Xerox Control Program-Five (CP-V)
nd C S

System Programming
Reference Manual

EROXEROXEROXEROXEROXEROXEROX
DXEROXEROXEROXEROXEROXEROXERC
ROXEROXEROXEROXEROXEROXEROXER(

ROXEROXEROXEROXEROXEROXEROXE
EROXEROXEROXEROXEROXEROXEROXE
IXEROXEROXEROXEROXEROXEROXERO
_ MOXEROXEROXEROXEROXEROXEROXER(C
OXEROXEROXEROXEROXEROXEROXER
ROXEROXEROXEROXEROXEROXEROXE
KEROXEROXEROXEROXEROXEROXEROX
IXEROXEROXEROXEROXEROXEROXERO)
LOXEROXEROXEROXEROXEROXEROXER(
ROXEROXEROXEROXEROXEROXEROXETs
FROXEROXEROXEROXEROXEROXEROXE
XEROXEROXEROXEROXEROXEROXEROX
OXEROXEROXEROXEROXEROXEROXERC
CROXEROXEROXEROXEROXEROXEROXER
ROXEROXEROXEROXEROXEROXEROXE
EROXEROXEROXEROXEROXEROXEROXH

© 1974, 1975, Xerox Corporation

Xerox Control Program-Five (CP-V)

Xerox 560 and Sigma 6/7/9 Computers

System Programming
Reference Manual

90 31 138

November 1975

XEROX

File No.: 1X13
Printe dinUS A

REVISION

This publication documents the D00 version of CP-V. All changes in text from that of the previous manual (and its
revision package) are indicated by a vertical line in the margin of the page.

RELATED PUBLICATIONS

Title Publication No.
Xerox Control Program=~Five (CP-V)/TS Reference Manual 90 09 07
Xerox Control Program-Five (CP-V)/TS User's Guide A 90 16 92
Xerox Control Program~Five (CP-V)/OPS Reference Manual 90 16 75
Xerox Control Prograrn~Five (CP-V)/BP Reference Manual 90 17 64
Xerox Control Program~Five (CP-V)/TP Reference Manual 90 31 12
Xerox Control Program-Five (CP-V)/RP Reference Manual 90 30 26
Xerox Control Program~Five (CP-V)/SM Reference Manual 90 16 74
Xerox Control Program=~Five (CP-V)/Common Index 90 30 80
Xerox EASY/LN, OPS Reference Manual 90 18 73
Xerox BASIC/Reference Manual 90 15 46
Xerox Extended FORTRAN IV/LN Reference Manual 90 09 56

Xerox Extended FORTRAN IV/OPS Reference Manual 90 11 43

Title Publication No,

Xerox Extended FORTRAN IV/Library Technical Manual 90 15 24
Xerox FORTRAN Debug Package (FDP)/Reference Manual 90 16 77
Xerox FLAG/Reference Manual 90 16 54
Xerox Meta=Symbol/LN, OPS Reference Manual 90 09 52
Xerox ANS COBOL/LN Reference Manual 90 1500
Xerox ANS COBOL/OPS Reference Manual 90 15 01
Xerox ANS COBOL/ON-Line Debugger Reference Manual 90 30 60
Xerox Manage/Reference Manual 90 16 10
Xerox APL/LN, OPS Reference Manual 90 19 31
Xerox Sort-Merge/Reference Manual 90 11 99
Xerox 1400 Series Simulator/Reference Manual 90 15 02
Xerox Sigma 5/7 Mathematical Routines/Technical Manual 90 09 06
Xerox General Purpose Discrete Simulator (GPDS)/Reference Manual 90 17 58
Xerox Data Management System (DMS)/Reference Manual 90 17 38
Xerox SL-1/Reference Manual 90 16 76
Xerox CIRC-DC/Reference Manual and User's Guide 90 16 97
Xerox CIRC-AC/Reference Manual and User's Guide . 901698
Xerox CIRC-TR/Reference Manual and User's Guide ~ 90 17 86

Manual Content Codes: BP - batch processing, LN - language, OPS - operations, RP - remote processing,
RT - real-time, SM - system management, SP - system programming, TP - transaction
processing, TS - time-sharing, UT - utilities.

The specifications of the software system described in this publication are subject to change without notice. The availability or performance of some features
may depend on a specific configuration of equipment such as additional tape units or larger memory . Customersshould consult their Xerox sales representative
for details.

PREFACE

COMMAND SYNTAX NOTATION

GLOSSARY

1. INTRODUCTION

CP-V Services

Time-Sharing and Batch Processing

CONTENTS

xi

Remote Processing
Transaction Processing

Real-Time Processing

System Programming Facilities

2. SYSTEM OVERVIEW

Introduction

Processors

Command Processors

System Management Processors

Language Processors

Execution Control Processors

w NNNN — —

O U WWww

Service Processors

Application Processors

User Processors

Monitor

Scheduling and Memory Management
Scheduler Operation

10

13
13
14
16
20

System Integrity

3. BOOTSTRAP AND PATCHING OPERATIONS

System Tape Format

Patch Deck Structure

24

24
24

Delta Format Patches

24

26

Patch Deck Symbol Tables
Reconfiguration and Partitioning
Commands

27

:GO

:SAVE

27
28

:TYPE

28

:REMOVE

28

:PART

:END
:GENDCB Command

GENMD Commands

GENMD

LIST

DELETE

GENMD Patches

GENMD Error Messages
Conditional Patch Control Commands

29
29
34
34
34
34
34
35
35
35

Comment Cards

Patch File Creation

Sequence of Operations
Booting From Disk

Bootstrap 1/O Error Recovery

PASSQO Processor

PASSO Messages

MONITOR DUMP ANALYSIS PROGRAM

Introduction

Ghost Mode

Batch and On-Line Modes

Commands

Input Command

INPUT

Display Commands
DISPLAY

RUN

ALL

Interactive Monitor Display Commands
loc

locy,loep

LINE FEED

t

*

MONITOR

loc = value

Map Commands

MAP

UNMAP

Search Commands

COMPARE

SMASK

SEARCH

Output Commands

ROWS

LP

uc

PRINT

Debug Commands

BF

DELTA

NODELTA

Miscellaneous Commands

SYMBOLS

IS

SYMBOL/

DUMP

CLOSE

HELP

SPY Command

SPY

Exit Command

END

Output

ANLZ Messages
ANLZ Command Summary

37
37
37
40

41
41

42

PN oA
wwaNMMN

EEEEEEERERERSEEED

7.

ERROR MESSAGE FILE

Introduction

Format of Error Message File

Creating Error Message File
Card Reader Input

Terminal Input

SYSTEM ERROR LOG FILE

Introduction

ERR:FILL Program

Error Log Listing Processor

Starting Execution
Input/Output Assignments

SET

Input/Output Characteristics
Interrupting ELLA Execution

ELLA Commands

CLIS

SLIS

SUM

DISP

END

RSET

TIME

TYPE

DEV

MOD

DSPL

Predefined Tasks

ELLA Messages
ELLA Command Summary

Hardware~Error Diagnostic CALs
Read Error Log

Write Error Log

Initiate Ghost Job

SHARED PROCESSOR FACILITIES

Introduction

Public Programs

Processor Privileges

Shared Programs
Log=On Connection

Shared Processor Programming

Fixed Monitor Locations

Job Information Table (JIT)

Memory Control

Overlay Restrictions

Data Control Blocks

File Identification

TEL Scan

CCI Scan

Terminal 1/0

File Extension

Shared File Use

Command Processor Programming
Public Libraries

CP=V Public Libraries

Creating Public Libraries

Loading Public Libraries

63

63
63
63
63
64

65

65
65
65
65
65
65
67
68
68
68
77
81
81
82
82
83
84
84
84
87
87
90
90
21
92
92
92

93

93
93
93

94
924
94
95
96
96
96
98
98
99
99
101
101
101
104
104
104
106

Shared Processor Maintenance (DRSP)
DRSP Commands

ENTER

REPLACE

DELETE

LIST

LISTALL

?

END

DRSP Limitations and Restrictions

DRSP Error Messages

DRSP Command Summary

ON-LINE PERIPHERAL DIAGNOSTIC
FACILITIES

Introduction

Restrictions

PSECT Directive

System Procedures

Create Diagnostic Data Control Block

M:DDCB

Open Diagnostic Data Control Block

M:DOPEN

Close Diagnostic Data Control Block

M:DCLOSE

Build Command List

M:BLIST

Start /O
M:SIO

Lock in Core

M:LOCK

Convert Address

M:MAP

Obtain Model Numbers and Type Mnemonics

M:DMOD#

Abnormal Codes and Messages

DDCB

REAL-TIME PROCEDURES

Interrupt ‘Connection and Control Services

Connect Interrupt to Ghost File
M:GJOBCON

Connect User Program to Interrupt
M:CONNECT

Disconnect User Program or Ghost Job

from Interrupt

M:DISCONNECT

Control an Interrupt

M:INTCON

General Interrupt Inhibit

M:INHIBIT

Return from Interrupt Processing
M:INTRTN

Queue for Interrupt

M:QFI1

Obtain Interrupt Status

M:INTSTAT

Lock in Core Service

M:HOLD

106
106
106
109
109
109
109
110
110
110
110
110

114

114
114
114
115
115
115
116
116
117
117
117
117
19
119
119
19
120
120
120
120
120
120

126

126
127
127
127
127

128
128
129
129
129
129
130
130
130
130
131
131
131
131

Clock Service

M:CLOCK

Device Preemption Services

Preempt Device

M:STOPIO

Return Preempted Device

M:STARTIO

Direct 1/O Services

IOEX Services
M:IOEX (S1O)

M:IOEX (HIO/TIO/TDV)

Execute Privileged Instruction Service -

M:EXU

Enter Master Mode

M:MASTER

Enter Slave Mode

M:SLAVE

PSECT Directive

Virtual /Physical Address Conversion
M:MAP

Miscellaneous Real-Time Services
Get or Free Physical Page

M:GPP

M:FPP

Initiate Ghost Job

M:GJOB

Get and Release Disk Granule
M:GDG

M:RDG

Report User Event

M:RUE
Check Interrupt Status

M:CHKINT

I/O Services
M:EXCP

M:NEWQ

M:QUE

M:COC
Dynamic Physical Page Allocation for
Real-Time Processing

Introduction

SYSGEN Considerations

Initialization

The Physical Page Stealer Ghost Job (PPS)____

DISPLAY

GET

FREE

DYNRESDF

RESDF

END

Monitor DEFs

RESDF Memory CAL

10. TRANSACTION PROCESSING FACILITIES

vi

System Queue Manager

M:GETID Procedure Format

M:QUEUE Procedure Format

M:QUEUE Function Parameter Tables (FPTS)_____

Queve UNLOCK Request

Queve DEFINELIST Request

Queue PUT Request

132
132
132
132
132
134
134
134
134
134
136
136
136
136
136
136
136
137
137
137
137
137
137
137
137
137
138
138
138
138
138
139
139
139
140
140
142
143

143
143
143
144
144
145
145
145
146
146
147
147
147

148

148
149
149
150
150
150
151

Queuve GET Request

Queve STATS Request

Queue PURGE Request
Queue LOCK Request

List Formats

DEFINELIST or STATS List

GET Message

PUT List

M:QUEUE Procedure Qutput Parameters
SR1 Information

ECB Information

Queue Error Codes

INDEX

A.

APPENDIXES
OPERATIONAL LABELS
PHYSICAL DEVICE NAMES
CP-V SOFTWARE CHECK CODES
XEROX 560 REMOTE ASSIST STATION

Introduction

Hardware Interface

Software Interface

Processor Restrictions

Communications Restrictions

ERRFILE Formats

XEROX STANDARD OBJECT LANGUAGE

Introduction

General

Source Code Translation
Object Language Format

Record Control Information

Load Items

Declarations

Definitions

Expression Evaluation

Formation of Internal Symbol Tables
Loading

Miscellaneous Load Items

Object Module Example

XEROX STANDARD COMPRESSED
LANGUAGE

XEROX STANDARD SYMBOLS, CODES
AND CORRESPONDENCES

Xerox Standard Symbols and Codes
Xerox Standard Character Sets

Control Codes

Special Code Properties

151
151
151
152
152
152
152
152
153
153
153
153

225

155
156
157
175

175
175
175
175
175

178
197

197
197
197
198
198
199
199
201
202
205
206
207
207

213

214

214
214
214

214

.
12.
13.
14,

15.

17.

FIGURES

CP-V Operating System

Typlcal User Program — Virtus! Memory Layout
{not to scale) __

Typical Memory Layout for Sigma Computers
(not to scale)

Typical Memory Layout for the Xerox 560
(not to scale)

Format of Master System Tape

Segment Patching Order

Device Resource Configuration from SYSGEN____

Reconfiguration and Partitioning Commands
that were Ignored

Reconfiguration and Partitioning Commands
that were Used

. Device Resource Configuration for the Booted

System
Special Processors ~ Virtual Memory
Locations Comman to all Monitors

Public Library Creation Process

Generalized Library Load Process (Link)
Generalized Library Load Process (Load)

Format of the DDCB

1/O Operation Codes for Device Handler
(M:QUE)

TABLES

Event Inputs Received by Scheduler

Service Request Input to Monltor

Scheduler Status Queues

Swap=In and Swap-Out Queues

Reconfiguration and Partitioning Messages

GENMD Error Messages

21

21

2?

26

30

30

3

31
94
94
105

107

— 108

122

142

15
16
17
18
32

36

PASSO Messages

41

INPUT Command Options

9.

10.
1.
12
13.

14,

18.
19,
20.
21,
22,
23,
24,
25,
26,
27,
28.
29.
30.
31.
32

33.
34,
35.
36

37.

38.
39.
40,
41,

42,

. Additional User Table Headings

. Resource Wait Queues

DISPLAY Command Options
RUN Command Options
SPY Output
Displays

Trap and Interrupt Locations for XPSD Instructions_ 52

User Table Headings

Swap Table Terms

Partition Table Headings

Processor Table Headings

ALLYCAT Headings

1/O Table Headings

Device Control Table Headings

10Q Table Headings

COC Line Table Headings

44
45
48
49

52

A3

53

53

53

54

54

55

55

56

56

AVR Table Headings

Symbiont Table Headings

57

57

TSTACK Headings

ANLZ Messages

ANLZ Command Summary

57

58

59

ELLA On-Line 1/O Functions

67

ELLA Batch 1/O Functions

ELLA Ghost I/O Functions

Error Log Entry Headings
RB:FLAGS Structure

Error Log Entry Types

ELLA Messages

ELLA Command Summary

Partial Contents of JIT

Standard DCBs

Routines in :LIB Library File

DRSP Error Messages

DRSP Information Messages

67
68

70
75
77
90
91

95
97
105
m

13

vil

43, DRSP Command Summary_ 113
44, On-Line Diagnostics Abnormal Messages . 121
45. Register Settings for End~Action Routines i35
46. M:QUEUE Error Subcodes 153
A-1. Standard Operational Labels and Default

Device Assignments 155
A-~2. Batch Assignment of Operational Labels _______ 155
A-3. On-Line Assignment of Operational Labels ____ 155
B-1. Standard 1/O Device Type Codes ___ 156
B-2. Sigma IOP Designation Codes ___._..___ o 156
B~3. Xerox 560 Cluster/Unit Matrix 156
B-4. Device Designation Codes . _ 156
C-1. CP-V Software Check Codes 157
D-1. ASCII to EBCDIC Translate Table __ . ______ 176
E=1. Error Record Terminology 178
E-2. Xerox 7670 RBT —RP1, RP3and RP4 ____ 189
E-3. Xerox 7670 RBT — RP2 190
E-4. IBM 2780 RBT — RP! and RP4 190
E-5. 1BM 2780 RBT — RP2 and RP3 190
E-6. IRBT —RP1 and RP4 191
E-7. IRBT —RP2 and RP3 192
H-1. CP-V B-Bit Computer Codes (EBCDIC) 215
H-2. CP-V 7-Bit Communication Codes (ANSCII)____216

3T
Vi

H-3. CP-V Symbol-Code Correspondences 217

H-4., ANSCIH Control=Character Translation

10.
1.
12.
13.
14.
15,

16.

Table S 221
EXAMPLES

Batch Operationof ELLA _______ . 46
On-Line Operationof ELLA = 66
Use of the CLIS Command . __ 69
Use of the SLIS Command - 79
Use of the SUM Command _ 81
Use of DISPCommand 82
TIME Command Usage _— .. 83
Use of the MQOD, DEV, and TYPE Commands 85
Use of the MCD, DEV, and TYPE Commands_____ 85
Use of the MOD, DEV, and TYPE Commands 86
Use of the MOD, DEV, and TYPE Commands ______ 86
Use of the MOD, DEV, and TYPE Commands 87
Parameter Display 88
Listing the Entire Error File 88
Listing Errors for the Current Day 89

Listing Start-Ups, Configuration, and
Device Partitioning Activity 89

PREFACE

This manual describes the CP-V/ features that are designed to aid the system programmer in the development,
maintenance, and modification si the CP-V system,

Manuals describing other features of CP-V are outlined below:

The CP-V System Management Reference Manual, 90 16 74, is the principal source of reference informa-
tion for the system management features of CP-V, It defines the rules for generating a CP-V system
(SYSGEN), authorizing users, maintaining user accounting records, maintaining the file system, monitor-
ing system performance, and other related functions,

The CP=-V Batch Reference Manual, 90 17 64, is the principal source of reference information for the batch
processing features of CP-V (i.e., job control commands, system procedures, I/O procedures, program
loading and execution, debugging aids, and service processors).

The CP-V Time~Sharing Reference Manual, 90 09 07, is the principal source of information for the time-
sharing features of CP-V. It defines the rules for using the Terminal Executive Language and other
terminal processors,

The CP~V Time=Sharing User's Guide, 90 16 92, describes how to use the various time=sharing features,
It presents an introductory subset of the features in a format that allows the user to learn the material by
using the features at a terminal as he reads through the document,

The CP-V Remote Processing Reference Manual, 90 30 26, is the principal source of information about the
remote processing features of CP-V, All information about remote processing for all computer personnel
(remote and local users, system managers, remote site operators, and central site operators)is included in
the manual.

The CP-V Transaction Processing Reference Manual, 90 31 12, provides information about dynamically
modifying andquerying a central database in a transaction processing environment. The manual is addressed
to system managers, database administrators, applications programmers, and computer operators.

The CP-V Operations Reference Manual, 90 16 75, is the principal source of reference information for
CP-V computer operators. It defines the rules for operator communication (i.e., key-ins and messages),
system start-up and initialization, job and system control, peripheral device handling, recovery and file
preservation,

The CP-V Common Index (90 30 80) is an index to all of the above CP-V manuals.

Information for the language and application processors that operate under CP-V is also described in separate man-
vals. These manuals are listed on the Related Publications page of this manual.

COMMAND SYNTAX NOTATION

Notation conventions used in command specifications and examples throughout this manual are listed below.

Notation

Description

lowercase letters

CAPITAL LETTERS

()

Numbers and
special characters

Subscripts

Superscripts

Underscore

©®O

Lowercase letters identify an element that must be replaced with a
user-selected value.

CRndd could be entered as CRAO3.

Capital letters must be entered as shown for input, and will be printed as
shown in output.

DPndd means "enter DP followed by the values for ndd".

An element inside brackets is optional. Several elements placed one under
the other inside a pair of brackets means that the user may select any one or
none of those elements.

[KEYM] means the term "KEYM" may be entered.

Elements placed one under the other inside a pair of braces identify a re-
quired choice.

{':-j} means that either the letter A or the value of id must be entered.
The horizontal ellipsis indicates that a previous bracketed element may be
repeated, or that elements have been omitted.

name [, name]. .. means that one or more name values may be
entered, with a comma inserted between each name value.

The vertical ellipsis indicates that commands or instructions have been
omitted.

MASK2 DATA,2 X'IEF’
. means that there are one or more state-
ments omitted between the two DATA
directives.

BYTE DATA,3 BA(L(59))

Numbers that appear on the line (i.e., not subscripts), special symbols, and
punctuation marks other than dotted lines, brackets, braces, and underlines
appear as shown in output messages and must be entered as shown when input.

(value) means that the proper value must be entered enclosed in
parentheses; e.g., (234).

Subscripts indicate a first, second, etc., representation of a parameter that
has a different value for each occurrence.

sysid1, sysidp, sysid3 means that three successive values for sysid
should be entered, separated by commas.

Superscripts indicate shift keys to be used in combination with terminal keys.
c is control shift, and s is case shift.

L means press the control and case shift (CONTROL and SHIFT) and
the L key.

All terminal output is underscored; terminal input is not.

IRUN means that the exclamation point was sent to the terminal, but
RUN was typed by the terminal user.

These symbols indicate that an ESC (&), carriage return (@), or line feed
(@) character has been sent.

IEDIT =) means that, after typing EDIT, a carriage return character
has been sent.

GLOSSARY

ANS tape a tape that has labels written in American
National Standard (ANS) format.

batch job a job that is submitted to the batch jobstream
through the central site card reader, throughan on~line
terminal (using the Batch processor), or through a re~
mote terminal,

binary input input from the device to which the BI
(binary input) operational label is assigned.

concatenation a process whereby a number of fileswith
the same filename and format are treated as one logical
file. Concatenation is only applicableto ANS tapes,

conflicting reference a reference to a symbolic name
that has more than one definition.

control command any control message other thana key=in,

A control command may be input via any device

to which the system command input function has been

assigned (normally a card reader),

control message any message received by the monitor

that is either a control command or a control key=in.
cooperative a monitor routine that transfers information
between a user's program and disk storage (also see
"symbiont").

data control block (DCB) a table in the user's program
that contains the information used by the monitor in
the performance of an I/O operation.

external reference a reference to a declared symbolic
name that is not defined within the object module in
which the reference occurs. An external reference
can be satisfied only if the referenced name is de-
fined by an external load item in another object
module,

file extension a convention that is used when certain
system output DCBs are opened. Use of this conven-
tion causes the file (on RAD, tape, disk pack, etc.)
connected to the DCB to be positioned to a point just
following the last record in the file. When additional
output is produced through the DCB, it is added to the
previous contents of the file, thereby extending the
file.

function parameter table (FPT) a table through which a
user's program communicates with a monitor function
(such as an 1/O function).

ghost job a job that is neither a batch nor an on-line
program. It is initiated and logged on by the monitor,
the operator, or another job and consists of a single
job step. When the ghost program exits, the ghost is
logged off.

global symbol a symbolic name that is defined in one
program module and referenced in another.

GO file a temporary disk storage file consisting of re-
locatable object modules formed by a processor,

granule a block of disk sectors large enough to contain
512 words (a page) of stored information.

job information table (JIT) a table associated with each
active job. The table contains accounting, memory
mapping, swapping, terminal DCB(M:UC), and tempo-
rary monitor information.

job step a subunit of job processing such as compilation,
assembly, loading, or execution, Information from cer~
tain commands (JOB, LIMIT, and ASSIGN) and all
temporary files created during a job step are carried
from one job step to the next but the steps are otherwise
independent.

key a data item consisting of 1-31 alphanumeric char-
acters that uniquely identifies a record,

key=in information entered by the operator via a
keyboard.

language processor a program that translates a user's
source language program info an object language
program,

library load module a load module that may be combined
with relocatable object modules, or other library load
modules, to form a new executable load module,

linking loader a program that is capable of linking and
loading one or more relocatable object modules and
load modules.

load map a listing of loader output showing the location
or value of all global symbols entering into the load,
Also shown are symbols that are not defined or have
multiple definitions.

load module (LM) an executable program formed by the
linking loader, using relocatable object modules
(ROMs) and/or modules (LMs) as input information.

logical device a peripheral device that is represented
in a program by an operational label (e.g., Bl or PO)
rather than by specific physical device name.

logical device stream an information stream that may
be used when performing input from or output to a sym-
biont device. At SYSGEN, up to 15 logical device
streams are defined. Each logical device stream is
given a name (e.g., L1, PI, C1), each is assigned to
a default physical device, and each is given default
attributes, The user mayperform /O through a logical

device stream with the default physical device and
attributes or he may change the physical device and/or
atfributes fo satisfy the requirements of his job.

monitor a program that supervises the processing, load-
ing, and execution of other programs,

object language the standard binary language in which
the output of a language processor is expressed,

object module the seriesof records containing the load in~
formation pertaining to a single program or subprogram
(i .e., fromthe beginning tothe end). Object modules
serve as input to the Load processor or Link processor,

on-line job a job that is submitted through an on-line
terminal by a command other than the BATCH command.

operational label a symbolic name used to identify a
logical system device.

overlay loader a monitor routine that loads and links
elements of overlay programs.

overlay program a segmented program in which the ele-
ment (i,e., segment) currently being executed may
overlay the core storage area occupied by a previously
executed element,

patch a symbolic representation of a correction to the
system that is used to temporarily correct the system
without necessitating a reassembly,

physical device a peripheral device that is referred to
by a name specifying the device type, /O channel,
and device number (also see "logical device").

program product a compiler or application program that
has been or will be released by Xerox, but is not re-
quired by all users and is therefore made available by
Xerox on an optional basis, Program products are pro-
vided only to those users who execute a License Agree-
ment for each applicable installation,

prompt character a character that is sent to the terminal
by an on-line processor to indicate that the next line
of input may be entered.

protective mode a mode of tape protectioninwhich only
ANS expired tapes may be written on through an ANS
DCB; no unexpired ANS tape may be written on through
a non-ANS DCB; all ANS tapes must be initialized by
the Label processor; no tape serial number specification
is allowed at the operator's console; specification of an
output serial number in an ANS DCB forces processing
to be done only on a tape already having that serial
number; tapes mounted as IN may not be written; and
tapes mounted as other than IN must have a write ring.
(See "semiprotective mode".)

public library a set of library routines declared at
SYSGEN to be public (i.e., to be used in common by
all concurrent users),

reentrant an attribute of a program that allows the
program to be shared by several users concurrently.
Shared processors in CP-V are reentrant, That is, each
instance of execution of the single copy of the pro-
gram's instructions has a separately mapped copy of the
execution data.

relative allocation allocation of virtual memory to a
user program starting with the first unallocated page
available,

relocatable object module (ROM) a program or subpro-
gram in object language generated by a processor such
as Meta-Symbol or FORTRAN,

remote processing an extension of the symbiont system
that provides flexible communication between CP-V
and a variety of remote terminals,

resident program a program that has been loaded into o
dedicated area of core memory.

response time the time between the completion of termi-
nal input and the first program activation.

scheduler a monitor routine that controls the initiation
and termination of all jobs, job steps, and time slice
quanta,

secondary storage any rapid-access storage medium other
than core memory (e.g., RAD storage).

semi-protective mode a mode of tape protection in which
a warning is posted to the operator when an ANS DCB
attempts output on a non-ANS tape or an unexpired ANS
tape, when a non-ANS DCB attempts output on an un~
expired ANS tape, or when atape mounted as INOUT
has no write ring. The operator can authorize the over-
writing of the tape or the override of INOUT through a
key-in (OVER and READ). ANS tapes may be ini-
tialized by the Label processor or may be given labels
as the result of an operator key=in; tape serial number
specification is allowed at the operator's console; and
specification of an output serial number in an ANS
DCB forces processing to be done only on a tape al-
ready having that serial number unless the operator
authorizes an overwrite, (See '"protective mode".)

shared processor a program (e.g., FORTRAN) that is
shared by all concurrent users, Shared processors must
be established during SYSGEN or via DRSP,

source language a language used to prepare a source
program suitable for processing by an assembler or
compiler.

special shared processor a shared processor that may be
in core memory concurrently with the user's program

(e.g., Delta, TEL, or the FORTRAN library).

specific allocation allocation of a specific page of
unallocated virtual memory to a user program.

SR1, SR2, SR3, and SR4 see "system register”, below.

static core module a program module that is in core
memory but is not being executed,

stream-id the name of a logical device stream,

symbiont a monitor routine that transfers information

between disk storage and a peripheral device inde-
pendent of and concurrent with job processing.

symbolic input input from the device to which the SI
(symbolic input) operational label is assigned.

symbolic name an identifier that is associated with
some particular source program statement or item so
that symbolic references may be made to it even though
its value may be subject to redefinition.

SYSGEN see "system generation", below,

system generation (SYSGEN) the process of creating an
operafing system that is tailored to the specific require-
ments of an installation. The major SYSGEN steps

include: gathering the relevant programs, generating
specific monitor tables, loading monitor and system
processors, and writing a bootable system tape.

system library a group of standard routines in object=
language format, any of which may be incorporated in
a program being formed.

system register a register used by the monitor to commu=
nicate information that may be of use to the user pro-
gram (e.g., error codes). System registers SR1, SR2,
SR3, and SR4 are current general registers 8, 9, 10,
and 11, respectively.

task control block (TCB) a table of program control in~
formation built by the loader when a load module is
formed. The TCB is part of the load module and con-
tains the data required to allow reentry of library rou-
tines during program execution or to allow entry to the
program in cases of traps, breaks, etc. The TCB is
program associated and not task associated.

unsatisfied reference a symbolic name that has been ref-
erenced but not defined.

1. INTRODUCTION

CP-V SERVICES

Control Program~Five (CP-V) is a comprehensive operating
system designed for use with Sigma 6/7/9 and Xerox 560
computers and a variety of peripheral equipment, CP-V
offers:

e On-line time-sharing, batch processing, remote pro-
cessing, transaction processing, and real-time services.,

e Ability to handle a large number of concurrent users.

e High efficiency due to hardware relocation map,
shared reentrant processors, multiple 1/O processors,
and device pooling.

e A complete recovery system coupled with preservation
of user files to provide fast restart following hardware
or software malfunction.

o For on-line users: highly efficient and extensive soft-
ware, file saving feature, fast response time,

e For batch users: on-line, local, and remote entry to
an efficient multiprogramming batch job scheduler.

e For installation managers: thorough system monitoring
and reporting, control and tuning ability, extensive
error checking and recovery features,

e For all users: comprehensive accounting and o com-
plete set of powerful processors.

TIME-SHARING AND BATCH PROCESSING

CP=V allows multiple on-line terminal users to concurrently
create, debug, and execute programs. Concurrent to time-
sharing, CP-V allows up to 16 batch processing jobs to
execute in its multiprogromming environment. An efficient
multi-batch scheduler selects batch jobs for execution
according to priority, job requirements, and availability of
resources, Batch jobs may be submitted to this scheduler
from a local batch entry device such as a card reader, from
an on-line user's terminal, or from a remote site such as a
remote batch terminal or another computer,

Time~sharing and batch users have access to a variety
of powerful and comprehensive language processors and
facilities, These processors and facilities are listed
below.

Processor

TEL

EASY

Edit

FORTRAN IV

COBOL

Meta~Symbol

BASIC

APL

FLAG

FDP

Delta

COBOL On-line

Debugger

PCL

Link
LYNX

Load
Batch
Manage

SL-1

CIRC

Function

Executive languuge control of all
terminal activities. (On-line only.)

Creation, manipulation, and execution
of FORTRAN and BASIC programs and
data files. (On-line only.)

Composition and modification of pro~
groms and other bodies of text, (On-
line only.)

Compilation of Extended FORTRAN 1V
programs.

Compilation of ANS COBOL programs.

Assembly of high~level assembly lan-
guage programs.

Compilation and execution of programs
or direct statements written in an ex-
tended BASIC language.

Interpretation and execution of pro~
grams written in the APL language.

Compilation of fast "load-and-go"
FORTRAN programs,

Debugging of Extended FORTRAN IV

programs,

Debugging of programs at the assembly
language level, (On=line only.)

Debugging of ANS COBOL programs.
(On~line only.)

Transfer (and conversion) of data be-
tween peripheral devices,

Linkage of progroms for execution.
Linkage of programs for execution.
Linkage of programs for execution

(Batch only.)

Submission of batch jobs via an on-
line terminal or another batch job.

File retrieval, updating, and reporting.

Compilation of programs written in a
language designed specifically for
digital or hybrid simulation.

Analysis of electronic circuits.

Introduction 1

Processor Function

EDMS Crganization, storing, updating, and
deletion of informaticn in a centralized
data base,

Sort- Merge Scrting and’or merging of records in
ane or more files.

GPDS Experimentation with and evaluation of
system methods, processes, and designs,
(Batch oniy.)

REMOTE PROCESSING

The remote processing system is an extension of the CP-V
symbiont system, Its purpose is to provide for flexible com-
munication between Cf'~Vand u variety of remote terminals,
These terminals can range from a simple card reader, card
punch, and line printer combinction to another computer
system with u wide variety of peripheral devices, Any CP~V
user (batch, on-=line, qhost) can communicate with any
number of devices at one or several remote sites, Because
CP-V can act as a central site to some remote sites and
simultaneously as a remote terminal to other computers,
the remote processing facilities encourage the construction
of communication networks,

TRANSACTION PROCESSING

The transaction processing feature of CP-V is an efficient
and economical approach to centralized information pro-
cessing and is a generalized package that is designed to
meet the requirements of a variety of business applications.,
Transaction processing facilities provide an environment in
which several users at remote terminals may enter business
transactions, simultaneously utilizing a common data base,
The transactions are processed immediately, as they are
received, by application programs written especially for
the particular installation, As necessary, reports may
then be created and sent to an appropriate terminal.

REAL-TIME PROCESSING

The real-time services provided by CP-V allow users to
connect interrupts to mapped programs, control the state of
interrupts (e.g., trigger, arm/disarm, enable/disable),
clear interrupts either at the time of occurrence or upon
completion of processing, and disconnect interrupts no

z System Programming Facilities

longer required, Users may also request that a mapped
program be held in core in order to reduce the time required
to respond to un external event (via wn interruptj or to
allow various torms of special /0 to occur. Programs may
be connected to one of the moniter's clocks such that after
a specified period of time, a specitied routine is entered,

In addition, dedicated foreground memory mny he used as
inter-program communication butfers or as ded:cated memory
for unmapped, master mode: programs wh:::n may be directly
connected to external interrupts oi real-iime clocks.

SYSTEM PROGRAMMING FACILITIES

This manual desciibes the CP<\ features that are designed
to aid the system piogrammer in the development, main-
tenance, and moditication of the CP-V system, The facil-
ities described in this manual aid fthe system programmer
in the following areas:

e Modification of the CP-V operating system at the
instruction level at boot-time.

o Reconfiguration of peripheral devices at boot-time.

e Analysis of crash dumps to determine the cause of a
system crash.

o Creation and modification cof the e:ror message file
for the CP-V monitor overlays while the system is

operational.

e Listing and analysis of hardware and software mal-
functions occurring during system operation.

e Development of shared processors such as compilers,
assemblers, command language processors, and
debuggers.

e Replacement, creation, and deletion of shared pro-
cessors and monitor overlays while the system is

operational,

e Development of peripheral hardware diagnostic
programs.

e Development of real-time programs,
e Support of transaction processing facilities.

e Implementation of remotediagnostics for the Xerox 560,

2. SYSTEM OVERVIEW

INTRODUCTION

The CP-V operating systein consists of a monitor and a

number of associated processors (Figure 1). The monitor
provides overall supervision of program processing. The
associated processors provide specific functions such as

compilation, execution, and debugging.

PROCESSORS

The CP-V system is illustrated InFigure 1 ot two levels. The
upper level lists the various monitor routines. The lower

leve! lists the various processors. The processors are de-

scribed in the following paragraphs,

- COMMAND PROCESSORS

The four processors in this group are: LOGON/LOGOFF,
EASY, TEL, and CCI. The first of these processors is avail-
able to on-line and batch users, the second and third are
available to on-line users only, and the last is available to
batch users only,

LOGON/LOGOFF

LOGON admlts on-line users to the system and connects
the user's terminal either to TEL or to an alternative pro-
cessor, such as BASIC, that has been selected by the user.
LOGOFF disconnects a user from the system and does the
final cleanup and accounting.

Monltor
Basic Control System Integrity
Scheduling ond Swapping Initializotion ond Start-Up
Memory Management Operotor Communication
Job Step Control Batch Debugging
Terminal 1/O System Debugging
Symbionts and Cooperatives Load ond Link
File Management Public and System Libraries
Command System Llonguage Execution Service Application User Processors
Processors Management Processors Control Processors Processors R
Processors _— Processors (OBG)
LOGON/ - — FORTRAN IV (O8) - Edit (OG) Sort/Merge (B)
LOGOFF (OB) Super (OBG) Meta-Symbol (OB) tink (OB) PCL (OB) EDMS ()
TEL (O) Control (OBG) AP (OB) Lood (B) SYSGEN (OB) GpDS (B)
EASY (O) Rates (O) BASIC (OB) LYNX (OB) DEFCOM (OB) CIRC (OB)!
CCt (B) FILL (OG) FLAG (Op) Delta {O) SYMCON (OB) Manage (OB)
FSAVE {OB) ANS COBOL (OB) FDP (OB) ANt Z (OBG) Transaction Pro-
FRES (OB) APL (OB) cOBOL Batch (OBG) cessing (OB)
Fix (OBG) RPG (B) On-Line DRSP (OB)
VOLINIT (0BGSY] st-1 (0B Debugger (O) ELLA (OBG)
Label (B) Show (OB)
STATS (OBG) FROG (G)
Summary (OB)
SYSCON {OG!
GAC iOBG)
DEVDMP (S)
ONLIST (OBG)
PPS (G
Note: O on-line
B botch
G ghost
S stond-olone
'Progrom product (see glossory),
Figure 1. CP-V Operating System

System Overview

3

EASY

EASY is a shared processor that enables the user to create,
edit, execute, save, and delete program files written in
BASIC or FORTRAN. EASY also allows the user to create
and manipulate EBCDIC data files. Alrhough intended pri-
marily for Teletype® operations, EASY can be used with
any type of on-line terminal supported by the system.
(Reference: EASY/LN,CPS Reference Manual, 90 18 73.)

TERMIINAT EXLCUTIVE LANGUAGE

TEL is ihe deravit command processor tor time-sharing and
serves as the rerminagl user's interface to the various services
of CP~/ TEL is functionally equivalent to the batch mode
Control Command Interpreter. Sume of the functions per-
formed by TFL are:

1. Coiting user programs and ssstem processors.
2. Changing rhe log-on puss. ord,

3. Ausigmng Iy Qusvices ann SCB parameters.
4 Reguesting ¢ xiended inemory mode,

5. Determining on-line user srcrus,

6. Changing terminal platen sz,

7. Sending messages to the operdtor,

8. Logging off,

CONTROL COMMANGD INTERPRETER

ihe Control Command Interpreter is the batch counterpart
of TEL. It provides the batch user with control over the
processing of batch programs just as TEL provides on~line
users with control over the processing of on-line programs.
(Reference: CP-V/BP Reference Manual, 90 17 64.)

SYSTEM MANAGEMENT PROCESSORS

System management processors furnish the manager of a
CP-*/ instoliation with on-iine control of the system. Four-
‘een sysi¢ra management processors are supplied.

SUPER

Super gives the syster manager control over the entry of
users and the privileg » extended to users. Through the use
of Supe - commands, tl e system manager may add and delete
users, specify how much core and disk storage space a
user will have, spec fy low many central site magnetic
tape units a user will huve, grant certain users, such as
system programmers, speciar priviieges, (e.g., the privilege
of examining, accessing, and changing the monitar), and

®Rc,‘gisrered trademarx of the Teletype Corporation

5 Processors

individually authorize ordeny access to the various processors
for cach user. Super is also used to reute and delete remote
processing workstations. (Reference: Ci'~V,/SM Reference
Manual, 90 16 74,)

CONTROL

The Control processor provides control over system perfor-
mance, CP=V has a number of performance measurements
built directly into the system. Commands of the Control
processor enable the system manager to display these mea-
surements and to "tune" the system as needed by setting new
values for the parameters that control system performance,

(Reference: CP-V,”SM Reference Manual, 90 16 74.)

RATES

The Rates processor allaws the system manager to set relative
charge weights on the utilization of systemn services,

Specific items to which charge weights may be assigned
incluae

1. CPU time,

. CPU time multiplied by core size.

Terminal interactions,

1/0 CALs.

Console minutes.

Tapes and packs mounted.

Page-date storage.

©® N oL AL

. Peripheral I/O cards plus pages.

(Reference: CP-V/SM Reference Manual, 90 16 74.)

FIX

The Fix processor enables the system manager to repair or
delete damaged file directories. It also provides HGP
reconstruction for private disk pack sets and the public

file system. (Reference: CP-V/OPS Reference Man-
ual, 90 16 75.)

FILL

The FILL processor performs three basic file maintenance
functions:

1. It copies files from disk to tape as a backup.
2. It restores files from tape to disk.
3. It deletes files from disk.

(Reference: CP-V,/OPS Reference Manual, 90 16 75,)

FSAVE

The Fast Save (FSAVE) processor is designed to save disk
files on tape at or near tape speed. The processor is faster
than any other file saving procedure under CP-V. (Ref-
erence: CP-V/OPS Reference Manual, 90 16 75.)

FRES

The File Restore (FRES) processor is designed to restore to
disk files that were saved on tape by FSAVE or Fill. (Ref-
erence: CP-V/OPS Reference Manual, 90 16 75.)

VOLINIT

VOLINIT provides for the initialization of public and pri-
vate disk packs. It is used to establish serial numbers and
ownership, to write headers and other system information in
selected areas of the volumes, and to test the surface
of the disks and select alternate tracks to be used in
place of flawed tracks. (Reference: CP-V/OPS Reference
Manual, 90 16 75.)

LABEL

The Label processor initializes ANS tapes by writing ANS
formatted labels. It may also be used to create "unlabeled"
tapes from new tapes to be used as scratch tapes and to
print the contents of the header and trailer labels of
labeled tapes or the first 80 bytes of each block on un-
labeled tapes. (Reference: CP-V/OPS Reference Man-
val, 90 16 75.)

STATS

The STATS processor displays and collects performance data
on a running system and produces snapshot files to be dis-
played by the report generator Summary. (Reference:
CP-V/SM Reference Manual, 90 16 74.)

SUMMARY

The Summary processor provides a global view of system
performance by formatting and displaying the statistical
data collected by STATS. (Reference: CP-V/SM Reference
Manual, 90 16 74.)

SYSCON

SYSCON is a system control processor that can be used to
partition resources from the system, to return resources to
the system, and to display the status of the various system
resources, SYSCON can also be used to build, update, or
display the M:MODNUM file, a file which contains device
and controller model numbers. (Reference: CP-V/SM Ref-
erence Manual, 90 16 74.,)

GRANULE ACCOUNTING CLEANUP PROCESSOR (GAC)

The Granule Accounting Cleanup (GAC) processor correlates
information between the file DISKPOCL and the account
authorization file, :USERS. DISKPOOL is created by the
FSAVE processor and contains specific account information.
Each account record in DISKPOOL contains an entry for
accumulated public disk pack granules and an entry for ac-
cumulated RAD granules. When GAC is run, these accumu-
lated values are compared against the maximum values for
the corresponding accounts in the :USERS file and the user's
entry in the :USERS file is updated to reflect the latest
accumulated values for RAD and disk. When the accumu-
lated RAD or disk granules exceed the corresponding maxi-
mum values, this fact is noted in the report that is produced
by the GAC processor. (Reference: CP-V/OPS Reference
Manual, 90 16 75.)

DEVDMP

The Device Save/Restore processor (DEVDMP) is a stand-
alone utility program designed to dump entire disk volumes
to magnetic tapes for restoration at a later time. Restora-

tion may only be made to an identical storage unit. (Ref-
erence: CP-V/OPS Reference Manual, 90 16 75.)

LANGUAGE PROCESSORS

Language processors translate high-level source code into
machine object code. Eight processors of special importance
are described below. All of these can be used in both on-
line and batch mode.

XEROX EXTENDED FORTRAN 1V

The Xerox Extended FORTRAN 1V language processor con-
sists of o comprehensive algebraic programming language, a
compiler, and a large library of subroutines. The language
is a superset of most available FORTRAN languages, con-
taining many extended language features to facilitate pro-
gram development and checkout. The compiler is designed
to produce efficient object code, thus reducing execu-
tion time and core requirements, and to generate extensive
diagnostics to reduce debugging time. The library contains
over 235 subprograms and is available in a reentrant ver-
sion. Both the compiler and run-time library are reentrant
programs that are shared among all concurrent users to re-
duce the utilization of critical core resources,

The principal features of Xerox Extended FORTRAN 1V are
as follows:

e Extended language features to reduce programming
effort and increase range of applications,

e Extensive meaningful diagnostics to minimize debug-
ging time.

Processors 5

e In-line symbolic code to reduce execution time of
critical parts of the program.

® Overlay orgonization for minimal core memory
utilization.

o Compiler produced reentrant programs.

(Reference: Extended FORTRAN IV/LN Reference Man-
val, 90 09 56, and Extended FORTRAN IV/OPS Reference
Manual, 90 11 43.)

META-SYMBOL

Meta-Symbol is a procedure-oriented macro assembler. It
has services that are available only in sophisticated macro
assemblers and a number of special features designed to
permit the user to exercise dynamic control over the para-
metric environment of assembly. It provides users with a
highly flexible language with which to make full use of
the available hardware capabilities.

Meta-Symbo!l may be used in either batch or on-line mode.
When used in on-line mode, the assembler allows programs
to be assembled and executed on-line but does not allow
conversational interaction,

One of the many Meta-Symbol features is a highly flexible
list definition and manipulation capability. In Meta-
Symbol, lists and list elements may be conveniently rede-
fined, thus changing the value of a given element.

Another Meta-Symbol feature is the macro capability.
Xerox uses the term "procedure" to emphasize the highly
sophisticated and flexible nature of its macro capability.
Procedures are assembly-time subroutines that provide the
user with an extensive function capability. Procedure def-
inition, references, and recursions may be nested up to

32 levels.

Meta-Symbol has an extensive set of operators to facilitate
the use of logical and arithmetic expressions. These opera-
tors facilitate the parametric coding capabilities available
with Meta-Symbol (parametric programming allows for dy-
namic specification of both "if" and "how" a given state~
ment or set of statements is to be assembled).

Meta-Symbol users are provided with an extensive set of
directives. These directives, which are commands intrinsic

to the assembly, fall into three classes:

1. Directives that involve manipulation of symbols and
are not conditionally executed.

2. Directives that allow parametric programming.

3. Directives that do not allow parametric programming.

A number of intrinsic functions are also included in Meta-
Symbol. These give the user the ability to obtain informa-

tion on both the structure and content of an assembly time
construct. For example, the user can acquire information

6 Processors

on the length of a certain list, He can inquire about a
specific symbol and whether it occurs in a procedure refer-
ence. (Reference: Meta-Symbol/LN, OPS Reference Man-
val, 90 09 52.)

AP

Assembly Program (AP) is a four-phase assembler that reads
source language programs and converts them to object lan-
guage programs. AP outputs the object language program,

an assembly listing, and a cross reference (or concordance)
listing. AP is available in both the on-line and batch

modes.,

The following list summarizes AP's more important features
for the programmer:

e Self-defining constants that facilitate use of hexa~
decimal, decimal, octal, floating~point, scaled fixed-
point, and text string values.

e The facility for writing large programs in segments
or modules. The assembler will provide information
necessary for the loader to complete the linkage be-
tween modules when they are loaded into memory.

e The label, command, and argument fields may contain
both arithmetic and logical expressions, using constant
or variable quantities.

e Full use of lists and subscripted elements is provided.

e The DO, DOT1, and GOTO directives allow selective
generation of areas of code, with parametric constants
or expressions evaluated at assembly time,

e Command procedures allow the capability of generating
many units of code for a given procedure call line,

e Function procedures return values to the procedure call
line. They also provide the capability of generating
many units of code for a given procedure call line,

e Individual parameters on a procedure call line can be
tested both arithmetically and logically.,

® Procedures may call other procedures, and may call
procedures recursively.

BASIC

BASIC is a compiler and programming language based on
Dartmouth BASIC. It is, by design, easy to teach, leamn,
and use. It allows individuals with little or no programming
experience to create, debug, and execute programs via an
on=line terminal. Such programs are usually small to medium
size applications of a computational nature,

BASIC is designed primarily for on-line programdevelopment
and execution, or on-line development and batch execu-
tion. In addition, programs may be developed and executed
in batch mode,

BASIC provides two user modes of operation. The editing
mode is used for creating and modifying programs. The
compilation/execution mode is used for running completed
programs. This arrangement simplifies and speeds up the
program development cycle.

Statements may be entered via a ferminal and immediately
executed. The principal benefit of direct execution is on-
line development of programs and short simple computations.
During execution, programs may be investigated for loop
detection, snapshots of variables may be obtained, values
of variables may be changed, flow of execution may be re-
routed, and so on. This unique capability allows an on-
line terminal to be used as a “super® desk calculator.

At compile and execute time, the user may specify if an
array dimension check is to be made. In the safe mode,
statements are checked to verify that they do nof reference
an array beyond its dimensions. In the fast mode, this
time consuming check is not made. Thus, the safe mode
could be used during checkout, and the fast mode could be
used fo speed up execution when the program reaches the
production stage.

BASIC provides an image statement that uses a "picture” of
the desired output format to perform editing. It also has
TAB capability and a precision option to indicate the num-
ber of significant digits (6 or 16) to be printed.

An easy-to-use feature is provided to allow the user to read,
write, and compare variable alphanumeric data. This is
particularly important for conversational input processing.

Chaining permits one BASIC program to call upon another
for compilation and execution without user intervention.
Thus, programs that would exceed user core space may be
segmented, and overlay techniques may be employed via
the chaining facility. (Reference: BASIC/Reference Man-
val, 90 15 46.)

FLAG

FLAG (FORTRAN Load and Go) is an in-core FORTRAN
compiler that is compatible with the FORTRAN IV-H class
of compilers. It can be used in preference to the other
FORTRAN compilers when users are in the debugging phase
of program development. FLAG is a one-pass compiler and
uses the Extended FORTRAN 1V library. Included in the
basic external functions are the Boolean functions IAND
(AND), IEOR (exclusive OR), and IOR (OR), which give
the FORTRAN user a bit manipulation capability.

If several FLAG jobs are to be run sequentially, they may
be run in a sub~job mode, thus saving processing time nor-
mally needed for the Control Command Interpreter (CCI) to
interpret the associated control cards, In this mode,
FLAG will successively compile and execute any number
of separate programs, thereby reducing monitor overhead.

The FLAG debug mode is a user-selected option that gener-
ates extra instructions in the compiled program fo enable

the user, during program execution, to detfect errors in pro-
gram logic that might otherwise go undetected or cause un-
explainable program failure. (Reference: FLAG/Reference
Manual, 90 16 54.)

ANS COBOL

The Xerox ANS COBOL compiler offers the user a powerful
and convenient programming language facility for the im-
plementation of business or commerical applications. The
language specifications fully conform to the proposed ANSI
standard for the various functional processing modules.
Only those language elements that cause ambiguities or are
seldom used have been deleted. The compiler's design
takes full advantage of the machine's unique hardware
features, resulting in rapid compilation of source code,
rapid execution of the resulting object code, and the gen-
eration of compact programs. The resultis a highly efficient
programming system requiring @ minimum amount of storage.

Xerox ANS COBOL contains many facilities that are either
not found in other systems or, if available, are provided
only at greater cost in terms of equipment required. Some
of the facilities that provide more flexibility and ease of
use in program development include

1. Implementation of table handling mode.

2. Sort/merge linkage.

3. Sequential access,

4. Random access linkage.

5. Segmentation.

6. Report writer.

7. Library utilization.

8. Calling sequence for FORTRAN, Meta-Symbol, etc.

9. Packed decimal as well os floating-point arithmetic
formats.

10. Data name series options for ADD, SUBTRACT, MUL-
TIPLY, DIVIDE, and COMPUTE verbs.

Processors 7

The system provides the user with o comprehensive set of
aids to minimize the time required to print "bug-free" pro-
grams in the form of listings. These listings include

1. The source language input to the compiler with inter-
spersed English language diagnostic messages.

2. An optional listing of the relocatable binary output,
printed in line number sequence identical to the source
language listing.

3. A cross—reference listing, indicating by line number
where each data name or paragraph name is defined in
the COBOL program and where each reference is
located.

In addition, at run time, the user may use TRACE and
EXHIBIT to follow execution of the procedure division.

The compiler is designed to take full advantage of high-
speed, random access secondary storage (e.g., RAD stor-
age). This feature means faster job execution because of
minimized 1/O delays, and smaller core memory require-
ments because of rapid overlay service. (Reference: ANS

COBOL/LN Reference Manual, 90 15 00.)

APL

APL is an acronym for A Programming Language, the lan-
guage invented by Kenneth Iverson. It isan interpretive,
problem-solving language. As an interpretfive language,
APL does not wait until a program is completed to compile
it into object code and execute it; instead, APL interprets
each line of input as it is entered to produce code that is
immediately executed. As a problem-solving language,
APL requires minimal computer programming knowledge; a
problem is entered into the computer and an answer is re~
ceived, all in the APL language.

Because APL is powerful, concise, easy to learn, and easy
to use, it is widely used by universities, engineers, and
statisticians. It also has features that make it attractive
for business applications where user interaction and rapid
feedback are key issues. One of APL's major strengths is
its ability to manipulate vectors and multidimensional arrays
as easily as it does scalar values. For example, a matrix
addition that might require @ number of statements and
several loops in other languages can be accomplished as
A+B in APL. This type of simplification exemplifies APL's
concise power. (Reference: APL/LN,OPS Reference Man-
val, 9019 31,)

8 Processors

RPG

Xerox RPG (Report Program Generator) is a convenient
means of preparing reports from information available in
computer-readable forms, such as punched cards, magnetic
tape, and magnetic disks, In addition, it is a means of
establishing and updating files of information, usually in
conjunction with preparation of reports.

RPG provides its capabilities through generation (compila-
tion) of object programs, each of which is tailored to pro-
duce adifferent set of reporting results and/or file processing
desired by the user. The RPG object programs are capable
of accepting input data, retrieving data from existing files,
performing calculations, changing formats of data, updating
existing files, creating new files, comparing data values

to one another and to specified constants to determine
appropriate handling, using user—defined processing sub-
routines, using system library subroutines, and printing re-
ports derived from the input and file data.

Xerox RPG has several advantages over the more traditional
method of writing object programs in a symbolic programming
language. The RPG language is oriented toward the user's
problem, describing reporting requirements, rather than
toward the mechanics and manipulations of computer usage.
The language and specification techniques are easily learned.
A user can become proficient in RPG after writing only a
few programs, whereas an equal facility in symbolic pro-
gramming would require considerable experience. (Ref-
erence: RPG/Reference Manual, 90 19 99.)

SIMULATION LANGUAGE (PROGRAM PRODUCT)

The Simulation Language (SL-1) is a simplified, problem-
oriented digital programming language designed specifically
for digital or hybrid simulation. SL-1 is a superset of CSSL
(Continuous System Simulation Language), the standard
language specified by Simulation Councils, Inc., for
simulation of continuous systems. It exceeds the cap-
abilities of CSSL and other existing simulation languages

by providing hybrid and real-time features, interactive
debugging features, and a powerful set of conditional trans-
lation features.

SL-1is primarily useful in solving differential equations, a
fundamental procedure in the simulation of parallel, con-
tinuous systems. To perform this function, SL-1 includes

six integration methods and the control logic for their use.

In hybrid operations, SL-1 automatically synchronizes the

problem solution to real-time and provides for hybrid input
and output.

Because of the versafility of Xerox computing systems and
the broad applicability of digital and hybrid simulation

fSee "program product” in glossary,

techniques, applications for SL-1 exist across the real~time
spectrum. The library concept of SL-1 allows the user
to expand upon the Xerox supplied macro set and facil-
itates the development of macro libraries oriented to any
desired application. (Reference: SL-1/Reference Man-
val, 90 16 76.)

EXECUTION CONTROL PROCESSORS

Processors in this group control the execution of object pro-
grams. Delta and COBOL On-Lline Debugger can be used
in on=line mode only. Load can be used in batch mode
only. Link and FDP can be used in either batch or on-
line mode.

LINK

Link is a one=-pass linking loader that constructs a single
entity called a load module, which is an executable pro-
gram formed from relocatable object modules (ROMs). Link
is designed to make full use of mapping hardware. 1t is not
an overlay loader. If the need for an overlay loader exists,
the overlay loader (Load) must be called and the job must
be entered in the batch stream. (Reference: CP-V/TS
Reference Manual, 90 09 07.)

LOAD
Load is a two-pass overlay loader. The first pass processes
1. All relocatable object modules (ROMs).

2. Protection types and sizes for contro! and dummy sec-
tions of the ROMs.

3. Expressions for definitions and references (primary,
secondary, and forward references).

The second pass forms the actual core image and its re-
location dictionary. (Reference: CP-V/BP Reference Man-
ual, 90 17 64.)

LYNX

LYNX is a load processor that is available in both the on-
line and batch modes. LYNX has most of the capabilities
of the overlay loader and also provides the same control
over internal and global symbol table construction which is
available in the Link loader. LYNX may be viewed as a
preprocessor for the overlay loader. After it analyzes the
user's commands, it constructs a table of loader control in-
formation which it then passes to the overlay loader. It is
the overlay loader which actually performs the loading
process.

DELTA

Delta is designed to aid in the debugging of programs at
the assembly-language or machine-language levels. It
operates on object programs and tables of internal and glo-
bal symbols used by the programs but does not require that
the tables be at hand. With or without the symbol tables,
Delta recognizes computer instruction mnemonic codes and
can assemble machine-language programs on an instruction-
by-instruction basis. The main purpose of Delta, however,
is to facilitate the activities of debugging by

1. Examining, inserting, and modifying such program
elements as instructions, numeric values, and coded
information (i.e., data in all its representations and
formats).

2. Controlling execution, including the insertion of break-
points into a program and requests for breaks on
changes in elements of data.

3. Tracing execution by displaying information at desig~
nated points in a program.

4. Searching programs and data for specific elements and
subelements.

Although Delta is specifically tailored to machine language
programs, it may be used to debug any program. Delta is
designed and interfaced to the system in such a way that it
may be called in to aid debugging at any time, even after
a program has been loaded and execution has begun. (Ref-
erence: CP-V/TS Reference Manual, 90 09 07.)

FORTRAN DEBUG PACKAGE

The FORTRAN Debug Package (FDP) is made up of special
library routines that are called by Xerox Extended FOR-
TRAN IV object programs compiled in the debug mode.
These routines interact with the program fo detect, diag-
nose, and in many cases, repdir program errors.

The debugger can be used in batch and on-line modes. An
extensive set of debugging commands are available in both
cases. In batch operation, the debugging commands are
included in the source input and are used by the debugger
during execution of the program. In on-line operations,
the debugging commands are entered through the terminal
keyboard when requested by the debugger. Such requests
are made when execution starts, stops, or restarts. The de-
bugger normally has control of such stops.

In addition to the debugging commands, the debugger has

a few automatic debugging features, One of these features
is the automatic comparison of standard calling and receiv-
ing sequence arguments for type compatibility. Whenappli-
cable, the number of arguments in the standard calling se-
quence is checked for equality with the receiving sequence.
These calling and receiving arguments are also tested for
protection conflicts. Another automatic feature is the test-
ing of subprogram dummy storage instructions to determine if
they violate the protection of the calling argument. (Ref-
erence: FDP/Reference Manual, 90 16 77.)

Processors 9

COBOL ON-LINE DEBUGGER

The COBOL On-line Debugger is designed to be used with
Xerox ANS COBOL, The debugger is a special COBOL
run-time library routine that is called by programs compiled
in the TEST mode. This routine allows the programmer to
monitor and control both the execution of his program and
the contents of data-items during on-line execution. The
debugger also allows the COBOL source program to be
examined and modified.

The debugger can only be used during on-line execution;
however, programs that have been compiled for use with
the debugger may be run in the batch mode. This is not
recommended, though, because of the increased program
size when the TEST mode is specified. (Reference: ANS
COBOL/On-~line Debugger Reference Manual, 90 30 60.)

SERVICE PROCESSORS

The processors in this group perform general service func-
tions required for running and using the CP-V system.

EDIT

The Edit processor is a line-at-a-time context editor desig-~
nated for on-line creation, modification, and handling of
programs and other bodies of information. All Edit data is
stored on disk storage in a keyed file structure of sequence
numbered, variable ength records. This structure permits
Edit to directly access each line or record of data.

Edit functions are controlled through single line commands
supplied by the user. The command language provides for
insertion, deletion, reordering, and replacement of lines

or groups of lines of text. It also provides for selective
printing, renumbering records, and context editing opera-
tions of matching, moving, and substituting line-by-line
within a specified range of text lines. File maintenance
commands are also provided to allow the user to build, copy,
merge, and delete whole files. (Reference: CP-V/TS Ref-
erence Manual, 90 09 07.)

PERIPHERAL CONVERSION LANGUAGE

The Peripheral Conversion Language (PCL) is a utility sub-
system designed for operation in the batch or on-line en-
vironment. It provides for information movement among
card devices, line printers, on-line terminals, magnetic
tape devices, disk packs, and RAD storage.

PCL is controlled by single-line commands supplied through
on-line terminal input or through command card input in the
job stream. The command language provides for single or

multiple file transfers with options for selecting, sequencing,

10 Processors

formatting, and converting data records. Additional file
maintenance and utility commands are provided, (Reference:
CP-V/TS Reference Manual, 90 09 07 and CP-V/BP Ref-
erence Manual, 90 17 64,)

SYSGEN

SYSGEN is made up of several processors. These proces-
sors are used to generate a variety of CP-V systems that are
tailored to the specific requirements of an installation. The
SYSGEN processors are PASS2, LOCCT, PASS3, and DEF.
PCL is used to select from various sources the relevant
modules for system generation. PASS2 compiles the required
dynamic tables for the resident monitor. LOCCT and PASS3
file away and execute load card images to produce load
modules for the monitor and its processors. DEF writes a
monitor system tape that may be booted and used. (Refer~
ence: CP-V/SM Reference Manual, 90 16 74.)

DEFCOM

DEFCOM makes the DEFs and their associated values in one
load module available to another load module. It accom-
plishes this by using a load module as input and by produc-
ing another load module that contains only the DEFs and
DEF values from the input module. The resultant load
module of DEFs can then be combined with other load
modules. DEFCOM is used extensively in constructing the
monitor and the shared run-time libraries. (Reference:

CP-V/BP Reference Manual, 90 16 64.)

SYMCON

The Symbo! Control Processor (SYMCON) provides a means
of controlling external symbols in a load module and of
building a global symbol table. Its primary function is to
give the programmer a means of preventing double defini-
tions of external symbols. It may also be used to reduce
the number of external symbols. For example, if certain
load modules cannot be combined because their control
tables are too large, the tables may be reduced in size by
deleting all but essential external symbols. (Reference:
CP-V/BP Reference Manual, 90 17 64.)

ANLZ

ANLZ provides the system programmer with a means of ex-
amining and analyzing the contents of dumps taken during
system recovery, It is called automatically by the Automa-
tic Recovery Procedure and is executed as a ghost job, It
may also be called by the operator to analyze tape dumps
when recovery is not possible, or by an on-line user to
examine crash dumps or the currently running monitor.
(Reference: Chapter 4,)

BATCH

The Batch processor is used to submit a file or a series of
files to the batch queue for execution. Through Batch pro-
cessor commands, the following capabilities are available:

1. A file may be inser*~d into a fi'e being submitied for
execution, thus bringing toget!.er more than one file
to create a single job.

2. Selected strings ond fields existing in files being sub-
mitted for execution may be replaced by new strings
and fields.

3. The results of string ond field replacements can be
examined before the job Is submitted to the batch
stream,

4. Files to be submitted for execution may reside on tape
or private disk pack,

5. Jobs may be submitted to run in an account other than
the account from which the job s submitted.

The Batch processor may be called in either the on-line or
the batch mode. (Reference: CP-V/TS Reference Man-
val, 9009 07.)

DRSP

DRSP (Dynamic Replacement of Shared Processors) enables

the system programmer to dynamically add, reploce, or

delete processors during normal system operation with other
users in the system. (Reference: Chapter 7.)

ELLA

The Error Log Listing program (ELLA) provides an efficient
tool to list and sort the error data base which is automati-
cally generated and updated by the CP-V system. (Refer-
ence: Chapter 6,)

SHOW

The Show processor allows the user to display his current
maximum system services and resources, the peripheral de-
vices that he has been authorized to use, and several other
system user parameters. (Reference: CP-V/BP Reference
Manual, 90 17 64.)

APPLICATION PROCESSORS

The application processors are intended for use for specific
types of applications,

SORT/MERGE

The Xerox Sort/Merge processor provides the user with o
fast, highly efficient method of sequencing @ nonordered
file. Sort may be called as o subroutine from within a user's
program or as a batch processing job by control cards. 1t
is designed 1. operate efficiently in @ minimum hardware
environment. Sorting can take place on from 1 to 16 keys
and each individual key field may be sorted in ascending
or descending sequence, The sorting technique used is
that of replacement selection tournament and offers the
user the flexibility of changing the blocking and logical
record lengths In explicitly structured files to different
values in the output file.

The principal highlights of Sort are as follows:

1. Sorting capability allows either magnetic tapes, disks,
or both.

2. Linkages allow execution of user's own code.

3. Sorting on from 1 to 16 key fields in ascending or
descending sequence is allowed. Keys may be al-
phanumeric, binary, packed decimal, or zoned deci-
mal data.

4. Records may be fixed or variable length.
5. Fixed length records may be blocked or unblocked.

6. Disks may be used as file input or output devices, or
as intermediate storage devices.

7. Sort employs the read backward capability of the tape
device to eliminate rewind time.

8. User-specified character collating sequence may be
used.

9. Buffered input/output is used.

(Reference: Sort-Merge/Reference Manual, 90 11 99.)

EDMS (PROGRAM PRODUCT)!

EDMS is o generalized data management system that enables
the user to create an integrated data base. It is designed
to be used with COBOL, FORTRAN, and Meta-Symbol pro-
cessors. It simplifies programming by performing most of
the 1/0 logic and data base management for the applica-
tion programmer.

’See “program product’ in glbssary.

Processors n

The principal features of EDMS are as follows:

e The user can describe data in various data structures.
Using sets, any element can be related to any other
element. The data structures include lists and hier-
archies (trees). The two relationships can be combined
to form extensive networks of data.

e Access techniques include random, direct, indexed,
and indirect (relative to another record).

e An EDMS data base may consist of up to 64 monitor
files.

® Multiple secondary indexes can be defined by the user
to allow records to be retrieved via any combination
of secondary record keys.

e Users may construct any number of logical files or data
bases within an EDMS file.

® Data is described separately from the user program to
facilitate management of the data base.

o Comprehensive security exists at all levels of a file.

e Journalization provides an audit trail for backup and
recovery,)

e A dynamic space inventory is maintained to facilitate
rapid record storage and to optimize the use of avail-
able storage space.

¢ Detailed data description is provided for inclusion inta
the user's application program to reduce programming

effort.

e File 1/0 logic is performed for the user program
including

1. Logical or physical record deletion.
2. Record retrieval on random or search basis,
3. Record insertion or modification.

(Reference: EDMS/Reference Manual, 90 30 12.)

GPDS (PROGRAM PRODUCT)

The General Purpose Discrete Simulator provides engineers
and administrators, whose programming experience is mini~
mal, with a system for experimenting with and evaluating
system methods, processes, and designs. Providing a means
for developing a broad range of simulation models, it allows
organizing, modeling, and analyzing the structure of a sys-
tem, observing the flow of traffic, etc. Potential applica~
tions include

e Advanced management planning.

e Analysis of inventory or financial systems,

i2 Processors

® Studies of message switching and communications
networks,

e Risk and capital investment studies.
® Evaluation and data processing systems,
e Job shopand queuing studies.

Although GPDS is compatible with other simulator systems,
it has a number of salient features not usually found in
competitive versions. (Reference: GPDS ‘Reference Man-
val, 9017 58.)

MANAGE (PROGRAM PRODUCT)!

Manage is a generalized file management system. It is
designed to allowdecision makers to make use of the computer
to generate and update files, retrieve useful data, and gen-
erate reports without having a knowledge of programming.

Manage consists of four subprograms: Dictionary, Fileup,
Retrieve, and Report. The Dictionary subprogram is a data
file and is the central control element in the Manage sys-
tem, It consists of definitions and control and formatting
parameters that precisely describe the characteristics of a
data file. The Fileup subprogram initially creates and then
maintains a data file, The Retrieve subprogram extracts data
from a data base file according to user-specified criteria.
The Report subprogram automatically prepares printed reports
for data extracted by the Manage retrieval program. (Ref-
erence: Manage/Reference Manual, 90 16 10.)

CIRC (PROGRAM PRODUCT)!

CIRC is a set of three computer programs for electronic cir-
cuit analysis: CIRC-DC for dc circuit analysis, CIRC-AC
for ac circuit analysis, and CIRC-TR for transient circuit
analysis. The programs are designed for use by a circuit
engineer, and require little or no knowledge of programming
for execution

CIRC can be executed with three modes of operation pos-
sible: conversational (on-line) mode, terminal batch entry
mode, and batch processing mode. The system manager will
determine which of these modes are available to the engi-
neer, based on type of computer installation and other in-
stallation decisions.

® The on-line mode offers several advantages since it
provides true conversational interaction between the
user and computer. Following CIRC start-up procedures,
CIRC requests a control message from the user. After
the control message is input (e.g., iterate a cycle of
calculations with changed parameters) the computer
responds (via CIRC) with detailed requests for appli-
cation data, These requests are sufficiently detajled to

LP
See "program product" in glossary.

virtually eliminate misunderstandings by the engineer,
This mode is highly useful in o highly interactive en-
vironment that produces a low volume of output and
requires limited CPU time.

e The terminal batch entry mode allows efficient handling
of high volume ou st and large CPU time re-juirements
while preserving i : advantages of the terminal as an
Iinput device. Two files are required, one containing
all CIRC input including a circult description and
control messages and the other directing the execution
of CIRC. The job is entered from the terminal into the
batch queue and treated like a batch job.

e The batch mode should generally be used for jobs in-
volving large volumes of computations and outputs. 1t
enables the user to concentrate on data preparation
with virtually no involvement in programming consider-
ations, The system manager can provide a set of
start-up cards that never change, and these will con-
stitute the entire interface between user and executive
software. However, the batch mode offers less flexi-
bility in experimenting with a circuit and slower
turnaround time in obtaining answers.

(References: CIRC-AC/Reference Manual and User's Guide,
90 16 98, CIRC-DC/Reference Manual and User's Guide,
90 16 97, and CIRC-TR/Reference Manual and User's
Guide, 90 17 86.)

USER PROCESSORS

Users may write their own processors and add them to
CP-V or replace CP-V processors. The rules governing the
creation and modification of processors are described in
Chapter 7.

MONITOR

The monitor responds to the moment-by-moment require-
ments of controlling machine operation, switching between
programs requiring service, and providing services at the
explicit request of the user's progroam. The monitor pro-
grams that perform these functions are listed below,

1. Basic Control.

. Scheduling and Swapping.

Memory Management,
File Management,
Multibatch Job Scheduling.

Resource Management.

NS o oa e

Job Step Control,

8. Terminal I/O Handling.

Symbionts.
10. Cooperatives.
11. System Integrity.
12, Initial: ation and Start-up,
13. Operator Communications,
14, Batch Debugging.
15. Load-and-Link.
16. System Debugging.

The basic control system is an 1/O interrupt service and

handling routine. It includes trap and interrupt handlers,
routines that place requests for /O in a queue, and basic
device I/O handling routines.

The scheduling and swapping module makes the decision to
swap, selects the users to swap in and out, sets up the 170
command chains for swap transfers, and selects the next uses
for execution. It also ensures that any associated, but not
currently resident, shared processors are brought in with
each user. Speciol algorithms control 1/O scheduling and
the balance of machine use between on-line and batch.

The memory management module controls the use of core
and disk storage. Specifically, it controls the allocation of
physical core memory, maintains the map and access images
for each user, services the "get" and "free" service calls
for memory pages, and manages the swapping disk space.

File management routines control the content and access to
physical files of information. These routines perform such
functions as indexing, blocking and deblocking, managing
of pools of granules on RADs and disk packs, labeling, la-
bel checking and positioning of magnetic tape, formatting
for printer and card equipment, and controlling access to
and simultaneous use of o hierarchy of files.

The multibatch job scheduling routines select jobs to be run
from the waiting input queue depending on priority and re-
source and partition availability.

Resource management facilities keep track of the number
of resources of each kind (i.e., tape drives, disk spindles,
core) that are in use. For a batch job, the multi-batch
scheduler compares the resources required with the availi-
able resources and does not start the job until sufficient
resources are available. Once the job is started, the re-
sources that are required by the job are reserved for the
excluslive use of the job, thereby guaranteeing that they
will be available for the duration of the job.

Monitor 13

Job step conticlioutines o e entered between major segments
of a job or an on-line ses-ion. They perform the monitor
functions requited be*weer job steps such as

1. Processing errcr exii ind ahort CAls.
2. Handling monirs. aborts,

3. Processiryg intersts fise exits to associated shared pro-
cessors oi to lond wioyiam modules.

4. Merging DCB cssigoments for execution,
5. Checking user uvilaiization for individual processors,

6. Fetching program luad medifes into core.

Terminal 1. ¢ hondiing oovtines perform read-write Luffer-
ing g and exterral inte cint Mn 1ing for 1°0 directed to user
terminals. These ioutires aiso translata character codes,
insert page heudeys sea VIO cantral characters, simulate

tabs, and perform other formatting tasks,

Front End Communicativrs P ewor (FECP) contro) routines

handle the 17C berwee. ioe FECP and the host computer,
control over the FECP,

The routines aise oo ide perats
retiubility, maintainability,

including bocting and va i
and availakility facilitie.

Symbiont routines transfer data from the card reader to log-~
ical device streams on disk storage and from logical device
streams on disk storage to the card punch or line printer,

Coop_erohve rmmnes intercept read, print, or punch com-
mands in user programs and transfer dorc: from or to logical
device streams residing on disk storage. The input coopera-
tive simulates curd reading fron: ¢ logical device stream.
The output ceoperative builds ¢ logical device stream using
intercepted program output Jirected by the user program to
a line printec or card punch,

System integrity facilities provide error detection and re-

covery capabilities This includes security to user files and
automatic high-speed restart in case of system failure. Suf-
ficient information is recorded to isolate errors and failures

caused by hardware ui software.

Initialization and start-up routines are stored on tape and
are bocted into core storage, After they are in core, they
load the monitor root into core and turn control over to the
root. The monitor root then completes the initialization
of the monitor by starting and running the program called
GHOST1 which completes the patching of the system and
the initialization of the swapping disk and hardware,

QOperatar communication routines provide for communica-
tion between the monitor and the operator. They transmit
messages to the operator and process key-~ins raceived from
the operator,

i4 Monitor

Batch debugging routines provide hatch programs with
debugging capability through the use of procedure calls.
Any batch progium moy take a snapshot dump of a specified
segment of memory, either on an ucconditional or a con-
ditional basis.

System debugging routines provide debur ;.- services to
system programmers, Three debugging routines are avail-
able. They are

). Executive Delta: This is a stand-alone processor and
is essentially the same as on-line Delta. Executive
Delta is optionally loaded at boot time along with the
root of the monitor and monitor system tables.

2. Analyze This program is intended for debugging CP-V
crash dumps. To accomplish this, it performs two
majars furctions

a. It summarizes the compiete software environment
at the time of the crash in a series of rables,

b. It permits on-line interactions simiiar to Delta,

3. Recover: This program provides the “bail~out" exit
from the monitor, The error code that is transmitted
ta RECOVER defines the problem and the module that
discovered the problem.

Load-and-link routines give batch programs three types of
loading und finking capability. Through the use of proce-
dure calls, a batch program may

1. Load an overlay segment into core storage.

2. Store the calling program on disk storage, load the
called program into core storage, and transfer control
to the called program,

3. Load a program into core storage, transfer control to
the called program, and release the core area used by
the calling program,

4. Pass a command line to the called program.

CP-V has two types of FORTRAN libraries. One type isa
public library and the other is a system library, In the

standard release of CP-V, there are thrae F ORTRAN public
libraries. One library (P1)contains a useful set of Extended
F ORTRAN IV run-time library routines; another (PO) contains
P1 and the FORTRAN Debug Package; the third (P4) con-
tains Pl and the FORTRAN real~time features. These three
libraries areso constructed that a single copy is shared among

all concurrent users. The system |ibrary contains a collec~
tion of routines that are lass frequently used than the public
library routines. They are in library load module form and
are loaded only with programs that reference them.

SCHEDULING AND MEMORY MANAGEMENT

Scheduling and memory management routines control the
overall operation of the system. Inputs to these routines,
together with the current status of users as recorded by the

cheduler, are used to change the position of each user in
the scheduling status queues, It is from these queues that
selections are made for both swapping and execution. Swaps
are set up by the selection of a high priority user that is fo
be brought into core and by pairing this user with one or
more low priority users that are fo be transferred to disk
storage. Similarly, the highest priority user in core is
selected for execution.

SCHEDULER INPUTS

System activities are reported by direct entry to the sched-
uler, which makes changes to user status queues through a
logical signaling table. The scheduler records inputs by
changing the user status queues and other information asso-
ciated with the user. In general, a table-driven technique
is used. The received signal is on one coordinate and the
current state of the user is on the other, The table entry
thus defined names the routine to be executed in response
to the given signal-state combination. Since the number
of signals and states is large, the table technique aids in
debugging by forcing complete specification of all the pos-
sibilities. Inputs to the scheduler are listed in Table 1.
The scheduler also receives control at execution of each
CAL issued by a user program that is requesting monitor
service. These entries (Table 2), special entries from the
command processors, and entries from internally reported
events drive the scheduling of the system,

Table 1. Event Inputs Received by Scheduler

Event Meaning

E:ABRT Operator aborted user,

E:AP Associate shared processor with user.

E:ART Activate real-time user. Interrupt has
occurred,

E:CBA COC buffer available.

E:CBK Break signal received.

E:CBL Number of output characters > SL:TB.

E:CEC TEL request (0, ®Y, or Y©).

E:CFB Cannot find COC buffer,

E:CIC Terminal input message complete.

E:CRD Read terminal command received.

E:CUB Number of output characters = SL:UB.

E:DPA RAD page available.

E:ERR Operator errored user,

E:IC 1/O complete.

Table 1. Event Inputs Received by Scheduler (cont.)

Event Meuniné

E:1IP 1/O started and now in progress.

E:IP Request permission to start 1/0.

E:KO User removed from core.

E:NC Cannot get requested core pages.

E:ND Cannot get requested disk page.

E:NOCR User allowed to open or close file.

E:NSYMD No symbiont disk space.

E:NSYMF No symbiont file entry.

E:NQR Enqueuve release — resource available.

E:NQW Enqueue — wait for resource.

E:OCR Request permission to open or close file.

E:OFF User has hung up telephone.

E:QA User queued for access (e.g., for access
to tape or disk pack).

E:QE Quantum end.

E:QFAC No granules available for use.

E:QFI Real-time user. Queue for interrupt.

E:QMF Queue for 1/O master function count too
high.

E:SL Sleep time for user.

E:SYMF Symbiont file now available.

E:SYMD Symbiont disk space now available.
E:UQA User dequeued for access (e.g., for ac-
cess to tape or disk pack).

E:UQFAC ALLOCAT has refreshed granule stacks.
E:WU Wake-up time for user.

Monitor

15

Table 2. Service Request Input to Monitor

Source of Inputs Service Request Entries

User program 1. Terminal input/output request.

(through monitor

service calls
et) 2. Input/output service calls for

RAD, disk pack, or magnetic
tape.

3. Wait request.
4. Program exit (complete).

5. Core request (for common,
dynamic, or specific pages).

6. Real-time services.

7. Program overlay (load and
link, load and transfer).

8. Debug requests,

9. Miscellaneous service requests.

Command 1. Name of system programs to
processor be loaded and entered (im-
plies deletion of any current
program).

2. Continuation signal.
3. Special continuation address.

4, Link load-and-go-exit.

SCHEDULER OUTPUT

The scheduling routine performs two major functions during
the time it is in control of the computer. The first function
consists of setting up swaps between main core memory and
secondary disk storage in such a way that high priority users
are brought into core to replace low priority users that are
transferred to disk storage. The actual swap is controlled
by an /O handler according to specifications prepared by
the scheduler, These specifications are prepared according
to the priority state queues described in the next section.
Given a suitably large ratio of available core to average
user size (greater than 4), the scheduler can keep swaps
and computing close to 100 percent overlapped.

16 Monitor

The second function the scheduler performs consists of
selecting a user for execution according to the priority state
queves and the rules for batch processing. The rule is
simple: the highest priority user whose program and data
are in core is selected.

USER STATUS QUEUES

Status queues form a single priority structure from which se-
lections for swapping and execution are made. The status
queues form an ordered list with one and only one entry for
each user. The position in queue is an implied bid for
the services of the computer. As events are signaled to the
scheduler, individual users move up and down in the prior-
ity structure. When they are at the high end, they have a
high priority for swapping into core andfor execution. When
they are at the low end, they are prime candidates for re-
moval to secondary storage. This latter feature — that of
having a defined priority for removal of users to disk stor-
age — is an important and often overlooked aid to efficient
swap management. It avoids extraneous swaps by making
an intelligent choice about outgoing as well as incoming
users.

In addition to these primary functions, user status queues
have other functions such as ‘

1. Synchronizing the presence in core of the user program
and data with the availability of I/O devices.

2. Queuing user programs to be "awakened" at a preestab-
lished time.

3. Queuing requests for entry and use of processors.
4. Managing core memory.

5. Queuing requests for buffers either in core or on
disk.

6. Queuing requests for nonresident monitor services.

A list of the status queues is given in Table 3.

SCHEDULER OPERATION

To select users for execution, the scheduler searches down
a list of the status queues for the first user in core memory.
The highest priority user is served first. Interrupting users
are served before those with an active input message (both
of these take precedence over users with unblocked termi-
nal output), then come on-line compute-bound users and
finally, compute-bound batch jobs. Note that users in
lower states have no current requests for CPU resources.
Note also that as each user is selected for execution, the
status queue of the user is changed to CU. When the quan-
tum is complete, the highest priority queue the user can
enter is the compute queue. Users that enter any of the

Table 3. Scheduler Status Queues

State

Meaning

SRT

SCO

SC1
SC2
SC3
SC4
SC5
SCé
SC7
SC8
SC9
SC10

STOB

STOBO

SIOW

SIOMF

SW

SQA

SQR

SQRO
STI

STIO
SQFI

Real-time execute (0< priority < X'BF'),

Background execute (X'CO' <
priority < X'F5').

Background execute (priority = X'Fé').
Background execute (priority = X'F7').
Background execute (priority = X'F8').
Background execute (priority = X'F9*).
Background execute (priority = X'FA').
Background execute (priority = X'FB').
Background execute (priority = X'FC').
Background execute (priority = X'FD*).
Background execute (priority = X'FE').
Background execute (priority = X'FF').

Terminal output blocked in core. (More
characters than the system limit are ready

for typing.)

Terminal output blocked. Not in core.

1/O wait. Users waiting for an 1/0 that is
in progress to complete.

Users blocked because 1/0 master function
count {number of 1/O operations in progress)
has reached the system limit.

Users waiting for o specified "wake-up"
time.

Users waiting for service by RBBAT, the
symbiont ghost.

Users in core and blocked for dynamic re-
source such as swapper page, COC buffer,
symbiont disk page, symbiont table space,
enqueued resource, service by ALLOCAT
(for file granules), or file open or close.

Same as SQR but not in core.
Typing input and in core.

Typing input and not in core.

Real-time user waiting for interrupt.

three highest priority states receive rapid response but only
for the first quanta of service. Thereafter, they share ser-
vice with others in the compute queuve.

A similar selection procedure is used fo set up users for
swapping. First, the highest priority user in the execution
queue who is not in core is selected and his size require-
ment (including the requirement for shared processors not in
core) is determined. Second, users are selected from the
swapout queue until enough space is freed by these users
and their shared processors to provide for the user selected
for swap-in. If a single user in a state below SC10 (Table 3)
can be found to swap out, then a single rather than a multi~
ple swap is chosen. No swaps occur until a user that is not
in core enters a high priority queue.

Two lists resulting from this selection are presented to the
swapper. One list contains the user (or users) to be swapped
out and the other contains the user to be swapped in. This
latter list also contains the shared processors that must
accompany the user and the current free core page list.
When the scheduler selects users for swapping, it picks a
high priority user to load into core and the lowest priority
user to remove from core. Priorities are arranged from high
to low, in order of increasing expected time before the next
activation. This ensures that the users that are least likely
to be needed are swapped out first, while the users most
likely to require execution are retained in core. The swap
algorithm operates so that compute users remain in core and
use all available compute time, while the interactive users
are swapped through the third core slot whenever the fol-
lowing three conditions exist:

1. There is room in core for three user programs.
2. Two users are computing steadily.

3. Many other users are doing short interactive tasks.

Table 4 shows the queue used for selection of users to be
brought in for execution and the queue used for selection
of users to be moved to disk.

Note that the queues CU, 10W, QRO, TOBO, TIO do not
appear in either list. Thus, the users in these states are not
selected either for execution or for swapping.

Two examples of typical interactive use are illustrative of
the scheduling operation.

The first example traces scheduling operations for a simple,
short interactive user request. At the time the request is
typed, the user is in the ST1 queue. His program, which
has probably been swapped to disk storage, remains there
until the COC routines receive an activation character.
Receipt of this character is reported to the scheduler

and causes a change in state of the user to the appro-
priate executable state (SC0-SC10). The scheduler finds

a high priority user not in core and initiates a swap to

Monitor 17

Table 4. Swap~In and Swap-Out Queues

Swap-~In
(and Execution) Swap-Qut
Queve Queve
SRT Sw
SCo STI
sC1 STOB
SC2 SQFI
SC3 SQA
SC4 SC10
SC5 SQR
SCé SC9
SC7 S5C8
SC8 SC7
SC9 SCé
sCio SC5
SC4
SC3
SC2
SC1
SCo
SRT

remove a low priority user (if necessary) and to bring
in the one just activated. On completion of the swap,
the scheduler is again called and now finds a high priority
user ready to run. The user's state is changed to CU, the
program is entered, and the input command is examined by
the reading program. The cycle in this example is com-
pleted by preparation of a response line and a request fo
the monitor for more input which changes the user's state
to TI again, making him o prime candidate for removal
to disk.

The second example illustrates an output-bound terminal
program, This program moves through the state cycle STOB-
SC-SCU as output is generated by the program. The COC
routines signal when the output limit has been reached,
thus causing the program to be delayed while output is
transferred to the terminal. In a typical operation, four
to six seconds of typing is readied in buffers each time the
user program is brought into core and executed. During

18 Monitor

this typing time, the program is not required in core and
the CPU resources can be given to other programs.

1/0 SCHEDULING

1/0 scheduling is designed to provide good service to /O~

. bound users while keeping the CPU busy with compute=-

bound users. The intent is to make the fullest possible
utilization of both the CPU and the 1/O devices. The
manner in which this is accomplished is described below.

A user that has been waiting for an 1/O to complete (SIOW)
is changed to an executable state at a priority slightly
higher than a similar compute-bound user when the 1/0
completes. At that time, the execution scheduler inter-
rupts the execution of the compute-bound user so that the
1/0-bound user can execute. The 1/O-bound user requires
comparatively little CPU time before initiating another 1/0
request and returning to the SIOW state. The compute-
bound user then resumes execution.

It should be noted that the scheduler automatically adapts
to jobs that alternate between bursts of computing and bursts
of I/0.

SWAP HARDWARE ORGANIZATION

Users are removed from core to a dedicated area of disk
storage (or to several disks in large configurations) when
core is required for higher priority users.

Bit tables are used to keep track of the availability of each
sector on the disks. In these tables, a zero is used to indi-
cate the sector is in use (usually assigned to a user) and a
one is used to indicaote the sector is available. Users are
assigned a sufficient number of page-size sectors to accom=
modate their current use. The assignment is done in such a
way that command chaining of the 1/O can order the sectors
to be fetched for a single user with minimum latency. That
is, each user's pages are spread evenly over the set of
available sectors on the disk to which he is dedicated so
that data will be transmitted in every disk sector passed
over when the user is swapped.

The records of disk sectors associated with each user are
kept in the user's job information table (JIT), which is kept
on disk when the user is not in core. The disk location of
the JIT ond the user's disk address are kept in core by the
scheduler. The disk layout is such that sufficient time is
available ofter the user's JIT arrives from the disk for the
system to set up the 1/O commands for the remainder of
the user.

The amount of disk storage assigned to swapping is a
parameter of SYSGEN. The number of on-line users that
the system can accommodate is limited by the size of disk
space allocated for swapping and the total size of active
on-line users.

The allocation scheme for systems which have file space
allocated on both RADs and disk packs is described in the
following paragraphs.

For the sake of overall performance, the RAD is preferred
for frequently accessed system information and temporary
files used by the major processors. Special users who
need high performance on special files may specify RAD
preference.

All of the account directory and all files from :SYS are as~
signed to the RAD. The first granule of each file directory
is assigned to disk pack but any additional granules are as—
signed to RAD. All stor or id files and all scratch files
(opened OUT or OUTIN with REL) prefer RAD. Random
files with no user stated preference and all other files and
their indexes prefer pack. These pack preferences may be
overridden either by the operator keyin 'PREFER' for all
files or by the user specification of NOSEP and DEVICE
for individual files.

Briefly, the effect of authorization and defaults upon the
allocation is: If not enough space is available on the pre-
ferred device, the other device will be used if space is
available there. The exception to this is random files with
user specified preference. In this case, if space is not
available on the user specified device, the file is not al-
located and an error is returned to the user. Also, within
the authorized limits, temporary files may use only tempo-
rary authorization and permanent files may use only perma-
nent authorization.

In general, the rule for authorization should be: A large
amount of temporary RAD and disk pack space should be
authorized for all users and the amount of permanent disk
space should be individually authorized by need. Very few
users should be authorized permanent RAD space.

There are four in-core buffers for types of space to be al-
located. Three are for granule allocated devices:

1. RAD PFA (permanent file storage).
2. Pack PFA (permanent file storage),

3. PER (peripheral symbiont storage).

The fourth is for cylinder requests. These buffers are used
to satisfy requests for all purposes except directories, rondom
files, and PSA (permanent system storage and swapping).

Due to the system configuration and SYSGEN, at most
six sets of devices can be created:

1. RAD all PFA (PFA RAD first),
2. Pack all PFA (PFA pack first).
3. All PER (PER first).

4, RAD PFA plus PER and/or PSA (PFA RAD second,
PER second).

5. Pack PFA plus PER and/or PSA (PFA pack second,
PER third).

6. PER plus PSA (PER fourth).

Granules are selected for the in-core buffers from one of
the six sets of devices starting each device at sector zero
and allocating from all the devices within the set simul-
taneously (i.e., round-robin). The preference in choice
of sets is noted above in parentheses. All devices of a set
will be depleted before the next set is chosen.

Cylinders for the in-core buffer are allocated starting at
cylinder zero of the first (lowest DCT index) cylinder al-
located device. Each device will be depleted before the
next is used.

Random files are allocated starting at the last sector of the
last (highest DCT index) device of the proper type. The
cylinder allocated devices are treated as one continuum
of space for random files. They need not be contiguous in
the DCT table and any file may cross a boundary (even a
two cylinder file). Private random files are allocated in
the same way.

PROCESSOR MANAGEMENT

CP-V processors are considered shared processors when they
are written in such a way that they are pure procedure and
are described as such when they are added to the system.
(User-associated data oreas are initialized at first entry.)
A shared processor has the following special characteristics:

1. 1t has dedicated residency on swap storage established
at system initialization or via DRSP.

2. Asingle copy is shared by all requesting users.

Monitor 19

MEMORY LAYOUT

The system makes full use of address mapping hardware,
access protection, and write locks in allocating available
physical core pages to users. Physical core pages are allo-
cated to users at their request. Use of the map obviates
the need for program relocation or physical moves. Full
protection is provided for one user from another. All pro-
grams and the monitor itself are divided into procedure and
data. The procedure area is protected by write=locks or
access codes, or both, ogainst inadvertent stores.

The central features of the use of write-locks to protect
master mode programs are as follows:

1. The monitor operates with a key of 01 and may store in
a. Its own data area (LOCK =01).

b. Any batch, on-line or shared processor code
(LOCK = 00).

It may not store in its own procedure (LOCK = 11).
2. Keys of 10 and 11 are never used, nor is the lock of 10.

3. Write-locks are initializedonly once at system start-up
and are not changed thereafter except when running
under contrel of Executive Delta where they are used
to enable data breakpoints.

4, On the Xerox 560, write keys are four bits long and
apply to the 1OP memory writes as well as CPU write
operations. To take advantage of this feature, the
Xerox 560 1/O system always uses a key of 1000 which
does not match any of the locks. This means that no
1/O operation can accidentally overwrite the monitor or
its data since the IOPs can only write intfo memory with
locks of zero (the user area). Also on the Xerox 560,
certain monitor buffers which are partof the monitor data
area (usually with lock 01) are grouped together and the
pages containing those buffers are set to a lock of 0000.
Except for this difference, the rest of the locks are
exactly the same as for the Sigma computers.

The access code on virtual memory pages controls references
made by slave mode programs (user programs and shared pro=-
cessors). This code is retained in the JIT of each user and is
loaded into the hardware access protect registers (which are
part of the virtual mapping hardware) when the user gains
control. Write access to JIT and other job context areas is
given to TEL, CCI, LOGON, and any installation-defined
command processors.

The layout of virtual memory that applies to user programs
and ordinarily shared processors is shown in Figure 2. Al-
location of the available area depends on the type of

user that is running and the attributes of the load module

20 Monitor

to be executed. Allocation Type II is used when a core
library or debugger is associated or when the load module
to be executed has been built by Link. In all other cases,
allocation of the available area is as shown in Type I for
batch users, ghost jobs, and on-line users executing in the
extended memory mode.

Core addresses shown are those appropriate for a typical
system but more (or less) core may be established for the
resident monitor at SYSGEN time depending on installation
needs. More (or less) area may also be desirable for the
library area and for the job context area to accommodate
more buffers. These bounds may also be adjusted at SYSGEN
time. The boundory ot which the one-pass loader (Link)
places the user program is also adjustable.

Virtual pages not currently allocated to the user are mapped
into a resident monitor page that is write-locked, (the ac-
cess code is set to no access). Thus, slave mode programs
are denied access through the access code, and attempts to
store at these virtual addresses by a master mode program
are protected by write locks.

Typical layouts of physical memory are shown in Figure 3
for Sigma systems and in Figure 4 for Xerox 560 systems.
Although these are similar to the actual layout, they should
not be assumed to be exact.

SYSTEM INTEGRITY

The monitor has a number of routines that have been in-
cluded to guarantee system integrity. The objectives of
these routines are, in order of importance, (1) to provide
the highest possible security for user files even in the event
of total system failure, (2) to provide automatic high-speed
recovery in the event of @ machine or software failure, and
(3) to record sufficient information to isolate errors and
failures caused by either hardware or software.

The major features of the CP-V system integrity routines are
as follows:

1. Detection of malfunctions by hardware examination
and software checks wherever the checks have been
shown to enhance hardware error detection. Recovery
from these malfunctions is through retries, operator as-
sistance, etc.

2. Logging of all malfunctions, including recovered errors
and permanent failures.

3. Protection from hardware failures.

4. Use of on-line exercisers to provide for repair or ad-
justment of peripherals without taking the CPU down.

5. File backup and recovery facilities to minimize the
probability of losing user files, and in case of file
failure, to facilitate complete recovery of the file sys-
tem with a minimum of loss.

0 32K 35K 40K HIZK 128K
Ao

Monitor area Context area Available area

Type I. User program area

Data Procedure Monitor JITs| Buffers
overlay

Type II. User program area Special processor area

User N |
access | L None ——l Tt Non..vl— see below 1

read (first page)

read (first page)

to
allocated . . |
Map }-—— physical -—o‘[———- to allocated physical page or to a protected locked monitor page 1
page
112K or
40K 128K 40K 91K 92K 112K
User program area User program area
(Load module built by Load) (Load module built by Link)
Program DCBs | Procedure Dynamic | Unallocated | Common Program | Dynamic | Unallocated | Common DCBs | Procedure
data pages poges pages data data pages pages

ser
cl:Jccess |‘wr|fe-l read I—execufe—|- write —" none ‘-Iownte-l |-—— write —+7 none AA—{-wrlte‘-I read l’exeCUfe*-{

Contents Context Area Available Area Special Area
Job information User programs, data, DCBs, and symbol tables Special shared processor and data:
File blocking buffers Ordinary shared processors including Link
File index buffers Root segment Delta
Coop buffers Initial data TEL
Overlay area Libraries
Access none —no access of any kind permitted execute —execute or read access
codes read — read access only write —write, execute, and read permitted

Figure 2. Typical User Program — Virtual Memory Layout (not to scale)

Keys 01 00

On-~line jobs

Resident monitor Batch jobs
Shared processors

Data Program

Locks 01 1 00

Unused keys: 10, 11
Unused locks: 10

Figure 3. Typical Memory Layout for Sigma Computers (not to scale)

Monitor 21

Keys 0001

Resident monitor

0000

All user jobs and processors

Data | I/O buffer| Data |Program

Locks [0001| 0000 |0001| o011 |

(The I/O system always uses a write key of 1000.)

Figure 4. Typical Memory Layout for the Xerox 560 (not to scale)

6. Automatic recovery following a system failure with
reasonable speed consistent with file security and the
recording of information for later analysis.

7. Facilities to provide for analysis of system crashes. In-
formation includes simple classification of failures as
well as full information for both customer engineers
and system programmers.

8. For the Xerox 560 — on-line interface for remofe
assistance.

ERROR DETECTION AND RECOVERY

An effective operating system must be able fo detect and,
whenever possible, to correct errors. It must also be cap-
able of restarting the system if necessary. CP-V uses a
combination of hardware and software checks to efficiently
meet these goals.

Hardware error protection features include memory protec~
tion against accidental overwriting of monitor and user pro-~
grams, power fail-safe interrupts that ensure automatic
restart in the event of power failure, memory parity check-
ing, I/O read and write verification, and a watchdog timer
to avoid instruction hangups. Detected errors are reported,
logged, and if possible, recovered directly. Catastrophic
failures cause an automatic system recovery if at all pos-
sible. Those failures which can be isolated to a single user
cause only that user to be aborted. Some hardware errors,
such as loss of a memory power supply, lead to system
shutdown.

Software consistency checks, some of which are performed
optionally on the setting of a console sense switch, check
the integrity of the software at many critical locations in
the system. These checks detect problems before they are
allowed to go beyond a recoverable point. When an incon-
sistency that is catastrophic to the system is detected, the
current users are logged off and all open files are closed.
The system is then automatically rebooted for the fastest
possible restart,

22 Monitor

ERROR AND FAILURE LOGGING

Malfunction messages are maintained in a speciol file by
system integrity routines. Messages are placed in this file
whenever malfunctions are detected by the various parts of
the system. Hardware malfunctions that are recorded in-
clude such things as tape errors, card reader errors, memory
parity errors, and illegal instructions. Softwaremalfunctions
that are recorded include the failure of software checks
on RAD or disk addresses contained in index blocks and
improper linkage of linked file blocks. In addition, o
software recovery from a seek failure is recorded in this
file (as a 757F code).

The error messages generated throughout the system (report-
ing both hardware and software errors) are placed initially
in in-core buffers and then are transferred to a special file
(actually alinked list of granules). This transfer is initiated
whenever an error count threshold, or time limit is reached.
This special file is then transferred to an ordered keyed file.
(ERRFILE) by the standard system ghost processor ERR:FIL
which is automatically awakened by the system.

ERROR LOG LISTING

This keyed file (ERRFILE) may be listed and sorted by the
processor ELLA which allows the Customer Engineer to dis-
play and search the error file for patterns of errors to aid in
preventive maintenance for the system.

ON-LINE DIAGNOSTICS AND EXERCISERS

On-line diagnostics and exercisers may be called when
there is a specific failure detected by the hardware or soft-
ware, or when a failure is projected through analysis of the
error log by the Customer Engineer. These programs may
also be called by the Customer Engineer when needed for
the test or adjustment of the card reader, card punch, line
printer, magnetic tape, or other devices.

REMOTE DIAGNOSTIC ASSISTANCE

On the Xerox 560, on-line diagnostics and certain on-line
debugging processors (ANLZ, Delta, and ELLA) may be
utilized via the Remote Assist Station (RAS) interface.

After control is obtained from the local operator, customer
engineers and/or diagnostic programmers at remote locations
may access the system via this interface without interfering
with the on-line COC users and without using any of the
normal communication equipment. By evaluating the sys-
tem under normal operating conditions, many software errors
and hardware malfunctions may be detected and eliminated
expeditiously with a minimum of computer down time.

FILE MAINTENANCE

CP-V provides a variety of processors designed to maintain
a reliable backup of the file data base. These processors are
summarized in the CP-V/SM Reference Manual, 90 16 74,
and are described in detail in the CP-V/OPS Reference
Manual, 90 16 75. The processors provide the ability to
save and restore large volumes of files very quickly, to save
and restore entire private and public disk devices at device
speed, to handle user initiated backup of files, to restore
the allocation tables for public disks after a system crash,
to restore the allocation tables for a private disk pack after
a crash which affected the pack, and to restore granule ac-
count information in the :USERS file.

AUTOMATIC RECOVERY AFTER SYSTEM FAILURE

The CP-V monitor performs consistency checks on the
results of hardware operations, checks intermediate results
of operating system software functions, performs checks and
balances at appropriate interfaces between the operating
system's modules, and monitors itself for unexpected trap
conditions caused by the hardware or operating system soft-
ware. A software check code is assigned to each type
of failure that the monitor may detect.

Some of these software check failures result in a momentary
delay in service to all but the current user for whom the
operating system is performing a service. In such case,
the current user's job step is aborted, core is dumped to a
file for later analysis and display, and normal operating
then continues. The remaining software check failures are
handled by the system's recovery routine.

The recovery routine performs the following functions:

1. Displays cause of failure.

2. Takes a full core dump for later analysis.

3. Closes all open files with default options.

4. Packages or releases all partial symbiont files.

is

5. Closes common TP journal if transaction processing
being used.

6. Saves in~core transaction processing files.
7. Packages error log.
8. Informs users of interruption.

9. Saves time, data, error log pointers, accounting infor-
mation, symbiont file directory, public disk granule
usage map, and executive communication.

10. Restarts system and restores items saved cbove.

When functions cannot be performed, they are noted on the
operator's console. If the function is considered minor, re-
covery continues. If it is connected with file operations,
the file identification is noted and recovery proceeds.

The recovery routine described above occurs automatically
with a minimum delay (a few seconds) in system availability.
Operator initiation of this recovery function is also allowed,
providing for the event that the system fails by not respon-
ing to any operator key-in or user service request.

When the recovery routine executes, it is independent of
all monitor services and functions and requires only that a
small recovery driver be intact in memory. This driver
reads the main recovery module into memory from the system
swap device, overlaying the pure procedure portion of
CP-V. Certain monitor system tables are also required in-
tact for successful recovery. These tables are verified
before proceeding. If the recovery process cannot be com-
pleted, the operator is instructed to initialize the system
from the master system tape and restore files and backup
tapes.

CRASH ANALYSIS

In the event of a recovery or single user abort, one of the
recovery functions is to dump the contents of core memory
into a special file in the :SYS account. This information is
saved for later analysis by a system programmer using a
special debugging program, ANLZ.

The ANLZ program may be called by the operator or system
programmers to run as a privileged ghost, on-line, or batch
job. The ANLZ program is also called automatically

as a privileged ghost job by the recovery routine as one

of the first jobs following a recovery or the first job fol-
lowing a single user abort. In any mode, ANLZ is command
driven (except in the ghost mode following a recovery).
It responds to commands that selectively display monitor
tables, examine memory, and compare the dump with

the running monitor. (Reference: Chapter 4.)

Monitor 23

3. BOOTSTRAP AND PATCHING OPERATIONS

SYSTEM TAPE FORMAT

A CP-V system tape contains the following elements:

1. Bootstrap loader.

2. Root for an absolute monitor.

3. General information record conceming this system
tape.

4, FOI;(h)ermoniror segments (XDELTA, ALLOCAT, GHOSTI,

5. Monitor overlay segments.

6. RECOVER.

7. Tape label information.

8. Files for all system load modulesand other needed files.
9. Patches and GENMD commands.

The general arrangement of the information on a master sys-
tem tape is shown in Figure 5.

PATCH DECK STRUCTURE

Patch decks have the following structure:
1. The following two types of patches:

a. Delta format patches for the monitor root and its
overlays.

b. Symbol definition patches.

The monitor root patches can appear anywhere within
the patch deck. The overlay patches must be in the
same order as the system tape structure. Symbol defi-
nitions must precede the patches in which the symbol
is used. Patches to the reconfiguration processor must
precede the boot-time reconfiguration and partitioning
commands and must be read from the card reader when
the card reader is used during boot-time for patching

purposes.

2. Boot-time reconfiguration and partitioning commands.
These are optional, but if they are used, they must pre-
cede the first overlay patch. It is also advisable to
read them from the card reader.

3. A card that contains an asterisk in column one. This
card terminates the monitor patches and boot~time re-
configuration and partitioning commands.

4, The following two types of patches (which may appear
in any order):

a. A GENDCB command to assign the account, a
password, serial number, and type of tape drive
for the boot tape.

24 Bootstrap and Patching Operations

b. A groupof GENMD commands and GENMD patches
to the processors contained on the tape.

5. A IEOD command (the final command of the patch
deck).

In addition, there are two types of cards that may appear
anywhere within the patch deck (including the GENMD
portion). These two types are the conditional patch control
command and the comment card.

No patch, command, or comment may contain more than
72 characters of information.

When the patch deck is read, it is retained by the system in
a file called PATCH in the :SYS account. This file can be
examined using the PCL processor. It may also be assigned
to M:PATCH and DEFed onto the PO tape.

The function and format of Delta format patches, symbo! def-
inition patches, reconfiguration and partitioning commands,
GENDCB commands, GENMD commands, GENMD patches,
conditional patch control commands, and comment cards
are described in the paragraphs that follow.

DELTA FORMAT PATCHES

Delta format patches are used to patch various segments of
the monitor. The format of a Delta format patch is:

[segname]/loc/value[(old value)]/comment
where

segname is the name of the segment to be patched.
The current segnames and the order in which they
must be patched are shown in Figure 6.

If a segname is present, the loc field must represent
a location in the corresponding segment or the loc
field (and value field) must be null. The latter
type of patch would have the format.

segname// (the third slash is unnecessary)

and must be the first patch with its particular seg-
name. (An example of this form of patch is given
in the 'Conditional Patch Control Commands'
section below.)

Example:

OPEN// START THE OPEN PATCHES
OPEN/OPNH+.52/B PATCH/
/PATCH/LW,13 TABLES+.74/

M:MON root

records

:5» System

| Exec Delta Exec Delta || M:MON root patches |
{ head record data records (optional)

information

ALLOCAT, FIX, GHOST!, Monitor overlays, and RECOVER

core image records and (optional) patches for them.

:LBL :ACN

File information for

"LASTLM" (null file

File information

for first LM

File information for [|
first file

First file

File information for
last file

Last file

Note:

Record sizes

Head
Data

Patches

The tape bootstrap is 22 words long. Patch records are 20 words
long. All other records are 512 words long. The figure indicates
groups of such physical records.

Head portion of load module.
Protection type O portion of load module.

Patches are included on the tape where shown if they exist in the
file assigned to the M:PATCH DCB when DEF creates the system
tape. The first group of M:MON root patches follows the Exec
Delta data records. Any others are placed among segment patches
according to their order in the patch file. The last record of each
group of patches on the tape is the first patch for the next set of
segment patches. The second through the last patch for a segment
follow the segment to which they will be applied. GENMD patches
follow the last of any patches following the RECOVER patches.

Figure 5. Format of Master System Tape

Patch Deck Structure

25

CP-V
SYSTEM GENERATED ON:
12:00 AUG 16, '74
VERSION NO. IS: Cc00

PATCH SEGMENT NAMES :

(ROOT)
ALLOCATO (DATA)
ALLOCAT1 (PROC)

FIXO (DATA)
FIX2 (DCBS)
FIX1 (PROC)

GHOST10 (DATA)
GHOST12 (DCBS)
GHOST11 (PROC)

CLOSE (DATA)
DEBUG (DATA)
ENQO V (DATA)
KEYIN (DATA)
LDLNK (DATA)
LTAPE (DATA)
MISOV (DATA)
MULOV (DATA)
OPEN (DATA)
OPENTP (DATA)

. (DATA)
m\' (DATA)

STEPOVR (DATA)

TPOV1 (DATA)
TPOV2 (DATA)
UMOV (DATA)

RECOVER (DATA)

Figure 6. Segment Patching Order

If no segname is present, any location between
1014 and FFFO14 maybe patched. Such patches
may appear anywhere within the patch deck.

loc is a Delta format symbolic location, possibly
with offsefs.

value is the Delta format value to be inserted at
loc.

old value is the Delta format value of the previous
contents of loc.

Example:
/IORT+.F8/PSM,9 TSTACK(PSM,6 TSTACK)/ FIX SIDR #6646

If o patch command is in error (e.g., has an illegal char-
acter, an incorrect old value, a value occupying more than
one word, or an invalid loc value), it will be typed on the
OC device. The operator must determine what was wrong
and correct the problem.

If the error is apparent from examination of the patch, it
can be corrected and the boot process restarted. If desired,
the system may be examined with Executive Delta, which
is now in control and requesting commands at the operator's
console. The patch in error may be corrected from the
operator's console using Delta by entering the patch

26 Patch Deck Structure

correction mode by keying=—@)(use right bracket (J&) on
the Xerox 560) and then the correct patch in the formgiven
above. After receiving the correct patch, the system re-
sumes reading patches.

PATCH DECK SYMBOL TABLES

The Delta format symbolic values that are recognized in
patches are assembled by the system tape definition proces-
sor, DEF, from the REF/DEF stacks of the patchable modules
using these items:

1. All DSECT names.

2. All DEFs ending in a colon (the colon is removed in the
patch deck symbol table).

3. The first UDEF after each CSECT unless a colon DEF

intervened.
4. Patch segnames.

For M:MON only, all LDEFs are also included. The sym-
bols obtained from M:MON and XDELTA are available to
XDELTA at any time. Those from other modules are avail-
able only while that module is being patched. DEF lists
the symbols that are included as the tables are created.

In addition, two special symbols are available during the
patching process.

The first is the symbol @ whose value is equal to the next
available location in the patch area of the monitor. That
is, it is initially equal to the monitor symbol, MPATCH, and
its value is incremented by one each time a patch is encoun-
tered whose loc field is equal tothe current value of @.

The use of the special symbol @ frees the user from having

to allocate space in the PATCH area of the monitor since
Executive Delta will automatically relocate the patch area.

Example:

The following two potch decks are equivalent:

/IORT+.F8/B @/ /IORT+.F8/B PATCH/

/IORT+.FE/B @+1/ /IORT+.FE/B PATCH+1/
/@/L1,3 12/
/@/c8,3 5/
/@/BNE $+2/
/@/B IORT+.F9/
/@/L1,3 0/

/@/B IORT+.F9/

/PATCH/LI,3 12/
/.+1/CB,3 5/

/ .+1/BNE $+2/
/.+1/B IORT+.F9/
/.+1/L1,3 0/
/.+1/B IORT+.F9/

The second special symbol is @@ and is used when an even
address in MPATCH is required. The only restriction on this
special symbol is that @@ cannot be referenced while patch-
ing @ (e.g., /@/@@/). The results are unpredictable.

Example:
MM+ 64 /1PSD 8 (Ad/

(@@ MM+, 6544548/
/@/.17000000/

New symbols may be added to the symbol table by including
symbo! definition patches in the patch deck. Symbol def-
inition patches must have the format

symbol = value

where

symbol is any Delta format symbol. (The symbol
can be no longer than eight characters.)

value is any evaluatable expression terminated by

a blank.

Example:

#GRUNCH=. D87
/GRUNCH/B GRUNCH+.20/

JAT/R @)
[A71W,3 TABLES+3/
#IK=@

/@a/ct,3 10/
/@/B GRUNCH+.50/

/55+,1E8/B JK/

In the above example, the patch at 55+.1E8 branches to
the instruction CI,3 10.

RECONFIGURATION AND PARTITIONING COMMANDS

These commands provide o means of reconfiguring the system
and partitioning devices and/or controllers ot boot-time.
Ail of the commands begin with a colon {:) and must end
with ¢ period or ¢ trailing blank by at least column 72.
The commands may be specified in any order with the ex-
ception of :END which must appear last (if it is used).

If no 1cconfiguration and partitioning commands are speci-
fiad, the system responds as if the :GO command had been
specified.

Reconfiguration always validates the SYSGENed device ad~
dresses. If a device address {ndd) is encountered for which
the n cannot be validated, the following message is displayed
on the OC device and the boot procedure is terminated.

CANNOT CONVERT 'n' IN 'yyndd'

where n and ndd are defined in the following discussion and
yy is the device type.

Three of these commands (:TYPE, :PART, and :REMOVE)
contain the following parameter as part of the command
format:

value (sometimes referred to as value . and vo|ue2)

1
The description of this parameter is quite detailed. To
avoid repeating the description several times, it will be
given here and references will be made back to this section
in the command descriptions.
The format of value is dependent on the CPU being used.
For Sigma 6/7/9 systems, value must be in the format

ndd

where

n represents a controller address and is specified as
a letter. See Table B-2 in Appendix B.

dd specifies the device number. See Table B-3 in
Appendix B.

For Xerox 560 systems, value may take one of two formats.
The first format is

ndd
where
n represents a cluster number and a unit number.
See Table B-4 in Appendix B.

dd specifies the device number. See Table B-3 in
Appendix B.

The second format consists of four hexadecimal digits which
represent a hardware address in the format

00| ¢ "] dd
IS B T i e

TR
where

fo specifies the cluster number.
u specifies the .init number.

dd specifies ‘he device number.

16O This command specifies that the configuration speci-
fied on the system tape is to be used as is. The format of
the command is

:GO

If :GO is specified, :TYPE and :REMOVE commands are not
meaningful and the following message is output on the LL
device:

ALL :TYPE/:REMOVE COMMANDS IGNORED

Patch Deck Structure 27

:SAVE This command specifies that all device addresses
not changed by :TYPE commands are to remain as is, except
according to restrictions listed in the following description.
The format of the command is

:SAVE

When the :SAVE command is specified, the following mes-
sage is output on the LL device:

**KEEP ALL DFV.ADDR. AS IS EXCEPT FOR :TYPE/
:REMOVE CHANCES

When the :SAVE command is used. only those device ad-
dresses which are different 5n the 1arget machine from that
of the SYSGENed system 1upe need be changed by the :TYPE
command. All others remain as SYSGENed except when a
:TYPE command redefines one or more device addresses for
a specific device type where the SYSGENed 1OP/controller
or cluster/unit addresses are equivalent within the device
type. In this case, every equivalent IOP/controller or
cluster/unit address within that device type must be defired
by :TYPE commands whether or not the device address needs
to be changed or the undefined ones will be removed from
the system. The :REMOVE command may also be used to
remove SYSGENed devices.

When :SAVE is not specified, all device addresses must be
specified by :TYPE commands uniess no :TYPE commands are
used. Any SYSGENed devices for which addresses are not
defined by :TYPE commands are removed from the system
configuration (and cannot be returned to the system con-
figuration without rebooting).

:TYPE The :TYPE command defines a device type, its
model number, and its new device address or addessses. The
format of the command for single access device definitions
is

:TYPE device, value[, value]. ..
and the format for dual access device definitions is
:TYPE device, (value) vo|uez)[, (value) voluez)]. ..
where

device is a six character field. The first two char-
acters specify the device type (e.g., CR) and the
last four characters specify the device model num-
ber in hexadecimal.

value specifies the device address inthe format de-
scribed at the beginning of this section. The num-
ber of addresses dependsupon the number of devices
of thatdevice type whichare on the target machine
cr which need address changes (when :SAVE is
used). For dual access devices, valueq specifies
the primary path address and value) specifies the

28 Patch Deck Structure

alternate path address. When a device address
change is required for a specific device type, all
addresses must be specified even if no change is
necessary, or those not specified for the device
type will be removed from the system.

The model number is verified as o legitimate model number
by searching the M:MODNUM table. (See the SYSCOMN
chapter in the CP-V,SM Reference Manual. 20 16 74.)
When found, its corresponding cantroller model number is
obtained from the M:MODNUMtable. Thedevice/controller
model numbers are then used to check if this combination is
the same as that which was originatiy SYSGENed for the
given device, If not the same, all similar device “controller
model number combinations in M:MODNUM are used for this
validation. As an exampie, if M:MODNUM contains the
following entries:

Device Modei Controlier Model
__Numbe: __ .~ Number
7120 7120
7120 Yavil
7121 7121
7121 7120

and the SYSGENed combination is
7120 7121
then the command :TYPE CR7121,.... will cause the fol-

lowing device/controller combinations to be checked with
the indicated results:

7121/7120 not valid
7120/7120 not valid
7121/7121 not valid

7120/7121 valid

‘REMOVE This command removes a device or controller
from the system. The removed device or controller cannot
be returned to the system without rebooting. The format of
the command s

value
REMOVE {CONT, volue}
where
value specifies the address of the device or control~

ler to be removed in the format described at the
beginning of this section.

CONT specifies that a controller is to be removed.
When a controller is removed, all devices on that
controller are also removed unless the controller is
dual access. When the controller is dual access,
only the path specified by value is removed unless
the other path to the device is already removed or
doesn't exist (i.e., single access within dual chan-
nel). In the latter case, all of the controller's
devices are also removed.

In the following example, four disk packs were SYSGENed
and the target system is to have enly two disk packs, one
public and one private.

:TYPE DP7242,BF(,BF1,BF2

:REMOVE BF1

SYSGENed Result of Result of

Disk Packs :TYPE Command :REMOVE Command
AFO - public BFO - public BFO - public

AF1 - public BF1 - public removed

AF2 - private BF2 - private BF2 - private

AF3 - private removed removed

{PART The :PART command specifies a device or con-

troller that is to be partitioned from the system. The device
or controller is partitioned as if it had been partitioned by
the SYSCON processor and can be returned to the system
via SYSCON without re-booting the system. (Refer to the
SYSCON processor description in the CP-V/SM Reference
Manual, 90 16 74.) This is useful when a system is being
booted and a device which was SYSGENed tobe part of the
system is currently unavatlable but will be available prior
to the next system boot. COCs and Teletypes are not af~
fected by this partitioning. The format of the :PART com-
mand is
value
:PART{CONT,value]

where

value specifies the address of the device or con-
troller to be removed in the format described at
the beginning of this section.

CONT specifies that a controller is to be parti=-
tioned. When a controller is partitioned, all de-
vices on that controller are also partitioned unless
the controller is dual access. When the controller
is dual access, only the path specified by value is
partitioned unless the other path to the device is
already partitioned or doesn't exist (i.e., single
access within dual channel). In the latter case,
all of the controller's devices are also partitioned.

A device partition request causes all devices which have
identical device addresses to be partitioned.
Example:

A system was SYSGENed to have four 9-track tape drives
but two are down for maintenance when the system is booted.
“TYPE 9T7322,A80,A81,A82,A83
:PART A82

:PART A&7}

:END The :END command defines the end of the set of
reconfiguration and partitioning commands. The command

is optional because the occurrence of either the first nonroot
patch or an asterisk (*) command would also indicate the
end of reconfiguration and partitioning commands.

The format of the command is

:END

When the end of reconfiguration and partitioning commands
is encountered, all :TYPE command definitions are pro-
cessed first, then all :REMOVE requests, and finally all
:PART requests.

When all of the commands have been processed, a check is
performed to determine if the original SYSGEN or the re~
configuration for multi-unit controllers and their devices
reside in non-conflicting input/output queueing channels.
This means that an IOP/controller or cluster/unit in one
queueing channel cannot have an equivalent IOP/controller
or cluster/unit in some other queueing channel. The follow-
ing error messages will identify all such conflicts and the
reconfiguration process will then change the queueing chan-
nels to be equivalent:

****QUEUEING CONFLICTBETWEEN DCTii AND DCT jj

QUEUE FOR DCTjjCHANGED TO THAT OF DCT ii

where
i is the DCT index for the first device.

1 is the DCT index for a subsequent device.

RECONFIGURATION AND PARTITIONING EXAMPLE

In the following example, a CP=V sysrem was SYSGENed
for four different hardware configurations. These configura-
tions are referred to as the 560X, 7T, 7D, and 7E. A set of
reconfiguration and partitioning commands was generated for
each machine with the set of commands for each machine
being bounded by a conditional patch control command.
The four sets of reconfiguration and partitioning commands
exist in the patch deck. The one set that is to be used for
a particular boot is selected by a set of conditional patch
control commands such as the following:

#560X =0
71 =0
7D =1
#7E =0

The obove commands indicate that the 7D machine is to be
booted. Figure 7 lists the entire set of devices that were
SYSGENed for this example. Figure 8 lists the set of recon-
figuration and partitioning commands which were ignored
because they were for machines not being booted. Figure 9
lists the set of reconfiguration and partitioning commands

Patch Deck Structure 29

I Ty Ry Y Ry Y R R R A RS R X
SYSGENED CFANFIGURATIO®ON
an--uuo'nnuonnuonnununununucinuonoonocoocioacouuunuio'-nu-nuununu-c.

CEVICE R SO URCE CONFIGURAT ! BN
DEV«TYP 1| CeEveID t DEVeADDR IDCT-C!TI PUB/PRIV | TYPE | RTBY | GENERAL INFORMATISN

PR L T e Y R Y R F R E L R RS LA LR L AR A L A R A A LA A A A A A AL A Al A dd J

Ty701¢2 TyACt 0001 01«04 Ty NBTepARTITIANABLE
CR7140 CRAQ3 0003 d2=02 CR NB«PART«DEV 1SYM
CP716C CPACs 0004 03.23 cP SYMBIENY

LP7445 LpPAQ2 0002 D404 LP NO=PARTsDEV 1SYM
LP7445 LPAQF 00OCF 05«95 SYMB1BNT

pCr212 DCEBFQ 01F0 D6e06 pe NBT»=PARTIYIONABLE
pcreie CCEBF1 01F1 07e06 NBT=PARTITIONABLE
nC723¢é DCCFOQ 02F0 08e07 NET"PARTITIBNABLE
pC7232 DCCFy 02F 1 09«27 NET*PARTITIBNASLE
977322 STA30 0080 QA28 97 (o] NE=PART=CONY
9T73¢2 STAB] 0081 0B=28 NGePARTeCONY
9Y7323 9TA82 0082 0Ce08 NO=PARTsCONT
9T7323 STA83 0083 0De«"8 NB«PARY«CANY
977323 YTARY 0084 DE=08 NOePARY«(CANT
977323 9TA85 0085 OFeD8 N8»PART«CBNT
CP7242 DFC8O 03890 {009 PUB DP 02 NETePARTITIBNABLE
DP7242 pPC8Y 0381 11e09 PUB NBTePARTITIONABLE
DP7242 DPD82 0382 {2209 PRIV

DPy24e pPLCR3 c383 1309 PRIV NBePART«DEV
pp7271 DPAED 00EQ 14edA puB NET=PARTITIONABLE
bP7271 DPAEY 00E {Se«0A PUB NBT»PART]TIBNABLE
DP7271% DPAE? QoE?2 16e0A PUB NBT=PARTITIONABLE
DP7271 CPAEZ 00E3 17«0A PUB NBT«PARTITIONABLE
DP7271 DPAES 00E 4 18e0A PUB NEBT«PART] YIONABLE
DP7271 - CPAES 00ES 19«0A PUB NO8T=PARTY!TIONABLE
DP7271% DPAE6 00E6 1A=0A PUB NBTePART!TIONABLE
DP7271% DPAE? 00E? 18e0A pPUB NOT=PARTITIONABLE
DP727% DPAF QO 00F 0 1C=0A PUB NOT*PARTITIONABLE
DP7271 DPAF 1 OOF 1 1De0A PUB NBTePARTITIONABLE
RBFFFF RBALS 0016 1E=08 RB NBePARY«DEV
xP1200 XPCCD 020D 1FenC XP NO=PART=CONY ISYM
ME7611 MEALO 0010 200D ME N8TePARTITIBNABLE
ME7611 MEALL 0011 21«0F NOT*PARTITIONABLE

BRARRIRB RN R E AR ARG RAIRANRO RN RBENRRRERPRRNRRRERGIRNRPRRORRPANERRINRBRORRR IR patNORRn

Figure 7. Device Resource Configuration from SYSGEN

teeedvotossncencssensesncges¥#7E
tevessotonseeservesavsocnsoon IBAVE
tssevvotavsvoversecnsncscoeelYYPE RBFFFFsALG
seveesscavasaversonesevnrcees ITYPE DCBFO
geverectsvssesvatestsnverosen JREMOVE A84
Bessvectssevereotssescceneet IREMOVE ABS
teverevtonssevenctvssensevsen iTYPE DP7271,.0900098
teraveosresrsnsntocescnconses ITYPE DP7242,D80.081
sevecesstacsevrvrnovescacasses JEND

»

®esevestoesssscoceecnevnssoeh?Y
sosesevrvesseervassceesecsecee |SAVE
tevececttsvesivenceencverevee iREMBVE CONT,D80
setesssvscenncevsoanassnvsen JEND

»

eevevoesossassescesessccone o #BOOX
tesesottorsrevisosetserrniec il
teteccessesvsceentnsesscscses IFEND

»

30

Figure 8. Reconfiguration and Partitioning Commands that were Ignored

Patch Deck Structure

which were used in the boot process because the 7D was
selected. Figure 10 lists the set of devices for the 7D con-
figuration. This information is listed on the line printer
during a boot, but not necessarily in the order shown in the
Figures. All of the information listed in Figures 7, 8, 9,
and 10 is also entered into the system patch file.

In Figures 7 and 10, DCT is the DCT index and CIT is the
queueing channel's index. Also in these figures, when a
device type (DEV-TYP) is a pooled device (i.e., dual ac-
cess), the information for the alternate device is listed di-
rectly below that for the primary device. The information
is the same except that the DEV-TYP column contains

the word "DUAL" and the DEV-ADR column contains the
alternate device address.

RECONFIGURATION AND PARTITIONING MESSAGES

Table 5 lists the messages that may be output when recon-
figuration and partitioning commands are being processed.

When an error is encountered, the error message is preceded
by a message containing a dollar sign ($) beneath the char-

acter position in the command at which the error was found.
Processing of the command in error is discontinued.

#70
1SAVE

$REMOBVE AOF

{REMOVE Alé

ITYPE 977322,A80,A81
ITYPE DC7212,8F0
{REMBVE CONTY,AFO
IREMBVE CF1

IREMBVE COBNT,AEO
ITYPE DP7242,0D80
ITYPE ME7611,A05
1END

#«KEEP ALL DEVJADCR4AS IS EXCEPT FOR ITYPE/IREMBVE CHANGES

Figure 9. Reconfiguration and Partitioning Commands that were Used

FINAL

DEVICE RESBURC

Ty7012 TyACl 0001 01«01
CR7440 CRAQ3 0003 02=02
CP7160 CPAO4 0004 03«03
LP7445 LPAO2 00C2 D404
DC7212 DCBFO 01iF O 06=06
DC7232 DCCFo 02F 0 08«07
977322 9TA80 0080 0A=08
977322 9TA8) 0081 0B=08
DP7242 DPD8¢ 0380 10+09
xP1200 XPCOD 020D 1Fe0C
ME7611 MEAOS 0005 200D

controller has been removed.

[X2 XTI LSS YR PR RE R R RS2 SRR 2222222222222 RS2SRSS X222 SRR LTS S 3 4

CONF Y

L L T Ty R Ll T Ty Y Ly Y P T R I
CONFIGURATI! @GN
DEVeTYP § DEVelD 1 CEV-ADDR :0CT«CIT: PUB/PRIV ! TYPE ! RTOT ! GENERAL INFBRMATION

[ZA Y DX R R L R R R P R Y P R P R L N R R AR LR R R AR L A P AL R DR LY A X X 2

E

PUB

(22 X2 22222222222 SRR RS EA RS SS SRR S S AR S R RSA R S R 2AXS 2R S R 222 2 2 S

Note: The PUB/PRIV column will contain "NO PRIM.PATH" or "NO ALT.PATH" when the primary or alternate

GURATI AN

Ty NBT=PARTITIBNABLE

CR NB«PARTeDEV 1SYM

cP SYMBIONTY

LP NBePART=DEV §1SYM

DC NBT=PARTITIONABLE
N8T=PARTITIONABLE

97 02 NB=PART»CBNT
NB=PART=CONT

DP 00 NBTePARTITIONABLE

XFP NB=PART=CONT {SYM

ME NOT=PARTITIONABLE

Figure 10. Device Resource Configuration for the Booted System

Patch Deck Structure 31

Table 5. Reconfiguration and Partitioning Messages

Message

Description

ALL :TYPE/:REMOVE COMMANDS IG NORED

**device, value CANNOT BE ADDED TO SYSTEM

CANNOT CONVERT 'n" IN 'yyndd'

CANNOT PARTITION, CONT. ndd ALREADY
PARTITIONED

CANNOT PARTITION, CONT. ndd NON-
PARTITIONABLE

CANNOT PARTITION, CONT. ndd NOT
PRESENT

CANNOT PARTITION, CONT. ndd NOT
PRIVATE PACK

CANNOT PARTITION, DEV. ndd ALREADY
PARTITIONED

CANNOT PARTITION, DEV. ndd NON-
PARTITIONABLE

CANNOT PARTITION, DEV. ndd NOT PRESENT

CANNOT PARTITION, DEV. ndd NOT PRIVATE
PACK

CANNOT REMOVE, CONT. ndd NOT PRESENT

CANNOT REMOVE, DEV. ndd NOT PRESENT

CONT. ndd PARTITIONED

A :GO command has been specified. :TYPE and :REMOVE

commands are not meaningful.

As the result of the :TYPE command, the SYSGENed system and
target machine device/controller model number definitions are

not equivalent. This message is preceded by a message containing
a dollar sign ($) under the device type and also under the first
device address for single access or the alternate device address
for dual access devices.

device =~ device type and model number.

value - device address (in the format ndd described at the
beginning of this section).

This message can also appear when there are more :TYPE defini-
tions for the device type than allowed for in the SYSGENed
system. :

A device address was encountered for which the n in yyndd could
not be validated.

The controller specified on a :PART command has already been
partitioned. '

The controller specified on a :PART command is not partitionable.
(It is a controller for a Teletype, a RAD, or a COC, or it was
defined at SYSGEN to be a non=partitionable controller.)

The controller specified on a :PART command either does not exist
or was removed in the reconfiguration process.

A disk pack controller was specified on a :PART command and one
or more of its associated disk pack spindles is public. Publfic disk

pack spindles cannot be partitioned.

The device specified on a :PART command has already been
partitioned.

The device specified on a :PART command is not partitionable.
(It is either a Teletype, a RAD, or a COC, or it was defined at
SYSGEN to be a non-partitionable device.)

The device specified on a :PART command either doesn't exist or
was removed in the reconfiguration process.

Public disk pack spindles cannot be partitioned.

The controller specified on a :REMOVE command either does not
exist or was previously removed in the reconfiguration process.

The device specified on a :REMOVE command either does not
exist or was previously removed in the reconfiguration process.

The specified controller has been successfully partitioned.

32 Patch Deck Structure

Table 5. Reconfiguration and Partitioning Messages (cont.)

Message

Description

CONTINUATION ILLEGAL

DEV. ndd PARTITIONED

DUAL ACCESS DEFINED ILLEGAL ndd], ndd2

DUAL/SINGLE ACCESS MIXTURE
INVALID TERMINATOR
**KEEP ALL DEV. ADDR. AS IS EXCEPT FOR

:TYPE/:REMOVE CHANGES

NO RECONFIGURATION PERFORMED DUAL

ACCESS DEFINITION CONFLICTS
(ndd 1 [,nddz]),(ndd 3[,ndd 4])

**NO SPACE LEFT FOR CONFIG. INFO

**PACK yyndd PARTITIONED, DIAL ndd
NOT AVAILABLE

**QUEUEING CONFLICT BETWEEN DCT ii
AND DCT jj

QUEUE FOR DCT jj CHANGED TO THAT OF
OF DCT i

Continuation commands (i.e., commands containing a semicolon)
are not allowed.

The specified device has been successfully partitioned.

On a :TYPE command, the primary address and the alternate ad-
dress on a dual access device are equivalent.

A :TYPE command specifies both single access and dual access
device addresses; or the device type is for a single access device
and the address is for a dual access device (or vice versa).

A bad or unknown terminator terminates a field or option. Valid
control command terminators are NEW LINE, period, carriage
return, trailing blank, and end of control command image .

A :SAVE command has been encountered.

The :GO command was specified, or no : commands were spec~
ified, or a :END command was specified by itself.

A device address conflict has occurred as the result of :TYPE
commands. Either a single access device address is the same
as a primary or alternate address on a dual access device, or
the primary address is the same as the alternate address on a
dual access device. The ndds indicate the addresses involved.
This message will appear twice for each conflict encountered.

Too many :TYPE, :REMOVE, and :PART command definitions
have been encountered. The total size of the internal buffer
which retains reconfiguration and partitioning commands is

512 words. Each :PART and :REMOVE command requires one
word, each :TYPE command for single access controllers requires
two words, and each :TYPE command for dual access requires
three words. Additionally, the buffer contains one control word.
The buffer is needed to retain all control command information
until every command has been processed. Actual processing of
the commands takes place when the :END command, the first non=-
root patch, or an asterisk command is encountered.

The device specified on a :PART command is a disk pack spindle.

An 1OP/controller or cluster/unit in one queueing channel has an
equivalent IOP/controller or cluster/unit in some other queueing
channel. The reconfiguration process will change the queueing

channels to be equivalent.

Patch Deck Structure 33

Table 5. Reconfiguration and Partitioning Messages (cont.)

Message

Description

**TAPE yyndd PARTITIONED, DIAL ndd
NOT AVAILABLE

UNKNOWN COMMAND, FIELD, OR VALUE

The device specified on a :PART command is a tape drive.

An unknown command, an invalid name, or a value field which
contains too many characters, is not hexadecimal, or is not in
the correct format for the particular machine was encountered.
This message also appears for each reconfiguration and partition=-
ing command encountered after reconfiguration and partitioning
processing has ended. It also appears when a :GO, :REMOVE,
or :TYPE command is encountered after a :GO command has
been processed and when a :SAVE command is encountered after
a previous :SAVE command was processed.

:GENDCB COMMAND

This command defines the system DCB associated with tape
input during PASSO. This command is required only if the
files are on a different tape than the boot tape or if they
occupy more than one reel. If the command is not present
in the patch deck, PASSO reads the account and serial num=-
ber from the tape and performs an automatic premount of
the tape. No operator intervention is required.

The format of the :GENDCB command is:

:GENDCB (M:BI, account[, password];
:, (INSN, value[, value]...), device)

where

M:BI specifies that tape input is to be through the
M:BI DCB. No other DCB is valid for this
command .

account specifies an account identifier (up to eight
alphanumeric characters) associated with the la-
beled tape to be read during PASSO.

password is the password associated with the labeled
tape to be read during PASSO. The password (if
any) must correspond to that specified when the
tape was created, and may be up to eight alpha-
numeric characters in length.

INSN, value, ... specifies the serial number(s) (up
to four alphanumeric characters in length) of the
tape(s) to be read by PASSO., No more than three
reels may be specified. The first reel specified
must contain the first file to be read, and may be
different from the reel used to boot the monitor.

device specifies a tape~type device code (e.g.,

o1, 7T).

34 Patch Deck Structure

Example:
:GENDCB (M:BI,ACCT1,PASS], ;
:(INSN,001,002), 9T)

Any number of GENDCB commands may appear in the patch
deck. Only the last will be applied. If it is defective,
files will be copied from the boot tape.

Any errors in the command are indicated by the message
***GENDCB ERROR

on the OC and LL devices.

GENMD COMMANDS

The GENMD commands are used in conjunction with the
GENMD patches described below. The three GENMD com-
mands are GENMD, LIST, and DELETE.

GENMD This command indicates which file is to be
patched next. A GENMD command must precede the set
of patches for each file to be patched. Any number of sets
of patches to the same file may be present, provided each
is preceded by a GENMD command. The format of the
command is

GENMD filename

LIST This command lists the patches currently in the file
being patched and has the format:

LIST

DELETE When a file is patched, a record is kept of the
list of patches to the file within the file itself. The DELETE

command removes this lisi o patches from the file (but does
not remove the effect of tiw: patches on the file). The com-
mand may be used to prcent files from growing too large if
they are not restored when applying a new patch deck. The
format of the command is

DELETE

GENMD PATCHES

GENMD patches are used to modify nonresident elements of
the system.

GENMD patches have the format:

:GENMD [,segname]

[segname] loc, value[,value]. . . [. commenf]
7

where

segname specifies the overlay segment name to be
patched. If not present, the most recently spec-
ified segname is assumed. If not present and no
segname was specified previously, the root seg-
name is assumed.

loc specifies the location to be patched and has the
format [name] [thex value]. The hexadecimal
value is added to or subtracted from the absolute
address of name, A maximum of eight characters
may be used for the hexadecimal value. The name
need not be defined in any particular overlay since
all the stacks are searched. If more than one
overlay defines the same name, the first is used.
The special name @ refers to the start address word
in the load module HEAD record.

value specifies the value to be inserted at loc. If
more than one value is specified, they will be in-
serted at successive locations. Each value must
have the format

hex value[tname [tname]. . .]

The absolute address of the names are added to or
subtracted from the hexadecimal value. A max-
imum of eight characters may be used for the hexa-
decimal value. The name need not be defined in
any particular overlay since all the stacks are
searched. If more than one overlay defines the
same name, the first is used.

If a name needs to be referred to with other than
word resolution, the standard format is permitted
for byte, halfword, and doubleword resolution
(e.g., BA(name)).

Any value specification may optionally contain a
replacement value check specification using the

format

value (old value)

Old value is formatted in the same manner as
value. If the old value specified is not the same
as the actual old value, an error message will
be issued. However, if the old value specified
matches the (new) value specified, the message will
be issued but the error will not be counted and pro-
cessing of the patch will continue.

A GENMD command may be continued by terminating the
first line with a semicolon (;). The semicolon must not di-
vide a name or a hexadecimal string and is not permitted
where a blank is required. The continuation line must be-
gin with a colon (:) if the continved line began with
:GENMD. Otherwise, the continuation line begins with
the next character of the command.

GENMD ERROR MESSAGES

Table 6 lists the error messages that may be output when
GENMD commands and patches are being processed.

CONDITIONAL PATCH CONTROL COMMANDS

A conditional patch control command specifies whether the
patches that follow are to be used as patches or are to be
effectively ignored. The conditional patch control com-
mand controls the SKIP flag. When the SKIP flag is set,
all subsequent patches are effectively ignored until the
SKIP flag is reset. The conditional patch control command
can appear any number of times and anywhere within the
patch deck (including the GENMD portion). The command
has the format:

#[value]

where value is any well~formed, but not necessarily evalu-
atable, expression terminated by a blank. The value expres-
sion may contain an undefined symbol.

If value contains an undefined symbol, is negative, or is
zero, the SKIP flag is set. While the SKIP flag is set, only
the segname field of a patch is examined to determine when
the current segment's patches end. If value is absent or
greater than zero, the SKIP flag is reset and normal patch-
ing resumes. The special symbol ELSE may be used to toggle
the setting of the SKIP flag.

The SKIP flag is also changed when a Delta format patch
that does not have a loc and value field is encountered
(i.e., segname//). In this case, it is set if the segname is
undefined and it is reset otherwise.

Patch Deck Structure 35

Table 6. GENMD Error Messages

Message

Description

BAD LMN - 0000

BAD LMN = xxxx

BAD SEG

DLM AT xx

**nn GENMD ERRORS DETECTED

HEX AT xx

LOC AT xx

NAME AT xx

NO FILE NAMED

OLD + loc = value

TOO BIG

The file is not a load module.

An error occurred when accessing the load module. The code and
subcode are indicated by xxxx.

A segname is not in the TREE.

The delimiter in column xx is not what it should be.

This message is output on the OC and LL devices at the conclusion
of the GENMD patching process and indicates how many errors
occurred.

The hexadecimal number ending in column xx is null, too large, or
not hexadecimal.

The location ending in column xx or whose value ends in column xx
is not contained in the segment.

The name ending in column xx is null or is not in the load module's
stacks.

A 'GENMD filename' command has not yet been encountered or has
no filename on it.

A replacement check error has occurred. That is, an 'old value' was
specified which did not match the actual old value. The loc field
specifies the location where the error occurred. The value field
specifies what the actual old value in the location was.

Not enough core is available to read the REF/DEF stack. It may be
possible to do the patch if all names are converted to absolute hex-
adecimal values, since the stacks are read only if a name is used.

36

GENMD Error Messages

Examples:

1. The following patches will be included only if the sys-

tem was generated for a large Sigma ? or a large
Xerox 560,

#:BIC
/SWAPPER+.C5/B @/
/@/L1,5 0/
/@/s1s,7 L1/

/@/B SWAPPER+.C6/

i#

2. The following patches will be included only if the
ENQ/DEQ feature was included in the system:

ENQ//

ENQ/ENQN+,266/B @(CW,13 ENQP+.1F4)/
/@/LB,15 ENQP+, 1F4/

/@/cB,15 13/

/@/B ENQO+.256/

OPEN//

3. The symbol BPS will be set to one if the system was
generated for a pack swapper with greater than 128K .
Otherwise, it will be set to zero.

#:BIG*DPSIO
#BPS=1
#ELSE
#BPS=0

#

COMMENT CARDS

Comment cards may appear anywhere within the patch deck.
In the portion of the deck that contains Delta format patches
and symbol definition patches, the comment card must con-
tain a ‘'less than' character (<) in column one. In the
GENDCB and GENMD portion of the deck, comment cards
must contain one of the following in column one:

<

*

PATCH FILE CREATION

All patches read during the startup of the system (except
GENDCB commands) are copied to the file PATCH in the
system account. Those that were read while the skip flag
was set appear with the word SKIP in columns 77-80. The
resulting file may be used as input to DEF to create a sys-
tem tape with the complete, current patch deck on it.

SEQUENCE OF OPERATIONS

The master system tape is loaded into the machine by use of
the standard load procedure described in the CP-V/OPS

Reference Manual, 90 16 75. The hardware bootstrap loads
and enters the tape boot at the beginning of the system tape.
This tape boot, in turn, loads the monitor root and the fol~
lowing functions are then performed.

If the system was generated with the BIG option on the
:MON card and is not being booted on a Sigma 9 or Xerox
560, the following message is output to the operator's con-
sole and the bootstrap operation is teminated.

SYSTEM REQUIRES SIG9 OR X560

The operator's console (OC) device address is validated. If
the actual OC device address is different than that of the
SYSGENed address, the system will halt (wait). The oper-
ator should enter the appropriate OC address into register 0.

To enter the OC address on a Sigma machine:

1. Put the machine in IDLE.

2. Set the SELECT ADDRESS switches on the control panel
to 0.

3. Enter the appropriate device address into the SELECTed
ADDRESS.

4. Set the COMPUTE switch to the RUN position.

To enter the OC address on the Xerox 560:

1. Enter CONTROL P.

2. Enter 0/ (which displays the contents of register 0).

Sequence of Operations 37

3. Enter the new device address followed by the letter M.
. 4. Enteran X, (Thiswill cause the 560 to resume processing.)

After the OC address has been validated, the following
message is output to the operator:

ENTER ANY OF:

= TTY I/O

LP OUTPUT
TAPE FILES
:SYS FILES
TAPE PATCHES
= CARD PATCHES
= XDELTA

[

I

P
E
S
T
C
D

The operator must respond within 10 seconds by typing one
or more of the characters above followed by new line or by
entering new line alone. If new line alone or nothing is
entered, T is assumed by default. If any characters other
than those listed above are entered, they are ignored.

The letters have the following meanings:

I specifies that the operator wants to read and re~
spond to the normal OC messages during the boot.
Otherwise, default responses are assumed up to
the date/time request (see below) and normal
output is suppressed. (Error messages will still
be output.)

P causes output to the LL device to occur. Other-
wise, the printer is not used.

F causes PASS0's tape copy operation to occur.
Otherwise, a boot-under-the-files occurs.

S causes the files to be copied from the POtape into
:SY'S without destroying the entire file system,

T define that the patch deck(s) are to come from

and tape or cards respectively. Either, neither, or

Cc both may be specified. If both are specified,
cards will be read first for root patches and last
for overlay patches and GENMD commands.
Card patches meant to repatch tape root patches
should therefore be placed after a nonroot patch.
Patches of the format segname// should be used
in both patch decks to prevent the switching of
devices from splitting up a logical patch.

D causes Executive Delta to be retained after the
boot for debugging purposes.

N is meaningful only by itself and means "none of
the above".

The message

NEW FILE SYSTEM

38 Sequence of Operations

indicates that F was specified. If F was specified, the old

file system is not destroyed until the entire patch deck has
been read. The bootstrap operation may be halted at any
time during this interval by triggering a console interrupt.

The message

INITIALIZATION HALTED — RESTART O.K.

indicates a successful halt.

If 1 was specified and if the system includes the real-time
option, the system then issues the following message.

RESET RESDF YYY, XXXXX

This message allows the operator to override the SYS GEN-
defined values for the size of the RESDF area (dedicated
real-time memory pages) and its starting address. The op-
erator should respond:

[yyy] [xxxxx] @
where

yyy is the optional decimal number of pages to be
in the RESDF areaq; a value of 0 through 999 may
be used.

XXXXX is the optional hexadecimal word address of
the first page to be in the RESDF area. Any page
address representing a value greater than or equal

to 10,00074 (64K) may be used.

If either or both optional parameter(s) are not specified, the
SYSGEN-defined default(s) will be used.

CP-V will then request the date

DATE (MM/DD/YY) =

and the operator should enter the date (e.g., 2/5/74).

Then CP-V will request the time

TIME (HH:MM) =

and the operator should type the time, which is represented
by a 24-hour clock (e.g., 6:05 PM is typed as 18:05). The
time of day is typed at the left margin of the console once
every minute after the system has been initialized. The
form of this type-out is

hh:mm

If the system is being loaded on a machine for which it was
not SYSGENed, one of the following messages will be dis~
played on the OC device and the bootstrap operation will

be terminated,

SYSTEM NOT SYSGENED FOR SIGMA 6

SYSTEM NOT SYSGENED FOR SIGMA 9

SYSTEM NOT SYSGENED FOR XEROX 560

If the system and target machines match and if I was speci-
fied the following message is displayed:

C/LL/DC ASSIGN OK (YES/NO)

If the operator’s response is YES or @, it is assumed that
the device addresses for the control device, listing log,
and system device are not to be changed from those estab-
lished when the monitor was defined. If the response is
NO, then the following messages will be output to rede-
fine these device addresses. '

CRndd = CR

LPndd = LP

DCndd = DC

where each ndd is the current device identification and as
many DC messages are output as there are swap devices.

In response to each of these messages the operator must type
two or three characters. If two characters are typed, they
must be 'SA!' and indicate no change for this device. If
three characters are typed, they must be the channel and
device designation codes (ndd) defining the address of the
indicated device (see Appendix B, Tables B-2 and B-3).

If the DC or swapper assignment is incorrect, one of the fol-
lowing three messages will be displayed. Two of the mes-
sages request a new swapper device address.

!lyyndd INOPERATIVE
yyndd => yy

(The device address is unrecognizable by the hardware.)

!lyyndd NOT A dddd
yyndd = yy

(The dddd field specifies the model number that was expected

as the swap device.)

PSA TRACK FLAWED

(The swapper disk pack contains flaws. The boot process
terminates.)

Before completing any of the above responses with a @ or
@, the operator may cancel the response by striking the
key. Following this, or if a completed response is in error,
the message

??

will be output and the key-in request will be repeated.

If no characters are typed within 10 seconds, a @ response
is assumed.

After all necessary responses have been received, the boot
subroutine reads the system information record from tape

and writes it on the LL and OC devices if Pand I are speci-
fied, respectively.

The following sense switch information is then listed on the
OC device if I was specified.

SET SENSE SWITCHES AND TYPE N/L

SSW1 =>CHECKWRITE DISK WRITES

SSW2 =>NO AUTOMATIC LOGON/LOGOFF
SSW3 =>OPERATORRECOVERY ONDISK BOOT
SSW4 =>SYSTEM SECURITY CHECKING

The system will continue when a NEW LINE or any other
character is entered.

Next, the reconfiguration and partitioning commands (if
any exist) are read and processed. A summary of the
system's device will be output on the LL device (even if
no :TYPE commands are encountered). Permanently down
devices are not listed.

Next, the monitor patches are read and processed for the
patching of the overlays, ALLOCAT, GHOST1, and
RECOVER. (If the RECNFIG boot~time processor needs to
be patched, XDELTA performs the patching as it does for
the monitor root. However, these patches must precede
the reconfiguration and partitioning commandsin the patch
deck.)

After the nonroot patches have begun, reconfiguration and
partitioning commands are illegal. If any such commands
appear in the deck, the following message is displayed on
the OC device (and also on the LL device if P was speci-

. fied) and the bootstrap continues.

/:'* COMMAND NOT IN PATCH DECK PROPERLY

This message is displayed only one time, even if additional
reconfiguration and partitioning commands are encountered.

Sequence of Operations 39

It then copies the overlays, etc., to the swapping device,
communicating the sizes and disk addresses to the resident
root of the absolute monitor. Control then passes to another
boot subroutine at WRTROOT. This second boot subroutine
causes the monitor root to be copied to the disk, preceded
by a disk bootstrap. At this point, the resident monitor is
operational but the system has not yet been established on
the resident swapping device. The GHOSTI1 processor
performs this function.

If P was specified, GHOST1 determines whether any de-
vices or controllers are partitioned. If none are partitioned,
the following message is displayed on the LL device:

*** NOTHING PARTITIONED

However, if devices and/or controllers are partitioned,
the following message is displayed on the LL device:

xxx [TEMS PARTITIONED ***

followed by messages identifying each device or controller
which is partitioned. The messages have the following
formats:

DEV yyndd PARTITIONED

(for devices)

CONT yyndd PARTITIONED

(for controllers)

When all partitioned items have been identified, the
following message concludes the list:

** END OF PARTITIONED ITEMS **

The hardware boot routine loads and transfers control to the
disk boot which then loads the monitor root into core. The
system requests the date and time and then asks

DO YOU WANT DELTA (Y/N)?

to determine whether the system debugger's memory should
be released.

The following message is then output to the operator's
console:

DO YOU WANT HGP RECONSTRUCTION (Y/N)?

A response of Y causes an HGP reconstruction of the public
file system to be performed. If no response is received
within one minute, N is assumed.

Partitioning information is displayed as described previously,
and the system ghost jobs (Fill, ERR:FIL, and Fix) are
started. Normal operation may then be resumed.

BOOTSTRAP I/0 ERROR RECOVERY

1/O error recovery during bootstrap is provided for the card
reader, line printer, magnetic tape, and disk. However,
error recovery is not possible until the tape boot and mon-
itor root have been read from tape. The following error
messages may appear on the OC device:

Ilyyndd INOPERATIVE

! lyyndd ERROR. TIO value, TDV value,
CMD=loc

When P was not specified or when GHOSTI has completed
the above listing, GHOST1 starts the symbiont ghost, Fix
ghost, ERR:FIL ghost, and fill ghost, and then exits.

BOOTING FROM DISK

Once the operating system has been bootstrapped from tape,
it may thereafter be brought into core from the disk by
means of the load procedure described in the CP-V/OPS
Reference Manual, 90 16 75.

40 Sequence of Operations

!lyyndd CKWRT ERROR, TIO=valve, TDV=value,
CMD=loc

Ilyyndd WRITE PROTECTED, SEEK=value

Ilyyndd MANUAL MODE

CHECKWRITE ERROR

where
yyndd is the address of the device with trouble.

value indicates the TIO or TDV results or the SEEK
address.

When any of the first four messages above occurs, the wait
state is entered. To continue, the operator must place the
CPU into IDLE, STEP, and then RUN state. The I/O will
then be retried. If the last message above occurs, 1/0O will
continue when the condition is corrected. When an error
occurs for a magnetic tape or disk operation, the operation
is retried ten times before an error message is output.

PASSO PROCESSOR

The PASSO processor performs various system initialization
functions and is entered automatically whenever a CP-V
‘tape is booted.

PASSO reads a tape specified by the user (via the GENDCB
command) which contains the nonresident elements of the
system (i.e., CCl, processors, libraries, etc.). (This is nor-
mally the labeled portion of the tape used to bootstrap the
absolute monitor.) PASSO allows the user to modify these
elements via the GENMD portion of the deck.

PASSO MESSAGES

The messages in Table 7 may be output by the PASSO
program on the LL device. PASSO continues its normal
operation.

Table 7.

PASSO Messages

Message

Description

***CANNOT BOOT LMN

A load module cannot be read from the bootstrap tape because
core is not large enough. PASSO outputs the filename in error
and continues to the next file, thus ignoring the file in error.

I/O ERR/ABN nn, xxxING FILE ffffffff ON dddd

An 1/QO error or abnormal condition has occurred on tape or
disk.

nn is the error or abnormal code.

XXX is READ, WRITE, OPEN, or CLOS.
FEFFFFFE is the current filename.

dddd is TAPE or DISC.

PASSO continues after this message.

PASSO Processor

41

4. MONITOR DUMP ANALYSIS PROGRAM

INTRODUCTION

The monitor dump analysis program ANLZ (Analyze) is
designed to aid in the debugging of CP-V crash dumps.
ANLZ operates in the ghost, on-line, and batch modes.
It accepts as input any tape or disk dump produced by the
recovery procedure and any tape dump produced by exe-
cutive Delta. If a tape is input, the ANLZ user must sup-
ply the tape type in response to the message

ENTER TAPE TYPE: 7T, 9T, BT, ETC...

Tape input results in the creation of adisk file (CPS5DUMP);
subsequent tape inputs replace the contents of this file.

GHOST MODE

ANLZ is called automatically by the recovery procedure,
and functions as a ghost job to interpret and summarize crit=~
ical monitor tables and to dump the monitor's dynamic data
area. When ANLZ is initiated after a system crash, it
neither looks for nor accepts any commands, operating en-
tirely on default options. It assumes an INPUT command
option of LAST; if unable to open the last MONDMP file,
it then assumes an INPUT command of TAPE. (Refer to the
description of the INPUT command in the following text.)
When Analyze is run in this manner, the output is an ab=
breviated form of the output produced by the ALL display
command,

ANLZ is also automatically initiated after a single user
abort, In this case, it functions just as though it had been
initiated as a ghost job via an operator key=-in. (This is
described below,)

ANLZ may be called as a ghost job by the operator to
examine the tape produced during an irrecoverable crash,
The operator key=-in used for this purpose is

GJOB ANLZ

ANLZ then asks the operator for a command:

ANLZ: ENTER COMMAND, N/L SAYS TO DO ALL

The operator may respond with one of the following
commands: -

NO - just "exir.
TA - read a recovery=-built tape.

ME - run interactively from the operator's console.

42 Monitor Dump Analysis Program

CP - read the CP5DUMP file.
1-7 - read the indicated MONDMP file,
? = list the ANLZ commands on the line printer,

N/L (new line alone) - do default ghost run.

In the interactive ghost mode, a key=in of
INT, id

will cause termination of the current ANLZ operation and
a prompt for input. (id specifies the ANLZ user's number.)

BATCH AND ON-LINE MODES

Any batch or on-line user may call ANLZ by specifying
the name of the program. For on-line users, this program
name is entered in response to a TEL prompt for com-
mands, as follows:

1ANLZ
Any user, in batch or in on-line mode, must have the proper

privilege level (80 or better) to examine the monitor. If
not, ANLZ outputs the following message

xx PRIVILEGE LEVEL NOT HIGH ENOUGH

where xx is the user's current privilege level, (Response
messages are output on the line printer for a batch user.)

When accessed on-line, as an interactive ghost, or as a
batch job, ANLZ is completely command~driven, It re-
sponds to commands that selectively display monitor tables,
examine memory, and compare the dump with the running
monitor.

An on-line user may terminate a display by depressing the
BREAK key.

COMMANDS

When ANLZ is first entered, it responds

ANALYZE HERE

and, if in on-line mode, it requests entry of an input com-
mand with the prompt character

<

All commands, options, and output are identical for batch,
interactive ghost, and on-line modes.

INFUT COMMAND

INPUT The INPUT command directs ANLZ to input
from a particular disk or tape file, or to open a file., The
format of the command is

IN [PUT]opfion

where option may be any one of the options shown in
Table 8.

After reading a tape or disk file as directed by the INPUT
command, ANLZ informs the user of the size of the file
with the following message:

THE LAST PHYSICAL PAGE IN THE FILE IS xx

If in on-line mode, it then prompts (<) for the next command.

Table 8. INPUT Command Options

Option Meaning

TA[PE] Directs ANLZ to read a tape created

by the recovery process and to write it
into the file CP5DUMP which is then

used for input,

CP[5DUMP] | Directs ANLZ to open the CP5DUMP
for input.

LA[ST) Directs ANLZ to open the last file
formed by the recovery procedure for
input. (ANLZ must look at the run-
ning monitor to obtain this information.)

number Directs ANLZ to open a crash file
formed by recovery. Recovery file
names are of the form

MONDMP(number)

where number isthe number of the dump
file (1 for the first dump since a "cold”
start, 2 for the second, and so on),

DISPLAY COMMANDS

Three display commands may be used to output information
from crash dumps, They are

DISPLAY
RUN

ALL

DISPLAY The DISPLAY command outputs information
existing at the time of the crash, The format of the com-
mand is

DI[SPLAY] option
where option specifies the information to be displayed

(Table 9).

RUN the RUN command outputs various linked lists of
the monitor by running through the list and displaying each
entry. The format of the RUN command is

RU[N] option
where option specifies the list to be printed (Table 10).
ALL The ALL command performs all of the functions of
the display commands described above and the functions of
ANLZ (except dumps) when it is initiated by the auto-
matic recovery procedure, The format of the command Is

AL[L]

A numerically and alphanumerically sorted monitor map is
output at the end of the ALL display.

INTERACTIVE MONITOR DISPLAY COMMANDS

Commands in this group allow the user to examine either
the dump or the running monitor. Both the monitor and
user JIT and physical core may be examined. The com-
mands are

loc

loc 1r |o<:2

Line feed (or carriage return)

t

*

MONITOR

loc -~ value
loc The loc command outputs the contents of the speci-
fied location, The format of the command is

loc
where loc is one hexadecimal value (1 to 8 hexadecimal
digits) or two hexadecimal values separated by an operator
indicating addition (+), subtraction (<), multiplication (*),

or division (%), Note that loc values do not require a pre-
ceding delimiter character ", ",

Commands 43

Table 9. DISPLAY Command Options

Option Meaning
AJ{1TS] Displays JIT, AJIT, and context area of all incore users at the time of the crash,
AT[ABLES]» Dis;;-[a;/; the incore portion of ALLYCAT's tables. B

CAvRl | Displays the tape and disk tables. I

CI[TS][, indexb]‘ ce

cO[C][, index]. ..

culN)

Displays the requested entries of the Channel Information Table. Up to 20 entry
indexes may be specified. If no index is specified, the entire Channel Informa-
tion Table is displayed.

Displays the requested entries of the COC table. Up to 20 entry indexes may be
swecified. If no index is specified, the entire COC table is displayed.

Displays the current user's JIT, AJIT, and context area.

S

DC[T[index]...

Displays the requested entries of the Device Control Table. Up to 20 entry indexes
may be specified. [f no index is specified, the entire Device Control Table is dis-
played.

EL{OG] Displays and validates the incore error log buffers.
FM[, index] . . . i Displays the requested entries of the file management read-ahead tables. Up to
" 20 eniry indexes may be specified. If no index is specified, the entire set of file
management read-ahead tables are displayed.
FQ Displays the Free I/O Queueing tables.
10[, chan]. .. Displays the device on the requested 1/O channel. Up to 20 channels may be
specified. If no channel is specified, the devices for all channels are displayed.
1Q[, index]... Displays the requested entries of the 1/O queueing tables, Up to 20 entry indexes

may be specified. If no entry index Is specified, the entire set of 1,0 queueing
tables are displayed.

1L, id][, locl, loc2]

Displays the contents of the JIT for the user specified by id. Locl and loc2 specify
that only a portion of the JIT page is desired and represent a relative offset into the
page in hexadecimal. If an id of O is given or if no id is specified, the monitor's
JIT is displayed.

MR[, locl,loc2]

Displays the requested portion of the monitor's root. The displacements (loc1 and
loc2) must be absolute hexadecimal addresses. If no displacements cre given, only
the monitor's data area will be dumped.

oJIT1]

Displays all of the out of core JITs at the time of the crash.

(0N

Displays the user outswap tables (if outswap is in progress).

PA[RTITIONS][, index]. ..

Displays the requested entries of the partition tables. Up to 20 entry indexes may
be specified. If no index is specifiad, the entire partition table is displayed.

PF[1LE] Displays the patch file that was created last.

PM Displays the contents of the page matrix identifying the owners of all pages. This
option assumes that page identifying routines (such as RUN USERS, RUN PROCS)
have been run previously.

PN Displays the processor inswap tables (if inswap is in progress).

44 Commands

Table 9. DISPLAY Command Options (cont.)

Option

Meaning

PP, pageno| , loc1, loc2]

Displays the contents of the indicated physical page. Locl and loc2 are relative
page offsets expressed in decimal (0-512). If they are specified, only the portion
of the page in the indicated range is displayed.

RA[T] Displays the resource allocation tables.

RB[T] Displays the remote batch tables (if there are any).

RE[GISTERS] Displays the software check code, software check message, and the first two
register blocks at the time of the crash.

RC[XT] Displays the area of memory occupied by the recovery routines.

RQ . Displays the resource subqueue lists.

ST[ABLE] Displays the output symbiont tables.

SWIAPPER] Displays the contents of the swap/swap scheduling tables.

SY[MBIONT] Displays the contents of the RBBAT recovery file.

TP Displays the transaction processing tables (if there are any).

TR[APS) Displays the contents of the trap and interrupt locations.

Ts[TAcK](, id] Dumps the temp stack of the user indicated by id. If no id is specified, the

monitor's temp stack is dumped.

US[ER][id]. ..

Displays the user tables of the specified users. Up to 20 users may be specified.

VP, pageno[, loc1, loc2]

Displays the contents of the specified virtual page. Locl and loc2 are relative
page offsets expressed in decimal (0-512). If they are specified, only the portion
of the page in the indicated range is displayed.

WHY Displays the software check code and the software check message.
Table 10, RUN Command Options
Option Meaning
MO[NITOR] Specifies monitor pages.
PR[OCESSOR][,{S]] Specifies processor pages or specific processor. The default is S, indicating all
name processor pages.
RT Specifies real-time page chains.

ST[ATE][, {:#}]

Specifies state queues. The number of a specific state queue may be specified
(@*), or S indicates all. The default is S.

us[ER][r {?d [, ié]. . }]

Specifies user pages for all users (S), or for particular users (id). Up to 20 users
may be specified. The default is S.

XD[ELTA]

Specifies XDELTA's page chains.

Commands

45

locy ,locy This command outputs the contents of the
memory locations between loc] and locp. The format of
the command is

locy, loc2

where loc; is a hexadecimal number or an expression indi-

cating a sum or difference of two hexadecimal numbers,

Two levels of loc; commands may be joined by the +, -, %,
and % (division) operators. For example, the following are
permissible:

loc + loc Ioc2

]l
loc - |oc], |o<;2

loc Ioc2 + loc

ll
loc',loc2 = loc
Ioc] + Ioc2, loc3 - loc4

loc, * loc,, loc,, % loc
2’ 3

1 4

The resultant dump suppresses identical lines and an * is
inserted next to the line number following the identical
line encountered. An EBCDIC translation is included to
the right of the dump,

LINE FEED The line feed (or carriage return) character
may be used in conjunction with loc and locy, locy com=-
mands to dump the contents of the next location.

t This command may be used in conjunction with the
loc and Ioc], loc2 commands to dump the last location.
The format of the command is

f

* This command may be used in conjunction with the
loc and locy, locy commands to dump the location whose
address is contained in the location specified by loc. The
format of the command is

*

MONITOR The MONITOR command turns the monitor
display mode on and off (as does any explicit command).
When the display mode is on, the current monitor is dis-
played. When the display mode is off, the dump is dis-
played. The format of the command is

'MO[NITOR] [DIsPLAY]]

where DISPLAY turns the monitor display mode on. Omis-
sion of DISPLAY turns the monitor display mode off.

46 Commands

-loc =value

This command places the specified value into
the specified location (loc) of the running monitor. (The
display mode must be on.) The format of the command is

loc = value

where
loe is the specified location.
value is the specified value.

MAP COMMANDS
These commands turn the map mode on and off. They work

only with interactive commands and apply only to a partic-
ular user. The two map commands are

MAP
UNMAP
MAP The MAP command loads the map of the specified
user if his JIT is in core. The format of the command is
MA[P], id
where id is the user identification assigned by the system.

Dump output following a MAP command is assumed to be
virtual addressed. ‘

UNMAP The UNMAP command turns the mapping mode
of operation off. The format of the command is
UN[MAP]

Dump output following an UNMAP command is assumed to
be physical addressed.

SEARCH COMMANDS

Commands in this group allow core to be searched. The
commands are

COMPARE

SMASK

SEARCH
COMPARE The COMPARE command compares dump lo-
cations between loc1 and locg with the running monitor,

and outputs locations with nonequal contents. The format
of the command is

CO[MPARE] ,loc,locy

'SMASK The SMASK command sets the mask to the
‘specified valve. The format of the command is

SM[ASK],value

where value is a hexadecimal mask.

SEARCH The SEARCH command searches for and outputs
all words between locations loc] and locg that contain the
specified value under the mask. The format of the com-
mand is

SE[ARCH] ,value,loc] ’ Ioc2

where

value is a hexadecimal valve.

loc is the beginning location and may be a hexa-
decimal number or an expression indicating a sum
or difference of two hexadecimal numbers.

loc is the ending location and may be a hexadec-
2 g 4
imal number or an expression indicating a sum or
difference of two hexadecimal numbers.

OUTPUT COMMANDS

Commands in this group direct or format the output of
ANLZ. Four output commands are provided:

ROWS
LP

ucC
PRINT

ROWS The ROWS command establishes the width of dump
output, The format of the command is

ROWS valuve
where value is a number between 1 and 12, ROWS 1 would
cause all hexadecimal dumps to be one word wide; ROWS 8

would cause the dumps to be eight words wide. (Platen
width may need fo be extended at ROWS =8.)

LP The LP command directs output from ANLZ to the
line printer, The format of the command is

LP [rows]

where rows indicates the dump width in number of words,

uc The UC command directs output from ANLZ to the
on-line terminal, The format of the command is

UC [rows]

where rows indicates the dump width in number of words.

PRINT The PRINT command closes the output symbiont
file to allow output to the line printer without requiring a
return to TEL. The format of the command is

PR{INT]

DEBUG COMMANDS

Commands in this group permit the use of Delta to facilitate
monitor debugging. The three debug commands are

BF
DELTA

NODELTA

BF The BF command specifies the name of the boot file
that represents the monitor being examined by ANLZ.
This enables the debugger Delta to read in the required
symbol tables. If the BF command is not specified, the file
M:MON in :SYS is the boot file that is assumed by default.

The form of the command is
BF fid

where fid is the file identification and is in the form

.account

name [[[occount].password]]

DELTA The Delta command associates the debugger
Delta with ANLZ and gives control to Delta, If the

BF command has been issued, the Delta command ;S loads
the global symbol table of the monitor root from the spe-
cified boot file. The Delta command name ;S loads the
local symbol table of the module named, If the BF com-
mand was not executed, the file M:MON in :SYS is used
to obtain the monitor symbol tables and the Delta com-
mands apply to the running monitor being examined, not
to the monitor in the boot file. The Delta command ;G
is used to exit from Delta and to return control to ANLZ.

The form of the DELTA command is

DE[LTA]

NODELTA The NODELTA command disassociates the
debugger Delta from ANLZ. The form of the command is

NO[DELTA]

Commands 47

MISCELLANEOUS COMMANDS

SYMBOLS This command creates an alphanumerically
sorted monitor map by reading, sorting, and formatting the
monitor's REF/DEF stack in the file MONSTK. :SYS.

The form of the command is
sy[mBOLS] [fid]

where fid is used to select symbols from a file and has the
format

[[. account]. password]
name
.account

MONSTK. :SYS is the default.

IS This command reads the sorted symbol table that was
saved the last fime ANLZ ran as a ghost job. The command
produces no output. When the IS command is used, the
SYMBOLS command is unnecessary. The format of the IS
command is:

IS

SYMBOL/ The symbol/ command displays the contents of
a monitor location, The format of the command is

symbol/

where symbol specifies the name of a location in the
monitor.

Note: The symbol table must have been retrieved by use
of the SYMBOLS or IS command prior to use of this
command,

Dump This command causes a specified range of ad--

dresses to be dumped, The command's format is

DUMP |o<:],|oc2

Dump output following a MAP command is assumed to be
virtual addressed; after an UNMAP command, physical
addressed.

CLOSE This command causes the input dump file to be
closed. The format is

CL[osE]

A user sheuld close a file prior to entering the monitor dis~
play mode.

HELP This command lists all ANLZ commands and op~
tions, and gives a brief description of the purpose of each.
The form of the HELP command is

HE[LP]

48 Commands

SPY COMMAND

SPY SPY provides a mechanism for obtaining information
about users currently in the system. If the ANLZ user has
the proper privilege (i.e., CO or above), SPY will read the
selected set of user JITs from the swap device and output
them on the LO device (i.e., on the LP or UC). If the
ANLZ userdoes not have sufficient privilege to allow direct
1/O, SPY will try to obtain the selected user JITs from in
core. However, it is unlikely that SPY will be able to
capture the JITs of more than a few users at best.

The format of the command is
SPY [option]

If no option is specified, all user JITs will be read. The
options are:

SWAP reads all user's JITs on the swap device.
#,#]...

SWAP [, #]... reads the JITs of the specified users
from the swap device,

reads the JITs of the specified users.

SNAP #, #]... SNAPs the selected JITs.

In general, users are specified by their user numbers. How-
ever, batch IDs can also be used.

The SNAP option causes the JIT to be output in the usual
SNAP format, All other SPY output has the column headings
listed in Table 11,

Table 11. SPY Output

Column Description

USER B - batch job.
O - on-line user.
G - ghost job.

* = JIT read from swapper.

ACCOUNT The user's account number.

NAME The user's log-on name.

PRV The user's privilege level.

PRI The user's current priority,

PRB The user's base execution priority.

LN/ID The user's line number if on-line. The
user's SYSID and partition number if
batch.

STATE The user's current state,

Table 11. SPY Output (cont.)

EXIT COMMAND

Table 13.

are those used by the associated XPSD instructions and are listed in

Column Description END The END command causes an exit from ANLZ,
The format of the command is
PS1Z The user's peak size in decim.: n..mber
of pages. EN([D]
PCT The user's current page count in
decimal,
CCBUF The last control card read or the last oUTPUT
on-line command that TEL read,
The output produced by ANLZ consists of displays of for-
CPU - SEC The number (in decimal) of seconds the matted monitor and user tables and the contents of registers
user has been in core, existing at the time of the crash, The time and date infor-
mation in the output page headings refer to the time at
REM - SEC The number (in decimal) of seconds the which the crash occurred.
user has left to run in core. (Valid for
batch jobs only.) Some of the output tables are chain type displays. That is,
they are formed by starting at the head of a chained list and
CAL - CNT The number (in decimal) of CALs the outputting that list until the tail of the chain is reached. If
user has issued. the tail and the last page in the chain do not agree, the fol-
lowing message is output:
DISCAC The number (in decimal) of RAD and
i disk accesses the user has performed. TAIL ERROR
TAPEAC The number (in decimal) of tape ac-
cesses the user has caused. If the count differs from the number of pages in the chain,
the following message is output:
APS The number (in decimal) of 1/O ac-
cesses per CPU second for the user. COUNT ERROR
CPS The number (in decimal) of CALs per
CPU seconds for the user. . R .
Table 12 lists all of the ANLZ displays in order of appear-
PG - CNT The number (in decimal) of line printer ance in f.he ANLZ dump, The ieft-hund colu.mn specifies
es that the user has printed the heading that appears at the top of each display, The
pag P . right=hand column describes the contents of the display.
Table 12, Displays
Heading Contents
REGISTERS: The contents of the registers at the time the dump was taken.
TRAPS/INTERRUPTS : The output for trap and interrupt locations. The trap and interrupt locations

PAGE IN WHICH TRAP OCCURRED:

recovety,

The core page in which the trap occurred, if o trap was the cause of the

USER TABLES:

The user tables. This display includes the tables associated with each
user that has a page chain. The meaning and source of items in this dis-
play are defined in Table 14,

ADDITIONAL USER TABLES:

The remainder of the User Tables display above. The meaning and source
of items in this display are defined in Table 15,

Output 49

Table 12. Displays (cont.)

Heading

Contents

USER STATE CHAINS:

The user state chains which indicate the state of each user in the system.

RESOURCE WAIT QUEUES:

SWAP TABLES:

T

PARTITION TABLES:

PROCESSOR TABLES:

The queues of users waiting for resources, The queues are listed and de-
fined in Table 16,

The swap tables, The meaning of each location in the table is defined
in Table 17,

The partition tables. Table 18 defines the headings in this display.

- S e meem e m s e i e b v o e e e —— ———

The processor tables. Table 19 defines the headings in the display.

MONITOR (FREE) PAGE CHAIN:

USER PAGE CHAINS:

PROCESSOR PAGE CHAINS:

READ AHEAD TABLES:

’,,.. R

The monitor free page chain. The swapper page chain is formatted in the
same manner as this display, Usually there is no page chain data
output.

The user page chain display, This display indicates which pages and how
many pages were being used by the various users resident in core,

The processor page chain display. This display indicates which pages and
how many puges were being used by the various processors resident in core,

The read—ahead tables.

REAL TIME PAGES:

The real-time page chain.

XDELTA/HANDLER PAGE CHAINS:

XDELTA's page chain,

PHYSICAL MEMORY ALLOCATION:

The actual physical memory allocation on a page-by-page basis. This
display is a composite picture of the monitor free page chain, user page
chain, and processor page chain displays, plus the resident monitor and
its JIT, rtus any unallocated pages.

ALLYCAT TABLES:

The ALLYCAT buffer adjustment tables. The headings used in this dis-
play are defined in Table 20.

UNALLOCATED PAGES:

The contents of any unallocated pages.

I/O CHANNEL DEVICE STATES:

The 1/O channel and device states. The display is separated into tables
pertaining to each logical channel. For each channel, ANLZ prints the
channel information table (CIT), the device control tables (DCT) for de~
vices on the channel, and the user I/O request queues on those devices.
Table 21 defines the headings used in the display.

FREE QUEUE ENTRIES:

The free queues entries which are used to contain user 1/O requests for
/O devices defined in the I/O Channel Device States display above,

CHANNEL INFORMATION TABLE:

The channel information tables (CIT),

DEVICE CONTROL TABLES:

The device control tables (DCT), Table 22 defines the meaning of the
headings used in this display.

50 Output

Table 12. Displays (cont.)

Heading Contents

IOQ TABLES: The IOQ tubles. Table 23 defines the meaning for the headings used in
the IOQ tables display.

COC TABLES: The COC tables. This display includes the line table values for those

lines having an associated user (determined by a non-zero value in
LB:UN). Table 24 defines the headings used in the COC tables display.

RESOURCE ALLOCATION TABLES:

The resource allocation tables.

AVR TABLES:

The AVR tables. Table 25 defines the headings used in the AVR tables
display.

IN CORE ERROR LOG DATA:

The contents of the incore error log buffers,

OUTPUT SYMBIONT TABLES:

The output symbiont tables, The headings used in this display are
defined in Table 26,

*** ASSIGNED CPOOLS:

*x% AND THEIR SPOOLS:

The contents of the assigned CPOOLs and corresponding SPOOLs.

MONITOR JIT:

The monitor JIT contents and the monitor TSTACK contents. TSTACK
headings are defined in Table 27,

CURRENT USER:

The current user's JIT.

CONTENTS OF TSTACK:

The current user's TSTACK. TSTACK headings are defined in
Table 27.

ADDITIONAL JIT FOR USER? nn:

The current user's AJIT (additional JIT).

CONTEXT AREA FOR USER? nn:

The current user's context area.

**% PHYSICAL PAGE# nn:

The current user's physical pages.

MONITOR ROOT:

The monitor root.

RBBAT RECOVERY FILE:

The RBBAT recovery file, which includes ghost communication buffers, the
RBBAT environment, the RBBAT static data, and the RBBAT dynamic data.
(Usually there is no dynamic data output.)

USER IDENTIFICATION:

The user identification. This display is a composite of all JITs in the
MONDMP file.

PATCH FILE:

The patch file built by GHOST1 at system boot time.

INSWAP USER:

The current inswap and outswap users' core (if any). This figure has the
same format as the Incore Users display.

INCORE USERS:

The current incore users’ core,

CONTROL SECTION MAP:

A map of the monitor modules' start addresses.

SYMBOL MAP:

The symbol map.

TABLE OF CONTENTS:

The Table of Contents for the ANLZ dump,

Output 51

Table 13, Trap and Interrupt Locations for XPSD

Table 14. User Table Headings

Instructions

Location Name of
of XPSD Meaning Handler
X'40* Nonallowed operation trap NOPPSD
X'41 Unimplemented instruction UNIMP

frap
X'42' Stack overflow trap STKOVF
X'43' Fixed-point arithmetic FIXOV

overflow
X'44 Floating-point fault FLTFLT
X'45' Decimal arithmetic fault DECFLT
X'46' Watchdog timer runout CSES$ERR
X'47' Multiprocessing usage IPT47
X'48' CALLI instruction CAL1PSD
X'49' CAL2 instruction CAL2PSD
X'4A" CAL3 instruction CAL3PSD
X'4B' CAL4 instruction CAL4PSD
X'4C! Hardware error trap CSES$ERR
X'4D' Instruction exception trap CSE$ERR
X'4E’ XDELTA entry LEE20
X'4F' JIT pointer -
X'50' Power on PONPSD
X'51! Power off POFPSD
X'54' CLOCKS counter -
X'55! CLOCK4 counter -
X'56' Parity error PERPSD
X'58' Counter 1 zero CLK1PSD
X'59' Counter 2 zero CLK2PSD
X'5A" Counter 3 zero CLK3PSD
X'5B! Counter 4 zero CLK4PSD
X'5C! Input/output interrupt IOPSD
X'5D! Control panel OCPSD
X'60' COC input interrupt COCINI
X'61 COC output interrupt COCOUTI

Heading | Source Meaning

USER - Internal user number,

ST UB:US User's state.

BL UB:BL Link to previous user in
same state.

FL UB:FL Link to next user in same
state.

FLG UH:FLG User's flags.

FLG2 UH:FLG2 Exit control bits, miscel-
laneous control flags,

JIT UBJIT Physical page address of
user's JIT.

SWPI UB:SWAPI Swap table index.

HJIT UHJIT Track/sector address on
the swapping RAD of
user's JIT,

AJIT UH:AJIT Track/sector address
of user's additional
JIT.

PCT UB:PCT User's page count.

ACP UB:ACP Number of associated
command processor,

APR UB:APR Number of associated
processor's roof,

APO UB:APO Number of associated
processor's overlay.

ASP UB:ASP Number of associated
special processor,

DB UB:DB Number of associated
debugger.

ov UB:QV Number of associated
overlay.

MF UB:MF Number of I/O events

outstanding.

52 Output’

Table 15. Additional User Table Headings

Table 17. Swap Table Terms (cont.)

Location Meariing

S:CUIS Count of users in system,

S:IDLF Idle flag.

SB:OSN Number of out-swap users,

SB:OSUL Out-swap user list,

S:BECL Beginning and end command list
for each outswap user,

SB:NP Number of in-swap processors,

SB:PNL In-swap processor numbers,

SB:FPN Number of freed processors.

SB:FPL List of freed processors,

M:SWAPD Address of swap device,

MB:SDI DCT index.

MB:SFC Swap function code.

MB:#RTRY Retry count,

M:CLBGN Beginning of current command
list.

MH:CLEND End of current command list,

Table 18. Partition Tables Headings

Heading Meaning
USER User . ber,
MISC Either time left for user to remain asleep
or resource wait queus forward |ink.
UH:DL D O-list address.
CyL User's procedure cylinder number if disk
pack swapper.
PRI User's current priority.
PRIB User's priority base value.
NECB Number of ECBs to be posted for this
user,
| UH:NL Pointer to head of ECBs to be posted.
§
Table 16. Resource Wait Queues
Name Description
R:SYMF Users queued for symbiont file space,
R:SYMD Users queued for symbiont disk granule.
R:OCR Users queued for OPEN/CLOSE.
R:DPA Users queued for swapper granule.
R:QFAC Users queued for ALLOCAT,
R:NQW Users queued for ENQ.
Table 17. Swap Table Terms
Location Meaning
S:SIR Swap in requests posted,
S:HIR High priority requests posted.
S:SIP Swop~-in progress flag,
#SWAPSDEV Interrupt bypass count,
S:CUN Current user number,
S:ISUN In-swap user number,

Heading Source Meaning

Calculated | Index topartition tables.

ACCOUNT PLD:ACT Current runningaccount,

USR PLB:USR Number of users in
partition,

FLG PLH:FLG Partition control flags.

QN PLH:QN Quentum time of
partition,

TOL PLH:TOL Total jobs run in this
partition,

CUR PLH:CUR Current jobs selected in
this partition,

TL PLH:TL Lower time limit,

TU PLH:TU Upper time limit

SID PLH:SID System ID,

Output

53

Table 19. Processor Table Headings

Heading Source Meaning
pf - Processor index number,
P:NAME P:NAME Processor name.,
HPP PB:HPP Head of processor's physical page chair,
TPP PB:TPP Tail of processor's physical page chain.
PSZ PB:PSZ Processor's procedure size in pages,
DSz PB:DSZ Processor's initial data size in pages.
DCBSZ PB:DCBSZ Size in pages of DCB area.
PDA PH:PDA Disk address of procedure,
DDA PH:DDA Disk address of data and DCBs,
ucC PB:UC Use count on processor,
LNK PB:LNK First overlay number for this processor,
PVA PB:PVA Virtual page address of the processor's procedure.
HVA PB:HVA First page available to the processor,
pCt PB:PC# Procedure cylinder number,
pCt pPB:DC# Data cylinder number,
SA P:TCB Starting address and flags.
TCB P:TCB TCB address.

Table 20, ALLYCAT Headings
Heading Meaning
TOP Top index into huffer,
BOTTOM Bottom index into buffer.
WORDCNT Number of disk addresses in buffer,
TEMPBOT Set if ALLYCAT changing buffer,
BUFLAGS Bit 0 = HGP empty, Bit 1 = buffer just filled, Bit 2 = buffer just emptied,
ADJSTCNT Number of entries manipulated by ALLYCAT; may be either positive or negative.

GRANULES AVAIL

Total number of granules/cylinders remaining in system (in hexadecimal notation).

£

4

Output

Table 21. 1/O Table Headings

Table 22. Device Control Table Headings (cont.)

Heading Meaning Heading Meaning
CIT3-5 Channel Information Tables 3-5 IO FLG 1/0 legality:
DEVICE yyndd for this device 11 = in and out
ADDR Hardware address 10 = out only
CX Channel index 01 =inonly
OIDTS From DCT3 - Set bits indicate: DEV TYP Type mnemonic.
O output DEV FLGS State of device.
I input 10 Qf IOQ index,
D down CDW ADRS Command doubleword address (WA
resolution).
T timed out
PRE HAND Handler preprocessor word address.
S SIO reject
POST HAND Handler postprocessor word address,
BPWXKCSB From DCT5 = Sets bits indicate:
ACT CNTR Device activity counter,
B Device busy
IO INT Value to match against 1/0O
P Clean-up pending DEADLINE clock.
W Wait until done AIO INT STAT AlO status word,
X Data transfer TDV STATUS TDV status doubleword,
K Wait for key-in CHAN FLNK Link to next entry.
C Control task PRE-EMPT Real-time pre-empt flag.
S SIO while manual 1S 7446 table,
B BIN mode HAND CODES Handler function flags (first 8 bits
contain retry function code; the
Qx /O queue index second 8 bits contain the fol-
low on code).
AIO Last AIO status
TIME INCR Time-out increments,
TDV Last TDV status
SIOCC SIO condition codes.
Table 22, Device Control Table Headings TDV CC TDV condition codes.
Heading Meaning TIO STATUS TIO status,
DCT number. DISC FLAG Disk flag.
DEV Active 1/O address, HGP DISP Heading Granule Pool (HGP)
displacement if disk.
PRI Primary 1/O address.
RMA FLGS Partitioning flags.
ALT Alternate I/O address.
SIO COUNTER Number of SIOs done to this
cir # Channel (CIT) index. device.

Output

55

Table 23. IOQ Table Headings

Heading Meaning

IOQ table number,

BAK Back link to next entry,

FWD Forward link to next entry.

DCT# DCT index,

MNE TEXT name of device from SYSGEN,

STAT Software status,

FCN Original function code (I0Q4).

CODS Current function code (IOQ5).

DCBAD DCB word address (if any).

BUF Buffer word address if bit 0 and 1 reset;
CDW word address if bit 1 set (swapper);
CDW word address if bit O set (other).

Table 23. I0OQ Table Headings (cont.)

Heading Meaning

TIM Number of timeout increments,

CcDW Number of commands used if IOQ8
bit 0 or 1 set,

NRA Original number of recovery tries.

NRT Remaining number of recovery tries,

RAD AD Disk address,

E A ADR End action word address,

EA INFO One word to refturn to end action
receiver,

PRIO Priority of this event,

USER User number of 1/O requester,

Table 24. COC Line Table Headings

Heading Source Meaning

LINE Calculated Line number.

USER LB:UN Associated internal user.

TYPE COCTERM Terminal type.

EOMTIME EOMTIME End of message time for a read,

BUFCNT BUFCNT Number of buffers in use for line.

CPOS CPOS Current carriage position.

RSZ RSZ Record size requested by user while read is pending.
MODE BYTES MODE-MODE4 Terminal mode indicators,

TL TL Pointer to tab buffer.

11 cocn Input insertion pointer for line.

IR COCIR Input removal pointer for line.

ARSZ ARSZ Accumulated record size while read is pending.
CPI CPI Initial carriage position for a read.

Ol CocCol Output insertion pointer for line,

OR COCOR Qutput removal pointer for line.

oC cococ Count of characters pending output.

56 Output

Table 25. AVR Table Headings

Table 26. Symbiont Table Headings {(cont.)

Heading Meaning Heading Meaning
SER# Serial number of tape or pack. SSTAT Symbiont Status:
PUB Set if public. 0 = input symbiont
1 = output symbiont
POS Set if positioned,
AVR Set if AVRed. SSIG Symbiont signal character (e.g.,
L, Q, etc.).
SCR Set if scratch tape, SRET Symbiont return when activated
from chain.
HLD Set if held. SCNTXT Context block doubleword address
displacement,
PTL Set if positioned to label,
SYMX Symbiont index:
UPL Set if user positioned label, 1 = input
2 = output
OPN Set if open.
TYP Device type.
NoU Number of users. LNK Remote chain.
TPOS Tape mark count, FLAG Remote flags.
USER User number, SUSP Suspend bit for IRBT.
QUE IOQ index for IRBT,
SOLICIT Index to special AVR tables, SQHD Symbiont queve chain head.
INI Set if volume initialized. SQTL Symbiont queue chain tail.
VER Set if volume verified,
Table 27, TSTACK Headings
MTD Set if mounted. Heading Meaning
PRIM Set if primary volume of private ADDRS Virtual address of displayed contents.
set of volumes.
STACK OFFSET Index into stack.
HGPDISP Displacement from HGP.
CONTENTS Contents of stack.
Table 26. Symbiont Table Headings
RELATIVE LOC Address that stack contents point to,
Heading Meaning in symbol plus displacement form.
If the stack cell contains a relative
Index number of table, location, the instruction at that lo~
. . cation will be displayed if it is an
SQUE Symbiont queue chain, address modifying instruction (e.g.,
B, BAL, LPSD).
SNDDX DCT index of symbiont device, !)
TYPE TEXT name of symbiont device INSTRUCTION Symbolic instruction at the address

from SYSG EN‘.

contained in the stack position.

Output = 57

ANLZ MESSAGES | ANLZ COMMAND SUMMARY

Table 28 contains the messages that are output by ANLZ. Table 29 summarizes ANLZ commands, The left-hand
Most of these messages identify error conditions, Others column contains the command format, the right-hand column
merely supply information, contains the command description.

Table 28, ANLZ Messages

Message . Description

ANLZ HERE The ANLZ program has begun operation,

ANLZ: ENTER COMMAND, N/L SAYS TO DO ALL This message issued to operator after GJOB ANLZ key-in.
Operator may respond with one of the following:

NO
TA
HE

just exit

read recovery=-built tape

run interactively from console
CP =read CP5DMP file

0-7 = read indicated MONDMP file
N/L = do default ghost run

o

ANLZ GHOST FINISHED The ANLZ ghost has completed processing the core
image file.

ANLZ USING MONDMPn ANLZ has been commanded to read a MONDMP file,
The value specified for n indicates the number of the
MONDMP file,

BAD COMMAND The command was unrecognizable,
CANNOT OPEN FILE name The file specified by the INPUT command cannot be épened.
CAN'T GET THE BUFFER The user was not allowed enough core in his account to

read in the monitor symbol stack.

COUNT ERROR

The tail and last page in a chain do not agree,

TAIL ERROR
ENTER TAPE TYPE: 7T, 9T, BT, ETC. .. The user must supply the tape type if tape input isto be used,
ERR/ABN CODE = xxxx**dcb An 1/O error or abnormal condition occurred during an
INPUT operation,
xxxx is the error or abnormal code.
dcb is the address of the DCB associated withit.
LOCI1 > LOC2 The first location entered for a locy, locy (or similar) com-
mand was greater than the second location,
xx PRIVILEGE LEVEL NOT HIGH ENOUGH The user privilege level was not high enough for the
requested operation,
SORRY, NO PAGE xx The page containing the location specified by the user
was not found in the input file.
THE LAST PHYSICAL PAGE IN THE FILE IS xx The size of the file read from tape by the INPUT com-

mand is specified by the last physical page in the file.

58 ANLZ Messages/ANLZ Command Summary

Table 29." ANLZ Command Summary

Command Description

! Dumps the last location and is used in connection with loc
and locy, locy.

Dumps the indirect location and is used in conjunction with
loc and.loc], loco.

AL[L] Performs the functions of the INPUT, DISPLAY, and RUN
commands and of ANLZ (except dumps) when initiated

by the automatic recovery procedure. A numerically and
alphanumerically sorted monitor map is output at the end of
the ALL display.

BF fid Specifies the name of the boot file that represents the monitor
being examined by ANLZ, The file M:MON in :SYS is as-
sumed by default.

CL[OSE] Causes input dump file to be closed.
CO[MPARE],|OC],|OC2 Compares the dump (locations locy through loc) with the
: running monitor and outputs the locations with nonequal
contents.
'DE[LTA] Associates the debugger Delta with ANLZ,
DI[SPLAY] option Outputs information existing at the time of the crash. The

options are
AJ[ITS] —JIT, AJIT, and context area of all incore users.
AT[ABLES] —incore portion of ALLYCAT's tables.
AV[R] ~tape and disk tables.

CI[TS][, index] ... —all or requested entries of Channel
Information Tables.

‘ CO[C][,index]. .. —all or requested entries of COC tables.
CU([N] —current user's JIT, AJIT, and context area.

\ DC [11(,index]. . ./—all or requested entries of Device
‘ " Control Tables.

EL[OG] —incore error log buffers.
FQ-Free I/O Queueing tables.
10[, chan]. .. —devices on requested 1/O channels.

1Q[, index]... —all or requested entries of I/O queueing
tables.

JIT[, id]{, loc1, loc2] —contents of the JIT for the user
specified by id or for the monitor.

MR[, loc1, loc2] —monitor's root.

OJ[IT] —all of the out of core JITs.

ANLZ Command Summary 59

Table 29. ANLZ Command Summary (cont,)

Command

Description

DI[SPLAY] option (cont.)

OS — user outswap tables.

PA[RTITIONS][, index]. .. —all or requested enfries of
partition tables.

PFILE] —patch file that was created last.

PM-page matrix identifying the owners of all pages.

PN-processor inswap tables.

PP, pageno|[, loc1, loc2] —contents of the indicated
physical page.

RA[T] —resource allocation tables.

RE[GISTERS] —software check code, software check mess-
age, and the first two register blocks.

RB[T] —remote batch tables.
RC[XT] —area of memory occupied by the recovery routines.

RQ —resource subqueue lists.,
ST[ABLE] —output symbiont tables.

SW[APPER] —contents of the swap/swap scheduling tables.
SY[MBIONT] —RBBAT recovery file.

TP —transaction processing tables.

TR[APS] —contents of trap and interrupt locations.

TS[TACK][, id] —temp stack of the user specified by id or
of the monitor.

US[ER][, id]... —user tables of the specified users.

VP, pageno[, loc1, loc2] —contents of the specified virtual
page.

WHY —software check code and software check message.

DU[MP] locy,loc,

Dumps specified range of addresses.

EN[D]

Exits from ANLZ.

HE[LP]

Lists all ANLZ commands.

IN[PUT] option

Directs ANLZ to input from a particular disk or tape file or
to open a file. The options are

LA[ST] — opens the last file formed by the recovery
procedure.

60

ANLZ Command Summary

Table 29. ANLZ Command Summary (cont.)

Command

Description

IN[PUT] option (cont.)

number — opens the numbered crash file formed by the
recovery procedure,

TA[PE] — reads a labeled tape created by the recovery
procedure.

CP[5DUMP] — opens the CPSDUMP file.

IS

Reads the sorted symbol table from a previous ANLZ run.

Line Feed (or carriage return)

Dumps the contents of the next location and is used in con-
junction with loc and locy, loc,.

loc Outputs the contents of the specified location.
locl, Ioe.:2 Outputs the contents of memory locations between Ioc]
and locy.
loc = value Places the value in the specified location of the running
monifor.
LP[rows) Directs the output of ANLZ to the line printer, where rows
is dump width in hexadecimal words, Default is full line.
MA[P),id Loads the map of the specified user if his JIT is in core.
MO([NITOR] (DI[SPLAY]] Turns the monitor display mode on and off.
MONITOR turns the display mode off.
MONITOR DISPLAY turns the display mode on.
NO[DELTA] Disassociates the debugger Delta from ANLZ,
PROINT] Closes the output symbiont file fo allow output to the line

printer without requiring a return to TEL.

RO[WS), value

Establishes width of dump output in number of words, where
value may be 1 through 12.

RU[N] option

Outputs various linked lists of the monitor by running through
the list and displaying each entry. The options are

MO([NITOR] [, {S }] — monitor pages. S, the default,
pgno . egs
indicates all. A specific page
may be requested.

PR[OCESSOR]|, > — processor pages, S, the de-
name P P
fault, indicates all. A par-
ticular processor may be
specified,

RT — real~time page chains.
ST[ATE][, {2#}] — state queves, A particular queue

number may be specified, or S, the
default, indicates all.

ANLZ Command Summary

61

Table 29. ANLZ Command Summary (cont.)

Command

Description

RU[N] option (cont.)

US[ER][,{iSd}] — user pages for a particular user (id), or
for all users (S). S is the default.

XD[ELTA] — XDELTA's page chains.

SE[ARCH], value,loc

loc

17772

Searches for and outputs all words between Ioc] and loc2 that
contain the value under the mask,

SM[ASK], value

Sets the mask to the specified value.

symbol/ Displays the contents of the monitor location specified by
symbol,

SY[MBOLS] [fid] Creates a numerically sorted monitor map, using the fid spec~
ified or MONSTK. :SYS,

UC[rows] Directs the output of ANLZ to the on~line terminal, where
rows is dump width in hexadecimal words. Default is full line.

UN[MAP] Turns off the mapping mode of operation.

62

ANLZ Command Summary

5. ERROR MESSAGE FILE

INTRODUCTION

The error messages for the CP-V monitor and several CP-V
processors are confained in an error message file, called
ERRMSG. This file is initially created either through
punched card or on-line terminal input and is maintained
through use of the Edit processor. This chapter describes
the structure of the ERRMSG file and the techniques
required to create and modify the file,

Codes for detected error conditions are recorded in the job
information table (JIT). The error code is placed in J:ABC
(high-order byte) and the subcode is placed in ERO (right-
justified). When CCI (batch jobs) or TEL (on-line jobs) is
entered, a message is printed to correspond to the code and
subcode. This message is obtained from the error message
file (ERRMSG) via a keyed read using a key constructed
from the group code, error code, and subcode. If either
the file or the record corresponding to the code is missing,
the error code itself will be printed. Otherwise, the mes-
sage and the error code will be printed.

FORMAT OF ERROR MESSAGE FILE

Each record in the error message file contains the EBCDIC
text of one error message. The key of each record is one
word long and has the form

03 GC EC sC

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

The first byte always contains 03, which is the count of
bytes in the key. The second byte is the group code, the
third is the error code, and the fourth is the error subcode.

Group codes presently assigned are

0 Monitor 5 CCI

1 PCL 6 DRSP

2 Loader 7 Batch

3 TEL 8 Analyze
4 Runner

Messages in the file with group codes other than zero are
not handled by the monitor itself. Error codes currently
assigned within the monitor group are

0-7F 1/0O error and abnormal codes
80 — 9F COBOL error codes
A0 — BF Other Monitor codes
CO - FF Unused

The meaning of the assigned codes are defined in CP-V/TS
Reference Manual, 90 09 07, CP-V/BP Reference Manual,
90 17 64, and in the ANS COBOL/LN Reference Manual,
90 15 00.

CREATING ERROR MESSAGE FILE

~ The ERRMSG file is initially entered into the system either

through a card reader or an on-line terminal at the central site.
The procedures for each type of input are described below.

Warning: If an installation modifies the text of TEL error
messages, it should be noted that TEL stores dy-
namic information in the error message buffer and
some of the text may be clobbered.

CARD READER INPUT

Card input of the error message file is handled by the Error
Message File Writer (ERRMWR). This program reads cards,
interprets the first six columns as a hexadecimal number,

converts this number into a three-byte key, and writes the

. card image exclusive of trailing blanks as a keyed record

in the ERRMSG file in the account under which ERRMWR is
executed. This account should be :SYS for the system error
message file.

The card format is

1234567891011121314151617 1819 20 21 22

Hex. code |Text of Message

GCIEC|S C

Example:

Assume that the message ILLEGAL OPCODE is to be placed
in the error message file for the monitor error code AE. The
group code and subcode in this case are both zero. Thus,
the card for this message would be punched as follows:

/2345678910111213141516]718]9 20

Hex. code |Text of Message

OOJAE[OOI LLE G AL O PCODE

Keys generated by the ERRMWR program have the form

GC EC sC

03 (col. 1-2) | (col. 3-4) | (col. 5-6)

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 3\

Error Message File 63

During conversion of the key, leading blanks are treated as

zeros, Nonhexadecimal letters result in output of a warn-

ing message and cause the card to be ignored. The card

image is scanned from right to left to determine the rightmost
nonblank character, and the count of characters is adjusted
so that trailing blanks are not written. A newline character
X'15" is appended to the message.

The message may be continued in column 1 of the follow-
ing card by appending a continuation character (;) at the
end of the message in the first card. Only two cards per
message are allowed.

A card containing an asterisk in column 1 is a control card
and is used to set the format of the record written in the
file. If column 2 of the control card contains a 0, the
message key is appended to the front of the message text
and is included in the record. If column 2 of the control
card contains a 1, the key is not included in the record
text (this is the default condition). Control cards can be
placed anywhere within the data deck except between
continuation cards.

64 Creating Error Message File

TERMINAL INPUT

Creating or modifying the error message file can be ac-
complished from the terminal by using Edit or ERRMWR.
Example 1: Using Edit
1BUILD MSG®

1.000 00ABOO THAT'S NO DEBUGGER!

2.000 00ABO1 THAT'S NO OP CODE

3.000 @ |
ISET M:EI DC/MSG
JERRMWR @

Example 2: Using ERRMWR

ISET MEETUC ®

_!ERRMWR @

>00ACO01 DONIT ISSUE CAL3 OR CAL4 ®
>

!

6. SYSTEM ERROR LOG FILE

INTRODUCTION

All hardware malfunctions and some software problems
occurring during system operation, whether recovered or
not, are recorded in a special disk storage file. This file
is periodically copied into a standard file (ERRFILE) by a
ghost program (ERR:FIL) which is initiated automatically
for that purpose,

ERRFILE may be listed and summarized by the Error lLog
Listing processor that is described in this chapter, ERRFILE
is also available for on-line preventive maintenance of
the system and for diagnosis and prediction of hardware
malfunctions,

ERR:FIL PROGRAM

ERR:FIL copies the special file created by ERRLOG onto a
normal keyed file (ERRFILE) in the :SYS account that is more
readily available to diagnostic programs.

ERR:FIL is a ghost job that is awakened by ERRLOG when-
ever five errors have been recorded. ERR:FIL may also be
awakened by a program with diagnostic privilege by using
the initiate job CAL(CAL1,6 FPT)or by an operator key-in
of GJOB ERR:FIL,

ERROR LOG LISTING PROCESSOR

The Error Log Listing processor (ELLA) provides an efficient
tool for listing and sorting the errorlog file, ERRFILE, which
is automatically generated and updated by the CP-V system.
(ERRFILE is described in Appendix E.) ELLA output furnishes
a meaningful and comprehensive diagnostic evaluation of
the system and its peripherals, aiding in the early detection
of product failures and thus increasing the reliability, main-
tainability, and availability of the system,

The set of ELLA commands allows the user to first specify
the kinds of errors in which he is interested, and then re-
quest a listing of those kinds. Four types of listings are
available:

e A chronological listing of error log entries,

e A sorted listing of error log entries,

e A summary of error log entries by category.

o A summary of error log entries in graphic form.

Towards the end of this chapter, there is asection which
contains a set of predefined tasks that should be useful to
the person who needs periodic error log reports but has no

need for a more precise understanding of the ELLA processor's
command structure. (See "Predefined Tasks".)

STARTING EXECUTION

ELLA may be run as an on-line, batch, or ghost job. Normal
operating procedures are observed in each of these modes.
Batch and on-line operations are illustrated in Examples 1
and 2. These first two examples are intended only for ELLA
users who are not familiar with CP-V.

The use of ELLA is restricted to authorized system users whose
accounts have a diagnostic privilege level (A0 or higher).
If the user has insufficient privilege, ELLA will abort with
the message

INSUFFICIENT PRIVILEGE LEVEL ABORT

Note: Initiating ELLA as a ghost job enables the operator
to issue ELLA commands from the operator's console,
However, judgement should be exercised when ini-
tiating ELLA in this fashion since ELLA commands
will be intermixed with normal operator console
material,

INPUT/OUTPUT ASSIGNMENTS

ELLA input and output is divided into three separate
functions:

e Error log input,
e User command input.

e Listing output.

Error log inputis always taken from the system error log file,
ERRFILE, Without user intervention, the remaining two
functions assume default assignments depending on the mode
in which ELLA is run, The default assignments are listed in
Tables 30, 31, and 32. (They are based upon the assumption
that the Sland LO operational labels weregiven the standard
assignments during SYSGEN.) The assignment of the output
listing function may be altered by the user during ELLA ex-
ecution through use of the ELLA SET command. The tables
specify the ELLA SET command formats that are required to
make the reassignments, The SET command is described in
detail below,

SET The SET command reassigns the listing and message
output device assignment during execution of ELLA. (I
changes the device assignment in the M:LO DCB,) The for-
mat of the command is

SET, LIST, {k‘;}

“where

LP specifies line printer.
KP specifies operator's console for the ghost and

batch modes and on-line terminal for the on~line
mode.

System Error Log File 65

Example 1, Batch Operation of ELLA

ELLA commands
[1eLLA AN

1 JOB FEOPER, SITE102, E N\

For batch operation of ELLA, control commands and ELLA commands are punched on cards and the cards are submitted
to the site operator.

In this example, the account number (FEOPER) and account name (SITE102) were chosen because they had been re-~
served for diagnostic activity at that particular site. In order to run ELLA in the batch mode, the account was
authorized a privilege level of AO. (The privilege level is not specified on the JOB card because it is automatically
associated with the account,) The execution priority E was specified to given the job a high execution priority, (The
privilege level determines the types of things that a jab is allowed to do; the execution priority is a determining fac-
tor in how quickly a job will be selected for execution,)

Example 2, On-Line Operation of ELLA

66

XEROX CP-V AT YOUR SERVICE
ON AT 13:48 JUL 08, '74
LOGON PLEASE: FEOPER,SITE102,RSD @)

1ELIA®
13:49 JUL 08, '74

ELLA 7080D6-A00
* .

*END @
1PRINT G

1OFF @®

In this example, the user logged onto the system after receiving the CP~V salutation and log-on request, The account
number and name used are the same as in the previous example. (The account was authorized for both batch and on-
line operations,) The account has a password associated with it which is to be used for security reasons during on-line
operation; i.e., if the password is kept confidential, it prevents unauthorized on-line use of this special diagnostic
account, The password is entered following the name and account. Here, the password RSD was entered,

Error Log Listing Processor

After the log-on, CP-V prompted for input with an exclamation point, The user entered
ELLA®

to request the Error Log Listing program and ELLA responded with its salutation and prompted for input with an asterisk.
The user then entered ELLA commands, finishing with the END command which returned control to the system. The

system then prompted with an exclamation point.

ELLA can output its listing on the user's terminal or on the line printer. If printer output is selected, the system holds
the output on a disk file until either the PRINT or OFF command is entered.
PRINT command which caused the system to produce the printer output,
tasks, eventually ending the on=line session with the OFF command which logged the user off the system,

{Actually, control was returned to a system command processor
called TEL which is described in detail in the CP-V/TS Reference Manual, 90 09 07.)

In the example, the user executed the
The user then proceeded to perform other

Whenever ELLA listing output is assigned to the line printer,
the output contains two additional types of information:
user commands received and diagnostic messages.
user commands are listed on the printer to present a com-
plete record of the user listing session. They are preceded

INPUT/OUTPUT CHARACTERISTICS

ELLA

by one asterisk. Diagnostic messages (due to abnormal con-
ditions or operational errors) are preceded by two asterisks.

Whenever the command input function is assigned to the
operator's console (ghost initiation of ELLA) or the user's
terminal (on-line initiation), diagnostic messages are
printed on that input device (preceded by two asterisks) as
well as on the line printer.

Table 30. ELLA On-Line I/O Functions

ELLA SET
Associated | Default Possible Reassignment
Function | DCB Assignment | Assignments | Command Comments
Source M:BI ERRFILE ERRFILE (none) Data base from which ELLA reads source, records
error log for printing.
Command | M:SI User's User's (none) Device from which ELLA reads commands (and
input terminal terminal to which it prints diagnostic messages).
List M:LO User's User's SET, LIST,KP | Device to which ELLA lists error log data.
output terminal terminal
Line SET, LIST, LP Device to which ELLA lists error log data, com-
printer mands received, and diagnostic messages.
Table 31. ELLA Batch 1/O Functions
ELLA SET
| Associated | Default Possible Reassignment
Function | DCB Assignment | Assignments | Command Comments
Source M:BI ERRFILE ERRFILE (none) Data base from which ELLA reads source records
error log for printing.
Command | M:SI Card Card (none) Device from which ELLA reads commands.
input : reader reader
List M:LO Line Line SET, LIST, LP Device to which ELLA lists error log data, com~
output printer printer mands received, and diagnostic messages,
Operator's SET, LIST,KP | Device to which ELLA lists error log data and
console diagnostic messages, (Using the operator's con~
sole for lengthy output is not recommended.)

Error Log Listing Processor 67

Table 32. ELLA Ghost I/O Functions

ELLA SET
Associated | Default Possible Reassignment
Function | DCB Assignment | Assignments | Commands Comments
Source M:BI ERRFILE ERRFILE (none) Data base from whichELLA reads source records
error log for printing.
Command | M:SI Operator's | Operator's (none) Device from which ELLA reads commands (and
input console console to which it prints diagnostic messages.)
List M:LO Line Line SET, LIST, LP Device to which ELLA lists error log data, com=
output printer printer mands received, and diagnostic messages.
Operator's SET, LIST, KP Device to which ELLA lists error log data and
console diagnostic messages. (Using the operator's con-
sole for lengthy output is not recommended.)

INTERRUPTING ELLA EXECUTION

On-line ELLA execution may be interrupted at any time by
use of the BREAK key on the user’s terminal, This causes
ELLA to terminate its current activity and to prompt for a
new command,

When ELLA is initiated as a ghost job or a batch job, ex-
ecution may be interrupted through use of the operator INT
key-in. The effect upon a ghost job is similar to that of the
BREAK function on=line. The effect upon a batch job is to
cause the next command to be read from the card reader,

ELLA COMMANDS

ELLA accepts three types of commands: boundary commands,
task commands, and the device assignment command (SET,
described previously), Boundary commands establish or
change the limits that are to be applied fo all subsequent
task commands; i.e., boundary commands allow the user to
specify the types of errors in which he is interested. Task
commands initiate the execution of a particular type of list-
ing. The device assignment command is used to change the
listing and message output device during execution of ELLA,

TASK COMMANDS

Task commands are used to request the ELLA displays and to
terminate ELLA, ELLA task commands are:

CLIS produces a chronological listing of qualified
error log entries,

68 Error Log Listing Processor

SLIS produces a sorted listing of qualified error log
entries,

SUM produces a categorized summary of qualified
error log entries,

DIsp produces a summary of qualified error log en-
tries in graphic form,

END terminates ELLA,

Note that error log entries are displayedonly if they qualify.
To qualify for inclusion in a display, an error log entry
must pass all boundary tests in force at the time the display
is generated, If no boundary commands have been entered,
all error log entries qualify. Those error log entries which
fail to pass one or more of the boundary tests are ignored.
(Boundary commands are described following the task
commands.)

CLIS The CLIS command requests a chronological list-
ing of the error entries in the order in which they appear in
the error file.

The format of the CLIS command is

C[Lis]

An example of a CLIS listing is given in Example 3. Table 33
lists the error log entry headings printed by ELLA and notes
the manner in which all values are printed.

Example 3. Use of the CLIS Command

In this example, the user chose to initiate ELLA on-line. The user did not desire a lengthy listing at his terminal,
Therefore he reassigned the listing function to the line printer using the SET command.,

1ELIA @
*SET,LIST,LP
*CLIS ®

*END &)
IPRINT@®@

After the CLIS command was issued, ELLA produced the chronological listing and then prompted for another command.
The user desired no further listings, so he terminated ELLA with the END command, He then issued the system PRINT

command which caused the listing to be output fo the printer. The output that was sent to the line printer is shown
below:

*CLIS

CHRONOLOGICAL LISTING

FROM 00/00/00 00:00:00:000
TO 12/31/99 23:59:59:999

*¥% SYSTEM IDENTIFICATION #***

CORE ~OPTIONS cmmmccmcmccem e TIME
TIME (K) SITE I.D. SYSTEM CPU SYMB RT RB ONLN TP MP RES
11:36:00:000 00128 PRT101 CP-V C00 S67 Y Y Y Y Y Y 02

% CONFIGURATION #*
I/0 ADRS DCT
TIME MDL PRIM ALTN INDEX
11:36:00:000 7012 0001 0001 01
7140 0003 0003 02
7160 ooo4 ooo0u4 03
7445 0002 0002 o4
7212 01F0 O01F0 05
11:36:00:000 7322 0080 0080 06
7322 0081 0081 07
7271 00EO0 O0OOEO 08
7271 00E1 O0OE1 09
7271 00E2 O0O0E2 oA
11:36:00:000 7271 00E3 O0O0E3 0B
7611 0010 0010 oc

~

*** TIME STAMP *** DATE=07/10/74 TIME=12:00:00:004

*%% STIO FAILURE **¥*

1/0 ===«3I0~ --=-TDV~ SUBC TDV CUR REM
TIME MDL ADRS STAT CC STAT CC STAT COMM DA BYTES MFI
12:36:30:782 7323 0083 2000 6 1000 6 00 0011B7 0001 0n
12:37:29:518 7323 0083 2000 6 1000 6 00 0011B7 0001 00
12:40:10:398 7323 0083 2000 6 1000 6 00 0011B7 0nn1 00

Error Log Listing Processor 69

*%% TIME STAMP #**%* DATE=07/10/74
#%+ TIME STAMP *** DATE=07/10/74

¥%SYMBIONT INCONSISTENCY*#*¥*

DCT REL. SYMB.
TIME INDEX SECT. DCT
14:03:13:648 09 0110 02

*%% TIME STAMP *** DATE=07/10/74
*¥*x TIME STAMP *#%* DATE=N7/10/74

TIME=13:00:00:005
TIME=14:00:00:003

TIME=15:00:00:004
TIME=16:00:N0:006

Note that the CLIS command is listed in the line printer listing and that the existing time boundaries are printed after
the title. If other boundaries were in force, they too would have appeared. Certain values, such as core size and
recovery count, are printed in decimal for convenience, Other fields, such as the OPTIONS field, contain flags.
The true condition is represented by the letter Y, the false condition by the letter N. In this example, the system
has symbiont capability but does not have remote processing and real-time facilities.

Table 33. Error Log Entry Headings

Heading Description

ACCOUNT The account (eeeeeeee) in which the faulty file resides.

eceeeeeee

---AIO- A hexadecimal number (xxxx) representing the AIO device and

STAT CC operational status bytes (STAT) and a hexadecimal value (x)

XXXX X representing the condition code (CC) returned as the result of the
AlO instruction,

CcL A hexadecimal value (xx) representing the cluster portion of the

XX unit address.

CONTRLR A flag (f) indicating whether or not the controller is partitioned in

f addition to the device, Y means the controller is partitioned; N

means it is not partitioned.

CORE Core size in decimal thousands (dddd).

(x)

dddd

COUNT The number of entries (in decimal) that duplicate the previous entry.

dddd

CPU CPU type (ddd).

ddd

CPU CPU hardware address.

ADRS

XXXX

----CUR COMM DW--
1 2
XXXXXXXX XXXXKXXX

Two hexadecimal numbers (xxxxxxxx) representing the command
doubleword currently being processed for a device.

DATE The month (mm), day (dd), and year (yy) that the error log entry

mm/dd/yy occurred,

DCT A hexadecimal value (xx) indicating the order in which the device is

INDEX configured into the system at SYSGEN. The index value for the first
XX device is 1,

70

Error Log Listing Processor

Table 33. Error Log Entry Headings (cont.)

Heading Description
ENTRIES A decimal value (dddd) representing the number of error log records
LOST lost when logging became temporarily impossible for any reason.
dddd
ENTRY A decimal value (dddd) representing the number of entries in the
COUNT enqueue table belonging to the specified user at the time the error
dddd log entry was made,
ERROR A hexadecimal value (xxxx) giving the error type code for the failure.
CODE See Appendix B, "Monitor Error Messages" in the CP-V/BP Reference
XXXX Manual, 90 17 64, for error code definitions,
ERRLOG--- A hexadecimal value (xxxxxxxx) representing the caller's address to
CALL ADRS which the error logging routine will return when logging is completed,
KXKXKKXK This is used in isolating software faults,
FILE NAME The name of the file in which a fault has been detected,
---HIO- A hexadecimal value (xxxx) representing the status (STAT) and a
STAT CC hexadecimal value (x) representing the condition codes (CC) re-
XXXX X turned in response to an HIO instruction,
--INDEX-- The hexadecimal offset (xxxxxxxx) into a 64-word block in ERRFILE
BAD ENTRY that locates the first word of the incorrect entry,
XXXXXXXX
1/0 A hexadecimal value (xxxx) representing the physical 1/O address.
ADRS
XXXX
1/0 A decimal value (dddddddddd) representing the number of SIO

COUNT instructions executed for a device. This value is reset at system boot
dddddddddd time and is not reset at recovery (i.e., it is reset for system start-up

_ types 1, 2, and 3; see START TYPE in this table).
1/0 ADRS A hexadecimal value (xxxx) representing the primary 1/O address
PRIM ALTN (PRIM) by which a device can be referenced, and another hexa-

XXX XXXX

decimal value (xxxx) representing the alternate address (ALTN) for
dual access devices,

--1/0-- A hexadecimal value (xxxx) representing the status (STAT) and a
STAT CC hexadecimal value (x) representing the condition codes (CC) re-
XXXX X turned in response to an 1/O instruction.

LOCATIONS One to fourteen hexadecimal values indicating the addresses of the
XXXKKXKX first fourteen (or fess) memory locations exhibiting parity errors.
XXXXXXXX

--MEMORY STATUS--
1 2
XXXXKXXX XXXXKXKXX

Two hexadecimal values (xxxxxxxx) representing the status returned
in response to an LMS instruction,

--=MEMORY STATUS WORDS=---- Three hexadecimal values (xxxxxxxx) representing status returned in
1 2 3 response to an LMS instruction,
XXXXXXXKX XXXXXXXX XXXXXXXX

MDL A decimal number (dddd) that uniquely identifies peripheral devices
dddd by the Xerox model number (defined at SYSGEN).,

Error Log Listing Processor 71

Table 33. Error Log Entry Headings (cont,)

Heading Description

MFI A hexadecimal value (xx) representing the current state of the

XX memory fault indicators returned by the hardware in response to an
RD instruction, All memory fault indicators will be reset. (Sigma 6
and 7 only,)

MODE A decimal value (d) encoding the mode in which the file was opened

d where: 1-1IN; 2~ OUT; 4-INOUT; 8- OUTIN,
- -OPTIONS-- Indicates whether or not the following facilities are available in the

SYMB RT RB ONLN TP MP
f f f f f £

system; symbiont routines (SYMB), real-time processing (RT), remote
processing (RB), on-line facilities (ONLN), multiprocessing facilities
(MP), and transaction processing functions (TP). Theflag (f)is equal to
Y (present) or N (absent).

ORG A single decimal digit that indicates the file organization where:
d 1 - consecutive; 2 - keyed; 3 - random,

PAR A hexadecimal value (xxxx) representing the number of memory

ERRS locations exhibiting parity errors after a memory scan,

XXXX

--POLL- A hexadecimal value (xxxx) representing the processor fault status
STAT CC (STAT) and a hexadecimal value (x) representing the condition
XXXX X codes (CC) returned by the hardware in response to a POLP or

POLR instruction,

POLR A hexadecimal value (xxxx) representing the processor fault status

RESULTS as returned by the hardware in response to a POLR instruction,
XXXX

1 2
XXXXXKXX XXXXXXXX

Two hexadecimal numbers (xxxxxxxx) representing the contents of
the program status doubleword.

| RB:FLAGS A word containing bits which define the current state of processing for
| XXXXXKXX the failing remote station. The meanings of the bits are defined in
Table 32-1
REAL A hexadecimal value (xxxxxxxx) representing the actual memory
" ADRS address. In an unmapped system, this is the same as the IA field
XXXKXKXX of the PSD.
RECOV A decimal value (dd) which is set to zero at system initialization and
COUNT incremented by one for every system recovery.
dd
REL. A hexadecimal value (xxxx) representing the relative sector at which
SECT. the inconsistency was defected
XXXX
RELATIVE- A hexadecimal value (xxxx) representing the relative sector number
SECT .ADRS at which the inconsistency was detected. A relative sector is 256
XXXX words long with each sector on a given device being numbered from

zero through device end. CP-V maintains file pointers by relative
sector number to expedite addressing different devices.

72

Error Log Listing Processor

Table 33. Error Log Entry Headings (cont.)

Heading Description

REM A hexadecimal value (xxxx) representing the remaining byte count

BYTES as returned in response to a TDV instruction.

XXXX

-RETRY - A two digit decimal number (dd) representing the maximum number of

REQ REM retries (REQ) after which a device error is returned to requester (value
dd dd

obtained from requester's DCB), and another two-digit value (dd)
representing retry request minus the number of entries attempted (REM).
The range is between retry request and 0, A O value indicates the
operation was terminated due to retry count rundown.

RP1 RP2 RP3 RP4

RP1 through RP4 have unique meanings for each type of remote

XX XX XX XX terminal. See Tables E2 through E7 of Appendix E.
SCREECH The hexadecimal code (xx) used by CP-V to identify the system
CODE failure that has occurred. See Appendix C.
XX
SEEK ADRS A hexadecimal value (xxxxxxxx) representing the physical disk
XXXXKKXK address last used to access this device.

XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX

A hexadecimal value (xxxxxxxx) representing the diagnostic infor=
mation returned from the device as a result of sending a "sense" order
to the device. The value has a 4-word maximum, depending on the
device.

A hexadecimal value (xxxx) representing the status (STAT) returned

---SIO0-
STAT CC in response to an SIO instruction, and another hexadecimal value
XXXX X (x) representing the condition codes (CC) returned.
SITE I.D. An EBCDIC value (eeeeeeece) identifying the site (specified at
eeeeeeee SYSGEN).
START A hexadecimal value (xx) indicating the degree of initialization:
TYPE
%% 1 = PO boot (initial)
2 - PO boot under the files
3 - System device boot (no recovery)
4 ~ System recovery
5 = Operator recovery
SUB A hexadecimal code (xx) that differentiates several similar CP=V
CODE software check codes. See Appendix C.
XX
SUBC A hexadecimal value (xx) representing the status (STAT) of the 1/O
STAT subchannel received as a result of a TDV instruction. The first byte
XX

of the second word of the status received from the device is:

where bit 1 indicates bus check fault if set to one.
bit 2 indicates control check fault if set to one.
bit 3 indicates memory interface error if set to one.

(Xerox 560 only).

Error Log Listing Processor 73

Table 33. Error Log Entry Headings (cont.)

Heading Description
SUBTYPE A hexadecimal value (xx) indicating the type of copy error that
XX occurred. Type 01 indicates read error; i.e,, the ghost ERR:FIL re-

ceived an error indication when reading the original error file,
Type 02 indicates read error end, meaning that subsequent error log
entries were correctly read from the original error file, Type 03 indi-
cates a length error; i.e., the original error file record length was
incorrect, Type 05 indicates incorrect time; i.e., the time of the
following entry is either out of range or goes backward. Type 06
indicates illegal entry type; i.e., the type code of the following
entry was found to be illegal by the ghost ERR:FIL.

SYMB. A hexadecimal value (xx) representing the order in which the sym~

DCT biont device is configured into the system; i.e,, the DCT index of

XX the symbiont device,

SYSTEM Displays the operating system name (CP-~V) and three EBCDIC char-

CP-V eee acters (eee) representing the system version specified at SYSGEN,

TDV CUR A hexadecimal value (xxxxxx) representing the current command

COMM DA doubleword address returned in response to a TDV instruction., The

KXKKKX address is in doubleword form. Therefore it should be multiplied by
two to obtain the absolute word location.

---TDV- A hexadecimal value (xxxx) representing the status (STAT), and a

STAT CC hexadecimal value (x) representing the condition codes (CC) returned

XXXX XX in response to a TDV instruction.

TIME The time the error occurred, in hours (hh), minutes (mm), seconds (ss),

hh:mm:ss:nnn

and milliseconds (nnn).

TIME LAST
DUPLICATE
hh:mm:ss :nnn

The time in hours, minutes, seconds, and milliseconds at which the
last duplicate of the preceding entry occurred.

TIME LAST
LOST ENTRY
hh:mm:ss:nnn

The time of occurrance when the last entry was lost in hours, min=-
utes, seconds and milliseconds,

TIME A decimal value (dd) in milliseconds representing the resolution of

RES the time field of all error log entries; e.g., if the time resolution is

dd 2, then the time value for all error log entries is accurate to two
milliseconds.

---TIO- A hexadecimal value (xxxx) representing the status (STAT) and a

STAT CC hexadecimal value (x) representing the condition codes (CC) returned

XXXX X in response to a TIO instruction,

--TRAPPED-- A hexadecimal value (xxxxxxxx) representing the contents of the

INSTRUCT CC location pointed to by the trapped instruction's address (INSTRUCT)

XXXXXXXX X

in the PSD, and another hexadecimal value (x) representing the trap
condition codes (CC),

INSTRUCT CC EFF.ADRS
XXXXXXXX X XXXXXXXX

A hexadecimal value (xxxxxxxx) representing the contents of the
location pointed to by the trapped instruction's address (INSTRUCT)
in the PSD; a hexadecimal value (x) representing the trap condition
codes (CC); and another hexadecimal value (xxxxxxxx) representing
the final address (EFF, ADRS) computed for the trapped instruction,

74

Error Log Listing Processor

Table 33. Error Log Entry Headings (cont.)

Heading Description
UN A hexadecimal value (xx) representing the unit portion of the Xerox
XX 560 unit address.
UNIT A two-to~four EBCDIC character mnemonic name identifying one of
NAME the following: CPU; MI (Memory Interface); PI (Processor Interface);
eeee MIOP (Multiplexed Input Output Processor); RMP (Rotating Memory
Processor); CT (Communication Terminator); SU (System Unit),
USER A hexadecimal value (xxxx) which is a unique number assigned by
I.D. the system to the particular job or session.
XXXX
USER A hexadecimal value (xx) representing the index into internal system
NO. tables used to access user-specific information.
XX
VOLUME Four to six EBCDIC characters (eeeeee) that a user has supplied to
SERTIAL identify a tape or private disk pack.
eeeeee
WORKSTATION A one to eight EBCDIC character name which defines the identity
NAME and characteristics of a remote station to the system. A workstation
eceeeeee name is not necessarily associated with one fixed physical terminal.
The workstation name is specified when the remote terminal logs on.
message An operator message of up to 72 alphabetical characters.
Table 34. RB:FLAGS Structure
Bit Name 7670 2780 IRBT Meaning
0 BPBIT x x Block protect toggle (ACKO/ACK1).
1 1GBIT x x x Cards after IFIN were ignored.
2 MORBIT X Waiting for next portion of deck.
3 HUBIT x x x Line hung up.
4 PUNBIT x Punching is allowed.
5 DCBIT x x x WSN specified at SYSGEN.
6 HASPBIT x x x IRBT line.
7 SLVBIT x This system is slave,
8 ALBIT x X x RBLOG key~-in done.

Error Log Listing Processor

75

Table 34. RB:FLAGS Structure (cont.)

Bit Name 7670 2780 IRBT Meaning
9 XP1BIT X X1 specified in Super.
10 27808BIT x x x 2780 line (may be changed fo IRBT at logon).
11 IBMBIT x N3 specified in Super,
12 DIALBIT x x x DIAL specified at SYSGEN.
13 EDISBIT x x x ERROR MAX on line.
14 OFFBIT x x X Do not connect line (RBX) - Set except at logon
for IRBT.
15 RBXBIT x x x Disconnect line now.
16 DUPBIT x x x 1 — full-duplex; 0 — half-duplex.
17 DISCBIT x x x Disconnect when output done.
18 LOFBIT x x x RBDISC sent (temporary setting).
19 SYSBIT x x x :SYS jobs legal.
20 HALBIT x x x HOLD all flag set.
21 CLKBIT x Wait before ACKO-idle.
22 ACTBIT x x x Line logged on.
23 CRTBIT x RBBAT disables RBSSS.
24 XP2BIT x X2 specified in Super.
25 OADBIT x x x Set OFFBIT after disconnect.
26 FIABIT x x x RBCC altered the stream status.
27 SSSBIT X Inputting with output suspended.
28 LIPBIT X x x Logging on.
29 FINBIT x FIN has been read.
30 EMBIT x x 1 — NOEM specified; 0 — EM specified.
31 OBBIT x Old BCB was read.
31 FRBIT x Initial read of file.

76

Error Log Listing Processor

SLIS A sorted listing is requested with the SLIS
command. The command has the form

SLis)

As in the chronological listing, the sorted listing includes
all qualified error log entries, In this listing, however,
entries are ordered by their type, andif they are peripheral
class errors, by their model number and 1/O address also.

Error records are first categorized by ELLA as system, pe-

ripheral or secondary records, (see Table 35). System records
and their associated secondaries are listed first, Except for
the system ID record and configuration record (which are
printed in front of all other records), system records are
listed in ascending type code order as given in Table 35.
Secondary records are printed following their associated

primary records,

Peripheral class records are sorted in three phases. They are
first separated by model number and printed in ascending
model number order. All peripheral records with the same
model number are then separated and listed in ascending

device address order, Finally, all the records containing
both the same device address and the same model number are
printed in ascending type code order. Any secondary rec-
ords associated with peripheral class entries are printed
following the associated peripheral records.

Any secondary record that appears in the error file that can-
not be linked with a primary record through the above rules
of association will be printed after all peripheral records

and their associated secondaries under the heading

>>>UNASSOCIATED SECOND ARIES<<<

Each time a record is listed that has a different device
address than that of the preceding record listed, a Model
Number/Address heading is produced under the heading

S>>MODEL NO, :xxxx /O ADDRESS; xxxx

where MODEL NO, is the 4~digit Xerox model number
designation of the device and I/O ADDRESS is the 4~digit
(hexadecimal) I/O address of the device.

An example of a sorted listing is given in Example 4,

Table 35. Error Log Entry Types

Type
Name Code

Description

System Class

COPY ERROR 10

Recorded as aresult of error conditions in the error logging
mechanism. The particular malfunction is identified in the
subtype field (see SUBTYPE in Table 32). If the record sub-
type is03, 05, or 06, the record is followed by the 64~word
buffer in which the error occurred.

PARITY ERROR 17

Recorded when program execution is interrupted to loca~-
tion X'56' (MF1) on Sigma 6 or 7 or is trapped to location
X'4C' (parity trap) on Sigma 9 or Xerox 560,

SYSTEM STARTUP 18

Recorded when the system is booted and at each recovery.

WATCHDOG TIMER 19

Recorded when program execution traps to location X'46'
due to a watchdog timer run-out condition,

FILE INCONSISTENCY 1A

Recorded when the operating system cannotaccessa file in
the file management system. The code displayed is described
in Appendix Bof the CP-V/BP Reference Manual, 90 17 64.

SYMBIONT INCONSISTENCY 1B

Recorded when the operating system cannot access a
symbiont file in the symbiont file management system,

INSTRUCTION EXCEPTION 1D

Recorded when program execution traps to location X'4D'
on Sigma 9 or Xerox 560 due to an instruction exception
condition,

LOST ENTRY 1E

Recorded when error log buffering constraints, timing
considerations, and error detection rates force error log-
ging to be temporarily suspended or otherwise impossible.

Error Log Listing Processor 77

Table 35. Error Log Entry Types (cont.)

Name

Type
Code

Description

System Class (cont.)

POWER ON

20

Recorded when the hardware power monitor forces
program execution to trap to location X'51" as a result
of detecting a restoration of power condition. This
normally occurs as a result of a power outage of 500
milliseconds or more in duration.

CONFIGURATION

21

Peripheral device configuration data recorded when
ERRFILE is entered.

SYSTEM IDENTIFICATION

22

System information recorded when ERRFILE is entered.

TIME STAMP

23

The date and time which is recorded when ERRFILE is
entered in the system and every hour on the hour.

BAD GRANULE RELEASE

24

Recorded when either a bad disk address has been de-
tected or when the granule to be released is already free
(dual allocation).

REM OTE PROCESSING
ERROR

26

Recorded when an error is detected in the transmission of
data to or from a remote processing workstation,

OPERATOR MESSAGE

27

A message entered by the operator through use of the
ERSEND key=~in.

PROCESSOR FAULT INTERRUPT

30

Recorded when there is a processor fault interrupt (loca~
tion X'56') on the Xerox 560.

MEM ORY FAULT INTERRUPT

31

Recorded when there is a memory fault interrupt (loca-
tion X'57') on Sigma 9 or Xerox 560,

PROCESSOR CONFIGURATION

41

Processor configuration from Configuration Control Panel
(Xerox 560 only) recorded when the system is booted.

ENQUEUE TABLE OVERFLOW

50

Recorded to log specific information after the operating
system has detected an enqueue table overflow condition.

UNKNOWN TYPE = xx

XX

An unknown type code xx has been encountered by ELLA
in an error log entry.

Peripheral Class

SIO FAILURE

11

Recorded when the condition codes returned by the SIO
instruction are such that either CClor CC2are true. Con=~
ditions that indicate 1OP busy, or lack of operator action
such as "device manual" may not be considered an error
condition (and in such case will not be recorded).

DEVICE TIMEOUT

12

Recorded when the time-out value specified by DCT11
has been exceeded.

78

Error Log Listing Processor

Table 35. Error Log Entry Types {(cont.)

Type
Name Code Description
Peripheral Class (cont.)

UNEXP. INTERRUFT 13 Recorded when no match can be found between the 1,0
address returned in the status register by the AIO instruc-
tion and any DCT1 I/O address of a device known to be
busy. AIO CC = 11xx will not be logged.

DEVICE ERROR 15 Recorded when an 1,0 request is not successful upon one
of the specified number of retries. (It may or may not
have eventually been successful.)

PARTITIONED RESOURCE 51 Recorded when a resource has been partitioned from the
system.

RETURNED RESOURCE 52 Recorded when a previously partitioned resource has been
returned to the system,

Secondary Data Class

DEVICE ERROR 16 Recorded when nonzero sense data is available following

SECONDARY a device error,

DUPLICATE ENTRIES IF Recorded when the error logging mechanism detects
identical consecutive errors. This prevents the error log
from becoming saturated with redundant information.

SECONDARY POLL 32 Recorded for each nonzero poll status received by the

RECORD processor polling routines.

MEMORY PARITY 42 Recorded for each memory unit that has recorded an error

SECONDARY as determined by the memory polling routines (i.e., bits 22~
31 of status word zero are nonzero) for Xerox 560.

MEMORY PARITY 43 Recorded for each memory unit that has recorded an error as

SECONDARY determined by the memory polling routines (i.e., bits 22—
31 of status word zero are nonzero) for Sigma 9.

MEMORY PARITY 44 Recorded to log specific information obtained by scan-

SECONDARY ning memory to attempt to isolate locations which cannot
sustain correct parity.

Example 4. Use of the SLIS Command

For this example, the following botch job deck was submitted.

[RN

{ END

| sus

IELLA

1JOB, FEOPER, SITE102, E

Error Log Listing Processor 79

In the resultant sorted listing below, all related entries are grouped together. This facilitates the scanning of the
error log that is necessary in order to determine the common characteristics of related failures that have occurred

over a period of time.

Note the OPERATOR MESSAGE entry in the listing. Such messages can be entered into the error log at the
operator's console by means of the ERSEND key-in. (See the CP-V/OPS Reference Manual, 90 16 75.)

*SLIS

SORTED LISTING

FROM 07/10/74 12:00:00.900
T 12/31,799 23:59:59:999

*#% TILE INCONSTSTENCY ¢¢#

DCT RELATIVE ERROR
TIME ACCOUNT INDEX SECT ADRS MODE ORG CODE wemmemmenmeceaFILE NAME-~-c--—=cccax
16:03:13:648 77173 09 0110 01 n2 757F RTRTEXT:V1113
16:42:32:197 771731 09 0110 91 n2 757F RTRTEXT:V113

#*¢ TIME STAMP #*+ DATE=07/10/74 TIME=12:00:00:004
#*+ TIME STAMP *%+ DATE=07/10/74 TIME=13:00:00:004
¢*+% TIME STAMP **¢ DATE=07/16/74 TIME=14:00:00:004
#*¢ TIME STAMP #*% DATE=07/10/74 TIME=15:00:00:008
**¢ TIME STAMP #*%% DATE=07/10/74 TIME=16:00300:006

*#*OPERATOR MESSAGE*** TIME = 14:22:03:782
9TA81 CAPSTAN DRIVE NOISY (JDR)

>>> MODEL NO:7160 I/O ADDRESS:0004 <<<

¢*% SIO FAILURE ®¢*

-==SI0- ~=~=TDV- SUBC TDV CUR REM
TIME STAT CC STAT CC STAT COMM DA BYTES MFI
07:02:28:922 2A42 6§ 2042 6 00 001179 oouc 00
15:05:21:166 2A42 § 2042 6 00 001179 004C 00

*** DEVICE ERROR ¢##

-=-=-AI0Q- -«=TIO- =-~~TDV- TDV CUR REM I/0 «===CUR COMM DW~- -RETRY- VOLUME SUBC
TIME STAT CC STAT CC STAT CC COMM DA BYTES MFI COUNT 1 2 REQ REM SERIAL STAT SEEK ADRS
15:09:20:862 0048 6 1842 0 2042 2 00118B 0000 00 0N00NN0098Y 09008C70 2ENNON78 03 03 00 0000000B

>> > MODEL NO:7271 I/0 ADDRESS:00E0 <<<

¢** DEVICE ERROR ®¢¢

~==AI0- ---TIO-~ -=-=TDV- TDV CUR REM I1/0 =-==CUR COMM DW-- -RETRY- VOLUME SUBC
TIME STAT CC STAT CC STAT CC COMM DA BYTES MFI COUNT 1 2 REQ REM SERIAL STAT SEEK ADRS
1235€:21:278 0Uus58 6 1842 0 0442 2 0011C7 0000 N0 0000N89148 02031800 1ENNNSON 03 03 00 0NF90A00
15:42:55:694 NUS8 6 1842 0 o442 2 NOOATE 0000 00 0000138032 02075800 1E000570 08 08 00 ONE70404
15:42355:906 0u58 6 1842 0 0442 2 000A7E 0000 00 0000138036 02075800 1ENNNS570 08 07 00 NNET70404
... DEVICE ERROR SECONDARY

1/0
TIME ADRS =========SENSE INFORMATION=~=~===<-=

12:563:21:284 O00EO0 0NP90A02 0305F500 00CA0000 00000000
15:42:553700 OOE0 O0O0E70500 0119FA02 80CA0000 00000000
15:42:55:910 0CEN OOE70500 0119FAOE 03E20000 00000100

80 Error Log Listing Processor

SUM The SUM command requests a summary of the
contents of the error file which lists the fotal number (in
decimal) of qualified error log entries for each error type.
The command has the form

SUM]

In addition to error totals, the summary contains an I/O
activity count for each device that has eiiors recorded. 10

Example 5. Use of the SUM Command

ACTIVITY is the count of all S1Os issued to a given device
for the time period covered by the summary,

Unlike other listings produced by ELLA, logical device
addresses are used in the summary rather than physical ad-
dresses, For example, a device CRAO3 would appear as
A03 and a device DCBFO would appear as BFO.

Example 5 provides an example of the SUM command.

{ELLA®
*SUM®@

ERROR SUMMARY

FROM 07/10/74 00:00:00:000
T0 12/31/99 23:59:59:999
SYSTEM ERRORS
TYPE ERRORS
SYSTEM STARTUP 1
CONFIGURATION 6
SYSTEM I.D. 1
TIME STAMP 16
FILE INCONSISTENCY 2
DEVICE ERRORS

10 SIO UNEXP DEV DEV I0
MDL. ADRS FAIL INTRPT ERROR TIMEOUT ACTIVITY
7140 A03 0 0 13 0 0000014798
7160 AO4 0 0 6 0 0000004906
7322 A80 0 0 78 0 0N0N227574
7323 A83 3 0 3 0 0000018295
7323 A8H 0 0 4 0 0000021926
7323 A85 0 0 6 0 RERAEEERES
7271 AEO 0 0 3 0 0000161268
7232 BFO 0 0 2 0 0000248749
TOTAL ERRORS: 00144

DISP

of error log entries,

DI[SP] [, interval]

The DISP command requests a graphical display
The DISP command has the form

the interval. If the number of errors for a given interval
exceeds 30, then only the first 30 error type codes are
printed, and FF is printed at the end of the line.

Only qualified error log entries are included, Time Stamp,
Configuration, and ID entries are always excluded.

where interval specifies the time interval, in minutes, to be
used for the graph, The interval specified may range from 1
to 60. The default interval is ten minutes,

The graph produced by the DISP command is a bar graph.
Each line begins with the end time of the interval, followed
by the 2-digit error type code of each error recorded during

The first and last lines in the graph are the first and last
intervals within the TIME boundary that contains qualified
error log entries. The actual time period scanned is printed
at the beginning of the listing.

An example of a graphic display is given in Example 6,

Error Log Listing Processor = 81

Example 6. Use of DISP Command

The user in Example 5 continues as follows:

*DISP,45

GRAPHIC DISPLAY

FROM 00/00/00 00:00:00:000
TO 12/31/99 23:59:59:999

TIME ERROR

10=mmmmmmmmem

0 -———
03:56 15
O4:41 1A1A
05:26
06:11
06:56
07:41 15161515161615111516
Ng:26 1B11121515111515
09:11 15
09:56
10:81
11:26
12:11 2715

END OF FILE

error and the two digits are the type code of the error.,

The distribution of errors over the scanned time period is more readily apparent in this display than in the other, forms
of error listings. This display is used to check for patterns and trends in error occurrences. The digits that form this
bar graph are in pairs, (e.g., the line 1B11121515111515 contains eight digit pairs). Each digit pair represents one

Y p— -30--

END The END command terminates ELLA and exits to
the monitor, The format of the command is

E[ND]

BOUNDARY COMMANDS

The boundary commands are used to select specified portions
of the error file for display. In order for an error record to
be accepted for display, it must satisfy each boundary,
There are four boundaries:

o Time

e Model number

e Device address

e Error type code

An error log entry will be listed by a subsequent task com=
mand if it was recorded within the time limits specified by

82 Error Log Listing Processor

the TIME command and if it has one of the error type codes
specified by the TYPE command. If the entry is a peripheral
class entry (see Table 33), it must also have a model number
fieldand an address field which agrees with one of the model
numbers and one of the device addresses specified by the
MOD and DEV commands respectively.

It is not necessary, however, to use any of the boundary
commands. Ifa boundary command is not used or a boundary
has been reset, all error log entries are considered to have
met the conditions of display for that boundary.

Boundary commands, if judiciously used, can be especially
helpful in minimizing ELLA output when the output listing
function has been assigned to a slow speed device such asan
on-line terminal,

RSET The RSET command resets all boundary parameters
to their default values, (The default values are given in the
subsequent boundary command descriptions,) The RSET com-
mand has the form

R[SET]

TIME The TIME command sets both date and time
boundaries. Error log entries are displayed only if they
occurred between the begin date and time and the end date
and time. The TIME command has the form

TI[ME][, begin][~end]
where begin and end have the form

[monfh/day/ year][, hour:minute]
or

[hour:minute][, month/day /year]

where
month = 1-12
day = 1-31
year = 01-99

hour = 00-23 (24 hour clock)

minute = 00-59

Example 7, TIME Command Usage

If the TIME command is not used (or if time and date are
reset by the RSET command) ELLA establishes the following
beginning and ending times:

begin = 00/00,/00, 00:00

end = 12/31/99, one millisecond before midnight.
(The time is recorded internally in millisecond
increments.,)

If only one group (i.e., 'begin' or 'end') is entered under
the TIME command, the current state of the other group re-
mains in affect,

It is not necessary for both fields within a group to be

entered. If time is the only field entered in a group, then
the date for that group is the current day by default. Time
by default is a bit more complex, If the date field is the
only field entered for 'begin’, then 00:00 is the time by de-
fault, If the date field is the only field entered for 'end’
then 1 millisecond before midnight is the time by default,

Examples of the TIME command are given in Example 7,

The following series demonstrates TIME command usage.
tively at the console,

*TIME, 4/25/73-5/27/73

*TIME, 2:00- 8:00 ®

implied.)

*TIME, 18:00-10:00 ®

*TIME 00:00 @

previous ending time of 18:00 remains in effect.

*TIME, 1/1/74-12:00@

*TIME, -13:00 @

Assume all of the TIME entries have been entered consecu-

The time limits have been set by the entry above as follows: starting time is 00:00 on 4/25/73, and ending time in
one millisecond before midnight on 5/27/73. The only error log entries that will be displayed by subsequent task
commands are those that lie between these two time points,

The limits have now changed so that the starting time is 2:00 AM on the current day (i.e., the day on which the ELLA
run is being made), and ending time is 6:00 PM on the current day. (When no date is entered, the current date is

This entry is illegal and will produce a diagnostic message because the starting time is later than the ending time.

The limits 2:00 and 18:00 from the previous entry are still in effect.

Here the starting time has been changed to 00:00 on the current day. Since no ending time has been entered, the

This sets the starting limit to 00:00 on 1 January 1974, and the ending limit to noon on the current day.

Error Log Listing Processor 83

ending limit is changed to 13:00 for the current day.

*RSET @

*TIME, 12:00, 10/15/73-10/16/73,12:00 @

of time and date entry is immaterial,

The previously entered starting limits (1/1/74) remain in effect because no starting parameter is entered here. The

ELLA time defaults are reestablished. The default is the entire time span of the error log.

Finally, the starting time is set to noon on 10/15/73 and the ending limit to noon on 10/16/73, Note that the order

TYPE The TYPE command allows the user to select
error log entries for display by specifying an error record
type code (see Table 33). The TYPE command has the form

TY[PE]:{ ?ype][, e fype_r,]}

where
type is a hexadecimal error type code.

0 specifies that the default (all types) is fo be
reestablished.

.If error log entry types have been specified via the TYPE
command, error log entries are displayed only if they have
a type code equal to one of the types specified. Up to five
types may be specified for display at one time,

If the TYPE command is not used, records of all types are
displayed (including any records that may haveillegal type
codes), Displaying all types is the default condition, Hav-
ing once used the TYPE command, the default condition
may be reestablished by entering TYPE, O or by using the
RSET command.

Each time the TYPE command is used, the previoualy spe-
cified types are replaced with the newly entered types.

DEV The DEV command selects error log entries for
display by specifying up to five 1/O addresses, The DEV
command has the form

0
DE[V]'{oddress][, .. .addresss]}
where
address is a 1 to 4~digit hexadecimal physical 1/O

address. (Leading zeros in the address need not be
specified.)
0 specifies that the default (all devices) is to be

reestablished.

Up to five physical 1/O addresses may be specified, Each
time the DEV command is used, the previously specified ad-
dresses are replaced with the newly entered addresses.

If this command is not used, records are displayed without
regard to their associated device address. Thisis the default

84 Error Log Listing Processor

condition, Having once used the DEV command, the default
condition may be reestablished by entering DEV,0 or by
using the RSET command.,

When particular device addresses have been specified through
use of the DEV command, error log entries classified as sys-
tem records (see Table 33) are not displayed, and a peripheral
class entry is displayed only if the device address field in
that entry is equal to one of the addresses specified by the
DEV command,

MOD The MOD command selects error log entries for

display by specifying up to five model numbers. When par-
ticular model numbers have been specified through use of
the MOD command, error log entries classified as system

records (see Table 33) are not displayed, and a peripheral
class entry is displayed only if the model number associated
with that record is equal to one of the model numbers spe-

cified by the MOD command, The MOD command has the

form ’

0
Mm[op], [model.' [.models]}
where
model is a 4=digit model number (e.g., 7446, 7271),

0 specifies that the default (all models) is to be
reestablished,

Each time the MOD command is used, the previously spe-
cified model numbers are replaced with the newly entered
model numbers,

If this command is not used, records are displayed regardless
of their associated model number, This is the default con-
dition, Having once used the MOD command, the default
condition may be reestablished by entering MOD, 0 or by
using the RSET command,

Examples 8 through 12 demonstrate the use of the MOD,
DEV, and TYPE commands for selecting specific portions of
ERRFILE for display. The examples are consecutive portions
of one continuous on~line session. In these examples, the
user has chosen to display everything at the terminal, This
means that the user will be able to see the output immedi-
ately, but the user must make judicious use of this rather
slow output device,

Example 8. Use of the MOD, DEV, and TYPE Commands

Assume that the user had already requested and received a summary of the error file (which would be a logical first
step). The user then proceeded to display the operator messages present in the error file.

*TYPRE,27 @
*CLIS @

CHNRONOLOGICAL LISTINSG

TYPE =27
FROM 00/00/00 00:00:00:900
TO 12/31/99 23:59:59:%99

% OPERATOR MESSAGE *** TIME = 12:33:00:079
9TA81 CAPTSTAN NOISY (JBR)
Note that the TYPE parameter is listed at the beginning of the display because TYPE is no longer set to the default.

Because only one type of error was requested, the terminal is a practical display device. If more than one type of
error is requested, a slightly different procedure can be used as shown in the next example,

Example 9, Use of the MOD, DEV, and TYPE Commands

The user from the previous example next desired to examine some system failures. Note that the new TYPEs entered
in this example replace the old TYPE entered in the previous example.

When more than one type of error is requested, a sorted listing often reduces the time required for output. This is due
to the fact that ELLA only prints headings when a new type of entry is to be listed and SLIS groups all related entries
together,

*TYPE,18,1B®
*SLIS @

SORTED LISTING

TYPE =18 1B
FROM 00/00/00 00:00:00:000
TO 12/31/99 23:59:59:999

% SYSTEM STARTUP ***
START RECOV SCREECH SUB-

TIME DATE TYPE COUNT CODE CODE
09:32:00:000 07/10/74 04 01 19 00
12:05:00:000 07/10/74 01 01 00 non
17:21:00:000 07/10/74 05 02 00 0n

*#*SYMBIONT INCONSISTENCY***
DCT REL. SYMB.

TIME INDEX SECT. DCT
11:29:08:406 09 00A0 02
16:03:13:648 09 0110 02

Error Log Listing Processor

85

Example 10. Use of the MOD, DEV, and TYPE Commands

The user proceeded as follows:

*TYPE, 17 ®
FDEV, IFO®
FCLIS®

No output was produced because TYPE 17 and DEV X'1F0' are mutually exclusive. Type 17 (Parity Error) is a system
class error while device X'IF0' implies that peripheral class errors are desired, Entering either MOD or DEV values
precludes the display of any system errors (only peripheral class errors will have model or device address information,
and all four boundaries tests — MOD, DEV, TYPE, and TIME — must be passed for an error log entry fo be displayed).

Example 11, Use of the MOD, DEV, and TYPE Commands

*TYPE,11®
*DEV,4,81,82,83@®
*CLIS &)

TYPE =11

¥%% STO FAILURE *¥*

I/0
TIME MDL ADRS
12:36:30:782 7323 0083
12:37:29:518 7323 0083
12:40:10:398 7323 0083

**BREAK
*

terminal,

DEV =0004 0081 0082 0083
FROM 00/00/00 00:00:00:000
TO 12/31/99 23:59:59:999

-==5I0-
STAT CC
2000 6
2000 6
2000 6

~===TDV-
STAT CC
1000 6
1000 6
1000 6

The user next decided to examine SIO failures on several devices.

suUBC
STAT
00
0n
nn

TDV CUR
COMM DA
NN11B7
nn1in7
nn1187

REM
BYTES
0ont
N001
nnn1

MFI
00
nn
0n

After examining several of the failures on device X'0083', the user realized that no new information would be gained
by listing the remaining errors. Therefore, the user interrupted the listing process by activating the BREAK key at the

86 Error Log Listing Processor

Example 12, Use of the MOD, DEV, and TYPE Commands

*DEV,0 @
*TYPE, 0 ®
*MOD,7322,7323®
*TIME, 00:006
*DISPE

GRAPHIC DISPLAY

MODL =7322 7323
FROM 02/09/74 00:00:00:000
TO 12/31/99 23:59:59:999

TIME ERROR
-0 -=10

Finally, the user summarized, in graphic form, all Model 7322 and 7323 failures that occurred on the current day.

09:11 11
09:21
09:31
09:41
09:51
10:01
10:11
10:21
10:31
10:41
10:51
11:01
11:11
11:21
11:31
11:41 1516151516161115151616
11:51 1315161516
12:01
12:11
12:21
12:31 1516

END OF FILE

———2m— 3N=-

DSPL The DSPL command displays the current state of
those ELLA parameters that are alterable by the boundary
commands. The date and time boundaries are always listed
by this command. Each of the remaining boundaries will
also be listed unless its current state is its default state,

The DSPL output is printed both on the output listing device
and the command input device, In batch operation, DSPL
outputis only directed to the output listing device since
the input device is the card reader.

The format of the command is

Ds{pL]

An example of the command is given in Example 13,

PREDEFINED TASKS |

This section contains a set of predefined tasks that should
be useful to the person who needs periodic error log reports, .
but has no need for a more precise knowledge of the ELLA
processor's command structure, These tasks could be main~
tained as job decks (as illustrated here), or the commands

might be entered into a file to facilitate on~line submission
to the batch stream (see the TEL BATCH command in the

CP-V/TS Reference Manual, 90 09 07). The account from
which these jobs are run must have a diagnostic privilege
level (AO or higher). The tasks are listed in Examples 14
through 16,

Error Log Listing Processor 87

Example 13. Parameter Display

The on~line user may check the current state of the ELLA boundaries conveniently with the DSPL command, If the
listing device has been assigned to a line printer, the boundary information will be displayed on both the line printer
and the user's terminal,

*RSET @

*SET,LIST,LP @

*DSPL ()

FROM 00/00/00 00:00:00:000
TO 12/31/99 23:59:59:999
*TYPE,11,12,156)

*DEV,E16)

*DSPL @)

TYPE =11 12 15

DEV=00E1

FROM 00/00/00 00:00:00:000
TO 12/31/99 23:59:59:999

Example 14, Listing the Entire Error File

The following deck obtains an error summary and a chronological listing of the entire contents of the error file,

]J IFIN AN
[CLIEND \\

| sum AN
| tELLA AN
1JOB account, name, priority \
-
-

88 Error Log Listing Processor

Example 15, Listing Errors for the Current Day

The following job deck obtains an error summary, a chronological listing, and a sorted listing of the errors recorded
by the system on the current day. If error log reports are to be obtained daily, it is recommended that this job be run
at the end of the processing day.

[1FIN N
[EnD AN
| stis AN
| cus N\

| sum \
| TIME, 00:00 AN
[tELLA \
1JOB account, name, priority \ —

Example 16, Listing Start-Ups, Configuration, and Device Partitioning Activity

The following job deck obtains all the configuration data together with system start-up, partitioned resource, and
returned resource entries in chronological order.

{ IFIN AN

[EnD \
[cus AN
| TYPE, 18,21, 22, 51,52 AN
| 1ELLA AN
1JOB account, name, priority \
-

Error Log Listing Processor

89

ELLA MESSAGES ELLA COMMAND SUMMARY

ELLA commands are summarized in Table 37. The left-hand

Messages output by the ELLA processor are listed in side lists the command formats, The right~hand side de-
Table 36. scribes the function of the command.

Table 36. ELLA Messages

Message

Meaning

ABNORMAL ERROR CODE = xx
SUBCODE = xx

An abnormal condition was detected in issuing a system CAL,
The abnormal code and subcode are described in the CP-V/BP
Reference Manual, 90 17 64, (and the CP-V/TS Reference
Manual, 90 09 07), See the system analyst,

BREAK The BREAK key was depressed. ELLA stops processing and waits
for a new command.
ELLA 708006~A00 This heading is output when ELLA is first loaded.

ERRFILE IS BUSY, WILL TRY AGAIN

ELLA tried to access the error log file and found it busy.

**ERRLOG NON=-EXISTENT

The ERRFILE file does not exist. See the system analyst.

ERROR IN KEY FORMAT
(YEAR/DATE NOT IN PACK DECIMAL)

An ERRFILE entry had an erroneous key, See the system analyst,

ERROR IN SYSTEM TIME

The time in the error log file was not logical, See the system
analyst,

ERROR OCCURRED: CODE = xx
SUBCODE = xx

An error was detected in issuing a system CAL. The error code
and subcode are described in the CP-V/BP Reference Manual,
90 17 64, (and the CP-V/TS Reference Manual, 90 09 07), See

the system analyst,

ERROR: TIME ,GT.
99:59:59:999

The time in an error log entry was greater than 99 hours, 59
minutes, 59 seconds, or 999 milliseconds, See the system analyst,

ERROR: TOO MANY CHARACTERS OR
LINES

ELLA tried to output more than 132 characters to the line printer,
See the system analyst,

INSUFFICIENT PRIVILEGE LEVEL ABORT

ELLA requires an AQ or higher privilege level.

INVALID REQUEST

The command entered was invalid.

NON-REASSIGNABLE

Once the operator's console is assigned as the control device, it
cannot be reassigned.

NOTHING IN ERRFILE

ERRFILE does not contain any records.

**OVERFLOW OF SORT OR MOD/IO
TABLES

ELLA will only support 50 unique 1/O addresses. Use the
boundary commands to restrict the number of 1/0 addresses.

UNABLE TO LOAD SEGMENT = nn

ELLA tried to load overlay number nn and an error was detected.
See the system analyst.

Error Log Listing Processor

Table 37. ELLA Command Summary

Format

Description

c(Lis)

Requests a chronological listing of the error entries in the order
in which they appear in ERRFILE,

DE[V],{0]}

cddress][, ceey addre555

Selects error log entries for display by specifying up to five
physical device 1/O addresses or (if O is specified) specifies that
error log entries for all devices are to be displayed.

DI[SP] [, interval] Requests a graphical display of error log entries,
DS[PL] Displays the current state of the four types of boundaries,
E[ND] Terminates ELLA and exits to the monitor,

m[on], {godel][, cens models]}

Selects error log entries for display by specifying up to five model
numbers or (if 0 is specified) specifies that error log entries forall
models are to be displayed.

R[SET) Resets all boundary parameters to their default values,

SET, LIST, {:&‘;} Reassigns the listing and message output device assignment during
execution of ELLA, LP specifies line printer, KP specifies oper-
ator's console for the ghost and batch modes and on-line terminal
for the on-line mode.

sLfis] Requests a sorted listing of the error log entries,

Su[M] Requests a summary of the contents of the error file which lists
the total number (in decimal) of error log entries for each error
type.

TI[ME][, begin](-end) Sets both the date and time boundaries where begin and end have

the form

[month/day/year][, hour:minute]
or
[hour:m inute][, month/day/year]

TY[PE], {0 }

type][, ‘e fypesl

Selects error log entries for display through the specification of
error record type codes (see Table 33) or (if O is specified)
specifies that all types are to be displayed.

HARDWARE-ERROR DIAGNOSTIC CALS

The following three CALs are intended for use by the monitor
in performing diagnostic functions relating fo the hardware~
error log and must be issued by a program from the :SYS
account, They provide the following services: reading from
the hardware-error log, writing to the hardware-error log,
and initiation of diagnostic ghost jobs,

These three services are all invoked by a CALl, 6 fpt in-
struction; the addressed FPT contains a code and a parameter,
The FPT codes and the functions performed are as follows:

FPT Code Function

0 Read Error Log
1 Write Error Log
6 Initiate Ghost Job

Hardware-Error Diagnostic CALs N

The status of the requested operation is reported via
condition-code settings summarized below. (Not all of the
. status indicated are appropriate fo, or reported by, all
three CALs.)

CC1 CC2 CC3 CC4 Status

0 0 0 0 Normal return.
1 0 0 0 Request denied: insufficient privi-
lege, not in :SYS account, or buffer

is not a data page.

0 1 0 0 Error during operation (Read or
Write), or job unknown (Initiate).

0 0 1 0 Last buffer.
0 0 0 1 Error log does not yet exist (Read).
In each case, the calling program must be of privilege level

CO or greater; otherwise CC1 is set to 1 and no action is
taken.

READ ERROR LOG

The format of the FPT for a read~error-log request is

Buffer address

A variable number of words up to a maximum of 256, de-
pending upon the contents of the error log, is read to the
area addressed by the FPT. This is a 'destructive' read,
returning error-log granules to the monitor's available pool
as they are exhausted.

The error=log file is not protected against simultaneous use;
thus only one program in the entire system should read this
file.

92 Hardware-Error Diagnostic CALs

WRITE ERROR LOG

The format of the FPT for a write-error-log request is

Buffer address

15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

The second byte of the data record addressed by the FPT
must specify the number of words to be written, up to a
maximum of 253. The first byte of the record should con-
tain a type code.

INITIATE GHOST JOB

The format of the three-word FPT for an initiate-job request
is

word 0

X'06" 0 ' 0

01 2 3i4 5 6 718 9 w0 HTIZ 13 14 15116 17 18 19720 29 22 23124 25 26 27128 29 30 31

words 1 and 2 (Name of job to be initiated)

n 0.' [o} 03

n-3 9n-2 -1 %

0 1 2 3h 5 6 718 9 10 IIJITZ]E 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
(Name of job must be in TEXTC format.)

If the program to be initiated is already in execution at the
time of the request and is not in a waiting state (WAIT CAL
with unexpired time), the normal return is made (CCI=0).
If the program is in a waiting state, it will be activated
immediately at the WAIT CAL plus 1 and a normal return is
made to the initiating program.

7. SHARED PROCESSOR FACILITIES |

INTRODUCTION

This chapter describes the shared processor facilities of
CP-V. These facilities permit the sharing of the code for
compilers, assemblers, command language processors, de-
buggers, libraries, and other programs among all simulta-
neous users.

Shared processors are not limited to programs provided
by Xerox. The facilities may be effectively used when-
ever a program has a high probability of common usage.
Service bureaus, for example, may use the mechanism for
proprietary packages. Corporate installations may use the
mechanism for programs with a high use frequency.

Most programs may be established as shared processors by
naming them at SYSGEN time. This causes the file copy
of the program from the :SYS account to be written on the
swapping disk during system initialization. The program is
then available through high-speed swapping 1/0.

The file copy of the program is retained for recovery pur=-
poses and may be copied to another account and run as an
unshared program under Delta for development and debug~
" ging purposes. If the load module in the :SYS account is
replaced, the shared copy of the program on the swapping
. disk is updated to the newer version in the event of a sys-
i tem recovery.

To qualify as a shared processor, a program must meet cer-
tain requirements. These requirements are outlined in the
remainder of this chapter. The most stringent requirement
relates to the single overlay level that is described in the
section below titled "Overlay Restrictions".

To avoid confusion, the use of processor names which re-
semble monitor mnemonics is discouraged. However, if such
names are used, the following rules must be followed:

1. If the first three characters of the processor name are
JOB, BIN, BCD, EOD, or FIN, then usage of that pro-
cessor in the batch mode requires that at least one blank
appear between the | and the processor name on the
control command which calls the processor.

2. The names of monitor control commands (listed in the
CP-V/BP Reference Manual, 90 17 64) are reserved words
and must not be used as processor names.

PUBLIC PROGRAMS

A program whose load module is in the :SYS account but is
not shared is a public program in the sense that it may be
called either by a control card containing the ! symbol and
the program name, or by an entry of the program name in
response fo a TEL prompt (!) for commands. Each user of a
public program has his own copy of the program.

PROCESSOR PRIVILEGES

Processors in the :SYS account and shared processes may be
granted special privileges which are independent of the

user's privilege level and are in effect only when the pro-
cessor is executing. For shared processors, privileges are
specified on the :SPROCS command at SYSGEN or on the
DRSP command which enters the processor. Privileges for
unshared processors are specified when the load module is
loaded, using the PRIV keyword. The privilege flags be-
come part of the load module and are invoked when the
load module is executed. Load module privileges will not
be granted by the monitor unless the load module resides in
the :SYS account when it is executed.

The following privileges are implemented:

1. Master mode permission — can execute MSYS or
M:MASTER CAlLs.

2. Maximum memory protection — can exceed user's
memory limit to a maximum of 92K words.

3. Special JIT access — allowed write access for JIT page.

4. Processor accounting—causes CPUtime to be subtotaled
separately from user execution and service time. It
will be subtotaled as processor execution and service
time. (This is always done for shared processors.)

SHARED PROGRAMS

Shared programs are called in the same manner as public
programs. However, each user of a shared program has his
own copy of only the data and DCB portion of that program;
the procedure portion is shared by all users associated with
the shared program,

There are four distinct kinds of shared programs:

1. Ordinary shared processors.
2. Special shared processors.
3. Shared debuggers.

4. Public libraries.

All shared processors must be built by the batch loader.
Ordinary shared processors occupy the same virtual memory
as user programs and may not be associated with them.

Special shared processors, shared debuggers and public li-
braries occupy (and are overlayed in) the special processor
area, Figure 11 shows the virtual memory allocation for
shared programs that are biased within the special processor
area. Shared debuggers may be associated only with user
programs; they may not be associated with any other shared
processors. Public libraries may be associated with user

Shared Processor Facilities 93

" information about the CP-V monitor.

0K 32K 40K 112K 128K
Monitor Confext Available area Special processor area
area area . Data DCBs
(User program or dynamic data) (fany) | Gf any) Procedure

Figure 11. Special Processors — Virtual Memory

programs or ordinary shared processors; a public library may
not be associated with a special shared processor. Note
that both a shared debugger and a core library may be con-
currently associated with a user program. This is possible
because the procedure portion of the debugger and the
library may be overlayed in the special processor area.

LOG-ON CONNECTION

Commonly used programs, such as BASIC, may be called
automatically by LOGON. The name of the program to be
called, which maybe either a shared or public program from
any accessible account, is established in the user's author-
ization record by Super. LOGON calls the named program
for the user following a successful log-on.

SHARED PROCESSOR PROGRAMMING

The programming of shared processors may require certain
This information is
outlined below,

FIXED MONITOR LOCATIONS

For certain purposes, such as the choice of an effective core
allocation technique, it is desirable for processors and other
programs to be able to identify the monitor in operation,
certain critical locations of the monitor, and the location
of job information table (JIT). This is accomplished by
having locations 2A, 2B, and 4F common to all Xerox mon-
itors. Figure 12 illustrates the contents of these locations.

Location 2A contains a flag that differentiates between an
initial boot (nonzero) and a recovery boot (zero),

Location 2B contains three items:

1. Monitor — This field contains the code number of the

monitor. The codes are as follows:
Code Monitor

0 None or indeterminate
1 BCM

2 RBM

3 RBM-2

4 BPM

5 BTM/BPM

6 UTS

7 CP-V

8 CP-R

9-F Reserved for future use

2A Boot Flag

e [

[2~3vf4 56 718 9 10 1112 1371415116 17 18 19120 21 22 23124 25 26 27128 29 30 31

Version

Parameters

0 1 2 314 5 6 718 9 10 Nt12 13 1415

16 17 18 19120 21 22 23124 25 26 27128 29 30 31

JIT Address

0 1 2 374 5 6 718 9 IOll‘iIZ 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 a1

Figure 12, Locations Common to All Monitors

94 Shared Processor Programming

2. Version — Thisis the version code of the monitor and is
coded to correspond to the common designation for
versions. The alphabetic count of the version desig-
nation is the high-order part of the code and the version
number is the low-order part. For example, A00 is
coded X'10' and D02 is coded X'42'.

3. Parameters — The bits in this field are used to indicate
suboptions of the monitor. They are meaningful only
In relation to a particular monitor. However, the fol-
lowing assignments have been made for BPM, BTM,
and CP-V,

Bit(s) Meaning

31 set Symbiont routines included.

30 set Remote processing routines
included.

29 set Real-time routines included.

28 set Unused.

27 set Reserved for Data Manage~
ment System.

26 set Reserved.

22,23, 24 reset; 25 set Computer is Sigma 6 or 7.

22, 23 reset; 24 set;

25 reset Computer is Sigma 9.

22, 23 reset; 24 set;

25 set Computer is Xerox 560.

18 set Multiprocessing capability
present.

17 set Transaction processing rou-

tines included.
16 set On-line system.

Location 4F contains the virtual JIT address right-justified.

i JOB INFORMATION TABLE (JIT)
l ‘

For each active job, the system maintains an in-core record
(job information table) that allows the job to be scheduled
and swapped. This job information table (JIT) is the first
page of each job, both in core and on the swapping disk,
and contains accounting information, memory map, swap
storage, addresses, and other information for the job that
may be of use to a processor.! In order to reference these

"with respect to accounting, only shared processors or load
modules with the "processor aceounting" privilege are pro-
cessors, i.e., time spent compiling a COBOL program is
accounted under "user time" while time spent in FORTRAN,
PCL, etc., is considered "processor time".

values, the processor should REF the required symbol and

then specify that :J0, the JIT definition package, be loaded

along with the processor. The entire JIT is available on a
read-only basis to all programs including processors. Con-
tents that are particularly useful to processors are given in
Table 38. The complete contents are described in the CP~V
Data Base Technical Manual, 90 19 95.

Table 38. Partial Contents of JIT

Location Size Contents

JJIT

(bit 0) 1 bit Set if the job is on-line and
reset if the job is batch.

(bit 1) 1 bit Set if the job is a ghost job.
For example, the meaning of
bits 0 and 1 is as follows:

00 batch job
01 ghost job
10 on~line

(bit 2) 1 bit Set if user is a non-COC
on=line user. (Bit 0 also
set.)

(bit 3) 1 bit Reserved.

(bit 4) 1 bit User is executing from a
command file.

(bits halfword | Job identification number

16-31) that is guaranteed to be uni-
que to each currently exe-
cuting job.

JB:LPP byte Number of printable lines
per page (COC).

JB:LC byte Current print line number
(COC).

J:OPT word Option flags set by TEL and
affected by the 'DONT'
modifier.

J:CCBUF 20 words | Image of the command line
received by TEL.

JB:CCARS byte Length of command line
received by TEL.

J:USER 2 words On doubleword boundary for
any use by installation.

M:UC 22 words | Console 1/0O DCB (system
DCB).

Shared Processor Programming 95

MEMORY CONTROL \,

No special memory restrictions apply to programs operating
as shared processors. In CP=-V, as in any other time-shared
or multiprogrammed system, prudent use of memory can sub-
stantially improve system throughput. Requests for all avail-
able memory should be avoided. A request for enough
memory to cover typical processing shouldbe made initially,
then a request for additional memory should be made during
processing if the need arises. Memory should be returned to
the system at major changes of contro!. but the frequent
acquisition and release of memory will increase system over-
head out of proportion to the gain.

OVERLAY RESTRICTIONS

Any processor intended for shared use may be created and
debugged as an ordinary program. It may be coded in as-
sembly language and debugged under Delta or created in
FORTRAN and debugged with FDP. To qualify for inclu-~
sion as a shared processor, it must be coded within the
following restrictions:

1. Shared processors are allowed only one level of over-
lay. There is no restriction on the number of overlays
but only one of them can be associated at a time.

2. Data cannot be included in overlays; it must be in the
processor roof.

3. Overlay names are restricted to seven characters or
less.

4. All parts of an overlay disappear from core when an-
other overlay is called. (Portions of a previously used
overlay are not available when a shorter overlay is
invoked.)

5. Shared processors written in FORTRAN must be pre-
ceded by some Meta~Symbol code that associates the
library and links to the FORTRAN code.

6. The root must be greater than one page in length.

When an overlayed shared processor is requested, the pro-
cessor root and its first overlay are loaded. Assembled data
and DCBs are loaded when the root is loaded. Whenever
overlays are not required, memory usage can be held down
by declaring an overlay length of zero and issuing a CAL to
associate that overlay.

Overlays are declared and associated in the same way as
they are for batch programs (CP-V/BP Reference Manual,
90 17 64). TREE command cards and M:SEGLD remain the
same. CSECT 2 and 3 are converted to CSECT 1 by CP-V

loaders.

Shared debuggers (Delta is the only current example) must

have only one page of context and no overlays. They re-

side in the special virtual area of high memory that is cur-
rently fixed in virtual (not physical) size in the highest

16K of virtual storage. They may be any physical size less
than 16K including their context page.

96 Shared Processor Programming

|DATA CONTROL BLOCKS
Most processor 1/O operations are performed through stan~

dard monitor DCBs. For example, source input is norm-
ally read by

M:READ M:Si[options]

The standard DCBs are

M:BI

M:CI

M:EI

M:SI

M:C

M:BO

M:CO

M:DO

M:EO

M:LO

M:SO

M:PO

M:AL

M:LL

M:0OC

M:SL

M:GO
The default assignment of monitor DCBs is the operational
label of the same name (M:DO is assigned to DO, etc.).
The default assignment of operational labels to devices is
shown in Appendix A. These assignments may be changed
at SYSGEN. The default assignments for batch operations
differ from those of on=line operations. This is done so that
a program that writes through LO and reads through SI will
automatically use the line printer and card reader for batch
operations and the terminal for on-line operations. The

logical functions associated with the operational labels are
described in the CP-V/BP Reference Manual, 90 17 64.

Details concerning input buffers, error handling, and so on
are specified as parameters in a read or write call, Param-
eters associated with files and devices are specified by the
ASSIGN (bateh) or SET (on-line) control command.

A processor may construct its own DCBs by means of the
M:DCB procedure. However, processors are not required
to construct DCBs. DCBs not constructed by a processor
will be constructed by the loader. Standard DCBs con-
structed by the loader occupy 51 words and are connected
to a device either by the loader or by an on-line user by
means of special terminal commands. The M:DCB procedure
must be used if optional parameters such as read or write
accounts exceed the allocation of the standard DCBs
(Table 39).

DCBs are also provided in library form and may be explicitly
called during a load. The sizes of these DCBs are shown in
Table 39.

Processors may use nonstandared DCBs, if necessary. Non-
standard DCBs are constructed by the loader if not con-

structed by the processor. They must be explicitly connected
to a device either by an M:OPEN call in the processor or

by a SET command issued by an on-line user since no default
assignment via operational labels is provided.

It is common practice for a processor to obtain source input
through M:SI, to print a source listing through M:LO, and
to print diagnostic output through M:DO. However, pro-
cessor 1/O operations are complicated by the fact that an
on-line user can connect SI, LO, and DO either to different
devices or to the same device (the on-line default assign~
ment for SI, LO, and DO is the terminal). In particular, a
user may connect two or more of these standard operational

labels to the same device. For this reason, processors must
take precautions to avoid duplications in printed output.
This means that processors must know at all times whether
they were called in batch or in on-line mode and what

specific device connections have been made for standard
DCBs.

Processors may examine DCBs directly to determine when
the DCBs are connected to the same device. Fields within
a DCB may be referenced relative to the name of the DCB.
Fields that may be useful to processors are as follows:

Field Use

FCD Bit 10 of word O of a DCB. This is the file-
closed flag. A 1 means the associated file

is open; a 0 means the file is closed,

TYPE Bits 18-23 of word 1 of a DCB. These bits
specify a code for the type of device con-
nected to the DCB (printer, terminal, card
reader, etc.).

Bits 24-31 of word 1 of a DCB. These bits
specify an index to the monitor device table,

DEV

Under CP~V, all device assignments are direct. This means
that DEV always contains a direct device assignment. A
complete layout and description of DCBs is contained in the
CP-V/BP Reference Manual, 90 17 64,

Table 39. Standard DCBs

Pass— | Expiration | Read Write Execute Execute Synonymous Key Total

Name | Device | Name | Account | word Date Accounts | Accounts Accounts Vehicle INSNS OUTSNS | Name Buffer Words
Loader 22 4 3 3 3 0 0 4 4 0 8 51
Built

DCBs

M:C 22 22
M:0C 22 22
M:BI 22 9 3 3 3 4 8 52
M:CI 22 9 3 3 3 4 8 52
M:S1 22 9 3 3 3 4 8 52
M:EI 22 9 3 3 3 7 17 17 4 4 9 8 116
M:BO 22 9 3 3 3 17 177 4 8 86
M:CO 22 9 3 3 3 17 17 4 8 86
M:SO 22 9 3 3 3 17 17 4 8 86
M:PO 22 9 3 3 3 4 8 52
MO 22 9 3 3 3 4 8 52
M:LL 22 9 3 3 3 4 8 52
M:DO 22 9 3 3 3 4 8 52
M:GO 22 9 3 3 3 8 48
M:EO 22 9 3 3 3 17 17 17 4 4 9 8 116
M:SL 22 4 3 3 3 8 43
M:AL 22 4 3 3 3 8 43

Shared Processor Programming 97

The same effect can be obtained by the CORRES device
CAL, but the CAL is much slower than the direct compar~
ison. The direct comparison of the combined TYPE-DEV
fields is meaningful only if the DCB has been opened. This
means that processors must explicitly open DCBs for which
device assignments will be tested.

FILE IDENTIFICATION |

All on-line processors use a common format and common
character set for constructing file identifiers (fid). The
standard format is

. account
name | . account, password

. . password

where name, account, and password consist of character
strings with maximum lengths of 11, 8, and 8, respectively
(name has a maximum of 13 characters for CCI, Edit, and
PCL and a maximum of 10 characters for Link and Load),
Any of the following characters may be used:

Az a-z 0-9 LI § * % : # @ -
Lowercase alphabetical characters are not available on all
terminals (e.g., Teletype Models 33 and 35). If lowercase

letters are sent to these terminals, they are printed in upper
case,

Account and password are optional. If account is omitted,

the log—on account is the default account. If password is
omitted, no password is required to access the file,

TEL SCAN

A processor call entered through a terminal via TEL has the
form

im 6] [onTl i)

where
Im is the name of the processor and is a file identi~
fication (fid). Account :SYS is assumed.
sp specifies a source program and may be either a
file identification (fid) or a terminal identifica~
tion (ME),

ON indicates that ROM output is to be on a new
file,

OVER indicates that ROM output is to be over an
existing file.

98 Shared Processor Programming

rom specifies that the relocatable object module
produced by the processor is to be directed to a
specified file (fid). If no file is specified, out-
put is directed to a special file that may be sub-
sequently referenced by a dollar sign.

list specifies that a file (fid), a line printer (LP),
or the terminal (ME) should be used for listing.
If list is not specified, no listing output is
produced.

' These specifications are implicit ASSIGN and SET commands

for the DCBs M:SI, M:GO, and M:LO. A processor call
causes the specified processor to be executed with M:SI DCB
input from the file sp. Processor output through M:GO DCB
is placed in the file specified by "rom" and listing output
(M:LO DCB) is directed to the file or device specified
by "list". Processor calls are interpreted by TEL,

Parts of a processor call may be enclosed in parentheses.
TEL does not do anything to these parts of a processor call.
However, the processor may examine these and other parts
of the command line that is in its JIT buffer (J:CCBUF).

Processors may reside in storage in three forms:

1. System swap storage contains absolute shared copies
of frequently-used processors. These copies can
be located and loaded quickly. The absolute shared
processor file is created during system initialization and
contains reentrant processors that are shared among
all concurrent users.

2. The :SYS account may also contain copies of processors
in load module form. Processors in this form cannot be
loaded as quickly as absolute processors, but the :SYS
account may be useful during processor construction,
debugging, and extension. Public programs in the
:SYS account may be called by entering their names in
TEL commands or on control cards.

3. A user may store his own processors or his copies of
system processors in his own files (account). A pro-
cessor stored in a user's file area is identified by its
file name and may be called by the RUN command
in batch or START command in on-line operations.

When TEL encounters a processor call, it issues an exit CAL
specifying the requested processor. The monitor routine
STEP checks fo see if this user has any processor restrictions.
If the user is not restricted from using the requested pro-
cessor, STEP checks to see if the processor is a shared pro-
cessor, If it is shared, STEP checks fo see if the processor
is in core, Ifitisn't in core, STEP loads it info core. If
the processor is not shared, STEP searches the :SYS account
and loads the processor from there. If the processor cannot
be found, an error message is sent to the terminal. Before
control passes to the processor, TEL checks the parameters of
the processor call for correct syntax and for existence of the
"sp" file and a "rom" or "list".

TEL sets and resets bifs in JIT to correspond to the commands
LIST, DONT LIST, etc., and to the initial occurrence of
assignments in the command string. One JIT word (J:OPT)
contains a bit for each option that can be specified for a
processor. The options and their corresponding bit assign-
ments are as follows:

Identifier Bit Set Reset
LO 31 LIST DONT LIST
GO 24 OUTPUT DONT OUTPUT
bo 23 COMMENT DONT COMMENT
- 15 DEBUG DONT DEBUG
- 0 ECHO DONT ECHO

The underlined values are default values. The default
setting for J:OPT is STDOPT in the monitor root (module
LITERALS). This cell may be patched by the installation to
generate different defaults than are indicated in the pre-
ceding table. If a SET command is issued for the M:LO,
M:GO, or M:DO DCB, or the list output or binary output
fields are specified in a TEL commond, the corresponding
bits are set. Each processor must assign meaning to the bits
in J:OPT and interpret them. Unassigned bits are available
for future use. Checks of these bits should be made on each
write command since TEL allows on-line users to interrupt
the processor and tum on or off the LO, GO, and DO
devices,

Each processor should establish conventions to maintain

orderly output when two or more DCBs are connected to the

same device. The usual convention is that if diagnostic
output has been written via M:LO, and M:LO and M:DO
are connected to the sume device, then the diagnostic out-
put should not be written via M:DO. The following ex~
ample illustrates some of the special cases that processors
should consider:

1. MsSI, M:DO, M:LO connected to the same device
(the input line should not appear three times).

2, M:DO connected to a device that is different from S1
and LO (the diagnostic comment should probably be
printed beneath the line in error).

3. M:SIand M:DO connected to a Teletype (processors
may or may not want to type a line in error).

Processors may read each input image via the M:SI DCB.
The last record of the sp will cause an end-of-data abnor-
mal condition (see the CP-V/BP Reference Manual, 90 17 04
for a description of abnormal conditions). To obtain con-
trol of an error or abnormal condition, a processor must
issue the M:SETDCB command and/or include error and ab-
normal exits in its read and write CALs. Since source input
may come from a Teletype (sp = ME), processors must be
able to handle Teletype input. The problems associated
with Teletype 1/O are discussed in the section on terminal

/0.

CC! SCAN

On transferring control to a user's program or to aprocessor,
the monitor communicates the TCB address via general reg=-
ister 0, Processors may fetch the card image of the command
that called them by reading through a DCB connected to the
C device.

When running in batch mode, the processor must read the
C device once to clear the control command. The com-
mand is transferred to the user's buffer to allow the user's
program to examine parameters.

TERMINAL I/0

An on-line user may direct output to his Teletype at any
time during execution of a processor. Similarly, portions
of the input to a processor may come from a Teletype, In
general, Teletype 1/O is the same as other [/O in its use
of MREAD and M:WRITE operators and the standard abnor-
mal and error situations. However, Teletype /O has some
features that are significantly different from those for other
devices. Some of the differences require special attention
by processors, but the interface is designed in such a way
that processors will not have to know whether or not 1/0
operations are via Teletype, providing they observe certain
conventions, On terminal /O, like all /O, the user
should note that byte displacements in the DCB remain in
effect until replaced, once they have been given. The
special problems associated with Teletype 1/O are outlined
in the following paragraphs.

END CHARACTERS

On input from a Teletype, each record read is terminated
by an end character (CR, FF, LF, RS, US, FS, GS). The
end character, if any, is included in the actual record
size (ARS) count reported in the DCB (bits 0-14 or word 4).
Each processor must interpret the different end characters,
Processors do not have to know that input is via Teletype,
provided they treat these characters as terminators and use
ARS to determine the actual record received.

Source files for all processors, including those in batch
operations, may have been prepared on=line. Since records
prepared on-line are variable length, it may no longer be
assumed that input records are 80~byte card images.

All characters received from terminals, no matter of what
type, are translated to the standard EBCDIC character set.
The hexadecimal codes for EBCDIC characters are listed
in Appendix H.

WRITE OQUTPUT

The length of each output line is specified by the SIZE
parameter in the M:WRITE procedure call, It is terminated
only by the character zero. That is, the user may term-
inate a message with a zero character if he wishes and
the COC routines will compute the proper message length.
Carriage return or new line characters do not terminate
a message.

Shared Processor Programming 99

CARRIAGE RETURN

A new line or carriage return sequence, as appropriate to
the type of terminal, is appended to the character string
supplied by each write under the following circumstances:

1.- The DCB is not M:UC.

2, The suppress space option is not specified.

Thus, under ordinary circumstances, carriage return char-
acters will be supplied when output consists of one line per
write and the DCB is connected to a terminal. By using the
suppress space option or by writing through M:UC, the pro-
gram may supply carriage returns exactly to requirements—
either none or several for each write CAL,

PARITY ERRORS AND LOST DATA

When an M:READ CAL specifies a terminal, any character
received with a parity error is replaced by SUB (USASCII
code 1A) and the lost data abnormal code (07) is returned
to the user if an abnormal address exists, If there is no
abnormal address, control proceeds to the CAL plus 1.
The line is returned to the user's buffer and the program
may expect to encounter the SUB code as it scans,

In designing a response to messages that contain parity error
characters, two facts are important:

1. The user has already been informed of the error by the
COC routines that echo the exact bits received on the
line followed by the # character.

2, If the received image is sent back to the terminal to-
gether with an error message, the # character will be
printed when SUB codes appear,

In the absence of special considerations unique to the pro-
cessor, it is recommended that lines received with lost data
be sent back to the terminal together with the comment
"EH?". This procedure is helpful as an gid in diagnosing
faulty terminals and communication lines,

END-OF-FILE

If the user types the character pair ESC F, an end-of-file
abnormal code will be returned fo the program reading the
terminal at the abnormal address (if there is one). An input
line that contains all characters received prior to the end-
of-file sequence will also be transmitted to the user's buf-
fer. This line is always terminated with a carriage return
which is also sent to the user's terminal. If no abnormal
address is specified, the line appears as an ordinary input
line. If both bad data and end-of-file occur in the same
input, then the bad data is reported.

100 Shared Processor Programming

OTHER ABNORMAL CONDITIONS

If unknown operations are requested of the COC routines

(e.g., write end-of-file), the abnormal code for beginning=-
of~tape will be returned, If there is no abnormal address,
the operation will be ignored.

FORMAT CONTROL

COC routine action for the various formatting CALs is
specified in the CP=V/TS Reference Manual, 90 09 07, It
is briefly reviewed below.

It is sometimes necessary to print a line with special spacing
or without a carriage return. Processors can obtain verti-
cal carriage control by means of two parameters (SPACE
and VFC), both of which can be set by the DEVICE CAL.
The SPACE and VFC parameters have the following inter-
pretations for Teletypes.

Parameter Meaning

SPACE If this parameter is set and VFC is not on, the
number of spaces indicated minus 1 is in-
serted before each write, Counts of 0 and 1
result in single spacing.

VFC If this flag is set, the COC routines simulate

the printer's vertical format control as speci-
fied in the first character of the text lines
written. The simulation is limited fo one of
the following cases:

Hex. Code Action

CI1-CF COC inserts 1-15 spaces be-
fore printing.

F1 COC skips to top=of-page by
skipping six lines and printing
the heading information fol-
fowed by the print line.

60,E0 COC does not insert CRLF
after the print line (suppress
space).

For page control, COC routines count the number of lines
transmitted to and received from the user's terminal. New
page headings are printed for every read or write when the
line count exceeds the maximum specified in JIT (via the
PLATEN command). New page headings are also printed if
the user program issues a PAGE device CAL or if the termi-
nal user types the FF character L¢ (CONTROL L).

Information in the page heading may be specified by the
user by means of the HEADER and COUNT device CALs.
Heading information is taken from the DCB through which
the read or write was given, Thus, if a write call is issued
to a Teletype through more than one DCB, the heading

printed depends upon the DCB through which the top line of
the page was written. The automatic page heading occupies
one line and contains current time, date, user name and
account number, user identification and line number, page
number, and possibly an administrative message. Headings
specified in the DCB of the read or write are produced after
the automatic heading with position, text, and page number
as specified in the CP-V/BP Reference Manual, 90 17 64,
The page count in this heading is that carried in the DCB
and is reset with each COUNT device CAL. The page count
for the automatic heading is carried in JIT and may be reset
via the TEL PAGE command. The automatic heading is sup=-
pressed if the page length is less than eleven lines. Head-
ings are also not printed if the automatic page heading is
turned off via the TEL PLATEN command.

Tab characters are replaced with an appropriate number of
blanks in input lines. Tabs are notrequired in output lines.
However, if a highly formatted output line is sent to the
Teletype, the operation will be more efficient — and more
satisfactory for the on-line user. Tabs are activated by in-
serting a tab character (X'05') in the outputstream. Tabs may
be sent directly to the terminal or simulated by the software
as requested by the terminal user who may turn simulation
on and off using the sequence @ T. When simulated by the
software, each tab character in the output stream causes
insertion of spaces to move the carrier to the right of the
next higher position specified in the DCB.

Simulated tab stops can be set by a processor with the TAB
device CAL or by an on-line user (for the M:UC DCB) with
the TABS command. Tabs must be specified in ascending
order beginning with tap stop position 1. Note that this is
different from the line printer tabbing, where the tabs need
not be in ascending sequence. Tab stops can be set at any
time for any DCB. During output operations, tabs are
expanded as specified by the DCB through which the write is
issued or, if not specified there, as specified in the M:UC
DCB. Tabstyped by anon-line user are simulated at the user's
console according to the tab settings in the M:UC DCB.

If the backspace character is typed at the terminal, the
character is passed to the reading program. No special

action is taken by the COC routines other than that neces-
sary to record current carrier position (which for backspace
depends on terminal type). Teminals that have a physical

backspace may, at the user's option, use a "backspace-edit"
mode for intra-line editing. (Reference: CP-V/TS Reference
Manual, 9009 07.)

A program can request control when the user presses the

BREAK key by means of the M:INT procedure. Whenever

the user presses the BREAK key, the program environment at
the time of the break is recorded in theuser's pushdown stack
in his TCB. Execution can be returned to the location fol-
lowing the interrupted instruction by execution of the M:TRTN
procedure. A program can return break control to TEL by
executing the M:INT procedure with abreak routine address
of zero. The break routine address is checked by the monitor
to guarantee that the address lies within the memory allo-
cated to the user. Even if a processor has obtained break
control, an on-line user can return execution control to TEL

by pressing the & & , & Y, or Y© keys.

As a safety measure to protect the user against faulty pro-
gramming in break control routines, the number of times the
BREAK key is pressed by a user without intervening char-
acters is recorded, When the count reaches four, control

is sent to TEL as if Y© had been pressed. Thus, the user at
the terminal will never find himself locked out. The count
of four allows processors {e.g., FDP) to make special inter-
pretations on two and three breaks in a row.

FILE EXTENSION

File extension is a convention by which records are added
to an output file by successive job steps. Each time the file
is opened, the file pointer (tape, disk pack, etc.) is posi-
tioned fo a p oint immediately following the last record in
the file. Thus, when additional output is produced it is
added to the previous contents of the file, thereby extend-
ing it., File extension simulates output tophysical devices,
such as line printers or typewriters, when output is actually
directed to a file,

File extension takes effect at the time CP-V opens system
output DCBs. The output DCBs that are affected by file
extension are those that are currently assigned fo files, al-
though normally assigned to devices. They include: M:LO,
LL, DO, PO, BO, SL, SO, CO, AL, EOQ, and GO.

File extension is discontinued when a file is reassigned
with a SET or ASSIGN command or when a file is opened
with an OPEN procedure call that specifies an explicit
file name. In these cases, a new file is created. Exten-
sion of the GO file is terminated following a LINK, LYNX,
or RUN command.

SHARED FILE USE

Shared processors must ensure that temporary files used
during operation are distinct for each instance of exe-
cution. A common technique for accomplishing this is
to append the current users ID, from the right half of the
first word of JIT, to the filename when it is created and
used, This ID is guaranteed by the system to be unique
for all concurrently running batch or on-line programs.
A discussion of shared files is contained in CP-V/BP Ref-
erence Manual, 90 17 64,

COMMAND PROCESSOR PROGRAMMING

A command processor is a shared processor which inter-
faces between the user and that which the user wants to
access — the monitor, a processor, or another program.
Four command processors are supplied with CP-V. They
are LOGON, TEL, CCI, and EASY. CP-V will also
support installation-specific command processors, Infor-
mation about the programming of command processors is
outlined below.

Command Processor Programming 101

Generally, command processors have the same restrictions
as listed for shared processors previously. In addition:

1.

A command processor may not have any overlay
structure.

A command processor which resides in the special pro~
cessor area (above X' 1C000') may not have any dynamic
data and must be biased at X'1C400'.

A command processor must intercept all exifs, errors,
and aborts from user programs and must clean up cor-
rectly. (Special CALs for command processors are
listed below.)

Command processors should not be given speclal JIT
access. (The special CALs for command processor in-
terface eliminate the need for it.)

When programs error or abort, control will be given to
the command processor with the following restrictions:

If the command processor resides in the user
program area (X'A000' to X'1C000') or the user
program is loaded in the extended mode (X'AQ00'~
X'1FFFF'), the exiting user program will be com-
pletely disassociated before associating the com-
mand processor, eliminating the possibility of
continuation of the job step.

If the command processor resides in the special
area (X' 1C600' to X'1FFFF'), has no dynamic data
or DCBs, uses only M:UC and M:XX, control will
pass to the command processor with the user intact,
allowing analysis of the exit and continuation of
the current job step.

Command processors may be entered into the system during
PASS2 of SYSGEN by using the T, B, G, and C flags of

the

:SPROCS command. They may also be added to the

system, replaced, or deleted from the system via the DRSP
processor.

The

following capabilities are available to command

processors:

1.

102

Interpretive Exit — An interpretive exit is a natural
exit CAL (M:EXIT)performed by a command processor
with the following register setup required.

Ré,R7 Contain the TEXTC name of the requested

R8 load module or shared processor. A maxi-
mum of seven bytes is allowed for a shared
processor, If R6 is zero and the command
processor is special shared, (biased at
X'1C400'), the program is reentered at the
point of interruption.

R13,R14 Contain the account (in TEXT format) in
which the load module resides. :SYS is
specified for shared processors.

R10,R11 Contain the password in TEXT format. If

there is no password, zero should be used,

Command Processor Programming

RO, R1 Contain either FDP or DELTA in TEXTC
format or a zero. If one of the two debug-
gers is specified, the interpretive exit is to
be taken with the debugger associated.

The system job step processor, STEP, interprets such an
exit as a call on the specified program. It also loads
the TEXTC name of the command processor that issued
the interpretive exit into R4and R5. Before a com~
mand processor issues an interpretive exit, it must have
closed all its DCBs and, in general, have cleaned up.

The job step processor arbitrarily removes the command
processor from the user's virtual map. This means that
all data and DCBs are gone.

BREAK and CONTROL Y Control — If the terminal user
depresses the BREAK key during operation of a pro-
cessor or user program and that program did not request
BREAK control, the program is aborted and the com=
mand processor is loaded and entered with bit 30 of
J:TELFLGS in the JIT set. If the interrupted program
has requested BREAK control, the program's BREAK rou=
tine is entered.

If the terminal user depresses CONTROL Y during the
execution of a processor or user program and the com-
mand processor is not special shared, the program is
aborted and the command processor is loaded and en-
tered. If the command processor is special shared and
has no data and no DCBs, the user program is left as is
and the command processor is entered. This gives the
command processor the opportunity to continue the
interrupted program.

If the terminal user depresses CONTROL Y while a
command processor is in control, the event is ignored
and the current operation is continued where it was
interrupted.

If the terminal user depresses BREAK while a command
processor is in control and BREAK control has not been
requested or BREAK control has been reset via the
M:INT CAL, the BREAK event isignoredand the com-
mand processor is continued where it was interrupted,
If a command processor has requested BREAK control,
it is interrupted at its BREAK control address,

The format of the BREAK control CAL is:
CAL1,8 FPT

where FPT points to word 0 of the FPT shown below.

Word 0
] 1 C .
X'OE p 0———0 BREAK routine address
0 1 2 3l4 5 6 718 9 101111213 14 15116 17 18 19120 27 22 23[14 25 26 27128 29 30 31

1f the CP bit is set, the BREAK control routine of the
interrupted program is reestablished. This allows a user fo
depress CONTROL Y while in a program with BREAK con-
trol, enter his special shared command processor which
remeinbers the old BREAK control address, and then estab-

lish BREAK control for the command processor.

If the user

wishes to continue, the command processor may set the

CPbit and execute the BREAK control CAL before exiting
back to the user's program. The BREAK routine address in
this case should be the one that was active when the com=
mand processor was first entered as a resultof CONTROL Y.

3.

Exit, Error, Abort CAL, and 1/0O Abort Control — If any

exit or abort condition occurs during execution of a
program, the program is aborted and the command pro-
cessor is loaded and entered. Error conditions are de-
scribed in four fields of the JIT as follows:

e J:ABC is the address of the word in the JIT that
contains the abort code inbyte 0 (see Appendix B
of the CP-V/TS Reference Manual, 90 09 07).

e ERO is the word offset into the JIT of the word

that contains the abort subcode in byte 3.

e J:RNST is the address of the word in the JIT that
contains the current run status. Status settings are:

All

zeros means the job is executing normally.

Bit 1 if set, the job is to be errored because of
an M:ERR call to the monitor,

Bit 2 if set, the job is to be aborted because of
an M:XXX call to the monitor.

Bit 3 if set, the job is to be errored because of
an E key-in by the operator.

Bit 4 if set, the job is to be aborted because of
an X key=in or a line disconnect.

Bit 5 is reserved for future use.

Bit 6 if set, the job is to be aborted because a
limit has been exceeded (e.g., maximum
pages out).

Bit 7 if set, the Job is to be aborted because of
an error (most likely 1/0) as specified in
J:ABC and ERO.

Bit 8 if set, the job is to be aborted because of
an illegal trap.

o J:ASSIGN contains the address of the word in the
JIT, the rightmost nine bits of which indicate which
limit was exceeded. This field is set in conjunction
with bit 6 in the RNST field of the JIT. The bits,
if set, mean:

Bit 23 the maximum disk allocation limit
exceeded.
Bit 24 the maximum time limit exceeded.

Bit 25 the maximum scratch tape limit

exceeded,
Bit 26 the maximum temporary disk space
limit exceeded.
Bit 27 the maximum permanent disk space
limit exceeded.
Bit 28 the maximum diagnostic pages oufput
limit exceeded.
Bit 29 the maximum user pages output limit
exceeded.
Bit 30 the maximum processor pages output
limit exceeded.
Bit 31 the maximum punch output limit
exceeded.

CAL Control of JIT Error Condition — This CAL allows

control of JIT error conditions without special JIT ac-
cess. The form of the CAL is:

CAL1A fpt

where fpt points to the word shown below.

X'06' 0 Ol

0 1 2 314 5 6 708 9 10 11213 14 15016 17 18 19120

21 22 23'24 25 26 27128 29 30 31

The monitor (the ALTCP portion) verifies that the pro-
gram issuing the request is a command processor through
use of UH:FLG. It then sets J:ABC, ERO, byte 0 of
J:RNST, and bit 30 of J:TELFLGS to zero. (Bit 30 of
J:TELFLGS indicates whether or not the BREAK key has
been depressed.) If the program issuing the CAL is not
a command processor, control is returned to the user
program with CC1 set.

Registers — Upon entry to a shared processor from a
command processor, the registers must contain the
following:

RO the TCB address of the user program.

R4, R5 the name of the calling command processor

in TEXTC format.

R6, R7, the name of the called processor in TEXTC
R8 format.
R10,R11 the password in TEXT format (zero if none).

R13,R14 the account of the called processor in TEXT

format.

CAL Control of Terminal Modes — Control of terminal

modes is provided by a variation of the Change Ter-
minal Type CAL (see the CP-V/TS Reference Man-
val, 90 09 07). :

Command Processor Programming 103

PUBLIC LIBRARIES

The system may have several shared public libraries. Each
library is a unit tailored to the requirements of the installa-
tion. The user associates a public library with his program
by specifying the library name (Pi where i=0~9, JO, or J1)
ina LINK or RUN command. The rule governing library
units are as follows:

1. Link loads the user data immediately above the area
reserved for the library data. Load reserves an entire
page for library data.

2. No initialization is provided for this temporary library
data either by the loader orby the system. There must
be aninitialization program if initializationis required.

3. Each library unit must separate data (CSECTO) and pro-
gram (CSECT1) information into separate assemblies so
that separate ROMs will be produced for each.

4. All code must be under CSECTs with protection type 0
for variable data or 1 for procedure and constant data.
No DSECT section may be used.

5. The library must be self~contained (i.e., there can be
no unsatisfied references). This must be true for the
data portion itself and the total library. For example,
a FORTRAN 1/OQ library must search the DCB chain
rather than make a direct reference to the DCB itself.

CP-V PUBLIC LIBRARIES

Six public libraries are available to the system programmer.
One library (:P1) includes the most commonly required rou-
tines from the Extended FORTRAN 1V library (about 65 rou-
tines). Another (:PO)includes :P1 plus the FORTRAN Debug
Package (FDP). A third (:P4)includes :P1 plus the FORTRAN
real-time features. The fourth library (:JO) contains the JIT
definition. Most executing users need only the first library;
users who are debugging need the second; real-time users
need the third. The fifth library (:J1) contains the monitor
(M:MON) definitions and is useful only to programs which
interface directly with monitor tables and routines. The
sixth library (:J2) is actually a subset of :J1. It contains
the definitions for the LITERALS module of the monitor and
is useful primarily to programs that wish to access the moni-
tor's extensive literal and constant pool in order to avoid
duplicating these items. (All programs have read access

to the LITERALS module.)

The entire Extended FORTRAN IV library consists of 252 rou-
tines (ROMs) totaling more then ten thousand instructions
and over 800 data words.

The package includes more than 350 DEFs. These routines
are described in Extended FORTRAN IV Library Technical
Manual, 90 15 24, and Sigma 5/7 Mathematical Routines
Technical Manual, 90 09 06.

104 Public Libraries

Public library :P1 contains single and double precision trig-
onometric functions, exponential and logarithmic functions,
standard set-uproutines, initialization and termination rou=
tines, and input/output conversion and transmission routines.
Fewer than 1000 words of storage are required for temporary
storage by each user of the library. Over 5100 words of li-
brary code are shared among all concurrent users.

FDP users require public library :PO which consists of nearly
1400 words of temporary storage per user; over 10,000 words
of code are shared among the concurrent users.

Real-time users require public library :P4 which consists of
fewer than 1000 words of temporary storage per user; over
5300 words of code are shared among the concurrent users,

The remaining routines (approximately 190) of the complete
FORTRAN library are organized in two ways:

1. They are organized in the :BLIB file as card-image ROM
decks that are used by the Link loader to satisfy library
references.

2. They are organized in the :LIB/:DIC files as 22 library
load modules.

This organization permits rapid loading by the overlay loader
or Load. The overlay loader uses the file :DIC, which con-
sists of a record keyed by each DEF in :LIB and the group
number as its value to find the LM names necessary to satisfy
references.

Real-time versions of :BLIB, :LIB, and :DIC must be main-
tained in the real-time system account (e.g., :SYSRT).

One essential monitor subroutine must be added to the stan-
dard released library, S:OVRL. It is normally added during
the System Generation process but must be remembered when=
ever a new library is being installed.

The size and description of routines in :LIB are given in
Table 40.

CREATING PUBLIC LIBRARIES

Users may add their own public libraries to meet specific
requirements. The necessary procedures are given below.

The procedure forcreating public libraries consists of several
steps. The desired data and program elements are loaded,
and the dictionary for the library (DEFs) is filed for loader
use. Next, the procedure is filed so that SYSMAK can place
it on swap storage during system initialization. In the
process, the program SYMCON is used to retain only those
DEFsrequired in the final linking process, thus saving loader
stack search time. Figure 13 illustrates the process of creat-
ing a public library.

Table 40. Routines in :LIB Library File Table 40. Routines in :LIB Library File (cont.)
Group Size Description Group Size Description
1 96 Complex double precision mathe~ 10 76 Miscellaneous real functions.
matical routine drivers.
11 78 Logical functions.
2 72 Complex mathematical routine . .
drivers. 12 18 Conversion routines,
3 92 Double precision mathematical 13 362 DSINH, DTANH, DASIN,
routine drivers, DTAN.
4 86 Single precision mathematical 14 308 Miscellaneous nonnumeric functions.
routine drivers. 15 20 Overflow and divide check.
5 277 External revisions of compiler
intrinsic functions. 16 508 Nonstandard and asynchronous 1/0,
6 618 Complex double precision mathe- 17 750 Input and INPUTL.
matical routines. 18 160 Random access.
7 538 Complex single precision mathe- .
matical routines. 19 514 Disk buffer.
8 74 Double precision mathematical 20 102 Keyed file 1/0.
routines. 21 836 Namelist 1/0.
9 104 Miscellaneous integer functions. 22 938 Defined file 1/0.
Data ROMs for
Public Library
| LOAD Adds DEF :Pn to stack with value
Data LM equal to size of data in source LM
(:Pﬂnn) /
| DEFCOM
DEFs for Data Procedure ROMs
(:PnDATA) for Public Library
LOAD (or LYNX)
Public Library
LM (:Pnn)
DEFCOM Y SYMCON ¥y SYSMAK
Public Library DEFs Public Library LM Absolute Copy of
for (:Pn) used by |= (:Pnn) with only procedure on swap
Link and Load. necessary DEFs, storage,

Note: n =0-9 for public libraries 0-9.

Figure 13. Public Library Creation Process

Public Libraries 105

i LOADING PUBLIC LIBRARIES

Default loading for Link includes the basic FORTRAN public
library (:P1) and a search of the system (ROM) library if
there are unsatisfied references. This is the same as if the
user had specified (:P1) in a RUN or LINK command. If the
user has not explicitly asked for :P1 and no reference to
PINITIAL is found, the procedure for :P1 is not associated
with the user program execution although the 900 data words
remain committed because of the single pass loader oper-
ation. Figure 14 is a generalized flow of the LINK process
relative to libraries.

Since the overlay loader operates in two passes, it makes
“an explicit association of :PO and :P1 to a program in
absence of other instructions. This process is illustrated in
Figure 15,

Real~time users must specify publiclibrary :P4 and the real-
time version of the system library. This means that the Link
processor requires specification of P4 and inclusion of file
:BLIB in the real-time system account (e.g., :SYSRT) as a
library file identification. It also means that the overlay
loader requires specification of :P4and the real-time system
account in the library account list.

SHARED PROCESSOR MAINTENANCE |(DRSP)

Development and check out of CP=V systems is simplified
through use of DRSP (Dynamic Replacement of Shared Pro-
cessors). DRSP allows replacement, creation, or deletion
of shared processors while the system is operational. The
extra processor space in the shared processor tables must be
allocated during system generation (PASS2). Processors
that are normally invoked following a recovery cycle
(ALLOCAT, GHOSTI1, RECOVERY, and XDELTA) are not
dynamically replaceable. DRSP must be run as a shared
processor_in order to maintain integrity of the monitor's
processor tables.

Note: XDELTA (Executive Delta) is an additional debug-
ging aid that is optionally retained at system ini-
tialization. XDELTA is described in the Delta
chapter of the CP-V/TS Reference Manual, 9009 07.

DRSP can be run either as an on-line or a batch processor.
Input can be either from the command device or from a
terminal. DRSP is called on-line by entering the name of
the processor as a TEL command.

Example:

IDRSP®

DRSP HERE

2

106 Shared Processor Maintenance

The DCBs usedby DRSPwhich may be assigned by the user are:

1. M:SI for command language input,
2. M:LL for terminal output.

3. M:SL for listing of input commands during a batch run
and diagnostic message output.

DRSP COMMANDS

The seven DRSP commands are

ENTER
REPLACE
DELETE
LIST

LISTALL
?

END

In the DRSP command descriptions, the term 'proname' refers
to the name of a processor as found in the shared processor
tables. The file specified by proname must be in load module
format.

All of the above commands except "?" can be followed
by comments, which will be printed as part of the com-
mand line during a batch run of DRSP. To add comments,
terminate the command with a blank character followed
by a period. All characters entered after the period are
treated as comments. The comments are terminated by
or end-of-card. Comments cannot be continued to the
next record.

ENTER The ENTER command is used to enter a new
shared processor into the system.

The format of the command is

FROM

WITH }fid] [,option] [option] [option]

E[NTER] proname [{

where the options are as follows:

(1151 o] (P MIDXI(T) [B) [G) [c] specifies one or more |
flags to be associated with the processor. The
flags indicate the following.

J processor is allowed to alter the JIT.
S special shared processor,

D processor is a debugger.

P public library.

Read and Load
Specified ROMs,

Flag DCB REFs
to be built later,

Any
PREFs ?

Named
library files to
search ?

yes

Search for library
files and load
those found,

]

Public

Library specifi-
one w VL ‘
Associate

NP public library,

9D BINIT
REF ?

* yes

Error Message:
Compiler for debug

and l:brory not Associate P1 and
associated, send warning mes- -
sage if not actually [
needed,
Done SYS\
Library search

L2

Open and
search :BLIB

Done

Figure 14. Generalized Library Load Process (Link)

Shared Processor Malntenance 107

Process ROMs or LMs
from named files and/or
from Bl or GO,

yes

no

to 9DBINIT
or 9INITIAL

Determine which :Pn
(either :PO or P1),

\

PUBLIC
LIB

-

Initialize UNSAT list,

Any

Done

no < REFs ?

yes

Get next UNSAT entry,

Is

[

PUBLIC
LIB

ita :Pn
?

yes

Satisfy remaining REFs
from :LIB in this account,

]

no more
entries

to 9DBINIT

or 9INITIAL
?

no

Determine which :Pn
(either :PO or :P1).

[

PUBLIC
LIB

Done

PUBLIC LIB

Get the requested
:Pn (from :SYS) and
associate it with the
load module being
built,

Return

Done

|
Retum

Note: If NOSYSLIBis presenton the |LOAD card, the UNSAT list is empty or consists of those sources (accounts and/or :Pn)
mentioned under the UNSAToption. If NOSYSLIBis not present, the UNSAT list consists of the above plus the :SYS
account (which occurs last). For LYNX, the NL option has an identical effect upon the library account list,

Figure 15. Generalized Library Load Process (Overlay Loader)

108 Shared Processor Malntenance

M processor allowed maximum memory during
execution,

X processor allowed to execute the M:SYS CAL.

T command processor accessible by terminal
users.

B command processor accessible by batch
users.

G command processor accessible by ghost users,

C command processor accessible by terminal,
batch, and ghost users.

If Dor Pis specified, Sis redundant and is assumed.
If the C flag is used, the specific flags (T, B, G)
are redundant and should not be used. Various
combinations of the above are possible up to a
maximum of six characters; e.g., a processor that
is allowed to alter the JIT and has maximum mem-
ory available for execution would be flagged JM.
The flag combination PD or usage of the P flag
when the processor name is other than :Pnn results
in an error message.

PERM specifies that the processor is to be available
to users even after a system crash. The processor
will be present both in the system account (:SYS)
and on swap disk. "Empty" slots must be avail-
able in the disk copy of the processor tables. If
this option is not used, the new processor version
will reside only on swap disk and will be lost in
the event of a crash. The version of the processor
that will be restored is the version in the system
account at the time of the crash.

w specifies that if the proname cannot be entered
into the processor table because there are no name
slots free, DRSP is to wait until there is a slot
available. If this wait option is not specified,
the command terminates without entering the
new processor.

The REPLACE command is used to replace an
existing shared processor. If this command is used, the
previous version of the processor is lost. However, cur-
rent users continue to use the old copy until they are
disassociated from the processor.

REPLACE

The format of the command is

R[EPLACE] proname [[\[;\.I’{I(TDI'"‘IA }] fid [,option][,option][,option)

where the options are as follows:

DIB)OIPIMIXITIBIGIIC] specifies flags to be
associated with the processor. The option is the
same as for the ENTER command.

PERM specifies that the new version of the pro-
cessor is fo be available to users even after a sys-
tem crash. This version of the processor wili be
present both in the system account (:SYS) and on
swap disk. "Empty" slots must be available in
the disk copy of the processor fables. If this
option is not used, the new processor version will
reside only on swap disk and will be overwritten
in event of a crash by the processor version in the
system account.

w specifies that if the proname cannot be entered
into the processor tablebecause there are no name
slots free, DRSP is to wait until there is a slot
available. If this wait option is not specified,
the command terminates without replacing the old
processor.

DELETE The DELETE command prevents further user
association with a processor, Users associated with the pro-
cessor when this command is issued will continue to use the
processor until they disassociate,

The format of the command is
D[ELETE] proname [, PERM]

where PERM specifies that no new users will ever be asso-
ciated with this processor (even after a system crash).

LIST The LIST command lists the processor name, the
name associated with each entry in the processor name table,
and the amount of disk space occupied by the processor.

The format of the command is

7| [proname
L[IS]][{ P |- m}]
where

proname specifies an explicit processor name. (The
proname M:DUMLM appears many times in the pro-
cessor tables, If selected, all these entries will
be listed.)

xx=[yy] specifies the name table index or a range
of name table indexes to be listed.

Initial use of the LIST command with no proname or index
specified will provide a list of each processor table entry
and its corresponding table index.

LISTALL The LISTALL command lists each shared pro-
cessor name and its entries in the following tables:

PB:HPP Head of the physical page chain.
PB:TPP Tail of the physical page chain.
PB:DSZ Number of data pages.

Shared Processor Maintenance 109

PB:DCBSZ Number of DCB pages.

PH:PDA Disk address of first procedure page.
PH:DDA Disk address of first page of data and DCBs.
PB:UC Number of users in core using the processor.
PB:LNK Processor number of next overlay.

PB:PVA Virtual page number of first procedure page.
PB:HVA Virtual page number of first unused page.
P:SA Processor flags and start address.

The format of the command is

proname
LISTALL[{ #xx[-y);}]

where proname and xx[-yy] are as defined in the LIST
command.

? The question mark command requests a detailed error
message when an error has been noted by DRSP. The com~
mand is applicable only for the on=line mode. lIts function
is described indetail inthe section "DRSP Error Messages".
The format of the command is

?

END The END command terminates DRSP. The format
of the command is

END

DRSP LIMITATIONS AND RESTRICTIONS
The following lists DRSP limitations and restrictions:
1. Only users with a privilege level of CO or greater are
allowed to use the ENTER, REPLACE and DELETE com-

mands. The LIST command requires a privilege level
of 80 or greater. ’

2. There must be sufficient space in the swap disk
processor/overlay area to hold the new or replacing
entry. This extra space is allocated by SYSGEN
PASS2 via a :SPROCS control card.

3. Replaced or entered items must be accessible load
modules.

4. Onlyonelevel of overlayis permitted in a processor.
5. A processor overlay must be PROCEDURE only.

6. ALLOCAT, GHOST1, RECOVER, XDELTA, M:DUMLM
may not be processed with DRSP commands.

110 Shared Processor Maintenance

7. Overlays for processors cannot be replaced or entered
individually,

8. GETs of programs saved with an associated processor
most likely will not work if the processor has been
changed between SAVE and GET.

9. When replacing the FILL processor a modified proce-
dure is required: Following REPLACE FILL WITH
N.A.P., OPTION 1 thru 3, the user has to abort the
FILL ghost. This is done via a message to the operator
to key in X, id, where id is the SYSID of the FILL
ghost whichappears when the message '"REQUEST FILL,
NO FILL, OR INSTANT SQUIRREL (F, N, S)' is output
on operator's console. This will ensure that the FILL
copy in the user swap disk area is destroyed and the
replaced version of FiLL is brought in the next time
FILL wakes up.

| DRSP ERROR MESSAGES

The error message structure of DRSP is designed to give a

user detailed information when so desired without burdening
him with long typeouts when the error is obvious. When
running on-line, DRSP will respond to commands in error

by typing
EH@ n

where n is the character position at which an error was first
detected. If the user requires more information, he responds
with a question mark (?). DRSP responds with a detailed
error message (see Table 41). If the error is obvious, the
user may retype the command (or proceed to the next com-
mand). For errors that occur after command syntax is com-
pleted, this message changes to

EH
since command character position is meaningless.

In batch mode, the detailed error messages are printed with-
out the interrogative sequence described above.

In addition to error messages, certain other messages are
given for information purposes only (see Table 42). No re~
sponse is expected.

Except where noted, the error condition truncates execution
of the requested command.

| DRSP COMMAND SUMMARY

Table 43 contains a summary of commands for the DRSP
processor. The left-hand column specifies the format and
the right-hand column defines the function.

Table 41, DRSP Error Messages

Message Meaning

BREAK 50 User hit BREAK during DRSP execution. The number defines the point at which
BREAK 51 the DRSP processor exited, as described in the UTS Reliability and Maintain-
BREAK 52 ability Technical Manual, 90 19 90.

BREAK 53

CANNOT OPEN THE FID

DRSP cannot access the load module defined by the fid.

CAN'T OPEN M:BO (PERM)

1/O arror detected while trying to open the output file in :SYS. The processor
is entered/replaced on non-"PERM" basis.

DON'T USE COMMAND ON
TEL/CCI

ENTER or DELETE commands must not specify the proname 'TEL' or 'CCI',

DRSP 1/0 ERROR IN READING
COMMAND

Error detected in reading DRSP command.

DRSP 1/0 ERR/ABN (CLOSE)

Error or abnormal condition detected at CLOSE of output file. The processor
is entered/replaced on non-"PERM" basis.

DRSP M:BO ERROR (PERM)

I/O error detected while writing or closing the output file in :SYS. The
processor is entered/replaced on non-"PERM" basis.

DRSP M:EI ERROR (PERM)

1/0 error detected while reading file fid. The processor is entered/replaced
on non-"PERM" basis.

DRSP M:EI ERROR (WRITESWAP)

1/0 error detected while reading fid for writing on the swap disk.

DRSP NOT FOUND IN
PROCESSOR TABLES

DRSP must be run as a shared processor in order to maintain integrity over the
monitor's processor tables,

DRSP PROGRAM ERROR
(SHOULDN'T HAPPEN)

DRSP detected contradictory conditions during processing. Requires system
programmer intervention,

ERR MSG NOT FOUND.
KEY = xxxxxx

No error message corresponds to the error code xxxxxx generated. Please

report this system error.

FID IS NOT A LOAD MODULE

Error or abnormal return executed while trying to read the TREE record of the
load module specified by fid.

FILE STORAGE LIMIT IN
SYSTEM ACCOUNT

When writing the load module into the :SYS account for the PERM option, the
file space for that account is exceeded.

ILLEGAL COMMAND

Command entered is not defined in DRSP.

ILLEGAL COMMAND OPTION

An optional parameter typed in the command is not recognized.

ILLEGAL INDEX RANGE

Index specified in LIST/LISTALL command not within legal range of processor
name table.

ILLEGAL LMN (LOAD
BIAS CHECK)

Ilfegal load bias detected when processor written to swap disk.

ILLEGAL PRONAME, NOT
:PNN FORMAT

A processor flagged as a public library must conform to the name format :Pnn.

ILLEGAL PROTECTION TYPE
FOR PUBLIC LIBRARY

The load module for a public library must be root only and procedure only.

Shared Processor Maintenance

1

Table 41. DRSP Error Messages (cont.)

Message

Meaning

INCORRECT FID

The fid specified exceeds the field maximum for name (15 characters) or
account (8 characters) or password (8 characters).

INSUFFICIENT MEMORY TO
READ MAX RECORD OF FID

DRSP has failed to acquire enough memory to read the largest record of the
load module specified as fid.

INSUFFICIENT MEMORY
TO READ TREE

Memory space available to user is not sufficient to process the load module
specified in the ENTER or REPLACE commands.

INSUFFICIENT PRIVILEGE
FOR DRSP USAGE

The user must have a privilege level of 80 or greater to execute any DRSP
commands.

INSUFFICIENT PRIVILEGE
LEVEL TO PROCESS THIS
COMMAND

The user does not have sufficient privilege of CO to process ENTER, REPLACE,
and DELETE commands.

INSUFFICIENT SPACE ON
SWAP RAD

The disk space allotted for new or replaced load modules is too small for the
load module specified.

INSUFFICIENT VIRTUAL
MEMORY TO EXECUTE DRSP

There are not enough virtual pages to allow DRSP to access the monitor.

NO ERRORS

No errors were encountered during command execution.

NO PRONAME SLOTS AVAILABLE

The number of extra processor name table entries is exhausted.

NO SUCH PROCESSOR

The proname entered cannot be found in the processor tables.

ONLY ONE LEVEL OF OVERLAYS
FOR SHARED PROCESSORS

When analyzing the load module TREE record, more than one level of processor
overlay was indicated.

ONLY PROCEDURE IS ALLOWED
IN A PROCESSOR OVERLAY

DRSP checks a load module specified as an overlay for procedure only.

OVLY LINK EXCEEDS TABLE
LIMIT

A system error fo be reported.

PROCESSOR OVERLAY SLOTS
EXHAUSTED

There are not enough empty processor overlay locations in the name table to
fill the load module requirement. This check on the name table occurs during
the write to the swap disk.

PROCESSOR/OVERLAY
ALREADY EXISTS

User tried to ENTER a processor or overlay name that exists in the fable.

PRONAME IS ILLEGAL

Some routine cannot be entered or replaced with DRSP (e.g., XDELTA,
RECOVER, GHOSTI, ALLOCAT, M:DUMLM).

PRONAME REQUIRED

A program must be specified withthe ENTER, REPLACE, and DELETE commands.

RAD OVERFLOW

Disk space allotted for the shared processors is exhausted.

READ ERROR READING
FID (COPY)

1/O error detected while trying to read the processor for the copy into the
system account.

SWAP 1/O ERROR (QUEUE)

1/0 error detected while writing processor to the swap disk.

WRITE ERROR WRITING
FID (COPY)

1/0O error detected while trying to write the processor info the system account.
The processor is entered/replaced on non="PERM" basis.

WRITE RAD FILE I/O ERRORS

/O error detected while writing the processor to the swap disk.

Shared Processor Maintenance

Table 42. DRSP Information Messages

Message

Meaning

DRSP HERE

Routine title typed when user first enters DRSP,

DRSP INHIBIT SET

Another user is manipulating the shared processor tables and prevents any
other user executing the ENTER, REPLACE, and DELETE commands. However,
the LIST and LISTALL commands can be executed at any time.

fid NEEDS xxxx GRANULES

If DRSP cannot find sufficient disk space in any available slot, it feeds
back to the user the number of granules required to enter/replace the
new load module.

proname REPLACED IN RAD
SLOT #x

While exercising the "PERM" option, the proname in slot #x has been
replaced by the proname specified in the current command.

PRONAME FOUND ON RAD

The proname already exists in the disk version of the processor tables when
DRSP tries to execute the ENTER, PERM option. The "PERM" function is
completed for the new copy.

PRONAME NOT FOUND ON RAD

The proname cannot be found in the disk version of the processor tables when
DRSP tries to execute the REPLACE,PERM option. The "PERM" function is
completed for the new copy.

USERS ASSOCIATED

DRSP attempts to replace TEL or CCI but finds there are users associated. The
message is repeated periodically as long as users remain associated.

Table 43. DRSP Command Summary

Command

Description

D{ELETE] proname ,[PERM]

Prevents further user association with a processor.

END

Exits normally from DRSP,

WITH
[,o tion}l , option][, option
P wr OP P

E[NTER] pronqme[{FROM}fid]

Enters a new shared processor into the system.

L[IST]{;;TE:?"‘;} Lists the processor name, the name table index, and the amount of disk
44 space occupied by the processor.
LISTALL{;;?:ET;)E} Lists each shared processor name and its entries in certain tables,

R[EPLACE] proname [{&Z?}T} fid]

[, option][, option][, option]

Replaces an existing shared processor with a new shared processor.

Requests a detailed error message when an error has been noted by DRSP,

Shared Processor Maintenance

113

8. ON-LINE PERIPHERAL DIAGNOSTIC FACILITIES

INTRODUCTION

This chapter describes the system facilities that are designed
for use by Xerox in the development of peripheral hardware
diagnostic programs. The system procedures and the Diag-
nostic DCB described in this chapter should never be used
in any yser-written programs, Their description is included
in this manual only for completeness of documentation. Any
program that uses them may seriously affect the operation
and integrity of the system,

The facilities described in this chapter are used in the fol-
lowing types of Xerox processors:

e Functional tests for peripheral devices that isolate hard-
ware problems to the lowest possible level.

e Exercisers that verify that the peripherals are operat-
ing correctly.

e Preventive maintenance tests that reduce the amount of
time that peripherals are down for repair.

These tests and exercisers may be run at an on-line terminal
while the CP~V system is in normal operation.

The facilities described in this chapter include one assem-
bler directive, the special Diagnostic DCB (DDCB), and
eight system procedures, The assembler directive allows the
user to specify that a control section is to begin at a page
boundary. The Diagnostic DCB is a data area that allows
the user to issue his own I/O commands.

These eight procedures reside in SYSTEM DIAG along with
two other system procedures — M:DPART and D:DRET.
(M:DPART and M:DRET are described in the SYSCON chap-
ter in the CP-V/SM Reference Manual, 90 16 74, because
they are used by SYSCON.) The eight system procedures
perform the following functions:

Procedure Function

M:DDCB Generates a diagnostic data control
block.

M:DOPEN Opens the device associated with the

Diagnostic DCB for diagnostic purposes.

M:DCLOSE Terminates and inhibits all I/O associated
with the Diagnostic DCB.

Converts the user's virtual command list
into a physical command list and stores
the result in the Diagnostic DCB, or
requests that a TIO, TDV, or HIO be
performed on the device to which the
Diagnostic DCB is opened.

M:SIO Initiates the user's I/O. The commands
for the I/O are stored in the Diagnostic
DCB.

M:BLIST

1Y4 On-Line Peripheral Diagnostic Facilities

Procedure Function

M:LOCK Either locks the user in core or resumes
normal swapping for the user,

M:MAP Converts a specified virtual address to a
physical address or a specified physical
address to a virtual address.

M:DMOD# Obtains the controller model number,

the device model number, and the type
mnemonic associated with a given de-
vice address, and availability informa-
tion (i.e., device busy, device parti-
tioned, controller partitioned, and DIAG
key=in has been performed).

RESTRICTIONS

For both security and system performance reasons, there are
certain restrictions on the use of the facilities described in
this chapter. These restrictions are:

1. The system manager must give approval before the sys-
tem will process some of the CALs. (Note that M:DDCB
does not generate a CAL.) This approval is transmitted
to the monitor via the operator key-in.

IDIAG id

where id is the diagnostic user's id and identifies the
user as the current diagnostic user. This is reset by the
monitor between job steps.

2. The M:MAP procedure requires a privilege of AO or
higher. The user is aborted if his privilege level is
insufficient.

3. The M:LOCK procedure requires a privilege level of
AQ or higher and the user must have been specified as
the current diagnostic user via the DIAG key-in or
have a privilege level of CO or higher. If one of these
conditions is not met, the user is aborted.

4. The M:DOPEN, M:DCLOSE, M:BLIST and M:SIO pro-
cedures require a privilege level of AQ or higher and
the user must have been specified as the current diag~
nostic user via the DIAG key~in. If the conditions are
not met, the user aborted.

5. User registers SR1 and SR3 are volatile for the
M:DOPEN, M:DCLOSE, M:BLIST, M:SIO, M:LOCK
and M:MAP procedures.

PSECT DIRECTIVE

The PSECT directive specifies that the control section which
follows is tobegin on a page boundary. This directive allows
diagnosticians to ensure that such things as the Diagnostic
DCB and buffers do not cross page boundaries. The PSECT
directive is described in detail in the Meta~Symbol/LN,
OPS Reference Manual, 90 09 52,

SYSTEM PROCEDURES

Monitor procedures enable the user's symbolic Meta=Symbol
program to request a variety of monitor functions. The on-
line diagnostic procedures described in this chapter have
the same general format as those described in the CP-V/BP
Reference Manual, 90 17 64,

When using Meta=Symbol, the monitor diagnostic procedure
library is invoked via the directive

SYSTEM DIAG

This directive defines all of the monitor procedures. The
Sigma é and 7 computer instruction set is invoked by the
directive

SYSTEM S1G7[F] [D] [F)

where F specifies the floating=point option, D specifies the
decimal option, and P specifies privilege instructions.

The Xerox 560 and Sigma 9 computer instruction sets are
invoked by the directive

SYSTEM SIG9[P]
where P specifies the privileged instruction set.

Thus, both the SYSTEM DIAG and the SYSTEM SIG7 or
SYSTEM SIG?9 directives should be used. The SYSTEM BPM
directive should also be used if any of the procedures de-
scribed in the CP-V/BP Reference Manual, 90 17 é4, are
used in the program,

CREATE DIAGNOSTIC DATA CONTROL BLOCK

m:DDCB The diagnostic data control block procedure
generates adata area in the user's program that is accessible
by the user, This data area must be given a label, the first
two characters of which are F: (e.g., F:DIAG).

The Diagnostic DCB (hereafter referred to as the DDCB) must
be used when the diagnostician is going to perform his own
I/O through use of the diagnostic procedures described in
this chapter. In additionto containing standard types of DCB
information, the DDCB contains the user's1/O command list,
The DDCB format is described in detail at the end of the
chapter, Becausethe DDCBhas its own format, the only CALs
that may be issued to the DDCB are the diagnostic CALs,

The M:DDCB procedure call is of the form
label M:DDCB (DEVICE, name), (CLIST, n)[, (option)]. ..
where .
label is a label that begins with the two characters F:
and must previously have been declared a dummy

section via a directive of the form

label DSECT 1

DEVICE, name specifies the device that is to be
associated with the DDCB. Name may be speci-
fied in one of the following forms:

1. A device type in quotes (e.g., 'CR', 'LP').

2, An operational label in quotes (e.g., 'LO’,
IEOI).

3. The physical address of the device expressed
in hexadecimal (e.g., X'0080', X'0202'),

CLIST,n specifies that n words are to be reserved
for the user's command list. The maximum value
that can be specified for n is 24,

The options are:

n -
SN[’ ['serial number']] specifies one of the

following:

1. The number of words (n) to be reserved for
serial numbers, The serial numbers will be
inserted into the DDCB when the DDCB is
opened (M:DOPEN), The maximum value that

can be specified for n is 12,

2. The serial number of the volume to be used for
input or output. There may be from one to
twelve serial numbers of from one to four
alphanumeric characters each.

If the SN option is not specified in M:DDCB, then
it cannot be specified in M:D OPEN,

ABN, address specifies the symbolic address of a
user's routine that is to be used to analyze any ab-
normal conditions resulting from insufficient or con~
flicting information. This address remains in the
DDCB until it is overridden by an ABN specifica~
tion in a DOPEN CAL.

The CLIST and SN options produce variable~length param-
eters which follow the fixed-length parameters in the DDCB,
Each variable length parameter entry is preceded by a con-
trol word of the following form:

Byte O is the code number (X'07' for SN; X'12' for
CLIST).

Byte 1 is the code for entry position (X'00' means
more parameter entries to follow; X'01' means last
parameter entry).,

Byte 2 is, for the SN option, the number of signifi-
cant data words in the parameter entry when serial
numbers are specified. Otherwise it is zero.

Byte 3 is the total number of words reserved for the
entry, not including the control word (i.e., maxi-
mum entry length).

System Procedures 115

Seecial Note:

After generating the DDCB, Meta-Symbol resumes assembly
in the confrol or dummy section that was in effect when the
M:DDCB procedure reference line was encountered. In
order to prevent the statements following the M:DDCB pro-
cedure reference line frombeing assembled in the same sec-
tion as the DDCB, one of the following is recommended:

1. The control section directive preceding an M:DDCB
reference line shouldbe a CSECT, and the DSECT asso-
ciated with an M:DDCB should precede the CSECT,

2. The statement immediately following an M:DDCB pro-
cedure reference line should be either a CSECT or a
USECT referencing a prior CSECT,

OPEN DIAGNOSTIC DATA CONTROL BLOCK

M:DOPEN | The monitor Diagnostic OPEN routine opens
the device specified in the DDCB for diagnostic purposes.
The DDCB will not be opened if the information in the

DDCB is inaccurate, insufficient, or contradictory. If the
M:DOPEN is made with no options specified, the existing
_ parameters in the DDCB are used. If the DDCB is already
open when the DOPEN routine is called, an abnormal con-
dition issignaled. If the DDCB is not open when the DOPEN
routine is called, the DDCB is reinitialized according to
the parameters specified in the M:D OPEN procedure call.

Symbiont devices will only be opened if they have been
locked, suspended, or partitioned. Nonsymbiont devices
and devices opened with a device address specified (as
opposed to device typeor an operational label) must be par-
titioned and not busy or allocated to an active user. Parti-
tioning is accomplished by using SYSCON or as a result of
a previous DCLOSE CAL with the PART option specified.

The M:DOPEN procedure call is of the form

M:DOPEN [#]dcb name, (DEVICE, [*]nqme), —

I_(STATUS, [*]address)[, (option)].. .
where

[*]dcb name specifies the name of the DDCB.
DEVICE, [*Jname specifies the device that is to be

associated with the DDCB, Name may be speci~

fied in one of the following forms:

1. A device type in quotes (e.g., 'CR', 'LP'),

2. An operational label in quotes (e.g., 'LO’,
'EQY).

3. The physical address of the device expressed
in hexadecimal (e.g., X'0080', X'0202').

116 System Procedures

STATUS, [*]address specifies the address of the user’
data area where the I/Ostatus is to be stored. The
status that is returned is in the same format as for
the Error Log (see Appendix E).

The options are:

SN, 'serial number'[, 'serial number'].. . specifies
the serial number(s) of the volume(s) that are to be
used for input or output. The serial number may be
from one to four alphanumeric characters. A re-
quest for the volume(s) willbe sent tothe operator's
console when opening to a device type or opera-
tional label, which the operator responds to with an
AVR sequence (e.g., MOUNT key-in).

NOERR specifies that records of errors from this de-
vice are to be suppressed from the Error Log. How-
ever, the user has the option of writing records to
the Error Log himself, with the Write Error Log CAL.

ABN, address specifies the symbolic address of a
user's routine that is to be used to analyze any ab-
normal conditions resulting from insufficient or
conflicting information. If an X'09' abnormal
code occurs on the open, this open abnormal ad-
dress is set into the DDCB and return is to this
address. If an address is not present, the user is
aborted.

CHAN specifies that the controlleris to be reserved
for use by this diagnostic program. A controller
may be reserved only if it is partitioned.

Calls generated by the M:DOPEN procedure have the form:

CAL1, 6 fpt

where fpt points to word 0 of the FPT shown below,

word 0 R

*# x05 |[0—0 DCB address

01 2 JTJ 5 6 718 9 10 Iliﬂ 13 14 15116 17 18 19120 21 22 23?24 25 26 27128 29 30 3
word 1

plplp flelelele

112]3(0 0['}| 2}3|4|5(0———0
01 2 3 il 5 6 718 9 10 II|L12 13 14 lS‘ilé 17 18 19120 21 22 23124 25 26 771‘_2_8 29 30 3

word 2 - device code (P1)

*10. 0 Device address

01 2 3145 6 718 % 10 lﬂ‘T} 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

device code (P1) alternate form

*(0 0 TEXT oplabel

01 2 JiTS 6 718 9 10 nhz 13 14 15116 17 18 I9i202| 22 23124 25 26 27128 29 30 31

where TEXT oplabel is an operational label in TEXT format.

word 3 = STATUS (P2)
*10 0 Status address

01 2 ,’TILJ 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

option ABN (P3)
*0 ' 0

Abnormal address I
0 1 2 ai‘ 5 6 718 9 10 11112 13714 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

Flags f, through fz in word 1 of the FPT have the signifi-
cance indicated below (when f; = 1),

Flag Significance

f 1 NOERR was specified. Error records are to
be suppressed from the Error Log for this
device,

f CHAN was specified. The controller is to

2
be reserved,

fa SN was specified. Serial numbers are pres-
ent in the FPT (in the format described
below).

fy An operational label was specified. Word 2
of the FPT has the alternate form.

F5 Reserved for future use.

The format for the SN variable length parameter is identical
to that in the DDCB, The variable length parameter entry
is preceded by a control word of the form:

Byte 0 — Code number (X'07')identifying the variable-
length parameter,

Byte 1 — Code for entry position (X'00' means more
parameter entries to follow; X'01' means last
parameter entry).

Byte 2 — Number of significant data words in the pa-
rameter entry (if SN).

Byte 3 — Total number of words reserved for the entry,
not including the controlword (i.e., maximum
entry length). ‘

If the user does not have at least AO privilege, the return
is to CAL+1 with CC1 set.

+ CLOSE DIAGNOSTIC DATA CONTROL BLOCK

M:DCLOSE The Diagnostic CLOSE routine terminates
and inhibits 1/0 through the DDCB. 1/O cannot be per-
formed through the DDCB until it is opened again. M:DCLOSE
allows the user to specify whetheror not the device is down
(partitioned).

The M:DCLOSE procedure call is of the form

PART
M:DCLOSE [*]dcb name|, [RETURN
SAME

where
[*)dcb name specifies the name of the DDCB.

PART specifies that the device associated with the
DDCBis tobe partitioned fromthe system resources.

RETURN specifies that the device associated with
the DDCB s to be returned to the system resources.

SAME specifies that the device associated with the
DDCB is to remain in the same status (partitioned
or not partitioned). The default is SAME.

The Diagnostic CLOSE routine reports the status of the de-
vice to the operator with the following message:

4 {PART]TIONED}
YYNSA RETURNED

where yyndd identifies the device.
Calls generated by the M:DCLOSE procedure have the form
CAL1,6 fpt

where fpt points to word 0 of the FPT shown below,

word 0 . i
* X'07' 0—0 DCB address
0 1 2 314 5 6 718 9 |onnz|a|4ls|16|7xa|92cmzz_'_23'u—zsze—51m%
word 1

f If |f
0 —ofi[5l5o——o
G 1 2 314 5 6 718 9 16 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 %0 31
where

f] specifies the PART option when set.

f2 specifies the RETURN option when set.

f3 specifies the SAME option when set,

If the user does not have at least AO privilege, the return is
to CAL+1 with CC1 set.

- BUILD COMMAND LIST

| M:BLIST The monitor BLISTroutine converts the user's
virtual command list info a physical command list and stores
the results in the DDCB. The routine validates that no

command crosses a page boundary and that the number of
1/0 command doublewords is less than or equal to 12,

System Procedures 117

The user's virtual command list must adhere to certain
restrictions.

o- The list must use virtual rather than physical addresses.

e No input/output command doubleword (IOCD) is
allowed to perform 1/O across a page boundary or spe-
cify a byte count greater than one page (X'800' bytes).

® The number of IOCDs must not be greater than 12,

l@ I/O commands which do not cause a transfer of data

(e.g., skip file, rewind) must have a valid byte ad-

dress and byte count. When such commands are used

with the ICE flag, the I/O completion interrupt occurs
immediately. Hence, the user must handle any desired
1/Owaitactivity independently of any 1/O end action.

The user may optionally request that the 1/O be started. If
this request is made, the monitor will not return control fo
the user until either the request to start 1/O has been re~
jected, the 1/O/is complete, or the 1/O has timed-out. The
AlO, TDV, and TIO status and condition codes are returned
in the user area specified by the STATUS parameter of
M:DOPEN and in the exact format as for Error Log (see
Appendix E). If a TIO, TDV, or HIO request is made, the
appropriate request is executed and the status is returned in
the user STATUS area in the format:

word 0 '
1 1

01 2 3l4 5 6 718 9 10 IliT) 13 14 gilé 17 18 19120 21 22 23124 25 26 27128 29 30 31

words 1 and 2

TIO, TDV, or HIO

_ N
status
0 1 2 314 5 6 718 9 10 11172 13714 150116 17 18 19120 21 22 23124 25 26 27128 29 30 A1
word 3
cC (0 0 Device address
0 1 2 314 5 6 718 9 10 N1z 13 14 15016 17 18 19120 21 22 23“‘24 25 26 27128 29 30 3!
where
CC instruction's condition codes.

Device address device address from DDCB,
The M:BLIST procedure call has the form

M:BLIST [*]dcb name,|(ADR, (*]address)[,(opﬁon)]. e
TIO
DV
HIO

specifies the DDCB.

where
[¥]dcb name

ADR, [{lcddress
command list,

specifies the address of the user's

118 System Procedures

TIO specifies that a test /O is to be performed.
DV specifies that a test device is to be performed.
HIO specifies that [/O is to be halted.

The options are:

PRI, [*]priority specifies the priority of the 1/O re-
quest as a hexadecimal number (e.g., X'F6').
X'FO" is the highest priority and X'FF' is the
lowest priority. (The higher the priority, the
higher the placement in the queue of requests for
the channel containing the referenced device.)
The default is X'FF'.

SIO specifies that the 1/O is to be started.

TIMEOUT, [*}value specifies the minimum length
of time allowed before an 1/O timeout occurs.
The value is in decimal and represents the number
of 4.8 second intervals prior to I/O timeout. For
example, a valuve of 2 means a minimumof 9.6
seconds before timeout. For spindlesordisk packs,
the maximum value used is one even if a larger
value is specified. The maximum value accepted
for all other devices is 63 and the minimum is 1.
A value greater than 63 will be forced to 63 and
a valve less than 1 will be forced to one. The
default is one. The actual time allowed before
an 1/0 timeout occurs ranges from a minimum

" timeout of "value" * 4,8 seconds to a maximum
timeout of "value+1" * 4,8 seconds depending on
when the timeout count was initiated. Therefore,
a TIMEOUT value of 2 may cause a timeout with-
in a range of 9.6 to 14,4 seconds.

Calls generated by the M:BLIST procedure have the form:
CALI, 6 fpt

where fpt points to word 0 of the FPT shown below.

word 0

¥ X'09' 0—0 D CB address

0t 2 304 5 6 708 9 10 11112 13 14 15116 17 18 19120 21 22 z:ﬁu 25 26 27128 29 30 31
word 1

PPPo ARG

1123 N 12|3}4|5|0—
0 1 2 314 5 6 718 9 10 NT12 13714 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

word 2 - ADR (P1)
*10 0 Command list address

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

option PRI (P2)

*10 0 Priority
LI AR S ST - M 0 RPNV AT A T 7 7

of

option TIMEOUT (P3)
*0 0 Timeout value I
0 1V 2 314 5 & 7ie 9 |0‘TiT2|3 14 15116 17 18 19120 21 22 23124 25 26 28 30 31

where

fy is set to one if SIO was specified. Otherwise,
it is set to zero.

fy is set to one when a TIO, TDV, or HIO is re-
quested. Otherwise, it is set to zero,

fq is set to one for a TIO request.

fq is set to one for a TDV request.

fs is set to one for an HIO request.
If incorrect or conflicting information exists, the abnormal
address specified in the DDCB will be used if it has been

specified. If the user does not have at least AO privilege,
the return is to CAL+1 with CC1 set.

START /0
M:SI0 The start 1/O procedure call initiates the diag-
nostic 1/O specified in the diagnostic DDCB, After an SIO,
the monitor will not return control to the user until either
the call has been rejected, the 1/O has been completed
(successfully or with errors) or the 1/O has timed-out, The
AIO, TDV, and TIO status and condition codes are returned

in the user area specified by the STATUS parameter of
M:DOPEN and in the exact format as for Error log (see

Appendix E).

The M:SIO procedure call is of the form
M:SIO [*ldcb name

where [*]dcb name specifies the DDCB,

Calls generated by the M:SIO proceduré have the form
CAL1,6 fpt

where fpt points to word O of the FPT shown below.

word 0

If there is no command list in the DDCB or the validity of
the command list has been destroyed by a swap, an abnor-
mal condition results, If the user does not have at least AQ
privilege, the return is to CAL+1 with CC1 set,

* X'03! 0—0 DCB address I
0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

LOCK IN CORE

M:LOCK The LOCK routine either locks the user in
core or resumes normal swapping for the user. This lock in
core reduces the user's chances of being swapped but does
not ensure that the user will not be swapped. The user may
ascertain whether a swap has occurred since the BLIST CAL
by comparing J:NRS (the swap count) in the JIT with the
SWAPCT field in the DDCB. (SWAPCT contains the swap
count at the time of the BLIST CAL.) The user has not been
swapped if the two values are equal. (The external refer-
ence J:NRS is satisfied by loading with :JO from the :SYS
account,)

The M:LOCK procedure call is of the form

M:LOCK (YES)

NO

where
YES specifies that the user is to be locked in core.

NO specifies that normal system swapping is to re-
sume for the user,

Once a user is locked in core, his size may not change.
Use of the following services may result in a size modifica-
tion. In such case, the user will be swapped.

—
.

Memory management CALs,

2. M:SEGLOAD, M:LINK, and M:LDTRC procedure calls.
3. Associate and disassociate processor CAlLs.

4, Get page CALs.

Calls generated by the M:LOCK procedure have the form

CAL1, 6 fpt

where fpt points to word 0 of the FPT shown below.

word 0
X'04' 0 0
b 12 314 5 6 718 9 10 1ﬁT2 13 14 15716 17 18 W‘TZO 21 22 23124 25 26 27‘28 5 30 31

word 1

0 ofilo 0

0 1 2 314 5 6 718 9 10 W12 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

where f1 in word 1 specifies that LOCK in core has been
requested (f;=1)or that the LOCK is to be released (f] =0).

If the user's privilege level is not at least AD, the return is
to CAL+1 with CC1 set.

System Procedures 119

CONVERT ADDRESS

M:MAP The M:MAP procedure converts a specified
virtual address to a physical address or a specified physical
address to a virtual address. The converted address is stored
" in general register 8, The M:MAP procedure call has the

form
VTP -
M:MAP (PTV)’ (ADR, [*] address)
where
VTP specifies virtual to physical address conversion,
PTV specifies physical to virtual address conversion.

ADR, [*] address specifies the locationof the address.
to be converted.

If the user has been swapped in between issuing a BLIST CAL

" and issuing a MAP CAL, the address returned from the MAP
CAL is invalid, The user has not been swapped if J:NRS in
the JIT is equal to SWAPCT in the DDCB, The user may
reduce the chances of being swapped through the use of
M:LOCK.

Calls generated by the M:MAP procedure have the form
CAL1, 6 fpt

where fpt points to word 0 of the FPT shown below.

word 0

* X'02 0—0 Address

T T T T T W T T R 8T T T
word 1] |
0 oHj0 o
T T 3tE 5 5 T Ie T Wz 34 5116 17 18 BI™ 21 2Z Bl B % T N

where f; indicates virtual to physical address conversion
(f1=0) or physical to virtual address conversion (f]=1),

If the user's privilege level is not at least AO, the return is
to CAL+1 with CC1 set.

\ OBTAIN MODEL NUMBERS AND TYPE MNEMONICS

M:DMOD# The M:DMOD? procedure obtains the con-
troller model number, the device model number, the type
mnemonic associated with a given device address, and
specific information concerning the device (i.e., device
availability, device partitioned, controller partitioned,

and DIAG key-in has been performed).
M:DMOD# [¥]device address -

where device address has the form ndd in which n specifies
the IOP unit address (the number associated with the IOP
letter; see Table B~2 in Appendix B) and dd specifies the
device number (see Table B-3 in Appendix B).

120 Abnormal Codes and Messages/DDCB

Example:
M:DMOD# X'20F'

The procedure verifies that such an address exists. If no such
device address exists, CC1 is set to one. However, if the
device address is valid, CC1 is set to zero and the following
general registers are set:

R8 contains the device model number in hexadecimal
(e.g., X'00007122').

R9 contains the controller model number in hexa~
decimal (e.g., X'00007120').

R10 contains the type mnemonic in EBCDIC and
right-justified (e.g., X'0000C3D9' for CR), and
special information flags formatted as follows:

bit0=1 device iscurrently busy with an-
other user.

bit 1=1 device is partitioned.

bit2=1 device's controller is partitioned.

bit 3=1 DIAG key-in has been made by

the operator.

bit 4=1 sub~channel 2 (alternate path)
partitioned.

bit 5=1 sub-channel 1 (primary path)
partitioned.

In either case, the return is to CAL+1.

Calls generated by the M:DMOD¥ procedure have the form
CAL1,6 fpt
where fpt points to word O of the FPT shown below.

word 0

*| X'0A' Device address

T 7 2 314 5 6 718 v 0Tz 13 % B U6 BIH a2 BRI zezﬂﬁ?o’ﬂ‘
word |

1O 0

0 1 2 314 5 6 718 9 10 1112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

~ ABNORMAL CODES AND MESSAGES

The codes and messages for abnormal conditions that can
occur when using the on-linediagnostics facilities are listed
in Table 44. The abnormal code (bits 0-7) and subcode
(bits 8-14)are returned in user's register SR3and the address
of the procedure plus one word (CAL+1) is returned in user's
register SR1. (The messages reside in the system error mess~
age file, ERRMSG.)

The format for the DDCB is given in Figure 16. Following
each format, the parameter fields of the DDCBare described
in alphabetical order by their mnemonic. All referenced
addresses have word resolution.

Table 44. On-Line Diagnostics Abnormal Messages

Abnormal

Code Subcode Meaning of Code

09 00 A diagnostic close is attempting to return a nonpartitioned device or a device within a parti-
tioned controller,

09 01 The device referenced in the DDCB is a nonexistent device.

09 02 The device referenced in the DDCB is currently in use.

09 03 The device referenced in the DDCB is currently in use by a symbiont.

09 04 The DDCB does not contain a command list.

09 05 The command list was invalidated by a swap.

09 06 There are more than 12 I/O command doublewords (IOCDs).

09 07 The 1/O command list is invalid due to either invalid flags, an invalid TIC address, an invalid
user-specified command list address, or insufficient room in the DDCB for the command list.

09 08 An error was found during the BLIST CAL. Either an invalid page was found during physical-to-
virtual or virtual-to-physical address conversion, the status address is in error, or the byte count
is illegal in the IOCD.

09 09 A buffer crosses a page boundary.

09 0A The user's ID does not match the 1D specified on the last operator DIAG key-in, or the user
privilege level was less than AO.

09 0B The amount of available core is not sufficient to allow the diagnostic program to lock itself
in core.

09 oC The requested controller is not partitioned.

09 oD The device specifically requested on an open is not partitioned.

09 OE A MAP CAL error occurred due to an invalid page number during a physical-to-virtual or
virtual-to-physical address conversion.

09 OF Monitor buffer space (MPOOL) is unavailable for processing the command list.

09 10 A hand-coded TIO, TDV, or HIO type FPT does not have f3, f4, or f5set to one when
fo is one.

09 A A CHAN option on an M:DOPEN to a device type or operational label is illegal.

DDCB 121

Word 0

w D .
AlO R ASN=3
T C

onm

10 11112 13 14 15116 17 18 19120 21 22 23T24 25 26 27128 29 30 31

1[0
FUN Cl&|o TYPE DEV or OPLB
5 < F F i &
718 9 10 11112 13 14 15176 17 18 19120 21 22 23124 25 26 Z7128 25 30 3

L
T ™

0 BUF

9 10 11112 13 14 15116 17 18 l9i20 21 22 23124 25 26 27128 29 30 31

2
=

TIMEOUT ERA

01 2 34 5 6 718 9 10 1111213 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

Word 4

-

ABA

01 2 314 5 6 718 9 10 le2 13 14 15‘116 17 18 19120 21 22 23124 25 26 27128 29 30 3

Word 5

D T
00 ,& 00 Cg 0 0
0 1 2 22 23124 25 26 27128 29 30 31

Figure 16, Format of the DDCB

122 DDCB

0 0

0 7 2 314 5 6 718 9 101112 13 12 15116 17 18 19120 21 22 23124 25 26 27128 25 30 31

(may not be used)

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

KBUF

18 I9TI20 21 22 23124 25 26 27128 29 30 31

Word 11
COS or CIS
0 1 2 3i4 5 6 12 13 14A 22 23124 25 26 27128 29 30 3

4 L
1 Ll

DEVICE

0 1 2 314 5 6 7 8 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

Word 13

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

Word 14 i A s

STA

0 1 2 314 5 ¢6 718 9 10 1Nli2 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

Word 15

TABI

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27i2829303l

Figure 16. Format of the DDCB (cont.)

DDCB 123

Word 16

Word 17

0 1 2 3[4 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

Word 19 ,

<4

SWAPCT

0 1 2 314 5 6 718 9 10 11112 13 14 15016 17 18 19120 21 22 23124 25 26 27128 29 30 31

Word 20

01 2 314 5 6 778 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

Word 21 \ .

PRI CLIST

0o 1 2 3i4 5 6 7|~8 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

Words 22 —n are used for variable length parameters

Figure 16, Format of the DDCB (cont.)

FIELD DESCRIPTION WORD
ABA Contains the address of the user's routine that will handle abnormal conditions resulting from 4

insufficient or conflicting information.

ASN Indicates the assignment type currently in effect for the DCB (0 = null, 1 = file, 2 = Xerox 0
labeled tape, 3 = device, X'A' = ANS labeled tape).

BUF Contains the address of a monitor MPOOL buffer used when processing the user's command list. 2

CHAN Is the controller reservation flag (0 =no, 1 = yes). 11

CIS Contains the relative position of the serial number (in the SN list) of the magnetic tape reel 11

used for current file input.

124 DDCB

FIELD
CLIST
CLsz

COos

DEV

DEVF

DEVICE
DIAG

DRC

ERA

FCD

FCI

FLP
FUN
KBUF

OPLB

PRI

STA
SWAPCT
TAB!
TIMEOUT
TOLF
TOP

TTL

TYPE

WAT

DESCRIPTION

Contains the virtual address of the physical command list in the DDCB,
Contains the number of words in the physical command list in the DDCB,

Contains the relative position of the serial number (in the SN list) of the magnetic tape reel
used for current file output.

Contains the DCT index of the device assigned to the DCB. DEV is only meaningful if DEVF
is set fo one.

Indicates whether the DDCB is assigned to a device or an operational label (0 = operational
label, 1 =device).

Contains the EBCDIC name specified on the DEVICE option in the M:DOPEN call,
Indicates diagnostic device DDCB.

Is the format control flag and indicates whether (DRC = 0) or not (DRC = 1) the monitor is to do
special formatting of records on read or write operations. DRC is always set to 1 in a DDCB.

Contains the address of the user's routine that will handle error conditions resulting from
insufficient or conflicting information.

Indicates whether the DDCB is opened or closed (0 = closed, 1= opened).
Indicates whether the DDCB has ever been closed. The flag is set when the DDCB is first closed,
and then is never reset (0 = DDCB has never been closed; 1 = DDCB has been previously opened

and closed).

Contains the address of the variable length parameters in the DDCB (called the file list-pointer).

Contains the device mode function (0 = null, 1=IN, 2=0UT, 3=INand OUT, 4=INOUT, 8=OUTIN).

Contains the virtual address of the user's command list.

Contains the OPLB table index of the operational label assigned to the DDCB. OPLB is only
meaningful if DEVF equals 0.

Specifies priority of 1/O request.

Contains address of user data area used to return 1/0 status.

Contains user's swap count at the time a diagnostic CAL is issued.

Contains the physical doqbleword address of the command list in the DDCB.
Contains the I/O timeout value from the M:BLIST CAL.

If 1, bits 16~31 of DDCB are TEXT OPLABEL. If 0, DEVF is meaningful.
If 1, opened to a device type or oplabel. Otherwise, set to 0.

Specifies the length of the DDCB in words.

Contains the device type code assigned to the DDCB. This field is set whether the DDCB is assigned
directly to a device or indirectly through an operational label.

Is the wait flag and indicates whether (WAT = 1) or not (WAT = 0) WAIT was specified for the I/O.
WAT is always set to 1 in a DDCB.

DDCB

WORD

21

1

12

10

21
14

19

125

9. REAL-TIME PROCEDURES

Real~time processing involves reacting fo external events
(including clock pulses) within microseconds. Selected ex-
ternal events are allowed to interrupt the real-time user's
program so that they can be processed at the time they
occur. After an interrupt has been processed, control may
then return to the interrupted program or may be directed
elsewhere.

In CP-Vreal~time processing, there are three distinct types
of interrupts:

1. Real, hardware interrupts.

2. Multiple clock interval interrupts derived through soft-
ware from a single hardware clock interrupt.

3. User written pseudo-interrupts that are triggered by
software rather than by hardware. This type of inter-
rupt is quite useful for interprogram communication
and synchronization. Pseudo-interrupts use interrupt
addresses X'1000' through X'7FFF'.

Note: Any interrupt connected by real~time procedures
must have a hardware priority below that of the /O
interrupt. Note also that the swapper performs 1/0
at a software priority of X'10'. (This would be a
consideration when specifying a priority to be as-
sociated with certain real=time 1/0 requests; e.g.,
M:IOEX.)

The counter-equals-zero interrupts (X'58' and
X'59') may be connected to a user program via
the M:CONNECT or M:GJOBCON procedures.
However, it is the user's responsibility to initialize
the corresponding counter pulse interrupts (X'52'
and X'53'),

CP-V real-time provides services that allow a user program
to connect to and control interrupts, to request interruption
at specified clock intervals, and to lock itself info core so
that it will not be swapped out until it is ready to be
swapped out.

The following terms appear in the discussion of the real-
time services:

Disarmed

When an interrupt is in the disarmed state, no signal to that
interrupt is admitted; that is, no record is retained of the
existence of the signal, nor is any program interrupt caused
by it at any time.

Armed
When an interrupt is in the armed state, it can accept and

remember an interrupt signal. The receipt of such a signal
advances the interrupt fo the waiting state,

126 Real-Time Procedures

Waiting

Whenan interruptin thearmed state receivesaninterruptsig-
nal, itadvances to the waitingstate, and remains in the waiting
state until it is allowed to advance to the active state.

Enabled

When an interrupt is in the enabled state, it is allowed to
move to the active state when the interrupt signal isreceived
provided that it is also in the armed state. If the interrupt
is already in the waiting state, it moves to the active state
when it becomes enabled, provided that no higher priority
interrupt is currently active.

Disabled

An interrupt can undergo all state changes except that of
moving from the waiting to the active state when it is in the
disabled state.

Active

When an interrupt meets all of the conditions necessary to
permit it to move from the waiting state to the active state,
it is permitted to do so by being acknowledged by the com-
puter, which then executes the contents of the assigned in-
terrupt location as the next instruction.

Cleared

When an interrupt is changed from the active state to the
cleared state, the interrupt states are reset so that the in-
terrupt can be recognized again and the priority is reset to

that of the job that was running when the interrupt occurred.

Interrupt Control Blocks (ICBs)

Areas of memory set aside for use by the monitor interrupt
processing routines. ICBs are established by SYSGEN.

Interrupt Label

The two-character name of an interrupt. Interrupt labels
are defined at SYSGEN.

INTERRUPT CONNECTION AND CONTROL SERVICES

CP-V real=time provides services that connect interrupts fo
mapped programs, control the state of interrupts (e.g., trig=
ger, arm, enable, disable), clear interrupts either at time
of occurrence or upon completion of processing, and discon-
nect interrupts that are no longer required. Most of these
services are provided through procedures which, except
where noted, reside in

SYSTEM RTPROCS

and require real-time privilege (EO or higher).

CONNECT INTERRUPT TO GHOST FILE

M:GJOBCON The GJOBCON routine associates an
interrupt with a load module such that if the interrupt oc-
curs, the designated load module will be put into execu-
tion as a ghost job. If the ghost job is already active as
the result of a previous interrupt, the interrupt will be
ignored. An interrupt occurring while the ghost is asleep
(M:WAIT) causes a wake-up event.

The M:GJOBCON procedure call has the form

M:GJOBCON (INT [*]{h_wrerrupf})
"+ Uintlbl* '—_—]

L—(LMN, 'load module')[, (ACN, 'account')])

[—— ,(PRIO, [*] priorify)]

where

INT, [¥] interrupt

specifies an interrupt address.

INT, [J'intlbl® specifies an interrupt label. If
indirect addressing is used, the label must be in
EBCDIC format, right-justified in the word, and
preceded by blanks.

LMN, 'load module’ specifies the name of the load
module to be placed in execution when the inter-
rupt occurs. This will be the name of the re-
sulting ghost job. The name must be seven char-
acters or less in length.

ACN, ‘account' specifies the account of the load
module and consequent running account for the
ghost job. The default is the :SYS account.

PRIO, [F]priority specifies the execution priority
for the ghost job. The default is as follows: if
'intlbl* was specified (via the INT keyword), the
default is the SYSGEN-defined execution prior-
ity associated within the interrupt label; if an in=-
terrupt address was specified (via the INT key-
word) and the interrupt is a real interrupt, the
default is n=X'4F' where n is the value of the
interrupt address (e.g., programs attached to in-
terrupt level X'60' would have a default execu-
tion priority of X'11'); ifan interrupt address was
specified (via the INT keyword) and the interrupt
is a pseudo interrupt, the default is the SYSGEN~
defined default execution priority for ghost jobs.

Calls generated by the M:GJOBCON procedure have
the form

CAL1,5 fpt

where fpt points to word 0 of the FPT shown below.

word 0 '
' Interrupt address I
* 1] e (Nt . e b e e —
X'20 0 0Ini’erru t label (TEXT format
0 1 2 314 5 6 718 9 10 11112 13 14 1516 17 18 19120 21 22 23124 25 26 27128 29 30 3!
word 1
1 P} 50 0

0 1 2 314 5 6 718 9 10 1111213 14 15116 17 18 19120 27 22 23124 25 26 27'2!29303I

words 2 and 3

Load module name in TEXTC

format (<7 characters)
0 t 2 314 5 6 718 9 10 1NT12 13714 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

words 4 and 5 (P1)

Account name in TEXT
format (<8 characters)
T T T T e T T T T U W B T B RIR T R B B B OIS ®

word 6 (P2)

*10 0' Priority
0 1 2 3[4 5 6 718 9 10 110112 13714 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

Condition code settings resulting from an M:GJOBCON
CAL are:

ccl1 - set if the user does not have real=time
privilege.
ccz - set if no interrupt control blocks are
available.
cc3 -~ set if the interrupt specified is already
connected.
CC4 - set if the ghost already exists. ThissM:GJOB-
CON procedure call is ignored.
CONNECT USER PROGRAM TO INTERRUPT
M:CONNECT Any mapped user program with real-time

privilege may use this service to establish a connection fo
an interrupt such that the user program will be entered at
the specified address when the interrupt occurs. Interrupts
connected in this way report events to the CP-V execution
scheduler and therefore permit the entered program to use
all monitor services. The connected interrupt will be armed
and enabled or disabled as specified by the user.

Interrupt Connection and Control Services 127

The M:CONNECT procedure call has the form

interrup!

M:CONNECT (INT, [{rfeimP), —

L (ENTRY, [Fladdress)[, CLEAR][, MASTER] —

[—[, DISABLE][, (PRIO, [¥]priority)]

where

INT, [*]interrupt specifies an interrupt address.

INT, [*]'inflbl' specifies an interrupt label. If
indirect addressing is used, the label must be in
EBCDIC format, right=justified in the word, and
preceded by blanks.

ENTRY, t*]address specifies the address at which
entry is fo be made into the user program.

PRIO,[*]priority specifies the execution priority
for this interrupt. The default is as follows: if
'intlbl' was specified (via the INT keyword), the
default isthe SYSGEN-=-defined execution priority
associated with the interrupt label; if an interrupt
address was specified (via the INT keyword) and
the interrupt is a real interrupt, the default is
n=X'4F' where n is the value of the interrupt
address; if an interrupt address was specified (via
the INT keyword) and the interrupt is a pseudo
interrupt, the default is the SYSGEN-defined
default execution priority for either on=line,
batch, or ghost jobs, depending on the mode
in which the job is being executed.

CLEAR specifies that the interrupt is to be cleared
immediately upon occurrence and reported to the
scheduler. The default is to leave the interrupt
active.

MASTER specifies that the user is to be given con~
trol in the master mode. The default is the slave
mode.

DISABLE specifies that the interrupt is to be con-

nected, armed, and disabled. The default is to
arm and enable.

Calls generated by the M:CONNECT procedure have the
form

CALL,5 fpt

where fpt points to word 0 of the FPT shown below.

word 0

A X 0 InterrupT' address

: lnterrugf label (TEXT gormari
0 1 2 314 5 6 708 9 10 11112 13 14 15716 17 18 19120 21 22 23124 25 27128 29 30 31

o

128 Interrupt Connection and Control Services

word 1

1 Fi 0 mlc|o
01 2 3[4 5 6 7|LB 9 10 nl12 1314 15176 17 18 19'20 2122 23'24 25 26 27‘28 29 30 31
word 2

*10 0 Entry address

0 1 2 314 5 6 718 9 10 11712 13 14715116 17 18 19120 21 22 23124 25 26 27128 29 30 31

word 3 (P1)

* - . .
0 0 Priority
. _ '
O 1 2 314 3 &6 718 9 2 1 5116 ¥ 19120721 22723124 25 26 27128 29 30 31

where
M=1 specifies MASTER mode.

C=1 specifies CLEAR.
D=1 specifies DISABLE.

condition code setftings resulting from an M:CONNECT
CAL are:

ccir - set if the user does not have real-time
privilege.

ccz - set if no interrupt control blocks are avail=-
able. (Interrupt control blocks are estab~
lished at SYSGEN.)

cc3 -

set if the interrupt specified is already
connected. :

The environment existing for the real-time program at the
time of the interrupt occurrence is saved in the user's TCB
before entering the specified interrupt routine. The TCB is
identical to the one shown in Figure 5 except that the last
word contains the interrupt location rather than a trap
location.

DISCONNECT USER PROGRAM OR GHOST JOB
FROM INTERRUPT

M:DISCONNECT The DISCONNECT routine releases
the specified interrupt if it is associated with the current
user. If honored, the M:DISCONNECT procedure disarms
the specified interrupt-and releases the associated interrupt
control block.

The M:DISCONNECT procedure call has the form

M:DISCONNECT (INT, L*J{iflterrupt})
Yintlbl
where
INT, [*]interrupt specifies the interrupt address.

INT, [*]'intlbl* specifies the interrupt label. If in-
direct addressing is used, the label must be in

EBCDIC format, right=justified in the word,
and preceded by blanks.

Calls generated by the M:DISCONNECT procedure have
the form

CAL1L,5 fpt

where fpt points to the FPT shown below.

__Interrupt address
fox22! 0 0 Interrupt IEBZT(T-EXT—Forma_fY

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

Condition code settings resulting from an M:DISCONNECT
CAL are:

CcCt - set if the user does not have real-time
privilege.

cc2 - set if the interrupt specified is not associ-
ated with the current user.

ca - set if the specified interrupt is currently
active.
CONTROL AN INTERRUPT

M:INTCON This service permits a program with real-

time privilege to control the states of interrupts. Interrupts
may be armed, disarmed, enabled, disabled, or triggered.

If the designated interrupt is a pseudo=interrupt, the action
specified does not affect any real hardware interrupt but

is instead recorded in the associated interrupt control block.

The use of this service does not require that the user
issuing the M:INTCON request be connected to the desig-
nated interrupt, thus permitting inter-user interrupts.

The M:INTCON procedure call has the form

[ARM, ENABLE
ARM, DISABLE
interrupf} DISARM
'intlbl*)7 |ENABLE
DISABLE
TRIGGER

M:INTCON (INT, [*]{

where

INT, [*]interrupt specifies the interrupt address.

INT, [*]'intlbl" specifies an interrupt label. If
indirect addressing is used, the label must be in
EBCDIC format, right=justified in the word, and
preceded by blanks.

* ARM, ENABLE specifies ;huf the interrupt is to be
armed and enabled.

ARM, DISABLE specifies that the interrupt is to be
armed and disabled.

DISARM specifies that the interrupt is to be disarmed.

ENABLE specifies that the interruptistobe enabled.

DISABLE specified that the interrupt is to be disabled.

TRIGGER specifies that the interrupt is to be
friggered.

Calls generated by the M:INTCON procedure have the
form

CALL,5 fpt

where fpt points to word 0 of the FPT shown below.

word 0
Interrupt address
1 [} e — — T e e e e —
* XA23 0 0 Interrupt Tabel (TEXT format)
0 1 2 314 5 & 718 9 10 11112 13 14 15016 17 18 19120 21 22 23124 25 26 27128 20 30 31
word 1
0 0{Code

0 1 2314 5 6 718 9 10 nh2 1314 1516 17 1819720 21 22 23124 25 26 27128 29 30 31

where the 3-bit code has the following meanings:
001 - DISARM
010 ~ ARM and ENABLE
011 - ARM and DISABLE
100 - ENABLE
101 - DISABLE
111 - TRIGGER

condition code settings resulting from an M:INTCON CAL
are:

cc1 - set if the user does not have real-time
privilege.
ccz2 - set if the designated interrupt is not cen~
trally connected (i.e., no M:CONNECT
or M:GJOBCON has been performed on
the interrupt). The requested operation is
not performed in this case.

GENERAL INTERRUPT INHIBIT

M:NHIBIT This service permits a program with real-

time privilege to prevent itself from being interrupted by

any higher priority real-time task. Note that this is a soft-
ware (not hardware) inhibit and applies fo both real and
pseudo interrupts.

Interrupt Connection and Control Services 129

The M:INHIBIT procedure call has the form:

M:INHIBIT {ON }

[OFF]

where

ON specifies that the program isnot fo be interrupted.

OFF specifies that the program may be interrupted
and is the default.

Calls generated by the M:INHIBIT procedure have the
form

CAL1,5 fpt

where fpt points to word 0 of the FPT shown below.

word 0
X'23 0 7 il 0
07T 2 314 5 8 718 9 10 Whz 13 415116 7 16 B0 11 22 B2 25 B HE B W
word 1
0 r ‘ ' (13

0 1 2 314 5 6 718 9 10 11h2 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 3!

where f specifies OFF if 0; or ON if 1.

Condition code settings resulting from an M:INHIBIT CAL
are:

CC1 =~ setifuser does not have real-time privilege.

RETURN FROM INTERRUPT PROCESSING

M:INTRTN This service allows a mapped, scheduled
program entered as the result of a centrally connected in~
terrupt or elapsed clock interval to return to the point of
interruption. The actual return is to the environment that
existed for this program or user when the interrupt occurred
even if this user was not in control when the interrupt oc-
curred. The environment that is restored was saved in the
user's TCB at the time of interrupt entry.

The M:INTRTN procedure call has the form

LEAVE
_ ARM[, ENABLE]
M:INTRTNIY) pM, DISABLE
DISARM
where

LEAVE specifies that the interrupt is to be left in
its current state. LEAVE is the default for this
procedure.

130 Interrupt Connection and Control Services

ARM[, ENABLE] specifies that the interrupt is to be
left armed and enabled. (It is not necessary to
specify ENABLE.)

ARM, DISABLE specifies that the interrupt is to be
left armed and disabled. (It is necessary to specify

DISABLE.)

DISARM specifies that the interrupt is to be left
disarmed.

None of the above options are recognized when exiting a
clock-processing routine (see M:CLOCK below).

Calls generated by the M:INTRTN procedure have the
form:

CALLS X'0A!

where the CAL instruction is as follows:

%

X'04! 9 0 [1{0 0| o X'0A!

0 1 2 314 5 6 718 9 10 11112 1314 15116 17 18 19120 27 22 23724 25 26 27128 29 30 31

where the 2-bit code has the following meanings:

00 - LEAVE
01 - DISARM
10 - ARM and ENABLE

11 ARM and DISABLE

When an error condition occurs, the user is aborted with an
error code of either A301 or B802 (see Appendix B of the
CP-V/BP Reference Manual, 90 17 64).

QUEUE FOR INTERRUPT
M:QFi This service permits the user to suspend execu=
tion while awaiting interrupts or elapsed clock intervals as=
signed a priority higher than the current execution priority.
If there are no interrupts connected for this user that satisfy
this condition, the user is aborted with a code of B8 and a
subcode of 01.
The M:QFI procedure call has the form

M:QFI

Calls generated by the M:QFI procedure have the form
CAL1,5 fpt

where fpt points to the FPT shown below.

X124 0 0f.

0 1 2 3l4 5 6 718 910 112131415716 17 1819120 21 22 23124 25 26 27128 29 30 31

GBTAIN INTERRUPT STATUS

MINTSTAT The service permits any user o query the
status of any real or pseudo interrupt location. The format
of the M:INTSTAT procedure call is

. interrupt
MNTSTAT (N, [I{ineeet)
where
INT, [FJinterrupt specifies an inferrupt oddress.

INT, [*]*intibl® specifies an interrupt label. If
indirect addressing is used, the label must be in
EBCDIC format, right=justified in the word, and
preceded by blanks.

The following word of information is returned to the user in
general register 8:

STAT USER GJoB# {0——o0lr]e]a

T T I I T s T s T W T W B 7V B N B T T BB E X B S B0

where

STAT indicates the status of the task associated
with the interrupt location:

STAT Meaning

X'80' Task is active.
X'40' Task is asleep or queued for interrupt.
X'20' Task is waiting for 1/O completion.

X'10' Task is blocked and waiting for a

resource.

X'01' Specified interrupt is not currently
associated with any user (i.e.,
inactive).

USER is the user number of the user program which
issued the M:CONNECT or M:GJOBCON.

GJos# is the user number of the ghost job (if it is
active) which will be entered upon the occur=-
rence of the interrupt. If the ghost job is not
active, GJOB# contains zero.

T specifies that the interrupt has been triggered,
if set to one.

E specifies that the interrupt is enabled, if set to
one.

A specifies that the interrupt is armed, if set to
one.

Calls generated by the M:INTSTAT procedure have the form
CAL1,5 fpt

where fpt points to the FPT shown below.

__Interrupt ‘adglless_ _
¥ xl?7l 0 , 0 Tnferrupt Tabel (TEXT format)
0 1 2 314 5 6 718 9 10 1i12 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
Condition code settings resulting from an M:INTSTAT CAL
are:

CC2 - set if the specified interrupt is not currently
associated with any user (i.e., inactive).
(The STAT field of general register 8 is set

to 01.)
LOCK IN CORE SERVICE
M:HOLD Many real-time applications require that a

program be held in core while various forms of special 1/0
occur. Since the CP-V scheduler will swap users as con-
ditions require in order to keep as many executable users
in core as possible, it is necessary for those real-time pro-
grams which require extended core residency to identify

themselves via the M:HOLD service.

The format of the M:HOLD procedure call is

M:HOLD {ON} [, PURGE]

OFF
where

ON specifies that swapping is to be prevented for
this user (i.e., the user is to be locked in core).

OFF releases the hold.

PURGE specifies that the user's pages should not be
released if the user exits (or aborts) while locked
in core.

Condition code settings resulting from an M:HOLD call are:
CCl1 - set if user does not have real-time privilege.

CC2 - set if there is not enough room left in core
to hold the routine that allocates new disk
space or the routine that communicates with
the symbiont ghost. Any monitor service that
invokes these routines must not be used in
this case. '

Restrictions:
1. The user must have real=time privilege.
2. All memory management services which increase this

user's size and the M:LINK and M:LDTRC services will
not be allowed once the user is held in core.

Lock in Core Service 131

3. Monitor services may be further restricted if CC2 is
set. All services requiring the allocation of new disk
space or communication with the symbiont ghost are
prohibited for the user.

It is important to note that any program using M:HOLD
should take exit control to cover abort conditions because
if an abort or exit occurs while the user is locked in mem-
ory, the memory involved will not be released if PURGE
was specified.

Calls generated by the M:HOLD procedure have the form

if the user has real-time privilege.) The default
is the SLAVE mode.

Calls generated by the M:CLOCK procedure have the form
CAL1,5 fpt
where fpt points to word 0 of the FPT shown below.

word 0

_ *| o X126 0—0 Entry address

CAL],5 fpf 01 2 3 i‘ 56 718 9 10 11112 13 14 15i|6 17 18 19120 21 m 25 26 27128 29 30 31
where fpt points to the FPT shown below. word 1

X125 0 szfl P,ﬁo 0|mlo]c

T Z 314 5 6 718 v 0Nz Be 7 8 BB 2 BA S B IED DI
where

fy specifies ON if set to 0 or OFF if set to 1.

fa specifies PURGE if set to 1,

CLOCK SERVICE

‘M:CLOCK This service permits a user with a privilege
level_of 80 or higher to request entry at a specified address

when a specified time interval has elapsed. The format of

the M:CLOCK procedure call is:

M:CLOCK (ENTRY, [*]address),

]

[_ {CANCEL
(INTERVAL, [*]units){, (PRIO, (*]priorify)]——-l

L[, oNesHoTIL, MASTER]}
where

ENTRY, [*]address specifies the address at which
the user is to be given control when the specified
interval has expired. The environment existing
for the user at the time of the interval expiration
is saved in the user's TCB as described under

M:CONNECT.

CANCEL causes any outstanding M :CLOCK requests
for the specified entry address to be canceled.

INTERVAL, [*Junits specifies the time interval in
two=-millisecond units.

PRIO, [*]priority permits users with real=time pri-
vilege to specify the software priority. This
option is ignored if the user does not have real-
time privilege.

ONESHOT cuases the M:CLOCK request to be

automatically canceled after one occurrence. If
ONESHOT is not specified, the interval timing is
to be automatically repeated until CANCELed.

MASTER specifies that the user will be given con-
trol in the MASTER mode. (This is only honored

132 Clock Service/Device Preemption Services

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 2223)242526272529303‘
word 2 (P1)

4 +— —t—

. .
* Timer units
@ 1 2 314 5 6 71i8 9 10 111213 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

word 3 (P2)

*10 0 Priority

0 1 2 314 5 6 778 9 10 1111213 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

where
M specifies MASTER mode if set to 1.
O specifies ONESHOT if set to 1.
C specifies CANCEL if set to 1.

Condition code settings resulting from an M:CLOCK CAL
are:

ccl - set if no interrupt control blocks are
available.

cc2 -~ set if no interrupt control block is associ-
ated with the user's entry address when
CANCEL is specified.

CcC3 - set if user does not have a privilege level

of at least 80.

DEVICE PREEMPTION SERVICES
PREEMPT DEVICE

M:STOPIO Certain real=time applications require that
there be direct control over the 1/O associated with a par-
ticular device and that there be no contention for a parti-
cular device during certain critical processing periods. This
includes the ability to request 1/O end action off of the
1/O interrupt associated with the 1/O operation.

The real-time user may request that a specific device be
preempted from use by any user other than a real-~time user
doing direct 1/O to the device via the M:STOPIO service.
The follewing types of devices may not be preempted.

Teléfypes (i.e., Operator's Console)
COC Devices

Public RADs

Public Disk Packs

~ The format of the M:STOPIO procedure call is

DCB, [Jdcb ad
M:STOPIO {EDEV; [[*]]x?de:ic'l o) [€A, Bvacn)]

where

DCB, [4deb adr specifies that the device associated
with this currently open device-type DCB is to be
preempted from use by any other user. Only the
user requesting the STOPIO may perform subsequent
I/O to the device.

DEV, [1X 'device adr' specifies which device is to
be preempted from use by all but this user and is
one of the following:

ndd - a 12-bit physical address as used by
Sigma hardware,

cudd - a 14-bit physical address as used by
Xerox 560 hardware (cluster/unit/
device).

EA, (vadr is the virtual address of a routine that is
to handle any /O interrupts from the device being
preempted, This address is converted to aphysical
address and stored in the DCT tables, Therefore
the user, prior to issuing the M:STOPIO request,
must have locked himself in core via the M:HOLD
CAL. This routine is entered master mode, un-
mapped, via a BAL on register 11 with the /O
interrupt active (high). Register 1 contains the
AlO status of the interrupting device; register 2
contains the right=justified address of the interrupt-
ing device; byte 0 of register 3 contains the con-
dition codes as set by the AIO instruction; regis-
ters 4and Scontain the TIO status of the interrupt-
ing device with byte 0 of register 4containing the
condition codes as set by the TIO instruction;
register 6 contains the physical address of the
(user's) end-action-receiving routine; andregister 7
contains the DCT index of the interrupting device.
No monitor services may be requested by the re=
ceiving routine. All registers may be considered
volatile except register 11 through which return
to the monitor must be made.

i The DCB form of the M:STOPIO procedure call should be
used whenever the user depends upon the operator to mount

removable volumes on private spindles or tape drives. The

i DEV form should be used whenever the user wants a non-
lsrandcrd device or a symbiont-type device (e.g., LP, CR,
'CP, RBT). Use of the DEV form to preempt any other device
type results in an abnormal return (see the condition code
iseﬂings below).

'Calls generated by the M:STOPIO procedure have the form
CALl, 5 fpt

where fpt points to word 0 of the following FPT,

word 0 N

* o X'1C! 0—0 DCB/device address

0 1 2 314 5 &6 718 9 10 N2 131415116 17 18 19120 21 22 23124 25 26 27(28 29 30 31
word 1 -

0 of [f,| 0 0
0 1 2 314 5 & 718 9 10 11112 13 14 15016 17 18 19120 21 22 23124 25 26 27(28 29 30 3t
word 2

*0 0 End action address

0 1 2 314 5 6 718 9 10 111213 1415716 17 18 I?'?OZI 22 23124 25 26 27128 27 30 A

where

F] specifies DEV if 0 or DCB if 1.
f2 indicates that EA was not specified if 0 or that
EA was specified if 1.

The return from the procedure call is to CAL+1 with the fol-
lowing possible condition code setftings:

1234

0 0 0 0 device successfully preempted.

user doesn't have real=time privileges; or the
physical EA address is greater than 128K
(Xerox 560 only),

0 0 1 0 requested device is not preemptable {i.e., a
public pack or RAD), is already preempted by
another user, the specified DCB is not'opened
properly, or there was an illegal use of the DEV
form.

0 1 0 0 unknown device address; request ignored.

requested device was associated with a sus-
pended symbiont; request ignored.

Should the application require that the multi-device con-
troller (associated with the device to be preempted)also be
preempted, the SYSCON processor should be used. This
would imply that the application cannot tolerate any con-
tention for either the particular device or the multi=device
controller associated with that device (tape drive or private
disk pack). In the case of a disk pack controller, the
spindles associated with that controller must have been de-
signated as private.

Device Preemption Services 133

RETURN PREEMPTED DEVICE

MSTARTIO Any preempted /O device may be returned
to the system via the M:STARTIO service.

The format of the M:STARTIO procedure call is

(0CB, [dcb adr) }

, M:STARTIO {(DEV, [91X'device adr')

where dcb adr and device adr are as described under

M:STOPIO,
Calls generated by the M:STARTIO procedure have the form
CAL1,5 fpt

where fpt points to word 0 of the FPT shown below.

word 0

* XD’ 0————0 DCB/device address

T T 3T 5 5 T8 5 0Nz 15 15178 7 18 W27 22 B12h 5 28 5128 B 31 3
word 1

ol110 0|f|0 0

0 t 2 314 5 6 718 9 10 11012 13 14 15116 17 18 19120 27 22 23[24 25 26 27128 29 30 31

where f specifies DEV if 0 or DCB if I,

The return from the procedure call is to CAL+1 with the fol-
lowing possible condition code settings:

1234

0000 device successfully returned.

0001 user doesn't have real-time privileges.

0 01 0 device wasn't preempted by this user, or the
specified DCB is not opened properly, or there
was an illegal use of the DEV form.

0100 unknown device dddress; request ignored.

1000 device was busy; request ignored.

DIRECT 1/0 SERVICES
1I0EX SERVICES

The M:IOEX service is provided as one means of enabling
the real=time user to exercise direct control over /O op~
erations without having to run in the master mode (see also
the M:EXU service). The only requirements are that the
device specified be preempted (either via the M:STOPIO
service or the SYSCON processor), and that an end-action
routine be provided (either via M:STOPIO or M:IOEX). The
I/O functions that can be controlied via M:IOEX are:

SIO — Start input/output.

134 Direct I/O Services

HIO — Halt input/output.
TIO — Test input/output.
TDV — Test device.

, MIIOEX (S10)

call is

The format of the M:IOE X (SIO) procedure

(DCB, [¥dcb adr)

M:IOEX {(DEV, [x'device adr')}’ —]
‘—-(510, [elist],REL])[, (EA, [Jvadr)] —
[—[,(TO,[*]value) [, (PRI, [Hprio)]

where

DCB, [*Jdcb odr specifies that the I/O function is
to be performed for the device associated with the
currently open DCB addressed.

DEV, [¥]X'device adr' specifiesthe device for which
the 1/O function is to be performed and is one of
the following:

ndd —a 12-bit physical oddress as used by
Sigma hardware,

cudd — a 14~bit physical address as used by
Xerox 560 hardware (cluster/unit/
device).

S10, [*Jclist is the starting virtual address (double-
word bound) of the /O command list to be initiated.
All buffer addresses within the command list itself
must be physical addresses. The channel program
must request a "Channel End Interrupt” (unless REL
has been specified, see below); however, multiple
interrupts per 1/O requests are pemitted (e.g.,
"Zero Byte Count Interrupt" and "Channel End
Interrupt").

REL specifies that the channel is to be released af-
ter issuing the SIO, This would be used with
command lists which do not result in data transfer
operations (e.g., seek orders, rewind orders, head~
positioning orders),

EA, [vadr is as described under M:STOPIO; the
M:HOLD requirement applies to M:IOEX also.

TO, (Hvaluve is the number of 4,8 second intervals
allowed to elapse following the issuance of the SIO
instruction before the EA address will be entered.
In this case, the user's EA routine is entered master
mode, unmapped, via a BAL on register 11 with
registers 1 and 2 equal to zero. Register 7 contains
the DCT index and register 6 contains the physical
address of the (user's) end-action-receiving routine.
Byte O of register 3 contains the condition codes as
set by the SIO instruction; registers 4 and 5 con-
tain the SIO status registers' information. No mon~
itor services may be requested by the receiving
routine. All registers may be considered volatile
except register 11 through which return to the mon-
itor must be made. A time-out value of zero

implies thatno time=out facility is desired (default),
however the user's EA address will always be en-
tered should an SIO failure occur (in this case
register 1 will be nonzero).

PRI, [Mprio is the priority at which to queue the
request and is a value between 0 and X'FF', The
default is the value of the user's current execution
priority.

Table 45 summarizes the various possible register settings
for end-action routines,

Calls generated by the M:IOEX (SIO) procedure have
the form

CALL,5 fpt

where fpt points to word 0 of the FPT shown below.

word O
* X'IE' 0——0 DCB device address I
1 2 314 5 6 718 9 lall'll\3|4|516|7|8\920212223242526272027w31
word 1
Plrp|P
1[3%[5l0 of|o olf,I
01 2 314 5 6 718 9 10 1112 13 14 15116 17 18 19120 21 22 23724 25 26 27128 29 0 3
word 2

*| 0 0 Command list address I
0 v 2 314 5 6 718 9 101111213 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

_word 3 (P1)

* 0 0 End-action address l
0 1 2 314 5 6 718 9 10 1112 13 14 15116 17 18 19120 21 22 23124 25 7128 29 31

word 4 (P2))

<0 0 Time=-out
value

01 2 374 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23 25 26 8 29 30 31

word 5 (P3) -)

*10 0’ Priority ‘

C 1 2 314 5 6 718 9 10 11012 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

where

f1 specifies DEV if 0 or DCB if 1,
fa is set to 1 if REL was specified on SIO.

The return from the procedure call is to CAL+1 with the fol-
lowing possible condition code settings:

1234
0 0 0 0 I/O request successfully queued.
0 0 0 1 wuserdoesn't have real-time privileges.

0 0 1 0 specified device doesn't exist or the specified
DCB is not opened properly.

0 1 0 0 EAwas notspecified and the DCT tables do not
contain the address of an end-action receiver;
or the physical address EA is greater than 128K
(Xerox 560 only).

1 0 0 0 specified device is not preempted, or has been
preempted by another user.

Table 45, Register Settings for End-Action Routines

Register Contents when Routine Entered Contents when Routine Entered due to
due to Interrupt Timeout or SIO Failure

RO - -

r1f AIO status, 0 = timeout; Nonzero = SIO failure.

R2t Device address. 0

R3 AIO condition codes (byte 0), SIO condition codes (byte 0).

R4 and TIO status; byte O of R4 contains the SI1O status (if timeout). R4 contains the

R5 condition codes from TIO, doubleword address of the failing channel
' program (if SIO failure).

R6 Physical address of EA routine, Physical address of EA routine.

R7 DCT index. DCT index.

'R1 and R2 indicate how the end-action routine was entered,

Direct /O Services L

M:I0EX (HIO/T10/ TDV) The format of the M:IOEX
(HIO/TIO/TDV) procedure call is

TIO

‘
MAIOEX {(DCB, “dcb adr }l
DV

HIO
(DEV, *]X'device adr')

where dcb adr and device adr are as described under
M:IOEX.

Calls generated by the M:IQEX (HIQ/TIO/TDV) procedure
have the form

CALL,5 fpt

where fpt points to word 0 of the following FPT.

word 0

* X'IF 0——0 DCB/device address

0 1 2 31"4 6 718 5 10 NIT12 13 14 15116 17 16 19120 21 22 23134 556 D18 5 0 3

word 1
0 o|f|o 0| Code
0 1 2 314 5 6 718 9 10 1111213 14 15116 17 IBWTZOZI 22 23(24 25 26 27128 29 30 31
where
code is:
0 if TIO
1if TDV
2 if HIO

f specifies DEV if 0 or DCB if 1.

The return from the procedure call is to CAL+1 with the
condition codes and registers set as if the user had issued
the following instruction:

HIO
TIO, 8 X'device address'
TDV.

Since the condition codes cannot be used to communicate
abnormal conditions for any of the above three services,
any of the abnormal conditions indicated below will result
in a program abort (code B?, subcode as indicated). Such
aborts may be intercepted by the user via TRAP control
(M:TRAP procedure call specifying CAL).

Subcode Méaning
01 User doesn't have real-time privilege.
02 Specified device doesn't exist, is not pre-

empted by this user, or the specified DCB is
not opened properly.

EXECUTE PRIVILEGED INSTRUCTION SERVICE

M:EXU The M:EXU service is provided as another way
to enable the real-time user to execute I/O instructions
and other privileged instructions without having to run in
the master mode (see also the M:IOEX Service). The only
requirement is that the instruction op code to be executed
be one of the following:

Op Code Mneumonic

X'4C! SIO
X'4D! TIO
X'4E! TDV
X'4F! HIO
X'6C RD

X'6D! WD

The SIO execution service is intended primarily for inter=
facing to devices not known to the operating system (DCT
tables) and which do not generate 1/O interrupts (X'5C').
However, no validity checks are made and if the SIO will
result in an I/O interrupt, it is assumed that the user will
have provided an end-action receiver via the M:STOPIO
service,

For a complete discussion of the M:EXU service, see the
CP-V/BP Reference Manual, 90 17 64,

ENTER MASTER MODE

M:MASTER The M:MASTER procedure allowsa user with
sufficient privilege level (CO or higher or the MS privilege)
to operate in the master mode (master-protected mode if
running on a Sigma 9 or Xerox 560) with a write key of 1.
(This procedure resides in SYSTEM BPM.) The format of the
procedure call is

M:MASTER

Calls generated by the M:MASTER procedure have the form
CAL1,5 fpt

where fpt points to the FPT shown below.

X'08' 0 : 0

0 1 2 314 5 6 718 9 10 N1z 1314 15i]6 17 18 19120 21 22 23124 25 26 27128 29 30 31

If the caller's privilege level is not sufficient, return is to

CAL+1 with CC1 set.

ENTER SLAVE MODE

M:SLAVE The M:SLAVE procedure allows any master
(and master~protected) mode program to return to the slave
mode. (This procedure resides in SYSTEM BPM.) The for-
mat of the procedure call is

M:SLAVE

Calls generated by the M:SLAVE procedure have the form

CAL1,5 fpt

PSECT DIRECTIVE

The Meta-Symbol PSECT directive specifies that the control
section which follows is to begin on a page boundary. The
directive can be useful for controlling the placement of /O
buffers, data, and end-action-receiving routines which will ;
be accessed unmapped.

VIRTUAL/PHYSICAL ADDRESS CONVERSION

M:MAP The M:MAP procedure converts a specified
virtual address to a physical address or a specified physical
address to a virtual address. The converted address is stored
in general register 8. The M:MAP procedure call has the
form:

VTP

M:MAP{PW

} , (ADR, [*]address)
where

VTP specifies virtual to physical address conversion.

PTV specifies physical to virtual address conversion.

ADR, *Jaddress
dress to be converted.

specifies the location of the ad-
i
i
M:MAP should be used with M:HOLD since the address |
|

returned via M:MAP may not be valid if a swap occurs.

Calls generated by the M:MAP procedure have the form
CAL1, 6 fpt

where fpt points to word 0 of the FPT shown below.

word 0
M i
j
* X'02' 0————0 Address
0 1 2 314 5 &6 718 9 1011112 13 14 15116 |71519'202]22232425262728293)3!

word 1

+ + + i
|| i
01 2 304 5 6 718 9 10 1213 14 15816 17 18 19120 21 22 23124 25 26 27128 29 30 31

where f indicates virtual to physical address conversion
(f = 0) or physical to virtual address conversion (f = 1).

If the user's privilege level is not at least AO, the return is
to CAL+1 with CC1 set.

'MISCELLANEOUS REAL-TIME SERVICES

The following is a set of services provided to master mode,
mapped or unmapped real-time programs. These services

are provided via Meta-Symbol procedure references that
result in BAL linkages to monitor routines (hence the master
mode requirement) as opposed to CAL1 linkages. The rou- |
tines entry points are REFed as a result of the various pro-
cedure calls, therefore the program must be loaded with
reference to the MONSTK or J1 files in order to satisfy
these external references. All user registers are preserved
by pushing them into TSTACK except as indicated for
specific services,

GET OR FREE PHYSICAL PAGE

M:GPP The M:GPP procedure acquires a physical page
of memory. The procedure call has the format

M:GPP

On return from the procedure, general register 3 contains
the physical page number of the newly allocated page of
memory or the value zero if none was available.

In order for a mapped user to reference a physical page
acquired by M:GPP, it is necessary to perform a Change
Virtual Map (M:CVM) specifying the physical address of
the page acquired by M:GPP and the virtual address into
which this page is to be mapped.

M:FPP The M:FPP procedure releases a physical page
of memory that was acquired by M:GPP. The procedure
call has the format

M:FPP [#] page

where page specifies the physical page number of a page of
memory which is to be returned to the system.

It is the user's responsibility to returnany pages obtained via
M:GPP since the system keeps no record of this transaction.

INITIATE GHOST JOB

M:GJOB The M:GJOB procedure activates (or awakens)
a program as a ghost job. The format of the procedure is

M:GJOB (LMN, loc)[, (ACN, loc)) [, (PRI, [*Jvalue)]
where

LMN, loc specifies the location containing the name
of the program to be activated (or awakened) as a
ghost job. The name must be in TEXTC format and
must not be greater than 7 characters in length. If
the name is less than four characters, a word of
blanks (X'40's) must immediately follow the name.

ACN, loc specifies the location containing the name
of the account in which the program exists. The
account name must be in TEXT format, left=justified

with trailing blanks to occupy two words. The
default is the :SYS account.
137

Miscellaneous Real ~Time Services

PRI, [*]value specifies the execution priority to be
associated with the ghost job. The default priority
will be that defined for ghost jobs at SYSGEN,

On return, CC1 is set if it was not possible to initiate the
specified ghost at this time because either ghost job table
space was not available or user table space was not avail -
able. CCT and CC3 are set if the specified ghost was cur-
rently running. CC2 is set if the specified ghost job was
asleep or queued for interrupt and was awakened. Other-
wise, the condition codes are all set to zero,

GET AND RELEASE DISK GRANULE

M:GDG The M:GDG procedure dynamically acquires
a disk granule, The procedure has the format

M:GDG

The starting disk address of the acquired granule is returned
to the user in general register 8 in the following format

E| DCTX RSN
0 1 2 G—iTS & 718 9 Ioll'lZISHIS 16 17 18 19120 21 22 23124 25 26 27128 29 30 3)

The disk address shown above is in standard format for disk
addresses in CP=V, where:

E is the extension bit necessary to represent a
17-bit relative sector number on large capacity
disk packs.

DCTX is the DCT index for the device.

RSN is the 16-bit relative sector number.
If no granule is available, register 8 is set to zero.

Note: Currently, E (in the disk address shown for M:GDG)
is a single bit. In the future Xerox may add disk
packs which require 18 bits in order to represent the
highest relative sector number, Therefore it is rec-
ommended that users utilize the following procedures
(referenced via the SYSTEM UTS directive of Meta-
Symbol preceded by a DISCBPROC SET 1 directive)
when referencing disk address fields.

To load or store a DCT index, use

LDCTX .
{STI():CTX}" [loc[, index])

where

r is the register to be loaded (stored).

loc is a location, or optionally, a pointer to a
location, containing (destined to contain) the
disk address (see index below).

index is an index register containing a word dis-
placement which, when added to the address
given by loc, yields an effective address contain-
ing (destined to contain) the disk address.

138 Miscellaneous Real=Time Services

To load or store a relative sector number:

{LSECTA

STSECTA}'“"”eg res

where

oddreg is the odd numbered register to be loaded
or stored. (Register 15 may not be specified.)

reg is any register except the one selected for
'oddreg’ or 15.

Note that it is the user's responsibility to return any gran-
ules obtained via M:GD G since the system keeps no record
of this transaction.

M:RDG The M:RDG procedure dynamically releasesa
granule acquired via M:GDG. The procedure has the format

M:RDG [¥]disk address

where disk address is the starting address of the disk granule
to be returned to the system. It must have the same format

as described for M:GDG.

Under certain conditions, the monitor may not be able to
accept a granule from the user at a particular time. In this
case, register 8 will contain a zero indicating that the user

must try again.

REPORT USER EVENT

M:RUE The M:RUE procedure reports an event on a
particular user (i.e., it simulates that the event took place
for the user). The format of the procedure call is
. . # event}
M:RUE (UN, [Juser?), (EV, {*Ioc2)

where

user? is the number of the user for whom the event
is to be reported. A user may determine his own
user number (for purposes of communicating this
to other programs) by referencing the monitor cell
S:CUN (Current User Number) which is located in
page 0 of the monitor and is therefore available
to any user program loaded with MONSTK.

event is one of the following symbols signifying the
event to be reported on the user:

Symbol | Event Resulting Action

E:CBK BREAK [Control passes to the user at
the address specified via an

M:INT procedure call.

The user is deleted from the
system.

E:OFF Log-off

Symbol | Event Resulting Action

E:ERR Error The user is errored and de-

leted from the system.

E:wWU Wake=-up | The specified user isscheduled
for execution and reentered
at the instruction following
the M:WAIT CALI.

E:UQA | Unqueuve | The specified user isscheduled
for for execution and -reentered
access at the instruction following

the CAL1 which caused him
to be queued for access.
loca is a word location containing the value as-

sociated with the event symbol (defined by the
assembly SYSTEM).

Note: Care must be taken to ensure that the user for whom
the event is being reported is in the appropriate
state since an illegal current state/event combi-
nation will cause the system to crash. E:CBK,
E:OFF, and E:ERR may be safely reported on a user
at any point in time.

CHECK INTERRUPT STATUS

M:CHKINT The M:CHKINT procedure checks the status
of an interrupt. The format of the procedure call is:

M:CHKINT (INT, [*]int)

where int is the location of a word containing the address
of the interrupt to be checked.

The following word of information will be returned to the
user in general register 8:

STAT USER GJos# l HEH
T T T T T DR B W B T B R T B B BT B H B3

where

A specifies, if set, that the interrupt is armed.

E specifies, if set, that the interrupt is enabled.

T specifies, if set, that the interrupt has been
triggered and the interrupt processing routine has

not yet finished.

STAT indicates the status of the task associated
with the interrupt location as follows:

STAT Meaning
X'80' Task is active.

X'40' Task is asleep or queued for interrupt.

STAT Meaning

X'20' Task is waiting for 1/0O completion.
X'10" Task is blocked, waiting for a resource.

X'01' Specified interrupt is not currently asso-
ciated with any user (i.e., inactive).

USER is the internal user table index for the user
currently associated with this interrupt.

GJost is the user number of the ghost job (if it is
active) which will be entered on the occurrence
of the interrupt. If the ghost job is not active,
GJOB# contains zero,

1/0 SERVICES

The following services resultinBAL linkages to the monitor's
I/O Supervisor module (I0Q). They are separated into
three types:

1. 1/O without a DCB where the user supplies the channel
program (M:EXCP). This should be used only where no
handler exists for a particular device or the user re-
quires unusual control over the device.

2. 1/O without a DCB while not requiring the user to build
his own channel program (M:NEWQ).

3. 1/0O with parameters supplied ina pseudo DCB (M:QUE).

Special problems exist when applying these techniques to
disk I/O. Unless the volume is being managed entirely by
the user, the user must be aware of the physical location
of the data on the disk volume (or volumes). A random file
would be the most common way of allocating space on a
public or private volume for use by both privileged and non-
privileged users. A random file is allocated contiguously
on a public or private volume when it is opened. By speci-
fying the FPARAM option on the M:OPEN call to an exist-
ing file, the user requests the monitor to pass the file attri-
bute (FIT table) parameters to a specified location (see the
DCB discussion in Appendix A of the CP-V/BP Reference
Manual, 90 17 64). FDA (First Disk Address) is returned in
word one of the X'0C' — coded FIT entry. File size (in
granules) is given in word one of the X'0D' — coded FIT
entry.

Flawed tracks are automatically taken care of by the /0O

system assuming that the requested byte count does not cause
the transfer to cross a track boundary from a good track to
a flawed track. If the user ensures that all tracks are good,
the hardware will automatically handle the case in which a
track boundary is crossed. However, the user must handle
the cylinder overflow condition himself. (A new seek must
be issued between accessing the last sector of one cylinder
and the first sector of the next cylinder.)

CALCULATING PHYSICAL ADDRESSES

All of the 1/O procedure calls described below are avail-
able to the mapped or unmapped user. Several require that

Miscellaneous Real-Time Services . 139

physical addresses by passed. For all mapped users, the
user may convert a virtual address to a physical address by
using the M:MAP procedure call described previously.

In order to ensure'that a mapped user isnot swapped between
the time that the physical address is calculated and the
time the 1/QO is requested, the M:HOLD (Lock in Core)
service should be performed.

Note, however, that a mapped, master mode program is
assured of not being swapped as long as it does not request
any monitor services via CALls.

EXECUTE CHANNEL PROGRAM
M:EXCP The M:EXCP procedure causes the user's own
channel program to be executed. The format of the pro-~

cedure call is

M:EXCP (CPA,{E’I‘:S“)

) oc, Binden—
I____[' (PRI, [¥]priority)][, EA, [*]loc —
, [—-[, [Meaih]L, (TO1, [Jvalue)]

where

DA(loc) specifies the physical doubleword address
of the start of the channel program.

*loc specifies the word address of a word which
contains the physical doubleword address of the
start of the channel program. (The asterisk is
required.)

DCT, [*]index is the DCT index of the device
associated with the channel program.

PRI, [*]priority is the priority to be associated
with the requested 1/O operation. Priority re~
quests range from 0 to X'FF' (highest to lowest).
Priorities in the range of 0 fo X'BF' are treated
as real-time priority requests; X'CO' to X'FF' are
treated as background priority requests. The only
system 1/O that operates at a real-time priority
is swapping 1/O (priority = X'10'). The default
priority is X'FF'.

EA, [*]loc is the physical address of the user's
end-action routine.

eai is a word of end-action information. This
information is passed back to the user's end-action
routine.

TOI, [*]value is a time-out value specified in
five second increments. The default value is
five seconds.

140 Miscellaneous Real-Time Services

The user's end-action routine (if specified) is entered
unmapped, via a BAL on register 11. All registers may be
considered volatile (except register 11, through which re-
turn is made to the monitor). The following information is
passed to the end-action routine:

Register Bit Fields Contents
7 24,8 -, DCT
12 8,8,16 TYC,~,RBC
13 16, 16 -,CCA
14 32 EAI
15 13,19 -,BUF
where
DCT is the DCT index.
TYC is the type of completion code returned by

the device handler.
RBC is the remaining byte count.
CCA is the current IOP command address.

EAI is the end-action information specified in the
procedure call.

BUF is the doubleword address of the start of the
channel program command list specified by the
M:EXCP call.

The end-action routine may obtain the complete TDV status
by referencing the doubleword table DCT13 using the DCT
index in register 7.

CALL NEWQ
M:NEWQ The M:NEWQ procedure requests I/O to be

performed without a DCB and without a user-built channel
program. The format of the procedure call is

M:NEWQ [{}’\l"w}] (FC, [*]code),——l

L ®Ur, {3802, 51z, (value) —

0 =] om, o

L, NRT, [vatue,), [(B, [loc,f, Eleot]]

where

W/NW is the WAIT/NO-WAIT option. The un-
mapped user always does /O with NO-WAIT. This
implies that the unmapped user should always (ex~
cept for unusual cases) specify an end-action ad~-
dress in order to ascertain when the I/O has com-
pleted. The mapped user will do 1/O with WAIT
unless otherwise specified by the procedure call.

FC, [*]code s the function code which defines (to
the device handler) the type of 1/O operation to
be performed. See discussion of function codes
below.

BUF, BA(loc) specifies the byte address of the
user's buffer to be used in this 1/O operation.

i BUF, *loc specifies the word address of a word which
contains the byte address of the user's buffer.

SI1Z, [*lvalue is the byte count to be used in this
I/O operation. (The byte count for mapped pro-
grams should not exceed 32K bytes (X'8000')).

DA, *disk address specifies, for random-access-
device operations only, the address of the word
containing the disk address to be used in this 1/O
operation, Disk addresses are of the format de -
scribed under the discussion of the M:GDG pro-
cedure call.

DCT, [¥]index specifies for non-random-access-
device operations only, the DCT index of the
device fo be used in this I/O operation.

PRI, [*]priority is the priority o be associated with
the requested 1/O operation. See the description
of priority under the discussion of M:EXCP.

NRT, [*]value is the number of recovery tries to
attempt before declaring an error.

EA, [*]loc is the physical address, or optionally a
pointer to a location containing the physical
address, of the user's end-action routine.

eai is a word of end-action information. See the
end-action description under the discussion of the
M:EXCP procedure call. The only difference is
that BUF is the byte-address of the user's buffer
as supplied by the M:NEWQ procedure call.

To assist the user in determining the correct function codes
to be used with the M:NEWQ procedure calls, the follow-
ing is a discussion describing the function codes of the ex-
isting device handlers in the system.

Typewriter Handler. The typewriter handler accepts the
following function codes:

0 - read with editing

1 - write

2 - write with device name

3 ~ read without editing

4 - read with editing and retry

5 = write new line character

6 - write with device name tabbed

RAD Handler. The RAD handler accepts the following
function codes:

0 - seek-read

1 - seek=write

2 - sense

3 - seek-checkwrite

4 - seek-write, seek-checkwrite

Error recovery on the RAD generally amounts to redoing the
same operation when an error has been detected. One ex-
ception is when a checkwrite is being performed fora write
and an error is indicated. In this case, the write is done
over, followed by another checkwrite. Checkwrites are
performed for all writes if sense switch 1 is set on the op-
erator's console. Special conditions checked for are write
violation and illegal seek address.

9-Track Tape Handler. The 9-track tape handler accepts
the following function codes:

0 ~ read

1 = write

2 - read reverse

3 - write tape mark

4 - backspace record

5 - forwardspace record

6 - backspace file

7 - forwardspace file

8 - rewind

9 - sense
10 = correctable read recovery
11 - noncorrectable read recovery
12 = write recovery
13 - correctable read reverse recovery
14 - noncorrectable read reverse recovery
15 - write tape mark recovery

7-Track Tape Handler. The 7-track tape handler accepts
the following function codes:

0 - read packed

1 - write packed

2 - read reverse packed

3 - write tape mark

4 - backspace record

5 - forwardspace record

6 - backspace file

7 - forwardspace file

8 - rewind

9 - read binary
10 = write binary
11 - read reverse binary
12 - read decimal
13 ~ write decimal
14 - read reverse decimal
15 = read packed recovery
16 = write packed recovery
17 = write tape mark recovery
18 - read binary recovery
19 - write binary recovery

Miscellaneous Real-Time Services 141

20 - read decimal recovery

21 - write decimal recovery

22 - final backspace record for reverse read

23 - final backspace record if unrecoverable error

Card Reader Handler. The card reader handier accepts
the following function codes:

0 - read binary
2 - read automatic

Line Printer Handler. The line printer handler accepts
the following function codes:

1 - write without format
3 - write with format

Paper Tape Handler (PTAP). The paper tape handler ac-
cepts the following function codes:

0 - read automatic
1 - write BCD

2 - read count

3 - write binary

4 - read direct

5 - write direct

6 - read BCD

7 = read binary

Card Punch Handlers. The card punch handlers accept the
following function codes:

0 - punch BCD
1 - punch binary

Disk Pack Handler (DPAK). The disk pack handler uses the
following function codes:

0 - seek-read
1 - seek-write

2 - sense

3 - seek-checkwrite
4 - read

5 ~ write

6 - checkwrite

7 - restore

8 - seek-read header
9 - read header

CALL QUE

M:QUE The M:QUE procedure requests that 1/O be

performed through parameters supplied in a specified DCB.
At the time of the call, the specified DCB need only be

9 words in length but must contain valid information in the
following fields: NRT, QBUF, BLK, and CDA. (See

142 Miscellaneous Real~Time Services

Appendix A of the CP-V/BP Reference Manual, 90 17 64,)
The format of the M:QUE procedure call is

M:QUE [¥]deb, (FC, []code)[, (EA, [*]locf, [*]eai])]
where

dcb specifies the DCB associated with the re~
quested 1/O operation.

code is an 8-bit code (described in Figure 17 be-
low) which defines (to the device handler) the
type of 1/O operation to be performed. The code
may be expressed as a decimal number or as a
hexadecimal number in the format X'dd'.

loc and eai function exactly as described under
the discussion of the M:EXCP procedure call.
The user's end-action routine (if specified) will
be entered unmapped via a BAL on register 11
after the TYC (type of completion code) and ARS
(actual record size) have been entered into the
DCB. The following information is passed to the
end-action routine.

Register Bit Fields Contents
6 15,17 -, BUF
7 24,8 -,DCT
8 8,7,17 FC,-,DCB
14 32 EAI
where
BUF is the word address of the user's buf-

fer associated with this 1/O request

DCT is the DCT index as specified in the
CDA field of the DCB at the time of the
M:QUE procedure call.

FC, DCB, and EAI are as specified in the
M:QUE procedure call.

For the unmapped user, the 1/O will be queued at a priority
of X'FF'. For the mapped user, the 1/O will be queued
based upon the user's current execution priority.

0 1 2 3 4 7
0 | DIR |PACK|FBCD Code
where

Code has the following meanings:

0 -read BCD
1 ~read direct BCD
2 -read binary

Figure 17. 1/O Operation Codes for Device
Handler (M:QUE)

3 = read direct binary
4 - write BCD

5 - write direct BCD
6 = write binary (write and format)
7 - write direct binary
A =~ skip record forward)

B - skip record reverse

C = skip file forward bits 1-3 are
o dein £ ignored for
D - skip file reverse these codes

E - rewind

F - write end-of-file

FBCD specifies no FORTRAN conversions
if 0 or FORTRAN conversions if 1.

DIR specifies forward direction if 0 or re-
verse direction if 1.

If the device is not 9T, 7T, or MT, only bits 5
through 7 are meaningful.

Figure 17. 1/O Operation Codes for Device
Handler (M:QUE) (cont.)

SEND CHARACTER TO TERMINAL

M:COC The M:COC procedure sends a character to a

user terminal.

(UN, [Juserf) ‘character’
M.COC {(LN, [*]Iine#)}' (CHAR, {*Ioc[, ireg]})

where

userf is the user number of the user whose terminal
is to receive the character.

linef is the line number of the terminal which is
to receive the character.

‘character’ is the EBCDIC character to be sent to
the specified terminal.

*loc[,ireg] . specifies the address of a location

which contains the character to be sent to the

terminal (loc). (The asterisk is required but does -

not indicate indirectness.) The ireg field specifies
an index register which contains the byte displace-
ment which, when added to the address specified
by loc, will yield the byte address of the char-
acter to be sent to the terminal. If ireg is absent,
loc is assumed to contain the left-justified char-
acter to be sent to the terminal.

DYNAMIC PHYSICAL PAGE ALLOCATION
FOR REAL-TIME PROCESSING

IHTROD‘UCTIBN

Physical pages are made available for real-time processing
in either of two ways:

e Dedication of physical core pages at boot-time. These
pages are known as the Resident Foreground (RESDF)
pages. SYSGEN parameters define the physical pages
that are to be removed from the system and dedicated
to real-time processing. These pages remain dedi-
cated real-time pages until returned to the system via
the Physical Page Stealer (PPS) Ghost.

e Dynamic acquisition and release of physical core pages
during normal operations. These pages are known as
the Dynamic Resident Foreground (DYNRESDF) pages.
The operator can acquire or release DYNRESDF pages
by communicating with the Physical Page Stealer (PPS)
ghost job.

In both cases, foreground memory is allocated in ‘memory
segments'. A memory segment in this context is simply a
set of contiguous physical pages. There is only one RESDF
memory segment (i.e., that which may be allocated at
boot-time). There may be several DYNRESDF memory
segments, the maximum number of which is specified at
SYSGEN time. All real-time memory segments must be
allocated in the area between 64K and the end of physical
core.

The operator, by communicating with the Physical Page
Stealer ghost job, has control over the allocation of both
RESDF and DYNRESDF pages. The operator also has the
ability to reset the SYSGEN defined RESDF size and maxi-
mum DYNRESDF size thus affecting the system's maximum
user size. Increases to RESDF size or to maximum DYN-
RESDF size cause a decrease of the maximum user size;
decreases to RESDF size or the DYNRESDF size cause the
maximum user size fo be increased. By setting the maxi-
mum number of real~time pages that may be allocated to a
minimum, the operator is able to allow very large jobs to
be scheduled. Decreases to the maximum real~time page
values may be effected at any time. Increases that would
cause the maximum user size to be set to less than 186 pages
are limited to times when there are no users on the system
other than system ghosts; i.e., the system must be quiescent
except for ALLOCAT, RBBAT, FILL and the PPS ghosts.
Neither RESDF nor DYNRESDF maximum size may be in-
creased to the point where the maximum user size is too small
to allow the system ghosts to run.

SYSGEN CONSIDERATIONS

The system parameters that define the pages to be allo-
cated at boot-time, the maximum number of pages that may
be dedicated for real-time use, and the maximum number
of memory segments that may be allocated for real=time

Dynamic Physical Pogé Allécoﬂdn for Real~Time Processing 143

processing may be specified via options, of the :FRGD
command of PASS2. The format of these options is as
follows:

(RESDF, size, address)
where
size specifies, in decimal, number of pages, the:

default size of the dedicated foreground memory
area to be allocated at system initialization,

address specifies, in hexadecimal, the word ad-
dress of the first page in the RESDF memory seg-
ment. This value must be equal to or greater

than 10,000;4.

Both size and address may be overridden by the operator at
system initialization. Both parameters may be reset via
communication with the Physical Page Stealer ghost job.

(DY NRESDF, pages, segments)
where

pages specifies in decimal the maximum number of
poges that may be dynamically allocated for fore-
ground use. These pages are not removed from
the system until requested, but the maximum user
size is reduced by the value specified. This value
may be altered by the operator via the PPS ghost.

segments specifies in decimal the maximum number
of dedicated real~time memory segments that may
be allocated for foreground use. The default
value is one.

INITIALIZATION

When a real-time system is booted from a system tape and
operator console interaction is requested, or when a real-
time system is booted from the system RAD, the following
message is output on the OC device:

RESET RESDF YYY, XXXXX?

This allows the operator to override the SYSGEN-defined
values for the beginning of the RESDF area and/or the size
of the RESDF area. The operator should respond as follows:

[ryy][r 0] @
where

yyy is the number of pages in decimal to be in the
RESDF area. A value of 0 through 999 may be
used.

XXXXX is the word address in hexadecimal of the
first page in the RESDF area. A value greater
than 10, 000]6 (64K) must be used.

Either value may be omitted, or a response of NEW LINE
alone may be used to request the SYSGEN-defined default
for the omitted value(s).

THE PHYSICAL PAGE STEALER GHOST JOB (PPS)
The Physical Page Stealer ghost job is used for the manage-
ment of all dedicated foreground memory. It is loaded for
execution via the following keyin:

1GJOB PPS

PPS then asks the operator for a command:

PPS: ENTER COMMAND

The operator may respond with one of the following commands:

DI[SPLAY]
allocated.

Display memory segments curniently

GE[T] yyy,xxxxx Get DYNRESDF pages.

FREE] yyy, xxxxx Free DYNRESDF pages.

DY[NRESDF} yyy Reset maximum number of DYN-

RESDF pages.
RE[SDF] [yyy][, xxxxx] ~ Redefine the RESDF area.

EN[D] Exit ghost job.

where
yyy specifies in decimal the number of pages.

XXXHX specifies the word address in hexadecimal
of the first page in the real-time memory seg-
ment. This value must be equal to or greater
than 10,00044.

PPS will attempt to perform the requested function, type
an error message if the function cannot be performed, and
reprompt the operator to get the next command. The END
command is used to terminate PPS processing.

If the format of the command is in error, such as missing
parameters, bad delimiters, etc., PPS will type '??' and
reprompt the operator to reenter the command.

The following message will be displayed if the number of
pages specified is in error:

EXPRESS # OF PAGES IN DECIMAL 0-999

‘M4 Dynamic Physicol Page Allocation for Real-Time Processing

The following message will be displayed if the page address
specified is in error:

EXPRESS PG ADDR IN HEX 10, 000-xxxxx

The PPS ghost first validates that it is valid to allocate
DYNRESDF pages. If the maximum number of DYNRESDF
segments has already been allocated, the following mes-
sage is displayed:

where xxxxx is the word address of the last page of physi-
cal core.

Since the operator is the only one who is allowed to com-
municate with the PPS ghost, running PPS is not allowed
from on=line or batch. If attempting to run PPS other than
as a ghost job, the following message will be typed:

MUST BE EXECUTED AS A GHOST JOB

The PPS commands are described in detail in the following
paragraphs.

DISPLAY The DISPLAY command is used to obtain
information concerning allocated real~time pages and the
current settings of system parameters that define the maxi-
mum real~time pages allocation.

The following information is output on the OC device:

MAX DY NRESDF = yyy
CURRENT DYNRESDF = yyy
DYNRESDF SEGMENT yyy xxxxx
RESDF SEGMENT yyy xxxxx
MAXIMUM USER CORE = yyy

where
yyy is the decimal number of pages.

XXXXX is the hexadecimal word address of the first
page in the real~time memory segment.

The DYNRESDF SEGMENT message is repeated for each
currently allocated DYNRESDF memory segment.

GET The GET command is used to allocate DYNRESDF
pages. This command may be used at any time and has no
effect on the maximum user size. The format of the
command is

GE[T] YYY 5 XXXXX

where

yyy specifies in decimal the number of pages.

XXXHK specifies the word address in hexadeci-
mal of the first page in the real-time memory
segment. This value must be equal to or greater
than IO‘,OOOM.

MAXIMUM DYNRESDF SEGMENTS ALLOCATED

If the allocation of the DYNRESDF memory segment would
cause the number of DYNRESDF pages to exceed the maxi-
mum allowed, the following message is displayed:

EXCEEDS DYNRESDF

The PPS ghost then validates that the pages specified are
availdble. If the pages are currently being used by the
monitor, (i.e., for transaction processing), the following
message is typed:

PAGES IN USE BY MONITOR

If some or all of the pages specified are allocated as RESDF
or DYNRESDF pages, the following message is typed:

PAGES ARE REAL TIME PAGES

The DISPLAY command should be used to determine the
current allocation of real-time memory segments.

If the pages cannot be obtained for any other reason, the
following message is typed:

UNABLE TO OBTAIN PAGES

Otherwise, the pages specified are removed from the system
and the operator is prompted to enter the next command.

FREE The FREE command is used to return currently

allocated DYNRESDF pages to the system. This command
may be used at any time and has no effect on the maximum
user size.

The format of the command is

F R[EE] YYY 5 XXXXX s

where
Yyy specifies the number of pages in decimal.
XXXXX specifies the word address in hexadecimal of

the first page inthe real-time memory segment.. This
value must be equal to or greater than 10,000, . ’.

. Dytwamic Physical Page Allocation for Real-Time Processing 148

DY NRESDF memory segments cannot be partially released.
That is, all pages within the memory segment must be
released with one FREE command. If the pages specified
are not totally contained in one memory segment, or the
entire memory segment was not specified, the following
message is displayed:

NOT A DYNRESDF MEMORY SEGMENT

The display command should be used to determine the
currently allocated DYNRESDF segments.

If the segment specified is valid, the pages will be returned
to the system and the operator will be prompted to enter
the next command.

DYNRESDF The DYNRESDF command is used to re~
define the maximum number of pages that may be removed
from the system to be used as dynamic RESDF pages. No
pages are obtained or released as a result of this command.
This command alters the maximum user size.

The format of the command is

DY[NRESDF] yyy
where yyy specifies the number of pages in decimal.

The value specified is compared to the current setting of
maximum number of DYNRESDF pages. If attempting to
increase the maximum size, the system must have no users
other than system ghosts. If other users are on the system,
the following message is typed:

SYSTEM ACTIVE

The maximum user size will be decreased by an amount
equal to the increase in maximum DYNRESDF pages. PPS
checks to determine that the system ghosts would be able
to tolerate the decrease in user size. If not, the following
message is displayed:

DON'T LOCK OUT SYSTEM GHOSTS

Otherwise, the maximum number of DYNRESDF pages that
may be allocated is reset as specified and the maximum
user size is decreased by the amount of increase to maxi-

mum DYNRESDF pages.

If attempting to decrease the maximum number of DYNRESDF
pages and the maximum user size would fall below 186 pages,
the value specified must be equal to or greater than the
number of DYNRESDF pages currently allocated. If not,
the following message is displayed:

CURRENT DYNRESDF PAGES > NEW MAXIMUM

Otherwise, the maximum number of DYNRESDF pages that
may be allocated is reset as specified and the maximum
user size is increased by the amount of decrease to maxi-

mum DYNRESDF pages.

RESDF The RESDF command is used to redefine the
RESDF memory segment. The RESDF command may be used
to release all RESDF pages to the system or to obtain RESDF

pages.

The format of the command is

RE[S DF][yyy][4 XXXXX]

where
yyy specifies the number of pages in decimal.

XXXXX specifies the word address in hexadecimal
of the first page in the real-time memory seg-
ment. This value must be equal to or greates
than 10000] 6

To release all RESDF pages, the following format should be
used:

RESDF 0

This will cause all RESDF pages to be returned to the sys-
tem. The maximum user size will be increased by the
RESDF size.

If the RESDF memory segment is not currently allocated
when this format of the RESDF command is used, the fo!l-
lowing message is displayed:

NO RESDF PAGES ALLOCATED

To re-establish the RESDF memory segment, the following
format of the command should be used:

RESDF [yyy] L xxxxx]

If either the number of pages or the word address of the
first page isnot specified, the previous value of the param~
eter is used.

If the RESDF segment is currently allocated, the following
message is typed:

RESDF PAGES ALREADY ALLOCATED

When this format of the RESDF command is used, the max~-
imum user size will be decreased by an amount equal to
the size of the RESDF segment to be allocated. There-
fore, if the maximum user size would fall below 186 pages,

146 = Dynamic Physical Page Allocation for Real~Time Processing

there must be no users on the system other than system
ghosts and the system ghosts must be able to folerate the
decreased user size. Checks are also made to determine
if the pages specified are available as described under the
discussion of the GET command.

Otherwise, the pages specified are removed from the
system and the maximum user size is decreased by an
amount equal to the number of pages in the RESDF memory
segment.

END The END command terminates PPS processing and
has the format

ENID]

MONITOR DEFs

The following words are DEFed in the monitor root and may
be used by the real-time programmer to gain information
concerning the current allocation of real-time pages.

RESDF The size of the RESDF area currently
allocated. If all RESDF pages have
been returned to the system, the
value is zero.

RESDFP The word address of the first page in
the RESDF area.

DYNRESDF The number of DYNRESDF pages
currently allocated.

MDYNRESDF The maximum number of DYNRESDF
pages that may be allocated.

PP:UPPC The total number of RESDF and

DYNRESDF pagescurrently allocated.

| RESDF MEMORY CAL
The real-time user may obtain information from the monitor
concerning the current allocation of real-time memory

segments by issuing the following CAL:

CAL1,5 fpt

where fpt points to word 0 of the FPT shown below.

word 0

X'1B' Word address of first page

+
01T 2 3145 6 718 9% LA 5116 17 18 ¥ 1 23 25 26 77128 29 Eil

word 1

Number of pages
01 2 3‘]4 5 6 7iﬂ 9 10 ||i1213 Hl5i|6 17 18 19120 21 22 23124 25 26 27128 29 30 31

The system checks to see if the set of pages specified in the
FPT are currently allocated real~time pages. On return
from the CAL, the condition code setting will be as follows:

1234

00O00O The pages specified are the RESDF
segment.

00 01 The pages specifiedare a DYNRESDF
segment.

0010 All pages are currently allocated
real-time pages but are not a speci-
fic memory segment.

0100 Some, but not all of the pages are
currently allocated real-time pages.

1000 None of the pages are currently

allocated real-time pages.

Dynamic Physical Page Allocation for Real-Time Processing 147

10. TRANSACTION PROCESSING FACILITIES

This chapter describes a program called the System Queue
Manager and a procedure that was designed for use by
Xerox in the development of the transaction processing
facilities of CP-V, The procedure should never be included
in any user-written programs. This chapter is intended for
Xerox system programmers only.

SYSTEM QUEUE MANAGER

The System Queue Manager is a program that is part of the
CP-V monitor, It is essentially a message switching system
developed for transaction processing in CP-V. The Queue
is maintained in core and overflows onto a disk file. This
file is created, opened, closed and otherwise maintained by
a privileged (CO or higher) program defined as the Queue
owner. The Queue owner unlocks the Queus by executing
the UNLOCK queue call and passing the ac'-ress of the
Queuve DCB to the Queue Manager. The Queue DCB must
be open and must define a random file for the Queue.
Once the Queue owner has been established and the Queue
unlocked, only that task may LOCK the Queue and close
the Queve file. The Queue file must remain open through-
out the entire UNLOCK-LOCK session.

Following the UNLOCK, the Queue owner stores the start=
ing TID (transaction ID) into the Queue Manager's TTP table
and Queue processing may begin.

Programs with TP authorization may now process messages
through the System Queue Manager. Each message has the
format of a Formal Queue Message (see the GET message
for this format). The entry name is defined as:

first-name-segment. [. . . nth-name -segment.] TID

Each name segment is separated by a period (.). The final
name segment is always the unique TID (in EBCDIC). See
the M:GETID procedure which describes how these unique
TID's are obtained. For TP, the first~name-segment con-
sists of the identifier (? @ #) followed by the trancode or
reportcode. The maximum length of the entry name is
31 bytes. The first~name-segment length may be no larger
than the KEYMAX specification on the UNLOCK request.
The maximum length of the entry text is 1980 bytes.

To GET messages from the Queuve, the DEFINELIST request
is issued to describe the criteria of the entries desired
by this program. A criterion is defined as:

first-name ~segment. [..nth-name -segment]

Each criterion must have at least one period (i.e., define
at least the first-name-segment). The criterion is followed
by a flag byte which tells the Queue Manager whether
'failed' entries are acceptable or whether 'destructive
readout' is in force. If destructive readout is requested,
the Queue message is deleted from the Queue when it is

148 Transaction Processing Facilities

moved to the user's buffer. Otherwise the Queue message
is marked in-progress in the Queue and remains in=-progress
until its status is changed (to not-in-progress or failed) or
it is deleted via a PUT request.

The DEFINELIST request is followed by a GET request for
that list (the LIST ID specified with the GET is returned from
the DEFINELIST call). Once the GET has been issued the
associated criteria become 'active'. This means that each
time an entry is inserted in the Queue, the criteria will be
compared to that entry and if a match is found, the ECB
associated with the GET request will be posted with the
X'02' completion code., When the ECB is posted, the GET
request may be reissued to obtain the Queuve message. Note
that there is no guarantee that a reissuance of the request
will actually get a Queue message, since another program
may have gotten it or altered its status since the ECB posting;
therefore the resulting condition codes may still indicate
that the ECB wait is meaningful. When the condition codes
are returned as zero, the Queue message has been placed

in the specified buffer and SR1 is set with the offset into the
criteria list pointers describing which entry was obtained.
An example of a typical GET routine is:

*LISTID,GET, (BUF,*ADDR) ;
, (BSIZE,512), (ECB,GETECB)

GETMSG M:QUEUE

BCR, 12 GOTMSG
BCS,8 ERRORCHK ABNORMAL IN SR3
M:CHECKECB (ECB ,GETECB)
. BNEZ ERRORECB
B GETMSG
GOTMSG EQU $

% AT THIS POINT MSG HAS BEEN RECEIVED

A program does not wait until @ Queue message arrives which
satisfies its active criteria, The WAIT option only waits to
give the caller access to the Queue. If no ECB is specified
on a GET request, the caller will get a Queue message if
one is currently queued or will be given a BC-14 abnormal
(return condition codes = 8) if a match is not currently in
the Queue,

The PUT request is used to insert a Queue message into the
Quevue, to alter the status of an existing in-progress entry,
or to delete an in-progress entry from the Queve. Each
entry in the 'put list' points to a specific Queve message
and the flag byte in the list indicates what action is to be
taken for that Queue message. For a PUT request, each
item in the list is processed before return is made to the
calling program. ‘

The PURGE request is issued to delete a currently defined

get list (a previous DEFINELIST). When the criteria is no
longer valid or useful, the PURGE should be requested to

free up the list and criteria pages and the Queue Manager
work space.

The STATS request returns the status of a Queue message
(i.e., Queued, Failed, In-progress, etc.) and optionally the

Y

count of entries queued which match the first-name -segment
of the specified criterion. The STATS list is always one
item long. If no list is specified (list loc is 0), the STATS
request returns the current status of Queue itself (i.e.,
number of entries queued, number of entries in-progress,
number of entries failed, etc.).

The LOCK request ends Queue processing. All subsequent
requests will be given the BC-11 (Queuve Locked) abnormal
code. The LOCK request must be issued by the same user
(i.e., user number) which issued the UNLOCK request,
since that user has been defined as the Queue owner. The
LOCK causes the in-core queue pages to be flushed out to
the Queue file and returns the in-core pages to the system,

. M:GETID PROCEDURE FORMAT

Each Queue message that is placed in the System Queue
must have a unique identifier appended to the entry name.
This identifier is obtained from the Queue Manager by
issuing an M:GETID call. The TID is returned in hexa-
decimal in register SR1. It must be converted to eight
EBCDIC characters and appended to the entry name. The
TID is always the final-name-segment of a queue entry
name and is separated from the other name segments with
the period (.) delimiter. The format of the procedure
call is

M:GETID
Calls generated by the M:GETID procedure have the form
CALL, 7 fpt

where fpt points to the FPT shown below.

xX'op' |0 OI
12 374 5 6 778 9 10 11112 13 4 15716 17 18 19 21 22 23124 25 26 7128 29 X0 31

If the queue is locked when the call is issued, no TID
is placed in SR1 and retumn is made to CAL+l with CCl
set.

MAOUEUE PROCEDURE FORMAT

In transaction processing, the flow of transactions and re-
ports is controlled through a single queue by the System
Queve Manager. The M:QUEUE procedure was developed
for use in the System Queue Manager and requires trans-
action processing authorization (via the Super processor).

The format of the M:QUEUE procedure is

(UNLOCK)
DEFINELIST

[Jdcb address) | PUT [
M:QUEUE{[]list loc },] GET [(option)]. . .

(hist id STATS
PURGE
|LOCK

.

where

dcb address specifies the address of the DCB for l
UNLOCK and LOCK requests.

list loc specifies the location of the list of criteria
pointersfor PUT, DEFINELIST, and STATS requests.

listid specifies theid of alist for GET and PURGE

requests.

UNLOCK activates usage of the queue and de-
fines the queue owner.

DEFINELIST defines the criteria for subsequent
GET requests (i.e., the GET lists).

PUT enters a transaction or report into the queue.

GET retrieves a transaction or report from the
queve.

STATS returns the status of a transaction or report.
PURGE discards outstanding GET lists which are
active for agiven user andreleases user-associated

queue control tables.

LOCK ensures that the user is the queue owner and
locks the queue from further use.

The basic options are as follows:

LSIZE, [*] value specifies the size of the list for
PUT or DEFINELIST. |
BUF, [Maddress specifies the buffer address for re~

turning aqueue entry for a GET request or for return-
ing queve status information for a STATS request.

BSIZE, [*] value specifies the size (in words) of the |
area defined by the BUF option.

WAIT specifies that the caller wishes to wait for
access to the queue prior to resuming execution.

ECB, [*] address specifies the address of an ECB to
be posted when a queue event occurs. A queue
event may be: the arrival of an entry to the queue
which satisfies an active GET list; the availability
of the queue (when the WAIT option was not indi-
cated on the original queue request); or queue
space availability.

M:QUEUE Procedure Format 149

The following option is applicable only to the GET request:

INDEX, [*]value specifies the word displacement
within the GET list to start the search for a criteria
match,

The following option is applicable only to the PUT request:

{LHg\i\ll-'} specifies the priority for PUT requests.
The following options are applicable only to the UNLOCK
request:

{OLD} specifies whether the queue is a new or
NEW . e .

existing file.
BACKUP specifies that the queue is to be kept up-

to—date on secondary storage, (i.e., whenever a
queue block is modified in core it is to be written
to disk).

QPAGES, [*] value
core pageswhich can be used for queue blocks and
queue manager work pages.

QSAT, [*]value specifies the percentage of queue
capacity for acceptance of high priority PUTs only.

KEYMAX, [*] value specifies the maximum number
of bytes required to contain any name (trancode)
presented for enqueueing (1-13 may be specified).

RECOVER

specifies queue unlock for recovery mode.

The following option is applicable only to the STATS request:
COUNT specifies that the number of occurrences

in the queue of a specified criterion is to be re-
turned in the second halfword of SR1.
The following option is applicable only to the LOCK request:

PAUSE specifies that the queue lock is temporary
and current users may continue processing their
current outstanding requests when the queue is
unlocked.

M:QUEUE FUNCTION PARAMETER TABLES (FPTS)
Calls generated by the M:QUEUE procedure have the form
CAL1,7 fpt

where fpt points to word 0 of an FPT. The code in the first
byte of word 0 is as follows:

FPT Code Function
X'06' UNLOCK
X'07 DEFINELIST

150 M:QUEUE Function Parameter Tables (FPTS)

specifies the maximum number of

FPT Code Function
X'08' PUT
X'09" GET
X'0A!' STATS
X'0B' PURGE
X'0oC! LOCK

The various FPT formats are described in the sections that
follow.

QUEUE UNLOCK REQUEST :

The format of the FPT for the UNLOCK request is:

word 0 .

= X'06' 0Q—0 DCB address

01 2 3h 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27'29 29 30 31
word 1) N

plelele Flrlele
1|2[3]4|0 0/%15151510—0
0 1 2 al4 5 6 718 9 10 1111213 14 |5-|L|6 17 18 19120 21 22 23724 25 26 27128 29 30 31

F.=1 means WAIT option specified.
F,=1 means BACKUP option specified.
F,=1 means NEW option specified.

F,=1 means RECOVER specified.

option ECB (Pi)

*0 0 ECB address

01 2 314 5 6 7?8 910 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
option QPAGES (P2)

0 0 Number of queue

. core E?ges
O 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 25 30 31

option KEYMAX (P3)

4 '
[.

*10 0] Key size

0l2ﬂ4567ﬁ910”“213]4]5116‘7]8|920122232425262728293031

option QSAT (P4)

*lo 0] Saturation %

T T 2 314 5 6 718 9 101111z 13 14 15116 17 18 91 271 22 3124 55 26 27128 29 30 N

QUEUE DEFINELIST REQUEST

The format of the FPT for DEFINELIST is:

word 0
* X'07' 0———0 List address
T T T S T s W T A B T R R T R B R E S T B S BN

word |

ple ¥
1| 2{0 — 0{1{0—0
T I T T v T m e G Rt v R R R T T St e e et

where F, = 1 means WAIT option specified.
option ECB (Py)

*10 0 ECB address
T T I3 S 57 T B T T B T e wm T S e eSS

option List Size (P2)

*10 0 List size

N 4 N . —
0TV 2 3147587718 o Yo 11112 13 W 15116 17 18 19120 21 22 23124 25 26 27128 29 30 37

QUEUE PUT REQUEST

The format of the FPT for PUT is:

word 0
* X'08' 0 0 List address
0 v 2 374 5 6 718 9 10 11112 13 14 15116 17 18 Wi)ﬂ 2y 22 23|L24 25 26 27128 29 30 31

word 1

P IP
12

F If

0 - 01-|,j0—0

0 1 2 314 5 6 718 9 10 n?u 13 14 15116 17 18 19720 21 22 zsizl 25 26 27 9 N

where

Fy=1 means WAIT option specified.
Fp=0 means low priority request.

Fp=1 means high priority request.

option ECB (Py)

*|0 0 ECB address

I AR A L B N R A O T N R AL 30"34
option List size (P2)

*10 0

0 1 2 3Td s 6 778 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 20 30 3t

o

List size

QUEUE GET REQUEST
The format of the FPT for GET is:
word 0
* X'09 0————0 List id
01 2 ala 5 & 7T& 5 10 11112 13 14 15716 17 18 19120 2 27 23124 25 26 27128 29 30 3:
word 1
plelrle 3
1] 2} 3] 4]0 011|0—0
T T T T e T IR T T NI R R DI T

where Fy = 1 means WAIT option specified.
option ECB (Py)

*10 0 ECB address

[T B I B S - [L 6 2 ERRT N RSP | S BTo T S R 5\ 67 B SR TR 70 6130 I

option Index (P2)

*0 0 Index

0 T 2 3145 6 718 ¢ lDﬂA“ﬁﬁM 15716 17 18 19120 2t 22 23124 25 26 2/728 29 0 3~

option Buffer qddress (P3)

*10 0 Buffer address

N B S R TN RPN N7 T T A R B R LB T) 70 LTS O

option Buffer size (P4)

*10 0

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 237124 25 26 . 128 25 ;0 3

Buffer size

QUEUE STATS REQUEST
The format of the FPT for STATS is:
word 0
*1 X'0A! 0———0 List address

01 2 ﬁ‘ 56 718 9 1o iTru 13 V4 15116 17 18 19720 21 22 23724 25 26 27128 29 30 31

word 1

o[5{%|0 0f,|"|o—o0f

0 1 2 314 5 6 718 9 10 1il1z 13 14 15176 17 18 19720 21 22 2;7272526 7128 29 30 3V

where
Fp=1 means COUNT option specified.
Fi1=1 means WAIT option specified.

o

ption ECB (Py)
*0 0 ECB address

01 2 Jil 5 6 718 9 w0 nh213 14 1siu> RO I A N R A

tion BUF (P3) .
* 0 0 Buffer address

12 374 5 6 778 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 3)

ption BSIZE (P4)

0 0 Buffer size
TT T T s T T R R T e T st s e ota

[¢]

o

[o]

QUEUE PURGE REQUEST

The format of the FPT for PURGE is:

word 0

* X'os! ¢———0 List id

[2 3"’1 5 & 8 ¢ 10 ||i|2 1314 157116 17 18 19;?0 2\2?23;7‘ 25 26 27728 29 30 3
word 1 .

[F

1j0 0(:{0—0
M B B RS A & N O 1) NI T AN T N R O R 1 T I T O A R I

where F1 = 1 means WAIT option specified.

option ECB (P1))
*|0 0 ECB address

st VAL R RO ARG T I R A R A L

M:QUEUE Function Parameter Tables (FPTS) 151

QUEUE LOCK REQUEST

The format of the FPT for LOCK is

word 0
* xwoc [0————0 DCB address
0 1 2 314 S 6 718 9 10 riliz 1 @ 17016 17 18 19V20°27 22 23124 25 26 27128 29 30 31
word |
P 3 F
0 ————— - - ————0}5/0—0| j0—0
0 v 2 304 5 & 708 9 10 17042 13 t4 15116 17 18 19120 21 22 23124 25 26 27128 2% 30 31
where
Fy ol means WAIT option specified,
Fg=1 means PAUSE option specified.

option ECB (P7)

o - —0 ECB address

0 1 2 314 5 6 718 § 10 13117 13 i4 '5(16 17 18 19120 21 22 23124 25 24 27V2R 29 30 31

LIST FORMATS
DEFINELIST OR STATS LIST

The format of the DEFINELIST or STATS list is:

Name| length Virtual byte address of criterioni

0 1 2 314 56 718 9 10 Nlv2 13 4 15016 17 18 19120 21 22 2-3124 52 7128 9 0 3
.

.

Virtual byte address of criterion,

0 1 2 314 5 6 718 9 10 1112 13 4 15116 17 1B 19120 21 22 23124 25 26 27128 29 30 31

Name,, length

The criterion is in TEXT format name-segments followed by
a flag byte. At least one period must appear in the criterion
name,

The flag byte has the format

F is set to one if failed entries are acceptable
(i.e., the system is to GET the transaction re-
gardless of whether or not it was successful).

D is set to one if the entry is to be destroyed after
it has been read.

152 List Formats

GET MESSAGE

The format of the GET message is:

word)
0 o 1% I Length of record (bytes)
1 for? :J‘.] 7'8 EEmm—TLT 23'24 3
1 (Unused by the queue manager))2
Length of entry text (bytes) L:'::: ::’:::;Y
1 Entry name b A
14
1 Entry text 1
where
Q indicates queued and is always set ta one.
F indicates failed, if set to one.

JI are journalization indicators. Although these
bits are kept in this status byte, the queue man-
ager does not use this information. The informa=
tion is stored here for use by other transaction
processors.

PUT LIST
The format of the PUT list is:

Virtual word address of entry

Flags
T T rrrm-mfrmrmmmm‘
.
1 i
Flags Virtual word address of entrys
TT IS 7 L} i 7

(See the

where the entries are in journal record format.
GET message, above, for this farmat.)

The first four bits of the flags field have the following
meaning:

Q-FF

0 0 - 1 Delete in-progress entry.

1 0 0 0 Insertan entry into the queue.

i 0 11 Mark an entry failed.

1 0 0 1 Putan in-progress entry back into the
queue.

1 0 1 0 |Inserta pre-failed entry into the queue.

/\ ’1 C:) o \r\w_,m@ﬁu}; 19

.
%
"

1y iy

The JI field contains journalizafion indicators. Although
these bits are kept in this status byte, the queue manager
does not use this information. The information is stored here
for use by the transaction processors.

M:QUEUE PROCEDURE OUTPUT PARAMETERS

SR1INFORMATION
UNLOCK: Transaction id returned in SR1

8-character hexadecimal transaction id
0 1 2 314 5 6 718 9% |6" 12 13 14 15116 17 19]9'”2\2223'24252617‘28293):"

' DEFINELIST: List-id returned in SR1

‘10 ojo 0| 4 digit hexadecimal list id

W OU—
0 1 2 374 5 6 7718 9 10 N2 13 1415116 17 18 19120 21 22 23724 25 26 27128 29 0 31

GET: Word displacement within the list to the criterion for
which an entry has been stored in the caller's buffer.
The format of the entry itself is given in the List For-
mats section.

. Displacement returned in SR1

! Word displacement

0 0 1 - X'FFFF'

0 v 2 314 5 6 718 9 10 N2 13 1415116 17 18 19120 21 22 23124 25 26 27128 29 30 31
. PUT: Word displacement within an erroneous list to the entry
in error. (The SR1 format is the same as for GET.) If
no errors occur, SR1 is meaningless.

STATS: The status of a queue entryand, optionally, a count
of such entries are returned in SR1

XXXX Entry count

|
T T Z 3T 56787 0N B R BT @ PH 2ol 5B oss on
where
Bit0=1 means entry queued,
Bit 1=1 . means reserved.
Bit 2=1 means entry in failed status.
“Bit3=1 means entry in progress, i.e., given to a

transaction processor.

ECB INFORMATION |

ECB completion codes for a queue request are:

x'or An entry has been placed in the caller's buf-
fer. (Posted on a GET request only.)

X'02' Normal return. For a GET request, an entry
is present. Request it again,

X'OF Abnormal return. (SR3 contains the abnormal
code,) .

CONDITION CODE SETTINGS

When the M:QUEUE procedure is performed, the following
condition code settings may result:

CCl CcC2 Status

0 0

Normal retumn,

Queue unavailable or request cannot
be satisfied. (Abnormal code is
in SR3.)

ECB wait is meaningful.

QUEUE ERROR CODES

Errors detected by the system Queue Manager result in
error notification to the caller or a user abort. The error
code for M:QUEUE CALs is X'BC'. The code is communi-
cated to the caller in SR3 and, if the ECB option is speci-
fied, in the ECB. The code is contained in byte 0 of SR3,
a subcode is contained in bits 8-14, and the content of the
FPT word 0, bits 15-31 is returned in the rightmost 17 bits
of SR3. Therefore SR3 may contain the dcb address, listloc
or listid depending upon the queue request. The error sub=
codes are listed in Table 46,

Table 46, M:QUEUE Error Subcodes -

Subcode Meaning

01 Illegal queue service requested
(e.g., an unlock is requested and
the queue is not locked or the
caller is not an authorized TP
user). The task is aborted.

02 An event not associated with the
queue has occurred for the user
(e.g., M:INT, abort, ESCape or
BREAK). :

03 Error return from get physical work
page (abort during unlock pro-
cessing only).

07 Queve saturated; i.e., index core
space or queue secondary storage
space is unavailable.

08 Queve lock or unlock caller does
not have the required privilege.
The task is aborted,

M:QUEUE Procedure Output Parameters 153

Table 46. M:QUEUE Error Subcodes (cont,)

Table 46, M:QUEUE Error Subcodes (cont.)

Subcode Meaning Subcode Meaning
09 DCB not open for a lock or unlock 14 Entry not found or a queue request
request, The task is aborted. requiring an existing entry.
0A IS.pace is not available to define a 15 I/O error during control/index
ist.
transfer for an unlock request.
10 Error in specified address, size, The task is aborted.
or queve message format.
16 I/O error during a data block
11 Queve locked. transfer,
12 Que.ue physical page space is not 17 Queve busy. X 7
available.
13 Error in the FPT parameters or the 20 Queve GET or PURGE request for
specified list. a non-existent GET list.

154

XA ¢ ARa

Q.

PR f,.,www.‘.m\ RS <20 WP T Wi

f

é% 3o 4D (f}*i‘

wrPa i e M by B OVRgy LAASD B

. Sy
WY P T r"‘thfu' S g x &, 8T

A S 2

+

e £ ; o e
‘

R T N L |

Py, . " A
P W A b Mol fT e

. . WAk Ty
e, b e Nl i

M:QUEUE Procedure Output Parameters

<, Q’k«w»‘_»*ﬂm» £

- 65 e
A'm Kep o wHoy

”£ Uiohs §le

T AZAAY,

%

Llrd A L ;g“ PRI T W -+

% -
20 T S TR NI A Y

. , ¢ _
AR RN g g";;
o ;
e o e e l.,,,u&-»-{ PR f"‘ft R R é‘
o el ’ -
L i& ; Tl BT LN 4

APPENDIX A. OPERATIONAL LABELS

Table A-1, Standard Operational Labels and
Default Device Assignments

Table A-2, Batch Assignment of Operational

Opera-

tional On-Line | Ghost

Label Batch Device Device Device

Cc Card reader Terminal | Operator's
console

ocC Operator's Terminal | Operator's

console console

LO Line printer Terminal Line printer

LL Line printer Terminal | Line printer

DO Line printer Terminal | Line printer

PO Card punch None Card punch

BO Card punch None Card punch

LI Card reader None Operafor's
console

SI Card reader Terminal | Operator's
console

BI Card reader None Operator's
console

SL Line printer Terminal | Line printer

SO Card punch None Card punch

Cl Card reader None Operator's
console

co Card punch None Card punch

AL Card punch None Card punch

El Card reader Terminal | Operator's
console

EO Card punch None Card punch

ucC Operator's Terminal | Operator's

console console

Labels
Device Oplabel
Line printer LO, LL, DO, SL, LP
Card reader C, LI, SI, BI, CI, EI, CR
Card punch PO, BO, SO, CO, AL,

Operator's console
9-track magnetic tape
7-track magnetic tape
Default tape

None

EQ, CP

OC, UC

T

7T

MT

NO, ME

Table A-3. On-Line Assignment of Operational

Labels

Device

Oplabel

User's terminal

Card punch

Line printer

9-track magnetic tape
7-track magnetic tape
Default tape

None

C, OC, LO, LL, DO, SI,

SL, EI, UC, ME, CR

Ccp

LP

o1

77T

MT

NO, PO, BO, LI, B, SO,
Cl, CO, AL, EO, PR, PP

Appendlx A

185

APPENDIX B. PHYSICAL DEVICE NAMES

A physical device name is indicated by yyndd.

where

yy specifies the type of device (see Table B-1),

n specifies the IOP letter for Sigma computers (see
Table B-2)or cluster/unit for the Xerox 560 (see

Table B-3).

dd specifies the device number (see Table B-4),

in hexadecimal.

Table B~1, Standard /O Device Type Codes

Table B-2, Sigma IOP Designation Codes

IOP
Letter (n) Unit Address
A 0
B 1
C 2
D 3
E 4
F 5
G 6
H 7

yy Device Type
7T 7-track magnetic tape
9T 9=-track magnetic tape
cp Card punch
CR Card reader
TY Typewriter
LP Line printer
DP Disk pack
DC Magnetic disk
ME CP=V terminal
RB Remote processing data set
controller
XP Optical characterv printer
. MO Message mode communica-
tions equipment
MC Remote assist terminal
e Qy’_qinfenqnc_g_cpnso‘le)

Table B-3. Xerox 560 Cluster/Unit Matrix

. Unit
Number ‘Cluster Number
' o 1 2 3 4 5 6
0 A B H N T 4 5
1 $ C I o v 0 6
2 # D J P v 1 7
3 @ E K Q w 2 8
4 F L R X 3 9
5 * G M S Y 4 J
6 * * * * * * *
7 * * * * %* * %*
*Reserved

Table B-4. Device Designation Codes

156 Appendix 8 .

Hexadecimal Device

Code (dd) Designation

00=<dd=7F Refers to a device number
(00 through 7F).

80 <dd =< FF Refers to a device controller

number (8 through F followed by
adevice number 9 through F).

APPENDIX C. CP-V SOFTWARE CHECK CODES

Table C-1, CP-V Software Check Codes

Code: 0Ff

Called From: SCHED, MM

Message : USERS — PAGE CHAIN INCONSISTENT

Registers: When called from SCHED:

RO = 0 if circular orunlinked chain; otherwise, the Link number index in chain.
R1 =~ Link register.

R2 = Next page chain link. .

R4 - User being scheduled.’

R7 = Address of Chain Head, Tail, and Count Table.

SR4 - Offending page number.

When called from MM (T:XPGVI):

R1 = Zero.

R3 - Physical page number.

R7 - Virtual page number.

Remarks: The requested virtual page in the user virtual map chain (JB:LMAP) can't be found. See T:PGCHK
in SCHED, Effective when SS1 set.

Code: 02

Called From: SCHED

Message: REPORTED EVENT INCONSISTENT WITH USER'S CURRENT STATE

Registers: R3 =~ Previous state.

R4 - User number (T:RE, T:RCE).
R5 - User number (T:RUE).

R6 =~ Event number.

R7 = Line number (T:RCE).

SR4 - Return address for reschedule.

Remarks: The contents of R3 through R7 are dependent upon the called entry point, If R4 = 5:CU, the call
was T:RE, If R7 is the line number of the user in R4, the call was T:RCE. If R4 = R5, the entry
is T:RUE.

Code: OAl

Called From: DPSIO, TSIO

Message: OPCODE IN SWAP COMMAND CHAIN IS INVALID

Registers: Case 1, command list security checks — 554 set:

R1 - Incorrect command list order code if not equal to R3.
R2 = Incorrect command list entry address (10CD).

R3 Order code of first IOCD in command list.

R4 - Swap device index.

R6 Command list beginning address.

R7 = Swapper function code.

Appendix C

157

Table C-1, CP-V Software Check Codes (cont.)

Case 2, Unrecoverable read error during inswap:

R1 - Inswap user number.
R7 - DCT index.
SR1 - Incorrect command list entry address (IOCD).

D1 = Order code.

Called From:

Message:

Registers:

Remarks:

Code: 0B
~ Called From: DPSIO, TSIO
Message: INCORRECT ORDER CODE IN SWAP COMMAND LIST
Registers: R1 - Incorrect order code; not seek.
R2-R7 - See case 1 of screech code 0A above,
Remarks: 554 must be on for check.
Code: 0C
Called From: DPSIO, TSIO
Message: ATTEMPT TO SWAP MONITOR'S MEMORY
Registers: R1 Buffer address.
R2-R7 - See case 1 of screech code 0A above.
Remarks: $54 must be on for check.
Code: : 0D
Called From: TSIO
Message: HALT FLAGS MISSING IN SWAP COMMAND LIST
Registers: RO FLAGS byte from TIC command,
R1 TIC order code.
R2-R7 - See case 1 of screech code OA above.
Remarks: $S4 must be set to check. FLAGS must not have command chaining set and must have interrupt-on=—
zero-byte~counter or channel -end set.
Code: OF

TSIO

I/O REQUEST WITH NULL COMMAND LIST
R4 =~ Swap device index.

R6 - Command list beginning address.

R7 =~ Swapper function code.

Not checked for pack-only swappers.

158

Appendix C

Table C-1. CP-V Software Check Codes (cont.)

Code: OF

Called From:

DPSIO, TSIO

Called From:

Message: INPUT FUNCTION CODE IS INVALID
‘Registers: R2 - Swapper function code.
D4 - X'OF'.
Remarks: SS4 must be on to check. Function code not between one and five exclusively.
Code: 10

COC, ECBBLK

Message: BAD COC BUF POOL, OR BAD BUF ADR ON RELEASE REQUEST
Registers: R2 - Logical line number.
R4 - Buffer address.
Ré =~ Return address from buffer return call.
Remarks: 1. On a COC buffer release, an invalid relative buffer address was specified (address 15 or
HRBA*4 + 15),
2. On a COC buffer GET or RELEASE, an invalid relative buffer address was found in the free
pool chain, If the COC module was assembled with the COCGBUG and COCPBUG flags set
(normally they're not), and sense switch 4 is set, the entire free pool chain is checked on each
PUT and GET operation. (The R4 and R6 contents listed above are valid only at entry and exit
times.)
Code: '
Called From: cocC

Message: INVALID INTERNAL CONTROL CODE TRANSLATE REQUEST
Registers: R1 -~ DCB address.
R2 -~ Line number.
R5 - Character.
R7 - Byte address of user buffer.
SR2 - Return address.
SR3 - Output translation table address.
Remarks: The cause is a translate table error (e.g., 2741 N/L on non-2741 line), or a bad input buffer chain,
R1, R7, and SR4 are not always set.
Code: 12
Called From: COC
Message: COC —BAD INPUT BUF LINKAGE ON RELEASE REQUEST
Registers: RO ~ Removal point,
R1 - DCB address.
R2 - Line number,
R3 - COC number,
R4 - Current release point,.

SR3 - Output translate table address,

Appendix C

159

Table C-1. CP-V Software Check Codes (cont.)

SR4 - Caller's return; RTN + 1 = activation,
D3 - Return address.

Remarks: The COC input buffers are being released, and there is a conflict between the insertion and removal
points and the chain. RO, R1, R3, and R4 are not always set,
Code: 13
Called From: cocC
Message: COC - OUTPUT BUF LINKAGE OR CHARACTER COUNT BAD
Registers: R1 - DCB address.
R2 - Line number.
R3 - COC number.
R4 - Removal point (usually negative).
R5 =~ Character.
SR4 - Output count; usually = ~1,
Remarks: The output count and buffers are inconsistent. This may be caused by extended interrupt pulse or
clobbered COC tables —usually COCOC, COCOI, or COCOR. R1 is not always set.
Code: M
Called From: THEUNCOC
Message : COC ROUTINE CALLED IN NON-COC SYSTEM
Registers: SR2 ~ BAL adr if 14-03.
SR4 - BAL adr if 14-01 or 14-02,
D4 ~ BAL adr if 14-04,
Remarks: . The subcode indicates which routine was called:
14-01 COCIO
14-02 COCOFF
14-03 COCSENDX
14-04 ECHOCR2
Code: 17
Called From: 10Q
Message : INVALID DISK ADDRESS PASSED FOR AN I/O INSTRUCTION
Registers: R1 - IOQ7,R3 =DCTX=0.
R2 - DCB address.
R3 ~ Queve index,
SR1 - Seek address from CDA, R2.
D4 - X'17'.
Remarks: Caused by an invalid DCT index, R2 and SR1 are not always set. If the invalid address is on a RAD

or disk, DSCVT will have been called and R2 and SR1 will be set,

160

Appendix C

Table C-1. CP-V Software Check Codes (cont.)

Code: 19!
Called From: BUFF
Message: INVALID BUFFER ADDRESS PASSED FOR RELEASE
Registers: R1 =~ Index to BUFLIMS,
R2 - Head of respective buffer pool.
RS = JIT address.
SR4 - Link return address.
D3 - Buffer address.
D4 - X"19'.
Remarks: Occurs both on releasing and acquiring buffers of most types (CPOOL, SPOOL, and MPOOL).
Code: 1A
Called From: CLS
Message: ACCOUNT DIRECTORY INACCESSIBLE
Registers: -
Remarks: The account directory is bad and the monitor is unable to reconstruct it. All files are lost,
Code: 1B
Called From: Swapper
Message: USERS PAGE CHAIN NON ZERO AT SWAP COMPLETION
Registers: R1 =~ Inswap user number (S:ISUN).
R2 - Physical byte address of JIT.
R3 - UB:US, 1 (user state).
R4 - Physical page head.
R5 = Physical page tail.
R6 = Physical page count.
SR4 - Count of swapper free page chain (S:FPPC).
Remarks: Swappers' free page pool must be nonzero at end of inswap. S$:FPPH, S:FPPT contain head and tail
of pages just allocated to the inswap user.
Code: 1D
Called From T:0OV
Message: REQUESTED OVERLAY NUMBER IS OUT OF RANGE
Registers: R2 - Overlay name. ‘
R3 =~ Overlay name.
R4 - 0. i
D4 - X'ID'. :
Remarks: Requested monitor overlay is not in shared processor table. "

Appendix C

161

Table C-1. CP-V Software Check Codes (cont.)

Code: t1F
Called From: SWAPPER
Message: NOT ENOUGH PAGES TO PERFORM THIS SWAP
Registers: R3 - Page to release.
SRT1 - Deficient page count,
Code: 21
Called From: MM
Message: ATTEMPT TO SET ACCESS CONTROLS ON NON-EXISTENT VIRTUAL PAGE
Registers: Ré - Number of pages to set.
R7 - Virtual page number.
SR4 - Link register,
'Code: 22
Called From: PV
Message: PRIVATE VOLUME ALLOCATION ERROR
Registers: R2 -~ SN count.
R3 - DCB volume number.
R4 =~ SYSID (0 = EXCLusive use).
R6 - DCB address.
SR4- - Return address.
D2 - DCB:SNT.
D4 - X'22.
Remarks: Error in allocation. The specified entry in AVRTAB is not found or has bad flags.
Code: 23
Called -From: CSE57, CSE5%, CSEX560, CSECOM
Message: INVALID ENTRY TO CSE HANDLERS
Registers: -
Remarks: Entry was made toan unused slot of the CSE branch vector for this machine.
Code: 24
Called From: CSEHAND
Message: INSTRUCTION EXCEPTION TRAP IN MASTER MODE
Registers: -
Remarks: A trap X'4D' occurred while in the master mode. A slave mode trap causes a normal user job step

abort, All relevant information is in the in=core error log buffer.

162

Appendix C

Table C-1, CP-V Software Check Codes (cont,)

Code: 25

Called From:

CSEHAND

Message: UNRECOVERABLE WATCHDOG TIMER TRAP

Registers: -

Remarks: Sigma 9 and Xerox 560 systems will atempt recovery from watchdog timer traps resulting from 1/O
instructions without screeching. All relevant information is in the in~core error log buffer.

Code: 26

Called From: =~ CSEHAND

Message: CSE TRAP DURING MFI, PFI HANDLING

Registers: -

Remarks: During MFI handling on a Sigma 9 or during MFI or PFI handling on a Xerox 560, a CSE trap (X'46',
X'4C', X'4D') occurred. All relevant information is in the in-core error log buffer.

Code: 27

Called From: CSEHAND

Message : PROCESSOR FAULT INTERRUPT

Registers: -

Remarks: A processor fault interrupt occurred for which continued operation is unlikely. All relevant infor-
mation is in the in-core error log buffer. (Xerox 560 systems only.)

Code: 28

Called From:

CSEHAND

Message:: MEMORY PARITY ERROR — MEMORY ALTERED

Registers: -

Remarks: A memory parity error correction caused memory to be altered. Continuation without recovery is not
possible. Caused by interrupt X'56' on Sigma 6 or 7 or trap X'4C' in Sigma ? or Xerox 560. All
relevant information is in the in-core error log buffer,

Code: 128-00

Called From:
Message:
Registers:

Remarks:

CSEHAND
TRAP 4C — BUS CHECK FAULT

A Sigma 9 bus check fault or a Xerox 560 miscellaneous trap X'4C' occurred while in the master
mode. All relevant information is in the in—-core error log buffer,

Appendix C

163

Table C-1. CP-V Software Check Codes (cont.)

Code: 29-01
Called From: CSEHAND
Message: TRAP 4C — MAP PARITY ERROR
Registers: -
Remarks: A map register parity error occurred on a Sigma 9 or Xerox 560 while in the master mode. All rel~
evant information is in the in-core error log buffer.
Code: '29-02
Called From: CSEHAND
Message: TRAP 4C — REGISTER BLOCK PARITY ERROR
Registers: -
Remarks: A register block parity error occurred on the Xerox 560 while in the master mode. All relevant in-
formation is in the in-core error log buffer.
Code: 29-03
Called From: CSEHAND
Message: TRAP 4C — WRITELOCK REGISTER PARITY ERROR
Registers: -
Remarks: A write lock register parity error occurred on the Xerox 560 while in the master mode, All relevant
information is in the in-core error log buffer.
Code: 12C-00
Called From: ADD
Message: BATCH SCHEDULING ERROR — MBS/CCI ERROR
Registers: R1T = (5:CUN) current user number.
R2 =~ Device type.
R3 =~ Context block address.
R5 - 0.
R6 = User's DCB address (M:C).
SR2 - OPNLD + .14,
SR3 - Context block address.
SR4 - OPNLD + .40. ®.
D1 - BA(OPNLD + .1E7) + .28.
D2 -~ BA(CONTXT BLK + SCFQARGS) + .28.
D3 =~ Device type mnemonic text.
Remarks: Register contents significantly different from above indicate the monitor wandered into GETI in ADD.

Otherwise, a batch user has been created and has read a card before MBS selected him to be run,
Actually all recorded 2C's have been CCI attempting to start a second job, Problem is either CCI
read past FIN or a MBS/GETI communication problem (e.g., GIB:UN clobbered).

164

Appendix C

Table C-1, CP-V Software Check Codes (cont,)

Code: .2D-00

Called From:

COOP

Message: COOPERATIVE BUFFER MANAGEMENT ERROR
Registers: R1 = BUFLIMS index for screech code 19.

R2 - .BCI1I1.

R3 - Context block.

SR4 - COOP + .18D.

D3 - 0.

Remarks: At context block initialization a buffer was allocated for the context block. This buffer has been
lost through core clobbering or mismanagement of a buffer chain. The particular user cannot
continue.

Code: ZD-QI

Called From: COOQOP

Message: SYMBIONT/COOP FILE DEVICE INACCESSIBLE
Registers: RO - COOP+ .19B.
R1 = Context block physical address.
R4 - (DCT3(DCTX)) will appear in the format XX1X XXXX,
SR4 - COOP + .15C.
DV - .XXFF0300 + DCTX (X means could be any value).
D2 - BA(COOP BUFFER).
D3 - .400.
D4 - Disk address.

Remarks: The symbiont/coop file device containing this user's file is down, If there are many file devices for
symbiont/coop only, this user should be aborted. If only one symbiont/coop file device exists, it is
pointless to run the system with that device down.

Code: 2D-02

Called From:

coorp

Message: USERS COOP CONTEXT BLOCK CHAIN LOST
Registers: R1 = BUFLIMS index for screech code 19.
R2 - .BCI0.
SR2 - OPNLD +.137.
SR4 - OPNLD + .139.
D3 - 0.
Remarks: Similar to 2D-00 but detected at context block open time. Particularly alarming because this check
immediately follows the code which allocates context blocks.
Code: (2D-03
Called From: SACT
Message: COOP CONTEXT BLOCK POINTERS CLOBBERED

Appendix C

165

Table C-1. CP-V Software Check Codes (cont.)

Register: R3 - 0.
Ré - User DCB address,
SR1 - FCN in leftmost 8 bits; DCB address in rightmost 24 bits.
SR4 - Exit from COOP,

Remarks: Either J:USCDX or context block O (special pointers) were clobbered.

Code: 2D-04

Called From: SUPCLS

Message: COOP DATA BUFFERS MISALLOCATED

;'Regisfers: D3 - Buffer being released, including spare buffer index in byte 0.

R5 =~ Context block 0 address and DBPOOL which is the address of the free context buffer list.
R2 =~ SV:LSIZ.
SR4 - Return address to caller of RCBUFF.

Remarks: An attempt was made to release a COOP data buffer when the free data buffer pool was full. Either
the free data buffer pool has been clobbered or too many buffers have been allocated meaning some
other COOP data area has been clobbered.

Code: 2E

Called From: RDF

Message: POOL BUFFERS LOST ~NONE ALLOCATED CURRENTLY

Registers: SR3 - DCB address for which buffer is needed.

D4 - X'2E',

Remarks: An attempt was made to get an IPOOL or FPOOL buffer, but none were in the free pool and no
open DCB had any. Probably either the DCB chain has been clobbered or one or more DCBs have
been clobbered.

Code: 2E-01

Called From: RA

Message: INCONSISTENCY IN READ-AHEAD TABLES

Registers: R12 - Disk address.

Remarks: An attempt was made to add an AIR block to the tables when it was already there.

Code: 30

Called From: PFSR

Message: UNBALANCED POWER ON/POWER OFF INTERRUPT PAIRS

Registers: -

Remarks: Unbalanced power on/power off interrupt pairs, more of one than another (usually power on, or else

system would hang in wait; i.e., B $-1).

166

Appendix C

Table C-1, CP-V Software Check Codes (cont.)

Code: 31

Called From: GERM

Message: INVALID RESOURCE TYPE

Registers: SR4 - ADDRESS + 1 where discovered,

Remarks: Invalid resource type found,

Code: 32-00

Called From: 10Q

Message: DCB DOESN'T CONTAIN A VALID DCT INDEX

Registers: R2 - Address of DCB.

Remarks: The DCT index is not present in DCB.

Code: 34-00

Called From: TPQ1

Message: TRANSACTION PROCESSING FAILURE

Registers: -

Remarks: The System Queue Manager for transaction processing has discovered an unrecoverable state while

processing transactions,

Code: #4101

Called From: RTROOT

Message: FAILED TO FIND USER'S STATE (M:INTSTAT)

Registers: R2 - Address of ICB being checked.

Remarks: Probably results from a state having been added to SCHED without updating the four masks used by

the M:INTSTAT routine (WAIT:MASK, EXU:MASK, IOWAIT:MASK, BLCKD:MASK).

Code: 41101
Called From: ~ RTNR

Message: BAD IOEX CALL TO NEWQ

'Registers: Set for BALR, 11 NEWQNW.

Remarks: NEWQNW returned to BAL + 1.

Appendix C

167

Table C=1. CP-V Software Check Codes (cont.)

Code: 4111

Called From: RTNR

Message: UNABLE TO RETURN PRE-EMPTED DEVICE

Registers: -

Remarks: RTNR's call to RMAQV was invalid.

Code: 43-01

Called From: CLOCK4

Message : NO ICBS CHAINED INTO RTICBCLKHDR

Registers: -

Remarks: This is probably caused by overwriting lowcore.

Code: 43-02

Called From: CLOCK4

Message: ICBCLK FIELD OF ICB NEGATIVE

Registers: R2 - Address of bad ICB.
R10 - Current timer increment.

Remarks: The ICBCLK field of an ICB should never go negative.

Code: 43-03

Called From: RTNR, CLOCK4

Message: NO BACK-LINK FOUND IN DE-CHAINED ICB

Registers: R2 - Current ICB (the one being de-chained),
R4 - Forward link (next ICB in chain).

Remarks: A back-link of ze;o implies that the current ICB is SYSICBI1 (the T-second CLOCK3'ICB). This ICB
should never be de-chained (i.e., de-activated).

Code: 46-21

Called From: PV

Message: PRIVATE VOLUME LOGIC INCONSISTENCY

Registers: SR4 - Address where error was detected.

Remarks: Numerous modules call PVERR.

168 Appendix C

Table C-1. CP-V Software Check Codes (cont,)

Code: |49

Called From: TYPR

Message: RESOURCE PREALLOCATION INCONSISTENT WITH REQUESTS

Registers: R3 - 0.

R3 - Reel number. |
D4 - X'49'.

Remarks: The user was preallocated the resource (according to his job context), but when the system got to
the point of actual allocation, it found that none of that resource was available. Either the job
context specifying preallocation is damaged or the system context recording actual allocation is
damaged,

Code: 581

Called From: MOCIOP

Message: UNABLE TO RELEASE PHYSICAL WORK PAGE

Registers: The registers at the time of the trap.

Remarks: Originates in the MOCIOP module when unable to release a physical work page locked in core
during transaction processing I/O on a message—oriented controller (e.g., 7605).

Code: 60-00

Called From: TEL

Message: TEL ISSUED SINGLE USER ABORT ON YOU

Registers: R15 - Subcode.

Remarks: The user already has SBUF1 at entry to TEL. This software check indicates a problem in memory
management of physical pool pages.

Code: 80-01

Called From: TEL

Message: TEL ISSUED SINGLE USER ABORT ON YOU

Registers: -

Remarks: TEL failed to get SBUF2 to read the assign/merge record. This software check indicates a problem
in memory management of pool pages.

Code: $60-82

Called From: TEL

Message: TEL ISSUED SINGLE USER ABORT ON YOU

Registers: -

Remarks: TEL failed to get SBUF2 for a GET. This is essentially the same as software check 60-01 (failed to

get SBUF2 for READAM). A TEL logic problem or memory management failure is indicated.

Appendix C

Table C-1. CP-V Software Check Codes (cont,)

Code: 60-03

Called From: TEL

Message: TEL ISSUED SINGLE USER ABORT ON YOU

Registers: SR4 - Contents of AM:LNK.

Remarks: The assign/merge record is inconsistent with a user in the command file mode. AM:LNK (in the
assign/merge record) should always point past the command file information, and it doesn't.

Code: 60-04

Called From: TEL

Message: TEL ISSUED SINGLE USER ABORT ON YOU

Registers: SR2 - The virtual page address through which TEL was trying to SAD (M:CVM).

Remarks: This software check indicates a problem in memory management or a logic problem in TEL which

caused the user's map to be left "dirty" from a previous SAD (M:CVM),

Code: 61— (TRAP Cell)

Called From: INITRCWR

Message: TEL OR CCI HAS TRAPPED

Registers: Registers at time of trap.

Remarks: The trap occurred while operating mapped, slave, and with TEL-in-control set. The subcode is
the trap location.

Code: 62

Called From: SCHED

Message: USER PROGRAM TOO LARGE FOR PHYSICAL MEMORY

Registers: RO - Pages freed.
R4 - Inswap user (S:ISUN).

Remarks: RO > SL:CORE. User got swapped out but now can't fit back in. Pages may be released but not re-
ported. The JIT in-core flag = 0. (UH:FLG X'200'.)

Code: 63

Called From: DPSIO

Message: INSUFFICIENT INFORMATION AV AILABLE TO SWAP THIS USER

Registers: R2 - 1OCD.
R6 - Command list address.
R7 - Function code.
D4 - X'63'.

Remarks: Insufficient data to compute function, follow~on function code invalid, or flags not set properly.

(Disk pack-only swappers.)

170

Appendix C

Table C-1. CP-V Software Chzck Codes (cont,)

Code: BA
Called From: MM
Message: ATTEMPT TO RELEASE VIA M:CVM FROM USER W/O PROPER PRIVILEGE
Reglsters: R1 - X'80'.
R5 - Address of top of dynamic data or bottom of command .
R6 - Number of pages to release.
R7 = Virtual page number.
SR1 = Number of pages released.
SR2 - First page to release.
SR3 - Increment or decrement to next page.
SR4 - Link.
D1 - CC.
D2 - CC mask.
Remarks: Virtual page outside of user's area (BUP-EUP) was obtained by an M:CVM CAL, but the user lacks
required privilege (X'80') to release It,
Code: BB
Called From: MM
Messages: ERROR IN SPARE BUFFER TABLES
Registers: R11 - Address in buffer subroutine within MM (T:GBUF, T:RBUF, etc.) which detected the error.
Remarks: Usually due to bad input from the calling routine.
Code: BB
Called From: SWAPPER
Message: ERROR IN SPARE BUFFER TABLES
Registers: R6 - BA (window page).
R14 - Physical page assigned to window,
Remarks: Page mapped into window is hot contained in the spare buffer pool.
Code: 78
Called From: MPSCHED
Message: SLAVE CPU INITIATED RECOVERY
Registers: R15 - Contents of S:SCRCH (specifying cause of screech in slave).
Remarks: Some significant problem was detected by a slave CPU which can be corrected only by a full system
recovery (e.g., a trap with no assigned current user),
Code: 79
Called From: ENTRY
Message: MONITOR COMMITTED A STACK TRAP

Appendix C

171

Table C-1. CP-V Software Check Codes (cont.)

Registers: Registers at time of trap.
Remarks: Master bit on in PSD, overflow, underflow, or painter to stack lost,
Code: 79-01
Called From: T:0V
Message: MONITOR STACK TRAP
Registers: Registers at time of trap.
Remarks: OSTACK overflow.
Code: 7C
Called From: ALTCP
Message: ALTCP CALLED TO SERVICE A CAL THAT DOESN'T BELONG TO ALTCP
Registers: R3 =~ Register field of CAL.

R6 - First word PLIST.

R7 = Address of PLIST + 1.

SR1 - Code.

SR4 - Exit address (usually TRAPEXIT).
Remarks: A CAL1, 1 or CAL1, 2 was passed to ALTCP but should have been handled by CALPROC.

Code: 7E — (TRAP Cell)

Called From: INITRCVR

Message: MONITOR HAS TRAPPED

Registers: Registers at time of trap.

Remarks: Subzode is trap location. For traps that occur at locations less than X'8000' (JOVVPA), the 15 cells
preceding the trap location and the trap location are stored in the monitor JIT at X'8DFO' — X'8DFF'.

Code: 87

Called From:

ALLYCAT

Message: ALLOCATION BUFFERS CONTAIN INVALID WORD -COUNT
Registers: R1 = Stack number,
R2 - Stack count.
Remarks: Either low core has been clobbered or someone has changed ALLYCAT's in~core data.
Code: 88
Called From: SCHED
Message: ALLYCAT CLOBBERED ONE OF THE ALLOCATION BUFFERS

172

Appendix C

Table C-1, CP-V Software Check Codes (cont,)

Registers: RT - Stack index,
R3 - Stack count,
i
% Remarks: ALLOCAT end-action has discovered a discrepancy in the granule/cylinder stacks.
]
] v T
| Code: 89-00
;
{ Called From: ALLYCAT
; Message: ALLYCAT'S HGP CHAIN CLOBBERED
! Registers: R7 ~ Invalid HGP chain address.
% R9 - ALLOCAT internal link register.
E Remarks: ALLOCAT data (HGPs and TABLES) has been destroyed.
; Code: 89-10
|
i Calied From: ALLYCAT
Message : DATA CHECKSUM ERROR
Registers: None .
Remarks: ALLOCAT data (HGPs and TABLES) has been destroyed.
Code: 93
Called From: DPSIO, TSIO
Message: TDV COMMAND ADDRESS DOESN'T POINT TO COMMAND LIST
Registers: RT -0.
SR1 - Command list address from TDV.
SR2 ~ TDV status.
D2 - Command list pointer (S:BECL,R1).
Remarks: 1OP/memory failure; extraneous entry to TSIO/DPSIO not generated within CLIST.
Code: 94
Called From: DPSIO, TSIO
Message: COMMAND LIST CLOBBERED DURING WRITE CHECK
Registers: SR1 - Incorrect command list entry address.
SR2 ~ TDV status.
R12 = Order code from incorrect command list entry.
Remarks: Can't find seek or TIC within next five command list entries following error entry on write or write
check.
Code: 9§
Called From: DPSIO, TSIO
Message: UNRECOVERABLE 1/O ERROR READING USER'S JIT

Appendix C

173

Table C~1, CP-V Software Check Codes (cont.)

Registers: R1 - Inswap user number (S:ISUN).
R7 - DCT index.
SR1 - Command list address from TDV status.
SR2 - TDV status.

Code: 96

Called From: DPSIO, TSIO

Message: UNRECOVERABLE 1/0O ERROR READING SHARED PROCESSOR
Registers: R1 - Inswap user number (S:ISUN).

R7 - DCT index.

SR1 -~ Command list address from TDV status.

SR2 - TDV status.

174 Appendix C

APPENDIX D. XEROX 560 REMOTE ASSIST STATION

INTRODUCTION

The Remote Assist Station (RAS) and the associated routines
comprise the CP-V interface for on-line remote assistance
for both software and hardware analysts, This facility pro-
vides an on-line connection to the operating system without
requiring the use of any of the normal communications
equipment. The RAS user has access to ELLA for listing and
analyzing the contents of the system error log file (ERRFILE)
and to ANLZ and Delta for examining crash dumps and the
running monitor.

HARDWARE INTERFACE

The Remote Assist Station may be any ASCII terminal cap-
able of connecting to the provided data set (Bell 103A or
its equivalent). The data set is connected to the Remote
Channel Interface of the System Control Processor. (See
the Xerox 560 Computer Reference Manual, 90 30 76.)
To use the interface on-line, the REMOTE CHANNEL
switch on the Xerox 560 System Control Panel must be in
the I/O position. This connects the remote channel to
address X'0B' on the MIOP in cluster zero, through which |
the CP-V interface communicates. This address must be
SYSGENed as the Maintenance Control (MC) device. The
hardware performs character translation from ASCII to
EBCDIC (ond vice versa) to make the terminal appear as
an EBCDIC device. The translation tables are depicted in
Table D-1. The left side of the table shows standard ASCII
characters. The corresponding entries in the right side of
the table show EBCDIC translation.

SOFTWARE INTERFACE

CP-V provides an on-line communications interface enab-
ling the remote analyst to log onto the Maintenance Console
much as if he were connected to a COC terminal line. The
interface is initiated at the Operator's Console (OC) by a
special form of the GJOB key-in after the RAS is connected
to the dial-up modem:

1GJOB LOGON,MC

This key=in causes LOGON to print a salutation to the MC
resource requesting the RAS user to enter his account and
name. The RAS user must be explicitly authorized via Super
to use the MC resource. The following is an example of
such a Super authorization:

-C RAS, ASSISTANCE ®

--O$PR=A0 @, (required for running diagnostic
programs)
--OMMC=1@® (authorizes on-line use of the MC

resource)

--OM9T=1 (required for mounting tape dumps)

—-®
-END ®

LOGON verifies the OMMC authorization before it ac-
cepts the account and name, and will not allow the user to
log on if he does not have this resource authorization.

If the user's account and name are accepted, the user is
logged on as a non-COC on-line user and LOGON exits to
TEL which issues a prompt for input (!).

PROCESSOR RESTRICTIONS

The MC authorization causes a :PROCS entry to be created
for the RAS user which restricts him to the following list
of processors:

ANLZ
Delta
ELLA

No other processors or programs are allowed at the RAS.
Except for these processor restrictions, TEL will accept most
of its commands (e.g., SET, PRINT, MESSAGE, QUIT,
GO). However, commands regarding terminal type and
status will be ignored.

COMMUNICATIONS RESTRICTIONS

~

The communications link to RAS uses a small resident
handler in conjunction with the hardwired micro-coded
controller to provide a terminal interface. Due to the
limitations of the hardware and size restrictions on the
software handler, some compromises have been made. The
following list outlines the major characteristics of the com-
munications interface:

1. The MC device is a message mode device, requiring
either LINE FEED, RETURN, CONTROL X, or CON-
TROL H to end each input. LINE FEED and RETURN
generate an X'15' (NL) character. CONTROL X and
CONTROL H generate an X'08' (EOM) character which
is used to cancel an input line so that the line may be
retyped.

2, Although the RAS terminal is connected in full-duplex,
the MC device operates in half-duplex, echoplex
mode, allowing I/O transfer a line at a time in only
one direction. When a read is pending, characters
typed will be echoed to the print mechanism of the

Appendix D 175

Table D-1. ASCII to EBCDIC Transiate Table
AsCll EBCDIC
0 1 2 3 7 0 1 3 5 6 7
NUL DLE SP ® £
0 {NUL|DLE] SP | © p | O 00 10 4 FO D7 4A D7
SOH oCt ! RO’
1 DCI]
SOH C ! 1 q 01 n 5A Fi Cl D8 Cl DB
)) STX DC2 " B
2 pc2|
STX | be ’ 02 12 7F F2 c2 D9 c2 D9
, ETX DC3 # c
3 J|ETX | DC3 3 s 3 03 13 78 F3 C3 E2 c3 E2
EOT DC4 $ D
4 |EOT | DC4) 8 | 4 L 04 14 58 F4 c4 £3 c4 E3
ENQ NAK % E
oy
5 |ENQ| NAK[% | 5 v |5 09 0A 6C E5 cs E4 c5 £4
® SYN & F
6 |ACK | SYNi & | 6 v|oe 16 50 Fé c6 E5 cé E5
, BEL ETB ' G
7 |BEL | ETB 7 wi? 07 17 70 F7 <7 E6 c7 £6
(H
8 |[BS | CAN| (8 x | 8 @ ® 4D F8 cs £7 cs E7
HT EM) 1
9 [HT [EmM |) | 9 y | ¢ 05 19 5D F9 c9 £8 c9 E8
" NL suB * J
Al | susg ¢ z A 15 1A 5C 7A D1 E9 D1 E9
vT ESC + K
B (VI |Esc| + | ; { |8 08 LB 4 5E D2 4 D2 B2
FF FS > L
]
C |FF [Fs |, | < I oc 1c 68 4C D3 4A D3 4
NL GS - M
D |{R |Gs | - | = b] o 15 1D 6D 7€ D4 5F D4 B3
e} RS . N
E [so |&s > ~ | ¢ OF 3 4 : D5 6A D5 5F
sI us / o
Foqst Jus | / | 2 DLE| F oF IF 61 6F D6 6D D6 4A
Notes: @Used by Diablo Centaur terminal EOT/ACK protocol.
@Used to cancel line, echoes as ~—@ @ and reissues read unless Delta is in control in which case is input as OA (LF).
@ Causes previously typed character to be ignored (Rubout character),
@ Lower case input is echoed lower case, but translated to upper case for program input,

176 Appendix D

terminal. If a read is not pending, characters typed
are not echoed and are ignored.

The BREAK key may be depressed at any time to in-
dicate a BREAK signal. The MC handler causes a
BREAK event to be issued for the user and counts suc-
cessive BREAKs. If the user issues four successive
BREAKs, the handler causes a CONTROL Y event
(i.e., an escape to TEL). The BREAK key cancels any
current 1/O operation to the terminal.

In order to detect line drop or disconnect, input re-
quests will time out in three minutes and output mes-
sages will time out in 20 seconds. A failure to respond
to a read within three minutes causes the RAS user to
be logged off.

Records output to the RAS terminal have a maximum
size restriction of 140 bytes. Trailing blanks in an
output record are suppressed by the MC handler. Rec-
ords output through DCBs other than M:UC have a
RETURN/LINE FEED appended to them, Records writ-
ten through M:UC must contain their own carriage
control characters.

The MC handler does not simulate tabs nor does it
affect pagination.

10,

Individual characters may be erased on input by typing
@ characters for each character to be erased (e. g.,
'ANE@LZ' results in 'ANLZ'). Complete lines may
be erased by ending the line with CONTROL X or
CONTROL H which causes the handler to echo

®©®
and to reissue the read that was in operation.

End-of-file condition is set upon receipt of the three
character sequence CONTROL F @),

Lower case letters are echoed in lower case but are in-
put to the program as upper case.

When Delta issues a read, special action takes
place by the handler to simulate the Delta activa-
tion character set. Special Activation characters
(CONTROL I,) = /) should be immediately fol-
lowed by a RETURN or LINE FEED. For commands
which usually end with a RETURN, either a RETURN
or a LINE FEED is valid. Commands which normally
end in LINE FEED should be ended with CONTROL X
or CONTROL H. Line erasure is effected by ending
the line of input with ? RETURN.

Appendix D 177

APPENDIX E.

ERRFILE is a keyed file built and updated by ERR:FIL for
use by diagnostic programs. The file contains one record
for each error entry in the file created by ERRLOG.

The keys for this file contain the Julian date in packed
decimal, the time of the error in EBCDIC, and a sequence
number for errors with the same time tag. This sequence

number is reset to zero for each entry with a newtime tag.

The format of the key is

ERRFILE FORMATS

yyOddd is the Julian date in packed decimal.
hhmm is the time (hours and minutes) in EBCDIC.

n is the sequence number.

The first record of ERRFILE is the key of the last record in
ERRFILE and has a key of zero.

08 Yy 0d dd

h h m m

n

where

08 is the number of bytes in the key.

While copying records into ERRFILE, consistency and error
checks are made on the input data. If any errors or in-
consistencies are found, "copy error" records are written
and a "copy error" counter in the summary record is in=
cremented. The error and consistency checks, recovery
actions taken, and the format of the copy error records are
described below. The terminology used in the error record
formats is defined in Table E-1.

Table E-1. Error Record Terminology

Term Meaning
Account The doubleword used to identify a user's collection of files.
AIO CC A 4-bit field representing the condition codes as returned by the hardware
in response to an AIO instruction.
AIO Status A 16-bit field representing the status as returned by the hardware in response

Alternate 1/0O Address

Bytes Remaining
Consecutive, Keyed, Random
Count of Entries Identical to
Previous Entry

Count of Entries Lost

Current Command Doubleword

CPU Address

to an AIO instruction.

A 16-bit value representing an alternate physical 1/O address by which a
dual-access device can be referenced.

A 16-bit field representing the Remaining Byte Count (RBC) field as returned
by the hardware in response to a TDV instruction.

Methods of organizing user files in CP-V (refer to the CP-V/BP Reference
Manual, 90 17 64).

The number of error log records which are identical to one prevnously logged
for identical reasons (excludes time records).

The number of error log records lost when logging becomes temporarily im-~
possible for any reason.

A 64-bit value representing the command doubleword currently being pro-
cessed for a device (indicated by the TDV status DW).

Hardward address of CPU performing the function (meaningful only for
multiprocessing).

Sigma6and 7 -0

Sigma 9 — port number

Xerox 560 — basic processor address

Appendix E

Table E-1. Error Record Terminology (cont,)

Term Meaning

Caller's Address The address back to which the error logging routine is returned when logging
is complete; used in isolating software faults,

DCT Index The 8-bit value indicating the order in which the device is configured into the
system (at SYSGEN).

DCT Index of Symbiont Device The 8-bit value indicating the order in which the device associated with the
symbiont is configured into the system (at SYSGEN).

Effective Address A 32-bit value representing the final address computed for the instruction
pointed to by the instruction address (IA) in the PSD.

Error Subcode An 8-bit field indicating which of several types of file inconsistencies has oc-
curred (see CP-V/BP Reference Manual, 90 17 64),

File Name The TEXTC name used to identify a collection of user data on secondary storage.
Granule The unit of secondary storage allocation equal to 2048 bytes (usually 2 sectors).
HIO CC A 4-bit value (bits 0-3 of designated byte) representing the condition codes as

returned by the hardware in response to an HIO instruction.

HIO Status A 16-bit value representing the status as returned by the hardware in response
to an HIO instruction.

I/O Address A 16-bit value representing the physical 1/O address.

1/O Count A 32-bit value representing the number of SIO instructions executed for the
device,

Julian Day A 16-bit value representing the Julian day of the year (e. g., March 1 would

be represented as X'3D') when the error was logged.

Length A 8-bit value in the second byte of the error log record representing the num-
ber of useful 32-bit words contained in the error log record, It includes the
first word in the count.

LMS CC The condition codes obtained when fetching a location via an LMS (Load Mem-
ory Status) instruction. The condition codes indicate whether or not a parity
error occurred during the fetch,

Memory Status Words Each word is a 32-bit value representing data returned by the hardware in
(Sigma 9 only) response fo an LMS instruction.

Appendix E 179

Table E-1. Error Record Terminology (cont.)

Term

Meaning

MFI (Sigma 6 or 7 only)

Mode

Model Number

Number of Parity Errors

Primary 1/O Address

PSD

Real Address

Recovery Count

Relative Sector Address

Relative Time

Relative Time Resolution

Retries Remaining

Retry Request -

Screech Code

A 4-bit value representing the current state of the memory fault indicators
returned by the hardware in response to an RD instruction. All memory fault
indicators will be reset.

A 16-bit value representing the manner in which the file was last referenced
(see CP-V/BP Reference Manual, 90 17 64).

A 16-bit value representing the model number assigned by Field Engineer-
ing to uniquely identify peripheral devices (e.g., 7242 would be represented
as X'7242'),

A 16-bit value representing the number of bad locations causing memory parity
errors (only the first 14 bad locations are entered in the log if the number of
errors is greater than 14).

A 16-bit value representing the physical 1/O address by which a device can
be referenced (see Alternate I/O Address).

A 64-bit value representing the program status doubleword.

A 32-bit value representing the actual memory address (in a mapped system,
this is the same as the address in the IA field of the PSD).

An 8-bit value initialized to zero at system initialization and incremented by
the value one for every system recovery.

A sector is 256 words. Each sector on a given device is numbered zero through
device end. CP-V maintains file pointers by relative sector number, thereby
simplifying the logic necessary to address different devices,

A 32-bit value representing milliseconds since midnight, Resolution is 2 msec.

An 8-bit value, n, such that actual relative time resolution = 2 msec, (e.g.,
n=1fora resoluhon of 500HZ or 2 msec.).

An 8-bit value representing Retry Request minus the number of entries at-
tempted. The range is between Retry Request and -1. A value of -1 indicates
the operation was terminated due to retry count rundown.

An 8-bit value representing the maximum number of retries after which a device
error is returned to the requester. This value is obtained from the requester's
DCB.

The code used by CP-V to identify the system failure which has occurred.

180

Appendix E

Table E-1. Error Record Terminology (cont.)

Term

Meaning

Screech Subcode

Seek Address

Sense Information

SIO CC

SIO Status

Site ldentification

Startup Type

Subchannel Status

Symbiont File

TDV CC

TDV Current Command DA

TDV Status Doubleword

TIO CC

TIO Status

Trap CC

An 8-bit field identifying which type of a specific and similar set of system
failures has occurred. (See Software check codes in the CP-V/OPS Reference
Manual, 90 16 75.)

The physical disk address last used to access this device.

The diagnostic information returned from the device as a result of sending a
"sense" order to the device,

A 4-bit value (bits 0-3 of designated byte) representing the condition codes
as returned by the hardware in response to an SIO instruction.

A 16-bit value representing the status as returned by the hardware in response
to an SIO instruction,

A 64-bit field containing the site ID from the SYSGEN :MON card left justi-
fied with blanks on the right.

An 8-bit field indicating which of several types of system initialization was
used, See the SYSTEM STARTUP error record (type X'18').

The status of the 1/O subchannel received from the hardware as a result of a
TDV instruction.

A CP-V system special file for buffering data between the CPU and slower
speed line printers, card punchers, etc.

A 4-bit value (bits 0-3 of designated byte) representing the condition codes as
returned by the hardware in response to a TIO instruction,

A 24-bit field representing the current command doubleword address used in
obtaining the device status with a TDV instruction,

A 24-bit field representing the subchannel status, as current command double-
word, device status, and byte count as returned by the hardware in response to

. a TDV instruction,

A 4-bit value (bits 0-3 of designated byte) representing the condition codes as

. returned by the hardware in response to a TIO instruction.

A 16-bit value representing the status as returned by the hardware in response
to a TIO instruction,

A 4-bit value (bits 0-3 of designated byte) representing the condition codes as
returned by the hardware when certain traps occur.

Appendix E 181

Table E-1, Error Record Terminology (cont.)

Term

Meaning

Trapped Instruction

Type

Unit Address

Unit Type

User ID

User Number

Version

Year

Volume Serial Number

A 32-bit value representing the contents of the location pointed to by the
instruction address (IA) in the PSD.

An 8-bit value in the first byte of the error record which identifies the type
of record.

A 6-bit value (bits 2 - 7 of designated byte) representing the address by which
a processor can be referenced; the value is composed of a 3-bit cluster number
followed by a 3-bit unit number.

An 8~bit value specifying the type of processor. Bit 0 of the designated byte
indicates the presence of the processor in the current operational configuration
(0 = present, 1 = not present).

A 16-bit value which is a unique number assigned by the system to the partic-
ular job or on-line session.

An 8-bit value which is the index into internal system tables used to access
user specific information.

The version identifier of the system running (i.e., A00, B0O, etc.). This field
is one byte in length. The letter of the version is stored in the first four bits
and the number of the version is stored in the second four bits.

A 4- or 6-byte field supplied by a user to identify either a tape or private
pack.

A 16-bit binary value representing the current year minus 1900 (e.g., 1973 is
represented as X'49'). ‘

READ ERROR

End Read Error

If the condifion codes set by T:RDERLOG indicate a read
error, a copy error record (Read Error) is written and copy-
ing of the record is attempted.
in the record, a copy of the bad record is placed in the
ERRFILE file, followed by the End Read Error record. I no
inconsistencies are found, the record is processed normally
and the Read Error record remains in the ERRFILE file. The
record format; are

Read Error
word 0
Type Length
X'10' X'02'
0 1 2 314 5 6 718 9 10 11012 13 14 15016 17 18 19120 21 22 23|24 25 26 27128 29 30 31

word 1

Relative time

word 0
. . : Type Length
If inconsistencies are found 10" X'02"
0 1 2 314 5 6 718 9 1011112 13 14

word 1

Relative time

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19[20 21 22 23.24 ZSKﬁZENJO 31

ERRLOG RECORD LENGTH ERROR

If the length of the ERRLOG record is greater than 64 words, a
copy error record followed by the ERRLOG record is written
on ERRFILE. No attempt is made to copy this record in the
detailed format, The record format is

01 2 314 5 6 7ﬁ 9 101 12|314]5i|617|81912021222324252627282?303!

182 Appendix E

word 0
Type Length
X'10' X'03' ::
0 172 374 5 6 718 9 10 Ntz 13 14 15116 24 2526 27128 29 30 31

word 1

Relative fime

T T I Ty M T T B T R S T BN R T T TN

word 2

Index to bad entry

+ + —— + +
0 1 2 374 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27 33 AN

INCORRECT TIME

If the time of an entry is out of sequence, i.e., if it is
earlier than the time of the last record and the data has not
changed, a copy error record is written on ERRFILE followed
by the ERRLOG record. The time of this entry is then used

for the key and processing continues. The record format is

word 0
Type Length
X'10' X'03" ; :
0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 N

word 1

Relative time

T 1T ZIld s 6 e v B W BT BRI T e B s B o BB

word 2

Index to bad entry I
0 1 2 374 5 6 718 9 10 111213714 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

where index is the displacement within the ERRLOG record
of the first word of erroneous entry.

ILLEGAL ENTRY TYPE

If the entry type is not one of the legal types, a copy error
record followed by the ERRLOG record is written on ERRFILE.
No attempt is made to copy the remainder of the record.
The record format is

word 0
Type Length
Xl ‘lOl x|03I
0 1 2 3[4 5 6 718 9 10 11112 1314 15
: word 1 _

Relative time

0 1 2 314 5 6 718 910 nli2 13 14 15116 17 18 19120 21 22 23'242526 27'28293031

word 2

Index to bad entry

!
G 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 % 30 31 .

where index is the displacement within the ERRLOG record
of the first word of erroneous entry.

Note: Errors that occur while booting have a time tag of

24XX but the keys of these records contain the cur-
rent date and 0011 for the time.

If read or write errors are detected while reading or writing

‘ERRFILE and SUMFILE, they are ignored.

Whenever I/O errors or certain unusual conditions occur,
an entry will be made into.the ERRLQG file. This entry
will contain any information pertinent to the condition.

Word O of each entry will have a code indicating which
error or unusual condition is present along with the number
of words in the entry (including word 0). Time (hhmm) and
Device Name (yyndd) are in EBCDIC.

There are no error log entries for the following two interrupts. .

MEMORY FAULT INTERRUPT

The Memory Fault Interrupt (MFI) is triggered when an error
is detected during a memory access by either the CPU or an
IOP. If the MFlis triggered by the CPU, a parity error trap
will also occur unless the error is a Loop Check Parity error
or QOvertemperature condition. The parity error trap routine
performs error recovery, logs the error, and clears the MFI
to avoid duplicate processing. The MFI service routine
therefore expects to only handle errors detected during an
IOP memory access and Loop Check and Overtemperature
errors. The Loop Check and Overtemperature errors are
processed by the memory parity program and the system re-
covery program is entered with code X'23'. The other er-
rors are logged by the device handler, which also performs
the required recovery. '

PROCESSOR FAULT INTERRUPT

The Processor Fault Interrupt is not enabled in CP-V. Errors
that cause this interrupt in a monoprocessor system are han-
dled by the 1/O Interrupt Routines.

SIO FAILURE

This record is logged when CC1 and/or CC2 are set after
execution of the SIO instruction.

word 0

T Length

X).I]P]e ' XI096I Model number
0 1 2 314 5’67B9IOHWBNBM|718|9202122232425262728293031
word 1

Relative time

2R 35136 37 38 39 4] 42 43144 45 46 47 49 50 51152 53 55156 57 58 59160 61 62 63

word 2

SIO status

_‘ I/O address |
01 2 31‘ 5 6 7‘(3 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

Appendix E 183

- word 3

MFI (if
Sigma 6 or 7) | 10 €C DVCC |
T 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31
word 4

Sul;s:;::::;nel : TDV current command DA

3

N — I S—
0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 197120 21 22 23124 25726 27128 29 30 31

word 5

TDV status Bytes remaining

0 1 2 314 5 6 718 9 10 Ililz 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 3)

TIME OUT

This record islogged when the /O interrupt does not occur
within a specified time period in response to an [/O
instruction,

word 0
Type Length
Model number
XIBI X'0D" v
0 1 2 314 5 6 718 9 10 11112 13 14 15016 17 18 19120 21 22 23124 25 26 27T2_a 29 30 3

word 1

- - +

. .
Relative time
I N PR S R A T AP RS AR RN R A

word 2

HIO status I/O address

0 1 2 3045 6 718 9 1011112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 3

word 3

MFI (if
Sigma 6or7) HIO CC TDV CC TIOCC

+ SR——
0 1 2 31475 6 718 92 10 11T12 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

word 4

Sul:::::;nel TDV current command DA

0 1 2 314756 718 9 10 17112 13 14 15016 17 18 19120 21 22 23124 25 26 27128 29 30 31

word 5

TDV status Bytes remaining

0 1 2 314 5 6 718 9 10 112131415016 17 18 19120 21 22 23124725 26 27128 29 30 31

words 6 and 7

Current command

I

_ﬁ

T 1 2 3145 6787 BT A BB BRHD T SR BB BT BT

doubleword

.

word 8
Retr Retries
TIO status try e
X L request remainin
0 1 2 314 5 6 718 9 10 111213 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

184 Appendix E

word 9

—_ N -

I/O count for this device

0 1 2 3al4 56 718 910 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

words 10 and 11

Volume serial number

(Six characters for Original Current

ANS japes) | funcﬁgn code Functign code
0 1 2 314 5 6 71879 10 11012 13 14 15116 17 18 19020 21 22 23124 25 26 27128 29 30 31

word 12

Seek address

0 v 2 314 5 6 708 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 25 30 31

UNEXPECTED INTERRUPT

This record is logged when an interrupt, other than an at-
tention interrupt, is received from a known device for
which no I/O operations have been started by the system.

word 0
Type Length Model number
X'13' X'04'
o7 2 314 5 5 718 v 16 iz 1314 1516 7 18 Wl 2 32 B4 5 % HIE B B I

word 1

Relative time
0 1 2 34'7 5 6 718 ¢ 10 1121314 15176 17718 19120 21 22 zﬁu 25 26 27128 29 30 31

word 2

AJO status I/O address

01 2 314 5 6 718 9 10 2 13 14 15116 17 18 19120 21 22 23724 25 26 27128 29 30 31

word 3

DEVICE ERROR

This record is logged when general analysis of the status re-
ceived from an AIO, TDV, or TIO indicates an error which
resulted from the 1/O operation. For on-linediagnostic I/O,
this information is returned in the STATUS area defined by

M:DOPEN with the type code X'14' for normal completion.

‘ word 0

Type Length
Model number
X'15' X'0D! .
0 1 2 314 5 6 778 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

’

word 1

—— - +

Relative time

0 1 2 314 5 6 718 9 10 1111213 14 15116 17 18 I9lZOZI 22 23124 25 26 27128 25 30 31

‘word 2
AlO status /O address :
0 1 2 314 56 718 9 lonmlau\swwm—"—'—z:ﬂmwm '
word 3
MFI (if

AIO CC

Sigma 6 or 7)

TDV CC

0 1 2 314 5 6 718 9 1011121314 15

I TIO CC
1617 18 19120 21 22 23124 25 26 27128 29 30 31

- word 0

word 1

Type Length .
X'16" (variable) I/O address
0 1 2 314 5 6 718 9 10 11112 13 14 15716 17 18 19120 21 2253'242556.2”2529@31

Relative time

T 2 314 5 6 718 9 10 11112 13 14 15

16 17 18 19120 21 22 23124 25 26 27'25 29 30 AN

word 4 words 2 and following
Subchannel TDV current command DA Sense information (left justified)
- Device Length (in bytes)
7242 10
word 5 Disk A, B 16
1600 bpi tape 6
TDV status Bytes remaining 9T fap: P 1
0 1 2 374 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23(24 25 26 27128 29 30 31 | RAD 3 |
words 6 and 7

Current command

doubleword

01 2 314 5 6 718 9

word 8

10 N213 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

TIO status

T D AL R RER N

word 9

Retry Retries
request remaining
16 17 18 19120 21 22 23124 25 27128 31

1

' 1/O count for this device

words 10 and 11

0 1 2 314 5 6 718 9 10 111121314 ‘5‘|‘lb 17 18 19120 21 22

Volume serial number

(Six _characters for
ANS tapes)

0 1 2 3al4 5 6 718 9 101111213 14 15

word 12

Original Current
function code | function code
16 17 18 19120 21 22 23124 25 26 27128 29 30 3t

SECONDARY RECORD FOR
-~ TAPE

This record is generated as a

Seek address

01 2 3lsa 5 6 7718 ¢ 10 nTiz13 M\Sllé1718|920212223!242525272829N31

1

DISK PACK, RAD, AND

result of a previous device

error and contains device status which corresponds to the

information contained in the
X'15") preceding this record,

Device Error record (type

‘0123[4567

word 3
Screech
i Screeclh code subcode
o v 2 314 5 6 7218 9 10 nliz 3 415

! i
Tz 3 445 6 718 9 |0H’|2|314151617|8|9|2051553|242526272829w31

The 1/O address links the secondary record to the cor-

responding device error entry.

SYSTEM STARTUP

This error is logged at system i

recovery,

i I
23124 25 26 27128 29 0 wordo

nitialization and af every

Type Length .
xiig X'04"
8 9 10 1N112 13 14 15

word 1

Startup Recovery ‘
type count '
1617 18 l9|20 21 22 23124 25 26 27128 29 30 31

Relative time

word 2

0 1 2 3F4 5 6 718 9 10 112 13 14 1516 17 18 l9i20 21 22 23124 25 26 27128 29 30 31

Year (last fwo digits;
in binary)

Julian day (in binary)

01 2 3i4 5 6 718 9 10 11112 1371415

16 17 18 19120 21 22 23724 25 26 27128 29 30 31

CPU address *

screech code and screech

E—
16 17 18 19120 21 22 23124 25 26 27128 29 30 31 |

subcode are defined in

the CP-V/OPS Reference Manual, 90 16 75.

recovery count

is set to O for initial startup as de-

fined by startup types 1, 2, or 3 below.

Appendix E 185

|

startup fype specifies the type of startup.

1 - Initial PO boot

N
1

PO boot with files
3 - System device boot (no recovery)

4 - System recovery

5 - Operator recovery
6 - Secondary CPU startup
7 - Secondary CPU shutdown

(For type 6 and 7, screech code fields and re-
covery count are zero,)

FILE INCONSISTENCY ERROR

This record is logged if the system detects files which are
inconsistent in that the associated file links do not match
or are otherwise incorrect.

word 0
Type Length 75 Error
X'TA! X'0E' subcode
01 2 3145 6 718 5 10 11z 114 3118 718 W% 572 BIed B 26 518 B 3031

word 1

Relative time

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 23 22 23124 25 26 27128 29 30 31

words 2 through 9

/ 7

File name N

T T T T T T T U B T R R T E B R S R SR T TN

words 10 and 11

Account number

0 1 2 314 5 6 718 9 10 111213 14 15116 17 18 19120 2) 22 23124 25 26 27728 29 30 31

186 Appendix E

word 12

Generalized disk address
D 1 2 314 5 6 718 9 10 11112 13 14 15116 7 18 19120 21 22 B124 25 2 D158 5 20 31

word 13

ORG MODE

0 1 2 314 5 6 718 9 10 11112 13 14 15716 17 18 19120 21 22 23124 25 26 27128 29 30 3!

where
ORG is set to 1 for consecutive, 2 for keyed, and .
3 for random,
MODE is set to 1 for IN, 2 for OUT, 4 for INOUT,

and 8 for OUTIN.

SOFTWARE~DETECTED SYMBIONT INCONSISTENCIES

This record is logged if the system detects files which are
inconsistent in that the associated file pointers do not match
or are otherwise incorrect.

iword 0
Type Length 0 [DCT index
X'1B' X'03! of symbiont
T T T s e T W T W BT BT T % 27

word 1

Relative time

D 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 3

word 2

Generated disk address

0 1 2 314 5 6 718 9 10 11112 13 14 15016 17 18 19120 21 22 23124 25 26 277128 29 30 31

words 4 and 5

Reserved for future use

0 1 2 314 5 6 718 9 10111213 Mﬁilé 17 18 191202122312425262ﬁ28293)31

word 6

Real address of trapped instruction
T T Z 345678 s B W BT B HE T e n s e m s T

word 7

Trapped instruction
01 2 314 5 6 7i8 9 10 11112 13 14 ISflé 1718 19120 21 22 23124 25 26 27'28 2% 30 3

word 8
ANLZ CC Effective virtual address
0 1 2 3145 6 7189 WINZB 1A BT BHIHN 2 BB BT BB

word 9

Effective real address

L R Y S S A 7 7 73

where FIP, IAP, RBP, and ANLZ CC have the same mean-
ings as for the hardware error record (X'17'),

LOST ENTRY INDICATOR

This record is entered when buffering constraints make error
logging temporarily impossible, The newest entries are lost.

word 0
;Y{’Eel l;(a:'lng'h Count of entries lost
B A T N RRAL N Wn?rmmrmﬂmmm
word 1
Relative time of last lost entry
1 4 6 7 9 0 11112 13 14 35116 17 18 19120 21 22 23124 25 26 27128 29 30 3

DUPLICATE ENTRIES

This record is logged if duplicate error log entries are

generated.

word 0
Type Length Number of entries identical|
X'1F X'02' to_previous

D 1 2 314 5 6 718 9 10 11112 13 14 1503 17 18 19120 21 22 23124 25 26 27128 29 0 3!

word 1

Relative time of last duplicate
R D IR A G A R R R R G A R I R A A

POWER ON

This record is generated as a result of the power on trap
associated with location X'50',

word 0 "
Type ‘Length |
CPU address
XI ol XI Ol
o T 2 35 5 6 718 9 ﬁ%]bl71819202122232425262725293031

word 1

.
, Relative time !
0 1 2 3145 6 718 9 10 N112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

'

CONFIGURATION RECORD
This record is logged at system startup.

word 0

—

Type

X'21'

TT It T 78

word 1

Relative time

LB I R I S R S R T R) B R AT) BT VAR I B TN TR P R LTI B

word 2

Model number

word 3

Alternate I/O address Primary I/O address

0 1 2 314 5 6 718 9 1011112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 25 30 31

; additional words

1

]

7

Words 2 and 3 may be repeated up
to four times. The pairs of words
will be in order by DCT index.
Multiple records may occur.

0 1 231456 718 ¢ 1011'12131415|617lﬁ1920212223242576272829303

SYSTEM IDENTIFICATION

This record is entered at system startup and recovery and is
entered after the CONFIGURATION RECORD (type X'21').

word 0
Tyge Len%fh Core size (in |Relative time
X'22' X'05' 8K word blockg| resolution

0 1 2 314 5 6 718 9 10 1111213 14 15116 17 18 19120 21 22 237124 25 26 27128 29 30 31

N I 56 718 9 10 nh213 1415716 17 18 19120 21 22 23124 25 26 27128 29 30 31

word 1

Relative time

word 2

 System version flags (loc 28) |

0 1 2304 5 6 718 9 10 11711213 14 1516 17 18 9120 21 22231242526m28293031

words 3 and 4

Site identification (in EBCDIC)

T T I T T s s T B N B W B e T e R T e B S R T E T BN

Appendix E 187

TIME STAMP

This record is entered once each hour on the hour,

word 0

Type Length

X'23' X:03' .
0 1 2 314 5 6 778 9 10 N2 13714 157116 17 18 19120

word 1

Relative time
5T 2 314 5 6 718 v 0z 13 15116 17 78 91% 21 22 B34 35 26 H1m B0 3
word 2

Year (last fwo digits; . . .
i(n binary) g Julian day (in binary)

0 1 2 314 5 6 718 9 10 31112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

BAD GRANULE RELEASE

This record is logged if the granule being released contains
an invalid disk address or has already been released (dual
allocation).

word 0
Type Length Type code (O-bad address;
X¥£4' X'04' 1-dual allocation)

7 2 314 56 FTe 5 0 iz 13 4 15116 17718 W% 2 32 2312 25 26 H1% B B 3

word 1

Relative time
0 1 2 314 5 6 718 9 10 11112 13 14 |5.”6 Y’ 18 I?ZOZl 22 23124 25 26 27128 29 30 31

word 2

Generated disk address

0 1 2 314 5 ¢ 708 9 10 nT12 13 14 15716 17 18 l9|202| 22 23124 25 26 27128 29 30 31

188 Appendix E

s
|

i
i
i

word 3 (if type code = 0)

‘ Address of routine calling ERRLOG

0 1 2 3145 6 7T8 9 10 1Tiz 13 14 Isilb 17 18 19720 2) 22723724 25 26 27128 29 30 31
'

or

‘word 3 (if type code =1)

Number of graules
being released
2 374 5 6 718 9 1011112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

01

REMOTE PROCESSING ERROR

This record is logged when an error occurs in the transmis-
sion of data to or from a remote processing workstation.

word 0
;zl;: , 'S(e%SJsf'h I/O address
0) 2 314 5 6 718 9 10 11172 13 14 15116 17 18 19120 21 ﬁrzi—zs 26 27128 29 30 31

word 1

Relative time
0O 1 2 314 5 6 778 9 10 11112 13 14 lsilb 17 18 Wlﬂ)Zl 22 23124 25 26 27128 29 0 31

word 2

RB:FLAGS

o1 2 JiA 5 6 T8 10 11172 13 74 15116 17 18 101D 21 22 B 526 518 B 0 3

words 3 and 4

Workstation name

words 5 and 6

Current command doubleword

01 2 3i4 5 6 VAL BEAN] lli!Z 13 74 l5i)6 17 18 1?'202] 32 23124 25 26 27128 & 30 3

word 7
RPI

0 1 2 3145 6 7

RP2

8 9 10 11112 13 14 15

where

type identifies the type of error log record.

length specifies the number of 32-bit words con-
tained in the error log record.

/O address is a 16-bit address representing the
physical I/O address.

relative time represents milliseconds since mid-
night. Resolution is 2 msec.

RB:FLAGS specifiesthe contents of RB:FLAG at the
time of the error, RB:FLAG is described in the
CP~V/Data Base Technical Manual, 90 19 95,

workstation name specifies the workstation name
(in TEXT format, left-justified and padded with
blanks) if the terminal is logged on.

current command doubleword specifies the command
doubleword of the 1/Othat was taking place when

the error occurred, For Xerox 7670 RBTs, the
current command doubleword contains the second
command doubleword used to write the text of an

output message and is meaningful only for RP1=0,
1, A, or B.

RP1, RP2, RP3, and RP4 have specific meaning for
the type of remote workstation associated with the
record, The meanings are listed in Tables E-2
through E-7.

Table E-2. Xerox 7670 RBT — RP1, RP3, and RP4

Corresponding RP3 Meaning

Corresponding RP4 Meaning

RP1 Value Meaning
1 First character in record not SOH,
2 Incorrect parity on SEL.
3 Incorrect block protect.
4 Third character in record not STX,
5 RBBAT COMBUF or MPOOL unavailable
for log-on.
6 Incorrect character parity.
7 Record trailer character not ETX.
8 Incorrect block check parity.
9 Incorrect block check.
A Communication line time-out.
B NAK received.
C Garbled ACK or NAK,

Current character position,

Current character position,

Current character position,

Current character position.

Meaningless.

Current character position.

Current character position.

Current character position.

Current character position.

Meaningless.

Offending character,

Offending character,

Offending character,

Offending character,

Meaningless.

Offending character,

Offending character.

Offending character.

Offending character.

Meaningless.

Response received reading for ACK. (RP3 and RP4 combine

to be a halfword).

Response received reading for ACK. (RP3 and RP4 combine

to be a halfword).

Appendix E

189

Table E-3. Xerox 7670 RBT — RP2 Table E-4, [BM 2780 RBT — RP1 and RP4
RP2 Valuve Meaning (Current Function Code) RP1 Corresponding RP4
Value Meaning Meaning
0 Write card punch,
1 Disconnect due to
1 Write line printer,
a. EOTon read. EOT
2 Send ACK.
b. Use of 2780 on ENQ
3 Write TOF (Block protect = 0). IRBT only system.
4 Write TOF (Block protect = 1). 2 Line timeout. Same as RP2.
5 Write SPACE (Block protect = 0).
. 3 ENQ not received Character received.
6 Write SPACE (Block protect = 1), on logon read,
7 Read card reader,
4 No EOT after EOFsent, | Character received.
8 Write TOF (log-on).
9 Read card reader (special). 5 a. ENQ in text mode. | Character received,
A Read ACK card punch. b. No ENQ answer- | Character received,
ing WACK.
B Read ACK line printer.
c. ENQ answer to Character received.
C Read ACK TOF (Block protect = 0). ACK of EOF,
D Read ACK TOF (Block protect = 1).
6 NAK received. Character received.
E Read ACK SPACE (Block protect = 0).
F Read ACK SPACE (Block protect = 1), 8 CRC failedon input. Last character
CRCed.
10 Write EQOT.
11 Write DC1. 9 Unknown response Character received.
reading for ACK.
12 Write ACK (special).
A Trailer character not Character received,
13 Write NAK, ETB or ETX.
14 Write NAK (special).
C Header character not Character received,
15 Write BEL (on error). STX.
Table E-5, IBM 2780 RBT — RP2 and RP3
Value RP2 (Current Function Code) RP3 (Calling Function Code)
0 Disconnect. Software error — should not occur.
1 Write data. Write.
2 Send ENQ. Send ENQ (Wait).
3 Send ACK O. Read,
4 Send WACK, Send WACK (Wait),

190 Appendix E

Table E-5, IBM 2780 RBT — RP2 and RP3 (cont.)

Value RP2 (Current Function Code) RP3 (Calling Function Code)
5 Write data, Write EOF.
6 Send ENQ. Request to output.
7 Read for ACK, ENQ, EOT (depends on RP3). POL for input.
8 Read for ENQ. Logon.
9 Read. Software error — should not occur.
A Send NAK. Software error — should not occur.
B Send ACK 1, Software error — should not occur.
C Send EOT, Software error — should not occur.,
Table E-6. IRBT — RP1 and RP4
RP1
Value Meaning Corresponding RP4 Meaning
0 Recoverable block check error, Difference (mod 16) between expected
and received BCBs.
1 Catastrophic block check error (NAK sent Difference (mod 16) between expected
in case of line error). and received BCBs, :
2 Communication line time-out. Same as RP2,
3 Read for ENQ timed=out (logon). Same as RP2,
4 Received ACK O instead of SIGNON at logon. ACK O
5 Inappropriate line bid (not ENQ=-master, not Line bid received,
ACK O-slave).
6 NAK received, NAK.
7 Read timed out. Same as RP2,
8 Incorrect CRC, Last character CRCed.
9 Trailer character not ETB, Offending character.
A Leader character not STX, Offending character,
B .Lost data. First character after IDLE.
Cc Garbled ACK O-NAK. First character of message.

Appendix E

191

Table E-7,

IRBT — RP2 and RP3

Value RP2 (Current Function Code) RP3 (Calling Function Code)

0 Disconnect. Software error — should not occur,

1 Write block. Write block — read block.

2 Write ACK, Write ACK ~ read block.

3 Write block. Write block (Wait-a-bit) — Read special.

4 Write Wait-a-bit. Write Wait-a-bit — Read special.

5 Read block, Software error — should not occur,

6 Send NAK, Software error — should not occur.t

7 Send ENQ. Logon as Slave,

8 Read for ENQ., Logon as Master,

9 ACK O to ENQ. Logon as Master after ENQ Read.

A Read logon record. Software error — should not occur,

B NAK logon record, Software error — should not occur.!
'1f errors with the same RP1 code occur consecutively, this code.may appear in the RP3 field for the second and subsequent
consecutive errors, replacing another legal RP3 code.

OPERATOR MESSAGE

This record is interjected as the result of an operator ERRSEND
key-in or by adiagnostic program. It isgenerallyused tode-
scribe unusual conditions surrounding a particular error.,

word 0

Type Length

X'27" (variable)
0 1 2 314 5 6 718 9 10 11112 13 14 15
word 1

Relative time l

0 1 2 3J|7 5 6 7‘%8 9 10 1112 13 14 lsilé 17 18 19120 21 22 23124 25 26 27128 29 30 31
word 2

Message from the operator in TEXTC
format. (Maximum size is 71 characters
plus the count byte.)

0 1 2 3145 6 778 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

1/O ACTIVITY COUNT

This is recorded once per hour and at recovery.

word 0
Type Length . . .
X'28' (variable) DCT index of first device

T 2 314 5 6 718 9 lOHil?lSN151617lBl?!OZIZZElZ‘EléWZBNSOQ\

192 Appendix E

CETTTIT S s o E S 10 11012 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

word 1

Relative time

N - N—
. 017 2314 576 7V8 9 10 1112 1314 15116 17 18 19120 21 22 23124 25 26 27(28 25 30 31

word 2

I/O address DCT index

0 1V 2 314 56 718 9 10 NTI1213 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 3)

word 3

—t

1/O count
0 1 2 314 5 &6 718 9 101111213 14 |5‘[16 17 18 19120 21 22 23724 25 26 27‘25293)3‘

additional words

-

Words 2 and 3 may be repeated .up to four
times. The pairs of words will be in order
by-DCT index. Multiple records may occur.

HARDWARE ERROR

This record is logged when a hardware error has been de-

' tected, the type of error being indicated by the Trap CC.

For Sigma 6 and 7, this record is generated as a result of

the memory parity interrupt associated with focation X'56',
For Sigma 9 and Xerox 560 this record is generated as a re-
sult of the parity error trap associated with location X'4C’,

word 0
Type Length '
X'2D" XI0B' CPU address
0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

word 1

Relative time

01 2 314 5 6 7T6 9 70 111213 14 15116 17 18 lmﬂ 2122 23124725 26 27128 29 30 31

words 2 and 3

PSD word 1
PSD word 2

0 1 2 Jil 5 6 718 9 10 11213 1415016 17 18 19720 21 22 23124 25 26 27128 29 30 31)

words 4 and 5

Reserved for future use

071 2 ﬁ4 5 6 7ﬁ 9 10 nhi2 13 4 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

Real address of trapped instruction
01 2 314 5 6 7“ 9 10 111213 14 15116 17 18 I9l20 21 22 23'24 75 26 27128 29 2 31

word 8

Trapped instruction
0 1 2 314 5 6 718 9 10 1111213 14 15716 17 18 l9|20 21 22 23124 25 26 27128 29 30 31

word 9
ANLZ CC Effective virtual address

01 2 3145 6 718 ¢ IDH'IZ 13 14 15116 17 18 19120212223|24£26272529303|

word 10

Effective real address
0 1 2 314 5 6 718 9 lonhzla 141516|718192321222324252627]28293031

where

FIP indicates, when set, that a parity error occurred
while fetching the instruction (causing a trap 4C)
on a Sigma 9 or Xerox 560, or that a memory par-
ity occurred (causing a machine interrupt using
location 56) on a Sigma 6 or 7,

+ + + N
0 1 2 314 5 6 708 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 28 27 29 30 3

IAP indicates, when set, that a parity error occurred
due to an indirect address fetch, Words 9 and 10
will be zero in this case.

RBP indicates, when set, that a parity error is present
in the associated R~block registers. (Xerox 560

only.)

ANLZ CC specify the addressing type for the
effective real address (words ? and 10), If the
instruction is an immediate type, these address
fields will be zero. The ANLZ CC settings

are:
Bit0 Bit1 Bit2 Bit3
0 0 - 0 Byte
0 0 - 1 Immediate, byte
0 1 - 0 Halfword
1 0 - 0 Wond
1 0 - 1 Immediate, word
1 1 - 0 Doubleword
- - 0 - Direct addressing
- - 1 - Indirect addressing

WATCHDOG TIMER

This record is generated as a result of the instruction watch~
dog timer runout trap associated with location X'46',

001 2 374 5 6 718 9 1011112 13 14 15116 17 18 I9|20 21 22 23124 25 26 27128 29 30 31

word 0 .
TYPel l‘;%g;.';' CPU address
0 1 2 314 5 6 718 9 10 11112 13 14 15116 l7m 21 22 Zaﬁl 25 26 27128 29 30 31

word 1

Relative time

words 2 and 3

PSD word 1

-_—

PSD word 2

words 4 and 5

T 7 2314 56 718 5 10 121314 15176 17 18 Wi 21 22 23124 25 % D1W ® B 7

Reserved for future use

Appendix E 193

Real address of trapped instruction

0 1 2 314 5 6 7i8 9 10 11412 13 14 15716 17 18719720 21 22 23124 25 26 27128 29 30 31

word 8

Trapped instruction
0 1 2 314 5 6 718 9 10 11112 13 14 15?16 17 18 19120 21 22 23?24 252 27128 29 30 3

word 9

ANLZ CC Effective virtual address

0 1 2 314 56 718 9 10 1111273 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

word 10

Effective real address
A R A R L R R R A L AR - I R R R A

where FIP, IAP, RBP, and ANLZ CC have the same mean-
ing as for the hardware error record (X'17'},

INSTRUCTION EXCEPTION

This record is logged when program executions traps to lo-
cation X'4D' on a Sigma 9 or Xerox 560 due to an instruc-
tion exception condition,

word 0
;):E'e:, L;%%f,h CPU address
T 7 Z 314 35 6 718 90 12131415116 7 18 B1H 21 22 53124 55 %6 Z18 H B 3

word 1

Relative time

01 2 3i4 AL BT 2 13 14 15118 17 16 19120 21 22 23124 25 26 27128 29 30 31

words 2 and 3

PSD word 1
. D

PSD word 2
T T I s s T T R R B T B R R T R B R s R o E e w T

words 4 and 5

Reserved for future use —

01 2 3i4 5 6 718 9 lOHfIZ 13 Il!SiM 17 18 19120 21 22 23124 25 26 27128 29 30 31

word 6
Trap CC 4

0 12 3745 6 718 9 lOlliIZlSMlS|6|71819202I2223242526272829¥J3l

194 Appendix E

word 7

— N

Real address of trapped instruction
01 2 314 5 &6 7718 9 w0 2131415116 17 18 19720 21 22 23124 25 26 27128 29 30 31

word 8

Trapped instruction

0 1 2 314 5 6 718 ¢ 10 11012 13 14 15[16 17 18 19120 21 22 23124 25 26 27128 29 30 31

word 9

ANLZ CC Effective virtual address
0 1 2 314 5 6 718 9 10 11112713 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

word 10

Effective real address
0 1 2 3i4 5§ & 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

where FIP, IAP, RBP, and ANLZ CC have the same mean-
ings as for the hardware error record (X'17'),

PFI PRIMARY RECORD

This record is logged when program execution is interrupted
to location X'56' on the Xerox 560 due to a Processor Fault
Interrupt condition.

word 0
Type Length
X'30' X'02' :
0 1 2 314 5 6 718 9 10 HI12 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

word 1

Relative time

0 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

MFI PRIMARY RECORD

This record is logged as a result of the memory fault in-
terrupt associated with location X'57' on a Sigma 9 or
Xerox 560,

word 0
T Length '
XYI;JT ' ;.ngz. CPU address
L T R A S TR R T BT T s TR ® R

word 1

Relative time

01 2 3145 ¢ 7i8 9 10 11112 13714 15116 17 18 19720 21 22 23124 25 26 27128 29 30 31

XERO X 560 SECONDARY RECORD FOR POLL
INFORMATION

This record is logged to record specific information obtained
by issuing a POLL instruction subsequent to detecting hard -
ware errors, One record is produced per valid poll status
received,

word 0 :
Type Lengt!
Xlgzl Xloal CPU address
R B S S R TO T LR O 7 B IS R) T M) 67 B T A E TR O R

word 1

,
Relative time
0V 2 314 5 6 7218 9 |0|ﬁ|21314|5i|6|7I019202|22,3222526275l5303

word 2

Unit Poli | Unit Poll
address CC | type oll status

0 t 2 314 5 6 718 9 10 11112 13 1415118 17 18 19120 21 22 23124 25 26 27128 29 30 3t

where unit type has the following meanings:
1 - Basic Processor
2 - Memory Interface
3 - Processor Interface

4 - Multiplexor IOP

[8,}
i

Rotating Memory Processor

(=3
1

Not Used

7 - System Control Processor

XERO X 560 MEMORY PARITY SECONDARY RECORD

This record is logged to record specific information returned
in response to an LMS instruction subsequent to detecting
hardware errors,

word 0

Type Length

CPU address

X'42" X'04"
0 t 2 314 5 6 718 9 10 11213 14 15196 17 18 19120 21 22 23124 25 26 27128 29 30 31
word 1 .

Relative time
¢ 1 2 3V4e 5 6 21e 9 10 nliz 13 14 15716 17 18 19120 27 22 23724 25 26 27128 29 30 3!
word 2
Memory status word O

Tt s oy T T R R Rt T e e st e

word 3
Memory status word 1
Tz e 3 e T T R T W e T Rt T R e T St v e

SIGMA 9 MEMORY PARITY SECON DARY RECORD

This record is logged as a result of the memory fault inter-
rupt associated with location X'57' or the memory parity
trap associated with location X'4C' on the Sigma 9 or
Xerox 560. This record follows record type X'17' and
record type X'31',

word 0

T th
XYE; ' L;Irng' CPU address

0 1 2 314 5 6 778 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 25 30 37

word 1

Relative time

O 7 2 3V4 5 6 778 9 10 11112 13 14 15116 17 18 19170 21 22 23124 25 26 27128 25 30 31

word 2

Memory status word 0

0 1 2 31475 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

word 3

Memory status word 1

0 1 2 3V4 5 & 718 9 10 NI12 13 14 15116 17 1@ 19120 21 22 23124 25 26 27128 79 30 31

word 4

Memory status word 2

0 1 2 3Ta 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

MEMORY PARITY SECONDARY RECORD

This record is logged to record specific information obtained
by scanning memory to attempt to isolate locations which
cannot sustain correct parity.

word 0

Type Length

CPU address

X'49' X'0B*
0 ' 2 314 5 & 718 9 10 11112 13 14 1516 17 18 19120 21 22 23124 75 26 27128 2% 30 31
word 1

Relative time
O 1 2 3145 6 718 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 3l
word 2
Number of bad locations in memory

0 1 2 314 5 6 718 9 10 11712 13 14 15106 17 18 19120 21 22 23124 25 26 27128 29 30 31

Appendix E 195

word 3

Logical AND of addresses of the bad locations

3 1 . 314 5 6 18 9 10 191112 13 14 15116 17 18 19120 20 22 23124 25 26 27126 29 30 31

word 4

)
Logical OR of addresses of the bad locations

T 1 2 318 6 - 18 9 10 i11:2 12 14 15Tte 7 18 19120 27 27 23124 25 26 27128 29 30 31

woid 5

Logical AND of contents of the bad locations

T Jla & ¢ -la& o 1 1117 13 14 Isld6 17 IR 1902 2 2. 23024 25 26 27125 29 30 31

word 6

Logical OR of contents of the bad locations

G V7 374 5 6 che ¢ 0 1112 13 14 I5hle f7 iR 19120 20 22 23124 25 26 27128 20 30 3t

word 7
LMS
| cc

Address of lowest location with bad parity

T4 T T TR T O T 17 16 W10 21 22 23174 25 2 29128 75 30 3

word 8

Contents of lowest location with bad parity

Tz HE) A THE 5 6 silis v e sl 17 8 16120 21 2z 23124 25 2 2.128 29 30 31

word 9

l —
‘(MCS Address of highest location with bad parity

G T e 5 s 18 9w 1112 1. i 51 17 18 1012 (1 22 23124 25 26 27128 20 30 31

word 10

Contents of highest location with bad parity
T T T T T T R T T S R T R T B S B TR R o

ENQUEUE TABLE OVERFLOW

This record is logged when an Enqueue CAL has been re-
jected because there are insufficient unused entries in the
Enqueue tables.

word 0

Type Length

X'50" X'03'
Gv T 3T ST TR T Ty T a3t he 17 18 19126 2 22 23124 25 26 27128 29 30 31
word 1

Relative time

TR T TR BT T O B S O

X7 2 314 T

[

o T ST TR 9 10 T2 13 14 15116 17 18 19100 21 32 23124 25 2% 128 P 30 3

word 2
User ID Entry count (in binary)

Entry count is the number of entries in the enqueue table
heionging to the specified user at the time the error log
entry was made.

196 Appendix E

PARTITIONED RESOURCE

This entry is logged when a resource is partitioned via the
SYSCON processor by the operator,

word 0
;Ygﬁ l;.r(‘)%f.h Model number
N I R S F T PR s ST R PO R PR | FT R TR R T
word 1 _
Relative time

H 31"4 R 2 16 9 10 10112 1)& i8Tfs 1= 18 19120 ;1 72 23124 25 26 27128 19 30 31

word 2
Fl O 0 I/O address
0 1 2 314 S5 6 7278 9 10 M1T12 13 14 15114 17 18 15120 21 25 ﬁ?‘ 25 26 7T28 2930 31

where
F=0 for device entry,

F=1 for controller entry.

RETURNED RESOURCE

This entry is logged when a resource is returned from being
partitioned via the SYSCON processor by the operator,

word 0
Type Length '
Model number
X'52' X'03'
0 v 2 3?‘ 5 6 718 9 10 11112 13 14 15716 17 18 19120 21 22 23124 25 26 27128 29 30 31

word 1

Relative time
0 1 2 3T475 6 708 9 10 11112 13 14 15118 17 18 19120 21 22 23124 25 26 27128 29 30 3t

word 2
FlO o I/O address

0 1 2 314 5 &4 778 9 10 nl1Z 13 14 15118 17 18 19720 21 22 23124 25 26 27128 29 30 31

where
F=0 for device entry.

F=1 for controller entry.

APPENDIX F. XEROX STANDARD OBJECT LANGUAGE

INTRODUCTION
GENERAL

The Xerox standard object language provides a means of
expressing the output of any Xerox processor in standard

format. All programs and subprograms in this object format
can be loaded by the Monitor's relocating loader.t Such a
loader is capable of providing the program linkages needed
to form an executable program in core storage. The object
language is designed to be both computer-independent and
medium-independent; i. e., it is applicable to any Xerox

computer having a 32-bit word length, and the same format
is used for both cards and paper tape,

SOURCE CODE TRANSLATION

Before a program can be executed by the computer, it must
be translated from symbolic form to binary data words and
machine instructions. The primary stages of source program
translation are accomplished by a processor. However, under
certain circumstances, the processor may notbe able to trans-
late the entire source programdirectly into machine language
form.

If a source program contains symbolic forward references, a
single-pass processor such as the Xerox Symbol assembler can
notresolve such references into machine language. Thisisbe-
cause the machine language value for the referenced symbol
is not established by a one-pass processor until after the state-
ment containing the forward reference has been processed.

A two-pass processor, such as the Xerox Meta-Symbol assem-
bler, is capable of making "retroactive” changes in the
object program before the object code is output. Therefore,
a two-pass processor does not have to output any special
object codes for forward references. An example of a for-
ward reference in a Symbol source programis given below,

Y EQU $+3

R 'EQU Z+1

tAlfhough a discussion of the object language is not directly
pertinent to CP-V, it is included in this manual because it
applies to some of the processors operating under CP-V.

In this example the operand $ + 3 is not a forward reference
because the assembier can evaluate it when processing the
source statement in which it appears. However, the oper-
and Z in the statement

CL5 y4

is a forward reference because it appears before Z has been
defined. In processing the statement, the assembler outputs
the machine-language code for CI,5, assigns a forward ref-
erence number (e.g., 12) to the symbol Z, and outputs that
forward reference number, The forward reference number
and the symbol Z are also retained in the assembler's symbol
table.

When the assembler processes the source statement
LI, R Y4

it outputs the machine-language code for LI, assigns a for-
ward reference number (e.g., 18) to the symbol R, outputs
that number, and again outputs forward reference number
12 for symbol Z.

On processing the source statement
Z EQU 2

the assembler again outputs symbol Z's forward reference
number and also outputs the value, which defines symbol Z,
so that the relocating loader will be able to satisfy refer-
ences to Z in statements CI,5 Z and LI,R Z, At this time,
symbol Z's forward reference number (i.e., 12) may be
deleted from the assembler's symbol table and the defined
value of Z equated with the symbol Z (in the symbol table).
Then, subsequent references to Z, as in source statement

BG. Z

would not constitute forward references, since the assembler
could resolve them immediately by consulting its symbol
table.

If a program contains symbolic references to externally
defined symbols in one or more separately processed subpro-
grams or library routines, the processor will be unable to
generate the necessary program linkages.

An example of an external reference in a Symbol source pro-
gram is shown below,

REF ALPH

1,3 ALPH

When the assembler processes the source statement

REF ALPH

Appendix F 197

it outputs the symbol ALPH, in symbolic (EBCDIC) form, in
a declaration specifying that the symbol is an external ref-
erence. At this time, the assembler also assigns a declara-
tion name number to the symbol ALPH but does not output
the number. The symbol and name number are retained in
the assembler's symbol table.

After a symbol has been declared an external reference, it
may appear any number of times in the symbolic subprogram
in which it was declared. Thus, the use of the symbol
ALPH in the source statement

LI,3 ALPH

in the above example, is valid even though ALPH is not
defined in the subprogram in which it is referenced.

The relocating loader is able to generate interprogram link-
ages for any symbol that is deciared an external definition
in the subprogram in which that symbol is defined. Shown
below is an example of an external definition in a Symbol
source program,

DEF ALPH
L3 ALPH
ALPH AL 4 X'F2'

When the assembler processes the source statement

DEF ALPH

it outputs the symbol ALPH, in symbolic (EBCDIC) form, in
a declaration specifying that the symbol is an external defi-
nition. At this time, the assembler also assigns a declaration
name number to the symbol ALPH but does not output the
number. The symbol and name number are retained in the
assembler's symbol table.

After a symbol has been declared an external definition it
may be used (in the subprogram in which it was declared)in
the same way as any other symbol. Thus, if ALPH is used as
o forward reference, as in the source statement

L1, 3 ALPH

above, the assembler assigns a forward reference number to
ALPH, in addition to the declaration name number assigned
previously. (A symbol may be both a forward reference and
an external definition.)

On processing the source statement
ALPH Al 4 X'F2'

the assembler outputs the declaration name number of the
label ALPH (and an expression for its value) and also outputs
the machine-language code for Al,4 and the constant X'F2',

OBJECT LANGUAGE FORMAT

An object language program generated by a processor is out-
put as a string of bytes representing "load items"”. A load
item consists of an item type code followed by the specific
load information pertaining to that item. (The detailed format
of each type of load item is given later in this appendix.)
The individual load items require varying numbers of bytes

198 Appendix F

/

for their representation, depending on the type and specific
content of each item, A group of 108 bytes, or fewer, com-
prises a logical record, A load item may be continued from
one logical record to the next.

The ordered set of logical records that a processor generates
for a program or subprogram is termed an "object module".
The end of an object module is indicated by a module-end
type code followed by the error severity level assigned to
the module by the processor.

RECORD CONTROL INFORMATION

Each record of an object module consists of 4 bytes of con-
trol information followed by a maximum of 104 bytes of load
information. That is, each record, with the possible excep-
tion of the end record, normally consists of 108 bytes of
information (i.e., 72 card columns).

The four bytes of control information for each record have
the form and sequence shown below.

Byte O
Record Type Mode Format
i 1 1 0
0 1 2 3 4 5 6
Byte 1
Sequence Number
0 7
Byte 2
Checksum
0 7
Byte 3
Record Size
0 7

Record Type specifies whether this record is the last
record of the module:

000 means last
001 means not last

Mode specifies that the loader is to read binary infor-
mation, This code is always 11.

Format specifies object language format. This code is
always 100,

Sequence Number is 0 for the first record of the module
and is incremented by 1 for each record thereafter,
until it recycles to 0 after reaching 255,

Checksum is the computed sum of the bytes comprising
the record. Carries out of the most significant bit
position of the sum are ignored.

Record Size is the number of bytes (including the record
control bytes) comprising the logical record (5 < record

size - 108). The recordsize will normally be 108 bytes
for all records except the last one, which may be fewer.
Any excess bytes in a physical record are ignored.

LOAD ITEMS

Each load item begins with a control byte that indicates the
item type. In some instances, certain parameters are also
provided in the load item control byte. Inthe following dis-

cussion, lodd item: are categorized according to their function:

Y. Declarations ideatify to the loader the external and

contiol section labels that are to be defined in the
object moduie being loaded.

2. Definitions defin= the value of forward references,
external definitinns, the origin of the subprogram being
loaded, and the stnrting address (e.g., as provided in
a Symbol /Meta-Symbol END directive).

3. Expression evaluation foad items within a definition
provide the values (such as constants, forward refer-
ences, etc.) that are tc be combined to form the final

value of the definition.

4, lLoading item: ro - specified information to be stored
inta core mem.

5. Miscellaneous items comprise padding bytes and the

module-end indicator.

DECLARATIONS

In order for the loader to provide the linkage between subpro-
grams, the processor must generate for each external refer-
ence ordefinition aioaditem, referred to as a "declaration"”,
containing the EBCDIC code representation of the symbol
and the information that the symbol is either an external ref-
erence or a definition (thus, the loader will have access to
the actual symbolic name).

Forward references are always internal references within an
object module. (External references are never considered
forward references.) The processor does not generate a dec-
laration for a forward reference as it does for externals; how-
ever, it does assign name numbers to the symbols referenced.

Declaration nome numbers (for control sections and external
labels) and forward reference name numbers apply only within
the object module in which they are assigned. They have no
significance in establishing interprogram linkages, since
external references and definitions are correlated by match-
ing symbolic names. Hence, nome numbers used in any
expressions in a given object module always refer to symbols
that have been declared within that module.

The processor must generate a declaration for each symbol
that identifies a program section. Each object module pro-
duced by an assembler is considered to consist of at least
one control section. If no section is explicitly identified
in the source program, the assembler assumes it to be o
standard control section (discussed below). The standard
control section is ulways assigned a declaration name

number of 0. All other control sections (i.e., produced by
a processor capable of declaring other control sections) are
assigned declaration name numbers (1, 2, 3, etc.) in the
crder of their appearance in the source program.

In the load items discussedbeiow, the access code, pp, des-
ignates the memory protection class that is to be associated
with the control section. The meaning of this code is given
below.

PP Memory Protection Feature!

00 Read, write, or access instructions from.
01 Read or access instructions from,

10 Read only.

11 No access.

Control sections are always ollocated on a doubleword
boundary. The size specification designates the number of
bytes to be allocated for the section.

Declare Standard Control Section

Byte O
Control byte
0 0 0 | 0 1 1

0 i 2 3 4 5 6 7
Byte 1

Access code Size (bits 1 through 4)

P P 0 0

0 1 2 3 4 5 6 7
Byte 2

Size (bits 5 through 12)

Byte 3

Size (bits 13 through 20)

0 7

This item declares the standard control section for the object
module. There may be no more than one standard control
section in each object module. The origin of the standard
control section is effectively defined when the first reference
to the standard control section occurs, although the declara~
tion item might not occur until much later in the object
module,

"iRead" means a program can obtain information from the
protected area; "write" means a program can store informa-

tion into o protected area; and, "access" means the compu-
ter can execute instructions stored in the protected area.

Appendix F 199

This capability is required by one-pass processors, since
the size of a section cannot be determined until all of
the load information for that section has been generated by
the processor.

Declare Nonstandard Control Section

Byte O
| Control byte
0 0 0 0 1 | 0 0
0 1 2 3 4 5 6 7
Byte 1
Access code o _Size (bits 1 through 4)
P P 0 0
0 1 2 3 4 7
Byte 2

0 7
Byte 3
Size (bits 13 through 20)
_— Abits —
o ' 7

This item declares a control section other than standard con-
trol section (see above).

Declare Page Boundary Control Section

Byte O
Control Byte
0 0 0 1 1 1 1
0 1 2 3 4 5 6
Byte 1
Access code Size (bits 1 through 4)
P P 0 0
0 1 2 3 4 5 6 7
Byte 2

Size (bits 5 through 12)

Byte 3

Size (bits 13 through 20)

0 7

This item declares a nonstandard control section beginning
on a memory page boundary.

200 Appendix F

Declare Dummy Section

Byte O
Control byte

0 0 0 0 i 0 0 1
0 1 2 3 4 5 6 7
Byte 1

First byte of nome_?inﬁgi__»«m B
0 7
Byfe 2
~et o Second byte of name number!
0 7
Byte 3

Access code Size (bits 1 through 4)

p P 0 0
0] 2 3 4 7
Byte 4

Size (bits 5 through 12)

Byte 5

Size (bits 13 through 20)

0 7

This item comprises a declaration for a dummy control sec-
tion. It results in the allocation of the specified dummy
section, if that section has not been allocated previously
by another object module. The label that is to be associ-
ated with the first location of the allocated section must be
a previously declared external definition name. (Even
though the source program may not be required to explicitly
designate the label as an external definition, the processor
must generate an external definition name declaration for
that label prior to generating this load item.)

Declare External Definition Name

Byte 0
Control byte ,
0 0 0 0 0 0 1 1
0 | 2 3 4 5 6 7
Byte 1
Name fength, in bytes (K)
0 7

.

"If the module has fewer than 256 previously assigned name
numbers, this byte is absent,

fote 2 Byte 2
Fircst byte of name First byte of name
0 . 7 0 7
Byte K+1 Byte K+1
Last byte of name Last byte of name
Pt Al me
0 7 0 7

This item declares a labe! (in EBCDIC code) that is an exter=-
nal definition within the current object module. The name
may not exceed 63 bytes in length.

Ceclare Primary External Reference Name

Byte O

[__"_‘ ____ Control byte

|0 0 0 0 0 1 0 1
3 1 2 3 4 5 6 7

Rute |

Name ength (K), in bytes

Byte 2

First byte of name

0 7
Byte K+1
Lost byte of name
_—
0 7

This item declares a symbol (in EBCDIC code) that is a pri-
mary external reference within the current object module.
The naome may not exceed 63 bytes in length.

A primary external reference is capable of causing the loader
tc search the system library for a corresponding external
definition. If a corresponding external definition is not
found in anotherload module of the program or in the system
library, a load error message is output and the job is errored.

Declare Secondary External Reference Name

This item declares a symbol (in EBCDIC code) that is o sec-
ondary external reference within the current object module.
The name moy not exceed 63 bytes in length,

A secondary external reference is not capuble of causing the
loader to search the system library fora corresponding exter-
nal definition, If a corresponding external definition is not
found in another load module of the program, the job is not
errored and no error or abnormal message is output.

Secondary external references oftenappear in library routines
that contain optional or alternative subroutines, some of which
may not be required by the user's program. By the use of pri-
mary external references in the user's program, the user can
specify that only those subroutines thatare actually required by
the current job are tobe loaded. Althoughsecondary external
references do not cause loading from the library, they do cause
linkages to be‘ made between routines that are loaded.

DEFINITIONS

When a source language symbol is to be defined (i.e., equa-
ted with a value), the processor provides for such a value by
generating an object language expression to be evaluated by
the loader. Expressions are of variable length, and terminate
with an expression-end control byte (see "Expression Evalua-
tion" in this appendix). An expression is evaluated by the ad-
dition or subtraction of values specified by the expression.

Since the loader must derive values for the origin and start-
ing address of a program, these also require definition.

Origin

Byte 0

Control byte
0 0 0] 0 0 1 0 0
0 1 2 3 4 5 6 7

This item sets the loader's load-location counter to the

Byte 0 value designated hy the expression immediately following
the origin control byte. This expression must not contain
Control byte any elements that cannot be evaluated by the loader (see
0 0 0 0 0 1 1 "Expression Evaluation" which follows).
0 ! 2 3 4 3 6 Forward Reference Definition
Byte 1 Byte 0
Name length, in bytes (K) Control byte
0 0 0 1 0 0
0 7 0 1 2 3 4 5 6

Appendix F 201

Byte 1

o First byte of reference number

0 7
Byte 2

| Second byte of reference number

0 7

This item defines the value {expression) for a forward refer-
ence. The referenced expression is the one immediately
following byte 2 of this load item, and must not contain
any elements that cannot be evaluated by the loader (see
"Expression Evaluation" which follows).

Forward Reference Definition and Hold

Byte O
| Control byte
0 0 0 1 0 0 0
0 i 2 3 4 5 6
Byte 1
First byte of reference number
0 7
Byte 2
Second byte of reference number
0 7

Thisitem defines the value (expression) for a forward refer-
ence and notifies the loader that this value is to be retained
in the loader's symbol tabie until the module end is encoun-
tered. The referenced expression is the one immediately
following the name number. It may contain values that have
not been defined previously, but all such values must be
available to the loader prior to the module end.

After generating this load item, the processor need not retain
the value for the forward reference, since that responsibility
is then assumed by the loader, However, the processor must
retain the symbolic name and forward reference number
assigned to the forward reference (until module end).

External Definition

Byte O
S Control byte
0 0 0 0 i 0]
[} i 2 3 4 5 6
Byte 1
N _ _First byte of name number
0 7

202 Appendix F

Byte 2

Second byte of name numbert

0 7

This item defines the value (expression) for an external
definition name. The name number refers to a previously
declared definition name. The referenced expression is
the one immediately following the name number.

Define Start

Byte 0
Control byte
0 0 0 0] 1 0 1
0 1 2 3 4 5 6 7

This item defines the starting address (expression) to be used
at the completion of loading. The referenced expression is
the one immediately following the control byte,

EXPRESSION EVALUATION

A processor must generate an object language expression
whenever it needs to communicate to the loader one of
the following:

1. A program load origin.

2. A program starting address.

3. An external definition value.

4. A forward reference value.

5. A field definition value.

Such expressions may include sums and differences of con-
stants, addresses, and external or forward reference values
that, when defined, will themselvesbe constants or addresses.

After initiation of the expression mode, by the use of a con-
trol byte designating one of the five items described above,
the value of an expression is expressed as follows:

1. An address value is represented by an offset from the
control section base plus the value of the control sec-
tion base,

t.
If the module has fewer than 256 previously assigned name
numbers, this byte is absent.

2. The value of a constant is added to the accumulated
sum by generating an Add Constant (see below) control
byte followed by the value, right-justified in four
bytes.

The offset from the control section base is given as a

constant representing the number of units of displace-
ment from the control section base, at the resolution

of the address of the item. That is, a word address

would have its constant portion expressed as a count
of the number of words offset from the base, while the
constant portion of a byte address would be expressed
as the number of bytes offset from the base.

The control sectionbase value is accumulated by means
of an Add Value of Declaration (see below)or Subtract
Value of Declaration load item specifying the desired
resolution and the declaration number of the control
section base. The loader adjusts the base value to the
specified address resolution before adding it to the cur-
rent partial sum for the expression.

In the case of an absolute address, an Add Absolute
Section (see below) or Subtract Absolute Section con-
trol byte must be included in the expression to identify
the value as an address and to specify its resolution.

3. An external definition of forward reference value is
included in an expression by means of a load item add-
ing or subtracting the appropriate declaration or for-
ward reference value. If the value is an address,
the resolution specified in the control byte is used to
align the value before adding it to the current partial
sum for the expression. If the value is a constant, no
alignment is necessary.

Expressions are not evaluated by the loader until all re-
quired values are available. In evaluating an expression,
the loader maintains a count of the number of values added
or subtracted at each of the four possible resolutions. A
separate counter is used for each resolution, and each
counter is incremented or decremented by 1 whenever a
value of the corresponding resolution is added to or sub-
tracted from the loader's expression accumulator. The final
accumulated sum is a constant, rather than an address
value, if the final count in all four counters is equal to 0.
If the final count in one (and only one)of the four counters
is equal to +1 or -1, the accumulated sum is a "simple ad-
ress" having the resolution of the nonzero counter. If
more than one of the four counters hava a nonzero final
count, the accumulated sum is termed a "mixed-resolution
expression” and is treated as a constant rather than an
address.

The resolution of a simple address may be altered by
means of a Change Expression Resolution (see below)
control byte. However, if the current partial sum is
either a constant or a mixed-resolution value when the

Change Expression Resolution control byte occurs, then
the expression resolution is unaffected.

Note that the expression for a program load origin or
starting address must resolve to a simple address, and the
single nonzero resolution counter must have a final count
of +1 when such expressions are evaluated.

In converting a byte address to a word address, the two least
significant bits of the address are truncated. Thus, if the
resulting word address is later changed back to byte resolu-
tion, the referenced byte location will then be the first byte
{(byte 0) of the word.

After an expression has been evaluated, its final value is
associated with the appropriate load item.

In the following diagrams of load item formats, RR refers to
the address resolution code. The meaning of this code is
given in the table below.

RR Address Resolution
00 Byte

01 Halfword

10 Word

n Doubleword

The load item discussed in this appendix, "Expression
Evaluation", may appear only in expressions.

Add Constant

Byte O
Control byte

0 0 i] 0 0 0 1

1 2 3 4 5 6 7
Byte 1

First byte of constant
0 7
Byte 2
Second byte of constant

0 7

Appendix F 203

Byte 3

Third byte of constant

Byte 4

Fourth byte of constant

0 7

This item causes the specified four-byte constant to be added
to the loader's expression accumulator. Negative constants
are represented in two's complement form.

Add Absolute Section

Byte 0
Control byte
0 1 1 0 1 R R
i 2 3 4 5 6 7

This item identifies the associated value (expression) as a
positive absolute address. The address resolution code, RR,
designates the desired resolution.

Subtract Absolute Section

Byte O

Control byte

0 0 1 1 1 0 R R

1 2 3 4 5 6 7

This item identifies the associated value (expression) as o
negative absolute address. The address resolution code,
RR, designates the desired resolution,

Add Value of Declaration

Byte O
Control byte
0 1 0 0 0
0 1 2 3 4 5 6 7
Byte 1
First byte of name number
0 7
Byte 2
Second byte of name number'
0 7

t
If the module has fewer than 256 previously assigned name
numbers, this byte is absent.

204 Appendix F

This item causes the value of the specified declaration tobe
added to the loader's expression accumulator. The address
resolution code, RR, designates the desired resolution, and
the name number refers to a previously declared definition
name that is to be associated with the first location of the
allocated section.

One such item must appear in each expression for a reloca-
table address occurring within a control section, adding the
value of the specified control section declaration (i.e.,
adding the byte address of the first location of the control
section).

Add Value of Forward Reference

Byte O
Control byte

0 0 1 0 0 1 R R

1 2 3 4 5 6 7
Byte 1

First byte of forward reference number
0 7
Byte 2

Second byte of forward reference number

0 ‘ 7
This item causes the value of the specified forward reference
to be added to the loader's expression accumulator, The
address resolution code, RR, designates the desired resolu-
tion, and the designated forward reference must not have
been defined previously.

Subtract Value of Declaration

Byte O
Control byte
0 0 1 0 1 0 R R
0 1 2 3 4 5 6 7
Byte 1
First byte of name number
0 7
Byte 2
Second byte of name number!

This item causes the value of the specified declaration to
be subtracted from the loader's expression accumulator.
The address resolution code, RR, designates the desired
resolution, and the name number refers to a previously de-
clared definition name that is to be associated with the
first location of the allocated section.

Subtract Value of Forward Reference

Byte O
S Control byte
0 0 1 0 1 1 R R
0 1 2 3 4 5 6 7
Byte 1
o First byte of forward reference number
0 7
Byte 2

Second byte of forward reference number
0 7

This item causes the value of the specified forward reference
to be subtracted from the {oader's expression accumulator,
The address resolution code, RR, designates the desired reso-
lution, and the designated forward reference must not have
heen defined previously.

Change Expression Resolution

Byte 0

| _ Controlbyte

0 0 1] 0 0 R R
0] 2 3 4 5 6 7

This item causes the address resolution in the expression to
be changed to that designated by RR.

Expression End

Byte O

___Control byte
0 0 0 0 0 0 1 0

1 2 3 4 5 6 7

This item identifies the end of an expression (the value of
which is contained in the loader's expression accumulator).

FORMATION OF INTERNAL SYMBOL TABLES

The three object code control bytes described below are re-
quired to supply the information necessary in the formation
of Internal Symbol Tables.

In the following diagrams of load item formats, Type refers
to the symbol types supplied by the object language and
maintained in the symbol table. IR refers to the internal
resolution code. Type and resolution are meaningful only
when the value of a symbol is an address. In this case, it
is highly likely that the processor knows the type of value
that is in the associated memory location, and the type field
identifies it. The resolution field indicates the resolution
of the location counter at the time the symbol was defined.
The following tables summarize the combinations of value
and meaning.

Symbol Types

Type Meaning of 5-Bit Code

00000 Instruction

00001 Integer

00010 Short iloating point

0001 Long floating point

00110 Hexadecimal (also for packed decimal)
00t EBCDIC text (also for unpacked decimal)
01001 Integer array

01010 Short floating-point array

01011 Long floating-complex array

01000 Logical array

10000 Undefined symbol

Internal Resolution

R Address Resolution
000 Byte

001 Halfword

010 Word

011 Doubleword

100 Constant

Type Information for External Symbol

Byte O
Control byte
0 0 1 0 0 0]
1 2 3 4 5 6 7
Byte 1
Type field IR field
0 4 5 7
Byte 2
Name number
0 7

Byte 3 (if required)

Name number (continued)

0 7

This item provides type information for external symbols.
The Type and IR fields are defined above. The nome
number field consists of one or two bytes (depending on the
current declaration count) which specifies the declaration
number of the external definition.

Type and EBCDIC for Internal Symbol

Byte O

Control byte

0 0 1 0 0 1 0

1 2 3 4 5 6 7

Appendix F 205

Byte 1
Type field [IRfield
0 4 5 7
Byte 2
Length of name (EBCDIC characters)
0 7
Byte 3
First byte of name in EBCDIC
0 7
Byte n
Last byte of name in EBCDIC
0 7
Byten + 1,...
Expression defining value of internal symbol
0 7

This item supplies type and EBCDIC for an internal symbol. The
load items for Type and IR are as above. Length of name speci -
fies the length of the EBCDIC name in characters. The name, in
EBCDIC, isspecifiedin the required number of bytes, followed
by the expression defining the internal symbol.

EBCDIC for an Undefined Symbol

LOADING
Load Absolute

Byte O
Control byte

0 1 0 0 N N N N
0 ! 2 3 4 5 6 7
Byte 1

First byte to be loaded
0 7
Byte NNNN

Last byte to be loaded

0 7

This item causes the next NNNN bytes to be loaded abso-
lutely (NNINN is expressed in natural binary form, except
that 0000 is interpreted as 16 rather than 0}, Theloadloca-
tion counter is advanced appropriately.

Load Relocatable (Long Form)

Byte O
Byte 0 Control byte
Control byte 0 | 0 i Q C R R
0 0 0 1 0 0] 1 0 ! 2 3 4 5 % 7
0] 2 3 4 5 6 7
Byte 1 Byte !
Length of name (EBCDIC characters) First byte of name number
0 7 0 7
Byte 2 Byte 2
First byte of name in EBCDIC Second byte of name number!
Byte n
- Thisitem causes afour-byte word (immediately following this
Last byte of name in EBCDIC load item) to be loaded, and relocates the address field
according to the address resolution code, RR. Control bit
0 7 C designates whether relocation is to be relative to a for-

Byten -1, n+ 2

Two bytes of symbol associated forward reference number

0 7

Thisitem is used to associate asymbol with a forward reference .
The length of name and name in EBCDIC are the sameas in the
above iterr. The last two bytes specify the forward reference
number with which the above symbol is to be associated.

206 Appendix F

ward reference (C = 1) or relative to a declaration (C = 0).
Control bit Q designates whether a I-byte (Q = 1) or a
2-byte (Q = 0) name number follows the control byte of
this load item. '

'If the module has fewer than 256 previously assigned name
numbers, this byte is absent,

If relocation is to be relative to a forward reference, the

forward reference must not have been defined previously.

When this load item is encountered by the loader, the load
location counter can be aligned with a word boundary by
loading the appropriate number of bytes containing all
zeros (e.g., by means of a load absolute item).

Load Relocatable (Short Form)

Byte O
Control byte
1 C D D D D D D
0 1 2 3 4 5 6 7

This item causes a four-byte word (immediately following
this load item)to be loaded, and relocates the address field
{word resolution). Control bitC designates whether reloca-
tion is to be relative to a forward reference (C=1) or rela~
tive to a declaration (C=0). The binary number DDDDDD
is the forward reference number or declaration number by
which relocation is to be accomplished.

Byte |
Field location constant, in bits (K)
0 7
Byte 2
Field length, in bits (L)
0 7

This item defines a value (expression) to be added to a field
in previously loaded information. The field is of fength L
(1 = L = 255) and terminates in bit position T, where:

T = current load bit position -256 +K.

The field location constant, K, may have any value from

1 to 255. The expression to be ‘added to the specified
field is the one immediately following byte 2 of this load
item.

This item causes the loader to repeat (i.e., perform) the

subsequent load item a specified number of times. The
repeat count must be greater than 0, and the load item to
be repeated must follow the repeat load item immediately.

Define Field

Byte O
Control byte
0 0 0 0 1 1 1
1 2 3 4 5 6 7

MISCELLANEOUS LOAD ITEMS

If relocation is to be relative to a forward reference, the Paddin
forward reference must not have been defined previously. Jachg
When this load item is encountered by the loader, the load Byte 0
location counter must be on a word boundary (see "Load 4
Relocatable (Long Form)", above). Control byte

0 0 0 0 0
Repeat Load] 2 3 4 3

Padding bytes are ignored by the loader. The object lan-
Byte 0 guage allows padding as a convenience for processors.
Control byte Module End
0 0 0 0 1 1 1 1 Byte 0
0 ! 2 3 4 3 6 7 Control byte
Byte 1 00 o0 o0 1 1 T 0
First byte of repeat count 0 1 2 3 4 5 6
Byte 1

0 7 LA
Byte 2 Severity level

0 0 0 E E

Second byte of repeat count

1 2 3 4 5 6 7

0 7

This item identifies the end of the object module. The
value EEEE is the error severity level assigned to the
module by the processor.

OBJECT MODULE EXAMPLE

The following example shows the correspondence between
the statements of a Meta~Symbol source program and the
string of object bytes output for that program by the assem-
bler. The program, listed below, has no significance other
than illustrating typical object code sequences.

Appendix F 207

Example

1 DEF AA,BB,CC CC IS UNDEFINED BUT CAUSES NO
ERROR
2 REF RZ,RTN EXTERNAL REFERENCES DECLARED
3 00000 ALPHA CSECT DEFINE CONTROL SECTION ALPHA
4 000C8 ORG 200 DEFINE ORGIN
5 000C8 22000000 N AA LI, CNT 0 DEFINES EXTERNAL AA; CNT IS A
FWD REF
6 000C9 32000000 N LW,R RZ R IS A FORWARD REFERENCE;
7 * RZ IS AN EXTERNAL REFERENCE, AS
8 * DECLARED IN LINE 2
9 000CA 50000000 N RPT AH,R KON DEFINES RPT; R AND KON ARE
10 * [FORWARD REFERENCES
11 000CB 69200000 F BCS, 2 BB BB IS AN EXTERNAL DEFINITION
12 * [USED AS A FORWARD REFERENCE
13 000CC 20000001 N Al CNT 1 CNT IS A FORWARD REFERENCE
14 000CD 680000CA B RPT RPT IS A BACKWARD REFERENCE
15 000CE 68000000 X B RTN RTN IS AN EXTERNAL REFERENCE
16 000CF 0001 A KON DATA, 2 1 DEFINES KON
17 00000003 R EQU 3 DEFINES R
18 00000004 CNT EQU 4 DEFINES CNT
19 000D0 224FFFFF A BB LI,CNT -1 DEFINES EXTERNAL BB THAT HAS
20 * ALSO BEEN USED AS A FORWARD
21 * REFERENCE
22 000C8 END AA END OF PROGRAM

CONTROL BYTES (In Binary)

Record type: not last, Mode binary, Format: object language.

0302C1C1 (hexadecimal code comprising the load item)

Declare external definition name (2 bytes) Name: AA

Declare external definition name (2 bytes) Name: BB

Declare external definition name (2 bytes) Name: CC

Declare primary reference name (2 bytes) Name RZ

Begin Record Record number: 0 °
00111100
06000000 Sequence number 0
01100011 Checksum: 99
01101100 Record size: 108
00000011

0302C2C2
00000011

0302C3C3
00000011

0502D9E9
00000101

0503D%E3D5
00000101

Declare primary reference name (3 bytes) Name: RTN

208 Appendix F

Record control
information not
part of load item

Declaration number: 1

. > Source Line |
Declaration number: 2

Declaration number: 3 J

Declaration number: 4
> Source Line 2

Declaration number: 5

Begin Record Record number: 0

0A010100000320200002 A
00001010) Define external definition
Number 1 '
00000001 | Add constant: 800 X'320' ¥ Source Line 5
00100000 Add value of declaration (byte resolution)
Number 0
00000010 J Expression end J
040100000320200002 7
00000100) Origin
00000001 Add constant: 800 X'320'
00100000 ¢ Add value of declaration (byte resolution) } Source Line 4
Number 0
00000010 J Expression end J
4422000000)
01000100 Load absolute the following 4 bytes: X'22000000'
07EB0426000002
00000111 Define field
Field location constant: 235 bits p Source Line 5

Field length: 4 bits
Add the following expression to the above field:

00100110 Add value of forward reference (word resolution)
Number 0
00000010 Expression end J
8432000000 A
10000100 Load relocatable (short form). Relocate address field (word resolution)

Relative to declaration number 4
The following 4 bytes: X'32000000'

07EB0426000602
00000111 Define field >

Field location constant: 235 bits. '

Field length: 4 bits

Add the following expression to the above field:

Source Line 6

00100110 Add value of forward reference (word resolution)
Number 6
00000010 Expression end J
CC50000000 h
11001100 Load relocatable (short form). Relocate address field (word resclution)

Relative to forward reference number 12
The following 4 bytes: X'50000000'

07EB0426000602
00000111 Define field
Field location constant: 235 bits
Field length: 4 bits
Add the following expression to the above field:
00100110 Add value of forward reference (word resolution)
Number 6
00000010 Expression end J

9 Source Line 9

"No object code is generated for source lines 3 (define control section) or 4 (define origin) at the time they are encountered.
The control section is declared at the end of the program after Symbol has determined the number of bytes the program requires.
The origin definition is generated prior to the first instruction.

Appendix F 209

Begin Record

Record number: O

11010010

01000100

00000111

00100110

00000010

10000000

10000101

00001000

Begin Record

D269200000
Load relocatable (short form). Relocate address field (word resolution)

Relative to forward reference number 18
The following 4 bytes: X'69200000'

4420000001
Load absolute the following 4 bytes: X'20000001*

07EB0426000002

Define field

Field location constant: 235 bits

Field length: 4 bits

Add the following expression to the above field:
Add value of forward reference (word resolution)
Number 0

Expression end

80680000CA
Load relocatable (short form). Relocate address field (word resolution)

Relative to declaration number 0
The following 4 bytes: X'680000CA'

8568000000
Load relocatable (short form), Relocate address field (word resolution)
Relative to declaration number 5

The following 4 bytes: X'68000000'

08

Define forward reference (continued in record 1)

Record number: 1

00011100
00000001
11101100
01010001

00000001
00100000

00000010

01000010

00001000

00000001

00000010

00001000

00000001
00000010

Record type: last, Mode: binary, Format: object language.
Sequence number 1
Checksum: 236

Record size: 81

000C010000033C200002 (continued from record 0)
Number 12

Add constant: 828 X'33C'

Add value of declaration (byte resolution)
Number 0 ‘

Expression end

42001
Load absolute the following 2 bytes: X'0001"

0800060 10000000302
Define forward reference
Number 6

Add constant: 3 X'3'
Expression end

080000010000000402
Define forward reference
Number 0

Add constant: 4 X'4'
Expression end

210 Appendix F

Source Line 11

Source Line 13

Source Line 14

Source Line 15

Source Line 16

Record Control
Information

Source Line 16

Source Line 17

Source Line 18

Begin Record

Record number: 1

00001111

01000001

00001000

00000001

00000010

00001010

00000001
00100000

00000010

01000100

00001101
00000001
00100000

00000010

00001011

00001110

0F00024100

Repeat load

Repeat count. 2

Load absolute the following 1 bytes: X'00'

0800120100000340200002

Define forward reference

Number 18

Add constant: 832 X'340'

Add value of declaration (byte resolution)
Number 0

Expressicn end

0A020100000340200002

Define external definition

Number 2

Add constant: 832 X'340'

Add value of declaration (byte resolution)
Number 0

Expression end

A4224FFFFF

Load ebsolute the following 4 bytes: X'224FFFFF'

0D0100000320200002

Define start

Add constant: 800 X'320'

Add value of declaration (byte resolution)
Number 0

Expression end

0B000344

Declare standard control section declaration number: 0

Access code: Full access.

0£00
Module end
Severity level: X'0’

Size 836 X'344'

A table summarizing control byte codes for object language load items is given below.

Advance to Word
Boundary

Source Line 19

Source Line 22

Type of Load Item

© O O ©O O © O O OO o o

Object Code Control Byte
0 0o 0 0 0 O
0 0 0 o 1
0 0o 0 0 ' O
0 0 0 0 1 1
6 0 o 1V 0 O
o o0 o0 1 0 1
6 o 0o 1 1 O
0O 0 0 1 ! 1
o o0 1 0 0 O
o o0 ' O 0 1
o 0 1 o0 1 0

o O O O O O O O O O o

Padding

Add constant

Expression end

Declare external definition name
Origin

Declare primary reference name
Declare secondary reference nome
Define field

Define forward reference

Declare dummy section

Define external definition

Appendix F

211

Object Code Control Byte

Type of Load Item

0o 0 0 0 1 0
000 0 0 1 1
0 0 0 0 1 1
o0 0 0 1 1
00 0 0 1 1
00 0 1 0 0
00 0 1 0 0
00 0 1 0 0
00 0 1 0 O
000 0 1 1 1
00 1 0 0 0
00 1 0 0 1
o0 1 0 1 o0
000 1 0 1 1
00 1 1 0 0
000 1 1 0 1
0 0 1 1 o0
01 0 0 N N
0o 1 0 Q ¢
1 ¢ D DD D

O ® F ® ™ ™ ™ P W o

-_0 0O = = O O

O ® 7 ® ® ™ I B P AN O

Declare standard control section

Declare nonstandard control section

Define start

Module end

Repeat load

Define forward reference and hold

Provide type information for external symbol
Provide type and EBCDIC for internal symbol
EBCDIC and forward reference number for undefined symbol
Declare page boundary control section

Add value of declaration

Add value of forward reference

Subtract value of declaration

Subtract value of forward reference

Change expression resolution

Add absolute section

Subtract absolute section

Load absolute

Load relocatable (long form)

Load relocatable (short form)

212

Appendix F

APPENDIX G. XEROX STANDARD COMPRESSED LANGUAGE

The Xerox standard compressed language is used to represent
source EBCDIC information in a highly compressed form,

Meta-Symbol (along with several of the utility programs)
accepts this form as input or output, will accept updates to

. the compressed input and will regenerate source when re-
~ quested. No information is destroyed in the compression or

SO S

decompression.

Records may not exceed 108 bytes in length. Compressed
records are punched in the binary mode when represented
on card media. Therefore, on cards, columns 73 through
80 are not used and are available for comment or identifi-
cation information.

The first four bytes of each record are for checking purposes.
They are as fol lows:

Byte 2 Sequence number (0 to 255 and recycles).

Byte 3 Checksum which is the least significant 8 bits
of the sum of all bytes in the record except
the checksum byte itself. Carries out of the
most significant bit are ignored. If the
checksum byte is all 1's, do not checksum
the record.

Byte 4 Number of bytes comprising record including
the checking bytes (= 108)

The rest of the record consists of a string of é~bit and 8-bit
items. Any partial item at the end of a record is ignored.

Byte 1 Identification (00L11000) L=1 for each record . The following six=bit items (decimal number assigned) com-
except the last record, in which case L=0. prise the string control:
Item Function Item Function
0 Ignore 32 o
1 Noft currently assigned 33 P
2 End of line 34 Q
3 End of file 35 R
4 Use 8-bit character that follows' 36 S
5 Use n+ 1 blanks (next é-bit item is n) 37 T
6 Use n+ 65 blanks (next 6-bit item is n) 38)
7 Blank 39 \'%
8 0 40 w
9 1 4] X
10 2 42 Y
n 3 43 z
12 4 44 .
13 5 - 45 <
14 6 46 (
15 7 47 +
16 8 48 |
17 9 49 &
18 A 50 $
19 B 51 *
20 C 52)
21 D 53 ;
22 E 54 -
23 F 55 -
24 G 56 /
25 H 57 ’
26 1 58 %
27 J 59 —
28 K 60 >
29 L 61 :
30 M 62 !
31 N 63 =
tEighi‘-bif characters are in uncompressed EBCDIC format (e.g., 1@f9).

Appendix G 213

APPENDIX H. XEROX STANDARD SYMBOLS, CODES AND CORRESPONDENCES

XEROX STANDARD SYMBOLS AND CODES

The symbols listed here include two types: graphic symbols
and control characters, Graphic symbols are displaycble
and printable; control characters are not, Hybrids are SP
(the symbol for a blank space), and DEL (the delete code)
which is not considered a control command.

Two types of code are also shown: (1)the 8-bit Xerox Stan-
dard Computer Code, i.e., the Xerox Extended Binary~-
Coded-Interchange Code (EBCDIC); and (2) the 7=bit Amer-
ican National Standard Code for information Interchange
(ANSCII), i.e., the Xerox Standard Communication Code.

XEROX STANDARD CHARACTER SETS
1. EBCDIC

57-character set: uppercase letters, numerals, space,
and & - / . < > () + 1 $ * . ; ,
% # @ =

63-character set: same as above plus ¢ | ?
n
-

89-character set: same as 63-character set plus lower-
case letters

214 AppendixH "~

2. ANSCII
64-character set: uppercase letters, numerals, space,
and! " $ % & ' () *+ , - . /\
;:=<>?@_[]A #|—1

95-character set: same as above plus lowercase letters
and { } | ~ -

CONTROL CODES

In addition to the standard character sets listed above, the
Xerox symbol repertoire includes 37 control codes and the
hybrid code DEL (hybrid code SP is considered part of all
character sets). These are listed in the table titled CP=V
Symbol-Code Correspondences.

SPECIAL CODE PROPERTIES

The following two properties of all Xerox standard codes
will be retained for future standard code extensions:

1. All control codes, and only the control codes, have
their two high-order bits equal to "00". DEL is not
considered a control code.

2. No two graphic EBCDIC codes have their seven low-
order bits equal.

Table H-1. CP-V 8-Bit Computer Codes (EBCDIC)

Most Significant Digits
Hexadecimal otrv|2{3|als|el7]|8l9o|lalslc|Dp]|E]|F
Binary 0000 | 0001}0010 {0011{ 0100[0101]0110{0111 {1000 | 1001 1010|1011 1100| 1101 [1110] 1111

o | 0000 NUL | DLE | gnly ’ s - o

1 | 0001 SOH [XON| FS i VA | s 1

2 {0010 STX [DC2 | GS ks [t s | x| s |2

3 |oon ETX [XOFF| RS HEE R

4 |0100 EOT |DC4 | US m | ['D M| U|4
|5 o HT | | Em nlv | 1e [N] V]S
:g’ 6 |o0110 ACK | SYN| / o | w Flo|wls
§7 o1 BEL |ETB p | x G| p| x|7
5|8 | 1000 EOM|can| = a |y al|v|s
E 9 | 1001 ENQ| EM o,c,fy r] oz z

A {1010 NAK [sus | EOT

B [10M VT | ESC| BS

c | 100 FF | FS |)

D [1101 CR{Gs|HT xOFF| (|) | _ |

E [110 SO | RS ot,F,y E,§C u A R B

Fo{nm st |us [suslen | I[=% 2] " i

. A A ~
3 1 4,1 5
Notes:

1 The characters ™\ { } [] are ANSCII characters that do not appear in any of the Xerox EBCDIC-based
character sets, though they are shown in the EBCDIC table.

2 The characters £ | — appear in the Xerox 63- and 89-character EBCDIC sets but not in either of the Xerox
ANSCII-based sets. However, Xerox software translates the characters £ | =1 into ANSCII characters as

follows:
EBCDIC = ANSCII
¢ ' (6-0)
| '| 7-12) .
- ~ (7-14)

3 The EBCDIC control codes in columns 0 and 1 and their binary representation are exactly the same as those
in the ANSCII table, except for two interchanges: LF/NL with NAK, and HT with ENQ.

4 Characters enclosed in heavy lines are included only in the Xerox standard 63- and 89-character EBCDIC sets.
5 These characters are included only in the Xerox standard 89-character EBCDIC set.

6 The EBCDIC codes in column 3 are used by COC to perform special functions. The EBCDIC codes in
coluinn 2 and positions AF and BC through BF are used by COC for output only.

1 APL characters are assigned EBCDIC values that fall within the shaded area of the CP-V code set. These
assignments are for APL internal use and are only reflected in 2741-APL translation tables.

8 Placing a SYN code as the last position of a nontransparent message will prevent the transmission of the SYN
and the normal message appendage of the CR/LF pair. This allows a user to continue writing more than one
message on the same line without affecting the carrier position. The EBCDIC SYN code is translated to an
idle (IL) on output to 2741 terminals.

Appendix H 215

Notes:

Table H=2. CP-V 7-Bit Communication Codes {ANSCII)

Most Significant Digits
Decimal
(rows) (col's)— O | 7 |2 |3 |4 |56 7
| | Binary x000 [x001 |x010 |x011 {x100 |x101|x110{x111
0| 0000 NULIDLE[sP |0 |@ [P | v | p
5
1| o001 SOH|DC1| 1|1 | A | Q| a | q
2| 0010 sIX [DC2| " | 2 | B { R | b | ¢
3| 0011 ETX |DC3 | # 3 /Cc|SsS|c|s
4| 0100 EoT|DC4| $ | 4 | D [T | d |t
5| 0101 ENQ|NAK| % | 5 | E | U | e | v
g’ 6(ono ACK|ISYN| & [6 [F |V] |
g| 7| om BEL [ETB | ' 7 |G I{W|lg |w
5| 8| 1000 BS [CAN| (|8 | H | X |h [x
v
fg 9| 1001 HT |EM |) 9 |1 Y | i y
- LF
10| 1010 NL [SUB L s |32 z
1.5
1| 10m vT [EC | + | ; K | [7] x|
12| 1100 e oles |, <o N1 |}
.5]
13| 1101 R [6S |- |=(M][] |m]|}
[PN 4
14| 1ol SO {RS >IN n | ~
4
15 1 st Jus |/ ?2 |O | -] o |DEL
\ - A, g
H H

Most significant bit, added for 8-bit format, is either 0 or an even-parity bit for the remaining 7 bits.
Columns 0-1 are contro! codes.

Columns 2-5 correspond to the Xerox 64-character ANSCII set.
Columns 2-7 correspond to the Xerox 95-character ANSCII set.

On many current teletypes, the symbol

~is t (5-14)
— is—(5-15)
~ is ESC or ALTMODE control (7-14)
l» is ESC or ALTMODE control (7-13)

and none of the symbols appearing in columns 6-7 are provided. Except for the four symbol differences
noted above, therefore, such teletypes provide all the characters in the Xerox 64-character ANSCII set,
(The Xerox 7015 Remote Keyboard Printer provides the 64~character ANSCII set also, but prints ~asA.
It also interprets the [] characters as| — .)

On the Xerox 7670 Remote Batch Terminal, the symbol

Pis | (2-1)]is ! (5-13)

[is £ (5-11) ~is— (5-14)
and none of the symbols appearing in columns 6-7 are provided. Except for the four symbol differences noted
above, therefore, this terminal provides all the characters in the Xerox 64-character ANSCII set.

216 Appendix M

Table H-3. CP-V Symbol-Code Correspondences

escoict
Hex. | Dec. Symbol Card Code ANSCII* | Meaning Remarks
00 0 NUL 12-0-9-8-1 0-0 null 00 through 1F are control codes.
01 1 SOH 12-9-1 0-1 start of header On 2741 terminals, SOH is PRE,
02 2 STX 12-9-2 0-2 start of text On 2741 terminals, STX is BY.
03 3 ETX 12-9-3 0-3 end of text On 2741 terminals, ETX is RES.
04 4 EOT 12-9-4 0-4 end of transmission
05 5 HT 12-9-5 0-9 herizontal tab 00, 06, 07, 09-0B, and OE-OF
06 6 ACK 12-9-6 0-6 acknowledge (positive) are idles for 2741 terminals.
07 7 BEL 12-9-7 0-7 bell
08 8 BS or EOM | 12-9-8 0-8 backspace or end of message EOM is used only on Xerox Keyboard/
09 9 ENQ 12-9-8-1 0-5 enquiry Printers Models 7012, 7020, 8091,
0A |10 NAK 12-9-8-2 1-5 negative acknowledge and 8092.
oB |11 vT 12-9-8-3 0-11 vertical tab
0C 112 FF 12-9-8-4 0-12 form feed
oD {13 CR 12-9-8-5 0-13 carriage return CR outputs CR and LF.
OE |14 SO 12-9-8-6 0-14 shift out
OF |15 SI 12-9-8-7 0-15 shift in
10 |16 DLE 12-11-9-8-1 1-0 data link escape
1nm |17 DC1 11-9-1 1-1 device control 1 On Teletype terminals, DC1 is X-ON.
12 |18 DC2 11-9-2 1-2 device control 2 On 2741 terminals, DC2 is PN.
13 |19 DC3 11-9-3 1-3 device control 3 DC3 is RS on 2741s and X-OFF on
14 |20 DC4 11-9-4 1-4 device control 4 Teletypes.
15 |21 LF or NL 11-9-5 0-10 line feed or new line On 2741 terminals, DC4 is PF.
16 |22 SYN 11-9-6 1-6 sync LF outputs CR and LF.
17 |23 ETB 11-9-7 1-7 end of transmission block On 2741 terminals, ETB is EOB.
18 |24 CAN 11-9-8 1-8 cancel
19 |25 EM 11-9-8-1 1-9 end of medium
1A 126 SUB 11-9-8-2 1-10 substitute Replaces characters with parity error.
1B |27 ESC 11-9-8-3 1-11 escape
1C |28 FS 11-9-8-4 1-12 file separator
1D |29 GS 11-9-8-5 1-13 group separator 10, 11, 16, 18, 19, and 1B-1E are
1E (30 RS 11-9-8-6 1-14 record separator idles for 2741 terminals,
1F |31 us 11-9-8-7 1-15 unit separator
20 (32 LF only 11-0-9-8-1 1-5 line feed only 20 through 2F are used by COC for
21 133 FS 0-9-1 1-12 output only. These codes are
22 |34 GS 0-9-2 1-13 duplicates of the label entries
23 |35 RS 0-9-3 1-14 that caused activation. The
24 136 us 0-9-4 1-15 20-2F entries output a single code
25 |37 EM 0-9-5 1-9 only and are not affected by any
26 |38 / 0-9-6 2-15 special COC functional processing.
27 (39 t 0-9-7 5-14
28 |40 = 0-9-8 3-13
29 |14 CR only 0-9-8-1 0-13 carriage return only
2A |42 EOT 0-9-8-2 0-4
2 (43 BS 0-9-8-3 0-8
2C (44) 0-9-8-4 2-9
2D |45 HT 0~9-8-5 0-9 tab code only
2E |46 LF only 0-9-8-6 1-5 line feed only
2F |47 SuUB 0-9-8-7 1-10
30 |48 ESCF 12-11-0-9-8-1 end of file 30 through 3F cause COC to perform
31 |49 CANCEL | 9-1 delete all input and output special functions.
32 |50 ESC X 9-2 delete input line
33 |51 ESCP 9-3 toggle half-duplex paper tape made
34 |52 ESC U 9-4 toggle restrict upper case
35 |53 ESC (9-5 upper case shift
36 |54 ESC) 9-6 lower case shift
37 |55 ESCT 9-7 toggle tab simulation mode
38 156 ESCS 9-8 toggle space insertion mode
39 |57 ESCE 9-8-1 toggle echo mode
3A (58 ESCC 9-8-2 toggle tab relative mode
3B |59 - ESCLF 9-8-3 line continuation 3B toggles the backspace edit mode
3C |60 X-ON 9-8-4 start paper tape for 2741 terminals.
3D |61 X-OFF 9-8-5 stop paper tape
3E |62 ESCR 9-8-6 retype
3F (63 ESC CR 9-8-7 line continuation

t
Hexadecimal and decimal notation,

tt
Decimal notation (column-row).

Appendix H

217

218

Table H=3. CP-V Symbol-Code Correspandences (cont.)

escoict

Hex, | Dec. Symbol Card Code ANSCII* | Meaning Remarks

40 64 SP blank 2-0 blank

4] 65 12-0-9-1 41, 43, 46, and 47 are unassigned.

42 66 1 12-0-9-2 decode

43 67 12-0-9-3

4 | 8 L 12-0-9-4 minimum 42, 44, 45, 48, and 49 are APL

45 69 € 12-0-9-5 epsilon characters for 2741 APL use only.

4 | 70 12-0-9-6

47 VAl 12-0-9-7

48 72 A 12-0-9-8 delta

49 73 4 12-8-1 index

4A 74 £ort 12-8-2 6-0 cent or accent grave Accent grave used for left single

48 75 . 12-8-3 2-14 period quote. On Model 7670, * not

4C 76 < 12-8-4 3-12 less than available, and £ = ANSCII 5-11.

4D 77 (12-8-5 2-8 left parenthesis On 2741 APL, £ is c (subset).

4E 78 + 12-8-6 2-1 plus

4F | 79 lor) 12-8-7 7-12 vertical bar or broken bar On Model 7670, | not available,
and | = ANSCII 2-1,

50 80 & 12 2-6 ampersand On 2741 APL, & is N (intersection).

51 81 12-11-9-1 51, 52, 54, 57, 58, and 59 are

52 82 12-11-9-2 unassigned.

53 83 o 12-11-9-3 quad 53, 55, and 56 are APL characters

54 84 12-11-9-4 for 2741 APL use only.

55 85 T 12-11-9-5 encode

56 86 (o] 12-11-9-6 circular

57 87 12-11-9-7

58 88 12-11-9-8

59 89 11-8-1

5A 90 | 11-8-2 2-1 exclamation point On Model 7670, 1is|. On 2741

5B N $ 11-8-3 2-4 dollars APL, 1is© (degree). On 2741

5C 92 * 11-8-4 2-10 asterisk APL, $is U (union).

5D 93) 11-8-5 2-9 right parenthesis

5E 94 ; 11-8-6 3-1 semicolon

5F 95 ~or— 11-8-7 7-14 tilde or logical not On Model 7670, ~ is not avadilable,
and—1= ANSCII 5-14,

60 96 - 11 2-13 minus, dash, hyphen

61 97 / 0-1 2-15 slash

62 98 r 11-0-9-2 maximum 62, 64, 66, and 67 are APL characters

63 99 11-0-9-3 for 2741 APL use only.

64 1100) 11-0-9-4 down arrow

65 |101 11-0-9-5

66 1102 w 11-0-9-6 omega 63, 65, 68, and 69 are unassigned.

67 103 £ 11-0-9-7 superset

68 1104 11-0-9-8

69 [105 0-8-1

6A 106 A 12-11 5-14 circumflex On Model 7670 ™ is—. On Model

68 |107 , 0-8-3 2-12 comma 7015 Vis A (caret). On 2741 APL,

6C |108 % 0-8-4 2-5 percent ~ist. On 2741 APL, % is P.

6D 109 - 0-8-5 5-15 underline Underline is sometimes called "break

6E 110 > 0-8-6 3-14 greater than character"; may be printed along

6F | ? 0-8-7 3-15 question mark bottom of character line.

70 (112 A 12-11-0 APL 70-72, 74, 76, and 79 are APL

71 |3 . 12-11-0-9-1 APL quote mark characters for 2741 APL use only.

72 |14 - 12-11-0-9-2 overscore

73 115 12-11-0-9-3

74 116 < 12-11-0-9-4 less than or equal 73, 75, 77, and 78 are unassigned.

7% Inz 12-11-0-9-5

76 118 2 12-11-0-9-6 greater than or equal

77 19 12-11-0-9-7

78 (120 12-11-0-9-8

79 {121 v 8-1 down delta

7A 122 : 8-2 3-10 colon

78 1123 ¢ 8-3 2-3 number

7C | 124 @ 8-4 4-0 at

70 {125 ! 8-5 2-7 apostrophe (right single quote)

7 {126 = 8-6 3-13 equals

7F |127 " 8-7 2-2 quotation mark

l'Hexaorieczimcll and decimal notation.

tt
Decimal notation (column-row).

Appendix H

Table H-3. CP-v Symbol-Code Correspondences (cont.)

escpict

Hex.| Dec. Symbol Card Code ANSCHH | Meaning Remarks

80 | 128 12-0-8-1 80 is unassigned.

81 |129 a 12-0-1 6-1 81-89, 91-99, A2-A9 comprise the

82 | 130 b 12-0-2 6-2 lowercase alphabet. Available

83 1131 c 12-0-3 6-3 only in Xerox standard 89- and 95-

84 | 132 d 12-0-4 6-4 character sets.

85 | 133 e 12-0-5 6-5

86 | 134 f 12-0-6 6-6

87 |[135 g 12-0-7 6-7

88 | 136 h 12-0-8 6-8

89 | 137 i 12-0-9 6-9

8A | 138 12-0-8-2 8A through 90 are unassigned.

88 | 139 12-0-8-3

8C | 140 12-0-8-4

8D | 141 12-0-8-5

8E 142 12-0-8-6

8F | 143 12-0-8-7

90 | 144 12-11-8-1

91 | 145 i 12-11-1 6-10

92 | 146 k 12-11-2 6-11

93 | 147 | 12-11-3 6-12

94 {148 m 12-11-4 6-13

95 | 149 n 12-11-5 6-14

96 150) 12-11-6 6-15

97 |151 p 12-11-7 7-0

98 | 152 q 12-11-8 7-1

99 | 153 r 12-11-9 7-2

9A | 154 12-11-8-2 9A through A1 are unassigned,

9B | 155 12-11-8-3

9C | 156 12-11-8-4

9D | 157 12-11-8-5

9E 158 12-11-8-6

9F | 159 12-11-8-7

A0 | 160 11-0-8-1

Al | 161 11-0-1

A2 |162 s 11-0-2 7-3

A3 | 163 t 11-0-3 7-4

Ad | 164 u 11-0-4 7-5

A5 | 165 v 11-0-5 7-6

Ab | 166 w 11-0-6 7-7

A7 |[167 x 11-0-7 7-8

A8 | 168 y 11-0-8 7-9

A9 | 169 z 11-0-9 7-10

AA [170 11-0-8-2 AA through AE are unassigned,

AB | 171 11-0-8-3

AC | 172 11-0-8-4

AD |173 11-0-8-5

AE | 174 11-0-8-6

AF | 175 1 11-0-8-7 logical and AF is used by COC for output of
an ANSCII 7-12 code only.

BO | 176 12-11-0-8-1

B1 |177 \ 12-11-0-1 5-12 backslash

B2 | 178 { 12-11-0-2 7-11 left brace On 2741 terminals, { is'output as (.

B3 |179 { 12-11-0-3 7-13 right brace On 2741 terminals, }is output as).

B4 | 180 [12-11-0-4 5-11 left bracket On Model 7670, [is £. On Model

85 | 181] 12-11-0-5 5-13 right bracket 7015, [is 1.

B6 | 182 12-11-0-6 On Model 7670, Jis I. On Model

B7 | 183 12-11-0-7 7015,]is—.

B8 | 184 12-11-0-8 BO and B6 through BB are unassigned.

B9 1185 12-11-0-9

BA | 186 12-11-0-8-2

BB | 187 12-11-0-8-3

BC | 188 [12-11-0-8-4 left bracket BC, BD, and BF are used by COC for

BD | 189 - 12-11-0-8-5 right bracket output of ANSCII 5-11, 5-13, and

BE | 190 lost data | 12-11-0-8-5 lost data 7-14, respectively.

BF | 191 - 12-11-0-8-7 logical not On 2741 Selectric and EBCD Standard
Keyboards, [is output as (and
is output as).

t . . .
Hexadecimal and decimal notation.

tt
Decimal notation (column-row).

Appendix H

219

Table H-3. CP-V Symbol-Code Correspondences (cont.)

EBCDIC!
Hex. | Dec. Symbol Card Code ANSCII*t | Meaning Remarks
Co 192 SP 12-0 2-0 blank Output only.
C1 193 A 12-1 4-1 C1-C9, D1-D9, E2-E9 comprise the
C2 {194 B 12-2 4-2 uppercase alphabet.
C3 |195 C 12-3 4-3
C4 1196 D 12-4 4-4
c5 |97 E 12-5 4-5
Cé 198 F 12-6 4-6
C7 |199 G 12-7 4-7
c8 |200 H 12-8 4-8
C9 1201 1 12-9 4-9
CA 202 12-0-9-8-2 CA through CF are unassigned.
CB |[203 12-0-9-8-3
CC | 204 12-0-9-8-4
CD |205 12-0-9-8-5
CE |206 12-0-9-8-6
CF 1207 12-0-9-8-7
D0 | 208 11-0 DO is unassigned.
D1 |209 J 11-1 4-10
D2 |210 K 11-2 4-11
D3 |21 L 11-3 4-12
D4 |212 M 11-4 4-13
D5 {213 N 11-5 4-14
D6 |214 (o] 11-6 4-15
D7 |215 P 1n-7 5-0
D8 {216 Q 11-8 5-1
D9 |217 R n-9 5-2
DA |218 12-11-9-8-2 : DA through DF are unassigned.
DB |219 12-11-9-8-3
DC [220 12-11-9-8-4
DD |221 12-11-9-8-5
DE {222 12-11-9-8-6
DF |23 12-11-9-8-7
E0 1224 - 0-8-2 2-13 minus Output only, E1 is unassigned.
E1 1225 11-0-9-1
E2 (226) 0-2 5-3
E3 |227 T 0-3 5-4
E4 |228 U 0-4 5-5
€5 |229 v 0-5 5-6
E6 {230 w 0-6 5-7
E7 |231 X 0-7 5-8
E8 |232 Y 0-8 5-9
E9 {233 Z 0-9 5-10
EA |234 11-0-9-8-2 EA through EF are unassigned.
EB™ | 235 11-0-9-8-3
EC {236 11-0-9-8-4
ED | 237 11-0-9-8-5
EE (238 11-0-9-8-6
EF | 239 11-0-9-8-7
FO |240 0 0 3-0
F1 241 1 1 3-1
F2 |242 2 2 3-2
F3 243 3 3 3-3
F4 | 244 4 4 3-4
F5 |245 5 5 3-5
F6 |246 6 é 3-6
F7 | 247 7 7 3-7
F8 | 248 8 8 3-8
F9 | 249 9 9 3-9
FA 250 X 12-11-0-9-8-2 multiply FA through FF are APL characters
FB 251 + 12-11-0-9-8-3 divide for 2741 APL use only.
FC [252 - 12-11-0-9-8-4 right arrow
FD |253 - 12-11-0-9-8-5 left arrow
FE [254 12-11-0-9-8-6 FE is not assigned,
FF {255 DEL 12-11-0-9-8-7 delete Special — neither graphic nor
control symbol.

t .
Hexadecimal and decimal notation.

tt .
Decimal notation (column-row).

Appendix H

Table H-4. ANSCII Control-Character Translation Table

Input Output
Y Prog. Receives Transmitted
ANSCII Key Echoed (EBCDIC) Process EBCDIC (ANSCII)
NUL (00) pcs None None None NUL (00) Nothing (end of
output message)
soH (1) AS SOH SOH None SOH (01) SOH
sTX (02)! B¢ STX STX None STX (02) STX
ETX (03)} ct ETX ETX None ETX (03) ETX
EOT (04)' D¢ EOT EOT Input Complete. | EOT (04) EOT
ENQ (05)' E€ ENQ ENQ (09) None HT (05) Space(s) if tab
simulation on, or
HT (09) if not.
ACK (06)' FC ACK ACK None ACK (06) ACK
BEL (07) G* BEL BEL None BEL (07) BEL
BS (08) HE BS BS None BS (08) BS
HT (09) € Space to tab stop | Spaces to tabstop, None ENQ (09) ENQ (05)
if tabsimulation | oronespace, ortab
on, or 1space if (05) depending on
not. space insertion mode.
LF/NL (0A) NL CR and LF LF (15) Input Complete. | NAK (0A) NAK (15)
VT (0B) K© VT VT None VT (0B) VT
FF (OC) L¢ None FF Page Headerand | FF (0C) Page Header
Input Complete.
CR (0D) CR CR and LF CR (0D) Input Complete. | CR (OD) CR and LF (0A)
SO (0E) M SO SO None SO (OE) SO
SI (OF) o° SI i None SI (OF) SI
DLE (10)' pe DLE - DLE None DLE (10) DLE
DC1 (11) Q¢ DC1 None Paper Tape On. [DC1 (11) DC1
DC2 (12) R® DC2 DC2 None DC2 (12) DC2
DC3 (13) s¢ DC3 None Paper Tape Off. | DC3 (13) DC3
pc4 (14) T° DC4 DC4 None DC4 (14) DC4
NAK (15)f us NAK NAK (0A) None LF/NL (15) CR and LF (0A)

t . .
These characters are communication control characters reserved for use by hardware.

Any other use of them risks in-
compatibility with future hardware developments and is done so by the user at his own risk

Appendix H 21

Table H=4, ANSCII Control-Character Translation Table (cont.)

Input : Output
TTY Prog. Receives Transmitted
ANSCII Key Echoed (EBCDIC) Process EBCDIC (ANSCH)
syN (16 | V¢ |sYN SYN None SYN' (16) SYN (not trans-
mitted for last
character in
user's buffer),
ETB ('|7)f we ETB ETB None ETB (17) ETB
CAN (18) x¢ Back-arrow None Cancel input | CAN (18) CAN
and CR/LF or output
message.
EM (19) Y® Back-arrow None Monitor Escape/ | EM (19) EM
and CR/LF Control to TEL
SUB (1A) yA SUB SUB Input Complete | SUB (1A) # (A3)
ESC (1B) K None None Initiate escape | ESC (1B) ESC
ESC sequence mode,
PREFIX
FS (1C) LS FS FS Input Complete | FS (1C) FS
GS (ID) M | Gs GS Input Complete | GS (1D) GS
RS (1E) N® |Rs RS Input Complete | RS (1E) RS
uUs (1F) o® |us us Input Complete | US (1F) us
} (7D) ALT=- }or None }or None } if model 37;as }(33) }(7D)
MODE ESC if model 33,
35, or 7015,
~(7E) ESC ~or None ~or None ~if model 37;as | —(5F) ~(7E)
(7015) ESC if model 33,
35, or 7015
DEL (7F) Rubout | \ None Rubout last DEL (FF) None
character,
All ANSCII upper and lower case alphabetics are translated on input into the Alphabetic and symbol output trans-
corresponding EBCDIC graphics as shown in Tables C-1 and C-2. All special lation is also as shown in Tables C-1
graphics map as shown, allowing for Table C-1, Note 2, and the exceptions and C-2; for Models 33 and 35, and
above for model 33 and 35, Lower case alphabetics map into corresponding 7015 terminals, however, lowercase
EBCDIC upper case if the ESC U mode is sef. Upper case alphabetics map alphabetics are automatically trans-
into corresponding EBCDIC lower case if ESC) is set, lated to upper case.
Mhese characters are communication control characters reserved for use by hardware, Any other use of them risks in-
compatibility with future hardware developments and is done so by the user at his own risk.

222 Appendix H

Table H-4.

Substitutions for Nonexistent Characters on 2741 Keyboards

EBCDIC APL Selectric EBCD
Character Keyboard Keyboard Keyboard
> > , (upper case) >
< < . (upper case) <
~ ! ¢ ¢
I | ® (degree) |
- ~ + -
¥
% % %
¢ c 4 £
@ a @
" v " "
!) l |
& n & &
$ v $ $

Appendix H

2

INDEX

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in

numerical sequence.

* command, ANLZ, 46

? command, DRSP, 110

| command, ANLZ, 46

560 cluster/unit matrix, 156

560 Remote Assist Station, 175,23

2741 terminal, substitutions for nonexistent characters, 223

A

A Programming Language, 8
active interrupt, 126
ALL command, ANLZ, 43
Analyze (see ANLZ)
ANLZ, 42,10,23

batch mode, 42

command summary, 59,58
ANLZ, commands, 42

*, 46

I, 46

ALL, 43

BF, 47

CLOSE, 48

COMPARE, 46

DELTA, 47

DISPLAY, 43

DUMP, 48

END, 49

HELP, 48

INPUT, 43

IS, 48

LINE FEED, 46

loc, 43

loc =value, 46

locl1,loc2, 46

LP, 47

MAP, 46

MONITOR, 46

NODELTA, 47

PRINT, 47

ROWS, 47

RUN, 43

SEARCH, 47

SMASK, 47

SPY, 48

SYMBOLS, 48

SYMBOL/, 48

ucC, 47

UNMAP, 46
ANLZ, ghost mode, 42
ANLZ, messages, 58
ANLZ, on-line mode, 42
ANLZ, output, 49
ANS COBOL (see COBOL)
ANS labeled tape, xi

ANSCII, 216,214,221
AP, 6

APL, 8

application processors, 11
armed interrupt, 126
Assembly Program (see AP)
automatic recovery, 23

BASIC, 6
Batch (processor), 11
batch job, xi
batch processing, 1
BF command, ANLZ, 47
binary input, xi
booting, 24,37
from disk, 40
bootstrap 1/O error recovery, 40
bootstrap operations (see booting)

C

CCl1, 99,4
character sets, 214
CIRC, 12
cleared interrupt, 126
CLIS command, ELLA, 68
CLOSE command, ANLZ, 48
cluster/unit matrix, 156
COBOL, 7
COBOL On-Line Debugger, 10
codes and correspondences, 214
command processor programming, 101
command processors, 3
command summaries, ANLZ, 59,58
DRSP, 113,110
ELLA, 91,90
reconfiguration and partitioning, 29,24
command syntax notation, x
commands, control, xi
COMPARE command, ANLZ, 46
compressed language, 213
concatenation, xi
conditional patch control commands, 35
conflicting reference, xi
Control (processor), 4
control codes, 214
Control Command Interpreter, 94,4
control commands, xi
control message, xi
cooperative, xi

Index

225

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

CP-V operating system, 3 DISP, 81
crash analysis (see ANLZ) DSPL, 87
END, 82
MOD, 84
RSET, 82
D SET, 65
SLIS, 77
Data Control Block, 96, xi SUM, 81
DCB, 96,xi TIME, 83
diagnostic, 122,115,120 TYPE, 84
DDCB, 122,115,120 ELLA,
DEFCOM, 10 error log entry headings, 70
DELETE command, DRSP, 109 error log entry types, 77
GENMD, 34 input/output assignments, 65
Delta, 9 input/output characteristics, 67
DELTA command, ANLZ, 47 interrupting execution, 68
Delta format patches, 24 messages, 90
DEV command, ELLA, 84 predefined tasks, 87
DEVDMP, 5 RB:FLAGS structure, 75
device designation codes, 156 starting execution, 65
device names, 156 enabled interrupt, 126
Device Save/Restore processor, 5 END command, ANLZ, 49
device type codes, 156 DRsP, 110
diagnostic DCB, 122,115 ELLA, 82
diagnostics (see on-line peripheral diagnostic facilities) PPS, 147
disabled interrupt, 126 :END command (boot-time), 29
disarmed interrupt, 126 ENTER command, DRSP, 106
DISP command, ELLA, 81 ERR:FIL, 65,22
DISPL command, ELLA, 87 ERRFILE file, 178,65
DISPLAY command, ERRFILE file formats, 178
ANLZ, 43 bad granule release, 188
PPS, 145 configuration record, 187
DRSP, 106, 11 device error, 184
DRSP, command summary, 113,110 duplicate entries, 187
DRSP, commands, enqueue table overflow, 196
?, 110 errlog record length error, 182
DELETE, 109 file inconsistency error, 186
END, 110 hardware errors, 192
ENTER, 106 1/O activity count, 192
LIST, 109 illegal entry type, 183
LISTALL, 109 incorrect time, 183
REPLACE, 109 instruction exception, 194
DRSP, error messages, 111,110 lost entry indicator, 187
DRSP, limitations and restrictions, 110 memory fault interrupt, 183
DUMP command, ANLZ, 48 : memory parity secondary record, 195
Dynamic Replacement of Shared Processors (see DRSP) MFI primary record, 194
DYNRESDF command, PPS, 146 operator message, 192

partitioned resource, 196
PFI primary record, 194

E power on, 187
processor fault interrupt, 183
EASY, 4 read error, 182
EBCDIC, 215,214 remote processing error, 188
Edit (processor), 10 returned resource, 196
EDMS, 11 secondary records for disk pack, RAD, and tape, 185
ELLA, 65,11,22 Sigma 6/7 memory parity secondary record, 195
ELLA, command summary, 91,90 SIO failure, 183
ELLA, commands, software~detected symbiont inconsistencies, 186
CLIS, 68 system identification, 187
DEV, 84 system startup, 185

226 Index

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

time out, 184 GET command, PPS, 145
time stamp, 188 ghost job, xi
unexpected interrupt, 184 ghost job, initiating, 92
watchdog timer, 193 global symbol, xi
Xerox 560 memory parity secondary record, 195 :GO command (boot-time), 27
Xerox 560 secondary record for poll information, 195 GO file, xi
ERRMSG file, 63 GPDS, 12
error detection and recovery, 22,23 Granule Accounting Cleanup processor, 5
error log file (see ERRFILE) granule, xi
Error Log Listing program (see ELLA)
error log,
reading, 92
writing, 92 H
error message file, 63
error messages (see messages) hardware-error diagnostic CALs, 91
error record terminology, 178 initiate ghost job, 92
execution control processors, 9 read error log, 92
Extended Data Management System, 11 write error log, 92
Extended FORTRAN 1V, 5 HELP command, ANLZ, 48

external reference, xi

F

|
FDP, 9
file maintenance processors, 23 1/O scheduling, 18
files, ICB, 126
extension, 101, xi initialization and start-up routines, 24
identification, 98 INPUT command, ANLZ, 43
shared, 101 interrupt connection and control services, real-time, 126
FILL (processor), 4 interrupt control block, 126
Fix (processor), 4 interrupt label, 126
fixed monitor locations, 44 IOP designation codes, 156
FLAG, 7 IS command, ANLZ, 48
FORTRAN, 5
FORTRAN Debug Package, 9
FORTRAN libraries, 98, 14 .
FORTRAN Load and Go, 7 J
FPT, xi _
FREE command, PPS, 145 JIT, 95, xi
FRES, 5 job step, xi
FSAVE, 5

function parameter table, xi
K

G key, xi
key=in, xi

GAC, 5

:GENDCB command, 34

General Purpose Discrete Simulator, 12

GENMD, . L
commands,
DELETE, 34) Label, 5
GENMD, 34 language processors, 5, xi
LIST, 34 libraries, 104
error messages, 36,35 FORTRAN, 98, 14
patches, 35 public, 104, xii
GENMD command, GENMD, 34 system, xiii

Index 227

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in

numerical sequence.

library load module, xi
LINE FEED command, ANLZ, 46
Link (processor), 9
linking loader, xi
LIST command,

DRSP, 109

GENMD, 34
list formats (transaction processing), 152
LISTALL command, DRSP, 109
Load (processor), 9
load map, xi
load module, xi
loc command, ANLZ, 43
loc = value command, ANLZ, 46
loc1, loc2 command, ANLZ, 46
log=on connection, 94
logical device, xi
logical device stream, xi
LOGON/LOGOFF, 3
LP command, ANLZ, 47
LYNX (processor), 9

M:BLIST, 117
M:CHKINT, 139
M:CLOCK, 132
M:COC, 143
M:CONNECT, 127
M:DCLOSE, 117
M:DDCB, 115
M:DISCONNECT, 128
M:DMOD#, 120
M:DOPEN, 116
M:EXCP, 140
M:EXU, 136
M:FPP, 137
M:GDG, 138
M:GETID, 149
M:GJOB, 137
M:GJOBCON, 127
M:GPP, 137
M:HOLD, 131
M:INHIBIT, 129
M:INTCON, 129
M:INTRTN, 130
M:INTSTAT, 131
M:IOEX, 134
M:LOCK, 119
M:MAP, 120,137
M:MASTER, 136
M:NEWQ, 140
M:QFI, 130
M:QUE, 142
M:QUEUE, 149
M:RDG, 138
M:RUE, 138
M:SIO, 119

228 Index

M:STARTIO, 134
M:STOPIO, 132
Manage, 12
MAP command, ANLZ, 46
master system tape, 24,25
memory control, 96
memory layout, 20
memory management, 14
messages,
ANLZ, 58
DRSP, 111,110
ELLA, 90
GENMD, 36,35
on-line peripheral diagnostics, 114
PASSO, 41
reconfiguration and partitioning, 32,31
Meta=Symbol, é
MOD command, ELLA, 84
monitor, 13, xii
MONITOR command, ANLZ, 46
monitor DEFs (for real-time), 147
monitor dump analysis program (see ANLZ)

N
NODELTA command, ANLZ, 47

(0

object language, 195, xii
object module, xii
on=line job, xii
on=line peripheral diagnostic facilities, 114,22
abnormal codes and messages, 121, 120
DDCB, 122,115,120
M:BLIST, 117
M:DCLOSE, 117
M:DDCB, 115
M:DMOD#, 120
M:DOPEN, 116
M:LOCK, 119
M:MAP, 120,137
M:SIO, 119
PSECT directive, 114
restrictions, 114
operational label, 155, xii
output (see messages)
overlay loader, xii
overlay program, xii
overlay restrictions, shared processors, 96

P

page allocation for real=time, 143
:PART command, boot-time, 29

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in

numerical sequence.

partitioning resources, 27,29
PASSO, 41
PASSO, error messages, 41
patch, xii
patch control commands, conditional, 35
patch deck comment cards, 37
patch deck structure, 24
patch deck symbol table, 26
patch file creation, 37
patches, Delta format, 24
patching operations, 24
PCL, 10
Peripheral Conversion Language, 10
peripheral device (see device)
peripheral diagnostic facilities (see on-line peripheral
diagnostic facilities)
physical device, xii
physical page allocation for real-time, 143
Physical Page Stealer (see PPS)
PPS, 144
PPS, commands,
DISPLAY, 145
DYNRESDF, 146
END, 147
FREE, 145
GET, 145
RESDF, 146
preventive maintenance, 65
PRINT command, ANLZ, 47
procedures,
M:BLIST, 117
M:CHKINT, 139
M:CLOCK, 132
M:COC, 143
M:CONNECT, 127
M:DCLOSE, 117
M:DDCB, 115
M:DISCONNECT, 128
M:DMOD#, 120
M:DOPEN, 116
M:EXCP, 140
M:EXU, 136
M:FPP, 137
M:GDG, 138
M:GETID, 149
M:GJOB, 137
M:GJOBCON, 127
M:GPP, 137
M:HOLD, 131
M:INHIBIT, 129
M:INTCON, 129
M:INTRTN, 130
M:INTSTAT, 131
M:IOEX, 134 °
M:LOCK, 119
M:MAP, 120, 137
M:MASTER, 136
M:NEWQ, 140
M:QFI, 130
M:QUE, 142

M:QUEUE, 149

MRDG, 138

MRUE, 138

M:SIO, 119

M:SLAVE, 136

M:STARTIO, 134

M:STOPIO, 132

real-time, 126
processor management, 19
processor privileges, 93
processors,

application, 11

command, 3

execution control, 9

language, 5, xi

service, 10

shared processor facilities, 106

system management, 4

user, 13
program product, xii
prompt character, xii
protective mode, xii
PSECT directive, 114,137
public library, 104,xii
public programs, 93

RATES, 4
RB:FLAG, 189
read error log, 92
real~time facilities, 126, 2
clock service, 132
device preemption services, 132
direct 1/O services, 134
dynamic physical page allocation, 143
interrupt connection and control services, 126
lock in core service, 131
miscellaneous services, 137
real-time libraries, 106, 104
reconfiguration and partitioning commands, 27
:END, 29
:GO, 27
:PART, 29
:REMOVE, 28
:SAVE, 28
:TYPE, 28
reconfiguration and partitioning commands summary, 27,24
reconfiguration and partitioning messages, 32, 31
recovery, 22,23
reentrant, xii
relative allocation, xii
relocatable object module (ROM), xii
Remote Assist Station, 175,22
remote diagnostic assistance, 175,22
remote processing, 2,xiii
:REMOVE command (boot-time), 28
REPLACE command, DRSP, 109

Index 229

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in

numerical sequence.

Report Program Generator, 8
RESDF command, PPS, 146
RESDF memory CAL, 147
resident program, xii
response time, xii

ROM, xii

ROWS command, ANLZ, 47
RPG, 8

RSET command, ELLA, 82
RUN command, ANLZ, 43

S

:SAVE command (boot-time), 28
scheduler, xii

scheduler inputs, 15

scheduler operation, 16
scheduler output, 16

scheduler status queues, 17
scheduling, 14

screech codes (see software check codes)

SEARCH command, ANLZ, 47
secondary storage, Xii
semi=protective mode, xii
service processors, 10

SET command, ELLA, 65

shared file use, 101

shared processor, xii

shared processor facilities, 93
shared processor maintenance, 106
shared processor programming, 94
shared programs, 93

Show processor, 11

Simulation Language, 8

SL-1, 8

SLIS command, ELLA, 77
SMASK command, ANLZ, 47
software check codes, 157
Sort/Merge, 11

source language, xii

special shared processor, xii
specific allocation, xii

SPY command, ANLZ, 48
standard object language, 197
start-up, 24

static core module, xiii

STATS, 5

status queves, 17

stream=id, xiii

SUM command, ELLA, 81
Summary (processor), 5

Super (processor), 4

swap hardware organization, 18
swap=in, swap-out queues, 18
symbiont, xiii

Symbol Control Processor, 10
symbol~code correspondences, 214
symbolic input, xiii

230 Index

symbolic name, xiii

SYMBOLS command, ANLZ, 48
SYMBOL/command, ANLZ, 48
symbols, graphic, 214
SYMCON, 10

SYSCON, 5

SYSGEN, 10, xiii

SYSTEM DIAG, 115

system error log file (see ERRFILE)
system generation, 10,xiii
system integrity, 20

system library, xiii

system loading, 24

system management processors, 4
system programming facilities, 2
System Queue Manager, 148
system register, xiii

SYSTEM RTPROCS, 126
SYSTEM SIG7, 115

SYSTEM SIG9Y, 115

system start=-up and initialization, 24
system tape format, 24,25

T

tape, master system, 24,25
task control block (TCB), xiii
TEL, 4
TEL scan, 98
Terminal Executive Language, 4
terminal 1/0, 99
TIME command, ELLA, 83
time=sharing, 1
transaction processing, 2
transaction processing facilities, 148
list formats, 152
M:GETID, 149
M:QUEUE FPTs, 150
M:QUEUE procedure format, 149
M:QUEUE procedure output, 153
System Queue Manager, 148
TYPE command, ELLA, 84
:TYPE command (boot=time), 28

U

UC command, ANLZ, 47
UNMAP command, ANLZ, 46
unsatisfied reference, xiii
user processors, 13

user status queves, 17

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

v X

virtual memory, special processors, 44

VOLINIT, 5 Xerox 560 cluster/unit matrix, 156
Xerox 560 Remote Assist Station, 175,23
w Xerox standard compressed language, 213
Xerox standard object language, 195
waiting interrupt, 126 Xerox standard symbols, codes, and
write error log, 92 correspondences, 214

Index 231

'Reader Comment Form

XEROX

We would appreciate your comments and suggestions for improving this publication

Publication No. Rev. Letter | Title

Current Date

How did you use this publication?

(] Learning [instatting

[:] Reference [:] Maintaining

D Sales

D Operating

Is the material presented effectively?

[] Fully Covered [] well ilustrated [_] Well organized [] Clear

What is your overall rating of this publication?

D Very Good D Fair
D Good D Poor

D Very Poor

What is your occupation?

Your other comments may be entered here. Please be specific and give page, column, and line number references where
applicable. To report errors, please use the Xerox Software Improvement or Difficulty Report (1188) instead of this form.

Your name & Return Address

Thank You For Your Interest. (fold & fasten as shown on back, no postage needed if mailed in U.S.A.)

PLEASE FOLD AND TAPE —
NOTE: U.S. Postal Service will not deliver stapled forms

First Class
Permit No. 59153
Los Angeles, CA

BUSINESS REPLY MAIL
No postage stamp necessary if mailed in the United States

Postage will be paid by

Honeywell Information Systems
5250 W. Century Boulevard
Los Angeles, CA 90045

Attn: Programming Publications

Honeywell Information Systems
Inthe U.S.A.: 200 Smith Street,\MS 486, Waltham, Massachusetts 02154
In Canada: 2025 Sheppard Avenue East, Willowdale, Ontario M2J 1W5
In Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F.

18249, 4C677, Printed in U.S.A.

XQ63, Rev. 0

	00000
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	replyA
	replyB
	xBack

