
THE JOVIAL CHECKER
AN AUTOMATIC CHECKOUT SYSTEM

FOR HIGHER LEVEL LANGUAGE PROGRAMS

Mildred Wilkerson
System Development Corporation

Paramus, N. J.

Knowledge of specific machine language is
still required for checkout of higher level pro
grams. Consequently, several potential advantages
of higher level programming languages have not
materialized. These include shorter and less
technical programming training, and faster pro
gram checkout.

JOVIAL is a higher level programming lan
guage. The "item" is its basic unit of data. The
Checker is a program which executes translated
JOVIAL programs and selectively records test
results in JOVIAL language. Most non-essential
information is eliminated from printouts. Check
of actual results against expected results may be
done automatically.

The Checker is part of a utility system
which includes a Compiler and the Checker. The
Compiler checks legality of JOVIAL statements,
translates to binary code for a specific machine,
and produces a JOVIAL program listing.

The Checker operates the object program and
"snaps" every modified value of selected items.
Basis of selection may be items of interest to
the programmer, items whose final values deviate
from programmer-supplied, expected values, or
both. Each modified item value is printed with
the statement which modified its value at that
point and an associated label. Final values only
of any or all tables may also be recorded.

Introduction

Although higher level languages have been in
use scarcely two years, the contributions of
FORTRAN, COBOL, JOVIAL, ALTAC and other such
languages are now beginning to be realized by
their users. Despite continuing machine obsoles
cence, the problem of program obsolescence due to
the differing languages of various computers is
now soluble with higher level language programs
and compilers.

Most programmers observe that, while over
all output may not yet reflect the speed-up,
coding with a higher level language is consider
ably faster than coding in machine language.
More time is now available for such problematic
areas as problem analysis, program design, and
modifications resulting from'system design
changes.

reduced by higher level language. This is gener
ally attributed to the sheer reduction in the
number of higher level language instructions
required to program a given problem, to the more
flexible format of instructions, and to the
greater readibility of the language.

On the other hand, one major, potential
advantage of higher level languages has not been
realized. This is the elimination of machine
language as a requisite.

The Problem and Its Consequences

Higher level languages have not yet replaced
machine languages for a single programmer. The
expectation in this respect was that machine
languages could be omitted from the training of
all programmers except those involved in program
ming and maintaining compilers and special
utility programs. The existing situation, how
ever, is that programmers must still be taught
the symbolic language of at least one specific
machine, as well as the new higher level language.
Consequently programming training today is more
time-consuming and more complicated than ever
before.

Closely associated was the hope that higher
level languages would further progress toward a
common communication link between man and machines,
between non-specialists and computer specialists,
between management and programmers. One of the
deterrents toward this goal is that while such a
language may exist, conventional training is
still dominated by machine languages. This train
ing is neither appealing nor expedient for manage
ment and non-specialists. It is time-consuming
and tedious. It requires a capacity for rote mem
orization and a fastidiousness for clerical detail.
The very technical nature of machine language
furthermore restricts the type of people who may
-be selected for programmer training, and may, in
fact, discourage many creative people from enter
ing this profession.

It is not resistance to higher level languages
which has prevented relinquishment of machine
languages from programmer-training. It is the
fact that no method 'had been devised to produce
test results from higher level language programs
that did not depend upon a thorough knowledge of
machine language by individual programmers.

The pitfalls leading to trivial, clerical
type coding errors also have been radically

The JOVIAL Checker is designed to solve this
technical problem. Its consequences, or any

398

10.6

similar solution, cannot be displayed as a cure
for the problems just mentioned. It can, however,
be regarded as one stepping stone toward full
realization of the advantages of higher level
languages. To our knowledge, it is the first
utility program designed to eliminate the last
remaining traces of machine language from higher
level language programming.

The Problems at SDC

,* The problems that gave rise to the Checker
were much more modest. Program checkout has long
been one of the most time-consuming headaches of
the programming field. While higher level lan
guages have significantly reduced the number of
errors made in the original program, virtually
no time has been saved in debugging and checking
out programs.

Professor Wrubel^ cited the problem in apt
words when discussing one of the better known
higher languages. "It is a frustrating thing,''
he writes, 'to have computed the answers correctly
only to find them printed on the output page in
an all but incomprehensible jumble.''

A survey of the practices within the field
yielded no satisfactory solution. Generally,
test results are printed in the machine language
format. Instructions are sometimes traced, but
this produces stacks of printout paper with no
clue to the origins of errors. An individual
programmer with a great deal of foresight may
leave holes in his program for insertion of
instructions that could produce test results in
any format, provided these were prepared by the
programmers and later deleted from his program.

Due to the efforts of Jules Schwartz and
others at System Development Corporation, we have
been programming in a higher level language called
JOVIAL for well over a year. Various utility
programs for program checkout have been developed,
but none embodied all of the needed capabilities.
Martin Blauer, therefore, initiated the efforts
that led to the design of the Checker to meet the
following requirements:

1. All test results appearing on the print
out, including instructions, data or other infor
mation, should appear in the JOVIAL format.

2. Adequate information should be provided
to locate the origin of errors, but otherwise un-
needed or unwanted results should be omitted from
the printed test results.

The JOVIAL Checker

The JOVIAL Checker was designed and devel
oped by members of System Development Corporation
for use in checking out programs written in the
JOVIAL language. It will be available for use in
March 19^1, and will operate upon programs trans
lated by the JOVIAL-to-IBM 7090 Compiler. The
Checker is also suitable for use with the AN/FSQ-
31V military computer and is readily adaptable
for use on any other computer for which a JOVIAL
compiler is available.

The combined Compiler and Checker system is
designed to translate programs written in JOVIAL
language, execute the translated instructions,
and produce test results in JOVIAL format. A
brief examination of the organization of JOVIAL
variables and one type of JOVIAL instruction, as
well as an outline of the Compiler's functions,
will be helpful in understanding the Checker's
operations and output.

Organization of Variables

All input and output data, as well as vari
ables manipulated internally by a JOVIAL program
are organized into items, entries and tables.
The item is the basic unit of data. Its size may
range from one bit to the total number of bits in
the machine word, depending upon the size of the
data it will contain.

An entry is comprised of one or more items.
Two or more items collected in the entry are
usually related, i.e., a payroll code, an employee
number, a tax deduction rate, etc. relate to one
employee.

A table is comprised of one or more entries,
usually repeating the same group of items con
tained in the first entry. Each entry, however,
contains a different set of variables. There is
no practical limit to the size of either an entry
or a table.

All items and tables used by a JOVIAL pro
gram are defined according to the basic charac
teristics of the data they will contain and are
assigned symbolic names. Thereafter they are
conveniently called upon by name. Entries are
referenced by integer values in the form of con
stants, subscripts or other variables.

Assignment Statement

Dynamic JOVIAL statements may be classified
according to two basic types—those which control
sequence of operations and those which modify the
language may be used to modify the value of any
variable—the assignment statement and the
exchange statement. The latter is a type of two-
way, restricted assignment statement.

The assignment statement places the value
named by the right term into the location of the
variable named by the left term, altering the
format of the right term to fit, if necessary.

example: (Left Term) (Right Term)
MJMBER = 1 $
ABLE = ABLE + BAKER$

The item named MJMBER in the first example is
assigned the decimal value of 1. Tn example two,
item ABLE is set to its own value plus the value
of item BAKER.

Since modification of the value of any JOVIAL
variable must be performed with this type of
statement, the assignment statement, and parti-

cularly its left term, is vital to the operation
of the Checker.

The Compiler

The JOVIAL Compiler accepts a program
written in JOVIAL, analyzes its statements for
illegalities, generates an intermediate language
version of this program and then translates from
this language to the "binary code of the specific
machine. Four of the Compiler's working tables
are saved for subsequent use "by the Checker.
One relates to statement labels; one gives refer
ences to items and tables; another, to so-called
status items; and the last refers to intermediate
language statements.

The output from the Compiler is the object
program and test data, the above tables and a
printer destined tape, used also by the Checker,
listing each JOVIAL statement with its equivalent
symbolic instructions and octal machine code.
The listing also provides a record of input test
data in JOVIAL format and, if any illegalities
were detected, error messages in context. When
the JOVIAL program is corrected of all errors,
it is ready to be run with the Checker.

The Checker Options

The general functions of the Checker are to
operate the object program with the supplied test
data and to record selective test results in
JOVIAL format on a printer-destined tape. Results
may also be printed on-line, if desired.

To use the Checker, the programmer creates
two or three control cards to specify the method
of selecting test results for recording. From
three basic options of selecting test results,
the programmer may choose any, all, or none. By
answering 'yes1 or "no" to each of the following
questions, the programmer has eight combinations
of recorded results from which to choose:

Unconditional Trace: Are dynamic snaps of
selected items for which the programmer has not
supplied expected final values wanted? (Let us
call this an "unconditional trace." Dynamic
snap, as opposed to final or static snap, is
used here to mean that every value of a selected
item is recorded each -time it is modified through
out the entire operation of the program.

This option also applies to items in selected
entries. If, for example, the program operates
upon every other entry containing the selected
item, instead of every entry, the programmer has
no need for any dynamic snaps of item values
located in half of the entries. The programmer
then specifies the item name followed by the
entry number. This selectiveness is important
because the total number of items selected for an
unconditional trace is limited to one-hundred
items, and each iteration of the same item in
different entries is counted as one item.

399
10.6

Strings and items located in tables whose
entry lengths or entry structures vary from
entry to entry may also be traced.

To initiate this type of trace, the program
mer creates an unconditional trace control card,
followed by a sufficient number of cards to list
every item he wants traced in this manner. (See
figures 1 and 2).

As a result of the unconditional trace, the
values of all modifications of selected items are
recorded for printout. Each value is accompanied
by the item name and entry number, the assignment
statement which modified the item at that
point, and the closest preceding JOVIAL statement
label.

Discrepancy Trace: Are dynamic snaps
wanted only in the event that final values of
items within selected tables deviated from
expected values? (Let us call this'a "discrepancy
trace.")

For the discrepancy trace, the programmer
supplies a control card with the words, "Dis
crepancy trace," and defines two sets of tables
as part of his organization of variables with the
original JOVIAL program. One set of tables
defines and names all items selected for dynamic
snaps in the event their final values are in error.
These tables are named "ACT0, ATCl," etc. After
the object program has been operated, the actual
final values of the items defined within these
tables automatically will be placed in the item's
assigned location.

The second set of tables are given the names,
"EXP0, EXPl,'' etc., and contains the programmer-
supplied expected final values for all items
named in the ACT tables. The values of items
within the ACT tables must correspond exactly
with the positioning of expected values in the
EXP tables, and all recurrences of the selected
items in every entry of the tables must be
provided for.

After operation of the object program, actual
final values of all items in the ACT tables are
compared with the expected values in the EXP
tables. Only in the event that a discrepancy
occurs between any of the correspondingly posi
tioned values, is a trace initiated.

Except that only those items in error are
traced, this trace is performed in the same way
as an unconditional trace, and recordings will
also be accompanied by the modifying assignment
statement and closest preceding statement label.
Although any number of items may be placed in the
ACT-EXP tables, only the first one-hundred dis
crepant final values will be traced.

When an item to be checked is already organ
ized within an entry containing different items
which need not be checked, the programmer may

400
10.6

remove the selected item from its original table
and define it within an ACT table. This reorgani
zation in no way alters the operation of the pro
gram or the results obtained.

Final Snaps: Are final values only of
selected tables wanted? This option will usually
be employed in conjunction with one or both of the
options already discussed. In effect, it is a
'static snap" of the values in preselected tables
at the end of the program's operation, therefore
no assignment statements or labels accompany
these recordings. Table names, entry numbers and
item names are provided. On the control card the
programmer may specify that final snaps be made
of all tables defined with his program, no tables,
only the tables named, or all tables excluding
those named. (Figure 3)

With any of the three options named, special
information must be supplied to the Checker if
recordings are requested from tables whose entry
lengths or entry structures vary from entry to
entry. One control card is needed, one card for
each table name, and one or more cards per item.
Control items--or those items containing infor
mation about the length or structure of each entry
--are designated by their absence or presence in
floating fields. Control information on strings
is also specified on these card's.

Highlights of Checker Operation

Three major routines called Control, Tracer,
and Record constitute the Checker program. These
routines, in turn, are modularly constructed of
multiple subroutines for both flexibility of
operation and ease of modification. The broad
flow of operations is illustrated in Figure h to
depict the sequence of the operational highlights
only.

One pass is required through the Checker
program unless actual values deviate from expected
values, in which case two passes are made. The
Checker may be operated in a strictly unconditional
mode, strictly discrepant mode, or a combined mode.
If both modes are desired, an unconditional trace
control card is used, but the first pass succeeds
in performing all the operations required of the
first pass of both modes.

For an unconditional trace, selected item
names are read in from card reader or from script
tape. These item names and entry numbers, if
entry references are furnished, are entered into
a table called '!Trace.,,

Statement References: With the aid of tables
furnished by the Compiler, the items named in
table Trace are then used to locate all JOVIAL
assignment statements which contain these items
as their left terms. As these assignment state
ments are located, they are placed in a table
called "Refer." In addition to all JOVIAL state
ments which modify the items selected for trace,
the Refer table contains the relative location in

the binary program of the machine instruction
which modifies the value of the item. This in
struction is usually a "store" class instruction.
The Refer table is subsequently used to insert
traps in the object program, create a table con
sisting of displaced "store" instructions, and
finally, its assignment statements are recorded
for printout with corresponding item values.

Statement Labels: Two compiler tables are
used to associate the closest preceding JOVIAL
statement label with each assignment statement
in the Refer Table. A search of the intermediate
language table yields only the operator "label"
and a reference to another table containing all
statement labels. JOVIAL labels are easily
recognized, however, and these are saved until
associated with an assignment statement to be
traced or until another JOVIAL statement label is
encountered. The last label saved is thus auto
matically associated with the next assignment
statement under trace.

Imbedding Traps: So that all modifications
of an item under trace may be saved before the
item is subjected to further modification, the
object program is imbedded with 'traps.'' Traps
may be defined as instructions which effect an
unconditional transfer of control to the snap
recording routine.

Traps are imbedded in the object program to
replace each "store" class instruction whose
relative location is furnished by the Refer table.
The store instructions, in turn, are relocated in
another table and are operated upon from within
this table prior to operation of the Snap routine.

Snap Tables: Recordings of the modifications
of all items under trace are saved in a snap table
which has a capacity of 400 snaps per Checker pass.
If snaps exceed this capacity, the contents of the
filled snap table are repeatedly buffered onto a
scratch tape and brought back into memory just
before the final recordings for printout are made.

Operation and Recording: The Checker then
operates the object program with imbedded traps.
If control information is present regarding
variable length or variable structure entry tables,
this is tabulated. Final snaps of selected tables
are processed as requested and recorded on the
printout tape. If no ACT tables are present,
snaps resulting from the unconditional trace are
grouped with appropriate statement labels and
assignment statements. These are recorded on the
output tape and the job is logged complete.

Discrepancies: If ACT tables are present and
one or more values deviate from the EXP values,
the Trace table is recreated. This time, however,
instead of containing items requested for an un
conditional trace, the Trace table contains only
the names of items which revealed discrepancies.
Again, traps are imbedded, and again, the program
is operated. For the second pass, all parts of
the Record routine are omitted except the final

recording of snaps and associated information
destined for printout.

Checker Printout

The printout of the Checker provides the
programmer with the following information in the
JOVIAL format: (Figure 5)

1. Final values of any tables specified for
final snaps. The word "Table'' precedes the table
name, the word "Item," its name, 'String," its
name, etc. Fixed entry length tables are printed
first, listing all values for each item sequential
ly. Variable structure or variable entry length
tables follow, however, these values are listed
entry by entry because the same items may not be
present in all entries.

2. Unconditional traces are so labeled and
are followed by all such traces in the format pre
viously described.

3. Discrepancy traces are listed last in the
same format.

Checker Restrictions

Restrictions imposed upon JOVIAL programs by
the Checker at this time are approximate since
the Checker, which is itself a JOVIAL program, has
not been compiled at the time of this writing.
Restrictions estimated for the Checker and the
JOVIAL program when compiled on one computer
will not be the same for another computer with
greater capabilities.

When compiled on the IBM 7090, the Checker
is expected to occupy about l6,000 registers,
reserving 10,000 for the object program and test
data. Most of the remaining core space will
probably be occupied by the Compiler tables and
the tables created by the Checker. Actually no
core space is left unused, thanks to one whimsical
programmer who filled in remaining space with
transfer to a routine which prints the message,
"Dear Programmer. You transferred out of your
program. How about that?"

Practical limits to the lengths of tables
created internally by the Checker impose two
rather generous limits on the JOVIAL program. It
is assumed that the number of assignment state
ments which refer to any item under trace will
not exceed an average of four. JOVIAL assignment
statements are also limited in length to an
average of six registers each.

401

10.6

Evaluation

In light of the stated objectives of the
Checker, comments must be withheld until program
mer use of the utility program is observed and
indications of time-savings are available.
Similarly, the overall efficiency of the Checker
is more convincingly reported after compilation
figures and timing results are tabulated.

If, however, a bad plan admits of no modi
fication, with a slight twist of logic we can
believe the Checker is a good plan in at least
one respect. Two proposals are now under investi
gation for possible modification of this or
future Checkers.

One proposal considers that the programmer
may wish to check out his program several times
with different sets of test values, all of which
may not necessarily be included with the original
program. Once the program has been compiled and
corrected, the present system necessitates re
compiling to include such changes. The modifica
tion under consideration would enable the program
mer to insert, delete, or change values of items
by means of an additional Checker sub-routine
which would operate at the beginning of the
Control routine.

The second proposal permits the programmer
to designate certain items as 'conditioning
items." Conditioning items are those items not
selected for a trace, but whose use in the pro
gram affects the values of items selected for a
discrepancy trace. Conditioning items would be
traced unconditionally in the event that the item
with which they were associated were found to be
in error.

The present system accommodates such items
only as items selected for an unconditional trace.
Should the main item selected for a discrepancy
trace not be in error, unneeded results would be
produced.

Reference

1. Wrubel, Marshall E., A Primer of Programming
for Digital Computers, McGraw-Hill Book Company,
Inc., N.Y., N.Y., 1959, p. 122.

402
10.6

UNCONDITIONAL TRACE

DISCREPANT TRACE

FIGURE I TRACE CONTROL CARDS

ABLE(0)ABLE($I0$) TEMP ALPHA *KEY* BAKER(J)

FIGURE 2 AN ITEM CARD FOR UNCONDITIONAL TRACE

EXCLUDE TABI INDEX.

PROCESS TABI CHART TAB6 INDEX.

PROCESS NIL

PROCESS ALL \

\

\

\

FIGURE 3 FINAL SNAP CONTROL CARDS

403
10.6

UI
J m

&

 5
2

K

S

r
U

U

111

in
I-

o
x

~
<

D
h

£
H

Z

H

^

<

Z

a.
a.

-

(/>
z o ce
ui
a.
o cc.
u o

kl
X

o

L

L

O

3 LL

Q

<
8 ffl

FIGURE 5. SAMPLE CHECKER PRINTOUT

TABLE DECOR
ITEM COLORS
ENTRY (0) BLUE (i) GREEN

(3) BLACK (4) PURPLE
(6) RED (7) YELLOW

ITEM PATTERN
ENTRY (0) .I35663E3 (i) . 06025E2

(3) .55E3 (4) .200E3
(6) . 60IE3 (7) . 325E0

ITEM NAMEP
ENTRY (0) BLUBEL (I) SPRING

(3) EBONY (4) DUSK
(6) BLAZE (7) JONQUL

\

(2) ORANGE
(5) PINK

(2) .2EI
(5) . 5 E - 2

(2) SUNSET
(5) SUNRIS

FINAL VALUES IN

TABLE W I T H FIXED

> LENGTH ENTRIES,

/

TABLE MILLS
ENTRY (0)

ITEM PATTNO
ITEM T L M I L S
STRING LOCATN

ENTRY (I)
I T E M PATTNO
ITEM T L M I L S

ENTRY (2)
ITEM PATTNO
ITEM T L M I L S
STRING LOCATN

.I35E3
ONE

SAVANA

.2EI
NONE

.6025E2
THREE

LOUSVL
SAVANA
BIRMHM

\

FINAL VALUES IN

^ TABLE WITH VARIABLE

LENGTH AND VARIABLE

STRUCTURE ENTRIES.

/

UNCONDITIONAL TRACES FOLLOW

IOA. BYTE (B, E) (PRICE (C))
(2) (3) (PRICE (12)) . 99

IOA. BYTE ($B. E$) (PRICE (C))
(2) (3) (PRICE (13)) .87

IOA. BYTE (E, E) (PRICE (C))
(2) (3) (PRICE (14)) .54

DISCREPANCY TRACES FOLLOW
CF8. ABLE (L) COUNT $

ABLE (0) 2
CF8. ABLE (£ L $) COUNT $

ABLE (I) 3
CF8. ABLE (L) COUNT $

ABLE (2) 4

\

TEMP (A)

TEMP (A)

TEMP (A)

DYNAMIC SNAPS OF

^ VALUES OF PARTS OF

ITEM PRICE.

/

\
DYNAMIC SNAPS OF

^ VALUES OF ITEM

ABLE

/

