Xerox Universal Time-Sharing System (UTS) i

A /P) Sigma 6/7/9 Computers

System and Memory Management

Technical Manual

BXEROXEROXEROXEROXEROXEROXEROX
OXEROXEROXEROXEROXEROXEROXERC

ROXEROXEROXEROXEROXEROXEROXEIR

ROXEROXEROXEROXEROXEROXEROXE
EROXEROXEROXEROXEROXEROXEROXE
IXEROXEROXEROXEROXEROXEROXERO)
CYOXEROXEROXEROXEROXEROXEROXERC
OXEROXEROXEROXEROXEROXEROXER
ROXEROXEROXEROXEROXEROXEROXE
KEROXEROXEROXEROXEROXEROXEROX
IXEROXEROXEROXEROXEROXEROXERO
YOXEROXEROXEROXEROXEROXEROXER(
DXEROXEROXEROXEROXEROXETS

R OX EROXEROXEROXEROXEROXE
XEROXEROXEROXEROXEROXEROXEROX
UXEROXEROXEROXEROXEROXEROXERC
ROXEROXEROXEROXEROXEROXEROXER

L ROXEROXEROXEROXEROXEROXEROXE
EROXEROXEROXEROXEROXEROXEROXE

A

Xerox Corporation
701 South Aviation Boulevard

XEROX
\!

El Segundo, California 90245

213 679-4511

Xerox Universal Time-Sharing System (UTS)

Sigma 6/7/9 Computers

System and Memory Management
Technical Manual

FIRST EDITION
90 19 86A A

February 1973

Price: $4.25

© 1973, Xerox Corporation

Printed in U.S.A.

NOTICE

This publication documents the system and memory management functions of the Universal Time-Sharing System (UTS)
for Sigma 6/7/9 computers. All material in this manual reflects the CO1 version of UTS.

RELATED PUBLICATIONS

Title Publication No.
UTS Overview and Index Technical Manual' 90 19 84
UTS Basic Control and Basic 1/O Technical Manual 90 19 85
UTS Symbiont and Job Management Technical Manual 90 19 87
UTS Operator Communication and Monitor Services Technical Manual 90 19 88
UTS File Management Technical Manual' 90 19 89
UTS Reliability and Maintainability Technical Manual 90 19 90
UTS Interrupt Driven Tasks Technical Mt.:mualr 90 19 91
UTS Initialization and Recovery Technical Manual 90 19 92
UTS Command Processors Technical Manual 90 19 93
UTS System Processors Technical Manual 90 19 94
UTS Data Bases Technical Manual 90 19 95

"Not published as of the publication date given on the title page of this manual. Refer to the PAL Manual for
current availability.

The specifications of the software system described in this publication are subject to change without notice. The availability or performance of some features
may depend on a specific configuration of equipment such as additional tape units or larger memory . Customersshould consult their Xerox sales representative
for details.

SSS = Scheduler

Execution Scheduler

Swap Scheduler

STEP - Job Step Control

CONTENTS

Purpose

Overview

Example Table Structure
S:SET, SB:SET and SB:ETT Tables

Data Bases

Event Handler - Event Reporting and State Changing

Purpose

Overview

Usage

Subroutines

Errors

Description
Special Transition Event Routines

Purpose

Usage
Description

State Change Subroutines

Purpose

Description

Entry Poinfs

Overview

Usage

Interaction

Description

Subroutines

Overview

Usage

Output
Description

Subroutines

Purpose

Overview

Usage

Input

Flowchart of Paths through STEP

Output
Interaction

Subroutines

Errors

Restrictions

Entry Points

Description

Diagram of the Logical Blocks of STEP

STEP Exit Logic: T:EXIT, T:ERROR, T:ABORT, T:ABORTM, T:TELDELCC

Debugger Exit Control Logic: T:DEL

User Reinitialization Logic: T:RUNDOWN
Load and Go Logic: XITLINK

Assemble Unshared Program logic: XITIO

Interpretive Exit Logic: STEPOO
Logoff/Continue Logic: STEP10

Associate Shared Processor Logic: T:ASP

Associate Unshared Processor Logic: FETCH
Merge DCB Information Logic: ASP14

Overlays - Monitor, Shared Processor, User Program

Overview

T:OV = Monitor and Shared Processor Overlays
Purpose

Usage

Data Bases

Errors

Description

Flowchart

MSEGLD - User Program Overlays

Purpose

Usage

Exit

Subroutines

Error Codes

Description
RDSET

Purpose

Entry
Exit

Description

Flowchart

Swapper

Purpose
Overview

Usage

Interaction

Errors

Restrictions

Entry Points

SWAPOUT

Purpose

Input

Output
Data Bases

Subroutines

Description

SWAPIN

Purpose

Input

Output
Data Bases

Subroutines

Description

CLOCK4

Purpose

Usage

Interactions

Subroutines

Description

T:BTSCHED

Purpose
Usage

Data Bases

Description

51
54

56
57
57
57
57
57
57
58
60
60

60
61
61
61
63
63
63
63
63
64

65
65
65
66
67
67
67
68
68
68
68
68
68
69
70
72
72
72
72
73
73
74

MM - Memory Management

Purpose

Overview

Data Bases

Memory Management Tables

Job (User) Associated Tables

Resident Tables

Routines

User CAL Service Routines

Set the Users Access Image

Load Hardware Map and Access Registers

Get and Release N Virtual and Physical Pages
Get and Release Virtual Pages Master/Internal
Insert Virtual and Physical Page

Delete Virtual and Physical Page
Get and Free Physical Core Pages

Swap RAD Granule Allocation and Release

Get AJIT Page

ALLOCAT

Purpose
General Description

Adjust Stack Logic

Get n Contiguous Background Granules
Release n Contiguous Background Granules

Get n Contiguous Background Cylinders

Release n Contiguous Background Cylinders
Release Buffer of Disk Addresses

Keep Count of Granules

Emptying Stacks
Data Bases

Detailed Description

GRANSUB

81
81
81
83
85
85
85
86

90
93
95
97
100
100
101
102
104

105
105
108
108
108
108
109
109
109
109
110
110
111
114

SECTION EA
PAGE 1

UTS TECHNICAL MANUAL 6/28/71

D
SSS - Scheduler

PURPOSE

The Scheduler selects users for execution, those for swapping in and those for
swapping out,

OVERVIEW

The scheduling and swapping algorithms in UTS depend upon user states, Each user
in the system is in one and only one state at a time, The transition from state to state
is driven by events reported to the scheduler, 1/CG activity, time quanta, break
signals and other events are signaled to the UTM schedul 2r by calls on the report
event routines (T:REG, T:RCE, T:RE and T:RUE) with an appropriate event code
describing what has happened, and the number of the user with whom the event is
associated,

Each state has a corresponding state number and a (possible empty) queue of users in
that state. Each state queue is doubly linked, and is ordered by time of user arrival
in that state,

The state queue headers are contained in SB:HQ, a byte table, which is indexed by
state number and contains the user number of the first user in the queue for that
state. SB:TQ is the corresponding table of queue tails. All queues are linked
(forward and backward) through two user tables, UB:FL and UB:BL. UB:FL contains
the user number of the next (chronologically) user in the given state. UB:BL con-
tains the user number of the previous user in the given state. A 0 indicates the
end of a forward or backward chain,

The scheduler selects a user for execution by following the queues of users from head
to tail in a given order until it finds a user in core and ready to run. The order in
which the queues are searched is dictated by the table SB:EXU which contains the
queue numbers and is terminated by a 0. It is currently:

SB:EXU DATA,1 0, SNRRT, SON, SOFF, SERR, SEC, SBK, SIR, STOC, SC,
SCOM, SBAT, 0

SB:EXU is also searched by the swap scheduler to determine which user to swap in
next (the first user encountered who is not ready to run).

SECTION EA
PAGE 2
UTS TECHNICAL MANUAL 12/6/71

SB:SWP is used in the same manner by the swap scheduler to determine the order in
which the queues are searched for users to swap out only the search through each
queve is from tail to head. SB:SWP currently is:

SB:SWP DATA,1 0,SSYMF, SSYMD, SW, SQEl, SQA, SDP, STI, STOB, SAB,
SIOW, SOCU, SBAT, SCOM, SIOC, SC, SBK, SEC, SERR,
SOFF, SON

Note that the queues SCU, SIOIP, SLS, STOBO and STIO do not appear on
either list and thus users in these states are not selected for either execution or
swap.

Example: Users 6,4, 2 and 8 have all hit the break key on their teletypes in that
order. Meanwhile users 7 and 9 are compute bound. The break state
number is 4 and the compute state number is 8. The corresponding table
structures are shown in Figure EA-1,

SB:EXU

SB:HQ

UB:FL

UB:BL

SB: TQ

SB:SWP

SECTION EA

PAGE 3
UTS TECHNICAL MANUAL 6/28/71

o [1]201c| 8] 3}4;5!6]7[12/8]9]0] LENGTH ARBITRARY

0O 1 23 4567 89 A
6 771 | | LENGTH = NUMBER OF STATES
\ /
vy \\ /
0 1 23 456789 ABC
8l |2| l4l9]ofo| | | LENGTH = NUMBER
AR OF USERS
S
/ ’P‘q‘ | AR} h
0 1 2 3 4567 89 AB C
41 60 10;012]7. , | LENGTH = NUMBER
- T F P OF USERS
///V ,//
P /
0 1 2 3 4567 89 A
i8] {90 : | LENGTH = NUMBER OF STATES
Al N
~. o
RN
N\ N

[14]13]o€ |17 [16]oploclo [10] 1079 T8 T12 07104103718 102} 0 |
LENGTH ARBITRARY

FIGURE EA-1 - Example Table Structure

SECTION EA
PAGE 4
UTS TECHNICAL MANUAL 6/28/71

The tables which contro!l the action to be taken, given an event on a user are S:SET,

SB:SET, and SB:ETT,

S:SET can be considered as a matrix with the bits in each row corresponding to
states. The number of rows (1 or more) corresponds to the possible actions for a
particular event given the variety of states in which a user may be when that
event is reported on him, SB:SET is a byte table with one entry corresponding to
each row in S:SET, SB:ETT is a byte table indexed by event number containing

a pointer to the first of the one or more rows in S:SET corresponding to that event,
If the first row in S:SET for the event reported (pointed to be SB:ETT) contains a 1
bit in the position corresponding to the current state of the user the event concerns,
the byte in SB:SET corresponding to that word tells the event handler what to do,
If that bit is zero, the next row of S:SET is tested. Theoretically there will be a

1 bit posted in one of the rows corresponding to the event in the bit position of the
user's state. SB:SET controls how far the search through S:SET can continue, If
the high order bit of the byte corresponding to a word in S:SET is 1, it is meaning-
ful to look at the next word, If it is O, the search should not continue, If no 1
bit is encountered in the correct position of S:SET, it is "impossible" to have that
event reported on a user in his current state, This condition results in software

check 0.

A schematic picture of the relation of the tables follows,

SB:ETT S:SET SB:SET
indexed by state number
123456 : 29 30 31 32
event # 0] /' 1 1 1 action |
1 0 //' 1 11 1 | 0 for event |
2 1 11 111 : action 1
3 S —> | for event 2
4 6 11 1 action 2
5 \‘ 111 0 for event 2
6 \ 1 1 action 1
\‘ s for event 3
\ A 1 action 2
for event 3
0 action 3
for event 3
0 action 1
for event 4

SECTION EA
PAGE 5
UTS TECHNICAL MANUAL 6/28/71

Figure EA-2 shows the details of the current S:SET and SB:SET tables. The events
are listed at the left, The states are listed on top, The multiple rows possible for
a given event have been compressed into one row, The contents of SB:SET is
shown in those bit positions where a 1 bit is set in the row of S:SET corresponding
to the SB:SET entry, If a byte of SB:SET contains a number less than 40 (high
order bit ignored) it is the number of the state the user should be changed to
(indicated in the figure by the state name). If the byte contains 40 or greater

it is the number of a special transition event (the event requires more than a
simple state change). An * is indicated instead of 40 since the special transition
40 means ignore the event. The bit positions containing nothing indicate that the
event is impossible for users in the corresponding state.

SECTION EA
PAGE 6
UTS TECHNICAL MANUAL 6/28/71

‘\\iéiaé Eardd e SRR Fad o R O’Pé“ 4’4‘&«““‘ Gor & e é‘,\"’é",ﬂ
1 23456 7 89Q 10 1121314151 11 1814 2021 2223242520 272% 2

cRp L M

cxc R x| IR

cat 3 Rt rz

coB ¢ L x ¢ % |Tac % « % # |[# & = ¥ ¥ LR B) R

cBu S1¥ ¢ ¢ 5 4204248 42 BX PA4E 4B TK 4B BK[2K EK BR ¢ x| * 48 BKAB|48 + * 43

cfe Gl+x * w44 Bc4ac Bc4ac 1€ BCAC EC|EcBC BC * ¥ | * 4c FCEC 440 » ¥ 4C
Ne,GeE 1 o

g

ne 9 of

v 10 42

ILe 0 47

1C 2 49 D

cf3 13 A

DPA rH|# 42 99 44 49194 94 44 49 Pat 41 4994 99|99 99 99 M 99|93 994 M 44| 9% 99 99

15

wo b = * c » %

€x 17 mar

SL g w

ah 11 52
\)thca‘*qu4»¢453.‘f1ﬂ'.,.:1_{3#445344¢‘4‘.‘

N Sl €3

AKT Z2/48 4% 48 <7 |47 4P «F 49 48| 4P 98 Q€ 47 48|47 4¢ 9§ 4% 92 |48 9 8 948 98| 9p <8

Ke 23 AL 4D 4L (4L S0 QY 40 ayal 4L g0 au|=D 40 < ap| WD 4L <2p W0

KT 24 T8I

o 2599 %96 49t Jo B G40 To 40 Y K| 6 % H o |9 W% % Folte o4 4

AP 26 C | ;

LR 211 ¢ JEAE 96 ABINE AE 4F £ 50(4€ S0 56 UESOIE o HE « #| I 4L SH4ED K ar
RRRE|SFE 28] 4 4F 9F 4k 4F|9F 4 45 4F 51|95 4F 51 AF s/|wE ST aF ¢ ¥ | HHFSE)SFFIF 4 4F
NSYME 21 e

SYME %54 5% 64 5% 5159 59 54 64 c3|9 €4 54 54 59159 54 54 53 59|59 4 59459 5969 59 54 59

NSeD 3 sn
SYMD 3275 55 555¢ SE|€5 ££ 55 $5 55|55 55 55 &5 55155 55 55 55 5|75 5555 5555|655 55 5556
6CR 33 5¢ :
Moo R34 c

* = 40 = Nef .

Figure EA-2

SECTION EA

PAGE 7
UTS TECHNICAL MANUAL 6/28/71

The special transition events are listed below for your convenience. Detailed
explanation will be included in the description paragraph.

Special Transition

Mnemonic SB:SET Action Routine invoked
STNOP 40 IGNORE none
STSBK 41 SET BRK BIT SETBRK
STSEC 42 SET EC BIT SETEC
STIP 43 ASK 10 PERMISSION IOPER
STDPA 44 DP—C IF ANY USER IN DP DISCFREE
STOFF 45 SPIN -
STBA 46 AB -—TOC IF ANY USER IN AB COCBA
STIIP 47 CU —I0IP IOINPRG
START 48 SPIN -
STIC 49 SET 8000 FLAG I0CCU
STCRD 4A CU —TI CHCRD
STSBKC 4B SET BRK BIT, STATE—~BK SETBRKC
STSECC 4C SET EC BIT, STATE—EC SETECC
STKO 4D RESET FLAGS FOR OUT OF CORE=ADJUST KICKOUT
STATE
STSERRC 4E SET ERR BIT, STATE —ERR SETERC
STSABRTC 4F STATE =OFF, ADJUST GJOB & COC TABLES SETABRTC
50 SET ERR BIT SETERR
STSABRT 51 SET ABORT BIT, ADJUST GJOB & COC SETABRT
TABLES
STQA 52 IF QA, RETURN, IF NOT STATE —QA QFORA
STUQA 53 IF QA, QA —C, OTHERWISE SET 4000 UQFORA
STSYMF 54 SYMF =C IF ANY USER IN SYMF SFILEAV
STSYMD 55 SYMD = C IF ANY USER IN SYMD SDISCAV
STSIOC 56 STATE — COM/BAT IOIP - C/10C IOCOM
STSOCU 57 IF ANY USER OPENING/CLOSING,
CU -0OCU

SECTION EA
PAGE 8
UTS TECHNICAL MANUAL 6/28/71

DATA BASES (Summary)

S:SET

SB:SET
SB:ETT
SB: EXU

SB:SWP
SB:HIR
SB:HQ

SB:TQ

the state event transition table

a byte table of opcodes associated with S:SET

a byte table of indexes into S:SET and SB:SET

a byte table of queues to search, in order, for users to execute or
swap in

a byte table of queues to search for users to swap out

a byte table of queues of users who are to be given control after
the current user has had a minimum quantum rather than waiting
for quantum end,

a byte table, indexed by state number containing the user number
of the first user in a given state; 0 implies none

a byte table, indexed by state number, containing the user number
of the last user in that state

The scheduler also uses certain of the user tables, They are:

UB:FL
UB:BL
UH:FLG
U:MISC

a forward link pointing to the next user in the same state
a backward link to the previous user in the same state

a halfword table containing user flags

a miscellaneous word for each user

UB:APR, APQ, ASP, DB, OV - the users associated shared processors (root,

UB:US
UB:PCT
UH:TS

processor overlay, special shared processor, debugger and monitor
overlay).

the user's current state

the user's page requirement

the remainder of a user's quantum

SECTION EA. 01
Page 1
UTS TECHNICAL MANUAL 6/28/71

ID

Event handler - Event reporting and state changing

PURPOSE

The event handler portion of the scheduler receives notification of events from
various portions of the monitor and changes the scheduling states of the users
accordingly.

OV ERVIEW

The event handler consists of three external entry points to serve the rest of the
monitor in reporting events, These entry points diagnose the reported event and
either call subroutines to perform simple state changes or they drive to the
special transition event routines which eventually call the simple state changing
subroutines,

USAGE

Entry Points

T:RCE Entry to report COC event on a specified line. Registers 6 and
7 contain the event and line number, respectively. Only COCC
uses this entry,

T:RUE Entry to report event on a specified user, Registers 5 and 6 con-
tain the user number and event number.

T:RE Entry to report event on the current user. Register 6 contains the

event number,
All routines are called by a BAL, 11

SUBROUTINES

Special Transition Event Routines, Section EA. 01,01
State Change Routines, Section EA.01.02

External:
RECORD Event recorder, Section LF
COCOFF Initialize line for logging off, Section DC.01
RECOVER Initiate system recovery or single user abort, Section LD

SECTION EA. 01
Page 2
UTS TECHNICAL MANUAL 6/28/71

ERRORS

If an event is reported which is impossible for the user's current state, a software

check 0 is reported to RECOVER,

DESCRIPTION
T:RCE, T:RE, T:RUE

T:RCE is entered by COCC to report COC events, RCE extracts the user number
from LB:UN into register 4, If the user number is 0, meaning the user has not yet
logged on, LOGON is called. At RCEQ the event counter is incremented because
an event has occurred, An event number greater than the number of events causes
a software check 0. The user's current state is extracted from UB:US. A 1 bit

is shifted in register 12 to the bit position corresponding to the user's current state
for comparison with S:SET, The index into S:SET is extracted from SB:ETT indexed
by the event number (R6). The byte from SB:SET corresponding to S:SET is placed
into register 2, Now S:SET is checked to see if it has a 1 bit in the position corres=-
ponding to the user's state, If so, register 2 contains the action code, If not,
SB:SET (R2) is checked to see if the searching can continue. If not, software check
0 results. If so, the search continues,

Assuming the correct byte in SB:SET is found, the high order bit is scrubbed off
and an entry is made in the event recorder. If the code in SB:SET is > to X'40',
a branch is executed through the transition vector S:TRNSVEC to the appropriate
routine, Otherwise T:CHS is called to change the user's state to the state in
register 2,

T:RE is entered to report events on the current user so register 4 is loaded with
the currént user's number and control goes to RCEQ,

T:RUE is entered with the user number in register 5 so it is loaded into Register 4
and contro! goes to RCEQ,

10

SECTION EA.01.01
Page 1
UTS TECHNICAL MANUAL 6/28/71

1D

Special Transition Event Routines

PURPOSE

When the event handler determines from the SB:SET table that more than just a
simple state change is required, one of the special transition event routines is called
to perform the more complex operation,

USAGE

The special event code from SB:SET, which is greater than or equal to X'40',
is used to branch through a transfer vector, Each routine returns to the event
reporter (caller of event handler).,

DESCRIPTION
IOINPRG/10CCU

are designed to handle the case in which the I/O interrupt occurs and reports
/O complete before IOQ has reported 1/O in progress. 1f IOC is reported
on the current user, post the 8000 flag in UH:FLG and return, When 1OIP

is reported the flag is checked. If it is set, IOC event has been received
and the IOIP event is ignored, Otherwise the user's state is changed from CU

to 10IP,

SETABRTC/SETABRT
Both these routines set the abort flag. SETABRTC also changes the user's
state to OFF, If the user is an on=line user, COC is informed through
COCOFF that he is in the process of being logged off, The distinction
between using these two routines is there are some cases in which the user's
state cannot be changed to OFF because he would get scheduled out of that
state and in fact the user is blocked waiting for something to occur.

SETERR-SETERRC
These routines set the error flag for the user. If SETERRC is invoked, the user's
state is changed to SERR, The discussion under SETABRT for the distinction
applies here too,

SETBRK~-SETBRKC

SETEC-SETECC
Same as SETERR-SETERCC, except the flags set are break or Y and the state
change is to SBK or SEC,

11

SECTION EA, 01,01
Page 2

UTS TECHNICAL MANUAL 6/28/71

DISCFREE-COCBA
these routines are invoked when swapping RAD granules or COC buffers are
available. All users in the SDP or SAB queues are changed to SC or STOC,
respectively, to allow them to be scheduled to acquire the resource they
were waiting for, '

QFORA/UQFORA
QFORA is called to block a user while waiting for a tape mount. Normally
it changes the user from SCU to SQA, QFORA changes his state from SQA
to SC when the mount is done, In the case that the un-queue event occurs
before the queueing event, the 4000 flag is posted in UH:FLG. When the
E:QA event occurs, the flag is noticed, it is reset and the user is not

blocked.

SFILEAV-SDISCAV
are called when a symbiont file entry or a symbiont disc granule become
available. The state of the first user in SSYMF or SSYMD is changed to
SC.

KICKOUT
is called when a user is going to be swapped out. First his state is checked
to insure that it hasn't changed between the swap schedulers decision to swap
him out and the reporting of the event. If so, the event is reissued. If not,
his ready=to-run and JIT-in-core flags are reset. His state is checked, If
it is STOB or STI, his state is changed to STOBO or STIO respectively, If
his state is in SB:EXU, S:SIR, the number of users who are out of memory who
could execute if they were in memory, is incremented. If his state is in the
SB:HIR list, S:HIR, the ccunt of high priority users ready to run, is decremented,

OCPRGM

checks if there is a user doing an Open or Close. If not, it returns, If so,
it changes the user's state to SOCU,

IOPER
always grants permission to do I/0.

IOCOM
checks the user's flags for the 4000 bit, If it is set, the user is at job step
and his state is changed to SC to allow him to continue at a high priority,
If the 4000 bit is reset, his state is changed to SIOC,

12

SECTION EA.01.02
PAGE 1
UTS TECHNICAL MANUAL 6/28/71

1D

State Change Subroutines

PURPOSE
Once it has been determined that a user's state is to be changed and what it is to

be changed to, the state change routines are called. They change the user's state,
remove him from his present scheduling queue and add him to his new queve.

DESCRIPTION

T:CHS changes a user from a given queue to the bottom of a new queue.

Input Reg 4 = user number
Reg 3 = current state
Reg 2 = new state
Reg O = BAL register
Reg 1 = is destroyed

T:CHS first checks to insure that the user's state hasn't changed during the event
handling process. If so the event is re-issued to determine what to do, given
the user's new state. If not, the state change proceeds with interrupts inhibited
to prevent user state changes. S:SIR and S:HIR are corrected next. If he is
ready to run and his current state is not in SB:HIR and his new state is in SB:HIR,
S:HIR is incremented. If he is not ready to run and his current state is not in
SB:EXU and his new state is in SB:EXU, S:SIR is incremented. Next Performance
Measurement is called if his new state is in SB:EXU. Next T:UNQ is called
to remove him from his current state and T:QT is called to add him to his new
queue. T:CHS exits.

T:CHST changes the user's state to the top of a new queue. It sets the high
order byte of register 2 to non-zero to cause T:QT to turn control over to
T:QH to queue the user to the top of the new queue instead of the bottom.
T:CHST then transfers control into T:CHS.

13

SECTION EA.01.02

PAGE 2
UTS TECHNICAL MANUAL 6/28/71

HT is the routine called to determine whether to change a batch user's state to
SCOM or SBAT, and to determine whether to change an on=line user to SC
or SCOM. It is invoked at quantum end. If the user's flags have the 4000
bit set, the user is on-line and at job step time and is changed to SC. If
not, he is changed to SCOM unless he is a batch user and SL:BB, the batch
bias, is 0, in which case he is changed to SBAT.

T:UNQ removes a user from a queve.

Reg 4 = user number
Reg 3 = state number
Reg 1 = BAL register
Reg 6-7 = are destroyed

T:QT adds a user to the tail of a queue unless the high order byte of Reg 2 is non-zero

in which case it calls T:QH.

Reg 4 = user number
Reg 2 = new state number
Reg 1 = BAL register
Reg 0 = is destroyed

T:QH is called by T:QT to add a user to the head of a queuve.
Registers same as T:QT.
SHIRE checks to see if the user's state is in a given byte list (SB:HIR, SB:EXU,

SB:SWP). It returns to +1 if so, otherwise +2.

Reg 3 = state

Reg 5 = pointer to byte table
Reg 2 = BAL register

0-1 destroyed

LOGON has five entry points and is called to add a user to the systzm. (Note this
LOGON is not to be confused with the LOGON processor.)

ENTRY POINTS
1. LOGON is called by T:RCE when it has an event with 0 in the byte of LB:UN

corresponding to the line number it was given. It logs on a user with an on-

line JIT.

2. ADDI logs on a user whose number is in register 4.

14

SECTION EA.01.02
PAGE 3
UTS TECHNICAL MANUAL 1/10/73

At LOGON the event is checked to see if it is a break. If not, the event is
ignored (on automatic dial up COC reports break). Next the zeroth byte of
SB:HQ, i.e., the queue of available user slots is tested. If O, the event is
ignored. Next the number of on-line users in the system is compared to the
number of on-line users allowed and the number of users in the system is com=-
pared with the number of users allowed. If either test indicates no new room for
new users, the event is ignored. If the user is to be allowed, register 4 is loaded
with a user number and control passes to ADD1.

ADD1 is called by MBS, T:GJOBSTART and LOGON to allocate a JIT granule
on the swapper for the user whose number is in register 4. The current value of
M:JITPAGE for this swapper is used as a target position for this user's JIT. The
M:JITPAGE entry is then updated by a value obtained from MB:SPACEJIT - a
number chosen to be relatively prime compared with the number of granules per
track for this swapper. Next the number of users in the system is incremented.
The granule acquired is placed in UH:AJIT. The swapper recognizes that UH:JIT,
the disc address of the users JIT, is O only at logon time. It will swap the JIT

in from the disc address in UH:TS and move the disc address from UH:AJIT to
UH:JIT for use in the next swap~out. The user flags, special JIT access, and
pure procedure swap are set. Special JIT access is posted so that the exit CAL
pointed to by the environment assembled into the virgin JIT will be interpretively
executed, i.e., so that the processor required (LOGON, CCI) will be associated.
PPSWP is posted as a flag to the swapper. The user's page requirement, UB:PCT,
is set to 1. The event flag S:EVF is incremented as an event has occurred and the
user's state is changed from 0 to SON. LOGON exits.

15

SECTION EA.02
PAGE 1
UTS TECHNICAL MANUAL 12/6/71

D

Execution Scheduler

OVERVIEW

The scheduler has three major entry points: T:REG, T:SSE, and T:SSEM. T:REG is
called when it is determined that a user no longer requires the CPU. T:REG "blocks"
the user by saving his environment, reporting the appropriate event, causing the user's
state to be changed from current user to some other state, and causing some other user
to be scheduled for execution (T:SE).

T:SSE and T:SSEM are called whenever the Monitor has been in execution, executing
either synchronous or asynchronous processes. Control must come here to allow re-
scheduling. If the process was asynchronous, it might have caused a change in the
system requiring rescheduling (COC, Clock, or I/O interrupts). Synchronous processes
(CAL's primarily) must allow rescheduling since events such as break, Y€ or quantum
end would only use flags to be set if the Monitor is performing some service for the user.
These events are remembered until the Monitor completes its processing. They are
checked for at T:SSEM to allow the appropriate rescheduling.

USAGE

T:REG is called with register 11 containing the address at which the user is to begin
execution when he is rescheduled and register 6 containing the "blocking" event.

T:SSEM is merely branched to.

T:SSE is also branched to.

INTERACTION

T:ACCTOV - ACCT, Section IC
T:ACCTEX - ACCT, Section IC

DESCRIPTION - T:REG

T:REG unloads the current user's PSD, puts register 11 (the address of the next instruc-
tion to be executed for that user) into it and saves the environment in the TSTACK in
the user's JIT. It calls T:RE to report the blocking event. If the event is not I/O in
progress, it calls T:SS to cause a swap schedule if S:SIR, the number of users on the
swapping RAD who could execute if they were in memory, is non-zero. It then
branches to T:SE to give some other user the CPU. If the event was I/O in progress,
the possible swap-set has not changed so the swap schedule is avoided.

16

SECTION EA.02
: PAGE 2
UTS TECHNICAL MANUAL 12/6/71

DESCRIPTION - T:SSEM/T:SSE

T:SSEM is entered at the end of every monitor service for a user. It calls T:MASTER,
T:MASTER causes the interrupted environment to be pulled if it was master mode, This
software disable prevents the monitor from being interrupted out of a series of CAL's,
It takes care of overhead accounting by calling T:ACCTOV, Control goes to SSE1,

T:SSE is called by asynchronous routines like COC when it has reported an event, the
clock 3 routine or the I/O routine handler, First, it sets the idle flag in case the system
is currently idle. Next, if S:SIR is non-zero, it calls the swap scheduler, It then calls
T:MASTER, This software disable results in the monitor never getting a process interrupted,
It always exits cleanly, If the interrupted environment was slave, a test is made to find
out if the monitor is currently mapped or unmapped by looking at the user ID in JIT, If

it is 0, it is an unmapped JIT, If it is unmapped, the user environment in the unmapped
stack is transferred to the user's mapped stack and the map is turned on,

T:SSE and T:SSEM come together at SSE1, Clock 4's effective address is switched to
J:DELTAT, the execution time counter, (If exiting the monitor, it was pointing to the
overhead counter J:OVHTIM,) Next, tests are made in order for an operator X key=-in,
and ! E Key=in, bad run status, a user Y€, and a user break, If the user was executing
in the Monitor at the time one of these events occurred, the system merely poisted a flag
to be honored on the way back to the user, namely, here,

Next, quantum tests are made. If the user has quantum ended, his execution time is
accounted for and his state is changed to SBAT or SCOM, depending upon the batch
scheduling philosophy and whether he is batch or on-line, This happens at SSE6 and
control goes to the execution scheduler, If the user has some time left, he is allowed

to continue by going to T:PULLE unless S:HIR, the count of high priority users ready to
run, is non-zero, If S:HIR is non-zero, the current user is checked for having had a
minimum quantum, If not, he is allowed to continue by going to T:PULLE, If he has had
his minimum, how much time he has remaining is remembered in UH:TS and he is moved

to the top of SCOM or SBAT unless he has less than 40 mils, left in which case accounting
is done and his state is changed to bottom of SCOM or SBAT.

T:SE is the execution scheduler. It turns off the map since there is no longer a current
user and causes a swap schedule if appropriate, It goes to SACT in case a symbiont
output device needs starting. It then runs through the queues looking for a user ready

to execute, It searches the queues in the order listed in SB:EXU, searching each queue
from head to tail until it finds some user with his ready-to-run flag set. If it finds
someone, control goes to SE1. If there is no one ready to execute, the system goes idle.
The idle routine goes to CHECK for a security check, It then tests to see if there are
any users in the system (S:CUIS). If not, it checks to see if there are any symbionts
active, If not, it tests to see if the system is already quiescent. If not, it writes the
HGP tables to the system RAD, sets the QUIESCBNT flag and types the quiescent message
on the operator's console. Finally, it tests LOSTUSER to see if any users were deleted

17

SECTION EA.02
PAGE 3
UTS TECHNICAL MANUAL 12/6/71

without closing their DCB's, If there were, files may still be open, so a software check
1E is forced to allow recovery to test the CFU's for open files and close them properly.

The idle loop does performance measurements according to whether idleness is a result of
swapping in a user in the SCOM, SIOC, or SBAT state (idle swap in progress) or not and
toggles the audio flip-flop at varying frequencies to keep the operator entertained.

At SE1 the user to put into execution has been selected. T:XMMC loads the map from

the user's CMAP, At T:SE, the event counter was saved in register 0. Here it is

checked to see if it has changed. If so, a reschedule takes place since an event has
occurred which may have changed the queue structure while it was being run, If it

hasn't changed, the user's number is put into S:CUN, and this previous state is remembered.
S:HIR is decremented if the user's state is in SB:HIR and his state is changed to current

user. The map is turned on,

The fact that he is in execution is logged (RECORD). His total time in this shot is calcu-
lated and if greater than or equal to SL:SQUAN, the don't-swap flag is reset, His quantum
is calculated (batch or on=line UH:TS), If he has just swapped in or is going into
execution from one of the interactive user states (SIR, STOC), his previous execution time

is accounted and he is given a new quantum, CLOCK4 is changed to overhead, If the
environment in the user's JIT is master, control returns to the Monitor (T:MASTER), If

the environment is slave, the accounting is switched to execution and his previous state

is checked to see if he's been aborted or errored by the operator or has hit Y€ or break.

If not, T:PULLE is called to put him into execution, unless he has done a STIMER CAL in
which case control is transferred to his specified address.

If the operator aborted the user, his flags are reset. Then his account is checked to see if
he has logged on yet. If not, blanks are put into his name and account as a signal

to Logoff. J:RNST is set to X'10' and an extra 19 words are pushed into his stack,
Control transfers to T:RUNDOWN in STEP,

If he has been errored, his flags are cleared, J:RNST is set to X'20', the error code is
set to B403, and control transfers to T:TELDELCCI in STEP,

If he has hit YC, his flags are cleared and control transfers to T:ECB described later.

If he has hit break, the break flag is reset. If TEL is in control, breaks are treated like
YC. If DELTA is in control, control transfers to it (DELTAGO), If DELTA is associated
DELTA in control is set, If there is no public library associated (UB:ASP), control
transfers to DELTA (it's in his map). If there is a public library associated, it is dis-
associated and DELTA is associated, then control transfers to it, If DELTA was not
associated and the user has asked for break control (J:INTENT), control goes to him
(ALTENT); otherwise, TEL is called (T:ECB).

18

SECTION EA,02
PAGE 4
UTS TECHNICAL MANUAL 12/6/71

SUBROUTINES

ALTENT copies the user's environment from his TSTACK into his TCB if he has one with
sufficient room (otherwise, error A300).

Register 3 contains the entry address, It is called for STIMER CAL entries and break
control entries,

ALTENT first checks to see if the user has a TCB, If so, T:UTSXTS is called to push the
19 word environment into it, It puts the address of the PSD into register 1 and branches
to T:PULLA to enter the user at the address contained in register 3 when ALTENT was
called, If the TCB is not present or adequate, control transfers to ALTERR to give the
user an A300 error message.

DELTAGO enters DELTA at th= entry point specified by register 10, DELTA has three
entry points which are in a transfer vector at words X'C', X'D', and X'E' of its context
page., C isthe normal entry, D is for break control, and E for traps.

DELTAGO sets the DELTA-in=control flag and calls T:PAC to get the appropriate access
image into the user's special processor area. It forces the user's TSTACK to 19 words,

It calls T:UTSXTS to copy the user's environment into DELTA's stack located at SPDBASE,
the first word of DELTA context, It puts the contents of J:RNST into register 8, zeroes
J:RNST and enters DELTA at the address originally contained in register 10,

T:UTSXTS copies the environment from the user's TSTACK into the stack pointed to by

register 1, It pushes either 20 or 21 words depending upon whether the last word in
the stack is even or odd,

19

The format is:

1 or 2 words to make
the PSD on a double-
word boundary.

If 1 word, itis O,
If 2 words, the

second is -1,

UTS TECHNICAL MANUAL

SECTION EA.02

Page 5
6/28/71

»

[/

(

16

Registers

(trap type)

even word boundary

Register 1 points to the stack into which the environment is to be

pushed,

Register 4 is the BAL register. Return is to
1,4 if the push won't work,
2,4 if the push was O, K,

Registers 0, 2, 3, 7, 8, 9, 11, and 15 are used.

T:UTSXTS first calls CHKPROT three times to verify that the stack pointer double=-
word and the first and last words to be pushed into belong to the user and are in

00 protection type.

Then, it makes sure there is sufficient room in the stack to

push 20 or 21 words. It then pushes in the one or two words and makes the last one 0
or =1, indicating how many more to pull out. Then, the PSD is pushed. The 16
registers are transferred and one more word is pushed in afterward, If the reason
for the T:UBXTS call is a trap, the trap type will be put there, T:UTSXTS exits,

CHKPROT checks a given page to see if it has 00 protection.

Register 7 contains the word address of any word in the page.

Register 8 contains the error return address.
Register 9 is the BAL register,

20

SECTION EA, 02
Page 6
UTS TECHNICAL MANUAL 1/10/73

CHKPROT converts the contents of register 7 to a page number and calls T:IACU
in MM, T:IACU returns the protection type in the condition codes., CHKPROT
returns *8 if 1 or 2 are set; otherwise, *9.

T:CHGPSD changes the instruction address of the PSD in the last environment in
TSTACK,

Register 0 is the BAL register.
Register 1 contains the new instruction address.
Registers 2, 3, and 4 are destroyed.

T:PULLE pulls a 19 word environment out of TSTACK, If loads the registers and then
loads the PSD, It is merely branched to,

T:PULLA changes the address in the environment to the address in register 1, then
goes to T:PULLE, It is branched to.

T:MASTER checks the Master/Slave bit of the PSD in the last environment in TSTACK,
If the environment is master, it pulls it by going to T:PULLE. If it is slave, it returns.

Register 2 is the BAL register.
Register 0-1 are destroyed.

T:ECB is the routine which goes to TEL on a break or y©, If the user has the TEL-in-
control flag set, it ignores the event and returns to TEL, If not, it pushes 19 words
into TSTACK so that when an environment is pulled to go to TEL, the user's environ-
ment at the time of the event will remain in the stack in case of a CONTINUE
command, It then posts a flag for TEL in J:TELFLGS so that TEL can know it is

in control because of a break or y¢. Control goes to T:EC.

T:EC is the routine which invokes TEL, CCI or LOGOFF if J:RNST is X'10' (operator
abort or LOGOFF). If the user is a ghost job, SB:GJOBFLG is cleared (the ghost

is not running since this must be a LOGOFF), If the user is batch, T:ASP is called
to get CCI, Otherwise, the byte displacement in M:UC is cleared for TEL, If
J:RNST is not X'10', T:ASP is called for TEL., Otherwise, it is called for LOGOFF
(that is, LOGON since they are the same processor).

CLOCK4 - The clock4 interrupt routine is entered at the counter O interrupt of
clock 4, It rearms the clock, If the interrupt environment is master, it

“returns to the point of interrupt since quantum end will be noticed at T:SSEM when
the Monitor exits back to the user. If the interrupted environment is slave CLOCK4
goes mapped and the interrupted environment is pushed into the user's TSTACK,
Control goes to SSE1 to accomplish the quantum end and accounting. This is not

21

SECTION EA, 02
’ PAGE 7
UTS TECHNICAL MANUAL 1/10/73

‘fo be confused with the module CLOCK4, Section EE, which is the time of
day clock and actually uses clock 3.

22

SECTION EA.03
PAGE 1
UTS TECHNICAL MANUAL 12/6/71

)
Swap Scheduler

OV ERVIEW

The swap scheduler is called to select a user to swap in and, if necessary, a user or
number of users to swap out fo make room, It choses the user to swap in by running

through the queues listed in SB:EXU until it finds the highest priority user who is not
ready to run,

It then acquires enough pages to swap him into. First it gets all the available pages from
MB:PPUT. If this is not enough, it checks for any shared processors which are not in use.
If it has enough pages now, it calls SWAPIN, If it still doesn't have enough pages, it
starts running through the queues listed in SB:SWP, running the queues from tail to head
to find a single user who is in memory who is big enough to make room. While it is trying
to find one user who is big enough it makes a list of other users it finds who are in memory.
Users are not considered for outswap if they are in an executable state, are ready to

run and have not had SL:SQUAN mils since they were last swapped in, If it finds a
single user, it causes an outswap, If not and it has found multiple users with enough
pages it swaps them out, If not it has one last chance., It decrements the shared pro-
cessor usage counts for the user in the outswap list and checks if any are now free so

it can take their pages, If this is enough, the swap takes place. If not, the users in
memory must be the best set of users so no swap takes place.

USAGE

T:SS is the only entry point, It is called whenever an event has occurred which might
result in a swap. Register 11 is the BAL register.

OUTPUT

S:ISUN the in swap user ¥

SB:OSN the # of our swap users

SB:OSUL the out swap user numbers

S:FPPH

S:FPPT the head tail and count of pages acquired by the swap scheduler
S:FPPC

DESCRIPTION

T:SS first checks S:SIP, the swap-in-progress flag, to make sure there is not a swap in
progress, The swapper and swap scheduler are not re-entrant since they both use resi-
dent monitor tables, If there is a swap in progress, T:SS exits, Otherwise, it zeroes
the out swap user list (SB:OSUL), and the swappers and action flag. It zeroes a perfor=
mance measurement flag which is used to count types of swaps. It does an XPSD to go

23

SECTION EA,.03
PAGE 2
UTS TECHNICAL MANUAL 12/6/71

unmapped and puts register 11 into the old PSD so that return will be to the caller in
his mode (mapped, unmapped, etc.). RECORD is notified that a swap schedule is
starting.

T:SS next picks the user with highest priority who is not ready to run, It searches the
state queues in the order specified in SB:EXU, running the queues from head to tail

until it finds one with the ready-to-run flag reset, If there is none, it returns by
loading the PSD it saved (SSPSD). If it finds one, it checks the event flag to make
sure no events have occurred during the search which might have altered the queue
structure (the search loop is not disabled). When a user is successfully selected, control
goes to SSIN,

S:ISUN is established as the user to be swapped in. His required page count is picked up
from UB:PCT into register 14, PRCAV is called to insure that the overlay he requires, if
any, is in memory, If not, it is added to the list of shared processors required-(SB:PNL)
and its size is added to register 14, If the users JIT is in core, the current number of
pages he has (from JBPPC in his JIT) is subtracted from register 14, If his JIT was not

in core, the processor usage counts (PB:UC) of all his required processors are incremented.
Getting the counts right at this point will also hold in memory any processors which

he requires which are in memory. This is not done if his JIT is in memory since the counts
are already correct, (They were counted up when he came in or when a processor was
associated,) Then PRCAV is called for all the shared processors required in order to add
them to SB:PNL if they are not in and to add their page requirements to register 14, the
number of pages required for the inswap user. Control transfer to SWIPEPGS,

SWIPEPGS is the routine which acquires enough memory for the inswap user. First, it
picks up all the free pages from MB:PPUT. If there are exactly enough, it goes to
GOTEXAC, If there are too many, it goes to GOTNUF which relinks the extra ones

to MB:PPUT and falls through to GOTEXAC, GOTEXAC calls OUTIN and control goes
to the swapper. If there are not enough, it calls PRCFREE which looks for a free shared
processor in memory, If it finds none, control goes to USERSOUT to find some out=swap
users, If it finds one, GOTPRCPG is called to add the processor's pages to the swappers
page chain and control returns to check if there are enough pages. If not, it looks for
another free shared processor and continues until there are enough pages or there are no
more free processors in which case control goes to USERSOUT, Any shared processors
in memory which the inswap user requires are not free since their usage counts were
incremented earlier so that they would stay in memory.

USERSOUT determines the out-swap set of users, First it zeroes SB:FPN, the list of
shared processors which became free because users are being swapped out, SB:OSN

the number of out-swap users, and S:OSS the number of pages gained from swapping
users out, USERSOUT runs through the queues listed in SB:SWP, from tail to head
looking for users with either the JIT in core or the ready~-to®.run flag set (users who

are at least partially in memory). When a user is found, control transfers to USOUTS,

If the user is the current open or close user, he is not swapped. If the user's don't-swap

24

SECTION EA, 03
PAGE 3
UTS TECHNICAL MANUAL 12/6/71

flag is set (he has had less than SL:SQUAN) and he's in an executable state and he's
ready to run, he is not swapped. If not, he is checked to see if he is large enough,

The user's number of pages is determined from his JIT (JBPPC). His shared processors
usage counts are decrement and if any are free, the number of pages they are using

are added to the number of pages he, the user, had, This number is compared with the
number required and if there are now sufficient pages, this user is not large enough, his
shared processor's usage counts are incremented and the user number is added to SB:OSUL,
the list of out swap users, unless SB:OSUL already contains enough users to make room
for the inswap user (S:0SS > register 14). If the user number is added to SB:OSUL, the
number of pages is added to 5:0SS. In either event, the search for one user who is large
enough continues.

If one user is found, a check is made at USOUT6 to ensure no event occurred during the
running of the state queues which could have changed them (S:EVF must be same). If an
event has been reported, the user's shared processor counts are reincremented and the
swap schedule starts over, A similar test is made at the end of running all the queues

if no single user is found,

At USOUTI11 the user number is put into SB:OSUL and SB:OSN, the nunb er of out swap
users is set to 1. Control transfers PROUT2 to get the pages from any shared processors

he freed up.

If there is a list of out swap users, any one of which was not large enough, control goes
to PROCSOUT. PROCSOUT decrements the usage counts of all the shared processors
of the users in the outswap user list, If there are enough pages available, control goes
to PROUT2, Otherwise, an attempt is made to find any processors which are free as a
result of swapping out the users in SB:OSUL, If there are still not enough pages, the
swap scheduler goes to GIVEUP, A swap is not possible. If some free processors are
found, their numbers are put in SB:FPN, the numbers of shared processors whose pages
are to be swiped. If there are enough pages, the page chains of all these shared
processors are added to the swapper page chain at PROUT2 by calling GETPRCPG. At
PROUT3, the kick out event E:KO is reported on all users in the out-swap list. OUTIN
is called and control goes to the out swapper.

GIVEUP returns the swapper page chain to MB:PPUT, and reincrements the processor
usage counts of all users in the out-swap list, If the inswap user's JIT is not in core,
his processor's usage counts were incremented so they are here decremented. The user's
total size is calculated to make sure his is not larger than available memory, If he is,
this is an impossibility and a software check 62 is reported to SCREECH, Otherwise,
the swap-in-progress flag is cleared, the swapper's page chain is zeroed and the swap
scheduler exits,

25

SECTION EA 03
: PAGE 4
UTS TECHNICAL MANUAL 12/6/71

SUBROUTINES

T:TOTESZ adds up the size of the user and his shared processors (excluding special
shared processors and overlays).

Register O returns the size,
Register 11 is the BAL register,
Register 4 is the user number,
Registers 15, 2, 10 and 1 are used,

PRCFREE looks for the "next" shared processor (starting with the one pointed to by register
3 and decrementing) which has zero usage count (PB:UC), If it finds one, it returns to
BAL+2, otherwise BAL+1,

Register 6 is the BAL register.

Register 3 is the starting shared processor number and returns the number of the
next one found,

Register 2 and 8 are used,

PRCFREE checks PB:UC, 3 to see if it is, it checks to see if the processor is in memory
(PB:HPP = 0), Ifitis, it checks the corresponding bit of PBT:LOCK to see if the pro-
cessor is locked in memory (PBT:LOCK is currently not set by anybody). If not, return is
to 1, 6 since it has found a free processor pointed to by register 3, If any of the above
conditions is not met it continues searching., If it finds no free processors in memory,

it returns to 0, 6.

GETPRCPG takes the pages from a free shared processor and adds them to the swapper page
chain, It zeroes the head of the shared processors page chain head (PB:HPP) to mark it
not ir core,

Register 6 is the BAL register,

Register 3 contains the processor number,
Register 0 contains 0.

Registers 7 and 8 are used.

MISCELLAN EOUS ROUTINES

DRTEL, DTEL, ISTEL, ITEL, DPROCS, DASP, DDB, DOV, RPROCS, RASP, ROV,
DRPROCS, DROV, DRASP, IPROCS, IASP, IDB, IOV, DTORP, ITORP.

These routines increment or decrement processor usage counts and/or set or reset the
user's associated processor bytes (UB:OV, UB:APR, UB:APO, UB:ASP, UB:DB) or his
TEL-in-control flag. I stands for increment, D for decrement, S for set and R for reset,
They affect TEL, all PROCS, associated special processors (ASP), debuggers (DB) and
monitor overlays (OV), Two affect TEL or all processors (TORP) according to whether
TEL is in control or not. They use registers O through 3. Register 4 contains the user
number and register 15 may be used to load the user's flags.

26

SECTION EA, 03
Page 5
UTS TECHNICAL MANUAL 6/28/71

DRPROCS, DROV, DRASP, IPROCS, 1ASP, IDB, 10V, DTORP, ITORP

These routines increment or decrement processor usage counts and/or set or reset

the user's associated processor bytes (UB:OV, UB:APR, UB:APO, UB:ASP, UB:DB)
or his TEL=in=control flag. [stands for increment, D for decrement, S for set and
R for reset. They affect TEL, all PROCS, associated special processors (ASP),
debuggers (DB) and monitor overlays (OV). Two affect TEL or al! processors (TORP)
according to whether TEL is in control or not. They use registers 0 through 3,
Register 4 contains the user number and register 15 may be used to load the user's
flags.

27

SECTION EB

PAGE 1
UTS TECHNICAL MANUAL 7/20/71

D
STEP - Job step control

PURPOSE

The STEP routines perform all monitor operations required to allow a user to pass from
one job step to the next. A job step is defined here to be from the transfer of control
to the starting address of a program to its exit, error, or abort.

Command processors such as TEL and CCI provide the means by which a user specifies
job steps, and their operation is considered part of the inter-job step process.

OVERVIEW

STEP recognizes two types of program exits: an exit CAL from a command processor
(TEL, CCI, LOGON) and all other exit CALs. An exit CAL from a command proces-
sor is called an interpretive exit, and connotes a request for a STEP service. Registers
provided at the exit are examined to determine the action to be taken. If a program
or shared processor name is provided, it is associated with the user and control trans-
ferred to it. If none is specified, the exit is a request to delete the user from the
system,

An exit CAL from any program other than a command processor is a request to return
to the appropriate command processor, to the associated debugger, or a request to
transfer control to the user's program loaded into memory by LINK.

Action taken on error and abort CALs, and aborts of a user within the monitor depends
on the associated debugger. If DELTA is associated with the user, control is given to
DELTA. Otherwise, the user's current operation is terminated, appropriate error/abort
messages given, all programs disassociated, and the appropriate command processor
associated and given control.

The overview flow chart illustrates the operation of the STEP routines.

USAGE

STEP usage varies from routine to routine. See the description of each logical segment
to determine its usage.

INPUT

STEP uses numerous tables described in Section V. Input unique to a logical routine
is detailed in the description of that routine.

The most important input to STEP is the user's exit environment containing the PSD
and the 16 registers at the time of the exit. This is detailed in Part F of the
description.

28

AS P

o TR
- €5 (@] MT\%U
. ce

6
th

/

&
i Ne

D&LE‘KE ™IS |
o USER FROM |
o]

40 v 7/ 133HS

620€0L

XOr3X

mirimenl o meveon wmsmas

ME S NS5T TEW |

v
o—r
3 -
o 7
a >
o o
o 3
o &
™ a
-

>0
® 3
<
0 —
£ O
L @
<
¢

-
>
o
3

L,
o
-

el
Q
=
o
wv
-
>
=
o}
C

«Q
>
wn
—f
m
.

—
>
=
=N

«Q

=2
2]
-
(=
=
(¢]
0
(o}
3
=
8.
3
©
g

IMSASSoC\ATE
PROC ESSORS

o

Sy
Lno
[STRAP WM
° o JIT L
oot ‘B\)WEKS

i

G0 W

JEL /

STEP - Generalized Big Picture

|

X
- REOU"ST
____NF fol SHARED,
?Roc@sso?-
 Jves 5
[Tr NECESSARN, |—
| GET INvTIAL 1|
[READ LM HEMES DrTa = DCBs | (T
[GET NECELSSARY R e 4
| PAGES, RCAD N T o
[THC LORD Mo/ TTREG N\ |7
C """'[“ - / REGUEST %
! - SwnP EQ TO 1>
GET ?RGC / c
[REMAP
S \“K'$ vt_____m >—\) ~
I PCR's PuT sTART wTO.
y || 05D, vmn Deg's |
vse TiREG | | $BUFFERS SET,
To sgoc,hfﬁ, | |ACCESS MERGE o o
A L BRAR !f: _RSs\’aws i Ny m
ECESSA i o0
' 1 NS 8
1 | R
E0 v
AN Nuwﬁ\, e,z M ®
£60£6
s
\as b,

SECTION EB
PAGE 3

UTS TECHNICAL MANUAL 7/20/71

OUTPUT

STEP supplies a user who is ready to run to the scheduler. Specific output is
detailed in the routine descriptions.

IPROCS, ISTELI,
DRASP, DRTELI,

INTERACTION
MM Routines:
T:SGR Release a granule on the swapping rad
T:RVPI Release a page - physical and virtual
T:GNVNPI Get n virtual no physical for initial data and DCBs
T:GNVPI Get n virtual and physical pages
T:XMMC Load memory map from JB:CMAP
T:RVSPI Release virtual save physical for remapping LINK's DCBs
T:GVGPI Get virtual given physical, for remapping LINK's DCBs
T:SNAC Set access on n specified pages
T:FPP Free a physical page
T:PAC Load the access image
T:SAC Set access on a page
T:GAJP Get an additional JIT page if necessary
SSS Routines:
T:OFF Remove the user from the system
T:BTSCHED Schedule a batch job
T:REG Report an event-associate processor E:AP - and give up
control
T:SSEM Schedule the current user
T:SE Schedule with no current user
T:CHS Change the user's state
T:EC Associate TEL with the user

Keep track of associated processors

DRPROCS, RPROCS,
DDB, IDB, DROV, DASP

DELTAGO

OTHER ROUTINES

Entry point
T:DSMT.

T:NAMECHK

T:0V
T:GHOST

ABORTI

Transfer control to DELTA

Module Function

T:DSMNT Dismount all associated tapes

UCAL Compare specified name with GJOB
name table

T:0V Associate an overlay

UCAL Inform the operator of an aborting
ghost job

ENTRY EQU to T:ABORTM

30

SECTION EB
PAGE 4
UTS TECHNICAL MANUAL 12/8/72
SUBROUTINES

ABN: Routine to handle 1/O errors occuring while reading
FETCH load module. Lost data for all operations is
ignored, otherwise the error code in R10 is set into
ERQO in the JIT, M:XX is closed, if open after setting
PMD flag in J:ASSIGN, and control passed to FETCH3,
if LDOTRC was not active. Otherwise an error code of
X'B5' os reported via TELLTEL.

IN: RIO contains error code
R8 contains CAL+1

BUFCHAIN: Routine to chain the user's buffers. The buffers size
in words is subtracted from the top of context areq, its
value stored in the pool location in JIT. Size again is
subtracted from the first buffer address and the result
saved in first word of previous buffer for all buffers
specified in the JIT, This operation is performed for
FPOOL and IPOOL then retuns to the calling routine.

CHKDB: Routine to check P:SA given the processor and abort the
user via TELLTEL unless:

a) Processor is a monitor overlay
b) The processor is a debugger.
IN: R4 contains users number
R5 contains processors number

LINKLIMS: Routine to set access on pages within a specified protection
type.

IN: R1 = Relative word in head record for limits
R2 = Address of head
R3 = J:DLL or J:PLL
RI3 = Protection type

LINKLIMS obtains size in Ré and starting address in R7.
If size =0, control is returned. Otherwise size and location
are converted to page count and number, combined, and

the first page number and last page number stored using
R3:

LOWER LIMITS

R3I—™>
UPPER LIMITS

31

OUTOFPGS:

SPCON:

TELLTEL:

T:RSTLMS:

XITCTRL:

ERRORS

SECTION EB
| PAGE 5
UTS TECHNICAL MANUAL 7/20/71

Access is set on pages between the limits via the MM
routine T:SNAC and control returned.

Error routine to supply on X'A5' error code to TELLTEL
using the logic described in ABN., OUTOFPGS loads R10
with 0 and R8 with OUTOFPGS, then falls into the ABN
logic.

Routine to obtain the address of the special processor
context page in R2.

Out: R2 = J:EUP+1]

Routine to set the specified abort code in J:ABC,
increment all associated processors via the SSS Routine
IPROCS, and transfer control to T:EC in SSS which
associates TEL to deliver the error message if the user

is on-line. Otherwise R14 is loaded with the abort code
and control passed to T:ABORTM

In: R1 contains ABC

Routine to set all JIT memory limits to their initial
values:

J:CUL = J:PUL = J:DUL

J:CUL+1 = J:PLL = J:DU = J:DDLL

J:EUP = J:DDUL

All memory is thus set to dynamic data. The upper limit
lower than the lower limit indicates no pages have been
obtained within that particular protection type.

Routine which supplys DELTA's exit control start location
to the SSS routine DELTAGO which transfers control to
DELTA.

STEP error codes are listed in the UTS Reference Manual, table B=-5. These

error codes are:

A0
Al
A5
(A6

Invalid debugger

Attempt to debug a shared processor

Load module (and context) exceed user limit
Load module bad or does not exist

32

A6

AA
B5

30
3l
32
33
34

35

36
37
38
39
3A
XX

SECTION EB

- PAGE 6
UTS TECHNICAL MANUAL 12/8/72

Bad DCBs or DCB Table

Bad Head Record

Load Module Bias Not on Page Boundary
Pure Procedure Not on Page Boundary

DCBs Not on Page Boundary

Head Record in Incomplete

Tree Record is Incomplete

No Debugs Allowed with Link=Built LMNs
Program Too Big for User Area

File Not Keyed, Not a LMN

DCB Links Bad or circular

1/O Error Code on Load Module Open or Read

Invalid core library name
I/O error reading load module for LNKTRC

Restrictions: Details in the routine descriptions

Step entry points:

ENTRY
POINT

T:EXIT

T:ERROR

T:ABORT

REQUEST ENVIRONMENT FROM

Program request

(ACP)

Logging on Logon
Logging off Logon
Exit with DELTA associated user program

Exit without DELTA associated user program/

shared processor

Exit from Ghost job Ghost job

Error with DELTA associated user program/
shared processor

Error from Ghost job Ghost job

Abort with DELTA Lber program

Abort without DELTA User program/

shared processor

33

RESULTANT ACTION

Command Processor interpretive exit

interpretive exit
delete user

return to Delta
return to ACP after
re-initializing user.

delete user

return to ACP afte
re-initializing user
delete user

return control to DELTA
return to ACP after
re=initializing user

ENTRY
POINT

T:ABORT

T:ABORTM

T:DELUS

T:RUNDOWN System re~initializing a user

T:ASP

UTS TECHNICAL MANUAL

REQUEST ENVIRONMENT

Abort from ghost job
Abort from TEL/CCI

Abort for bad CAL

Abort for bad TRAP/CAL
Single user abort

Bad segment abort

Bad TCB specified for traps
Bad buffer specified

Bad stack address specified
Bad buffer or size

System deleting a user
System deleting a user
System deleting a user

Associate a processor

DESCRIPTION

FROM

Ghost job
ACP

ALTCP

ENTRY
INITRCVR
SEGLD
SSS

TIM
TRAPC
TYPR

GHOSTID
INITRCVR
KEYN

SSS

SSS
LNKTRC

SECTION EB
PAGE 7
12/8/72

RESULTANT ACTION

delete user
Re-initialize user and
re-enter ACP

Return to DELTA or
return to ACP

delete GHOSTI
Single user abort
DELETE Keyin

Associate requested
processor

The following descriptions of the logical blocks comprising the UTS routine STEP are best
read with the listing close at hand. STEP is a complicated routine which interfaces with
a large number of other monitor routines and processors. The avid reader of this documen-
tation should have a thorough knowledge of the scheduler, swapper, and memory manage-
ment routines and tables before undertaking the task of understanding STEP, As many
paths are explained as practical, implications of action to other routines pointed out, and
processor interfaces discussed. The table documentation in Section V of the Technical
Manual is relied upon heavily, particularly the section on the Job Information Table.

For convenience, STEP has been broken into the following logical portions.

90 19 86A-1(4/73)

STEP Exit Logic

A,

B. Debugger Exit Control Logic

C. User Re=initialization Logic

D. Load and Go Logic

E. Assemble Unshared Program Logic
F. Interpretive Exit Logic

G. Logoff/Continue Logic

H. Associate Shared Processor Logic

L Associate Unshared Program Logic
J. DCB Validity Checker .

K.

34

Merge DCB Information Logic

This arrangement is
diagrammed in
Figure EB-1.

Good luck.

RO LSER

<vef Ewr

6 C
— - VSE (R
L6 6o | INTERPRETWE ReyonTidzanen
onTIvLE EXAT WSL\C LBGLAC
o5\ C
Covt Yiwot oHe ,.
To
ScREDOLER
{ W I
10 LVSER]
Ascec ATE Assecmbre ‘
SHAL D PRec($56i¢ UWSHARE
LOGAC WeGic
-
g i ‘S
m MERGL P
T IN$O2HATION

2/

&

DEBOLLE R
et contre(

\/To VL

D

WOAD Awy GO
WSG\C

L4

ASSEMB LE
VNsyARED PLEGRAN
o6\ C

N

Ui

e osek

TVANVW TVDINHDIL SLn

L£/02/¢
8 39Vvd

g3 NOILD3S

SECTION EB
PAGE 9
UTS TECHNICAL MANUAL 12/8/72

STEP Exit Logic: T:EXIT, T:ERROR, T:ABORT, T:ABORTM, T:TELDELCCI

The routines comprising the STEP exit logic are entered at T:EXIT, T:ERROR,
and T:ABORT from ALTCP, and T:ABORTM from a number of place s within
ihe monitor. T:ABORTM expects R14 to contain the abort code and its
subcode ERO in the form [ERO | 00 J00 JABC]. The other entry points

load R14 with the appropriate code (see Reference Manual on error codes),

T:EXIT reads the user's flags and determines what special shared processor the
user is associated with. If RUNNER is exiting, control transfers to STEPOO3

to handle this special case. If the TIC (TEL in control) bit is set in VH:FLG,
a command processor is exiting and control passes to the interpretive exit logic

at STEPOO,

A normal exit and all other entry points load R1 with an appropriate run

status (0 = Normal Exit, 2 = Error CAL, 3 = Abort CAL, 4 = Monitor Abort)

and enter common logic at SETRNST which sets run status in the high order

byte of J:RNST. Common logic continues at T:TELDELCCI which stores

the abort code J:ABC and its subcode ERO into the user's JIT, forces TSTACK

to two environments as a precaution., Any ghost user, as determined by bit1

set in the first JIT word, is removed from the system by transferring to the

logoff logic T:OFF, after first issuing an appropriate error message on all

but a normal exit via the same mechanism as batch users = discussed in

users reininitialization. A user with DELTA assocaited (DELA set in UH:FLG)

is tranferred to DELTA via the debugger exit control logic T:DEL.

On-~line users without a command processor in control with non-zero run status
are tranferred to the associated command processor (ACP) to be given an error
message. Control is transferred to T:ECCP in SSS which uses the STEP associate
shared processor logic to bring in TEL. This same SSS routine is called when a user
types Y. * On-line users with TIC set in UH:FLG (TEL-in-control) or with
J:RNST =0 are transferred to the user reinitialization logic T:RUNDOWN along
with all batch users, indicated by BAT set in UH:FLG.

* after issuing the error message, TEL will execute an Aoort CAL to force user
re=initialization.

Debugger Exit Control Logic: T:DEL

When a debugger is discussed in conjunction with the UTS Monitor, DELTA
is understood to be the subject, and is the only debugger special-cased in
numerous Monitor routines. In T:DEL, if the exit, error, or abort was from
DELTA (DIC set in UH:FLG) control is transferred to the user reinitialization
logic. Otherwise, T:DEL guarantees the user to be associated with DELTA,
as a core library may also be assocaited. Core libraries and DELTA occupy
the same virtual space - the special shared processor area,

36

JB:LMAP

JX:CMAP

SECTION EB
PAGE 10
UTS TECHNICAL MANUAL 7/20/71

as a core library may also be associated. Core librarys and DELTA occupy
the same virtual space - the special shared processor area.

If a core library is associated, recognized by a non-zero UB:ASP entry for this
user, the library is removed and DELTA associated. The SSS routine DASP is
used to decrement the core library use count. IDB in SSS is used to increment
DELTA's use count, DELTA is set in control, and ready=-to-run is reset in UH:FLG
(DIC =1, RTR =0) as flags to the swap scheduler to indicate a request for
association with Delta. An associate processor event E:AP is reported via the
SSS entry point T:REG to associate DELTA,

If a core library was not associated or when control returns from the "REG",
control is transferred to the routine XITCTRL which sets up registers 1, 10, and
11 for the SSS routine DELTAGO which will give control to DELTA,

User Reinitialization Logic T:RUNDOWN
Before entering user reinitialization, a typical user appears as shown below

with an associated shared processor, data, DCB's buffers, pages obtained by
the Change Virtual Map CAL, and a debugger.

VLT L VLH
oSN v
S8V
Y
[3\ —§§L}A 7
Procedure
INITIAL
DATA
FILE BUFFERS | DEBUGGER
COOP BUFFERS . DEBUGGER
T:SAD DATA
DCBs ' PAGES
JITS DYNAMIC
DATA

37 90 19 86A-1(4/73)

SECTION EB
PAGE 11
UTS TECHNICAL MANUAL 7/20/71

T:RUNDOWN first checks if the user being reinitialized is also going
through the single~user abort process. If the current user S:CUN is not
equal to S:CRASHUN, his user number replaces its current value, If equal,
the current user has been aborted again while being reinitialized and is
deleted from the system by transferring control to T:DELUS. This drastic
action is deemed necessary as the user is too damaged to be gracefully
returned to the command processor, and may result in files being left open
and the attached CFU's busy. These files are closed and CFU's returned to
the system at quiescence, when a software check IE is forced if any user has
been deleted in this manner.

Assuming the user has not been deleted, T:RUNDOWN sets the X'4000' flag
in UH:FLG to signal the scheduler to speed the 1/O process during STEP by
placing the user in the special compute queue, rather than I/O complete or
compute bound, upon completion of every physical 1/0 operation or quantum
end. This action lowers the probability of the user being swapped out during
the STEP process.

TSTACK is forced to the one exit environment to facilitate possible error
messages, then any associated processors and overlays are disassociated by

the SSS routines for that purpose=DROV, RPROCS, etc. A special check is
made for an associated command processor (TIC in UH:FLG) as separate routines
are required. Consult the SSS documentation for further details.

If the user is on=line, his prompt character is reset in M:UC, and the monitor

set running in J:RNST, If his symbiont DCB is still open, the right halfword

of MUPO in his JIT points to its location, and control transfers to CHKPMD

along with all batch users. Otherwise, CHKPMD for the on=line user is bypassed.
The open symbiont DCB is a very rare occurrance, possible only if the user

were aborted from the middle of a T:JOBENT CAL.

CHKPMD transfers control to the DEBUG overlay segment to give an error

message to the batch user if the first byte of J:RNST is non-zero (see TELLUSR
documentation, section LB), to perform a PMDI if requested (indicated by bit 14
set in J:ASSIGN), or to close an open symbiont DCB, DEBUG is requested via the
OVERLAY proc, which loads the overlay number into R2, the entry point into RO,
and branches to T:OV. (See T:OV, section EC). Upon return from the DEBUG
segment, errored or aborted Ghost Jobs are removed from the system by trans-
ferring control to the logoff logic T:OFF. Otherwise, the monitor is set running

in J:RNST and normal reinitialization continues at CLOSEDCBS.

38

UTS TECHNICAL MANUAL

SECTION EB
PAGE 12
7/20/71

As the exit environment is no longer required, TSTACK is emptied, and

the first type of run status zeroed to avoid re-entering STEP at T:ABORTM
from IOSPRTN in CALPROC. The DCB chain is used to locate and close

all open DCB's except those assigned to a non~-tape device. The DCB chain

begins in the JIT by J:ADCBTBL and is of the following format:

J:ADCBTBL

J:DCBLINK

LOCI

LOC2

J:DCBLINK
04 M .)
C :

M:UC
04 M X
X

M:XX
LOC1

LOC2

I3

—-—>M:UC

—> M:XX

—s DCB

CLOSEDCB picks up the count of characters in the name, displaces past

the name to get the address of the DCB, and tests the open bit (Y002) to
determine the action to take. M:DO is closed with SAVE specified if open,
others are closed with their default. Devices associated with open non-tape
device DCB's are removed from diagnostic use at this time by resetting the
diagnostic use flag in DCT3. These DCB's are not closed in order to avoid the
unnecessary overhead required to close them.

When the end of the DCB chain is encountered, the exit logic continues by
resetting the activation character set for on-line users in the COC line table
MOD?2, then checks the name of the associated special processor in P:NAME

to see if its name was LINK,

The index R7 into the processor tables was

established during the processor removal logic in T:RUNDOWN. If LINK
was associated, control is transferred to the Load and Go Logic (D).

39

SECTION EB
PAGE 13
UTS TECHNICAL MANUAL 7/20/71

Otherwise all of the previously associated special processor or debugger pages
are removed from the user's memory area by resetting the access on those pages
to 11 (no access) and storing the free page map constant (FPMC) into the

user's JX:CMAP at those page locations. Access is reset by submitting access

in R4, first virtual page of the processor procedure from PB:PVA in R7, and
number of pages from PB:PSZ in R6 to the MM rountine T:SNAC, Upon returning
from MM, a simple BDR loop on Ré with the same information stores the FPMC
into JX:CMAP. Following the operation, the user's memory appears as :

w 2
P - v T:SAD
= é %g?s' B"fferii_\ E:fa Pages Debugger Data Page
e]
8000 8CDO 000 1C000

User reinitialization continues at LDLNK, which checks for the existence
of any temporary files built by the overlay LDTRC during a load-and-link
operation. -If the low order byte of J:RNST is non-zero (the counter for
LDTRC files), LDTRC is called by transferring control to T:OV with R1
containing the overlay entry and R2-R3 containing its name in TEXTC
format. If the counter is zero and such files do not exist, or upon return
from the overlay, the virtual link chain JB:LMAP is used to remove all
corresponding pages in JX:CMAP except the symbiont buffers. Each virtual
page to release is determined by linking through JB:LMAP starting with
JB:VLH. If the page obtained is not between JCOVP and JCOVP+1, the
COOP buffer limits, it is released via the MM rountine T:RVPI, and the next
page obtained. Upon completion of this process, the user's memory area

appears as: Shared
Q. g Processor
Jits 83-; Procedure T:SAD Pages
— (O X1
8C00 C000

90 19 86A-1(4/73) 40

SECTION EB
PAGE 14
UTS TECHNICAL MANUAL 12/8/72

All JIT memory limits are reset to their initial values via a call to the subroutine
T:RSTLMS. Other JIT cells referring to locations in the released memory area
are zeroed. The results in the JIT appear as:

from T:RSTLMS J:CUL = J:PUL = J:DUL
(All user memory set J:CUL+1 = J:PLL = J:DLL = JBTDP
to Dynamic Data) J:EUP = J:DDUL

Other results: J:TCB =0

J:DCBLINK =0
JIINTENT =0
J:TIMENT =0
J:USENT =0
J:CLMN =0
J:IPOOL =0
J:FPOOL =0

All of CMAP and LMAP cells between the beginning and the end of the user
area, BUP and EUP, are initialized to FPMC and zero respecitvely, to
reset shared processor procedure and release any pages obtained by the
Change Virtual Map routine T:SAD in MM, The MM routine T:SAC is used
on each page to insure access is set to 11, The user now consists only of his

JIT, his additional JIT (if any), and his COOP buffers.

Upon conpletion of the reinitialization of user memory, Tel-in-Control is

reset in UH:FLG.

An environment is bumped into TSTACK for T:ECCP, and S:CRASHUN and
RCVUSER zeroed. Control is then transferred to T:ECCP in SSS to associate
the appropriate command processor with the user.

Load and Go Logic: XITLINK
LINK specifies action to be taken by STEP in its data page, the first page

of the special processor area. The interesting locations (the first 26) of
that page are illustrated below:

41

Head

Tree size
Tree

0 N oo 0w N

T m g N ® > O

10
11
12
13
14
15
16
17
18
19
1A

UTS TECHNICAL MANUAL

84 0 O ff 30

8

Start

TCB

BIAS

00 Size

00 Loc

01 Size

01 Loc

Max REFDEF

Tree Size

DCB Size

DCB Loc

GST Size

GST Loc

IST Size

IST Loc

TEXTC

CORE LIBRARY

NAME

TEXTC

Debug Processor

NAME

X 'c

TEXTC

Load Module

NAME

00 Size

00 Loc

REFDEF Size

0

01 Size

01 Loc

0

0

0

DCB Origin

0

0

42

SECTION EB
PAGE 15
7/20/71

Start address

Data Size and Loc
(Doubleword)
Procedure size and
Loc (Doubleword)

Original DCB Loc (DW)

Global Symbol Table
(DW)
Internal symbol table (DW)

Tree Size/Load and Go
Flag

SECTION EB
PAGE 16
UTS TECHNICAL MANUAL 7/20/71

If LINK was associated with the exiting user (after being disassociated by the
Reinitialization Logic) then control is given to the Load and Go Logic at
XITLINK. This routine locates LINK's data area via the subroutine SPCON,
saves the load module name from the first three words of the TREE in J:LMN,
then checks the LINK run flag - the TREE size. If non-zero, control returns
to the Reinitialization Logic at XITNRUN. A zero signals go; the first
operation is to map the LINK-manufactured DCBs into the context area.

The LINK-manufactured DCBs are those built by LINK to be associated

with the user's program. LINK, on the other hand, had been using the
context DCBs to perform it's own 1/O. With LINK disassociated and "GO"
indicated, the manufactured DCBs are moved to the context area to be
linked to the user's program. This operation begins by locating the first
virtual page containing LINK=built DCBs, pointed to by the DCB location
in the HEAD, The corresponding physical page is obtained, and the virtual
page released via the MM routine T:RVSPI (Release virtual save physical).
The first page of the context DCB area is released using T:RVPI (Release
virtual and physical), then T:GVGPI (get virtual given physical) is supplied
with the physical page of link=built DCBs and the first virtual page of the
context DCB area requested. If the request is successful, the physical page
has been mapped into the context DCB virtual page. If not, the FPMC
remaining in JX:CMAP indicates the user has exceeded his maximum page
count and control given to the routine OUTOFPGS to abort the user.

If there is a second page of LINK=-built DCBs, the re~mapping is repeated.
After successfully completing this process, control is given to the assemble
unshared program logic.

Assemble Unshared Program Logic: XITIO

The logic produces a user program arranged correctly in memory complete
with any debugger or library requested. Beginning at XITIO TSTACK is
forced to a single environment, J:ASSIGN reset, the user set running

in J:RNST, The difference between the load module bias and the start

of its data area is calculated; this value is usually zero, but FORTRAN
leaves this space for blank common. If a difference exists, those pages are
obtained via T:GNVPI (get m virtual and physical) by specifying the
number of pages desired in Ré.

If a TCB exists, the location for DCB chain is obtained from its tenth word, other-
wise the first word of the DCB area is assumed; one or the other is stored into
J:DCBLINK unless the DCB size is zero, This link is checked to assure it is within
the DCB areq, and the DCB chain itself checked to assure it is complete, A failure
results in the ABC/ERO code A63A. The load module name from the tree is saved in
J:CLMN for DELTA to use (if necessary) when reading symbol tables, The symbol
table locations are also obtained and stored in the JIT:

43 90 19 86A-1(4/73)

SECTION EB

PAGE 17
UTS TECHNICAL MANUAL 7/20/7]
GST Size and Location J:GST
IST Size and Location J:IST

Access and JIT memory limits for the program are set for the user by
specifying the JIT limit in R3, the relative location in the head in R1,

and the access (00, 01) in R13 to the routine LINKLIMS. The dynamic data
count is obtained at the start of this process, and the count of pages in each
protection type from LINKLIMS subtracted. The remainder is common
storage, and set back into the count of dynamic data pages. The dynamic
data lower limit is set to either one page past data upper limit for a
program built by LINK, or one page past procedure upper limit for a
program built by LOADER, Because the loaders allocate user memory

as in the following illustration they must be special-cased here.

. . ’ Special
LINK CXT | DATA Dynomjc Data | Procedure AF:ea
|
‘ . Special
LOADER CXT DATA Procedur§ Dynamic Data Area
8C00 CO000 1C000
‘ | 118000 |
Beginner user pages End user pages

After storing the starting address and the TBC address from the HEAD into
J:START and J:TCB, and the TCB location placed into RO of the
environment, the core library and debugger names are saved in registers

and the first page of the special area containing the head and tree records
released via T:RVPI in MM,

If the load module was built by the LOADER, the address of the first word
of the procedure is set into JITREE in the JIT.

SECTION EB
PAGE 18
UTS TECHNICAL MANUAL 7/20/71

A series of tests to determine if the user specified a valid core library are
made; if a library was specified (name saved in R14-15), the name is
found in the P:NAME table, and the bit set in its corresponding entry in
P:SA indicating "yes indeed, I'm a library, " then its number is stored into
UB:ASP. Ré at this point may contain zero or the name of a requested
debugger. If zero, RTR is reset in UH:FLG, and an associate processor
event reported via T:REG in SSS as a request to the swapper to bring in the
library. If an invalid core library was specified, control is given to
TELLTEL to abort the user. Upon return from the REG or if no core library
was specified, the hardware memory map is loaded via the T:XMMC routine
in MM to reflect the user's current'memory layout, and control given to
the merge DCB information logic.

If Ré contained the name of a debugger, which is found in P:NAME,
control is passed directly to the associate shared processor logic to

bring it in. If not in P:NAME, control is passed directly to the associate
shared processor logic to bring it in. If not in P:NAME, ACP is told.

An odd path through the above logic results when Ré is loaded with zero if
either of the two high-order bits of J:CFLGS was set: This occurs when the °
overlay LDTRC is associated, and load-and-link/transfer control is taking
place. The result is to bypass the tests for a debugger and library, to

rejoin the common logic at XIT31 to load the map. =

The Interpretive Exit Logic: STEPOO
The function of the Interpretive Exit Logic is to process the request of

a command processor by interpreting its registers in the environment
produced by the EXIT CAL. The environment is of the following form:

SECTION EB

PAGE 19
UTS TECHNICAL MANUAL 7/20/71
THREE WORDS
OF
PSD
0 DEBUGGER -15 Decimal displacement
1 NAME (TEXTC) _14 from top of stack
2 -13
3 -12
4 -11
5 -10
6 NAME -9 Or pointer to CClI run table
7 NAME -8
8 NAME (TEXTC) -7
9 -6
A PASSWORD -5
B PASSWORD -4
C -3
D ACCOUNT -2
E ACCOUNT -1
F 4—— Top of stack

Special JIT access is reset immediately at STEPOO, then the processor
issuing the interpretive exit is identified and removed from JX:CMAP by
obtaining its size from PB:PSZ and starting virtual page from PB:PVA,
then running a simple loop to store the FPMC into the appropriate CMAP
location.

If the exiting processor was RUNNER, a CCI overlay which builds the debug
and modify clobber tables, its DCB page is released via T:RVPI. Control

is then given back to the Associate Unshared Program logic which
requested RUNNER.

90 19 86A-1(4/73) 46

SECTION EB
PAGE 20
UTS TECHNICAL MANUAL 7/20/71

If not RUNNER, then Ré of the exit environment is checked for a request.

If zero, control is passed to the Logoff/Continue logic. Otherwise,

the rest of the command processor - the context, DCB, and special context
pages = is removed from the user. All pages between JCOVP+2 and JBUPVP, the
third page of the buffer area (above the COOP buffers) to the beginning of the
user areq, are released using the MM routine T:RVPIL. JIT pointers into

this area, J:FPOOL, J:IPOOL, J:ABUF, are zeroed. If the command processor
lived in the special areq, as determined by bit1 of P:SA, the first page

of that area - the context - is released. DCB pages indicated by PB:DCBSZ
are released via T:RVPI, and J:DCBLINK zeroed. T:RSTLMS is called to

reset all memory limits to their initial values, as in the User Reinitialization
Logic. At this point, the user is reinitialized except for common pages.

R6-8 are loaded from the exit environment into R6-8. If a command processor
performed the exit, as indicated by TIC set in UH:FLG, the processor is decre-
mented and reset by the SSS routine DRTELI, - If the exiting command processor
was LOGON, the P:NAME table is searched for TEL; if found, TEL's index is
put into UB:ACP and registers 4 and 5 in the user's stack are loaded with
TEXTC TEL. This allows autocalled programs to return to TEL when they abort
- or hit Y¢. Control then passes to T:ASP.

R6 may contain one of two things: The first word of the TEXTC name of the

load module requested, if TEL performed the exit, or the address of the run
table in the common areq, built by CCI. If the first byte of

R6, the count, is non-zero control is passed directly to the Associate Shared
Program logic. Otherwise, words 3-5 from the run table, containing the
requested load module, are obtained and stored into R6-8 in the exit
environment. Similarly, the account and password are moved to the appropriate
environment registers. After thus simulating a TEL exit for CCI, R6~8 are
re-loaded with the TEXTC name of the request and control passed to the
Associate Shared Processor Logic.

Logoff/Continue Logic STEP10

If a special shared command processor, recognized by TIC set in

an on-line user's UH:FL G, and bit1 of P:SA, issued an

interpretive exit with no request specified in R4, a continue operation is
indicated. This logic at STEP10 sets TSTACK to one environment, resets
ready to run in UH:FLG, increments all the user's associated processors
and sefs their access into the JIT access image J:AC via the SSS routine
IPROCS and the MM routine T:PAC. An associate processor event is reported
to T:REG as a request to re-associate all processors. Upon returning from
the REG, control is passed to the scheduler at T:SSEM to transfer control to
the user's program. ‘

47 90 19 86A-1(4/73)

SECTION EB
. PAGE 21
UTS TECHNICAL MANUAL 7/20/71

If LOGON or CCI issued the interpretive exit with zero in R6, the interpretation
is a logoff request, and the user is removed from the system. T:DELUS first
insures all associated tapes are dismounted with the routine T:DSMT which
removes them. All pages represented in JB:LMAP are released by repeatedly
releasing the head of the chain JB:VLH until it becomes zero, using T:RVPI,

The user's additional JIT page is released via the MM routine T:FPP and the
corresponding swapper granule from UH:JIT released by T:SGR in MM,

If the user is a ghost with a name in the ghost job name table (verified by
T:NAMECHK) all flags in SB:GJOBFLG are reset and the user number in
SB:GJOBUN zeroed. The swapper granule for the user's JIT is released via T:SGR,
the count of batch users in system S:BUIS decremented if the user was batch,

and the total number of users S:CUIS is decremented. If this user was opening or
closing a file when deleted, OPNCLSUS is zeroed. All associated processors

are decremented and reset via the SSS routine DRPROCS, any associated

processor overlay decremented, and the following tables zeroed:

UB:QV
UXJIT
UH:ID
UH:FLG

If the user was on-line, the line tables.

LB:UN
PROMPT

are zeroed.

The user's state is changed to zero via T:CHS in SSS, a batch job scheduled
if the user was batch by T:BTSCHED, and control is transferred to the
scheduler to schedule with no current user at T:SE.

H. Associate Shared Processor Logic T:ASP

Control comes to T:ASP with the user reinitialized and a program request in
R6-8. If the program is identified as a shared processor, the processor
tables are used to allocate user memory, otherwise control is passed to the
Associate Unshared Program Logic.

T:ASP first resets the INIT flag in UH:FLAG, possibly set during reinitialization

by MM, and also sets the STEP I/O flag X'4000" as in the Reinitialize
User Logic to speed the 1/0.

90 19 86A-1(4/73) 48

SECTION EB
PAGE 22
UTS TECHNICAL MANUAL 12/8/72

The P:NAME table is searched for the request and the processor number,
if found, preserve in R5.

The processor flags, P:SA, are checked to see if the request is for a

command processor; if so, the user must be proper for the requested C..P.,

ie. batch if requesting a batch C.P., oz line for an on-line C. P., etc.

If the user does not match the requested C.P., he is aborted with error code 'A2'. l

The run flags in J:RNST are checked, and if non-zero, the user is not

at job step and may be calling for a debugger or library. CHKDB is used
either to abort the user via TELLTEL if the request is not a debugger, or
library, or to return in line at ASP23. Buffer pages are obtained for the
user if he has none by consulting the specified number for each in the JIT,
calculating the required pages, and requesting those pages via T:GNVPI in
MM if the total requested is less than the buffer area available = 2 pages
at the front are reserved for COOP buffers. The calculations are =

from J:NIPOOL and J:NFPOOL
(Number of IPOOLS) * (IPOOL size) +X'IFF' E-h—'-ﬂ’ Pages required
for IPOOL request

(Pages of IPOOL's) + (Number of FPOOL's) = Total pages required
(Total pages required) < JBUPVP -~ (JCOVP+2)

If (Total pages required> JBUPVP - (JCOVP+2), the number of each buffer
type in the JIT is set to two, and three pages requested. These buffers
are sufficient to allow TEL or CCI to give the user an error message and to
run him down,

If the account specified in the exit environment is not :SYS, or the
processor number in R5 is less than the greatest overlay number (to avoid an
on-line user requesting OPEN, for example), or the processor size in
PB:PSZ is zero, control is passed to the Associate Unshared Program Logic
at FETCH.

49 90 19 86A-1(4/73)

SECTION EB
PAGE 23
UTS TECHNICAL MANUAL 7/20/71

If this request is from LNKTRC, the extra environment is removed from TSTACK,

If the requested processor has the special JIT access bit set in PSA, SJAC is set into
UH:FLG.

If the processor lives in the special area, user memory limits are not changed,
otherwise the access on the data and procedure pages is set via T:SNAC in MM
as follows:

J:DLL to J:DLL+PB:DSZ set to O for data
PB:PVA to PB:HVA set to 1 for procedure

and the following memory limits are established:
J:DDLL = PB:HVA
J:PUL =PB:HVA-I
J:PLL = PB:PVA
J:DUL = PB:PVA-1

so the user's memory area now appears as:

s 1 Dynamic
' ! Bufferd Data Procedure Data area
]) ‘f 'y
JBUPVP I
J:DLL J:DDLL
JCOVP+2 J:PLL |
J:PUL (= J:TDP if not
JCOVP J:DUL LDTRC)

If no LDTRC action is taking place, J:TDP = J:DPUL+T

If the requested processor is a debugger or a core library and does not have
special JIT access in P:SA, the user is set running in J:IRNST, Otherwise
processor running is set unless it js a command processor in which case all
run flags are reset to indicate command processor running.

If the processor being associated requires DCB's as indicated by PB:DCBSZ,

the pages of them are acquired via the MM routine T:GNVNPI (get n virtual
no physical) and PPSWP and DCB's set in UH:FLG.

50

SECTION EB

PAGE 24
UTS TECHNICAL MANUAL 7/20/71

T:GNVNPI places the no-page map constant NPMC into the requested page
locations of CMAP, indicating to the swapper to place the initial DCB pages
there during swap in. Also in the above logic, the total size of the user area
is submitted to the MM routine T:GAJP, to get an additional JIT if the user's
total swap size exceeds the command list in the JIT.

Initial data, indicated by PB:DSZ being non-zero, is obtained in a similar
~manner to the DCB pages: INIT and PPSWP are set in UH:FLG, the number
of pages from PB:DSZ and the first page from J:DLL (or J:EUP if a special
_ processor) are presented to T:GNVNPI, If the pages are not obtained, as with
the DCB pages, control is passed to OUTOFPGS to abort the user.

Depending on the processor being associated, the following action is taken:

a) If a command processor, the processor number is stored in UB:ACP,
ISTELT in SSS is used to increment and set the command processor.

b) If a special processor, its number is set into UB:ASP,

c) If DELTA, DIC and DELA are set into UH:FLG; the processor number
set into UB:DB. '

d) If a normal processor, its number is set into UB:APR, and its link if
overlaid from PB:LNK set into UB:APO. If restoring a processor for
LDTRC bytel of J:CFLGS contains the overlay link and it is set
into UB:APO.,

In cases b-e, the SSS routine IPROCS is used to count up the processors,

then common logic continues at ASP12 which resets RTR in UH:FLG and reports
an associate processor event via T:REG as a request to the swapper to associate
all the newly incremented processor. Upon return from the REG, the user's
buffers are linked via BUFCHAIM, registers set up for the logic to merge

DCB Information, and the DCB's linked to the JIT at J:DCBLINK if its previous

value was zero.

If the processor being associated is GHOST1, R2-3 are loaded with a master/
mapped PSD - only the MAP bit set. Otherwise both SLAVE and MAP are set.

The registers are now set up as follows for the merge DCB information logic.

R2-3 Master/Slave mapped PSD

R4 User number
R8 Starting address
R9 First procedure page

R10 TCB address

Associate Unshared Program Logic: FETCH

The logic to associate a Unshared Program begins at FETCH. If debug commands
were encountered, RUNNER is requested to process them.

51 90 19 86A-1(4/73)

SECTION EB
PAGE 25
UTS TECHNICAL MANUAL 12/6/71

If not, or upon returning from RUNNER, the requested load module is read into memory as
specified in its head and tree records, Any debug or modify tables built by RUNNER are
merged into the program, and control transferred to the link unshared program logic,

part E,

FETCH begins by setting up M:XX to read the requested load module. The STEP error/
abnormal return is set into M:XX and the DCB closed if open. The password, name, and
account are taken from the exit environment and placed into M:XX in the appropriate
locations in the variable parameter list, The DCB is set in the input mode and FILE set
into the ASN field, If the user is on=line or LDTRC action taking place, control is

given to FCH4, If CCI performed the exit, however, recognized by BAT and TIC set into
UH:FLG, the following action is taken depending on specifications in the run table.

a) If DEBUG commands were encountered (Byte 1 of run table # 0), associate
RUNNER.,

b) If MODIFY commands were encountered (Byte 2 of run table #0), associate
RUNNER,

c) If the first byte of word X'A' in the run table is non-zero, a TEXTC start
address symbol is specified, associate RUNNER,

d) If any PMD records exist, recognized by bit X'20000' set in J:ASSIGN,
associate RUNNER,

RUNNER is associated by releasing the special area context page via T:RVPI, loading
R13-14 with :SYS, loading R6-8 with "RUNNER" in TEXTC, forming an environment

to look like an interpretive exit, and branching to the Associate Shared Processor Logic.
Upon returning from RUNNER, the run table page (last page of the user's data areaq)

is released, :

Common logic continues at FCH4 which first obtains the first page of the special area is
a buffer into which the HEAD and TREE records of the requested load module are read,
The page, J:EUP+1, is obtained via T:GNVPI, The debugger name specified by the exit
from TEL in RO-1 is saved in words 12-13 of the buffer page, as only 12 words of head
record will be read, then TSTACK is emptied to obtain as much space as possible for the
registers pushed by file management,

The HEAD record is read via a CALI1, 1 first resetting user running in J:RNST and setting
Y4 in J:ASSIGN to avoid buffer limit checks in IORT, On return from the CAL, security
checks on the HEAD and TREE verify the following:

a) The first word of the head is of the proper format,

b) Bias, procedure, and DCBs all start on a page boundary,

c) The proper number of bytes (X'30') was read for the head record
d) The proper number of bytes (X'30') was read for the Tree record
e) The fileis keyed

f) RUNNER is not associated with a LMN built by LINK,

52

SECTION EB
PAGE 26
. UTS TECHNICAL MANUAL 12/6/71

If one of the above tests is failed, control is given to FETCH3 to provide the specified
ABC/ERO to TELLTEL, If the tests pass, the file is assumed to be a valid load module,
and the tree read into the buffer at word 15, avoiding the specified debugger name.
Upon returning from the CAL, the size is again checked in ARS of M:XX to verify the
TREE record is the proper size - 8 words,

With the HEAD and TREE records in the buffer (see Load and Go logic for illustration)
the dc a, procedure, and DCB's are read into their proper locations, this operation con-
sists of specifying the following registers to FETCH1 to read in the requested record:

RO = Pointer to key - LMN name in TREE

R7 = Word from TREE containing size and location

R8 = RO

R10 = Key number (3 = Data, 5 = procedure, 7 = DCB's)

FETCH1 calculates the pages required from the size and starting location in R7, If zero,
control is returned, Otherwise the location specified in R7 is checked. If valid (within
user limits or DCB's), the necessary pages are obtained via T:GNVNPI, A key is formed
by concatenating the load module name in the tree with the specified key number in R10,
and used to read the appropriate record, after setting Y4 in J:ASSIGN to avoid limit
checks. Upon returning from the CAL, control is passed back to the FETCH logic.

This operation is performed for both data and procedure; any remaining DCB pages are
released by T:RVPI, and the same routine called for the load module's DCB's, M:XX
is then closed.

Unless this is a load and link operation, an environment is bumped into TSTACK, to be
removed by the Assemble Unshared Program Logic at XIT10,

If the load module was built by LINK or is not overlaid, recognized by X'C' in the first
word of the tree, no M:SEGLD DCB to be used by the SEGLD routine exists; otherwise
the first 10 words of the variable parameter list from M:XX are set into the corresponding
locations of M:SEGLD,

If RUNNER was not associated, control is given to the Assemble Unshared Program Logic
at XIT10, Otherwise, RUNNER is decremented via DRASP in SSS. The clobber table
location is determined from the last word in the special data area where RUNNER left it,
The clobber table values are set into the procedure, preserving the replaced instruction
in the debug FPT if a debug table, or merely replacing it with the table value if a
modify, Consult the RUNNER documentation for details of debug table formats. Upon
completion of this operation, control is passed to the Assemble Unshared Program Logic at
XIT10.,

53

SECTION EB
PAGE 26-A
UTS TECHNICAL MANUAL 7/13/73

J. DCB Validity Checker: DCBCHK
This subroutine will maintain a minimum standard for all DCBs used in UTS.
When the user's DCBs have been read into core, DCBCHK will be called om;l the
DCBs will be checked to see that they meet the minimum specifications outlined
here. If they do not, the error conditions are set and return is to the caller.
DCBCHK is called by the following instruction:
BAL, 11 DCBCHK

DCBCHK assumes that the DCBs to be checked are in core and that the caller
has supplied a page-sized working buffer. Input registers are as follows:

RO = beginning address of the DCBs

R1 = total size of the DCBs in words

R2 = beginning of the DCB name chain

R4 = address of the working buffer (one page)
R5 = 0 if the DCBs are to be initialized

If the DCBs meet minimum standards, the condition codes are set to 0 and byte 0
of R11 is set to 0. If the DCBs are not acceptable, the error byte is stored in R11,

The DCB buffer is checked for the following:

a) The DCB-name table must lie within the buffer, either at the beginning
or the end.

b) The DCB-name table must not be linked, i.e., only one set of DCB names
~is allowed,

c) The pages of the DCB buffer are checked for type 10 protection.

d) All pages of the DCB buffer must be contiguous.
The DCB addresses are then located and stored into the working buffer; they are
sorted from lowest to highest as they are stored. If the name table is improperly

formed, the error return is taken, If the M:SEGLD DCB is encountered, its ad-
dress will be stored in R3 for return to caller.

90 19 86A-1(4/73) 53-1

SECTION EB
PAGE 26-B
UTS TECHNICAL MANUAL 7/13/73

The individual DCBs are now checked; if any of the following conditions is found,
the error return is taken,

a)

b)

c)

d)

e)
f)

DCB is less than 22 words long. (DCB length is defined as the difference
between the beginning of the DCB and the beginning of the next DCB.)

The DCB crosses a page boundary.
KBUF does not lie within the DCB's variable parameter area (the space
following the required 22 words, and continuing up to the beginning of

the next DCB).

KBUF overlaps the next DCB (i.e., there are not 8 words between KBUF
and the beginning of the next DCB). ’

FLP does not lie between the 22nd word and the beginning of KBUF.

FLP's overlap KBUF.

| When all DCBs have been checked, return is to caller,

Following is a list of DOs and DON'Ts which should be observed in the construc-
tion of DCBs.

po

Do
Do

put the DCB-name table in the DCB record, either as the first
thing or the last,

build DCBs on contiguous pages (virtual).

build DCBs with protection type 10.

DON'T build linked name tables.

DON'T cross a page boundary with a DCB.

DON'T have more than 509 DCBs.

DON'T point KBUF or FLP out of the DCB or into the first 22 words of

DO

the DCB.

make KBUF the last thing in the DCB,

DON'T allow less than 8 words for KBUF.

DON'T. overlap FLP into KBUF or KBUF into the next DCB.

53-2 90 19 86A-1(4/73)

SECTION EB
- PAGE 27
UTS TECHNICAL MANUAL 7/20/71

K. Merge DCB Information Logic: ASP14

The logic to merge DCB information completes the process of making a user
ready to run for both the associate shared and unshared program logic.

At ASP14 the start address from R8 is stored into the PSD in R2-3 unless the
processor is a core library in which case the start address is obtained from
J:START. The PSD is then stored into the PSD of the TSTACK environment unless
LDTRC initiated the request.

The user's access is loaded via the MM routine T:PAC and the following action
taken depending on the processor:

a) If TEL, bypass all merge DCB information logic by transferring control
to ASM167.

b) If CCI, merge assigns without setting TCB and TREE addresses into
the JIT by transferring control to ASP17.

c) If a normal processor, recognized by P:SA, store the TCB address from
R10 into RO of the environment and J:TCB, unless restoring a A
processor for LDTRC.

The tree address - the first page of the procedure - is stored into JITREE,
Consult the register information provided by the Associate Shared Processor
Logic. If not performing a transfer control for LDTRC, R8 of the environment is
zeroed, the register for 1/O errors is passed to the user.

The assign merge begins at ASP17, which runs the DCB table, matching its
entrys with entrys n the assign merge record built by TEL or CCI, and
issues the Adjust DCB CAL on each match. Certain defaults are set into
M:GO, and M:OC and M:UC are avoided entirely.

This operation begins by avoiding the assign merge logic entirely if a processor
is being restored for LDTRC. The close bit is loaded in R? as a flag to the
OPEN logic to perform security checks at each Adjust DCB CAL. Starting with
the J:ADCBTBL, the first byte of each entry is obtained and if zero, the link

is made to the next portion of the DCB table (illustrated in the user
reinitialization logic). Each name in the table is checked, and the following
action taken by name:

a) M:0OC, M:UC: Bypass and get next DCB in the chain.

b) M:GO: Set the following defaults into the DCB:
1) File type ASN
2) Out FUN
3 0 Open bit in 1st word

90 19 86A-1(4/73) 54

SECTION EB

~ PAGE 28
UTS TECHNICAL MANUAL 12/6/71
4) 1 word name First word of name entry
5) "id G" Name entry
(id from the 1st word of the JIT)
6) 0 Account entry

c) All other DCB's: Reset the open bit in the word 0,

When the link to the next portion of the chain is zero, control is transferred to the
second half of the assign merge logic at ASM3,

If J:AMR is zero, no assign merge record exists, and control is passed to the exit

assign merge logic at ASM167, Otherwise, the "Assigns merged” flag is set in the

high order bit of J:ASSIGN, and J:ABUF accessed, which contains the buffer address

of the assign merge record, If zero, a buffer is unlinked from J:FPOOL, and its address
stored into J:ABUF, If M:XX is open, it is closed, then the "Bypass limit check” flag
(Y4 in J:ASSIGN) is set so the buffer limit check routines in IORT will not check the
next CAL. Then the read assign merge record (RAMR) CAL is issued specifying the buffer
address in R7. Upon return from the CAL, common logic continues at ASMO,

The assign merge record is fully documented in the UTS reference manual in the discus-
sion of the Adjust DCB CAL, It contains a series of FPTS built by TEL or CCI in response
to ASSIGN or SET commands, The first name in the record is compared with the DCB
names in the DCB table until a match is found. When matched, the DCB address from
the table is set into the PLIST of the Adjust DCB FPT for that DCB in the assign merge
record, If the DCB matched is M:UC or M:OC in the JIT, however, the search for a
match continues, allowing a user to have an M:UC DCB of his own,

After the DCB location is set into the FPT, the Adjust DCB CAL is issued. Upon return
from the CAL, the search begins again for a match in the DCB table with the next entry
in the assign merge record.

After all assigns have been merged, ASM167 resets the X'4000' flag in UH:FLG termi-
nating STEP 1/O operations, re-links the buffer used for the assign merge record (if
any) back into J:FPOOL, moves sense switch settings from user's JIT to his TCB (if
batch), zeros J:ABUF, then transfers control to T:SSEM with the user completely ready
to run,

55

SECTION EC
PAGE 1
UTS. TECHNICAL MANUAL 6/9/71

ID

Overlays = Monitor, Shared processor, user program
OVERVIEW

Monitor and shared processor overlays are treated exactly as shared processors. There
are two user tables UB:OV and UB:APO which contain the shared processor number of
the associated monitor overlay and/ or the shared processor overlay, respectively.

The process of associating an overlay is simply a matter of establishing the number of the
overlay in the appropriate table, increasing its usage count (PB:UC), resetting the
ready-to-run flag in UH:FLG to force an in=swap, and doing an associate

processor (E:AP) REG. The swap scheduler will set up the swap to include any

overlays and the swapper will bring them in and fill them into the user's map.

User overlays are loaded by calling M:SGLD to open the user's load module file and
read the segment into the place indicated by the tree table as well as its backward

pofh.

56

SECTION EC. 01
PAGE 1
UTS TECHNICAL MANUAL 6/9/71

ID

T:OV - Monitor and Shared Processor Overlays

PURPOSE

T:OV associates all monitor and shared processor overlays.
USAGE

T:PROCOV is called to overlay shared processors. Register 4 contains the overlay
number in the shared processor table, Register 1 contains the entry address.

T:OVER is called to associate a monitor overlay. Register 2 contains the segment
number. Register 0 contains the overlay segment entry point number (all monitor
overlays begin with a transfer vector to the possible entry points).

T:OVERLAY is called like T:OVER. It performs the same function except that it
remembers the contents of register 11 and the current overlay segment number
to allow return to the caller.

T:REMEMBER is BAL'd to on register 14. It saves the current overlay number and
the contents of register 11 in OSTACK in JIT for return from a future segment.

DATA BASES

T:OV uses the user tables and shared processor tables to locate segments and update
user associated shared processor tables.

ERRORS

Software check X'1D' occurs if the specified segment cannot be located.

DESCRIPTION

See flow chart.

57

SECTION EC.01

Page 2
UTS TECHNICAL MANUAL 6/9/71
rigvre EC-1
T:0VER ‘overLAY
Fials ")
I"‘*:“ 5=t Get mon:tor Get “"°“T'*‘”
wodr on
Shared proc. seqment e
Ot/e,v;ga,q< (;\f;‘;t‘&uv*' o.J)»Q 0‘75*“"* “°9°9
so ex't Bal
$rom CEMEMBER

| e MEMBE l l qoes +o T. 0V

N\

Push sexment
B and Rey i
into &sThCK

Pul' remembered
Sequent T omd
set wp Yo

reloacl
retuwi vy

T:6V

58

UTS TECHNICAL MANUAL

T 6V

v
loeate overlay
n shaved
processor ubles
s € x'd T .ot

found

not specfied

Pick op
lv;rcw'\' e A Y

atcess
correctly

!

B!
AT

£ley

L

o V
T shored

proc. wusSegl
Cownts

y
T-REG o
a.s’oc{a‘\“
_Processov

}
]
v

euter overlay

(at)

59

SECTION EC. 01
Page 3
6/9/71

UTS TECHNICAL MANUAL

ID
MSEGLD - User program overlays

PURPOSE

To load a specified overlay segment into core storage.

USAGE
B MSEGLD

(R5)= address of JIT,
(R6)=word 0 of FPT,
(R7)=address of word 1 of FPT,

SECTION EC.02
Page 1
6/9/71

One of two FPT's may be associated with this CAL, a user FPT and a Monitor FPT,

USER FPT

word 0 X'01' 0

0 |
|

word 1 *10 0 Address of segment name

Segment name must be in TEXTC format,

MONITOR FPT (Currently not used)

word 0 | *| X'01' \SN

__
‘ 0—0 ‘ Address

word 1 |* |0 — 0 Address of segment name

The segment name must be in TEXTC format.

SECTION EC.02
PAGE 2
UTS TECHNICAL MANUAL 12/6/71

where
SW = 1 if the exit is to the debug overlay
Address is the location whose first bit is to be set to zero.
EXIT
B TRAP EXIT of M:ENTRY if SW =0,
Overlay debug segment if SW =1,

SUBROUTINES

MEMSET: MEMSET gets all pages between the lower limit specified (either J:DLL or
J:PLL) and the highest page required to contain the highest segment, releasing
all pages between the highest page + 1 and the upper limit (either J:DUL or
J:PUL) in: R2 = number of the highest page of data or procedure required to

contain the highest segment
R3 = pointer to lower and upper limits of memory areq, J:PLL or

J:DLL,
MEMI1: used by MEMSET to perform actual logic to get or free pages specified via T:GNVPI
and T:RVPI,
ERROR CODES
B100 cannot find requested segment
B101 tree record is bad
B102 tree is circular
B103 data will not fit
B104 procedure will not fit
B105 bad bias on segment
B106 cannot obtain page
B107 SAD page encountered in unallocated memory area

B1XX 1/O error reading segment, where XX is the error code

Errors are reported via a branch to T:ABORTM in STEP after loading R14 with

ERO ABC

DESCRIPTION

MSEGLD first checks to see if the seg-load CAL was issued by a shared processor,

If it was, the name is verified in P:NAME and, if found, control goes to T:PROCOV

in T:OV. Ifitis not found, the user is aborted with code X'B1', If a user requested

the seg-load, his DCB is verified. After checking whether or not the SEGLOAD DCB

61

SECTION EC.02
PAGE 3
UTS TECHNICAL MANUAL 12/6/71

is open and, if it is not, opening it, the routine verifies that the opening was normal,
aborting the job (or ABORT1 of BNTRY) if it was not, Then it searches the Tree tables
for segments previously in core, as indicated by the A bit (bit 0 of word 3 of each seg-
ment in the user's TREE) bein g set to 1, The routine resets this bit to 0 but stores the
indication in the B bit (bit 1 of word 3). As a result all segments in the Tree table are
marked as being out of core in bit A, while a record of segments actually in core is kept
in bit B. This prevents having to reload these segments in case they are needed. This
search also checks for a circular tree table, allowing only as many segments to be
marked as there are in the table, If circular, a B101 ABC/RO is returned.

Next, the Tree table is searched for the requested segment. If the segment is found,
and not in core, memory in both data and procedure is allocated via MEMSET for the
segment and its backward path, which is then read into core, If the segment is already
in core, the highest segment in core on the forward path is marked in, and MEMSET
accessed to allocate memory accordingly. If the requested segment is not found, the
job is aborted with a B100 ABC/ERO.

MSEGLD normally exits by branching to TRAPEXIT of BNTRY,

EXAMPLE: Assume segment B calls Segment C as shown below:

B B
_A A
c | C
DATA PROC EDURE

Memory allocation before SEGLD is called is as follows:

Unallocated
~——

A B A B
DLL DUL PLL PUL

Memory allocation after SEGLD is called is:

Unallocated

-~~~
A C A C J
DLL DUL PUL PUL

62

SECTION EC,02

Page 4
UTS TECHNICAL MANUAL 6/9/71
ID
RDSET
PURPOSE

To read in the appropriate segment,

ENTRY

(SR4)= return address,
(SR2)= address of segment under consideration in Tree tables,
(R1)= 3 to read segment into data area (00 protection type).

= 5 to read segment in procedure area (01 protection type).

EXIT
*SR4 or EREXIT (which aborts to ABORT1 of ENTRY) if the segment was not read

in normally,

DESCRIPTION

RDSEG searches the Tree table for the protection type indicated by R1. If the segment
size is zero, RDSEG returns without reading a segment; otherwise, it prepares a PLIST
in TSTACK and calls EPRDWT, ROOTSEG to read in the segment, RDSEG then checks
the debug size of the segment and, if it is zero, returns to the caller, If the

debug size is not zero, RDSEG replaces all the instructions indicated by CLTAB
(Section LB,01, Clobber Table) with the appropriate debug CAL indicated by

CLTAB. In case of an abnormal read=-in or an error, RDSEG branches to EREXIT

which eventually will abort the job at ABORTI of ENTRY with an abort code of

X'B1',

63

SECTION EC,02
Page 5
UTS TECHNICAL MANUAL 6/9/71

Figure EC-2

Open it

RDSEG .

table and mark read request

all seg. out whilg
noting which

were previously
n

ABORT1
of ENTRY

N CN:\
TRAPEXIT
of ENTRY

Mark it in { EPDBGX \>

DEBUGSEG
OB
A N
it have FWD>—p
\Z E
Y !
A l

Find irrin
tree tables,

64

SECTION ED

- PAGE 1
.- UTS TECHNICAL MANUAL 1/10/73

D

Swapper

PURPOSE

The purpose of the Swapper is to insure that a user is in memory in a form ready for
execution. However, the Swap Scheduler rather than the Swapper determines what
is needed to accomplish this. The Swapper and the Swap Scheduler try to keep

memory filled with the users who are most likely to be chosen for execution.

The Swap Scheduler decides who should be Swapped in, whether the user needs any
processors brought in from the Swapping RAD, and how to satisfy the physical page
requirements of the user. The Swap Scheduler then passes this information on as input
to the Swapper. The Swapper does all of the actual work involved. This may be as
extensive as swapping several users out and bringing one user in from the Swapping RAD
or as simple as associating another physical page,. previously unavailable, with a user
already in core.

The section on the Swap Scheduler indicates how the major decisions are made regarding
what work is needed. This section describes what the work is that the Swapper is
requested to do and why it is requested to do it. How this work is accomplished is
detailed in the next two sections on SWAPOUT and SWAPIN, A

OVERVIEW

Some memory management concepts are necessary for an understanding of this section.
For more detail, see section F on Memory Management,

A user's mapping image, contained in JIT and called JB:CMAP, is the byte table con-
taining physical page numbers that are loaded into the mapping registers prior to user
execution.

A user is allocated a RAD granule whenever he is allocated a virtual page. Although
these RAD granules are not necessarily sequential, they are ordered with the pure pro-
cedure always last, i.e., last encountered as the RAD rotates. The command chain or
list (J:CL) and the table containing these granule addresses (JH:DA), used for Swapping
a user, are contained in his JIT. Each four word entry of the command list contains a
seek IOCD pointing to a disc address table entry and a read/write IOCD containing the
physical page byte address.

A user is always swapped in and out in his entirety except when it can be determined by
a bit in a user flag table, that a good copy of his pure procedure is already on the RAD,
in which case it is not swapped out.

65

SECTION ED
PAGE 2
UTS TECHNICAL MANUAL 2/2/71

Following are the situations in which the Swapper is executed.

1

2)

3)

5)

There is space in memory for a user presently on the RAD, The Swapper brings
him into memory and further prepares him for execution. This Swapper prepara-
tion consists of putting his physical page numbers and those of the processors he
shares into his mapping image, contained in JIT, and linking his page numbers
together to construct his physical page chain.

There are one or more users in memory whose space is needed in order to bring in
a user on the RAD who is more likely to be chosen for execution. In this situation,
those users are Swapped out and the user on the RAD, more likely to be chosen for
execution, is brought into the newly available pages and prepared for execution.

The system has associated a shared processor with a user by putting the processor's
number into a user table. The Swapper must put the physical page numbers of
those pages containing the processor into the user's mapping image. This can only
be done if the processor is in memory. If it isn't, the Swapper must first bring it
in from the Swapping RAD. These same actions for processors may also be required
in conjunction with the first two situations mentioned above. Setting the processor
into the user's mapping image, after swapping the processor in when necessary,
must be done whenever a processor is initially associated with a user and also
anytime a user is brought into core.

Some shared processors also require initial DCBs or data or both to be allocated to
a user. Once allocated they become part of the user and are swapped with him,
However, they must be initially brought in from a home area on the swapping RAD
at the same time the shared processor is initially being set up by the Swapper.

A user has been allocated one or more virtual pages and at the same time there were
no physical pages available. If a user requests virtual pages and no physical pages
are available, Memory Management sets up the virtual pages, using for physical
pages a monitor pure procedure page for identification, and allocates RAD granules
for them. However, since Memory Management can't put good physical page
numbers into the user's mapping image, it temporarily gives up control to the
system. The only way that physical pages can now be put into the mapping image
is by the Swapper. When the Swap Scheduler determines that pages are avail-
able, the Swapper sets up the mapping image. Some time later, now that the

user is again ready to run, the system returns control to Memory Management
following the point of give up. Memory Management can continue execution
knowing that the Swapper has replaced the No Page Map Constants (NPMC, the
monitor pure procedure page) with physical pages.

USAGE

The Swap Scheduler transfers control to one of two Swapper entries. Input and output
are contained in core and not in the registers upon entering and exiting from the Swapper.

66

SECTION ED
PAGE 3
UTS. TECHNICAL MANUAL 1/10/73

If users must be swapped out the Swap Scheduler branches to SWAPOUT which in turn
goes to SWAPIN. Otherwise, the entry point is SWAPIN,

INTERACTION

T:S1O is used only by the Swapper and its function is to drive the 1/O for the Swapping
RAD.

Two other routines are used in this module. T:SENSE returns to the Swapper the present
position of the RAD head so that when several sorted command lists are chained together,
the chain can be broken such that the one closest to the present head position can be
initiated first. T:SEXIT is used by both T:SIO and the Swapper to give up control either
to wait for /O completion or to exit.

ERRORS

Two methods of detecting RAD errors are used by the Swapper besides the normal hard-
ware error detection using I/O error status bits.

The first is write checking. If a software switch (DOWTCK) is set, and it normally is,
then the swapper's I/O module, T:SIO, performs the RAD hardware write checking
function after all writes. If errors occur in write checking, T:SIO retires N times a
sequence of write then write check.

The second method is read checking which is also controlled by a software switch
(DORDCK) which is always turned off (reset) because of problems recovering HGPs

that have been read checked. If read checking were performed it would operate as
follows. When a user is Swapped out, unique consecutive identifiers are placed in the
next to the last halfword of each page. The two halfword identifiers for 1) the user's
first page and 2) his first page of pure procedure (needed since pure procedure is not
swapped out every time), are saved in the user's JIT. When the user is swapped in,

a software check is made by the Swapper of the identifiers in the user's pages to see that
they start with the value saved in JIT and are consecutive. The halfword destroyed

by an identifier is saved in the command chain for each page before it is swapped out and is
restored during the read check,

RESTRICTIONS

The Swapper executes master, unmapped.

67

SECTION ED. 01

PAGE |
UTS TECHNICAL MANUAL 9/7/71
D
SWAPOUT
PURPOSE

The purpose of SWAPOUT is to move one or more users from memory to the swapping
RAD to provide core needed by SWAPIN,

INPUT

SB:OSN contains the number of users that are to be swapped out.

SB:OSUL is a byte table containing the user numbers of the users to swap out. The
first byte of this table indicates the number of entries presently in the table and is
called SB:OSN. SB:OSUL and SB:OSN are equated to the same location.

QUTPUT

S:FPPH, S:FPPT and S:FPPC are the Head, Tail and Count of the swapper's free
page pool. They define the chain, linked in MB:PPUT, of the physical pages the
Swap Scheduler is passing to the Swapper to be used for swapping in the user.
SWAPOQOUT adds the page chains of each user being swapped out to the chain the
Swap Scheduler has already created.

S:SCL is a Shell or empty Command List in resident core. It is used to built the JIT
CLs for the users being swapped out and to build the processor CLs for swapping in
processors pure procedure in SWAPIN,

SH:SDA is the area in resident core for the Disc Addresses needed by $:SCL.

#SWAPSDEV indicates to TSIO the number of interrupts it must receive betore
I/O is complete since that many requests were made of TSIO.,

DATA BASES

JHSWPID is the displacement in JIT of the location containing the two half word
identifiers used in software read checking. (Software read checking is explained
in the SWAPPER section under errors.)

S:SWPCNT is used in connection with software read checking. It contains the next
unique identifier and must be updated by SWAPOUT to be one greater than the value
used in the last page to be swapped out.

68

SECTION ED., 01
PAGE 2
UTS TECHNICAL MANUAL 9/7/71

S:BCL is a tablé containing the addresses of the beginning of the command lists for each
user being Swapped out and each processor being Swapped in. It is used for linking the
CLs together after sorting for RAD optimization,

S:ECL is a table containing the addresses of the locations following the CLs where a
Transfer In Channel (TIC) is placed when linking the users' or processors' CLs
together.

S:BDA is a table containing the first Disc Address for each user being swapped out or
processor being swapped in. The table is used to sort and order the CLs for RAD

optimization,

SH:EDA is a table containing the last DA of each user being swapped out or processor
being swapped in.

J:CLP is set to contain a pointer to the word in the user's CL that is destroyed by a
TIC in swapping the user out.

J:CLS contains the word following the user's CL that is destroyed by a TIC during
SWAPQUT.

SB:OSULT is a temporary working table created identical to SB:OSUL by SWAPOUT.

SUBROUTINES

T:PGCHK checks that a physical page chain, linked through MB:PPUT, is valid and
consistent with its head, tail and count. Input is the address of the head in register 7,

If an error is detected, control is transferred to RECOVER with a screech code of
0l1.

T:RECORD creates a record of information in a wrap around recording buffer for use
by ANLZ in case of a crash. Input is an identification code in register 1 as an
indication of what information to collect,.

The following three routines are used when multiple command lists must be ordered
and chained together. The 4 tables S:BCL, S:ECL, S:BDA, and SH:EDA are created
for use by these routines.

OSAC puts an index to the other 3 tables into byte 0 of each entry of S:BDA, It then
sorts this table of beginning disc addresses in ascending order with respect to sector
position. Input is the number of table entries in register 8. Output is the sorted S:BDA
table. Control is transferred directly to CCLO.

69

SECTION ED. 01
PAGE 3
. UTS TECHNICAL MANUAL 9/7/71

CCLO orders the command lists. It determines which command list follows most closely
after another command list by finding which BDA is closest but larger in sector
position to another CL'sEDA, It starts w'th the first BDA, as sorted in OSAC, and
places its index (i.e. backward link) into byte 1 of the BDA entry which most closely
follows in sector position the EDA. of the first, It then places a TIC from the first

CL to the CL it has just determined is second. It continues by finding which CL
follows the second and so on until the last is chained to the first, Control is then
transferred back to the routine which called OSAC,

ULCLC is called after a sense of the RAD. Input is the RADs head's present sector
position in register 10. ULCLC odds a delay (SDLAY) to this position and determines
which BDA most nearly follows this, The corresponding BCL is set in register 6 and
points to the beginning of the chain, The backward link, in byte 1 of S:BDA, points
to the entries which more define the last CL. The ECL address of this last CL is set in
register 5 and the routine exists, ULCLC provides the necessary information and

the calling routine does the actual breaking of the chain.

DESCRIPTION

SWAPQUT sets up the command lists (chains of IOCDs) for all the users being swapped
to one RAD, links these lists together and calls upon module TSIO to perform 1/0O to
this RAD. If there is more than one swapping RAD, this process is repeated for each
swapping RAD until all of the users in the out swap user list (SB:OSUL) have been
swapped out.

At the beginning of SWAPOUT, the out swap user list (SB:OSUL) is copied into

a similar table called the out swap user list temporary (SB:OSULT). The number of
different RADs for these users is recorded in #SWAPSDEV to indicate the number

of times TSIO must receive interrupts before 1/O is complete, As SWAPOUT chooses
the users from SB:OSULT that are on one RAD, it zeros their numbers in this list,
sets up their chains and calls upon TSIO, When the list contains only zero,

it exits,

The following then describes the functions done for each RAD before calling upon TSIO
to perform all 1/O to a RAD. When more than one user is being swapped out,

(to a particular RAD), the command list for each user is built and then the command
lists are ordered and chained together to optimize output. This ordering for
optimization is done between users but not within a user since optimization within

a user is done during dynamic granule allocation.

The following actions are executed for each user that must be swapped out. The
user's physical page chain is added on the swapper's free page pool (chain).

The two unique half word identifiers used in software read checking are set in JIT,
unless pure procedure is not to be swapped out, in which case only the first is set up.

70

SECTION ED. 01
PAGE 4
UTS TECHNICAL MANUAL 9/7/71

The command list contained in the user's JIT or AJIT is filled in with write orders.

At the same time, the next to the last half word of each user page is saved in an
unused part of the command list and the software read check identifier, incremented
once per page, is placed in each page. The word following the user's CL (soon to be
destroyed by a TIC) and the word's location are saved in JIT in J:CLS and J:CLP
respectively so that the word may be restored when the user is swapped back in.

The command lists for AJIT and JIT are built in that order in a resident area of core
with a TIC to the user's CL. Setting up and connecting the CLs for the user and

for his JIT is repeated for each user going to the same RAD in the out swap list,

If there is more than one user, the CLs are now ordered and chained together to
optimize the RAD 1/O, This ordering is accomplished using four tables created as

the command list was set up for each user. The four values entered into the tables

for each user are the first and last DA, used for ordering, and the beginning and ending
locations of the user's command list, used for chaining the users together. After

the lists have been chained together, in the multiple user case, a sense of the RAD

is made and the circular list broken so that the 1/O can be started on that user whose
area on the RAD is coming up next.

Now SWAPOUT calls on TSIO to swap the one or more users out to their RAD, When
TSIO returns, SWAPOUT sets up the users for the next swapping RAD, if more than
one, and drives again to TSIO. When TSIO has completed the 1/O for all swapping
RADs, as indicated by a counter (*SWAPSDEV), SWAPOUT passes control to
SWAPIN,

71

SECTION ED. 01. 01
PAGE 1
UTS TECHNICAL MANUAL 9/7/71

ID

Swapping RAD I/O - T:SIO

PURPOSE

When the swapper has set up a command chain, for which swapping RAD 1/O must be
performed, it calls upon T:SIO. TSIO calls upon the 1/O system (10Q) to do the
actual I/O and interrupt processing. The I/O system returns to TSIO for end action.,

OVERVIEW

TSIO performs error checks on the CL chain, sets up information in registers and calls
upon NEWQ to queue up the request. When the interrupt occurs and processing is
complete, the 1/O system transfers control to the end action routine in TSIO. If an
error occurred, the I/O system entered a record in the error log file, output a message
to the operator's console and passed information about the error to the end action
routine, The end action routine will retry the call N times, and if that fails it will

set a user flag indicating the error and continue. If the 1/O was successful, TSIO
returns to the SWAPPER still on end action. However, if the function performed was

a write, the 1/O system is called upon fo do a check write, If the function was reading
a user, then TSIO performs a software read check before returning to the SWAPPER.

USAGE

T:SIO BAL 11 T:SIO

R6 = Address of beginning of command list.
" RS

R7 = Function code; 2 for read and 1 for write

Address of end of command list.

ERRORS

The screech codes reported by T:SIO are as follows:

0A Read or write orders in command list are not consistently one or the other but
a mixture or in analyzing N read errors order is invalid.

0B Didn't find seek or sense order in command list when one or the other was
expected.

90 19 86A-1(4/73) 71-1

oC

oD

OE

OF-

93

94

95

96

If a hardware error occurs, IOQ types a message, logs the error and returns to TSIO,
After N errors occur, one of three flags is set in a user flag table (UH:FLG2) and

TSIO continues, i.e., returns to the SWAPPER. Prior to execution of the user if one
of these three flags is set, the error is logged and appropriate action taken. If the flag
(bit 13) indicates that a write or write check failed on any page of the user or a read
or read check failed and it wasn't in the user's context area (JIT, DCBs, etc.) then the
message "SYSTEM SWAPPING ERROR" is output to the user and execution continues as
usual, If however the error was in reading or read checking the user's context (bit 14)
or user's JIT (bit 15), then the user is deleted.

SECTION ED. 01,01
PAGE 2
UTS TECHNICAL MANUAL 12/6/71

Physical page number from byte address in IOCD with read or write order is
not between values contained in LOW and HIGH.

Termination of command list doesn't agree with command list ending address
input T:SIO or termination IOCD doesn't have flags of X'1E".

No I/O is needed as indicated by input beginning address of command list
address being equal to input ending address.

The function input parameter is not read or write,
N write errors occurred and the offending command list can't be found.

Discovered invalid order trying to continue write checking the rest of
command list aofter N errors occurred.

N read errors occurred and there is an invalid address pointing to the
offending command list.

N errors occurred trying to read a processor.

INTERACTION

T:SSE Control is returned to the system following an interrupt.

RECOVER Is called as a result of failing consistency checks and unrecoverable
I/O errors.

T:SEXIT Control is returned to the system to wait for I/O completion.

DOWTCK Is a software switch, normally set, requesting write checking.

DORDCK Is a software switch, normally set, requesting read checking.

71-2 | 90 19 86A-1(4/73)

SECTION ED.01.01
PAGE 3
UTS TECHNICAL MANUAL 9/7/71

SUBROUTINES

SET$REG sets the arguments into registers that are required for the call to NEWQ.
Input to SET$REG is the doubleword command list address in register 0 and the DCT
index in register 14,

DESCRIPTION

If software checking is required as indicated by sense switch 4 being set, T:SIO
ripples through the complete chain of command lists checking for errors. Each
command list entry, consisting of 4 words i.e. 2 IOCDs, must have an IOCD with
a seek order followed by an IOCD with a read or write order. In one command list
there must be only reads or writes but not both. Each 4 word entry must have
termination flags of X'4C' in the second IOCD, or be followed by another 4 word
entry with a seek order in the 1st IOCD, or be followed by a transfer in Channel
1I0CD. Each TIC IOCD must be followed by an IOCD containing a seek or a
sense order, The command list must be terminated by an IOCD with a sense order
or with X'4C" flags and this termination point must agree with the address of the
end of the command list specified as input to T:SIO. All physical page numbers
contained in the byte addresses of IOCDs with read or write orders must be within
the range of physical pages, not containing the monitor, used by the system as
defined (the range) by the values contained in locations LOW and HIGH. If any
errors are found, T:SIO transfers to RECOVER with a screech code indicating the
error. '

If there are no errors, the number of retries is initialized and SET$REG is called
to set up the arguments in registers for NEWQ. NEWQ is called upon to queue
up the request When it returns, T:SEXIT is executed,

T:SEXIT pulls a return address from the stack and transfers control to that location.
When the swap scheduler was entered, the address of the caller was pushed into the
stack. The first time T:SEXIT is called, it will return to that caller. When the
/O system has finished processing a swapper interrupt, it transfers control to end
action in TSIO. This end action routine pushes into the stack the return location
of the I/O system. End action transfers to the swapper, the swapper calls TSIO
again and finally T:SEXIT gets executed again, which finally pulls and returns

to the I/O system which returns to the point of interrupt. (See diagram DB-1.)

When the I/O system finishes the I/O and processes the interrupt, it transfers to
T:SIOEA, the end action routine in TSIO, with information about any errors.
T:SIOEA pushes the return address into the stack.

90 19 86A-1(4/73) 71-3

. SECTION ED. 01,01
PAGE 4
UTS TECHNICAL MANUAL 9/7/71

If the 1/O system detected any errors, TSIO retries (by calling NEWQ) N times. If
these retries are all unsuccessful, a user flag is set as indicated in the error section
and TSIO returns to the swapper. If the function was a write check, retry consists
of re-writing and then retrying the write check, If software read checking fails,
retry consists of rereading.

All successful writes are write checked if DOWTCK is set. No matter how many Cls
are in chain, it is executed at one time if the function is read or write. Write checking
requires the chain to be partitioned and 1/O initiated separately for each part. The
AJIT and JIT are write checked first, When this is completed, the JIT can be altered
by setting write check orders in the user's CL. If there is another user's JIT CL follow-
ing, it can be done at the same time. So the routine ripples through the chain,
changing write orders to write checks, until it finds a TIC from a JIT CL to a user

CL, at which point it resets the chaining flag and sets the interrupt flag. After this
I/O is completed, it continues where it left off until it finds the next user CL, and so
on, until everything written has been checked. An unsuccessful write check results

in only that section just checked, being rewritten and the rechecked.

When the function was reading a user (not processors, JIT or initial data and DCBs),

a software read check is performed if DORDCK is set. Comparison is made to insure
that halfword identifiers in the user’s page start with the value saved in JIT and are

consecutive. The halfword destroyed by an identifier is saved in the command chain
for each page before it is swapped out and restored during this read check.

When all requested 1/O has been completed, TSIO returns to the swapper.

71-4 90 19 86A-1(4/73)

SECTION ED. 01. 01

PAGE 5
UTS TECHNICAL MANUAL 9/7/71
(PUSH 11 Branch to) Diagram DB-1: Relationship of SWAPPER, TSIO
SWAPPER and IOQ. Illustration shows
, swapping out 1 user with one error,
' set up and swapping in a user (JIT in core)
out swap without error,
», TSIO
set up for IOQ
1I0Q
start I/O

l Pull return (routine T:SEXIT in TSIO)

(return to caller of swap)
INTERRUPT (1

end action | — - == = -
process interrupt

push return
Y suppose error:

4 set up for IOQ (retry)

lpyull return (return to
interrupted at @)

INTERRUPT (2)

end action [process interrupt

push return
suppose 1/0 ok:
return to swapper

set up in swap

set up for IOQ

o start I/O

pull return (return to
¥ interrupt at @) INTERRUPT @

process interrupt

end action

l push return suppose
J I/O OK

lfinish swap, pull return @
)

(return to interrupt and at

90 19 86A-1(4/73) 71-5

SECTION ED. 01.01
PAGE 6
UTS TECHNICAL MANUAL 7/16/73

ID

Swapping Disk Pack 1/O - DPSIO
PURPOSE

When the swapper has set up a command chain, for which swapping Disk Pack 1/O must
be performed, it calls upon DPSIO. DPSIO calls upon the 1/O system (I0Q) to do
the actual 1/O and interrupt processing. The 1/O system returns to DPSIO for end
action,

OVERVIEW

DPSIO performs error checks on the CL chain, converts the CL for use on a Disk Pack,
sets up information in registers and calls upon NEWQ to queue up the request. When
the interrupt occurs and processing is complete, the 1/O system transfers control to
the end action routine in DPSIO. IOSERCK is called to check for and log errors,
MSGOWUT is called to type error messages on the OC. If an error has occurred DPSIO
will retry the call N times, and if that fails it will set a user flag indicating the error
and continue, If the I/O was successful, DPSIO returns to the SWAPPER still on end
action. However, if the function performed was a write, the 1/O system is called
upon to do a check write.

USAGE
DPSIO BAL, 11 T:SIO

R6 = Address of beginning of command list,.

R7 = Function code; 2 for reading processors and JITs and 1 for write,
4 for reading user data,

ERRORS

The screech codes reported by DPSIO are as follows:

OA Read or write orders in command list are not consistently one or the other
but a mixture or in analyzing N read errors order is invalid.

0B Didn't find seek or sense order in command list when one or the other was
expected.

71-6 90 19 86A-1(4/73)

SECTION ED.01.0°
PAGE 7
UTS TECHNICAL MANUAL - 7/16/73

oC Physical page number from byte address in IOCD with read or write order is
not between values contained in LOW and HIGH.

oD Termination of command list doesn't agree with command list ending address
input T:SIO or termination IOCD doesn't have flags of X'1E'.

OE No I/O is needed as indicated by input beginning address of command list
address being equal to input ending address.

OF The function input parameter is not read or write,
93 N write errors occurred and the offending command list can't be found.
94 Discovered invalid order trying to continue write checking the rest of com-

mand list after N errors occurred.

95 N read errors occurred and there is an invalid address pointing to the offend-
ing command list.

96 N errors occurred tfrying to read a processor.

If a hardware error occurs, DPSIO types a message, and logs the error., After N errors
occur, one of three flags is set in a user flag table (UH:FLG2) and DPSIO continues,
i.e., returns to the SWAPPER. Prior to execution of the user if one of these flags is

set, the error is logged and appropriate action taken. If the flag indicates that a write
or write check failed on any page of the user or a read failed and it wasn't in the user's
context area (JIT, DCBs, etc.) then the message "SYSTEM SWAPPING ERROR" is output
to the user and execution continues as usual. If however the error was in reading or

read checking the user's context, then the user is deleted.

INTERACTION

T:SSE Control is returned to the system following an interrupt.

RECOVER Is called as a result of failing consistency checks and unrec.overable
I/0O errors.)

T:SEXIT Control is returned to the system to wait for I/O completion.

DOWTCK Is a software switch, normally set, requesting write checking.

90 19 86A-1(4/73) 71-7

SECTION ED. 01. 01
PAGE 8
UTS TECHNICAL MANUAL 7/16/73

SUBROUTINES

SET$REG sets the arguments into registers that are required for the call to NEWQ.
Input to SET$REG is the doubleword command list address in register 0 and the DCT
index in register 14,

SSN - Set Sense Orders.

SSN replaces all SEEK within the limits contained in R2 and R3 (R2 = lower limit,

R3 = upper limit) with SENSE orders. The second word of each SENSW CPW inserted
by SSN is set to have a byte count of 0 and the skip flag on. These CDW's when
executed are effectively NOP's,

SET$SCL - Insert SEEK order (in S:SCC) and disc address.

Inputs to SET$SCL are in RO and R1. R1 contains an index into XTBL and RO contains
a disc address. SET$SCL gets a beginning and ending CL address from S:BCL and
S:ECL and inserts a halt TIC in the latter and SEEK order in the former. The DA in
RO is placed in the two half words pointed to by the byte address in the aforementioned
SEEK order. The byte count of the SEEK order is set to 4.

SET$JCL - Insert SEEK order (in S:JCL) and disc address,

Input to SET$JCL is a DA in RO, SET$JCL inserts a SEEK order in the first CDW of
S:JCL and puts the DARO) in SH:JAJDA, S:JCL is the address of the command list
used for swapping in JIT's/AJIT's,

SET$CL - Insert SEEK order and disc address.

Inputs to SET$CL is a DA in RO and the address of the first word of a CL. SET$CL puts
a SEEK CDW at the address specified in R4 and inserts the DA(RO) in the two half
words pointed to by the SEEK order,

OU - Outswap User,

When DPSIO is entered with R7 = 1 a call on OU is made. OU first determines how
much of S:SCL (commands for swapping out JIT's and AJIT's for each user are located
in $:SCL) has been used for this swap. All seek commands in the list are then changed
to SENSE (See SSN) with the byte count set to 0 (this has the effect of NOP when

the CDW is executed). Next, items in SB:OSUL are reversed in order and placed
in SB:OSULT so that entries in SB:OSULT will be parallel to entries in S:BCL and
S:ECL. If SB:OSN>1, REORDR is called to form tables #TBL and XTBL (see Tables 1
and 2).

71-8 90 19 86A-1(4/73)

SECTION ED.01.01
: PAGE 9
UTS TECHNICAL MANUAL 7/16/73

OUI is the starting point for preparing individual user command lists for execution.
User numbers are selected from # TBL in order of decreasing magnitude and a call is
made to NEWQ for first writing then write-checking each user. When a number is
selected from #TBL the corresponding command list in the user's JIT (or AJIT) is
modified so that all SEEK's are replaced by SENSE commands with byte count of 0
(results in NOP). Then a SEEK command is inserted in the first CDW for this user
in S:SCL. The disc address pointed to by the above SEEK is computed as follows:
cylinder number comes from entry in UB:C# (set at initialization); track number = 0;
sector number = 0 if AJIT present, 2 if no AJIT. A command (M:HLT1C) which
results in a halt is placed at the end of the users command list. Thus each user is
written to the disc pack by the execution of one SEEK command, and N (N = number
of pages for the user) write orders.

Write checking is accomplished by first write~checking JIT and AJIT then placing a
SEEK command (same as above except that sector number = 4) in the first CDW in
JIT (AJIT). Therefore each user outswapped requires 3 calls on NEWQ; write user;
write-check user's JIT/AJIT; write check user. At the completion of the write
checking sequence and if the number of users left to swap out is >0, OUI is called
to prepare the next user for swapping.

IP - Inswap Processor.

If DPSIO is entered with R7 = 2 and S:SCL<R6<SLC$END, and PB:HPP>O0 for one of
the procs in SB:PNL then IP is called to swap in one or more processors. The largest
value in S:ECL is found and is used as the upper limit for calling SSN (S:SCL is the
lower limit). If SB:NP>1 REORDR is called. Then all the processor CL's are chained
together, ordered by increasing magnitude of Processor number. If the JIT for

user in S:ISUN is in core a halt is placed at the end of the CL for the last processor in
the chain. If the inswap user's JIT is out of core then a TIC to S:JCL is placed at the
end of the processor CL and 1J is called to setup S:JCL.

1J - Inswap JIT.

1J is called if DPSIO is entered with R6 = S:JCL. If the JIT for the inswap user has
never been in core then the location of the skeleton JIT is used in a call to SET$JCL.
If the user has been in core then the user disc address is used for the call to SET$JCL.

(See SET$JCL.)

90 19 86A-1(4/73) 71-9

SECTION ED. 01.01
PAGE 19
UTS TECHNICAL MANUAL 7/16/73

1U - Inswap User
There are two sets of conditions that will result in a call on IU when DPSIO is entered.
They are:

1. R7=4
2. a. R7=2
b. S:SCL<R6<SCL$END.

€. nho processors to swap in.

The second case implies that only initial data and/or DCB's are to be inswapped. If

R7 = 4 there is read checking to be done and therefore some user data is to be swapped
in. There may also be initial data and/or DCB's to be swapped in the first case. If
there is no initial/DCB data then IU does nothing. Otherwise IU calls SSN

(R2 = (TSC3) +2 and R3 = SCL$END), computes the disc address of the initial/DCB data,
and then calls SET$SCL. The swapper has already placed a TIC at the end of the
user CL (if any) to the start of the initial/DCB CL.

REORDR - Reorder user or processor number tables,
Input to reorder is the address of table SB:OSULT or SB:PNL. REORDR uses the entries
in the argument table to form tables #TBL and XTBL,

ACATDA - Determines disk address of ALLYCAT's JIT or data.

Input is a condition code setting resulting from a test of table UB:C¥ and, in RO, the
normal sector address of AJITS, JITS, or data (0, 2, or 4). If the condition code is
nonzero, ACATDA exits, Otherwise, ALLYCAT's bias of four sectors is added to RO
and physical disk address is computed.

If there are no errors in the construction of the command Iisft, the appropriate CL
conversion routine is called, the number of retries is initialized and SET$REG is
called to set up the arguments in registers for NEWQ. NEWQ is called upon to
queue up the request. When it returns, T:SEXIT is executed,

fFor a description of how the command list is checked, see Section DB (TSIO).

o 71-10 90 19 86A-1(4/73)

SECTION ED. 01. 01
PAGE 11
UTS TECHNICAL MANUAL 7/16/73

T:SEXIT pulls a return address from the stack and transfers control to that location,
When the swap scheduler was entered, the address of the caller was pushed into the
stack. The first time T:SEXIT is called, it will return to that caller. When the 1/O
system has finished processing a swapper interrupt, it transfers control to end action
in DPSIO, This end action routine pushes into the stack the return location of the
I/O system, End action transfers to the swapper, the swapper calls DPSIO again and
finally T:SEXIT gets executed again, which finally pulls and returns to the 1/O system
which returns to the point of interrupt. (See diagram DB-1.)

When the I/O system finishes the 1/O and processes the interrupt, it transfers to
T:SIOEA, the end action routine in DPSIO with information about the errors, T:SIOEA
pushes the return address into the stack.,

If the I/O system detected any errors, DPSIO retries (by calling NEWQ) N times.
If these retries are all unsuccessful, a user flag is set as indicated in the error section
and DPSIO returns to the swapper. If the function was a write check, retry consists
of re-writing and then retrying the write check.

All successful writes are write checked if DOWTCK is set. The AJIT and JIT are
write checked first. When this is completed, the JIT can be altered by setting write
check orders and a SEEK order in the user's CL. The routine changes write orders
to write checks, until it finds a TIC from a JIT CL to a user CL, or to a HALT, at
which point it resets the chaining flag and sets the interrupt flag. An unsuccessful
write check results in only that section just checked, being rewritten and then
rechecked.

When all requested I/O has been completed, DPSIO returns to the swapper.

90 19 86A-1(4/73) 71-11

SECTION ED. 01.01

, PAGE 12
UTS TECHNICAL MANUAL 7/16/73
(PUSH 11 Branch to) Diagram DB-1: Relationship of SWAPPER,
DPSIO and IOQ. Illustra=-
SWAPPER tion shows swapping out 1
set user with one error and
out l;\r:vop DPSIO swapping in a user (JIT in

core) without error,

set up for IOQ

I0Q
start I/O-

l Pull return (routine T:SEXIT in DPSIO)
(return to caller of swap)

~_INTERRUPT ()

end action l process interrupt

push return
¥y suppose error:
set up for IOQ (retry)

l pull return (return to

interrupted at@)
INTERRUPT (2)
end action process interrupt

push return
suppose 1/O ok:

¢ refurn to swapper

set up in swap

set up for IOQ

l start 1/0O

pull return (return to interrupt
va @)

_ _INTERRUPT(3)

end action process interrupt

| push return suppose

" 1/0 ok

finish swap, pull return
(return to interrupt at @)

71-12 90 19 86A-1(4/73)

SECTION ED. 01.01
PAGE 13
UTS TECHNICAL MANUAL 7/16/73

TABLES

1. #T1BL

#TBL is a table of user or processor numbers ordered by increasing magnitude.
#1BL is built by REORDR.

2, XIBL

XTBL is a table of indices, built parallel to #TBL. Each index in XTBL is a
byte offset in either SB:PNL (for processor numbers) or SB:OSULT (user
numbers) where the parallel entry in #TBL is located. XTBL is built by
REORDR.

3. S:SCL, S:BCL, S:ECL, S:JCL, SB:PNL, SB:OSUL, SB:OSULT
See Section ED of UTS Technical Manual.

90 19 86A-1(4/73) 71-13

SECTION ED. 02

PAGE |
UTS TECHNICAL MANUAL 9/7/71
D
SWAPIN
PURPOSE

SWAPIN sets 1) the numbers of any physical pages a user needs and 2) the numbers of
the physical pages of any shared processors associated with him into JB:CMAP, (his
mapping image) and adds the page numbers of the physical pages he needs to the
user's physical page chain.

SWAPIN may also be required to bring the user and the shared processors associated
with him into core from the swapping RAD. However this is not always necessary
since the user and his shared processors may already be in core. This point is made
in more details in the swapper section ED under overview.

INPUT

SB:PNL is a list of the processors that must be swapped in for the "in swap user. "
The maximum size of this list is four--a shared processor, one of its overlays (for
our purposes considered a separate processor), a special shared processor such as
TEL or DELTA, and a monitor overlay.

SB:NP is the first byte of word SB:PNL and contains the number of processors that
must be swapped in.

S:PCT is the total page count required to swap in the user and processors,

S:ISUN is the number of the user that SWAPIN is to set up in a form ready for
execution,

OUTPUT

UB:JIT is a resident user table containing the JIT's physical page number set up by
SWAPIN,

S:SIP is a flag which is set by the swap scheduler whenever a Swap is In Progress so
the swapper will not be reentered. When the swap has been completed SWAPIN
resefs it,

72

SECTION ED. 02
PAGE 2
UTS TECHNICAL MANUAL 9/7/71

JAJ is the displacement in JIT of the location set to the physical page number of
AJIT by SWAPIN.

DATA BASE
S:JCL is a resident area used to build the CLs for swapping in AJIT and JIT.
SH:JAJDA is a resident table used for disc addresses tor S:JCL,

SDLAY is a value equated to the sector delay required on the RAD between the granule
for the user's JIT and the first user granule.

S:AJP is a location used to save AJIT's physical page number between setting up to
swap in JIT and AJIT and setting AJIT's physical page number in JIT.

S:JSP is a location used the first time a JIT is brought into save JIT's Sector Position
until the JIT has been swapped in. After a delay has been added to it, the value is
set into JIT so that memory management will know at which position to attempt to
obtain the user's first granule,

UH:JIT is a resident user table containing JIT's disc address.

UH:AJIT is a resident user table containing AJIT's disc address. The first time JIT
is swapped in it must be brought from a home or initial area on the first swapping
RAD. On this occasion UH:TS has been set up to temporarily contain the home disc
address. UH:JIT has been set to zero to indicate that this is the first time and
UH:AJIT contains the granule allocated for JIT. When the 1/O is set up, the
contents of UH:AJIT are moved to UH:JIT and UH:AJIT is zeroed.

SUBROUTINES

SPMAP puts the processor, whose number is specified in register 2, into the user's
mapping image.

Other routines are described in the SWAPOUT section ED. 01 under subroutines.

S:JITERR sets up the physical page head for any processors swapped in. It releases
any unused physical pages back to the monitor free page pool and releases the
user's AJIT page if he has one. The JIT page is left allocated to him until STEP
deletes him, Then this routine goes to the end of the Swapper to exit.

73

SECTION ED. 02
PAGE 3
UTS TECHNICAL MANUAL 9/7/71

DESCRIPTION

SWAPIN releases any extra unneeded pages, obtained as a result of swapping out
users, to the monitor's free page pool. However, this is unnecessary if the swap
scheduler transfers directly to SWAPIN since the scheduler provides the exact
number when it can, i.e., when it doesn't have to swap users out to acquire them,

If processors must be brought in from the swapping RAD, a set of functions are
executed for each processor. The processor's command list is set up in a resident
core area containing a shell or empty command list reserved for building processor
CLs for SWAPIN and JIT CLs for SWAPOUT. As the physical page addresses are
set in the CL, their numbers are entered into the processor's physical page chain.
The head of the processor's page chain is saved and set up after the processor is
actually in core since the system determines whether a processor is out of core by
testing the head for zero. During the building of the command list for each
processor, the beginning and ending addresses of the command list and the first
and last disc addresses are entered into four tables for use later in ordering and
chaining the lists together,

Next, if the user is not in core, as indicated by a flag in a resident user table
(UH:FLG), the command list for the user's JIT and AJIT are built in a resident
area dedicated to that sole purpose. The AJIT, if allocated, is built first,
followed by the JIT command list, since this is their ordering on the RAD.

If there are more processors than one to bring in,their command lists are ordered

and linked together for [/O optimization using the information collected

in the 4 tables as mentioned above. In order to start I/O on the processor

which resides closest to where the RAD head presently is (plus a few sectors delay),
the RAD is sensed and the circular command list appropriately broken. Then if both
at least one processor must be swapped in and the user must be swapped in and is

on the same RAD as the processors, a TIC is placed from the processors' command
lists to the AJIT and the JIT command lists, The commands for AJIT and JIT

are always executed last so that upon 1/O completion the user command list contained
in his JIT may be set up and the I/O started during the delay between reading the
JIT granule and approaching the first user granule. The 1/O is initiated for the
processors first, if both the user and at least one processor must be read and are
contained on different swapping RADs. As soon as TSIO has initiated the

processor /O, it returns control to the swapper who calls it again to initiate the
I/O for the user's JITs. When all 1/O is for one swapping RAD, there is only one
call to TSIO, since all of the lists are linked together. In either case, once all 1/O
has been initiated, TSIO waits until all I/O is completed, as indicated by the
counter, #SWAPSDEV, before it returns to the swapper.

74

SECTION ED. 02
PAGE 4
UTS TECHNICAL MANUAL 9/7/71

If the JIT was not swapped in successfully, as indicated by a flag set by TSIO in
UH:FLG2 or by the id in the Ist word of JIT not comparing with the user's id from
UH:ID, then S:JITERR is called to handle this situation and exit from the swapper.

Whenever the shell command list (where the processor lists were built) was destroyed
by TICs, it is reinitialized for use next time. If the JIT has come in for the first
time, i.e., if it is a clean JIT for a new user, it is initialized and the necessary
user defaults set up.

The heads of the physical page chains are set up for any processors swapped in. The
physical page numbers for JIT and AJIT are set into the user's mapping image and into
the user's physical page address, if any, and the user's physical command list address
are set into JIT. If a TIC destroyed a word of the user's CL when the user was swapped
out, this word was saved in JIT and is now restored to the CL, The physical

addresses in the command list pointing to the disc addresses are initialized to reflect
the physical page now containing JIT.

It is now possible to prepare the user's CL, and to set physical pages in his CMAP
and his physical page chain. LMAP, the user's virtual page chain, provides the
means to ripple backwards through the user's virtual pages in order to set up the
CL, CMAP and the physical page chain. The process is completed either at the
end of the chain or when the Virtual Link Chain Stop (J:VLC3) is reached, an
indication that everything following is correct. If the user is in core, physical
pages are entered into the tables only when there is a No Page Map Constant
(NPMC) in CMAP, indicating that when the virtual page was allocated there was
no physical page available., Now the swapper is supplying it.

If the user is not in core, physical pages are set in all entries of each table. The
presence of a NPMC in CMAP is ignored unless a processor's initial data or DCBs

or both must be associated with the user. In this case, when a NPMC is observed,

a separate command list is built in the shell command list area using the homing

area disc addresses for the initial data and DCBs disc addresses. If the user also

must be brought in (because he was swapped out) then the read commands (not seeks)

in the user's list for the initial and DCB pages will be shipped as a result of SWAPOUT
setting the skip bit in the command list flags when it observed NPMCs,

If both the user is out of core and he requires initial data and DCBs, then there is

a command list in his JIT (or AJIT) with skip bits set and a list in the shell command
list area. If they are for different RADs, a halt is placed at the end of each and
TSIO is called twice to start up each. When both are complete TSIO will return.

If they are on the same RAD, a transfer in channel (TIC) will be placed from the user
list to the shell list. In this case and when there is only one list required, TSIO

is called once and returns when 1/O is complete.

75

SECTION £D.02

PAGE 5
UTS TECHNICAL MANUAL 12/6/71

The pages of the processors associated with the user are set into his CMAP, The just-
swapped=-in and don't-swap flags are posted in UH:FLG2 to guarantee the user a new
quantum and SL:SQUAN mils before outswapping him again. The final swapper function
is to reset the Swap In Progress (S:SIP) flag so that another swap may be started,

76

SECTION EE
PAGE 1
7/7/72

UTS TECHNICAL MANUAL

ID

CLOCK4
PURPOSE

To process clock 3 counter zero interrupts including; update of date and
time cells, report activation for sleeping users whose time has elapsed,
periodic polling of COC lines for dial or hang-up, polling of busy 1/O
for time out, triggering the multi-batch scheduler (MBS) if a job can be
started, triggering the remote batch scheduler if it is present, and com-
putation of performance values. The code that performs these functions is
located in the several appropriate modules (e.g. COC, 10Q). The clock
routine simply adjusts counters and enters the special function code when
the time comes.

USAGE

The clock routine is entered directly upon execution of the XPSD at clock 3
counter zero interrupt location X'5A',

INTERACTIONS

ENTRY - A procedure defined in module ENTRY (Section CA) which pushes
a 19 word environment into the unmapped monitor temp stack. The PSD pushed
is indicated in the argument field of the ENTRY statement.

T:WAKEUP - a routine in module UCAL (Section IA) which decrements a
counter for each user in the "sleep" queue. When the count goes to zero
a wakeup event is reported on the user,

T:COCHC - A subroutine in COC which polls all the COC lines to see if an

active user has hung up his phone or if someone has dialed into an inactive line.

RBSS - A subroutine in the remote batch modules used to test remote batch
lines for dialup or hangup and generally maintain control over remote batch
operation,

SGCQ - A subroutine in the module SACT used to trigger the RBBAT ghost
to cause batch scheduling. The subroutine T:BTSCHED (used by KEYIN and
others) is imbedded in-line in CLOCKP to allow quickest access in this the
most frequent usage. If no partition modification is occuring (PL:LK, 0) the

77

SECTION EE
PAGE 2
7/7/72

UTS TECHNICAL MANUAL

INTERACTIONS (cont'd.)

following calculation is done:
(S:BUAIS - S:BUIS)*S:BFIS

If the result of this calculation is positive then there exists a job in the system
not yet started and the number of batch jobs executing is less than the number
allowed so that if proper resources are available RBBAT should start another
job.

CTRIG - A subroutine in IOQ which results in busy devices being examined
for device time out.

T:SYSTEMLOAD - A subroutine in PM which computes a running average 90%
response point and the Execution Time Multiplication Factor (ETMF).

T:SSEC - an entry point in the execution scheduler (SSS) which results in a
transfer of control back to the point of interrupt after seeing if anything else
needs scheduling.

NEWQ - the non-DCB entry to IOQ. Used to output the time of day on the
operator's console,

SUBROUTINES

DATESTIME - updates the date and time and outputs the time on the operators
console. This routine is invoked every minute,

DESCRIPTION

When the clock routine is entered a check is made to see if 1.2 seconds has
elapsed. If not, the total clock count is incremented and the clock pulse
counter is reinitialized. If the pulse counter went more than 60 mls, (30 tics)
negative, the above test is repeated (this implies 60 mls of disabled code or
the run switch in idle). If the counter was less than 59 mls, negative, exit

is directly back to point of interrupt, clearing the interrupt level by the LPSD.
If 1.2 seconds have elapsed, the clock 4 pulse counter address is saved, the
clock 3 interrupt level is armed and disabled (allowing lower level interrupts
to come in) and an ENTRY procedure is executed to push an environment,

The ENTRY procedure also modifies the clock 4 pulse count address to point to
the overhead time bucket (J:OVHTIM). At every 1.2 second interval T:WAKEUP
is invoked to wake any "sleeping" users whose elapsed time sleep interval has

78

SECTION EE
PAGE 3

7/7/72
UTS TECHNICAL MANUAL

DESCRIPTION (cont'd.)

expired. Also SS2 is tested and, if reset, the COC line polling routine
T:COCHC is called. Every 4.8 seconds the I/O time out clock is in-
cremented and the I/O activity scheduler CTRIG (in IOQ) is entered to
queue a device time out checking cycle. Every minute the date and time
are updated and the time is output on the operator's console. Also,
T:SYSTEMLOAD (in PM) is called to update the ETMF and 90% response
point, The total tics and the clock pulse count are incremented. If an
environment wasn't pushed (fast path above) an LPSD takes control back

to point of interrupt. If one was pushed, the clock 3 counter zero interrupt
is enabled, the address for the clock 4 pulse counter is restored and exit is

to T:SSEC in SSS.

79

SECTION EE. 01

PAGE 1
UTS TECHNICAL MANUAL 1/10/73
D
T:BTSCHED
PURPOSE

To select job for execution and initiate job if runable,

USAGE

Entry: BAL, SR4 T:BTSCHED
Volatile Registers: R1-R4, R12-R15

Exit: B *SR4

DATA BASES

PL:LK Partition lock flag (Section VI, 02)
PL:CHG Partition change flag (Section VI, 02)
S:BUAIS Batch users allowed in system,
S:BUIS Batch users currently in system,
S:BFIS Batch files in system

DESCRIPTION

T:BTSCHED is coded in=line in the module CLOCK4 for most efficient usage. It is used
by GHOSTID, KEYN and STEP at system startup, operator signaled startup and batch job
logoff to determine if another batch job may be started. If more batch users are allowed
than are present (S:BUAIS greater than S:BUIS) and a job exists to start (S:BFIS non zero)
MBS is signaled in the ghost job RBBAT to schedule one or as many as are startable.

80

SECTION FA
PAGE 1
UTS TECHNICAL MANUAL 1/10/73

D
MM = Memory Management

PURPOSE

The purpose of Memory Management (MM) is to handle allocation of virtual and physical
memory and allocation of the swapping RAD, This includes the setting up and loading
of the map (JX:CMAP) and access (J:AC) images and loading them into their respective
registers. ’

OVERVIEW

Besides explaining memory and swapping RAD management and details of the numerous
routines involved, this section also clarifies the relationship between MM and the

swapper. This is an explanation of many separate but related concepts. The first is

about virtual memory. A user always executes in the mapped mode and addresses

virtual memory. The hardware filters virtual addresses through the mapping registers,
replacing the virtual page number portion of each address with a physical page I
number to obtain actual addresses. (In this section core memory pages are referred to

as physical pages.) Virtual page numbers are used by the hardware as indexes to obtain

the physical page numbers contained in the mapping registers. Prior to execution, these
mapping registers are loaded with the user's mapping image, a byte table in JIT, JX:CMAP |
containing physical page numbers indexed by virtual page number.

Virtual memory looks like this:

For users loaded by the LOADER '
0 1FFFF
Special Shared
Monitor | Overlays | Context | Data | Pure Procedure] Dynamic Data | Processors
T | I

For users loaded by LINK

Special Shared
Monitor | Overlays | Context |Data | Dynamic Data I Pure Procedure | Processors
| | | I | k]
The Monitor root is mapped one=to~one so that in the mapped and unmapped modes the
addresses are the same.

Users context consists of JIT, AJIT, DCBs and buffers. Data is everything loaded with
00 protection type and may be altered at execution time. Dynamic data is obtained at
execution time by a Get Page, Get Common Page or Get Virtual Page CAL and, when
allocated, has 00 protection type. Pure procedure is everything loaded with 01
protection type so it may be looked at and executed but not stored into.

The virtual pages not allocated to the user have a free page map constant (FPMC) in

81 90 19 86A-1(4/73)

SECTION FA
PAGE 2
UTS TECHNICAL MANUAL 1/10/73

their CMAP entries and a 11 protection type (no access). FPMC is the physical page
number of a monitor pure procedure page. If the user attempts to address virtual pages
not allocated to him, he traps due to the 11 access code associated with each of these
pages. When virtual pages are allocated to the user and there are no physical pages
available, another monitor pure procedure page called no page map constant (NMPC)
is set into CMAP as a flag for the swapper to put in a physical page.

All physical pages not containing the Monitor and the Monitor JIT are chained in
MB:PPUT (physical page usage table), a byte table containing physical page numbers
indexed by physical page number. There are four types of chains in PPUT and each
chain is defined by a head, tail, and count, M:FPPH, M:FPPT, and M:FPPC define
the Monitor's free page pool chain which consists of all free physical pages, i.e.,
pages not presently in use. S:FPPH, S:FPPT and S:FPPC define the chain containing the
| pages the swapper will allocate to a user about to be swapped in. PX:HPP, PX:TPP
define the chains for the processors which are in core. A nonzero value for PX:HPP
indicates that the processor is in core. PB:PSZ indicates the number of pages required
I for the processor pure procedure whether the processor is in core or not. JX:PPH,
JX:PPT, and JB:PPC in JIT define the chain of physical pages allocated to a user

in core,

Swapping storage is ordered on the RAD, with respect to sector position, in the same
way that LINK orders virtual memory. That is, context first, data second, dynamic
data next, and pure procedure last. The pure procedure is always last to avoid swapping
it out, if possible. The user's swapping RAD granules are not necessarily contiguous

or on the same track, or band, but they are ordered sector-wise with increasing virtual
pages occupying increasing sector positions around the RAD, Swapping sforage is al-
located in groups of four contiguous granules, and the sector address of the first granule
of a group is added to the disk address table, JH:DA,

A command list, J:CL, is maintained in the JIT for use in swapping the user's pages. If
the user's size requires a larger command list than can be contained in the JIT, an ad-
ditional JIT page, known as AJIT, is obtained and the command list is moved into it.
Each allocated virtual page has an IOCD entry in the command list, ordered in the

same way as the swapping storage on the RAD. Since swapping storage is allocated in
groups of four granules, the command list contains one seek command for every four page
I/O commands,

To maintain the ordered relationship between the user's command list, disk address table,
and virtual pages, a chained list of allocated virtual pages is maintained in the byte
table, JB:LMAP, containing and indexed by virtual page numbers. The chain is back-
wards, with the head, JB:VLH, corresponding to the last of the user's pages on the RAD
and the last command list entry. The tail of the chain, JB:VLT, corresponds to the first
user page, excluding JIT and AJIT and the first command list entry.

90 19 86A-1(4/73) 82

SECTION FA
PAGE 3
UTS TECHNICAL MANUAL 1/10/73

Command list entries are not made for the JIT or AJIT pages. Instead, a small command
list is built in resident Monitor tables at the time of the swap.

As each virtual page is allocated, it must be inserted into the JB:LMAP chain and the
command list in the proper order. It must also be given a granule of swapping storage
at the correct sector position on the swapping RAD. The proper position in JB:LMAP
and in the command list is found by simultaneously searching through both of the tables.
When the proper position is'found, the page address is linked into the LMAP chain.
During the search, each entry in the command list is moved down one slot by moving
the physical page address. When the proper position is found, the virtual page

address is linked intfo LMAP and the physical page address of the new page is inserted
into the command list entry,

Seek commands in the command list are not altered as commands are moved down, and
each page in the command list, beginning at the one just inserted, is now being swapped
onto the granule previously occupied by the command that follows it. The last entry
in the command list has now been moved down and does not have a swapping granule
assigned to it. There are two ways a granule may be obtained for this entry. If any
granules remain from a previously allocated group of four, one of these is used and the
number of remaining granules, JB:NGG, is decremented by one. If there are no
granules remaining, a group of four is allocated. The disk address of the first of these
is added to the end of the disk address table, JH:DA, and a seek command is added to
the command list preceding the last page #10CD. The number of remaining granules
is set to three, To insure that swapping storage is allocated in the correct order on the
RAD, a pointer is maintained containing the next sector position at which to allocate
a granule. If a granule is not available at this position on any track, the allocation
routines continue searching around the RAD until one is found.

82-1 90 19 86A-1(4/73)

- SECTION FA
PAGE 3
UTS TECHNICAL MANUAL 1/10/73

DATA BASES

MX:PPUT contains a byte for each physical page in the machine. Through it are
linked all the chains of physical pages in the system as follows:

M:FPPH, M:FPPT, and M:FPPC are the head, tail, and count of the Monitor's
free page pool. |

S:FPPH, S:FPPT, S:FPPC are the head, tail, and count of the swapper's free
page pool which is the chain used to- keep pages obtained by the Swap
Scheduler or Swap-Out until they are allocated to the user being swapped in.

JX:PPH, JX:PPT, and JB:PPC, in the user's JIT, are the head, tail, and count
of the user's physical page chain for users who are in core,

PX:HPP and PX:TPP are tables which contain the heads and tails of physical
page chains for each shared processor. They are indexed by processor number,
If PX:HPP is non-zero, the processor is in memory.

Monitor pages, the physical unmapped JIT and Exec Delta pages do not appear
in any chain,

JX:CMAP is a byte table (indexed by virtual page number) which contains the physical
page number allocated to each virtual page. This image is loaded into the mapping
registers when a user is in execution, Virtual pages which do not have a physical page
allocated have a Monitor pure procedure page number, referred to as FPMC (currently 20,
but any similar page will do), in that byte or halfword of CMAP, Access is not per-
mitted to this Monitor page and the page is write locked. Virtual pages allocated to

the user (a granule of swap storage is obtained) which do not yet have a corresponding
physical page are mapped into another Monitor pure procedure page, referred to as
NPMP (currently page 22). This occurs when the user requests a page and none is avail-
able; the virtual page is allocated, the tables are set up, and memory manage reports an
event which causes the allocation to be made by the swapper directly if physical pages
are available or through a swap if not. When control returns after the swap, the
physical pages will have been assigned by the swapper.

83 _ 90 19 86A-1(4/73)

SECTION FA
PAGE 4
UTS TECHNICAL MANUAL 1/10/73

J:JAC contains two bits for each virtual page and is the image loaded into the access
registers when a user is in execution,

JB:LMAP has a byte for each virtual page through which the chain of virtual pages
allocated to the user is linked. Pages in this chain are linked from high page number
to low and divided into three segments: 1) pure procedure, 2) data, and 3) context,
DCBs and buffers, A flag of '1' is set into LMAP to indicate pages acquired via the
change virtual map CAL (T:SAD).

J:CL is the command list for controlling the user's swap. It consists of a write IOCD
for each page allocated to the user, and a seek IOCD for every four pages. It is con-
tained in JIT until so many pages are allocated that it won't fit (currently 16). At
that time the virtual page above JIT, J:AJIT (for additional JIT) is assigned to J:CL.
JIT and AJIT are not swapped via this command list, but rather using command pairs
in resident Monitor core,

JH:DA is the table of disk addresses for the seek IOCDs in the command list.

Note that the ordering of the users on the RAD is AJIT (if any), JIT, context, data,
dynamic data, and, finally, procedure. The command list is also necessary in this
order, excluding AJIT and JIT. The virtual page chain in LMAP is in the reverse
order. This ordering on RAD is designed to minimize swap transfer time. Each of the
elements is obtained in ascending sector order. If pure procedure has not changed,
it is not necessary to write it as the user is swapped out, and the swap is cut short,
When a new group of four granules is allocated, the DA obtained is put at the end
of JH:DA. The virtual page chain is searched, the physical page addresses are
moved down one entry each until the proper sort order position for the new virtual
page is found. Then the new physical page number is inserted in CMAP and the
physical page address is placed in the command list entry made vacant by rippling
down the physical page address.

90 19 86A-1(4/73) 84

SECTION FA

PAGE 5

UTS TECHNICAL MANUAL 1/10/73
Table KG~1: Memory Management Tables
Job (User) Associated Tables
JB:PPH head
JB:PPT tail of physical pages associated with the user
JB:PPC count
JB:CMAP map image
J:JAC access control image
JB:LMAP link table through which the virtual pages of the user are chained
J:CL the I/O command list which controls swaps of all but JIT and AJIT
J:DA list of disk addresses for each page associated with the user
Resident Tables
MB:PPUT link table through which all physical pages are chained
M:FPPM head
M:FPPT tail of free physical pages
M:FPPC count
g?ﬁ: r::;d } of physical pages assoicated with each shared processor
>B:F PPH he.a d of free pages accumulated between out and in
SB:FPPT tail hases of the
SB:FPPC count phases swap

85

SECTION FA.01.01

PAGE 1
UTS TECHNICAL MANUAL 3/23/71
D
User CAL Service Koutines
T:GP or T:GDP Get Page or Get Dynamic Page
T:GCP Get Common Page
T:GVP Get Virtual Page
T:FP or T:FDP Free Page or Free Dynamic Page
T:FCP Free Common Page
T:FVP Free Virtual Page
T:GL Get Common Limits
T:SMP Set Memory Protection
T:SAD Search and Display
PURPOSE
T:GP To acquire the next N available dynamic pages for a user from the bottom
(lower addresses) of the user's dynamic data area.
T:GCP ~ To acquire the next N available Common pages for a user from the upper
area (higher addresses) of his dynamic data area.
T:GVP To acquire a specific virtual page.
T:FP To free the last N dynamic pages allocated.
T:FCP To free the last N Common pages allocated.
T:FVP To free a specific virtual page.
T:GL To get the limits of Common storage already allocated to the user; i.e.
address of first (low) word and address of last (high) word allocated in
. Common,)
T:SMP To set memory protection; i. e. access, on the pages specified to the
value (access code) specified.
T:SAD * To set the page number of a specified physical page into the mapping

image entry of a specified virtual page so that the physical page may
be looked at or stored into as determined by the privilege level of the user.

SECTION FA.01.01

‘ PAGE 2
UTS ' TECHNICAL MANUAL 3/23/71
USAGE
CAL1, 8 FPT
where FPT contains in word | word 2
T:GP *X'08', N -—
T:GCP *X'0C', N —
T:GVvP - *X'04', A —
T:FP *X'09', N —
T:FCP *X'0D', N —
T:FVP *X'05', A —
T:GL X'08',0 —
T:SMP X'0A', A AC, B (8, 24)
T:SAD X'o7', P A
where N = Number of pages to allocate
where A = Address of virtual page to allocate or release or
start setting access on
where P = Physical page address
where B = Last page address
Input at Entry Point Output to Caller
Reg. 6 Reg. 7 Reg. 8 Reg. ?
T:GP N — # alTocated Adr of lowest page allocated
T:GCP N — # allocated Adr of lowest page allocated
T:GVP A — -— —
T:FP N — # allocated Adr of lowest page allocated
T:FCP N — # allocated Adr of lowest page allocated
T:FVP A — - —
T:GL —_ —_ ﬁﬂ; ﬁg&“ﬁ’oﬁgﬂd Adr of lowest page allocated

T:SMP A FPT+l adr —_ —_—
T:SAD P FPT+1 adr —_— —

If unable to accomplish what was requested, CC1 is set.

Reg. 5-11 non-volatile. Rest volatile.

87

SECTION FA.01.01
PAGE 3
UTS. TECHNICAL MANUAL 10/22/71

SUBROUTINES

T:GP, T:GCP, and T:GVP use the general get page routine T:GVPM,

T:FP, T:FCP, and T:FVP use the general release page routine T:FVPM,

T:SMP uses T:5AC, the general set access into image routine.

T:XMMC, used to load the access register,

MAP and UNMAP used to go mapped and unmapped.

T:SETCC is used by all to exit. CCl1 is set up in this routine.

T:SAD uses T:SAC, T:SXAC which loads specified AC registers and T:SXMAP which
loads specified mapping registers.

ERRORS

If a routine is unable to accomplish its request, CC1 is set by the exit routine, T:SETCC.

RESTRICTIONS

These routines execute mapped, master,

DESCRIPTION

T:GP, T:GCP, and T:GVP are the interfaces between the user and the generalized get
page routine, T:GVPI, which does the work, common to both the user (CALs) and the
Monitor get page routines. They set up the input registers, call T:GVPI for each page
required, update the pointers to the next available dynamic or Common page (JB:TDP -
top of dynamic pages and JB:BCP - bottom of common pages) and set up the output
registers in the stack to return to the user.

T:FP, T:FCP, and T:FVP are the interfaces to the general free page routine T:FVPI, They
set up the input registers, call T:FVPI for each page to release, update appropriately
the next available page pointers and set up the output registers.

T:GL gets the page number in JB:BCP, adds one to it, and makes it into a word address
(by shifting left nine bits) and uses this value as the address of the lowest word allocated.
It converts the contents of J:DDUL (dynamic data lower limit) to a word address and adds
X'1FF' to it to obtain the address of the highest word allocated. If no common pages have
been allocated yet (lowest word allocated = 1 = highest word allocated) the "address of
highest word allocated" is used for both values.

T:SMP checks for pages acquired via the T:SAD operation; if so, the error return is taken,
Otherwise, T:SMP sets up the input registers and calls on T:SAC, the general set access
code routine, for each allocated page for which access must be set. It then calls on
T:XMMC to load the access registers with that part of the image (J:AC) which was changed.

T:SAD first insures that the user has sufficient privilege (X'80') and that the virtual page
to be used is not yet allocated. It then sets the physical page number into JB:CMAP
(user's mapping image) and instead of linking the virtual page into LMAP, a flag of "1"

88

SECTION FA. 01,01
PAGE 4
UTS. TECHNICAL MANUAL 3/23/71

is set into JB:LMAP (a byte table containing a chain of the user's virtual pages). It sets
the access to 00 for privilege X'BO' and higher and to 10 for privilege X'80' to X'B0'.
It finally loads the map and access registers where affected.

89

SECTION FA,01.02
PAGE 1
UTS TECHNICAL MANUAL 3/23/71

ID
Routines to Set the Users Access Image

T:SNAC Set N Access

T:IACU Interrogate Access Code in User Image
T:ZPUP Zero Pure Procedure Access Code
T:SAC Set AC

PURPOSE

T:SNAC To set a given Access Code (AC) on N pages starting at a given virtual page.

T:IACU To interrogate user's AC image to determine AC on a given page.

T:ZPUP To set AC to 00 on a given virtual page in pure procedure.

T:SAC Sets the specified AC, access code, into the user's image for the specified
virtual page.

USAGE .
Volatile
Calling Sequence Input Output Registers
BAL, 11 T:SNAC 6 = No. of pages 2,3,12,13,15
7 = Starting virtual page no. ——
4 = AC to set
BAL, 11 T:IACU 7 = No. of virtual page to CC3 and CC4= None
look at AC on given page
BAL, 11 T:ZPUP 7 = No. of virtual page None
whose AC is to be
set =00
BAL, 11 T:SAC 4 =AC 2-4,12,13,15
‘ 7 = vp#
13 = =1 if called by T:SMP,
otherwise set to 0.
SUBROUTINES

T:SAC, the routine that sets AC into the user's access image, is used by T:SNAC

ERRORS

If T:ZPUP is requested to zero access on a page which is not pure procedure, the action
is not performed and the access code for that page is set into CC3 and CC4,

90

SECTION FA.01.02
PAGE 2
UTS TECHNICAL MANUAL 3/23/71

If T:SNAC is requested to set access on a page greater than X'FF', control is transferred
to RECOVER with a X'21' screech code.

DESCRIPTION

T:SNAC is a driver consisting of a loop which calls upon T:SAC to set access on one
virtual page. The loop first insures that the virtual page number is less than X'100'
otherwise, transfer is made to RECOVER with a X'21" screech code. The loop then BALs
to T:SAC. Upon return, one is added to the virtual page number and if the number of
pages specified on input has not been completed it transfers to the beginning of the loop,
otherwise, it exits.

T:ZPUP sets a flag (in a register), indicating the action to be accomplished is zeroing
AC on a pure procedure page, and drives to an entry in T:IACU which performs this
function.

T:IACU goes immediately to IACU6, the terminating function with an AC of 3 if the
virtual page is less than JOVVP, the virtual page number of the beginning of the monitor
overlay area. Otherwise, it sets the flag register to indicate the requested function is
to interrogate the AC and enters the common code used for both zeroing pure procedure
and interrogating the access code image.

The AC for the given virtual page is obtained from the image. If the function is inter-
rogation, control is transferred to IACU6. If the function is to zero pure procedure it
also transfers there if the AC obtained was not 01; i. e. pure procedure access, Other-
wise, it zeros the AC in a reproduction of the image setup in registers and loads this
affected word from the image into the access registers and then falls into IACU6, the
terminating function. TACUG6 sets the AC to the requested virtual page into the top
byte to the return address and into CC3 and CC4 and exits.

T:SAC divides the virtual page number by four to obtain 1) a displacement of the appro-
priate byte in the image and 2) the position of the double bit to be set within that byte.
The position of the double bit is used as an index to get the appropriate mask containing
ones in that double bit position. The AC to set is used as an index to get a byte contain-
ing the AC in all double bit positions. The byte is pulled from the image. The AC is

set into the byte by a selective store and the updated byte stored back into the image;
e.g. toset 01 AC into VP #10 MOD 16:

Even reg. 01 01 01 01 Appropriate AC in all double bits
Odd reg. 00 00 11 00 Appropriate mask
}} selective store into
xx xx 01 xx byte from image
1 store

xx xx 01 xx word in image

21

SECTION FA.01.02
PAGE 3
UTS TECHNICAL MANUAL 3/23/71

Prior to storing the byte in the image if a register flag indicates this routine was called
by T:SMP, a check is made to insure that the AC to set is not less than the access allowed
on this virtual page. If it is less the store is skipped.

92

SECTION FA .01.03
PAGE 1

UTS TECHNICAL MANUAL 3/23/71

ID

Routine to Load the Hardware Map and Access Registers

T:SXMAP Execute MAP

T:SXAC Execute AC

T:SMMC Set up MMC

T:XMMC Execute MMC

T:PAC Processor Access Control

PURPOSE

T:SXMAP Executes an MMC instruction to load the mapping registers with the user's
image starting with the specified virtual page for a specified number of
pages.

T:SXAC Does for access what T:SXMAP does for the map.

T:SMMC Does the actual setting up of registers for the MMC instruction for T:SXMAP
and T:SXAC which are just drivers.

T:XMMC Sets up the entire user's mapping and access registers prior to user execution.
This includes setting the access for a special shared processor when associated.

T:PAC Loads the AC registers with the access for a special shared processor.

USAGE Volatile
Calling Sequence Input Output Registers
BAL, 11 T:SXMAP 12 = image adr 3 = index to executing 3,4,12-15

14 = no. of pages MAP MMC inst.
15 = starting VP no. 4 = shift code of -2
for T:SMMC
BAL, 11 T:SXAC same as T:SXMAP 3 = index to execute 3,4,12-15
AC MMC inst.
4 = shift code of -4
for T:SMMC routine
BAL, 13 T:SMMC same as T:SXMAP and —_ 3,4,12-15
T:SXAC plus their out=-
put in reg. 3 and 4.,
BAL, 11 T:XMMC 4 = user number _— 0,2-4,12-15
BAL, 11 T:PAC _— —_ 0-4, 14, 15

93

SECTION FA.01.03
PAGE 2
UTS TECHNICAL MANUAL 3/23/71

SUBROUTINES

T:SXMAP and T:SXAC use T:SMMC
T:XMMC uses T:SXMAP and T:SXAC

DESCRIPTION

T:SXMAP and T:SXAC set up an index to be used to execute the appropriate MMC
instruction; i.e. MAP or AC, They set up a shift code used by T:SMMC and then
they BAL to T:SMMC which sets up the registers required by the MMC instruction.
After returning, the MMC is executed and they exit,

T:SMMC sets up the registers required for the MMC instruction. Given A, the image
address, N, the number of pages, P, the starting virtual page number, and X, the number
of pages represented in an image word; i.e. 4 for MAP and 16 for AC, then the routine
sets the registers to look like this:

even reg. bits O i) 15 AT /% 31
odd reg. bits O 7 8 14 15 22 23 31
((N=1+P/X)-(P/X)+1 0 (P/X)*X 0

T:XMMC sets up input and calls on T:SXMAP and then does the same for T:SXAC. Then
if the user has a special shared processor associated, determined by the special JIT access
flag being set in the user's flag table, it loads a canned access word which makes JIT
access 00.

T:PAC sets access into the user's image and loads the access registers for the appropriate
processor of the current user. The appropriate processor is TEL if the TEL-in-control
flag is set in the user's flag table. Or it is the associated debugger (contents of UB:ASP
if the Debugger-in-Control flag is set, otherwise, it is the associated special shared
processor (contents of UB:ASP), If nothing is set then default access is set up by using
processor number 0, Once the number of the processor is ascertained, its two words of
access are obtained from P:AC and set into the user's image, J:JAC and then that part
of the image loaded into the access registers.

94

UTS TECHNICAL MANUAL

SECTION FA 01.04
PAGE 1

1D

Get and Release N Virtual and Physical Pages

T:GNVPI Get N Virtual and Physical Pages
T:GNVNPI Get N Virtual, No Physical Pages

T:GVGPl Get N Virtyal, Given the Physical Page
T:RVSPI Release a Virtual Page, Save the Physical Page

PURPOSE

All of these routines are monitor requests:

3/23/71

T:GNVPI Gets N virtual pages (swap granules and core memory) for the user.
T:GNVNPI Gets N virtual pages (swap granule) but does not allocate physical core
pages to them but rather puts the NPMC, No Page Map Constant, in the

map.

T:GVGPl Gets a virtual page (swap granule) and uses the physical core page provided

as input.

T:RVSPI Releases the specified virtual page (swap granule) but passes the physical
core page back to the calling routine.

STEP uses T:GVGPI and T:RVSPI to move a user's DCBs into the DCB virtual pages from

where they were created by Link,

USAGE
Calling Sequence Input
BAL, 11 T:GNVPI 6 = * of pages
7 = lst virtual
page *

BAL, 11 T:GNVNPI Same as T:GNVPI

BAL, 11 T:GVGPI 3 = physical pg ¥
7 = virtual pg

BAL, 11 T:RVSPI 7 = virtual pg *

95

OufEUf

5 =0 = indication
to get phy pg

5 = =1 indication to
not get phy pg

5= =2 indication
that phy pg is
provided

5= =1 indication to

save phy pg
3 = physical pg #

Volatile Registers

0-4, 12-15

0-4,12-15

0-4, 12-15

0-4, 12-15

SECTION FA,01.04
PAGE 2
UTS TECHNICAL MANUAL 3/23/71

SUBROUTINES

T:GNVPI and T:GNVNPI use T:GAJP, if it is necessary to get an additional JIT page
T:GVPI, the general get virtual page routine

T:REG, if it is necessary to report No Pages and give up.

T:GVGPI also uses T:GVPI,
T:RVSPI uses T:RVPI, the general release virtual page routine.

DESCRIPTION

T:GNVPI and T:GNVNPI set a register indicating whether to get physical pages and then
execute common code. If no physical pages are to be obtained, it is necessary to first
get an additional JIT page (by calling on T:GAJP) now, if one will be required during
this call. Since should no physical page be available for the AJIT page after some of
the virtual pages had been obtained, the Swapper would give physical pages to those
virtual pages and they aren't supposed to have any.

The general get virtual page routine, T:GVPI, is called N times. If the error return
indicates the requested page was already obtained, the routine continues. However,

if it indicates that the limit on the number of virtual pages allowed has been reached,

it returns an error indication in the CC's to the calling routine. Whenever T:GVPI in-
dicates that no physical page was available and one was desired, a note is made. Before
exiting the routine, if this condition is noted, the routine reports a No Page event and
gives up to T:REG. When control is returned, the physical pages will be allocated pro-
perly and the routine returns to the caller with the appropriate error status in the con-
dition codes.

T:GVGPI sets an indication that the physical page is to be saved and calls on T:GVPI
which does all the work. Upon returning, this routine returns to the caller.

T:RVSPI sets an indication to use the physical page provided and calls on T:RVPI which
does all the work, Then it returns to the caller.

96

SECTION FA.01.05
PAGE 1
UTS TECHNICAL MANUAL 12/6/71

1D
Get and Release Virtual Pages Master/Internal

T:GVPM Get Virtual Page Master
T:GVPI Get Virtual Page Internal
T:FVPM Free Virtual Page Master
T:RVPI Release Virtual Page Internal

PURPOSE

T:GVPM is the interface between the get page CALs and T:GVPI. Its only function is
to insure that the requested virtual page is in a user's data areq, otherwise it returns,

T:GVPI is the general get virtual page routine. It does all the work for everybody.

T:FVPM and T:RVPI are the same except they are for releasing instead of getting
virtual pages.

USAGE
Calling Sequence Input Qutput Volatile Registers
BAL, 11 T:GVPM 7=Vp# —_— All
T:GVPI 5=0get PP
=1no PP
= 2 PP provided
= 3 PP provided
BAL, 11 T:FVPM 7=Vvp# All
T:RVPI 5 =0 release PP
=<1 return PP 3 = PP saved
SUBROUTINES

T:SGA and T:SGR are used to allocate and release swapper granules,

T:GPP and T:FPP are used to get and release physical core pages.

IVO and DVO are used to insert and delete entries from J:CL, JH:DA, JB:CMAP and
JB:LMAP,

T:SAC to set access.

T:SXMAP and T:5SXAC to load the Map and Access Registers.

T:REG is used to report No Disc event and give up control.

DESCRIPTION

T:GVPI checks that the virtual page, VP, is free and that the maxiinum number of pages
allowed this user have not been allocated. The maximum number of pages allowed a user

97

SECTION FA.01.05
PAGE 2

UTS TECHNICAL MANUAL 12/6/71

is determined by the foloowing tests:

UB:PCT < 128

UB:PCT+PB:PSZ(APR)+PB:PSZ(AP0)+2(for COOP BUFs if allowed).
< limit supplied by SUPER or the default

UB:PCT+PB:PSZ(APR)}+PB:PSZ(AP0)+2+PB:PSZ(TEL if on-line)
< SL:CORE and
SL:PCORE the physical core limit established at initialization,

If these conditions are fulfilled, the requested page is allocated to the user.

If the number of granules remaining from a previously allocated group of four granules
(JBNRG) is zero, a swapper granule from the granule position specified in JB:NASP
is requested from T:SGA, If none are available, E:ND, event no disk is reported and
control is given up to T:REG. When control is returned, another attempt is made to
obtain a granule, When a granule is obtained JB:NASP is updated to reflect the
next granule group position and the number of remaining granules (JBNRG) is ini-
tialized to three, The disk address of the granule is placed in the next available
entry of JH:DA and a seek command, with the physical address of the JH:DA entry,
is added to the end of the command list. J:CLE is incremented by 2. If there isa
granule remaining from a previously allocated group the granule allocation is not
performed and no seek IOCD is constructed in the command list.

If this is a normal get page request, T:GPP is called to get a physical page from the
monitor free page pool (MB:PPUT). If none were available or if this is a get virtual
no physical request, NPMC, no page map constant is set up in place of the physical
page and the Ready fo Run flag in the user's flag table, UH:FLG is reset. If this
request is get virtual and the physical has been provided, this logic is skipped.

The JX:LMAP chain is rippled down until the place is found where the new VP is to
be linked. Each time a VP is passed in the chain; i.e., one ripple is done, the
physical page address associated with that VP in CL is moved down one entry. When
the ripple stops, the address of the new PP is set in the CL entry just vacated along
with a Write order code. The J:VLCS, Virtual Link Chain Stop, it set to this VP if
this VP is farther down the chain than where VLCS presently points.

If the PP is @ NPMC, it is set in JX:CMAP, Otherwise, the PP is linked into the
user's chain in MX:PPUT in the same order as LMAP. The user's page-count-needed
total, UB:PCT, is incremented by one. The Pure-Procedure-must-be-Swapped flag
in UH:FLG, is set since the rippling (we must assume) has resulted in the memory
image becoming different from the swapping RAD image.

90 19 86A-1(4/73) 98

SECTION FA.01.05
PAGE 3
UTS TECHNICAL MANUAL 12/6/71

Tests determine which area (context, data, dynamic data or pure procedure), the VP
is in and the count for that area, JB:PCP is incremented. The access code appropriate
for that area is set into the user's access image, J:AC, by T:SAC unless it is context
in which case it is skipped. T:GAJP is called in case AJIT, additional JIT page,
is necessary as a result of this request increasing J:CL, the user's command list, to a
size unable to fit any longer in JIT, T:GAJP makes the test and when necessary gets
the AJIT page and moves the CL.

If a physical page, PP, was not obtained, the condition codes are all set and the
routine exits, Otherwise T:SXMAP and T:SXAC are called to load the affected mapping
and access registers. If however the Special-JIT-Access flag of UH:FLG is set and the
VP is in the same area as JIT, then the special JIT access image word is loaded into

the access/register instead of calling on T:SXAC. Then the condition codes are reset
and the routine exits,

T:RVPI does nearly the opposite of T:GVPI. It makes sure the page is in use, and then
ripples down JX:LMAP until it finds the VP and moves the PP memory address up J:CL
until the VP's entry is wiped out. It unlinks the VP from LMAP and picks up the PP
from CMAP and sets NPMC into that entry of CMAP, It also takes the PP out of the
user's PPUT chain. It still must set the pure-procedure-must-be-swapped flag. It
calls on T:FPP to release the physical page, PP, back to MX:PPUT unless this is a
save-the-PP request. It then increments the number of remaining granules and, if
the result is equal to four, it picks up the last DA entry in JH:DA and calls T:SGR

to release the group of four granules and update JB:NASP. If the number of re-
maining granules is not four, or after the group of four has been returned, it
decrements the appropriate area count and MB:PCT, calls on T:SAC to set the access
to 11, calls on T:SXMAP and T:SXAC to load the map and access registers, and exits,

99 . 90 19 86A-1(4/73)

SECTION FA, 01,07
: PAGE 1
UTS TECHNICAL MANUAL 12/28/72

D
Get and Free Physical Core Pages
- T:GPP Get Physical Page
T:FPP Free Physical Page
PURPOSE '

T:GPP gets a free physical page, PP, by getting the head, M:FPPH, of the monitor's
free page pool and setting the next page in the chain into the head. If the head was
0 it returns that as an indication that it could not get a page.

T:FPP releases a PP back to the monitor's free page pool by linking it onto the last
page of the chain and updating the tail, M:FPPT,

USAGE

Calling Sequence Input Output Volatile Reéisfers
BAL, 11 T:GPP S 3=free PP¥ 3,4

BAL, 11 T:FPP 3=pp# _ 4

to release

101
(Page 100 has been deleted)

SECTION FA.01.08

PAGE 1

UTS TECHNICAL MANUAL 9/24/71
ID
Swap RAD Granule Allocation and Release
T:SGA Swapper Granule Allocation
T:SGAJIT Swapper Granule Allocation with no associated user
T:SGR Swapper Granule Release
T:SGRNU Swapper Granule Release with no associated user
PURPOSE
T:SGA Allocates a swapper granule from the swapper granule pool at the granule

position specified if possible, or if not, the next higher position and so on
until one is found. (The swapper granule pool is initialized with one of
every four granules available.)

T:SGR Releases back to the free swapper granule pool the specified granule and
returns its position, (The specified granule must be a multiple of four.)

T:SGAJIT and T:SGRNU are the same as SGA and SGR except that there is no relevant
user to provide swap RAD index. This occurs when SYSMAK initialized the
tables and when SSS obtains a granule for a user JIT,

USAGE

Calling Sequence Input Output Volatile Registers

BAL, 11 T:SGA 1 = granul e posi- 15 = disk adr of 1, 2, 12-15
tion requested granule allocated

BAL, 11 T:SGR 15 = disk adr of 1 = granule position 1, 2, 12, 13
granule to release of released granule

BAL, 11 T:SGAJIT 2 = swap RAD index
BAL, 11 T:SGRNU 2 = swap RAD index

DATA BASE

The user's swap RAD index, from UB:SWAPI, is used to obtain the appropriate entries
from the following tables which describe the RAD and are used in the allocation routines,

NAME CONTENTS USAGE

RAD TYPE 0 1 2 3

MB:GAMI X'3F! 7 7 7 GRANULE ADDR. MASK
MB:GAM2] 3 7 15 (SGP Wds/Gran)

MB:GAM3 -1 -2 -3 -4 Shift for SGP index to Gran, Pos.
MB:GAM4 6 3 3 3 Shift for track to Gran, Addr,
MB:GAM5 -7 -4 -4 -4 Shift for Disc Add. to Track No,
MB:GAMS X'7F' X'F! X'F! X'F! Sector Addr, Mask

MB:GPT 41 é 6 6 Gran. Per Track

90 19 86A-1(4/73) 102

SECTION FA,01.08

PAGE 2
UTS TECHNICAL MANUAL 9/24/71
NAME CONTENTS USAGE
RAD TYPE 0 1 2 3
MB:SWAPS 0 1 2 3 Shift for Gran, Pos, to SGPX
MB:DWT 4] 12 24 48 DW size of SGP

Where RAD TYPES are

TYPE RAD PSA (HEX)
0 7212
1 7232 0<PSA< 80
2 7232 80<PSA<100
3 7232 100<PSA< 200

DESCRIPTION

The swapper granule pool, M:SGP, is initialized by SYSGEN or during system ini-
tialization to indicate the availability of every fourth granule. T:SGA starts at the
specified granule position (word in M:SGP), looking for an available granule and
increasing it until one is found. If there is none, CC4 is set and the routine exits.
When one is found, the word (equivalent to a granule position) of the table ccn-
taining it is exchanged with a zero. The least significant bit is extracted, Its
position from the right is determined which becomes the band part of the address
and the position of the word of the table indicates the sector part. The word is
restored to the table with that least significant bit reset to indicate that it has been
allocated. Its address is set up and the routine exits.

T:SGR checks the input granule address to insure it is the first of a group of four
granules, If it is not, it is not returned to M:SGP and the program refurns with

CC4 set to 1. If it is the first granule of a group, T:SGR breaks up the address

into the band and sector parts, The band number is used to create a bit number
from the least significant bit,

This bit is selectively stored into the word specified by the sector position divided

by 2. If there are any users in state DP (disk page), event E:DPA, disk page
available, is reported.

103 90 19 86A-1(4/73)

SECTION FA.01.09
PAGE 1
UTS. TECHNICAL MANUAL 3/23/71

D
T:GAJP Get AJIT Page

PURPOSE

T:GAJP determines whether an AJIT page is required ond obtains it if it is.

USAGE

Calling Sequence Input Output Volatile Registers

BAL, 0 T:GAJP 12 = command _ 0-4,6,11-15
list length

SUBROUTINES

T:SGA is used to get a swapper granule.

T:REG is used to report a no disk or no physical page event and give up.
T:SGR is used to release a swapper granule.

T:GPP is used to get a physical page.

T:SXMAP is used to load the mapping registers,

DESCRIPTION

T:GAJP immediately returns if the specified command list length is less than the maximum
length in JIT called JCCL or if an AJIT page has already been obtained as indicated by
J:AJ#£0. If it is necessary to get an AJIT page, the JIT's disk address is changed to the
second granule of the group allocated for the JIT, and the AJIT is assigned to the first
granule of the group.

UB:PCT, the user's total-pages-needed count is incremented. A physical page is
requested of T:GPP. If none is available, an NPMC, No Page Map Constant, is set in
JB:CMAP, the Ready to Run flag is reset and an event no-core, E:NC is given to T:REG.
When control is returned, the Swapper has set a physical page in CMAP and linked it in
MB:PPUT in the user's PP chain, and the Ready to Run flag is set. If there was no
physical page, the Swapper recognizes the condition by the CMAP entry = NPMC
and J:AJ = 0.

If the PP was obtained, it is linked into MB:PPUT in the user's chain, set into JB:CMAP,
and the mapping register loaded.,

In either case, the context area count is incremented by 1. The physical page number
is set into J:AJ and its address set into J:CLPA, The disk address is set in UH:AJIT,

90 19 86A-1(4/73) | 104

SECTION FB
PAGE 1
3/27/72

UTS TECHNICAL MANUAL

ID

ALLOCAT
PURPOSE

ALLOCAT controls the allocation of file and symbiont granules through the use of
in core granule and cylinder stacks and non-resident HGP bit maps.

ALLOCAT is master mode ghost program. It is loaded with the public HGPs, generated
by PASS2 of SYSGEN, and with the Monitor's REF/DEF stack. This allows it direct

access to the Monitor and all its functions.

Replacing public HGPs in memory are PUSH/PULL stacks of disk addresses. There
are four stacks for public granule allocation:

1. PFA on RAD
2. PFA on Pack

3. PER

4. Public cylinders

All GET and RELEASE granule routine calling sequences are identical to previous
versions. The GET and RELEASE background granule, symbiont granule, and public
cylinder routines are replaced by PULLs and PUSHs, respectively, of disk addresses
into the appropriate stacks. For each allocation stack, two values are kept to control
the calling of ALLOCAT and its actions when called. They are as follows:

1. A low and high threshold expressed as a single value: BUF THRSH
2. An optimum fill :BUFSOPT

ALLOCAT is called if either the number of granules in any stack falls below the low

end threshold for that stack or if the number of granules in the stack rises so that

there remains less than the threshold space in the stack. After each PUSH and PULL,

the space count and word count in the stack pointer doubleword are compared with

threshold data values for that stack. When either is less T:GJOBSTRT will be called to wake
ALLOCAT, When ALLOCAT is called, it adjusts all the stacks to their optimum fill

level.

105

SECTION FB
PAGE 2
3/27/72

UTS TECHNICAL MANUAL

ALLOCAT pulls disk addresses from the stacks and releases the corresponding granules
to its HGPs or allocats granules from its HGPs and pushes their disk addresses. Other
functions require the presence of the HGPs and thus ALLOCAT. These explicit tasks
are communicated to ALLOCAT through two-word communication buffers. The
buffers are chained to one of three heads: CBFHD, the head of the free chain;
CBAHD, the head of ALLOCAT's chain; and CBRHD, the head of the chain being
used for releasing files., The buffers are linked through the first byte. A zero
terminates a chain. (The zeroth buffer is not used as a buffer, but contains the
headers themselves).

The figure below shows a sample of communication buffer linking.

COMBUF) CBFHD=2 CBRHD=10

+1 CBAHD=4
2 8

3 Vi

4 12

5

6 0

7

8 6

9

10 0

11

12 14

13 /

In this example, buffers 2, 8, and 6 are free. Buffers 4, 12, 14 ... contain
messages for ALLOCAT and buffer 10 is being used to release file.

When ALLOCAT's services are required, the calling routine gets a buffer and calls
a subroutine, ALLOQ, which adds the buffer to ALLOCAT's chain and wakes it,

if necessary. If the routine needs to wait for a response, it blocks the associated
user program with an E:QFAC (queue for ALLOCAT) event. ALLOCAT is swapped
in and reads the chain of messages. If there is no response necessary, ALLOCAT
frees the buffer; otherwise, ALLOCAT unchains the buffer from its own chain

and leaves the answer in the buffer. Users are unblocked when ALLOCAT has

106

SECTION B
PAGE 3

3/27/72
UTS TECHNICAL MANUAL

been swapped out (E:UQFAC). The calling routine must have remembered any
buffer addresses containing answers and rechain the buffers to the free chain.

If no buffers are available, the user is blocked by ALLOQ until ALLOCAT makes
some available, and will be unqueued when ALLOCAT is swapped.

The format for each message buffer is as follows:

1. Get n Contiguous Background Granules

link 00 | 00 user

dev type granules

2. Release n Contiguous Background Granules

link | Ol # granules
Dc A'

}

l_)) o L A‘A“v——i
3. Get N Contiguous Background Cylinders

link 02 00 user

dev
type #Cyls

4, Release n Contiguous Background Cylinders

link | 03 # Cyls

d.a.

5. Release Buffer or Disk Addresses

link | 04

physical page #

107

SECTION FB
PAGE 4
3/27/72

UTS TECHNICAL MANUAL

DESCRIPTION

1. Adjust Stack Logic

Each stack has an associated threshold value (BUFTHRSH) which determines
when to wake ALLOCAT, If the stack space count or word count are less
than the given threshold ALLOCAT is called.

If no granules are available for a user, the event, E:QFAC, is issued
causing the user to go to a queve, SQFAC, to wait until ALLOCAT has
adjusted the stacks. If a symbiont requires a granule it must queue itself.
SACT reactivates the symbiont periodically.

When ALLOCAT finishes its tasks, it posts a flag which causes the swap
scheduler to swap it out next. At its next entry, the swap scheduler sets
up the necessary tables and drives directly to the outswapper. When the
outswap is complete, an event is reported (E:UQFAC) causing the SQFAC
queue to be emptied.

Everytime ALLOCAT is called it automatically adjusts all staeks to their
optimal depths (no communication buffer reavired). The stack pointer
doublewords for the four public stacks begin at BUFSPD and are contiguous.
BUFSOPT is a byte table telling their optimal depth. If granules are

being added to the stack, they are put at the bottom causinggranules

already in the stack to be pulled first. All disk addresses added have the high
order bit set to flag them as unusable until the HGP is updated on RAD (end
of ALLOCAT's outswap). This assures that a granule is never used until it

has been recorded in the HGPs on RAD. After the outswap, the flag bits

are reset, before SQFAC is emptied.

2. Get n Contiguous Background Granules

GNBG calls ALLOQ and blocks the user with the event E:QFAC. ALLOCAT
attempts to allocate the requested granules. It then removes the communication
buffer from its own chain (but does not add it to the free chain) and puts the
disk address in the second word (d.a. =0 implies could not allocate). The

user is unblocked after the outswap.

3. Release n Contiguous Background Granules

RNBG will call ALLOQ and continue., ALLOCAT releases the granules and
frees the communication buffer.

108

SECTION FB
PAGE 5
3/27/72

UTS TECHNICAL MANUAL

Get n Contiguous Background Cylinders

GNCYL parallels GNBG.

Release n Contiguous Background Cylinders

RNCYL parallels RNBG.

Release Buffer of Disk Addresses

CLOSE builds chains of buffers containing disk addresses to be released. When
the chain is complete, the disk addresses are released to the stacks, if they
will fit, (the fastest method for release of small files). Otherwise, CLOSE
acquires a communication buffer, frees the physical page, calls ALLOQ,

and continues. If no communication buffer is free, it blocks with the

E:QFAC event and retries when unblocked.

ALLOCAT releases the granules and removes the buffer from its chain,
placing it in the CBRHD chain of buffers of disk addresses being released.
At the E:UQFAC event (end-of-outswap) a routine checks for buffers. If
there is one, it releases the page and communication buffer if it is the end
of the chain; otherwise, it reads in the next buffer full of disk addresses.
At the end-action from the read it recalls ALLOQ and repeats the process
until all buffers in the chain have been processed. This process causes

a swap of ALLOCAT for every 508 granules released. This occurs in=-
frequently enought to be an insignificant addition to system overhead.

Keep Count of Granules

ALLOCAT, upon first entry (at boot and recovery), counts the number of
available public granules and records them in a table in memory called
GRAVAIL, the permanent available granule counts.

GRAVAIL # Granules PFA RAD
+1 # Granules PFA Pack (granule allocated)
+2 # Granules PER
+3 # Cylinders PFA Pack (cylinder allocated)

These are updated every time ALLOCAT adjusts stacks. These counts are
used for the DISPLAY DISC key=-in and for triggering symbiont truncation.
ALLOCAT also keeps the same counts in itself in AGRAVAIL,

Two other counts GRANMIN and GRANRESET are modified to trigger
automatic FPURGE.

109

SECTION FB
PAGE 6
3/27/72

UTS TECHNICAL MANUAL

8. Emptying Stacks

The stacks are emptied for quiescence by setting the optimum stack size,
BUFSOPT, to zero for all stacks and waking ALLOCAT to adjust them.

DATA BASES

ALLOCAT's data is loaded as follows to facilitate locating it, its size and the
ACNCFU information:

track 0, ACNCFU+1
sector 8

ACNCFU+2
ACNCFU+3
AGRAVAIL
AGRAVAIL+1
AGRAVAIL+2

AGRAVAIL+3
X'Coog! —» T

x'cooo'j———» ! HGPSIZE

HGPs . > HGPSIZE

P l

ACNTBL (account
directory)

N

147

<« Doubleword Boundary
} 64 Words

End of Sector »

ALLOCAT's Procedure

l

110

SECTION FB
PAGE 7
3/27/72

UTS-TECHNICAL MAN UAL

Detailed Description ALLOCAT

ALLOINIT is ALLOCAT's start address. It executes a master mode CAL, It then
releases any FPOOls and IPOOLs allocated to it by STEP, It next releases the

swapper granules allocated for its outswap, sets its disc address table back to home base,
forces its JIT to track O sector 4, its AJIT if any to track O sector 2 and sets

its swap device index to O (system resident swapping rad). It next reinitializes

the account FCU and sets up the granule counts through HGPCNT,

ALLOCAT is where ALLOCAT begins execute in each time it is called. It saves
the ACNCFU critical data and runs the chain of command buffers executing each
special request. It sets up the registers as indicated.

R4 R5
R15

R1 - COMPUF)
|
!
}

index !

When these requests are all honored control goes to ADJSTKS, the stack
balancing logic.

ADJSTKS cycles through the four stacks. For each stack it picks up the

depth from BUFSOPT and subtracts the current number of words in the stack. If
the result is negative the stack is too full and control goes to EMPTYIT. If the
result is 0 ALLOCAT moves to the next stack. If it's too full control falls through
to FILLIT.

FILLIT adds BUFTHRSH, the threshold value to the number of disc address to be
added. This biases the stacks toward fuller than BUFSOPT if it was getting empty.
It then gets the required granules one at a time, flags them with a high order bit,
exchange the new disc address with the one at the bottom of the stack and that
old disc address at the top until enough granules have been added to the stack.

R

SECTION FB

Before old da 1 After 1 newda 1 5/23;73
2 1 newda 2
3 Il newda 3
4 oldda 4
this full 5 oldda 5
oldda 1
oldda 2
this full . oldda 3
should be
this full =%

If the granules cannot be acquired and the stack is empty the high order bit of
the stack pointer double word BUFSPD is posted to inform GRAN that none are
available (LOCKSTK).

EMPTYIT biases the stack depth by subtracting BUF TARSH from the number to
take out. It then pulls the disc addresses from the stack and releases them.

When all the stacks are adjusted ALLOCAT checks to see if FILL should be
awakened. It then saves the in-core account directory in ALLYAC and goes to
sleep after setting ALLOOUT to request an outswap.

GETNCYLS and GETNBG get in contiguous cylinders or background granules
respectively. The COMBUF contained

0 0 (BG) user
2 (Cyls)

dev
type det} #

The registers are set up as follows:

RO = dev type
RI5 = 00 [ldet] 7 |
R8 = RI15

GNCYL or GNBG is called. The returned d. a. is put into the COMBUF's second
word and the COMBUF is unqueued from ALLOCATs chain but not freed-

112

SECTION FB
PAGE 9
3/27/72

UTS TECHNICAL MANUAL

RELNCYLS and RELNBG release n contiguous cylinders or background granules
respectively. The COMBUF contains

00 01 (BG) o
03 (Cyls)
d.a.
Regist~is are set up as follows:
R8 =d.a.
R15 = #

RNCYL or RNBG is called. The COMBUF is released.
UCB unqueues a COMBUF from ALLOCAT's chain
RCB unqueues it and chains it to CBRHD, the rad buffer chain
FCB_ unquevues it and chains it to CBFHD, the free chain

R1 points to the next COMBUF upon exit.

RELBUF releases a buffer full of disc addresses. The COMBUF contains

0 5

physical page ¥ of buffer

RELBUF gets and releases a virtual page to locate an available virtual page.
It then SAP CAL's the physical page into that virtual page. The granules are
released and RCB is called to return the COMBUF to the buffer chain.

HGPCNT runs through the chain of HGP's counting the number of each type of
granule or public cylinders into AGRAVAIL, its copy of the counts. When there
are no more HGP's the counts are @ transferred to GRAVAIL, the resident copy.

GBPG, GSG, GBG, GNBG, GCYL, GNCYL, RSG, RBG, RNBG, RCYL and
RNCYL set up registers and interface with GRANSUB to accomplish the task.
See GRANSUB documentation.

113

SECTION FB
PAGE 10
3/27/72

UTS TECHNICAL MANUAL

GRANSUB
PURPOSE

GRANSUB is loaded both with ALLOCAT for use on public devices and with the
resident monitor for private devices and various necessary internal services. Its
function is primarily to do the actual work with the HGPs (get 1 or more granules

or cylinders or release them), It also maintains the counts of available public
storage.

INTERFACE
ENTRY REGISTERS FUNCTION
CMNGG R1I5= 1 0 dct 7 granules Common get granule
RO = device type
R2 = 5 for PER
6 for PEA
GPVCYL None Get 1 private cylinder
GNPVCYL R 15 =# granules Get n private cylinders
GNNAT None Get NVAT
CMNRELA R8 = d.a. Common release granule
R15 = # granules to release
RPVCYL R8 = d.a. Release private cylinder
RNPVCYL R8 = d.a. Release private cylinders
» R15 = # cylinders
RNVAT R8 = d.a. Release NVAT

114

SECTION FE
PAGE 11
3/27/72

DETAILED DESCRIPTION

CMNGG checks R15 for a DCT index. If specified it will start the search in

the corresponding HGP. If not it starts with the first HGP. Each HGP is checked
for the correct device type. If correct and not cylinder allocated control goes

to CMNGGZ. If cylinder allocated the number of granules requested gets
contested to a number of cylinders.

GTNIT moves through the HGP's and allows for the possibility of more than one
device type, which causes a re=search of the HGPs,

CMNGG2 sets up 23 with the appropriate stack index for granule counting
purposes. It then initiates a quick scan of the HGP word by word for the first
non-zero word. If the HGP is empty it gets flagged as such.

L199 through GGB find the appropriate number of contiguous granules. Registers
are

R7 = HGP
R5 = relative word in HGP
SRT = number of bits left to look at in HGP
D2 = Bit being checked
R3 = Type of granule being seeked
0 = PFA rad
1 = PFA rad
2 = PER
3 =public cylinder
4 = private
D4 = * granules required
D4 - R4 = # acquired

R1 = # words x 32 remaining in HGP

The logic searches for the n contiguous granules. If found the da. is returned.
If less than n are found followed by one which is not free, RELCALL is called
to release the ones acquired and the search continues. If a device boundary

is reached the ones acquired are also released.

CMNRELA releases n granules/cylinders. After error checks it converts the d.a. to
a relative word and bit and sets up a pointer to the last bit to be released.
At RECALL the registers are:

D4 - R4 = to release

R7 = HGP
RS = word to start releasing at —»R6
D2 = bit to release 1st —R3 —

R4 is incremented to D4, IThe number of granules/cylinders released is added to
the appropriate available granule counter.

115

	0000
	0001
	0002
	0003
	0004
	0005
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053-0
	053-1
	053-2
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071-00
	071-01
	071-02
	071-03
	071-04
	071-05
	071-06
	071-07
	071-08
	071-09
	071-10
	071-11
	071-12
	071-13
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082-0
	082-1
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115

