
MEMORY MANAGEMENT, 

RESOURCE ALLOCATION, 

AND 

COMMUNICATIONS 

IN UTS 

UTS Section 
Current Systems Department 
12 September 1972 



PAGE 1 

I. Memory Management 

1. Memory Layout 

1.1 Resident Monitor 

• Characteristics 

• Size 

• Location 

1.2 Non-Resident Monitor 

• Characteristics 

• Size 

• Location 

1.3 User Space 

• Context 

• DCBs 

• Blocking Buffers 

• Program Area 

• Common Area 

• Dynamic Area 

2. Memory Allocation 

2. 1 User Services 

• Memory Management 

• Overlayed Programs 

• Load-and-Link 

2.2 Swapping 

· Characteristi cs 

• Allocation 

• I/O Supervisor interface 

2. 3 Shared Processors 



PAGE 2 

II. Resource Allocation 

l. Resource Types 

• 'Core 

• Disk 

• Peripherals 

.' Temporary Disk 

2. All ocation for Job In itral ization 

3. Allocation at Job Step 

III. Commun ications 

1. Introduction 

2. SYSGEN options 

• Terminal types 

• Networks of lines 

• line Protocdls 

• Translation 

• Inclusion of communication routines 

3. Communications Interfaces 

• User with devices 

• Monitor with commun ication routines 

4. Operating Modes 

4. 1 Message Mode 

• Line type support 

• Terminal type support 

• Remote Batch Terminal Support 

4.2 Character Mode 

• Line type, support 

• Terminal type support 

• Timesharing Support 



PAGE 3 

I. Memory Management 

1. Memory Layout 

The following paragraphs describe the layouts of the UTS monitor and 
user spaces in memory. The resident monitor is that portion of the 
operating system which is always in core memory. The non-resident 
monitor includes all functions that are placed in memory only when 
they are required. There are three mechanisms for placing non-resident 
functions in memory: 

Physical overlay - placing programs in memory by physical 
address 

Virtual overlay - placing a requested monitor service pro­
gram in a user's virtual memory 

Ghost job - an asynchronous monitor task performed in its 
own virtual space as if it were a user program 

In addition, many system functions are carried out by slave mode 
user-style processors which operate in user space and conform to 
all user limitations and restrictions (e.g., no master mode instructions). 
Finally, the general layout of virtual memory space is described from 
the user's point of view. 

All of the programs required by each user, i.e., the resident monitor, 
non-resident monitor, user program, and shared processors, are combined 
into a single l28K virtual memory space by means of the map. Five 
kinds of programs can be "shared", i.e., one copy can be used by more 
than one user program. The five kinds of shared programs are: 

A monitor virtual overlay 

A command processor 

A shared processor 

An overlay of the shared processor 

A shared library or debugger 

Use of the map to construct a virtual memory layout achieves several 
advantages: 

Any available physical memory pages may be used (to 512K on Sigma 9) 

The pages need not be contiguous (avoids shuffling) 

No program relocation is required 

Processors and libraries may be shared among all current users 



PAGE 4 

In conjunction with virtual memory management, the UTS swapper allows 
the total size of all running programs, both batch and on-line, to 
exceed the size of real memory. 

virtual ghost ghost job 
monitor context 
overlay 

mapped unmapped physical 
virtual memory 

resident resident memory I physical ~ 
overlay 

VMO user user job J 
context 

1.1 Resident Monitor 

The core-resident portions of the UTS monitor occupy low-addressed 
physical memory. These routines are loaded together, enter memory 
at system boot time, and are replaced only during recovery. Routine~ 

in this region run unmapped when servicing interrupts or mapped 
when carrying out the explicit requests of the user (his CAL). 
Some routines, such as I/O buffer allocation routines, must be 
executable both mapped and unmapped; therefore, much of the resident 
monitor is mapped "one-to-one" so that virtual and physical 
addresses are identical in this area. Some interrupt handlers and 
other routines which operate entirely unmapped appear in physical 
memory but not in virtual space, making more virtual space available 
to the user. 

The routines chosen for residence in UTS are those modules which 
have a high incidence of use. From time to tDne, measurements of 
the running system indicate low-usage modules that can be moved 
to non-resident status. This technique has gradually reduced the 
physical resident size over the last few releases, providing 
space for larger user programs and added monitor facilities, 
e.g., RMA features. 



PAGE 5 

The modules which are currently resident in UTS are as follows: 

a. Basic I/O enqueueing and device-handling routines 

b. Communications management routines 

c. Symbiont/cooperative (peripheral I/O buffering) 
routines (partial) 

d. Scheduling (tasks) and swapping routines 

e. Memory management routines 

f. Job step control routines 

g. File management routines (high use portions) 

h. Accounting and performance monitoring routines 
(data-gathering parts) 

i. Error logging and diagnostic program interface 
routines 

j. Machine fault handling routines 

The total size of the resident monitor varies at SYSGEN with the 
options selected: number of users, number and type of devices 
attached, number of buffers for I/O, and routine selection such 
as performance monitoring and certain terminal communication 
routines. A large system (say 100 users and many devices) would 
have a resident of about 31,000 words, a medium time-sharing 
system about 26,000 words" and a minimum system requirement 
of 20-22,000 words. Partially explored techniques show promise 
of reducing this to 16-18,000 words. 

1.2 Non-Resident Monitor 

Three methods are used for non-resident UTS monitor routines: 

Virtual memory overlays for monitor services requested 
by a user program 

Ghost jobs for job independent "parallel" monitor tasks 
allocated their own virtual memory 

Physical overlays for initialization, master mode 
debugging and automatic recovery from system failures 

a. Virtual Monitor Overlay 

These groups of routines perform specific user-requested 
services. They are one of the several kinds of shared 
processors in UTS and are handled by the common shared 
processor,mechanism. See Section 2.2 and 2.3. They are 
"linked" into the users virtual memory by means of the 



PAGE 6 

memory map; one copy of each routine is "shared" by all 
users requiring the routine. This is done by "mapping" 
the physical routine into each user's virtual memory 
when the routine is needed. More than one overlay ~ay 
be physically resident in memory, if appropriate. Physical 
memory not currently in use by users is used by monitor 
overlays. When overlays are physically resident, a call 
requires only a map change, no swap I/O. 

Monitor overlays are a maximum of 3,000 words in length 
although the average is near 1500 words. They are located 
at virtual memory addresses 32-35K, although they may be 
located anywhere in physical memory. Eight current overlay 
segments cover functions as follows: 

1. DEBUG Services user batch debug requests. 1300 

2. OPEN Services user file open requests. 3000 

3. CLS Services user file close requests. 1500 

4. MUL Builds tree'd indices for keyed 
(ISAM) files. 1000 

5. LTAPE Services user I/O to monitor-
formatted tape. 1000 

6. KEYN Services operator console requests. 1500 

7. LDLNK Services user inter program trans-
fer requests. 800 

8. MISOV Services infrequently used calls. 2500 

Linking of an overlay into a user's virtual memory is controlled 
by a centralized routine, T:OV, which provides for two types 
of entries to overlays: a "branch" type and a "branch-and­
link" type. The latter remembers the last overlay in use 
and therefore provides for transfer from overlay to overlay 
and controlled return. As with other shared processors, the 
monitor keeps a use count with each overlay which allows it 
to use memory oc~upied by overlays for other purposes when 
they are not currently in use. 

b. Ghost Jobs 

Ghost jobs are a general mechanism for providing non-resident 
programs and data areas. A ghost job may be a monitor sub­
routine that is disguised to look like a user job; it has its 
own Job Information Table and its own l28K virtual memory 
space. A "ghost job" is a way of tapping the unlimited 



PAGE 7 

virtual memory available to the UTS system. In effect, 
anytime the system needs more space, it can initiate a 
"user" in a new l28K virtual memory space. The swapping 
I/O mechanism brings the ghost job into memory to perform 
the needed task - usually a short infrequently needed 
system service. A ghost job can be run at a privilege 
level which permits it to use data and routines in the 
resident monitor. 

Six monitor tasks are currently handled by ghost jobs in 
UTS: 

1. Initialization. The program GHOSTI reads the system 
boot tape, modifies (patches) system files, places 
them in the system account :SYS, and establishes the 
shared processors in absolute form on the swapping 
device. If the initialization is the result of a 
recovery, then proper closing of user fi'les and 
crash dump analysis is provided. 

2. Secondary File Storage Allocation. The program ALLOCAT 
carries allocation tables for public file and symbiont 
(peripheral buffering) storage. It is activated 
periodically to refresh small resident tables of avail­
able file granules which are used between activations 
of ALLOCAT. This technique removes the allocation 
tables from the resident, an especially effective 
technique for systems with a large number of disk packs, 
and provides for their safety (on the swapping device) 
in the event of loss of core memory contents. The 
frequency of use of ALLOCAT can be adjusted for optimum 
efficiency by changing the resident table sizes; a 
typical activation frequency is 1-2 minutes. 

3. Multibatch scheduling and remote batch processing. 
The routines and tables associated with these functions, 
contained in the ghost RBBAT, provide for the prescan 
of the batch job stream to acquire resource requirements 
and for matching of these resources to the batch partition 
parameters for job scheduling as described in Section II. 
The input job queues are protected against memory failure, 
since copies of the queues are stored on the swapping 
device. 

4-6. ERRFIL, FILL, ANLZ. These three ghosts handle pro­
duction of the hardware error log, aub)111atic file 
backup services, and crash dump analysis. 



PAGE 8 

c. Physical Overlays 

Routines required only at initialization or recovery are 
in this class. Initialization routines which process the 
beginning of the system tape and provide for its modification 
(patching) are resident only until the process is complete. 
The memory used is recovered as soon as initialization is 
complete. On crash, special recovery routines physically 
overlay the monitor to take a dump and save critical tables 
for entry to system re-initialization. 

1.3 User Space 

The virtual memory of the machine as seen by a user (both on-line 
and batch) or by a shared processor is shown in the figure on 
the next page. The arrangement provides for the several types 
of shared processors. Access codes of the memory map coupled 
with write locks protect the users from one another, the system 
from the users, the system from itself when operating in behalf 
of the user, and the user from errors in this own code which 
otherwise might step on this own code, DCBs, buffers, or library 
routines. Total available virtual memory is 96K words: 16K in 
context (DCBs, buffers, and job information), 64K program and 
data space, and 16K shared library space. Buffers for I/O 
are pooled in the context area. This generally means that a 
smaller amount of core is required for a job when compared to 
a fixed number of buffers for each file opened. A particularly 
important and unique feature of UTS is that both batch and 
on-line users are treated uniformly by the system with respect 
to memory management. Programs see the same virtual memory 
regardless of on-line or batch status. As described in the 
next section, the monitor provides service GALs which enable 
the user to acquire and release memory during the course of 
his execution. 



T 
From program 
load 

Acquired and 
released during 
execution 

User 
Access 

none 

read 
read 

none 

write 

execute 

wTite 

none 

write 

none 

write 

execute 

Shared monitor overlay 

JIT 
DCBs 

Blocking and index 
buffers 

User or shared processor 
program data and program 
data overlays 

User or shared processor 
program procedure and 
program procedure overlays 

I 
Dynamic free memory 

t 
Unallocated 

Virtually acquired memory 

Unallocated 

~ 
Conunon free memory 

I 
Shared libraries, 
debuggers, TEL 

PAGE 9 

-

~ 

32K 

T 
context 

User or shared 
processor space 

Shared 
library 
space 

t l28K 



PAGE 10 

2.1 User Services 

Services of the UTS monitor available to the user program for 
management of core memory fall into three broad categories: 

2.1.1 

Explicit commands for acquiring and releasing pages of 
core memory 

Various servi'.ces for calling in the parts of segmented 
programs 

Services which allow transfer to and return from independent 
programs 

Memory Management 

User programs may acquire and release memory during 
their execution by means of the commands listed below. 
The memory management routines acquire or release both 
core pages and corresponding pages on.the swapping 
device. The allowed limit on amount of memory acquired 
is controlled by system defaults, installation set 
limits on individual users, and the resource requests 
of batch jobs. 

GP,FP 

GCP,FCP 

GL 

GVP,FVP 

These two services get and free a 
given number of pages from the dynamic 
memory area, always proceeding from 
lower to higher addressed contiguous 
pages. 

These are similar services except that 
requests are satisfied from high to low 
addresses in common memory. Common 
memory remains intact as the communica­
tion area for programs called via 
M:LINK and M:LDTRC. 

This service allows the user to deter­
mine where available dynamic and common 
memory is located. 

These services allow a program to get 
or free explicitly addressed virtual 
pages anywhere in unallocated memory. 
They are especially useful for programs 
which must build more than two tables 
of unknown size, since the usual table 
movement operations are no longer 
required. For example, APLX uses them 
in conjunction with trap control to 
demand page yser work spaces. 



2.1.2 

2.1.3 

2.1.4 

C~ 

Program Overlays 

PAGE 11 

This service allows a user to map 
specific physical pages into.his 
virtual address space. It is useful 
for examination and change of the 
resident monitor (for example, per­
formance parameters) and for inter­
program communication through 
dedicated physical memory •. 

User programs may be overlayed with multi-level overlay 
trees in both procedure and data segments. Three methods 
are available for the user program to manage the calling 
of his overlays. First he may make explicit calls on the 
monitor for the desired segment (SEGMENT loading). Second, 
via a loader option, he may ask that the monitor bring 
in segments on each branching reference to another segment 
(BREF loading). And, third, also via a loader option, he 
may ask that the monitor bring in a segment on ~ 
reference made to another segment (REF loading) • 

. The core memory not in use when a large overlay is replaced 
by a small one is returned to the system for use by 
monitor overlays or other user jobs. 

Program Loading 

User programs may completely overlay themselves with 
another program and communicate with the called program 
through use of M:LINK and M:LDTRC procedure calls. 
Communication is accomplished through the general 
registers and common dynamic storage. An M:LINK saves 
the image of the calling program on a file for return 
on exit from the called program while in M:LDTRC simply 
transfers. This feature is commonly used in calling 
SORT from COBOL programs and in calling the loader 
from SYSGEN's PASS3. 

Ghost Jobs 

Privileged programs may also initiate any processor in 
the system·account as a ghost job through a procedure 
call within the program. This is used for file backup, 
crash analysis, and in logging of hardware errors. 



PAGE 12 

2.2 Swapping 

In UTS, the swapping mechanism is a general system service. 
It not only provides for the interchange of on-line users in 
the traditional time-sharing sense, but also provides for the 
association and reading in of shared processors, including 
monitor overlays, and for the system asynchronous parallel 
tasks, ghost jobs. In a properly tuned batch-only UTS system, 
the swapper would only be used to bring in shared processors 
as they are requested. Out swaps of batch jobs would only 
occur when the need to run a ghost job arises. 

In a time-sharing system, particularly with only a few users, 
all of core might be allocated to batch jobs. In this case, 
swaps of a batch job would be-required to bring in the occasional 
time-sharing user for execution. During periods when no time­
sharing user needs service, the entire memory is devoted to 
batch jobs. 

A "write-ahead" operation allows a user program to be swapped 
during write I/O except, of course, for the buffers involved 
in the I/O. 

Core management includes the parallel management of swap space. 
When a core page is requested, a swap page must also be acquired. 
Similarly, a release of core requires release of swap space. In 
order to provide for fast swaps, space acquired must be contiguous 
or nearly so, to that already allocated. Further, the program 
pure procedure is always placed last on swap devices so that it 
need not be written out if it is unchanged. The required 
rearrangement of swap space is carried out by a rearrangement 
of I/O commands rather than by a physical move. A swap is not 
forced but eventually occurs in the normal course of events, 
if required. 

A bit table (SGP)", is used to keep::track of the availability 
tPJ \ I 

of each storage;, on the swapper. In this table, one bit is used 
per granule or group of granules to indicate whether it is 
free or in use. Users are assigned a sufficient number of 
granules to accommodate their current use. That is, swap 
space is conserved by dynamic allocation of only the 
needed amount from a common pool. The ass igmnent is 



2.3 

PAGE 13 

done in such a way that command chaining of the I/O can order 
the granules to be fetched for a single user with a minimum 
latency. That is, each user's pages are spread evenly over 
the set of available granules so that data will be transmitted 
in every disc sector passed over when the user is swapped. 

The records of disc granules associated with each user are kept 
in the user's Job Information Table (JIT) , which is kept on the 
swapper when the user is not in core. The disc location of the 
JIT is kept in core for fast access. The swapping device is 
arranged so that sufficient time is available after the user's 
JIT arrives from the swapper for the system to set up the I/O 
command chain contained therein for swapping of the remainder 
of the user program. 

The amount of swap storage assigned to swapping is a parameter 
of SYSGEN. The number of active (batch and on-line) users that 
the system can accommodate is limited by the size of swap space 
allocated by SYSGEN for swapping. 

Experience has shown that one 7212 is sufficient for the system 
residence plus the swapping requirements of 50-60 users. The 
second 7212 will accommodate 75-90 additional users. 

Swap I/O is given preference by carrying it out at the highest 
I/O priority level. Priority assignments for I/O in UTS are: 

1) Swap I/O 

2) File Open/Close I/O 

3) User I/O 

4) Symbiont I/O 

Shared Processors 

The procedure portion of most processors, libraries, and monitor 
overlays is shared among all concurrent users. For example, if 
four FORTRAN coded programs are running concurrently, only one 
copy of the library is required in core. This yields a savings 
of l3.5K words -- enough core to run another job. About 40 
processors and overlays are shared in UTS, which results in 
particularly efficient uses of core memory. In addition to 
the core saving, a speed 'improvement is gained since they are 
fetched for execution directly by the swapping mechanism rather 
than the slower retrieval via the file system. Using DRSP, these 



PAGE 14 

shared processors or overlays may be replaced during system 
operation with updated versions without disturbing on-going 
work. Current users of the replaced processors continue to 
use the old version until they terminate. Installations may 
take advantage of this core-efficient facility by adding their 
commonly used processors and libraries to the system as shared 
processors either during SYSGEN or dynamically, via DRSP. 

There are six distinct types of shared processors in UTS: 

1) Ordinary shared processors (FORTRAN, BASIC, PCL, APL, 
METASYMBOL) 

2) Overlays of the ordinary shared processors 

3) Command processors (TEL ,CCI ,LOGON, EASY) 

4) Shared debuggers (DELTA) 

5) Public libraries (FORTRAN run-time library, FDP) 

6) Monitor overlays (OPEN, Labeled tape routines, DEBUG) 

Ordinary shared processors and their overlays occupy the same 
virtual memory as user programs. Special shared processors, 
shared debuggers, and public libraries occupy (and are overlaid in) 
dedicated high virtual memory and may be associated with user 
programs or ordinary shared processors. The processors CCI, TEL, 
and LOGON which require store access to JIT are granted that 
special privilege. 

Shared processors are not limited to programs provided by Xerox. 
The facilities may be effectively used whenever a program has a 
high probability of common usage. Service bureaus, for example, 
may use the mechanism for proprietary packages, and corporate 
installations may use it for programs with a high frequency of 
use. Shared processors may be written in any language - FORTRAN, 
COBOL, Metasymbol, etc. 

Command processors may also be installation written to provide 
for isolated user communities which do not have to know the 
full system -- transaction processing communities for example. 

Any program which meets the restrictions maybe established as 
a shared processor by naming it at SYSGEN, which causes the file 
copy of the program from the :SYS account to be written on the 
swapping device and its name placed in shared processor tables 
in resident monitor core during system initialization. The pro­
gram is then available through high-speed swapping I/O. DRSP 
accomplishes a similar task during system operation. 



PAGE 15 

The file copy of the program is retained for recovery purposes 
and may be run as an unshared program under DELTA for development 
and debugging purposes. If the load module in the :SYS account 
is replaced, the shared copy of the program on the swapping 
device is updated to the newer version in the event of a system 
recovery. 

Shared processors are absolute, live in system resident space 
on the swapping device, and are swapped in as needed with user 
or associated via the map if already in. The swap occurs during 
swap in the first swap phase in which the JIT and all of the 
required shared processors are brought in. (In the second phase, 
the user's program and data are brought in.) 

The association and loading of shared processors is especially 
efficient not only because they are absolute program images 
but also because the resident secondary storage address is 
directly known and therefore does not require access via the 
file system. 

A single program may have up to four shared processors associated 
at one time: a monitor overlay, an ordinary shared processor, an 
overlay of the ordinary shared processor, and a shared library 
or debugger. The shared library or debugger may be associated 
or disassociated dynamically using a monitor service CAL. 

The following chart shows how the virtual memory of several 
users of shared processors relates to physical memory. 



Virtual Memory 
User 1 

Pjlysical Memory 

Virtual Memory 
User 2 

User 3 

User n 

Shared 
Monitor 
Overlay 

Shared 
Shared Processor 
Processor Overlay 

~ 
JIT 

I 
11 

Relation of Several Users' Virtual Memory 

to the Sigma Physical Memory 

PAGE 16 

Data 
Shared 
Library 

j~=b~ 



PAGE 17 

Virtual Pages not used are set to X'20' with no access; Virtual 
Pages assigned aoswap image but not yet a core page contain 
X'22' with no access. These are the page numbers of write 
protected portions of the resident monitor. 

Each user has separate JIT, DeBs, Data, and other memory areas 
which are private to him and his execution. User 1 and User 2 
share a single processor as indicated by the fact that their 
maps point to the same places. They also share an overlay for 
the same processor. User 1 and User 3 share a library; User 1 
and User 3 share a single monitor overlay. User n has his own 
private program resident in the same virtual space which Users 1 
and 2 are using for a shared processor. 



PAGE 18 

II. Resource Allocation 

This section describes the UTS facilities for allocation of system resources-­
tapes, packs, core, and time to the on-line and batch users of the system. 
Allocation is done not only for efficiency but also in such a way as to prevent 
deadly embraces in which two or more jobs make impossible requests (e.g., two 
jobs each holding one tape asks for one more on a machine with only two tapes). 

UTS provides up to 16 concurrent batch processing partitions and guarantees 
that the total resources, such as tapes, private packs, core, etc., used by 
active partitions do not exceed the physical resources of the machine (except 
core and time) and the limits set by the installation manager. UTS classifies 
jobs dynamically into one or more of the 16 partitions depending on the resources 
required and the stated resource ranges of the partitions. Each partition, 
through its resource ranges, represents a job class; however, UTS is unique 
in that it can and will run--in priority order-- the job class for which 
resources are available. This feature results in greater than usual throughput 
when jobs are submitted in an arbitrary manner. Conversely, critical jobs 
may have their resource requirements and priorities established in such close 
match to a partition class that immediate execution of critical jobs is assured. 

Partition definitions in UTS act as a screening process for job selection and 
do not define a fixed boundary partition in the traditional sense. Jobs 
acquire core dynamically as needed up to the specified limit. Any excess 
core is available for running other jobs. Batch jobs are not core-resident 
from start to finish but are scheduled and swapped as system load dictates, 
which assures maximum system utilization consistent with good on-line response 
time. Resources may be released by a job at each job step, e.g., tapes 
unused in subsequent steps. 

The installation may define a priority increment to be used to increase the 
priority of bypassed jobs, thus giving them credit for longevity in the queue. 
Special treatment is accorded an F priority job, i.e., it is guaranteed to be 
the next job selected, depending only on the availability of the required 
resources. 

The paragraphs above and the remainder of this section discuss resources 
which are of concern to users of UTS. In addition to these external resources, 
UTS also uses and manages a number of internal resources. Internal resources 
are characterized by their period of use which is short enough so that it is 
practical to wait for availability without noticeably affecting response time. 
Generally, internal resources are allocated from a pool the size of which 
can be adjusted via SYSGEN in order to minimize the number and duration of the 
waits in queue for them. Queueing for these resources is handled as part 
of the general queueing mechanism which is the UTS execution or task scheduler. 
Thus, a user job is queued for one of these resources just as it is queued 
on the more frequent events of terminal I/O, file I/O, computation, etc. 



PAGE 19 

Internal resources managed by UTS are: 

Terminal I/O (COC) core buffers 

Core memory pages 

Swapper pages 

File or symbiont secondary storage granules 

Symbiont secondary storage granules 

Symbiont file table entries 

I/O enqueueing table entries 

Tape and private disk pack mount requests 

Use of the non-reentrant file open and close routines 

1. Resource Types 

UTS resource allocation and multibatch scheduling are based on specifi­
cation and control over five resources that are specified as requirements 
by each entering job on a LIMIT card. 

CORE The amount of core memory required for the job. 

TIME The time required to run the job. 

9T The number of nine track tape drives required. 

7T The number of seven track tape drives required. 

SP The number of private disk pack spindles required. 

A later release will add disks A and Band 1600 bpi tapes as distinct 
resources. 

In addition, scheduling is controlled by three other parameters specified 
on the LIMIT card. 

ORDER 

MOUNT 

ACCOUNT 

All previously entered jobs with this account 
number must run prior to this job. 

Specifies which packs or tapes must be pre-mounted 
and for each pack whether it is permissable to 
share its use with other jobs. 

Specifies that no other job with this account 
number may run concurrently. 



PAGE 20 

2. Allocation at Job Initiation - Job Selection 

In UTS, the selection of a batch job for execution depends on three 
factors: 

1) The resources required by the job as determined by analysis 
of the JCL (the JOB and LIMIT cards in particular). 

2) The installation manager.determined attributes of each 
partition. These attributes are established during SYSGEN 
and may be changed dynamically during system operation in 
order to match changing system loads. They are given in 
the form of allowed value ranges for each of the five 
resources listed above: core, time, nine track tapes, 
seven track tapes, and disk pack spindles. 

3) A set of global resource maximums which control the total 
allowance to batch programs taken together, and to on-line 
programs taken together ~or example, the number of nine 
track tapes allowed for all on-line users, or the total 
amount of core allowed all batch jobs). In addition, the 
total number of simultaneous batch jobs and the total 
number of on-line jobs may be controlled. These parameters 
are also determined at SYSGEN time but may be modified 
dynamically by the installation manager using CONTROL, 
a system program provided for this purpose. 

By setting the partition attributes, the installation manager defines 
job "classes". For example, he may have one partition-class for tape 
jobs, three for small short jobs requiring no tapes or packs, and one 
for large jobs. It is important to note that the installation manager 
controls the efficiency of the system by dynamic setting of the partition 
attributes and the global maximums. Users do not classify their jobs 
themselves other than by describing resources. The internal ability 
of the system to run any job that fits available resources without 
an artificial class constraint improves total throughput in a changing 
demand environment. 

All jobs entering the system are assigned to a partition on the basis 
of the five resource parameters. They are passed through the multi­
dimensional sieve formed by the partition parameters and marked according 
to the partition in which they fit. A job may fit in more than one 
partition. 



PAGE 21 

The multibatch scheduler is called upon to select a job for execution 
at each appropriate point: 1) whenever a batch job is completed, 
2) whenever a new job enters the system, and 3) whenever the installation 
manager makes a change in the global lDnits or the partition parameters. 
(The latter requires that all waiting jobs be re-fitted to the partitions.) 

At these points, the scheduler scans the input job queue in priority 
order and selects the first job which fits a vacant partition and is 
consistent with current global lDnits. This technique is particularly 
effective in selecting jobs for execution which match the available 
resources and thus tends to maxDnize total system throughput. 

Special treatment is given to jobs carrying the highest priority (F). 
This "super" priority allows the installation manager to guarantee 
that the job carrying it will be run next. The scheduler will not 
run any job which uses resources required by the super priority job 
resources are held for it until it can run. 

3. Allocation at Job Step 

Any job in UTS may use system service calls to release to the system 
resources which he no longer needs. This may be done at any tDne within 
a job as well as at the end of a job step. 

Core memory is returned to the system free memory pool at the end of 
each job step and reacquired by the next step as needed up to the lDnit 
established by the job. Unused memory may be used by the system for 
monitor overlays or other jobs. 

UTS does not permit jobs to acquire resources beyond the initial request 
during the job's execution since this might result in a deadly embrace 
which could only be resolved by aborting one of the jobs. 



PAGE 22 

III. Communications 

1. Introduction 

In DTS, communications management is a logical part of the system's 
general I/O supervisory routines. The mechanism is designed to provide 
for "device independence" -- that is the actual device connected to 
the user's read and write requests is not determined until execution 
time when the coupling or assignment is made (in the DCB) of the users 
request to the device. In all cases, the monitor, through it's I/O 
supervisor, provides for the actual I/O by building command lists 
appropriate to the device and enqueueing the requests when channels 
are busy at request time. Translations of characters, where needed, 
is also provided so that the user sends and receives messages composed 
of standard EBCDIC characters. 

When new devices are added to the system, new "handlers" are required 
which provide the proper I/O commands and translations for the device. 
Two sub-parts of each handler are required: a pre-processor to initiate 
each I/O request, and a post-processor to recognize and recover from 
errors. 

The relationship is outlined in the figure to follow. 

System generation facilities allow for the inclusion of handlers for 
new devices. (Some recently devised methods allow for dynamic addition 
of handlers.) Devices are grouped according to I/O channels which may 
be logical as well as correspond to the physical I/O channels. In the 
sp~cial case of character mode terminals operating through the 7611 
COC hardware, the handler itself may be modified during SYSGEN to 
established the characteristics of the individual terminals on 7611 
lines. To the system and user, each terminal appears as a separate 
device. 

Most systems, including UTS, treat devices as resources which may be 
acquired and used by programs. An exception is usually made for the 
card reader and line printer which are special in that they are 
"controlling" devices, card for input, and printer for output. A 
JOB card appearing at 'the card reader is special; it means "create 
a job". 

UTS is unique among operating systems in that it treats character 
oriented terminals as "controlling" devices. A job is created when 
a terminal line calls up. Message mode communication devices are 
treated as acquirable resources in UTS just as in other systems, not 
as controlling devices. 



User Program Read 
and Write requests 

Common CAL 

Interface 

IOQ 

Cornman enqueueing 
and channel 

scheduling 

PAGE 23 

I/O Supervisor 

Pre-processing by Device Post-processing by Device 

t r 

I/O to Device 



PAGE 24 

The fact that terminals in UTS are logical job stream sources means 
that programs written for batch mode operation may be run from terminals 
without change. The system automatically makes the necessary logical 
association and translation for the device. 

Note, also, that because of shared processors, a program may be connected 
to many terminals at one time without the need to acquire them all and 
"sub-monitor". UTS automatically provides separate context for each 
terminal by treating it as a separate job even though the same program 
is shared by them all. 



PAGE 25 

2. SYSGEN Options 

In UTS, SYSGEN facilities which relate to communications are most 
complete for character mode I/O. The options available cover: 

Terminal type's - 7012, TTY 33, 35, 37, IBM 2741 

Translation tables - ANSCl, APL, Selectric, EBCD, standard 

Line protocols - full, half duplex TTY, exchoplex, 2741 

I/O address,DIO address for up to eight 7611 units 

Number of lines 

Amount of buffering 

Block and unblock limits on I/O 

Inactive terminal timeout values 

Hardwire/data set 

Because of the hardware, line speeds from 110-1200 baud are supported 
as well as the formats 8/10, 8/11, and 7/9. Software dynamically 
supplies on a demand basis, the differing buffering requirements of 
various line speeds. Assembly time options for the character mode 
handler allow a reduction in size of 700 locations by eliminating 
page formatting and performance monitoring routines. 

The remote batch message mode communication routines may be added to 
a UTS system through SYSGEN. 

Although not a SYSGEN option, the installation manager may control the 
program, processor, or command sub-executive which is to be automatically 
entered following logon. 

3. Communications Interfaces 

On-line programs communicate with character mode terminals through DCBs 
assigned to the terminal. The system automatically connects the 
standard DCBs to the terminal when a job is run on-line so no explicit 
action is required of the user. I/O is accomplished using normal 
Read and Write GALs in exactly the same way that the program would 
do I/O to card reader and printer. Message mode terminals are acquired 
by batch or on-line jobs through use of normal I/O assignments -- ASSIGN 
cards if batch or SET commands if on-line. Again, I/O proceeds through 
standard Reads and Writes directed through the DCB to which the terminal 
has been assigned. 



PAGE 26 

When the program is established in execution, the assignments are placed 
in the DCB. These cause the I/O requested by the read or write to be 
directed to the proper communications management routine (the one 
indicated by the assignment)--either the general purpose character 
mode handler or a specific handler for the indicated message mode 
device. 

4. Operating Modes 

4.1 Message Mode 

As explained above, message mode line and terminal support is 
achieved through the addition of handlers. The standard UTS 
system includes 7601/7670 remote batch support as described 
below. A handler for the BC/100/BC/200 is included in each 
UTS system at El Segundo although it is not a standard product. 
This handler provides for the unique protocols of that device 
including polling for multidrop lines. 

Remote Batch Support - Remote batch support under UTS operates 
via a handler for the 7601/7670, and a set of service routines 
in the remote batch ghost program, REBAT. The remote batch 
facilities also provide support for the DCT200 and compatible 
terminals such as the MOHAWK. 

All system facilities available to local batch jobs are available 
to remote batch jobs; no modifications need be made to a job 
to run it from an RET. Printed output is automatically sent to 
the submitting terminal when ready without operator intervention. 

Terminals can be operated in either the attended or unattended 
mode, i.e., with or without an operator. In the unattended 
mode, the terminal is disconnected if transmission errors 
forbid communication. 

Half- and full-duplex switched and unswitched communication lines 
are supported. 

Workstations are authorized by the system manager dynamically 
with SUPER, which also allows him to define a maximum priority 
for input jobs and the right to use the system account. 



PAGE 27 

The remote operator may (1) defer output of files and request 
that output later, (2) send and receive messages to and from 
the central site operator, (3) delete his input and output 
files and abort his running jobs, (4) obtain the status of 
any or all of his files, (5) adjust the parameters (e.g., paper 
size) of his peripherals.· 

Either the remote or central operator can switch output files 
from one workstation to another or from an RBT to the central 
site. 

Central site-batch or on-line jobs may direct their output to 
a remote batch workstation. 

The complete format control capability of the remote printer 
is supported. Form control is supported. The remote operator 
is informed of forms changes and can control registration. 

Input decks too big for the card hopper may be sent in shorter 
segments. 

Output files currently printing can be suspended by the remote 
operator; they can then be deleted, restarted either at the 
stopping point. or the top of the form, or saved for later output. 
While an output file is suspended, jobs may be entered into the 
system. 

A simple procedure is provided to recover from all transmission 
errors, and no output is ever lost even in the case of complete 
device failure at the remote site. 

Full error checking is done on all control commands from the 
remote site; "message files" inform the remote operator of 
errors in his jobs and remote control commands. 

The message file provides a record of all jobs submitted by the 
workstation and their status, if requested. 

Remote batch may be added to a DTS system simply by defining 
remote batch devices during SYSGEN. 



PAGE 28 

4.2 Character Mode 

Introduction - Terminal I/O COC routines are the read/write 
buffering and the external interrupt handling routines for 
I/O directed to user terminals. The read and write routines 
on the user-interface side translate characters to external 
form and buffer messages into linked, core-resident blocking 
buffers. Insertion of page headers, vertical format control 
(VFC) , user headings, tab simulation, and other formatting 
tasks are performed. 

The interrupt routines demultiplex incoming characters by line, 
translate to internal EBCDIC form, check parity, block messages 
into buffers, echo characters to the terminal, and test for 
valid end-of-message characters. 

A routine entered periodically as a result of a clock interrupt 
scans all 7611 lines to detect data set hangup and data set 
answer to provide automatic logoff and logon, respectively. 

The COC routines carry out their functions using information 
carried in a series of line-associated tables, processing both 
characters deposited by the 7611 hardware in a 'ring-buffer' and 
user program output messages to and from a pool of four-word 
blocking buffers. 

The COC routines are resident in the monitor root and consist 
of four main parts plus common subroutines: 

1) Input interrupt handler. 

2) Output interrupt handler. 

3) Code to process a user's write CALs directed to the 
terminal. 

4) Code to process read GALs directed to terminal. 

Support Functions - Terminal communication access routines 
provide support for a wide range of Teletypes (including all 
ASCII coded terminals) and 274l-type typewriters (APL and 
standard correspondence keyboards; EBCD and selectric code 
sets), and CRT terminals. 

The communication routines automatically determine the type 
of a 2741 terminal when the first character (an asterisk) is 
typed and associate the correct translation table. 



PAGE 29 

Type-ahead (input message queueing) is provided and allows a 
user to continue inputting commands without having to wait for 
the next computer prompt. Commands typed-ahead are synchronized 
with program output to assure a clear and meaningful output 
identical to non-type-ahead in form. 

Character I/O employs buffers from a pool common to all users 
resulting in extremely low core storage requirements (four 
words/terminal). Input and output messages are queued independent 
of the user program -- the user need not be in core during 
his character I/O. 

Automatic page headings are provided, with formatting control 
over both page width and length. 

Simple line-editing commands for erasing characters and lines 
are available with the handling routines and thus are available 
to all programs and processors. For 2741 terminals, a backspace 
overstrike line editing mode is provided. 

Both half- and full-duplex paper tape input and output are 
supported from on-line terminals. Full duplex input operates 
by starting and stopping the paper tape reader for each input 
message. Half duplex input, where the start-stop technique 
is impossible, buffers input ahead in the same manner as type­
ahead. In both paper tape modes, rub-outs are treated as no 
characters. In half duplex,output is suppressed to prevent 
garbling at the remote printer. Untranslated input and output 
is provided via a "transparent mode", which allows preparation 
of paper tapes for milling maahine control and control over 
special devices, such as plotters and vector-generating CRT 
displays. 

Prompt characters, if specified, are automatically supplied 
for each program read. A unique prompt has been chosed for 
the terminal executive and for each processor function to 
insure easy user identification of the requestor. 

Tab simulation is provided if desired, with explicit control 
over the choice of spaces or tabs for delivery to the reading 
program and the l~gical beginning point of the carriage. 

The reading program may dynamically change the "break set"-­
redefining which characters are to be treated as end-of-message 
characters. 



PAGE 30 

Miscellaneous other controls restrict input to upper case, allow 
input of lower case characters from Teletypes lacking them, provide 
for control transfer to the executive, acknowledge the presence 
of the system, allow re-typing of the current input. All terminal 
control modes can be established by use of control keystrokes or 
by the program using GALs. 


	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30

