
Xerox Control Program-Five (CP-V)
Xerox 560 and Sigma 617 /9 Computers

System Programming
Reference Manual

9031138

© 1974. 197:', Xerox Corporation

Xerox Control Program-Five (CP-VJ
Xerox 560 and Sigma 6/7/9 Computers

System Proaramminl

Reference MSlual

90 31 138

November 1975

XEROX

File No.: 1 X13

Printed 10 USA

ii

REVISION

This publication documents the DOO version of CP-V. All changes in text from that of the previous manual (and its
revision package) are indicated by a vertical line in the margin of the page.

RELATED PUBLICATIONS
Publication No.

Xerox Control Program-Five (CP-V}/TS Reference Manual 900907

Xerox Control Program-Five (CP-V)/TS User's Guide 90 16 92

Xerox Control Program-Five (CP-V)/OPS Reference Manual 90 1675

Xerox Control Program-Five (C P-V)/BP Reference Manual 90 1764

Xerox Control Program-Five (CP-V)/TP Reference Manual 9031 12

Xerox Control Program-Five (CP-V)/RP Reference Manual 903026

Xerox Control Program~Five (C P-V)/SM Reference Manual 90 16 74

Xerox Control Program-Five (CP-V)jCommon Index 903080

Xerox EASY /LN, OPS Reference Manual 90 18 73

Xerox BASIC/Reference Manual 90 1546

Xerox Extended FORTRAN IV/LN Reference Manual 900956

Xerox Extended FORTRAN IV/OPS Reference Manual 901143

Title Publication No.

Xerox Extended FORTRAN IV/Library Technical Manual 90 15 24

Xerox FORTRAN Debug Package (FDP}/Reference Manual 90 1677

Xerox FLAG/Reference Manual 90 16 54

Xerox Meta-Symbol/LN, OPS Reference Manual 900952

Xerox ANS COBOL/LN Reference Manual 90 15 00

Xerox ANS COBOL/OPS Reference Manual 90 15 01

Xerox ANS COBOL/ON-line Debugger Reference Manual 903060

Xerox Manage/Reference Manual 90 16 10

Xerox APL/LN, OPS Reference Manual 90 1931

Xerox Sort-Merge/Reference Manual 90 11 99

Xerox 1400 Series Simulator/Reference Manual 90 15 02

Xerox Sigma 5/7 Mathematical Routines/Technical Manual 9009 06

Xerox General Purpose Discrete Simulator (GPDS}/Reference Manual 90 17 58

Xerox Data Management System (DMS >/Reference Manual 90 17 38

Xerox SL-l/Reference Manual 90 1676

Xerox CIRC-DC/Reference Manual and User's Guide 90 16 97

Xerox CIRC-AC/Reference Manual and User's Guide 90 16 98

Xerox CIRC-TR/Reference Manual and User's Guide 90 17 86

Manual Content Codes: BP - batch processing, LN - language, OPS - operations, RP - remote processing,
RT - real-time, SM - system management, SP - system programming, TP - transaction
processing, TS - time-sharing, UT - utilities.

The specifications of the software system described in this publication are subject to change without notice. The availability or performance of some features
may depend on a specific configuration of equipment such as additional tape units or larger memory. Customers should consult their Xerox sales representative
for details.

·iii

CONTENTS

PREFACE ix Comment Cards 37
Patch Fi Ie Creation 37

Sequence of Operations 37

COMMAND SYNTAX NOTATION x Booting From Disk 40
Bootstrap I/o Error Recovery 40

PASSO Processor 41
GLOSSARY xi PASSO Messages 41

1 • INTRODUCTION 4. MONITOR DUMP ANALYSIS PROGRAM 42

CP-V Services 1 Introduction 42
Time-Sharing and Batch Processing 1 Ghost Mode 42

Remote Processing 2 Batch and On-line Modes 42
Transaction Processing 2 Commands 42
Real-Time Processing 2 Input Command 43

System Programming Facilities 2 INPUT 43
Display Commands 43

DISPLAY 43

2. SYSTEM OVERVIEW 3 RUN 43
ALL 43

Introduction 3 Interactive Monitor Display Commands 43

Processors 3 loc 43
46

Comma nd Processors 3 loc1,loC2

System Management Processors 4
LINE FEED 46

46 t Language Processors 5
* 46

Execution Control Processors 9
MONITOR 46

Servi ce Processors 10
Application Processors 11 loc = value 46

Map Commands 46
User Processors 13

Monitor 13
MAP 46

46
Scheduling and Memory Management 14

UNMAP
Search Commands 46

Scheduler Operation 16
COMPARE 46

System Integrity 20
SMASK 47
SEARCH 47

Output Commands 47
3. BOOTSTRAP AND PATCHING OPERATIONS 24 ROWS 47

LP 47
System Tape Format 24 UC 47
Patch Deck Structure 24 PRINT 47

Delta Format Patches 24 Debug Commands 47
Patch Deck Symbol Tables 26 BF 47
Reconfiguration and Partitioning DELTA 47

Commands 27 NODELTA 47
:GO 27 M isce Ilaneous Commands 48
:SAVE 28 SYMBOLS 48
:TYPE 28 IS 48
:REMOVE 28 SYMBOL/ 48
:PART 29 DUMP 48
:END 29 CLOSE 48

:GENDCB Command 34 HELP 48
GENMD Commands 34 SPY Command 48

GENMD 34 SPY 48

LIST 34 Exit Command 49

DELETE 34 END 49

GENMD Patches 35 Output 49

GENMD Error Messages 35 ANLZ Messages 58
Conditional Patch Control Commands 35 ANLZ Command Summary 58

iv

5. ERROR MESSAGE FI LE 63 5hared Processor Maintenance (DRS P) 106
DR5P Commands 106

Introduction 63 ENTER 106
Format of Error Message Fi Ie 63 REPLACE 109
Creati ng Error Message Fi Ie __ . 63 DELETE 109

Card Reader Input 63 LI5T 109
Terminal Input ________ 64 LI5TALL 109

? 110

6. SYSTEM ERROR LOG FILE 65 END 110
DRSP Limitations and Restrictions 110

Introduction 65 DRSP Error Messages 110

ERR:FILL Program 65 DRSP Command Summary 110

Error Log Listi ng Processor 65
Starting Execution 65
Input/Output Assignments 65 8. ON-LINE PERIPHERAL DIAGNOSTIC

SET 65 FACILITIES 114

Input/Output Characteristics 67
Interrupting ELLA Execution 68 Introduction 114

ELLA Commands 68 Restrictions 114

CLIS 68 PSECT Directive 114

SLIS 77 System Procedures 115

SUM 81 Create Diagnostic Data Control Block 115

DISP 81 M:DDCB 115

END 82 Open Diagnostic Data Control Block 116

RSET 82 M:DOPEN 116

TIME 83 Close Diagnostic Data Control Block 117

TYPE 84 M:DCLOSE 117

DEV 84 Bui Id Command List 117

MOD 84 M:BLlST 117

DSPL 87 Start I/O 119

Predefined Tasks 87 M:SIO 119

ELLA Messages 90 Lock in Core 119
M:LOCK 119 ELLA Command Summary 90

Convert Address 120 Hardware-Error Diagnostic CALs 91
M:MAP 120 Read Error Log 92

Write Error Log 92 Obtain Model Numbers and Type Mnemonics 120
M:DMOD# 120 Initiate Ghost Job 92

Abnormal Codes and Messages 120
DDCB 120

7. SHARED PROCESSOR FACILITIES 93

Introduction 93 9. REAL-TIME PROCEDURES 126
Public Programs 93
Processor Privileges 93 Interrupt -Connection and Control Services ___ 126
Shared Programs 93 Connect Interrupt to Ghost Fi I e 127
Log-On Connection 94 M:GJOBCON 127

Shared Processor Programming 94 Connect User Program to Interrupt 127
Fixed Moni tor Locations 94 M:CONNECT 127
Job Information Table (JIT) 95 Disconnect User Program or Ghost Job
Memory Control 96 from Interrupt 128
Overl ay Restri ctions 96 M:DISCONNECT 128
Data Control Blocks 96 Contro I an Interrupt 129
Fi Ie Identi fi cation 98 M:INTCON 129
TEL Scan 98 General Interrupt Inhibit 129
CCI Scan 99 M:INHIBIT 129
Terminal I/o 99 Return from Interrupt Processing 130
Fi Ie Extension 101 M:INTRTN 130
Shared Fi Ie Use 101 Queue for Interrupt 130

Command Processor Programmi ng 101 M:QFI 130
Public Libraries 104 Obtain Interrupt Status 131

CP-V Public Libraries 104 M:INTSTAT 131
Creati ng Pub lie Libraries 104 Lock in Core Servi ce 131
Loading Public Libraries 106 M:HOLD 131

v

Clock Service 132 Queue GET Request 151
M:CLOCK 132 Queue STATS Request 151

Device Preemption Services 132 Queue PURGE Request 151
Preempt Device 132 Queue LOC K Request 152

M:STOPIO 132 List Formats 152
Return Preempted Device 134 DEFINELIST or STATS List 152

M:STARTIO 134 GET Message 152
Direct I/O Services 134 PUT List 152

10EX Services 134 M:QUEUE Procedure Output Parameters 153
M:IOEX (SIO) 134 SR 1 Information 153
M:IOEX (HIO/TIO/TDV) 136 ECB Information 153

Execute Privi leged Instruction Se"rvi ce . 136 Queue Error Codes 153
M:EXU 136

Enter Master Mode 136 INDEX 225
M:MASTER 136

Enter Slave Mode 136
M:SLAVE 136

PSECT Directive 137
Virtual/Physical Address Conversion 137

M:MAP 137 APPENDIXES
Miscellaneous Real-Time Services 137

Get or Free Physical Page 137 A. OPERATIONAL LABELS 155
M:GPP 137
M:FPP 137 B. PHYSICAL DEVICE NAMES 156

Initiate Ghost Job 137
M:GJOB 137 C. CP-V SOFTWARE CHECK CODES 157

Get and Release Disk Granule 138
M:GDG 138 D. XEROX 560 REMOTE ASSIST STATION 175
M:RDG 138

Report User Event 138 Introduction 175
M:RUE 138 Hardware Interface 175

Check Interrupt Status 139 Software Interface 175
M:CHKINT 139 Processor Restri ctions 175

I/o Servi ces 139 Communi cations Restrictions 175
M:EXCP 140
M:NEWQ 140 E. ERRFI LE Formats 178
M:QUE 142
M:COC 143 F. XEROX STANDARD OBJ ECT LANGUAGE 197

Dynamic Physical Page Allocation for
Rea 1-Ti me Processing 143 Introduction 197

Introduction 143 General 197
SYSGEN Considerations 143 Source Code Translation 197
Initialization 144 Object Language Format 198
The Physical Page Stealer Ghost Job (PPS) __ 144 Record Control Information 198

DISPLAY 145 Load Items 199
GET 145 Declarations 199
FREE 145 Defi ni tions 201
DYNRESDF 146 Expression Evaluation 202
RESDF 146 Formation of Internal Symbol Tables 205
END 147 Loading 206

Monitor DEFs 147 MisceJ laneous Load Items 207
RESDF Memory CAL 147 Object Module Example 207

G. XEROX STANDARD COMPRESSED
JO. TRANSACTION PROCESSING FACILITIES 148 LANGUAGE 213

System Queue Manager 148 H. XEROX STANDARD SYMBOLS, CODES
M:GETID Procedure Format 149 AND CORRESPONDENCES 214

M:QUEUE Procedure Format 149
M:QUEUE Function Parameter Tables (FPTS) __ 150 Xerox Standard Symbols and Codes 214

Queue UNLOCK Request 150 Xerox Standard Character Sets 214
Queue DEFINELIST Request 150 Contro I Codes 214
Queue PUT Request 151 Special Code Properties 214

vi

FIGURES 9. DIS PLAY Command Options 44

1. CP-V Operating System 3 10. RUN Command Opti ons 45

11. Spy Output --_._------- 48
) Typical User Program - Vlrtun1 Memory Layout ~ ,

12. Displays 49 {not to scale} _________ 21 ---------

13. Trap and Interrupt Locations for X PSD Instructions_ 52
3. Typical Memory Layout for Sigma Computers

(not to scale) --- 21 14. User Table Headings _ -----"----_ .. _. ------ - ---- 52

4 Typical Memory LClyout for the Xerox 560 15. Additional User Table Headings ______________________ !13
(not to scale) ----------- 22

16. Resource Wait Queues ___ 53
_'1. Format of Master System Tape 25

17. Swap Table Terms _ 53
6. Segment Patching Order 26

18. Partition Tobie HeadIngs 53
7. Device Resource Configuration from SYSGEN __ 3D

19. Processor Table Headings 54
B. Reconfiguration and PartitionIng Commands

that were Ignored 30 20. ALLYCAT Headings 54

9. Reconfiguration and Partitioning Commands 21. I/o Table Headings -- ---- ... - 55
that were Used 31

22. Device Control Table Headings 55
W. Device Resource Configutation for the Booted

System 31 23. lOa Table Headings 56

11. Special Processors - Virtual Memory 94 24. COC line Table Headings 56

12. Locations Commc)n to all Moni tors 94 25. AVR Table Headings 57

13. Public library Creation Process 105 26. Symbiont Table Headings 57

14. Generalized Library Load Process (LInk) 107 27. TSTACK Headings 57

15. Generalized LIbrary Load Process (Load) 108 28. ANLZ Messages 58

16. Format of the DDCB 122 29. AN LZ Command Summary 59

17. I/o Operation Codes for Device Handler 30. ELLA On-Une I/O Functions 67
(M:QUE) 142

31. ELLA Batch I/O Functions ------- 67

32. EL LA Ghost I/O Functions 68

TABLES 33. Error Log Entry Headings 70

Event Inputs Received by Scheduler 15 34. RB:FLAGS Structure 75
1.

35. Error Log Entry Types 77
2. Service Request Input to Monitor 16 36 ELLA Messages 90

3. Schedu ler Status Queues 17 37. ELLA Command Summary 91

4. Swap-In and Swap-Out Queues 18 38. Partial Contents of JlT 95

5. Reconfiguration and Parti tionlng Messages 32 39. Standard DeBs 97

6. GENMD Error Messages 36 40. Routines in :LIB Library Fi Ie 105

7. PASSO Messages 41 41. DRS P Error Messages 111

8. INPUT Command Options 43 42. DRSP Information Messages __ 113

vil

43. DRSP Command Summary ______ 113 H-3. C P-V Symbol-Code Correspondences ____ 217

44. On-Line Diagnostics Abnormal Messages ~ ... __ 121 H-4. ANSell Control-Character Translation
Table _________ . _____ ... ____ 221

45. Register Settings for End-Action Routines . __ 135

46. M:QUEUE Error Sub codes _. _________ 153

A-I. Standard OperationClI Labels and Default
Device Assignments ___ _ __ 155 EXAMPLES

A··2. Batch Assignment of Operational Lobels . __ ._._ 155 1. Batch Operation of ELLA _. _____ . ___ .. 66

A-3. On-Line Assignment of Operational Labels ___ 155 2. On-Line Operatiun of ELLA _ __ . _____ ... ___ 66

B-1. Standard 1/0 Device Type Codes ___ . __ ~ __ 156 3. Use of the CLIS c..urnmand ___________ .. ____ .. ___ 69

B-2. Sigma lOP Designation Codes __ . ___ ._ . __ 156 4. Use of the SLIS Cornman:! __ ._. ___ ._. __ ._. ___ 79

B-3. Xerox 560 Cluster/Unit Matrix ________ . __ 156 5. Use of the SUM Command ________ ._.. . _. __ 81

B-4. Device Designation Codes __ ._. ______ ._. ____ .. __ 156 6. Use of DISP Command _ .. _____ . _____ ... _____ . ___ 82

C-1. CP-V Software Check Codes _____________ 157
7. TIME Comman:J Usage __ . ____ .. __________ 83

D-1. ASCIJ to EBCD1C Translate Table ___ . _. ____ ._ 176
8. Use of the MOO, DEV, and TYPE Cornmands __ 85

E-l. Error Record Terminology 178
9. Use of the MOD, DEY, and TYPE Commands ___ 85

E-2. Xerox 7670 RBT - RP1, RP3 and RP4 189
10. Use of the MOD, DEV, and TYPE Commands __ 86

E-3. Xerox 7670 RBT - R P2 190
11. Use of the MOD, DEY, and TYPE Commands ___ 86

E-4. IBM 2780 RBT - RPI and RP4 190
12. Use of the MOO, DEV, and TYPE Commands __ 87

E-S. IBM 2780 RBT - RP2 and RP3 190
13. Parameter Display 88

E-6. IRBT - RPl and RP4 _ 191
14. Listing the Entire Error File 88

E-7. IRST - RP2 and RP3 _ 192
15. Listing Errors for the Current Day 89

H-l. CP-V 8-Bit Computer Codes (EBCDIC) 215
16. Listing Start-Ups, Configuration, and

H-2. CP-V 7-Bit Communication Codes (ANSCII) __ 216 Device Partitioning Activity 89

viii

PREFACE

This manual describes the C P-\! features that are designed to aid the system programmer in the development,
maintenance, and modi fication .jf the CP-V system.

Manuals describing other features of CP-V are outlined below:

• The CP-V System Management Reference Manual, 90 1674, is the principal source of reference informa­
tion for the system manag~ment features of CP-V. It defines the rules for generating a CP-V system
(SYSGEN), authorizing users, maintaining user accounting records, maintaining the file system, monitor­
ing system performance, and other related functions.

• The CP-V Batch Reference Manual, 90 17 64, is the principal source of reference information for the batch
processing features of C P-V (i. e., job control commands, system procedures, I/o procedures, program
loading and execution, debugging aids, and service processors).

• The CP-V Time-Sharing Reference Manual, 900907, is the principal source of information for the time­
sharing features of C P-V. It defi nes the rules for using the Terminal Executive Language and other
term i na I processors.

• The CP-V Time-Sharing User1s Guide, 90 16 92, describes how to use the various time-sharing features.
It presents an introductory subset of the features in a format that allows the user to learn the material by
using the features at a terminal as he reads through the document.

• The CP-V Remote Processing Reference Manual, 903026, is the principal source of information about the
remote processing features of C P-V. All information about remote processing for all computer personnel
(remote and local users, system managers, remote site operators, and central site operators) is included in
the manual.

• The CP-V Transaction Processing Reference Manual, 9031 12, provides information about dynamically
modifying and querying a central database in a transaction processing environment. The manual is addressed
to system managers, database administrators, applications programmers, and computer operators.

• The C P-V Operations Reference Manual, 90 16 75, is the principal source of reference information for
CP-V computer operators. It defines the rules for operator communication (i.e., key-ins and messages),
system start-up and initialization, job and system control, peripheral device handling, recovery and file
preservation.

• The CP-V Common Index (903080) is an index to all of the above CP-V manuals.

Information for the language and application processors that operate under CP-V is also described in separate man­
uals. These manuals are listed on the Related Publications page of this manual.

ix

x

COMMAND SYNTAX NOTATION

Notation conventions used in command specifications and examples throughout this manual are listed below.

Notation

lowercase I etters

CA PITA L LETTERS

[]

{ }

Numbers and
special characters

Subscripts

Superscripts

Underscore

Description

Lowercase letters identify an element that must be replaced with a
user-selected value.

CRndd could be entered as CRA03.

Capital letters must be entered as shown for input, and will be printed as
shown in output.

DPndd means lIenter D P foil owed by the va I ues for ndd".

An element inside brackets is optional. Several elements placed one under
the other inside a pair of brackets means that the user may select anyone or
none of those elements.

[KEYM] means the term IIKEYM" may be entered.

Elements placed one under the other inside a pair of braces identify a re­
quired choice.

{ ~} means that either the letter A or the value of id must be entered.

The horizontal ellipsis indicates that a previous bracketed element may be
repeated, or that elements have been omitted.

name GnameJ. .. means that one or more name values may be
entered, with a comma inserted between each name value.

The vertical ellipsis indicates that commands or instructions have been
omitted.

MASK2 DATA,2 X'lEF'

BYTE DATA,3 BA(L(59»

means that there are one or more state­
ments omitted between the two DATA
directives.

Numbers that appear on the line (i.e., not subscripts), special symbols, and
punctuation marks other than dotted lines, brackets, braces, and underlines
appear as shown in output messages and must be entered as shown when input.

(value) means that the proper value must be entered enclosed in
parentheses; e. g., (234).

Subscripts indicate a first, second, etc., representation of a parameter that
has a different val ue for each occurrence.

sysidl' sysid2,sysid3 means that three successive values for sysid
shou Id be entered, separated by commas.

Superscripts indicate shift keys to be used in combination with terminal keys.
c is control shift, and s is case shift.

L cs means press the control and case shift (CONTROL and SHIFT) and
the L key.

All terminal output is underscored; terminal input is not.

! RUN means that the exclamation point was sent to the terminal, but
RUN was typed by the terminal user.

These symbols indicate that an ESC (@), carriage return «(0), or line feed
(0) character has been sent.

!EDIT @)means that, after typing EDIT, a carriage return character
has been sent.

GLOSSARY

ANS tape a tape that has labels written in American
National Standard (ANS) format.

batch job a job that is submitted to the batch job stream
through the central site card reader, through an on-I ine
terminal (using the Batch processor), or through a re­
mote terminal.

binary input input from the device to which the BI
(binary input) operational label is assigned.

concatenation a process whereby a number of fi les with
the same filename and format are treated as one logical
fil e. Concatenation is only appl icable to ANS tapes.

conflicting reference a reference to a symbol ic name
that has more than one definition.

control command any control message other than a key-in.
A control command may be input via any device
to which the system command input function has been
assigned (normally a card reader).

control message any message received by the monitor
that is either a control command or a control key-in.

cooperative a monitor routine that transfers information
between a user's program and disk storage (also see
"symbiont ").

data control block (DCB) a table in the user's program
that contains the information used by the monitor in
the performance of an I/o operation.

externa I reference a reference to a dec lared symbol i c
name that is not defined within the object module in
which the reference occurs. An external reference
can be satisfied only if the referenced name is de­
fined by an external load item in another object
module.

file extension a convention that is used when certain
system output DCBs are opened. Use of this conven­
tion causes the file (on RAD, tape, disk pack, etc.)
connected to the DC B to be positioned to a point just
following the last record in the file. When additional
output is produced through the DCB, it is added to the
previous contents of the file, thereby extending the
file.

function parameter table (FPT) a table through which a
user's program communicates with a monitor function
(such as an I/o function).

ghost job a job that is neither a batch nor an on-line
program. It is initiated and logged on by the monitor,
the operator, or another job and consists of a single
job step. When the ghost program exits, the ghost is
logged off.

global symbol a symbol ic name that is defined in one
program modu I e and referenced in another.

GO file a temporary disk storage file consisting of re-
locatable object modules formed by a processor.

granule a block of disk sectors large enough to contain
512 words (a page) of stored i nformati on.

job information table (JIT) a table associated with each
active job. The table contains accounting, memory
mapping, swapping, terminal DCB(M:UC), and tempo­
rary monitor information.

job step a subunit of job processing such as compi lation,
assembly, loading, or execution. Information from cer­
tain commands (J OB, LIMIT, and ASSIGN) and all
temporary files created during a job step are carried
from one job step to the next but the steps are otherwise
independent.

key a data item consisting of 1-31 alphanumeric char-
acters that uniquely identifies a record.

key-in information entered by the operator via a
keyboard.

language processor a program that translates a user's
source language program into an object language
program.

I ibrary load module a load module that may be combined
with relocatable object modules, or other library load
modules, to form a new executable load module.

linking loader a program that is capable of linking and
loading one or more relocatable object modules and
load modules.

load map a listing of loader output showing the location
or value of all global symbols entering into the load.
Also shown are symbols that are not defined or have
multiple definitions.

load module (LM) an executable program formed by the
I inking loader, using relocatable object modules
(ROMs) and/or modules (LMs) as input information.

logical device a peripheral device that is represented
in a program by.an operational label (e. g., BIor PO)
rather than by specific physical device name.

logical device stream an information stream that may
be used when performing input from or output to a sym­
biont device. At SYSGEN, up to 15 logical device
streams are defined. Each logical device stream is
given a name (e. g., Ll, P1, C 1), each is assigned to
a default physical device, and each is given default
attributes. The user mayperform I/O through a logical

xi

device stream with the defaul t physi cal device and
attributes or he may change the physical device and/or
attributes to satisfy the requirements of his job.

monitor a program that supervises the processing, load-
ing, and execution of other programs.

object language the standard binary language in which
the output of a language processor is expressed.

object module the series of records containing the load in-
formation pertaining to a single program or subprogram
(i .e., from the beginning to the end). Object modules
serve as input to the Load processor or Link processor.

on-line job a job that is submitted through an on-line
terminal by a command other than the BATCH command.

operational label a symbolic name used to identify a
logical system device.

overlay loader a monitor routine that loads and links
elements of overlay programs.

overlay program a segmented program in which the ele-
ment (i. e., segment) currently being executed may
overlay the core storage area occupied by a previousl y
executed element.

patch a symbolic representation of a correction to the
system that is used to temporari Iy correct the system
without necessitating a reassembly.

physical device a peripheral device that is referred to
by a name specifying the device type, I/O channel,
and device number (a Iso see "Iogica I device ").

program product a compiler or application program that
has been or wi II be released by Xerox, but is not re­
qui red by all users and is therefore made avai lable by
Xerox on an optional basis. Program products are pro­
vi ded on I y to those users who execute a Li cense Agree­
ment for each applicable installation.

prompt character a character that is sent to the terminal
by an on-line processor to indicate that the next line
of input may be entered.

protective mode a mode of tape protection in which only
ANS expired tapes may be written on through an ANS
DC B; no unexpired ANS tape may be written on through
a non-ANS DCB; all ANS tapes must be initialized by
the Label processor; no tape serial number specification
is allowed at the operator's console; specification of an
output serial number in an ANS DC B forces processing
to be done only on a tape already having that serial
number; tapes mounted as IN may not be written; and
tapes mounted as other than IN must have a write ring.
(See "sem i protecti ve mode".)

public library a set of library routines declared at

xii

SYSGEN to ?e public (i. e., to be used in common by
cl r concurrent users).

reentrant an attribute of a program that allows the
program to be shared by several users concurrently.
Shared processors in CP-V are reentrant. That is, each
instance of execution of the single copy of the pro­
gram's instructions has a separately mapped copy of the
execution data.

relative allocation allocation of virtual memory to a
user program starting with the first unallocated page
available.

relocatable object module (ROM) a program or subpro-
gram in object language generated by a processor such
as Meta-Symbol or FORTRAN.

remote processing an extension of the symbiont system
that provides flexible communication between CP-V
and a variety of remote terminals.

resident program a program that has been loaded into a
dedicated area of core memory.

response time the time between the completion of termi-
nal input and the first program activation.

scheduler a monitor routine that controls the initiation
and termination of all jobs, job steps, and time slice
quanta.

secondary storage any rapid-access storage medium other
than core memory (e.g., RAD storage).

semi-protective mode a mode of tape protection in which
a warning is posted to the operator when an ANS DCB
attempts output on a non-ANS tape or an unexpired ANS
tape, when a non-ANS DeB attempts output on an un­
exp ired ANS tape, or when a tape mounted as IN OUT
has no write ri ng. The operator can authori ze the over­
writing of the tape or the override of INOUT through a
key-in (OVER and READ). ANS tapes may be ini­
tialized by the Label processor or may be given labels
as the result of an operator key-i n; tape serial number
specification is allowed at the operator's console; and
specification of an output serial number in an ANS
DeB forces processing to be done only on a tape al­
ready having that serial number unless the operator
authorizes an overwrite. (See "protective mode".)

shared processor a program (e. g., FORTRAN) that is
shared by all concurrent users. Shared processors must
be established during SYSGEN or via DRSP.

source language a language used to prepare a source
program suitable for processing by an assembler or
compiler.

spec ia I shared processor a shared processor that may be
in core memory concurrently with the user's program
(e.g., Delta, TEL, or the FORTRAN library).

specific allocation allocation of a specific page of
unallocated virtual memory to a user program.

SR 1, SR2, SR3, and SR4 see "system register II, below.

static core module a program module that is in core
memory but is not being executed.

stream-id the name of a logical device stream.

symbiont a monitor routine that transfers information
between disk storage and a peripheral device inde­
pendent of and concurrent with job processing.

symbolic input input from the device to which the SI
(symbolic input) operational label is assigned.

symbolic name an identifier that is associated with
some particular source program statement or item so
that symbol i c references may be made to it even though
its value may be subject to redefinition.

SYSGEN see IIsystem generation II, below.

system generation (SYSGEN) the process of creating an
operating system that is tailored tothe specific require­
ments of an installation. The major SYSGEN steps

include: gathering the relevant programs, generating
specific monitor tables, loading monitor and system
processors, and writing a bootable system tape.

system library a group of standard routines in object-
language format, any of which may be incorporated in
a program being formed.

system register a register used by the monitor to commu-
nicate information that may be of use to the user pro­
gram (e.g., error codes). System registers SR1, SR2,
SR3, and SR4 are current general registers 8, 9, 10,
and 11, respec ti ve Iy •

task control block (TeB) a table of program control in-
formation built by the loader when a load module is
formed. The TeB is part of the load module and con­
tains the data required to allow reentry of library rou­
tines during program execution or to allow entry to the
program in cases of traps, breaks, etc. The TeB is
program associated and not task associated.

unsatisfied reference a symbolic name that has been ref-
erenced but not defined.

xiii

1. INTRODUCTION

CP-V SERVICES

Control Program-Fivf! (CP-V) is a comprehensive operating
system designed for use with Sigma 6/7/9 and Xerox 560
computers and a variety of peripheral equipment. CP-V
offers:

• On-I ine time-sharing, batch processing, remote pro­
cessing, transaction processing, and real-time services.

• Ability to handle a large number of concurrent users.

• High efficiency due to hardware relocation map,
shared reentrant processors, multiple I/O processors,
and device pooling.

• A complete recovery ~ystem coupled with preservation
of user files to provide fast restart following hardware
or software malfunction.

• For on-line users: highly efficient and extensive soft­
ware, fi Ie saving feature, fast response time.

• For batch users: on-line, local, and remote entry to
an efficient multiprogramming batch job scheduler.

• For installation managers: thorough system monitoring
and reporting, control and tuning ability, extensive
error checking and recovery features.

• For all users: comprehensive accounting and a com­
plete set of powerful processors.

TIME-SHARING AND BATCH PROCESSING

CP-V allows multiple on-line terminal users to concurrently
create, debug, and execute programs. Concurrent to time­
sharing, CP-V allows up to 16 batch processing jobs to
execute in its multiprogramming environment. An efficient
multi-batch scheduler selects batch jobs for execution
according to priority, job requirements, and availability of
resources. Batch jobs may be submitted to this scheduler
from a local batch entry device such as a card reader, from
an on -Ii ne user's term i na I, or from a remote site such as a
remote batch terminal or another computer.

Time-sharing and batch users have access to a variety
of powerful and comprehensive language processors and
faci lities. These processors and faci I ities are listed
below.

Processor

TEL

EASY

Edit

FORTRAN IV

COBOL

Meta-Symbol

BASIC

APl

FLAG

FDP

Delta

COBOL On-line
Debugger

PCl

Link

LYNX

Load

Batch

Manage

SL-l

CIRC

Executive languoge control of 011
terminal acti vities. (On-line only.)

Creation, manipulation, and execution
of FORTRAN and BASIC programs and
data files. (On-line only.)

Composition and modification of pro­
grams and other bodies of text. (On­
line only.)

Compilation of Extended FORTRAN IV
programs.

Compilation ofANS COBOLprograms.

Assembly of high-level assembly lan­
guage programs.

Compilation and execution of programs
or direct statements written in an ex­
tended BASIC language.

Interpretati on and execut ion of pro­
grams written in the APL language.

Compilation of fast "Ioad-and-go"
FORTRAN programs.

Debugging of Extended FORTRAN IV
programs.

Debugging of pr09rams at the assembly
language level. (On-line only.)

Debugging of ANS COBOL programs.
(On-line only.)

Transfer (and conversion) of data be­
tween peripheral devices.

linkage of programs for execution.

linkage of programs for execution.

linkage of programs for executi on
(Batch onl y.)

Submission of batr.h jobs via an on-
I ine terminal or another batch job.

File retrieval, updating, and reporting.

Compilation of programs written in a
language designed specificall,' for
digital or hybrid simulation.

Analysis of electronic circuits.

Introduction

EDMS

Sort Merge

GPDS

Organization, storing, updating, and
deletion ot information in a centralized
data base.

S('rting and/or merging of records in
one or more fi les"

Experimentation with and evaluCJtion of
:.ystem met~lods, proce!.ses, and designs.
tBatch onlY.)

REMOTE PROCESSING

The remok process;'1g ~fStem i~ an extension of the CP-V
symbiont system. Its purpose is to pro'lide for flexible com­
municotion between eft-Vand u variety of femote terminals.
These terminals can rUfI:Je fro,,] a ~jrnple card reader, card
punch, and line printer combinatIOn to another computer
system with II widevQ'-ietyofperipheral devices. AnyCP-V
user (batch, on-line; nhostl ::an communicate with any
number of devices at on,~ or sev('ral remote sites. BecLluse
CP-Vcanact asa central site to some remote sites and
simultaneously as a remote terminal to other computer!;,
the remote processi ng foci' ities encourage j-he construction
of communication networks.

TRANSACTION PROCESSING

The transaction processing feature of CP-V is an efficient
and economical approat:h to centralized information pro­
cessing and is a general ized package that is designed to
meet the requirements of a variety of business appl ications.
Transaction processing facilities provide an environment in
which several users at remote terminals may enter business
transactions, simultaneouslyutilizing a common data base.
The transactions are processed immediately, as they are
received, by application programs written especially for
the particular installation. As necessary, reports may
then be created and sent to an appropriate terminal.

REAl-'TlME PROCESSIIIG

The real-time services provided by CP-V allow users to
connect interrupts to mapped programs, control the state of
interrupts (e.g., trigger, arm/disarm, enable/disable),
clear interrupts either at the time of occurrence or upon
completion of processing, and disconnect interrupts no

2 System Programming Facilities

longer required. Users may also request that a mapp~d
program be held in core in order to reJu'~€: the time required
to respond to un external event (via l.l!: interrupt) or to
allow vario!)::. forms of special VO to occur. Programs may
be connected to one of the monitor's clocks slJch that after
a specified period of time, q specified routine i:. entered.
In addi tion, dedicated foreground memO{j rnny he IIsed as
inter-program communication butters or .JS deJ::tJted memory
for unmapped, master moue proqrams wh ,1'1 may be di recti y
connected to external interrupts or real--time clocks.

SYSTEM PROGRAMMING FACILITIES

[hiS manuol descr;be:, the (P-\' featulE'S that are designed
to aid the system ~';osrummer in the development, main­
tenance, and modification of the CP-V system. The facil­
ities described in this rno'lU(ll aid the ~ystem programmer
in the foliowirli:J (Heas;

• Modification of the CP-V operating system at the
instruction level at boot-time.

•
•

•

•

•

•

•

•
•
•

Reconfiguration of peripheral devices uf boot-rime.

Analysis of crash dumps to determine the cause of a
system crash.

Creation and modification of the e:ror message fi Ie
for the C P-V monitor overlays wh: Ie the system is
operational.

Listing and analysiS of hardware and software mal­
functions occurring during system operation.

Development of shared processors such as compilers,
assemblers, command language processors, and
debuggers.

Replacement, creation, and deletion of shared pro­
cessors and monitor overlays while the system is
operational.

Development of peripheral hardware diagnostic
programs.

Development of real-time programs.

Support of transaction processing facilities.

Implementation of remote diagnostics for the Xerox 560.

2. SYSTEM OVERVIEW

INTRODUCTION

The CP-Voperating systeln consists of a monitor and a
number of associated plOcessors (Figure 1). The monitor
provides overa II supervision of program processing. The
associated processors provide specific functions such as
compilation, execution" and debugging.

PROCESSORS

The CP-V system is Illustrated In Figure 1 at two levels. The
upper level lists the various monitor routines. The lower
level lists the various processors. The processors are de­
scribed in the following paragraphs.

Basic Control
Scheduling and Swapping
Memory Management
Job Step Control
Terminal I/O

Monitor

Symbionts and Cooperatives
File Monagement

, COMMAND PROCESSORS

The four processors in this group are: LOGON/LOGOFF,
EASY, TEL, and CCI. The first of these processors is avail­
able to on-line and batch users, the second and third are
available to on-line users only, and the last is available to
batch users only.

LOGON/LOGOFF

LOGON odmlts on-line users to the system and connects
the user's terminal either to TE L or to an a Iternative pro­
cessor, such as BASIC, that hos been selected by the user.
LOGOFF disconnects 0 user from the system and does the
fino I cleanup ond accounting.

System Integrity
Initialization and Start-Up
Operator Communication
Batch Debugging
System Debugging
Load and Link
Public and System libraries

I --'1- .------_.

I '1 I I
Command System Language Execution Service Application User Processors
Processors Management Processors Control Processors Processo(s

Processors Processors (OBG)
LOGON/ ------ FORTRAN IV (OB) ----- Edit (OG) Sort/Merge (B)

LOGOFF (OB) Super (OBG) Meta-Symbol (OB) Link (OB) PCL (OB) EDMS (B)t
TEL (0) Control (OBG) AP (OB) Load (B) SYSGEN (OB) GPDS (B)t
EASY (0) Rates (0) BASIC (OB) LYNX (OB) DEFCOM (DB) CIRC (08)1
CCI (B) FILL (OG) FLAG (Oel Delta (0) SYMCON (OB) Manoge (OB)t

FSAVE (OB} ANS COBOL (OB) FDP lOB) ANll (OBGI Transaction Pro-
FRfS (OB) APL (OB) COBOL &Itch (OBG) cessing (,OB)
Fix (OBG) RPG (B) On-Line DRSP (OB)
VOLIN IT (OBGS) SL-I (OBlt Debugger (0) ELLA (OBG)
Label (B) -- Show (OB)
~TATS (OBG) FROG (G)
Summart (OB)
SYSCON (OG)
GAe (OBG)
Db'OMP (S)
O~<L15T (OBG)
PP5 \Gl

Note: a on-lint"

8 hatch

G ghost

5 stanrl~lone

tprogram product (see glossory).

Figure 1. CP-V Operoting System

System OvervIew 3

EASY

EASY is a shared processor tf!at enable~ the user tu <;reate,
edit, execute, save, (]nd delete program files written in
BASIC or FORTRAN. EASY also allows the user to '.::reate
and manipulate EBCDIC data files. Although intended pri­
marily for Teletype@ operation::., EASY can be used with
any type of on-line terminal supported by the sy!>tem.
(I~de, ence; EASY /LN, OPS Reference Manual, 90 18 73.)

rEL is I Ill· ,/crclld j cornnland processol tor tlrne-shariny and
serve~ (15 tilt! renninGI u!,er's interfncu to the various services
of CP-'j TEL is functin'lally equivalent to the batch mode
Control Command InteqJreter. S'Ane of the functions per­
f{Jrrned by TEL are:

I. Ca;!;'IG u~er pro\:Jrall1~ and \!stem processors.

J. ,I.'·."igfllng 1/ () -.1:;\ If ' .. ', LlI,' ')([3 parameters,

5. Dert'rl'lininy on-line ,/)er stUll:;.

o. Changing terminal pluten SI Z-t;.

'/ Sending messages tC) tht~J< \)pt:rator"

8. Logging ('off.

CON rROt COMMA ND n...JTERPRETER

The Coni':-:,,)I Lammond Interpreter is the batch counterpart
of fE L, It provides the hotch lIser with control over the
IJrocessln~ of batch programs just as TEL provides on-line
users with control over the processing of on-line programs.
(Reference: CP-V/BP Reference Manua I, 90 17 64.)

SYSTEM MANAGEMENT PROCESSORS

S/stf.:m mCJr.ogement pro(.cssors furnish the manager or a
CP,') instcdlal;un with on-iine control of the system. Four­
!'een 5y'S:" n IYI-1I1aSlement processors are supplied.

SUPE~

Super gives the sy'ster; manager control over the entry of
uSers and the privi leg !!> extended to users. Through the use
elF SUFJC ' commands, tl e system manager may add and delete
'J5er~, spc:ci fy how much core and disk storage space a
user wi II hav.;:;, spec fy I,ow man> central site magnetic
tape unit~ Cl user wi" huve, 0runt certain users, such as
s)/stem programmers, s.')ec io j privi leges, (e. g., the privi lege
of eX~IlTl;ning, accessing, anci ch .. mging the monitor), and

o ~'---:-~' -- -
Ik91::'L~red trademan< cA the Telt.type Corporation

4 Processors

individuallyauthorize ordeny access to the various processors
for ~ach u)cr. Super is also used to ,:.,rb.lt,:; and delete remote
processing workstations. (Reference; Ci'-V/5M Reference
Manual, 90 16 74.)

CONTROL

The Control processor provides control oVer system perfor­
mance. CP-V hl1s a number of performance measurements
built directly into the system. Commands of the Control
prOCf!<;sor enahle the system manoger t() display these rnea­
surements and to "tune" the system as needed by setting new
'/01 ues for the parameters that contrl)/ system performance.
(Reference: CP-V/SM Reference Manual, 90 16 74.)

t{AT£:S

The Rates proces~ol llilows the system manager to set relative
chOr9t~ 'v,feight·s 011 the util ization of s>'stern ·.ervices.

~pecific items to which charge weights may be assigned
incl uae

I. CPU time.

2. CPU time multiplied by core size.

3. Terminal interactions.

4. I/O CALs.

5. Console minutes.

6. Tapes and packs mounted.

7. Page-date storage.

8. Peripheral I/O cards plus pages.

(Reference: CP-V/SM Reference Manual, 90 16 74.)

FIX

The Fix processor enables the system manager to repair or
delete damaged fi Ie directories. It a Iso provides HGP
reconstruction for private disk pack sets and the public
fila system. (Reference: CP-V/OPS Reference Man­
ual, 90 16 75.)

FILL

The FILL processor performs three basic file maintenance
functions:

10 It copies fj les from disk to tape as a backup.

2. It restores fj les from tape to disk.

3. It deletes fi les from disk.

(Reference: CP-V/OPS Reference Manual, 90 16 75.)

FSAVE

The Fast Save (FSAVE) processor is designed to save disk
fi les on tape at or near tape speed. The processor is faster
than any other fi Ie saving procedure under CP-V. (Ref­
erence: CP-V/OPS Reference Manual, 90 16 75.)

FRES

The File Restore (FRES) processor is designed to restore to
disk files that were saved on tape by FSAVE or Fill. (Ref­
erence: CP-V lops Reference Manua I, 90 16 75.)

VOLINIT

VOLINIT provides for the initialization of public and pri­
vate disk packs. It is used to establish serial numbers and
ownership, to write headers and other system information in
selected areas of the volumes, and to test the surface
of the disks and select alternate tracks to be used in
place of flawed tracks. (Reference: CP-V lOPS Reference
Manual, 90 16 75.)

LABEL

The Label processor initializes ANS tapes by writing ANS
formatted labels. It may also be used to create "unlabeled"
tapes from new tapes to be used as scratch tapes and to
print the contents of the header and trai ler labels of
labeled tapes or the first 80 bytes of each block on un­
labeled tapes. (Reference: Cp-vjOPS Reference Man­
ual, 90 16 75.)

STATS

The STATS processor displays and collects performance data
on a running system and produces snapshot files to be dis­
played by the report generator Summary. (Reference:
CP-V ISM Reference Manua I, 90 16 74.)

SUMMARY

The Summary processor provides a global view of system
performance by formatting and displaying the statistical
data collected by STATS. (Reference: CP-VjSM Reference
Manual, 90 16 74.)

SYSCON

SVSCON is a system control processor that can be used to
partition resources from the system, to return resources to
the system, and to display the status of the various system
resources. SYSCON can a Iso be used to bui Id, update, or
display the M:MODNUM fj Ie, a fi Ie which contains device
and controller model numbers. (Reference: CP-VjSM Ref­
erence Manual, 90 16 74.)

GRANULE ACCOUNTING CLEANUP PROCESSOR (GAC)

The Granule Accounting Cleanup (GAC) processor correlates
information between the file DISKPOOL and the account
authorization fi Ie, :USERS. DISKPOOL is created by the
FSAVE processor and contains specific account information.
Each account record in DISKPOOL contains an entry for
accumulated public disk pack granules and an entry for ac­
cumulated RAD granules. When GAC is run, these accumu­
lated values are compared against the maximum values for
the corresponding accounts in the :USERS fi Ie and the user's
entry in the :USERS fi Ie is updated to reflect the latest
accumulated values for RAD and disk. When the accumu­
lated RAD or disk granules exceed the corresponding maxi­
mum values, this fact is noted in the report that is produced
by the GAC processor. (Reference: CP-V JOPS Reference
Manual, 90 16 75.)

DEVDMP

The Device Save/Restore processor (DEVDMP) is a stand­
alone utility program designed to dump entire disk volumes
to magnetic tapes for restoration at a later time. Restora­
tion may only be made to an identical storage unit. (Ref­
erence: CP-V/OPS Reference Manual, 90 16 75.)

LANGUAGE PROCESSORS

Language processors translate high-level source code into
machine object code. Eight processors of special importance
are described below. All of these can be used in both on­
line and batch mode.

XEROX EXTENDED FORTRAN N

The Xerox Extended FORTRAN IV language processor con­
sists of a comprehensive algebrai c programming language, a
compiler, and a large library of subroutines. The language
is a superset of most available FORTRAN languages, con­
taining many extended language features to faci litate pro­
gram development and checkout. The compiler is designed
to produce efficient object code, thus reducing execu­
tion time and core requirements, and to generate extensive
diagnostics to reduce debugging time. The library contains
over 235 subprograms and is available in a reentrant ver­
sion. Both the compi ler and run-time library are reentrant
programs that are shared among all concurrent users to re­
duce the utilization of critical core resources.

The principal features of Xerox Extended FORTRAN IV are
as follows:

• Extended language features to reduce programming
effort and increase range of applications.

• Extensive meaningful diagnosti cs to minimize debug­
ging time.

Processors 5

•

•

•

In-line symbolic code to reduce execution time of
criti ca I parts of the program.

Overlay organization for minima I core memory
utilization.

Compi ler produced reentrant programs.

(Reference: Extended FORTRAN IV/LN Reference Man­
ual, 900956, and Extended FORTRAN IV/OPS Reference
Manual, 90 11 43.)

META-SYMBOL

Meta-Symbol is a procedure-oriented macro assembler. It
has services that are available only in sophisticated macro
assemblers and a number of special features designed to
permit the user to exercise dynamic control over the para­
metri c environment of assembly. It provides users with a
highly flexible language with which to make full use of
the avai lable hardware capabi lities.

Meta-Symbol may be used in either batch or on-line mode.
When used in on-I ine mode, the assembler allows programs
to be assembled and executed on-I ine but does not allow
conversational interaction.

One of the many Meta-Symbol features is a high Iy flexible
list definition and manipulation capability. In Meta­
Symbol, lists and list elements may be conveniently rede­
fined, thus changing the value of a given element.

Another Meta-Symbol feature is the macro capability.
Xerox uses the term "procedure" to emphasize the highly
sophisticated and flexible nature of its macro capabi lity.
Procedures are assembly-time subroutines that provide the
user with an extensive function capabi lity. Procedure def­
inition, references, and recursions may be nested up to
32 levels.

Meta-Symbol has an extensive set of operators to facilitate
the use of logical and arithmetic expressions. These opera­
tors faci I itate the parametri c coding capabi lities avai lable
with Meta-Symbol (parametric programming allows for dy­
namic specification of both "if" and "how" a given state­
ment or set of statements is to be assembled).

Meta-Symbol users are provided with an extensive set of
directives. These directives, which are commands intrinsic
to the assembly, fall into three classes:

1. Directives that involve manipulation of symbols and
are not conditionally executed.

2. Directives that allow parametric programming.

3. Directives that do not allow parametric programming.

A number of intrinsic functions are also included in Meta­
Symbol. These give the user the abi lity to obtain informa­
tion on both the structure and content of an assembly time
construct. For example, the user can acquire information

6 Processors

on the length of a certain list. He can inquire about a
specifi c symbol and whether it occurs in a procedure refer­
ence. (Reference: Meta-Symbol/LN, OPS Reference Man­
ual, 90 0952.)

AP

Assembl y Program (AP) is a four-phase assembler that reads
source language programs and converts them to object lan­
guage programs. AP outputs the object language program,
an assembly listing, and a cross reference (or concordance)
listing. AP is available in both the on-I ine and batch
modes.

The following list summarizes AP's more important features
for the programmer:

• Self-defining constants that facilitate use of hexa­
decimal, decimal, octal, floating-point, scaled fixed­
point, and text string val ues.

• The facility for writing large programs in segments

•

•

or modules. The assembler wi II provide information
necessary for the loader to complete the linkage be­
tween modules when they are loaded into memory.

The label, command, and argument fields may contain
both arithmetic and logical expressions, using constant
or variable quantities.

Full use of lists and subscripted elements is provided.

• The DO, 001, and GOTO directives aI/ow selective
generation of areas of code, with parametric constants
or expressions evaluated at assembly time.

• Command procedures allow the capabil ity of generating
many units of code for a given procedure call line.

• Function procedures return values to the procedure call
line. They also provide the capability of generating
many units of code for a given procedure call line.

• Individual parameters on a procedure call I ine can be
tested both arithmetically and logically.

• Procedures may call other procedures, and may call
procedures recursively.

BASIC

BASIC is a compiler and programming language based on
Dartmouth BASIC. It is, by design, easy to teach, learn,
and use. It allows individuals with I ittle or no programming
experience to create, debug, and execute programs via an
on-line terminal. Such programs are usually small tomedium
size applications of a computational nature.

BASIC is designed primarily for on-line programdevelopment
and execution, or on-line development and batch execu­
tion. In addition, programs may be developed and executed
in batch mode.

BASIC provides two user modes of operation. The editing
mode is used for creating and modifying programs. The
compilation/execution mode is used for running completed
programs. This arrangement simplifies and speeds up the
program development cycle.

Statements may be entered via a termina I and immediate Iy
executed. The principal benefit of direct execution is on­
line development of programs and short simple computations.
During execution, programs may be investigated for loop
detection, snapshots of variables may be obtained, values
of variables may be changed, flow of execution may be re­
routed, and so on. This unique capability allows an on­
line terminal to be used as a "super" desk calculator.

At compi Ie and execute time, the user may specify if an
array dimension check is to be made. In the safe mode,
statements are checked to verify that they do not reference
an array beyond its dimensions. In the fast mode, this
time consuming check is not made. Thus, the safe mode
could be used during checkout, and the fast mode could be
used to speed up execution when the program reaches the
production stage.

BASIC provides an image statement that uses a "picture" of
the desired output format to perform editing. It a Iso has
TAB capability and a precision option to indicate the num­
ber of significant digits (6 or 16) to be printed.

An easy-to-use feature is provided to allow the user to read,
write, and compare variable alphanumeric data. This is
particularly important for conversational input processing.

Chaining permits one BASIC program to call upon another
for compilation and execution without user intervention.
Thus, programs that would exceed user core space may be
segmented, and overlay techniques may be employed via
the chaining facility. (Reference: BASIC/Reference Man­
ua I , 90 15 46.)

FLAG

FLAG (FORTRAN Load and Go) is an in-core FORTRAN
compi ler that is compatible with the FORTRAN IV-H class
of compi lers. It can be used in preference to the other
FORTRAN compi lers when users are in the debugging phase
of program development. FLAG is a one-pass compiler and
uses the Extended FORTRAN IV library. Included in the
basic external functions are the Boolean functions lAND
(AND), IEOR (exclusive OR), and lOR (OR), which give
the FORTRAN user a bit manipulation capability.

If severa I FLAG jobs are to be run sequentially, they may
be run in a sub-job mode, thus saving processing time nor­
ma lIy needed for the Control Command Interpreter (CCI) to
interpret the associated control cards. In this mode,
FLAG will successively compile and execute any number
of separate programs, thereby reducing monitor overhead.

The FLAG debug mode is a user-selected option that gener­
ates extra instructions in the compi led program to enable
the user, during program execution, to detect errors in pro­
gram logic that might otherwise go undetected or cause un­
explainable program fai lure. (Reference: FLAG/Reference
Manual, 90 16 54.)

ANS COBOL

The Xerox ANS COBOL compi ler offers the user a powerful
and convenient programming language faci lity for the im­
plementation of business or comrnerical applications. The
language specifications fully conform to the proposed ANSI
standard for the various functional processing modules.
Only those language elements that cause ambiguities or are
seldom used have been deleted. The compi ler1s design
takes fu II advantage of the machine1s unique hardware
features, resulting in rapid compi lation of source code,
rapid execution of the resulting object code, and the gen­
eration of compact programs. The result is a highly efficient
programming system requiring a minimum amount of storage.

Xerox ANS COBOL contains many facilities that are either
not found in other systems or, if available, are provided
only at greater cost in terms of equipment required. Some
of the facilities that provide more flexibility and ease of
use in program development include

1. Implementation of table handling mode.

2. Sort/merge linkage.

3. Sequential access.

4. Random access linkage.

5. Segmentation.

6. Report writer.

7. Li brary util i zat ion.

8. Calling sequence for FORTRAN, Meta-Symbol, etc.

9. Packed decimal as well as floating-point arithmetic
formats.

10. Data name series options for ADD, SUBTRACT, MUL­
TIPL Y, DIVIDE, and COMPUTE verbs.

Processors 7

The system provides the user with a comprehensive set of
aids to minimize the time required to print "bug-free" pro­
grams in the form of listings. These listings include

1. The source language input to the compiler with inter­
spersed English language diagnostic messages.

2. An optional I isting of the relocatable binary output,
printed in I ine number sequence identical to the source
language listing.

3. A cross-reference I isting, indicating by I ine number
where each data name or paragraph name is defined in
the COBOL program and where each reference is
located.

In addition, at run time, the user may use TRACE and
EXHIBIT to follow execution of the procedure division.

The compiler is designed to take full advantage of high­
speed, random access secondary storage (e. g., RAD stor­
age). This feature means faster job execution because of
minimized I/O delays, and smaller core memory require­
ments because of rapid overlay service. (Reference: ANS
COBOL/LN Reference Manual, 90 1500.)

APL

APL is an acronym for A Programming Language, the lan­
guage invented by Ken~eth Iverson. it is an interpretive,
problem-solving language. As an interpretive language,
APL does not wait until a program is completed to compile
it into object code and execute it; instead, APL interprets
each line of input as it is entered to produce code that is
immediately executed. As a problem-solving language,
APL requires minimal computer programming knowledge; a
problem is entered into the computer and an answer is re­
ceived, all in the APL language,

Because APL is powerful, concise, easy to learn, and easy
to use, it is widely used by universities, engineers, and
statisticians. It also has features that make it attractive
for business appli cations where user interaction and rapid
feedback are key issues. One of APL's major strengths is
its abi lity to manipulate vectors and multidimensional arrays
as easily as it does scalar values. For example, a matrix
addition that might require a number of statements and
several loops in other languages can be accomplished as
A + B in APL. This type of simplification exemplifies APL's
concise power. (Reference: APL/LN,OPS Reference Man­
ua I, 90 1 9 3 1.)

8 Processors

RPG

Xerox RPG (Report Program Generator) is a convenient
means of preparing reports from information available in
computer-readable forms, such as punched cards, magnetic
tape, and magnetic disks. In addition, it is a means of
establishing and updating files of information, usually in
conjunction with preparation of reports.

RPG provides its capabil ities through generation (compi la­
tion) of object programs, each of which is tailored to pro­
duce a different set of reporting results and/orfile processing
desired by the user. The RPG object programs are capable
of accepting input data, retrieving data from existing files,
performing calculations, changing formats of data, updating
existing files, creating new files, comparing data values
to one another and to specified constants to determine
appropriate handling, using user-defined processing sub­
routines, using system library subroutines, and printing re­
ports derived from the input and file data.

Xerox RPG has several advantages over the more traditional
method of writing object programs in a symbolic programming
language. The RPG language is oriented toward the user's
problem, describing reporting requirements, rather than
toward the mechanics and manipulations of computer usage.
The language and specification techniques are easily learned.
A user can become proficient in RPG after writing only a
few programs, whereas an equal facility in symbolic pro­
gramming would require considerable experience. (Ref­
erence: RPG/Reference Manual, 90 19 99.)

SIMULA nON LANGUAGE (PROGRAM PRODUCT)t

The Simulation Language (SL-l) is a simplified, problem­
oriented digital programming language designed specifically
for digital or hybrid simulation. SL-1 is a superset of CSSL
(Continuous System Simulation Language), the standard
language specified by Simulation Counci Is, Inc. f for
simulation of continuous systems. It exceeds the cap-
abi lities of CSSL and other existing simulation languages
by providing hybrid and real-time features, interactive
debugging features, and a powerful set of conditional trans­
lation features.

SL-1 is primarily useful in solving differential equations, a
fundamental procedure in the simulation of parallel, con­
tinuous systems. To perform this function, SL-1 includes
six integration methods and the control logic for their use.
In hybrid operations, SL-1 automatically synchronizes the
problem solution to real-time and provides for hybrid input
and output.

Because of the versatility of Xerox computing systems and
the broad applicability of digital and hybrid simulation

tSee "program product" in glossary.

techniques, applications for SL-l exist across the real-time
spectrum. The I ibrary concept of SL-1 a 1I0ws the user
to expand upon the Xerox suppl ied macro set and facil­
itates the development of macro libraries oriented to any
desired appl ication. (Reference: SL-1/Reference Man­
ual, 90 16 76.)

EXECUTION CONTROL PROCESSORS

Processors in this group control the execution of object pro­
grams. Delta and COBOL On-Line Debugger can be used
in on-line mode only. Load can be used in batch mode
only. Link and FDP can be used in either batch or on­
line mode.

LINK

Link is a one-pass linking loader that constructs a single
entity called a load module, which is an executable pro­
gram formed from relocatable object modules (ROMs). Link
is designed to make full use of mapping hardware. It is not
an overlay loader. If the need for an overlay loader exists,
the overlay loader (Load) must be co lied and the job must
be entered in the batch stream. (Reference: CP-V /TS
Reference Manua I, 90 09 07.)

LOAD

Load is a two-pass overlay loader. The first pass processes

1. All relocatable object modules (ROMs).

2. Protection types and sizes for control and dummy sec­
tions of the ROMs.

3. Expressions for definitions and references (primary,
secondary, and forward references).

The second pass forms the actual core image and its re­
location dictionary. (Reference: CP-V/BP Reference Man­
ual, 90 1764.)

LYNX

LYNX is a load processor that is available in both the on-
I ine and batch modes. L YN X has most of the capabil ities
of the overlay loader and also provides the same control
over intemal and global symbol table construction which is
available in the Link loader. LYNX may be viewed as a
preprocessor for the overlay loader. After it analyzes the
user's commands, it constructs a table of loader control in­
formation which it then passes to the overlay loader. It is
the overlay loader which actually performs the loading
process.

DELTA

Delta is designed to aid in the debugging of programs at
the assembly-language or machine-language levels. It
operates on object programs and tables of internal and glo­
bal symbols used by the programs but does not require that
the tables be at hand. With or without the symbol tables,
Delta recognizes computer instruction mnemonic codes and
can assemble machine-language programs on an instruction­
by-instruction basis. The main purpose of Delta, however,
is to foci litate the activities of debugging by

1. Examining, inserting, and modifying such program
elements as instructions, numeric values, and coded
information (i. e., data in all its representations and
formats).

2. Controlling execution, including the insertion of break­
points into a program and requests for breaks on
changes in elements of data.

3. Tracing execution by displaying information at desig­
nated points in a program.

4. Searching programs and data for specific elements and
subelements.

Although Delta is specifi cally tai lored to machine language
programs, it may be used to debug any program. Delta is
designed and interfaced to the system in such a way that it
may be called in to aid debugging at any time, even after
a program has been loaded and execution has begun. (Ref­
erence: CP-V/TS Reference Manual, 90 09 07.)

FORTRAN DEBUG PACKAGE

The FORTRAN Debug Package (FDP) is made up of special
library routines that are called by Xerox Extended FOR­
TRAN IV object programs compiled in the debug mode.
These routines interact with the program to detect, diag­
nose, and in many cases, repair program errors.

The debugger can be used in batch and on-line modes. An
extensive set of debugging commands are ava i lab Ie in both
cases. In batch operation, the debugging commands are
included in the source input and are used by the debugger
during execution of the program. In on-line operations,
the debugging commands are entered through the termina I
keyboard when requested by the debugger. Such requests
are made when execution starts, stops, or restarts. The de­
bugger normally has control of such stops.

In addition to the debugging commands, the debugger has
a few automatic debugging features. One of these features
is the automatic comparison of standard calling and receiv­
ing sequence arguments for type compatibi lity. When appli­
cable, the number of arguments in the standard calling se­
quence is checked for equality with the receiving sequence.
These ca lIing and receiving arguments are also tested for
protection conflicts. Another automatic feature is the test­
ing of subprogram dummy storage instructions to determine if
they violate the protection of the calling argument. (Ref­
erence: FDP/Reference Manual, 90 16 77.)

Processors 9

COBOL ON-LINE DEBUGGER

The COBOL On-line Debugger is designed to be used with
Xerox ANS COBOL. The debugger is a special COBOL
run-time library routine that is cal led by programs compi led
in the TEST mode. This routine allows the programmer to
monitor and control both the execution of his program and
the contents of data-items during on-line execution. The
debugger also al lows the COBOL source program to be
examined and modified.

The debugger can only be used during on-line execution;
however, programs that have been compiled for use with
the debugger may be run in the batch mode. This is not
recommended, though, because of the increased program
size when the TEST mode is specified. (Reference: ANS
COBOL/On-line Debugger Reference Manual, 903060.)

SERVICE PROCESSORS

The processors in this group perform general service func­
tions required for running and using the CP-V system.

EDIT

The Edit processor is a line-at-a-time context editor desig­
nated for on-line creation, modification, and handling of
programs and other bodies of information. All Edit data is
stored on disk storage in a keyed fi I e structure of sequence
numbered, variable length records. This structure permits
Edit to directly access each line or record of data.

Edit functions are controlled through single line commands
supplied by the user. The command language provides for
insertion, deletion, reordering, and replacement of lines
or groups of lines of text. It also provides for selective
printing, renumbering records, and context editing opera­
tions of matching, moving, and substituting line-by-line
within a specified range of text lines. File maintenance
commands are also provided to allow the user to build, copy,
merge, and delete whole files. (Reference: CP-V/TS Ref­
erence Manua I, 90 09 07.)

PERIPHERAL CONVERSION LANGUAGE

The Periphera I Conversion Language (PC L) is a uti lity sub­
system designed for operation in the batch or on-line en­
vironment. It provides for information movement among
card devices, line printers, on-line terminals, magnetic
tape devices, disk packs, and RAD storage.

PCL is controlled by single-line commands supplied through
on-I ine termina I input or through command card input in the
job stream. The command language provides for single or
multiplefile transfers with options for selecting, sequencing,

10 Processors

formatting, and converting data records. Additional file
maintenance and utility commands are provided. (Reference:
CP-V /TS Reference Manual, 90 09 07 and CP-V /BP Ref­
erence Manual, 90 1764.)

SYSGEN

SYSGEN is made up of several processors. These proces­
sors are used to generate a variety of CP-V systems that are
tai lored to the specific requirements of an installation. The
SYSGEN processors are PASS2, LOCCT, PASS3, and DEF.
PCL is used to select from various sources the relevant
modules for system generation. PASS2 compi les the required
dynamic tables for the resident monitor. LOCCT and PASS3
file away and execute load card images to produce load
modules for the monitor and its processors. DEF writes a
monitor system tape that may be booted and used. (Refer­
ence: CP-V/SM Reference Manual, 90 16 74.)

DEFCOM

DEFCOM makes the DEFs and their associated values in one
load module avai lable to another load module. It accom­
plishes this by using a load module as input and by produc­
ing another load module that contains on Iy the DEFs and
DEF values from the input module. The resultant load
module of DEFs can then be combined with other load
modules. DEFCOM is used extensively in constructing the
monitor and the shared run-time libraries. (Reference:
CP-V/BP Reference Manual, 90 1664.)

SYMCON

The Symbol Control Processor (SYMCON) provides a means
of controlling external symbols in a load module and of
building a global symbol table. Its primary function is to
give the programmer a means of preventing double defini­
tions of external symbols. It may also be used to reduce
the number of external symbols. For example, if certain
load modules cannot be combined because their control
tables are too large, the tables may be reduced in size by
deleting all but essential external symbols. (Reference:
CP-V/BP Reference Manual, 90 1764.)

ANLZ

AN LZ provides the system programmer with a means of ex­
amining and analyzing the contents of dumps taken during
system recovery. It is called automatically by the Automa­
tic Recovery Procedure and is executed as a ghost job. It
may also be called by the operator to analyze tape dumps
when recovery is not possible, or by an on-line user to
examine crash dumps or the currently running monitor.
(Reference: Chapter 4.)

BATCH

The Batch processor is used to submit a fj Ie or a series of
fi les to the batch queue for execution. Through Botch pro­
cessor commands, the following capobi Ii ties are avai lable:

1. A fi Ie may be inser~-d into a PIe being submiHed for
execution, thus bringing toget! ,<:!r more than one fi Ie
to create a single lob.

2. Selected strings and fields existing in fi les being sub­
mitted for execution may be replaced by new strings
and fields.

3. The results of string and field replacements can be
examined before the lob Is submitted to the batch
stream.

4. Files to be submitted for execution may reside on tape
or private dtsk pack.

5. Jobs may be submi tted to run in an account other than
the account from which the job Is submitted.

The Botch processor may be called in either the on-line or
the batch mode. (Reference: CP-V /TS Reference Man­
ual, 90 09 07.)

DRSP

DRSP (Dynamic Replacement of Shared Processors) enables
the sysrem program"!er to dynomi cally add, replace, or
delete processors during normal system operation with other
users in the system. (Reference: Chapter 7.)

ELLA

The Error Log Listing program (ELLA) provides an efficient
tool to list and sort the error data bose which is automati­
cally generated and updated b)' the CP-V system. (Refer­
ence: Chapter 6.)

SHOW

The Show processor allows the user to display his current
maximum system services and resources, the peripheral de­
vices that he has been authorized to use, and several other
system user parameters. (Reference: CP-V /BP Reference
Manual, 90 17 64.)

APPLICATIOI PROCESSORS

The appl ication processors are intended for use for specific
types of appl ications.

SORT/MERGE

The Xerox Sort/Merge processor provides the user with a
fast, highly efficient method of sequencing a nonordered
file. Sort may be called as a subroutin~ from within a user's
program or as a botch processing job by control cards. It
is designed I operate efficiently in a minimum hardware
environment. Sorting can take place on from 1 to 16 keys
and each individual key field may be sorted in ascending
or descending sequence. The sorting technique used is
that of replacement selection tournament and offers the
user the flexibility of changing the blocking and logical
record lengths tn explicitly structured files to different
values in the output file.

The prlnclpa I highlights of Sort are as follows:

1. Sorting capability allows either magnetic tapes, disks,
or both.

2. linkages allow execution of user's own code.

3. Sorting on from 1 to 16 key fields in ascendipg or
descending sequence is allowed. Keys may be al­
phanumeric, binary, packed decima I, or zoned deci­
mal data.

4. Records may be fixed or variable length.

5. Fixed length records may be blocked or unblocked.

6. Disks may be used as fi Ie input or output devi ces, or
as intermediate storage devices.

7. Sort employs the read backward capabi lity of the tope
device to eliminate rewind time.

8. User-specified character collating sequence may be
used.

9. Buffered input/output is used.

(Reference: Sort-Merge/Reference Manual, 90 11 99.)

EDMS (PROGRAM PRODUCT)t

EDMS is a generalized data management system that enables
the user to create an integrated data base. It is designed
to be used with COBOL, FORTRAN, and Meta-Symbol pro­
cessors. It simplifies programming by performing most of
the I/O logic and data base management for the applica­
tion programmer.

tSee "program product" in glbssary.

Proc •• on 11

The principa' features of EDMS are as follows:

•

•

•

•

The user can describe data in ... arious data structures.
Using sets, any element can be related to any other
element. The data :itructures include lists and hier­
archies (trees). The two relationships can be combined
to form extensi ve networks of data.

Access techniques include random, direct, indexed,
and indirect (relative to another record).

An EDMS data base may consist of up to 64 monitor
fi les.

Multiple secondary :ndexes can be defined by the user
to a /low records to be retrieved via any combination
of secondary record keys.

• U~ers moy construct any number of logical files or data
bases within an EDMS file"

• Data is de~cribed separately from the user program to
foci litate management of the data base.

• Comprehensive security exists at all levels of a file.

• Journalization provides an audit trail for backup and
recovery.

• A dynamic space inventory i!) maintained to facilitate
rapid record storage and to optimize the use of avail­
able storage space.

• Detailed data description is provided for inclusion into
the user's oppli cation program to reduce programming
effort.

• File I/O logic is performed for the user program
including

l. logical or physical record deletion.

2. Record retrieval on random or search basil.

3. Record insertion or modification.

(Reference: E DMS/Reference Manual, 90 30 12.)

GPOS (PROGRAM PRODUCnt

The General Purpose Discrete Simulator provides engineers
and administrators, whose programming experience is mini­
mal, with a system for experimenting with and evaluating
system methods, processes, and designs. Providing a means
for developing a broad range of simulation models, it allows
organizing, modeling, and analyzing the Itructure of a sys­
tem, observing the flow of traffic, etc. Potential applica­
tions include

• Advanced monagement planning.

• Anal ysis of inventory or financial systems.

j 2 Processon

•

•
•

Studies of message switching and communications
networks.

Risk and capital investment studies.

Evaluation and data processing systems.

• Job shop and queuing studies.

Although GPDS is compatible with other simulator systems,
it has a number of salient features not usually found in
competitive versions. (Reference: GPDS "Reference Man­
ual, 90 1758.)

MANAGE (PROGRAM PRODUCr/

Manage is a general i zed fi Ie management system. It is
designed to allow decision makers to make use of the computer
to generate and update files, retrieve useful data, and gen­
erate reports without having a knowledge of programming.

Manage consists of four subprograms: Dictionary, Fileup,
Retrieve, and Report. The Dictionary subprogram is a data
file and is the central control element in the Manage)ys­
tem. It consists of definitions and control and formatting
parameters that precisely describe the characteristics of a
data file. The Fileup subprogram initially creates and then
maintains a data file. The Retrieve subprogram extracts data
from a data bose file according to user-specified criteria.
The Report subprogram automatically prepares printed reports
for data extracted by the Manage retrieval program. (Ref­
erence: Manage/Reference Manual, 90 16 10.)

CIRC (PROGRAM PRODUCT)t

CIRC is a set of three computer programs for electronic cir­
cuit analysis: eIRC-DC for dc circuit analysis, CIRC-AC
for ac circuit analysis, and CIRC-TR for transient circuit
analysis. The programs are designed for use by a circuit
engineer, and require little or no knowledge of programming
for execution

CIRC can be executed with three modes of operation pos­
sible: conversational (on-line) mode, terminal batch entry
mode, and batch processing mode. The system manager wil'
determine which of these modes are available to the engi­
neer, based on type of computer installation and other in­
stallation decisions.

• The on-line mode offers several advantages since it
provides true conversational interaction between the
user and computer. Fol lowing CIRC start-up procedures,
CIRC requests a control message from the user. After
the control messoge is input (e. g., iterate a cycle of
calculations with changed parameters) the computer
responds (via CIRC) with detailed requests for appl i­
cation data. These requests are suff; ciently detai led to

ts " ee program product" in glossary.

virtual! y ellminote misunderstandings by the engineer.
This mode is highl y useful in a highly interactive en­
vironment that produces a low volume of output and
requires limited CPU time.

• The terminal batch entry mode allows efficient handl ing
of high volume Ol .Jt and large CPU time rejuirements
while preserving \ . advantages of the terminal as an
input device. Two files are required, one containing
all CIRC input including a circuit description and
control messages and the other directing the execution
of CIRC. The job is entered from the terminal Into the
batch queue and treated like a batch lob.

• The batch mode should generally be used for lobs in­
volving large volumes of computations and outputs. It
enables the user to concentrate on data preparation
with virtue lIy no involvement in programming consider­
ations. The system manager can provide a set of
start-up cards that never change, and these will con­
stitute the entire interface between user and executive
software. However, the batch mode offers less flexi­
bility in experimenting with a circuit and slower
turnaround time in obtaining answers.

(References: CIRC-AC/Reference Manual and User's Guide,
90 16 98, CIRC-DC/Reference Manual and User's Guide,
90 16 97, and CIRC-TR/Reference Manual and User's
Guide, 90 17 86.)

USER PROCESSORS

Users may write their own processors and add them to
CP-V or replace CP-V processors. The rules governing the
creation and modification of processors are described in
Chapter 7.

MONITOR

The monitor responds to the moment-b)'-moment require­
ments of controlling machine operation, switching between
programs requiring service, and providing services at the
explicit request of the user's program. The monitor pro­
grams that perform these functions are listed below.

1. Basic Control.

2. Scheduling and Swapping.

3. Memory Management.

4. File Management.

5. Multibatch Job Scheduling.

6. Resource Management.

7. Job Step Control.

8. Terminal I/O Handl ing.

9. Symbionts.

10. Cooperatives.

11. System Integrity.

12. Initial. .ltion and Start-up.

13. Operator Communications.

14. Batch Debugging.

15. Load~nd-llnk.

16. System Debugging.

The basic control system is an I/O ini'errupt service and
handling routine. It includes trap and interrupt handlers,
routines that place requests for 1/0 in a queue, and basi c
device 1/0 handling routines.

The scheduling and swapping module makes the decision to
swap, selects the users to swap in and out, sets up the Il 0
command chains for swap transfers, and selects the next user
for execution. It also ensures that any associated, but not
currently resident, shared processors are brought in with
each user. Special algorithms control 1/0 scheduling and
the balance of machine use between on-line and batch.

The memory management module controls the use of core
and disk storage. Specifically, it controls the allocation of
physical core memory, maintains the map and access images
for each user, servi ces the "get II and "free" servi ce co lis
for memory pages, and manages the swapping disk space.

Fi Ie management routines control the content and access to
physica I fj les of information. These routines perform such
functions as indexing, blocking and deblocking, managing
of pools of granules on RADs and disk packs, labeling, la­
bel checking and positioning of magnetic tape, formatting
for printer and card equipment, and controlling access to
and simultaneous use of a hierarchy of fi les.

The mul.!.!batch job _scheduling routines select jobs to be run
from the waiting input queue depending on priority and re­
source and partition availability.

Resource management facilities keep track of the number
of resources of each kind (i. e., tape drives, disk spindles,
core) that are in use. For a batch job, the multi-botch
scheduler compares the resources required with the avail­
able resources and does not start the job unti I suffi cient
resources are available. Once the job is started, the re­
sources that are required by the job are reserved for the
exclusIve use of the job, t~ereby guaranteeing that they
wi II be avai lable for the duration of the job.

Monitor 13

Job ~E- (:"U'~!l~!"':~~~~::~ D. t~ ~ntered bt~tween major segments
of a job or .')n on-line)t:s'l:m. They perform the monitor
functions re{llJireJ be' .,t:'I';' tub ,Ieps such as

3. Prolt'~.;'I~) Pllt,,:! Ii··!: t:!xits b msociated shared pro­
cessol; eli ~o 1,):Jd ;';'C>'j,am rnndules.

Terminol II) h.:ndI1ilU ,,·,·,tiPE', p(:;jforu read-writp. LlIHer­
T~'~"l>)(krr(li ;;:t;·'!'Jpt f·,:;nJ!;:'Sl for JiO directed to user
terminals ff..:~St: ")lirlf't"j "i,.) If.,l'lS~Clh~ character codes,
insert pa!:Je !k;~ldt~;·, H'i; \';:' (i.lt.O/ characters, simulate
tabs, and perfoi '11 (I~her fur ~natting tasks.

Front End (omrr,un i ,:J,~, .~r" p, ,~- e:.,or (FE C P) control routi nas
h~~dT;tI~~I.\~l;~-t~~ t:P :" i I:~ ff ;;~:P"-~"ndtt~~--h-;;t-comp-cter.
The routines abG /; . .)- ;,-;.~ '.,<:'rl..l" tc·ntrol Olter the FECP,
incl ud ing t.l'joti ng ond Y,J. ;-,:; :c i iubil it,', main t:Jinabii i ty,
and availaL,ility he ;he.,

Symbiont routines transfer data from the card reader to log­
ical device" streams on di$k storage and from logical device
streams on disk storage tJ the cord punch or I ine printer.

~~9~_r_~;~~_!..0_~~~I~~ jnte~cbfii .. e-'-:ld, print, Or punch com­
mands in user programs and trunsfer data from Or to logical
deviceitrearns r('.,,;din~~ on disk st,Jrage. The input coopera­
tive simulates c'ne! reading fr()ll 0 logical device stream.
The output cooperative builds G logical dt:vice stream using
intercepted program outp"t Jirectea by the user program to
a line prinft>(or cad punch.

~~t~m ~ntegri ty faci' die~ provide error detection and re­
covery capabilitip.s fn;, Includes security to user files and
automatic high"speed rest,1ft in case of system failure. Suf­
ficiant information is recorded to isolote errors and failures
caused by hardware UI sofr.vare.

Jnit~Ji~c:!i~rl __ <:!.I1_~_s.!.~!~£~tines are stored on tape and
are booted into COm storage. After they are in core, they
load the monitor root into core and turn control aver to the
root. The monitor root then completes the initialization
of the monitor by starting and running the program called
GHOSTI which completes the patching of the system and
the initialization of the s'wapping disk and hardware.

,Operator communication routine,. provide for communica­
tion between the monitor Ilnd the operator. They transmit
messages to the operator and process key-ins received from
the operator.

14 Monitor

~atch __ debu~}9ing routines pr')vide batch programs with
debugging c:npabil i ty through the U'ie of procedure calls.
Any batch P'1 1U!IW) may take a snapshot Jump of a specified
segment of memO! f I t>! the-I" (In on -jI',(.or'.di tiona I or a con­
ditiona I basi s.

?ystem_""~:::!~:!ug~,ng r~!~.!es provide debu~~; .. :j serv!ces to
system pr'--arornmer~ Three debl!gging f.:Jut;N;S ore avail-
able. They are

1. Executive Delta: This is a stand-alone rrocessor and
is essentiall /' the sarrlH as on--Ime DI:lta. Executive
Delta is optionally loaded at boot liml; along with the
loot of the monitor and monitor systerr, tables.

2. Analyze This program is intended for debugging CP-V
crosh dilmps. To accan,plish ~his, it fl(~rfurms two
malnr ft!".rt;ons

a. ft summar; zt>s the compiete software ellvironrnen t
at the time ;)f the crush in a series of tables.

b. It perrnits on-line interactions sim.i iClr to Dehu.

3. Recover: This program provides the "bai I-out" e)<it
from the monitor. The error code that is transmitted
to RECOVER rlefines the problem and the module that
discovered the problem.

boad-and-.li,~ routines give batch program; three types of
loading und linking capability. fhrough the use of proce­
dure co/l~, C'.! batch program may

1. Load an overlay segrnent into core storage.

2. Store the calling program on disk storage, load the
cal led program into core storage, and transfer control
to the called program.

3. Load a program into care storage, transfer control to
the called program, and release the core area used by
the call ing program.

4. Pass a command I ine to the called program.

CP-V has two types of FORTRAN libraries. One type is a
public library and the other is a system library. In the
standard release of CP-V, there are three FORTRAN public
libraries. One library (P1)contains a useful set of Extended
FORTRAN IV run-time I ibrary routines; another (PO) contains
Pl and the FORTRAN Debug Package; the third (P4) con­
tains Pl and the FORTRAN real-time features. These three
I ibraries are so constructed that a single copy is shared among
all concurrent users. The ~ystem library contains a collec­
tion of routines that are less frequently used than the public
I ibrary routines. They are in I ibrary load module form and
are loaded only with programs that reference them.

ICHIDUUII AID MIMOI' .I'IIMEIT

Scheduling and memory management routin~s control the
overa" operation of the system. Inputs to ,-hese routines,
together wi th the current status of users en recorded by the

.::heduler, are used to change the position of each user in
the scheduling status queues. It is from these queues that
se lections are made for both swapping and execution. Swaps
are set up by the selection of a high priority user that is to
be brought into core and by pairing this user with one or
more low priority users that are to be transferred to disk
storage. Simi larly, the highest priority user in core is
selected for execution.

SCHEDULER INPUTS

S)!,stem activities are reported by direct entry to the sched­
uler, which makes changes to user status queues through a
logical signaling table. The scheduler records inputs by
changing the user status queues and other information asso­
ciated with the user. In general, a table-driven technique
is used. The received signal is on one coordinate and the
current state of the user is on the other. The table entry
thus defined names the routine to be executed in response
to the given signa I-state combination. Since the number
of signa Is and states is large, the table techn ique aids in
debugging by forcing complete specification of all the pos­
sibilities. Inputs to the scheduler are listed in Table 1.
The scheduler also receives control at execution of each
CAL issued by a user program that is requesting monitor
service. These entries (Table 2), special entries from the
command processors, and entries from internally reported
events drive the schedul ing of the system.

Table 1. Event Inputs Received by Scheduler

Event

E:ABRT

E:AP

E:ART

E:CBA

E:CBK

E:CBL

E:CEC

E:CFB

E:CIC

E:CRD

E:CUB

E:DPA

E:ERR

E:IC

Meaning

Operator aborted user.

Associate shared processor with user.

Activate real-time user. Interrupt has
occurred.

COC buffer available.

Break signal received.

Number of output characters> SL: TB.

TEL request (88, § Y, or yC).

Cannot find COC buffer.

Terminal input message complete.

Read terminal command received.

Number of output characters = SL: UB.

RAD page avai lable.

Operator errored user.

I/O complete.

Table 1. Event Inputs Received by Scheduler (cont.)

Event

E:IIP

E:IP

E:KO

E:NC

E:ND

E:NOCR

E:NSYMD

E:NSYMF

E:NQR

E:NQW

E:OCR

E:OFF

E:QA

E:QE

E:QFAC

E:QFI

E:QMF

E:SL

E:SYMF

E:SYMD

E:UQA

E:UQFAC

E:WU

Meaning

I/O started and now in progress.

Request permission to start I/O.

User removed from core.

Cannot get requested core pages.

Cannot get requested disk page.

User allowed to open or close file.

No symbiont disk space.

No symbiont fi Ie entry.

Enqueue release - resource avai lable.

Enqueue - wait for resource.

Request permission to open or close fi Ie.

User has hung up telephone.

User queued for access (e. g., for access
to tape or disk pack).

Quantum end.

No granules avai lable for use.

Real-time user. Queue for interrupt.

Queue for I/o master function count too
high.

Sleep time for user.

Symbiont fi Ie now avai lable.

Symbiont disk space now avai lable.

User dequeued for access {e. g., for ac­
cess to tape or disk pack}.

ALLOCAT has refreshed granule stacks.

Wake-up time for user.

Monitor 15

Table 2. Service Request Input to Monitor

Source of Inputs

User program
(through monitor
service calls)

Command
processor

SCHEDULER OUTPUT

Service Request Entries

1. Terminal input/output request.

2. Input/output service calls for
RAD, disk pack, or magnetic
tape.

3. Wait request.

4. Program exit (complete).

5. Core request (for common,
dynamic, or specific pages).

6. Rea I-time servi ces.

7. Program overlay (load and
link, load and transfer).

8. Debug requests.

9. Miscellaneous service requests.

1. Name of system programs to
be loaded and entered (im­
plies deletion of any current
program).

2. Continuation signa I.

3. Special continuation address.

4. Link load-and-go-exit.

The scheduling routine performs two major functions during
the time it is in control of the computer. The first function
consists of setting up swaps between main core memory and
secondary disk storage in such a way that high priority users
are brought into core to replace low priority users that are
transferred to disk storage. The actual swap is controlled
by an I/O handler according to specifications prepared by
the scheduler. These specifications are prepared according
to the priority state queues described in the next section.
Given a suitably large ratio of available core to average
user size (greater than 4), the scheduler can keep swaps
and computing close to 100 percent overlapped.

16 Monitor

The second function the scheduler performs consists of
selecting a user for execution according to the priority state
queues and the rules for batch processing. The rule is
simple: the highest priority user whose program and data
are in core is selected.

USER STATUS QUEUES

Status queues form a single priority structure from which se­
lections for swapping and execution are made. The status
queues form an ordered list with one and only one entry for
each user. The position in queue is an implied bid for
the services of the computer. As events are signaled to the
scheduler, individual users move up and down in the prior­
ity structure. When they are at the high end, they have a
high priority for swapping into core and for execution. When
they are at the low end, they are prime candidates for re­
moval to secondary storage. This latter feature - that of
having a defined priority for removal of users to disk stor­
age - is an important and often overlooked aid to effi cient
swap management. It avoids extraneous swaps by making
an intelligent choice about outgoing as well as incoming
users.

In addition to these primary functions, user status queues
have other functions such as

1. Synchronizing the presence in core of the user program
and data with the avai labi lity of I/O devices.

2. Queuing user programs to be "awakened" at a preestab­
lished time.

3. Queuing requests for entry and use of processors.

4. Managing core memory.

5. Queuing requests for buffers either in core or on
disk.

6. Queuing requests for nonresident monitor services.

A list of the status queues is given in Table 3.

SCHEDULER OPERATION

To select users for execution, the scheduler searches down
a I ist of the status queues for the first user in core memory.
The highest priority user is served first. Interrupting users
are served before those with an active input message (both
of these take precedence over users with unblocked termi­
na� output), then come on-line compute-bound users and
finally, compute-bound batch jobs. Note that users in
lower states have no current requests for CPU resources.
Note also that as each user is selected for execution, the
status queue of the user is changed to CU. When the quan­
tum is complete, the highest priority queue the user can
enter is the compute queue. Users that enter any of the

State

SRT

SCO

SCl

SC2

SC3

Table 3. Scheduler Status Queues

Meaning

Real-time execute (0:5 priority ~ X'BF').

Background execute (X 'COl ~
priority ~ X'F5').

Background execute (priority = X'F6 1
).

Background execute (priority = X'F7').

Background execute (priority = X'F8').

SC4 Background execute (priority = X'F9').

SC5

SC6

SC7

SC8

SC9

SC10

STOB

STOBO

SlOW

SIOMF

SW

SQA

SQR

SQRO

SlI

SlIO

SQFI

Background execute (priority = X'FA I).

Background execute (priority = X'FB').

Background execute (priority = X'FCI).

Background execute (priority = X'FD').

Background execute (priority = X'FE').

Background execute (priority = X1FF').

Terminal output blocked in core. (More
characters than the system limit are ready
for typing.)

Terminal output blocked. Not in core.

I/O wait. Users waiting for an I/O that is
in progress to complete.

Users blocked because I/O master function
count (number of I/O operations in progress)
has reached the system limit.

Users waiting for a specified "wake-up"
time.

Users waiting for service by RBBAT, the
symbiont ghos·t.

Users in core and blocked for dynamic re­
source such as swapper page, COC buffer,
symbiont disk page, symbiont table spC1ce,
enqueued resource, service by ALLOCAT
(for file granules), or file open or close.

Same as SQR but not in core.

Typing input and in core.

Typing input and not in core.

Real-time user waiting for interrupt.

three highest priority states receive rapid response but only
for the first quanta of service. Thereafter, they share ser­
vice with others in the compute queue.

A simi lar selection procedure is used to set up users for
swapping. First, the highest priority user in the execution
queue who is not in core is selected and his size require­
ment (including the requirement for shared processors not in
core) is determined. Second, users are selected from the
swapout queue unti I enough space is freed by these users
and their shared processors to provide for the user selected
for swap-in. If a single user in a state below SClO (Table 3)
can be found to swap out, then a single rather than a multi­
ple swap is chosen. No swaps occur unti I a user that is not
in core enters a high priority queue.

Two lists resulting from this selection are presented to the
swapper. One list contains the user (or users) to be swapped
out and the other contains the user to be swapped in. This
latter list also contains the shared processors that must
accompany the user and the current free core page list.
When the scheduler selects users for swapping, it pi cks a
high priority user to load into core and the lowest priority
user to remove from core. Priorities are arranged from high
to low, in order of increasing expected time before the next
activation. This ensures that the users that are least likely
to be needed are swapped out first, whi Ie the users most
likely to require execution are retained in core. The swap
algorithm operates so that compute users remain in core and
use all available compute time, while the interactive users
are swapped through the third core slot whenever the fol­
lowing three conditions exist:

1. There is room in core for three user programs.

2. Two users are computing steadily.

3. Many other users are doing short interactive tasks.

Table 4 shows the queue used for selection of users to be
brought in for execution and the queue used for selection
of users to be moved to disk.

Note that the queues CU, lOW, QRO, TOBO, TIO do not
appear in either list. Thus, the users in these states are not
selected either for execution or for swapping.

Two examples of typi ca I interactive use are illustrative of
the scheduling operation.

The first example traces scheduling operations for a simple,
short interactive user request. At the time the request is
typed, the user is in the STl queue. His program, which
has probably been swapped to disk storage, remains there
until the COC routines receive an activation character.
Receipt of this character is reported to the scheduler
and causes a change in state of the user to the appro­
priate executable state (SCO-SC10). The scheduler finds
a high priority user not in core and initiates a swap to

Monitor 17

Table 4. Swap-In and Swap-Out Queues

Swap-In
(and Execution) Swap-Out
Queue Queue

SRT SW

SCO STI

SC1 STOB

SC2 SQFI

SC3 SQA

SC4 SClO

SC5 SQR

SC6 SC9

SC7 sca

SC8 SC7

SC9 SC6

SC10 SC5

SC4

SC3

SC2

SC1

SCO

SRT

remove a low priority user (if necessary) and to bring
in the one just activated. On completion of the swap,
the scheduler is again called and now finds a high priority
user ready to run. The user's state is changed to CU, the
program is entered, and the input command is examined by
the reading program. The cycle in this example is com­
pleted by preparation of a response line and a request to
the monitor for more input which changes the user's state
to n again, making him a prime candidate for removal
to disk.

The second example illustrates an output-bound termina I
program. This program moves through the state cycle STOB­
SC-SCU as output is generated by the program. The COC
routines signal when the output limit has been reached,
thus causing the program to be delayed whi Ie output is
transferred to the termina I. In a typi cal operation, four
to six seconds of typing is readied in buffers each time the
user program is brought into core and executed. During

18 Monitor

this typing time, the program is not required in core and
the CPU resources can be given to other programs.

I/O SCHEDULING

I/O scheduling is designed to provide good service to 1/0-
bound users while keeping the CPU busy with compute­
bound users. The intent is to make the fullest possible
utilization of both the CPU and the I/O devices. The
manner in which this is accomplished is descri"bed below.

A user that has been waiting for an I/O to complete (SlOW)
is changed to an executable state at a priority slightly
higher than a similar compute-bound user when the I/O
completes. At that time, the execution scheduler inter­
rupts the execution of the compute-bound user so that the
I/O-bound user can execute. The I/O-bound user requires
comparatively little CPU time before initiating another I/O
request and returning to the SlOW state. The compute­
bound user then resumes execution.

It should be noted that the scheduler automatically adapts
to jobs that alternate between bursts of computing and bursts
of I/O.

SWAP HARDWARE ORGANIZA nON

Users are removed from core to a dedicated area of disk
storage (or to several disks in Jarge configurations) when
core is required for higher priority users.

Bit tables are used to keep track of the availability of each
sector on the disks. In these tables, a zero is used to indi­
cate the sector is in use (usually assigned to a user) and a
one is used to indicate the sector is avai lable. Users are
assigned a suffi dent number of page-size sectors to accom­
modate their current use. The assignment is done in such a
way that command chaining of the I/O can order the sectors
to be fetched for a single user with minimum latency. That
is, each user's pages are spread evenly over the set of
available sectors on the disk to which he is dedicated so
that data will be transmitted in every disk sector passed
over when the user is swapped.

The records of disk sectors associated wi th each user are
kept in the user's job information table (JIT), which is kept
on disk when the user is not in core. The disk location of
the JIT and the user's disk address are kept in core by the
scheduler. The disk layout is such that sufficient time is
avai labl e after the user's JIT arrives from the disk for the
system to set up the I/O commands for the remai~der of
the user.

The amount of disk storage assigned to swapping is a
parameter of SYSGEN. The number of on-I ine users that
the system can accommodate is limited by the size of disk
space allocated for swapping and the total size of active
on-line users.

The allocation scheme for systems which have file space
allocated on both RADs and disk packs is described in the
foil owi ng paragraphs.

For the sake of overall performance, the RAD is preferred
for frequently accessed system information and temporary
files used by the major processors. Special users who
need high performance on special files may specify RAD
preference.

All of the account directory and all files from :SYS are as­
signed to the RAD. The first granule of each file directory
is assigned to disk pack but any additional granules are as­
signed to RAD. All star or id files and all scratch files
(opened OUT or OUTIN with REL) prefer RAD. Random
files with no user stated preference and all other files and
their indexes prefer pack. These pack preferences may be
overridden either by the operator keyin 'PREFER' for all
files or by the user specification of NOSEP and DEVICE
for individual files.

Briefly, the effect of authorization and defaults upon the
allocation is: If not enough space is available on the pre­
ferred device, the other device will be used if space is
avai lable there. The exception to this is random files with
user specified preference. In this case, if space is not
available on the user specified device, the file is not al­
located and an error is returned to the user. Also, within
the authorized limits, temporary files may use only tempo­
rary authorization and permanent files may use only perma­
nent authorization.

In general, the rule for authorization should be: A large
amount of temporary RAD and disk pack space should be
authorized for all users and the amount of permanent disk
space should be individually authorized by need. Very few
users should be authorized permanent RAD space.

There are four in-core buffers for types of space to be al­
located. Three are for granule allocated devices:

1. RAD PFA (permanent file storage).

2. Pack PFA (permanent fi Ie storage).

3. PER (peripheral symbiont storage).

The fourth is for cylinder requests. These buffers are used
to satisfy requests for all purposes except directories, random
files, and PSA (permanent system storage and swapping).

Due to the system configuration and SYSGEN, at most
six sets of devices can be created:

1. RAD all PFA (PFA RAD first).

2. Pack all PFA (PFA pack first).

3. All PER (PER first).

4. RAD PFA plus PER and/or PSA (PFA RAD second,
PER second).

5. Pack PFA plus PER and/or PSA (PFA pack second,
PER third).

6. PER plus PSA (PER fourth).

Granules are selected for the in-core buffers from one of
the six sets of devices starting each device at sector zero
and allocating from all the devices withi~ the set simul­
taneously (i.e., round-robin). The preference in choice
of sets is noted above in parentheses. All devices of a set
will be depleted before the next set is chosen.

Cylinders for the in-core buffer are allocated starting at
cylinder zero of the first (lowest DCT index) cylinder al­
located device. Each device will be depleted before the
next is used.

Random files are allocated starting at the last sector of the
last (highest DCT index) device of the proper type. The
cylinder allocated devices are treated as one continuum
of space for random files. They need not be contiguous in
the DCT table and any file may cross a boundary (even a
two cyl inder file). Private random files are allocated in
the same way.

PROCESSOR MANAGEMENT

CP-V processors are considered shared processors when they
are written in such a way that they are pure procedure and
are described as such when they are added to the system.
(User-associated data areas are initialized at first entry.)
A shared processor has the following special characteristics:

1. It has dedicated residency on swap storage established
at system initialization or via DRSP.

2. A single copy is shared by all requesting users.

Monitor 19

MEMORY LAYOUT

The system makes full use of address mapping hardware,
access protection, and write locks in allocating available
physical core pages to users. Physical core pages are allo­
cated to users at their request. Use of the map obviafes
the need for program relocation or physical moves. Full
protection is provided for one user from another. All pro­
grams and the monitor itself are divided into procedure and
data. The procedure area is protected by write-locks or
access codes, or both, against inadvertent stores.

The cenfral features of the use of write-locks to protect
master mode programs are as follows:

1. The monitor operates with a key of 01 and may store in

a. Ifs own dafa area (LOCK = 01).

b. Any batch, on-I ine or shared processor code
(LOCK = 00).

It may not store in its own procedure (LOCK = 11).

2. Keys of 10 and 11 are never used, nor is the lock of 10.

3. Write-locks are initia lized only once at system start-up
and are not changed thereafter except when running
under control of Executive Delta where they are used
to enable data breakpoints.

4. On the Xerox 560, wrife keys are four bits long and
apply to the lOP memory writes as well as CPU wrife
operations. To take advantage of this feature, fhe
Xerox 560 I/O sysfem always uses a key of 1000 which
does nof match any of the locks. Th is means that no
I/O operation can accidentallyoverwrite the mon itor or
its data since fhe lOPs can only write into memory with
locks of zero (the user area). Also on the Xerox 560,
certain monitor buffers which are partof the monitor data
area (usually with lock 01)are grouped together and the
pages conta in i ng those buffers are se t to a I oc k of 0000.
Except for th is difference, the rest of the I oc ks are
exactly the same as for the Sigma computers.

The access code on virtual memory pages controls references
made by slave mode programs (user programs and shared pro­
cessors). This co::Je is retained in the JIT of each user and is
loaded into the hardware access protect registers (which are
part of the virtual mapping hardware) when the user gains
control. Write access to JIT and other job contexf areas is
given to TEL, CCI, lOGON, and any installation-defined
command processors.

The layout of virtual memory that applies to user programs
and ordinarily shared processors is shown in Figure 2. Al­
location of the avai lable area depends on the type of
user that is running and the attributes of the load module

20 Monitor

to be executed. Allocation Type II is used when a core
library or debugger is associated or when the load module
to be executed has been built by link. In all other cases,
allocation of the available area is as shown in Type I for
batch users, ghost jobs, and on-line users executing in the
extended memory mode.

Core addresses shown are those appropriate for a typical
system but more (or less) core may be established for the
resident monitor at SYSGEN time depending on installation
needs. More (or less) area may also be desirable for the
library area and for the job context area to accommodate
more buffers. These bounds may also be adjusted at SYSGEN
time. The boundary at which the one-pass loader (Link)
places the user program is also adjustable.

Virtual pages not currently allocated to the user are mapped
into a resident monitor page that is write-locked, (the ac­
cess code is set to no access). Thus, slave mode programs
are denied access through the access code, and attempts to
store at these virtual addresses by a moster mode program
are protected by write locks.

Typical layouts of physical memory are shown in Figure 3
for Sigma systems and in Figure 4 for Xerox 560 systems.
Although these are similar to the actual layout, they should
not be assumed to be exact.

SYSTEM INTEGRITY

The monitor has a number of routines that have been in­
cluded to guarantee system integrity. The objectives of
these routines are, in order of importance, (1) to provide
the highest possible security for user files even in the event
of total system fai lure, (2) to provide automatic high-speed
recovery in the event of a machine or software failure, and
(3) to record sufficient information to isolate errors and
failures caused by either hardware or software.

The major features of the CP-V system integrity routines are
as follows:

1. Detection of malfunctions by hardware examination
and software checks wherever the checks have been
shown to enhance hardware error detection. Recovery
from these malfunctions is through retries, operator as­
sistance, etc.

2. Logging of all malfunctions, including recovered errors
and permanent failures.

3. Protection from hardware failures.

4. Use of on-line exercisers to provide for repair or ad­
justment of peripherals without taking the CPU down.

5. File backup and recovery facilities to minimize the
probability of losing user files, and in case of file
failure, to facilitate complete recovery of the file sys­
tem with a minimum of loss.

User
access

Map

User
access

Contents

Access
codes

128K o 32K 40K 112K
-L....... ____ Y

Monitor area Context area Available area
----t------ -- ---

Monitor
Type '- User program area

Data Procedure
overlay

Jlls Buffers

lspecial processor area Type II_ User program area

I I I~ .1 + ~ None ·1-
L read (first page)

None see below

read (fi rst page)

to
allocated
physical
page

to allocated physical page or to a protected locked monitor page ----------I·~I

40K

User program area
(Load module built by Load)

112K or
128K 40K

User program area
(Load module bui It by Link)

112K

Program I DCBs I Procedure I Dynami c I Una I located I Common
data I pages I pages I pages

Program I Dynamic I Unallocated I Common I DCBs I Procedure
data data pages pages

rwrite--j read ~execute+ write +- none +write1 I--- write -+ none -+write-1 read l-- execute-1

Avai lable Area Special Area Context Area

Job information
File blocking buffers
Fi Ie index buffers
Coop buffers

User programs, data, DCBs, and symbol tables
Ordinary shared processors including

Special shared processor and data:
Link
Delta
TEL
Libraries

Root segment
Initial data
Overlay area

none - no access of any kind permitted
read - read access on Iy

execute - execute or read access
write - write, execute, and read permitted

Figure 2. Typical User Program - Virtual Memory layout (not to scale)

Keys

locks

Unused keys:
Unused locks:

Figure 3.

01

Resident monitor

Data

01

10, 11
10

Program

11

00

On-line jobs
Batch iC?bs
Shared processors

00

Typical Memory Layout for Sigma Computers (not to scale)

Monitor 21

Keys 0001 0000

Resident monitor All user jobs and processors

Data VO buffer Data Program

Locks I 00011 0000 I 0001 1 0011 I 0000

(The VO system always uses a write key of 1000.)

Figure 4. Typical Memory Layout for the Xerox 560 (not to scale)

6. Automatic recovery following a system failure with
reasonabl e speed consistent wi th fi Ie security and the
recording of information for later analysis.

7. Facilities to provide for analysis of system crashes. In­
formation includes simple classification of failures as
well as full information for both customer engineers
and system programmers.

8. For the Xerox 560 - on-line interface for remote
assistance.

ERROR DETECTION AND RECOVERY

An effective operating system must be able to detect and,
whenever possible, to correct errors. It must also be cap­
able of restarting the system if necessary. CP-V uses a
combination of hardware and software checks to effi ciently
meet these goals.

Hardware error protection features include memory protec­
tion against accidental o,,:"erwriting of monitor and user pro­
grams, power fai I -safe i~terrupts that ensure automati c
restart in the event of power fai lure, memory parity check­
ing, I/o read and write verifi cation, and a watchdog timer
to avoid instruction hangups. Detected errors are reported,
logged, and if possible, recovered directly. Catastrophic
fai lures cause an automati c system recovery if at all pos­
sible. Those failures which can be isolated to a single user
cause only that user to be aborted. Some hardware errors,
such as loss of a memory power supply, lead to system
shutdown.

Software consistency checks, some of whi ch are performed
optiona IIy on the setting of a console sense switch, check
the integrity of the software at many critica I locations in
the system. These checks detect problems before they are
allowed to go beyond a recoverable point. When an incon­
sistency that is catastrophic to the system is detected, the
current users are logged off and a" open fj les are closed.
The system is then automatically rebooted for the fastest
possible restart.

22 Monitor

ERROR AND FAILURE LOGGING

Malfunction messages are maintained in a special fi Ie by
system integrity routines. Messages are placed in this file
whenever malfunctions are detected by the various parts of
the system. Hardware malfunctions that are recorded in­
clude such things as tape errors, card reader errors, memory
parity errors, and illegal instructions. Software malfunctions
that are recorded include the failure of software checks
on RA D or disk addresses contained in index blocks and
improper linkage of linked file blocks. In addition, a
software recovery from a seek failure is recorded in this
fi Ie (as a 757F code).

The error messages generated throughout the system (report­
ing both hardwbre and software errors) are placed initially
in in-core buffers and then are transferred to a special file
(actually a linked list of granules). This transfer is initiated
whenever an error count threshold, or time limit is reached.
This special file is then transferred to an ordered keyed file
(ERRFI LE) by the standard system ghost processor ERR: FIL
which is automatically awakened by the system.

ERROR LOG LISTING

This keyed file (ERRFILE) may be listed and sorted by the
processor ELLA whi ch allows the Customer Engineer to dis­
play and search the error fi Ie for patterns of errors to aid in
preventive maintenance for the system.

ON-LINE DIAGNOSTICS AND EXERCISERS

On-line diagnostics and exercisers may be called when
there is a specific failure detected by the hardware or soft­
ware, or when a fai lure is projected through ana lysis of the
error log by the Customer Engineer. These programs may
also be called by the Customer Engineer when needed for
the test or adjustment of the card reader, card punch, line
printer, magnetic tape, or other devices.

REMOTE DIAGNOSTIC ASSISTANCE

On the Xerox 560, on-line diagnostics and certain on-line
debugging processors (ANLZ, Delta, and ELLA) may be
utilized via the Remote Assist Station (RAS) interface.

After control is obtained from the local operator, customer
engineers and/or diagnosti c programmers at remote locations
may access the system via this interface without interfering
with the on-line COC users and without using any of the
normal communication equipment. By evaluating the sys­
tem under norma I operating conditions, many software errors
and hardware malfunctions may be detected and el iminated
expeditiously with a minimum of computer down time.

FILE MAINTENANCE

CP-V provides a variety of processors designed to maintain
a reliable backup of the file data base. These processors are
summarized in the CP-V/SM Reference Manual, 90 16 74,
and are described in detai I in the CP-V lOPS Reference
Manual, 90 16 75. The processors provide the ability to
save and restore large volumes of files very quickly, to save
and restore entire private and public disk devices at device
speed, to handle user initiated backup of fi les, to restore
the allocation tables for public disks after a system crash,
to restore the allocation tables for a private disk pack after
a crash which affected the pack, and to restore granule ac­
count information in the : US ERS fi Ie •

AUTOMATIC RECOVERY AFTER SYSTEM FAI LURE

The CP-V monitor performs consistency checks on the
results of hardware operations, checks intermediate results
of operating system software functions, performs checks and
ba lances at appropriate interfaces between the operating
system's modules, and monitors itself for unexpected trap
conditions caused by the hardware or operating system soft­
ware. A software check code is assigned to each type
of failure that the monitor may detect.

Some of these software check fai lures result in a momentary
delay in service to all but the current user for whom the
operating system is performing a service. In such case,
the current user's job step is aborted, core is dumped to a
file for later analysis and display, and normal operating
then continues. The remaining software check failures are
handled by the system's recovery routine.

The recovery routine performs the following functions:

1. Displays cause of failure.

2. Takes a full core dump for later analysis.

3. Closes all open files with default options.

4. Packages or releases all partial symbiont fi les.

5. Closes common TP journal if transaction processing is
being used.

6. Saves in-core transaction processing files.

7. Packages error log.

8. Informs users of interruption.

9. Saves time, data, error log pointers, accounting infor­
mation, symbiont file directory, public disk granule
usage map, and executive communication.

10. Restarts system and restores items saved above.

When functions cannot be performed, they are noted on the
operator's console. If the function is considered minor, re­
covery continues. If it is connected with file operations,
the file identification is noted and recovery proceeds.

The recovery routine described above occurs automatically
with a minimum delay (a few seconds) in system availabil ity.
Operator initiation of this recovery function is also allowed,
providing for the event that the system fails by not respon­
ing to any operator key-in or user service request.

When the recovery routine executes, it is independent of
all monitor services and functions and requires only that a
small recovery driver be intact in memory. This driver
reads the main recovery module into memory from the system
swap device, overlaying the pure procedure portion of
CP-V. Certain monitor system tables are also required in­
tact for successful recovery. These tables are verified
before proceeding. If the recovery process cannot be com­
pleted, the operator is instructed to initialize the system
from the master system tape and restore fi les and backup
tapes.

CRASH ANALYSIS

In the event of a recovery or single user abort, one of the
recovery functions is to dump the contents of core memory
into a special file in the :SYS account. This information is
saved for later ana lysis by a system programmer using a
special debugging program, ANLZ.

The ANLZ program may be called by the operator or system
programmers to run as a privi leged ghost, on-line, or batch
job. The ANLZ program is also called automatically
as a privi leged ghost job by the recovery routine as one
of the first jobs following a recovery or the first job fol­
lowing a single user abort. In any mode, ANLZ is command
driven (except in the ghost mode following a recovery).
It responds to commands that selectively display monitor
tables, examine memory, and compare the dump with
the running monitor. (Reference: Chapter 4.)

Monitor 23

3. BOOTSTRAP AND PATCHING OPERATIONS

SYSTEM TAPE FORMAT

A CP-V system tape contains the following elements:

1. Bootstrap loader.

2. Root for an absolute monitor.

3. General information record conceming this system
tape.

4. Other moni tor segments (XDElTA, ALlOCAT, GHOSTl,
FIX) •

5. Monitor overlay segments.

6. RECOVER.

7. Tape label information.

8. Files for a" system load moclulesand other needed fi les.

9. Patches and GENMD commands.

The general arrangement of the information on a master sys­
tem tape is shown in Figure 5.

PATCH DECK STRUCTURE

Patch decks have the following structure:

1. The following two types of patches:

a. Delta format patches for the monitor root and its
overlays.

b. Symbol definition patches.

The monitor root _patches can appear anywhere within
the patch deck. The overlay patches must be in the
same order as the system tape structure. Symbol defi­
nitions must precede the patches in which the symbol
is used. Patches to the reconfiguration processor must
precede the boot-time reconfiguration and partitioning
commands and must be read from the card reader when
the card reader is used during boot-time for patching
purposes.

2. Boot-time reconfiguration and partitioni ng commands.
These are optional, but if they are used, they must pre­
cede the first overlay patch. It is also advisable to
read them from the card reader.

3. A card that contains an asterisk in column one. This
card terminates the monitor patches and boot-time re­
configuration and partitioning commands.

4. The following two types of patches (which may appear
in any order):

a. A GENDCB command to assign the account, a
password, serial number, and type of tape drive
for the boot tape.

24 Bootstrap and Patching Operations

b. A group of GENMD commands and GENMDpatches
to the processors contained on the tape.

5. A IEOD command (the final command of the patch
deck).

In addition, there are two types of cards that may appear
anywhere within the patch deck (including the GENMD
portion). These two types are the conditional patch control
command and the comment card.

No patch, command, or comment may contain more than
72 characters of information.

When the patch deck is read, it is retained by the system in
a file called PA TCH in the :SYS account. This file can be
examined using the PCl processor. It may also be assigned
to M:PATCH and DEFed onto the PO tape.

The function and format of Delta format patches, symbol def­
inition patches, reconfiguration and partitioning commands,
GENDCB commands, GENMD commands, GENMD patches,
conditional patch control commands, and comment cards
are described in the paragraphs that forlow.

DELTA FORMAT PATCHES

Delta format patches are used to patch various segments of
the monitor. The format of a Delta format patch is:

[segname]/Ioc/value[(old value»)/comment

where

segname is the name of the segment to be patched.
The current segnames and the order in which they
must be patched are shown in Figure 6.

If a segname is present, the loc field must represent
a location in the corresponding segment or the loc
field (and value field) must be nurl. The latter
type of patch would have the format.

segname/ / (the third slash is unnecessary)

and must be the first patch with its parti cular seg­
name. (An example of this form of patch is given
in the 'Conditional Patch Control Commands'
section below.)

Example:

OPEN// START THE OPEN PATCHES
OPEN/OPNH+.52/B PATCH/
/PATCH/LW,13 TABLES+.74/

r----------------- --._---------------- .. ---------------------------,

Tape
boot

M:MON root
records

File information for
first fi Ie

Record sizes

Head

Data

Patches

System
information

First fi Ie

Exec Delta
head record

Exec Delta
data records

File information for
last file

M:MON root patches
(optional)

Last file :EOF

The tape bootstrap is 22 words long. Patch records are 20 words
long. All other records are 512 words long. The figure indicates
groups of such physical records.

Head portion of load module.

Protection type 0 portion of load module.

Patches are included on the tape where shown if they exist in the
file assigned to the M:PATCH DCB when DEF creates the system
tape. The first group of M :M ON root patches follows the Exec
Delta data records. Any others are placed among segment patches
according to their order in the patch file. The last record of each
group of patches on the tape is the first patch for the next set of
segment patches. The second through the last patch for a segment
follow the segment to which they will be applied. GENMD patches
follow the last of any patches following the RECOVER patches.

Figure 5. Format of Master System Tape

Patch Deck Structure 25

C P - V

SYSTEM GENERATED ON:
12 :00 AUG 16, '74

VERSION NO. IS: COO

PATCH SEGMENT NAMES:
(ROOT)

ALLOCATO (DATA)
ALLOCAT1 (PROC)
FIXO
FIX2
FIX1
GHOSTlO
GHOST12
GHOSTll
CLOSE
DEBUG
ENQOV
KEYIN
LDLNK
LTAPE
MISOV
MULOV
OPEN
OPENTP

STEPOVR
TPOV1
TPOV2
UMOV
RECOVER

(DATA)
(DeBS)
(PROC)
(DATA)
(DCBS)
(PROC)
(DATA)
(DATA)
(DATA)
(DATA)
(DATA)
(DATA)
(DATA)
(DATA)
(DATA)
(DATA)
(DATA)
(DATA)
(DATA)
(DATA)
(DATA)
(DATA)
(DATA)

Figure 6. Segment Patching Order

If no segname is present, any location between
10 16 and FFF016 may be patched. Such patches
may appear anywhere within the patch deck.

loc is a Delta format symbolic location, possibly
with offsets.

value is the Delta format value to be inserted at
loc.

old value is the Delta format value of the previous
contents of loc.

Example:

/IORT+.FS/PSM,9 TSTACK(PSM,6 TSTACK)/ FIX SIDR #6646

If a patch command is in error (e. g., has an illegal char­
acter, an incorrect old value, a value occupying more than
one word, or an invalid loc value), it will be typed on the
OC device. The operator must determine what was wrong
and correct the problem.

If the error is apparent from examination of the patch, it
can be corrected and the boot process restarted. Ifdesired,
the system may be examined with Executive Delta, which
is now in control and requesting commands at the operator's
console. The patch in error may be corrected from the
operator's console using Delta by entering the patch

26 Patch Deck Structure

correction mode by keying....,e(use right bracket (]@») on
the Xerox 560) and then the correct patch in the form gi ven
above. After receiving the correct patch, the system re­
sumes reading patches.

PATCH DECK SYMBOL TABLES

The Delta format symbolic values that are recognized in
patches are assembled by the system tape definition proces­
sor, DEF, from the REF/DEF stacks of the patchable modules
us i ng these items:

1. A II DSECT names.

2. A II DEFs ending in a colon (the colon is removed in the
patch deck symbol table).

3. The first UDEF after each CSECT unless a colon DEF
intervened.

4. Patch segnames.

For M:MON only, all LDEFs are also included. The sym­
bols obtained from M:MON and XDELTA are available to
XDELTA at any time. Those from other modules are avail­
able only while that module is being patched. DEF lists
the symbols that are included as the tables are created.

In addition, two special symbols are available during the
patching process.

The first is the symbol @ whose value is equal to the next
available location in the patch area of the monitor. That
is, it is initially equal to the monitor symbol, MPATCH, and
its value is incremented by one each time a patch is encoun­
tered whose loc field is equal to the current value of @.
The use of the special symbol @ frees the user from having
to allocate space in the PA TCH area of the monitor since
Executive Delta wi" automatically relocate the patch area.

Example:

The following two patch decks are equivalent:

/IORT+.FS/B @/ /IORT+.FS/B PATCH/

/IORT+.FE/B @+1/ /IORT+.FE/B PATCH+1/

/@/LI,3 12/ /PATCH/LI,3 12/

/@/CB,3 5/ / .+1/CB,3 5/

/@/BNE $+2/ / .+1/BNE $+2/

/@/B IORT+.F9/ /.+l/B IORT+.F9/

/@/LI,3 0/ / .+1/LI,3 0/

/@/B IORT+.F9/ /.+l/B IORT+.F9/

The second special symbol is @@ and is used when an even
address in MPATCH is required. The only restriction on this
special symbol is that @JJJJ cannot be referenced while patch­
ing @ (e. g., /@/@@/). The results are unpredictable.

Example:

1l'1N+. 64/l psn. K I,l(d /

I(rxa IMH+. 6 '1+L1 oh',) R /
MI. 170000()() /

New symbols may be added to the symbol table by including
symbol definition patches in the patch deck. Symbol def­
inition patches must have the format

/I symbo I 00 va lue

where

symbol is any Delta format symbol. (The symbol
can be no longer than eight characters.)

\,:)!ue is any evaluatable expression terminated by
a blank.

EXllmple:

~~GRUNCH=. D87
IGRIfNCH/B GRUNCH+.20/
:' . + liB (n,'
I} ILw. 3 TARI.E~;+31
ffJK:=.\.o
/@/CI,3 10/
/@/B GRUNCH+.50/

/ 'j 5+.] E 8/ B JK,I

In the above example, the patch at 55+.1 E8 branches to
the inc;truction CI,3 10.

RECONflGURATION AND PARTITIONING COMMANDS

These commands provide a means of reconfiguring the system
cmd partitioninp devices and/or controllers at boot-time •
. '\il of the corn~ands. begin with a colon (:) and must end
wit'h 0 period or a trailing blank by at least column 72.
1he commanns may be specified in any order with the ex­
ception of :END which must appear last (if it is used).

If no Ic~configurotion and partitioning commands are spe-::­
fi ~d, t~'e system re5ponds as if the; GO command hod been
speci fi (,d.

Reconfiguration always validates the SYSGENed device ad­
dresses. If a device address (ndd) is encountered for which
~he n cannot be validoted, the following message is displayed
on the OC device ond the boot procedure is terminated.

i~ANNOT CONVERT 'n' IN 'yyndd'

where nand ndd are defined in the following discussion and
yy is the device type.

Three of these commands (:TYPE, :PART, and :REMOVE)
contain the following parameter as part of the command
format:

value (sometimes refe~red to as vCJlue
1

and value
2

)

The description of this parameter is quite detailed. To
avoid repeating the description several times, it will be
given here and references will be made back to this section
in the command descriptions.

The format of value is dependent on the CPU being used.

For Sigma 6/1/9 systems, value must be in the format

ndd

where

n represents a controller address and is specified as
a letter. See Table B-2 in Appendix B.

dd specifies the device number. See Table B-3 in
Appendix B.

For Xerox 560 systems, value may take one of two formats.
The first format is

ndd

where

n represents a cI uster number and a un i t number.

See Table 8-4 in Appendix B.

dd specifies the device number. See Table B-3 in
Appendix B.

The second format consists of four hexadecimal digits which
represent a hardware address in the format

where

c specifies the cluster number.

u specifies the .init number.

dd specifie,,; ~he device numbc~.

: GO This command specifies that the .:onfigumtion speci-
fied on the system tape is to be used 1.)$ is. The format of
thE! commond is

:GO

If :GO is specified, :TYPE and :REMOVE commands are not
meaningful and the fol lowing message is output on the LL
device:

ALL :TYPE/:REMOVE COMMANDS IGNORED

Patch Deck Structure 27

:SAVE This command specifies that all device addresses
not changed by :TYPE commands are to remain as is, except
according to restrictions listed in the following description.
The format of the command is

:SAVE

When the :SAVE command is specified, the following mes­
sage is output on the LL device:

**KEEP ALL Df\,. ADDR. AS IS EXCEPT FOR :TYPE/

:REMOVE CHA~"'CE5

When the :SAVE come,land is used only those device ad­
dresses which are different 'Jrl the lorget machine from that
of the SYSG ENed system r.lpe need be changed by the: TYPE
command. All others rernoin uS SYSGENed except when a
:TYPE command redefines one or more device addresses for
a specific device type where the SYSGENed lOP/controller
or cluster/unit addresses ore equivalent within the device
type. In this case, ever;! equivalent lOP/controller or
cluster/unit addres~ within that device type must be defined
by :TYPE commands whether 0r not the device address needs
to be changed or the undefined ones will be removed from
the system. The :REMOVr~ command may also be used to
remove SYSGENed device~.

When :SAVE is not specified. all device addresses must be
specified by :TYPE commands unless no :TYPE commands are
used. Any SYSGENed devices for which addresses are not
defined by :TYPE commands are removed from the system
configuration (and cannot be returned to the system con­
figuration without rebooting).

:TYPE The: TYPE command defines a device type, its
model number, and its new device address or addessses. The
format of the commond for ~ingle access device definitions
is

: TYPE device, value(' value]. •.

and the format for dual access device definitions is

: TYPE device, (value l' value
2

)(, (value l' value
2
»)· ..

where

device is a six character field. The first two char-
acters specify the device type (e.g., CR) and the
last four characters specify the device model num­
ber in hexadecimal.

value specifies the device address in the format de-
scribed at the beginning of this section. The num­
ber of add resses depend s upon the number of devi ces
of thatdevicetype whichare on the target machine
or which neeJ address changes (when :SAVE is
ust>d). For dual access devices, value1 specifies
the primary path address and value2 specifies the

28 Patch Deck Structure

alternate path address. When 0 device address
change is required for 0 !'.pecific device type, all
addresses must be specifi ed 2ven if no change is
necessary, or those not specified for the device
type wi II be removed from the system.

The model number is verified os (l legitimate model number
by searching the M:MODNlJfv', toble. (See the SYSCON
chapter in the CP-V/SM Referen,:e Manu,,', 90 16 74.)
When found, its corresponding controller model number is
obtained from theM:MODNUMtable. Thedevice/controller
model numbers are then used to check if this comLination is
the same as that which wns originaliy S'(SGENed for the
given device. If not the SGmf::, :dl similar device/controller
model number combinations 'Ill M:MODNUM arc used for this
validation. As an example, if M:MODNUM contains the
following entries:

Dev i ce Mode i
Numbe~

~--- - _.-

7120
7120
7121
7121

Controiler Model
Number

7120
7121
7121
7120

and the SYSGENed combination is

7120 7121

then the command :TYPE CR7121, .•.• will cause the fol­
lowing device/controller combinations to be checked with
the indicated results:

7121;7120
7120;7120
7121;7121
7120,17121

not valid
not valid
not valid
valid

:REMOVE This command removes a device ar controller
from the system. The removed device or controller cannot
be returned to the system without rebooting. The fonnat of
the command is

{
value }

:REMOVE CONT,value

where

value specifies the address of the device or control-
ler to be removed in the format described at the
beginning of this section.

CONT specifies that a controller is to be removed.
When a controller is removed, 01 I devices on that
controller are also removed unless the controller is
dual access. When the controller is dual access,
only the path specified by value is removed unless
the other path to the cievice is already removed or
doesn't exist (i .e., single access within dual chan­
nel). In the latter case, all of the controller's
devices are also removed.

In the fo Ilowing example, four disk packs were SYSGENed
and the target system is to have only two disk packs, one
public and one private.

:TYPE DP7242,BFfJ,BF1,BF2
:REt-10VE RFl

SYSGENed Result of
Disk Packs :TYPE Command

AFO - public BFO - public

AFl - public BFl - public

AF2 - private BF2 - private

AF3 - private removed

Result of
:REMOVE Command

BFO - publtc

removed

BF2 - private

removed

:PART The :PART command specifies a device or con-
troller that is to be partitioned from the system. The devIce
or controller is partitioned as if it had been partitioned by
the SYSCON processor and can be returned to the system
vIa SYSCON without re-booting the system. (Refer to the
SYSCON processor description in the CP-V ISM Reference
Manual, 90 16 74.) This is useful when a system is being
booted and a device which was SYSGENed to be part of the
system is currently unavailable but wi II be avai lable prior
to the next system boot. C OCs and Teletypes are not af­
fected by this partitioning. The format of the :PART com­
mand Is

{
value }

:PART CONT,value

where

value specifies the address of the device or con-
troller to be removed in the format described at
the beginnIng of this section.

CaNT specifies that a controller is to be parti-
tioned. When a controller is partitioned, all de­
vices on that controller are also partitioned unless
the contro Iler is dua I access. When the contro lie r
is dual access, only the path specified by value is
partitioned unless the other path to the device Is
already partitioned or doesn't exist (i .e., single
access within dual channel). In the latter case,
all of the controller's devices are also partitioned.

A device partition request causes all devices which have
identica I device addresses to be partitioned.

Example:

A system was SYSGENed to have four 9-track tape drives
but two are down for ma intenance when the system is booted.

: TYPE 9T7172 ,ARO ,ABI ,A82 ,A8'3

:PART t\i32

:PART AHl

: END The :END command defines the end of the set of
reconfiguration and partitioning commands. The command
is optional because the occurrence of either the first nonrool
patch or an asterisk (*) command would al:;o indicate the
end of reconfiguration and partitioning commands.

The format of the command is

:END

When the end of reconfiguration and partitioning commands
is encountered, all :TYPE command definitions are pro­
cessed first, then all :REMOVE requests, and finally all
:PART requests.

When a II of the commands have been processed, a check is
performed to determine if the original SYSGEN or the re­
configuration for multi-unit controllers and their devices
reside in non-conflicting input/output queueing channels.
This means that an lOP/controller or cluster/unit in one
queueing channel cannot have an equivalent lOP/controller
or cluster/unit in some other queueing channel. The follow­
ing error messages wi II identify a II such confl icts and the
reconfiguration process wi II then change the queueing chan­
nels to be equivalent:

****QUEUEING CONFLICT BETWEEN OCT ii AND OCT jj

QUEUE FOR DCTjjCHANGEDTO THATOF DCTii

where

ii is the OCT index for the first devi ce.

jj is the DCT index for a subsequent device.

RECONFIGURA TION AND PARTITIONING EXAMPLE

In the following example, a CP-V sysrem was SYSGENed
for four different hardware configuraticJns. These configura­
tions are referred to as the 560X, 7T, 7D, and 7E. .A. set of
reconfiguration and partitioning commcmds was generated for
each machine with the set of commands for each machine
being bounded by a conditional patch control command.
The four sets of reconfiguration and p<lrtitioning commands
exist in the patch deck. The one set that is to be used for
a particular boot is selected by a set of conditional pakh
control commands such as the following:

#560X = 0

#7T = 0

#7D = 1

fl7E -:.: 0

The above commands indicate that the 7D machine is to be
booted. Figure 7 lists the entire set of devices that were
SYSGENed for this example. Figure 8 lists the set of recon­
figuration and partitioning commands which were ignored
because they were for machines not being booted. Figure 9
Itsts the set of reconfiguratJon and partitioning commands

Patch Deck Structure 29

•••••• ** •• **.*.~ •••• * •••
s Y S G ENE 0 r. A NFl BUR A T f 8 N

••• * ••••••••••• ~ ••
D E ~ ICE RES e U R C E C e NFl G U RAT I e ~

D£V.TYP I CEV.ID I OEV.AODR IDCT~CfTI PU8/PR!V I TYPE I RTeT I GE~ERAL INF8RMATI8N .. -...... ---.... -.-.---•. -.....•.•. -...... -.~•.....•.• -•.......•....••
Ty 7012
CR7l4t0
CP716C
LP7At4t5
LP7~4t5
DC7212
DC7212
;)(7232
OC7232
917322
917322
9T7323
9T7323
917323
9T7323
CP72~2
DP72Atc
DP724t2
DP721+c
DP7271
DP7271
DP7271
DP7271
DP727l
DP7271
OP7?71
OP727l
OP727l
DP7271
~BF"FFF
xP1200
,.,E7611
ME7611

TyACl
CRA03
(PAC.
LPA02
LPAOF
DeeFO
(JceF1
aCCFo
DeCFl
9TA~0
STA81
9T.82
9TA83
9TA~1.t

91AS5
DPC80
OP081
OPD82
DPD83
DpAEO
DPAEl
DPAE2
CPAE3
DPAEIt
DPAE5
OPAE6
OPAE7
DPAFO
OPAFl
RBA16
xPCOD
HEA10
MEAt1

0001
0003
000 ..
0002
OOOF
01F"O
OlFl
02rO
02Fl
0080
OOBl
00B2
0083
008lt
0085
03BO
0381
0382
0383
OOEO
OOEl
00E2
00E3
OOE4t
00E5
00E6
OOEl
oaFo
OOF 1
0016
0200
0010
0011

01.:)1
:)2-:)2
03-J3
04t-:)4t
05-15
Ob-:lb
07-06
OS-:l7
09.07
0.·08
08-j8
oc-os
OD·,)8
OE-08
OF-OS
10-09
11.09
12.09
1].09
14t·:)A
lS.0A
16·0A
17 .. 0A
18-0A
19.0A
1.·0A
le.OA
lC.OA
10.0A
1[·08
IF-OC
2\).00
21.0E

PUB
PUB
PRIV
PRrv
PUB
PUB
PUB
PUB
PUB
PUB
PUB
PUB
PUB
PUB

TV
CR
CP
LP

DC

9T

DP

RS
XP
ME

06

02

NBT.pARTITI~~ABLE
NEt.PART-OEV tSV~
SVM81flNT
N8.PART.OEV ,SYM
SVHBreNT
N6T-PARTITleNABLE
~eT·PARTITI6NABLE
N&T-PARlI116NA8LE
NeT-p.RTtTre~Aa~E
~B-p.RT-ceNT
Nfl-PART-ceNT
Ne·PART-CftNT
Ne·PART-CBNT
Ne-PART-C6NT
~6·PAFiT·ceNT
N8T-PARTITr6NA8LE
~eT-PA~TITre~ABLE

NthPART.DiY
NeT-PARTfTreNABLE
N8T.PARTITreNABLE
Ner·PARTITI6NABLE
N6T.PARTITr6NA8LE
~6T.PARTITr8NABLE
NftT·PARTITI8NABLE
N8T.PARTrTrftNABLE
NeT.PARTITr8NAB~E
N8r.PARTITI8NABL[
N6T·PARTITleNABLE
Ne.PART.DEY
Ne.PART.C8NT ISYM
NeT-PARTITJ8NABLE
NST.PARTITI8NABLE

••
-_._---

Figure 7. Device Resource Configuration from SYSGEN

•••••••••••••••••••••••••••• "E
•••••••••••••••••••••••••••• I&AY[
•••••••••••••••••••••••••••• 'TYpE R8FFFF,Al*
• •••••••••••••• ' ••••••••••••• , TYPE DeB'O
•••••••••••••••••••••••••••• IREM8YE AI •
•••••••••••••••••••••••••••• IREM8VE AI!
••••••••••••••••••••••••••••• TYPE DP,271,D90,D91
••••••••••••••••••••••••••••• TYPE OP'242,DIO,081

•• •••••••• ••• •••• •• ••••• ••••• rNO
" • •••••• , ••••••••••••••••••••• ,T
••••••••••••••••••••••••••••• SAVE
•••••••••••••••••••••••••••• IREM8V[ceNT,Oao
• •••••••••••••••••••• , ••••••• [NO

" •••••••••••••• , ••••• ••• ••••• 'e60X
• ••••••••••••• ~ ••••••••••••• I GEt
•••••••••••••••••••• ••• ••••• ,~ND

"
Figure 8. Reconfiguration and Partitioning Commands that were Ignored

30 Patch Deck Structure

which were used in the boot process because the 7D was
selected. Figure 10 lists the set of devices for the 7D con­
figuration. This information is listed on the line printer
during a boot, but not necessarily in the order shown in the
Figures. All of the information listed in Figures 7, 8, 9,
and 10 is also entered into the system patch file.

In Figures 7 and 10, DCT is the DCT index and CIT is the
queueing channel IS index. Also in these figures, when a
device type (DEV-TYP) is a pooled device (i .e., dual ac­
cess), the information for the alternate device is listed di­
rectly below that for the primary device. The information
is the same except that the DEV-TYP column contains

*70
ISAVE

the word IIDUAL II and the DEV-ADR column contains the
a Iternate device address.

RECONFIGURA liON AND PARTITIONING MESSAGES

Tab Ie 5 I ists the messages that may be output when recon­
figuration and partitioning commands are being processed.

When an error is encountered, the error message is preceded
by a message containing a dollar sign ($) beneath the char­
acter position in the command at which the error was found.
Processing of the command in error is discontinued.

**KEEP ALL DEV.ADCR.AS IS EXCEPT ~8R ITYPE/IREM8VE CHANGES
IREM8VE AOF
IREM8VE A16
aTYPE 9T7322,A80,A81
,TYPE OC7212,BFO
IREM8VE C8NT,AFO
IREM8VE CF1
IREM8VE C6~T,AEO
.TYPE OP72"2,080
,TYPE ME7611,.05
lEND

Figure 9. Reconfiguration and Partitioning Commands that were Used

**
FIN • L C e N ~ T G U RAT I R N

**
D E V ICE RES 8 U R C E C 8 NFl G U RAT I 8 N

DEV.TYP I DEV.IO I CEV.ADDR 10CT-CITI PUB/PRIV I TYPE : RT&T : GENERAL INF8AMATI8N
.p ••• - •• --_~ ••• __ ••••• ___ ._. __ .w.- .. __ ..• ~_ ... __ •. _._ •...•.•.•...•.•.. -•...•.•..••

TY7012 TyA01 0001 01·01 TY NeT·pARTITI8NABLE
CR71"0 CRA03 0003 02·02 CR Ne.PART.OiV ISYM
CP7160 CPAO .. 0004 03·03 CP SYMBI8NT
LP7 5 LPA02 0002 0 .. ·0 .. LP Ne-PART .. OEV ISYM
OC7212 DCBFO 01FO 06·06 DC NBT-PARTITI8NABLE
OC7232 CCCFO 02FO 08.01 NeT·PARTITI8NAB~E
9T7322 9TA80 0080 OA.08 9T 02 Ne.PART-C8NT
9T7322 9TA81 0081 OB-08 Ne.PART-CBNT
DP72lt2 DP080 0380 10·09 PUB OP 00 NBT-PARTITI8NABLE
XP1200 XPCOD 0200 IF"-OC XP Ne.PART-C8NT ISYM
ME7611 MEAOS 0005 20.00 ME N8T-PARTITI8NABLE

************* •• **************************************.****************************

Note: The PUB/PRIV column will contain IINO PRIM.PATHII or IINO ALT.PATHII when the primary or alternate
controller has been removed.

Figure 10. Device Resource Configuration for the Booted System

Patch Deck Structure 31

Table 5. Reconfiguration and Partitioning Messages

Message

ALL :TYPE/:REMOVE COMMANDS IGNORED

**device, value CANNOT BE ADDED TO SYSTEM

CANNOT CONVERT 'n ' IN Iyyndd'

CANNOT PARTITION, CONT. ndd ALREADY
PARTITIONED

CANNOT PARTITION, CONT. ndd NON­
PARTITI 0 NAB LE

CANNOT PARTITION, CONT. ndd NOT
PRESENT

CANNOT PARTITION, CONT. ndd NOT
PRIVATE PACK

CANNOT PARTITION, DEV. ndd ALREADY
PARTITIONED

CANNOT PARTITION, DEV. ndd NON­
PARTITIONABLE

CANNOT PARTITION, DEV. ndd NOT PRESENT

CANNOT PARTITION, DEV. ndd NOT PRIVATE
PACK

CANNOT REMOVE, CONT. ndd NOT PRESENT

CANNOT REMOVE, DEV. ndd NOT PRESENT

CONT. ndd PARTITIONED

32 Patch Deck Structure

Description

A :GO command has been specified. :TYPE and :REMOVE
commands are not meaningful.

As the result of the :TYPE command, the SYSGENed system and
target machine device/controller model number definitions are
not equivalent. This message is preceded by a message containing
a dollar sign ($) under the device type and also under the first
device address for single access or the alternate device address
for dual access devices.

device - device type and model number.

value - device address (in the format ndd described at the
beginning of this section).

This message can also appear when therE: are more: TYPE defini­
tions for the device type than allowed for in the SYSGENed
system.

A device address was encountered for which the n in yyndd could
not be validated.

The controller specified on a :PART command has already been
partitioned. '

The controller specified on a :PART command is not partitionable.
(It is a controller for a Teletype, a RAD, or a COC, or it was
defined at SYSGEN to be a non-partitionable controller.)

The controller specified on a :PART command either does not exist
or was removed in the reconfiguration process.

A disk pack controller was specified on a :PART command and one
or more of its associated disk pack spindles is public. Public disk
pack spindles cannot be partitioned.

The device specified on a :PART command has already been
partitioned.

The device specified on a :PART command is not partitionable.
(It is either a Teletype, a RAD, or a COC, or it was defined at
SYSGEN to be a non-partitionable device.)

The device specified on a :PART command either doesn't exist or
was removed in the reconfiguration process.

Public disk pack spindles cannot be partitioned.

The controller specified on a :REMOVE command either does not
exist or was previously removed in the reconfiguration process.

The device specified on a :REMOVE command either does not
exist or was previously removed in the reconfiguration process.

The specified controller has been successfully partitioned.

Tobie 5. Reconfiguration and Partitioning Messages {cont.}

Message

CONTINUATION ILLEGAL

DEV. ndd PARTITIONED

DUAL ACCESS DEFINED ILLEGAL ndd l' ndd2

DUAL/SINGLE ACCESS MIXTURE

INVALID TERMINATOR

**KEEP ALL DEV. ADDR. AS IS EXCEPT FOR
:TYPE/:REMOVE CHANGES

NO RECONFIGURA TION PERFORMED DUAL

ACCESS DEFINITION CONFLICTS

(ndd 1 [,ndd2]),(ndd
3

Gndd 4])

**NO SPACE LEFT FOR CONFIG. INFO

**PACK yyndd PARTITIONED, DIAL ndd
NOT AVAILABLE

**QUEUEING CONFLICT BETWEEN DCT ii
AND DCT jj

QUEUE FOR OCT jj CHANGED TO THAT OF
OF OCT ii

Description

Continuation commands (i .e., commands containing a semicolon)
are not allowed.

The specified device has been successfully partitioned.

On a :TYPE command, the primary address and the alternate ad­
dress on a dual access device are equivalent.

A :TYPE command specifies both single access and dual access
device addresses; or the device type is for a single access device
and the address is for a dual access device {or vice versa}.

A bad or unknown terminator terminates a field or option. Valid
control command terminators are NEW LINE, period, carriage
return, trailing blank, and end of control command image.

A :SA VE command has been encountered.

The :GO command was specified, or no : commands were spec­
ified, or a :END command was specified by itself.

A device address conflict has occurred as the result of :TYPE
commands. Either a single access device address is the same
as a primary or alternate address on a dual access device, or
the primary address is the same as the a Iternate address on a
dual access device. The ndds indicate the addresses involved.
This message will appear twice for each conflict encountered.

Too many :TYPE, :REMOVE, and :PART command definitions
have been encountered. The total size of the internal buffer
which retains reconfiguration and partitioning commands is
512 words. Each :PART and :REMOVE command requires one
word, each :TYPE command for single access controllers requires
two words, and each :TYPE command for dual access requires
three words. Additionally, the buffer contains one control word.
The buffer is needed to retain all control command information
until every command has been processed. Actual processing of
the commands takes place when the :END command, the first non­
root patch, or an asterisk command is encountered.

The device specified on a :PART command is a disk pack spindle.

An lOP/controller or cluster/unit in one queueing channel has an
equivalent lOP/controller or cluster/unit in some other queueing
channel. The reconfiguration process will change the queueing
channels to be equivalent.

Patch Deck Structure 33

Table 5. Reconfiguratioll and Partitioning Messages (cont.)

Message

**TAPE yyndd PARTITIONED, DIAL ndd
NOT AVAILABLE

UNKNOWN COMMAND, FIELD, OR VALUE

: GENDCB COMMAND

Description

The device specified on a :PART command is a tape drive.

An unknown command, an invalid name, or a value field which
contains too many characters, is not hexadecimal, or is not in
the correct format for the particular machine was encountered.
This message also appears for each reconfiguration and partition­
ing command encountered after reconfiguration and partitioning
processing has ended. It also appears when a :GO, :REMOVE,
or : TYPE command is encountered after a :G 0 command has
been processed and when a :SA VE command is encountered after
a previous :SA VE command was processed.

Example:

This command defines the system DCB associated with tape
input during PASSO. This command is required only if the
files are on a different tape than the boot tape or if they
occupy more than one reel. If the command is not present
in the patch deck, PASSO reads the account and serial num­
ber from the tape and performs an automatic premount of
the tape. No operator intervention is required.

:GENDCB (M:BI,ACCT1,PASS1,;

:(INS N,OO 1,002), 9T)

Any number of GENDCB commands may appear in the patch
deck. Only the last will be applied. If it is defective,
fi les wi II be copied from the boot tape.

The format of the :G ENDCB command is:

:GENDCB (M:BI,account~password];

:, (INSN, value[, value] •••),device)

where

M:BI specifies that tape input is to be through the
M:BI DCB. No other DCB is valid for this
command.

account specifies an account identifier (up to eight
alphanumeric charaders) associated with the la­
beled tape to be read during PASSO.

password is the password associated with the labeled
tape to be read during PASSO. The password (if
any) must correspond to that specified when the
tape was created, and may be up to eight alpha­
numeric characters in length.

INSN,value,... specifies the serial number(s) (up
to four alphanumeric charaders in length) of the
tape(s) to be read by PASSO. No more than three
reels may be specified. The first reel specified
must contain the first file to be read, and may be
different from the reel used to boot the monitor.

device specifies a tape-type device code (e.g.,
9T, 7T).

34 Patch Deck Struc ture

Any errors in the command are indicated by the message

***GENDCB ERROR

on the OC and LL devices.

GENM:D COMMANDS

The GENMD commands are used in conjunction with the
GENMD patches described below. The three GENMD com­
mands are GENMD, LIST, and DELETE.

GENMD This command indicates which file is to be
patched next. A GENMD command must precede the set
of patches for each file to be patched. Any number of sets
of patches to the same fi Ie may be present, provided each
is preceded by a GENMD command. The format of the
command is

GENMD filename

LIST This command lists the patches currently in the fi Ie
being patched and has the format:

LIST

DELETE When a fi Ie is patched, a record is kept of the
list of patches to the fi Ie within the fi Ie itself. The DELETE

command remove~ thi~, liq , . .1 fJdtches from the file (but does
not remove the effect of Ihr: Pel' ches on the fi Ie). The com­
mand may be used to PI(~'c!llt files from growing too large if
they are not restored when dpply ing a new patch deck. The
format of the command is

DELETE

GENMD PATCHES

GENMD patches are used to modify nonresident elements of
the system.

GENMD patches have the format:

{
:GENMD [,segnameJj J [f1 r.] loc, value[,value commentj lsegname ,

where

segname specifies the overlay segment name to be
patched. If not present, the most recently spec­
ified segname is assumed. If not present and no
segname was specified previously, the root seg­
name is assumed.

loc specifies the location to be patched and has the
format [name] [±hex value]. The hexadecimal
value is added to or subtracted from the absolute
address of name. A maximum of eight characters
may be used for the hexadecimal value. The name
need not be defined in any particular overlay since
a II the stacks are searched. If more than one
overlay defines the same name, the first is used.
The specia I name .~ refers to the start address word
in the load modu Ie HEAD record.

value specifies the value to be inserted at loc. If
more than one value is specified, they will be in­
serted at successive locations. Each value must
have the format

hex value[±name[±nameJ. .• J

The absolute address of the names are added to or
subtracted from the hexadecimal value. A max­
imum of eight characters may be used for the hexa­
decimal value. The name need not be defined in
any particular overlay since all the stacks are
searched. If more than one overlay defines the
same name, the first is used.

If a name needs to be referred to with other than
word resolution, the standard format is permitted
for byte, halfword, and doubleword resolution
(e.g., BA(name).

Any value specification may optionally contain a
replacement value check specification using the
format

value (old value)

Old value is formatted in the same manner as
value. If the old value specified is not the same
as the actual old value, an error message will
be issued. However, if the old value specified
matches the (new) va lue specified, the message wi II
be issued but the error wi II not be counted and pro­
cessing of the patch will continue.

A GENMD command may be continued by terminating the
first line with a semicolon (i). The semicolon must not di­
vide a name or a hexadecimal string and is not permitted
where a blank is required. The continuation line must be­
gin with a colon (:) if the continued line began with
:GENMD. Otherwise, the continuation line begins with
the next character of the command.

GENMD ERROR MESSAGES

Table 6 lists the error messages that may be output when
GENMD commands and patches are being processed.

CONDITIONAL PATCH CONTROL COMMANDS

A conditiona I patch control command specifies whether the
patches that follow are to be used as patches or are to be
effectively ignored. The conditional patch control com­
mand controls the SKIP flag. When the SKIP flag is set,
all subsequent patches are effectively ignored until the
SKIP flag is reset. The condi tiona I patch contro I command
can appear any number of times and anywhere within the
patch deck (including the GENMD portion). The command
has the format:

#[value]

where value is any well-formed, but not necessarily evalu­
atable, expression terminated by a blank. The value expres­
sion may contain an undefined symbol.

If value contains an undefined symbol, is negative, or is
zero, the SKIP flag is set. Whi Ie the SKIP flag is set, only
the segname field of a patch is examined to determine when
the current segment's patches end. If va lue is absent or
greater than zero, the SKIP flag is reset and normal patch­
ing resumes. The special symbol ELSE may be used to toggle
the setting of the SKIP flag.

The SKIP flag is also changed when a Delta format patch
that does not have a loc and value field is encountered
(i .e., segname/ /). In this case, it is set if the segname is
undefined and it is reset otherwise.

Patch Deck Structure 35

Message

BAD LMN - 0000

BAD LMN - xxxx

BAD SEG

DLM AT xx

**nn GENMD ERRORS DETECTED

HEX AT xx

LaC AT xx

NAME AT xx

NO FILE NAMED

OLD + loc = va lue

TOO BIG

36 GENMD Error Messages

Table 6. GENMD Error Messages

Description

The fi Ie is not a load modu Ie.

An error occurred when accessing the load modu Ie. The code and
subcode are indicated by xxxx.

A segname is not in the TREE.

The delimiter in column xx is not what it should be.

This message is output on the OC and LL devices at the conclusion
of the GENMD patching process and indicates how many errors
occurred.

The hexadecimal number ending in column xx is null, too large, or
not hexadecimal.

The location ending in column xx or whose value ends in column xx
is not contained in the segment.

The name ending in column xx is null or is not in the load modulels
stacks.

A IGENMD filename l command has not yet been encountered or has
no filename on it.

A replacement check error has occurred. That is, an lold va lue I was
specified which did not match the actual old value. The loc field
specifies the location where the error occurred. The value field
specifies what the actual old value in the location was.

Not enough core is available to read the REF/DEF stack. It may be
possible to do the patch if all names are converted to absolute hex­
adecimal values, since the stacks are read only if a name is used.

Examples:

1. The following patches will be included only if the sys­
tem was generated for a large Sigma 9 or a large
Xerox 560.

if:BIG

/SWAPPER+.CS/B @/

/@/L1,S 0/

/@/SLS,7 Ll/

/@/B SWAPPER+.C6/

2. The following patches wi II be included only if the
ENQ/DEQ feature was included in the system:

ENQ/ /

ENQ/ENQO+.266/B @(CW,13 ENQP+.1F4)/

/@/LB,lS ENQP+.1F4/

/@/CB,lS 13/

/@/B ENQO+.256/

OPEN//

3. The symbol BPS will be set to one if the system was
generated for a pack swapper with greater than 128K.
Otherwise, it wi II be set to zero.

#:BIG*DPSIO

#BPS=l

flELSE

fIBPS=O

COMMENT CARDS

Comment cards may appear anywhere within the patch deck.
In the portion of the deck that contains Delta format patches
and symbol definition patches, the comment card must con­
tain a 'less than' character «) in column one. In the
GENDCB and GENMD portion of the deck, comment cards
must contain one of the following in column one:

<

*

PATCH FILE CREATION

All patches read during the startup of the system (except
GENDCB commands) are copied to the file PATCH in the
system account. Those that were read wh iI e the sk ip fl ag
was set appear with the word SKIP in columns 77-80. The
resulting file may be used as input to DEF to create a sys­
tem tape with the complete, current patch deck on it.

SE~UENCE OF OPERATIONS

The master system tape is loaded into the machine by use of
the standard load procedure described in the CP-V laps
Reference Manual, 90 1675. The hardware bootstrap loads
and enters the tape boot at the beginning of the system tape.
This tape boot, in turn, loads the monitor root and the fol­
lowing functions are then performed.

If the system was generated with the BI G option on the
:MON card and is not being booted on a Sigma 9 or Xerox
560, the following message is output to the operator's con­
sole and the bootstrap operation is terminated.

SYSTEM REQUIRES SIG9 OR X560

The operator's console (OC) device address is validated. If
the actual OC device address is different than that of the
SYSGENed address, the system will halt (wait). The oper­
ator should enter the appropriate OC address into register O.

To enter the OC address on a Sigma machine:

1. Put the machine in IDLE.

2. Set the SELECT ADDRESS switches on the control panel
to O.

3. Enter the appropriate device address into the SELECTed
ADDRESS.

4. Set the COMPUTE switch to the RUN position.

To enter the OC address on the Xerox 560:

1. Enter CONTROL P.

2. Enter 01 (which displays the contents of register 0).

Sequence of Operations 37

3. Enter the new device address followed by the letter M.

4. Enteran X. (This will cause the 560 to resume processing.)

After the OC address has been val idated, the following
message is output to the operator:

ENTER ANY OF:
I = TTY I/O
P = LP OUTPUT
F = TAPE FILES
S = :SYS FILES
T = TAPE PATCHES
C = CARD PATCHES
D = XDELTA

The operator must respond within 10 seconds by typing one
or more of the characters above followed by new line or by
entering new line alone. If new line alone or nothing is
entered, T is assumed by default. If any characters other
than those I isted above are entered, they are ignored.

The I etters have the followi ng meani ngs;

specifies that the operator wants to read and re­
spond to the normal OC messages during the boot.
Otherwise, default responses are assumed up to
the date/time request (see below) and normal
output is suppressed. (Error messages will still
be ouJput.)

P causes output to the LL device to occur. Other­
wise, the printer is not used.

F causes PASSO's tape copy operation to occur.
Otherwise, a boot-under-the-files occurs.

S causes the fi I es to be cop ied from the PO tape into
:SYS without destroying the entire file system.

T define that the patch deck(s) are to come from
and tape or cards respectively. Either, neither, or
C both may be specified. If both are specified,

cards will be read first for root patches and last
for overlay patches and GENMD commands.
Card patches meant to repatch tape root patches
should therefore be placed after a nonroot patch.
Patches of the format segname/ / should be used
in both patch decks to prevent the switching of
devices from splitting up a logical patch.

D causes Executive Del ta to be retained after the
boot for debuggi ng purposes.

N is meaningful only by itself and means II none of
the above ll

•

The message

NEW FILE SYSTEM

38 Sequence of Operations

indicates that F was specified. If F was specified, the old
file system is not destroyed until the entire patch deck has
been read. The bootstrap operation may be halted at any
time during this interval by triggering a console interrupt.
The message

INITIALIZATION HALTED - RESTART O. K.

indicates a successful halt.

If I was specified and if the system includes the real-time
option, the system then issues the following message.

RESET RESDF YVY, XXXXX

This message allows the operator to override the SYS GE N­
defined values for the size of the RESDF area (dedicated
real-time memory pages) and its starting address. The op­
erator should respond:

[yyy] [, xxxxx] e

where

yyy is the optional decimal number of pages to be
in the RESDF area; a value of 0 through 999 may
be used.

xxxxx is the optional hexadecimal word address of
the first page to be in the RESDF area. Any page
address representing a value greater than or equal
to 10,00016 (64K) may be used.

If either or both optional parameter{s) are not specified, the
SYSGEN-defined default{s) will be used.

CP-V will then request the date

DA TE (MM/DD/yy) =

and the operator should enter the 'date (e.g., 2/5/74).

Then CP-V will request the time

TIME (HH:MM) =

and the operator should type the time, which is represented
by a 24-hour clock (e. g., 6:05 PM is typed as 18:05). The
time of day is typed at the left margin of the console once
every minute after the system has been initialized. The
form of this type-out is

hh:mm

If the system is being loaded on a machine for which it was
not SYSGENed, one of the following messages will be dis­
played on the OC device and the bootstrap operation will
be terminated.

1 ___ S_Y_S_TE_M_N_0_T_S_Y_S_G_E_N_E_D_F_0_R_SI_G_MA __ 6 __ __

SYSTEM NOT SYSGENED FOR SIGMA 9

SYSTEM NOT SYSGENED FOR XEROX 560

If the system and target machines match and if I was speci­
fied the following message is displayed:

C/LL/DC ASSIGN OK (YES/NO)

If the operator's response is YES or 8, it is assumed that
the device addresses for the control device, listing log,
and system device are not to be changed from those estab­
lished when the monitor was defined. If the response is
NO, then the following messages wi II be output to rede­
fi ne these devi ce addresses.

I CRndd =? CR

LPndd =? LP

DCndd :=? DC

where each ndd is the current device identification and as
many DC messages are output as there are swap devices.

In response to each of these messages the operator must type
two or three characters. If two characters are typed, they
must be 'SA' and indicate no change for this device. If
three characters are typed, they must be the channel and
device designation codes (ndd) defining the address of the
indicated device (see Appendix B, Tables B-2 and B-3).

If the DC or swapper assignment is incorrect, one of the fol­
lowing three messages wi II be displayed. Two of the mes­
sages request a new swapper device address.

! !yyndd INOPERATIVE
yyndd => yy

(The device address is unrecognizable by the hardware.)

1
! !yyndd NOT A dddd I'

i~ ___________ y_yn_d_d_~_yy __________________ ~

(The dddd field specifies the model number that was expected
as the swap device.)

PSA TRACK FLAWED

(The swapper disk pack contains flaws. The boot process
term i nates.)

Before completing any of the above responses with a 8 or
8, the operator may cancel the response by striking the €;I
key. Following this, or if a completed response is in error,
the message

??

will be output and the key-in request will be repeated.

If no characters are typed within 10 seconds, a e response
is assumed.

After all necessary responses have been received, the boot
subroutine reads the system information record from tape
and writes it on the LL and OC devices if Pand I are speci­
fied, respectively.

The following sense switch information is then I isted on the
OC device if I was specified.

SET SENSE SWITCHES AND TYPE N/L
SSWl =>CHECKWRITE DISK WRITES
SSW2 =>NO AUTOMATIC LOGON/LOGOFF
SSW3 =>OPERA TOR RECOVERY ON DISK BOOT
SSW4 =>SYSTEM SECURITY CHECKING

The system will continue when a NEW LINE or any other
character is entered.

Next, the reconfiguration and partitioning commands (if
any exist) are read and processed. A summary of the
system's device will be output on the LL device (even if
no :TYPE commands are encountered). Permanently down
devices are not listed.

Next, the monitor patches are read and processed for the
patching of the overlays, ALLOCAT, GHOSTl, and
RECOVER. (If the RECNFIG boot-time processor needs to
be patched, XDEL TA performs the patching as it does for
the monitor root. However, these patches must precede
the reconfiguration and partitioning commands in the patch
deck.)

After the nonroot patches have begun, reconfiguration and
partitioning commands are illegal. If any such commands
appear in the deck, the following message is displayed on
the OC device (and also on the LL device if P was speci­
fied) and the bootstrap continues.

J:' COMMAND NOT IN PATCH DECK PROPERLY

This message is displayed only one time, even if additional
reconfiguration and partitioning commands are encountered.

Sequence of Operations 39

It then copies the overlays, etc., to the swapping device,
communicating the sizes and disk addresses to the resident
root of the absolute monitor. Control then passes to another
boot subroutine at WRTROOT. This second boot subroutine
causes the monitor root to be copied to the disk, preceded
by a disk bootstrap. At this point, the resident monitor is
operational but the system has not yet been established on
the resident swapping device. The GHOSTl processor
performs this function.

If P was specified, GHOSTl determines whether any de­
vices or controllers are partitioned. If none are partitioned,
the following message is displayed on the LL device:

*** NOTHING PARTITIONED

However, if devices and/or controllers are partitioned,
the following message is displayed on the LL device:

***** ITEMS PARTITIONED *****

followed by messages identifyi ng each de",ice or controller
which is partitioned. The messages have the followi ng
formats:

DEY yyndd PARTITIONED

(for devices)

CONT yyndd PARTITIONED

(for controllers)

When all partitioned items have been identified, the
following message concludes the list:

** END OF PARTITIONED ITEMS **

When P was not specified or when GHOSTl has completed
the above listing, GHOST1 starts the symbiont ghost, Fix
ghost, ERR:FIL ghost, and fill ghost, and then exits.

I

BOOTING FROM DISK

Once the operating system has been bootstrapped from tape,
it may thereafter be brought into core from the disk by
means of the load procedure described in the CP-Y /0 PS
Reference Manual, 90 1675.

40 Sequence of Operations

The hardware boot routine loads and transfers control to the
disk boot which then loads the monitor root into core. The
system requests the date and time and then asks

DO YOU WANT DEL TA (Y /N)?

to determine whether the system debugger's memory should
be released.

The following message is then output to the opera tor's
console:

DO YOU WANT HGP RECONSTRUCTION (Y/N)?

A response of Y causes an HGP reconstruction of the public
file system to be performed. If no response is received
within one minute, N is assumed.

Partitioning information is displayed as described previously,
and the system ghost jobs (Fill, ERR:FIL, and Fix) are
started. Norma I operation may then be resumed.

BOOTSTRAP 110 ERROR RECOVERY

I/o error recovery during bootstrap is provided for the card
reader, line printer, magnetic tape, and disk. However,
error recovery is not possible until the tape boot and mon­
itor root have been read from tape. The following error
messages maya ppear on the OC devi ce:

! !yyndd INOPERATIYE

! !yyndd ERROR. TIO value, TDY value,
CMD=loc

! !yyndd CKWRT ERROR, TIO=Value, TDY=value,
CMD=loc

! !yyndd WRITE PROTECTED! SEEK =value

where

yyndd

value

! !yyndd MANUAL MODE

CHECKWRITE ERROR

is the address of the device with trouble.

indicates the TIO or TOY results or the SEEK
address.

When any of the first four messages above occurs, the wait
state is entered. To continue, the operator must place the
CPU into IDLE, STEP, and then RUN state. The I/O will
then be retried. If the last message above occurs, I/o wi II
continue when the condition is corrected. When an error
occurs for a magnetic tape or disk operation, the operation
is retried ten times before an error message is output.

PASSO PROCESSOR

The PASSO processor performs various system initial ization
functions and is entered automatically whenever a CP-V
~tape is booted.

Table 7.

PASSO reads a tape specified by the user (via the GENDCB
command) which contains the nonresident elements of the
system (i.e., CCI, processors, libraries, etc.). (This is nor­
mally the labeled portion of the tape used to bootstrap the
absolute monitor.) PASSO allows the user to modify these
elements via the GENMD portion of the deck.

PASSO MESSAGES

The messages in Table 7 may be output by the PASSO
program on the LL device. PASSO continues its normal
operation.

PASSO Messages

Message Description

***CANNOT BOOT LMN

I/O ERR/ABN nn,xxxING FILE ffffffff ON dddd

A load module cannot be read from the bootstrap tape because
core is not large enough. PASSO outputs the filename in error
and continues to the next fi Ie, thus ignoring the file in error.

An I/O error or abnorma I condition has occurred on tape or
disk.

nn is the error or abnormal code.

xxx is READ, WRITE, OPEN, or CLOS.

ffffffff is the current filename.

dddd is TAPE or DISC.

PASSO continues after this message.

PASSO Processor 41

4. MONITOR DUMP ANALYSIS PROGRAM

INTRODUCTION

The monitor dump analysis program ANLZ (Analyze) is
designed to aid in the debugging of C P-V crash dumps.
ANLZ operates in the ghost, on-line, and batch modes.
It accepts as input any tape or disk dump produced by the
recovery procedure and any tape dump produced by exe­
cutive Delta. If a tape is input, the ANLZ user must sup­
ply the tape type in response to the message

ENTER TAPE TYPE: 7T, 9T, BT, ETC •••

Tape input results in the creation of a disk file (C P5DUMP);
subsequent tape inputs replace the contents of this file.

GHOST MODE

ANLZ is called automatically by the recovery procedure,
and functions as a ghost job to interpret and summarize crit­
ical monitor tables and to dump the monitor's dynamic data
area. When ANLZ is initiated after a system crash, it
neither looks for nor accepts any commands, operating en­
tirely on default options. It assumes an IN PUT command
option of LAST; if unable to open the last MONDMP file,
it then assumes an IN PUT command of TAPE. (Refer to the
description of the IN PUT command in the following text.)
When Analyze is run in this manner, the output is an ab­
breviated form of the output produced by the ALL display
command.

ANLZ is also automatically initiated after a single user
abort. In this case, it functions just as though it had been
initiated as a ghost job via an operator key-in. (This is
described below.)

ANLZ may be called as a ghost job by the operator to
examine the tape produced during an irrecoverable crash.
The operator key-in used for this purpose is

GJOB ANLZ

ANLZ then asks the operator for a command:

I ANLZ, ENTER COMMAND, NIL SAYS TO DO ALL

The operator may respond with one of the following
commands: • . .

NO - just exit.

TA - read a recovery-built tape.

ME - run interactively from the operator IS console.

42 Monitor Dump Analysis Program

CP - read the CP5DUMP file.

1-7 - read the indicated MONDMP file.

? - list the AN LZ commands on the line pri nter •

NIL (new line alone) - do default ghost run.

In the interactive ghost mode, a key-in of

INT, id

will cause termination of the current ANLZ operation and
a prompt for input. (id specifies the ANLZ user's number.)

BATCH AND ON-LINE MODES

Any batch or on-line user may call ANLZ by specifying
the name of the program. For on-line users, this program
name is entered in response to a TEL prompt for com­
mands, as follows:

!ANLZ @)

Any user, in batch or in on-line mode, must have the proper
privilege level (80 or better) to examine the monitor. If
not, AN LZ outputs the following message

xx PRIVILEGE LEVEL NOT HIGH ENOUGH

where xx is the user's current privi lege level. (Response
messages are output on the line pri nter for a batc h user.)

When accessed on-line, as an interactive ghost, or as a
batch job, ANLZ is completely command-driven. It re­
sponds to commands that selectivelydisplay monitor tables,
examine memory, and compare the dump with the running
monitor.

An on-line user may terminate a display by depressing the
BREAK key.

COMMANDS

When ANLZ is first entered, it responds

ANALYZE HERE

and, if in on-line mode, it requests entry of an input com­
mand wi th the prompt character

<

All commands, options, and output are identical for batch,
interactive ghost, and on-line modes.

1 Ul COMMA.D

INPUT The INPUT command directs ANLZ to input
from a particular disk or tape fi Ie, or to open a fi Ie. The
format of the command is

IN [PUT]option

where option may be anyone of the options shown in
Table 8.

After reading a tape or disk fi Ie as directed by the IN PUT
command, ANLZ informs the user of the si ze of the fi Ie
with the following message:

THE LAST PHYSICAL PAGE IN THE FILE IS xx

If in on-I i ne mode, i tthen prompts «) for the next command.

Table 8. INPUT Command Options

Option

TA[PE]

Meaning

Directs ANLZ to read a tape created
by the recovery process and to wri te it
into the file CP5DUMP which is then
used for input.

CP[5DUMP] Directs ANLZ to open the CP5DUMP
for input.

lA[ST]

number

Directs ANLZ to open the last fi Ie
formed by the recovery procedure for
input. (ANLZ must look at the run­
ning monitor to obtain this information.)

Directs ANLZ to open a crash fi Ie
formed by recovery. Recovery fi Ie
names are of the form

MONDMP{number)

where number is the number of the dump
fi Ie (1 forthe first dump since a "cold"
start, 2 for the second, and so on).

DISPLAY COMMA.DS

Three display commands may be used to output information
from crash dumps. They are

DISPLAY

RUN

ALL

DISPLAY The DISPLAY command outputs information
existing at the time of the crash. The format of the com­
mand is

DI[SPLAY] option

where option specifies the information to be displayed
(Table 9).

RUN the RUN command outputs various I inked I ists of
the monitor by running through the list and displaying each
entry. The format of the RUN command is

RU[N] option

where option specifies the list to be printed (Table 10).

ALL The ALL command performs all of the functions of
the display commands described above and the functions of
ANLZ (except dumps) when it is initiated by the auto­
matic recovery procedure. The format of the command is

AL[L]

A numerically and alphanumerically sorted monitor map is
output at the end of the ALL display.

I.TERACTIVE MONITOR DISPlAY COMMA.DS

Commands in this group allow the user to examine either
the dump or the running monitor. Both the monitor and
user JIT and physical core may be examined. The com­
mands are

loc

loc l' loc2

Li ne feed (or carr i age return)

*

MONITOR

loc value

loc The loc command outputs the contents of the speci-
fied location. The format of the command is

loc

where loc is one hexadecimal value (1 to 8 hexadecimal
digits) or two hexadecimal values separated by an operator
indicating addition (+), subtraction (-), multiplic:Jtion (*),
or division (%). Note that loc values do not require a pre­
ceding del imiter character". II.

Commands 43

Table 9. DISPLAY Command Options
r-------------------.--------~--~

Option Meaning

AJ[nsJ Displays JIT, AJIT, and context area of all incore users at the time of the crash.
1-----_._-----_._----------+-_._._----------------------_.----------------------------.. ---------1

AT[ABLES] Displays the incore portion of ALL YCAT's tables.
--.--------------------------1--------- -------------------.-----.-.- .-------- -- --.- -----.---- - --------

AV[R1 Displays the tape and disk tables.
~.--.-.--- .. ----. ------------ --.--.------ --.------.--------------4

CI[T5](, index] .. , Displays the requested entries of the Channel Information Table. Up to 20 entry
indexes may be specified. If no index is specified, the entire Channel Informa­
tion Table is displayed .

~-------------.------ --- . _-_._----------------_._-_._-----------_ .. _-- ._-_._-_ .. _----
co[c][, index] ... Displays the requested entries of the COC table. Up to 20 entry indexes may be

I ,:uecified. If no index is specified, the entire COC table is displayed.
1--._-_. ---.- - - ---------. ----. . j ... -- - .--------- -----.--- .. --... -.----.---.-. -._-- -------- - ---- -- --- ---. -- -----

"-- :~~b~-xl-. ~.---- ------l'-:;~::~:: ~~~~:~e;:~:<~'o~~~~:~c:O:::::a:r~~b~e~-Up ro ~ entry inde.e,

rna)' be specified. If no index is specified, the entire Device Control Table is dis­
played.

~------ - - - -- ----- - ------------- ------------- -------------- -----------1
E l[OG] I Displays and val idates the incore error log buffers.

f--------.---.--. - .. ---- --------- -.---~--.----.----------.-----.-.---.---------- - ... ---.. ---------------
I

FM[, index]... i Displays the requested entries of the file management read-ahead tables. Up to
I "20 entry indexes may be specified. If no index is specified, the entire set of file

1------...... ---.----.-------- ---------------.----------------.---------------4 ~
I management read-ahead tables are displayed.

FQ Displays the Free I/O Queueing tables.

~---- i-ai: cha~j .. -: ---.---.- --t-~-j~~i~;s- the device on the requested I-/-O-c--h-an-·n-e-I-.-U-p-to-20--c-h--annels may be

specified. If no channel is specified, the devices for all channels are displayed.

IQ [, index] ... Displays the requested entries of the I/O queueing tables. Up to 20 entry indexes
may be specified. If no entry index is specified, the entire set of I/O queueing
tobl es are d ispl oyed .

~.----- .. ----.-------.------.---+------------------.-----------.------.---------1
JITL idJ[, loci, loc2] Displays the contents of the JIT for the user specified by id. locI aod loc2 specify

that only a portion of the JIT page is desired and represent a relative offset into the
page in hexadecimal. If an id of 0 is given or if no id is specified, the monitor's
JIT is displayed.

'------_._-------------4---I

MR[,locl,loc2] Displays the requested portion of the monitor's root. The displacements (loc 1 and
loc2) must be obsolute hexadecimal addresses. If no displacements are given, only
the mon itor's data orea will be dumped.

------.. -----------+--------------------------------------f

OJ [IT] Displays all of the out of core JITs at the time of the crash.
~---------------~---;

OS Displays the user outswap tables (if outswop is in progress).
1---------------------+--____ ~

PA[RTrnONS][, index] ... Displays the requested entries of the partition tables. Up to 20 entry indexes may
be specified. If no index is specified, the entire partition table is displayed.

I--------------------~---I

PF [IlE] Displays the patch file that was creoted last.
~--------------------------~---~

PM

PN

44 Commands

Displays the contents of the page matrix Identifying the owners of all pages. This
option assumes that page identifying routines (such as RUN USERS, f(U N PROCS)
have been run previousl y.

Displays the processor inswap tables (if inswop is in progress).

Table 9. DISPLAY Command Options (cont.)

Option Meaning

PP,pageno[,loc1,loc2] Displays the contents of the indicated physical page. Loc 1 and loc2 are relative
page offsets expressed in decimal (0-512). If they are specified, only the portion
of the page in the indicated range is displayed.

RA[T] Displays the resource allocation tables.

RB[T] Displays the remote batch tables (if there are any).

RE [GISTE RS] Displays the software check code, software check message, and the first two
register blocks at the time of the crash.

RC[XT] Displays the area of memory oc~upied by the recovery routines.

RQ . Displays the resource subqueue lists .

ST[ABLE] Displays the output symbiont tables.

SW[APPER] Displays the contents of the swap/swap schedul ing tables.

SY[MBIONT] Displays the contents of the RBBAT recovery file.

TP Displays the transaction processing tables (if there are any).

TR[APS] Displays the contents of the trap and interrupt locations.

TS[TACK][, id] Dumps the temp stack of the user indicated by id. If no id is specified, the
monitor's temp stack is dumped.

US[ER][;d]. .. Displays the user tables of the specified users. Up to 20 users may be specified.

VP, pageno[, loc 1, loc2] Displays the contents of the specified virtual page. Loc 1 and loc2 are relative
page offsets expressed in decimal (0-512). If they are specified, only the portion
of the page in the indicated range is displayed.

WHY Displays the software check code and the software check message.

Table 10. RUN Command Options

Option Meaning

MO[NITOR] Specifies monitor pages.

PR [OCESS OR] ~ {~ame)J Specifies processor pages or specific processor. The default is S, indicating all
processor pages.

RT Specifies real-time page chains.

ST[ATE]~ {!a}J Specifies state queues. The number of a specific state queue may be specified
(q#), or S indicates all. The default is S.

US[ER]~ {~d [, id] • ..lJ Specifies user pages for all users (S), or for particular users (id). Up to 20 users
may be spec ified. The default is S.

XD[ELTA] Specifies XDELTA's page chains.

Commands 45

ICIC]. ,loc2 Th is command outputs the contents of the
memory focations between lOCI and loc2. The format of
the command is

loc l' loc2

where loci is a hexadecimal number or an expression indi­
cating a sum or difference of two hexadecimal numbers.

Two levels of loci commands may be joined by the +, -, *,
and % (division) operators. For example, the following are
permissible:

loc + loc l' loc2

loc - loc l' loc2

loc l' loc2 + loc

loc l' loc2 - loc

loc 1 + loc2, loc
3

- loc 4

loc 1 * loc2, loc3 % loc 4

The resultant dump suppresses i denti ca I lines and an * is
inserted next to the line number following the identical
line encountered. An EBCDIC translation is included to
the right of the dump.

LINE FEED The line feed (or carriage return) character
may be used in conjunction with loc and locI' loc2 com­
mands to dump the contents of the next location.

This command may be used in conjunction with the
loc and locI' loc2 commands to dump the last location.
The format of the command is

* This command may be used in conjunction with the
loc and locI' loc2 commands to dump the location whose
address is contained in the location specified by loc. The
format of the command is

*

MONITOR The MONITOR command turns the monitor
display mode on and off (as does any explicit command).
When the display mode is on, the current monitor is dis­
played. When the display mode is off, the dump is dis­
played. The format of the command is

, MO[NITOR] [DI[SPLA yJJ

where DISPLAY turns the monitor display mode on. Omis­
sion of DISPLAY turns the monitor display mode off.

46 Commands

-Ioc = value This command places the specified value into
the specified location (Ioc) of the running monitor. (The
display mode must be on.) The format of the command is

loc = value

where

loc is the specified location.

value is the specified value.

MAP COMMANDS

These commands turn the map mode on and off. They work
only with interactive commands and apply only to a partic­
ular user. The two map commands are

MAP

UNMAP

MAP The MAP command loads the map of the specified
user if his JIT is in core. The format of the command is

MA[P], id

where id is the user identification assigned by the system.
Dump output following a MAP command is assumed to be
virtual addressed.

UNMAP The U NMAP command turns the mapping mode
of operation off. The format of the command is

UN[MAP]

Dump output following an UNMAP command is assumed to
be physical addressed.

SEARCH COMMANDS

Commands in this group allow core to be searched. The
commands are

COMPARE

SMASK

SEARCH

COMPARE The COMPARE command compares dump lo-
cations between loc 1 and loc2 with the running monitor,
and outputs locations with nonequal contents. The format
of the command is

CO[MPARE] ,Ioc 1,loc2

SMASK The SMAS K command sets the mask to the
• specified value. The format of the command is

SM[ASK],value

where value is a hexadecimal mask.

SEARCH The SEARCH command searches for and outputs
all words between locations locl and loc2 that contain the
specified value under the mask. The format of the com­
mand is

where

value is a hexadecimal value.

loc1 is the beginning location and may be a hexa-
decimal number or an expression indicating a sum
or di fference of two hexadec i ma I numbers.

loc2 is the ending location and may be a hexadec-
imal number or an expression indicating a sum or
difference of two hexadecimal numbers.

OUTPUT COMMANDS

Commands in this group direct or format the output of
ANLZ. Four output commands are provided:

ROWS

LP

UC

PRINT

ROWS The ROWS command establishes the width of dump
output. The format of the command is

ROWS value

where value is a number between 1 and 12. ROWS 1 would
cause all hexadecimal dumps to be one word wide; ROWS 8
would cause the dumps to be eight words wide. (Platen
width may need to be extended at ROWS = 8.)

LP The LP command directs output from ANLZ to the
I ine printer. The format of the command is

LP [rows]

where rows indicates the dump width in number of words.

UC The UC command directs output from ANLZ to the
on-line terminal. The format of the command is

UC [rows]

where rows indicates the dump width in number of words.

PRINT The PRINT command closes the output symbiont
fi Ie to allow output to the line printer without requiring a
return to TEL. The format of the command is

PR[INT]

DEBUG CdMMANDS

Commands in this group permit the use of Delta to facilitate
monitor debugging. The three debug commands are

BF

DELTA

NODELTA

BF The BF command specifies the name of the boot file
that represents the monitor being examined by ANLZ.
This enables the debugger Delta to read in the required
symbol tables. If the BF command is not specified, the file
M:MON in :SYS is the boot file that is assumed by default.

The form of the command is

BF fid

where fid is the file identification and is in the form

name r[· [accounq. password]l
L·account J

DELTA The Delta command associates the debugger
Delta with ANLZ and gives control to Delta. If the
BF command has been issued, the Delta command ;S loads
the global symbol table of the monitor root from the spe­
cified boot file. The Delta command name ;S loads the
local symbol table of the module named. If the BF com­
mand was not executed, the fi Ie M:MON in :SYS is used
to obtain the monitor symbol tables and the Delta com­
mands apply to the running monitor being examined, not
to the monitor in the boot file. The Delta command ;G
is used to exit from Delta and to return control to ANLZ.

The form of the DELTA command is

DE [LTA]

NODEL TA The NODEL TA command disassociates the
debugger Delta from ANLZ. The form of the command is

NO[DELTA]

Commands 47

MISCELlANEOUS COMMANDS

SYMBOLS This command creates an alphanumerically
sorted monitor map by reading, sorting, and formatting the
monitor's REF/DEF stack in the file MONSTK. :SYS.

The form of the command is

SY[MBOLS] [fid]

where fid is used to select symbols from a file and has the
format

name rt account]. password]
[.account

MONSTK. :SYS is the default.

IS This command reads the sorted symbol table that was
saved the last time ANLZ ran as a ghost job. The command
produces no output. When the IS command is used, the
SYMBOLS command is unnecessary. The format of the IS
command is:

IS

SYMBOL/ The symbol/ command displays the contents of
a monitor location. The format of the command is

symbol/

where symbol specifies the name of a location in the
monitor.

Note: The symbol table must have been retrieved by use
of the SYMBOLS or IS command prior to use of this
command.

DUMP This command causes a specified range of ad-
dresses to be dumped. The command's format is

DUMP loc
1
, loc

2

Dump output following a MAP command is assumed to be
virtual addressed; after an UN MAP command, physical
addressed.

CLOSE This command causes the input dump file to be
closed. The format is

CL[OSE]

A user shQ.uld close a fi Ie prior to entering the monitor dis­
play mode.

HELP This command I ists all ANLZ commands and op­
tions, and gives a brief description of the purpose of each.
The form of the HELP command is

HE[LP]

48 Commands

SPYCOMMAID

Spy Spy provides a mechanism for obtaining information
about users currently in the system. If the ANLZ user has
the proper privilege (i.e., CO or above), Spy will read the
selected set of user JITs from the swap device and output
them on the LO device (i. e., on the LP or UC). If the
ANLZ userdoes not have sufficient privilege to allow direct
I/O, Spy will try to obtain the selected user JITs from in
core. However, it is unlikely that Spy will be able to
capture the JITs of more than a few users at best.

The format of the command is

Spy [option]

If no option is specified, all user JITs will be read. The
opti ons are:

SWAP reads all user's JITs on the swap device.

#e I]. . . reads the JITs of the specified users.

SWAP #[, I]. . . reads the JITs of the specified users
from the swap device.

SNAP #[, #] ... SNAPs the selected JITs.

In general, users are specified by their user numbers. How­
ever, batch IDs can also be used.

The SNAP option causes the JIT to be output in the usual
SNAP format. All other Spy output has the column headings
listed in Table 11.

Table 11. Spy Output

Column Description

USER B - batch job.

o - on-line user.

G - ghost job.

* - JIT read from swapper.

ACCOUNT The user's account number.

NAME The user's log-on name.

PRY The user's privilege level.

PRI The user's current priority.

PRB The user's base execution priority.

LN/ID The user's I ine number if on-line. The
user's SYSID and partition number if
batch.

STATE The user's current state.

i
~

I
1 ,

Table 11. Spy Output (cont.) EXIT COMMAND

Column

PSIZ

PCT

CCBUF

CPU - SEC

REM - SEC

CAL - CNT

DISCAC

TAPEAC

APS

CPS

PG - CNT

Heading

REGISTERS:

Description

The user1s peak si Le in decim(.' n 'mber
of pages.

The user1s current page count in
decimal.

The last control card read or the last
on-line command that TEL read.

The number (In decimal) of seconds the
user has been In core.

The number (in decimal) of seconds the
user has left to run in core. (Valid for
batch jobs only.)

The number (in decimal) of CALs the
user has issued.

The number (in decimal) of RAD and
disk accesses the user has performed.

The number' (in decimal) of tape ac­
cesses the user has caused.

The number (in decimal) of I/o ac­
cesses per CPU second for the user.

The number (in decimal) of CALs per
CPU seconds for the user.

The number (in decimal) of line printer
pages that the user has printed.

END The END command causes an exit from ANLZ.
The format of the command is

EN[D]

OUTPUT
The output produced by ANLZ consist!. of displays of for­
matted monitor and user tables and the contents of registers
existing at the time of the crash. The time and date infor­
mation in the output page headings refer to the time at
which the crash occurred.

Some of the output tables are chain type displays. That is,
they are formed by starting at the head of a chained list and
outputting that list until the tail of the chain is reached. If
the tail and the last page in the chain do not agree, the fol­
lowing message is output:

TAIL ERROR

If the count differs from the number of pages in the chain,
the following message is output:

COUNT ERROR

Table 12 I ists all of the ANLZ displays in order of appear­
ance in the ANLZ dump. The left-hand column specifies
the heading that appears at the top of each display. The
right-hand column describes the contents of the display.

Table 12. Displays

Contents

The contents of the registers at the time the dump was taken.

TRAPS/INTERRUPTS: The output for trap and interrupt locations. The trap and interrupt locations
are those used by the associated XPSD instructions and are listed in
Table 13.

PAGE IN WHICH TRAP OCCURRED: The core page in which the trap occurred, if a trap was the cause of the
recovery.

USER TABLES: The user table'i. This display includes the tables associated with each
User that has a page chain. The meaning and source of items in this dis-
play are defined in Table 14.

ADDITIONAL USER TABLES: The remainder of the User Tables display above. The meaning and source
of items in this display are defined in Table 15.

Output 49

Table 12. Displays (cant.)

Heading Contents

USER STA TE CHAINS: The user state chains which indicate the state of each user in the system.
J---------------------+---

RESOURCE WAIT QUEUES: The queues of users waiting for resources. The queues are listed and de-

_____ _________________________ __ ____ ~_fined in Tabl el ~.___ _____________ ____ ______ ___ __ _ _____ -----i

SWAP TABLES: I The S\'iOp tables. The meaning of each location in the table is defined
, in Tahle 17.

-------- ---- ----------------- --- --1--- ----- - ---~------------------------------ ------- ----------f
I

~;:~~: ::~R T ::~::~ ~----·····--1·:::~ :~:i;.:~:, t:~I~.-:: :I~~: :::i:'~SS tt~,:-~:::i~:s-iinn tt~~~: :::~: :--

-MO~~TO_;;;R~~~- PAGE CH~~-:---lrhe~:nitm free~ge-:~~:--~e-;:a~p~r:g~C;1QiniS-f~r:~ed in =---
~

same manner as this display. Usually there is no page chain data
output.

----------- --------------- - - - ---------- -- ----- -- --- ---- ---------------- ---- ----- --------- --------- ---- ---------1

USER PAGE CHAINS: I' Th~ usel page chain display. This display indicates which pages and ,",ow
many pages were being used by the various users resident in core'a

----------------------- -- -----1-- ----------- --- --- -------- --------------------
PROCESSOR PAGE CHAINS: I The processor page chain display. This display indicates which pages and

I how many pages were being used by the variol,;s processors resident in core. .

r-----------------t ------ ------ ------------ ---------------------------------- I
~::~;::A;A::~ES:---- I :::-:~:;:;a~~:I~in. ~=---------------- '

XDELTA/HANDLER PAGE CHAINS: I XDELTA's page chain. I

PHYSICAL MEMORY ALLOCA nON:
,-------

The actual physical memory allocation on a page-by-page basis. This
display is (' composite picture of the monitor free page chain, user page
chain, and processor page chain displays, pI us the resident monitor and
its JIT, plus any unallocated pages.

~----- ---- ----------~------------ -----------------------------1
ALL yeA T TABLES: The ALL YCA T buffer adjustment tables. The headings used in this dis­

play are defined in Table 20.
r------ -----------------+--t

UNALLOCA TED PAGES: The contents of any unallocated pages.
,..-------------------------+------------------------------------I

I/O CHANNEL DEVICE STATES: The I/O channel and device states. The display is separated into tables
pertaining to each logical channel. For each channel, ANlZ prints the
channel information table (CIT), the device control tables (DCT) for de­
vices on the channel, and the user I/O request queues on those devices.
Table 21 defines the headings used in the display.

-.-----------------------+----------------------------------~

FREE QUEUE ENTRIES:

CHANNEL INFORMA nON TABLE:

The free queues entries which are used to contain user I/O requests for
I/O devices defined in the I/O Channel Device States display above.

The channel information tables (CIT).
~------------------+-------------- --------------------~

DEVICE CONTROL TABLES:

50 Output

The device control tables (DCT). Table 22 defines the meaning of the
headings used in this display.

Table 12. Displays (cont.)

Heading Contents

IOQ TABLES: The IOQ tables. Table 23 defines the meaning for the headings used in
the IOQ tables display.

cae TABLES: The COC tables. This display includes the line table values for those
lines having an associated user (determined by a non-zero value in
LB:UN). Table 24 defines the headings used in the COC tables display.

RESOURCE ALLOCATION TABLES: The resource allocation tables.

AVR TABLES: The AVR tables. Table 25 defines the headings used in the AVR tables
display.

IN CORE ERROR LOG OAT A: The contents of the incore error log buffers.

OUTPUT SYMBIONT TABLES: The output symbiont tables. The headings used in this display are
defined in Table 26.

*** ASSIGNED CPOOLS: The contents of the assigned CPOOLs and corresponding SPOOLs.

*** AND THEIR SPOOLS:

MONITOR JIT: The monitor J IT contents and the monitor TSTACK contents. TSTACK
headings are defined in Table 27.

CURRENT USER: The current user's J IT.

CONTENTS OF TSTACK: The current user's TSTACK. TSTACK headings are defined in
Table 27.

ADDITIONAL JIT FOR USER' nn: The current user's AJ IT (additional JIT).

CONTEXT AREA FOR USER' nn: The current user's context area.

*** PHYSICAL PAGE' nn: The current user's physical pages.

MONITOR ROOT: The monitor root.

RBBAT RECOVERY FILE: The RBBAT recovery file, which includes ghost communication buffers, the
RBBAT environment, the RBBA T static data, and the RBBAT dynamic data.
(Usually there is no dynamic data output.)

USER IDENTIFICATION: The user identification. This display is a composite of all JITs in the
MONDMP file.

PATCH FILE: The patch file built by GHOSTl at system boot time.

INSWAP USER: The current inswap and outswap users' core (if any). This figure has the
same format as the Incore Users display.

INC ORE USERS: The current incore users' core.

CONTROL SECTION MAP: A map of the monitor modules' start addresses.

SYMBOL MAP: The symbol map.

TABLE OF CONTENTS: The Table of Contents for the ANLZ dump.

Output 51

Table 13. Trap and Interrupt Locations for XPSD
Instructions

Location Name of
of XPSD Meaning Handler

X '40 ' Nonallowed operation trap NOPPSD

X'41 1 Unimplemented instruction UNIMP
trap

X '42 1 Stack overflow trap STKOVF

X'43 1 Fixed-point arithmetic FIXOV
overflow

X'44 1 Floating-point fault FLTFLT

X'45 1 Decimal arithmetic fault DECFLT

X'46 1 Watchdog timer runout CSE$ERR

X'4T Multiprocessing usage IPT47

X'48 1 CAll instruction CALIPSD

X'49 1 CAL2 instruction CAL2PSD

X'4A' CAL3 instruction CAL3PSD

X'4B ' CAL4 instruction CAL4PSD

X'4C' Hardware error trap CSE$ERR

X'4D ' Instruction exception trap CSE$ERR

X'4E' XDEL TA entry LEE20

X'4F' JIT pointer -
X'50 ' Power on PONPSD

X'51 1 Power off POFPSD

X '541 C LOC K3 counter -

X'55 1 C LOC K4 counter -
X'56 1 Parity error PERPSD

X'58 1 Counter 1 zero CLK1PSD

X '59 1 Counter 2 zero CLK2PSD

X'5A' Counter 3 zero CLK3PSD

X'5B ' Counter 4 zero CLK4PSD

X '5C' Input/output interrupt IOPSD

X'5D' Control panel OCPSD

X'60 ' COC input interrupt COCIN1

X'61 1 C OC output interrupt COCOUTl

52 Output·

Table 14. User Table Headings

Heading Source Meaning

USER - Interna I user number.

ST UB:US User's state.

BL UB:BL Link to previous user in
same state.

FL UB:FL Link to next user in same
state.

FLG UH:FLG User's flags.

FLG2 UH:FLG2 Exit control bits, miscel-
laneous control flags.

JIT UB:J IT Physical page address of
user's J IT.

SWPI UB:SWAPI Swap table index.

HJIT UH:JIT Track/sector address on
the swapping RAD of
user's J IT.

AJIT UH:AJIT Track/sector address
of user's additional
JIT.

PCT UB:PCT User's page count.

ACP UB:ACP Number of associated
command processor.

APR UB:APR Number of associated
processor IS root.

APO UB:APO Number of associated
processor's overlay.

ASP UB:ASP Number of associated
spec i a I processor.

DB UB:DB Number of associated
debugger.

OV UB:OV Number of assoc iated
overlay.

MF UB:MF Number of Vo events
outstanding.

Table 15. Additional User Table Headings Table 17. Swap Table Terms (cont,)

Heading Meaning Locotion Meaning

USER User, '1,.Ler. S:CUIS Count of users in system.

MISC Either time left for lh~H to remalt. asleep S:IDLF Idle flag.

or resource wait queue forward link,
SB:OSN Number of out-~wap users,

UH:Dl DO-I ist address. SB:OSUL Out-swap user list,

!
CYl User's procedure cyl inder number if disk

pack swapper.

S:BECL Beginning and end command list
for eac h outsVvap user,

PRI User's current priority.
SB:NP N umber of i n--swap processors,

I SB:PNL In-swap processor numbers.

!
PRtB User's priority base value.

SB:FPN Number of freed processors.

I NECB Number of ECBs to be posted for this
user,

I

I UH:NL Pointer to head of ECBs to be posted.
,

SB:FPL List of freed processors.

!
M:5WAPD Address of swup dev i ce.

i
I

!

MB:SDI OCT index.

MB:SFC Swap function code.

Table 16. Resource Wait Queues MB:#RTRY Retry count,

Name Description M:CLBGN Beginning of current command
list.

R:SYMF Users queued for symbiont file space.
MH:CLEND End of current command list.

i

I
R:SYMD Users queued for symbiont disk granule.

R:OCR Users queued for OPEN/CLOSE.
i

Table 18. Partition Tables Headings

R:DPA Users queued for swapper granule.
Heading Source Meaning

R:QFAC Users queued for ALLOCA 1.
Calculated Index to partition tables.

R:NQW Users queued for E NQ •
ACCOUNT PLD:ACT Current running account.

USR PLB:USR Number of users in
partition.

Table 17. Swap Table Terms FLG PLH:FLG Partition control flags.

Location Meaning QN PLH:QN Quantum time of
partition.

S:SIR Swap in requests posted.
TOl PLH:TOL Total jobs run in this

S:HIR High priority requests posted. partition.

S:SIP Swap-in progress flag,
CUR PlH:CUR Current lobs selected in

this partition.

'SWAP$DEV Interrupt bypass count. TL PLH:TL Lower time limit.

S:CUN Current user number. TU PLH:TU Upper time limit

S:ISUN In-swap user number. SID PLH:SID System ID.

Output 53

Table 19. Processor Table Headings

Heading Source Meaning

pH - Processor index number.

P:NAME P:NAME Processor name.

HPP PB:HPP Head of processor's physical page cha in.

TPP PB:TPP

I

Tail of processor's physical page chain.

PSZ PB:PSZ Processor's procedure size in pages.

DSZ PB:DSZ Processor '5 initial data size in pages.

DCBSZ PB:DCBSZ I Size in pages of DCB area.

I I

PDA PH:PDA I Disk address of procedure.
i

DDA PH:DDA I Disk address of data and DCBs.

UC

I
PB:UC I Use count on processor.

PB:LNK
I

First overlay number for this processor. LNK

! I I
PYA PB:PVA Virtual page address of the processor's procedure.

HVA PB:HVA First page avai lable to the processor.

PC# PB:PC# Procedure cylinder number.

DCd PB:DC' Data cyl i nder number.

SA P:TCB Starting address and flags.

TCB P:TCB TC B address.

Table 20. ALLYCAT Headings

Heading Meaning

TOP Top index into buffer.

BOTTOM Bottom index into buffer.

WORDCNT Number of disk addresses in buffer.

TEMPBOT Set if ALLYCAT changing buffer.

BUFLAGS Bit 0 = HGP empty, Bit 1 = buffer just filled, Bit 2 = buffer just emptied.

ADJSTCNT Number of entries manipulated by ALLYCATi may be either positive or negative.

GRANULES AVAIL Total number of granules/cylinders remaining in system (in hexadecimal notation).

54 Output

Table 21. I/o Table Headings

Heading Meaning

CIT3-5 Channel Information Tables 3-5

DEVICE yyndd for this device

ADDR Hardware address

CX Channel index

OIDTS From DCT3 - Set bits indicate:

0 output

I input

D down

T timed out

S SIO reject

BPWXKCSB From DCT5 - Sets bits indicate:

B Device busy

P Clean-up pending

W Wa i t unti I done

X Data transfer

K Wait for key-in

C Control task

S SIO while manual

B BIN mode

QX I/o queue index

AIO Last AIO status

TDV Last TDV status

Table 22. Device Control Table Headings

Heading Meaning

DCT number.

DEV Active I/o address.

PRI Pr imary I/O address.

ALT Alternate I/o address.

CIT # Channel (CIT) index.

Table 22. Device Control Table Headings (cont.)

Heading

10 FLG

DEV TYP

DEV FLGS

10 Q#

CDW ADRS

PRE HAND

POST HAND

ACT CNTR

10lNT
DEADLINE

AIO INT STAT

TDV STATUS

CHAN FLNK

PRE-EMPT

IS

HAND CODES

TIME INCR

SIOCC

TDVCC

TIO STATUS

DISC FLAG

HGP DISP

RMA FLGS

SIO COUNTER

Meaning

I/O legality:

11 = in and out

10 = out only

01 = in only

Type mnemonic.

State of device.

10Q index.

Command doubleword address (WA
resolution).

Handler preprocessor word address.

Handl er postprocessor word address.

Device activity counter.

Value to match against I/O
clock.

AIO status word.

TDV status doubleword.

Li nk to next entry.

Real-time pre-empt flag.

7446 table.

Handler function flags (first 8 bits
contain retry function code; the
second 8 bits contain the fol­
low on code).

Time-out increments.

SIO condition codes.

TDV condition codes.

TIO status.

Disk flag.

Heading Granule Pool (HG P)
displacement if disk.

Partitioning flags.

Number of SICs done to this
device.

Output 55

Table 23. 100 Table Headings Table 23. IOQ Table Headings (cont.)

Heading Meaning

IOQ table number.

BAK Back link to next entry.

FWD Forward I ink to next entry.

DCT# DCT index.

MNE TEXT name of device from SYSGEN.

STAT Software status.

FCN Original function code (IOQ4).

CODS Current function code (1005).

DCBAD DCB word address (if any).

BUF Buffer word address if bi t 0 and 1 reset;
CDW word address if bit 1 set (swapper);
CDW word address if bit 0 set (other).

Heading Meaning

TIM Number of timeout increments.

CDW Number of commands used if IOQ8
bi t 0 or 1 set.

NRA Original number of recovery tries.

NRT Remaining number of recovery tries.

RAD AD Disk address.

E A ADR End action word address.

E A INFO

PRIO

USER

One word to return to end action
receiver.

Priority of this event.

User number of I/O requester.

Table 24. cae Line Table Headings

Heading Source Meaning

LINE Calculated li ne number.

USER LB:UN Associated internal user.

TYPE COCTERM Terminal type.

EOMTIME EOMTIME End of message time for a read.

BUFCNT BUFCNT Number of buffers in use for line.

CPOS CPOS Current carriage position.

RSZ RSZ Record size requested by user while read is pending.

MODE BYTES MODE-MODE4 Terminal mode indicators.

TL TL Pointer to tab buffer.

II COCII Input insertion pointer for line.

IR COCIR Input removal pointer for line.

ARSZ ARSZ Accumulated record size while read is pending.

CPI CPI Initial carriage position for a read.

01 COCOI Output insertion pointer for line.

OR COCOR Output removal pointer for line.

OC COCOC Count of characters pendi ng output.

56 Output

Table 25. AVR Table Headings Table 26. Symbiont Table Headings {cont.}

Heading Meaning Heading Meaning

SER# Serial number of tape or pack. SSTAT Symbiont Status:

PUB Set if public.
o = input symbiont

1 = output symbiont
POS Set if positioned.

AVR Set if A VRed.
SSIG Symbiont signal character {e. g.,

L, Q, etc.}.

SCR Set if scratch tape. SRET Symbiont return when activated
from chain.

HLD Set if held.
SCNTXT Context block doubleword address

displacement.
PTL Set if positioned to label.

SYMX Symbiont index:

UPL Set if user positioned label. 1 = input

2 = output
OPN Set if open.

TYP Device type.

NOU Number of users.
LNK Remote chain.

TPOS Tape mark count. FLAG Remote flags.

USER User number. SUSP Suspend bit for IRBT.

QUE 100 index for IRBT.

SOLICIT Index to special AVR tables.
SQHD Symbiont queue chain head.

INI Set if volume initialized. SQTL Symbiont queue chain tail.

VER Set if volume verified.
Table 27. TSTACK Headings

MTD Set if mounted.
Heading Meaning

PRIM Set if primary volume of private ADDRS Virtual address of displayed contents.
set of volumes.

STACK OFFSET Index into stack.
HGPDISP Displacement from HGP.

CONTENTS Contents of stack.

Table 26. Symbiont Table Headings
RELATIVE LOC Address that stack contents point to,

Heading Meaning in symbol plus displacement form.
If the stack cell contains a relative

Index number of table. location, the instruction at that lo-

SQUE Symbiont queue chain.
cation wi II be displayed if it is an
address modifying instruction {e.g.,

SNDDX DCT index of symbiont device.
B, BAL, LPSD}.

TYPE TEXT name of symbiont device INSTRUCTION Symbolic instruction at the address
from SYSGEN. contained in the stack position.

Output . 57

ANLZ MESSAGES

Table 28 contains the messages that are output by ANLZ.
Most of these messages identify error conditions. Others
merely supply information.

ANLZ COMMAND SUMMARY

Table 29 summarizes ANLZ commands. The left-hand
column contains the command format, the right-hand column
contains the command description.

Table 28. ANLZ Messages

Message . Description

ANLZ HERE The ANLZ program has begun operation.

ANLZ: ENTER COMMAND, NIL SAYS TO DO ALL This message issued to operator after GJ OB ANLZ key-in.
Operator may respond with one of the following:

NO = just exit
TA = read recovery-built tape
HE = run interactively from console
CP = read CP5DMP file
0-7 = read indicated MONDMP file
NIL = do default ghost run

ANLZ GHOST FINISHED The AN LZ ghost has completed processing the core
image fi Ie.

ANLZ USING MONDMPn AN LZ has been commanded to read a MONDMP file.
The value specified for n indicates the number of the
MONDMP fi Ie.

BAD COMMAND The command was unrecognizable.

CANNOT OPEN FILE name The file specified by the INPUT command cannot be opened.

CAN'T GET THE BUFFER The user was not allowed enough core in his account to
read in the monitor symbol stack.

COUNT ERROR
The tail and last page in a chain do not agree.

TAIL ERROR

ENTER TAPE TYPE: 7T, 9T, BT, ETC ••• The user must supply the tape type if tape input is to be used.

ERR/ABN CODE = xxxx**dcb An 110 error or a bnorma I condition occurred during an
IN PUT operation.

xxxx is the error or abnormal code.

dcb is the address of the DCB associated with it.

LOCl > LOC2 The first location entered for a loc), loc2 (or similar) com-
mand was greater than the second location.

xx PRIVILEGE LEVEL NOT HIGH ENOUGH The user privilege level was not high enough for the
requested operation.

SORRY, NO PAGE xx The page containing the location specified by the user
was not found in the input fi Ie.

THE LAST PHYSICAL PAGE IN THE FILE IS xx The size of the file read from tape by the INPUT com-
mand is specified by the last physical page in the file.

58 ANLZ Messages/ANLZ Command Summary

Command

*

AL[L]

BF fid

Table 29. ANLZ Command Summary

Description

Dumps the last location and is used in connection with loc
and locl' loc2.

Dumps the indirect location and is used in conjunction with
loc and locl' loc2.

Performs the functions of the INPUT, DISPLAY, and RUN
commands and of ANLZ (except dumps) when initiated
by the automatic recovery procedure. A numerically and
alphanumerically sorted monitor map is output at the end of
the ALL display.

Specifies the name of the boot file that represents the monitor
being examined by ANLZ. The file M:MON in :SYS is as­
sumed by default.

~~--~---4

CL[OSE]

CO[MPARE], loc 1, loc2

. DE[LTA]

DI[SPLAXj option

Causes input dump file to be closed.

Compares the dump (locations locl through loc2) with the
running monitor and outputs the locations with nonequal
contents •

Associates the debugger Delta with ANLZ.

Outputs information existing at the time of the crash. The
options are

AJ[ITS] -JIT, AJIT, and context area of all incore users.

AT[ABLES1-incore portion of ALLYCAPs tables.

AV[R] -tape and disk tables.

CI [TS] [, index] ••. -all or requested entries of Channe I
Information Tables.

! CO[C][,index]. .. -all or requested entries of cae tables.

CU [N] - current user1s JIT, AJ IT, and context area.

\ DC[T] [,index] .•• i-all or requested entries of Device
\ I Control Tables.

EL[OG] -incore error log buffers.

FQ-Free I/O Queueing tables.

10[, chan] ... -devices on requested I/O channels.

IQ[, index] ... -all or requested entries of I/O queueing
tables.

JIT[, id][, loc 1, loc2] -contents of the JIT for the user
specified by id or for the monitor.

MR[, loc 1, loc2] -monitor1s root.

OJ [IT] -all of the out of core JITs.

AN LZ Command Summary 59

Command

DI[SPlAY] option (cont.)

DU[MP] loc1,loc2

EN[D]

HE[LP]

IN[PUT] option

60 ANLZ Command Summary

Table 29. ANLZ Command Summary (cont.)

Description

OS - user outswap tables.

PA[RTITIONS][, index] ... -all or requested entries of
partition tables.

PF[ILE] -patch file that was created last.

PM-page matrix identifying the owners of all pages.

PN-processor inswap tables.

PP, pageno[, loc 1, loc2] -contents of the indicated
physical page.

RA[T] -resource allocation tables.

RE[GISTERS] -software check code, software check mess­
age, and the first two register blocks.

RB[T] -remote batch tables.

RC[XT] -area of memory occupied by the recovery routines.

RQ -resource subqueue lists.

ST[ABLE] -output symbiont tables.

SW[APPER]-contents of the swap/swap scheduling tables.

SY[MBIONT] -RBBAT recovery file.

TP -transaction processing tables.

TR[APS] -contents of trap and interrupt locations.

TS[TACK][, id] -temp stack of the user specified by id or
of the mon itor.

US[ER][, id] ... -user tables of the specified users.

VP, pageno[, loc 1, loc2] -contents of the specified virtual
page.

WHY -software check code and software check message.

Dumps specified range of addresses.

Exits from ANLZ.

lists al I ANLZ commands.

Directs ANLZ to input from a particular disk or tape file or
to open a fi Ie. The options are

LA[ST] - opens the last file formed by the recovery
procedure.

Table 29. ANLZ Command Summary (cont.)

Command Description

IN [PUT] option {cont.} number - opens the numbered crash file formed by the
recovery procedure.

TA[PE] - reads a labeled tape created by the recovery
procedure.

CP[SDUMP] - opens the CPSDUMP file.

IS Reads the sorted symbol table from a previous ANLZ run.

Line Feed {or carriage return} Dumps the contents of the next location and is used in con-
junction with loc and locl' loc2.

loc Outputs the contents of the specified location.

loc
l
,loc

2
Outputs the contents of memory locations between loc

l
and loc2.

loc = value Places the val ue in the specified location of the running
monitor.

LP~ows] Directs the output of ANLZ to the line printer, where rows
is dump width in hexadecimal words. Default is full line.

MA[P],id Loads the map of the specified user if his J IT is in core.

MO[NITOR] [DI[SPLA y]] Turns the monitor display mode on and off.

MONITOR turns the display mode off.

MONITOR DISPLAY turns the display mode on.

NO[DELTA] Disassociates the debugger Delta from ANLZ.

PR[INT) Closes the output symbiont file to allow output to the line
printer without requiring a return to TEL.

RO[WS), value Establishes width of dump output in number of words, where
value may be 1 through 12.

RU[N] option Outputs various linked lists of the monitor by running through
the I ist and displaying each entry. The options are

MO[NITOR] ~ {~9no}] - monitor pages. S, the default,
indicates all. A spec i fi c page
may be requested.

PR[OCESSOR] ~ {~ame~ - processor pages. S, the de-
fault, indicates all. A par-
ticular processor may be
specified.

RT - real-time page chains.

ST[ATE]~ {~#~ - state queues. A particular queue
number may be specified, or S, the
default, indicates all.

ANLZ Command Summary 61

Table 29. ANLZ Command Summary (cont.)

Command Description

RU[N] option (cont.) US[ERJU~d~ - user pages for a particular user (id), or
for a II users (S). S is the defaul t.

XD[E lTA] - XDEL TA's page chains.

SE[ARCH], value,loc 1,loc
2

Searches for and outputs all words between loc 1 and loc
2

that
contain the value under the mask.

SM[ASK], value Sets the mask to the specified value.

symbol/ Displays the contents of the monitor location specified by
symbol.

SY[MBOLS] [fid] Creates a numerically sorted monitor map, using the fid spec-
ified or MONSTK. :SYS.

UC~ows] Directs the output of ANLZ to the on-line terminal, where
rows is dump width in hexadecimal words. Default is full line.

UN [MAP] Turns off the mapping mode of operation.

62 ANLZ Command Summary

5. ERROR MESSAGE FILE

INTRODUCTION

The error messages for the CP-V monitor and several CP-V
processors are contained in an error message file, called
ERRMSG. This file is initially created either through
punched card or on-I ine terminal input and is maintained
through use of the Edit processor. This chapter describes
the structure of the ERRMSG file and the techniques
required to create and modify the file.

Codes for detected error conditions are recorded in the job
information table (JIT). The error code is placed in J:ABC
(high-order byte) and the subcode is placed in ERa (right­
justified). When CCI (batch jobs) or TEL (on-I ine jobs) is
entered, a message is printed to correspond to the code and
subcode. This message is obtained from the error message
file (ERRMSG) via a keyed read using a key constructed
from the group code, error code, and subcode. If either
the file or the record corresponding to the code is missing,
the error code itself will be printed. Otherwise, the mes­
sage and the error code wi II be printed.

FORMAT OF ERROR MESSAGE FILE

Each record in the error message file contains the EBCDIC
text of one error message. The key of each record is one
word long and has the form

The fi rst byte always contains 03, which is the count of
bytes in the key. The second byte is the group code, the
third is the error code, and the fourth is the error subcode.

Group codes presently assigned are

o Monitor 5 CCI

PCl 6 DRSP

2 Loader 7 Batch

3 TEL 8 Analyze

4 Runner

Messages in the file with group codes other than zero are
not handled by the monitor itself. Error codes currently
assigned within the monitor group are

o - 7F I/o error and abnormal codes

80 - 9F COBOL error codes

AO - BF Other Monitor codes

co - FF Unused

The meaning of the assigned codes are defined in CP-V/TS
Reference Manual, 90 09 07, CP-V/BP Reference Manual,
90 17 64, and in the ANS COBOL/LN Reference Manual,
90 15 00.

CREATING ERROR MESSAGE FILE

The ERRMSG file is initially entered into the system either
through a card reader or an on-line terminal at the central site.
The procedures for each type of input are described below.

Warning: If an installation modifies the text of TEL error
messages, it should be noted that TEL stores dy­
namic information in the error message buffer and
some of the text may be clobbered.

CARD READER INPUT

Card input of the error message fi Ie is handled by the Error
Message Fi Ie Writer (ERRMWR). This program reads cards,

! interprets the first six columns as a hexadecimal number,
converts this number into a three-byte key, and writes the
card image exclusive of trai ling blanks as a keyed record
in the ERRMSG file in the account under which ERRMWR is
executed. This account should be :SYS for the system error
message file.

I The card format is

1 2345678 9 10 11 12 13 14 15 16 17 18 192021 22

Hex. code Text of Message

GCECSC

Example:

Assume that the message ILLEGAL OPCODE is to be placed
in the error message file for the monitor error code AE. The
group code and subcode in this case are both zero. Thus,
the card for this message would be punched as follows:

1 2 3 4 5 6 7 8 9 10 11 1 2 13 14 15 16 1 7 18 19 20

Hex. code Text of Message

OOAEOOI II EGA l o P COD E

Keys generated by the E RRMWR program have the form

Error Message File 63

During conversion of the key, leading blanks are treated as
zeros. Nonhexadecimal letters result in output of a warn­
ing message and cause the card to be ignored. The card
image is scanned from right to left to determine the rightmost
nonblank character, and the count of characters is adjusted
so that trailing blanks are not written. A new line character
X' 15 1 is appended to the message.

The message may be continued in column 1 of the follow­
ing card by appending a continuation character (;) at the
end of the message in the first card. Only two cards per
message are allowed.

A card containing an asterisk in column 1 is a control card
and is used to set the format of the record written in the
file. If column 2 of the control card contains a 0, the
message key is appended to the front of the message text
and is included in the record. If column 2 of the control
card contains a 1, the key is not included in the record
text (this is the default condition). Control cards can be
placed anywhere within the data deck except between
continuation cards.

64 Creating Error Message File

TERMINAL INPUT

Creating or modifying the error message file can be ac­
complished from the terminal by using Edit or ERRMWR.

Example 1: Using Edit

!BUILD MSGe

1.000 OOABOO THAT'S NO DEBUGGER! @)

2.00000AB01 THAT'S NO OP CQDE @)

3.000 @)

.!SET M:EI DC/MSG @)

!ERRMWR@)

Example 2: Using ERRMWR

!SET M:EI UC @)

!ERRMWR@)

~OOACOl DONiT ISSUE CAL3 OR CAL4 @)

6. SYSTEM ERROR LOG FILE

INTRODUCTION

All hardware malfunctions and some software problems
occurring during system operation, whether recovered or
not, are recorded in a special disk storage file. This file
is periodically copied into a standard file (ERRFILE) by a
ghost program (ERR:FIL) which is initiated automatically
for that purpose.

ERRFILE may be I isted and summarized by the Error Log
Listing processor that is described in this chapter. ERRFILE
is also available for on-I ine preventive maintenance of
the system and for diagnosis and prediction of hardware
malfunctions.

ERR:FIL, PROGRAM

ERR:FIL copies the special file created by ERRLOG onto a
normal keyed file (ERRFILE) in the :SYS account that is more
readi Iy avai lab Ie to diagnostic programs.

ERR:FIL is a ghost job that is awakened by ERRLOG when­
ever five errors have been recorded. ERR:FIL may also be
awakened by a program with diagnostic privilege by using
the initiate job CAL (CAll,6 FPT)or by an operator key-in
of GJOB ERR:FIL.

ERROR LOG LISTING PROCESSOR

The Error Log Listing processor (E LLA) provides an efficient
tool for listing and sorting the error log file, ERRFILE, which
is automatically generated and updated by the CP-V system.
(ERRFILE is described in Appendix E.) ELLA output furnishes
a meaningfu I and comprehensive diagnostic evaluation of
the system and its peripherals, aiding in the early detection
of productfailures andthus increasing the reliability, main­
tainability, and availability of the system.

The set of ELLA commands allows the user to first specify
the kinds of errors in which he is interested, and then re­
quest a listing of those kinds. Four types of I istings are
available:

• A chronological listing of error log entries.

• A sorted listing of error log entries.

• A summary of error log entries by category.

• A summary of -error log entries in graphic form.

Towards the end of th is chapter, there is a section wh ich
contains a set of predefined tasks that should be useful to
the person who needs periodic error log reports but has no
need for a more prec ise understanding of the ELLA processor's
command structure. (See "Predefined Tasks II .)

STARTING EXECUTION

ELLAmay be run as an on-line, batch, or ghost job. Normal
operating procedures are observed in each of these modes.
Batch and on-I ine operations are illustrated in Examples 1
and 2. These first two examples are intended only for ELLA
users who are not familiar with CP-V.

The use of ELLA is restricted to authorized system users whose
accounts have a diagnostic privilege level (AD or higher).
If the user has insufficient privilege, ELLA will abort with
the message

INSUFFICIENT PRIVILEGE LEVEL ABO~T

Note: Initiating ELLA as a ghost job enables the operator
to issue ELLA commands from the operator's console.
However, judgement should be exercised when ini­
tiating ELLA in this fashion since ELLA commands
will be intermixed with normal operator console
material.

INPUT/OUTPUT ASSIGNMENTS

ELLA input and output is divided into three separate
functions:

• Error log input.

• User command input.

• Listing output.

Error log input is always taken from the system error log fi Ie,
ERRFILE. Without user intervention, the remaining two
functions assume default assignments depending on the mode
in which ELLA is run. The default assignments are listed in
Tables 30, 31, and 32. (They are based upon the assumption
that the SIand LO operational labels weregiven the standard
assignments during SYSGEN.) The assignment of the output
listing function may be altered by the user during ELLA ex­
ecution through use of the ELLA SET command. The tables
spec ify the ELLA SET command formats that are requ i red to
make the reassignments. The SET comqland is described in
detail below.

I SET The SET command reassigns the listing and message
output device assignment during execution of ELLA. (It
changes the device assignment in the M:LO DCB.) The for­
mat of the command is

SET, LIST, { LKPP}

where

LP specifies I ine printer.

KP specifies operator's console for the ghost and
batch modes and on-line terminal for the on-I ine
mode.

System Error Log File 65

Example 1. Batch Operation of ELLA

For batch operation of ELLA, control commands and ELLA commands are punched on cards and the cards are subm itted
to the site operator.

In this example, the account number (FEOPER) and account name (SITE 102) were chosen because they had been re­
served for diagnostic activity at that particular site. In order to run ELLA in the batch mode, the account was
authorized a privilege level of AD. (The privilege level is not specified on the JOB card because it is automatically
associated with the account.) The execution priority E was specified to given the job a high execution priority. (The
privilege level determines the types of things that a jab is allowed to do; the execution priority is a determining fac­
tor in how quickly a job wi JJ be selected for execution.)

Example 2. On-line Operation of ELLA

XEROX CP-V AT YOUR SERVICE
ON AT 13:48 JUL 08, '74
LOGON PLEASE: FEOPER, SITE102 ,RSD @)

lELLA@)
13 :49 JUL 08, '74
ELLA 7080D6-AOO

* .

~END@
lPRINT @)

In this example, the user logged onto the system after receiving the CP-V salutation and log-on request. The account
number and name used are the same as in the previous example. (The account was authorized for both batch and on­
line operations.) The account has a password associated with it which is to be used for security reasons during on-line
operation; i. e., if the password is kept confidential, it prevents unauthorized on-line use of this special diagnostic
account. The password is entered following the name and account. Here, the password RSD was entered.

66 Error Log Listing Processor

After the log-on, CP-V prompted for input with an exclamation point. The user entered

ELLA@)

to request the Error Log Listing program and ELLA responded with its salutation and prompted for input with an asterisk.
The user then entered ELLA commands, finishing with the END command which returned control to the system. The
system then prompted with an exclamation point. (Actually, control was returned to a system command processor
called TEL which is described in detail in the cp-v/TS Reference Manual, 900907.)

ELLA can output its listing on the user's terminal or on the line printer. If printer output is selected, the system holds
the output on a disk file until either the PRINT or OFF command is entered. In the example, the user executed the
PRINT command which caused the system to produce the printer output. The user then proceeded to perform other
tasks, eventually ending the on-line session with the OFF command which logged the user off the system.

INPUT/OUTPUT CHARACTE RISTICS

Whenever ELLA I isting output is assigned to the line printer,
the output contains two additional types of information:
user commands received and diagnostic messages. ELLA
user commands are listed on the printer to present a com­
plete record of the user listing session. They are preceded

by one asterisk. Diagnostic messages (due to abnormal con­
ditions or operational errors) are preceded by two asterisks.

Whenever the command input function is assigned to the
operator's console (ghost initiation of ELLA) or the user's
terminal (on-line initiation), diagnostic messages are
printed on that input device (preceded by two asterisks) as
we" as on the line pri nter •

Table 30. ELLA On-Line I/O Functions

ELLA SET
Associated Default Possible Reassignment

Function DCB Assignment Assignments Command Comments

Source M:BI ERRFILE ERRFILE (none) Data base from which ELLA reads source. records
error log for printing.

Command M:SI User's User's (none) Device from which ELLA reads commands (and
input terminal terminal to which it prints diagnostic messages).

List M:LO User's User's SET, LIST, KP Device to which ELLA lists error log data.
output terminal terminal

Line SET, LIST, LP Device to which ELLA lists error log data, com-
printer mands received, and diagnostic messages.

Table 31. ELLA Batch I/O Functions

ELLA SET
I Associated Default Possible Reassignment

Function : DCB Assignment Assignments Command Comments

Source M:BI ERRFILE ERRFILE (none) Data base from which ELLA reads source records
error log for printing.

Command M:SI Card Card {none} Device from which ELLA reads commands.
input reader reader

List M:LO Line Line SET, LIST, LP Device to which ELLA lists error log data, com-
output printer printer mands received, and diagnostic messages.

Operator's SET, LIST, KP Device to which ELLA lists error log data and
console diagnostic messages. (Using the operator's con-

sole for lengthy output is not recommended.)

Error Log listing Processor 67

I

Table 32. ELLA Ghost I/O Functions

ELLA SET
Associated Default Possible Reassignment

Function DCB Assignment Assignments Commands Comments

Source M:BI ERRFILE ERRFILE (none) Data base from which ELLA reads source records
error log for printing.

Command M:SI Operator's Operator's (none) Device from which ELLA reads commands (and
input console console to which it prints diagnostic messages.)

List M:LO Line Line SET, LIST, LP Device to which ELLA I ists error log data, com-
output printer printer mands received, and diagnostic messages.

Operator's SET, UST, K P Device to which ELLA lists error log data and
console

INTERRUPTING ELLA EXECUTION

On-line ELLA execution may be interrupted at any time by
use of the BREAK key on the user's terminal. This causes
ELLA to terminate its current activity and to prompt for a
new command.

When ELLA is initiated as a ghost job or a batch job, ex­
ecution may be interrupted through use of the operator INT
key-in. The effect upon a ghost job is similarto that of the
BREAK function on-line. The effect upon a batch job is to
cause the next command to be read from the card reader.

ELLA COMMANDS

ELLA accepts three types of commands: boundary commands,
task commands, and the device assignment command (SET,
described previously). Boundary commands establish or
change the limits that are to be applied to all subsequent
task commands; i.e., boundary commands allow the user to
specify the types of errors in which he is interested. Task
commands initiate the execution of a particular type of list­
ing. The device assignment command is used to change the
listing and message output device during execution of ELLA.

TASK COMMANDS

Task commands are used to request the ELLA displays and to
terminate ELLA. ELLA task commands are:

CLIS produces a chronological listing of qualified
error log entries.

68 Error log Listing Processor

diagnostic messages. (Using the operator's con-
sole for lengthy output is not recommended.)

SLIS produces a sorted listing of qualified error log
entries.

SUM produces a categorized summary of qualified
error log entries.

DISP produces a summary of qualified error log en-
tries in graphic form.

END terminates ELLA.

Note that error log entries are displayed only if they qualify.
To qualify for inclusion in a display, an error log entry
must pass all boundary tests in force at the time the display
is generated. If no boundary commands have been entered,
all error log entries qualify. Those error log entries which
fai I to pass one or more of the boundary tests are ignored.
(Boundary commands are described following the task
commands.)

ellS The CLIS command requests a chronological list­
ing of the error entries in the order in which they appear in
the error file.

The format of the C LIS command is

CrUS]

An example ofa CLIS listing is given in Example 3. Table 33
lists the error log entry headings printed by ELLA and notes
the manner in which all values are printed.

Example 3. Use of the ClIS Command

In this "example, the user chose to initiate ELLA on-line. The user did not desire a lengthy listing at his terminal.
Therefore he rea~igned the listing function to the line printer using the SET command.

!ELLA@)
*SET , LIST, LP @)
~CLIS @)
*END@)
lPRINT@)

After the CLIS command was issued, ELLA produced the chronological I isting and then prompted for another command.
The user desired no further listings, so he terminated ELLA with the END command. He then issued the system PRINT
command which caused the listing to be output to the printer. The output that was sent to the line printer is shown
below:

*CLIS

C H RON 0 LOG I CAL LIS TIN G

FROM 00/00/00 00:00:00:000
TO 12/31/99 23:59:59:999

. SYSTEM IDENTIFICATION •••
CORE -oPTIONS-------------------TIME

TIME (K) SITE I.D. SYSTEM CPU SYMB RT RB ONLN TP MP RES
11:36:00:000 00128 PRT101 CP-V COO S67 Y Y Y Y Y Y 02

. CONFIGURATION •• *
I/O ADRS OCT

TIME l-IDL PRIM ALTN INDEX
11 : 36: 00: 000 7012 0001 0001 01

7140 0003 0003 02
7160 0004 0004 03
7445 0002 0002 04
7212 01FO 01FO 05

11 :36 :00 :000 7322 0080 0080 06
7322 0081 0081 07
7271 OOEO OOEO 08
7271 OOEl 00E1 09
7271 00E2 00E2 OA

11:36:00:000 7271 00E3 00E3 OB
7611 0010 0010 OC

* •• TIME STAMP * •• DATE = 0 7/1 0/74 TlME=12:00:00:004

* •• SIO FAILURE •••
I/O ---510- ---TDV- SUBC TDV CUR REM

TIME MDL ADRS STAT CC STAT CC STAT COMM DA BYTES r-1FI
12:36:30:782 7323 0083 2000 6 1000 6 00 0011B7 0001 Or)

12:37:29:518 7323 0083 2000 6 1000 6 00 0011B7 0001 00
12:40:10:398 7323 0083 2000 6 1000 6 00 0011B7 o Or') 1 00

Error Log Listing Processor 69

••• TIME STAMP •••
••• TIME STAMP •••

DATE = 0 7/1 0/74
DATE = 0 7/1 0/74

••• SYMBIONT INCONSISTENCY •••
OCT Rt.'SL. SYMB.

TIME INDEX SECT. OCT
14:03:13:648 09 0110 02

••• TIME STAMP •••
••• TIHE STAMP •••

DATE=() 7/1 0/74
DATE~()7/10/74

TIME=13:00:00:005
TIME=14:00:00:003

TIME=15:00:00:004
TIME=16:00:00:006

Note that the CLIS command is listed in the line printer listing and that the existing time boundaries are printed after
the title. If other boundaries were in force, they too would have appeared. Certain values, such as core size and
recovery count, are printed in decimal for convenience. Other fields, such as the OPTIONS field, contain flags.
The true condition is represented by the letter Y, the false condition by the letter N. In this example, the system
has symbiont capability but does not have remote processing and real-time facilities.

Table 33. Error Log Entry Headings

Heading Description

ACCOUNT The account (eeeeeeee) in which the faulty file resides.
eeeeeeee

---Aro- A hexadecimal number (xxxx) representing the AIO device and
STAT CC operational status bytes (STAT) and a hexadecimal value (x)
xxxx x representing the condition code (CC) returned as the result of the

AIO instruction.

CL A hexadecimal value (xx) representing the cluster portion of t~e
xx unit address.

CONTRLR A flag (f) indicating whether or not the controller is partitioned in
f addition to the device. Y means the controller is partitioned; N

means it is not partitioned.

CORE Core size in decimal thousands (dddd).
(K)

dddd

COUNT The number of entries (in decimal) that duplicate the previous entry.
dddd

CPU CPU type (ddd).
ddd

CPU CPU hardware address.
ADRS
xxxx

----CUR COMM DW-- Two hexadecimal numbers (xxxxxxxx) representing the command
1 2 doubleword currently being processed for a device.

xxxxxxxx xxxxxxxx

DATE The month (mm), day (dd), and year (yy) that the error log entry
mm/dd/YY occurred.

DCT A hexadecimal value (xx) indicating the order in which the device is
INDEX configured into the system at SYSGEN. The index value for the first
xx device is 1.

70 Error Log Listing Processor

Table 33. Error Log Entry Headings (cont.)

Heading Description

ENTRIES A decimal value (dddd) representing the number of error log records
LOST lost when logging became temporarily impossible for any reason.
dddd

ENTRY A decimal value (dddd) representing the number of entries in the
COUNT enqueue table belonging to the specified user at the time the error
dddd log entry was made.

ERROR A hexadecimal value (xxxx) giving the error type code for the failure.
CODE See Appendix B, "Monitor Error Messages" in the CP-V/BP Reference
xxxx Manual, 90 17 64, for error code definitions.

ERRLOG--- A hexadecimal value (xxxxxxxx) representing the caller's address to
CALL ADRS which the error logging routine will return when logging is completed.
xxxxxxxx This is used in isolating software faults.

FILE NAME The name of the file in which a fault has been detected.

---RIO- A hexadecimal value (xxxx) representing the status (STAT) and a
STAT CC hexadecimal value (x) representing the condition codes (CC) re-
xxxx x turned in response to an HIO instruction.

--INDEX-- The hexadecimal offset (xxxxxxxx) into a 64-word block in ERRFILE
BAD ENTRY that locates the first word of the incorrect entry.
xxxxxxxx

I/O A hexadecimal value (xxxx) representing the physical I/O address.
ADRS
xxxx

I/O A decimal value (dddddddddd) representing the number of SIO
I

COUNT instructions executed for a device. This value is reset at system boot
dddddddddd time and is not reset at recovery (i. e., it is reset for system start-up

types 1, 2, and 3; see START TYPE in this table).

I/O ADRS A hexadecimal value (xxxx) representing the primary I/O address
PRIM ALTN (PRIM) by which a device can be referenced, and another hexa-
xxxx xxxx decimal value (xxxx) representing the alternate address (ALTN) for

dual access devices.

--I/O-- A hexadecimal value (xxxx) representing the status (STAT) and a
STAT CC hexadecimal value (x) representing the condition codes (CC) re-
xxxx x turned in response to an I/O instruction.

LOCATIONS One to fourteen hexadecimal values indicating the ~ddresses of the
xxxxxxxx first fourteen (or less) memory locations exhibiting parity errors.
xxxxxxxx
.

--MEMORY STATUS-- Two hexadecimal values (xxxxxxxx) representing the status returned
1 2 in response to an LMS instruction.

xxxxxxxx xxxxxxxx

---MEMORY STATUS WORDS---- Three hexadecimal values (xxxxxxxx) representing status returned in
1 2 3 response to an LMS instruction.

xxxxxxxx xxxxxxxx xxxxxxxx

MDL A decimal number (dddd) that uniquely identifies peripheral devices
dddd by the Xerox model number (defined at SYSGEN).

Error log Listing Processor 71

Table 33. Error log Entry Headings (cont.)

Heading Description

MFI A hexadecimal value (xx) representing the current state of the
xx memory fault indicators returned by the hardware in response to an

RD instruction. All memory fault indicators wi II be reset. (Sigma 6
and 7 only.)

MODE A decimal value (d) encoding the mode in which the file was opened
d where: 1 - IN; 2 - OUT; 4 - INOUT; 8 - OUTIN.

--OPTIONS-- Indicates whether or not the following facilities are available in the

SYMB RT RB ONLN TP MP system; symbiont routines (SYMB), real-time processing (RT), remote
f f f f f f processing (RB), on-line facilities (ONlN), multiprocessing facilities

(MP), and transaction processing functions (TP). The flag (f) is equal to
Y (present) or N (absent).

ORG A single decimal digit that indicates the file organization where:
d 1 - consecutive; 2 - keyed; 3 - random.

PAR A hexadecimal value (xxxx) representing the number of memory
ERRS locations exhibiting parity errors after a memory scan.
xxxx

--POLL- A hexadecimal value (xxxx) representing the processor fault status
STAT CC (STAT) and a hexadecimal value (x) representing the condition
xxxx x codes (CC) returned by the hardware in response to a POLP or

POLR instruction.

POLR A hexadecimal value (xxxx) representing the processor fault status
RESULTS as returned by the hardware in response to a POLR instruction.'

xxxx

------PSDW------- Two hexadecimal numbers (xxxxxxxx) representing the contents of
1 2 the program status doubleword.

xxxxxxxx xxxxxxxx

I RB:FLAGS A word containing bits which define the current state of processing for
I

xxxxxxxx the fail ing remote station. The meanings of the bits are defined in
Table 32-1

REAL A hexadecimal value (xxxxxxxx) representing the actual memory
ADRS address. In an unmapped system, this is the same as the IA field
xxxxxxxx of the PSD.

RECOV A decimal value (dd) which is set to zero at system initialization and
COUNT incremented by one for every system recovery.
dd

REL. A hexadecimal value (xxxx) representing the relative sector at which
SECT. the inconsistency was detected
xxxx

RELATIVE- A hexadecimal value (xxxx) representing the relative sector number
SECT.ADRS at which the inconsistency was detected. A relative sector is 256
xxxx words long with each sector on a given device being numbered from

zero through dev ice end. CP-V maintains file pointers by relative
sector number to expedite addressing different devices.

72 Error Log listing Processor

Table 33. Error Log Entry Headings (cont.)

Heading

REM
BYTES
xxxx

-RETRY­
REQ REM

dd dd

RPI RP2 RP3 RP4
xx xx xx xx

SCREECH
CODE

xx

SEEK ADRS
xxxxxxxx

---------SENSE INFORMATION--------­
xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx

---SIO­
STAT CC
xxxx x

SITE 1. D.
eeeeeeee

START
TYPE
xx

SUB
CODE
xx

SUBC
STAT
xx

Description

A hexadecimal value (xxxx) representing the remaining byte count
as returned in response to a TDV instruction.

A two digit decimal number (dd) representing the maximum number of
retries (REQ) after which a device error is returned to requester (value
obtained from requester's DCB), and another two-digit value (dd)
representing retry request minus the number of entries attempted (REM).
The range is between retry request and O. A 0 value indicates the
operation was tenn inated due to retry count rundown.

RPl through RP4 have unique meanings for each type of remote
term inal. See Tables E2 through E7 of Appendix E.

The hexadecimal code (xx) used by CP-V to identify the system
failure that has occurred. See Appendix C.

A hexadecimal value (xxxxxxxx) representing the physical disk
address last used to access this device.

A hexadec imal val ue (xxxxxxxx) representing the diagnostic infor­
mation returned from the device as a result of sending a "sense" order
to the device. The value has a 4-word maximum, depending on the
device.

A hexadec imal val ue (xxxx) representing the status (STAT) returned
in response to an SIO instruction, and another hexadecimal value
(x) representing the condition codes (CC) returned.

An EBCDIC value (eeeeeeee) identifying the site (specified at
SYSGEN).

A hexadecimal value (xx) indicating the degree of initialization:

1 - PO boot (initial)
2 - PO boot under the files
3 - System device boot (no recovery)
4 - System recovery
5 - Operator recovery

A hexadecimal code (xx) that differentiates several similar CP-V
software check codes. See Appendix C.

A hexadecimal value (xx) representing the status (STAT) of the I/O
subchannel received as a result of a TDV instruction. The first byte
of the second word of the status received from the device is:

o 1 2 3

where bit 1
bit 2
bit 3

indicates bus check fault if set to one.
indicates control check fault if set to one.
indicates memory interface error if set to one.
(Xerox 560 only).

Error Log List i ng Processor 73

!

Heading

SUBTYPE
xx

SYMB.
DCT
xx

SYSTEM
CP-V eee

TDV CUR
COMM DA
xxxxxx

---TDV-
STAT CC
xxxx xx

TIME
hh:nnn:ss:nnn

TIME LAST
DUPLICATE
hh :nnn:ss :nnn

TIME LAST
LOST ENTRY
hh:nnn:ss :nnn

TIME
RES
dd

---TIO­
STAT CC
xxxx x

--TRAPPED-­
INSTRUCT CC
xxxxxxxx x

---------TRAPPED----­
INSTRUCT CC EFF.ADRS
xxxxxxxx x xxx xxx xx

74 Error Log Listing Processor

Table 33. Error Log Entry Headings (cont.)

Description

A hexadecimal value (xx) indicating the type of copy error that
occurred. Type 01 indicates read error; i.e., the ghost ERR:FIL re­
ceived an error indication when reading the original error file.
Type 02 indicates read error end, meaning that subsequent error log
entries were correctly read from the original error file. Type 03 indi­
cates a length error; i.e., the original error file record length was
incorrect. Type 05 indicates incorrect time; i. e., the time of the
following entry is either out of range or goes backward. Type 06
indicates illegal entry type; i. e., the type code of the following
entry was found to be illegal by the ghost ERR:FIL.

A hexadecimal value (xx) representing the order in which the sym­
biont device is configured into the system; i. e., the DCT index of
the symbiont device.

Displays the operating system name (CP-V) and three EBCDIC char­
acters (eee) representing the system version specified at SYSGE N.

A hexadecimal value (xxxxxx) representing the current command
doubleword address returned in response to a TDV instruction. The
address is in doubleword form. Therefore it should be multiplied by
two to obtain the absolute word location.

A hexadecimal value (xxxx) representing the status (STAT), and a
hexadecimal value (x) representing the condition codes (CC) returned
in response to a TDV instruction.

The time the error occurred, in hours (hh), minutes (mm), seconds (ss),
and mill i seconds (nnn).

The time in hours, minutes, seconds, and milliseconds at which the
last duplicate of the preceding entry occurred.

The time of occurrance when the last entry was lost in hours, min­
utes, seconds and milliseconds.

A decimal value (dd) in milliseconds representing the resolution of
the time field of all error log entries; e.g., if the time resolution is
2, then the time value for all error log entries is accurate to two
mill iseconds.

A hexadecimal value (xxxx) representing the status (STAT) and a
hexadecimal value (x) representing the condition codes (CC) returned
in response to a TIO instruction.

A hexadecimal value (xxxxxxxx) representing the contents of the
location pointed to by the trapped instruction's address (INSTRUCT)
in the PSD, and another hexadecimal value (x) representing the trap
condition codes (CC).

A hexadecimal value (xxxxxxxx) representing the contents of the
location pointed to by the trapped instruction's address (INSTRUCT)
in the PSD; a hexadecimal value (x) representing the trap condition
codes (CC); and another hexadecimal value (xxxxxxxx) representing
the final address (EFF.ADRS) computed for the trapped instruction.

Table 33. Error Log Entry Headings (cent.)

Heading Description

UN A hexadecimal value (xx) representing the unit portion of the Xerox
xx 560 unit address.

UNIT A two-to-four EBCDIC character mnemon ic name identifying one of
NAME the following: CPU; MI (Memory Interface); PI (Processor Interface);
eeee MIOP (Multiplexed Input Output Processor); RMP {Rotating Memory

Processor}; CT {Communication Terminator}; SU (System Unit).

USER A hexadecimal value (xxxx) which is a unique number assigned by
LD. the system to the particular job or session.
xxxx

USER A hexadecimal value (xx) representing the index into internal system
NO. tables used to access user-specific information.
xx

VOLUME Four to six EBCDIC characters (eeeeee) that a user has supplied to
SERIAL identify a tape or private disk pack.
eeeeee

WORKSTATION A one to eight EBCDIC character name which defines the identity
NAME and characteristics of a remote station to the system. A workstation

eeeeeeee name is not necessarily associated with one fixed physical terminal.
The workstation name is specified when the remote terminal logs on.

message An operator message of up to 72 alphabetical characters.

Table 34. RB:FLAGS Structure

Bit Name 7670 2780 IRBT Meaning

0 BPBIT x x Block protect toggle (ACKO/ACK1).

1 IGBIT x x x Cards after IFIN were ignored.

2 MORBIT x Waiting for next portion of deck.

3 HUBIT x x x Line hung up.

4 PUNBIT x Punching is allowed.

5 DCBIT x x x WSN specified at SYSGEN.

6 HASPBIT x x x IRBT line.

7 SLVBIT x Th is system is slave.

8 ALBIT x x x RBLOG key-in done.

Error Log Listing Processor 75

Table 34. RB:FLAGS Structure (cont.)

Bit Name 7670 2780 IRBT Meaning

9 XP1BIT x Xl specified in Super.

10 2780BIT x x x 2780 line (may be changed to IRBT at logon).

11 IBM BIT x N3 specified in Super.

12 DIAlBIT x x x DIAL specified at SYSGEN.

13 EDISBIT x x x ERROR MAX on line.

14 OFFBIT x x x Do not connect line (RBX) - Set except at logon
for IRBT.

15 RBXBIT x x x Disconnect I ine now.

16 DUPBIT x x x 1 - full-duplex; 0 - half-duplex.

17 DISC BIT x x x Disconnect when output done.

18 lOFBIT x x x RBDISC sent (temporary setting).

19 SYSBIT x x x :SYS jobs legal.

20 HALBIT x x x HOLD all flag set.

21 ClKBIT x Wait before ACKO-idle.

22 ACT BIT x x x line logged on.

23 CRTBIT x RBBA T disables RBSSS.

24 XP2BIT x X2 specified in Super.

25 OADBIT x x x Set OFFBIT after disconnect.

26 FIABIT x x x RBCC altered the stream status.

27 SSSBIT x Inputting with output suspended.

28 LIPBIT x x x logging on.

29 FINBIT x FIN has been read.

30 EMBIT x x 1 - NOEM specified; 0 - EM specified.

31 OBBIT x Old BCB was read.

31 FRBIT x Initial read of file.

76 Error log listing Processor

SLiS A sorted listing is requested with the SLIS
command. The command has the form

SL[IS]

As in the chronological listing, the sorted listing includes
all qualified error log entries. In this listing, however,
entries are ordered by their type, and if they are peripheral
class errors, by their model number and I/O address also.

Error records are first categorized by ELLA as system, pe­
ri pheral or secondary records, (see T abl e 35). System records
and their associated secondaries are listed first. Except for
the system ID record and configuration record (which are
printed in front of all other records), system records are
I isted in ascending type code order as given in Table 35.
Secondary records are printed following their associated
primary records.

Peripheral class records are sorted in three phases. They are
first separated by model number and printed in ascending
model number order. All peripheral records with the same
model number are then separated and listed in ascending

device address order • Finally, all the records containing
both the same device address and the same model number are
printed in ascending type code order. Any secondary rec­
ords associated with peripheral class entries are printed
following the associated peripheral records.

Any secondary record that appears in the error fi Ie that can­
not be linked with a primary record through the above rules
of association wi" be printed after all peripheral records
and their associated secondaries under the heading

»>UNASSOCIATED SECONDARIES«<

Each time a record is listed that has a different device
address than that of the preceding record listed, a Model
Number/Address heading is produced under the heading

»>MODEL NO. :xxxx I/o ADDRESS; xxxx

where MODEL NO. is the 4-digit Xerox model number
designation of the device and I/O ADDRESS is the 4-digit
(hexadecimal) I/O address of the device.

An example of a sorted listing is given in Example 4.

Table 35. Error Log Entry Types

Type
Name Code Description

System Class

COPY ERROR 10 Recordedasaresultof error conditions in the errorlogging
mechanism. The particular malfunction is identified in the
subtype field (see SUBTYPE in Table 32). If the record sub-
type is 03, 05, or 06, the record is followed by the 64-word
buffer in which the error occurred.

PARITY ERROR 17 Recorded when program execution is interrupted to loca-
tion X'561 (MFI) on Sigma 6 or 7 or is trapped to location
X'4C' (parity trap) on Sigma 9 or Xerox 5«J.

SYSTEM STARTUP 18 Recorded when the system is booted and at each recovery.

WATCHDOG TIMER 19 Recorded when program execution traps to location X'46'
due to a watchdog timer run-out condition.

FILE INCONSISTENCY 1A Recorded when the operating system cannot access a file in
the file management system. The code displ ayed is described
in Appendix Bof the CP-V/BP Reference Manual, 90 17 64.

SYMBIONT INCONSISTENCY 1B Recorded when the operating system cannot access a
symbiont file in the symbiont fi Ie management system.

INSTRUCTION EXCEPTION 1D Recorded when program execution traps to location X'4D'
on Sigma 9 or Xerox 560 due to an instruction exception
condition.

LOST ENTRY 1E Recorded when error log buffering constraints, timing
considerations, and error detection rates force error log-
ging to be temporarily suspended or otherwise impossible.

Error Log Listing Processor 77

Table 35. Error Log Entry Types (cont.)

Type
Name Code Description

System Class (cont.)

POWER ON 20 Recorded when the hardware power monitor forces
program execution to trap to location XISI' as a result
of detecting a restoration of power condition. This
normally occurs as a result of a power outage of 500
milliseconds or more in duration.

CONFIGURATION 21 Peripheral device configuration data recorded when
ERRFILE is entered.

SYSTEM IDE NTIFICA TION 22 System information recorded when E RRFI LE is entered.

TIME STAMP 23 The date and time which is recorded when ERRFILE is
entered in the system and every hour on the hour.

BAD GRANULE RE LEASE 24 Recorded when either a bad disk address has been de-
tected or when the granule to be released is al ready free
(dual allocation).

REMOTE PROCESSING 26 Recorded when an error is detected in the transmission of
ERROR data to or from a remote processing workstation.

OPERATOR MESSAGE 27 A message entered by the operator through use of the
ERSEND key-in.

PROCESSOR FAULT INTERRUPT 30 Recorded when there is a processor fault interrupt (loca-
tion X'56') on the Xerox 560.

MEMORY FAULT INTERRUPT 31 Recorded when there is a memory fault interrupt (loca-
tion X'57') on Sigma 9 or Xerox 560.

PROCESSOR CONFIGURA TION 41 Processor configuration from Configuration Control Panel
(Xerox 560 only) recorded when the system is booted.

ENQUEUE TABLE OVERFLOW 50 Recorded to log specific information after the operating
system has detected an enqueue table o~erflow condition.

U NK NOWN TYPE = xx xx An unknown type code xx has been encountered by ELLA
in an error log entry.

Peripheral Class

SIO FAILURE 11 Recorded when the condition codes returned by the SIO
instruction are such that either CCl or CC2are true. Con-
ditions that indicate lOP busy, or lack of operator action
such as "device manual" may not be considered an error
condition (and in such case will not be recorded).

DEVICE TIME OUT 12 Recorded when the time-out value specified by OCT1l
has been exceeded.

78 Error Log listing Processor

Table 35. Error Log Entr}' Types (cont.)

I
Type

I Name Code Description

Peripheral Class (cont.)

I UNEXP. INTERRUPT 13 Recorded when no match can be found between the I/O
I address returned in the status reg ister by the AIO instruc-!

I tion and any DCn I/O address of a device known to be
busy. AIO CC =:. l1xx will not be logged.

I
-_._---------------------- -

DEVICE ERROR 15 Recorded when an 1;0 request is not successful upon one
, of the specified number of retries. (It mayor may not
! have eventuall y been successful.)
I ------------_._--_._-- ------ -.------------

i
PARTITIONED RESOURCE 51 Recorded when a resource has been partitioned from the

system.

rRETURNED RESOURCE
- --------.---- - --------.- ---------------_._------

52 Recorded when a previously partitioned resource has been
returned to the system.

Secondary Data Class

DEVICE ERROR 16 Recorded when nonzero sense data is available following
I SECONDARY a device error. ,

IoUPLICATE ENTRIES

--------------- --- .-_._-- -.-------------

1F Recorded when the error logg ing mechan ism detects
I

identical consecutive errors. This prevents the error log I
I from becoming saturated with redundant information.

I
SECONDARY POLL 32 Recorded for each nonzero pol I status r~ceived by the
RECORD processor poll ing routines.

---.--------------
MEMORY PARITY 42 Recorded for each memory un it that has recorded an error

I SECONDARY as determ ined by the memory poll ing routines (i. e., bits 22-

! 31 of status word zero are nonzero) for Xerox 560.

I
--,-

MEMORY PARITY 43 Recorded for each memory unit that has recorded an error as
~ SECONDARY determined by the memory polling routines (i .e., bits 22-
~
I 31 of status word zero are nonzero) for Sigma 9.
I -- f---------- '--------- --------_.

MEMORY PARITY 44 Recorded to log specific information obtained by scan-
SECONDARY ning memory to attempt to i;olate locations which cannot

sustain correct parity.

Example 4. Use of the SLIS Command

For this example, the following batch job deck was submitted.

~-------------------------------.------

!JOB, FEOPER, SITE 102, E

Error Log Listing Processor 79

In the resultant sorted listing below, all related entries are grouped together. This facilitate5 the scanning of the
error log that is necessary in order to determine the common characteristics of related failures that have occurred

over a period of time.

Note the OPERATOR MESSAGE entry in the listing.
operator's console by means of the ERSEND kef-in.

Such messages can be entered into the error log at the
(See the CP-V/OPS Reference Manual, 90 16 75.)

S 0 R TEn LIS TIN G

PROM 07/10/74 12:00:00.'lOO
Tn 1~/11,'99 21:59:59:999

••• FILE INCONSTSTEN(,Y • ••
OCT RELATIVE ERROR

TIME ACCOUNT INDEX SECT ADRS rlODE ORG
lfi:Ol:11:648 771731 09 0110 01 'l2
1n:4?:12:197 771731 09 0110 ')1 02

••• TIME STAMP • •• DATE=07/10/74 TIME=12:00:00:004
••• TIME STAMP ••• DATE=07/10/74 TIME=13:00:00:004
••• TIME STAMP ••• DATE = 0 7/1 0/74 TlME=14:00:00:004
••• TIME STAMP • •• DATE:a07/10/74 TIME=15:00:00:~04

••• TIME STAMP • •• DATE=07/10/74 TlME=16:00:00:006

••• OPERATOR MESSAGE •• • TIME = 14:22:03:782
9TA81 CAPSTAN DRIVE NOISY (JDR)

»>Mom:I, NO:7160 1/0 ADDRESS:0004 «<

••• SIO FAILURE •••
---Slo-

TIME STAT CC
07:02:28:922 21.42 5
15:05:21:166 21.42 6

---TDV­
STAT CC
2042 6
2042 6

SUBC TDV CUR
STAT COMM 01.
00 001179
00 001179

REr~

BYTES
004C
004C

CODE
757F
757F

HPI
00
00

••• DEVICE ERROR •••
---AIO- ---TIO­

STAT CC
1842 0

---TDV- TOV CUR REM I/O
TIME STAT CC
15:09:20:862 0048 6

STAT CC COMM DA BYTES HPI COUNT
2042 2 00118B 0000 on 0000000984

>,> 'MODEL NO: 7271 I/O ADDRESS 100EO «<

••• DEVICE ERROR •••
---AIO-

TIME STAT CC
12r5E:21:278 04586
15:42:55:694 0458 6
15:42:~5:906 0458 6

---TIO­
STAT CC
1842 0
1842 0
1842 0

••• DEVICE ERROR SECONDARY
I/O

---TDV- TOV CUR
STAT CC COMM 01.
0442 2 0011C7
0442 2 nOOA7E
0442 2 000A7E

REM
BYTES
ooon
0000
0000

TIME ADRS ---------SENSE INFORMATION---------
17.:56:21:284 OOEO OOF90A02 0305FSOO OOCAOOOO 00000000
15:42:55:700 OOEO 00E70500 0119FA02 80CAOOOO 00000000
15;112:55:910 OOE'! 00E70500 0119FAOE 03E20000 000001')00

80 Error Log Listing Processor

I/O
HPI COUNT
00 0000089148
00 0001)138032
00 0000138036

-------------FILE NAME-------------
RTRTEXT :V1 I J
RTRTEXT :Vl I 3

----CUR COMM DW-- -RETRY- VOLUME SUBC
I 2 REO REM SERIAL STAT SEEK ADRS

Q9008C70 2E000078 03 03 00 OOOOOOOB

--·--CUR COMM DW-- -RETRY- VOLUME SUBC
I 2 REO REM SERIAL STAT SEEK ADRS

02031800 lE000800 03 03 00 OOF90AOO
02075800 lE000570 08 08 00 OOE70404
02075800 1E000570 08 07 00 OOE70404

SUM The SUM command requests a summary of the
contents of the error fi Ie which I ists the total number (in
decimal) of qualified error log entries for each error type.
The command has the form

SU[M]

In addition to error totals, the summary contains an I/O
activity count for each device that has ellors recorded. 10

Example 5. Use of the SUM Command

!ELLA8
*sUM@l

ERROR SUMMARY

FROM 07/10/74 00:00:00:000
TO 12/31/99 23:59:59:999

SYSTEM ERRORS

TYPE
SYSTEr.f STARTUP
CONFIGURATION
SYSTEM 1.0.
TIME STAMP
FILE INCONSISTENCY

DEVICE ERRORS

10 SIO

ERRORS
1
6
1

UNEXP

16
2

DEV
MDL ADRS FAIL INTRPT ERROR
7140 A03 0 0 13
7160 A04 0 0 6
7322 ABO 0 0 78
7323 A83 3 0 3
7323 A84 0 0 4
7323 A85 0 0 6
7271 AEO 0 0 3
7232 BFO 0 0 2

TOTAL ERRORS: 00144

DEV
TIMEOUT

0
0
0
0
0
0
0
0

OISP The DISP command requests a graphical display
of error log entries. The DISP command has the form

DI[SP] [, interval]

where interval specifies the time interval, in minutes, to be
used for the graph. The interval specified may range from 1
to 60. The default interval is ten minutes.

The graph produced by the DISP command is a bar graph.
Each line begins with the end time of the interval, followed
by the 2-digit error type code of each error recorded during

ACTIVITY is the count of all SIOs issued to a given device
for the time period covered by the summary.

Unlike other listings produced by ELLA, logical device
addresses are used in the summary rather than physical ad­
dresses. For example, a device CRA03 would appear as
A03 and a device DCBFO would appear as BFO.

Example 5 provides an example of the SUM command.

10
ACTIVITY

0000014798
0000004906
0000227574
0000018295
0000021926
••••••••••
000016126R
000024R749

the interval. If the number of errors for a given interval
exceeds 30, then only the first 30 error type codes are
printed, and FF is printed at the end of the line.

Only qualified error log entries are included. Time Stamp,
Configuration, and ID entries are always excluded.

The first and last lines in the graph are the first and last
intervals within the TIME boundary that contains qualified
error log entries. The actual time period scanned is printed
at the beginning of the listing.

An example of a graphic display is given in Example 6.

Error Log Listing Processor . 81

Example 6. Use of DISP Command

The user in Example 5 continues as fol lows:

*DISP ,45@

G RAP HIe DIS P LAY

FROM 00/00/00
TO 12/31/99

TIME ERROR

OO:OO:OO:Of)O
23:59:59:999

-----0------------------10------------------20------------------10--
03:56 15
04:41 1A1A
05:26
06:11
06:56
07:41 15161515161615111516
f)8:26 1B11121515111515
09:11 15
09:56
1f):41
11:26
12:11 2715

END OF FILE

The distribution of errors over the scanned time period is more readUy apparent in this display than in the other, forms
of error fistings. This display is used to check for patterns and trends in error occurrences. The digits that form this
bar graph are in pairs. {e.g., the line 1 B11121515111515 contains eight digit pairs}. Each digi t pair represents one
error and the two digits are the type code of the error.

END The END command terminates ELLA and exits to
the mon itor. The format of the command is

E[ND]

SOU NDARY COMMANDS

The boundary commands are used to select specified portions
of the error fi Ie for display. In order for an error record to
be accepted for display, it must satisfy each boundary.
There are four boundaries:

• Time

• Model number

• D ev ice address

• Error type code

An error log entry will be listed by a subsequent task com­
mand if it was recorded within the time limits specified by

82 Error log listing Processor

the TIME command and if it has one of the error type codes
specified by the TYPE command. If the entry is a peripheral
class entry (see Table 33), it must also have a model number
fieldandan address field which agrees with one of the model
numbers and one of the device addresses specified by the
MOD and DEV commands respectively.

It is not necessary, however, to use any of the boundary
commands. If a boundary command is not used or a boundary
has been reset, all error log entries are considered to have
met the conditions of display for that boundary.

Boundary commands, if judiciously used, can be especially
helpful in minimizing ELLA output when the output listing
function has been assigned to a slow speed device such asan
on-line terminal.

RSET The RSET command resets all boundary parameters
to their default values. (The default values are given in the
subsequent boundary command descriptions.) The RSET com­
mand has the form

R[SET]

TIME The TIME command sets both date and time If the TIME command is not used (or if time and date are
reset by the RSET command) ELLA establishes the following
beginning and ending times:

boundaries. Error log entries are displayed only if they
occurred between the begin date and time and the end date
and time. The TIME command has the form

TI[ME][, beg in] [-end]
begin = 00/00/00, 00:00

where begin and end have the form
end = 12/31/99, one millisecond before midnight.

(The time is recorded internally in millisecond
increments.)

[month/day/yea~[, hour:minute]

or

[hour:minute][, month/day/yea~

where

month = 1-12

day = 1-31

year = 01-99

hour = 00-23 (24 hour clock)

minute = 00-59

If only one group (i.e., 'begin' or 'end') is entered under
the TIME command, the current state of the other group re­
mains in affect.

It is not necessary for both fields within a group to be
entered. If time is the only field entered in a group, then
the date for that group is the current day by default. Time
by default is a bit more complex. If the date field is the
only field entered for 'begin', then 00:00 is the time by de­
fault. If the date field is the only field entered for 'end'
then 1 millisecond before midnight is the time by default.

Examples of the TIME command are given in Example 7.

Example 7. TIME Command Usage

The following series demonstrates TIME command usage. Assume all of the TIME entries have been entered consecu­
tively at the console.

':TIME, 4/25/73-5/27/73 @)

The time limits have been set by the entry above as follows: starting time is 00:00 on 4/25/73, and ending time in
one millisecond before midnight on 5/27/73. The only error log entries that will be displayed by subsequent task
commands are those that lie between these two time points.

':TIME, 2:00- 8:00 @

The lim its have now changed so that the starting time is 2:00 AM on the current day (i. e., the day on which the ELLA
run is being made), and ending time is 6:00 PM on the current day. (When no date is entered, the current date is
implied.)

':TIME, 18:00-10:00@

This entry is illegal and will produce a diagnostic message because the starting time is later than the ending time.
The limits 2:00 and 18:00 from the previous entry are still in effect.

*TIME 00:00 @

Here the starting time has been changed to 00:00 on the current day. Since no ending time has been entered, the
previous ending time of 18:00 remains;n effect.

':TIME, 1/1/74-12:O0@

This sets the starting limit to 00:00 on 1 January 1974, and the ending limit to noon on the current day.

':TIME, -13:00@

Error Log Listing Processor 83

The previously entered starting limits (1/1/74) remain in effect because no starting parameter is entered here. The
ending limit is changed to 13:00 for the current day.

*RSET@)

ELLA time defaults are reestablished. The default is the entire time span of the error log •

.:nME, 12:00, 10/15/73-10/16/73, 12:00@)

Finally, the starting time is set to noon on 10/15/73 and the ending limit to noon on 10/16/73. Note that the order
of time and date entry is immaterial.

TYPE The TYPE command allows the user to select
error log entries for display by specifying an error record
type code (see Table 33). The TYPE command has the form

where

type is a hexadecimal error type code.

o specifies that the default (a" types) is to be
reestablished.

. If error log entry types have been specified via the TYPE
command, error log entries are displayed only if they have
a type code equal to one of the types specified. Up to five
types may be specified for display at one time.

If the TYPE command is not used, records of all types are
displayed (including any records that may have illegal type
codes). Displaying all types is the default condition. Hav­
ing once used the TYPE command, the default condition
may be reestablished by entering TYPE, 0 or by using the
RS ET comm and.

Each time the TYPE command is used, the previoualy spe­
cified types are replaced with the newly entered types.

DEV The DEV command selects error log entries for
display by specifying up to five I/O addresses. The DEV
command has the form

DE [VJ,{O }
address 1 [, ••• address

5
]

where

address is a 1 to 4-digit hexadecimal physical I/O
address. (Leading zeros in the address need not be
specified.)

o specifies that the default (all devices) is to be
reestablished.

Up to five physical I/O addresses may be specified. Each
time the DEV command is used, the previously specified ad­
dresses are replaced with the newly entered addresses.

If this command is not used, records are displayed without
regard to their associated device address. This is the default

84 Error log listing Processor

condition. Having once used the DEV command, the default
condition may be reestablished by entering DEV,O or by
using the RSET command.

When particular device addresses have been specified through
use of the DEV command, error log entries classified as sys­
tem records (see Table 33) are not displayed, and a peripheral
class entry is displayed only if the device address field in
that entry is equal to one of the addresses specified by the
DEV command.

MOD The MOD command selects error log entries for
display by specifying up to five model numbers. When par­
ticular model numbers have been specified through use of
the MOD command, error log entries classified as system
records (see Table 33) are not displayed, and a peripheral
class entry is displayed only if the model number associated
with that record is equal to one of the model numbers spe­
cified by the MOD command. The MOD command has the
form

M[OD], {O }
model 1 [, ••• modeI5]

where

model is a 4-digit model number (e.g., 7446,7271).

o specifies that the default (all models) is to be
reestablished.

Each time the MOD command is used, the previously spe­
cified model numbers are replaced with the newly entered
model numbers.

If this command is not used, records are displayed regardless
of their associated model number. This is the default con­
dition. Having once used the MOD command, the default
condition may be reestablished by entering MOD,O or by
using the RSET command.

Examples 8 through 12 demonstrate the use of the MOD,
DEV, and TYPE commands for selecting specific portions of
ERRFILE for display. The examples are consecutive portions
of one continuous on-line session. In these examples, the
user has chosen to display everything at the terminal. This
means that the user will be able to see the output immedi­
ately, but the user must make judicious use of this rather
slow output device.

Example 8. Use of the MOD, DEY, and TYPE Commands

Assume that the user had already requested and received a summary of the error file (which would be a logical first
step). The user then proceeded to display the operator messages present in the error fi Ie •

• TYPB, 27@)
·CLIS@>

C n RON 0 LOG I CAL LIS TIN G

TYPE =27
FROM 00/00/00 00:00:00;'00
TO 12/31/99 23:59:59~:;99

••• OPERATOR f.1ESSAGE ••• TIME
9TA81 CAPTSTAN NOISY (JBR)

12:33:00:079

Note that the TYPE parameter is listed at the beginning of the display because TYPE is no longer set to the default.

Because only one type of error was requested, the terminal is a practical display device. If more than one type of
error is requested, a slightly different procedure can be used as shown in the next example.

Example 9. Use of the MOD, DEV, and TYPE Commands

The user from the previous example next desired to examine some system failures. Note that the new TYPEs entered
in this example replace the old TYPE entered in the previous example.

When more than one type of error is requested, a sorted listing often reduces the time required for output. This, is due
to the fact that ELLA only prints headings when a new type of entry is to be listed and SLIS groups all related entries
together •

• TYPE, 18, 1B@)
.SLIS8

S 0 R TED LIS TIN G

TYPE =18 1B
FROM 00/00/00
TO 12/31/99

00:00:00:000
23:59:59:999

••• SYSTEM STARTUP •••
START

TIME DATE TYPE
09:32:00:000 07/10/74 04
12:05:00:000 07/10/74 01
17:21:00:000 07/10/74 05

···SY1-1BIONT INCONSISTENCY···

RECOV
COUnT

01
01
02

OCT REL. SYHB •
TIME
11:29:08:406
16:01:13:648

INDEX SECT. DCT
09 OOAO 02
09 0110 02

SCREECH SUB-
CODE CODE

19 00
00 00
00 00

Error log Listing Processor 85

Example 10. Use of the MOD, DEV, and TYPE Commands

The user proceeded as follows:

*TYPE, 17@)
*DEV, 1FO@)
*CLIS@)

No output was produced because TYPE 17 and DEV X' 1FO' are mutually exclusive. Type 17 (Parity Error) is a system
class error while device X' 1FO' implies that peripheral class errors are desired. Entering either MOD or DEV values
precludes the display of any system errors (only peripheral class errors wi" have model or device address information,
and all four boundaries tests - MOD, DEV, TYPE, and TIME - must be passed for an error log entry to be displayed).

Example 11. Use of the MOD, DEV, and TYPE Commands

The user next decided to examine SIO fai lures on several devices.

*TYPE, 11@)
*DEV,4,81,82,83@)
*CLIS@)

C II RON 0 LOG I CAL LIS TIN G

TYPE =11
DEV =0004 0081 0082 0083
FRON 00/00/00 00:00:00:000
TO 12/31/99 23:59:59:999

*** SIO FAILURE ***
I/O ---5IO-

TIME MDL ADRS STAT CC
12:36:30:782 7323 0083 2000 6
12:37:29:518 7323 0083 2000 6
12:4r):10:398 7323 0083 20f)O 6
**BREAI<
*

---TDV-
STAT CC
1000 6
1000 6
1000 6

SURC TDV CUR RE~·f

STAT COr'lr1 DA BYTES r1FI
00 0()11B7 OOr)1 00
Of) Or)11B7 r)001 'l'l
f)() f)011B7 'lO'l1 Of)

After examining several of the failures on device X'0083 1
, the user realized that no new information would be gained

by listing the remaining errors. Therefore, the user interrupted the listing process by activating the BREAK key at the
terminal.

86 Error log Listing Processor

Example 12. Use of the MOD, DEV, and TYPE Commands

Finally, the user summarized, in graphic form, all Model 7322 and 7323 failures that occurred on the current day.

*DEV,O"@)
*TYPE,O 8
*MOD,7322,73238
*TIME, 00: OO@
*DISP@)

G RAP HIe DIS P LAY

MODL =7322 7323
FROM 02/09/74 00:00:00:000
TO 12/31/99 23:59:59:999

TIME ERROR
-----0------------------10------------------20------------------3~--
09: 11 11
09:21
09: 31
09:41
09:51
10:01
10: 11
10:21
10: 31
10:41
10:51
11:01
11 : 11
11:21
11 : 31
11:41 1516151516161115151616
11:51 1315161516
12 :01
12:11
12: 21
12:31 1516

END OF FILE

DSPL The DSPL command displays the current state of
those ELLA parameters that are alterable by the boundary
commands. The date and time boundaries are always listed
by this command. Each of the remaining boundaries will
also be listed unless its current state is its default state.

The DSPL output is printed both on the output I isting device
and the command input device. In batch operation, DSPL
output is only directed to the output listing device since
the input device is the card reader.

The format of the command is

DS[PL]

An example of the command is given in Example 13.

PREDEfiNED TASKS

This section contains a set of predefined tasks that should
be useful to the person who needs periodic error log reports,
but has no need for a more precise knowledge of the ELLA
processor's command structure. These tasks could be main­
tained as job decks (as illustrated here), or the commands
might be entered into a file to facilitate on-line submission
to the batch stream (see the TEL BATCH command in the
CP-V/TS Reference Manual, 9009 07). The account from
which these jobs are run must have a diagnostic privilege
level (AO or higher). The tasks are listed in Examples 14
through 16.

Error log listing Processor 87

Example 13. Parameter Display

The on-line user may check the current state of the ELLA boundaries conveniently with the DSPL command. If the
listing device has been assigned to a line printer, the boundary information will be displayed on both the line printer
and the user's terminal.

~RSET@

~SET ,LIST, LP @)
~DSPL @
FROM 00/00/00
TO 12/31/99
~TYPE , 11 , 12 , 15 @)
~DEV ,El@)
~DSPL@)
TYPE =11 12 15

DEV=OOEI
FROM 00/00/00
TO 12/31/99

00:00:00:000
23:59:59:999

00:00:00:000

23:59:59:999

Example 14. Listing the Entire Error File

The following deck obtains an error summary and a chronological listing of the entire contents of the error file.

! JOB account, name, priority

88 Error Log Listing Processor

Example 15. Listing Errors for the Current Day

The following job deck obtains an error summary, a chronological listing, and a sorted listing of the errors recorded
by the system on the current day. If error log reports are to be obtained daily, it is recommended that this job be run
at the end of the processing day.

! JOB account, name, priority

Example 16. listing Start-Ups, Configuration, and Device Partitioning Activity

The following job deck obtains all the configuration data together with system start-up, partitioned resource, and
returned resource entries in chronological order.

!JOB account, name, priority

Error Log Listing Processor 89

ELLA MESSAGES

Messages output by the ELLA processor are listed in
Table 36.

ELLA COMMAND SUMMARY

ELLA commands are summarized in Table 37. The left-hand
side lists the command formats. The right-hand side de­
scri bes the function of the command.

Table 36. ELLA Messages

Message Meaning

ABNORMAL ERROR CODE = xx An abnormal condition was detected in issuing a system CAL
SUBCODE = xx The abnormal code and subcode are described in the CP-V/BP

Reference Manual, 90 17 64, (and the CP-V/TS Reference
Manual, 90 09 07). See the system analyst.

BREAK The BREAK key was depressed. ELLA stops processing and waits
for a new command.

ELLA 708006-AOO This heading is output when ELLA is first loaded.

ERRFILE IS BUSY, WILL TRY AGAIN ELLA tried to access the error log fi Ie and found it busy.

**ERRLOG NON-EXISTENT The ERRFILE file does not exist. See the system analyst.

ERROR IN KEY FORMAT An ERRFILE entry had an erroneous key. See the system analyst.
(YEAR/DATE NOT IN PACK DECIMAL)

ERROR IN SYSTEM TIME The time in the error log file was not logical. See the system
analyst.

ERROR OCCURRED: CODE = xx An error was detected in issuing a system CAl. The error code
SUBCODE = xx and subcode are described in the CP-V/BP Reference Manual,

90 17 64, (and the CP-V/TS Reference Manual, 90 09 07). See
the system analyst.

ERROR: TIME. GT. The time in an error log entry was greater than 99 hours, 59
99:59:59:999 minutes, 59 seconds, or 999 milliseconds. See the system anal yst.

ERROR: TOO MANY CHARACTERS OR ELLA tried to output more than 132 characters to the line printer.
LINES See the system analyst.

INSUFFICIENT PRIVILEGE LEVEL ABORT ELLA requires an AO or higher privilege level.

INVALID REQUEST The command entered was invalid.

NON-REASSIGNABLE Once the operator's console is assigned as the control device, it
cannot be reass igned.

NOTHING IN ERRFILE ERRFILE does not contain any records.

**OVERFLOW OF SORT OR MOD/IO ELLA will only support 50 unique I/O addresses. Use the
TABLES boundary commands to restrict the number of I/O addresses.

UNABLE TO LOAD SEGMENT = nn ELLA tried to load overlay number nn and an error was detected.
See the system analyst.

90 Error log listing Processor

Table 37. ELLA Command Summary

Format

C[LIS]

DE[V], {O }
address 1[' .•. , addressS]

DI[SP] [, interval]

DS[PL]

E[ND]

M[OD],{O }
model 1[' .•• , modelS]

R[SET]

SET, LIST, {~~}

SL[IS]

SU[M]

TI[ME][, beg in][-end]

TY[PE], {O }
typel~··· typesl

HARDWARE-ERROR DIAGNOSTIC CALS

Description

Requests a chronological I isting of the error entries in the order
in which they appear in ERRFILE.

Selects error log entries for display by specifying up to five
physical device I/O addresses or (if 0 is specified) specifies that
error log entries for all devices are to be displayed.

Requests a graphical display of error log entries.

Displays the current state of the four types of boundaries.

Terminates ELLA and exits to the monitor.

Selects error log entries for display by specifying up to five model
numbers or (if 0 is specified) specifies that error log entries for all
models are to be displayed.

Resets all boundary parameters to their default values.

Reassigns the listing and message output device assignment during
execution of ELLA. LP specifies line printer. KP specifies oper-
ator's console for the ghost and batch modes and on-line terminal
for the on-I ine mode.

Requests a sorted listing of the error log entries.

Requests a summary of the contents of the error file which lists
the total number (in dec imal) of error log entries for each error
type.

Sets both the date and time boundaries where begin and end have
the form

[month/day/year][, hour:minute]

or

[hour:m inute] G month/day/year J

Selects error log entries for display through the specification of
error record type codes (see Table 33) or (if 0 is specified)
specifies that all types are to be displayed.

These three services are all invoked by a CAll, 6 fpt in­
struction; the addressed FPT contains a code and a parameter.
The FPT codes and the functions performed are as follows:

The following three CALs are intended for use by the monitor
in performing diagnostic functions relating to the hardware­
error log and must be issued by a program from the :SYS
account. They provide the following services: reading from
the hardware-error log, writing to the hardware-error log,
and initiation of diagnostic ghost jobs.

FPT Code

o
1
6

Function

Read Error Log
Write Error Log
Initiate Ghost Job

Hardware-Error Diagnostic CAts 91

The status of the requested operation is reported via
condition-code settings summarized below. (Not all of the
status indicated are appropriate to, or reported by, all
three CA Ls.)

CC 1 CC2 CC3 CC4 Status

o o

·1 o

o

o o

o o

o

o

o

o

o Norma I return.

o Request denied: insufficient privi­
lege, not in :SYS account, or buffer
is not a data page.

o Error during operation (Read or
Write), or job unknown (Initiate).

o Last buffer.

Error log does not yet exist (Read).

In each case, the calling program must be of privilege level
CO or greater; otherwise CC 1 is set to 1 and no action is
taken.

READ ERROR LOG

The format of the FPT for a read-error-Iog request is

A variable number of words up to a maximum of 256, de­
pending upon the contents of the error log, is read to the
area addressed by the FPT. This is a 'destructive ' read,
returning error-log granules to the monitor's avai lable pool
as they are exhausted.

The error-log file is not protected against simultaneous use;
thus only one program in the entire system should read this
file.

92 Hardware-Error Diagnostic CAts

WRITE ERROR LOG

The format of the FPT for a write-error-Iog request is

The second byte of the data record addressed by the FPT
must specify the number of words to be written, up to a
maximum of 253. The first byte of the record should con­
tain a type code.

INITIATE GHOST JOB

The format of the three-word FPT for an initiate-job request
is

word 0

words 1 and 2 (Name of job to be initiated)

n a
1

a
2

a
3 ..

a
n-3 a n-2

a
n-1

a
n

0 I 2 314 5 6 7 8 9 10 11112 13 14 15 16 17 18 19120 21 22 23 24 25 26 271282930 31

(Name of job must be in TEXTC format.)

If the program to be initiated is al ready in execution at the
time of the request and is not in a waiting state (WAIT CAL
with unexpired time), the normal return is made (CCI =0).
If the program is in a waiting state, it will be activated
immediately at the WAIT CAL plus 1 and a normal return is
made to the initiating program.

7. SHARED PROCESSOR FACILITIES

INTRODUCTION

This chapter describes the shared processor facilities of
CP-V. These facilities permit the sharing of the code for
compilers, assemblers, command language processors, de­
buggers, libraries, and other programs among all simulta­
neous users.

Shared processors are not limited to programs provided
by Xerox. The facilities may be effectively used when­
ever a program has a high probabil ity of common usage.
Service bureaus, for example, may use the mechanism for
proprietary packages. Corporate installations may use the
mechanism for programs with a high use frequency.

Most programs may be establ ished as shared processors by
naming them at SYSGEN time. This causes the file copy
of the program from the :SYS account to be written on the
swapping disk during system initialization. The program is
then available through high-speed swapping I/O.

The file copy of the program is retained for recovery pur­
poses and may be copied to another account and run as an
unshared program under Delta for development and debug­
ging purposes. If the load module in the :SYS account is
replaced, the shared copy of the program on the swapping

. disk is updated to the newer version in the event of a sys­
item recovery.

To qualify as a shared processor, a program must meet cer­
tain requirements. These requirements are outlined in the
remainder of this chapter. The most stringent requirement
relates to the single overlay level that is described in the
section below titled "Overlay Restrictions".

To avoid confusion, the use of processor names which re­
semble monitor mnemonics is discouraged. However, if such
names are used, the following rules must be followed:

1. If the first three characters of the processor name are
JOB, BIN, BCD, EOD, or FIN, then usage of that pro­
cessor in the batch mode requires that at least one blank
appear between the I and the processor name on the
control command which calls the processor.

2. The names of monitor control commands (listed in the
CP-V/BP Reference Manual, 9017 64) are reserved words
and must not be used as processor names.

PUBLIC PROGRAMS

A program whose load module is in the :SYS account but is
not shared is a publ ic program in the sense that it may be
called either by a control card containing the ! symbol and
the program name, or by an entry of the program name in
response to a TEL prompt (I) for commands. Each user of a
public program has his own copy of the program.

PROCESSOR PRIVILEGES

Processors in the :S YS account and shared processes may be
granted special privileges which are independent of the
user's privilege level and are in effeCt only when the pro­
cessor is executing. For shared processors, privileges are
specified on the :SPROCS command at SYSGEN or on the
DRSP command which enters the processor. Privileges for
unshared processors are specified when the load module is
loaded, using the PRIV keyword. The privilege flags be­
come part of the load module and are invoked when the
load module is executed. Load module privileges will not
be granted by the monitor unless the load module resides in
the :SYS account when it is executed.

The following privileges are implemented:

1. Master mode permission - can execute M:S YS or
M:MASTER CALs.

2. Maximum memory protection - can exceed user's
memory limit to a maximum of 92K words.

3. Special JIT access - allowed write access for JIT page.

4. Processor accounting-causes CPU time to be subtotaled
separately from user execution and service time. It
will be subtotaled as processor execution and service
time. (This is always done for shared processors.)

SHARED PROGRAMS

Shared programs are called in the same manner as publ ic
programs. However, each user of a shared program has his
own copy of only the data and DCB portion of that program;
the procedure portion is shared by all users associated with
the shared program.

There are four distinct kinds of shared programs:

1. Ordinary shared processors.

2. Special shared processors.

3. Shared debuggers.

4. Publ ic libraries.

All shared processors must be buil t by the batch loader.
Ordinary shared processors occupy the same virtual memory.
as user programs and may not be associated with them.

Special shared processors, shared debuggers and publ ic I i­
braries occupy (and are overlayed in) the special processor
area. Figure 11 shows the virtual memory allocation for
shared programs that are biased within the special processor
area. Shared debuggers may be associated only with user
programs; they may not be associated with any other shared
processors. Public I ibraries may be associated with user

Shared Processor Facil ities 93

OK 32K 40K 112K 128K

Available area Special processor area
Monitor Context
area area

(User program or dynamic data)
Data I DeBs 1 Procedure (if any) I (if any)

Figure 11. Special Processors - Virtual Memory

programs or ordinary shared processors; a public library may
not be associated with a special shared processor. Note
that both a shared debugger and a core I ibrary may be con­
currently associated with a user program. This is possible
because the procedure portion of the debugger and the
library may be overlayed in the special processor area.

LOG-ON CONNECTION

Commonly used programs, such as BASIC, may be called
automatically by LOGON. The name of the program to be
called, which maybe either a shared or public program from
any accessible account, is establ ished in the user's author­
ization record by Super. LOGON calls the named program
for the user following a successful log-on.

SHARED PROCESSOR PROGRMWING

The programming of shared processors may require certain
. information about the CP-V monitor. This information is
outlined below.

2A

2B

4F

fiXED MONITOR LOCATIONS

For certain purposes, such as the choice of an effective core
allocation technique, it is desirable for processors and other
programs to be able to identify the monitor in operation,
certain critical locations of the monitor, and the location
of job information table (JIT). This is accomplished by
having locations 2A, 2B, and 4F common to all Xerox mon­
itors. Figure 12 illustrates the contents of these locations.

Location 2A contains a flag that differentiates between an
initial boot {nonzero} and a recovery boot (zero).

Location 2B contains three items:

1. Monitor - This field contains the code number of the
monitor. The codes are as follows:

Code Monitor

o None or indeterminate
1 BCM
2 RBM
3 RBIv\-2
4 BPM
5 BTM/BPM
6 UTS
7 CP-V
8 CP-R
9-F Reserved for future use

Figure 12. Locations Common to All Monitors

94 Shared Processor Programming

2. Version - This is the version code of the monitor and is
coded to correspond to the common des ignation for
versions. The alphabetic count of the version desig­
nation is the high-order part of the code and the version
number is the low-order part. For example, AOO is
coded X'10 ' and 002 is coded X'421.

3. Parameters - The bits in this field are used to indicate
suboptions of the monitor. They are meaningful only
In relation to a particular monitor. However, the fol­
lowing assignments have been made for BPM, BTM,
and CP-V.

Bit(s) Meaning

31 set Symbiont routines included.

30 set Remote processing routines
included.

29 set Real-time routines included.

28 set Unused.

27 set Reserved for Data Manage­
ment System.

26 set Reserved.

22,23,24 reset; 25 set Computer is Sigma 6 or 7.

22,23 reset; 24 set;
25 reset Computer is Sigma 9.

22,23 reset; 24 set;
25 set Computer is Xerox 560.

18 set Multiprocessing capability
present.

17 set Transaction processing rou­
tines included.

16 set On-line system.

Location 4F contains the virtual JIT address right-justified.

I JOB INFORMATION TABLE (JIT)
I .

For each active fob, the system maintains an in-core record
(job information table) that allows the job to be scheduled
and swapped. This job information table (JIT) is the first
page of each lob, both in core and on the swapping disk,
and contains accounting information, memory map, swap
storage, addresses, and other information for the job that
may be of use to a' processor. t In order to reference these

tWith respect to accounting, only shared processors or load
modules with the "processor accounting" privilege are pro­
cessors, i. e., time spent compiling a COBOL program is
accounted under "user time" while time spent in FORTRAN,
PCl, etc., is considered "processor time".

values, the processor should REF the required symbol and
then specify that :JO, the JIT definition package, be loaded
along with the processor. The entire JIT is available on a
read-only basis to all programs including processors. Con­
tents that are particularly useful to processors are given in
Table 38. The complete contents are described in the CP-V
Data Base Technical Manual, 90 1995.

Table 38. Partial Contents of JIT

Location Size Contents

J:JIT

(bit 0) 1 bit Set if the job is on-line and
reset if the job is batch.

(bit 1) 1 bit Set if the job is a ghost job.
For example, the meaning of
bits 0 and 1 is as follows:

00 batch job

01 ghost job

10 on-I ine

(bit 2) 1 bit Set if user is a non-COC
on-I ine user. (Bit 0 also
set.)

(bit 3) 1 bit Reserved.

(bit 4) 1 bit User is executing from a
command fi Ie.

(bits halfword Job identification number
16-31) that is guaranteed to be uni-

que to each currentl y exe-
cuting job.

JB:LPP byte Number of printable lines
per page (COC).

JB:LC byte Current print line number
(COC).

J:OPT word Option flags set by TEL and
affected by the I DONT I
modifier.

J:CCBUF 20 words Image of the command line
received by TEL.

JB:CCARS byte Length of command line
received by TEL.

J:USER 2 words On doubleword boundary for
any use by installation.

M:UC 22 words Console I/O DCB (system
DCB).

Shared Processor Programming 95

MEMORY CONTROL :

No special memory restrictions apply to programs operating
as shared processors. In CP-V, as in any other time-shared
or multiprogrammed system, prudent use of memory can sub­
stantiall y improve system throughput. Requests for all avail­
able memory should be avoided. A request for enough
memory to cover typical processing should be made initially,
then a request for additional memory should be made during
processing if the need arises. Memory should be returned to
the system at major changes of contro!, but the frequent
acquisition and release of memory will increase system over­
head out of proportion to the gain.

OVERLAY RESTRICTIONS

Any processor intended for shared use may be created and
debugged as an ordinary program. It may be coded in as­
sembly language and debugged under Delta or created in
FORTRAN and debugged with FDP. To qualify for inclu­
sion as a shared processor, it must be coded within the
following restrictions:

1. Shared processors are allowed only one level of over­
lay. There is no restriction on the number of overlays
but only one of them can be associated at a time.

2. Data cannot be included in overlays; it must be in the
processor root.

3. Overlay names are restricted to seven characters or
less.

4. All parts of an overlay disappear from core when an­
other overlay is called. (Portions of a previously used
overlay are not available when a shorter overlay is
invoked.)

5. Shared processors written in FORTRAN must be pre­
ceded by some Meta-Symbol code that associates the
library and links to the FORTRAN code.

6. The root must be greater than one page in length.

When an overlayed shared processor is requested, the pro­
cessor root and its first overlay are loaded. Assembled data
and DeBs are loaded when the root is loaded. Whenever
overlays are not required, memory usage can be held down
by declaring an overlay length of zero and issuing a CAL to
associate that overlay.

Overlays are declared and associated in the same way as
they are for batch programs (CP-V IBP Reference Manual,
90 1764). TREE command cards and M:SEGLD remain the
same. CSECT 2 and 3 are converted to CSECT 1 by CP-V
loaders.

Shared debuggers (Delta is the only current example) must
have only one page of context and no overlays. They re­
side in the special virtual area of high memory that is cur­
rently fixed in virtual (not physical) size in the highest
16K of virtual storage. They may be any physical size less
than 16K including their context page.

96 Shared Processor Programm ing

I DATA CONTROL BLOCKS

fv40st processor I/O operations are performed through stan­
dard monitor DCBs. For example, source input is norm­
ally read by

M:READ M:SI[options]

The standard DC Bs are

M:BI

M:CI

M:EI

M:SI

M:C

M:BO

M:CO

M:DO

M:EO

M:LO

M:SO

M:PO

M:AL

M:LL

M:OC

M:SL

M:GO

The default assignment of monitor DCBs is the operational
label of the same name (M:DO is assigned to DO, etc.).
The default assignment of operational labels to devices is
shown in Appendix A. These assignments may be changed
at SYSGEN. The default assignments for batch operations
differ from those of on-I ine operations. This is done so that
a program that writes through LO and reads through 51 will
automatically use the line printer and card reader for batch
operations and the terminal for on-line operations. The
logical functions associated with the operational labels are
described in the CP-V/BP Reference Manual, 90 1764.

Details concern ing input buffers, error handl ing, and so on
are specified as parameters in a read or write call. Param­
eters associated with files and devices are specified by the
ASSIGN (batch) or SET (on-line) control command.

A processor may construct its own DC Bs by means of the
M:DCB procedure. However, processors are not required
to construct DCBs. DCBs not constructed by a processor
will be constructed by the loader. Standard DCBs con­
structed by the loader occupy 51 words and are connected
to a device either by the loader or by an on-line user by
means of special terminal commands. The M:DCB procedure
must be used if optional parameters such as read or write
accounts exceed the allocation of the standard DCBs
(Table 39).

DCBs are also provided in library form and may be explicitly
called during a load. The sizes of these DCBs are shown in
Table 39.

Processors may use nonstandared DCBs, if necessary. Non­
standard DCBs are constructed by the loader if not con­
s tructed by the processor. They must be expl ic i tl y conn ected
to a device either by an M:OPEN call in the processor or
by a SET command issued by an on-line user since no default
assignment via operational labels is provided.

It is common practice for a processor to obtain source input
through M:SI, to print a source I isting through M:LO, and
to print diagnostic output through M:DO. However, pro­
cessor I/O operations are complicated by the fact that an
on-line user can connect SI, LO, and DO either to different
devices or to the same device (the on-line default assign­
ment for SI, LO, and DO is the terminal). In particular, a
user may connect two or more of these standard operational

labels to the same device. For this reason, processors must
take precautions to avoid duplications in printed output.
This means that processors must know at all times whether
they were called in batch or in on-line mode and what
specific device connections have been made for standard
OCBs.

Processors may examine OCBs directly to determine when
the DCBs are connected to the same device. Fields within
a DCB may be referenced relative to the name of the DCB.
Fields that may be useful to processors are as follows:

FCD

TYPE

Bit 10 of word 0 of a DCB. This is the file­
closed flag. A 1 means the associated file
is open; a 0 means the file is closed.

Bits 18-23 of word 1 of a OCB. These bits
specify a code for the type of device con­
nected to the DCB (printer, terminal, card
reader, etc.).

DEV Bits 24-31 of word 1 of a DCB. These bits
specify an index to the monitor device table.

Under CP-V, all device assignments are direct. This means
that DEV always contains a direct device assignment. A
complete layout and description of DCBs is contained in the
CP-V/BP Reference Manual, 90 1764.

Table 39. Standard OCBs

Pass- Expiration Read Write Execute Execute Synonymous Key Total
Name Device Name Account word Date Accounts Accounts Accounts Vehicle INSNS OUTSNS Name Buffer Words

Loader 22 4 3 3 3 0 0 4 4 0 8 51
Built
DeBs

M:C 22 22

M:OC 22 22

M:BI 22 9 3 3 3 4 8 52

M:CI 22 9 3 3 3 4 8 52

M:SI 22 9 3 3 3 4 8 52

M:EI 22 9 3 3 3 17 17 17 4 4 9 8 116

M:BO 22 9 3 3 3 17 17 4 8 86

M:CO 22 9 3 3 3 17 17 4 8 86
--

M:SO 22 9 3 3 3 17 17 4 8 86

M:PO 22 9 3 3 3 4 8 52

M:LO 22 9 3 3 3 4 8 52

M:LL 22 9 3 3 3 4 8 52

M:DO 22 9 3 3 3 4 8 52

M:GO 22 9 3 3 3 8 48

M:EO 22 9 3 3 3 17 17 17 4 4 9 8 116

M:SL 22 4 3 3 3 8 43

M:AL 22 4 3 3 3 8 43

Shared Processor Programming 97

The same effect can be obtained by the eORRES device
CAL, but the CAL is much slower than the direct compar­
ison. The direct comparison of the combined TYPE-DEV
fields is meaningful only if the DCB has been opened. This
means that processors must explicitly open DCBs for which
device assignments will be tested.

rom specifies that the relocatable object module
produced by the processor is to be directed to a
specified file (fid). If no file is specified, out­
put is directed to a special file that may be sub­
sequently referenced by a dollar sign.

list specifies that a file (fid), a line printer (lP),
or the terminal (ME) should be used for listing.
If I ist is not specified, no I isting output is

FILE IDENTIFICATION I produced.

All on-I ine processors use a common format and common
character set for constructing file identifiers (fid). The
standard format is

[

.account]
name • account. password

•• password

where name, account, and password consist of character
strings with maximum lengths of 11, 8, and 8, respectively
(name has a maximum of 13 characters for eCI, Edit, and
PCl and a maximum of 10 characters for Link bnd load).
Any of the fo IIowi ng characters may be used:

A-z a-z 0-9 L..J $ * % # @ -

lowercase alphabetical characters are not available on all
terminals (e.g., Teletype Models 33 and 35). If lowercase
letters are sent to these terminals, they are printed in upper
case.

Account and password are optional. If account is omitted,
the log-on account is the default account. If password is
omitted, no password is required to access the file.

TEL SCAN

A processor call entered through a terminal via TEL has the
form

1m [sp] [g~ER (rom][,list]]

where

1m is the name of the processor and is a file identi-
fication (fid). Account :SYS is assumed.

sp specifies a source program and may be either a
fi Ie identification (fid) or a terminal identifica­
tion (ME).

ON indicates that ROM output is to be on a new
fi Ie.

OVER indicates that ROM output is to be over an
existi ng fi Ie.

98 Shared Processor Programming

, These specifications are implicit ASSIGN and SET commands
for the DeBs M:SI, M:GO, and M:lO. A processor call
causes the specified processor to be executed with M:SI DCB
inputfrom the file sp. Processor output through M:GO DCB
is placed in the file specified by "rom" and listing output
(M:lO DCB) is directed to the fi Ie or device specified
by II list ". Processor ca lis are interpreted by TEL.

Parts of a processor call may be enclosed in parentheses.
TEL does not do anything to these parts of a processor call.
However, the processor may exam ine these and other parts
of the command line that is in its JIT buffer (J:CCBUF).

Processors may reside in storage in three forms:

1. System swap storage contains absolute shared copies
of frequently-used processors. These copies can
be located and loaded quickly. The absolute shared
processor file is created during system initialization and
contains reentrant processors that are shared among
all concurrent users.

2. The :SYS account may also contain copies of processors
in load module form. Processors in this form cannot be
loaded as quickly as absolute processors, but the :SYS
account may be useful during processor construction,
debugging, and extension. Public programs in the
:SYS account may be called by entering their names in
TEL commands or on control cards.

3. A user may store his own processors or his copies of
system processors in his own files (account). A pro­
cessor stored in a user's file area is identified by its
file name and may be called by the RUN command
in batch or START command in on-line operations.

When TEL encounters a processor call, it issues an exit CAL
specifying the requested processor. The monitor routine
STEP checks to see if this user has any processor restrictions.
If the user is not restricted from using the requested pro­
cessor, STEP checks to see if the processor is a shared pro­
cessor. If it is shared, STEP checks to see if the processor
is in core. If it isn't in core, STEP loads it into core. If
the processor is not shared, STEP searches the :SYS account
and loads the processor from there. If the processor cannot
be found, an error message is sent to the terminal. Before
control passes to the processor, TEL checks the parameters of
the processor call for correct syntax and for existence of the
liSp II fi Ie and a "rom II or II list ".

TEL sets and resets bits in JIT to correspond to the commands
LIST, DONT LIST, etc. I and to the in itial occurrence of
assignments in the command string. One JIT word (J:OPT)
contains a bit for each option that can be specified for a
processor. The options and their corresponding bit assign­
ments are as follows:

Identifier ~ Set Reset

LO 31 LIST DONT LIST

GO 24 OUTPUT DONT OUTPUT

DO 23 COMMENT DO NT COMMENT

15 DEBUG DONT DEBUG

0 ECHO DONT ECHO

The underlined values are default values. The default
setting for J:OPT is STDOPT in the monitor root (module
LITERALS). This cell may be patched by the installation to
generate different defaults than are indicated in the pre­
ceding table. If a SET command is issued for the M:lO,
M:GO, or M:DO DCB, or the I ist output or binary output
fields are specified in a TEL command, the corresponding
b its are set. Each processor must ass ign mean ing to the bits
in J:OPT and interpret them. Unassigned bits are available
for future use. Checks of these bits should be made on each
write command since TEL allows on-line users to interrupt
the processor and tum on or off the lO, GO, and DO
devices.

Each processor should establ ish conventions to maintain
orderly output when two or more OCBs are connected to the
same device. The usual convention is that if diagnostic
output has been written via M:lO, and M:lO and M:DO
are connected to the same device, then the diagnostic out­
put should not be written via M:DO. The following ex­
ample illustrates some of the special cases that processors
should consider:

1. M:SI, M:DO, M:lO connected to the same device
(the input line should not appear three times).

2. M:DO connected to a device that is different from 51
and lO (the diagnostic comment should probably be
printed beneath the line in error).

3. M:SI and M:DO connected to a Teletype (processors
mayor may not want to type a line in error).

Processors may read each input image via the M:SI DCB.
The last record of the sp wi II cause an end-of-data abnor­
mal condition (see the C P-V/BP Reference Manual, 90 1704
for a description of abnormal conditions). To obtain con­
trol of an error or abnormal condition, a processor must
issue the M:SETDCB command and/or include error and ab­
normal exits in its read and write CAls. Since source input
may come from a Teletype (sp = ME), processors must be
able to handle Teletype input. The problems associated
with Teletype I/o are discussed in the section on terminal
I/O.

CCISCAN

On transferring control to a user's program or to a processor,
the monitor communicates the TCB address via general reg­
ister O. Processors may fetch the card image of the command
that ca II ed them by readi ng through a DC B connected to the
C device.

When running in batch mode, the processor must read the
C device once to c lear the control command. The com­
mand is transferred to the user's buffer to allow the user's
program to examine parameters.

TERMINAL 110

An on-line user may direct output to his Teletype at any
time during execution of a processor. Similarly, portions
of the input to a processor may come from aTe I etype. In
general, Teletype I/o is the same as other I/O in its use
of M:READ and M:WRITE operators and the standard abnor­
mal and error situations. However, Teletype I/O has some
features that are significantly different from those for other
devices. Some of the differences require special attention
by processors, but the interface is designed in such a way
that processors wi II not have to know whether or not I/o
operations are via Teletype, providing they observe certain
conventions. On terminal I/O, like all I/O, the user
should note that byte displacements in the DCB remain in
effect unti I replaced, once they have been given. The
special problems associated with Teletype I/O are outlined
in the following paragraphs.

EN D CHARACTERS

On input from a Teletype, each record read is terminated
by an end character (CR, FF, LF, RS, US, FS, GS). The
end character, if any, is included in the actual record
size (ARS) count reported in the DCB (bits 0-14 or word 4).
Each processor must interpret the different end characters.
Processors do not have to know that input is via Teletype,
provided they treat these characters as terminators and use
ARS to determine the actual record received.

Source files for all processors, including those in batch
operations, may have been prepared on-line. Since records
prepared on-line are variable length, it may no longer be
assumed that input records are BO-byte card images.

All characters received from terminals, no matter of what
type, are translated to the standard EBCDIC character set.
The hexadecimal codes for EBCDIC characters are listed
in Appendix H.

WRITE OUTPUT

The length of each output line is specified by the SIZE
parameter in the M:WRITE procedure call. It is terminated
only by the character zero. That is, the user may term­
inate a message with a zero character if he wishes and
the COC routines will compute the proper message length.
Carriage return or new I ine characters do not terminate
a message.

Shared Processor Programming 99

CARRIAGE RETURN

A new line or carriage return sequence, as appropriate to
the type of terminal, is appended to the character string
supplied by each write under the following circumstances:

1.· The DCB is not M:UC.

2. The suppress space option is not specified.

Thus, under ordinary circumstances, carriage return char­
acters wi" be supplied when output consists of one line per
write and the DCB is connected to a terminal. By using the
suppress space option or by writing through M:UC, the pro­
gram may supply carriage returns exactly to requirements­
either none or several for each write CAL.

PARITY ERRORS AND LOST DATA

When an M:READ CAL specifies a terminal, any character
received with a parity error is replaced by SUB (USASCII
code lA) and the lost data abnormal code (07) is returned
to the user if an abnormal address exists. If there is no
abnormal address, control proceeds to the CAL plus 1.
The line is returned to the user's buffer and the program
may expect to encounter the SUB code as it scans.

In designing a response to messages that contain parity error
characters, two facts are important:

1. The user has already been informed of the error by the
COC routines that echo the exact bits received on the
I ine followed by the # character.

2. If the received image is sent back to the terminal to­
gether with an error message, the # character will be
printed when SUB codes appear.

In the absence of special considerations unique to the pro­
cessor, it is recommended that lines received with lost data
be sent back to the terminal together with the comment
"EH?". This procedure is helpful as an aid in diagnosing
faulty terminals and communication lines.

END-OF-FILE

If the user types the character pair ESC F, an end-of-file
abnormal code wi" be returned to the program reading the
terminal at the abnormal address (if there is one). An input
I ine that contains a" characters received prior to the end­
of-file sequence wi" also be transmitted to the user's buf­
fer. This I ine is always terminated with a carriage return
which is also sent to the user's terminal. If no abnormal
address is specified, the line appears as an ordinary input
line. If both bad data and end-of-file occur in the same
input, then the bad data is reported.

100 Shared Processor Programming

OTHER ABNORMAL CONDITIONS

If unknown operations are requested of the COC routines
(e.g., write end-of-file), the abnormal code for beginning­
of-tape wi II be returned. If there is no abnorma I address,
the operation will be ignored.

FORMAT CONTROL

COC routine action for the various formatting CALs is
specified in the CP-V/TS Reference Manual, 9009 07. It
is briefly reviewed below.

It is sometimes necessary to print a line with special spacing
or without a carriage return. Processors can obtain verti­
cal carriage control by means of two parameters (SPACE
and VFC), both of which can be set by the DEVICE CAL.
The SPACE and VFC parameters have the following i nter­
pretations for Teletypes.

Parameter

SPACE

VFC

Meaning

If this parameter is set and VFC is not on, the
number of spaces indicated minus 1 is in­
serted before each write. Counts of 0 and 1
result in single spacing.

If this flag is set, the COC routines simulate
the printer's vertical format control as speci­
fied in the first character of the text lines
written. The simulation is I imited to one of
the following cases:

Hex. Code

C1-CF

F1

60,EO

Action

C OC inserts 1-15 spac es be­
fore printing.

COC skips to top-of-page by
skipping six lines and printing
the heading information fol­
lowed by the print line.

COC does not insert CRLF
after the print line (suppress
space).

For page control, COC routines count the number of lines
transmitted to and received from the user's terminal. New
page headings are printed for every read or write when the
line count exceeds the maximum specified in J IT (via the
PLATEN command). New page headings are also printed if
the user program issues a PAGE device CAL or if the termi­
nal user types the FF character LC (CONTROL L).

Information in the page heading may be specified by the
user by means of the HEADfR and COUNT device CALs.
Heading information is taken from the DCB through which
the read or write was given. Thus, if a write call is issued
to a Teletype through more than one DCB, the heading

printed depends upon the DCB through which the top line of
the page was written. The automatic page heading occupies
one I ine and contains current time, date, user name and
account number, user identification and line number, page
number, and possibly an administrative message. Headings
specified in the DCB of the read or write are produced after
the automatic heading with position, text, and page number
as specified in the CP-V/BP Reference Manual, 90 17 64.
The page count in this heading is that carried in the OCB
and is reset with each COUNT device CAL. The page count
for the automatic heading is carried in JIT and may be reset
via the TEL PAGE command. The automatic heading is sup­
pressed if the page I ength is less than el even lines. Head­
ings are also not printed if the automatic page heading is
turned off via the TEL PLATEN command.

Tab characters are replaced with an appropriate number of
blanks in input lines. Tabs are notrequired in output lines.
However, if a highly formatted output line is sent to the
Teletype, the operation will be more efficient - and more
satisfactory for the on-line user. Tabs are activated by in­
serting a tab character (X '05 1

) in the output stream. Tabs may
be sent directly to the terminal or simulated by the software
as requested by the terminal user who may turn simulation
on and off using the sequence @ T. When simulated by the
software, each tab character in the output stream causes
insertion of spaces to move the carrier to the right of the
next higher position specified in the DCB.

Simulated tab stops can be set by a processor with the TAB
device CAL or by an on-line user (for the M:UC DCB) with
the TABS command. Tabs must be specified in ascending
order beginning with tap stop position 1. Note that this is
different from the line printer tabbing, where the tabs need
not be in ascending sequence. Tab stops can be set at any
time for any DCB. During output operations, tabs are
expanded as specified by the DCB through which the write is
issued or, if not specified there, as specified in the M:UC
DCB. Tabs typed byanon-line user are simulated atthe user's
console according to the tab settings in the M:UC DeB.

If the backspace character is typed at the terminal, the
character is passed to the reading program. No special
action is taken by the COC routines other than that neces­
sary to record current carrier position (which for backspace
depends on terminal type). Terminals that have a physical
backspace may, at the user's option, use a "backspace-edit"
mode for intra-line editing. (Reference: CP-V!TS Reference
Manual, 900907.)

A program can request control when the user presses the
BREAK key by means of the M:INT procedure. Whenever
the user presses the BREAK key, the program environment at
the timeof the break is recorded in theuser's pushdown stack
in his TCB. Execution can be returned to the location fol­
lowing the interrupted instruction byexecution of the M:TRTN
procedure. A program can return break control to TEL by
executing the M:INT procedure with a break routine address
of zero. The break routine address is checked by the monitor
to guarantee that the address lies within the memory allo­
cated to the user. Even if a processor has obtained break
control, an on-line user can return execution control to TEL
by press ing the @ @ , @ Y, or yc keys.

As a safety measure to protect the user against faulty pro­
gramming in break control routines, the number of times the
BREAK key is pressed by a user without intervening char­
acters is recorded. When the count reaches four, control
is sent to TEL as if yc had been pressed. Thus, the user at
the terminal wi" never find himself locked out. The count
of four allows processors (e.g., FDP) to make special inter­
pretat~ons on two and three breaks in a row.

FILE EXTENSION

File extension is a convention by which records are added
to an output fi Ie by successive job steps. Each time the fi Ie
is opened, the file pointer (tape, disk pack, etc.) is posi­
tioned to a p oint immediately following the last record in
the file. Thus, when additional output is produced it is
added to the previous contents of the file, thereby extend­
ing it. Fi Ie extension simulates output to physical devices,
such as I ine printers or typewriters, when output is actually
directed to a fi Ie.

Fi Ie extension takes effect at the time C P-V opens system
output DCBs. The output DCBs that are affected by file
extension are those that are currently assigned to fi les, al­
though normally assigned to devices. They include: M:LO,
LL, DO, PO, BO, SL, SO, CO, AL, EO, and GO.

Fi Ie extension is discontinued when a file is reassi gned
with a SET or ASSIGN command or when a file is opened
with an OPEN procedure call that specifies an explicit
fi Ie name. In these cases, a new file is created. Exten­
sion of the GO file is terminated following a LINK, LYNX,
or RUN command.

SHARED FILE USE

Shared processors must ensure that temporary fi I es used
during operation are distinct for each instance of exe­
cution. A common technique for accomplishing this is
to append the current users ID, from the right half of the
first word of J IT, to the fi lename when it is created and
used. This ID is guaranteed by the system to be unique
for all concurrently running batch or on-line programs.
A discussion of shared files is contained in CP-V/BP Ref­
erence Manual, 90 17 64.

COMMAND PROCESSOR PROGRAMMING

A command processor is a shared processor which inter­
faces between the user and that which the user wants to
access - the monitor, a processor, or another program.
Four command processors are supplied with C P-V. They
are LOGON, TEL, CCI, and EASY. CP-V will also
support installation-specific command processors. Infor­
mation about the programming of command processors is
outlined below.

Command Processor Programming 101

Generally, command processors have the same restrictions
as listed for shared processors previously. In addition:

1. A command processor may not have any overlay
structure.

2. A command processor which resides in the special pro­
cessor area (above X'1COOO') may not have any dynamic
data and must be biased at XI 1 C400' .

3. A command processor must intercept all exits, errors,
and aborts from user programs and must clean up cor­
rectly. (Special CALs for command processors are
I is ted below.)

4. Command processors should not be given special jIT
access. (The special CALs for command processor in­
terface eliminate the need for it.)

5. When programs error or abort, control will be given to
the command processor with the following restrictions:

If the command processor resides in the user
program area (X'AOOO' to X' 1COOO') or the user
program is loaded in the extended mode (X'AOOO'­
XI 1 FFFF1

), the exiting user program will be com­
pletely disassociated before associating the com­
mand processor, eliminating the possibility of
continuation of the lob step.

If the command processor resides in the special
area (X' 1C600' to X' 1 FFFF'), has no dynamic data
or OCBs, uses only M:UC and M:XX, control will
pass to the command processor with the user intact,
allowing analysis of the exit and continuation of
the current job step.

Command processors may be entered into the system during
PASS2 of SYSGEN by using the T, B, G, and C flags of
the :S PROCS command. They may also be added to the
system, replaced, or deleted from the system via the DRSP
processor.

The following capabi/ ities are available to command
processors:

1. Interpretive Exit - An interpretive exit is a natural
exit CAL (M:EXIT) performed by a command processor
with the following register setup required.

R6,R7
R8

R13,R14

Rl0,Rll

Contain the TEXTC name of the requested
load module or shared processor. A maxi­
mum of seven bytes is al lowed for a shared
processor. If R6 is zero and the command
processor is special shared, (biased at
X' 1C400'), the program is reentered at the
point of interruption.

Contain the account (in TEXT format) in
which the load module resides. :SYS is
specified for shared processors.

Contain the password in TEXT format. If
there is no password, zero should be used.

102 Command Processor Programming

RO,R1 Contain either FDP or DELTA in TEXTC
format or a zero. If one of the two debug­
gers is specified, the interpretive exit is to
be taken with the debugger associated.

The system job step processor, STEP, interprets such an
exit as a call on the specified program. It also loads
the TEXTC name of the command processor that issued
the interpretive exit into R4and R5. Before a com­
mand processor issues an interpretive exit, it must have
closed all its DCBs and, in general, have cleaned up.

The job step processor arbitrari Iy removes the command
processor from the user's virtual map. This means that
all data and DCBs are gone.

2. BREAK and CONTROL Y Control - If the terminal user
depresses the BREAK key during operation of a pro­
cessor or user program and that program did not request
BREAK control, the program is aborted and the com­
mand processor is loaded and entered with bit 30 of
J:TELFLGS in the JIT set. If the interrupted program
has requested BREAK control, the program's BREAK rou­
tine is entered.

If the terminal user depresses CONTROL Y during the
execution of a processor or user program and the com­
mand processor is not special shared, the program is
aborted and the command processor is loaded and en­
tered. If the command processor is special shared and
has no data and no DC Bs, the user program is left as is
and the command processor is entered. This gives the
command processor the opportunity to continue the
interrupted program.

If the terminal user depresses CONTROL Y whi Ie a
command processor is in control, the event is ignored
and the current operation is continued where it was
interrupted.

If the terminal user depresses BREAK while a command
processor is in control and BREAK control has not been
requested or BREAK control has been reset via the
M:INT CAL, the BREAK event is ignored and the com­
mand processor is continued where it was interrupted.
If a command processor has requested BREAK control,
it is interrupted at its BREAK control address.

The format of the BREAK control CAL is:

CALl,8 FPT

where FPT points to word 0 of the FPT shown below.

Word 0

If the CP bit is set, the BREAK control routine of the
interrupted program is reestablished. This allows a user to
depress CONTROL Y while in a program with BREAK con­
trol, enter his special shared command processor which
reme,nbers the old BREAK control address, and then estab­
I ish BREAK control for the command processor. If the user
wishes to continue, the command processor may set the
CP bit and execute the BREAK control CAL before exiting
back to the user's program. The BREAK routine address in
this case should be the one that was active when the com­
mand processor was first entered as a resultof CONTROL Y.

3. Exit, Error, Abort CAL, and I/O Abort Control - If any
exit or abort condition occurs during execution of a
program, the program is aborted and the command pro­
cessor is loaded and entered. Error conditions are de­
scribed in four fields of the JIT as follows:

• J :ABC is the address of the word in the JIT that
contains the abort code in byte 0 (see Appendix B
of the CP-V!TS Reference Manual, 900907).

• ERO is the word offset into the JIT of the word
that contains the abort subcode in byte 3.

• J :RNST is the address of the word in the JIT that
contains the current run status. Status settings are:

All
zeros means the job is executing normally.

Bit 1 if set, the job is to be errored because of
an M:ERR call to the monitor.

Bit 2 if set, the job is to be aborted because of
an M:XXX call to the monitor.

Bit 3 if set, the job is to be errored because of
an E key-in by the operator.

Bit 4 if set, the job is to be aborted because of
an X key-in or a line disconnect.

Bit 5

Bit 6

is reserved for future use.

if set, the job is to be aborted because a
limit has been exceeded (e.g., maximum
pages out).

Bit 7 if set, the lob is to be aborted because of
an error (most likely I/O) as specified in
J :AOC:: and ERO.

Bit 8 if set, the job is to be aborted because of
an illegal trap.

• J :ASSIGN contains the address of the word in the
JIT, the rightmost nine bits of which indicate which
I imit was exceeded. Th is field is set in con junction
with bit 6 in the RNST field of the JIT. The bits,
if set, mean:

Bit 23 the maximum disk allocation limit
exceeded.

Bit 24 the maximum time I imit exceeded.

Bit 25

Bit 26

Bit 27

Bit 28

Bit 29

Bit 30

Bit 31

the maximum scratch tape limit
exceeded.

the maximum temporary disk space
limit exceeded.

the maximum permanent disk space
limit exceeded.

the maximum diagnostic pages output
limit exceeded.

the maximum user pages output limit
exceeded.

the maximum processor pages output
limit exceeded.

the maximum punch output limit
exceeded.

4. CAL Control of JIT Error Condition - This CAL allows
control of JIT error conditions without special JIT ac­
cess. The form of the CAL is:

5.

CALl,4 fpt

where fpt points to the word shown below.

The monitor (the AL TCP portion) verifies that' the pro­
gram issuing the request is a command processor through
use of UH:FlG. It then sets J:ABC, ERO, byte 0 of
J:RNST, and bit 30 of J: TELFLGS to zero. (Bit 30 of
J:TElFLGS indicates whether or not the BREAK key has
been depressed.) If the program issuing the CAL is not
a command processor, control is returned to the user
program with CCl set.

Registers - Upon entry to a shared processor from a
command processor, the registers must contain the
following:

RO the TCB ,address of the user program.

R4, R5

R6, R7,
R8

the name of the calling command processor
in TEXTC format.

the name of the called processor in TEXTC
format.

RlO, R1l the password in TEXT format (zero if none).

R13, R14 the account of the called processor in TEXT
format.

6. CAL Control of Terminal Modes - Control of terminal
modes is provided by a variation of the Change Ter­
minal Type CAL (see the CP-V/TS Reference Man­
ual, 90 09 07).

Command Processor Programm ing 103

PUBL£ LIBRARIES

The system may have several shared public libraries. Each
library is a unit tailored to the requirements of the installa­
tion. The user associates a publ ic I ibrary with his program
by specifying the I ibrary name (Pi where i =0 - 9, JO, or J 1)
in a LINK or RUN command. The rule governing library
units are as follows:

1. Link loads the user data immediately above the area
reserved for the I ibrary data. Load reserves an entire
page for I ibrary data.

2. No initial ization is provided for this temporary library
data ei ther by the loader or by the system. There must
be an initialization program if initialization is required.

3. Each library unit must separate data (CSECTO) and pro­
gram (CSECTl) information into separate assembl ies so
that separate ROMs will be produced for each.

4. All code must be under CSECTs with protection type 0
for variable data or 1 for procedure and constant data.
No DSECT section may be used.

5. The library must be self-contained (i.e., there can be
no unsatisfied references). This must be true for the
data portion itself and the total library. For example,
a FORTRAN I/o library must search the DCB chain
rather than make a direct reference to the DCB itself.

CP-V PUBLIC LIBRARIES

Six public libraries are available to the system programmer.
One library (:P1) includes the most commonly required rou­
tines from the Extended FORTRAN IV I ibrary (about 65 rou­
tines). Another (:PO) includes :P1 plus the FORTRAN Debug
Package (FDP). A third (:P4) includes :P1 plus the FORTRAN
real-time features. The fourth library (:JO) contains the JIT
definition. Most executing users need only the first library;
users who are debugging need the second; real-time users
need the third. The fifth library (:Jl) contains the monitor
(M:MON) definitions and is useful only to programs which
interface directly with monitor tables and routines. The
sixth library (:J2) is actually a subset of :Jl. It contains
the definitions for the LITERALS module of the monitor and
is useful primarily to programs that wish to access the mon i­
tor's extensive literal and constant pool in order to avo id
dupl icating these items. (AI I programs have read access
to the LITERALS module.)

The entire Extended FORTRAN IV I ibrary consists of 252 rou­
tines (ROMs) totaling more then ten thousand instructions
and over 800 data words.

The package includes more than 350 DEFs. These routines
are described in Extended FORTRAN IV Library Technical
Manual, 90 15 24, and Sigma 5/7 Mathematical Routines
Technical Manual, 900906.

104 Publ ic libraries

Publ ic library :Pl contains single and double precision trig­
onometric functions, exponential and logarithmic functions,
standard set-up routines, initialization and termination rou­
tines, and input/output conversion and transmission routines.
Fewer than 1000 words of storage are requ ired for temporary
storage by each user of the library. Over 5100 words of li­
brary code are shared among all concurrent users.

FDP users require public library :PO which consists of nearly
1400 words of temporary storage per user; over 10,000 words
of code are shared among the concurrent users.

Real-time users require public library :P4 which consists of
fewer than 1000 words of temporary storage per user; over
5300 words of code are shared among the concurrent users.

The remaining routines (approximately 190) of the complete
FORTRAN library are organized in two ways:

1. They are organized in the :BLIB file as card-image ROM
decks that are used by the Link loader to satisfy library
references .

2. They are organized in the :LIB/:DIC files as 22 library
load modufes.

This organization permits rapid loading by the overlay loader
or Load. The overlay loader uses the file :DIC, which con­
sists of a record keyed by each DEF in :LIB and the group
number as its value to find the LM names necessary to satisfy
references.

Real-time vers ions of :BLIB, :LIB, and :DIC must be main­
tained in the real-time system account (e.g., :SYSRT).

One essential mon itor subroutine must be added to the stan­
dard released library, S :OVRL. It is normally added during
the System Generation process but must be remembered when­
ever a new I ibrary is being installed.

The size and description of routines in :LIB are given in
Table 40.

,CREATING PUBLIC LIBRARIES

Users may add their own public libraries to meet specific
requirements. The necessary procedures are given below.

The procedure forcreating public libraries consists of several
steps. The desired data and program elements are loaded,
and the dictionary for the library (DEFs) is filed for loader
use. Next, the procedure is filed so that SYSMAK can place
it on swap storage during system initialization. In the
process, the program SYMCON is used to retain only those
DEFs required in the final I inking process, thus saving loader
stack search time. Figure 13 illustrates the process of creat­
ing a publ ic library.

Group

1

2

3

4

5

6

7

8

9

Table 40. Routines in :LIB Library File Table 40. Routines in :LIB Library Fi Ie (cont.)

Size

96

72

92

86

277

618

538

74

104

Description

Complex double prec ision mathe-
matical routine drivers.

Complex mathematical routine
drivers.

Double prec is ion mathematical
routine drivers.

Single precision mathematical
routine drivers.

External revisions of compiler
intrinsic functions.

Complex double precision mathe-
matical routines.

Complex single precision mathe-
matical routines.

Double precision mathematical
routines.

M isce" aneous integer funct ions.

Data ROMs for
Publ ic library

Group

10

11

12

13

14

15

16

17

18

19

20

21

22

Size Description

76 Miscellaneous real functions.

78 Logical functions.

18 Conversion routines.

362 DSINH, DTANH, DASIN,
DTAN.

308 Miscellaneous nonnumeric functions.

20 Overflow and divide check.

508 Nonstandard and asynchronous I/O.

750 Input and INPUTL.

160 Random access.

514 Disk buffer.

102 Keyed file I/O.

836 Namelist I/O.

938 Defined file I/O.

t LOAD Adds DEF :Pn to stack with value
Data LM I equal to size of data in source LM

DEFCOM

Public Library DEFs
for (:Pn) ~sedby
link and Load.

-

(:Pmn) ~

+ DEFCOM

DEFs for Data
(:PnDATA)

I

Procedure ROMs
for Public li.brary

J
t LOAD (or LYNX)

r-------~----~

Public library
LM (:Pnn)

t SYMCON

Public library LM
(:Pnn) with only
necessary D EFs.

I
~ SYSMAK

Absolute Copy of
procedure on swap
storage.

Note: n = 0-9 for public libraries 0-9.

Figure 13. Publ ic Library Creation Process

Public Libraries 105

i LOADING PUBLIC LIBRARIES :

Default loading for Link includes the basic FORTRAN public
library (:Pl) and a search of the system (R~) library if
there are unsatisfied references. This is the same as if the
user had specified (:P1) in a RUN or LINK command. If the
user has not explicitly asked for :Pl and no reference to
9INITIAl is found, the procedure for :P1 is not associated
with the user program execution although the 900 data words
remain committed because of the single pass loader oper­
ation. Figure 14 is a generalized flow of the LINK process
relative to libraries.

Since the overlay loader operates in two passes, it makes
an explicit association of :PO and :Pl to a program in
absence of other instructions. This process is illustrated in
Figure 15.

Real-time users must specify public library :P4 and the real­
time version of the system library. This means that the link
processor requires specification of P4 and inclusion of file
:BLIB in the real-time system account (e. g., :SYSRT) as a
I ibrary file identification. It also means that the overlay
loader requires specification of :P4and the real-time system
account in the library account list.

SHARED PROCESSOR MAINTENANCE [lPRSP)

Development and check out of CP-V systems is simplified
through use of DRSP (Dynamic Replacement of Shared Pro­
cessors). DRSP allows replacement, creation, or deletion
of shared processors while the system is operational. The
extra processor space in the shared processor tabl es must be
allocated during system generation (PASs2). Processors
that are normally invoked following a recovery cycle
(AllOCAT, GHOST1, RECOVERY, and XDEl TA) are not
dynamically replaceable. DRSP must be run as a shared
processor in order to maintain integrity of the monitor's
processor tables.

Note: XDElTA (Executive Delta) is an additional debug­
ging aid that is optionally retained at system ini­
tialization. XDElTA is described in the Delta
chapter of theCP-V/fS Reference Manual, 900907.

DRSP can be run either as an on-line or a batch processor.
Input can be either from the command device or from a
terminal. DRSP is called on-line by entering the name of
the processor as a TEL command.

Example:

!DRsP§

DRsP HERE

106 Shared Processor Maintenance

The OCBs used by DRSPwhich may be assigned hy the user are:

1. M:SI for command language input.

2. M:ll for terminal output.

3. M:Sl for listing of input commands during a batch run
and diagnosti c message output.

DRSP COMMANDS

The seven DRS P commands are

ENTER

REPLACE

DELETE

LIST

LIST All

?

END

In the DRSP command descriptions, the term Ipronamel refers
to the name of a processor as found in the shared processor
tables. The file specified by proname must be in load module
format.

All of the above commands except "?" can be followed
by comments, wh ich wi II be pri nted as part of the com­
mand line during a batch run of DRsP. To add comments,
terminate the command with a blank character followed
by a period. All characters entered after the period are
treated as comments. The comments are terminated by @)
or end-of-card. Comments cannot be continued to the
next record.

ENTER The ENTER command is used to enter a new
shared processor into the system.

The format of the command is

E[NTER] proname [{~I~~}fjd][,oPtion] [,option] [,option]

where the options are as follows:

[J][S] [D] [p] [M] [X][T] [B] [G] [C] specifies one or more
flags to be associated with the processor. The
flags indi cate the following.

J processor is allowed to alter the JIT.

S special shared processor.

D processor is a debugger.

P public library.

Error Message:
Compiler for debug
and library not
associated.

yes

Assoc iate P 1 and
send warning mes-
sage if not actually
needed.

Read and Load
Specified ROMs.

Flag DCB REFs
to be built later.

NP

Open and
search :BLIB

Figure 14. General ized Library Load Process (Li nk)

no

Search for library
files and load
those found.

Associate
public libraryo

Shared Processor Maintenance 107

Process ROMs or LMs
from named files and/or
from BI or GO.

Determine which :Pn
(~ither :PO or P1).

Initialize UNSAT list 0

no

Get next U NSAT entry.

yes

Satisfy r~main ing REFs
from :LIB in this account.

Determine which :Pn
(either :PO or :Pl).

Get the requested
:Pn (from :SYS) and
associate it with the
load module being
built.

no

yes

Note: If NOSYS LIB is presenton the! LOAD card, the UNSAT list is empty or consists of those sources (accounts and/or:Pn)
mentioned under the UNSAT option. If NOSYSLIB is not present, the UNSA TI ist consists of the above plus the :SYS
account {which occurs last}. For LYNX, the NL option has an identical effect upon the library account list.

Figure 15. Generalized Library Load Process {Overlay Loader}

108 Shared Processor Maintenance

M

x

T

B

G

C

processor allowed maximum memory during
execution.

pi ocessor a II owed to execute the M:5 Y5 CA L.

command processor accessible by tenninal
users.

command processor accessible by batch
users,

command processor accessible by ghost users.

command processor accessible by terminal,
batch, and ghost users.

IfDor Pis specified, 5 is redundant and is assumed.
If the C flag is used, the specific flags (T, B, G)
are redundant and should not be used. Various
combinations of the above are possible up to a
maximum of six characters; e.g., a processor that
is allowed to alter the JIT and has maximum mem­
ory available for execution would be flagged JM.
The flag combination PD or usage of the P flag
when the processor name is other than :Pnn results
in an error message.

PERM specifies that the processor is to be available
to users even after a system crash. The processor
will be present both in the system account (:5Y5)
and on swap disk. "Empty" slots must be avail­
able in the disk copy of the processor tables. If
this option is not used, the new processor version
will reside only on swap disk and will be lost in
the event of a crash. The version of the processor
that will be restored is the version in the system
account at the time of the crash.

W specifies that if the proname cannot be entered
into the processor table because there are no name
slots free, DR5P is to wait until there is a slot
available. If this wait option is not specified,
the command terminates without entering the
new processor.

REPLACE The REPLACE command is used to replace an
existing shared processor. If this command is used, the
previous version of the processor is lost. However, cur­
rent users continue to use the old copy until they are
disassociated from the processor.

The format of the command is

R[EPLACE] proname [{~I~~}] fid [,option][,option] [,option]

where the options are as follows:

[J][S][D][P][M][X][T][B][G][C] specifies flags to be
associated with the processor. The option is the
same as for the ENTER command.

PERM specifies that the new version of the pro-
cessor is to be available to users even after a sys­
tem crash. This version of the processor will be
present both in the system account (:SYS) and on
swap disk. IIEmptyll slots must be available in
the disk copy of the processor tables. If thi s
option is not used, the new processor version wi II
reside only on swap disk and will be overwritten
in event of a crash by the processor version in the
system account.

W specifies that if the proname cannot be entered
into the processor tab I e beca use there are no name
slots free, DRSP is to wait until there is a slot
available. If this wait option is not specified,
the command terminates without replacing the old
processor.

DELETE The DELETE command prevents further user
association with a processor. Users associated with the pro­
cessor when this command is issued wi II continue to use the
processor unti I they disassociate.

The format of the command is

D[ELETE] proname [, PERM]

where PERM specifies that no new users wi II ever be asso­
ciated with this processor (even after a system crash).

LIST The LIST command lists the processor name, the
name associated with each entry in the processor n<;Jme table,
and the amount of disk space occupied by the processor.

The format of the command is

L[IS TJ rJ{pronam-:}n
~#xx[-YYJU

where

proname specifies an explicit processor name. (The
proname M:DUMLM appears many times in the pro­
cessor tables. If selected, all these entries wi II
be listed.)

xx-[yy] specifies the name table index or a range
of name table indexes to be listed.

Initial use of the LIST command with no proname or index
specified wi II provide a list of each processor table entry
and its corresponding table index.

LISTALL The LISTALL command lists each shared pro-
cessor name and its entries in the following tables:

PB:HPP Head of the physical page chain.

PB:TPP Tail of the physical page chain.

PB:DSZ Number of data pages.

Shared Processor Maintenance 109

PB:DCBSZ Number of DCB pages.

PH:PDA Disk address of first procedure page.

PH:DDA Disk address of first page of data and DCBs.

PB:UC Number of users in core usi ng the processor.

PB:LNK Processor number of next overlay.

PB:PVA Virtual page number of first procedure page.

PB:HVA Virtual page number of first unused page.

P:SA Processor flags and start address.

The format of the command is

LIST ALL~pronam~}~ n #xx[-yY..u

where proname and xx[-yy] are as defined in the LIST
command.

? The question mark command requests a detailed error
message when an error has been noted by DRSP. The com­
mand is applicable only for the on-I ine mode. Its function
is described in detail in the section II DRSP Error Messages".
The format of the command is

?

END The END command terminates DRSP. The format
of the command is

END

DRSP LIMITATIONS AND RESTRICTIONS

The following lists DRSP limitations and restrictions:

1. Only users with a privilege level of CO or greater are
allowed to use the ENTER, REPLACE and DELETE com­
mands. The LIST command requires a privilege level
of 80 or grea ter •

2. There must be sufficient space in the swap disk
processor/overlay area to hold the new or replacing
entry. This extra space is allocated by SYSGEN
PASS2 via a :SPROCS control card.

3. Replaced or entered items must be accessible load
modules.

4. Onlyone level of overlay is permitted in a processor.

5. A processor overlay must be PROCEDURE only.

6. ALLOCAT, GHOSTl, RECOVER, XDELTA, M:DUMLM
may not be processed with DRSP commands.

110 Shared Processor Maintenance

7. Overlays for processors cannot be replaced or entered
individually.

8. GETs of programs saved with an associated processor
most likely will not work if the processor has been
changed between SAVE and GET.

9. When replacing the FILL processor a modified proce­
dure is required: Following REPLACE FILL WITH
N. A. P., OPTION 1 thru 3, the user has to abort the
FI lL ghost. Th is is done via a message to the operator
to key in X, id, where id is the SYSID of the FILL
ghost which appears when the message 'REQUEST FILL,
NO FILL, OR INSTANT SQUIRREL (F, N, S)I is output
on operator's console. This will ensure that the FILL
copy in the user swap disk area is destroyed and the
replaced version of FILL is brought in the next time
FILL wakes up.

DRSP ERROR MESSAGES

The error message structure of DRSP is designed to give a
user detailed information when so desired without burdening
him with long typeouts when the error is obvious. When
running on-line, DRSP will respond to commands in error
by typing

EH@n

where n is the character position at which an error was first
detected. If the user requires more information, he responds
with a question mark (?). DRSP responds with a detailed
error message (see Table 41). If the error is obvious, the
user may retype the command (or proceed to the next com­
mand). For errors that occur after command syntax is com­
pleted, this message changes to

EH

since command character position is meaningless.

In batch mode, the detailed error messages are printed with­
out the interrogative sequence described above.

In addition to error messages, certain other messages are
given for information purposes only (see Table 42). No re­
sponse is expected.

Except where noted, the error condition truncates execution
of the requested command.

I DIR,SP COMMAND SUMMARY

Table 43 contains a summary of commands for the DRSP
processor. The left-hand column specifies the format and
the right-hand col umn defines the function.

T abl e 41. DRS P Error Messages

Message Meaning

BREAK 50 User hit BREAK during DRSP execution. The number defines the point at which
BREAK 51 the DRS P processor exited, as described in the UTS Reliabil ity and Maintain-
BREAK 52 abil ity Technical Manual, 90 19 90.
BREAK 53

CANNOT OPEN THE FID DRSP cannot access the load module defined by the fid.

CAN'T OPEN M:BO (PERM) I/O error detected while trying to open the output file in :SYS. The processor
is entered/replaced on non- II PERM II basis.

DON'T USE COMMAND ON ENTER or DELETE commands must not specify the proname 'TEL' or 'CCI'.
TEL/CCI

DRSP I/O ERROR IN READING Error detected in reading DRSP command.
COMMAND

DRSP I/O ERR/ABN (CLOSE) Error or abnormal condition detected at CLOSE of output file. The processor
is entered/replaced on non-II PERMII basis.

DRSP M:BO ERROR (PERM) I/O error detected while writing or closing the output file in :SYS. The
processor is entered/replaced on non-II PERM" basis.

DRSP M:EI ERROR (PERM) I/O error detected while reading file fid. The processor is entered/replaced
on non-II PERM II basis.

DRSP M:EI ERROR (WRITESWAP) I/O error detected while reading fid for writing on the swap disk.

DRSP NOT FOUND IN DRSP must be run as a shared processor in order to maintain integrity over the
PROCESSOR TABLES monitor's processor tables.

DRSP PROGRAM ERROR DRSP detected contradictory conditions during processing. Requ ires system
(SHOULDN'T HAPPE N) programmer intervention.

ERR MSG NOT FOUND. No error message corresponds to the error code xxxxxx generated. Please
KEY = xxxxxx report this system error.

FID IS NOT A LOAD MODULE Error or abnormal return executed while trying to read the TREE record of the
load module specified by fid.

FILE STORAGE LIMIT IN When writing the load module into the :SYS account for the PERM option, the
SYSTEM ACCOUNT file space for that account is exceeded.

ILLEGAL COMMAND Command entered is not defined in DRSP.

ILLEGAL COMMAND OPTION An optional parameter typed in the command is not recognized.

ILLEGAL INDEX RANGE Index specified in LlST/LlSTALL command not within legal range of processor
name table.

ILLEGAL LMN (LOAD Illegal load bias detected when processor written to swap disk.
BIAS CHECK)

ILLEGAL PRONAME, NOT A processor flagged as a publ ic I ibrary must conform to the name format :Pnn.
:PNN FORMAT

ILLEGAL PROTECTION TYPE The load module for a publ ic I ibrary must be root only and procedure only.
FOR PUBLIC LIBRARY

Shared Processor Maintenance 111

Table 41. DRSP Error Messages (cont.)

Message Meaning

INCORRECT FI D The fid specified exceeds the field maximum for name (15 characters) or
account (8 characters) or password (8 characters).

INSUFFICIENT MEMORY TO DRSP has failed to acquire enough memory to read the largest record of the
READ MAX RECORD OF FID load module specified as fid.

INSUFFICIENT MEMORY Memory space available to user is not sufficient to process the load module
TO READ TREE specified in the ENTER or REPLACE commands.

INSUFFICIENT PRIVILEGE The user must have a privilege level of 80 or greater to execute any DRSP
FOR DRSP USAGE commands.

INSUFFICIENT PRIVILEGE The user does not have sufficient privilege of CO to process ENTER, REPLACE,
LEVEL TO PROCESS THIS and DELETE commands.
COMMAND

INSUFFICIENT SPACE ON The disk space allotted for new or replaced load modules is too small for the
SWAP RAD load module specified.

INSUFFICIE NT VIRTUAL There are not enough virtual pages to allow DRSP to access the monitor.
MEMORY TO EXECUTE DRSP

NO ERRORS No errors were encountered during command execution.

NO PRONAME SLOTS AVAILABLE The number of extra processor name table entries is exhausted.

NO SUCH PROCESSOR The proname entered cannot be found in the processor tables.

ONLY ONE LEVEL OF OVERLAYS When analyzing the load module TREE record, more than one level of processor
FOR SHARED PROCESSORS overlay was indicated.

ONL Y PROCEDURE IS ALLOWED DRSP checks a load module specified as an overlay for procedure only.
IN A PROCESSOR OVERLAY

OVLY LINK EXCEEDS TABLE A system error to be reported.
LIMIT

PROCESSOR OVERLAY SLOTS There are not enough empty processor overlay locations in the name table to
EXHAUSTED fi II the load module requirement. This check on the name table occurs during

the write to the swap disk.

PROCESSOR/OVERLAY User tried to ENTER a processor or overlay name that exists in the table.
ALREADY EXISTS

PRO NAME IS ILLEGAL Some routine cannot be entered or replaced with DRSP (e. g., XDEL TA,
RECOVER, GHOSTl, ALLOCAT, M:DUMLM).

PRO NAME REQUIRED A program must be specified with the ENTER, REPLACE, and DELETE commands.

RAD OVERFLOW Disk space allotted for the shared processors is exhausted.

READ ERROR READING I/O error detected while trying to read the processor for the copy into the
FID (COPY) system account.

SWAP I/O ERROR (QUEUE) I/O error detected while writing processor to the swap disk.

WRITE ERROR WRITING I/O error detected while trying to write the processor into the system account.
FID (COPY) The processor is entered/replaced on non-II PERM" basis.

WRITE RAD FILE I/O ERRORS I/O error detected whi Ie writing the processor to the swap disk.

112 Shared Processor Maintenance

Table 42. DRSP Information Messages

Message Meaning

DRSP HERE Routine title typed when user first enters DRSP.

DRSP INHIBIT SET Another user is manipulating the shared processor tables and prevents any
other user executing the ENTER, REPLACE, and DELETE commands. However,
the LIST and LISTALL commands can be executed at any time.

fid NEEDS xxxx GRANULES If DRSP cannot find sufficient disk space in any available slot, it feeds
back to the user the number of granules required to enter/replace the
new load module.

proname REPLACED IN RAD While exercising the "PERMII option, the proname in slot #x has been
SLOT #x replaced by the proname specified in the current command.

PRO NAME FaUN D ON RAD The proname already exists in the disk version of the processor tables when
DRSP tries to execute the ENTER, PERM option. The "PERM" function is
compl eted for the new copy.

PRONAME NOT FOUND ON RAD The proname cannot be found in the disk version of the processor tables when
DRSP tries to execute the REPLACE,PERM option. The "PERM" function is
completed for the new copy.

USERS ASSOCIATED DRSP attempts to replace TEL or CCI but finds there are users associated. The
message is repeated periodically as long as users remain associated.

Table 43. DRSP Command Summary

Command Description

D [ELETE] proname ,[PERM] Prevents further user association with a processor.

END Exits normally from DRSP.

~FROM}. ~ E[NTER] proname WITH fld Enters a new shared processor into the system.

[, option]~, option][, option]

L[IST]{proname} lists the processor name, the name table index, and the amount of disk
#xx[-yy]

space occupied by the processor.

LISTALLtroname}
#xx[-yy]

lists each shared processor name and its entries in certain tables.

R [EPLAC E] proname IT ~~~} fid] Replaces an existing shared processor with a new shared processor.

[, option][, option][, option]

? Requests a detailed error message when an error has been noted by DRSP.

Shared Processor Maintenance 113

8. ON-LINE PERIPHERAL DIAGNOSTIC FACILITIES

INTRODUCTION

This chapter describes the system facilities that are designed
for use by Xerox in the development of peripheral hardware
diagnostic programs. The system procedures and the Diag­
nostic DCB described in this chapter should never be ~d
~ any ~-written programs. Their description is incfuded
in this manual only FOr completeness of documentation. Any
program that uses them may seriously affect the operation
and integrity of the system.

The facilities described in this chapter are used in the fol­
lowing types of Xerox processors:

• Functional tests for peripheral devices that isolate hard­
ware problems to the lowest possible level.

• Exercisers that verify that the peripherals are operat­
i ng correct I y •

• Preventive maintenance tests that reduce the amount of
time that peripherals are down for repair.

These tests and exercisers may be run at an on-line terminal
while the CP-V system is in normal operation.

The facilities described in this chapter include one assem­
bler directive, the special Diagnostic DCB (DDCB), and
eight system procedures. The assembler directive allows the
user to specify that a control section is to begin at a page
boundary. The Diagnostic DeB is a data area that allows
the user to issue his own I/O commands.

These eight procedures reside in SYSTEM DIAG along with
two other system procedures - M:D PART and D :DRET.
(M:DPARTand M:DRETare described in the SYSCON chap­
ter in the CP-V/SM Reference Manual, 90 1674, because
they are used by SYSCON.) The eight system procedures
perform the following functions:

Procedure Function

M:DDCB Generates a diagnostic data control
block.

M:DOPEN Opens the device associated with the
Diagnostic DeB for diagnostic purposes.

M:DCLOSE Terminates and inhibits all I/O associated
with the Diagnostic DCB.

M:BLIST Converts the user's virtual commCD1d list
into a physical command list and stores
the result in the Diagnostic DCB, or
requests that a TIO, TDV, or HIO be
performed on the device to which the
Diagnostic DCB is opened.

M:SIO Initiates the user's I/O. The commands
for the I/O are stored in the Diagnostic
DCB.

11-4 On-Line Peripheral Diagnostic Facilities

(
~

Procedure

M:lOCK

M:MAP

M:DMOD#

Function

Either locks the user in core or resumes
normal swapping for the user.

Converts a specified virtual address to a
physical address or a specified physical
address to a virtual address.

Obtains the controller model number,
the device model number, and the type
mnemonic associated with a given de­
vice address, and availability informa­
tion (i.e., device busy, device parti­
tioned, controller partitioned, and DIAG
key-in has been performed).

RESTRICTIONS

For both security and system performance reasons, there are
certain restrictions on the use of the facilities described in
this chapter. These restrictions are:

1. The system manager must give approval before the sys­
tem will process some of the CAls. (Note that M:DDCB
does not generate a CAl.) This approval is transmitted
to the monitor via the operator key-in.

!DIAG id

where id is the diagnostic user's id and identifies the
user as the current diagnostic user. Th is is reset by the
monitor between job steps.

2. The M:MAP procedure requires a privilege of AO or
higher. The user is aborted if his privilege level is
insufficient.

3. The M:lOC K procedure requires a privi lege level of
AO or higher and the user must have been specified as
the current diagnostic user via the DIAG key-in or
have a privilege level of CO or higher. If one of these
conditions is not met, the user is aborted.

4. The M:DOPEN, M:DClOSE, M:BLIST and M:SIO pro­
cedures require a privilege level of AO or higher and
the user must have been specified as the current diag­
nostic user via the DIAG key-in. If the conditions are
not met, the user aborted.

5. User registers SR1 and SR3 are volatile for the
M:DOPEN, M:DClOSE, M:BLIST, M:SIO, M:lOCK
and M:MAP procedures.

PSECT DIRECTIVE

The PSECT directive specifies that the control section which
follows is to begin on a page boundary. This directive allows
diagnosticians to ensure that such things as the Diagnostic
DCB and buffers do not cross page boundaries. The PSECT
directive is described in detai I in the Meta-Symbol/lN,
OPS Reference Manual, 900952.

SYSTEM PROCEDURES

Monitor procedures enable the user's symbolic Meta-Symbol
program to request a variety of monitor functions. The on­
line diagnostic procedures described in this chapter have
the same general format as those described in the CP-V /BP
Reference Manual, 90 17 64.

When using Meta-Symbol, the monitor diagnostic procedure
library is invoked via the directive

SYSTEM DIAG

This directive defines all of the monitor procedures. The
Sigma 6 and 7 computer instruction set is invoked by the
directive

SYSTEM SIG7[F] [0] [p]

where F specifies the floating-point option, 0 specifies the
decimal option, and P specifies privi lege instructions.

The Xerox 560 and Sigma 9 computer instruction sets are
invoked by the directive

SYSTEM SIG9 [p]

where P specifi es the privi leged instruction set.

Thus, both the SYSTEM D lAG and the SYSTEM SIG7 or
SYSTEM SIG9 directives should be used. The SYSTEM BPM
directive should also be used if any of the procedures de­
scribed in the CP-V /BP Reference Manual, 90 17 64, are
used in the program.

CREATE DIAGNOSTIC DATA CONTROL BLOCK

M:DDCB The diagnostic data control block procedure
generates a data area in the user's program that is accessible
by the user. This data area must be given a label, the first
two characters of which are F: {e.g., F:OIAG}.

The Diagnostic DCB (hereafter referred to as the DOCB) must
be used when the diagnostician is going to perform his own
I/O through use of the diagnostic procedures described in
this chapter. In addition to containing standard types of OCB
information, the DDCBcontains the user's I/O command list.
The ODeB format is described in detail at the end of the
chapter. Because the OOCB has its own format, the only CALs
that may be issued to the DOCB are the diagnostic CALs.

The M:DDCB procedure call is of the form

label M:ODCB (DEVICE, name), (CLIST, n)[, (option)] •••

where

label is a label that begins with the two characters F:
and must previously have been declared a dummy
section via a directive of the form

label DSECT

DEVICE, name specifies the device that is to be
associated with the DOCB. Name may be speci­
fied in one of the following forms:

1. A device type in quotes (e.g., 'CR', 'LP').

2. An operational label in quotes (e.g., 'LO',
'EO').

3. The physical address of the device expressed
in hexadecimal (e.g., X'0080', X'0202').

eLIST, n specifies that n words are to be reserved
for the user's command list. The maximum value
that can be specified for n is 24.

The options are:

SNt Fserial number'}] speci fi es one of the

following:

1. The number of words (n) to be reserved for
serial numbers. The serial numbers wi" be
inserted into the ODCB when the DDCB is
opened (M:DOPEN). The maximum value that
can be specified for n is 12.

2. The serial number of the volume to be used for
input or output. There may be from one to
twelve serial numbers of from one to four
alphanumeric characters each.

If the SN option is not specified in M:DOCB, then
it cannot be specified in M:DOPEN.

ABN, address specifies the symbolic address of a
user's routine that is to be used to analyze any ab­
normal conditions resulting from insufficient or con­
flicting information. This address remains in the
DDCB until it is overridden by an ABN specifica­
tion in a DOPEN CAL.

The eLIST and SN options produce variable-length param­
eters which follow the fixed-length parameters in the ODCB.
Each variable length parameter entry is preceded by a con­
trol word of the following form:

Byte 0 is the code number (X'07' for SN; X'12' for
CLIST).

Byte 1 is the code for entry position (X'OO' means
more parameter entries to follow; X'Ol' means last
parameter entry).

Byte 2 is, for the SN option, the number of signifi-
cant data words in the parameter entry when serial
numbers are specified. Otherwise it is zero.

Byte 3 is the total number of words reserved for the
entry, not including the control word (i. e., maxi­
mum entry length).

System Procedures 115

Special Note:

After generating the DOCS, Meta-Symbol resumes assembly
in the control or dummy section that was in effect when the
M:DOCS procedure reference line was encountered. In
order to prevent the statements following the M:DDCS pro­
cedure reference line from being assembled in the same sec­
tion as the DOCS, one of the following is recommended:

1. The control section directive preceding an M:DDCS
reference line s~ould be a CSECT, and the DSECT asso­
ciated with an M:DDCS should precede the CSECT.

2. The statement immediately following an M:DDCS pro­
cedure reference line should be either a CSECT or a
USECT referencing a prior CSECT.

OPEN DIAGNOSTIC DATA CONTROL BLOCK

M:DOPEN! The monitor Diagnostic OPE N routine opens
the device specified in the DOCS for diagnostic purposes.
The ODCS will not be opened if the information in the
DDCB is inaccurate, insufficient, or contradictory. If the
M :DOPE N is made with no options specified, the existing
parameters in the DDCB are used. If the DDCB is already
open when the DOPE N routine is called, an abnormal con­
dition issignaled. If the DDCS is not open when the DOPE N
routine is called, the DDCB is reinitialized according to
the parameters specified in the M:D OPE N procedure call.

Symbiont devices will only be opened if they have been
locked, suspended, or partitioned. Nonsymbiont devices
and devices opened with a device address specified (as
opposed to device typeor an operationa"abe')must be par­
titioned and not busy or allocated to an active user. Parti­
tioning is accomplished by using SYSCON or as a result of
a previous DClOSE CAL with the PART option specified.

The M:DOPEN procedure call is of the form

M:DOPEN [*]dcb name, (DEVICE, [*]name), --"J

L(STATUS, [*.Jaddress)[' (option)] •••

where

[*]dcb name specifies the name of the DDCS.

DEVICE, [*]name specifies the device that is to be
associated with the DDCS. Name may be speci­
fied in one of the following forms:

1. A device type in quotes (e.g., 'CRt, 'lP').

2. An operational label in quotes (e.g., 'lO',
'EO').

3. The physical address of the device expressed
in hexadecimal (e.g., X'0080', X'0202').

116 System Procedures

STATUS, [*]address specifies the address ofthe user's
data area where the I/O status is to be stored. The
status that is returned is in the same format as for
the Error log (see Appendix E).

The opt ions are:

SN, 'serial number,[, 'serial number'].. • specifies
the serial number(s) of the volume(s) that are to be
used for input or output. The serial number may be
from one to four alphanumeric characters. A re­
quest for the volume{s) wi" be sent to the operator's
console when opening to a device type or opera­
tional'abel, which the operator responds to with an
AVR sequence (e.g., MOUNT key-in).

NOERR specifies that records of errors from this de-
vice are to be suppressed from the En'or log. How­
ever, the user has the option of writing records to
the Error log himself, with the Write Error log CAl.

ABN, address specifies the symbolic address of a
user's routine that is to be used to analyze any ab­
normal conditions resulting from insufficient or
conflicting information. If an X'09' abnormal
code occurs on the open, th is open abnormal ad­
dress is set into the DDCS and return is to this
address. If an address is not present, the user is
aborted.

CHAN specifies that the controller is to be reserved
for use by this diagnostic program. A c~>ntro"er
may be reserved only if it is partitioned.

Calfs generated by the M:DOPEN procedure have the form:

CAl1,6 fpt

where fpt points to word 0 of the FPT shown below~

word 0

word 2 - device code (Pl)

where TEXT oplabel is an operational label in TEXT format.

word 3 - STATUS (P2)

Flags f 1 through f5 in word 1 of the FPT have the signifi­
cance indicated below (when fj = 1).

Flag Significance

f1 N OERR was speci fied. Error records are to
be suppressed from the Error Log for this
device.

f2 CHAN was specified. The contro II er is to
be reserved.

f3 SN was specified. Serial numbers are pres-
ent in the F PT (in the format described
below).

f4 An operational label was specified. Word 2
of the FPT has the alternate form.

fS Reserved for future use.

The format for the SN variable length parameter is identical
to that in the DDCB. The variable length parameter entry
is preceded by a control word of the form:

Byte 0 - Code number (X'07') identifying the variable­
I ength parameter.

Byte 1 - Code for entry position (X'OO' means more
parameter entries to follow; X'Ol' means last
parameter entry).

Byte 2 - Number of significant data words in the pa­
rameter entry (if SN).

Byte 3 - Total number of words reserved for the entry,
not including the control word (i .e., maximum
entry length).

If the user does not have at least AO privi lege, the return
is to CAL+1 with CC1 set.

, CLOSE DIAGNOSTIC DATA CONTROL BLOCK

M:DCLOSE The Diagnostic CLOSE routine terminates
and inhibits I/O through the DDCB. I/O cannot be per­
formed through the DDCB until it is opened again. M:DCLOSE
allows the user to specify whether or not the device is down
(partitioned).

The M:DCLOSE procedure call is of the form

M:DClOSE [*]dcb name [(EN:~]
where

[*]dcb name specifies the name of the DDCB.

PART specifies that the device associated with the
DDCB is to be partitioned from the system resources.

RETURN specifies that the device associated with
the DDCB is to be returned to the system resources.

SAME specifies that the device associated with the
DDCB is to remain in the same status (partitioned
or not partitioned). The default is SAME.

The Diagnostic CLOSE routine reports the status of the de­
vice to the operator with the following message:

dd{PARTITIONED}
yyn RETURNED

where yyndd identifies the device.

Calls generated by the M:DCLOSE procedure have the form

CALl,6 fpt

where fpt points to word 0 of the FPT shown below,.

where

specifies the PART option when set.

specifies the RETURN option ~hen set.

f3 specifies the SAME option when set.

If the user does not have at least AO privilege, the return is
to CAL+1 with CC1 set.

BUILD COMMAND LIST

i M:BLIST The monitor BLISTroutine converts the user's
virtual command list into a physical comma'ld list and stores
the results in the DDCB. The routine val idates that no
command crosses a page boundary and that the number of
I/O command doublewords is less than or equal to 12.

System Procedures 117

r

The user's virtual command list must adhere to certain
restrictions.

• The list must use virtual rather than physical addresses.

•

•
!.

No input/output command doubleword (lOCO) is
allowed to perform I/O across a page boundary or spe­
cify a byte count greater than one page (X'800' bytes).

The number of lOCOs must not be greater than 12.

I/O commands wh ich do not cause a transfer of data
(e.g., skip file, rewind) must have a valid byte ad­
dress and byte count. When such commands are used
with the ICE flag, the I/O completion interrupt occurs
immediately. Hence, the user must handle any desired
I/Owait'activity independently of any I/O end action.

The user may optionally request that the I/O be started. If
this request is made, the monitor will not return control to
the user until either the request to start I/O has been re­
jected, the I/O is complete, or the I/O has timed-out. The
AIO, TDV, and TIO status and condition codes are returned
in the user area specified by the STA rus parameter of
M:DOPEN and in the exact format as for Error Log (see
Appendix E). If a TIO, TDV, or HIO request is made, the
appropriate request is executed and the status is returned in
the user STATUS area in the format:

words 1 and 2

TIO, TDV, or HIO

status

o 1 2 314 5 6 718 9 1011112 13 14 15116 17 18 19120 21222312425262712829 30 31

where

CC instruction's condition codes.

Dev ice address device address from DOCB.

The M:BLlST procedure call has the form

M:BLIST [*]dcb namer(l~i;)ddresS)['(OPtjon)]"'1

where

[*]dcb name specifies the DOCB.

ADR, [*]address specifies the address of the user's
command list.

118 System Procedures

TIO specifies that a test I/O is to be performed.

TDV specifies that a test device is to be performed.

HIO specifies that I/O is to be halted.

The options are:

PRI,[*]priority specifies the priority of the I/O re-
quest as a hexadecimal number (e.g., X'F6').
X' FO' is the highest priority and X'FF' is the
lowest priority. (The higher the priority, the
higher the placement in the queue of requests for
the channel containing the referenced device.)
The default is X' FF' •

SIO specifies that the I/O is to be started.

TIMEOUT, [*]value specifies the minimum length
of time allowed before an I/O timeout occurs.
The value is in decimal and represents the number
of 4.8 second intervals prior to I/O timeout. For
example, a value of 2 means a minimum of 9.6
seconds before timeout. For spindles or disk packs,
the maximum value used is one even if a larger
value is specified. The maximum value accepted
for all other devices is 63 and the minimum is 1.
A value greater than 63 will be forced to 63 and
a value less than 1 will be forced to one. The
default is one. The actual time allowed before
an I/O timeout occurs ranges from a minimum
timeout of "value" * 4.8 seconds to a maximum
timeout of "value+ 111 * 4.8 seconds depending on
when the timeout count was initiated. Therefore,
a TIMEOUT value of 2 may cause a timeout with­
in a range of 9.6 to 14.4 seconds.

Calls generated by the M:BLIST procedure have the form:

CALl,6 fpt

where fpt points to word 0 of the FPT shown below.

I

option TIMEOUT (P 3)

where

is set to one if SIO was specified. Otherwise,
it is set to zero.

is set to one when a TIO, TDV, or HIO is re­
quested. Otherwise, it is set to zero.

f3 is set to one for a TIO request.

is set to one for a T DV request.

f5 is set to one for an HIO request.

If incorrect or confl icting information exists, the abnormal
address specified in the DDCB will be used ifit has been
specified. If the user does not have at least AO privilege,
the return is to CAL+l with CCl set.

START 1/0

M:SIO The start I/o procedure call initiates the diag­
nostic I/O specified in the diagnostic DDCB. After an SIO,
the monitor will not return control to the user until either
the call has been rejected, the I/O has been completed
(successfully or with errors) or the I/O has timed-out. The
AIO, TDV, and TIO status and condition codes are returned
in the user area specified by the STATUS parameter of
M:DOPEN and in the exact format as for Error Log (see
Appendix E).

The M:SIO procedure call is of the form

M:SIO [*]dcb name

where [*]dcb name specifies the ~OCS.

Calls generated by the M:SIO procedure have the form

CALl,6 fpt

where fpt points to word 0 of the FPT shown below.

word 0

H X'03' 10 01 : DeB ~dress I
o 1 2 314 S 6 78 9 10 11112 13 14 lS 16 17 18 19120 21222324 2S 26 27128 29 30 31

If there is no command list in the DOCB or the validity of
the command list has been destroyed by a swap, an abnor­
mal condition resul ts. If the user does not have at least AO
privilege, the return is to CAL+l with CCl set.

LOCK IN CORE

M:LOCK The LOCK routine either locks the user in
core or resumes normal swapping for the user. This lock in
core reduces the user's chances of being swapped but does
not ensure that the user wi II not be swapped. The user may
ascertain whether a swap has occurred since the BLIST CAL
by comparing J:NRS (the swap count) in the JIT with the
SWAPCT field in the DDCB. (SWAPCT contains the swap
count at the time of the BLIST CAL.) The user has not been
swapped if the two values are equal. (The external refer­
ence J:NRS is satisfied by loading with :JO from the :SYS
account.)

The M:LOCK procedure call is of the form

M:LOCK (~~)

where

YES specifies that the user is to be locked in core.

NO specifies that normal system swapping is to re-
sume for the user.

Once a user is locked in core, his size may not chmge.
Use of the following services may result in a size modifica­
tion. In such case, the user will be swapped.

1. Memory management CALs.

2. M:SEGLOAD, M:L1NK, and M:LDTRC procedure calls.

3. Associate and disassociate processor CALs.

4. Get page CALs.

Calls generated by the M:LOCK procedure have the form

CAL1,6 fpt

where fpt points to word 0 of the FPT shown below.

word 1

where fl in word 1 specifies that LOCK in core has been
requested (f1 = l)or that the LOCK is to be released (f1 =0).

If the user's privilege level is not at least AO, the return is
to CAL+l with CC1 set.

System Procedures 119

CONVERT ADDRESS ;

M:MAP The M:MAP procedure converts a specified
virtual address to a physical address or a specified physical
address to a virtual address. The converted address is stored
in general register S. The M:MAP procedure call has the
form

M:MAP (~J~), (ADR, [*] address)

where

VTP specifies virtual to physical address conversion.

PTV specifies physical to virtual address conversion.

ADR, [*J address specifies the locationofthe address.
to be converted.

If the user has been swapped in between issuing a BlIST CAL
and issuing a MAP CAL, the address returned from the MAP
CAL is invalid. The user has not been swapped if J :NRS in
the JIT is equal to SWAPCT in the DDCB. The user may
reduce the chances of being swapped through the use of
M:lOCK.

Calls generated by the M:MAP procedure have the form

CAll,6 fpt

where fpt points to word 0 of the FPT shown below.

where f1 indicates virtual to physical address conversion
(f1 =0) or physical to virtual address conversion (f1 = 1).

If the user's privilege level is not at least AO, the return is
to CAl+1 with CC1 set.

\ OBTAIN MODEL NUMBERS AND TYPE MNEMONICS

M:DMOD# The M:DMOD# procedure obtains the con­
troller model number, the device model number, the type
mnemonic associated with a given device address, and
specific information concerning the device (i. e., device
availability, device partitioned, controller partitioned,
and DIAG key-in has been performed).

M:DMOD# [*]device address

where device address has the form ndd in which n specifies
the lOP unit address (the number associated with the lOP
letter; see Table B-2 in Appendix B) and dd specifies the
device number (see Table B-3 in Appendix B).

120 Abnormal Codes and Messages/DOC B

Example:

M:DMOD# X'20F'

The procedure verifies that such an address exists. If no such
device address exists, eCl is set to one. However, if the
device address is valid, CCl is set to zero and the following
general registers are set:

RS contains the device model number in hexadecimal
(e. g., X'OO007122').

R9 contains the controller model number in hexa-
decimal (e.g., X'OOO07120').

RI0 contains the type mnemonic in EBCDIC and
right-justified (e. g., X'OOOOC3D9' for CR), and
special information flags formatted as follows:

bit 0 = 1 device is currently busy with an-
other user.

bit 1 = 1

bit 2 = 1

device is partitioned.

device's controller is partitioned.

bit 3 = 1 DIAG key-in has been made by
the operator.

bit 4 = 1 sub-channel 2 (alternate path)
partitioned.

bit 5 = 1 sub-channel 1 (primary path)
partitioned.

In either case, the return is to CAl+l.

Calls generated by the M:DMOD# procedure have the form

CAll,6 fpt

where fpt po ints to word 0 of the FPT shown below.

word 0

ABNORMAL CODES AND MESSAGES.

The codes and messages for abnormal conditions that can
occur when using the on-I inediagnostics facilities are listed
in Table 44. The abnormal code (bits 0-7) and subcode
(bits S-14)are returned in user's register SR3and the address
of the procedure plus one word (CAl+l) is returned in user's.
register SRI. (The messages reside in the system error mess­
age file, ERRMSG.)

DDca
The format for the DDCB is given in Figure 16. Following
each format, the parameter fields of the DDCBare described
in alphabetical order by their mnemon ic. AI I referenced
addresses have word resolution.

Abnormal
Code

09

09

09

09

09

09

09

09

09

09

09

09

09

09

09

09

09

09

Subcode

00

01

02

03

04

05

06

07

08

09

OA

OB

OC

00

OE

OF

10

11

Table 44. On-Line DIagnostics Abnormal Messages

Mean ing of Code

A diagnostic close is attempting to return a nonpartitioned device or a device within a parti­
tioned controller.

The device referenced in the DDCB is a nonexistent device.

The device referenced in the DDCB is currently in use.

The device referenced in the OOCB is currently in use by a symbiont.

The OOCB does not contain a command list.

The command I ist was inval idated by a swap.

There are more than 12 I/O command doublewords (lOCOs).

The I/O command list is invalid due to either invalid flags, an invalid TIC address, an inval id
user-specified command list address, or insufficient room in the OOCB for the command list.

An error was found during the BLIST CAL. Either an invalid page was found during physical-to­
virtual or virtual-to-physical address conversion, the status address is in error, or the byte count
is illegal in the lOCO. .

A buffer crosses a page boundary.

The user's 10 does not match the 10 specified on the last operator OIAG key-in, or the user
privilege level was less than AO.

The amount of available core is not sufficient to allow the diagnostic program to lock itself
in core.

The requested controller is not partitioned.

The device specifically requested on an open is not partitioned.

A MAP CAL error occurred due to an invalid page number during a physical-to-virtual or
virtual-to-physical address conversion.

Monitor buffer space (MPOOL) is unavailable for processing the command list.

A hand-coded TIO, TOV, or HIO type FPT does not have f31 f41 or f5 set to one when
f2 is one.

A CHAN option on an M:OOPEN to a device type or operational label is illegal.

OOCB 121

o ASN=3

28 29 30 31

TYPE DEVor OPlB

20 21 22 23 24 25

-------0 aUF

14 15 31

Word 3

TIMEOUT ERA

o 1

17 18 19

o 0 ----0

o 29 30 31

FlP

19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 16. Format of the DOCS

122 DOCS

Word 8

I :--2--3 -1-4-5-6-7-; -8-9-1-0-1-1-1-12-13-1-4-1-5-; -16-17-1-8-1-9-12-0-2-1 -2-2-2-3-; 2-4-25-2-6-2-7-12-8-29-3-0 :J

(may not be used)

KBU~
24 25 26 27 28 29 30 31

COS or CIS

o 1

31

Word 15
1

TAB 1

o 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 2122 23124 25 26 27128 29 30 31

Figure 16. Format of the DDCB (cont.)

DDCB 123

FIELD

ABA

ASN

BUF

CHAN

CIS

SWAPCT

Word 21

PRI

o 234

Words 22 -n are used for variable length parameters

Figure 16. Format of the DDCB (cont.)

DESCRIPTION

Contains the address of the user's routine that will handle abnormal conditions resulting from
insufficient or confl icting information.

Indicates the assignment type currently in effect for the DCB (0 = null, 1 = file, 2 = Xerox
labeled tape, 3 = device, X'A' = ANS labeled tape).

Contains the address of a mon itor MPOOL buffer used when processing the user's commend list.

Is the controller reservation flag (0 = no, 1 = yes).

Contains the relative position of the serial number (in the SN I ist) of the magnetic tape reel
used for current file input.

124 DDCB

30 31

o

2

11

11

FIELD

CLIST

ClSZ

cos

DESC RIPTION

Contains the virtual address of the physical command list in the DDCB.

Contains the number of words in the physical command list in the DOCS.

Contains the relative position of the serial number (in the SN I ist) of the magnetic tape reel
used for current file output.

DEV Contains the OCT index of the device assigned to the DCB. DEV is only meaningful if DEVF
is set to one.

DeVF Indicates whether the DOCB is a~signed to a device or an operational label (0 = operational
label, 1 = device).

DEVICE

DIAG

DRC

ERA

FCD

FCI

FlP

FUN

KBUF

Contains the EBCDIC name specified on the DEVICE option in the M:DOPEN call.

Indicates diagnostic device DDCB.

Is the format control flag and indicates whether (DRC = 0) or not (DRC = 1) the mon itor is to do
special formatting of records on read or write operations. DRC is always set to 1 in a DDCB.

Contains the address of the user's routine that will handle error conditions resulting from
insufficient or conflicting information.

Indicates whether the DDCB is opened or closed (0 = closed, 1 = opened).

Indicates whether the DDCB has ever been closed. The flag is set when the DOCS is first closed,
and then is never reset (0 = DOCS has never been closed; 1 = DDCB has been previously opened
and closed).

Contains the address of the variable length parameters in the DDCB (called the file list-pointer).

Contains the device mode function (0 = null, 1 =IN, 2=OUT, 3=INandOUT, 4=INOUT, 8=OUTIN).

Contains the virtual address of the user's command list.

OPlB Contains the OPlB table index of the operational label assigned to the DDCB. OPlB is only
meaningful if DEVF equals O.

PRI Specifies priority of I/O request.

STA Contains address of user data area used to return I/O status.

SWAPCT Contains user's swap count at the time a diagnostic CAL is issued.

TAB1 Contains the physical doubleword address of the command list in the DDCB.

TIMEOUT Contains the I/O timeout value from the M:BLIST CAL.

TOlF If 1, bits 16-31 of DOCB are TEXT OPLABEL. If 0, DEVF is meaningful.

TOP If 1, opened to a device type or oplabel. Otherwise, set to O.

TTL Specifies the length of the DDCB in words.

TYPE Contains the device type code assigned to the DDCB. This field is set whether the DDCB is assigned
directly to a device or indirectly through an operational label.

WAT Is the wait flag and indicates whether rNAT = 1) or not (WAT = 0) WAIT was specified for the I/O.
WAT is always set to 1 in a DOCS.

WORD

21

4

11

12

5

o

3

o

o

6

10

21

14

19

15

3

5

o

o

DOCB 125

9. REAL-TIME' PROCEDURES

Real-time processing involves reacting to external events
(including clock pulses) within microseconds. Selected ex­
ternal events are allowed to interrupt the real-time user's
program so that they can be processed at the time they
occur. After an interrupt has been processed, control may
then return to the interrupted program or may be directed
elsewhere.

In CP-Vreal-time processing, there are three distinct types
of interrupts:

1. Real, hardware interrupts.

2. Multiple clock interval interrupts derived through soft­
ware from a single hardware clock interrupt.

3. User written pseudo-interrupts that are triggered by
software rather than by hardware. This type of inter­
rupt is quite useful for interprogram communication
and synchronization. Pseudo-interrupts use interrupt
addresses X'1000 ' through X '7FFF' •

Note: Any interrupt connected by real-time procedures
must have a hardware priority below that of the I/O
interrupt. Note also that the swapper performs I/O
at a software priority of X'10'. (This would be a
consideration when specifying a priority to be as­
sociated with certain real-time I/o requests; e.g.,
M:IOEX.)

The counter-equa Is-zero interrupts (X 1581 and
X'59 1

) may be connected to a user program via
the M:CONNECT or M:GJOBCON procedures.
However, it is the user's responsibility to initialize
the corresponding counter pulse interrupts (X '52 1

and X'53 1
).

CP-V real-time provides services that a /Iowa user program
to connect to and control interrupts, to request interruption
at specified clock intervals, and to lock itself into core so
that it will not be swapped out until it is ready to be
swapped ou t .

The following terms appear in the discussion of the real­
time services:

Disarmed

When an interrupt is in the disarmed state, no signal to that
interrupt is admitted; that is, no record is retained of the
existence of the signal, nor is any program interrupt caused
by it at any time.

Armed

When an interrupt is in the armed state, it can accept and
remember an interrupt signal. The receipt of such a signal
advances the interrupt to the waiting state.

126 Real-Time Procedures

Waiting

When an interrupt in thearmed state receives an interrupt sig­
nal, itadvances to the waiting state, and remains in the waiting
state unti lit is a Ilowed to advance to the active state.

Enabled

When an interrupt is in the enabled state, it is allowed to
move to the active state when the interrupt signal is received
provided that it is a Iso in the armed state. If the interrupt
is already in the waiting state, it moves to the active state
when it becomes enabled, provided that no higher priority
interrupt is currently active.

Disabled

An interrupt can undergo all state changes except that of
moving from the waiting to the active state when it is in the
disabl ed state.

When an interrupt meets all of the conditions necessary to
permit it to move from the waiting state to the active state,
it is pe rm i tted to do so by be i ng ac know I edged by the com­
puter, which then executes the contents of the assigned in­
terrupt location as the next instruction.

Cleared

When an interrupt is changed from the active state to the
cleared state, the interrupt states are reset so that the in­
terrupt can be recognized again and the priority is reset to
that of the job that was running when the interrupt occurred.

Interrupt Control Blocks (ICBs)

Areas of memory set aside for use by the monitor interrupt
processing routines. ICBs are established by SYSGEN.

Interrupt Label

The two-character name of an interrupt. Interrupt labels
are defined at SYSGEN.

INTERRUPT CONNECTION lAND CONTROL SERVICES

CP-V real-time provides services that connect interrupts to
mapped programs, control the state of interrupts (e .g., trig­
ger, arm, enable, disable), clear interrupts either at time
of occurrence or upon completion of processing, and discon­
nect interrupts that are no longer required. Most of these
services are provided through procedures which, except
where noted, reside in

SYSTEM RTPROCS

and require real-time privi lege (EO or higher).

CONNECT INTERRUPT TO GHOST FILE

M:GJOBCON The GJOBCON routine associates an
interrupt with a load module such that if the interrupt oc­
curs, the designated load module will be put into execu­
tion as a ghost job. If the ghost job is already active as
the resul t of a previous interrupt, the interrupt will be
ignored. An interrupt occurring while the ghost is asleep
(M:WAIT) causes a wake-up event.

The M:GJOBCON procedure call has the form

M.GJOBCON (INT [*]{interrupt}> ----.....,
. , 'intlbl ' , I

L(LMN, 'load module')[, (ACN, 'account')]=:]

L , (PRIO, [*]priority)]

where

I NT, [*] interrupt specifies an interrupt address.

INT, [*] I intlbl' specifies an interrupt label. If
indirect addressing is used, the label must be in
EBCDIC format, right-justified in the word, and
preceded by blanks.

LMN,'load module ' specifies the name of the load
module to be placed in execution when the inter­
rupt occurs. This will be the name of the re­
sulting ghost job. The name must be seven char­
acters or less in length.

ACN,'account' specifies the account of the load
module and consequent running account for the
ghost job. The default is the :SYS account.

PRIO, [*]priority specifies the execution priority
for the ghost job. The defaul t is as follows: if
'intlbl' was specified (via the INT keyword), the
default is the SYSGEN-defined execution prior­
ity associated within the interrupt label; if an in­
terrupt address was specified (via the INT key­
word) and the interrupt is a real interrupt, the
default is n-X '4F' where n is the value of the
interrupt address (e.g., programs attached to in­
terrupt level X'60' would have a default execu­
tion priority of X' ll'); ifan interrupt address was
specified (via the INT keyword) and the interrupt
is a pseudo interrupt, the default is the SYSGEN­
defined default execution priority for ghost jobs.

Calls generated by the M:GJQBCON procedure have
the form

CAL 1,5 fpt

where fpt points to word 0 of the FPT shown below.

word 0

word 1

words 2 and 3

Load module name in TEXTC
1------------------- ---

format (~7 characters)
o 1 2 314 5 6 718 9 10 11112 13 14 15\16 17 18 19120 21222312425262712829 30 31

words 4 and 5 (Pl)

Account name in TEXT
1----- -- ---------____ _

format (~8 characters)
o 1 2314 56 718 9 10 11112 13 14 15116 17 1819120 2122232425262712829 30 31

word 6 (P2)

Condition code settings resulting from an M:GJOBCON
CAL are:

CCl -

CC2 -

CC3 -

CC4 -

set if the user does not have real-time
privilege.

set if no interrupt control blocks are
available.

set if the interrupt specified is already
connected.

set if the ghostalready exists. This·M:GJOB­
CON procedure call is ignored.

CONNECT USER PROGRAM TO .NTERRUPT

M:CONNECT Any mapped user program with real-time
privilege may use this service to establish a connection to
an interrupt such that the user program will be entered at
the specified address when the interrupt occurs. Interrupts
connected in this way report events to the CP-V execution
scheduler and therefore permit the entered program to use
all monitor services. The connected interrupt will be armed
and enabled or disabled as specified by the user.

Interrupt Connection and Control Services 127

The M:CONNECT procedure call has the form

[*J {i nterrupt}
M:CONNECT (INT, 'intlbl')'

L (E NT RY, [*]address)[' CLEAR][, MAS TE R] :=J

L[, DISABLE][, (PRIO, [*]priority)]

where

INT, [*Jinterrupt specifies an interrupt address.

INT, [*J'intlbl' specifies an interrupt label. If
indirect addressing is used, the label must be in
EBCDIC format, right-justified in the word, and
preceded by b la nks.

ENTRY, ~*]address specifies the address at which
entry is to be made into the user program.

PRIO, [*]priority specifies the execution priority
for this interrupt. The default is as follows: if
'intlbl' was specified (via the INT keyword), the
default is the SYSGEN-defined execution priority
associated with the interrupt label; if an interrupt
address was specified (via the INT keyword) and
the interrupt is a real interrupt, the default is
n-X'4F' where n is the value of the interrupt
address; if an interrupt address was specified (via
the INT keyword) and the interrupt is a pseudo
interrupt, the default is the SYSGEN-defined
default execution priority for either on-line,
batch, or ghost jobs, depending on the mode
in which the job is being executed.

CLEAR specifies that the interrupt is to be cleared
immediately upon occurrence and reported to the
scheduler. The default is to leave the interrupt
active.

MASTER specifies that the user is to be given con-
trol in the master mode. The default is the slave
mode.

DISABLE specifies that the interrupt is to be con-
nected, armed, and disabled. The default is to
arm and enable.

Calls generated by the M:CONNECT procedure have the
form

CAL 1,5 fpt

where fpt points to word 0 of the FPT shown below.

word 0

128 I Interrupt Connection and Control Services

word 1

word 2

word 3 (Pl)

where

M=l specifies MASTER mode.

C=l specifies CLEAR.

D=l specifies DISABLE.

condition code settings resulting from an M:CONNECT
CAL are:

CC1 -

CC2 -

CC3 -

set if the user does not have rea I-ti me
privilege.

set if no interrupt control blocks are avail­
able. (Interrupt control blocks are estab-
I ished at SYSGEN.)

set if the interrupt specified is already
connected.

The environment existing for the real-time program at the
time of the interrupt occurrence is saved in the user's TCB
before entering the specified interrupt routine. The TCB is
identical to the one shown in Figure 5 except that the last
word contains the interrupt location rather than a trap
location.

DISCONNECT USER PROGRAM OR GHOST JOB
FROM INTERRUPT

M:DISCONNECT The DISCONNECT routine releases
the specified interrupt if it is associated with the current
user. If honored, the M:DISCONNECT procedure disarms
the specified interrupt and releases the associated interrupt
control block.

The M:DISCONNECT procedure call has the form

where

INT, [*]interrupt specifies the interrupt address.

INT, [*]tintlbl' specifies the interrupt label. If .in-
direct addressing is used, the label must be In

EBCDIC format, right-justified in the word,
and preceded by blanks.

Calls generated by the M:DISCONNECT procedure have
the form

CALl,5 fpt

where fpt points to the FPT shown below.

Condition code settings resulting from an M:DISCONNECT
CAL are:

CC1 - set if the user does not have rea I-ti me
privilege.

CC2 - set if the interrupt specified is not associ­
ated with the current user.

CC3 - set if the specified interrupt is currently
active.

CONTROL AN INTERRUPT

M:INTCON This service permits a program with real­
time privilege to control the states of interrupts. Interrupts
may be armed, disarmed, enabled, disabled, or triggered.
If the designated interrupt is a pseudo-interrupt, the action
specified does not affect any real hardware interrupt but
is instead recorded in the associated interrupt control block.
The use of this service does not require that the user
issuing the M:INTCON request be connected to the desig­
nated interrupt, thus permitting inter-user interrupts.

The M:INTCON procedure call has the form

ARM, ENABLE
ARM, DISABLE

M:INTCON (INT [*J{interrupt}) DISARM
, 'intlbl' 'ENABLE

DISABLE
TRIGGER

where

INT, [*]interrupt specifies the interrupt address.

INT, [*]'intlbl' specifies an interrupt label. If
indirect addressing is used, the label must be in
EBCDIC format, right-justified in the word, and
preceded by blanks.

ARM, ENABLE specifies that the interrupt is to be
armed and enabled.

ARM, DISABLE specifies that the interrupt is to be
armed and disabled.

DISARM specifies that the interrupt is to be disarmed.

ENABLE specifies that the interrupt is to be enabled.

DISABLE specified that the interrupt is to be disabled.

TRIGGER specifies that the interrupt is to be
triggered.

Calls generated by the M:INTCON procedure have the
form

CAll, 5 fpt

where fpt points to word 0 of the FPT shown below.

word 0

word 1

where the 3-bit code has the following meanings:

001 - DISARM

010 - ARM and ENABLE

011 - ARM and DISABLE

100 - ENABLE

101 - DISABLE

111 - TRIGGER

condition code settings resulting from an M:INTCON CAL
are:

CC1 -

CC2 -

set if the user does not have real-time
privilege.

set if the designated interrupt is not cen­
trally connected (i. e., no M:CONNECT
or M:GJOBCON has been performed on
the interrupt). The requested operation is
not performed in this case.

GENERAL INTERRUPT INHIBIT

M:INHIBIT This service permits a program with real­
time privilege to prevent itself from being interrupted by
any higher priority real-time task. Note that this is a soft­
ware (not hardware) inhibit and appl ies to both real and
pseudo interrupts.

Interrupt Connection and Control Services 129

The M:INHIBIT procedure call has the form:

where

ON specifies that the program is not to be interrupted.

OFF specifies that the program may be interrupted
and is the defaul t.

Calls generated by the M:INHIBIT procedure have the
form

CAL 1,5 fpt

where fpt points to word 0 of the FPT shown below.

word 0

word 1

where f specifies OFF if 0; or ON if 1.

Condition code settings resulting from an M:INHIBIT CAL
are:

CC 1 - set if user does not have real-time privilege.

RETURN FROM INTERRUPT PROCESSING

M:INTRTN This service allows a mapped, scheduled
program entered as the result of a centrally connected in­
terrupt or elapsed clock interval to return to the point of
interruption. The actual return is to the environment that
existed for this program or user when the interrupt occurred
even if this user was not in control when the interrupt oc­
curred. The environment that is restored was saved in the
user's TCB at the time of interrupt entry.

The M: I NT RT N procedure ca II has the form

M.INTRTN ARML:, ENABLE]
[{

LEAVE }]

. ARM, DISABLE
DISARM

where

LEAVE specifies that the interrupt is to be left in
its current state. LEAVE is the default for this
procedure.

130 Interrupt Connection and Control Services

ARM[, ENABLE] specifies that the interrupt is to be
left armed and enabled. (It is not necessary to
specify ENABLE.)

ARM, DISABLE specifies that the interrupt is to be
left armed and disabled. (It is necessary to specify
DISABLE.)

DISARM specifies that the interrupt is to be left
disarmed.

None of the above options are recognized when exiting a
clock-processing routine (see M:CLOCK below).

Calls generated by the M:INTRTN procedure have the
form:

CALl,9

where the CAL instruction is as follows:

where the 2-bit code has the followi ng meanings:

00 - LEAVE

01 - DISARM

10 - ARM and ENABLE

11 - ARM and DISABLE

When an error condition occurs, the user is aborted with an
error code of either A301 or B802 (see Appendix B of the
CP-V!BP Reference Iv\anual, 90 1764).

QUEUE FOR INTERRUPT

M:QFI This service permits the user to suspend execu­
tion while awaiting interrupts or elapsed clock intervals as­
signed a priority higher than the current execution priority •.
If there are no interrupts connected for this user that satisfy
this condition, the user is aborted with a code of B8 and a
sub code of 01.

The M:QFI procedure call has the form

M:QFI

Calls generated by the M:QFI procedure have the form

CAL 1,5 fpt

where fpt points to the FPT shown below.

OBTAIN INTERRUPT STATUS

M:INTSTAT: The service permits any user to query the
status of any real or pseudo interrupt location. The format
of the M:INTSTAT procedure call is

M· I N TS TAT (I NT [*J{i nterrupt}
. , 'intlbl '

where

I NT, [*] interrupt specifies an interrupt address.

INT, [*]'intlbl' specifies an interrupt label. If
indirect addressing is used, the label must be in
EBCDIC format, right-justified in the word, and
preceded by b la nks.

The following word of information is returned to the user in
general register 8:

where

STAT indicates the status of the task associated
with the interrupt location:

STAT

XISOI

X'40 '

X '20 '

X'10'

X'Ol'

Meaning

Task is active.

Task is asleeporqueued for interrupt.

Task is waiting for I/O completion.

Task is blocked and waiting for a
resource.

Specified interrupt is not currently
associated with any user (i.e.,
inactive).

USER is the user number of the user program which
issued the M:CONNECT or M:GJOBCON.

GJOB# is the user number of the ghost job (if it is
active) which will be entered upon the occur­
rence of the interrupt. I f the ghost job is not
active, GJOB# contains zero.

T specifies that the interrupt has been triggered,

E

if set to one.

specifies that the interrupt is enabled, if set to
one.

A specifies that the interrupt is armed, if set to
one.

Calls generated-by the M:INTSTAT procedure have the form

CAL 1,5 fpt

where fpt points to the FPT shown below.

Condition code settings resulting from an M:INTSTAT CAL
are:

CC2 - set if the specified interrupt is not currently
associated with any user (i.e., inactive).
(The STAT field of general register 8 is set
to 01.)

LOCK IN CORE SERVICE

M:HOLD Many real-time applications require that a
program be held in core while various forms of special I/O
occur. Since the CP-V scheduler will swap users as con­
ditions require in order to keep as many executable users
in core as possible, it is necessary for those real-time pro­
grams which require extended core residency to identify
themselves via the M:HOLD service.

The format of the M:HOLD procedure call is

M:HOLD {g~} [, PURGE]

where

ON specifies that swapping is to be prevented for
this user (i. e., the user is to be locked in core).

OFF releases the hold.

PURGE specifies that the user's pages should not be
released if the user exits (or aborts) while locked
in core.

Condition code settings resulting from an M:HOLD call are:

CC1 -

CC2 -

Restrictions:

set if user does not have real-time privilege.

set if there is not enough room left in core
to hold the routine that allocates new disk
space or the routine that communicates with
the symbiont ghost. Any monitor service that
invokes these routines must not be used in
this case.

1. The user must have real-time privilege.

2. All memory management services which increase this
user's size and the M:L1NK and M:LDTRC services will
not be allowed once the user is held in core.

L~k in Core Service 131

3. Monitor services may be further restricted if CC2 is
set. All services requiring the allocation of new disk
space or communication with the symbiont ghost are
prohibited for the user.

It is important to note that any program using M:HOLD
should take exit control to cover abort conditions because
if an abort or exit occurs while the user is locked in mem­
ory, the memory involved will not be released if PURGE
was specified.

Calls generated by the M:H OLD procedure have the form

CALl,5 fpt

where fpt points to the FPT shown below.

where

f 1 specifies ON if set to 0 or OFF if set to 1.

f2 specifies PURGE if set to 1.

CLOCK SERVICE

I,M:CLOCK This service permits a user with a privilege
level...Qf 80 or higher to request entry at a specified address
when a specified time interval has elapsed. The format of
the M :CLOCK procedure call is:

M:CLOCK (ENTRY, [*]address), ------1

L {CANCEL
(INTERVAL, [*]units)~, (PRIO, [*]priority)]~

L [, ONESHOT][, MASTER]}

where

ENTRY, [*]address specifies the address at which
the user is to be given control when the specified
interval has expired. The environment existing
for the user at the time of the interval expiration
is saved in the user's TCB as described under
M:CONNECT.

CA NCE L causes any outstand ing M :C L DC K requests
for the specified entry address to be canceled.

INTERVAL, [*]units specifies the time interval in
two-millisecond units.

PRIO, [~priority permits users with real-time pri-
vilege to specify the software priority. This
option is ignored if the user does not have real­
time privilege.

ONESHOT cuases the M:CLOCK request to be
automatically canceled after one occurrence. If
ONESHOT is not specified, the interval timing is
to be automatically repeated until CANCELed.

MASTER specifies that the user will be given con-
trol in the MASTER mode. (This is only honored

132 · Clock Service/Device Preemption Services

if the user has real-time privilege.) The default
is the SLAVE mode.

Calls generated by the M:CLOCK procedure have the form

CAL 1,5 fpt

where fpt points to word 0 of the FPT shown below.

word 0

word 1

word 2 (PI)

word 3 (P2)

where

M specifies MASTER mode if set to 1.

o specifies ONESHOT if set to 1.

C specifies CANCEL if set to 1.

Condition code settings resulting from an M:CLOCK CAL
are:

CC1 -

CC2 -

CC3 -

set if no interrupt control blocks are
available.

set if no interrupt control block is associ­
ated with the user's entry address when
CANCEL is specified.

set if user does not have a privilege level
of at least 80.

DEVICE PREEMPTION SERVICES

PREEMPT DEVICE

M:STOPIO Certain real-time applications require that
there be direct control over the I/O associated with a par­
ticular device and that there be no contention for a parti­
cular device during certain critical processing periods. This
includes the ability to request I/o end action off of the
I/O interrupt associated with the I/O operation.

The real-time user may request that a specific device be
preempted from use by any user other than a real-time user
doing direct I/o to the device via the M:STOPIO service.
The following types of devices may not be preempted.

Teletypes (i. e., Operator IS Console)

cae Devices

Public RADs

Publ i c Di sk Packs

The format of the M:STOPIO procedure call is

{
(DCB, [*]dcb adr) } [-kI:1

M:STOPIO (DEY, [*]X'device adr') [, (EA, :Jvadr)J

where

DCB, [*]dcb adr specifies that the device associated
with this currently open device-type DCB is to be
preempted from use by any other user. Only the
user requesting the STOPIO may perform subsequent
I/O to the device.

DEY, [*]X 'device adr' specifies which device is to
be preempted from use by all but this user and is
one of the following:

ndd - a 12-bit physical address as used by
Sigma hardware.

cudd - a 14-bit physical address as used by
Xerox 560 hardware (cluster/unit/
device).

EA, [*]vadr is the virtual address of a routine that is
to handle any I/O interrupts from the device being
preempted. This address is converted to a physical
address and stored in the DCT tables. Therefore
the user, prior to issuing the M:STOPIO request,
must have locked himself in core via the M:HOLD
CAL. This routine is entered master mode, un­
mapped, via a BAL on register 11 with the I/o
interrupt active (high). Register 1 contains the
AIO status of the interrupting device; register 2
contains the right-justified address of the interrupt­
ing device; byte 0 of register 3 contains the con­
dition codes as set by the AIO instruction; regis­
ters 4and 5 contain the TIO status of the interrupt­
ing device with byte 0 of register 4containing the
condition codes as set by the TIO instruction;
register 6 contains the physical address of the
(userls) end-action-receiving routine; and register 7
contains the DCT index of the interrupting device.
No monitor services may be requested by the re­
ceiving routine. All registers may be considered
volatile except register 11 through which return
to the monitor must be made.

I The DCB form of the M:STOPIO procedure call should be
used whenever the user depends upon the operator to mount

. removable vol umes on private spindles or tape drives. The
DEY form should be used whenever the user wants a non-] .
standard device or a symbiont-type device (e. g., LP, CR, _ ..
CP, RBn. Use of the DEY form to preempt any other device
type results in an abnormal return (see the condition code
settings below).

I

'Calls generated by the M:STOPIO procedure have the form

CAL 1,5 fpt

where fpt points to word 0 of the following FPT.

word 2

where

specifies DEY if 0 or DCB if 1.

indicates that EA was not specified if 0 or that
EA was specified if 1.

The return from the procedure call is to CAL+l w!th the fol­
lowing possible condition code settings:

1 234

o 0 0 0 device successfully preempted.

o 0 0 1 user doesn It have real-time privileges; or the
physical EA address is greater than 128K
(Xerox 560 only),

o 0 1 0 requested device is not preemptable (i.e., a
public pack or RAD), is already preempted by
another user, the specified DCB is notiopened
proper! y, or there was an i II ega I use of the DEY
form. .

o 0 0 unknown device address; request ignored.

o 0 0 requested device was associated with a sus­
pended symbiont; reques't ignored.

Should the application require that the multi-device con­
troller (associated with the device to be preempted)also be
preempted, the SYSCON processor should be used. This
would imply that the application cannot tolerate any con­
tention for either the particular device or the multi-device
control I er associated wi th that devi ce (tape dri ve or pri vate
disk p<!lck). In the case of a disk pack controller, the
spindles associated with that controller must have been de­
signated as private.

Device Preemption Services ,133

RETURN PREEMPTED DEVICE

M:STARTIO Any preempted I/O device may be returned
to the system via the M:STARTIO service.

The format of the M:STARTIO procedure call is

{
(DCB, [*]dcb adr) }

, M:STARTIO (DEY, [*]X'device adr')

where dcb adr and device adr are as described under
M:STOPIO.

Calls generated by the M:STARTIO procedure have the form

CAll, 5 fpt

where fpt points to word 0 of the FPT shown below.

word 0

H X'10' 10 01: OCB/devic~ address 1
o 1 2 314 5 6 7 8 9 10 11112 13 14 15 16 17 18 19120 21 2223 24 25 26 27128 29 30 31

word 1

where f specifies DEY if 0 or DCB if 1.

The return from the procedure ca II is to CAL + 1 with the fol­
lowing possible condition code settings:

1 234

000 0

000

o 0 o

000

000

device successfully returned.

user doesn't have real-time privileges.

device wasn't preempted by this user, or the
specified DCB is not opened properly, or there
was an illegal use of the DEY form.

unknown device address; request ignored.

device was busy; request ignored.

DIRECT I/O SERVICES

10EX SERVICES

The M:IOEX service is provided as one means of enabling
the real-time user to exercise direct control over I/o op­
erations without having to run in the master mode (see also
the M:EXU service). The only requirements are that the
device specified be preempted (either via the M:STOPIO
service or the SYSCON processor), and that an end-action
routine be provided (either via M:STOPIO or M:IOEX). The
I/o functions that can be controlled via M:IOEX are:

510 - Start input/output.

134 Direct 1/0 Service.

HIO - Halt input/output.

TIO - Test input/output.

TDY - Test device.

I M:IO EX (510)
call is

The format of the M:laX (SIO) procedure

{
(DC B, [*]dcb adr) }

M:IOEX (DEV, [*JX'device adr') ,

L(SIO, [*)clist[,REL]}G(EA, [*]vadr}]---,

LG (TO, [*Jvalue} [,(PRI, [*]prio)]

where

DCB,[*]dcb adr specifies that the I/O function is
to be performed for the device associated with the
currently open DCB addressed.

DEY, [*JX'device adr' specifiesthe device for which
the I/O function is to be perfonned and is one of
the following:

ndd - a 12-bit physical address as used by
Sigma hardware.

cudd - a 14-bit physical address as used by
Xerox 560 hardware (cluster/unit/
device).

SIO,[*]clist is the starting virtual address (double-
word bound) of the I/O command list to be initiated.
All buffer addresses within the command list itself
must be physical addresses. The channel program
must request a "Channel End Interrupt" (unless REL
has been specified, see below); however, multiple
interrupts per I/O requests are permitted (e.g.,
"Zero Byte Count Interrupt" and "Channel End
Interrupt").

REL specifies that the channel is to be released af-
ter issuing the 510. This would be used with
command lists which do not result in data transfer
operations (e. g., seek orders, rewind orders, head­
positioning orders).

EA, [*]vadr is as described under M:STOPIO; the
M:HOLD requirement applies to M:IOEX also.

TO, [*]value is the number of 4.8 second intervals
allowed to elapse following the issuance of the SIO
instruction before the EA address will be entered.
In this case, the user's EA routine is entered master
mode, unmapped, via a BAL on register 11 with
registers 1 and 2 equal to zero. Register 7 contains
the DCT index and register 6 contains the physicai
address of the (user's) end-action-receiving routine.
Byte 0 of register 3 contains the condition codes as
set by the SIO instruction; registers 4 and 5 con­
tain the SIO status registers' information. No mon­
itor services may be requested by the receiving
routine. All registers may be considered volati Ie
except register 11 th.rough which return to the mon­
itor must be made. A time-out value of zero

impl ies that no time-out facility is desired (default),
however the user's EA address wi II always be en­
tered should an SIO failure occur (in this case
register 1 will be nonzero).

PRI, [*lprio is the priority at which to queue the
request and is a value between 0 and X'FF'. The
default is the value of the user's current execution
priority.

Table 45 summarizes the various possible register settings
for end-action routines.

Calls generated by the M:IOEX (SIO) procedure have
the form

CAL1,5 fpt

where fpt points to word 0 of the FPT shown below.

word 0

word 2

word 4 (P2)

where

f1 specifies DEV if 0 or DCB if 1.

is set to 1 if REL was specified on SIO.

The return from the procedure call is to CAL+l with the fol­
lowing possible condition code settings:

1 234 - - --
o 0 0 0 I/O request successfully queued.

o 0 0 user doesn't have real-time privileges.

000

o 1 0 0

specified device doesn't exist or the specified
DCB is not opened properly.

EA was not specified and the OCT tables do not
contain the address of an end-action receiver;
or the physical address EA is greater than 128K
(Xerox 560 on I y).

1 0 0 0 specified device is not preempted, or has been
preempted by another user.

Table 45. Register Settings for End-Action Routines

Register

RO

R3

R4and
R5

R6

R7

Contents when Routine Entered
due to Interrupt

AIO status.

Device address.

AIO condition codes (byte 0).

TIO status; byte 0 of R4 contains the
condition codes from TIO.

Physi ca I address of EA routi ne.

OCT index.

tRl and R2 indicate how the end-action routine was entered.

Contents when Routi ne Entered due to
Timeout or SIO Fai lure

0= timeout; Nonzero = SIO failure.

o

SIO condition codes (byte 0).

SIO status (if timeout). R4 contains the
doubleword address of the fail ing channel
program (if SIO failure).

Physical address of EA routine.

OCT index.

Direct J/O Servl~ . :,.

M:IOEXI (HIO/TIO/TOY) The format of the M:IOEX
(HIO/TIO/TOY) procedure call is

{
(OCB, r*]dcb adr } {HIO}

M:IOEX (DEY, L.*JX'device adr') , ~~~

wher~ dcb adr and device adr are as described under
M:IOEX.

Calls generated by the M:IOEX (HIO/TIO/TOY) procedure
have the form

CAL 1,S fpt

where fpt points to word 0 of the following FPT.

word 0

word 1

where

code is:

o if TIO

1 if TOY

2 if HIO

f specifies OEV if 0 or OCB if 1.

The return from the procedure call is to CAL + 1 with the
condition codes and registers set as if the user had issued
the following instruction:

{
HIO}
TIO ,8
TOY

X'device address'

Since the condition codes cannot be used to communicate
abnormal conditions for any of the above three services,
any of the abnormal conditions indicated below will result
in a program abort (code B9, sub code as indicated). Such
aborts may be intercepted by the user via TRAP control
(M: TRAP procedure call specifying CAL).

Subcode

01

02

Meaning

User doesn't have real-time privilege.

Specified device doesn't exist, is not pre­
empted by this user, or the specified OCB is
not opened properl y.

i 134 f . oiteqt ,VO Se.~GeS
'C- ,. .," ,

EXECUTE PRIVILEGED iNSTRUCTION SERVICE

M:EXU The M:EXU service is provided as another way
to enable the real-time user to execute I/O instructions
a nd other pri vi I eged instructions without havi ng to run in
the master mode (see also the M:IOEX Service). The only
requirement is that the instruction op code to be executed
be one of the following:

0E Code Mneumonic

X'4C' SIO
X'40' TIO
X'4E' TOY
X'4F' HIO
X'6C' RO
X'60' WO

The SIO execution service is intended primarily for inter­
facing to devices not known to the operating system (OCT
tables) and which do not generate I/O interrupts (X'SC').
However, no validity checks are made and if the SIO will
result in an I/O interrupt, it is assumed that the user will
have provided an end-action receiver via the M:STOPIO
service.

For a complete discussion of the M:EXU service, see the
CP-Y/BP Reference Manual, 90 1764.

ENTER MASTER MODE

M:MASTER The M:MASTER procedure allows~ user with
sufficient privilege level (CO or higher or the MS privilege)
to operate in the master mode (master-protected mode if
running on a Sigma 9 or Xerox S60) with a write key of 1.
(This procedure resides in SYSTEM BPM.) The format of the
procedure call is

M:MASTER

Calls generated by the M:MASTER procedure have the form

CAll,S fpt

where fpt points to the FPT shown below.

If the caller's privilege level is not sufficient, return is to
CAL+l with CCl set.

ENTER SLAVE MODE

M:SLAVE The M:SLAYE procedure allows any master
(and master-protected) mode program to return to the slave
mode. (This procedure resiges in SYSTEM BPM.) The for­
mat of the procedure call is

M:SLAYE

Calls generated by the M:SLAVE procedure have the form

CAL 1,5 fpt

PlECT DIRECTIVE

The Meta-Symbol PSECT directive specifies that the control
section which follows is to begin on a page boundary. The
directive can be useful for controlling the placement of I/O
buffers, data, and end-action-receiving routines which will
be. accessed unmapped.

VIRTUAUPHYSICAl ADDRESS CONVERSION

M:MAP The M:MAP procedure converts a specified
virtual address to a physical address or a specified physical
address to a virtual address. The converted address is stored
in general register 8. The M:MAP procedure call has the
form:

M:MAP{~;~}, (ADR, [*]address)

where

VTP specifies virtual to physical address conversion.

PTV specifies physical to virtual address conversion.

ADR, ... *Jaddress specifies the location of the ad-
dress to be converted.

M:MAP should be used with M:HOLD since the address
returned via M:MAP may not be valid if a swap occurs.

Calls generated by the M:MAP procedure have the form

CALl,6 fpt

where fpt points to word 0 of the FPT shown below.

word 0

word 1

where f indicates virtual to physical address conversion
(f = 0) or physical to virtual address conversion (f = 1).

If the user's privilege level is not at least AO, the return is
to CAL + 1 with CCI set.

MISCELLANEOUS RtAL-TIME SERVICES

The following is a set of services provided to master mode,
mapped or unmapped real-time programs. These services

are provided via Meta-Symbol procedure references that
result in SAL linkages to monitor routines (hence the master l

mode requirement) as opposed to CAll linkages. The rou- I

tines entry points are REFed as a result of the various pro­
cedure ca 115, therefore the program must be loaded with
reference to the MONSTK or Jl files in order to satisfy
these external references. All user registers are preserved
by pushing them into TSTACK except as indicated for
specific services.

GET OR fREE PHYSICAL PAGE

M:GPP The M:GPP procedure acquires a physical page
of memory. The procedure call has the format

M:GPP

On return from the procedure, general register 3 contains
the physical page number of the newly allocated page of
memory or the value zero if none was available.

In order for a mapped user to reference a physical page
acquired by M:GPP, it is necessary to perform a Change
Virtual Map (M:CVM) specifying the physical address of
the page acquired by M:GPP and the virtual address into
which this page is to be mapped.

M:FPP The M:FPP procedure releases a physical page
of memory that was acquired by M:GPP. The procedure
co II has the format

M:FPP [*] page

where poge specifies the physical page number of a page of
memory which is to be returned to the system.

Itistheuser's responsibility to return any pogesobtained via
M:GPP since the system keeps no record of this transaction.

INITIATE GHOST JOB

M:GJOB The M:GJOB procedure activates {or awakens)
a program as a ghost job. The format of, the procedure is

M:GJ OS (LMN, loc) [, (ACN, loc)] [, (PRI,[*Jvalue)]

where

LMN,loc specifies the location containing the name
of the program to be activated (or awakened) as a
ghost job. The name must be in TEXTC format and
must not be greater than 7 characters in length. If .
the name is less than four characters, a word of
blanks (X'40's) must immediately follow the name.

ACN,loc specifies the location containing the name
of the account in which the program exists. The
account name must be in TEXT format, left-justified I

with trailing blanks to occupy two words. The
default is the :SYS account.

Miscellaneous Real-Time Services 137

PRI, [*]value specifies the execution priority to be
associated with the ghost job. The default priority
will be that defined for ghost jobs at SYSGEN.

On return, CCl is set if it was not possible to initiate the
specified ghost at this time because either ghost job table
space was not available or user table space was not avail­
able. CCl and CC3 are set if the specified ghost was cur­
rentl y running. CC2 is set if the specified ghost job was
asleep or queued for interrupt and was awakened. Other­
wise, the condition codes are all set to zero.

GET AND RELEASE DISK GRANULE

M:GDG The M:GDG procedure dynamically acquires
a disk granule. The procedure has the format

M:GDG

The starting disk address of the acquired granule is returned
to the user in general register 8 in the followi ng format

The disk address shown above is in standard format for disk
addresses in CP-V, where:

E is the extension bit necessary to represent a
17-bit relative sector number on large capacity
disk packs.

DCTX is the DCT index for the device.

RSN is the 16-bit relative sector number.

If no granule is available, register 8 is set to zero.

Note: Currently, E (in the disk address shown for M:GDG)
is a single bit. In the future Xerox may add disk
packs which require 18 bits in order to represent the
highest relative sector number. Therefore it is rec­
ommended that users util ize the following procedures
(referenced via the SYSTEM UTS directive of Meta­
Symbol preceded by a DISCBPROC SET 1 directive)
when referencing disk address fields.

To load or store a DCT index, use

{~~~~~},r [*] Iocr, index]

where

is the register to be loaded (stored).

loc is a location, or optionally, a pointer to a
location, containing (destined to contain) the
disk address (see index below).

index is an index register containing a word dis-
placement which, when added to the address
given by loc, yields an effective address contain­
ing (destined to contain) the disk address.

~18 Miscellaneous Real-Time Services

To load or store a relative sector number:

{
LSECTA }
STSECTA ,oddreg reg

where

odd reg is the odd numbered register to be loaded
or stored. (Register 15 may not be specified.)

reg is any register except the one selected for
'oddreg' or 15.

Note that it is the user1s responsibil ity to return any gran­
ules obtained via M:GDG since the system keeps no record
of this transaction.

M:RDG The M:RDG procedure dynamically releases a
granule acquired via M:GDG. The procedure has the format I •

M:RDG [*]disk address

where disk address is the starting address of the disk granule
to be returned to the system. It must have the same format
as described for M:GDG.

Under certain conditions, the monitor may not be able to
accept a granule from the user at a particular time. In this
case, register 8 will contain a zero indicating that the user
must try again.

REPORT USER EVENT

M:RUE The M:RUE procedure reports an event on a
particular user (i .e., it simulates that the event took place
for the user). The format of the procedure call is

M: RUE (UN, [*] user#), (EV, {:~:c~})

where

user# is the number of the user for whom the event
is to be reported. A user may determi ne his own
user number (for purposes of communicating this
to other programs) by referencing the monitor cell
S:CUN (Current User Number)' which is located in
page 0 of the monitor and is therefore avai lable
to any user program loaded with MONSTK.

event is one of the following symbols signifying the
event to be reported on the user:

Symbol Event Resulting Action

E:CBK BREAK Control passes to the user at
the address spec ified via an
M:INT procedure call.

E:OFF Log-off The user is deleted from the
system.

.1

I

Symbol Event Resul ti ng Action

E:ERR Error The user is errored and de-
leted from the system.

E:WU Wake-up The specified user isscheduled
for execution and reentered
at the instruction following
the M:WAIT CAll.

E:UQA Unqueue The specified user isscheduled
for for execution and· reentered
access at the instruction following

the CAll which caused him
to be queued for access.

loc2 is a word location containing the value as-
sociated with the event symbol (defined by the
assembly SYSTEM).

Note: Care must be taken to ensure that the user for whom
the event is being reported is in the appropriate
state since an illegal current state/event combi­
nation will cause the system to crash. E:CBK,
E:OFF, and E:ERR may be safely reported on a user
at any point in time.

CHECK INTERRUPT STATUS

M:CHKINT The M:CHKINT procedure checks the status
of an interrupt. The format of the procedure call is:

M:CHKINT (INT, [*]int)

where int is the location of a word containing the address
of the interrupt to be checked.

The following word of information will be returned to the
user in general register 8:

where

A specifies, if set, that the interrupt is armed.

E specifies, if set, that the interrupt is enabled.

T specifies, if set, that the interrupt has been
triggered and the interrupt processing routine has
not yet finished.

STAT indicates the status of the task associated
with the interrupt location as follows:

STAT Meaning

X'80' Task is active.

Task is asleep or queued for interrupt.

STAT Meaning

X'20' Task is waiting for I/O completion.

X'lO' Task is blocked, waiting for a resource.

X'Ol' Specified interrupt is not currently asso­
ciated with any user (i.e., inactive).

USER is the internal user table index for the user
currently associated with this interrupt.

GJOB# is the user number of the ghost job (if it is
active) which will be entered on the occurrence
of the interrupt. If the ghost job is not active,
GJOB# contains zero.

1/0 SERVICES

The following services result in BAL I inkages to the monitor's
I/O Supervisor module (IOQ). They are separated into
three types:

1. I/O without a DCB where the user supplies the channel
program (M:EXCP). This should be used only where no
handler exists for a particular device or the user re­
quires unusual control over the device.

2. I/O without a DCB while 'not requiring the user to build
his own channel program (M:NEWQ).

3. I/O with parameters supplied ina pseudo DCB (M:QUE).

Special problems exist when applying these techniques to
disk I/O. Unless the volume is being managed eptirely by
the user, the user must be aware of the physical location
of the data on the disk volume (or volumes). A random file
would be the most common way of allocating space on a
public or private volume for use byboth privileged and non­
privileged users. A random file is allocated contiguously
on a public or private volume when it is opened. By speci­
fying the FPARAM option on the M:OPEN call to an exist­
ing file, the user requests the monitor to pass the file attri­
bute (FIT table) parameters to a specified location (see the
DCB discussion in Appendix A of the CP-V /BP Reference
Manual, 90 1764). FDA (First Disk Address) is returned in
word one of the X'OC' - coded FIT entry. File size (in
granules) is given in word one of the X'OD' - coded FIT
entry.

Flawed tracks are automatically taken care of by the I/O
system assuming that the requested byte count does not cause
the transfer to cross a track boundary from a good track to
a flawed track. If the user ensures that all tracks are good,
the hardware will automatically handle the case in which a
track boundary is crossed. However, the user must handle
the cylinder overflow condition himself. (A new seek must
be issued between accessing the last sector of one cylinder
and the first sector of the next Icylinder.)

CALCULA liNG PHYSICAL ADDRESSES

All of the I/O procedure calls described below are avail­
able to the mapped or unmapped user. Several require that

Miscellaneous Real-Time" Serv~c:es ' 119

physical addresses by passed. For all mapped users, the
user may convert a virtual address to a physical address by
using the M:MAP procedure call desc:rtOed previously.

In order to ensure!that a mapped user is not swapped between
the time that the physical address is calculated and the
time the I/o is requested, the M:HOLD (Lock in Core)
service should be performed.

Note, however, that a mapped, master mode program is
assured of not being swapped as long as it does not request
any monitor services via CAlls.

EXECUTE CHANNEL PROGRAM

M:EXCP The M:EXCP procedure causes the user's own
channel program to be executed. The format of the pro­
cedure call is

M:EXCP (CPA'{~I~~loc)}), (OCT, [*] index)~

C[, (PRJ, ['Jpriority)J[, (EA, ['Jloe I

L[, (*]eaiJ)][, (TOI, [*]value»

where

DA(loc) specifies the physical doubleword address
of the start of the channel program.

*Ioc specifies the word address of a word which
contains the physical doubleword address of the
start of the channel program. (The asterisk is
required.)

OCT, [*]index is the DCT index of the device
associated with the channel program.

PRI, [*]priority is the priority to be associated
with the requested I/O operation. Priority re­
quests range from 0 to X'FF' (highest to lowest).
Priorities in the range of 0 to X'BF' are treated
as real-time priority requests; X'CQ' to X'FF' are
treated as background priority requests. The only
system I/O that operates at a real-time priority
is swapping I/O (priority = X'10'). The default
priority is X'FF'.

EA, [*Jloc is the physical address of the user's
end-action routine.

eai is a word of end-action information. This
information is passed back to the user's end-action
routine.

TOI, [*]value is a time--out value specified in
five second increments. The default value is
five seconds.

140 Miscellaneous ReaJ-Time Services

The user's end-action routine (if specified) is entered
unmapped, via a BAL on register 11. All registers may be
considered volatile (except register 11, through which re­
turn is made to the monitor). The following information is
passed to the end-action routine;

Resister Bit Fields Contents

7 24,8 -,OCT
12 8,8, 16 TYC, -, RBC
13 16, 16 -,CCA
14 32 EAI
15 13, 19 -,BUF

where

OCT is the OCT index.

TYC is the type of completion code returned by
the device handler.

RBC is the remaining byte count.

CCA is the current lOP command address.

EAI is the end-action information specified in the
procedure co II.

BUF is the doubleword address of the start of the
channel program command list specified by the
M;EXCP call.

The end-action routine may obtai n the complete TDV status
by referencing the doubleword table DCT13 using the OCT
index in register 7.

CALL NEWQ

.M:NEWQ The M:NEWQ procedure requests I/O to be
performed without a DCB and without a user-built channel
program. The format of the procedure call is

M:NEWQ ~{~J] (Fe, ['Jeode),---~

L {BA(loc)} r *] (BUF, *Ioc), (SIZ, L valu~);

{,(DA,*diSk addreSS} [(PRI [*, ..)"
,(OCT, [*]index) , , Jpnorlty~;~

L r, (NRT, [*Jvalue:iJ ,[, (EA, [*]loc2L ['JeaiJ)]

where

W/NW is the WAIT/NO-WAIT option. The un-
mapped user always does I/o with NO-WAIT. This
impl ies that the unmapped user should always (ex­
cept for unusual cases) specify an end-action ad­
dress in order to ascertain when the I/O has com­
pleted. The mapped user will do I/o with WAIT
unless otherwise specified by the procedure call.

FC, [*]code is the function code which defines (to
the device handler) the type of I/O operation to
be performed. See discussion of function codes
below.

BUF, BA(\oc) specifies the byte address of the
user's buffer to be used in this I/o operation.

BUF, * loc specifies the word address ofa word which
contains the byte address of the user's buffer.

SIZ,[*]value is the byte count to be used in this
I/O operation. (The byte count for mapped pro­
grams should not exceed 32K bytes (X'8000')).

DA, * disk address specifies, for random-access-
device operations only, the address of the word
containing the disk address to be used in this I/O
operation. Disk addresses are of the format de­
scribed under the discussion of the M:GDG pro­
cedure call.

DCT, [*]index specifies for non-random-access-
device operations only, the OCT index of the
device to be used in this I/O operation.

PRI, [*]priority is the priority to be associated with
the requested I/o operation. See the description
of priority under the discussion of M:EXCP.

NRT, [*]value is the number of recovery tries to
attempt before declaring an error.

EA, [*]Ioc is the physical address, or optionally a
pointer to a location containing the physical
address, of the user's end-action routine.

eai is a word of end-action information. See the
end-action description under the discussion of the
M:EXCP procedure call. The only difference is
that aUF is the byte-address of the user's buffer
as supplied by the M:NEWQ procedure call.

To assist the user in determining the correct function codes
to be used with the M:NEWQ procedure calls, the follow­
ing is a discussion describing the function codes of the ex-r isting device handlers in the system.

Typewriter Handler. The typewriter handler accepts the
following function codes:

0- read with editing
1 - write
2 - write with device name
3 - read without editing
4 - read with editing and retry
5 - write new line character
6 - write with device name tabbed

RAD Handler. The RAD handler accepts the following
function codes:

o - seek-read
1 - seek-write
2 - sense
3 - seek-checkwri te
4 - seek-write, seek-checkwrite

Error recovery on the RAD generally amounts to redoing the
same operation when an error has been detected. One ex­
ception is when a checkwrite is being performed fora write
and an error is indicated. In this case, the write is done
over, followed by another checkwrite. Checkwrites are
performed for all writes if sense switch 1 is set on the op­
erator's console. Special conditions checked for are write
violation and illegal seek address.

9-Track Tape Handler. The 9-track tape handler accepts
the following function codes:

o - read
1 - write
2 - read reverse
3 - write tape mark
4 - backspace record
5 - forwardspace record
6 - backspace file
7 - forwa rdspace fi Ie
8 - rewind
9 - sense

10 - correctable read recovery
11 - noncorrectable read recovery
12 - wr ite recovery
13 - correctable read reverse recovery
14 - noncorrectable read reverse recovery
15 - write tape mark recovery

7-Track Tape Handler. The 7-track tape handler accepts
the following function codes:

o - read packed
1 - write packed
2 - read reverse packed
3 - write tape mark
4 - backspace record
5 - forwardspace record
6 - backspace fi Ie
7 - forwardspace file
8 - rewind
9 - read bi~ry

10 - write binary
11 - read reverse binary
12 - read decimal
13 - write decimal
14 - read reverse deci ma I
15 - read packed recovery
16 - write packed recovery
17 - write tape mark recovery
18 - read binary recovery
19 - write binary recovery

Miscellaneous Real-Time Services 141

20 - read decimal recovery
21 - write decimal recovery
22 - final backspace record for reverse read
23 - final backspace record if unrecoverable error

Card Reader Handler. The card reader handler accepts
the following function codes:

o - read binary
2 - read automatic

Line Printer Handler. The line printer handler accepts
the following function codes:

1 - write without format
3 - write with format

Paper Tape Handler (PTAP). The paper tape handler ac­
cepts the following function codes:

o - read automatic
1 - write BCD
2 - read count
3 - write binary
4 - read direct
5 - write direct
6 - read BCD
7 - read binary

Card Punch Handlers. The card punch handlers accept the
following function codes:

o - punch BCD
1 - punch binary

Disk Pack Handler (DPAK). The disk pack handler uses the
following function codes:

o - seek-read
1 - seek-write
2 - sense
3 - seek-checkwrite
4 - read
5 - write
6 - checkwrite
7 - restore
8 - seek-read header
9 - read header

Appendix A of the CP-V/BP Reference N\anual, 90 1764.)
The format of the M:Q UE procedure ca II is

M:QUE [*]dcb, (FC, [*]code)['(EA, [*]'oc~ [*]eaiJ)]

where

dcb specifies the DCB associated with the re-
quested I/O operation.

code is an 8-bit code (described in Figure 17 be-
low) which defines (to the device handler) the
type of I/O operation to be performed. The code
may be expressed as a deci rna I number or as a
hexadecimal number in the format X'dd'.

loc and eai function exactly as described under
the discussion of the M:EXCP procedure call.
The user's end-action routine (if specified) will
be entered unmapped via a BAlon register 11
after the TYC (type of completion code) and ARS
(actual record size) have been entered into the
DCB. The following information is passed to the
end-action routi ne.

Register Bit Fields Contents

6 15, 17 -,BUF
7 24,8 -,OCT
8 8,7, 17 FC, -, DCB

14 32 EAI

where

B UF is the word address of the user's buf-
fer associated with this I/O request

DCT is the OCT index as specified in the
CDA field of the DCB at the time of the
M:Q UE procedure ca II.

FC, DCB, and EAI are as specified in the
M:Q UE procedure ca II.

For the unmapped user, the I/O will be queued at a priority
of X'FF'. For the mapped user, the I/o will be queued
based upon the user's current execution priori ty.

o 1 2 J 4

Code

where

Code has the following meanings:

CAll QUE 0 - read BCD

M:QUE The M:QUE procedure requests that I/O be
performed through parameters supplied in a specified DCB.
At the time of the call, the specified DCB need only be
9 words in length but must contain valid information in the
following fields: NRT, QBUF, BlK, and CDA. {See

142 Miscellaneous Real-Time Servfces

- read direct BCD

2 - read binary

Figure 17. I/O Operation Codes for Device
Handler (M:QUE)

3 - read direct binary

4 - write BCD

5 - write direct BCD

6 - write binary (write and format)

7 - write direct binary

A - ski p record forward

B - skip record reverse

C - skip file forward bits 1-3 are

D - skip file reverse
ignored for
these codes

E - rewind

F - write end-of-file

FBCD specifies no FORTRAN conversions
if 0 or FORTRAN conversions if 1.

DIR specifies forward direction if 0 or re-
verse direction if 1.

If the device is not 9T, 7T, or MT, only bits 5
through 7 are meaningful.

Figure 17. I/O Operation Codes for Device
Handler (M:QUE) (cont.)

SEND CHARACTER TO TERMINAL

M:COC The M:COC procedure sends a character to a
user terminal.

M.COC {(UN, [*] user#)} (CHAR {'character' })
. (LN, [*]Iine#) , , *Ioc[, ireg]

where

user# is the user number of the user whose terminal
is to receive the character.

line# is the line number of the terminal which is
to rece ive the character.

'character I is the EBCDIC character to be sent to
the spec i fi ed term i na I.

*Ioc [, ireg] specifies the address of a location
which contains the character to be sent to the
terminal (loc). (The asterisk is required but does
not indicate indirectness.) The ireg field specifies
an index register which contains the byte displace­
ment which, when added to the address specified
by loc, will yield the byte address of the char­
acter to be sent to the terminal. If ireg is absent,
loc is assumed to contain the left-justified char­
acter to be sent to the terminal.

DYNAMIC PHYSICAL PAGE ALLOCATION:
FOR REAL-TIME PROCESSING

(

INTRODUCTION

Physical pages are made available for real-time processing
in either of two ways:

• Dedication of physical core pages at boot-time. These
pages are known as the Resident Foreground (RESDF)
pages. SYSGEN parameters define the physical pages
that are to be removed from the system and dedicated
to real-time processing. These pages remain dedi­
cated real-time pages until returned to the system via
the Physical Page Stealer (PPS) Ghost.

• Dynamic acquisition and release of physical core pages
during normal operations. These pages are known as
the Dynamic Resident Foreground (DYNRESDF) pages.
The operator can acquire or release DYNRESDF pages
by communicating with the Physical Page Stealer (PPS)
ghost job.

In both cases, foreground memory is allocated in 'memory
segments ' . A memory segment in this context is simply a
set of contiguous physical pages. There is only one RESDF
memory segment (i. e., that which may be allocated at
boot-time). There may be several DYNRESDF memory
segments, the maximum number of which is specified at
SYSGEN time. All real-time memory segments must be
allocated in the area between 64K and the end of physical
core.

The operator, by communicating with the Physical Page
Stealer ghost job, has control over the allocation of both
RESDF and DYNRESDF pages. The operator also has the
ability to reset the SYSGEN defined RESDF size and maxi­
mum DYNRESDF size thus affecting the system's maximum
user size. Increases to RESDF size or to maximum DYN­
RESDF size cause a decrease of the maximum user size;
decreases to RESDF size or the DYNRESDF size cause the
maximum user size to be increased. By setting the maxi­
mum number of real-time pages that may be allocated to a
minimum, the operator is able to allow very large jobs to
be scheduled. Decreases to the maximum real-time page
values may be effected at any time. Ir'creases that would

! cause the maximum user size to be set to less than 186 pages
are lim ited to times when there are no users on the system
other than system ghosts; i. e., the system must be quiescent
except for ALLOCAT, RBBAT, FILL and the PPS ghosts.
Neither RESDF nor DYNRESDF maximum size may be in­
creased to the point where the maximum user size is too small
to allow the system ghosts to run.

SYSGEN CONSIDERATIONS

The system parameters that define the pages to be allo­
cated at boot-time, the maximum number of pages that may
be dedicated for real-time use, and the maximum number
of memory segments that may be allocated for real-time

Dynamic Physical Page AllOcation for Real-Time Prace.ins .1;0

processing may be specified via options, of the :FRGD
command of PASS2. The format of these options is as
follows:

(RESDF, size, address)

where

size specifies, in decimal, number of pages, the'
default size of the dedicated foreground memory
area to be allocated at system initialization.

address specifies, in hexadecimal, the word ad-
dress of the first page in the RESDF memory seg­
ment. This value must be equal to or greater
than 10,00016.

Both size and address may be overridden by the operator at
system initialization. Both parameters may be reset via
communication with the Physical Page Stealer ghost job.

(DYNRESDF, pages, segments)

where

pages specifies in decimal the maximum number of
~ges that may be dynamically allocated for fore­
ground use. These pages are not removed from
the system until requested, but the maximum user
size is reduced by the value specified. This value
may be altered by the operator via the PPS ghost.

segments specifies in decimal the maximum number
of dedicated real-time memory segments that may
be allocated for foreground use. The default
value is one.

INITIALIZATION

When a real-time system is booted from a system tape and
operator console interaction is requested, or when a real­
time system is booted from the system RAD, the following
message is output on the OC device:

RESET RESDF YYY, XXXXX?

This allows the operator to override the SYSGEN-defined
values for the beginning of the RESDF area and/or the size
of the RESDF area. The operator should respond as follows:

[yyy] [, xxxxx] 6)

where

yyy is the number of pages in dec i ma I to be in the
RESDF area. A value of 0 through 999 may be
used.

xxxxx is the word address in 'hexadecimal of the
first page in the RESDF area. A value greater
than, 10, 00016 (64K) must be used.

Either value may be omitted, or a response of NEW LINE
alone may be used to request the SYSGEN-defined default
for the omitted value(s).

THE PHYSICAL PAGE STEALER GHOST JOB (PPS)

The Physical Page Stealer ghost job is used for the manage­
ment of all dedicated foreground memory. It is loaded for
execution via the following keyin:

IGJOB PPS

PPS then asks the operator for a command:

PPS: ENTER COMMAND

The operator may respond with one of the following commands:

DI[SPLA Y] Display memory segments currently
allocated.

GE[T] yyy, xxxxx Get DYNRESDF pages.

FR[EE] yyy,xxxxx Free DYNRESDF pages.

DY[NRESDF] yyy Reset maximum number of DYN-
RESDF pages.

RE[SDF] [yyy][, xxxxx] Redefine the RESDF area.

EN[D] Exit ghost job.

where

yyy specifies in decimal the number of pages.

xxxxx specifies the word address in hexadecimal
of the fi rst page in the rea I-ti me memory seg­
ment. This value must be equal to or greater
than 10,00016.

PPS wi II attempt to perform the requested function, type
an error message if the function cannot be performed, and
reprompt the operator to get the next command. The END
command is used to terminate PPS processi ng.

If the format of the command is in error, such as missing
parameters, bad delimiters, etc., PPS will type I ??' and
reprompt the operator to reenter the command.

The following message will be displayed if the numbe~ of
pages specified is in error:

EXPRESS # OF PAGES IN DECIMAL 0-999

: *, Dynamic PhYsicol Page Allocation f!lr Real -TIme Procea.ng

The following message will be displayed if the page address
specified is in error:

EXPRESS PG ADDR IN HEX 10,000-xxxxx

where xxxxx is the word address of the last page of physi­
cal core.

Since the operator is the only one who is allowed to com­
municate with the PPS ghost, running PPS is not allowed
from on-line or batch. If attempting to run PPS other than
as a ghost job, the following message will be typed:

MUST BE EXECUTED AS A GHOST JOB

The PPS commands are described in detail in the following
paragraphs.

DISPLAY The DISPLAY command is used to obtain
information concerning allocated real-time pages and the
current settings of system parameters that define the maxi­
mum real-time pages allocation.

The following information is output on the OC device:

MAX DY NRES DF = yyy

CURRENT DYNRESDF = yyy

DYNRESDF SEGMENT yyy xxxxx

RESDF SEGMENT yyy xxxxx

MAXIMUM USER CORE = yyy

where

yyy is the decimal number of pages.

xxxxx is the hexadecimal word address of the first
page in the real-time memory segment.

The DYNRESDF SEGMENT message is repeated for each
currently allocated DYNRESDF memory segment.

GET The GET command is used toallocate DYNRESDF
pages. This command may be used at any time and has no
effect on the maximum user size. The format of the
command is

GE[T] yyy, xxxxx

where

yyy spec i fi es in dec i ma I the number of pages.

xxxxx specifies the word address in hexadeci-
ma I of the fi rst page in the rea I-ti me memory
segment. This value must be equal to or greater
than 10,00°16•

The PPS ghost first validates that it is valid to allocate
DYNRESDF pages. If the maximum number of DYNRESDF
segments has a I ready been a I located, the followi ng mes­
sage is displayed:

MAXIMUM DYNRESDF SEGMENTS ALLOCATED

If the allocation of the DYNRESDF memory segment would
cause the number of DYNRESDF pages to exceed the maxi­
mum allowed, the following message is displayed:

EXCEEDS DYNRESDF

The PPS ghost then validates that the pages specified are
available. If the pages are currently being used by the
monitor, (i. e., for transaction processing), the following
message is typed:

PAGES IN USE BY MONITOR

If some or all of the pages specified are allocated as RESDF
or DYNRESDF pages, the following message is typed:

PAGES ARE REAL TIME PAGES

The DISPLAY command should be used to determine the
current allocation of real-time memory segments.

If the pages cannot be obtained for any other reason, the
following message is typed:

UNABLE TO OBTAIN PAGES

Otherwise, the pages specified are removed from the system
and the operator is prompted to enter the next command.

FREE The FREE command is used to return currently
allocated DYNRESDF pages to the system. This command
may be used at any time and has no effect on the maximum
user size.

The format of the comma nd is

FR[EE] yyy, xxxxx

where

yyy specifies the number of pages in decimal.

xxxxx spec i fi es the word address in hexadec i ma I of
the fi rst page in the rea I-ti me memory segmen t"·. Th i s
value must be equal to or greater than 10,00016" ';

Dynamic Physical Page Alfocation for R~I.-Time Processing 1-45

DYNRESDF memory segments cannot be partially released.
That is, all pages within the memory segment must be
released with one FREE command. If the pages specified
are not totally contained in one memory segment, or the
entire memory segment was not specified, the following
message is displayed:

NOT A DYNRESDF MEMORY SEGMENT

The display command should be used to determine the
currently allocated DYNRESDF segments.

If the segment specified is valid, the pages will be returned
to the system and the operator will be prompted to enter
the next command.

DYNRESDF The DYNRESDF command is used to re­
define the maximum number of pages that may be removed
from the system to be used as dynamic RESDF pages. No
pages are obtained or released as a result of this command.
This command alters the maximum user size.

The format of the comma nd is

DY[NRESDF] yyy

where yyy specifies the number of pages in decimal.

The value specified is compared to the current setting of
maximum number of DYNRESDF pages. If attempting to
increase the maxi mum size, the system must have no users
other than system ghosts. If other users are on the system,
the following message is typed:

SYSTEM ACTIVE

The maximum user size will be decreased by an amount
equal to the increase in maximum DYNRESDF pages. PPS
checks to determine that the system ghosts would be able
to tolerate the decrease in user size. If not, the following
message is displayed:

DON'T LOCK OUT SYSTEM GHOSTS

Otherwise, the maximum number of DYNRESDF pages that
may be allocated is reset as specified and the maximum
user size is decreased by the amount of increase to maxi­
mum DYNRESDF pages.

Ifattempting to decrease the maximum number of DYNRESDF
pagesand the maximum user size would fall below 186 pages,
the value specified must be equal to or greater than the
number of DYNRESDF pages currently allocated. If not,
the following message is displayed:

CURRENT DYNRESDF PAGES> NEW MAXIMUM

Otherwise, the maximum number of DYNRESDF pages that
may be allocated is reset as specified and the maximum
user size is increased by the amount of decrease to maxi­
mum DYNRESDF pages.

RESDF The RESDF command is used to redefine the
RESDF memory segment. The RESDF command may be used
to release all RESDF pages to the system or to obtain RESDF
pages.

The format of the command is

RE[SDF][yyy][, xxxxx]

where

yyy specifies the number of pages in decimal.

xxxxx specifies the word address in hexadecimal
of the first page in the real-time memory seg­
ment. This value must be equal to or greater
than 10000

16
,

To release all RESDF pages, the following format should be
used:

RESDF 0

This will cause all RESDF pages to be returned to the sys­
tem. The maximum user size will be increased by the
RESDF size.

If the RESDF memory segment is not currently allocated
when this format of the RESDF command is used, the fol­
lowing message is displayed:

NO RESDF PAGES ALLOCATED

To re-establish the RESDF memory segment, the following
format of the command should be used:

RESDF [yYY]l'xxxxx]

If either the number of pages or the word address of the
first page isnot specified, the previous value of the param­
eter is used.

If the RESDF segment is currently allocated, the following
message is typed:

RESDF PAGES ALREADY ALLOCATED

When this format of the RESDF command is used, the max­
imum user size will be decreased by an amount equal to
the size of the RESDF segment to be allocated. There­
fore, if the maximum user size would fall below 186 pages,

146 Dynamic Physical Page Allocation for Real-Time Processing

there must be no users on the system other than system
ghosts and the system ghosts must be able to tolerate the
decreased user size. Checks are also made to determine
if the pages specified are available as described under the
discussion of the GET command.

Otherwise, the pages specified are removed from the
system and the maximum user size is decreased by an
amount equal to the number of pages in the RESDF memory
segment.

END The END command terminates PPS processing and
has the format

ENip]

MONITOR DEFs

The following words are DEFed in the monitor root and may
be used by the real-time programmer to gain information
concerning the current allocation of real-time pages.

RESDF

RESDFP

DYNRESDF

MDYNRESDF

PP:UPPC

The size of the RESDF area currently
allocated. If all RESDF pages have
been returned to the system, the
value is zero.

The word address of the fi rst page in
the RESDF area.

The number of DYNRESDF pages
currently allocated.

The maximum number of DYNRESDF
pages that may be allocated.

The total number of RESDF and
DYNRESDF pagescurrentlyallocated.

I RESDF MEIIORYCAL

The real-time user may obtain information from the monitor
concerning the current allocation of real-time memory
segments by issuing the following CAL:

CAL 1,5 fpt

where fpt points to word 0 of the FPT shown below.

word 0

word 1

The system checks to see if the set of pages specified in the
FPT are currently allocated real-time pages. On return
from the CAL, the condition code setting wi II be as follows:

1 l ~ ±
o 0 0 0

000

000

000

000

The pages specified are the RESDF
segment.

The pages specified are a DYN RESDF
segment.

All pages are currently allocated
real-time pages but are nOt a speci­
fic memory segment.

Some, but not all of the pages are
currently allocated real-time pages.

None of the pages are currently
allocated real-time pages.

Dynamic Physical Page Allocation for Real-Time Processing 147

10. TRANSACTION PROCESSING FACILITIES

This chapter describes a program called the System Queue
Manager and a procedure that was designed for use by
Xerox in the development of the transaction processing
facil ities of CP-V. The procedure should never be included
in any user-written programs. This chapter is intended for
Xerox system programmers only.

SYSTEM QUEUE MMAGER

The System Queue Manager is a program that is part of the
CP-V monitor. It is essentially a message switching system
developed for transaction processing in CP-V. The Queue
is maintained in core and overflows onto a disk file. This
file is created, opened, closed and otherwise maintained by
a privileged (CO or higher) program defined as the Queue
owner. The Queue owner unlocks the QueJ'e by executing
the UNLOCK queue call and passing the Q('-'-ess of the
Queue DCB to the Queue Manager. The Queue DCB must
be open and must define a random file for the Queue.
Once the Queue owner has been established and the Queue
unlocked, only that task may LOC K the Queue and close
the Queue file. The Queue file must remain open through­
out the entire UNLOCK-LOCK session.

Following the UNLOCK, the Queue owner stores the start­
ing TID (transaction ID) into the Queue Manager's TTP table
and Queue processing may begin.

Programs with TP authorization may now process messages
through the System Queue Manager. Each message has the
format of a Formal Queue Message (see the GET message
for this format). The entry name is defined as:

first-name-segment. [.•. nth-nome-segment.] TID

Each name segment is separated by a period (.). The final
name segment is always the unique TID (in EBCDIC). See
the M :GETID procedure which describes how these unique
TID's are obtained. For TP, the first-name-segment con­
sists of the identifier (? @ #) followed by the trancode or
reportcode. The maximum length of the entry name is
31 bytes. The first-name-segment length may be no larger
than the KEYMAX specification on the UNLOCK request.
The maximum length of the entry text is 1980 bytes.

To GET messages from the Queue, the DEFIN ELIST request
is issued to describe the criteria of the entries desired
by this program. A criterion is defined as:

first-name-segment. [•.. nth-name-segment]

Each criterion must have at least one period (i. e., define
at least the first-name-segment). The criterion is followed
by a flag byte which tells the Queue Manager whether
'failed' entries are acceptable or whether 'destructive
readout' is in force. If destructive readout is requested,
the Queue message is deleted from the Queue when it is

148 Transaction Processing Facilities

moved to the user's buffer. Otherwise the Queue message
is marked in-progress in the Queue and remains in-progress
until its status is changed (to not-in-progress or failed) or
it is deleted via a PUT request.

The DEFINELIST request is followed by a GET request for
that list (the LIST ID specified with the GET is returned from
the DEFINELIST call). Once the GET has been issued the
associated criteria become 'active'. This means that each
time an entry is inserted in the Queue, the criteria will be
compared to that entry and if a match is found, the ECB
associated with the GET request will be posted with the
X'02' completion code. When the ECB is posted, the GET
request may be reissued to obtain the Queue message. Note
that there is no guarantee that a reissuance of the request
will actually get a Queue message, since another program
may have gotten it or altered its status since the ECB posting;
therefore the resulting condition codes may still indicate
that the ECB wait is meaningful. When the condition codes
are returned as zero, the Queue message has been placed
in the specified buffer and SR 1 is set with the offset into the
criteria list pointers describing which entry was obtained.
An example of a typical GET routine is:

GETMSG M:QUEUE *LISTID,GET,(BUF,*ADDR);
,(BSIZE,S12),(ECB,GETECB)

BCR,12 GOTMSG
BCS,8 ERRORCHK ABNORMAL IN SR3
M:CHECKECB (ECB,GETECB)
BNEZ ERRORECB
B GETMSG

GOTMSG EQU $
* AT THIS POINT MSG HAS BEEN RECEIVED

A program does not wait until a Queue message arrives which
satisfies its active criteria. The WAIT option only waits to
give the caller access to the Queue. If no ECB is specified
on a GET request, the caller wi" get a Queue message if
one is currently queued or will be given a BC-14 abnormal
(return condition codes = 8) if a match is not currently in
the Queue.

The PUT request is used to insert a Queue message into the
Queue, to alter the status of an existing in-progress entry,
or to delete an in-progress entry from the Queue. Each
entry in the 'put list' points to a specific Queue message
and the flag byte in the I ist indicates what action is to be
taken for that Queue message. For a PUT request, each
item in the I ist is processed before return is made to the
call ing program.

The PURGE request is issued to delete a currently defined
get list (a previous DEFINELIST). When the criteria is no
longer valid or useful, the PURGE should be requested to
free up the I ist and criteria pages and the Queue Manager
work space.

The STATS request returns the status of a Queue message
(i.e., Queued, Failed, In-progress, etc.) and optionally the

count of entries queued which match the first-name~gment
of the specified criterion. The STATS list is always one
item long. If no list is specified (list loc is 0), the STATS
request returns the current status of Queue itself (i.e.,
number of entries queued, number of entries in-progress,
number of entries failed, etc.).

The LOCK request ends Queue processing. All subsequent
requests will be given the BC-ll (Queue Locked) abnormal
code. The LOCK request must be issued by the same user
(i. e., user number) which issued the UNLOCK request,
since that user has been defined as the Queue owner. The
LOCK causes the in-core queue pages to be flushed out to
the Queue file and returns the in-core pages to the system.

M:GETID PROCEDURE fORMAT

Each Queue message that is placed in the System Queue
must have a unique identifier appended to the entry name.
This identifier is obtained from the Queue Manager by
issuing an M:GETID call. The TID is returned in hexa­
decimal in register SR1. It must be converted to eight
EBCDIC characters and appended to the entry name. The
TID is always the final-name-segment of a queue entry
name and is separated from the other name segments with
the period (.) delimiter. The format of the procedure
call is

M:GETID

Calls generated by the M:GETID procedure have the form

CALl,7 fpt

where fpt points to the FPT shown below.

If the queue is locked when the call is issued, no TID
is placed in SRl and return is made to CAL+l with CCl
set.

I - \

\ltQUEUE PROCEDURE FORMAT

In transaction processing, the flow of transactions and re-

I ports is controlled through a single queue by the System
_ Queue Manager. The M:QUEUE procedure was developed

for use in the System Queue Manager and requires trans-
action processing authorization (via the Super processor).

The format of the M:QUEUE procedure is

UNLOCK
DEFINELIST

M:QUEUE [*]Iist loc ,GET
{

[*]dCb address} PUT
~(option)] •.•

where

[*]1 ist id 5T A T5
PURGE
LOCK

deb address specifies the address of the DCB for
UNLOCK and LOCK requests.

list loc specifies the location of the list of criteria
pointersfor PUT, DEFINELlST, and5TATS requests.

list id specifies the id of a I ist for GET and PURGE
requests.

UNLOCK activates usage of the queue and de-
fines the queue owner.

DEFINELIST defines the criteria for subsequent
GET requests (i. e., the GET lists).

PUT enters a transaction or report into the queue.

GET retrieves a transaction or report from the
queue.

STATS returns the status of a transaction or report.

PURGE discards outstanding GET lists which are
active for a given user and releases user-associated
queue control tables.

LOCK ensures that the user is the queue owner and
locks the queue from further use.

The basic options are as follows:

L51ZE, [*] value specifies the size of the list for
PUT or DEFINE LIST •

BUF, [*]address specifies the buffer address for re-
turning aqueue entry for a GET request or for return­
ing queue status information for aSTAT5 request.

B51ZE, [*] value specifies the size (in words) of the
area defined by the BUF option.

WAIT specifies that the caller wishes to wait for
access to the queue prior to resuming execution.

ECB, [*]address specifies the address of an ECB to
be posted when a queue event occurs. A queue
event may be: the arrival of an entry to the queue
which satisfies an active GET list; the availability
of the queue (when the WAIT option was not indi­
cated on the original queue request); or queue
space ava i lab it i ty.

M:QUEUE Procedure Format 149

The following option is applicable only to the GET request:

INDEX, [*]value specifies the word displacement
within the GET I ist to start the search for a criteria
match.

The following option is applicable only to the PUT request:

{
HIGH}
LOW

specifies the priority for PUT requests.

The following options are applicable only to the UNLOCK
request:

{OLD}
NEW

specifies whether the queue is a new or
existing file.

BACKUP specifies that the queue is to be kept up-
to-date on secondary storage, (i. e., whenever a
queue block is modified in core it is to be written
to disk).

QPAGES, [*] value specifies the maximum number of
core pages which can be used for queue blocks and
queue manager work pages.

QSAT, [*] value specifies the percentage of queue
capacity for acceptance of hi gh priority PUTs only.

KEYMAX, [*] value specifies the maximum number
of bytes required to contain any name (trancode)
presented for enqueuei ng (1-13 may be specified). ;

RECOVER specifies queue unlock for recovery mode.

The following option is applicable only to the STATS request:

COUN T specifies that the number of Occurrences
in the queue of a specified criterion is to be re­
turned in the second halfword of SR 1.

The following option is applicable only to the LOCK request:

PAUSE specifies that the queue lock is temporary
and current users may continue processing their
current outstanding requests when the queue is
unlocked.

M:OUEUE FUNCTD1 PARAMETER TABLES (FPTS)

Calls generated by the M:QUEUE procedure have the form

CALl,7 fpt

where fpt points to word 0 of an FPT. The code in the first
byte of word 0 is as follows:

FPT Code

X'06'
X'07'

Function

UNLOCK
DEFINELIST

150 M:QUEUE Function Parameter Tables (FPTS)

FPT Code Function

X'08 1 PUT
X'09' GET
X'OA' STATS
X'OB' PURGE
X'OC' LOCK

The various FPT formats are described in the sections that
follow.

QUEUE UNLOCK REQUEST '

The format of the FPT for the UNLOCK request is:

word 1

where

F = 1 4

option ECB (P1)

means WAIT option specified.

means BACKUP option specified.

means NEW option specified.

means RECOVER specified.

option KEYMAX (P3)

option QSAT (P4)

QUEUE DEFINE'UST REQUEST

The format of the FPT for DEFINELIST is:

word 0

word 1

;; -~------: 0 I', 10 01
, ,: •• "iii " " " " " " ,. ,.1" " " ":,, " u " ~ ~

where F 1 1 means WAlT option specified.

option ECB (Pl)

option List Size (P2)

QUEUE PUT REOUEST

The format of the FPT for PUT is:

word 0

word

where

option ECB (PI)

means WAIT option specified.

means low priority request.

means high priority request.

OUEUE GET REBUEST

The forma t of the F PT for GE Tis:

word 1

" Ii Ii, ,j " ,,;" ., " ,.1 z " " ":,, B ~ :J~ " " ?J

where F 1 :..:: 1 means WAlT option specified.

option ECB (Pl)

option Index (P2)

option Buffer address (P3)

option Buffer size (P4)

BUEUE STATS REBUEST

The format of the FPT for STATS is:

word 0

word 1

where

List address

means COUNT option specified.

means WAIT option specified.

option BSIZE (P 4)

BUEUE PURGE REOUEST

T he forma t of the F PT for PURGE is:

word 0

where Fl = 1 means WAlT option specified.

M:QUEUE Function Parameter Tables (FPTS) 151

DUEUE lOCk REDUEST

The format of the FPT for LOCK is

word 0

word 1

where

means WAIT option specified.

means PAUSE option specified.

option ECB (PO

1*1 o_u_--~-
o , 2 3 I. 5 6 ' B 9 ,..

LIST FORMATS

DEfiNE LIST OR STATS LIST

The format of the DEFINEU'iT or STATS list is:

The criterion is in TEXT format name-segments followed by
a flag byte. At least one period must appear in the criterion
name.

The flag byte has the format

where

F is set to one if failed entries are acceptable
(i. e., the system is to GET the transaction re­
ga rd I ess of whe thE!r or not it was successfu I).

o is set to one if the entry is to be destroyed after
it has been read.

152 List Formats

GET MESSAGE

The format of the GET message is:

word

length of record (bytes)

23 24 31

(Unused by the queue manager)

length of entry
5

6

length of entry text (bytes)
~ _____________ -L~~;':;:;:;:;:~~L:..:na=m::.:e=---(~b!....yt:.:es::)-I

I
Entry name

14~--------------------

I Entry text

where

Q indicates queued and is always set to one.

F indicates failed, if set to one.

JI are journalization indicators. Although these
bi ts are kept in this status byte, the queue man­
ager does not use this information. The informa­
tion is stored here for use by other transaction
processors.

PUT LIST

The format of the PUT list is:

where the entries are in journal record format. (See the
GET message, above, for this format.)

The first four bits of the flags field have the following
meaning:

Q £ ~

0 0 Delete in-progress entry.

0 0 0 Insert an entry into the queue.

0 Mark an entry failed.

0 0 Put an in-progress entry back into the
queue.

0 0 Insert a pre-failed entry into the queue.

0 A 0 1- ~ ~~~ 6~f f';f G\fl./;;1
(,;

AI1 0 \",t\.~I!Ui:,J \t t \

The JJ fierd contains journalization indicators. Although
these bits are kept in this status byte, the queue manager
does not use this information. The information is stored here
for use by the transaction processors.

M:QUEUE PROCEDURE OUTPUT PARAMETERS

SR111FORMATIOI

UNLOCK: Transaction id returned in SR1

• DEFINELlST: List-id returned in SRl

GET: Word displacement within the list to the criterion for
which an entry has been stored in the caller's buffer.
The format of the entry itself is given in the List For­
mats section.

Displacement returned in SR1

. PUT:

STATS: The status of a queue entryand, optionally, a count
of such entries are returned in SR1

where

Bit 0 = 1

Bit 1 = 1

Bit 2 = 1

I Ent~ : count I
9 10 ,,112 13 14 IS 16 17 18 ,,120 21 22 23 24 2S 26 27128 29 30 31

means entry queued.

. means reserved.

means entry in failed status.

-Bit 3 = 1 means entry in progress, i.e., given to a
transaction processor.

Eel INfORMATION I

ECB completion codes for a queue request are:

X'Ol' An entry has been placed in the caller's buf-
fer. (Posted on a GET request only.)

X'02' Normal return. For a GET request, an entry
is present. Request it again.

X'OF' Abnormal return. (SR3 contains the abnormal
code.)

CONDITION CODE SETTINGS

When the M:QUEUE procedure is performed, the following
condition code settings may result:

eCl

o

CC2

o Normal return.

Queue unavailable or request cannot
be satisfied. (Abnormal code is
in SR3.)

ECB wait is meaningful.

BUEUE ERROR CODES

Errors detected by the system Queue Manager resul tin
error notification to the caller or a user abort. The error
code for M:QUEUE CALs is X'BC'. The code is communi­
cated to the caller in SR3 and, if the ECB option is speci­
fied, in the ECB. The code is contai ned in byte 0 of SR3,
a subcode is contained in bits 8-14, and the content of the
FPT word 0, bits 15-31 is returned in the rightmost 17 bits
of SR3. Therefore SR3 may contain the dcb address, listloc
or listid depending upon the queue request. The error sub­
codes are listed in Table 46 •

Table 46. M:QUEUE Error Subcodes '

Subcode Meaning

01 Illegal queue service requested
(e. g., an unlock is requested and
the queue is not locked or the
caller is not an authorized TP
user). The task is aborted.

02 An event not associated with the
queue has occurred for the user
(e. g., M:INT, abort, ESCape or
BREAK).

03 Error return from get physical work
page (abort during unlock pro-
cessing only).

07 Queue saturated; i. e., index core
space or queue secondary storage
space is unavailable.

08 Queue lock or unlock caller does
not have the required privilege.
The task is aborted.

M:QUEUE ProceduN Output Parameters 153

Table 46. M:QUEUE Error Subcodes (cont.)

Subcode

09

OA

10

11

12

13

Meaning

DeB not open for a lock or unlock
request. The task is aborted.

Space is not avai lable to define a
list.

Error in specified address, size,
or queue message format.

Queue locked.

Queue physical page space is not
available.

Error in the FPT parameters or the
specified list.

,,"'
,4,.,.,1'';:; •. ~. \ ,~: c;"\. r';;

~l

~ ~O~

Table 46. M:QUEUE Error Subcodes (cont.)

Subcode

14

15

16

17

20

""~J...A,r~) ""Q., I i ~,,,;!':t

A ~,~, C~~

(,' i I ,,~, .~.,

Meaning

Entry not found or a queue request
requiring an existing entry.

I/O error during control/index
transfer for an unlock request.
The task is aborted.

I/O error during a data block
transfer.

Queue busy. ><;f

Queue GET or PURGE request for
a non-existent GET list.

;: ''t,.~,A' ... 4t.""'·",;\~t
i

_ .. J-r. V ~L~:,,{~):.~-

154 M:QUEUE Procedure Output Parameters

APPENDIX A. OPERATIONAL LABELS

Table A-l. Standard Operational Labels and
Default Device Assignments

Opera-
tional On-line Ghost
Label Batch Device Device Device

C Card reader Terminal Operator's
console

OC Operator's Terminal Operator's
console console

LO li ne pri nter Terminal li ne pri nter

LL li ne pri nter Terminal Li ne pri nter

DO line printer Terminal Li ne pri nter

PO Card punch None Card punch

BO Card punch None Card punch

LI Card reader None Operator's
console

51 Card reader Terminal Operator's
console

BI Card reader None Operator's
console

5L line printer Terminal li ne pri nter

SO Card punch None Card punch

CI Card reader None Operator's
console

CO Card punch None Card punch

AL Card punch None Card punch

EI Card reader Terminal Operator's
console

EO Card punch None Card punch

UC Operator's Terminal Operator's
console console

Table A-2. Batch Assignment of Operational
Labels

Device Oplabel

line printer LO, LL, DO, 5L, LP

Card reader C, L1, 51, BI, CI, EI, CR

Card punch PO, BO, S0, CO, AL,
EO, CP

Operator's console OC,UC

9-track magnetic tape 9T

7-track magnetic tape 7T

Default tape MT

None NO, ME

Table A-3. On-Line Assignment of Operational
Labels

Device Oplabel

User's terminal C, OC, LO, LL, DO, 51,
5L, EI, UC, ME, CR

Card punch CP

li ne pri nter LP

9-track magnetic tape 9T

7-track magnetic tape 7T

Default tape MT

None NO, PO, BO, L1, BI, S0,
CI, CO, AL, EO, PR, PP

Appendix A 155

APPENDIX B. PHYSICAL DEVICE NAMES'

A physical device name is indicated by yyndd.

where

yy specifies the type of device (see Table B-1).

n specifies the lOP letter for Sigma computers (see
Table B-2)or cluster/unit for the Xerox 560 (see
Table B-3).

dd specifies the device number (see Table B-4),
in hexadecimal.

Table B-1. Standard VO Device Type Codes

yy Device Type

7T 7-track magnetic tape

9T 9-track magneti c tape
!

I
I

CP Card punch

I

CR Card reader I

I

TV Typewriter

LP Line printer

DP Disk pack

DC Magnetic disk

ME CP-V terminal

RB Remote processi ng data set
controller

XP Optical character printer

MO Message mode communica-
tions equipment

MC Remote assist terminal

. -- -"--
(maintenance console)

,. -- - '7 . .. ---- - -

.J.

Table B-2. Sigma lOP Designation Codes

lOP
Letter en) Un i t Address

A 0

B 1

C 2

D 3

E 4

F 5

G 6

H 7

Table B-3. Xerox 560 Cluster/Unit Matrix

Unit
Number Cluster Number

0 1 2 3 4 5 6

0 A 8 H N T Z 5

1 $ C I 0 U 0 6

2 , D J P V 1 7

3 @ E K Q w 2 8

4 : F L R X 3 9

5 * G M S Y 4 L.J

6 * * * * * * *
7 * * * * * * *

* Reserved

Table 8-4. Device Designati"on Codes

Hexadec ima I Device
Code (dd) Designation

00 :$dd S 7F Refers to a device number
COO through 7F).

80 $dd S FF Refers to a device controller
number (8 through F followe~ by
a device number 9 through F) •

7

*
*
*
*
*
*
*
*

Code: 01

Called From:

Message:

Registers:

APPENDIX C. CP-V SOFTWARE CHECK CODES

Table C-1. CP-V Software Check Codes

5CHED, MM

USERS - PAGE CHAIN INCONSISTENT

When called from SCHED:

RO - 0 if circular orunlinked chain; otherwise, the Link number index in chain.
R 1 - Li nk register.
R2 - Next page chain link.
R4 - User being scheduled. I
R7 - Address of Chain Head, Tail, and Count Table.
5R4 - Offending page number.

Whe~ called from MM (J":XPGVI):

Rl - Zero.
R3 - Physical page number.
R7 - Virtual page number.

Remarks: The requested virtual page in the user virtual map chain (JB:LMAP) can't be found. See T:PGCHK
in SCHED. Effective when 5S 1 set.

Code: 12

Called From: SCH ED

Message: REPORTED EVENT INCONSISTENT WITH USER'S CURRENT STATE

Registers: R3 - Previous state.
R4 - User number (T :RE, T :RCE).
R5 - User number (T :RUE).
R6 - Event number.
R7 - Line number (T:RCE).
SR4 - Return address for reschedule.

Remarks: The contents of R3 through R7 are dependent upon the called entry point. If R4 = S:CU, the call
was T:RE. If R7 is the line number of the user in R4, the call was T:RCE. If R4 = R5, the entry
is T:RUE.

Code: GAl

Called From:

Message:

Registers:

DPSIO, TSIO

OPCODE IN SWAP COMMAND CHAIN IS INVALID

Case 1, command list securi ty checks - SS4 set:

R1 - Incorrect command list order code if not equal to R3.
R2 - Incorrect command list entry address (lOCO).
R3 - Order code of first lOCO in command list.
R4 - Swap device index.
R6 - Command list beginning address.
R7 - Swapper function code.

Appendix C 157

Code: DB

Called From:

Message:

Registers:

Remarks:

Code: DC

Call ed From:

Message:

Registers:

Remarks:

Code: ,OD

Called From:

Message:

Registers:

Remarks:

Code: DE'

Ca /I ed From:

Message:

Registers:

Remarks:

158 Appendix C

Table C-1. CP-V Software Check Codes (cont.)

'Case 2, Unrecoverable read error during inswap:

R 1 - Inswap user number.
R7 - DCT index.
SR1 - Incorrect command list entry address (IOCD).
D 1 - Order code.

DPSIO, TSIO

INCORRECT ORDER CODE IN SWAP COMMAND LIST

R 1 - Incorrect order code; not seek.
R2-R7 - See case 1 of screech code OA above.

SS4 must be on for check.

DPSIO, TSIO

ATTEMPT TO SWAP MONITOR'S MEMORY

R 1 Buffer address.
R2-R7 - See case 1 of screech code OA above.

SS4 must be on for check.

TSIO

HALT FLAGS MISSING IN SWAP COMMAND LIST

RO FLAGS byte from TIC command.
R1 TIC order code.
R2-R7 - See case 1 of screech code OA above.

SS4 must be set to check. FLAGS must not have command chaining set and must have interrupt-on­
zero-byte-counter or channel-end set.

TSIO

I/O REQUEST WITH NULL COMMAND LIST

R4 - Swap device index.
R6 - Command list beginning address.
R7 - Swapper function code.

Not checked for pack-onl y swappers.

Code: OF

Called From:

Message:

. Registers:

Remarks:

Code: 10

Called From:

Message:

Registers:

Remarks:

Code: '11

Called From:

Message:

Registers:

Remarks:

Code: 12

Called From:

Message:

Registers:

Table C-l. CP-V Software Check Codes (cont.)

DPSIO, TSIO

INPUT FUNCTION CODE IS INVALID

R2 - Swapper function code •
D4 - X'OF'.

SS4 must be on to check. Function code not between one and five exclusively.

COC, ECBBLK

BAD COC BUF POOL, OR BAD BUF ADR ON RELEASE REQUEST

R2 - Logical line number.
R4 - Buffer address.
R6 - Return address from buffer return call.

1. On a COC buffer release, an invalid relative buffer address was specified (address 15 or
HRBA *4 + 15).

2. On a COC buffer GET or RELEASE, an invalid relative buffer address was found in the free
pool chain. If the COC module was assembled with the COCGBUG and COCPBUG flags set
(normally they're not), and sense switch 4 is set, the entire free pool chain is checked on each
PUT and GET operation. (The R4 and R6 contents listed above are valid only at entry and exit
times.)

COC

INVALID INTERNAL CONTROL CODE TRANSLATE REQUEST

R1 - DCB address.
R2 - Line number.
R5 - Character.
R7 - Byte address of user buffer.
SR2 - Return address.
SR3 - Output translation table address.

The cause is a translate table error (e. g., 2741 NIL on non-2741 I ine), or a bad input buffer chain.
R1, R7, and SR4 are not always set.

COC

COC - BAD INPUT BUF LINKAGE ON RELEASE REQUEST

RO - Removal point.
R1 - DCB address.
R2 - Line number.
R3 - COC number.
R4 - Current release point.
SR3 - Output translate table address.

Appendix C 159

Remarks:

Code: 13

Called From:

Message:

Registers:

Remarks:

Code: M

Called From:

Message:

Registers:

Remarks:

Code: 17

Called From:

Message:

Registers:

Remarks:

160 Appendix C

Table C-1. CP-V Software Check Codes (cont.)

SR4 - Caller's return; RTN + 1 = activation.
03 - Return address.

The COC input buffers are being released, and there is a conflict between the insertion and removal
points and the chain. RO, R1, R3, and R4 are not always set.

COC

COC - OUTPUT BUF LINKAGE OR CHARACTER COUNT BAD

R 1 - DCB address.
R2 - Line number.
R3 - COC number.
R4 - Removal point (usually negative).
R5 - Character.
SR4 - Output count; usually = -1.

The output count and buffers are inconsistent. This may be caused by extended interrupt pulse or
clobbered COC tables - usually COCOC, COCOI, or COCOR. R 1 is not always set.

THEUNCOC

cae ROUTINE CALLED IN NON-Cae SYSTEM

SR2 - BAL adr if 14-03.
SR4 - BAL adr if 14-01 or 14-02.
04 - BAL adr if 14-04.

The subcode indicates which routine was callecJ:

14-01 (OCIO
14-02 COCOFF
14-03 COCSENDX
14-04 ECHOCR2

IOQ

INVALID DISK ADDRESS PASSED FOR AN I/O INSTRUCTION

R1 - IOQ7, R3 = DCTX = O.
R2 - DeB add ress.
R3 - Queue index.
SR 1 - Seek address from COA, R2.
04 - X'17'.

Caused by an invalid OCT index. R2 and SR1 are not always set. If the invalid address is on a RAD
or disk, OSCVT will have been called and R2 and SR1 will be set.

Code: 11:

Called From:

Message:

Registers:

Remarks:

Code: 1A

Called From:

Message:

Registers:

Remarks:

Code: 11

Called From:

Message:

Registers:

Remarks:

Code: 1D

Called From

Message:

Registers:

Remarks:

Table C-l. CP-V Software Check Codes (cont.)

BUFF

INVALID BUFFER ADDRESS PASSED FOR RELEASE

R1 - Index to BUFLIMS.
R2 - Head of respective buffer pool.
R5 - J IT address.
SR4 - Link return address.
03 - Buffer address.
04 - X'191

•

Occurs both on releasing and acquiring buffers of most types (CPOOL, SPOOL, and MPOOL).

CLS

ACCOUNT DIRECTORY INACCESSIBLE

The account directory is bad and the monitor is unable to reconstruct it. All files are lost.

Swapper

USERS PAGE CHAIN NON ZERO AT SWAP COMPLETION

R1 - Inswap user number (S:ISUN).
R2 - Physical byte address of J IT.
R3 - UB:US, 1 (user state).
R4 - Physical page head.
R5 - Physical page tail.
R6 - Physical page count.
SR4 - Count of swapper free page chain (S:F PPC).

Swappersl free poge pool must be nonzero at end of inswap. S:FPPH, S:FPPT contain head and tail
of poges just allocated to the inswap user.

T:OV

REQUESTED OVERLAY NUMBER IS OUT OF RANGE

R2 - Overlay name.
R3 - Overlay name.
R4 - o.
04 - X'1D'.

Requested monitor overlay is not in shared processor table.
i,

Appendix C 161

Code: IF

Called From:

Message:

Registers:

Code: 21

Called From:

Message:

Registers:

I Ccxfe: 122,

Called From:

Message:

Registers:

Remarks:

Code: 23

Calfed From:

Message:

Registers:

Remarks:

Code: 124

Called From:

Message:

Registers:

Remarks:

162 Appendix C

Table C-l. CP-V Software Check Codes (cont.)

SWAPPER

NOT ENOUGH PAGES TO PERFORM THIS SWAP

R3 - Page to release.
SR1 - Deficient page count.

MM

ATTEMPT TO SET ACCESS CONTROLS ON NON-EXISTENT VIRTUAL PAGE

R6 - Number of pages to set.
R7 - Virtual page number~
SR4 - Link register.

PV

PRIVATE VOLUME ALLOCATION ERROR

R2 - SN count.
R3 - DCB volume number.
R4 - SYSIO (0 = EXClusive use).
R6 - DCB address.
SR4 - Return address.
02 - DCB:SNT.
04 - X'22 I

•

Error in allocation. The specified entry in AVRTAB is not found or has bad flags.

CSE57, CSE59, CSEX560, CSECOM

INVALID ENTRY TO CSE HANDLERS

Entry was made to an unused slot of the CSE branch vector for this machine.

CSEHAND

INSTRUCTION EXCEPTION TRAP IN MASTER MODE

A trap X'4D ' occurred while in the master mode. A slave mode trap causes a normal user job step
abort. All relevant information is in the in-core error log buffer.

Code: 25'

Ca 1\ ed From:

Message:

Registers:

Remarks:

Code: 26

Called From:

Message:

Registers:

Remarks:

Called From:

Message:

Registers:

Remarks:

Code: 28

Called From:

Message:

Registers:

Remarks:

Code: ' 21-00

Called From:

Message:

Registers:

Remarks:

Table C-l. CP-V Software Check Codes (cont.)

CSEHAND

UNRECOVERABLE WATCHDOG TIMER TRAP

Sigma 9 and Xerox 560 systems will atempt recovery from watchdog timer traps resulting from I/O
instructions without screeching. All relevant information is in the in-core error log buffer.

CSEHAND

CSE TRAP DURING MFI, PFI HANDLIN G

During MFI handling on a Sigma 9 or during MFI or PFI handling on a Xerox 560, a CSE trap (X'46',
X'4C', X'4D') occurred. All relevant information is in the in-core error log buffer.

CSEHAND

PROCESSOR FAULT INTERRUPT

A processor fault interrupt occurred for which continued operation is unlikely. All relevant infor­
mation is in the in-core error log buffer. (Xerox 560 systems only.)

CSEHAND

MEMORY PARITY ERROR - MEMORY ALTERED

A memory parity error correction caused memory to be altered. Continuation withou,t recovery is not
possible. Caused by interrupt X'56' on Sigma 6 or 7 or trap X'4C' in Sigma 9 or Xerox 560. All
relevant information is in the in-core error log buffer.

CSEHAND

TRAP 4C - BUS CHECK FAUL T

A Sigma 9 bus check fault or a Xerox 560 miscellaneous trap X'4C' occurred while in the master
mode. All relevant information is in the in-core error log buffer.

Appendix C 163

Code: 29-01'

Called From:

Message:

Registers:

Remarks:

Code: '21-02

Called From:

Message:

Registers:

Remarks:

Code: 21-03

Called From:

Message:

Registers:

Remarks:

Code: :2C-OO

Called From:

Message:

Registers:

Remarks:

164 Appendix C

Table C-1. CP-V Software Check Codes (cont.)

CSEHAND

TRAP 4C - MAP PARITY ERROR

A map register parity error occurred on a Sigma 9 or Xerox 560 while in the master mode. All rel­
evant information is in the in-core error log buffer.

CSEHAND

TRAP 4C - REGISTER BLOCK PARITY ERROR

A register block parity error occurred on the Xerox 560 while in the master mode. All relevant in­
formation is in the in-core error log buffer.

CSEHAND

TRAP 4C - WRITELOCK REGISTER PARITY ERROR

A write lock register parity error occurred on the Xerox 560 while in the master mode. All relevant
information is in the in-core error log buffer.

ADD

BATCH SCHEDULING ERROR - MBS/CCI ERROR

R 1 - (S:CUN) current user number.
R2 - Device type.
R3 - Context b lock address.
R5 - O.
R6 - User's DCB address (M:C).
SR2 - OPNLD + .14.
SR3 - Cont$!xt block address.
SR4 - OPNLD + .40. -,
D1 - BA (OPNLD + • 1E7) + .28.
D2 - BA (CONTXT BLK + SCFQARGS) + .28.
D3 - Device type mnemonic text.

Register contents significantly different from above indicate the monitor wandered into GETI in ADD.
Otherwise, a batch user has been created and has read a card before MBS selected him to be run.
Actually all recorded 2C's have been CCI attempting to start a second job. Problem is either CCI
read past FIN or a MBS/GETI communication problem (e. g., GIB:UN clobbered).

Code: 20-00

Called From:

Message:

Registers:

Remarks:

Code: 20-01

Called From:

Message:

Registers:

Remarks:

Code: 20-02

Called From:

Message:

Registers:

Remarks:

Code: \20-03

Called From:

Message:

Table C-1. CP-V Software Check Codes (cont.)

COOP

COOPERATIVE BUFFER MANAGEMENT ERROR

R 1 - BUFLIMS index for screech code 19.
R2 - .BCll.
R3 - Context block.
SR4 - COOP + .18D.
D3 - o.

At context block initial ization a buffer was allocated for the context block. This buffer has been
lost through core clobbering or mismanagement of a buffer chain. The particular user cannot
continue.

COOP

SYMBIONT/COOP FILE DEVICE INACCESSIBLE

RO - COOP + .19B.
Rl - Context block physical address.
R4 - (DCT3(DCTX)) wi II appear in the format XX 1 X XXXX.
SR4 - COOP + .15C.
D1 - .XXFF0300 + DCTX (X means could be any value).
D2 - BA (COOP BUFFER).
D3 - .400.
D4 - Disk address.

The symbiont/coop file device containing this user's file is down. If there are many file devices for
symbiont/coop only, this user should be aborted. If only one symbiont/coop file device exists, it is
pointless to run the system with that device down.

COOP

USERS COOP CONTEXT BLOC K CHAIN LOST

R 1 - BUFLIMS index for screech code 19.
R2 - .BClO.
SR2 - OPNLD + .137.
SR4 - OPNLD + .139.
D3 - O.

Similar to 2D-00 but detected at context blqck open time. Particularly alarming because this check
immediately follows the code which allocates con~xt blocks.

SACT

COOP CONTEXT BLOCK POINTERS CLOBBERED

Appendix C 165

Register:

Remarks:

Code: 20-04:

Called From:

Message:

r Registers:

Remarks:

Code: 2E

Called From:

Message:

Registers:

Remarks:

Code:2E-01

Called From:

Message:

Registers:

Remarks:

Code: 30

Called From:

Message:

Registers:

Remarks:

166 Appendix C

Table C-1. CP-V Software Check Codes (cont.)

R3 - O.
R6 - User DCB address.
SR 1 - FCN in leftmost 8 bits; DCB address in rightmost 24 bits.
SR4 - Exit from COOP.

Either J:USCDX or context block 0 (special pointers) were clobbered.

SUPCLS

COOP DATA BUFFERS MISALLOCATED

D3 - Buffer being released, including spare buffer index in byte O.
R5 - Context block 0 address and DBPOOL which is the address of the free context buffer list.
R2 - SV:LSIZ.
SR4 - Return address to caller of RCBUFF.

An attempt was made to release a COOP data buffer when the free data buffer pool was full. Either
the free data buffer pool has been clobbered or too many buffers have been allocated meaning some
other COOP data area has been clobbered.

RDF

POOL BUFFERS LOST - NONE ALLOCATED CURREN TL Y

SR3 - DCB address for which buffer is needed.
D4 - X'2E'.

An attempt was made to get an IPOOL or FPOOL buffer, but none were in the free pool and no
open DCB had any. Probably either the DCB chain has been clobbered or one or more DCBs have
been clobbered.

RA

INCONSISTENCY IN READ-AHEAD TABLES

R 12 - Disk address.

An attempt was made to add an AIR block to the tables when it was al ready there.

PFSR

UNBALANCED POWER ON/POWER OFF INTERRUPT PAIRS

Unbalanced power on/power off interrupt pairs, more of one than another (usually power on, or else
system would hang in wait; i. e., B $-1).

Carie: 31

Called From:

Message:

Registers:

Remarks:

Code: 32-10 i

Called From:

Message:

Registers:

Remarks:

Code: 34-10

Called From:

Message:

Registers:

Remarks:

Code: 41-11;

Ca II ed From:

Message:

Registers:

Remarks:

Code: '.1.18 I

, Called From:

Message:

I Registers:

Remarks:

Table C-l. CP-V Software Check Codes (cont.)

GERM

INVALID RESO URCE TYPE

SR4 - ADDRESS + 1 where discovered.

Inval id resource type found.

IOQ

DCB DOESN'T CONTAIN A VALID DCT INDEX

R2 - Address of DCB.

The OCT index is not present in DCB.

TPQ1

TRANSACTION PROCESSING FAILURE

The System Queue Manager for transaction processing has discovered an unrecoverable state while
processing transactions.

RTROOT

FAILED TO FIND USER'S STATE (M:INTSTAT)

R2 - Address of ICB being checked.

Probably results from a state having been added to SCHED without updating the four masks used by
the M:INTSTAT routine (WAIT:MASK, EXU:MASK, IOWAIT:MASK, BLCKD:MASK).

RTNR

BAD IOEX CALL TO NEWQ

Set for BALR, 11 NEWQNW.

NEWQNW returned to SAL + 1.

Appendix C 167

Code: 41-11 '

Called From:

Message:

Registers:

Remarks:

Code: 43-01

Called From:

Message:

Registers:

Remarks:

Code: 43-02

Called From:

Message:

Registers:

Remarks:

Code: 43-03'

Called From:

Message:

Registers:

Remarks:

Code: 46-21

Called From:

Message:

Registers:

Remarks:

168 Appendix C

Table C-1. CP-V Software Check Codes (cont.)

RTNR

UNABLE TO RETURN PRE-EMPTED DEVICE

RTNRls call to RMAOV was invalid.

CLOCK4

NO ICBS CHAINED INTO RTICBCLKHDR

This is probably caused by overwriting lowcore.

CLOCK4

ICBCLK FIELD OF ICB NEGATNE

R2 - Address of bad ICB.
R10 - Current timer increment.

The ICBCLK Held of an ICB should never go negative.

RTNR, CLOCK4

NO BACK-LINK FOUND IN DE-CHAINED ICB

R2 - Current ICB (the one being de-chained).
R4 - Forward link (next ICB in chain).

A back-link of zero implies that the current ICB is SYSICB1 (the l-second CLOCK3 ICB). This ICB
should never be de-chained (i. e., de-octivated).

PV

PRN ATE VOLUME LOGIC INCONSISTENCY

SR4 - Address where error was detected.

Numerous mod u I es co" PV ERR.

Code: 1\41·

Called From:

Message:

Registers:

Remarks:

Code: Sli

Called From:

Message:

Registers:

Remarks:

Code: .-DO
Called From:

Message:

Registers:

Remarks:

Code: •• -111

Called From:

Message:

Registers:

Remarks:

Code: 2

Called From:

Message:

Registers:

Remarks:

Table C-1. CP-V Software Check Codes {cont.}

TYPR

RESOURCE PREALLOCATION INCONSISTENT WITH REQUESTS

iR3 - O.
I'R3 _ Reel number. i

D4 - X'491
•

The user was preallocated the resource {according to his lob context}, but when the system got to
the point of actual allocation, it found that none of that resource was available. Either the job
context specifying preallocation is damaged or the system context recording actual allocation is
damaged.

MOCIOP

UNABLE TO RELEASE PHYSICAL WORK PAGE

The registers at the time of the trap.

Originates in the MOCIOP module when unable to release a physical work page locked in core
during transaction processing I/o on a message-oriented controller (e. g., 7605).

TEL

TEL ISSUED SIN GLE USER ABORT ON YOU

R15 - Subcode.

The user already has SBUF1 at entry to TEL. This software check indicates a problem in memory
management of physical pool pages.

TEL

TEL ISSUED SINGLE USER ABORT ON YOU

TEL failed to get SBUF2 to read the assign/merge record. This software check indicates a problem
in memory management of pool pages.

TEL

TEL ISSUED SINGLE USER ABORT ON YOU

TEL failed to get SBUF2 for a GET. This is essentially the same as software check 60-01 (failed to
get SBUF2 for READAM). A TEL logic problem or memory management failure is indicated.

Appendix C 169

Code: 10-13

Called From:

Message:

Registers:

Remarks:

Code: 10-04·

Called From:

Message:

Registers:

Remarks:

Table C-l. CP-V Software Check Codes (cont.)

TEL

TEL ISSUED SINGLE USER ABORT ON YOU

SR4 - Contents of AM:LN K.

The assign/merge record is inconsistent with a user in the command file mode. AM:LNK (in the
assign/merge record) should always point past the command file information, and it doesnlt.

TEL

TEL ISSUED SINGLE USER ABORT ON YOU

SR2 - The virtual page address through which TEL was trying to SAD (M:CVM).

This software check indicates a problem in memory management or a logic problem in TEL which
caused the user's map to be left "dirty" from a previous SAD (M:CVM).

Code: 11 - (TRAP Cen)

Called From:

Message:

Registers:

Remarks:

Code: 62

Called From:

Message:

Registers:

Remarks:

Code: 63

Called From:

Message:

Registers:

Remarks:

170 Appendix C

INITRCVR

TE L OR CCI HAS TRA PPED

Registers at time of trap.

The trap occurred while operating mapped, slave, and with TEL-in-control set. The sub code is
the trap location.

SCHED

USER PROGRAM TOO LARGE FOR PHYSICAL MEMORY

RO - Pages freed.
R4 - Inswap user (S:ISUN).

RO > SL:CORE. User got swapped out but now can't fit back in. Pages may be released but not re­
ported. The JIT in-core flag = O. (UH:FLG X'200'.)

DPSIO

INSUFFICIENT INFORMA nON AVAILABLE TO SWAP THIS USER

R2 - lOCO.
R6 - Command I ist address.
R7 - Function code.
04 - X'63'.

Insufficient data to compute function, follow-on function code invalid, or flags not set properly.
(Disk pack-only swappers.)

Code: 8A

Called From:

Message:

Registers:

Remarks:

Code: 88

Called From:

Messages:

Registers:

Remarks:

Code: 88

Called From:

Message:

Registers:

Remarks:

Code: 78

Called From:

Message:

Registers:

Remarks:

Code: 79

Called From:

Message:

Table C-l. CP-V Software ChJck Coc..IFlS (cont.)

MM

ATTEMPT TO RELEASE VIA M:CVM FROM USER wlo PROPER PRIVILEGE

R1 - X'80'.
R5 - Address of top of dynamic data or bottom of command.
R6 - Number of pages to release.
R7 - Vi rtua I page number.
SR1 - Number of pages released.
SR2 - First page to release.
SR3 - Increment or decrement to next page.
SR4 - link.
D1 - CC.
D2 - CC mask.

Virtual page outside of user's area (BUP-EUP) was obtained by an M:CVM CAL, but the user lacks
required prlvtlege (X'80') to release ft.

MM

ERROR IN SPARE BUFFER TABLES

R11 - Address in buffer subroutine within MM (T:GBUF, T:RBUF, etc.) which detected the error.

Usually due to bad input from the calling routine.

SWAPPER

ERROR IN SPARE BUFFER TABLES

R6 - BA (window page).
R14 - Physical page assigned to window.

Page mapped into window is not contained in the spare buffer pool.

MPSCHED

SLAVE CPU IN ITIATED RECOVERY

R 15 - Contents of S :SCRCH (specifying cause of screech in slave).

Some significant problem was detected by a slave CPU which can be corrected only by a full system
recovery (e. g., a trap with no assigned current user).

ENTRY

MONITOR COMMITTED A STACK TRAP

Appendix C 171

Table C-l. CP-V Software Check Codes (cont.)

Registers: Registers at time of trap.

Remarks: Master bit on in PSD, overflow, underflow, or pointer to stack lost.

~---~

Code: 19-01

Called From:

Messoge:

Registers:

Remarks:

Code: 1C

Called From:

Message:

Registers:

Remarks:

T:OV

MONITOR STACK TRAP

Reg;sters at time of trap.

OSTACK overflow.

--I

ALTCP

ALTCP CALLED TO SERVICE A CAL THAT DOESN'T BELONG TO ALTCP

R3 - Register field of CAL.
R6 - First word PLIST.
R7 - Address of PLIST + 1,
SRl - Code.
SR4 - Exit address (usually TRAPEX IT).

A CAll, 1 or CALl,2 was passed to ALTCP but should have been handled by CALPROC.

Code: 1E - (TRAP Cell)

Called From:

Message:

Registers:

Remarks:

Code: 81

Called From:

Message:

Registers:

Remarks:

1-------

Code: 88

Called From:

MessaJe:

172 Appendix C

INITRCVR

MONITOR HAS TRAPPED

Registers at time of trap.

Sub::ode is trap location. For traps that occur at locations less than X'8000' (JOVVPA), the 15 cells
prec:eding the trap location and the trap location are stored in the monitor JIT at X'8DFO ' - X'8DFF',

ALL yeAT

ALLOCATION BUFFERS CONTAIN INVALID WORD -COUNT

R 1 - Stack number,
R2 - Stack count.

Either low core has been clobbered or someone has changed ALLYCAT's In-core data.

SCHED

ALL YCAT CLOBBERED ONE OF THE ALLOCA nON BUFFERS

~~:ters:
I I Remarks:

Table C-1. CP-V Software Check Codes (cont.)

R 1 - Stack index.
R3 - Stack count.

ALLOCAT end-action has discovered a discrp.pancy in the granule/cyl inder stacks.
~ -
f --- ~"" -- -" ------~

! Code: 89-00

~

!
I
!
I

Called From:

Message:

Registers:

Remarks:

ALL YCAT

ALL YCAT'S HGP CHAIN CLOBBERED

R7 - Invalid HGP chain address.
R9 - ALLOCAT internal link register.

AL.LOCAT data (HGPs and TABLES) has been destroyed.
t. ___ -;

i
!
r

I
!
I
j

Code: 89-10

Coiled From:

Message:

ALL YCAT

DATA CHECKSUM ERROR

None" I Registers:

,Remarks: ALLOCAT data (HGPs and TABLES) has been destroyed.

~--------------------~

I
' Code: 93

Called From:
I
I

!
I Message:

Registers:

Remarks:

Code: 94

Ca II ed From:

Message:

Registers:

Remarks:

I Code: 95

Called From:

Message:

DPSIO, TSIO

TDV COMMAND ADDRESS DOESN'T POINT TO COMMAND LIST

R1 - O.
SR 1 - Command I ist address from TDV.
SR2 - TDV status.
D2 - Command list pointer (S:BECL, R1).

lOP/memory failure; extraneous entry to TSIO/DPSIO not generated within ClIST.

DPSIO, TSIO

COMMAND LIST CLOBBERED DURING WRITE CHECK

SR 1 - Incorrect command I ist entry address.
SR2 - TDV status.
R 12 - Order code from i ncorrec t command I ist entry.

Can't find seek or TIC within next five command list entries following error entry on write or write
check.

DPSIO, TSIO

UNRECOVERABLE I/O ERROR READING USER'S JIT

Appendix C 173

Registers:

Code: 98

Called From:

Message:

Registers:

174 Appendix C

Table C-1. CP-V Software Check Codes (cont.)

R 1 - Inswap user number (S:ISUN).
R7 - DCT index.
SRl - Command list address from TDV status.
SR2 - TDV status.

DPSIO, TSIO

UNRECOVERABLE I/O ERROR READING SHARED PROCESSOR

Rl - Inswap user number (S:ISUN).
R7 - DCT index.
SRl - Command list address from TDV status.
SR2 - TDV status.

APPENDIX D. XEROX 560'REMOTE ASSIST STATION

INTRODUCTION

The Remote Assist Station (RAS) and the associated routines
comprise the CP-V interface for on-line remote assistance
for both software and hardware analysts. This facility pro­
vides an on-line connection to the operating system without
requiring the use of any of the normal communications
equipment. The RAS user has access to ELLA for listing and
analyzing the contents of the system error log file (ERRFILE)
and to ANLZ and Delta for examining crash dumps and the
runn i ng mon i tor.

HARDWARE'INTERFACE

The Remote Assist Station may be any ASCII terminal cap­
able of connecting to the provided data set (Bell 103A or
its equivalent). The data set is connected to the Remote
Channel Interface of the System Control Processor. (See
the Xerox 560 Computer Reference Manual, 90 30 76.)
To use the interface on-line, the REMOTE CHANNEL
switch on the Xerox 560 System Control Panel must be in
the VO position. This connects the remote channel to
address X'OB' on the MIOP in cluster zero, through which
the CP-V interface communicates. This address must be
SYSGENed as the Maintenance Control (MC) device. The
hardware performs character translation from ASCII to
EBCDIC (and vice versa) to make the terminal appear as
an EBCDIC device. The translation tables are depicted in
Table 0-1. The left side of the table shows standard ASCII
characters. The corresponding entries in the right side of
the table show EBCDIC translation.

sonWARE . INTERFACE

CP-V provides an on-line communications interface enab­
ling the remote analyst to log onto the Maintenance Console
much as if he were connected to a COC terminal line. The
interface is initiated at the Operator's Console (OC) by a
special form of the GJOB key-in after the RAS is connected
to the dial-up modem:

IGJOB LOGON,MC

This key-in causes LOGON to print a salutation to the MC
resource requesting the RAS user to enter his account and
name. The RAS user must be explicitly authorized via Super
to use the MC resource. The following is an example of
such a Super authorization:

-C RAS, ASSISTANCE @)

--O$PR=AO @)

--OMMC=1@)

(required for running diagnostic
programs)

(authorizes on-line use of the MC
resource)

--OM9T=1 @) (required for mounting tape dumps)

-- @)

-END@

LOGON verifies the OMMC authorization before it ac­
cepts the account and name, and wi II not a Ilow the user to
log on if he does not have this resource authorization.

If the user's account and name are accepted, the user is
logged on as a non-COC on-line user and LOGON exits to
TEL which issues a prompt for input (I).

PROCESSOR RESTRICTIONS

The MC authorization causes a :PROCS entry to be created
for the RAS user which restricts him to the following list
of processors:

ANLZ

Delta

ELLA

No other processors or programs are allowed at the RAS.
Except for these processor restri ctions, TE L wi II c;sccept most
of its commands (e. g., SET, PRINT, MESSAGE, QUIT,
GO). However, commands regarding terminal type and
status wi II be ignored.

COMMUNICATIONS RESTRICTIONS

The communications link to RAS uses a small resident
handler in conjunction with the hardwired micro-coded
controller to provide a terminal interface. Due to the
limitations of the hardware and size restrictions on the
software handler, some compromises have been made. The
following list outlines the major characteristics of the com-
munications interface: .

1. The MC device is a message mode device, requlflng
either LINE FEED, RETURN, CONTROL X, or CON­
TRoL H to end each input. LINE FEED and RETURN
generate an X'15' (NL) character. CONTROL X and
CONTROL H generate an X'OS' (EOM) character which
is used to cancel an input line so that the line may be'
retyped.

2. Although the RAS terminal is connected in full-duplex,
the MC device operates in half-duplex, echoplex
mode, allowing I/O transfer a line at a time in only
one direction. When a read is pending, characters
typed wi II be echoed to the print mechanism of the

Appendix 0 175

Table 0-1. ASCII to EBCDIC Translate Table

ASCII EBCDIC

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

l{ ~ v. ~ CD ~ ~ k(0 NUL DlE SP 0 @ P ,
p 0

10

~ v: ~ v. ~ ~ A0/ l/(1 SOH DCl I 1 A Q a q 1
11 Vcl 01

~ X L{ ~ ;<: x. ~ ~ 2 STX DC2 " 2 B R b r 2
02 12 7F

~ X-L{ V. V. ;{ ~ ~ 3 ETX DC3 # 3 C S c s 3
13 03

l2f: b(. ~ v. ~ ~ ~ ~ 4 EaT DC4 $ 4 D T d t 4
04 14

5 ENQ NAK % 5 E U e v 5 X 09 y{ OA ~ 6C ~ ;<: ~ X V.
6 ACK SYN & 6 F V f v 6 CD 7. 16 ~ V. X l2{ x: V.

l2{ ~ L{ v. ~ ~ ;{ l2{ 7 BEL ETB
,

7 G W w 7 g
07 17

8 BS CAN (8 H X h x 8 CD CD v.: X X l2(Ya V.
9 HT EM) 9 I Y i Y 9 ~ 05 ~ 19 ~ ~ ~ ~ ~ ~

;{ ~ ;/c v. v. ;{ X V. A
LF

SUB * J Z i z A lA Nl : 15

B VT ESC + ; K [k t B ~ Vu LB L{ V-b< ~ l;{ ~
t{ ~ L{ k{ ~ x. ~ ~ C FF FS < l \ I I C , I OC lC

~ ~ h V. x: ~ X Y-D CR GS - = M] m } D
15 lD

E SO RS > N A n E ~ OE I;/. IE V. V. x: k< X 7-
F SI US / ? a - 0 DLE F ~ OF V. IF V. V. l;%: ~ X l/{
Notes: CD Used by Diablo Centaur terminal EOT/ACK protocol.

CD Used to cancel line, echoes as -80 and reissues read unless Delta is in control in which case is input as OA (LF).

CD Causes previously typed character to be ignored (Rubout character).

o Lower case input is echoed lower case, but translated to upper case for program input.

176 Appendi X 0

terminal. If a read is not pending, characters typed
are not echoed and are ignored.

3. The BREAK key may be depressed at any time to in­
dicate a BREAK signal. The MC handler causes a
BREAK event to be issued for the user and counts suc­
cessive BREAKs. If the user issues four successive
BREAKs, the handler causes a CONTROL Y event
(i. e., an escape to TEL). The BREAK key cancels any
current VO operation to the terminal.

4. In order to detect line drop or disconnect, input re­
quests wi II time out in three minutes and output mes­
sages wi II time out in 20 seconds. A fai lure to respond
to a read within three minutes causes the RAS user to
be logged off.

5. Records output to the RAS terminal have a maximum
size restriction of 140 bytes. Trailing blanks in an
output record are suppressed by the MC handler. Rec­
ords output through DCBs other than M:UC have a
RETURN/LINE FEED appended to them. Records writ­
ten through M:UC must contain their own carriage
control characters.

6. The MC handler does not simulate tabs nor does it
affect pagination.

7. Individual characters may be erased on input by typing
@ characters for each character to be erased (e. g.,
'ANE@LZ' results in 'ANLZ'). Complete lines may
be erased by ending the line with CONTROL X or
CONTROL H which causes the handler to echo

and to reissue the read that was in operation.

8. End-of-fi Ie condition is set upon receipt of the three
character sequence CONTROL F@.

9. Lower case letters are echoed in lower case but are in­
put to the program as upper case.

10. When Delta issues a read, special action takes
place by the handler to simulate the Delta activa­
tion character set. Special Activation characters
(CONTROL I,) = /) should be immediately fol­
lowed by a RETURN or LINE FEED. For commands
which usually end with a RETURN, either a RETURN
or a LINE FEED is valid. Commands which normally
end in LIN E FEED should be ended with CONTROL X
or CONTROL H. Line erasure is effected by ending
the line of input with? RETURN.

Appendix D 177

APPENDIX E. ERRFILE FORMATS

ERRFILIS is a keyed file built and updated by ERR:FIL for
use by diagnostic programs. The file contains one record
for each error entry in the file created by ERRLOG.

yyOddd is the Jul ian date in packed decimal.

hhmm is the time (hours and minutes) in EBCDIC.

The keys for this file contain the Julian date in packed
decimal, the time of the error in EBCDIC, and a sequence
number for errors with the same time tag. This sequence
number is reset to zero for each entry with a new time tag.
The format of the key is

n is the sequence number.

The first record of ERRFILE is the key of the last record in
ERRFILE and has a key of zero.

08 yy Od dd

h h m m

n

where

08 is the number of bytes in the key.

While copying records into ERRFILE, consistency and error
checks are made on the input data. If any errors or in­
consistencies are found, "copyerror ll records are written
and a IIcopy error ll counter in the summary record is in­
cremented. The error and consistency checks, recovery
actions taken, and the format of the copy error records are
described below. The terminology used in the error record
formats is defined in Table E-l.

Term

Account

Ala CC

Ala Status

Alternate I/O Address

Bytes Rema i n i ng

Consecutive, Keyed, Random

Count of Entries Identical to
Previous Entry

Count of Entries Lost

Current Command Doubleword

CPU Address

178 Appendix E

Table E-l. Error Record Terminology

Meaning

The doubleword used to identify a user's collection of files.

A 4-bit field representing the condition codes as returned by the hardware
in response to an Ala instruction.

A 16-bit field representing the status as returned by the hardware in response
to an Ala instruction.

A 16-bit value representing an alternate physical I/o address by which a
dual-access device can be referenced.

A 16-bit field representing the Remaining Byte Count (RBC) field as returned
by the hardware in response to a TDV instruction.

Methods of organizing user fi les in CP-V (refer to the CP-V IBP Reference
Manual, 90 1764).

The number of error log records which are identical to one previously logged
for identical reasons (excludes time records).

The number of error log records lost when logging becomes temporarily im­
possible for any reason.

A 64-bit value representing the command doubleword currently being pro­
cessed for a device (indicated by the TDV status OW).

Hardward address of CPU performing the function (meaningful only for
multiprocessing).

Sigma 6 and 7 - 0

Sigma 9 - port number

Xerox 560 - basic processor address

Term

Caller's Address

OCT Index

OCT Index of Symbiont Device

Effective Address

Error Subcode

File Name

Granule

HIO CC

HIO Status

I/O Address

I/O Count

Julian Day

Length

LMSCC

Memory Status Words
(Sigma 9 only)

Table E-1. Error Record Terminology (cont.)

Meaning

The address back to which the error logging routine is returned when logging
is complete; used in isolating software faults.

The 8-bit value indicating the order in which the device is configured into the
system (at SYSGEN).

The 8-bit value indicating the order in which the device associated with the
symbiont is configured into the system (at SYSGEN).

A 32-bit value representing the final address computed for the instruction
pointed to by the instruction address (JA) in the PSD.

An 8-bit field indicating which of several types of file inconsistencies has oc­
curred (see CP-V/BP Reference Manual, 90 1764).

The TEXTC name used to identify a collection of user data on secondary storage.

The unit of secondary storage allocation equal to 2048 bytes (usually 2 sectors).

A 4-bit value (bits 0-3 of designated byte) representing the condition codes as
returned by the hardware in response to an HIO instruction.

A 16-bit value representing the status as returned by the hardware in response
to an HIO instruction.

A 16-bit val ue representing the physical I/O address.

A 32-bit value representing the number of SIO instructions executed for the
device.

A 16-bit value representing the Jul ian day of the year (e. g. , March 1 would
be represented as X'3D') when the error was logged.

A a-bit value in the second byte of the error log record representing the num­
ber of useful 32-bit words contained in the error log record. It includes the
first word in the count.

The condition codes obtained when fetching a location via an LMS (Load Mem­
ory Status) instruction. The condition codes indicate whether or not a parity
error occurred during the fetch.

Each word is a 32-bit value representing data returned by the hardware in
response to an LM S i nstruc ti on.

Appendix E 179

Term

MFI (Sigma 6 or 7 only)

Mode

Model Number

Number of Parity Errors

Primary I/O Address

PSD

Rea I Address

Recovery Count

Relative Sector Address

Relative Time

Relative Time Resolution

Retries Remaining

Retry Request.

Screech Code

180 Appendix E

Table E-1. Error Record Terminology (cont.)

Meaning

A 4-bit value representing the current state of the memory fault indicators
returned by the hardware in response to an RD instruction. All memory fault
indicators will be reset.

A 16-bit value representing the manner in which the file was last referenced
(see CP-V/BP Reference Manual, 90 1764).

A 16-bit value representing the model number assigned by Field Engineer­
ing to uniquely identify peripheral devices (e. g., 7242 would be represented
as X'7242').

A 16-bit value representing the number of bad locations causing memory parity
errors (only the first 14 bad locations are entered in the log if the number of
errors is greater than 14).

A 16-bit value representing the physical I/O address by which a device can
be referenced (see Alternate I/O Address).

A 64-bit value representing the program status doubleword.

A 32-bit value representing the actual memory address (in a mapped system,
this is the same as the address in the IA field of the PSD).

An 8-bit value initialized to zero at system initialization and incremented by
the val ue one for every system recovery.

A sector is 256 words. Each sector on a given device is numbered zero through
device end. CP-V maintains file pointers by relative sector number, thereby
simplifying the logic necessary to address different devices.

A 32-bit value representing milliseconds since midnight. Resolution is 2 msec.

An 8-bit value, n, such that actual relative time resolution = 2 msec. (e. g.,
n = 1 for a resolution of 500HZ or 2 msec.).

An 8-bit value representing Retry Request minus the number of entries at­
tempted. The range is between Retry Request and -1. A value of -1 indicates
the operation was terminated due to retry count rundown.

An 8-bit value representing the maximum number of retries after which a device
error is returned to the requester. This value is obtained from the requester's
DCB.

The code used by CP-V to identify the system failure which has occurred.

Term

Screech Subcode

Seek Add ress

Sense Information

SIO CC

SIO Status

Site Identification

Startup Type

Subchannel Status

Symbiont File

TOV CC

TOV Current Command OA

TOV Status Ooubleword

TIO CC

TIO Status

Trap CC

Table E-1. Error Record Terminology (cont.)

Meaning

An 8-bit field identifying which type of a specific and similar set of system
failures has occurred. (See Software check codes in the CP-V/OPS Reference
Manual, 90 1675.)

The physical disk address last used to access this device.

The diagnostic information returned from the device as a result of sending a
"sense" order to the device.

A 4-bit value (bits 0-3 of designated byte) representing the condition codes
as returned by the hardware in response to an SIO instruction.

A 16-bit value representing the status as returned by the hardware in response
to an SIO instruction.

A 64-bit field containing the site 10 from the SYSGEN :MON card left justi­
fied with blanks on the right.

An 8-bit field indicating which of several types of system initialization was
used. See the SYSTEM STARTUP error record (type X'181

).

The status of the I/o subchannel received from the hardware as a resul t of a
TOV instruction.

A CP-V system special file for buffering data between the CPU and slower
speed line printers, card punchers, etc.

A 4-bit value (bits 0-3 of designated byte) representing the condition codes as
returned by the hardware in response to a TIO instruction.

A 24-bit field representing the current command doubleword address used in
obtaining the device status with a TOV instruction.

A 24-bit field representing the subchannel status, as current command double­
word, device status, and byte count as returned by the hardware in response to
a TOV instruction.

A 4-bit value (bits 0-3 of designated byte) representing the condition codes as
! returned by the hardware in response to a TIO instruction.

A 16-bit value representing the status as returned by the hardware in response
to a TIO instruction.

A 4-bit value (bits 0-3 of designated byte) representing the condition codes as
returned by the hardware when certain traps occur.

Appendix E 181

Term

Trapped Instruction

Type

Unit Address

Unit Type

User ID

User Number

Version

Volume Serial Number

Year

READ ERROR

Table E-l. Error Record Terminology (cont.)

Meaning

A 32-bit value representing the contents of the location pointed to by the
instruction address (IA) in the PSD.

An 8-bit value in the first byte of the error record which identifies the type
of record.

A 6-bit value (bits 2 - 7 of designated byte) representing the address by which
a processor can be referenced; the value is composed of a 3-bit cluster number
followed by a 3-bit unit number.

An 8-bit value specifying the type of processor. Bit 0 of the designated byte
indicates the presence of the processor in the current operational configuration
(0 = present, 1 = not present).

A 16-bit value which is a unique number assigned by the system to the partic­
ular job or on-line session.

An 8-bit value which is the index into internal system tables used to access
user specific information.

The version identifier of the system running (i.e., AOO, BOO, etc.). This field
is one byte in length. The letter of the version is stored in the first four bits
and the number of the version is stored in the second four bits.

A 4- or 6-byte field supplied by a user to identify either a tape or private
pack.

A 16-bit binary value representing the current year minus 1900 (e.g., 1973 is
represented as XI49 1

).

End Read Error

If the condition codes set by T:RDERLOG indicate a read
error, a copy error record (Read Error) is written and copy­
ing of the record is attempted. If inconsistencies are found
in the record, a copy of the bad record is placed in the
ERRFILE file, followed by the End Read Error record. If no
inconsistencies are found, the record is ·processed normally
and the Read Error record remains in the ERRFIlE fi Ie. The
record format:; are

word 0

word 1

Read Error

word 0

word 1

182 AppendJx E

ERRLOG RECORD LENGTH ERROR

If the length of the ERRLOG record is greater than 64 words, a
copy error record followed by the ERR lOG record is written
on ERRFIlE. No attempt is made to copy this record in the
detailed format. The record format -is

word 0

I
word 1

61231:,

word 2

INC ORRECT TIME

If the time of an entry is out of sequence, i. e., if it is
earlier than the time of the last record and the data has not
changed, a copy error record is written on ERRFILE followed
by the ERRLOG record. The time of this entry is then used
for the key and processing continues. The record format is

word 0

word 1

word 2

where index is the displacement within the ERRLOG record
of the first word of erroneous entry.

ILLEGAL ENTRY TYPE

If the entry type is not one of the legal types, a copy error
record followed by the ERRLOG record is written on ERRFILE.
No attempt is made to copy the remainder of the record.
The record format is

word 0

word 1

word 2

where index is the displacement within the ERRLOG record
of the fi rst word of erroneous entry.

Note: Errors that occur while booting have a time tag of
24XX but the keys of these records contain the cur­
rent date and 0011 for the time.

If read or write errors are detected while reading or writing
"ERRFILE and SUMFILE, they are ignored.

'vVhenever I/o errors or cert:ain unusual conditions occur,
an entry will be made into.t'he ERRlQG file. This entry
will contain any information~rtinerit to the condition.

Word 0 of each entry wHI have a code indicating which
error or unusual condition is present along with the number
of words in the entry (including word 0). Time (hhmm) and
Device Name (yyndd) are in EBCDIC.

There are no errorlog entries for the following two interrupts •.

MEMORY FAULT INTERRUPT

The Memory Fault Interrupt (MFI) is triggered when an error
is detected during a memory access by either the CPU or an
lOP. If the MFI is triggered by the CPU, a parity error trap
wi" a Iso occur unl ess the error is a Loop Check Parity error
or Overtemperature condition. The parity error trap routine
performs error recovery, logs the error, and clears the MFI
to avoid duplicate processing. The MFI service routine
therefore expects to only handle errors detected during an
lOP memory access and Loop Check and Overtemperature
errors. The Loop Check and Overtemperature errors are
processed by the memory parity program and the system re­
covery program is entered with code X'23 1

• The other er­
rors are logged by the device handler, which also performs
the required recovery.

PROCESSOR FAULT INTERRUPT

The Processor Fault Interrupt is not enabled in CP-V. Errors
that cause this interrupt in a monoprocessor system are han­
dled by the I/O Interrupt Routines.

SIO FAILURE

This record is logged when CCl and/or CC2 are set after
execution of the SIO instruction.

I word 0

word 1

word 2

AppendIx E 183

word 3

word 4

word 5

TIME OUT

This record is logged when the Vo interrupt does not occur
within a specified time period in response to an I/o
instruction.

word 0

word 2

I HIO ;Status I vo a~dress I
o I 2 3 14 5 6 7 8 9 10 11112 13 14 15 16 17 18 19120 21 22 23 24 25 26 27128 29 30 31

word 5

words 6 and 7

Current command
-

doubleword
o I 2 314 56 7189 1011112131415116171819120 21222312425262712829 30 31

word 8

184 AppendIx E

word 9

words 10 and 11

Volume serial number

o I 2

word 12

UNEXPECTED INTERRUPT

This record is logged when an interrupt, other than an at­
tention interrupt, is received from a known device for
which no I/O operations have been started by the system.

word 0

word

word 2

word 3

DEVICE ERROR

This record is logged when general analysis of the status re­
ceived from an AIO, TDV, or TIO indicates an error which
resulted from the I/O operation. For on-line diagnostic I/O,
this information is returned in the STATUS area defined by
M:DOPEN with the type ccx:le X'14' for normal completion.

word 0

word

I 2 3 14

Relativ~ time : I
10 11112 13 14 15 16 17 18 19120 21 22 232425 26 2712829 30 31

word 2

word 3

word 4

word 5

words 6 and 7

Current command

doubleword

o 1 231456 71891011112131415116171819120 21222312425262712829 30 31

word 8

word 9

words 10 and 11

Volume serial number

(S ix characters for I Original I Current
ANS tapes) function code function code

o 1 2 314 5 6 718 9 10 11112 13 14 15116 17 18 19120 21 2223124 2S 26 27128 29 30 31

word 12

SECONDARY RECORD FOR DISK PACK, RAD, AND
_-c TAPE

This record is generated as a result of a previous device
error and contains device status which corresponds to the
information contained in the Device Error record (type
X115 1

) preceding this record.

word 0

word 1

words 2 and following

Sense information (left iustified)
Device Lenath (i n b~tes)

7242 10
Disk A, B 16
1600 bpi tape 6
9T tape 1 I

I RAD 3 I

-

.' o I 2 314 5 6 7 18 91011112131415116171819120 2122 2312425262712829 30 31

The VO address I inks the secondary record to the cor­
responding device error entry.

SYSTEM STARTUP

This error is logged at system initialization and at' every
recovery.

word 0

I word 1

word 2

where

screech code and screech subcode are defined in
the CP-V/OPS Reference Manual, 90 1675.

recovery count is set to 0 for initial startup as de-
fined by startup types 1,2, or 3 below.

AppendIx E 185

startup type specifies the type of startup.

1 - Initial PO boot

2 - PO boot with files

3 - System device boot (no recovery)

4 - System recovery

5 - Operator recovery

6 - Secondary CPU startup

7 - Secondary CPU shutdown

(For type 6 and 7, screech code fields and re­
covery count are zero.)

FILE INCONSISTENCY ERROR

This record is logged if the system detects fi les which are
inconsistent in that the associated file I inks do not match
or are otherwise incorrect.

word 0

word

words 2 through 9

File name

words 10 and 11

Account number

o 1 2 314 5 6 718 91011112131415116171819120 21 22 23124252627128293031

186 Appendix E

word 12

where

ORG is set to 1 for consecutive, 2 for keyed, and
3 for random.

MODE is set to 1 for IN, 2 for OUT, 4 for INOUT,
and 8 for OUTIN.

SOFTWARE-DETECTED SYMBIONT INCONSISTENCIES

This record is logged if the system detects files which are
inconsistent in that the associated file pointers do not match
or are otherwise incorrect.

iword 0

word

word 2

words 4 and 5

Reserved for future use
-

o 1 2 314 5 6 7 18 9 10 11112 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

word 6

word 7

word 8

word 9

where FIP, lAP, RBP, and ANLZ CC have the same mean­
i ngs as for the hardware error record (X I 17').

LOST ENTRY INDICATOR

This record is entered when buffering constraints make error
logging temporarily impossible. The newest entries are lost.

word 0

word 1

DUPLICATE ENTRIES

This record is logged if duplicate error log entries are
generated.

word 0

word 1

POWER ON

This record is generated as a result of the power on trap
associated with location X'50 ' •

word 0

word 1

CONFIGURATION RECORD

This record is logged at system startup.

word 1

word 2

word 3

additional words

0123456

Words 2 and 3 may be repeated up
to four ti mes. The pa i rs of words
will be in order by OCT index.
Multiple records may occur.

SYSTEM IDENTIFICATION

This record is entered at system startup and recovery and is
entered after the CONFIGURATION RECORD (type X'211).

word 0

word

! word 2

I . :s~te"!l v(!rs}on ;f~~~~_~O~~~L_: I, I '
o· 1 2 314 5 6 78 9 1011112 13 14 15 16 17 1819120 212223242526271282930 31

words 3 and 4

Site identification (in EBCDIC)

U 1 ~ J 4 ~ 6 7 8 y lu 11112 13 14 15116 17 16 lVI20 ~1 a ~31~4 ~5 ~6 271~8 ~9 3u Jl

Appendix E 187

TIME STAMP

This record is entered once each hour on the hour.

word 0

word 1

word 2

BAD GRANULE RELEASE

This record is logged if the granule being released contains
an invalid disk address or has already been released (dual
allocation).

word 0

word 1

word 2

188 Appendix E

Type code (O-:-bad address;
1-dual allocation)

Ii

I word 3 (if type code = 0)

,or

REMOTE PROCESSING ERROR

This record is logged when an error occurs in the transmis­
sion of data to or from a remote processing wo~kstation.

word 0

words 3 and 4

Workstati on name

words 5 and 6

Current command doubleword -

o 1 2 3 1 4 5 6 7 1 8 9 10 111 12 13 14 15116 17 18 19120 21 22 23124 25 26 27128 29 30 31

where

type identifies the type of error log record.

length specifies the number of 32-bit words con-
tained in the error log record.

I/O address is a 16-bit address representing the
physical I/O address.

relative time represents milliseconds since mid-
night. Resolution is 2 msec.

RB:FLAGS specifies the contents of RB:FLAG at the
time of the error. RB:FLAG is described in the
CP-V/Data Base Technical Manual, 90 1995.

workstation name specifies the workstation name
(in TEXT format, left-justified and padded with
blanks) if the terminal is logged on.

current command doubl eword spec i fi es the command
doubleword of the I/Othat was taking place when

the error occurred. For Xerox 7670 RBTs, the
current command doubleword contains the second
command doubleword used to write the text of an
output message and is meaningful only for RP1 =0,
1, A, or B.

RP1, RP2, RP3, and RP4 have specific meaning for
the type of remote workstation associated with the
record. The meanings are listed in Tables E-2
through E-7.

Table E-2. Xerox 7670 RBT - RP1, RP3, and RP4 ;

RP1 Value Meaning Corresponding RP3 Meaning Corresponding RP4 Meaning

1 First character in record not SOH. Current character position. Offending character.

2 Incorrect parity on SEL. Current character position. Offending character.

3 Incorrect block protect. Current character position. Offending character.

4 Third character in record not STX. Current character position. Offendi ng character.

5 RBBA T COMBUF or MPOOL unavai lable Meaningless. Meaningless.
for log-on.

6 Incorrect character parity. Current character position. Offending character.

7 Record trailer character not ETX. Current character position. Offending character.

8 Incorrect block check parity. Current character position. Offending character.

9 Incorrect block check. Current character position. Offending character.

A Communication line time-out. Meaningless. Meaningless.

B NAK received. Response received reading for ACK. (RP3 and RP4 combine
to be a halfword).

C Garbled ACK or NAK. Response received reading for ACK. (RP3 and RP4 combine
to be a hal fword).

AppendIx E 189

Table E-3. Xerox 7670 RBT - RP2 Table E-4. IBM 2780 RBT - RP1 and RP4

RP2 Value Meaning (Current Function Code) RP1 Corresponding RP4
Value Meaning Meaning

0 Write card punch.
1 Disconnect due to

1 Write line printer.
a. EOT on read. EOT

2 Send ACK.
b. Use of 2780 on ENQ

3 Write TOF (Block protect = 0). IR BT on I y system.

4 Write TOF (Block protect = 1). 2 Li ne ti meout • Same as RP2.

5 Write SPACE (Block protect = 0).

6 Write SPACE (Block protect = 1).
3 ENQ not received Character received.

on logon read.

7 Read card reader.

4 No EOT after EOF sent. Character received.
8 Write TOF (log-on).

9 Read card reader (special). 5 a. ENQ in text mode. Character received.

A Read AC K card punc h. b. No ENQ answer- Character received.
ing WACK.

B Read AC K line pri nter •
c. ENQ answer to Character received.

C Read AC K TOF (Block protect = 0). ACK of EOF.

D Read ACK TOF (Block protect = 1).
6 NAK received. Character received.

E Read ACK SPACE (Block protect = 0).

F Read ACK SPACE (Block protect = 1). 8 CRC failed on input. Last character
CRCed.

10 Write EOT.

11 Write DC1. 9 Unknown response Character received.
reading for ACK.

12 Write ACK (special).

13 Write NAK.
A Trailer character not Character received.

ETB or ETX.

14 Write NAK (special).
C Header character not Character received.

15 Write BEL (on error). STX.

Table E-5. IBM 2780 RBT - RP2 and RP3

Value RP2 (Current Function Code) RP3 (Calling Function Code)

0 Disconnect. Software error - should not occur.

1 Write data. Write.

2 Send ENQ. Send ENQ (Wait).

3 Send ACK O. Read.

4 Send WACK. Send WACK (Wait).

190 AppendIx E

Value

5

6

7

8

9

A

B

C

RP1
Value

o

2

3

4

5

6

7

8

9

A

B

C

Table E-5. IBM 2780 RBT - RP2 and RP3 (cont.)

RP2 (Current Functi on Code)

Write data.

Send ENQ.

Read for ACK, ENQ, EOT (depends on RP3).

Read for E NQ •

Read.

Send NAK.

Send ACK 1.

Send EOT.

Table E-6. IRBT - RP1 and RP4

Meaning

Recoverable block check error.

Catastrophic block check error (NAK sent
in case of line error).

Communication I ine time-out.

Read for ENQ timed-out (logon).

Received ACK 0 instead of SIGNON at logon.

Inappropriate line bid (not ENQ-master, not
ACK o-slave).

NAK received.

Read ti med out.

Incorrect C RC •

Trailer character not ETB.

Leader character not S TX.

Lost data.

Garbled ACK O-NAK.

RP3 (Calling Function Code)

Write EOF.

Request to output.

POL for input.

Logon.

Software error - should not occur.

Software error - should not occur.

Software error - should not occur.

Software error - should not occur.

Corresponding RP4 Meaning

Difference (mod 16) between expected
and received BCBs.

Difference (mod 16) between expected
and received BCBs.

Same as RP2.

Same as RP2.

ACK 0

Line bid received.

NAK.

Same as RP2.

Last character CRCed.

Offending character.

Offending character.

First character after IDLE.

First character of message.

Appendix E 191

Table E-7. IRBT - RP2 and RP3

Value RP2 (Current Function Code) RP3 (Calling Function Code)

o Disconnect • Software error - should not occur.

Write block. Write block - read block.

2 Write ACK. Write ACK - read block.

3 Write block. Write block (Wait-a-bit) - Read special.

4 Write Wait-a-bit. Write Wait-a-bit - Read special.

5 Read block. Software error - should not occur.

6 Send NAK. Software error - shoul d not occur. t

7 Send ENQ. Logon as Slave.

8 Read for ENQ. Logon as Master.

9 ACK 0 to ENQ. Logon as Master after ENQ Read.

A Read logon record. Software error - shou I d not occur.

B NA K logon record. Software error - shou I d not occur.t

tIf errors with the same RPl code occur consecutively, this code may appear in the RP3 field for the second and subsequent
consecutive errors, replacing another legal RP3 code.

OPERA TOR MESSAGE

Th is record is i nterj ected as the resul t of an operator ERRS EN 0
key-in or by a diagnostic program. It is generally used tode­
scribe unusual conditions surrounding a particular error.

word 0

word 1

word 2

o 1 2 3

Message from the operator in TEXTC
format. (Maximum size is 71 characters
p.lus the count byte.)

I/O ACTIVITY COUNT

Th is is recorded once per hour and at recovery.

192 Appendtx E

word 1

word 2

word 3

additional words

o 1 2 3

Words 2 and 3 may be repeated .up to four
times. The pairs of words will be in orde~
by' OCT index. Multiple records may occur.

HARDWARE ERROR

This record is logged when a hardware error has been de­
tected, the type of error being indicated by the Trap CC.
For Sigma 6 and 7, this record is generated as a resul t of

the memory parit)" interrupt associated with locatIon X'56'.
For Sigma 9 and Xerox 560 this record is generated as a re­
sui t of the parity error trap associated with location X'4C'.

word 1

words 2 and 3

PSD word 1

PSD word 2
o 1 2 314 5 6 718 9 10 11112 13 14 15116 17 1819120 212223124252627128293031

words 4 and 5

Reserved for future use

O· 1 2 314 5 6 718 9 10 11112 13)~ 15116 17 18 19120 212223124252627128293031

word 7

word 8

word 9

word 10

where

FIP indicates, when set, that a parity error occurred
while fetching the instruction (causing a trap 4C)
on a Sigma 9 or Xerox 560, or that a memory par­
ity occurred (causing a machine interrupt using
location 56) on a Sigrnc:l 6 or 7.

lAP indicates, when set, that a parIty error occurred
due to an indirect address fetch. Words 9 and 10
will be zero in this case.

RBP indicates, when set, that a parity error is present
in the associated R-block registers. (Xerox 560
only.)

AN LZ CC specify the addressing type for the
effective real address (words 9 and 10). If the
instruction is an immediate type, these address
fields will be zero. The ANLZ CC settings
are:

Bi t 0 Bit 1 Bi t 2 Bit 3

o o o Byte

o o Immediate, byte

o o Halfword

o o Word

o Immediate, word

o Doubleword

o Direct addressing

Indirect addressing

WATCHDOG TIMER

This record is generated as a result of the instruction watch­
dog timer run out trap associated with location X'46'.

word 1

words 2 and 3

PSD word t

PSD word 2
01231456718 91011112131415116171819120212223124252627128293031

words 4 and 5

Reserved for future use

o 1 2 J 14 5 6 /18 9 lU 11112 13 14 15116 17 18 19120 21 22 2312425262712829 30 31

Appendix E 193

word 6

word 7

word 8

word 9

word 10

where FIP, lAP, RBP, and ANLZ CC have the same mean­
ing as for the hardware error record (X' 171).

INSTRUCTION EXCEPTION

This record is logged when program executions traps to lo­
cation X'4D' on a Sigma 9 or Xerox 560 due to an instruc­
tion exception condition.

word 0

word

words 2 and 3

PSD word 1

PSD word 2
o 1 2 314 5 6 71S 9 1011112 13 14 15116 17 18 19120 2122231242526 2712S 29 30 31

words 4 and 5

Reserved for future use -
o 1 2 3,456 7-1s 91011112131415116171819120 2122231242526271282930 31

194 Appendix E

word 7

word 8

word 9

word 10

where FIP, lAP, RBP, and ANLZ CC have the same mean­
ings as for the hardware error record (X'171).

PFI PRIMARY RECORD

This record is logged when program execution is interrupted
to location X'56' on the Xerox 560 due to a Processor Fault
Interrupt condition.

word 0

word 1

MFI PRIMARY RECO RD

This record is logged as a result of the memory fault in­
terrupt associated with location X'57' on a Sigma 9 or
Xerox 560.

word 0

word 1

XEROX 560 SECONDARY RECORD FOR POLL
INFORMATION

This record is logged to record specific information obtained
by issuing a POLL instruction subsequent to detecting hard­
ware errors. One record is produced per valid poll status
received.

word

I ",I'",:"
word 2

where unit type has the following meanings:

- Basic Processor

2 - Memory Interface

3 - Processor Interface

4 - Multiplexor lOP

5 - Rotating Memory Processor

6 - Not Used

7 - System Control Processor

XEROX 560 MEMORY PARITY SECONDARY RECORD

This record is logged to record specific information returned
in response to an LMS instruction subsequent to detecting
hardware errors.

word 1

word 2

word 3

Memory status word 1]
o 1 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 20 21 22 23124 25 26 .71 2& '0 '0 ,l

SIGMA 9 MEMORY PARITY SECON DARY RECORD

This record is logged as a result of the memory fault inter­
rupt associated with location X' 571 or the memory parity
trap associated with location X'4C on the Sigma 9 or
Xerox 560. This record follows record type X'17' and
record type X'311.

word 1

word 2

word 3

10 11 12 lJ 14 15 16 17 Ie 19120 21 22 23 24 25 2~ 27128 70 JO JI

word 4

MEMORY PARITY SECONDARY RECORD

This record is logged to record specific information obtained
by scanning memory to attempt to isolate locations which
cannot sustain correct parity.

word 1

Appendix E 195

word 4

wend 5

Logical AN D of contents of the bad locations
J I 4 ~, t • I q - • I I 12 I 1 14 1:> I 16 17 !8 191}1 f

word 6 C· Logical OR of conten;. of the -bad location.
0,))14 5 6 .,11:(9 ;Oll':}13141)JC 1:1P t920},2223242';26272829JOJl

word 10

ENQUEUE TABLE OVERflOW

This record is logged when an Enqueue CAL has been re­
jected because there are insufficient unused entries in the
fnqueue tables.

word 0

word 1

[~=~-~--~-~~~~~~~

Entry count is the number of entries in the enqueue table
belonging to the specified user at the time the error log
entry was made.

19~1 Appendix E

PARTITIONED RESOURCE

This entry is logged when a resource is partitioned via the
SYSCON processor by the operator.

word 0

word 1

Relotive time
.<:, f- :".8 9 1

word 2

where

F=O for device entry.

F = 1 for controller entry.

RETURNED RESOURCE

This entry is logged when a resource is returned from being
partitioned via the SYSCON processor by the operator.

word

word 2

where

F=O for device entry.

F = 1 for controller entry.

APPENDIX F. XEROX STANDARD OBJECT LANGUAGE

INTRODUCTION
GENERAL

The Xerox standard object language provides a means of
expressi ng the output of any Xerox processor in standard
format. All programs and subprograms in this object format
can be loaded by the Monitor's relocating loader. t Such a
loader is capable of providing the program I inkages needed
to form an executable program in core storage. The object
language is designed to be both computer-independent and
medium-independent; i. e., it is appl icable to any Xerox
computer having a 32-bit word length, and the same format
is used for both cards and paper tape.

SOURCE CODE TRANSLATION

Before a program can be executed by the computer, it must
be translated from symbolic form to binary data words and
machine instructions. The primary stages of source program
translation are accompl ished by a processor. However, under
certain circumstances, the processor may not be able to trans­
late the entire source program directly into machine language
form.

If a source program contains symbolic forward references, a
single-pass processor such as the Xerox Symbol assembler can
not resolve such references into machine language. This is be­
cause the machine language value for the referenced symbol
is not establ ished by a one-pass processor unti I after the state­
ment containing the forward reference has been processed.

A two-pass processor, such as the Xerox Meta-Symbol assem­
bler, is capable of making "retroactive" changes in the
object program before the object code is output. Therefore,
a two-pass processor does not have to output any special
object codes for forward references. An example of a for­
ward reference in a Symbol source program is given below.

y EQU $+3

CI,5 z

LI, R z

Z EQU 2

BG Z

R EQU Z+l

tAlthough a discussion oftheobject language isnotdirectly
pertinent to CP-V, it is included in this manual because it
applies to some of the processors operating under CP-V.

In this example the operand $ + 3 is not a forward reference
because the assembler can evaluate it when processing the
source statement in which it appears. However, the oper­
and Z in the statement

CI,5 Z

is a forward reference because it appears before Z has been
defined. In processing the statement, the assembler outputs
the machine-language code for CI,5, assigns a forward ref­
erence number (e. g., 12) to the symbol Z, and outputs that
forward reference number. The forward reference number
and the symbol Z are also retained in the assembler's symbol
table.

When the assembler processes the source statement

LI, R Z

it outputs the machine-language code for LI, assigns a for­
ward reference number (e. g., 18) to the symbol R, outputs
that number, and again outputs forward reference number
12 for symbol Z.

On processing the source statement

Z EQU 2

the assembler again outputs symbol Z's forward reference
number and also outputs the val ue, which defines symbol Z,
so that the relocating loader will be able to satisfy refer­
ences to Z in statements CI, 5 Z and LI, R Z. At this time,
symbol Z's forward reference number (i. e., 12) may be
deleted from the assembler's symbol table and the defined
value of Z equated with the symbol Z (in the symbol table).
Then, subsequent references to Z, as in source statement

BG· Z

would not constitute forward references, since the assembler
could resolve them immediately by consulting its symbol
table.

If a program contains symbolic references to externally
defined symbols in one or more separately processed subpro­
grams or library routines, the processor will be unable to
generate the necessary program linkages.

An example of an external reference in a Symbol source pro­
gram is shown below.

REF ALPH

LI,3 ALPH

When the assembler processes the source statement

REF ALPH

Appendix F 197

it outputs the symbol ALPH, in symbolic (EBCDIC) form, in
a declaration specifying that the symbol is an external ref­
erence. At this time, the assembler also assigns a declara­
tion name number to the symbol ALPH but does not output
the number. The symbol and name number are retained in
the assembler's symbol table.

After a symbol has been declared an external reference, it
may appear any number of times in the symbol ic subprogram
in which it was declared. Thus, the use of the symbol
ALPH in the source statement

LI,3 ALPH

in the above example, is valid even though ALPH is not
defined in the subprogram in which it is referenced.

The relocating loader is able to generate interprogram I ink­
ages for any symbol that is declared an external definition
in the subprogram in which that symbol is defined. Shown
below is an example of an external definition in a Symbol
source program.

DEF ALPH

LI,3 ALPH

ALPH AI,4 X 'F2 1

When the assembler processes the source statement

DEF ALPH

it outputs the symbol ALPH, in symbolic (EBCDIC) form, in
a declaration specifying that the symbol is an external defi­
nition. At this time, the assembler also assigns a declaration
name number to the symbol ALPH but does not output the
number. The symbol and name number are retained in the
assembler's symbol table.

After a symbol has been declared an external definition it
may be used (in the subprogram in which it was declared) in
the same way as any other symbol. Thus, if ALPH is used as
a forward reference, as in the source statement

LI,3 ALPH

above, the assembler assigns a forward reference number to
ALPH, in addition to the declaration name number assigned
previously. (A symbol may be both a forward reference and
an external definition.)

On processing the source statement

ALPH A 1,4 X 'F2 1

the assembl er outputs the dec I arati on name number of the
label ALPH (and an expression for its value) and also outputs
the machine-language code for AI,4 and the constant X'F21.

OBJECT LANGUAGE fORMAT

An object language program generated by a processor is out­
put as a string of bytes representing "Ioad items". A load
item consists of an item type code followed by the spec ific
load information pertaining to that item. (The detailed format
of each type of load item is given later in this appendix.)
The individual load items require varying numbers of bytes

198 Appendix F

I
for their representation, depending on the type and specific
content of each item. A group of 10.a byte4 or fewer, com­
prises a logical record. A load it;;;; may be continued from
one logical record to the next.

The ordered set of logical records that a processor generates
for a program or subprogram is termed an "object module".
The end of an object module is indicated by a module-end
type code followed by the error severity level assigned to
the module by the processor.

RECORD CONTROL INFORMATION

Each record of an object module consists of 4 bytes of con­
trol information followed by a maximum of 10.4 bytes of load
information. That is, each record, with the possible excep­
tion of the end record, normally consists of 10.8 bytes of
information (i. e., 72 card col umns).

The four bytes of contro I i nformati on for each record have
the form and sequence shown below.

Byte 0.

Record Tt~e Mode Format

01 1 1 0.

0. 2 3 4 5 6 7

Byte 1

Sequence Number

0. 7

Byte 2

Checksum

0. 7

Byte 3

Record Size

a 7
Record Type specifies whether this record is the last

record of the modu Ie:

0.00 means last
001 means not last

Mode specifies that the loader is to read binary infor-
mation. This code is olways 11.

Format specifies object language format. This code is
always lao..

Sequence Number is a for the first record of the module'
and is incremented by 1 for each record thereafter,
until it recycles to 0. after reaching 255.

Checksum is the computed sum of the bytes comprising
the record. Carries out of the most significant bit
position of the sum are ignored.

Record Size is the number of bytes (including the record
control bytes) comprising the logical record (5 :5 record

si ze ' 10m. The record si ze will normal I y be 108 bytes
for all recorcts except the last one, which maybe fewer.
Any excess bytes in a physical record are ignored.

LOAD ITEMS

Each load item be9ins with a control byte that indicates the
item type. In some inst.:Jnces, certain parameters are also
provided in the lood item control byte. In the following dis­
cussion, locid item:' 'JIf' categori zed according to their function:

1. Dec:larati(H1S ide1tify to the loader the external and
~ont;-~f-~';c-t-i on !abels that are to be defined in the
object module b(~ing loaded.

.~. Definitions defi'l? the value of forward references,
e;t;;r~~rd~f;nit;wsf the origin of the subprogram being
loaded, and the ',hrting add res'> (e. g., as provided in
a Symbol/Meta-~;>''Y1bol END directive).

J. Expression evaluation load items within a definition
pr~~-id;-the val Lies (such as constants, forward refer­
ences, etc.) ~hot are to be combined to form the final
value of the definition.

4. L_~adi~~ ite'r< ;(',' specified information to be stored
i ntr) core mem,

Miscellaneous items comprise podding bytes and the
m~duie-::'end indicotor.

DECLARATIONS

In order for the looder to provide the linkage between subpro­
grams, the processor must generate for each external refer­
ence ordefinition a 10ad item, referred to as a "declaration",
containing the EBCDIC code representation of the symbol
and the information thot the symbol is either an external ref­
erence or 0 definition (thus, the loader will have access to
the actual symbolic name).

Forward references are always internal references within an
object module. (External references are never considered
forward references.) The processor does not generate a dec-
1aration for a forward reference as it does for externals; how­
ever, it does assign name numbers to the symbols referenced.

Declaration name numbers (for control sections and external
labels) and forward reference name numbers apply only within
the object module in which they are assigned. They have no
significance in establ ishing interprogram I inkages, since
external references and definitions are correlated by match­
ing symbol ic names. Hence, name numbers used in any
expressions in a given object module always refer to symbols
that have been declared within that module.

The processor must generate a dec laration for each symbo I
that identifies a program section. Each object module pro­
duced by an assembler is considered to consist of at least
one control section. If no section is expl ic itly identified
in the source program, the assembler assumes it to be a
standard control section (discussed below). The standard
control section is always assigned a declaration name

number of O. All other control sections (i. e., produced by
a processor capable of declaring other control sections) are
assigned declaration nal1'1e numbers (I, :", 3, etc.) in the
order of their appearance in the source program.

In the load items discussed below, the access code, pp, des­
ignates the memory protection class that is to be associated
with the control section. The meaning of this code is given
below.

pp Memory Protection Feature t

00 Read, write, or access instructions from.

01 Read or access instructions from.

10 Read only.

11 No access.

Control sections are always allocated on a doubleword
boundary. The size specification designates the number of
bytes to be allocated for the section.

Declare Standard Control Section

Byte 0

I 0 0
Contro~ byte -o--j a o I

0 2 3 4 5 6 7

Byte 1

Access code
p p
r-~~ ____ +-__ . ________ t ___ S_i_ze_~~thr~~)

o 0

0 1 2 3 5 6 7

Byte 2

r-____ . ______ S_i_z_e-'(~b_it_s _5_t_h_ro~~_. ____ _ I
0 7

Byte 3

I Size (bits 13 through20)

0 7

This item declares the standard control section for the object
module. There may be no more than one standard control
section in each object module. The origin of the standard
control section is effectively defined when the first reference
to the standard control section occurs, although the declara­
tion item might not occur until much later in the object
module.

tllRead" means a program can obtain information from the
protected area; "write" means a program can store informa­
tion into a protected area; and, "access" means the compu­
ter can execute instructions stored in the protected area.

Appendix F 199

This capability is required by one-pass processors, since
the size of a section cannot be determined until all of
the load information for tl,at section has been generated by

the processor.

Declare Nonstandard Control Sedion

Byte 0

fi- 0
____ ~~!:l.trol b~te

01 0 0 1 0

0 2 3 4 5 6 7

Byte

p o 0

0 2 3 4 7

Byte 2

[u --------------. -_ ... -----.----------------------
S;ze (b;ts 5 through 12)--/

0 7

Byte 3

E--
0 7

This item declares a control section other than standard con­
trol section (see above).

Declare Page Boundary Control Section

Byte a

fi- Contro I Byte
a ° 1 1 °

0 2 3 4 5 6 7

Byte

~ss c;~ 0~-__ ~o--+----S-i-ze~(b-i-ts--1-th-r-ou~g~h-4~)~

° 1 2 3 4 5 6 7

Byte 2

f--- Size (bits 5 through 12)

o 7

Byte 3 F--------__ S_i_z_e_(_b ·_1 t_s __ 1_3_t_hr_o_u..;:;.gh_2_0.;....) ------i

o 7

This item declares a nonstandard control section beginning
on a memory page boundary.

200 Append i x F

Declare Dumm~ Section

Byte 0

10
Control blte

11 0 ° 0 1 0 0

0 2 3 4 5 6 7

Byte

-j
o 7

Byte 2

o 7

Byte 3

o 1 234 7

Byte 4

E- Size (bits 5 through 12)

° 7

Byte 5

Size (bits 13 through 20)

o 7

This item comprises a declaration for a dummy control sec­
tion. It results in the allocation of the specified dummy
section, if that section has not been allocated previously
by another object module. The label that is to be associ­
ated with the fi rst location of the allocated section must be
a previously declared external definition name. (Even
though the source program may not be required to explicitly
designate the label as an external definition, the processor
must generate an external definition name declaration for
that label prior to generating this load item.)

Declare External Definition Name

Byte °
10

Control byte

° ° ° ° 0

° 2 3 4 5 6 7

Byte 1

I Name length, in bytes (K)

° 7

tlf the module has fewer than 256 previously assigned name
numbers, this byte is absent.

8 -Ie 2

[-
0 7

Byte K+1

- - --------- ---l Lost byte of name J
o 7

This item declares a label (in EBCDIC code) that is an exter­
n>.]1 definition within the current object module. The name
n,oy not exceed 63 bytes in length.

[;eclare Primary External Reference Nome

Byte 0

L-------- ____ . ___ c;.~ntrol_bl'.~ __

In 0 0 0 0
1----0-~

. J 2 3 4 5 6 7

I Nam(:' ength (K), in bytes -1
~------ --- - -_.-- ------------------- -.-----

t _
o 7

Byte 2 t------- !_i~~!_-_~_~_te_o_f_n_a_m_e_-_-_______ ~
o 7

;3yte K + 1

o 7

This item declares a symbol (in EBCDIC code) that is a pri­
mary external reference within the current object module.
The name may not exceed 63 bytes in length.

A primary external reference is capable of causing the loader
to search the system I ibrary for a corresponding external
definition. If a corresponding external definition is not
found in another load module of the program or in the system
library, a load error message is output and the job is errored.

Declare Secondary External Reference Nome

Byte 0

~ Control b~te ~ 0 0 0 0

0 2 3 4 5 6 7

Byte

E Nome length, in bytes (K)

0 7

Byte 2

[Firs_t byte of nome ==j
-.. -----_._-----------

0 7

Byte K +1

F Last byte of nam~ ______________ j
0 7

This item declares a symbol (in EBCDIC code) that is a sec­
ondary external reference within the current object module.
The nome may not exceed 63 bytes in length.

A secondary external reference is not capable of causing the
loader to search the system library for a corresponding exter­
nal definition. If a corresponding external definition is not
found in another load module of the program, the job is not
errored and no error or abnormal message is output,

Secondary external references often appear in I ibrary routines
that contain optional or al ternative subroutines, some of which
may not be required by the user's prograrr .. By the use of pri­
mary external references in the user's progrom, the user can
spec ify that only those subroutines that are actuall y requ ired by
the current jobare tobe loaded. Althoughsecondaryexternal
references donot cause loading from:he library, theydocause
I inkages to b~ made between routines that are loaded.

DEFINITIONS
When a source language symbol is to be defined (i. e., equa­
ted with a value), the processor pro'Jides for such a value by
generating an object language expression to be evaluated by
the loader. Expressions are of variable length, and terminate
with an expression-end control byte (see "Expression Evalua­
tion" in this appendix). An expression is evaluated by the ad­
dition or subtraction of values specified by the expression.

Since the loader must derive vollies for the origin and start­
ing address of a program, these also require definition.

Origin

Byte 0

10
Control b~te

~ 0 0 0 a 0

0 2 3 4 5 6

This item sets the loader's load-location counter to the
value designated by the expression immediately following
the origin control byte. This expression must not contain
any elements that cannot be evaluated by the loader (see
"Expression Evaluation" which follows),

Forward Reference Definition

Byt€. 0

~ Control b~te
0 0 0 1 0 0

0 2 3 4 5 6

7

oj
7

Appendix F 201

Byte 1

f
o

Byte 2

7

E---- _~~on~~te yf reference number ------t

o 7

This item defines the value :,expression) for a forward refer­
ence. The referenced expression is the one immediately
following byte 2 of this load item, and must not contain
any elements that cannot be evaluated by the loader (see
"Expression Evaluation" which follows).

Forward Reference Definition and Hold

Byte 0

o
Byte

2 3 4 5 6 7

l_m ______ n_Li"t byte of referen_c_e_. n_u_m_b_e_r _____ =j
o 7

Byte 2

~ ______ S_e_c_o_n_d_b~y~t_e_o_f ___ re_f_e_re_n_c_e __ n_u_m_b_e_r __________ ;

o 7

This item defines the valuE' (expression) for a forward refer­
ence and notifies the loader that this val ue is to be retained
in the loader's symbol table until the module end is encoun­
tered. The referenced expression is the one immediately
following the name number. It may contain values that have
not been defined previously, but all such values must be
available to the loader prior to the module end.

After generating this load item, the processor need not retain
the value for the forward reference, since that responsibility
is then assumed by the loader. However, the processor must
retain the symbol ic name and forward reference number
assigned to the forward reference (until modure end).

External Definition

Byte 0

~ Control b~te

01 0 0 0 1 0

0 2 3 4 5 6 7

Byte 1

~ ___ Jirst_?yte of nam_e number

0 7

2('2 Appendi x F

Byte 2

f
Second byte of name numbert

--------t

o 7

This item defines the val ue (expression) for an external
definition name. The name number refers to a previousl y
declared definition name. The referenced expression is
the one immediatel y following the name number.

Define Start

Byte 0

10
Control blte

11 0 0 0 1 0

0 2 3 4 5 6 7

This item defines the starting address (expression) to be used
at the completion of loading. The referenced expression is
the one immediately following the control byte.

EXPRESSION EVALUATION

A processor must generate an object language expression
whenever it needs to communicate to the loader one of
the following:

1. A program load origin.

2. A program starting address.

3. An external definition value.

4. A forward reference value.

5. A field definition val ue.

Such expre~dons may include sums and differences of con­
stants, addresses, and external or forward reference values
that, when defined, will themselvesbe constants or addresses.

After initiation of the expression mode, by the use of a con­
trol byte designating one of the five items described above,
the value of an expression is expressed as follows:

1. An address value is represented by an offset from the
control section base plus the value of the control sec­
tion base.

tif the module has fewer than 256 previously assigned name
numbers, this byte is absent.

2. The value of a constant is added to the accumulated
sum by generating an Add Constant (see below) control
byte followed by the value, right-justified in four
bytes.

The offset from the control section base is given as a
constant representing the number of units of displace­
ment from the control section base, at the resolution
of the address of the item. That is, a word address
would have its. constant portion expressed as a count
of the number of words offset from the base, whi Ie the
constant portion of a byte address would be expressed
as the number of bytes offset from the base.

The control section base value is accumulated by means
of an Add Value of Declaration (see below}or Subtract
Value of Declaration load item specifying the desired
resolution and the declaration number of the control
section base. The loader adjusts the base value to the
specified address resolution before adding it to the cur­
rent partial sum for the expression.

In the case of an absolute address, an Add Absolute
Section (see below) or Subtract Absolute Section con­
trol byte must be included in the expression to identify
the value as an address and to specify its resolution.

3. An external definition of forward reference value is
included in an expression by means of a load item add­
ing or subtracting the appropriate declaration or for­
ward reference value. If the value is an address,
the resolution specified in the control byte is used to
align the value before adding it to the current partial
sum for the expression. If the value is a constant, no
alignment is necessary.

Expressions are not evaluated by the loader unti I all re­
quired values are available. In evaluating an expression,
the loader maintains a count of the number of values added
or subtracted at each of the four possible resolutions. A
separate counter is used for each resolution, and each
counter is incremented or decremented by 1 whenever a
value of the corresponding resolution is added to or sub­
tracted from the loader's expression accumulator. The final
accumulated sum is a constant, rather than an address
value, if the final count in all four counters is equal to O.
If the final count in one (and only one) of the four counters
is equal to +1 or -1, the accumulated sum is a "simple ad­
ress II having the resolution of the nonzero counter. If
more than one of the four counters hava a nonzero final
count, the accumulated sum is termed a "mixed-resolution
expression II and is treated as a constant rather than an
address.

The resolution of a simple address may be altered by
means of a Change Expression Resolution (see below)
control byte. However, if the current partial sum is
either a constant or a mixed-resolution value when the

Change Expression Resolution control byte occurs, then
the expression resolution is unaffected.

Note that the expression for a program load origin or
starting address must resolve to a simple address, and the
single nonzero resolution counter must have a final count
of +1 when such expressions are evaluated.

In converting a byte address to a word address, the two least
significant bits of the address are truncated. Thus, if the
resulting word address is later changed back to byte resolu­
tion, the referenced byte location will then be the first byte
(byte 0) of the word.

After an expression has been evaluated, its final value is
associated with the appropriate load item.

In the following diagrams of load item formats, RR refers to
the address resolution code. The meaning of this code is
given in the table below.

RR Address Resolution

00 Byte

01 Halfword

10 Word

11 Doubleword

The load item discussed in this appendix, "Expression
Eva luation ", may appear on Iy in expressions.

Add Constant

Byte 0

10 0 0
Control byte

o 0 o o
0 2 3 4 5 6 7

Byte 1

I
First byte of constant

0 7

Byte 2

Second byte of constant

o 7

Appendix F 203

Byte 3

Third byte of constant

o 7

Byte 4

Fourth byte of constant

o 7

This item causes the specified four-byte cons tan tto be added
to the loader's expression accumulator. Negative constants
are represented in two's complement form.

Add Absolute Section

Byte 0

\0
Control byte

1 0 o R

o 2 3 4 5 6 7

This item identifies the associated value (expression) as a
positive absolute address. The address resolution code, RR,
designates the desired resolution.

Subtract Absol ute Section

Byte 0

Control byte
o 1 1 o R

o 2 3 4 5 6

This item identifies the associated value (expression) as a
negative absol ute address. The address resol uti on code,
RR, designates the desired resolution.

Add Value of Declaration

Byte 0

10 0

0

Byte 1

o

Byte 2

o

Control blte
0 0 0

2 3 4 5

First byte of name number

f Second byte of name number

R

6

7

R I
7

7

7

tlf the module has fewer than 256 previously assigned name
numbers, this byte is absent.

204 Appendix F

This item causes the value ofthe specified declaration tobe
added to the loader's expressi on accumulator. The address
resolution code, RR, designates the desired resolution, and
the name number refers to a previously declared definition
name that is to be associated with the first location of the
allocated section.

One such item must appear in each expression for a reloca­
table address occurring within a control section, adding the
val ue of the specified control section declaration (i. e.,
adding the byte address of the first location of the control
section).

Add Value of Forward Reference

Byte 0

10
Control byte

0 0 0 R

0 2 3 4 5 6 7

Byte

First byte of forward reference number

o 7

Byte 2

Second byte of forward reference number

o 7

This item causes the value of the specified forward reference
to be added to the loader's expression accumulator. The
address resolution code, RR, designates the desired resolu­
tion, and the designated forward reference must not have
been defined previously.

Subtract Value of Declarotion

Byte 0

o

Byte 1

o
Byte 2

o
Control byte

o 1 o
2 3 4 5

First byte of name number

Second byte of name numbert

R

6 7

7

This item causes the value of the specified declaration to
be subtracted from the loader's expression accumulator.
The address resolution code, RR, designates the desired
resolution, and the name number refers to a previously de­
clared definition name that is to be associated with the
first location 'of the allocated section.

Subtract Value of Forward Reference

Byte 0

______ C-=-::.o-'-'-n tr~I._b:-<y,-t_e _________ -t1
o 0 1 R R

o
Byte 1

o
Byte 2

2 3 4 5

___ S_e_c~nd byte of fO~~5Hd reference number

o

6 7

7

7

This item causes the value of the specified forward reference
to be subtracted from the loader's expression accumulator.
The address resolution code, RR, designates the desired reso­
I ution, and the designated forward reference must not have
heen defined previously-

Change Expression Resol ution

Byte 0

~- -----.-- C _o~ !!oJ~1: te

R I 0 1 0 0 R

0 2 3 4 5 6 7

This item causes the address resol ution in the expression to
be changed to that designated by RR.

Expression End

Byte 0

10
_________ ~~>nt.!:.?~

01 0 0 0 0 0

a 2 3 4 5 6 7

This item identifies the end of an expression (the value of
which is contained in the loader's expression accumulator).

FORMATION OF INTERNAL SYMBOL TABLES
The three ob ject code control bytes described below are re­
quired to supply the information necessary in the formation
of Internal Symbol Tables.

In the following diagrams of load item formats, Type refers
to the symbol types suppl ied by the object language and
maintained in the symbol table. IR refers to the internal
resolution code. Type and resolution are meaningful only
when the value of a symbol is an address. In this case, it
is highly likely that the processor knows th'e type of value
that is in the associated memory location, and the type field
identifies it. The resolution field indicates the resolution
of the location counter at the time the symbol was defined.
The following tables summarize the combinations of value
and meaning.

Symbol Types

Type Meaning of 5-Bit Code

00000 Instruction
00001 Integer
00010 Short floating point
00011 Long floati ng point
00110 Hexadec imal (also for pocked dec imal)
00111 EBCDIC text (also for unpacked decimal)
01001 Integer array
01010 Short floati ng-poi nt array
01011 Long floating-complex array
01000 Logical array
10000 Undefined symbol

Internal Resol ution

IR Address Resolution

000 Byte
001 Halfword
010 Word
all Doub1eword
100 Constant

Type Information for Externa I Symbol

Byte 0

10
Control byte

11 0 0 1 a a a
0 2 3 4 5 6 7

Byte 1

~ T~pe field IR field

a 4 5 7

Byte 2

Nome number

a 7

Byte 3 (if required)

Name number (continued)

a 7

This item provides type information for external symbols.
The Type and IR fields are defined above. The name
number fi eld consists of one or two bytes (depending on the
current declaration count) which specifies the declaration
number of the external definition.

Type and EBCD IC for Internal Symbol

Control byte

o 1 a o
o 2 3 4 5 6 7

Appendix F 205

Byte I

~ Type field IR field
C~-----L----1

a
Byte 2

4 5 7

t== _______ L_e_n~gt_h __ o_f_n_a_m_e~(E_B_C_D __ IC __ c_h __ a_ra_c_t_e_rs~) ________ ~

o 7
Byte 3

E First byte of name in EBCDIC

a 7
Byte n

Last byte of name in EBCDIC

a 7
I, ...

Expression defining value of internal s mbal

a 7

Th is item suppl i es type and EBCD IC.for an internal symbol. The
lood items for Type and I R are as abave. Length of name spec i -
fies the length of the EBCDIC name in characters. The name, in
EBCD JC, is speci fi ed in the required number of bytes, foil owed
by the expression defining the internal symbol.

EBCD IC for on Undefined Symbol

Byte a

10
Control byte

a a a a
a 2 3 4 5 6 7
Byte

F Length of name (E BCD IC characters)

a 7
Byte 2

First byte of name in EBCDlC

a 7
Byte n

Lost byte of name in EBCD IC

o 7

Byte n . I, n .. 2

Tw~bytes of symbol associated forward reference number

o 7

Th is item is used to assoc i ate a s ymbal wi th a forward reference.
The I ength of name and name in fBeD IC are the some as in the
above i te~l. The last two bytes spec; fy the forward reference
number with which the above symbol is to be associated.

206 Appendix F

LOADING
Load Absol ute

Byte a

NI 10
Control byte

a a N N N

a 2 3 4 5 6 7

Byte

~ F~_~J>yt~!o bei~~d_~_d_.]
a 7

Byte NNNN

~
Last byte to be loaded

a 7

This item causes the next NN NN bytes to be loaded abso­
lutely (NNNN is expressed in natural binary form, except
that 0000 is interpreted as 16 rather than 0). The load loca­
tion counter is advanced appropriatel y.

Load Relocatable (Long Form)

Byte a

E--l- Control byte
1 Q C R a

a 2 3 4 5 6 7

Byte 1

First byte of name number ________ ---t

a 7

Byte 2

I ~--____ -__ -5e-c~o-n-d--bLy-te-?fname num~er_t ____________ ,

a 7

This item causes a four-byte word (immediately following this

load item) to be loaded, and relocates the address field
according to the address resolution code, RR. Control bit
C designates whether relocation is to be relative to a for­
ward reference (C = 1) or relative to a declaratian (C = 0).
Control bit Q designates whether a I-byte (Q = I) or a
2-byte (Q = 0) name number follows the control byte of
this load item.

tlf the module has fewer than 256 previously assigned name
numbers, this byte is absent.

If relocation is to be relative to a forward reference, the
forward reference must not have been defined previously.
When this load item is encountered by the loader, the load
location counter can be aligned with a word boundary by
loading the appropriate number of bytes containing all
zeros (e.g., by means of a load absolute item).

Load Relocatable (Short Form)

Byte 0

Control byte
c D D D D D

o 2 3 4 5 6 7

This item causes a four-byte word (immediately following
this load item) to be loaded, and relocates the address field
(word resolution). Control bitC designates whether reloca­
tion is to be relative to a forward reference (C = 1) or rela­
tive to a declaration (C= 0). The binary number DDDDDD
is the forward reference number or declaration number by
which relocation is to be accomplished.

If relocation is to be relative to a forward reference, the
forward reference must not have been defined previously.
When this load item is encountered by the loader, the load
location counter must be on a word boundary (see "Load
Relocatable (Long Form)", above).

Repeat Load

Byte 0

o
Byte 1

o
Byte 2

o

o
Control byte

o o 1

2 3 4 5 6 7

First byte of repeat count

7

Second byte of repeat count

7

This item causes the loader to repeat (i. e., perform) the
subsequent load item a specified number of times. The
repeat count must" be greater than 0, and the load item to
be repeated must follow the repeat load item immediately.

Define Field

Byte 0

Control byte
o o o 0

o 2 3 4 5 6 7

Byte f

Field location constant, in bits (K)

o 7
Byte 2

Field length, in bits (L)

o 7

This item defines a value (expression) to be added to a field
in previously loaded information. The field is of length L
(1 ~ L ~ 255) and terminates in bit position T, where:

T = current load bit position -256 +K.

The field location constant, K, may have any value from
1 to 255. The expression to be 'added to the specified
field is the one immediately following byte 2 of this load
item.

MISCELLANEOUS LOAD ITEMS

Padding

Byte 0

10
Control blte

01 0 0 0 0 0 .0

0 2 3 4 5 6 7

Padding bytes are ignored by the loader. The object lan­
guage allows padding as a convenience for processors.

Module End

Byte 0

10
Control blte

0 0 0 1

0 2 3 4 5 6

Byte 1

10
Severitl level

0 0 0 E E E

0 2 3 4 5 6

This item identifies the end of the object module. The
value EEEE is the error severity level assigned to the
module by the processor.

OBJECT MODULE EXAMPLE

01
7

E 1
7

The following example shows the correspondence between
the statements of a Meta-Symbol source program and the
string of object bytes output for that program by the assem­
bler. The program, listed below, has no significance other
than illu.itrating typical object code sequences.

Appendi x F 207

Example

DEF AA,BB,CC CC IS UNDEFINED BUT CAUSES NO
ERROR

2 REF RZ, RTN EXTERNAL REFERENCES DECLARED

3 00000 ALPHA CSECT DEFINE CONTROL SECTION ALPHA

4 00OC8 ORG 200 DEFINE ORGIN

5 00OC8 22000000 N AA LI, CNT 0 DEFINES EXTERNAL AAj CNT IS A
FWD REF

6 00OC9 32000000 N LW,R RZ {R IS A FORWARD REFERENCE;

7 * RZ IS AN EXTERNAL REFERENCE, AS

8 * DECLARED IN LINE 2

9 OOOCA 50000000 N RPT AH, R KON { DEFINES RPT; RAND KON ARE

10 * FORWARD REFERENCES

11 OOOCB 69200000 F BCS,2 BB { SS IS AN EXTERNAL DEFINITION

12 * USED AS A FORWARD REFERENCE

13 OOOCC 20000001 N AI,CNT CNT IS A FORWARD REFERENCE

14 OOOCD 680000CA B RPT RPT IS A BACKWARD REFERENCE

15 OOOCE 68000000 X B RTN RTN IS AN EXTERNAL REFERENCE

16 OOOCF 0001 A KON DATA, 2 DEFINES KON

17 00000003 R EQU 3 DEFINES R

18 00000004 CNT EQU 4 DEFINES CNT

19 OOODO 224FFFFF A BB LI, CNT -1 { DEFINES EXTERNAL SS THAT HAS

20 * ALSO BEEN USED AS A FORWARD

21 * REFERENCE

22 00OC8 END AA EN D OF PROGRAM

CONTROL BYTES {In Binary}

Begin Record Record number: 0

00111100 }
00000000

Record type: not last, Mode binary, Format: object language.
Sequence number 0 } Record control

information not
Part of load item 01100011

01101100
Checksum: 99
Record size: 108

0302C lC 1 (hexadecimal code comprising the load item)
00000011 Declare external definition name {2 bytes} Name:AA

0302C2C2
00000011 Declare external definition name (2 bytes) Name: BB

0302C3C3
00000011 Declare external definition name (2 bytes) Name:CC

0502D9E9
00000101 Declare primary reference name (2 bytes) Name RZ

0503D9E3D5
00000101 Declare primary reference name (3 bytes) Name: RTN

208 Appendix F

Declaration number: 1

Declaration number: 2
Source li ne 1

Declaration number: 3

Declaration number: 4

Decl oration number: 5

} Source Line 2

Begin Record Record number: 0

00001010

00000001
00100000

00000010

00000100 }
00000001
00100000

00000010

01000100

00000111

00100110

00000010

10000100

00000111

00100110

00000010

11001100

00000111

00100110

00000010

OA010l00000320200002
Define external definition
Number 1
Add constant: 800 X'320'
Add value of declaration {byte resolution}
Number 0
Expression end

040~OOO003202oooo2

Origin
Add constant: 800 X'320'
Add value of declaration {byte resolution}
Number 0
Expression end

4422000000
Load absolute the following 4 bytes: X'22000000'

07EB0426000002
Define field
Field location constant: 235 bits
Field length: 4 bits
Add the following expression to the abov.e field:
Add value of forward reference {word resolution}
Number 0
Express i on end

8432000000
Load relocatable (short form). Relocate address field {word resolution}
Relative to declaration number 4
The following 4 bytes: X'32000000'

07EB0426ooo602
Define field
Field location constant: 235 bits.
Field length: 4 bits
Add the following expression to the above field:
Add value of forward reference {word resolution}
Number 6
Expression end

CC5000OO00
Load relocatable {short form}. Relocate address field {word resolution}
Relative to forward reference number 12
The following 4 bytes: Xi 50000000'

07EB0426000602
Define field
Field location constant: 235 bits
Field length: 4 bits
Add the following expression to the above field:
Add value of forward reference {word resolution}
Number 6
Express i on end

Source Li ne 5
t

} Source Li ne 4

Source Line 5

Source Li ne 6

Source Line 9

t No object code is generated for source lines 3 {define control section} or 4 {defi~e origin} at the time they are encountered.
The control section is declared at the end of the program after Symbol has determined the number of bytes the program requires.
The origin definition is generated prior to the first instruction.

Append ix F 209

Begin Record Record number: 0

11010010

01000100

00000111

00100110

00000010

10000000

10000101

00001000

0269200000
Load relocatable (short form). Relocate address field (word resolution)
Relative to forward reference number 18
The following 4 bytes: XI 69200000 I

4420000001
Load absolute the following 4 bytes: XI 2000000 1 I

07EB0426000002
Define field
Field location constant: 235 bits
Field length: 4 bits
Add the following expression to the above field:
Add value of forward reference (word resolution)
Number 0
Express i on end

80680oo0CA
Load relocatable {short form}. Relocate address field (word resolution)
Relative to declaration number 0
The folfowing 4 bytes: X'680000CA'

8568000000
Load relocatable (short form). Relocate address field (word resolution)
Relative to declaration number 5
The following 4 bytes: X'68000000 '

08
Define forward reference (conti nued in record 1)

Begin Record Record number: 1

00011100
00000001
1110 1100
01010001

00000001
00100000

00000010

01000010

00001000

00000001
00000010

00001000

00000001
00000010

Record type: last, Mode: binary, Format: object language.
Sequence number 1
Checksum: 236
Record size: 81

oooeo l0000033C200002 (continued from record 0)
Number 12
Add constant: 828 X'33C '
Add value of declaration (byte resolution)
Number 0 .
Expression end

42001
Load absolute the following 2 bytes: XI 000 11

080006010000000302
Define forward reference
Number 6
Add constant: 3 X'3

1

Express i on end

080000010000000402
Oefi ne forward reference
Number 0
Add constant: 4 X'4

1

Expression end

210 Appendix F

}

}
}

}

}
}

Source Line 11

Source Line 13

Source Li ne 14

Source li ne 15

Source line 16

Record Control
Information

Source line 16

Source line 17

Source line 18

~gin Record Record number: 1

00001111

01000001

00001000

00000001

00000010

00001010

00000001
00100000

00000010

01000100

00001101
00000001
00100000

00000010

00001011

00001110

OF00024100
Repeat load
Repeat count. 2
Load absolute the following 1 bytes: X'OO'

0800120100000340200002
Defi ne forward reference
Number 18
Add' constallt: 832 X'340'
Add vtllue of declaration (byte resolution)
Number 0
Expression end

OA020 100000340200002
Define external definition
Number 2
Add constant: 832 X'340'
Add value of declaration (byte resolution)
Number 0
Expression end

44224FFFH
Load absolute the following 4 bytes: X'224FFFFF'

OD010oo003202ooo02
Define start
Add constant: 800 X'320'
Add value uf declaration (byte resolution)
Number a
Expres!lion end

08000344
Declare standard control section declaration number: 0
Acces!\ code: Full access. Size 836 X'344'

OEOO
Module end

Severity level: X'O'

A table summarizing control byte codes for object language load items is given below.

Object Code Control Byte Type of Load Item

0 0 0 0 0 0 0 0 Padding

0 0 0 0 0 0 0 1 Add constant

0 0 0 0 0 0 1 0 Expression end

0 0 0 0 0 0 1 1 Dec lore external definition name

0 0 0 0 0 1 0 0 Origin

0 0 0 0 0 1 0 1 Dec lore primary reference name

0 0 0 0 0 1 1 0 Dec lore secondary reference name

0 0 0 0 0 1 1 1 Define field

0 0 0 a 1 0 0 0 Defi ne forward reference

0 0 0 0 1 0 0 1 Declare dummy section

0 0 0 0 1 0 1 0 Define external definition

} Advance to Word
Boundary

Source Li ne 19

Source Li ne 22

Appendix F 211

Object Code Control Byte Type of Load Item

0 0 0 0 1 0 1 1 Declare standard control section

0 0 0 0 1 1 0 0 Dec lore nonstandard control section

0 0 0 0 1 1 0 1 Defi ne start

0 0 0 0 1 1 1 0 Module end

0 0 0 0 1 1 1 1 Repeat load

0 0 0 1 0 0 0 0 Defi ne forward reference and hold

0 0 0 1 0 0 0 1 Provide type information for external symbol

0 0 0 1 0 0 1 0 Provide type and EBCDIC for internal symbol

0 0 0 1 0 0 1 1 EBCDIC and forward reference number for undefined symbol

0 0 0 1 1 1 1 0 Declare page boundary control section

0 0 1 0 0 0 R R Add value of declaration

0 0 1 0 0 1 R R Add va I ue of forward reference

0 0 1 0 1 0 R R Subtract value of declaration

0 0 1 0 1 1 R R Subtract value of forward reference

0 0 1 1 0 0 R R Change expression resolution

0 0 1 1 0 1 R R Add absolute section

0 0 1 1 1 0 'R R Subtract absolute section

0 1 0 0 N N N N Load absolute

0 1 0 1 Q C R R Load relocatable (long form)

1 C D D D D 0 D Load relocatable (short form)

212 Appendix F

I

I

I

i

I

APPENDIX G. XEROX STANDARD COM'RESSED LANGUAGE

The Xerox standard compressed language is used to represent-­
~urce EBCDIC information in a hi~hly compressed form.

Meta-Symbol (along with several of the utility programs)
accepts this form as input or output, wi II accept updates to
the compressed input and wi II regenerate source whenre­
quested. No information is destroyed in the compression or
decompressi on.

Records may not exceed 108 bytes in length. Compressed
records are punched in the binary mode when represented
on card media. Therefore, on cards, columns 73 through
80 are not used and are available for comment or identifi­
cation information.

The fi rst four bytes of each record are for check i ng purposes.
They are as follows:

Byte 1 Identi ficati on (OOL 11 000) L = 1 for each record
except the last record, in which case L =0.

Item Function

0 Ignore
1 Not currently assigned
2 End of line
3 End of file
4 Use 8-bit character that followst

5 Use n + 1 blanks (next 6-bit item is n)
6 Use n+ 65 blanks (next 6-bit item is n)
7 Blank
8 0
9 1

10 2
11 3
12 4
13 5
14 6
15 7
16 8
17 9
18 A
19 B
20 C
21 D
22 E
23 F
24 G
25 H
26 I
27 J
28 K
29 L
30 M
31 N

I

Byte 2 Sequence number (0 to 255 and recycles).

Byte 3 Checksum which is the least significant 8 bits
of the sum of all bytes in the record except
the checksum byte itself. Carries out of the
most significant bit are ignored. If the
checksum byte is all 1'5, do not checksum
the record.

Byte 4 Number of bytes comprising record including
the checking bytes (~108)

The rest of the record consists of a string of 6-bit and 8-bit
items. Any partial item at the end of a record is ignored.

The following six-bit items (decimal number assigned) com­
I prise the string control:

Item Function

32 0
33 P
34 Q

35 R
36 S
37 T
38 U
39 V
40 W
41 X
42 y
43 Z
44 .
45 <
46 (
47 +
48 I
49 &
50 $
51 *
52)
53 ;
54 ...,
55 -
56 /
57 ,
58 %
59 ~

60 >
61 :
62

,
63 =

tEight-bit characters are in un compressed EBCDIC format (e. g., I@#?).

APPENDIX H. XEROX STANDARD SYMBOLS, CODES AND CORRESPONDENCES

XEROX STANDARD SYMBOLS AND CODES
The symbols listed here include two types: graphic symbols
and control characters. Graphic symbols are displayable
and printable; control characters are not. Hybrids are SP
(the symbol for a blank space), and DEL (the delete code)
which is not considered a control command.

Two types of code are also shown: (1) the 8-bit Xerox Stan­
dard Computer Code, i. e., the Xerox Extended Binary­
Coded-Interchange Code (EBCDIC); and (2) the 7-bit Amer­
ican National Standard Code for information Interchange
(ANSCII), i.e., the Xerox Standard Communication Code.

XEROX STANDARD CHARACTER SETS
1. EBCDIC

57-character set: uppercase letters, numerals, space,
and & - / • < > () + I $ * . : ;
% # @ I =

63-character set: same as above plus ~ ?
II ...,

89-character set: same as 63-character set plus lower­
case letters

214 Appendix Ii .,

2. ANSCII

64-character set: uppercase letters, numerals, space,
and I .. $ % & () * +, • / \

: = < > ? @ _ [] A # I ...,

95-character set: same as above plus lowercase letters
and { } : -- \

CONTROL CODES
In addition to the standard character sets listed above, the
Xerox symbol repertoire includes 37 control codes and the
hybrid code DEL (hybrid code SP is considered part of all
character sets). These are listed in the table titled CP-V
Symbol-Code Correspondences.

SPECIAL CODE PROPERTIES
The following two properties of all Xerox standard codes
will be retained for future standard code extensions:

1. All control codes, and only the control codes, have
their two high-order bits equal to "00". DEL is not
considered a control code.

2. No two graphic EBCDIC codes have their se~en low­
order bits equa I.

Table H-l. CP-V 8-Bit Computer Codes (EBCDIC)

Hexadecimal o A B C o E F

Binary 0000 1010 1011 1100 1101 1110 1111

o 0000 NUL SP o

0001 SOH \ A J

2 0010 STX t B K 5 2

3 0011 ETX C l T 3

4 0100 EOT u o M U 4

5 0101 HT v E N V 5

6 0110 ACK w F o W 6

7 0111 BEL x G P X 7

8 1000 y H Q Y 8

9 1001 ENQ z R Z 9

A 1010 NAK

B 1011 VT

C 1100 FF

o 1101 CR

E 1110 SO

F 1111 51
A

The characters /'. \ { } [J are ANSCII characters that do not appear in any of the Xerox EBCDIC-based
character sets, though they are shown in the EBCDIC table.

2 The characters I. I -, appear in the Xerox 63- and 89-character EBCDIC sets but not in either of the Xerox
ANSCII-based sets. However, Xerox software translates the characters I. I -, into ANSCII characters as
follows:

EBCDIC

¢
I

ANSCII

\ (6-0)
~ (7-12) .

,.., (7-14)

3 The EBCDIC control codes in columns 0 and 1 and their binary representation are exactly the same as those
in the ANSCII table, except for two interchanges: IF/Nl with NAK, and HT with ENQ.

4 Characters enclosed in heavy lines are included only in the Xerox standard 63- and 89-character EBCDIC sets.

5 These characters are included only in the Xerox standard 89-character EBCDIC set.

8 The EBCDIC codes in column 3 are used by cac to perform special functions. The EBCDIC codes in
column 2 and positions AF and BC through BF are used byCaC for output only.

7 APl characters are assigned EBCDIC values that fall within the shaded area of the CP-V code set. These
assignments are for APl internal use and are only reflected in 2741-APl translation tables.

8 Placing a SY N code as the last position of a nontransparent message wi II prevent the transmission of the SYN
and the normal message appendage of the CR/lF pair. This allows a user to continue writing more than one
message on the same I ine without affecting the carrier position. The EBC DIC SYN code is translated to an
idle (Il) on output to 2741 terminals.

Appendix H 215

Table H-2. CP-V 7-Bit Communication Codes (ANSCII)

Most Significant Digits
Decimal

0 1 2 3 4 5 6 7 (rows) (col's.)-

1 Binary xOOO xOOl xOl0 xOll xl00 xl0l xll0 xll1

0 0000 NUL OLE SP 0 @ P ,
P

5
1 0001 SOH DCl I 1 A Q a q

2 0010 STX DC2 II 2 B R b r

3 0011 ETX DC3 # 3 C S c s

4 0100 EOT DC4 $ 4 0 T d t

5 0101 ENQ NAK % 5 E U e u
'" ..
CD 6 0110 ACK SYN & 6 F V f v 0
C 7 0111 BEL ETB

,
7 G W 0 g w

u
t;:
·c 8 1000 BS CAN (8 H X h x CD
Vi ..

9 1001 HT EM) 9 I Y i '" Y 0
G)

...J
IF

10 1010 SUB * J Z j Nl : z

11 1011 VT ESC + ; K
4 [5

k 1
12 1100 FF FS , < L \ I

I
I

13 1101 CR GS - = M
4] 5

m J 4

4_ 5 4
14 1101 SO RS > N n -

/
4

15 1111 SI US ? 0 - 0 DEL

2 i

Most significant bit, added for a-bit format, is either 0 or an even-parity bit for the remaining 7 bits.

2 Columns 0-1 are control codes.

3 Columns 2-5 correspond to the Xerox 64-character ANSell set.
Columns 2-7 correspond to the Xerox 95-character ANsell set.

4 On many current teletypes, the symbol

.- is t (5-14l
_ is - (5-15)
-- is ESe or ALTMODE control (7-14)
l is ESe or ALTMODE control (7-13)

and none of the symbols appearing in columns 6-.7 are provided. Except for the four symbol differences
noted above, therefore, such teletypes provide all the characters in the Xerox 64-character ANSell set.
(The Xerox 7015 Remote Keyboard Printer provides the 64-character ANsell set also, but prints A as 1\.

It also interprets the [] characters as I ---, .)
5 On the Xerox 7670 Remote Batch Terminal, the symbol

I is I (2-1)] is I (5-13)
[is I. (5-11) - is -, (5-14)

and none of the symbols appearing in columns 6-7 are provided. Except for the four symbol differences noted
above, therefore, this terminal provides all the characters in the Xerox 64-character ANSell set.

216 Appendix 'H

Table H-3. CP-V Symbol-Code Correspondences

EBCDICt
Hex. Dec. Symbol Card Code ANScntt Meaning Remarks

00 0 NUL 12-0-9-8-1 0-0 null 00 through 1 F are control codes.
01 1 SOH 12-9-1 0-1 start of header On 2741 terminals, SOH is PRE.
02 2 STX 12-9-2 0-2 start of text On 2741 terminals, STX Is BY.
03 3 ETX 12-9-3 0-3 end of text On 2741 terminals, ETX Is RES.
04 4 EOT 12-9-4 0-4 end of transmission
05 5 HT 12-9-5 0-9 horizontal tab 00, 06, 07, 09-0B, and OE-OF
06 6 ACK 12-9-6 0-6 acknowledge (positive) are idles for 2741 terminals.
07 7 BEL 12-9-7 0-7 bell
08 8 BS or EOM 12-9-8 0-8 backspace or end of message EOM is used only on Xerox Keyboard/
09 9 ENQ 12-9-8-1 0-5 enquiry Printen Models 7012, 7020, 8091,
OA 10 NAK 12-9-8-2 1-5 negative acknowledge and 8092.
OB 11 VT 12-9-8-3 0-11 vertical tab
OC 12 FF 12-9-8-4 0-12 form feed
00 13 CR 12-9-8-5 0-13 carriage return CR outputs CR and LF.
OE 14 SO 12-9-8-6 0-14 shift out
OF 15 51 12-9-8-7 0-15 shift in

10 16 OLE 12-11-9-8-1 1-0 data link escape
11 17 DCl 11-9-1 1-1 de vi ce control 1 On Teletype terminals, DCl is X-ON.
12 18 DC2 11-9-2 1-2 device control 2 On 2741 terminals, DC2 is PN.
13 19 DC3 11-9-3 1-3 device control 3 DC3 is RS on 27415 and X-OFF on
14 20 DC4 11-9-4 1-4 device control 4 Teletypes.
15 21 LF or NL 11-9-5 0-10 line feed or new line On 2741 terminals, DC4 is PF.
16 22 SYN 11-9-6 1-6 sync LF outputs CR and LF.
17 23 ETB 11-9-7 1-7 end of transmission block On 2741 terminals, ETB is EOB.
18 24 CAN 11-9-8 1-8 cancel
19 25 EM 11-9-8-1 1-9 end of medi um
lA 26 SUB 11-9-8-2 1-10 substitute Replaces characters with parity error.
IB 27 ESC 11-9-8-3 1-11 escape
lC 28 FS 11-9-8-4 1-12 fi Ie separator
10 29 GS 11-9-8-5 1-13 group separator 10, 11, 16, 18, 19, and IB-IE are
lE 30 RS 11-9-8-6 1-14 record separator idles for 2741 terminals.
IF 31 US 11-9-8-7 1-15 unit separator

20 32 LF only 11-0-9-8-1 1-5 line feed only 20 through 2F are used by COC for
21 33 FS 0-9-1 1-12 output only. These codes are
22 34 GS 0-9-2 1-13 duplicates of the label entries
23 35 RS 0-9-3 1-14 that caused activation. The
24 36 US 0-9-4 1-15 20-2F entries output a single code
25 37 EM 0-9-5 1-9 only and are not affected by any
26 38 / 0-9-6 2-15 special COC functional processing.
27 39 f 0-9-7 5-14
28 40 = 0-9-8 3-13
29 41 CR only 0-9-8-1 0-13 carriage return only
2A 42 EOT 0-9-8-2 0-4
2B 43 BS 0-9-8-3 0-8
2C 44 } 0-9-8-4 2-9
20 45 HT 0-9-8-5 0-9 tab code only
2E 46 LF only 0-9-8-6 1-5 line feed only
2F 47 SUB 0-9-8-7 1-10

30 48 ESC F 12-11-0-9-8:-1 end of file 30 through 3F cause COC to perform
31 49 CANCEL 9-1 delete all input and output special functions.
32 50 ESC X 9-2 delete input line
33 51 ESC P 9-3 toggle half-duplex paper tape made
34 52 ESC U 9-4 toggle restrict upper case
35 53 ESC (9-5 upper case shift
36 54 ESC) 9-6 lower case shift
37 55 ESC T 9-7 toggle tab simulation mode
38 56 ESC S 9-8 toggle space insertion mode
39 57 ESC E 9-8-1 toggle echo mode
3A 58 ESC C 9-8-2 toggle tab relative mode
3B 59 ESC LF 9-8-3 line continuation 3B toggles the backspace edit mode
3C 60 X-ON 9-8-4 start paper tape for 2741 terminals.
3D 61 X-OFF 9-8-5 stop paper tape
3E 62 ESC R 9-8-6 retype
3F 63 ESC CR 9-8-7 line continuation

tHexadecimal and decimal notation.

ttDecimal notation {column-row}.

Appendix H 217

Table H.;.3. CP-V Symbol-Code CorresPQndences (cont.)

E8CDICt
Hex. Dec. Symbol Card Code ANScntt Meaning Remarks

40 64 SP blank 2-0 blank
41 65 12-0-9-1 41, 43, 46, and 47 are unassigned.
42 66 l. 12-0-9-2 decode
43 67 12-0-9-3
44 68 L 12-0-9-4 minimum 42, 44, 45, 48, and 49 are APL
45 69 € 12-0-9-5 epsilon characters for 2741 APL use only.
46 70 12-0-9-6
47 71 12-0-9-7
48 72 6. 12-0-9-8 delta
49 73 I 12-8-1 index
4A 74 /. or' 12-8-2 6-0 cent or accent grave Accent grave used for left single
48 75 12-8-3 2-14 period quote. On Model 7670,' not
4C 76 < 12-8-4 3-12 less than avai lable, and /. = ANSCII 5-11.
40 77 (12-8-5 2-8 left parenthesis On 2741 APL, I- is c (subset).
4E 78 + 12-8-6 2-11 plus
4F 79 lor: 12-8-7 7-12 vertical bar or broken bar On Model 7670, : not available,

and I = ANSCII 2-1.

50 80 & 12 2-6 ampersand On 2741 APL, & is n (intersection).
51 81 12-11-9-1 51, 52, 54, 57, 58, and 59 are
52 82 12-11-9-2 unassi gned.
53 83 0 12-11-9-3 quad 53, 55, and 56 are APL characters
54 84 12-11-9-4 for 2741 APL use only.
55 85 T 12-11-9-5 encode
56 86 0 12-11-9-6 circular
57 87 12-11-9-7
58 88 12-11-9-8
59 89 11-8-1
5A 90 I 11-8-2 2-1 exclamation point On Model 7670, I is I . On 2741
58 91 $ 11-8-3 2-4 dollars APL, I is 0 (degree). On 2741
5C 92 * 11-8-4 2-10 asterisk APL, $ is U (union).
50 93) 11-8-5 2-9 right parenthesis
5E 94 ; 11-8-6 3-11 semicolon
5F 95 - or--, 11-8-7 7-14 tilde or logical not On Model 7670, -- is not available,

and-,= ANSCII 5-14.

60 96 - 11 2-13 minus, dash, hyphen
61 97 / 0-1 2-15 slash
62 98 r 11-0-9-2 maximum 62, 64, 66, and 67 are APL characters
63 99 11-0-9-3 for 2741 APL use only.
64 100 , 11-0-9-4 down arrow
65 101 11-0-9-5
66 102 CAl 11-0-9-6 omega 63, 65, 68, and 69 are unassigned.
67 103 ::) 11-0-9-7 superset
68 104 11-0-9-8
69 105 0-8-1
6A 106 " 12-11 5-14 circumflex On Model 7670" is •• On Model
68 107 , 0-8-3 2-12 comma 7015" is 1\ (caret). On 2741 APL,
6C 108 % 0-8-4 2-5 percent Aist. On 2741 APL, % is P.

60 109 - 0-8-5 5-15 underline Underline is sometimes called "break
6E 110 > 0-8-6 3-14 greater than character"; may be printed along
6F 111 ? 0-8-7 3-15 question mark bottom of character line.

70 112 1\ 12-11-0 APL 70-72, 74, 76, and 79 qre APL
71 113 .. 12-11-0-9-1 APL quote mark characters for 2741 APL use only.
72 114 - 12-H-O-9-2 overscore
73 115 12-11-0-9-3
74 116 S 12-11-0-9-4 less than or equal 73, 75, 77, and 78 are unassigned.
75 117 12-11-0-9-5
76 118 ~ 12-11-0-9-6 greater than or equal
77 119 12-11-0-9-7
78 120 12-11-0-9-8
79 121 V 8-1 down delta
7A 122 ; 8-2 3-10 colon
78 123 8-3 2-3 number
7C 124 @ 8-4 4-0 at
70 125 I 8-5 2-7 apostrophe (right single quote)
7E 126 = 8-6 3-13 equals
7F 127 " 8-7 2-2 quotation mark

tHexadecimal and decimal notation.

tt Decimal notation (column-row).

218 Appendix H

Table H-3. CP-V Symbol-Code Correspondences (cont.)

EBCDICt

Hex. Dec. Symbol Card Code ANSClltt Meaning Remarks

80 128 12-0-8-1 80 is unassigned.
81 129 a 12-0-1 6-1 81-89, 91-99, A2-A9 comprise the
82 130 b 12-0-2 6-2 lowercase alphabet. Available
83 131 c 12-0-3 6-3 only in Xerox standard 89- and 95-
84 132 d 12-0-4 6-4 character sets.
85 133 e 12-0-5 6-5
86 134 f 12-0-6 6-6
87 135 g 12-0-7 6-7
88 136 h 12-0-8 6-8
89 137 i 12-0-9 6-9
8A 138 12-0-8-2 8A through 90 are unassigned.
8B 139 12-0-8-3
8C 140 12-0-8-4
8D 141 12-0-8-5
8E 142 12-0-8-6
8F 143 12-0-8-7

90 144 12-11-8-1
91 145 j 12-11-1 6-10
92 146 k 12-11-2 6-11
93 147 I 12-11-3 6-12
94 148 m 12-11-4 6-13
95 149 n 12-11-5 6-14
96 150 0 12-11-6 6-15
97 151 p 12-11-7 7-0
98 152 q 12-11-8 7-1
99 153 r 12-11-9 7-2
9A 154 12-11-8-2 9A through A 1 are unassi gned.
9B 155 12-11-8-3
9C 156 12-11-8-4
9D 157 12-11-8-5
9E 158 12-11-8-6
9F 159 12-11-8-7

AO 160 11-0-8-1
Al 161 11-0-1
A2 162 s 11-0-2 7-3
A3 163 t 11-0-3 7-4
A4 164 u 11-0-4 7-5
A5 165 v 11-0-5 7-6
A6 166 w 11-0-6 7-7
A7 167 x 11-0-7 7-8
A8 168 y 11-0-8 7-9
A9 169 z 11-0-9 7-10
AA 170 11-0-8-2 AA through AE are unassigned.
AB 171 11-0-8-3
AC 172 11-0-8-4
AD 173 11-0-8-5
AE 174 11-0-8-6
AF 175 I 11-0-8-7 logical and AF is used by COC for output of

an ANSCII 7-12 code only.

BO 176
\

12-11-0-8-1
Bl 177 12-11-0-1 5-12 backs lash
B2 178 t 12-11-0-2' 7-11 left brace On 2741 terminals, t is 'output as {.
B3 179 12-11-0-3 7-13 right brace On 2741 terminals, J is output as }.
B4 180 [12~11-0-4 5-11 left bracket On Model 7670, [is t. On Model
B5 181] 12-11-0-5 5-13 right bracket 7015, [is I.
B6 182 12-11-0-6 On Model 7670,] is I. On Model
B7 183 12-11-0-7 7015,] is..,.
B8 184 12-11-0-8 BO and B6 through BB are unassigned.
B9 185 12-11-0-9
BA 186 12-11-0-8-2
BB 187 12-11-0-8-3
BC 188 [12-11-0-8-4 left bracket BC, BD, and BF are used by COC for
BD 189] 12-11-0-8-5 right bracket output of ANSCII 5-11, 5-13, and
BE 190 lost data 12-11-0-8-5 lost data 7-14, respectively.
BF 191 -, 12-11-0-8-7 logical not On 2741 Selectric and EBCD Standard

Keyboards, [is output as { and]
is output as }.

tHexadecimal and decimal notation.

ttDecimal notation {column-row}.

Appendix H 219

Table H-3. CP-V Symbol-Code Correspondences (cont.)

EBCOICt
Hex. Dec. Symbol Card Code A NSClltt Meaning Remarks

CO 192 SP 12-0 2-0 blank Output only.
Cl 193 A 12-1 4-1 Cl-C9, 01-09, E2-E9 comprise the
C2 194 B 12-2 4-2 uppercase a I phabet.
C3 195 C 12-3 4-3
C4 196 0 12-4 4-4
C5 197 E 12-5 4-5
C6 198 F 12-6 4-6
C7 199 G 12-7 4-7
C8 200 H 12-8 4-8
C9 201 I 12-9 4-9
CA 202 12-0-9-8-2 CA through CF are unassigned.
CB 203 12-0-9-8-3
CC 204 12-0-9-8-4
CD 205 12-0-9-8-5
CE 206 12-0-9-8-6
CF 207 12-0-9-8-7

DO 208 11-0 DO is unassigned.
01 209 J 11-1 4-10
02 210 K 11-2 4-11
03 211 L 11-3 4-12
04 212 M 11-4 4-13
05 213 N 11-5 4-14
06 214 0 11-6 4-15
07 215 P 11-7 5-0
08 216 Q 11-8 5-1
09 217 R 11-9 5-2
OA 218 12-11-9-8-2 OA through OF are unassigned.
DB 219 12-11-9-8-3
DC 220 12-11-9-8-4
DO 221 12-11-9-8-5
DE 222 12-11-9-8-6
OF 223 12-11-9-8-7

EO 224 - 0-8-2 2-13 minus Output only. El is unassigned.
El 225 11-0-9-1
E2 226 S 0-2 5-3
E3 227 T 0-3 5-4
E4 228 U 0-4 5-5
E5 229 V 0-5 5-6
E6 230 W 0-6 5-7
E7 231 X 0-7 5-8
E8 232 y 0-8 5-9
E9 233 Z 0-9 5-10
EA 234 11-0-9-8-2 EA through EF are unassigned.
EB 235 11-0-9-8-3
EC 236 11-0-9-8-4
ED 237 11-0-9-8-5
EE 238 11-0-9-8-6
EF 239 11-0-9-8-7

FO 240 0 0 3-0
Fl 241 1 1 3-1
F2 242 2 2 3-2
F3 243 3 3 3-3
F4 244 4 4 3-4
F5 245 5 5 3-5
F6 246 6 6 3-6
F7 247 7 7 3-7
F8 248 8 8 3-8
F9 249 9 9 3-9
FA 250 X 12-11-0-9-8-2 multiply FA through FF are APL characters
FB 251 12-11-0-9-8-3 divide for 2741 APL use only.
FC 252 -- 12-11-0-9-8-4 right arrow
FO 253 - 12-11-0-9-8-5 left arrow
FE 254 12-11-0-9-8-6 FE is not assigned.
FF 255 DEL 12-11-0-9-8-7 delete Special - neither graphic nor

control symbol.

tHexadecirnal and decimal notation.

ttDecimal notation (column~ow).

220 Appendix H

Table H-4. ANSCII Control-Character Translation Table

Input Output

TTY Prog. Receives Transmitted
ANSCII Key Echoed (EBCDIC) Process EBCDIC (ANSCII)

NUL (00) pcs None None None NUL (00) Nothing (end of
output message)

SOH (Ol)t AC
SOH SOH None SOH (01) SOH

STX (02/ BC
STX STX None STX (02) STX

ETX (03/ C
C

ETX ETX None ETX (03) ETX

EaT (04)t DC EaT EaT Input Comp I ete. EaT (04) EOT

ENQ (05/ EC ENQ ENQ (09) None HT (05) Space(s) if tab
simulation on, or
HT (09) if not.

ACK (06)t F
C

ACK ACK None ACK(06) ACK

BEL (07) GC
BEL BEL None BEL (07) BEL

BS (08) H
C

BS BS None BS (08) BS

HT (09) IC
Space to tab stop Spaces to tab stop, None ENQ (09) ENQ (05)
if tabsimulation or one space, or tab
on, or 1 space if (05) depending on
not. space insertion mode.

LF/NL (OA) NL CR and LF LF (15) Input Complete. NAK (OA) NAK (15)

VT (DB) KC
VT VT None VT (DB) VT

FF (OC) L
C

None FF Page Header and FF (OC) Page Header
Input Complete.

CR (00) CR CR and LF CR (00) Input Complete. CR (00) CR and LF (OA)

SO (OE) N
C

SO SO None SO (OE) SO

SI (OF) OC SI SI None SI (OF) SI

OLE (10)t pC OLE· OLE None OLE (10) OLE

DCl (11) QC DCl None Paper Tape On. DCl (11) DCl

DC2 (12) R
C

DC2 DC2 None DC2 (12) DC2

DC3 (13) SC DC3 None Paper Tape Off. DC3 (13) DC3

DC4 (14)t T
C

DC4 DC4 None DC4 (14) DC4

NAK (15)t U
C

NAK NAK (OA) None LF/NL (15) CR and LF (OA)

tThese characters are communication control characters reserved for use by hardware. Any other use of them risks in-
compatibility with future hardware developments and is done so by the user at his own risk

Appendix H 221

Table H-4. ANSCII Control-Character Translation Table (cont.)

Input Output

TTY Prog. Receives Transmitted
ANSCII Key Echoed (EBCDIC) Process EBCDIC (ANSCII)

SYN (l6l yC SYN SYN None SYN
t

(16) SYN (not trans-
mitted for last
character in
user's buffer).

ETB (17)t W
C

ETB ETB None ETB (17) ETB

CAN (18) XC Back-arrow None Cancel input CAN (18) CAN
and CR/lF or output

message.

EM (19) yC Back-arrow None Monitor Escape/ EM (19) EM
and CR/LF Control to TEL

SUB (lA) ZC SUB SUB Input Complete SUB (1A) # (A3)

ESC (1 B) K
CS

None None Initiate escape ESC (IB) ESC
ESC sequence mode.
PREFIX

FS (1C) L
CS

FS FS Input Complete FS (1C) FS

GS (10) M
CS

GS GS Input Complete GS (1 D) GS

RS (1 E) N
CS

RS RS Input Comp I ete RS (1 E) RS

US (1 F) Ocs US US Input Complete US (1 F) US

I (70) ALT- Ior None J or None I if model 37; as HB3) J(7D)
MODE ESC if model 33,

35, or 7015.

-(7E) ESC -or None -or None -if model 37; as -, (5F) -(7E)
(7015) ESC if model 33,

35, or 7015

DEL (7F) Rubout \ None Rubout last DEL (FF) None
character.

All ANSCII upper and lower case alphabetics are translated on input into the Alphabetic and symbol output trans-
corresponding EBCDIC graphics as shown in Tables C-l and C-2. All special lation is also as shown in Tables C-.l
graphics map as shown, allowing for Table C-l, Note 2, and the exceptions and C-2; for Models33 and 35, and
above for model 33 and 35. Lower case alphabetics map into corresponding 7015terminals, however, lowercase
EBCDIC upper case if the ESC U mode is set. Upper case a Iphabeti cs map alphabetics are automatically trans- .
into corresponding EBCDIC lower case if ESC) is set. lated to upper case.

tThese characters are communication control characters reserved for use by hardware. Any other use of them risks in-
compatibility with future hardware developments and is done so by the user at his own risk.

222 Appendix H

Table H-4. Substitutions for Nonexistent Characters on 2741 Keyboards

EBCDIC APL Selectric EBCD
Character Keyboard Keyboard Keyboard

> > , (upper case) >

< < . (upper case) <

A t ~ ¢

I I 0
(degree) I

--, - ± --,

, i I I

% P % %

¢ c I I

@ a @ @

.. V

I 0 I I

& n & &

$ u $ $

Appendix H I '223

INDEX

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numeri ca I sequence.

* command, ANLZ, 46
? command, DRSP, 110
I command, ANLZ, 46
560 cluster/unit matrix, 156
560 Remote Assist Station, 175,23
2741 terminal, substitutions for nonexistent characters, 223

A

A Programming Language, 8
active interrupt, 126
ALL command, ANLZ, 43
Analyze (see ANLZ)
ANLZ, 42, 10,23

batch mode, 42
command summa ry, 59,58

ANLZ, commands, 42
*, 46
I, 46
ALL, 43
BF, 47
CLOSE, 48
COMPARE,46
DELTA, 47
DISPLAY, 43
DUMP, 48
END, 49
HELP, 48
INPUT, 43
IS, 48
LINE FEED, 46
loc, 43
loc =value, 46
loc 1, loc2, 46
LP,47
MAP, 46
MONITOR,46
NODELTA,47
PRINT, 47
ROWS, 47
RUN, 43
SEARCH, 47
SMASK,47
SPY, 48
SYMBOLS, 48
SYMBOL/,48
UC,47
UNMAP, 46

ANLZ, ghost mode, 42
ANLZ, messages, 58
ANLZ, on-lirie mode, 42
ANLZ, output, 49
ANS COBOL (see COBOL)
ANS labeled tape, xi

ANSCII, 216,214,221
AP,6
APL, 8
application processors, 11
armed interrupt, 126
Assembly Program (see AP)
automatic recovery, 23

B

BASIC, 6
Batch (processor), 11
batch job, xi
batch processing, 1
BF command, ANLZ, 47
binary input, xi
booting, 24,37

from disk, 40
bootstrap I/O error recovery, 40
bootstrap operations (see booting)

c
CCI, 99,4
character sets, 214
CIRC, 12
cleared interrupt, 126
C LIS command, EL LA, 68
CLOSE command, AN LZ, 48
cluster/unit matrix, 156
COBOL,7
COBOL On-Line Debugger, 10
codes and correspondences, 214
command processor programming, 101
command processors, 3
command summaries, ANLZ, 59,58

DRSP, 113, 110
ELLA,91,9O
reconfiguration and partitioning, 29,24

command syntax notation, x
commands, control, xi
COMPARE command, ANLZ, 46
compressed language, 213
concatenation, xi
conditional patch control commands, 35
conflicting reference, xi
Control (processor), 4
control codes, 214
Control Command Interpreter, 94,4
control commands, xi
control message, xi
cooperative, xi

Index 225

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

CP-V operating system, 3
crash analysis (see ANLZ)

D·
Data Control Block, 96,xi
DCB, 96,xi

diagnostic, 122, 115, 120
DDCB, 122, 115, 120
DEFCOM, 10
DELETE command, DRSP, 109

GENMD,34
Delta, 9
DEL TA command, ANLZ, 47
Delta format patches, 24
DEV command, ELLA, 84
DEVDMP,5
device designation codes, 156
device names, 156
Device Save/Restore processor, 5
device type codes, 156
diagnostic DCB, 122, 115
diagnostics (see on-line peripheral diagnostic facilities)
disabled interrupt, 126
disarmed interrupt, 126
DISP command, ELLA, 81
DISPL command, ELLA, 87
DISPLAY command,

ANLZ,43
PPS, 145

DRSP, 106,11
DRSP, command summary, 113, 110
DRSP, commands,

?, 110
DELETE, 109
END, 110
ENTER, 106
LIST, 109
L1STALL, 109
REPLACE, 109

DRSP, error messages, 111, 110
DRSP, limitations and restrictions, 110
DUMP command, ANLZ, 48
Dynamic Replacement of Shared Prpcessors (see DRSP)
DYNRESDF command, PPS, 146

E

EASY, 4
EBCDIC, 215,214
Edit (processor), 10
EDMS, 11
ELLA, 65,11,22
ELLA, command summary, 91,90
ELLA, commands,

CLlS, 68
DEV, 84

226 Index

DISP, 81
DSPL, 87
END, 82
MOD, 84
RSET, 82
SET, 65
SLlS, 77
SUM, 81
TIME, 83
TYPE, 84

ELLA,
error log entry headings, 70
error log entry types, 77
input/output assignments, 65
input/output characteristics, 67
interrupting execution, 68
messages, 90
predefined tasks, 87
RB:FLAGS structure, 75
starting execution, 65

enabled interrupt, 126
END command, ANLZ, 49

DRSP, 110
ELLA, 82
PPS, 147

:END command (boot-time), 29
ENTER command, DRSP, 106
ERR:Fll, 65,22
ERRFILE file, 178,65
ERRFILE file formats, 178

bad granule release, 188
configuration record, 187
device error, 184
duplicate entries, 187
enqueue table overflow, 196
errlog record I ength error, 182
file inconsistency error, 186
hardware errors, 192
I/O activity count, 192
illegal entry type, 183
incorrect time, 183
instruction exception, 194
lost entry indicator, 187
memory fault interrupt, 183
memory parity secondary record, 195
MFI primary record, 194
operator message, 192
partitioned resource, 196
PFI primary record, 194-
power on, 187
processor fault interrupt, 183
read error, 182
remote processing error, 188
returned resource, 196
secondary records for disk pack, RAD, and tape, 185
Sigma 6/7 memory parity secondary record, 195
SIO failure, 183
software-detected symbiont inconsistencies, 186
system identification, 187
system startup, 185

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

time out, 184
time stamp, 188
unexpected interrupt, 184
watchdog timer, 193
Xerox 560 memory parity secondary record, 195
Xerox 560 secondary record for poll information, 195

ERRMSG fi Ie, 63
error detection and recovery, 22,23
error log fi Ie (see ERRFILE)
Error Log Listing program (see ELLA)
error log,

reading, 92
writing, 92

error message fi Ie, 63
error messages (see messages)
error record terminology, 178
execution control processors, 9
Extended Data Management System, 11
Extended FORTRAN IV, 5
external reference, xi

F

FOP, 9
file maintenance processors, 23
files,

extension, 101,xi
identification, 98
shared, 101

FILL (processor), 4
Fix (processor), 4
fixed monitor locations, 44
FLAG, 7
FORTRAN, 5
FORTRAN Debug Package, 9
FORTRAN libraries, 98, 14
FORTRAN Load and Go, 7
FPT, xi
FREE command, PPS, 145
FRES, 5
FSAVE, 5
function parameter table, xi

G

GAC, 5
:G ENDCB command, 34
General Purpose Discrete Simulator, 12
GENMD,

commands,
DELETE, 34
GENMD,34
LIST, 34

error messages, 36, 35
patches, 35

GENMD command, GENMD, 34

\

GET command, PPS, 145
ghost iob, xi
ghost iob, initiating, 92
global symbol, xi
:GO command (boot-time), 27
GO file, xi
GPDS, 12
Granule Accounting Cleanup processor, 5
granule, xi

H

hardware-error diagnostic CALs, 91
initiate ghost job, 92
read error log, 92
write error log, 92

HELP command, ANLZ, 48

I/O scheduling, 18
ICB, 126
initial ization and start-up routines, 24
INPUT command, ANLZ, 43
interrupt connection and control services, real-time, 126
interrupt control block, 126
interrupt label, 126
lOP designation codes, 156
IS command, ANLZ,48

J

JIl, 95,xi
job step, xi

K

key, xi
key-in, xi

L

Label, 5
language processors, 5, xi
libraries, 104

FORTRAN, 98, 14
public, 104,xii
system, xiii

Index 227

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

I ibrary load modu Ie, xi
LINE FEED command, ANLZ, 46
Li nk (processor), 9
linking loader, xi
LIST command,

DRSP, 109
GENMD,34

list formats (transaction processing), 152
LISTALL command, DRSP, 109
Load (processor), 9
load map, xi
load module, xi
loc command, ANLZ, 43
loc = value command, ANLZ, 46
loc 1, loc2 command, ANLZ, 46
log-on connection, 94
logical device, xi
logical device stream, xi
LOGON/LOGOFF, 3
LP command, ANLZ, 47
LYNX (processor), 9

M

M:BLIST, 117
M:CHKINT, 139
M:CLOCK, 132
M:COC, 143
M:CONNECT, 127
M:DCLOSE, 117
M:DDCB, 115
M:DISCONNECT, 128
M:DMOD#, 120
M:DOPEN, 116
M:EXCP, 140
M:EXU, 136
M:FPP, 137
M:GDG, 138
M:GETID, 149
M:GJOB, 137
M:GJOBCON, 127
M:GPP, 137
M:HOLD, 131
M:INHIBIT, 129
M:INTCON, 129
M:INTRTN, 130
M:INTSTAT, 131
M:IOEX, 134
M:LOCK, 119
M:MAP, 120, 137
M:MASTER, 136
M:NEWQ, 140
M:QFI, 130
M:QUE, 142
M:Q UEUE, 149
M:RDG, 138
M:RUE, 138
M:SIO, 119

228 Index

M:STARTJO, 134
M:STOPIO, 132
Manage, 12
MAP command, AN LZ, 46
master system tape, 24,25
memory control, 96
memory layout, 20
memory management, 14
messages,

ANLZ, 58
DRSP, 111, 110
ELLA, 90
GENMD, 36,35
on-line peripheral diagnostics, 114
PASSO, 41
reconfiguration and partitioning, 32,31

Meta-Symbol, 6
MOD command, ELLA, 84
monitor, 13,xii
MONITOR command, ANLZ, 46
monitor DEFs (for real-time), 147
monitor dump analysis program (see ANLZ)

N

NODEL TA command, ANLZ, 47

o
object language, 195, xii
object module, xii
on-line job, xii
on-line peripheral diagnostic faci lities, 114,22

abnormal codes and messages, 121, 120
DDCB, 122, 115, 120
M:BLlST, 117
M:DCLOSE, 117
M:DDCB, 115
M:DMOD#, 120
M:DOPEN, 116
M:LOCK, 119
M:MAP, 120, 137
M:SIO, 119
PSECT directive, 114
restrictions, 114

operational label, 155, xii
output (see messages)
overlay loader, xii
overlay program, xii
overlay restrictions, shared processors, 96

p

page allocation for real-time, 143
:PART command, boot-time, 29

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numeri ca I sequence.

paititioning resources, 27,29
PASSO, 41
PASSO, error messages, 41
patch, xii
patch control commands, conditional, 35
patch deck comment cards, 37
patch deck structure, 24
patch deck symbol table, 26
patch file creation, 37
patches, Delta format, 24
patching operations, 24
PCl, 10
Peripheral Conversion language, 10
peripheral device (see device)
peripheral diagnostic facilities (see on-I ine peripheral

diagnostic facilities)
physical device, xii
physical page allocation for real-time, 143
Physical Page Stealer (see PPS)
PPS, 144
PPS, commands,

DISPlAY, 145
DYNRESDF, 146
END, 147
FREE, 145
GET, 145
RESDF, 146

preventive maintenance, 65
PRINT command, ANLZ, 47
procedures,

M:BLIST, 117
M:CHKINT, 139
M:CLOCK, 132
M:COC, 143
M:CONNECT, 127
M:DClOSE, 117
M:DDCB, 115
M:DISCONNECT, 128
M:DMOD#, 120
M :DOPEN, 116
M:EXCP, 140
M:EXU, 136
M:FPP, 137
M:GDG, 138
M:GETID, 149
M:GJOB, 137
M:GJOBCON, 127
M:GPP, 137
M:HOLD, 131
M:INHIBIT, 129
M:INTCON, 129
M:INTRTN, 130
M:INTSTAT, 131
M:IOEX, 134 .
M:lOCK, 119
M:MAP, 120, 137
M :MASTER, 136
M:NEWQ, 140
M:QFI, 130
M:QUE, 142

M:QUEUE, 149
M:RDG, 138
M:RUE, 138
M:SIO, 119
M:SLA VE, 136
M:STARTlO, 134
M:STOPIO, 132
real-time, 126

processor management, 19
processor privileges, 93
processors,

application, 11
command, 3
execution control, 9
language, 5, xi
service, 10
shared processor facilities, 106
system management, 4
user, 13

program product, xii
prompt character, xii
pro teet i ve mode, xii
PSECT directive, 114, 137
public library, l04,xii
public programs, 93

R

RATES, 4
RB:FLAG, 189
read error log, 92
real-time facilities, 126,2

clock service, 132
device preemption services, 132
direct I/o services, 134
dynamic physical page allocation, 143
interrupt connection and control services, 126
lock in core service, 131
miscellaneous services, 137

real-time libraries, 106, 104
reconfiguration and partitioning commands, 27

:END, 29
:GO, 27
:PART, 29
:REMOVE, 28
:SAVE, 28
:TYPE, 28

reconfiguration and partitioning commands summary, 27,24
reconfiguration and partitioning messages, 32,31
recovery, 22,23
reentrant, xii
relative allocation, xii
relocatable object module (ROM), xii
Remote Assist Station, 175,22
remote diagnostic assistance, 175,22
remote processing, 2,xiii
:REMOVE command (boot-time), 28
REPLACE command, DRSP, 109

Index 229

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

Report Program Generator, 8
RESDF command, PPS, 146
RESDF memory CAL, 147
resident program, xii
response time, xii
ROM, xii
ROWS command, ANLZ, 47
RPG,8
RSET command, ELLA, 82
RUN command, ANLZ, 43

s
:SAVE command (boot-time), 28
scheduler, xii
scheduler inputs, 15
scheduler operation, 16
scheduler output, 16
schedu I er status queues, 17
scheduling, 14
screech codes (see software check codes)
SEARCH command, ANLZ, 47
secondary storage, xii
semi-protective mode, xii
servi ce processors, 10
SET command, ELLA, 65
shared file use, 101
shared processor, xii
shared processor facilities, 93
shared processor maintenance, 106
shared processor programming, 94
shared programs, 93
Show processor, 11
Simulation Language, 8
SL-1, 8
SLIS command, ELLA, 77
SMASK command, ANLZ, 47
software check codes, 157
Sort/Merge, 11
source language, xii
special shared processor, xii
specific allocation, xii
SPY command, ANLZ, 48
standard object language, 197
start-up, 24
static core module, xiii
STATS, 5
status queues, 17
stream- id, xiii
SUM command, ELLA, 81
Summary (processor), 5
Super (processor), 4
swap hardware organization, 18
swap-in, swap-out queues, 18
symbiont, xiii
Symbol Control Processor, 10
symbol-code correspondences, 214
symbolic input, xiii

230 Index

symbolic name, xiii
SYMBOLS command, ANLZ, 48
SYMBOL/command, ANLZ, 48
symbols, graphic, 214
SYMCON, 10
SYSCON, 5
SYSGEN, 10, xiii
SYSTEM DIAG, 115
system error log file (see ERRFILE)
system generation, 10,xiii
system integrity, 20
system library, xiii
system load i ng, 24
system management processors, 4
system programming faci lities, 2
System Queue Manager, 148
system register, xiii
SYSTEM RTPROCS, 126
SYSTEM SIG7, 115
SYSTEM SIG9, 115
system start-up and initialization, 24
system tape format, 24,25

T
tape, master system, 24,25
task control block (TCB), xiii
TEL, 4
TEL scan, 98
Terminal Executive Language, 4
terminal I/O, 99
TIME command, ELLA, 83
time-sharing, 1
transaction processing, 2
transaction processing facilities, 148

list formats, 152
M:GETID, 149
M:QUEUE FPTs, 150
M:QUEUE procedure format, 149
M:QUEUE procedure output, 153
System Queue Manager, 148

TYPE command, EL LA, 84
:TYPE command (boot-time), 28

u
UC command, ANLZ, 47
UNMAP command, ANLZ, 46
unsatisfied reference, xiii
user processors, 13
user status queues, 17

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

v
virtual memory, special processors, 44
VOLINIT,5

w
waiting interrupt, 126
write error log, 92

x

Xerox 560 cluster/unit matrix, 156
Xerox 560 Remote Assist Station, 175,23
Xerox standard compressed language, 213
Xerox standard object language, 195
Xerox standard symbols, codes, and

correspondences, 214

Index 231

XEROX

Reader Comment Form
We would appreciate your comments and suggestions for improving this publication

Publication No. I Rell. Lettert Title I Current Date

How did you use this publication? Is the material presented effectively?

0 Learning 0 Installing 0 Sales o Fully Covered DWell o Well organized o Clear o Reference o Maintaining 0
III u strated

Operating

What is your overall rating 01' this publication? What is your occupation?

o Very Good o Fair o Very Poor

o Good o Poor

Your other comments may be entered here. Please be specific and give page, column, and line number references where
applicable. To report errors, please use the Xerox Software Improvement or Difficulty Report (1188) instead of this form.

I

Your name & Return Address

Thank You For Your Interest. (told & fasten as shown on back. no postage needed it majlec:il in UJ.S.A.~

PLEASE FOLD AND TAPE -
NOTE: U. S. Postal Service will not deliver stapled forms

Attn: Programming Publicat ions

Fold

BUSINESS REPLY MAIL
No postage stamp necessary if mailed in the United States

Postage will be paid by

Honeywell Information Systems
5250 W. Century Boulevard
Los Angeles, CA 90045

First Class
Permit No. 59153
Los Angeles, CA

Honeywell Information Systems
In the U.S.A.: 200 SmIth Street.~S 486. WaHham, Massachusetts 02154
In Canada: 2025 Sheppard Av6nue East. Willowdale, Ontario M2J 1 W5

In Mexico: Avenida Nuevo Leon 250, Mexico 11 , D.F.

18249, 4C677 , Printed in U .S.A . XQ63 , Rev . 0

	00000
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	replyA
	replyB
	xBack

