right
mouse button while the cursor is located in a window. Each window
offers this menu. When you select an option from this menu, it affects
only the window under the menu.

The IRIS Window Manager



8

o Holding down the right button, move the cursor down the menu.

As you move the cursor, the item it touches is highlighted. Do not
release the button! If you release the mouse button while an item is
highlighted, mex carries out the action. This is called ‘‘selecting’” the
item.

¢ Move the cursor outside the menu. None of the menu items is
highlighted. This means mex won’t do anything when you release
the mouse button.

¢ While the cursor is outside the menu, release the right button.

The menu disappears and nothing else changes.

Moving a Window

Sometimes you don’t want the console to be right in the middle of the
screen. To move it, follow these steps:

e Move the cursor so it is in the console window.
e Press and hold the right mouse button.

e Select ‘‘move’’. To do this, move the cursor down the menu until
““move’’ is highlighted, then release the button.

The cursor changes into an image of four outwardly pointing arrows,
and a red outline appears on the screen. If you move the cursor
around, the red outline moves with it.

e Move the cursor so the red outline is where you want to place the
console window.

e Press the right mouse button again.

The console is redrawn in the red outline. Try moving the console to a
couple of different places on the screen. Note that you can move part
of it off the screen if you want.

IRIS Programming Tutorial

- e e e e mm e mm o mm mm R E R Rm e M mm em em mm e e e




Reshaping a Window

The console takes up most of the real estate on your screen right now,
and it’s almost time to create another window. You can use the
‘“‘reshape’’ option to shrink the console.

 Move the cursor so it is in the console window.

e Hold down the right button and select ‘‘reshape’’.

The cursor now looks like the corner of a window.

e Move the cursor to where you want one of the four corners of the
new window to be.

e Hold down the right mouse button to set that corner. Keep the
button pressed down and move the mouse diagonally to where you
want to place the opposite corner of the console.

¢ Release the mouse button to set this corner.

The reshaped window is drawn between the two new corners that you
set. Try to find out if there are limits to the size of the console
window.

The other menu items are important only when there is more than one
window on the screen, so you will learn about them in the next
section.

The IRIS Window Manager



Introducing ... Window #2

To see how mex really works, you need to open a second window.
You can do this in two ways:

e Run a program that creates a window.

e Use the right mouse button and the main mex menu to create a
window. '

You’ve already seen the menu that appears if you press the right
mouse button when the cursor is located in a window. There is a
second menu that appears when the cursor is outside of a window —
the main mex menu.

e Move the cursor outside the console window.

e Press and hold the right mouse button.

You see this menu:

EZE mex=
attach
new shell:
exit

Do not select ““exit’’! This is explained in the last section of this
chapter.

You can always find this menu by pressing the right mouse button
outside of a window. You use it to attach input to the background
(detach input from all windows), to create new windows, and to stop
using mex; you do not use it to manipulate existing windows.:

e Move the cursor outside the menu and release the mouse button.

Creating a Second Window

Use “‘new shell”’ to create another window.
e Move the cursor so it is outside the console.
e Press the right mouse button.

e Select “‘new shell’’.

10 IRIS Programming Tutorial




The cursor appears as the corner of a window, just as it did when you
reshaped the console.

o Press the right mouse button to set one corner of the new window.
e Move the mouse to where you want the opposite corner to be.
¢ Release the mouse button to set the corner.

Now you’ve got a window just like the console. You will be
reshaping and creating windows a lot. From now on when you go
through the three steps above, think of them as one step: sweeping out
a window.

Does the new window overlap the console? If so, you can try the
““push’ and *‘pop’’ menu items. ‘‘push’’ pushes a window behind all
other windows; ‘‘pop’’ pops a window on top of the others.

e Move the cursor into the new window.
e Press the right mouse button.
e Select “‘push’’.

The console window is redrawn over the new window. Try pushing
and popping the two windows. (If they don’t overlap, reshape or
move one of them so they do.)

Using the Second Window and the Console

When you created a second window, you also started up a new
process. You are logged in to tutorf and you are located in the
lusr/peopleltutoriallf.graphics directory. Note that the two windows
on the screen right now are windows into the same file system. That
is, there is only one tutorf directory. If you make changes to it in one
window, those changes are reflected in the other window.

Now that there are two windows on the screen, you have to specify the
one to which you are directing your input. The border of the window
to which you are attached is highlighted in red. Now you are attached
to the console. Tell mex that you want to direct your input (attach) to

the new window.

The IRIS Window Manager

11



12

¢ Move the cursor into the new window.
e Press the right mouse button.
¢ Select ‘‘select’’.

This pops the new window and directs all input to it. The border of the
window becomes red to show it is the active window. If you had
selected ‘‘attach’’ instead, the input would have been directed to the
new window, but the new window wouldn’t have popped to the top.

To list the files in /usr/peoplel/tutoriallf.graphics, type:

1s [RETORN]

Now list the files in the same directory, but use the console window.
e Move the cursor into the console window.
o Press the right mouse button.
e Select “‘select’.

The border of the window becomes red, and it pops to the top. Type
the command Is in the console window and you see the same listing as
in the new window. (If the listings are different, then you’re not
located in the same directory in both windows. Do a pwd to check.)

Deleting a Window

This new window is interesting, but you don’t need it now. Go ahead

and delete it.
¢ Move the cursor into the new window.
¢ Press the the right mouse button.

e Select “‘kill’’.

IRIS Programming Tutorial




Now you see a new menu, which looks like this:

confirm
Do it. I'm sure

Nah... forgetit.

This new menu protects you if you accidentally select the *‘kill”’
menu item. You can cancel the ‘‘kill’’ request by selecting ‘‘Nah ...
forgetit’’. This time you really mean it.

e Select "Doit. I'm sure".

The second window disappears.

The IRIS Window Manager

13



Running Programs

14

Now try running some programs. Each program written for the
window manager specifies the space it needs on the screen. For
example, a program may need a square space, but it can be any size.
Or a program may need the whole screen. You will learn about these
requests later when you start writing graphics programs.

Running a Graphics Program

If a graphics program requires a specific portion of the screen, the
program automatically creates its own window. Otherwise, you need
to use the mouse to sweep out an area on the screen for the graphics
program.

There is a graphics program called clock in the
lusripeopleltutoriallf.graphics/explore directory. To run it, change
directories so you are in explore, and type:

clock

Since clock doesn’t need a specific area of the screen, the only change
you see on the screen is in the cursor. It now looks like a corner, as it
does when you reshape or create a window.

¢ Move the cursor to the upper right part of the screen.
e Sweep out a small window.

Now you can do all the things you did with the other windows you had
on the screen. Try moving and reshaping the new graphics window.

* Try hiding it underneath the console window.

Running an Interactive Program
You start up an interactive program the same way you started up
clock, above. There is one very important difference:

You must always select ‘‘attach’’ or ‘‘select’’ from the program’s
window menu immediately after you start an interactive program.

IRIS Programming Tutorial




‘When you select “‘attach’ or ““select’’, you direct your input to the
window that contains the program. If you forget to do this, you can
click the mouse and hit the keyboard all day, but the interactive
program will not accept your commands. When you are finished using
the program, you must attach to the console so that it can receive your
input.

Run the program cube.
e Move your cursor into the console window.

e Select ‘‘attach’ or “‘select’’ if the console is not active (if the
border is not highlighted).

e Type:

cube

e Sweep out a window for this program.
e Move your cursor into the new window.
e Select ‘‘attach’’.

o Press the left mouse button and drag the cursor to make the cube
move.

Notice that cube reads the mouse input only when you are attached to
its window.

e Move your cursor into the cube window.

o Select “‘kill’” from the window menu to stop the program.

The IRIS Window Manager

15



Exiting from mex

16

You now know how to interact with the window manager. You’ll find

it especially useful when you start writing programs of your own.

If you want to work outside the window manager, you need to exit
from mex.

e Move the cursor outside all windows.
¢ Press the right mouse button.

e Select “‘exit’’.

e Select ‘Do it. I’'m sure’’.

Now you’ve got a textport on the screen where the console used to be.
The mouse buttons don’t work unless you have a graphics program
running. You can type the name of a graphics program into the
textport and run it. The textport pops up when the program is finished.

You need to have mex running while you use this tutorial. If you are
logged in as tutorf, start mex again by typing:

mex: [RETURH

If you are using the Bourne shell, or doing the tutorial from an account
other than tutorf, type:

whichmex

IRIS Programming Tutorial




Summary

e You communicate with the window manager through the right
mouse button.

e If the cursor is located over a window, the menu that belongs to
that window appears on the screen. This menu shows your options
for manipulating that window.

e If the cursor is not over a window, you see the main mex menu.
You use this menu to open a new window or to exit from mex.

e If you choose the “’kill’’ or ‘‘exit’” menu items, you must confirm
this choice, by selecting ‘‘Do it. I'm sure’’.

e When you run an interactive program, you must always remember
to attach your input to it. Otherwise, the program does not
recognize your input.

e If you exit from mex for any reason, you can start it again by
typing:

mes [RETORH

e To use this tutorial, Bourne shell users and users logged into an
account other than tutorf must type:

whichmex

The IRIS Window Manager 17






3 Using the Basic Drawing Routines

This section introduces you to the basic drawing routines. If you’re
still logged into the tutorf account from the window manager section
— great. Otherwise, go ahead and log in as tfutorf. Make sure you’re
located in the /usr/peopleltutoriallf.graphics directory.

You are going to learn about the IRIS drawing routines that create
these elements:

e points

e lines

rectangles

e circles

e arcs

e polygons

o text
Drawing images is a two-step process:
1. Select a color.

2. Call drawing routines to draw images on the screen in the
color you selected.

Using the Basic Drawing Routines

19



Program Template

20

The FORTRAN code below carries out this basic algorithm:
e initialize the system (set modes and constants)
¢ loop until exit
e draw an image on the screen
e process input from the user to change the image

You will add to this template to draw the elements listed above. This
code is also located in the file
lusripeopleltutoriallf.graphics/explore/template.f.

C —-—————————————————— PROGRAM TEMPLATE —-—————————————————————
C

C The first two lines attach "include files"™ to your program.
C "fgl.h" is a file that contains the IRIS Graphics Library

C routines, along with various useful constants. "fdevice.h"

C defines a set of common input/output devices. You must

C always begin your program and all subroutines with these

C lines. Always type the path names in lower case letters.

SINCLUDE /usr/include/fgl.h
SINCLUDE /usr/include/fdevice.h

C The main section of the program calls three other subroutines
C which are defined below. It is common for the main section
C to loop infinitely. You exit the program by killing the

C graphics window with the right mouse button.

CALL INITIALIZE
CALL DRAWIMAGE

100 CALL CHECKINPUT
GOTO 100

END

IRIS Programming Tutorial

e e e e e e B e A e i e e e e e e B B B T I B T T T




"initialize" sets various graphics modes (which will be
discussed later). Right now, all it does is create a
graphics window. Just before the "winope" routine,

you can set the characteristics of the window. In the

Q000

beginning, all of your programs will use the entire screen.
SUBROUTINE INITIALIZE

$INCLUDE /usr/include/fgl.h
$INCLUDE /usr/include/fdevice.h

INTEGER WINID
CALL PREFPO(0, 1023, 0, 767)
WINID = WINOPE (/NAME OF PROGRAM’, 15)

RETURN
END

"drawimage" is the subroutine you will learn about
in this chapter. It contains the graphics routines
that actually put things on the screen.
The general form of this subroutine is simple:
select a color and draw something
select another color and draw something else
and so on.

QOO 00000000

Right now, this subroutine clears the screen to black.
SUBROUTINE DRAWIMAGE-

$INCLUDE /usr/include/fgl.h
SINCLUDE /usr/include/fdevice.h

CALL COLOR (BLACK)
CALL CLEAR

RETURN
END

Using the Basic Drawing Routines 21



22

"checkinput" checks the event queue to see if anything
has happened (e.g., has a mouse button been pushed or
has the keyboard been touched?). REDRAW is a special
event that the window manager puts in the event queue
to tell the program to redraw the graphics window
(e.g., when another window has been moved so that this
one is now visible). Don’t worry about how this

QOO0

subroutine works for now.
SUBROUTINE CHECKINPUT

$INCLUDE /usr/include/fgl.h
SINCLUDE /usr/include/fdevice.h

INTEGER*2 VAL
IF (QREAD (VAL) .EQ. REDRAW) THEN
CALL RESHAP

ENDIF

RETURN
END

IRIS Programming Tutorial

- -

-

e T T T T T B T T T o T o B e, B T B L T B T I B T




Setting Up Your First Program

Make a copy of the template and call it draw f.
cp template.f draw.f

Then use vi, or the text editor of your choice, to eliminate the lengthy
comments from draw.f.

The only subroutine you need to consider for now is drawimage. In
the template, drawimage does nothing but paint the entire screen
black. However, it does include the first two drawing routines:
color and clear.

Selecting a Color

The color routine specifies the color to use for drawing. The simplest
way to use this routine is to specify one of the eight default colors:
BLACK, RED, GREEN, YELLOW, BLUE, MAGENTA, CYAN, or
WHITE. These constants are set in the include file fgl.h. color
takes one argument, which is either a constant or a color index integer
(color indices are explained in Chapter 4).

In the drawimage section of the template, color uses the color
BLACK. Note that you type the name of the color in all capital
letters, without quotes or spaces.

Clearing the Window

The clear routine paints the window in the current color. In drawf,
it clears the window to black. clear takes no arguments.

One common error is drawing something in the same color as its
background. For example, if you draw a black box on a black
background, it’s not going to show up. Always be certain that the
color you’ve selected for drawing is different from the background

color.
cl

Using the Basic Drawing Routines

23



Drawing Points

24

After the clear routine in drawimage, you’re going to choose a new
color and start drawing some objects. First, try drawing some points.
You can think of a point as one pixel on the screen.

Use pnt2i to draw a point. It takes two integers as arguments: the x
and the y coordinates of a point. Right now your window takes up the
whole screen, so the arguments of pnt2i map directly to screen
coordinates. Remember that the screen measures 0-1023 along the x
axis, and 0-767 along the y axis.

IRIS Screen

767 ~

N y,

1023

0

Edit drawimage so it looks like this:

SUBROUTINE DRAWIMAGE
$INCLUDE /usr/include/fgl.h
$INCLUDE /usr/include/fdevice.h

CALL COLOR (BLACK)
CALL CLEAR

CALL COLOR(RED)
CALL PNT2I (50, 50)

RETURN
END

This program draws a little red dot near the lower left corner of the

screen. The specified coordinate maps directly to a screen coordinate.

This means that the program’s window will take up the whole screen
and hide the console.

IRIS Programming Tutorial

i T e T o S s o B TR P B o B o B s B e I e L L B I e B B N |




Compile draw f. At the system prompt, type:

£77 draw.f -o draw -Zg

(See Getting Started with Your IRIS Workstation and IRIS Graphics
Programming for more information on compiling.)

To run the program, type:

draw

Look carefully for the red dot — it’s small. To stop this program,
press the right mouse button and select “‘kill’’ from the menu.

Try drawing a number of points and setting various colors. Make sure
the coordinates you choose are located on the screen.

It’s tedious to specify the coordinates for each point you want to
display. Try generating a number of points:

SUBROUTINE DRAWIMAGE
SINCLUDE /usr/include/fgl.h
SINCLUDE /usr/include/fdevice.h

INTEGER I
CALL COLOR (BLACK)
CALL CLEAR
CALL COLOR (GREEN)
DO 100, I = 0, 99, 1
CALL PNT2I(10%*I, 5%I)
100 CONTINUE

RETURN
END

Using the Basic Drawing Routines

25



Variations on the Point Routine

Most drawing routines have some variations that you can use to draw
different types of pictures. You can vary three characteristics of the
routines:

o the number of dimensions in which it draws (two or three);

e the type of numbers it uses (floating point numbers, long integers,
or short integers);

e the solidity of the image it draws (outlined or filled).

The pnt (point) routine has six variations that you use to specify
where drawing should take place. To decide which variation to use,
you must make two decisions:

¢ whether to use 2D or 3D

o whether to use floating point numbers, long integers (24-bit), or
short integers (16-bit)

In 3D, you must specify three coordinate components (x, y, and z). In
2D, z defaults to 0 and you have to specify only x and y. For your
early programs, use the 2D versions of drawing routines. The 2D
routines have 2 appended to the end of their names. For example, the
3D version of the routine for drawing a point with floating point
numbers is pnt; the 2D version is pnt2.

Whether you use floating point numbers or long (integer*4) or short
(integer*2) integers depends on the type of data you need for your
applications. Use floating point numbers when you want a high degree
of accuracy. Use long integers when values will take up more than 16
bits; otherwise, use short integers. The long integer version of the
routine ends in the letter i, the short version ends in s. Use long
integers now, since you will be thinking in terms of screen coordinates
(0=x<1023 and 0<y<767).

IRIS Programming Tutorial




You’ve already seen the 2D, long integer version of the point drawing
routine (pnt2i). Here are all six versions:

Routine Example

PNT(x, Vv, 2) CALL PNT(20.0, 10.0, 0.0)

PNTI (%, y, 2) CALL PNTI(20, 10, 0)

PNTS (x, V, 2) CALL PNTS (20, 10, 0)

PNT2 (x, V) CALL PNT2(20.0, 10.0)

PNT2I (x, V) CALL PNT2I (20, 10)
PNT2S(x, V) CALL PNT2S (20, 10)

Using the Basic Drawing Routines 27



Drawing Lines

There are two basic routines for drawing lines:

¢ The move routine sets the beginning location for drawing a line.
It’s like setting down a pen on a piece of paper; no drawing takes

place.

e The draw routine draws a line from the current drawing position
to a new position. It’s like drawing a line with the pen. The draw
routine also updates the current drawing position to the new
position, at the end of the line you’ve drawn (your pen is
positioned at the new location).

MOVE

DRAW

DRAW

Like the pnt routine, move and draw each have six variations:

Routine Example

MOVE (x, Yy, Z) CALL MOVE (20.0, 10.0, 0.0)
MOVEI (X, Yy, 2) CALL MOVEI (20, 10, 0)
MOVES (%, vy, 2Z) CALL MOVES (20, 10, 0)
MOVE2 (x, V) CALL MOVEZ2(20.0, 10.0)
MOVE2I (%X, V) CALL MOVE2I (20, 10)

MOVE2S (2, V) CALL MOVE2S (20, 10)

DRAW(x, vy, z) CALL DRAW(20.0, 10.0, 0.0)
DRAWI (%, vy, z) CALL DRAWI (20, 10, 0)
DRAWS (2, y, 2z) CALL DRAWS (20, 10, 0)
DRAWZ (x, V) CALL DRAW2(20.0, 10.0)
DRAW2I (x, V) CALL DRAW2I (20, 10)

DRAW2S (%X, V) CALL DRAW2S (20, 10)

IRIS Programming Tutorial

B B T o B O o B B T o B B o e A e B O e B R o B A S e e B e B B




Exploration

Try out move and draw in draw.f. First delete the point routines.
Start with a move to set the current drawing position. Then you can

use draw as many times as you want.

To draw a red box, use this drawimage subroutine:

SUBROUTINE DRAWIMAGE
$INCLUDE /usr/include/fgl.h
SINCLUDE /usr/include/fdevice.h

CALL COLOR (BLACK)
CALL CLEAR
CALL COLOR(RED)

c ______________________________________

C Set the pen down at 200, 200.

C ______________________________________
CALL MOVE2I (200, 200)

C ______________________________________

C Draw a line from 200, 200 to 200

CALL DRAW2I (200, 300)
CALL DRAW2I (300, 300)
CALL DRAW2I (300, 200)
CALL DRAW2I (200, 200)

RETURN
END

, 300.

Using the Basic Drawing Routines

29



Changing the Width of Lines

You can vary the thickness of your lines with the linewi (linewidth)
routine. The default thickness of a line is one pixel. linewi takes
only one argument — the number of pixels wide the lines should be.

You call linewi just before the drawing routines that you want it to
affect. To restore the default thickness, call linewi again, and tell it

to make the lines one pixel wide. Edit drawimage so it looks like this:

SUBROUTINE DRAWIMAGE
$INCLUDE /usr/include/fgl.h
$INCLUDE /usr/include/fdevice.h

CALL COLOR (BLACK)
CALL CLEAR
CALL COLOR(RED)

C _____________________________________
C Make the lines 3 pixels wide.
C _____________________________________
CALL LINEWI (3)
CALL MOVE2I (200, 200)
CALL DRAW2I (200, 300)
CALL DRAW2I (300, 300)
C _____________________________________
C Restore the default width (1)
C _____________________________________

CALL LINEWI (1)
CALL DRAW2I (300, 200)
CALL DRAW2I (200, 200)

RETURN
END

30 IRIS Programming Tutorial

e e e e R e e e i e B B T T I T T T B R R T I I




Drawing Rectangles

Using rect, you can draw two types of rectangles:
e outlined rectangles (four lines)
o filled rectangles (solid blocks)

A rectangle is defined by any two opposite corners.

10, 25 40, 25 You can specify this rectangle
either way:

CALL RECTI(10, 10, 40, 25)

10,10 20, 10 CALL RECTI (10, 25, 40, 10)

Because rectangles are two-dimensional shapes, the IRIS assumes that
the z value is zero (0). There are no 3D versions of rect.

Routine Example
o RECT (x1, vyl, x2, vy2) CALL RECT(20.0, 10.0, 300.0, 200.0)
o RECTI (x1, yl, =2, y2) CALL RECTI (20, 10, 300, 200)
B RECTS (x1, v1, x2, y2) CALL RECTS (20, 10, 300, 200)
- RECTF (x1, yl, x2, vy2) CALL RECTF (20.0, 10.0, 300.0, 200.0)
- RECTFI (x1, yl, x2, y2) CALL RECTFI(20, 10, 300, 200)
RECTFS (x1, vl, x2, v2) CALL RECTFS (20, 10, 300, 200)

Here’s drawimage with some rectangle routines:

SUBROUTINE DRAWIMAGE
$INCLUDE /usr/include/fgl.h
SINCLUDE /usr/include/fdevice.h

- CALL COLOR (BLACK)
CALL CLEAR
CALL COLOR(BLUE),
CALL RECTI (300, 300, 500, 500)
CALL RECTFI(500, 500, 600, 800)

RETURN
END

Using the Basic Drawing Routines 31



‘Drawing Circles

Drawing circles is similar to drawing rectangles. The IRIS assumes
that z = 0, and circles can be outlined or filled. You specify the center
point and a radius. You can use floating point numbers, long integers,
or short integers for the arguments.

Routine Example

CIRC(x, y, radius) CALL CIRC(20.0, 20.0, 100.0)
CIRCI(x, vy, radius) CALL CIRCI(20, 20, 100)
CIRCS(x, y, radius) CALL CIRCS (20, 20, 100)
CIRCF(x, vy, radius) CALL CIRCF(20.0, 20.0, 100.0)
CIRCFI (x, y, radius) CALL CIRCFI (20, 20, 100)
CIRCFS(x, y, radius) CALL CIRCEFS (20, 20, 100)

Try this in drawimage:

SUBROUTINE DRAWIMAGE
SINCLUDE /usr/include/fgl.h
SINCLUDE /usr/include/fdevice.h

CALL COLOR (BLACK)
CALL CLEAR

CALL COLOR(RED)
CALL CIRCI(900, 600, 40)
CALL CIRCFI(800, 600, 40)

RETURN
END

32 IRIS Programming Tutorial

e B B B R T B T T T T B B T T B T L B B I B B R T I




Drawing Arcs

Arcs are like circles: two-dimensional, filled and unfilled, specified by

a center point and a radius. However, you also need to specify how
much of an arc you want to draw. To do this, you specify a starting
angle and an ending angle.

The angles for an arc are measured in tenths of a degree, and they are

always integers. Angles are measured from the x-axis in a
counterclockwise direction. The three o’clock position equals zero.
Twelve o’clock is 90 degrees or 900 tenths of a degree.

y
900

/ \450

1800 0

11250 450

To draw two arcs, try this sample subroutine:

SUBROUTINE DRAWIMAGE
$INCLUDE /usr/include/fgl.h
SINCLUDE /usr/include/fdevice.h

CALL COLOR (BLACK)
CALL CLEAR

CALL COLOR (BLUE)
CALL ARCI (200, 100, 100, 0, 500)
CALL ARCFI(500, 100, 100, 900, 1200)

RETURN
END

Using the Basic Drawing Routines

33



Here are the arc routines:

Routine Example

ARC(x, vy, radius, startang, endang) CALL ARC(10.0,10.0,40.0,0,900)
ARCI (x, y, radius, startang, endang) CALL ARCI(10,10,40,0,900)

ARCS (%, vy, radius, startang, endang) CALL ARCS(10,10,40,0,900)

ARCF (x, y, radius, startang, endang) CALL ARCF(10.0,10.0,40.0,0,900)
ARCFT (x, y, radius, startang, endang) CALL ARCFI(10,10,40,0,900)
ARCFS (x, y, radius, startang, endang) CALL ARCFS(10,10,40,0,900)

Exploration

Experiment with different arc routines and different angles. Try

negative angies.

Make a copy of draw.f and call it snow f. Tie together all the routines
you have learned so far to draw this winter scene:

You will have a chance to add to snow.f later, so you may want to

save it.

34 IRIS Programming Tutorial



Shape

Shape - - INFORMATION
Use the LEFT MOUSE to adjust the highlighted
parameter with the CONSOLE controller bar OR
to select a parameter from the status window.

OR use the RIGHT MOUSE for a popup menu.

Shape -- CONTROL BAR

filled polygon
Controller Bar

Shape - - STATUS

CALLPMV2l (200, 200)
CALLPDR2l ( 300, 400)
CALLPDR2I ( 400, 200)
CALL PCLOS

Change directories (cd) to /usr/peopleltutoriallf.graphics/online. To
run the Graphics Lab called shape, type:

shape

You choose several different shapes for it to draw. As it draws a
shape it also displays the routine it is executing. Compare the routines
with what appears on the screen. (Your IRIS must have at least 12
bitplanes to run this Lab.)

Using the Basic Drawing Routines

35



Drawing Polygons

36

As with rectangles, circles, and arcs, there are two types of polygons:
filled and outlined.

Outlined Polygons

A polygon is a closed plane figure with three or more straight sides.
You already know one way to draw an outlined polygon — using
move and draw. Move to the first vertex of the polygon. Draw a line
to the next vertex. Keep drawing lines until you return to the original
vertex.

The poly routine also draws an outlined polygon. It takes two
arguments: the number of vertices in the polygon and the name of the
array that specifies those vertices. poly comes in all the normal
variations: 2D and 3D; floating point number, long integer, and short
integer. Here is a sample routine:

CALL POLY2I (4, PARRAY)

This poses a new problem: how do you set up an array of coordinates?

Setting Up Arrays of Coordinates

First of all, since parray is a variable, you need to declare it at the
beginning of your subroutine. parray contains coordinates which are
one of three types: floating point, long integer, or short integer. When
you declare the array, you use the type definitions real, integer*4,
and integer*2, which are abbreviations for floating point, long
integer and short integer coordinates. You’re using long integers, so
declare parray as integer*4.

You also need to describe the size of the array. It’s going to contain
four points, each of which has two components (x and y). This means
it’s a 4x2 array. You put this information in the declaration line. Note
that you need only specify all the vertices — the IRIS automatically
closes the polygon by connecting the first and last coordinates.

IRIS Programming Tutorial




So, at the beginning of your subroutine, before any of the drawing
routines, declare the array:

INTEGER*4 PARRAY (4, 2)

To make a 3D array, you would instead declare integer*4
parray (4, 3). This tells the IRIS that there are four vertices, each
made up of three components. If the 3D coordinates were floating
point numbers, you would declare real parray(4, 3).

Now you need to load values into the array by setting each element
individually. Edit the drawimage subroutine so it uses an array to
draw a polygon.

SUBROUTINE DRAWIMAGE
S$INCLUDE /usr/include/fgl.h

SINCLUDE /usr/include/fdevice.h

INTEGER*4 PARRAY (4, 2)

C ___________________________________

C The first coordinate is (600, 100).

C ___________________________________
PARRAY (0, 0)=600
PARRAY (0, 1)=100

C ___________________________________

C The second coordinate is (700, 200).

C ___________________________________
~ PARRAY(1, 0)=700
PARRAY (1, 1)=200

C ___________________________________

C The third coordinate is (800, 200).

C ___________________________________

PARRAY (2, 0)=800
PARRAY (2, 1)=200

Using the Basic Drawing Routines

37



38

PARRAY (3, 1)=100

CALL COLOR (BLACK)
CALL CLEAR

CALL COLOR (RED)
CALL POLY2I (4, PARRAY)

RETURN
END

IRIS Programming Tutorial

o T e T O B B B A B O T T B B T T R




Filled Polygons

If you substitute polf2i for poly2i in drawimage, you’ll get a filled
polygon instead of an outlined one. All other steps remain the same.
However, you must be careful to draw only convex filled polygons. In
a convex polygon, when you connect any two vertices with a line, the
line falls entirely within the polygon. If you try to draw a concave
filled polygon, the system may become confused about what is the
inside and what is the outside of the polygon. It might try to fill the
entire screen instead of the interior of the polygon.

convex polygon concave polygon

Another way to draw filled polygons is to use the pmv (polygon move)
and pdr (polygon draw) routines. pmv specifies the first vertex of a
filled polygon. pdr routines specify the remaining vertices (just like
using move and draw for lines). To close the polygon after specifying
all of its vertices, use the pclos (polygon close) routine. Here is an
example:

SUBROUTINE DRAWIMAGE
$INCLUDE /usr/include/fgl.h
$SINCLUDE /usr/include/fdevice.h

CALL COLOR (BLACK)
CALL CLEAR

CALL COLOR (RED)

CALL PMV2I (700, 400)
CALL PDR2I (700, 500)
CALL PDR2I (800, 500)
CALL PDR2I (900, 300)
CALL PCLOS

RETURN
END

Using the Basic Drawing Routines

39



Here are all the polygon routines:

Routine

Example

POLY (n, PARRAY)

POLYI (n,
POLYS (n,
POLY2 (n,
POLY2I (n,
POLY2S (n,

PARRAY)

PARRAY)

PARRAY)
PARRAY)
PARRAY)

CALL POLY (3, PARRAY)

CALL POLYI(3,
CALL POLYS (3,
CALL POLY2(3,
CALL POLY2I (3,
CALL POLY2S (3,

PARRAY)

PARRAY)

PARRAY)
PARRAY)
PARRAY)

POLF (n, PARRAY)

CALL POLF (3, PARRAY)

POLFI(n, PARRAY) CALL POLFI(3, PARRAY)
POLFS (n, PARRAY) CALL POLFS(3, PARRAY)
POLF2 (n, PARRAY) CALL POLF2(3, PARRAY)
POLF2I(n, PARRAY) CALL POLF2I (3, PARRAY)
POLF2S (n, PARRAY) CALL POLF2S (3, PARRAY)

PMV (%X, Yy, z) CALL PMV(20.0, 10.0, 0.0)
PMVI(x, Vv, 2Z) CALL PMVI (20, 10, 0)

PMVS (x, vy, z) CALL PMVS (20, 10, 0)
PMV2(x, Y) CALL PMV2(20.0, 10.0)
PMV2I(x, V) CALL PMV2I (20, 10)

PMV2S (x, V) CALL PMV2S5 (20, 10)

PDR(x, Vy, z) CALL PDR(20.0, 10.0, 0.0)
PDRI (%, vy, Z) CALL PDRI (20, 10, 0)

PDRS (x, vy, 2) CALL PDRS (20, 10, 0)

PDR2 (x, V) CALL PDR2(20.0, 10.0)
PDR2I(x, V) CALL PDR2I (20, 10)

PDR2S (x, y) CALL PDR2S (20, 10)

PCLOS () PCLOS ()

40 IRIS Programming T

utorial

e B B e T T T B B B B T L T I

o mm e mm mm e e




Exploration

If you saved snow f, put a hat on the snowman, and add some
evergreens to the background. Note that both of these shapes look like
concave filled polygons. You can construct the shapes from convex
filled polygons by stacking triangles and rectangles.

Workshop

Look over the code for diamondl f in the
lusripeopleltutoriallf.graphics/src/workshop directory. It draws a
baseball diamond. For now it’s a 2D, non-interactive program. In
cach workshop you will add to this basic program, until it contains all
of the concepts and routines that you learn in this tutorial. The end
result will be a 3D baseball diamond with simulated movement and
perspective.

Using the Basic Drawing Routines 41



Text

42

The IRIS treats text in a graphics port exactly like a picture, so you
draw text on the screen like any other element.

cmov sets the character location.

It comes in the usual variations:

Routine Example

CMOV (x, vy, z) CALL CMOV(20.0, 10.0, 0.0)
CMOVI(x, vy, z) CALL CMOVI (20, 10, 0)
CMOVS (%, Vv, 2z) CALL CMOVS (20, 10, 0)
CMOV2 (x, V) CALL CMOV2(20.0, 10.0)
CMOV2I(x, V) CALL CMOV2I (20, 10)
CMOV2S (%, V) CALL CMOV2S (20, 10)

Use emov2i so that your coordinates match up with the screen

coordinates.

charst draws text on the screen. It takes a character string and the
number of characters in the string as its arguments. After charst
draws the text, the new character location is at the end of the string.

‘\

CALL CMOV2I (300, 200)
CALL CHARST('hello world?,

If you call another CHARST

hello world«g

-

J

IRIS Programming Tutorial

without a CMOV,

the string will start here.

11)

M e M e e M e G MR R M MR R E R R MW mm S m e em em e



To draw text, follow these three steps:

1. Set the color of the text with color. Make sureit’s
different from the background color. (Make the
background blue for this example).

2. Set the character position with emov2i.
3. Draw the text string with charst.

Remove all of the drawing routines from drawimage and add these
text routines.

SUBROUTINE DRAWIMAGE
SINCLUDE /usr/include/fgl.h
SINCLUDE /usr/include/fdevice.h

CALL COLOR (BLUE)
CALL CLEAR

C ________________________________________________

C Set the drawing color to red.

C ________________________________________________
CALL COLOR(RED)

C ________________________________________________

C Move the character position to (300,380).

C ________________________________________________
CALL CMOV2I (300, 380)

C ________________________________________________

C Draw the first string.

C ________________________________________________
CALL CHARST('The first line is drawn ', 24)

C ________________________________________________

C Draw the second string (which starts where the
C first ended).

Using the Basic Drawing Routines

43



44

C Move the character position down 12 pixels and
C back to the beginning of the original line.

RETURN
END

Exploration

Add a tacky billboard to your winter scene in snow.f.

IRIS Programming Tutorial

- em mm s s Gm Sm mE MR AR S MM M MM AR AR S AR M Gm A AR A mm sm em e




Summary

e Make sure you know what the current drawing color is, and that
it’s different from the background color.

e Make sure you give the different variations of the routines the
appropriate arguments.

o Refer to IRIS User’s Guide for lists of all the variations for the
Graphics Library routines.

o Always specify angles in tenths of degrees, so 30 degrees = 300
tenths.

e Don’t use a single array to draw concave, filled polygons. You can
usually construct them from convex, filled polygons.

Using the Basic Drawing Routines

45






4 Using Color and Display Modes

Each time you drew an object in the last chapter, you changed the
values that the IRIS had stored in its image memory. These changes
show up on the screen when the IRIS uses the values to illuminate
screen pixels. This chapter discusses how you store values in the
image memory, and how the IRIS uses those values.

Understanding RGB Intensities

The images that appear on the screen consist of thousands of pixels.
Each pixel on the screen is a cluster of three tiny phosphors. When the
system shoots beams of electrons at the phosphors, they glow for a
moment. One phosphor glows red; one glows green; one glows blue.

G
B
one pixel clectron guns

If the beams don’t shoot any of the three phosphors, the pixel looks
black; it doesn’t glow at all. If they shoot only the blue phosphor, you
see a bright blue dot. If they shoot the red phosphor a little and the
blue phosphor a little, you see a purple dot. And if they shoot all three
phosphors full blast, you see a white dot.

Using Color and Display Modes



48

Each of the three components, red(R), green(G), and blue(B), has 256
possible intensities (0 to 255). 0 tells the hardware not to shoot the
particular phosphor; 255 tells it to shoot the phosphor with full
intensity. You need 8 bits (bitplanes) to represent all 256 (2 8)
intensities. Since you have three phosphors (R, G, and B), and 8 bits
per phosphor, you need 24 bits (3 phosphors x 8 bits) to re}z)zesent all
possible colors for one pixel. This also means you have 2 “* or
roughly 16.8 million colors to choose from.

Exploration

Run the program showmap which is in the
lusripeopleltutorial(f.graphics/explore directory. It shows you all the
colors that the color map contains.

It seems that your image memory needs 24 bitplanes (8 bits for each
R, G, and B) to provide colors for a given pixel. But what if you have
only 12 bitplanes of image memory? Or 87 How can you use the full
range of colors? As it turns out, you don’t need to store 24-bit RGB
values in your image memory. Most people don’t do this, even if they
have the full complement of bitplanes. Instead, they use indices into a
color map.

IRIS Programming Tutorial

e T B B R R e I e e T R R R R e B I T e L I B I I




Color Maps

The IRIS color map is another way to handle color. This map is a
table of 24-bit RGB values. Every 24-bit value has its own index
number. You store the index number in the bitplanes and the IRIS
looks it up in the color map to find out which color to display. If you
have 12 bitplanes, you can put 4096 (2 12y colors in the color map.

image memory

N

i

4]
4
1

1
4]
4]
4

1

111

color map
index | red green  blue
0 0 0 0
1 0 0 255
2 0 255 255
3 255 0 255
4 255 0

The Default Color Map

image displayed
on screen

This table shows the default color map. Instead of using a number as

an argument, you can use a constant (like BLACK or RED).

Index Name Red Green Blue
0 BLACK 0 0 0
1 RED 255 0 0
2 GREEN 0 255 0
3 YELLOW 255 255 0
4 BLUE 0 0 255
5 MAGENTA 255 0 255
6 CYAN 0 255 255
7 WHITE 255 255 255
others unnamed undefined

Using Color and Display Modes

49



Loading the Color Map

You define any of the color map entries (including the original eight)
with the mapcol routine. mapcol takes four arguments: a color map
index (an integer between 0 and 4095), one integer between 0 and 255
for the red value, one integer for green, and one integer for blue.

Try some mapcol routines. Make a copy of the template and call it
color f. Now follow two steps:

1. Setindex 8 of the color map to 150 units of red, 0 units of
green, and 200 units of blue. Edit the initialize
subroutine. After winope in initialize, add this line:

CALL MAPCOL(8, 150, 0, 200)

2. Delete all drawing routines from drawimage, then change
the current color from BLUE (which is color map index 4)
to 8. Now the screen will be cleared to color 8 when you
run the program.

initialize and drawimage should now look like this code:
SUBROUTINE INITIALIZE

SINCLUDE /usr/include/fgl.h
SINCLUDE /usr/include/fdevice.h

INTEGER WINID
CALL PREFPO(0, 1023, 0, 767)
WINID = WINOPE ('COLOR’, 5)

CALL MAPCOL(8, 150, 0, 200)

RETURN
END

SUBROUTINE DRAWIMAGE

$INCLUDE /usr/include/fgl.h
SINCLUDE /usr/include/fdevice.h

50 IRIS Programming Tutorial

e e B B B B e T e T O e T O O e e B B e I I I T B R




CALL COLOR(8)
CALL CLEAR

RETURN
END

Compile and run color f. Before you kill the program, push the color f
window so that you can see the showmap window you created before.
If you look in the bottom row, you can see that entry 8 is now defined.

All the programs you run share the same color map. So, if you change
any entry in the map, programs that use that entry will display a
different color. This is important if you’re writing a number of
programs that run at the same time.

Creating a Color Ramp

Most of the time you don’t need a lot of different colors. It’s more
likely that you’ll need a few different colors, plus a range of shades.

For example, you can create a color ramp that contains several shades
of red.

Use the mapcol routine to load part of the color map with shades of
red. Leave the eight default colors for now. You can load up to 256
shades of pure red. In the example below you’ll load 240 shades of
red into color map indices 8 through 247.

To make the algorithm as simple as possible, make the red RGB
component equal to the color map index. That is, entry 8 is 8-0-0,
entry 9 is 9-0-0, entry 10 is 10-0-0, and so on. Entry 247 is 247-0-0.
All the colors will contain only red components. 8-0-0 looks black on
the screen, so you don’t need to enter any red components less than 8.
247-0-0 isn’t quite the brightest red possible (which is 255-0-0), but
it’s pretty close.

You need to change the initialize subroutine in color f. (These
changes are shown in the code on the next page.)

1. Setup an iterative loop. This lets you create the map with
only one mapcol routine rather than 240 mapcol
routines.

Using Color and Display Modes

51



52

2. Delete the old mapcol routine and create the new
statement listed below.

3. Substitute another color index, like 125, for index 8 in the
color routine in drawimage.

Remember, all this program does is clear the screen to a specified
color. To create a color ramp of reds, edit initialize and drawimage in
color f so they look like the code below.

SUBROUTINE INITIALIZE
$INCLUDE /usr/include/fgl.h
$INCLUDE /usr/include/fdevice.h

C ___________________________________________________
C Declare i as an integer variable.
C ___________________________________________________
INTEGER WINID, I
CALL PREFPO(0, 1023, 0, 767)
WINID = WINOPE ('COLOR’, 5)
C __________________________________________________

C Load color map locations 8-247 with RGB values
C of increasing red intensity.

DO 100, I = 8, 247, 1
CALL MAPCOL(I, I, 0, 0)
100 CONTINUE

RETURN
END

SUBROUTINE DRAWIMAGE
$INCLUDE /usr/include/fgl.h
SINCLUDE /usr/include/fdevice.h

IRIS Programming Tutorial

M- e w e e e




CALL COLOR(125)
CALL CLEAR

RETURN
END

Compile and run color f. Your screen turns dark red. Use the right
mouse button to bring up the window menu, and push the color.f
window behind the console and the showmap window. showmap
displays your new colors. Remember, all the programs you run share
the same color map. So, when you change the color map in color f,
showmap reflects those changes.

Move the cursor over the red part of the screen again and kill color f.

Exploration

Now you can use some routines from the previous chapter to display
your color ramp. Make a copy of color.f and call it sunset.f.

Try to draw a sunset with the shades of red. Use an iterative loop to
increase gradually the size of your arcs and decrease the brightness of
the color.

Also, look over the program ramp.fin
lusripeopleltutoriallf.graphics/explore. It creates the red color ramp
and displays each different shade in a 20x20 pixel box that is labeled
with each shade’s color map index. Run it and take a look at the
result.

Workshop

Look over colored? f in the
lusrlpeopleltutoriallf.graphics/srciworkshop directory. It adds some
life to the baseball diamond.

Using Color and Display Modes

53



Display Modes

54

The IRIS uses its image memory in two ways: to store color and
image information, and to display color images. This means the IRIS
often writes new values into the bitplanes at the same time that it uses
those values to display images. It can’t actually do both things at once
— the IRIS first stores the new values, then displays them. This slight
time lag sometimes results in flickering or half-drawn images.

This is a problem mainly in programs that simulate motion, because
they involve a lot of rapid redrawing and updating of images.
Fortunately, the IRIS offers a good solution — double buffer mode.

Double Buffer Mode
Here’s the basic concept:
¢ Divide your ifnage memory (your bitplanes) in half.

o Tell the hardware to display whatever image is stored in one half,
while you write values for a new image in the other half.

e When the new image is complete, tell the IRIS to swap halves, or
buffers — that is, tell it to display the new image and start
updating the information contained in the other half.

e Create and swap again, and again, and again.

IRIS Programming Tutorial




Graphics
Lab
L Buffer

- Buffer - - INFORMATION ==

’ Use the RIGHT MOUSE button to:

1. Animate the scene with double buffering.
2. Animate the scene with a single buffer.
3. Exit the program.

Buffer - - Animated Scene

Run buffer to see how much better things look in double buffer mode
. — no flashing. (Your IRIS must have at least 12 bitplanes to run this
o Lab.)

.- Double buffer mode improves the quality of your images, but it also
imposes some limitations. If you have only eight bitplanes, each of
your buffers uses only four bitplanes. This means that in double
buffer mode the color map can store only 16 colors.

- Using Color and Display Modes 55



56

Using Double Buffering

When you use double buffering, you suddenly have two buffers — the
Jfront buffer and the back buffer. The IRIS lets you draw into either,
neither, or both of these buffers.

frontb (.TRUE.) means the front buffer stores color indices when you
call drawing routines. frontb (.FALSE.) means the front buffer
doesn’t store anything. backbu(.TRUE.) and backbu (.FALSE.)
work the same way. The defaultis £rontb(.FALSE.) and

backbu (.TRUE.). The front buffer is the one that the system displays
on the screen, so you usually write to (draw in) the backbuffer.

When the new image is completely drawn, you swap buffers with
swapbu (no arguments). The new image in the back buffer is put into
the front buffer and the old image in the front buffer is put in the back
buffer. (Actually, swapbu doesn’t move the buffers; it switches the
labels of the buffers.) You continue to store new values in the back
buffer until you are ready to swap again.

IRIS Programming Tutorial

- mm e mm mm mm mm mm R mm mm e mm MM R AR Em Em Em Am Em Rm mm R e e e




Graphics
Lab

Swap - - INFORMATION

Use LEFT MOUSE button to select | clear enabled buffer(s)
an action from the console window draw new object into enabled buffer
CALL SWAPBU

exit program

CALL FRONTB(.TRUE.)
Swap--SCREENVEW Ss|s———————— CALL FRONTB(FALSE)

CALL BACKBU(TRUE)
CALL BACKBU(FALSE.

Swap - - BUFFERS

Run swap. It shows you which images are displayed and where values
are written depending on which buffer is enabled. (Your IRIS must
have at least 12 bitplanes to run this Lab.)

If you double buffered color f now, it wouldn’t look very different
because color fis static. First add some motion to it, then double
buffer it to improve the quality of the moving image.

Make a copy of color.f and call it motion.f. motion.f will draw a red
ball that flies over a stationary blue rectangle. Edit initialize and
drawimage so they look like the code on the next page.

Using Color and Display Modes 57



58

SUBROUTINE INITIALIZE
SINCLUDE /usr/include/fgl.h
$SINCLUDE /usr/include/fdevice.h

INTEGER WINID, I

CALL PREFPO(0, 1023, 0, 767)
WINID = WINOPE ('MOTION’, 6)

C Make color index 12 contain 200 units
C of red.
CALL MAPCOL (12, 200, 0, 0)

RETURN
END

SUBROUTINE DRAWIMAGE
SINCLUDE /usr/include/fgl.h
SINCLUDE /usr/include/fdevice.h

INTEGER J

DO 100, J = 0, 399, 3

CALL COLOR(0)
CALL CLEAR

C Draw a solid blue rectangle (color index 4)
C at this position.

CALL COLOR (4)
CALL RECTFI(100,100, 250,400)

IRIS Programming Tutorial

-

SR R e R R G e M M M R Am M e MM M M MR M mE e e e We em e



C Draw a red ball (color index 12) at
C position j, 7J.

C ___________________________________________
CALL COLOR(12)
CALL CIRCFI(J, J, 20)
100 CONTINUE
RETURN
END

Compile and run motion.f. You can eliminate all of this flashing by
double buffering this program.

Make a copy of motion.f and call it dbuf,f. To double buffer dbuff,
follow three steps:

1. Turn on double buffer mode with double, and tell the
system to put this mode routine into effect with gconfi.

2. Clear the front buffer to black.

3. Tell dbuf fto swap buffers after it draws each image by
using swapbu.

Edit dbuf f so it looks like this:

$INCLUDE /usr/include/fgl.h
SINCLUDE /usr/include/fdevice.h

CALL INITIALIZE
CALL DRAWIMAGE

100 CALL CHECKINPUT
GOTO 100

END

Using Color and Display Modes

59



SUBROUTINE INITIALIZE
S$INCLUDE /usr/include/fgl.h
SINCLUDE /usr/include/fdevice.h

INTEGER WINID

CALL PREFPO(0, 1023, 0, 767)
WINID = WINOPE ('DBUF’, 4)
CALL MAPCOL(12, 200, 0, 0)

C Declare double buffer mode, and tell the
C system to start it. This enables only
C the back buffer.

C ___________________________________________
CALL DOUBLE
CALL GCONFI
C ___________________________________________
C Enable the front buffer and clear it to
C black (color 0). Then disable it so the
C program will write to only the back buffer
C the first time it draws an image.
C ___________________________________________

CALL FRONTB(.TRUE.)
CALL COLOR(0)

CALL CLEAR

CALL FRONTB(.FALSE.)

RETURN
END

SUBROUTINE DRAWIMAGE
SINCLUDE /usr/include/fgl.h

SINCLUDE /usr/include/fdevice.h

INTEGER J

60 IRIS Programming Tutorial




DO 200, J = 0,399,3
CALL COLOR(0)
CALL CLEAR

. CALL COLOR (4)

CALL RECTFI (100, 100, 250, 400)
CALL COLOR (12)
CALL CIRCFI(J, J, 20)

v C Swap buffers after both images have been
— C drawn.

CALL SWAPBU
200 CONTINUE

RETURN
END

SUBROUTINE CHECKINPUT
$INCLUDE /usr/include/fgl.h
SINCLUDE /usr/include/fdevice.h
INTEGER*2 VAL
IF (QREAD (VAL) .EQ. REDRAW) THEN
CALL RESHAP

ENDIF

RETURN
END

Compile and run dbuf to see how much better it looks than motion.

Workshop

Look over double3 f. Because this program now has motion, you
should double buffer it.

Using Color and Display Modes

61



Writemasks

You can avoid a lot of time-consuming, complex redrawing if you use
writemasks. To understand how writemasks work, you need to
understand how the IRIS uses bitplanes to store information about
color. For now, assume that you are using single buffer mode.

Bits, Bitplanes, and Binaries

Behind each pixel on your screen there are several bits that hold the
color index value for the pixel. If you have 12 bitplanes in your IRIS,
then there are 12 bits devoted to each pixel. Since you are dealing with
bitplanes, it is helpful to think of color indices as binary numbers.
Each digit corresponds to one bitplane.

For example, color number 4095 is expressed in binary as
111111111111. So, to display color number 4095, you need to have
twelve bitplanes (one for each digit). If you want to display color 3
(11 in binary), you need only two bitplanes.

bitplanes
The term first bitplane corresponds to the bit that holds the right most
digit (the first-order digit) in the binary.

100000000001

12 11 10 9 8 7 6 5 4 3 1

bitplanes

62 IRIS Programming Tutorial



For this discussion, assume that you have only three bitplanes. You’ll
learn the implications of having more bitplanes at the end of this
section.

Every time you change the color of a pixel, you give the pixel a new
color index value; that is, you change the values stored in the bits that
keep track of that pixel. So, if the present value of the pixel is 000, the
IRIS needs to change (write to) only the first two bitplanes to produce
color 3 (011). However, if the present value is 4 (100), the IRIS must
change all three bitplanes to produce color 3. If it changed only the
first two bitplanes, you would see color 7 (111). Bitplane three would
retain its value, while bitplanes one and two stored the new values.

By default, the IRIS writes to all bitplanes whenever you specify a
new color for a pixel. This way, you don’t see an unexpected color
(like color 111, above). However, there may be times when you don’t
want to write to all bitplanes. The device you use is a writemask.

A writemask is a binary number that tells the IRIS which bitplanes it
can and cannot write to. A zero (0) means don’t write to this bitplane;
a one (1) means do write to it. The default writemask has a 1 in each
position, meaning write to all bitplanes. For this three-bitplane
example, the default writemask is 7 (111). When you choose a new
writemask, it replaces the default values.

Using Color and Display Modes

63



A writemask of 2 (010) tells the IRIS that bitplanes one and three are
protected; that is, that the IRIS cannot change the values that are
stored in those bitplanes. It also tells the IRIS that bitplane two is
enabled, which means it can write to it (change its value).

Here’s what happens if you use a writemask of 2 (010) in the example
above.

You want to display the color 3 (011).
The writemask is set to 2 (010).

The current value in the bitplanes is 4 (100).

Eal e

The IRIS checks the current value and the writemask. To

display color 3 it would have to change all three bitplanes.

Bitplanes one and three are protected, so the IRIS can’t
change their values. Bitplane two is enabled, so the IRIS
can change its value. The color it finally displays is color
6 (110).

desired new color 011 |— Please put these values in
bitplanes 1 through 3.

writemask 010 [ Sorry, bitplanes 1 and
3 are protected.

existing color 100

110 ——1 have to display the protected
values in bitplanes 1 and 3, plus
the new value in bitplane 2.

displayed color

64 IRIS Programming Tutorial




Graphics
Lab

Writemask

Writemask - - INFORMATION =S=SsSsSsmsms==———=—ux=-—=x | Writemask - - CONSOLE ===

Use the LEFT MOUSE button to: 3 clear drawing area
1. Choose an action from the menu. ] - -
2. Alter the binary color or writemask. | clear using writemask
3. Choose the color from the palette. i additive color map
4. Paint circles into the paint area.

overlay color map

draw color bars

Writemask - - PAINT AREA exit program

color 7
writemask 7

writes:

Palette

Osort [ 7 11
O200 [ s 110
1ot [ s 101
O oo0 [ 4 100

Run writemask to learn how the writemask affects the color that is
displayed. Ignore the ‘‘additive color map’’ menu item for now.
(Your IRIS must have at least 20 bitplanes to run this Lab.)

“Using Color and Display Modes

65



66

Why Use Writemasks?

It may seem that writemasks only make life difficult. The relationship
between writemasks and color is a little tricky, but writemasks are
extremely valuable.

For example, say you are writing a program where there is a constant
background (like a baseball diamond), and you want to make an object
(a ball) seem to move over the diamond. One way to do this is to
redraw the entire picture several times with the ball in a slightly
different position. But wouldn’t it be great (and faster) if you needed
only to redraw the ball in its new position, and never redraw the
diamond? Here’s where writemasks come in handy.

You use a writemask to protect the bitplanes that store the color
indices of a stable image (the diamond). Then, you use the enabled
bitplanes to store the color indices for another image (the ball). When
the ball is displayed over the diamond, the enabled bitplanes (for the
ball) change — not the protected ones (for the diamond). When the
ball moves on to a new position, the color indices for the diamond at
the ball’s old position are still intact, so you don’t have to redraw the
diamond.

Here’s how to set up a writemask for the baseball example. To make
this example more realistic, assume that you have eight bitplanes.

1. Youneed to make a writemask to protect the bitplanes
that store all of the colors that make up the diamond. The
diamond has grass of color 8 (00001000), fences of color
9 (00001001), and an outfield of color 0 (00000000).
Your writemask must protect bitplanes one through four.
A writemask of 16 (00010000) will do the trick. There are
several others you could choose, such as 240 (11110000),
depending on how many enabled bitplanes you need. For
now, use a writemask of 16.

2. For the ball, you must select a color index that can be
stored in the fifth bitplane, since it is the only bitplane you
can change. Assign the ball a color index of 16
(00010000).

IRIS Programming Tutorial




Here’s the tricky part. Remember, although you cannot
write to the protected bitplanes, the values that are stored
in them will affect the color of the ball. You assigned the
ball the color index 16 (00010000), and you have a
writemask of 16 (00010000) protecting the first four and
last three bitplanes. What happens when the ball is
displayed over the diamond (color 00001000)? The ball
is displayed in color 24 (00011000). Then when it passes
over the fence (color 00001001), it is displayed in color
25 (00011001). Finally, when the ball reaches the outfield
(color 00000000), it is color 16 (00010000).

chosen color index
for baseball 00010000
writemask 00010000
color indices for 00000000
diamond 00001000
| - 00001001
all possible color 00010000
indices for baseball 00011000
00011001

This is a problem, because baseballs don’t generally change to three
different colors like this. To make sure the ball stays the same color
no matter where it is on the screen, you must:

1.

calculate all possible colors that appear when you mix the
ball’s color index with the protected indices. In this case
they are the colors whose indices are 16, 24, and 25 (see
above).

Using Color and Display Modes

67



68

2. load the color map so that all of the possible color indices
for the ball (16, 24, and 25) point to the same RGB value,
that is, the same color.

Index RGB (color)
0 black
8 green
9 white
16 orange
24 orange
25 orange

The workshop below illustrates how this example works.

Workshop

Look over the code for overlay4.f. Notice that you turn off the
writemask with the routine writem($FFF).

Using a Writemask

Make a copy of dbuf'f and call it write.f. Since the blue rectangle
never moves, you can draw it only once and protect it with a

writemask. The black background is index number zero (000000), and

the blue rectangle is index number four (000100). These colors use
the first three bitplanes. A writemask of 8 (001000) will protect them.

IRIS Programming Tutorial

= mm e R o mm mm M e W m em em em e mm e

[N WM WS AR R e e




Remember, the ball is color 12 (001100). It travels over both blue and
black areas. If you protect the first three bitplanes after you draw the
rectangle and the background, those bitplanes will contain either
000100 or 000000. When the ball travels over a blue area, the IRIS
displays color 12 (001100). When it travels over a black area, the
IRIS displays color 8 (001000).

ball 001100
writemask 001000
background 000000
blue rectangle 000100
ball over background 001000
ball over rectangle 001100

This means you must make color 8 the same as color 12 so the ball is
always displayed in the same color. Editinitialize and drawimage so
they look like this:

SUBROUTINE INITIALIZE
$INCLUDE /usr/include/fgl.h
SINCLUDE /usr/include/fdevice.h

INTEGER WINID, I

CALL PREFPO(0, 1023, 0, 767)

WINID = WINOPE ('WRITE', 5)

CALL MAPCOL (12, 200, 0, 0)

CALL MAPCOL(8, 200, 0, 0)

Using Color and Display Modes

69



70

CALL
CALL

CALL

DOUBLE
GCONF'I

FRONTB (.TRUE.)

CALL COLOR (BLACK)
CALL CLEAR

CALL FRONTB(.FALSE.)
RETURN

END

SUBROUTINE DRAWIMAGE
$INCLUDE /usr/include/fgl.h
SINCLUDE /usr/include/fdevice.h

INTEGER J
c ___________________________________________
C Draw the rectangle into both buffers.
C ___________________________________________
CALL FRONTB(.TRUE.)
CALL COLOR(4)
CALL RECTFI (100, 100, 250, 400)
CALL FRONTB(.FALSE.)
C ___________________________________________
C Protect bitplanes 1-3 with a writemask of 8.
C ___________________________________________
CALL WRITEM(8)

DO 200, J =0, 399, 3

CALL COLOR(O0)
CALL CLEAR

CALL COLOR(12)
CALL CIRCFI(J, J, 20)

CALL SWAPBU

200 CONTINUE

IRIS Programming Tutorial

=

L T T L T T T T T T s T T T B B o T e B e T B o I




CALL WRITEM ($FFF)

RETURN
END

Compile and run write. It looks just like dbuf. Try some different
writemasks and see what happens.

Using Color and Display Modes 71



Modes and the Window Manager

72

Color, double buffering, and writemasks affect the way you use the
window manager, mex. Pop-up menus are like the baseball — they
are another kind of overlay. When you use mex, the last two bitplanes
are reserved for pop-up menus. This has two implications:

¢ You have fewer colors available for drawing your images.

¢ You can use only three different colors for the pop-up menus and
the cursor.

Also, when you use double buffer mode, the window manager needs
four bitplanes (two for each buffer). This further reduces the number
of bitplanes in which you can store information about your images.

IRIS Programming Tutorial

e e T e e e e e e B e e e e e e e e e e e B e B e B e e B e B




Summary

o There are 256 possible intensities for each of the three basic colors
(red, green, and blue).

e The IRIS color map stores 24-bit colors so your bitplanes don’t
have to.

e Programs that are running simultaneously share the same color
map.

¢ Double buffering smooths motion, and solves the problem of half
drawn images. However, it also cuts the number of bitplanes
available for storing image information in half.

e Writemasks help you avoid extra redrawing of stationary images.

o mex takes up two full bitplanes in single buffer mode, and four in
double buffer mode.

Using Color and Display Modes

73



e T S




5 Interacting with the User

At the beginning of the tutorial you learned that interactivity can be an
important feature of graphics programs. A user gives input to the
program, and the program uses it to create a new image. The user can
interact through a number of different devices:

the keyboard

the mouse

a light pen

a dial and button box

a digitizer tablet

The input can be of three types:

¢ Aninteger value. For example, the mouse inputs two values: the
horizontal and vertical positioning of the cursor. All devices that
input integer values are called valuators.

* Alogical (true/false) value. For example, the mouse buttons give
logical input — they are either down or up (true or false). All
devices that input logical values are called buttons.

o An ASCII character. This type of input comes from the keyboard.
Each key has a different value.

Interacting with the User 75



Polling and Quéueing

76

- Your pfogram can handle input from the user in two ways: by polling

and queueing. To poll an input device, you include a routine in your
program that checks the current state of the device. For example, your
program may be running and suddenly you want to know if the right
mouse button is being pressed. So, you include a routine that returns
the value of the right mouse button (TRUE. = pressed; .FALSE. = not
pressed). Or, you may want to know where the cursor is located, so
you include a routine that returns the x and y coordinates of the cursor.

You should always be aware of one important fact: the system ignores
any input that the user gives before the program polls. The user may
have been moving the cursor and clicking buttons for minutes, but the
only location that the program knows about is the one at the time of
polling.

Queueing, on the other hand, saves input from the user in an event
queue until your program is ready to deal with it. To use queueing in
your programs, you first set up an event queue by telling the program
which input devices to recognize. These input devices are now called
queued devices. Whenever the user changes the state of a queued
device, an entry is made in the event queue. For example, if you queue
the keyboard, an entry appears in the event queue whenever a key is
pressed. When the program is ready, it reads the event queue and
processes the events that have occurred. In this case, the program
reads all the keys that have been pressed, and performs a different
function for each key.

To summarize, there are three types of input: valuators, buttons, and
the keyboard. And, there are two ways your program can handle
input: polling and queueing. Most of this chapter concentrates on
queueing, but the workshop below shows a good example of polling.

Look over poll5 f. It uses the getbut routine to determine where the
cursor is.

IRIS Programming Tutorial




The Program Template Revisited

Take a look at the template again. You need to change it so it can
handle input from the user. The major difference is that checkinput
will now be called processinput. All of the changes are in this
subroutine (except for the one line in the main program that calls it).
Make a copy of template.f and call it template2 f. Edit it so it looks
like this code.

SINCLUDE /usr/include/fgl.h
SINCLUDE /usr/include/fdevice.h

CALL INITIALIZE
CALL DRAWIMAGE

100 CALL PROCESSINPUT
GOTO 100

END

SUBROQUTINE INITIALIZE
SINCLUDE /usr/include/fgl.h
SINCLUDE /usr/include/fdevice.h

INTEGER WINID
CALL PREFPO(0, 1023, 0, 767)
WINID = WINOPE (' TEMPLATE2', 9)

RETURN
END

SUBROUTINE PROCESSINPUT
$INCLUDE /usr/include/fgl.h
SINCLUDE /usr/include/fdevice.h

INTEGER*2 VAL

IF (QREAD (VAL) .EQ. REDRAW) THEN

Interacting with the User

77



78

CALL RESHAP
CALL DRAWIMAGE
ENDIF

RETURN
END

SUBROUTINE DRAWIMAGE
$INCLUDE /usr/include/fgl.h
SINCLUDE /usr/include/fdevice.h

CALL COLOR (BLACK)
CALL CLEAR

RETURN
END

Remember, the basic algorithm is a loop that:
1. draws an image and then processes input

2. draws a new image based on that input and then processes
new input

You’ve already learned about what you can do with the drawimage
subroutine. Now take a look at processinput.

Right now, processinput does only one thing: it checks to see if the
window manager says the image should be redrawn. The window has
to be redrawn if you move or reshape it, or if another window covers it
up. The first window may have to be redrawn if you move the other
window.

Any program that runs under the window manager must look at the
event queue. The window manager uses the queue to tell the program
when to redraw a window. It does this by putting a special token
(REDRAW) in the queue. If your program doesn’t look at its event
queue, nothing happens. In this case, if you moved your window, it
wouldn’t be redrawn in the new position. So, at the very least,
processinput needs to check the event queue for the REDRAW token.

IRIS Programming Tutorial




The key routine in processinput is qread. When you call gread, it
returns the device number of the first entry in the event queue. (Each
input device is assigned a number.) After qread reads an entry, it
removes the entry from the queue. However, if there is nothing in the
event queue, the program waits in the qread routine. This means
your program won’t do a thing until something is put into the queue.

This is how the REDRAW token fits in when you run your program.
1. drawimage draws an image in the window.

2. Your program calls processinput. The program waits
there until the window manager says the window needs to
be redrawn.

3. If you move or reshape the window, an entry is made in
the event queue.

4. gread returns a device number, which is equal to the
value of REDRAW.

5. This sends the program into the REDRAW case. The
window is redrawn.

6. The program executes drawimage. A new image is drawn
in the new window, the program calls processinput, and
waits for another notice to redraw.

Another important element is the variable val. Every entry in the
event queue has two parts: the device number which is returned by
gread, and some value that is associated with the device. This
associated value is stored in val, a short integer.

Note that the template doesn’t seem to do anything with the value
from the REDRAW entry. This is because it is a special token unique
to the window manager. Even though the program doesn’t use val for
REDRAW, you still need to declare the variable. The val of other
types of entries is very important. For example, if you queue the
keyboard, val tells the program which key was pressed.

Interacting with the User

79



Queue - - INFORMATION

Graphics
Lab

Queue

With the LEFT MOUSE, select an action

from the console menu OR press queued devices

(buttons) to put events on the queue.

See IRIS USER'S GUIDE Appendix A for a list

of queueable devices.

Queue -- VARIABLES ===

devis [0 ]
val is E):I

Queue - - CONSOLE

CALL QDEVIC (RIGHTM)
CALL QDEVIC (MIDDLE)
CALL QDEVIC (LEFTSH)
CALL QDEVIC (RIGHTS)
CALL QDEVIC (AKEY)
CALLQDEVIC (BKEY)
CALL QDEVIC (CKEY)

CALL TIE (RIGHTM,MOUSEX,MOUSEY)
CALL TIE (RIGHTM, 0, 0)

DEV = QREAD(VAL)
ONQUEUE = QTEST()
CALL QRESET

onqueue is | 0

CALL QENTER (MIDDLE, 0)

CALL QENTER (MIDDLE, 1)
exit

Run queue. Use the left mouse button to queue some devices that are
in the first menu. Then, use these devices and watch them appear in
the queue. Finally, use the left mouse button to do a gqread. (Your
IRIS must have at least 12 bitplanes to run this Lab.)

IRIS Programming Tutorial

H



Your First Interactive Program

This is the first program you can talk to gfter you compile it. You start
by queueing something in addition to the REDRAW token. Change
your program so that when you push the middle mouse button, a red
circle is drawn in the middle of the screen. Make a copy of
template? f and call it circleio f.

1. First, you need to queue up the middle mouse button.
gdevic does the job. It takes the name or number of an
input device as its argument. When the device changes
state, an entry for that device is put in the event queue.
You need to do this only once for the program, so it goes
in the initialize subroutine.

2. Next, you need to check the queue for middle mouse
entries. Add another case to processinput. Whenever the
program reads a middle mouse button event from the
queue, it sets the global variable drawcircle to 1, and then
calls drawimage again.

3. To use the drawcircle variable, you must declare it at the
beginning of the program, and initialize it to 0 so the
circle won’t be drawn until the middle mouse button is
pressed.

4. Finally, you need to change drawimage so that whenever
drawcircle is equal to 1, a circle is indeed drawn.

Edit circleio.f so it looks like the code below.

SINCLUDE /usr/include/fgl.h
SINCLUDE /usr/include/fdevice.h

INTEGER DRAWCIRCLE
COMMON /DRAWB/DRAWCIRCLE

Interacting with the User

81



CALL INITIALIZE
CALL DRAWIMAGE

100 CALL PROCESSINPUT
GOTO 100

END

SUBROUTINE INITIALIZE
SINCLUDE /usr/include/fgl.h
SINCLUDE /usr/include/fdevice.h

INTEGER DRAWCIRCLE
COMMON/DRAWB/DRAWCIRCLE

INTEGER WINID
CALL PREFPO(0, 1023, 0, 767)
WINID = WINOPE (' CIRCLEIO’, 8)

C ______________________________________________

C Queue the middle mouse button.

C ______________________________________________
CALL QDEVIC (MIDDLE)

C ______________________________________________

C Set DRAWCIRCLE equal to 0 so nothing is drawn
C until the middle mouse button is pressed.

I
o

DRAWCIRCLE

RETURN
END

SUBROQUTINE PROCESSINPUT
SINCLUDE /usr/include/fgl.h
SINCLUDE /usr/include/fdevice.h

INTEGER DRAWCIRCLE
COMMON /DRAWB/DRAWCIRCLE

INTEGER*2 VAL
82 IRIS Programming Tutorial




INTEGER*4 DEV
DEV = QREAD (VAL)

IF (DEV .EQ. REDRAW) THEN
CALL RESHAP
CALL DRAWIMAGE

C When the middle mouse button is pressed, set
C DRAWCIRCLE to 1 and go to DRAWIMAGE.

ELSE IF (DEV .EQ. MIDDLE) THEN
DRAWCIRCLE = 1
CALL DRAWIMAGE

ENDIF

RETURN
END

SUBROUTINE DRAWIMAGE
$INCLUDE /usr/include/fgl.h
SINCLUDE /usr/include/fdevice.h

INTEGER DRAWCIRCLE
COMMON/DRAWB/DRAWCIRCLE

CALL COLOR (BLACK)
CALL CLEAR

C If DRAWCIRCLE = 1, the button has been pressed,
C so draw a red circle.

IF (DRAWCIRCLE .EQ. 1) THEN
CALL COLOR (RED)
CALL CIRCFI(100, 100, 100)
ENDIF

RETURN
END

Interacting with the User

83



84

Try this program. Once you’ve got the idea, you can make your
program even better.

Improvement #1

What happens when you run this program?

1.
2.

The main program is executed first.

It calls initialize, which makes the window take up the
whole screen, sets drawcircle to 0, and queues the middle
mouse button.

It calls drawimage, which clears the screen to black.
Since drawcircle is 0, drawimage does nothing else.

The program goes into a loop that doesn’t end until you
exit from the window by selecting ‘‘kill’’ from the mex
menu.

processinput is within this loop. It declares val as a short
integer, and then it waits for an event to appear in the
queue. (Don’t worry about reshaping or moving the
window now — assume that no redraws will show up for
a while.)

So nothing happens until the middle mouse button is pressed. But,

when the user presses the middle mouse button, the excitement begins.

1.

gread stores the entry in val and deletes it from the event
queue.

gread returns the value of the device, that is, the middle
mouse button device number.

dev = MIDDLE, so drawcircle is set to 1 and the program
calls drawimage.

drawimage clears the screen to black and, since

drawcircle now equals 1, drawimage draws a red circle on

the screen.

Then the program returns to processinput and waits for
another event.

IRIS Programming Tutorial




Now that this event has been processed, what’s the next event going to
be? The last event was the middle mouse button going down, so the
next event will probably be the mouse button going up. The program
will call drawimage again, clearing the screen and drawing the red
circle. This will make the screen image flash. How can you avoid
this?

You can’t change the fact that releasing the mouse button is an event.
Once the middle button is queued, an event is put in the queue when
this button goes up. What you really want to do is draw the circle
when the mouse button goes down, and ignore the mouse button when
it goes up. gread reads the release of the button, and dev is set equal
to MIDDLE. This is where you can check whether the button is up or
down, and can choose to ignore the event or not.

Remember, when an event occurs, the event queue stores both the
device number and some associated value. The device numbers for
the mouse going up and for the mouse going down are the same; the
associated values are different. Going down is 1 and coming up is O.
So, you have to call drawimage only if val is 1. Edit your code:

SUBROUTINE PROCESSINPUT
SINCLUDE /usr/include/fgl.h
SINCLUDE /usr/include/fdevice.h

INTEGER DRAWCIRCLE
COMMON/DRAWB/DRAWCIRCLE

INTEGER*2 VAL
INTEGER*4 DEV
DEV = QREAD (VAL)

IF (DEV .EQ. REDRAW) THEN
CALL RESHAP
CALL DRAWIMAGE

ELSEIF (DEV .EQ. MIDDLE) THEN
IF (VAL .EQ. 1) THEN
DRAWCIRCLE = 1
CALL DRAWIMAGE

Interacting with the User

85



ENDIF
ENDIF

RETURN
END

Improvement #2

Now the problem is that the program is kind of boring. Once you’ve
pressed the middle mouse button and the circle has appeared, there’s
nothing left to do. And the image still flashes when you press the
button because the circle is redrawn. First make your program
smarter, then prettier.

Make the program erase the circle when the user presses the left
mouse button.

1. Queue the left mouse button in the initialize subroutine.

2. Add the left mouse button case so that drawcircle is set to
0 when the left mouse button is pressed. Call drawimage
to clear the screen.

5 e VDI TIACIZE a Ak
fALL QDEVIC (LsrT Mo )

SUBROUTINE PROCESSINPUT

$INCLUDE /usr/include/fgl.h
S$INCLUDE /usr/include/fdevice.h

INTEGER DRAWCIRCLE
COMMON/DRAWB/DRAWCIRCLE

INTEGER*2 VAL
INTEGER*4 DEV
DEV = QREAD (VAL)

IF (DEV .EQ. REDRAW) THEN

CALL RESHAP
CALL DRAWIMAGE

86 IRIS Programming Tutorial




ELSEIF (DEV .EQ. MIDDLE) THEN
IF (VAL .EQ. 1) THEN
DRAWCIRCLE = 1
CALL DRAWIMAGE
ENDIF

ELSEIF (DEV .EQ. LEFTMO) THEN
IF (VAL .EQ. 1) THEN
DRAWCIRCLE = 0
o CALL DRAWIMAGE
ENDIF
ENDIF

RETURN
END

Now the program is more sophisticated. When you press the middle
mouse button, a red circle appears. When you press the left mouse
button, the circle disappears. What could be better? Well...

Improvement #3

This program is still kind of ugly — it flashes when you draw the
circle. That’s because you still see the IRIS drawing the object. You
can use double buffering to solve this problem.

1. Add some routines to initialize that turn on double
buffering and clear both buffers to black.

SUBROUTINE INITIALIZE
$INCLUDE /usr/include/fgl.h
$INCLUDE /usr/include/fdevice.h

INTEGER WINID

CALL PREFPO(0, 1023, 0, 767)
WINID = WINOPE (/CIRCLEIO’, 8)
CALL DOUBLE

CALL GCONFI

Interacting with the User

87



CALL FRONTB(.TRUE.)
CALL COLOR (BLACK)
CALL CLEAR

CALL FRONTB (.FALSE.)

CALL QDEVIC (MIDDLE)
CALL QDEVIC (LEFTMO)

DRAWCIRCLE = 0

RETURN
END

2. Now add a swap at the right point.

SUBROUTINE DRAWIMAGE
$INCLUDE /usr/include/fgl.h
SINCLUDE /usr/include/fdevice.h

INTEGER DRAWCIRCLE
COMMON/DRAWB /DRAWCIRCLE

CALL COLOR (BLACK)
CALL CLEAR

IF (DRAWCIRCLE .EQ. 1) THEN
CALL COLOR (RED)
CALL CIRCFI{100, 100, 100)
ENDIF

CALL SWAPBU
RETURN

END

Compile and run this program.

88 IRIS Programming Tutorial

M MR mem e s W M s mm MR MR M R R mE ER S MmE e AR M Am Rm mm e e




Improvement #4

To take interactivity a step farther, make the circle appear in the same
location as the cursor. To do this, you need to poll the location of the
cursor when you’re ready to draw the circle. The x and y coordinates
of the cursor location are valuators. Their names are MOUSEX and
MOUSEY.

The routine for polling a valuator is getval (getvaluator). Set the x
argument of the circfi routine to MOUSEX, and the y argument to
MOUSEY.

SUBROUTINE DRAWIMAGE
$INCLUDE /usr/include/fgl.h
$INCLUDE /usr/include/fdevice.h

INTEGER DRAWCIRCLE, X, Y
COMMON/DRAWB /DRAWCIRCLE

CALL COLOR (BLACK)
CALL CLEAR

IF (DRAWCIRCLE .EQ. 1) THEN
CALL COLOR (RED)
X = GETVAL (MOUSEX)
Y = GETVAL (MOUSEY)
CALL CIRCFI(X, Y, 100)
ENDIF

CALL SWAPBU
RETURN
END

Compile and run this program. It’s come a long way.

Take a look at aim6.f. The batter hits the ball to the spot where you
click the mouse button.

Interacting with the User

89



Running More than One Double Buffered Program

90

The problem you face when running more than one double buffered
program is that all programs have to swap buffers at the same time.
This is because all the programs share the same image memory.
When the two buffers in that memory are swapped, the buffers for all
your programs are swapped, whether you want this to happen or not.

The system prevents the disaster of unexpected swaps by waiting until
all double buffered programs are ready to swap. This means that
whenever a double buffered program calls a swapbu routine, it waits
there until all the double buffered programs are ready to swap. You
can see the problem if you run circleio and leave it idle for a few
minutes while you run another program. The program circleio waits
for input at qread — not at swapbu waiting for a swap. As a result,
all the double buffered programs would just hang — some of them on
swapbu, and at least this one on qread.

So, you need to make sure double buffered programs always wait at
the swapbu routine. Take a look at the following version of the
circleio program. It introduces a new routine called in the main
program called qtest. gtest looks at the event queue and returns
the device number of the first entry, just like gqread. However, it
differs from qread in two important ways:

1. Itreturns O if the queue is empty. It doesn’t wait for an
entry in the event queue.

2. Itdoesn’tremove any entries from the event queue. It
only checks to see if any entries are there.

The basic change to your program is that it must continuously check
the queue with qtest. If the queue is empty, it calls drawimage
which calls swapbu. If there is an entry in the queue, it does a qread
and processes the input as usual. Then it continues checking for input
and doing swaps.

IRIS Programming Tutorial




Copy circleio f and name the copy circledb.f. Then edit it to look like
this code.

SINCLUDE /usr/include/fgl.h
SINCLUDE /usr/include/fdevice.h

INTEGER DRAWCIRCLE, X, Y
COMMON/DRAWB/DRAWCIRCLE, X, Y

CALL INITIALIZE
CALL DRAWIMAGE

C Check the queue. If it’s empty, go to
C drawimage. It there is an event, process it.

100 IF (QTEST() .EQ. 0) THEN
CALL DRAWIMAGE
ENDIF

CALL PROCESSINPUT
GOTO 100

END

SUBROUTINE INITIALIZE
$INCLUDE /usr/include/fgl.h
SINCLUDE /usr/include/fdevice.h

INTEGER DRAWCIRCLE, X, Y
COMMON/DRAWB/DRAWCIRCLE, X, Y
INTEGER WINID

CALL PREFPO(0, 1023, 0, 767)
WINID = WINOPE (' CIRCLEDB’, 8)

CALL DOUBLE
CAll GCONFI
CALL FRONTB(.TRUE.)

Interacting with the User

91



CALL COLOR(BLACK)
CALL CLEAR
CALL FRONTB (.FALSE.)

CALL QDEVIC (MIDDLE)
CALL QDEVIC (LEFTMO)

DRAWCIRCLE = 0

RETURN
END

SUBROUTINE PROCESSINPUT
$INCLUDE /usr/include/fgl.h
SINCLUDE /usr/include/fdevice.h

INTEGER DRAWCIRCLE, X, Y
COMMON/DRAWB/DRAWCIRCLE, X, Y

INTEGER*2 VAL
INTEGER*4 DEV

DEV = QREAD (VAL)

IF (DEV .EQ. REDRAW) THEN
CALL RESHAP
CALL DRAWIMAGE

ELSEIF (DEV .EQ. MIDDLE) THEN
IF (VAL .EQ. 1) THEN
DRAWCIRCLE = 1
X = GETVAL (MOUSEX)
Y = GETVAL(MOUSEY)
CALL DRAWIMAGE
ENDIF

ELSEIF (DEV .EQ. LEFTMO) THEN
IF (VAL .EQ. 1) THEN
DRAWCIRCLE = 0
CALL DRAWIMAGE

IRIS Programming Tutorial




T ENDIF
ENDIF

RETURN
END

SUBROUTINE DRAWIMAGE
SINCLUDE /usr/include/fgl.h
SINCLUDE /usr/include/fdevice.h

— INTEGER DRAWCIRCLE, X, Y
COMMON/DRAWB/DRAWCIRCLE, X, Y

CALL COLOR (BLACK)
CALL CLEAR

IF (DRAWCIRCLE .EQ. 1) THEN
CALL COLOR (RED)
CALL CIRCFI(X, Y, 100)
ENDIF

CALL SWAPBU
RETURN
END

Look at the Graphics Lab queue again to see how qtest works.

Workshop

Look over the code for queue? f to see another queue in action. Also
read through the code for menu8 f. It shows you how to add a pop-up
menu to the baseball example. This tutorial does not cover pop-up
menus. If you are interested in learning about them, see Using mex,
the IRIS Window Manager in the IRIS User’s Guide.

Interacting with the User

93



Summary

o There are three types of input: integer, logical, or ASCIL.

e Whether you choose to use polling or queueing depends on your
particular application.

¢ You must always have the REDRAW token in the queue when
your program runs under mex.

o At any given time, every device has a device number and a value.

e When a button goes down and up, the IRIS interprets it as two
different events, and makes two entries in the queue.

e When you write a double buffered program that runs at the same
time as another double buffered program, you must place the
swapbu routine strategically, and use qtest.

94 IRIS Programming Tutorial

W mE eeR s e e MW s MR REm RN ReN N W e MM M R M R e M M e e e e




6 Creating and Manipulating 3D Models

This chapter leads you through the transition from drawing 2D images
R to building 3D models. Then it shows you how to move these models
around in space.

Building 3D Models

You build 3D models with the same routines you use to draw 2D
images. You actually construct the object in three dimensions and let
the system figure out how to display it on a 2D screen.

So far it’s worked well to use the 2D screen coordinate system
(1024x768) to specify the locations of your 2D objects. But now that
you’re making 3D models, you need to use a 3D coordinate system.
You can create this system with a Graphics Library routine.

Since you create this system yourself, you can make it very convenient
to work with — for example, you can place its origin exactly in the
middle of a window so whatever you draw is centered. You can also
make the axes all the same length.

y = 100.0

-z =-100.0
-x=-100.0 x = 100.0
(0,0,0)
z = 100.0
-y =-100.0

Creating and Manipulating 3D Models



96

Make a copy of template2 f and call it cube3d.f. Create this coordinate
system in cube3d.f by adding this code as the last line of the initialize
subroutine.

CALL ORTHO(-100.0, 100.0, -100.0, 100.0, -100.0, 100.0)

Now you can create a model within this system. A cube is a classic
3D object for a start.

Your first decision is where to place the cube. All sides of the cube are
equal, so it’s easiest to pick vertices that differ only in their signs. For
example, one vertex of a cube could be (10.0, 10.0, 10.0), while
another could be (10.0, 10.0, -10.0). To use equal values like these,
the cube must be centered at the origin.

y

(10.0, 10.0, -10.0)

(-10.0, 10.0, 10.0) s

(10,0, -10.0, 10.0)

The next point to consider is whether your cube will be wireframe or
solid. This affects which drawing routines you use.

Building with move and draw

To build a wireframe model, you can use move and draw. They work
the same way as in 2D, except now you use the 3D versions of these
routines. Use the 3D/floating point versions of move and draw to
model a cube about the origin. Create a new subroutine at the end of
cube3d.f called drawcube:

IRIS Programming Tutorial




T SUBROUTINE DRAWCUBE
o $INCLUDE /usr/include/fgl.h
SINCLUDE /usr/include/fdevice.h

CALL MOVE(-10.0, -10.0, -10.0)
CALL DRAW(10.0, -10.0, -10.0)
CALL DRAW(10.0, 10.0, -10.0)
CALL DRAW(-10.0, 10.0, -10.0)
CALL DRAW(-10.0, -10.0, -10.0)
CALL DRAW(-10.0, -10.0, 10.0)
CALL DRAW(10.0, -10.0, 10.0)
CALL DRAW(10.0, 10.0, 10.0)
CALL DRAW(-10.0, 10.0, 10.0)
CALL DRAW(-10.0, =-10.0, 10.0)
CALL MOVE (-10.0, 10.0, -10.0)
CALL DRAW(-10.0, 10.0, 10.0)
CALL MOVE(10.0, 10.0, -10.0)
CALL DRAW(10.0, 10.0, 10.0)
CALL MOVE(10.0, -10.0, 10.0)
CALL DRAW(10.0, -10.0, -10.0)

RETURN
END

Now you can call drawcube from drawimage:

SUBROUTINE DRAWIMAGE
$INCLUDE /usr/include/fgl.h
$INCLUDE /usr/include/fdevice.h

. CALL COLOR (BLACK)
- CALL CLEAR

CALL COLOR (RED)
CALL DRAWCUBE

CALL SWAPBU
RETURN
END

Creating and Manipulating 3D Models

97



Compile and run your program. You see a red square because the
front edges of the cube obscure all the other edges. (Later in this
chapter, you’ll learn how to turn it around to get a better view.)

threed9 .f uses 3D versions of the drawing commands, and coordI0.f
sets up a 3D coordinate system.

The problem with using move and draw is that after you build a
model, you may decide that you want to color one side, or color all
sides to make it look solid. The IRIS considers each line of a
wireframe built with move and draw to be a separate object — it
doesn’t realize that your cube is a cube and that you should be able to
color its sides. But, there is an alternative method that solves this
problem.

Building with poly and polf

Another way to model a cube is to create six square polygons that
make up the six faces of the cube. If you use poly you geta
wireframe; if you use polf you get a solid model. If you start out
designing a wireframe cube, then change your mind when it’s done,
change polyto polf. Here is part of a drawpoly subroutine that
draws a solid cube. (You don’t need to type this in — it’s in the
revised template? f file called poly3D f.) _
Gew [ peopls / fon el [ explove

SUBROUTINE DRAWPOLY
SINCLUDE /usr/include/fgl.h
SINCLUDE /usr/include/fdevice.h

REAL PARRAY (3, 4)

98 IRIS Programming Tutorial

BN MM PeM MM mms MMm MW fUm  SER SWm SEN S SEm SR MBS AU fEm  Em MM S SRS S B mm Em e e




PARRAY(1,1) = -10.0
PARRAY(2,1) = -10.0
PARRAY (3,1) = -10.0
PARRAY(1,2) = -10.0
PARRAY (2,2) = 10.0
PARRAY (3,2) = -10.0

PARRAY (1,3) = 10.0
PARRAY (2,3) = 10.0

PARRAY (3,3) = -10.0
PARRAY (1,4) = 10.0
PARRAY (2,4) = -10.0
PARRAY (3,4) = -10.0

CALL POLF (4, PARRAY)

PARRAY(1,1) = -10.0
PARRAY (2,1) = -10.0
PARRAY(3,1) = -10.0
PARRAY (1,2) = 10.0
PARRAY (2,2) = -10.0
PARRAY (3,2) = -10.0
PARRAY (1,3) = 10.0
PARRAY (2,3) = -10.0
PARRAY (3,3) = 10.0
PARRAY (1,4) = -10.0
PARRAY (2,4) = -10.0
PARRAY (3,4) = 10.0

Creating and Manipulating 3D Models 99



100

C ___________________________________________

C Draw the bottom face.

C ___________________________________________
CALL POLF (4, PARRAY)

C ___________________________________________

C Continue this way to build and draw the
C front, top, left, and right faces.

If you compile and run this program, you see a square. The next
section teaches you how to turn the cube around to get a better view.

IRIS Programming Tutorial




Checking Out All the Angles

Now that you have described a 3D object to the IRIS, you can tell it to
transform the object in several interesting ways. You use three
routines called modeling transformations: rotate, scale, and
transl (translate).

Rotate

rotate rotates your model about the x, y, or z axis. If you call
rotate in the initialize subroutine, everything you draw later is
rotated. rotate takes two arguments: the number of degrees to
rotate the object (measured in tenths of degrees), and the axis about
which to rotate it (x, y, or z).

To rotate the cube 40 degrees about the y axis, change the initialize
subroutine in cube3df. Immediately after the line that contains the
ortho routine, add this line:

CALL ROTATE (400, ’Y’)
You still don’t see anything that really looks like a cube. This is

because you only rotated it in one dimension. Add a rotation about the
x axis. Right after the first rotation, add this line:

CALL ROTATE (450, ’X')

Finally, it looks like a 3D cube.

It is important to remember that objects rotate relative to the x, y and z
axes. The position of an object relative to its coordinate system
affects the way the object rotates.

Creating and Manipulating 3D Models 101



For example, say you have a circle centered at the origin, and you
want to rotate it about the z axis. The motion you see is like a wheel
spinning about a hub. However, if the circle is not centered at the
origin, the motion looks more like a planet orbiting around its sun.

{\

Scale

scale makes all or part of your model larger or smaller. It uses
relative values; that is, it makes an object a certain number of times
larger or smaller than its current size. scale takes three arguments:
the number of times larger or smaller to make the object in the x, y,
and z directions. To make the cube twice as big, immediately after the
last rotate routine, add this line:

CALL SCALE(2.0, 2.0, 2.0)

Never use zero (0) as an argument to scale — nothing will appear on
the screen.

To stretch the cube in the x direction, remove the first scale routine,
and replace it with this:

CALL SCALE(4.0, 1.0, 1.0)

IRIS Programming Tutorial

-




Like rotate, scale affects your objects differently depending on
where they are located relative to the origin. For example, a square
centered at the origin grows or shrinks evenly in every direction. If a
square is not centered at the origin, all vertices grow or shrink away

from the origin proportionally.

X
object centered at origin:

SCALE (2.0, 2.0, 1.0)

object not centered at origin,

same scale: SCALE (2.0, 2.0, 1.0)

Z

Another interesting way to use scale is to create a mirror image of
your object by using negative scaling values. In the figure below, the

object is mirrored across the y axis.

=

Scaling can be used to

z mirror (reflect) objects.

“—

/ SCALE (1.0,-1.0,1.0)

z

Creating and Manipulating 3D Models

/ZL x

103



Transl (translate)

transl moves your model around in the space (coordinate system)
you defined with ortho. Like scale, it uses relative values, so it
moves an object a certain distance from its current position. transl
takes three arguments: the amount of distance to move the object in
the x, y, and z directions. To move your cube from the center of the
window to a new position, after the other modeling routines, add this
line:

CALL TRANSL(30.0, 10.0, 0.0)

 Now the cube is 30 units to the right and ten units above its former
position.

y  TRANSL (5.0, 5.0, 1.0)

° (x+5.0, y+5.0, z+1.0)

X, ¥,2)

translatel I f moves the ball using modeling transformations.

IRIS Programming Tutorial



Transform

Transform - - INFORMATION Transform - - CONTROL BAR
Use the LEFT MOUSE to adjust the highlighted CALLROTATE
parameter with the CONSOLE controller bar OR Controller Bar

to select a parameter from the STATUS window.
OR press the RIGHT MOUSE for a popup menu
to select ROTATE, TRANSL, or SCALE.

|_Transform - - DOWN Y AXIS= Leensform __STATUS
CALLROTATE (0, ')

CALLROTATE ( 0, ')

CALLROTATE ( 0, 'Z")

Transform - - VIEWPORT

y

N

Run transform to see these transformations in action. You can specify
different modeling transformations and vary their parameters to see
how they affect the image. (Your IRIS must have at least 12 bitplanes
to run this Lab.)

Go back to cube3d.f. The last change you made was to add a transl
routine. What would happen if you added a rotate right now?
Would it spin like a wheel, or orbit like a planet?

It would spin like a wheel, because when you translate an object, you
also translate the object’s coordinate system.

Creating and Manipulating 3D Models

105



Transforming Coordinate Systems

106

When you build a model, you specify its vertices relative to a
coordinate system. No matter what you do to the model, it always
behaves in terms of its initial position in the coordinate system. For
example, a cube that is built with its center at the origin always spins
when you call rotate, and always grows or shrinks evenly when you
call scale, regardless of how many times you call transl.

You can think of the coordinate system that you set up at the
beginning of this chapter as a global system. Within this system you
define objects. Once an object is defined, it retains its own local
coordinate system as it moves around within the global coordinate
system.

local

global

It’s possible to have several objects, each with their own coordinate
systems, floating around in this global system.

In the previous examples, modeling transformation routines transform
all objects that the program draws. But what if you want to draw five
objects, four that are rotated by 30 degrees, and one that is not rotated
but is scaled by a factor of six? You must call modeling
transformations that affect local coordinate systems. However, the
IRIS thinks that all transformation calls apply to the global coordinate
system. To solve this problem, you need to understand how the IRIS
performs transformations.

IRIS Programming Tutorial

— - -

B e e e e B M M R M W E R M M mm em Am mm mm em e



Manipulating the IRIS Transformation Matrix

The IRIS stores transformation information in 4x4 matrices. It can
hold up to 32 individual transformation matrices in its matrix stack.
The matrix at the top of the stack is called the current matrix.

When you call a modeling transformation, you are really telling the
IRIS:

1. Store the transformation information in the current matrix.
2. Multiply every point of every object by the matrix.
3. Use these new values to draw the objects.

Modeling transformations are cumulative. This means that only the
first transformation you call starts with a ‘‘fresh’’ matrix (a matrix that
currently performs no modeling transformations). The first
transformation call changes the values in the current matrix. When
you make a second call, it changes the values again, so the current
matrix makes both the first and second transformations happen in one
multiplication. This process can go on and on, resulting in a matrix
which, in one multiplication, calculates the points that result from
several transformations.

rotate 300
—» || scale6x —>

translate 10

However, the more modeling transformations you call, the easier it is
to loose your bearings within the global system. If the current matrix
contains a 30 degree rotation, a 40 unit translation, a scaling factor of
six, and a 48 degree rotation, it’s difficult to anticipate where your
objects will be displayed, and what they will look like. Remember,
every object is multiplied by the current matrix.

Creating and Manipulating 3D Models

107



108

The Graphics Library contains some matrix manipulation routines that
save you from:

e keeping track of a current matrix that changes with every
transformation call

¢ having all transformations apply to all objects that are drawn

The pushma (pushmatrix) routine makes a copy of the current matrix,
moves the current matrix and any other matrices that are below it
down one position on the matrix stack, and puts the copy on top of the
stack. Now this copy is the current matrix. You can change it as
much as you want, and always know that you can restore the original
at any time.

Push

copy of
original current

original

another
matrix

Matrix Stack

IRIS Programming Tutorial

— -

-




The popmat (popmatrix) routine permanently deletes the current
matrix and pops the matrix that was stored immediately below it into
the current matrix position.

Pop  copyof
original

original current

another
matrix

another
matrix

Matrix Stack

These routines are fast and efficient, so you can use them whenever
convenient without sacrificing performance.

- Use pushma and popmat to solve the earlier problem of making a

> local transformation. The file called matrix.f in

o lusripeopleltutoriallf.graphics/explore draws five objects without any
modeling transformations. Compile and run it to see what it draws.

Make a copy of matrix.f and call it mymatrix f. Edit this new file so it
draws four objects that are rotated, and one that is not rotated but is
scaled.

1. You haven’t called any modeling transformations yet, so
o the current matrix doesn’t contain modeling
transformation information. You usually want to preserve
this fresh matrix so you can recall it if needed. Use
pushma to make a copy of the original, push the original
down one position, and put the copy in the top (current)
position. After the lines that call the two include files in
drawobjects, add this line:

CALL PUSHMA

Creating and Manipulating 3D Models 109



110

You want the first four objects to be multiplied by a
matrix that will rotate them 30 degrees. So, call rotate
to change the current matrix. After the line that contains
pushma, add this line:

CALL ROTATE (300, 'Z')

If you compiled the program now, all five objects would
be rotated. To prevent this, let the program draw the first
four objects using the rotation matrix. Then, before it
draws the fifth object, eliminate the rotation matrix, and
restore the original. Copy the original, push it down on the
stack, and add a scale to the copy. Edit drawfive so it
looks like this.

SUBROUTINE DRAWFIVE
$INCLUDE /usr/include/fgl.h
SINCLUDE /usr/include/fdevice.h

C Delete the rotation matrix and restore
C the original matrix.

Q

Copy the original (current) matrizx,
push it down one position on the stack, and put
the copy in the current position. The copy

Q0 Q0

is now current.

CALL PUSHMA

IRIS Programming Tutorial




C Make the object six times larger in every
C direction.

CALL COLOR (WHITE)
CALL SCALE (6.0, 6.0, 6.0)
CALL RECT(-10.0, -10.0, 10.0, 10.0)

RETURN
END

4. Finally, when all of the objects have been drawn, restore
the original matrix. Right before the end of the subroutine
drawobjects, add this line:

CALL POPMAT

Compile and run your program, and compare it to the original version.

It may seem from this example that matrix routines only control which
objects are transformed. However, they also provide another service:
they prevent the objects from moving around each time they are
redrawn.

If you call a modeling transformation within a subroutine that the
program calls more than once (like drawimage, drawobjects, or
drawfive), each time it calls the subroutine, the transformation is
incorporated into the current matrix. This means that if you put a
rotate in drawimage, the program initially draws an object with the
specified rotation. But each time it redraws the object, the program
rotates the object again. The end result is an object that is rotating in
real time.

Creating and Manipulating 3D Models

111



Models, Motion, and Matrices

112

You can use all the techniques you learned in this chapter to write an
animated program. This program makes a ball that rolls towards you.
The ball starts in the distance, and ends up right in front of you. Make
a copy of template2 f and call it roll f.

Building the Ball

Before you build the ball, you must set up a coordinate system in
roll.f. Make the system fairly large so the ball has a lot of room to
roll. Edit initialize by adding this as the last line:

CALL ORTHO(-400.0, 400.0, -400.0, 400.0, -400.0, 400.0)

Since the ball needs to roll, you should center it at the origin. Use the
cire routine to make it round. The one problem is that cire comes
only in the 2D variety. How do you make a 2D circle into a 3D
sphere? Give it a few spins.

Modeling transformations are an important part of 3D modeling. You
can create a sphere by rotating a circle, or a cone by scaling and
translating it.

IRIS Programming Tutorial




To create a sphere you use the circ drawing routine and the rotate
modeling transformation. You need to rotate the circle about both the
x and y axes to create a wireframe sphere that will look realistic when
you ‘‘roll’’ it along the z axis.

-+ =

You also need to use pushma and popmat because you don’t want the
whole coordinate system to rotate when you draw your sphere. With
these considerations in mind, create a drawsphere subroutine at the
end of your program.

SUBROUTINE DRAWSPHERE
$INCLUDE /usr/include/fgl.h
SINCLUDE /usr/include/fdevice.h

INTEGER I
c ___________________________________________
C Save the current matrix for future use.
C ___________________________________________
CALL PUSHMA
C ___________________________________________

C Rotate the circle 15 degrees about its y
C axis, then draw it. Do this 24 times to
C create the "lines of longitude™.

DO 200, I = 0,24
CALL ROTATE (150, "Y’)
CALL CIRC(0.0, 0.0, 20.0)
200 CONTINUE

Creating and Manipulating 3D Models

113



114

C ___________________________________________
C Push this matrix and undo the rotation.
C ___________________________________________
CALL PUSHMA
CALL ROTATE (-150, 'Y’)
C ___________________________________________
C Create the "lines of latitude".
C ___________________________________________

DO 300, I = 0,24
CALL ROTATE (150, 'X')
CALL CIRC(0.0, 0.0, 20.0)
300 CONTINUE

C Delete the second rotation matrix, then
C delete the first rotation matrix. Now the
C original matrix is current again.

CALL POPMAT
CALL POPMAT
RETURN

END

Making the Ball Move

First, you want the ball to start far away from you. Push it back along
the negative z axis by using a transl in the initialize subroutine.
This will translate the ball only once when the program starts. Add
this as the last line of initialize:

CALL TRANSL(0.0, 0.0, =-300.0)

To make the ball seem to roll, you rotate it. To make it move towards
you within its coordinate system, you translate it. And to make it look
like it’s coming towards you (to make it look bigger as it gets closer),
you scale it. Add a subroutine called rollem after drawimage.

IRIS Programming Tutorial

e T T I T T T T T T T o B e B e B Fﬁ o L B e n1




SUBROUTINE ROLLEM
$INCLUDE /usr/include/fgl.h
SINCLUDE /usr/include/fdevice.h

CALL ROTATE (150, 'X')

CALL SCALE(1.05, 1.05, 1.05)
CALL TRANSL(0.0, 0.0, 1.0)
CALL DRAWSPHERE

RETURN
END

Finally, you need to call rollem from drawimage right before you call

swapbu.

SUBROUTINE DRAWIMAGE
$INCLUDE /usr/include/fgl.h
SINCLUDE /usr/include/fdevice.h

CALL COLOR(0)
CALL CLEAR
CALL COLOR (RED)
CALL ROLLEM
CALL SWAPBU

RETURN
END

You can find this entire program in the file rollem f which is in the
explore directory. Compile and run your program.

Workshop

compositel2 f uses the modeling transformations and matrix
manipulation routines to make the ball move more realistically.

Creating and Manipulating 3D Models

115



Summary

When you work with 3D objects, you must define a 3D coordinate
system in which they will exist.

The IRIS stores transformation information in matrices. These
matrices are stacked one on top of the other.

The IRIS transformation matrix keeps track of modeling
transformations. These transformations are cumulative, so the
current matrix is constantly changing unless you use the matrix
manipulation routines.

pushma copies the current matrix, pushes the original down one
position on the stack, and puts the copy on top of the stack.
popmat permanently deletes the current matrix and puts the matrix
that was stored immediately below it on top of the stack.

You can use modeling transformations not only to display models
in different orientations, but also to build models (e.g., rotate a
circle to make a sphere) and to animate them.

116 IRIS Programming Tutorial

B e e e em mm e e M M R M M R MEm M R R R e G M R Em e e




7 Changing the Point of View

The modeling transformations and matrices are fine for modifying and
moving your models. However, sometimes it’s not the model itself
that you want to change — it’s the angle or distance from which you
are looking at the model. For this purpose the Graphics Library
includes two types of routines: projection and viewing
transformations. They let you change your point of view without
changing your model.

Projection Transformations

After you describe a 3D object to the IRIS, it figures out how to
display it on your 2D screen. The 2D display is called a projection of
the 3D object.

Projecting objects is similar to taking pictures. There is an original 3D
object that you want to represent on a 2D surface. You focus on the
object, move closer to or farther from it to adjust how much of the
object’s world (the background) will be in the picture, and then you
capture the scene in 2D.

e N[ 2

\_ J \_ J

closeup not so close up

Changing the Point of View 117



The IRIS provides the same flexibility. All objects that you draw are
already in focus, so your only concern is how much background to
include. Once you decide, you can specify a viewing volume, which
describes the boundaries of the object’s world. A viewing volume can
be any size, but can have only one of two shapes (see below). The
shape you choose tells the IRIS how to transform the 3D object into a
2D projection.

Perspective and Orthographic Projections

When you look out of your window at a car that is ten feet away, and
at a house that is a mile away, the car looks as if it should be able to
drive over the house without too much trouble. This is because you
naturally view objects in perspective. An object that is close to you
always looks larger than an identical object that is far away.

To capture this perspective realistically on the IRIS, use the perspe
(perspective) routine. It defines a pyramid-shaped viewing volume.
Objects that are closer to you occupy a larger amount of the viewing
volume than objects that are farther away. The closer objects are, the
bigger they look.

T

< 47)

perspective viewing volume

You can also see the effect of a perspective projection on an individual
object. For example, the front face of a cube that is projected with
perspective will look larger than its back face.

IRIS Programming Tutorial

o R B I T R T T T T e T T T B T T B T B B T B




Recall the 3D cube you drew at the beginning of Chapter 6. It didn’t
look like this figure, it just looked like a square.

Part of the problem with your cube was that you were looking at it
straight on — it wasn’t rotated. The other part was that it was
projected orthographically, rather than with perspective.

Orthographic projections make objects that are the same size look the
same size, no matter how near or far away they are. When you use the
ortho routine, you define a square or rectangular box as the viewing
volume. The amount of viewing volume that any one object occupies
depends only on its actual size.

( Z

orthographic viewing volume

Using the ortho and perspective Routines

In the last chapter, you used ortho in the initialize subroutine to set
up a coordinate system. You were also defining a viewing volume that
looks like the figure above. Return to your old cube3d.f program for a
minute.

Your ortho routine should look like this:

CALL ORTHO(-100.0, 100.0, -100.0, 100.0, -100.0, 100.0)

Changing the Point of View

119



120

This defines a coordinate system that extends 100 units in both
positive and negative directions, along all three axes.

100.0

-100.0
-100.0 100.0

100.0

-100.0

If you draw a cube around this system you see what the orthographic
viewing volume looks like.

/ 200

+——>
200

Notice that there are near and far boundaries (boundaries in the z
direction) as well as left, right, bottom, and top boundaries. These are
called clipping planes. IRIS Graphics Programming explains how the
arguments to ortho establish a viewing volume. Rather than
representing coordinates, the six arguments represent the clipping
planes.

To project objects orthographically, you can use one other routine:
ortho2. The only difference between ortho and ortho2 is that
ortho2 doesn’t take arguments for the near and far clipping planes. It
assumes that their values are —1.0 and +1.0, respectively. ortho2 is
useful for 2D applications.

IRIS Programming Tutorial

el e e e e e e e e e e e e R e e e D e e e B e e B e




The perspe routine also has six clipping planes, so its viewing
volume can look like a truncated pyramid.

- I \L
. ™~
" near clipping far clipping

plane plane

The arguments to perspe are different from those to ortho. perspe
needs four pieces of information:

e The field of view (fovy). This is the angle that would form the
o apex of the viewing volume were it not truncated. fovy affects the
. location of the right, left, bottom, and top clipping planes, and the
. amount of perspective distortion. Typically, this angle is between
40 and 130 degrees, although legal angles are 0 to 180 degrees.

fovy

- Changing the Point of View 121



122

e The aspect ratio (aspect). This is the ratio of x to y. It affects the

location of the left, right, bottom, and top clipping planes. Usually

it’s 1:1 (1.0), but you can use it to distort your images to create
interesting visual effects.

S S 1

x_10_ 49 -4 --=--_0333

y 10 7 y 10 20 30

e The near and far coordinates. These are the distances from the
apex of the pyramid to the near and far clipping planes. Both
values are usually positive.

near

far

IRIS Programming Tutorial




Graphics
Lab

Projection

Projection - - INFORMATION S==F————=—=—= Projection - - CONTROL BAR

Use the LEFT MOUSE button to select a parameter
from the graphics commands below OR use the Controller Bar
RIGHT MOUSE button to bring up the popup menu. INNERNNERNEARNENNAERNRNNRERRRRNRRE]]

i i ]
Proiection - - DOWN Z Axig|  [—Projection - STATUS

fovy aspect near far
CALL PERSPE ( 400, 1.00, 2.50, 7.50)

dist azim inc twist
CALL POLARY ( 5.00, 0, 0, 0)

Projection - - VIEWPORT ===

Run projection. This Graphics Lab has 2 levels of pop-up menus.
First select ‘‘projection transform’’, then select ‘‘CALL PERSPE”’
from the sub menu. Change the parameters to perspe. Notice how
the clipping planes work, and how different parameters affect the
image. Also select ‘“CALL ORTHQO’’ from the sub menu to see how
it affects the image. (Your IRIS must have at least 12 bitplanes to run
this Lab.)

Changing the Point of View

123



124

The last difference between perspe and ortho is that perspe
assumes that the apex of its pyramid is positioned at (0, 0, 0), and that
the viewer is looking down the negative z axis. This means that an
object centered at the origin (like your cube) may not be displayed if
you substitute the perspe routine for the ortho routine. Your eye
would be positioned at the exact center of the cube, and your field of
view wouldn’t be wide enough for any of the sides to be displayed.

There are some special routines for solving this problem that you’ll
learn about in the next section. For now, you can translate the cube
down the z axis to put it within the viewing volume. Make a copy of
cube3d.f and call it percube3d.f. Edit this new file so the cube is
projected with perspective. Delete the line that contains the ortho
routine, and replace it with these lines.

C __________________________________________________

C fovy = 70 degrees; aspect ratio is 1l:1; near plane

C is 40 units from the viewer; far plane is 200

C units from the viewer.

C __________________________________________________
CALL PERSPE (700, 1.0, 40.0, 200.0)

c __________________________________________________

CALL TRANSL(0.0, 0.0, =-100.0);

IRIS Programming Tutorial

B B e B e B e e B B B o B B e B R B R B




Now your cube is positioned like this:

ratio x/y = 1

700 tenths
of degrees

To project objects with perspective, you can use one other routine:
window. It takes the same arguments as ortho (left, right, bottom,
fop, near, far). Like perspe, the apex of its pyramid is positioned at
(0, 0, 0). The difference is that window can specify a viewing volume
that is not symmetrical. This creates an interesting visual effect called
an off-axis view.

symmetrical off-axis
(view down z axis) (view down z axis)

(7

If you use window to define a symmetrical viewing volume, it looks
identical to a volume defined with perspe.

Run the Graphics Lab projection again, but this time choose ‘‘CALL
WINDOW?’. Change its parameters to create an off-axis view.

Changing the Point of View

125



126

Gaining More Perspective

Using perspe not only makes the objects on the screen look more
realistic, it also makes the way you visualize your program more
natural. Take your rollem program from Chapter 6. You rotated,
translated, and scaled the ball to make it look like it was coming
towards you. Why did you have to scale the ball? To create the
illusion of perspective.

Now that you can define a viewing volume that shows perspective,
you don’t have to increase the size of the ball manually as it comes
towards you. Make a copy of roll.f or rollem f and call it rollp f. Edit
rollp f so it uses perspe, and no longer uses scale. This is a two-
step process.

1. Tell the IRIS that the object’s world has perspective, then
call transl so the objects will appear within the viewing
volume. Delete the line in initialize that contains the
ortho routine. Replace it with these lines:

CALL PERSPE (900, 1.0, 50.0, 500.0)
CALL TRANSL(0.0, 0.0, -400.0)

2. Now you can eliminate the scale routine, and let
transl and perspe take care of making the ball look like
it’s coming towards you. Edit the rollem subroutine so it
looks like this:

SUBROUTINE ROLLEM
SINCLUDE /usr/include/fgl.h

SINCLUDE /usr/include/fdevice.h

CALL ROTATE (150, ’X’)
CALL TRANSL(0.0, 0.0, 1.0)

CALL DRAWSPHERE

RETURN
END

IRIS Programming Tutorial




This didn’t work very well. The ball is rotating, but it looks more like
it’s orbiting than rolling. Note that in the original rollem f, transl
didn’t actually move the ball towards you — it was just an illusion
created by scale. When the rollem subroutine rotates the ball, this
rotation is added to the matrix. Now the ball’s coordinate system is
rotated, so a transl down the z axis will move the ball in the new
direction.

To prevent this from happening, use the matrix manipulation routines
to control the rotations. Remember, when you pop a matrix, all
previous transformations are deleted. This means if you pop a matrix
that contains the last transl, the ball will go back to its original
position (0.0, 0.0, - 400.0). You can solve this problem by declaring a
static integer to keep track of how far the ball has been translated.
Edit the subroutine rollem so it looks like this:

SUBROUTINE ROLLEM
S$INCLUDE /usr/include/fgl.h
$INCLUDE /usr/include/fdevice.h

INTEGER*2 J
J=0

CALL TRANSL(0.0, 0.0, 1.5)

CALL PUSHMA

CALL ROTATE (J*150, 'X’)
CALL DRAWSPHERE

CALL POPMAT

J=J+1

RETURN
END

Compile and run your program. How does it compare to the
orthographic version?

Changing the Point of View

127



Viewports

Just as you can establish boundaries for a 3D viewing volume, you can
specify the size and shape of the 2D area that displays it. This area is
called the viewport.

The shape you specify for a viewport should be the same as the shape
of the near clipping plane. Otherwise, your image will be distorted.

normal tall, thin
viewport viewport

A/‘k PIZAN

short, fat
viewport

—

A\

There are two default viewport settings on the IRIS. If your program
doesn’t run under mex, the default viewport is the entire screen
(viewpo(0, XMAXSCREEN, 0, YMAXSCREEN)). If it does run under
mex, the lower left corner of the window is considered (0, 0), and the
upper right corner (x, y) is determined by how large an area you sweep
out (viewpo (0, IX, 0, IY)).

Another useful routine for preventing distortion is keepas
(keepaspect). It lets you specify an aspect ratio for the shape of the
viewport. You put it in the initialize subroutine, before you call
winope. It was introduced in the Workshop coord10f.

IRIS Programming Tutorial

e R s M pum Rem s m mm e R A R e R e M e e

ol L B R L I

.



Graphics
Lab

Viewport

Viewport - - INFORMATION =SS0 Viewport - - COTROL BAR

Use the LEFT MOUSE to select a parameter
from the STATUS window, OR use the RIGHT MOUSE
to bring up the popup menu.

Controller Bar

ViewPort - - STATUS

bottom to§0 )

left right
CALL VIEWPO ( 50, 50, 50, 3

left

CALL ORTHO (100.0, 500.0, 100.0, 500.0, 0.0, 600.0 )

Viewport - - SCREEN SPACE

right bottom  top near far

Viewport - - WORLD SPACE

0(400.0,

0(200.0,350.0,-40

0(389.0,200.0,

3- D world space

2- D screen space

Run viewport. It shows how ortho and viewpo work together.
(Your IRIS must have at least 12 bitplanes to run this Lab.)

Changing the Point of View

129



Viewing Transformations

130

Up to this point, the viewer has always been looking in the same
direction — straight down the negative z axis. Sometimes you’ll want
to change the point of view, that is, place the viewer somewhere else
within the viewing volume. To do this, you use viewing
transformations.

Think of the viewing volume as the world space for your objects, and
your viewer as a person who lives in the same world. You can move
the person around the world in different ways using two Graphics
Library routines: lookat and polarv (polarview).

Two New Angles

lookat lets you establish a line of sight with a counterclockwise twist.
You specify the location of the person (x, y, and z coordinates), the
location of a point that the person is viewing (x, y, and z coordinates)
plus a clockwise angle of twist (tenths of degrees). This twist is the
amount of rotation about the line of sight, which is the straight line
between the viewer and the object.

&xy.2

twist
Z

(px, py, PZ)

polarv assumes that the object being viewed is located at the origin,
and the person can be anywhere in the world space. You specify the
person’s position with four arguments: the distance between the
person and the object (a floating point number), the angle of incidence,
the azimuthal angle, and an angle of twist.

IRIS Programming Tutorial

M W mem s mw s MM WS RS SR REm  fem SRR AR fEm MM Mem AR MM RN MR Mam e M Rm e e




The azimuthal angle lies in the x,y plane. It is the difference between
the object’s orientation on the y axis (0 degrees) and the orientation of
the viewer in the x,y plane. The direction of rotation follows the left-
hand rule.

azimuthal angle

The angle of incidence lies in the y,z plane. It is the difference
between the object’s orientation on the z axis (0 degrees) and the
orientation of the viewer in the y,z plane. Like the azimuthal angle, the
rotation follows the left-hand rule.

y

ol 744 "

angleof incidence

Z

The angle of twist is an amount of clockwise rotation about the line of
sight (the straight line between the viewer and the object).

y

twist

Changing the Point of View

131



132

Run the Graphics Lab projection again. Try out the viewing
transformations.

Workshop

viewl3 flets you see the diamond and the ball from two different
angles. First you see the diamond and the hit from your usual angle.
Then, after a short pause, you see an instant replay from a new vantage
point established with polarv.

IRIS Programming Tutorial




Using lookat and polarview

Now you can use these routines to look at your rolling ball from a new
angle. Start with lookat.

Edit your rollp f program so your viewer is standing halfway between
where the ball starts rolling and where it stops. Delete the line in
initialize that contains transl. After the line that contains perspe,
add this line:

CALL LOOKAT(3.0 ,0.0 ,9.0, 0.0, 0.0, 0.0)

To place yourself behind the ball and watch it roll away, replace the
lookat line above with this line:

CALL LOOKAT (0.0, 0.0, -450.0, 0.0, 0.0, 0.0)

Now try polarv. Make the ball roll towards you, up a board that is
inclined 30 degrees. Replace the lookat line with this:

CALL POLARV (0.0, 0, 300, 0)

Experiment with these routines. Try them together and see how they
affect each other.

Workshop

parabolal4 f adds one more piece of realism to the baseball program.
The ball travels in a parabolic path from the batter’s box to the ground.

Changing the Point of View

133



More on Matrices

In Chapter 6 you learned how to manipulate the matrices that keep
track of modeling transformations. Both projection and viewing
transformations use the same matrices, and you can manipulate them
using the same routines as before.

Projection transformations affect the current matrix differently than do
modeling transformations. When you call a projection transformation,
the current matrix is destroyed and is replaced by a new matrix that
contains only the projection transformation. Nothing happens to any
other matrices on the stack. So, if you want to save your current
matrix, call a pushma before you call a projection transformation.

Viewing transformations affect the current matrix the same way as
modeling transformations — they change it cumulatively. When you
call a viewing transformation, you change the current matrix, but you
don’t destroy it.

Because the transformations affect the matrix differently, the order in
which you call them is very important.

1. Always call the projection transformation first, because it
completely destroys the current matrix.

2. Call the viewing transformation. You must establish the
orientation of the object’s world before you can move the
object around.

3. Call the modeling transformations.

If you look at your code for rollp.f, you see that the transformations
are called in this order. Change the order around and see what
happens.

IRIS Programming Tutorial




Summary

e Projection transformations determine how the 3D model is
displayed on your 2D screen.

¢ You can project models either orthographically or with
perspective.

¢ Viewing transformations let you change the viewer’s position
within the viewing volume; that is, the viewer’s position relative to
the 3D world.

¢ All transformations (projection, viewing, and modeling) use the
same matrices. Both modeling and viewing transformations are
cumulative and change only the current matrix; projection
transformations destroy the current matrix and replace it with a
new one.

e You must call the transformations in this order:
1. projection
2. viewing

3. modeling

Changing the Point of View 135



Bus b b e b e e e mer e Eae e e e e b M e b e e e mw e b e e




8 Where to Go from Here

This tutorial provides a basic introduction to the IRIS Graphics
Library and to real-time 3D programming on the IRIS. You’re now
prepared to go on to more advanced topics in IRIS graphics
programming. This chapter tells you where to find more information.

The IRIS Graphics Library

For more information on the IRIS Graphics Library, see IRIS User’s
Guide, Volumes I and II. Volume I contains two major parts:

e IRIS Graphics Programming is a narrative description of the
Graphics Library routines, arranged by subject matter. Use this
part of the manual to find the Graphics Library routine that
matches your programming task.

e Using mex, the IRIS Window Manager describes the window
manager routines contained in the Graphics Library.

Volume II of IRIS User’s Guide contains IRIS Reference Manual,
which is arranged alphabetically by routine. Once you know the name
of a Graphics Library routine, look here for its syntax and a brief
description. Volume II also contains the manual pages that describe
the Graphics Labs in detail.

Where to Go from Here

137



General Graphics References

For general information on computer graphics, consult these
textbooks:

e Procedural Elements for Computer Graphics, David F. Rogers, A
McGraw-Hill Book Company, 1985. Introductory textbook.

e Fundamentals of Interactive Computer Graphics (Addison-Wesley ’//5
Systems Programming Series), James D. Foley and Andries Van 3}/

Dam, Addison-Wesley Publishing Company, 1982. General Fes
textbook. T e s
e Principles of Interactive Computer Graphics, William M. f‘; l;?,:,f

Newman and Robert F. Sproull, McGraw-Hill Book Company,
1979. General textbook.

» Mathematical Elements for Computer Graphics, David F. Rogers 7~
and J. Alan Adams, McGraw-Hill Book Company, 1976. 385
Textbook for transformations and curves. £ 6

138 IRIS Programming Tutorial

1




Advanced Graphics Labs

You’ve been following the on-line Graphics Labs as you worked
through this tutorial. Now you’re ready for Graphics Labs on more
advanced topics:

e backface shows two views of a cube, contrasting images with and
backface removal, a form of hidden surface removal. (12 bitplanes
required)

e curve shows how to use the curve routines in the Graphics Library.
(12 bitplanes required)

e depthcue shows a depthcued, wireframe model of the letter ‘F’.
This lab demonstrates the effects and interactions of the IRIS
Graphics Library routines perspe, setdep, and shader. (16
bitplanes required)

e gamma shows the effects of gamma correcting a color ramp. You
control slider bars to change interactively the value of the gamma
constant. (16 bitplanes required)

e gouraud illustrates the concept of Gouraud shading by simulating
a model polygon with very large pixels. You can edit the position
and intensity of each vertex of a four-sided polygon. (16 bitplanes
required)

e patch shows how to use the patch routines in the Graphics Library.
Do the curve 1ab before this one; the two labs have similar
structures. (12 bitplanes required)

e scrmask shows the effects of the IRIS Graphics Library routines
viewpo and scrmas on text strings. (12 bitplanes required)

e zbuffer shows the effects of the IRIS Graphics Library zbuffe
routine. This lab shows the difference between a solid object that
uses the z buffer for hidden surface removal, and a solid object that
has no hidden surface removal. (32 bitplanes required)

Where to Go from Here 139



il._l[[.l..l[[ln:ll.l.lrl.l[ll[l_..lll.[[[ll[nil



ics

iliconGraph,

J/
Computer Systems
Mountain View, California 94043

Telephone (415) 960-1980

2011 Stierlin Road

S

P/N 007-1104-010. Printed in US.A. 11/86




