
Various facilities are often provided in programming systems (such
as header cards to change names in some assemblers); but
these are too limited to allow us to take the appropriately relaxed
at t i tude that there need be no official version of a system. I t is
not very far fetched to consider that languages should have
sufficient syntax and basic processes to permit their easy self
manipulation. Many partial solutions toward this already exist.

This paper is no place for a technical discussion of the various

ways languages should evolve to aid the problems of documenta-

tion and banish the need for ofticialdom (nor is the author

prepared, to be honest). Yet, it would be a mistake to accept as

given many of the constraints that currently make documenta-

tion a headache to prepare and to use.

JOVIAL AND ITS DOCUMENTATION

CHRISTOPHER J. SHAY~ r, S y s t e m D e v e l o p m e n t Corp. , S a n t a Moniea , Calif.

A Quick Look at JOVIAL

JOVIAL is a general-purpose, procedure-oriented, and largely
computer-independent programming language. I t is intended
primarily for professional programers, since it was designed and
implemented by SDC to produce programs for large, computer-
based, military cmnmand and control systems. I t is currently
being used for this purpose in the development of several such
systems.

JOVIAL is derived from ALGOL 58, with the following major
extensions: an input-output notation; a more elaborate data
description capability; the abili ty to manipulate fixed-point
numeric values; and the ability to manipulate symbolic and other
non:numeric values, including machine-language symbol-
segments.

The design of JOVIAL WaS mainly dictated by three require-
ments. The language must: (1) be able to express the wide variety
of procedures likely to be needed in command and control
problems; (2) be economical of programming effort; and (3) be as
machine-independent as possible, to be suitable as a corporate
standard. Additional requirements, derived from experience
with command and centre] programming, were: compilers should
accept system environment infolznation--data descriptions and
storage allocation parameters--from a COMPOOL (comnmnieation
pool); imperative sentences should avoid expressing details that
are often changed--e.g., those relating to data organization,
coding and scaling--to minimize the program modification chore;
compilers should produce efficient code, to meet the space/time
constraints of real:time systems.

JOVIAL development has been supported partly by corporate
and partly by contract funds. Currently, JOVIAL compilers are
operating on and for: the IBM 7090; the IBM AN/FSQ-31v and
the closely related AN/FSQ-32; the IBM AN/FSQ-7; the Philco
2000; and the CDC 1604. The 7090, 2000, and 1604 compilers
have been made available through the computer users groups:
SHARE, TUG, and CO-OP.

JOVIAL compilers are written and maintained ahnost entirely
in JOVIAL. They consist of two main parts: first, a Generator,
which transforms JOWAL programs into an UNCoL-like Inter-
mediate Language; second, a Translator, which further trans-
forms them into machine language. Translators ordinarily
incorporate a complete, symbolic assembly phase. Compilers for
the Q-7, the 2000, and the 1604 use essentially the same, common
Generator and Intermediate Language. Thus, instead of pro-
ducing three, complete compilers, it was only necessary to
produce one Generator and three Translators.

JOVIAL cmnpilers range in size from fifty to sixty thousand
machine instructions, and it has been estimated that about five

man-years of work are needed to write a new translator and gel
a compiler running on a new machine.

SDC began work on JOVIAL in February 1959, in Paramus,
N. J. A year later, in February 1960, a JOVIAL Interpreter (con-
sisting of a Generator and an Intermediate Language interpre-
ter) was running on the IBM 709; by October 1960, a compiler
for the IBM AN/FSQ-31v was running on the 709; t and by
December 1960, a compiler for the 709 was running on the 709.

Even before these compilers were fully operational, work had
begun on improvements-- to the compilers, and the language as
well. The current compiler for and on the IBM 709, 7090 was
operational in March 1961; the compiler for and on the IBM
AN/FSQ-31v was operational in October 1961.

Meanwhile, in March 1960, work began in Santa Monica on
another JOVIAL compiler, for the IBM AN/FSQ-32. But with
the cancellation of the contract involving this computer, in
July 1960, the project was switched over to the IBM AN/FSQ-7
as the target machine.

At about that time, SDC decided to adopt JOVIAL as a cor-
porate-wide, standard programming language. This decision
involved redesigning tile language to make it more nearly com-
puter-independent. SDC also decided to produce a compiler-
independent, common Generator, for use with the Q-7 and
subsequent compilers. (Unfortunately, due to schedule pressures,
the 7090 and q-air compiler projects could not await the
completion of this common Generator, and cross-continent
attempts to eliminate source language differences were not
entirely successful.)

Prior to the completion of the compiler for the Q-7, compilers
for the Philco 2000 and the CDC 1604 were begun---in October
1960 and in December 1960--in Santa Moniea. The Q-7 com-
piler was operational in June 1961; the 2000 compiler was
operational in October 1961; the 1604 compiler was operational
in January 1962.

More recently, the Q-31v compiler developed in Paramus has
been adapted, in Santa Moniea, for use with the closely related
IBM AN/FSQ-32 computer, used by SDC's Command Systems
Laboratory. In addition, the Translator portion of this adapted
compiler is currently being rewritten, to make it compatible v~4th
the common Generator. Also in Santa Moniea, an experimental
compiler--accepting a subset of JOWAL--is being written;
initially on and for the IBM 7090 but ultimately, perhaps, for
smaller machines.

In SDC's Washington Division, the compiler staff there is
modifying the 1604 compiler for the CDC 1604A, a slightly

i I t produced Q-31v programs that were, in the absence of a
Q-31v, interpretively executed on the 709.

C o m m u n i c a t i o n s o f the ACM 89

http://crossmark.crossref.org/dialog/?doi=10.1145%2F366274.366297&domain=pdf&date_stamp=1963-03-01

different model. And in SDC's Lexington, Massachusetts office,
the 2000 compiler is being fitted into the Philco SYS operating
system.

In addition to this SDC activity, Computer Associates,
Incorporated, of Woburn, Massachusetts, is developing a syntax-
directed compiler for the Burroughs D-825 computer, which will
process JoviAL.

Despite all this far-flung activity, the agency within SDC
primarily responsible for JOVIAL maintenance is the JOVIAL
Compiler Staff in Santa Monica--about 16 people, headed by
Gene Gordon. The Compiler Staff, which is part of SDC's
Information Processing Directorate, under Don Madden, is
responsible for maintaining the following items (and the official
documentation relating to them) : the language itself; the common
Generator for the Q-7, 2000, and 1604 compilers; the 7090,
2000, and 1604 compilers. These arrangements may seem com-
plex, but the philosophy behind them is fairly simple: items with
more than one (actual or potential) user are maintained by the
JOVIAL Compiler Staff; items with just one user are maintained
by the using agency.

JOVIAL D o c u m e n t a t i o n

My collection of documents on JOVIAL weighs almost 50
pounds and stands almost two feet high. Properly sorted into
file boxes, it occupies an entire shelf in my bookcase.

While the collection is fairly comprehensive, it is by no means
complete. I t contains no compiler-listings (these are not published
as documents), and many obsolete, superseded, or unimportant
documents are missing. Nevertheless, this collection of docu-
ments represents a major result of the almost four years of effort
spent by SDC in developing JOWAL. (The other major, tangible
result is, of course, tim various JOVIAL compilers themselves.)

This mountain of literature was produced by a multitude of
authors from many different SDC internal organizations, each
with slightly different needs and criteria for documentation.
Consequently, individual documents vary widely in quality,
and the collection as a whole is not a particularly well-integrated
body of literature. To survey it adequately would be a mammoth
task. I t would also be unnecessary. Half the collection consists of
informal notes and memoranda meant for temporary, internal
use only. These need not be considered. The remaining docu-
ments, some of which are listed in the bibliography, have been
reviewed for technical content and are generally available for
outside distribution.

These documents can, in turn, be divided into two classes:
official; and unofficial. Documents are official whose technical
accuracy and maintenance are the responsibility of the agency
responsible for implementing or maintaining the items treated by
the document. Those that do not fit this category are unofficial.
Unfortunately, this useful distinction is not always made explicit,
so it is sometimes necessary to guess which is which.

Of the official documents on JOVIAL, perhaps the two most
interesting and controversial, in terms of programming language
documentation in general, are The J O V I A L Grammar and
Lexicon [4], which is a formal description of the language, with
syntactic definitions, and The J O V I A L Primer [6], which
explains the use of the language. As the author of these docu-
ments, I can safely discuss them. The principal, practical fault
of these two documents is that they both describe the "official"
version of JOWAL, which none of the compilers have yet com-
pletely implemented. ~ Consequently, it was necessary to docu-

Although all of it has been implemented in one compiler or
another.

ment the JOVIAL dialect that each compiler accepts, even though
the differences are minor in most cases. This need has resulted
in five additional language description documents, and the
programmer must study the appropriate one in order to success-
fully write and compile JOVIAL programs on a specific machine.
This situation seems to plague most programming languages where
there is an "official" version and several implemented dialects.
I t could probably be avoided by careful segmenting of the
"official" description so that inappropriate segments can easily
be removed and changes or supplements inserted to form the
description of some implemented version of the language.

For quite a while, the only available document describing
JOVIAL for the Q-7, 2000, or 1604 programmer was The J O V I A L
Grammer and Lexicon, [4]. This document is a formal, syntactic
description intended mainly for implementers, who usually
appreciate its rigor--after they learn the syntax metalanguage.
But it was never very popular as a programmer's manual. Pro-
grammers seem to prefer a more informal treatment.

As well as being easier to understand, an informal description
is usually easier to write, maintain and modify than a formal,
syntactic description, since it requires less sophistication on the
part of the person or persons involved. I t would seem, then, that
formal, syntactic descriptions of programming languages are only
needed where the language designers are not the language imple-
reenters. (This usually happens, though, when a language is
implemented for more than one machine.) In any event, such
descriptions should be kept out of the hands of programmers, if at
all possible.

Even after the publication of The J O V I A L Primer [6] had
supplied the experienced programmers with a useful description of
the language, two important classes of potential users were
neglected. There were no documents tailored specifically to the
needs of either the programmer-trainee, who usually is not ready
for all the subtleties of using the language, or the part-time non-
professional programmer--the dilettante--who does not ordinarily
need all the capabilities the language affords. At this writing,
however, two documents, [8] and [9], fitting the needs of these
two groups are in the final stages of preparation. They should
be available by the time this paper is published.

A Selected B ib l iography on JOVIAL

The documents listed here were chosen from a larger list of
75 which in turn were chosen from the many that have been
published on JOVIAL because of their current general interest.
Each listing contains a brief annotation, giving the status of the
document (e.g., official, unofficial, interim), its type (e.g.,
reference manual, primer, report), its intended audience (e.g.,
the interested public, the programmer, the implementer, the
maintainer), its topic (e.g., the language, the compiler, etc.)
and whether or not it contains syntax definitions, program
listings, or flow charts.

All of the documents listed here were published by the System
Development Corporation.

SDC's document numbering scheme is quite complex; but it
is meant to encourage the publication of related documents
under the same basic number. Document numbers have the
following format: series-location-number/volume/revision. Thus,
FN/LX-393/212/02 reads: FN-series, Lexington, number 393,
volume 212, revision 2. The series codes are not of particular
interest here. The location codes are, however, since documents
are best ordered from the location where they are published. No
location code--2500 Colorado Ave., Santa Monica. Calif.;

90 C o m m u n i c a t i o n s o f the ACM

LX--45 Hartwell Ave., Lexington, Mass.; L0--567 Winters
Ave., Paramus, N. J.; WD--5821 Columbia Pike, Falls Church,
Va.

1. WILKERSON, ~VL 7090 JOVIAL compiler and checker user's
manual. FN-LO-501, Apr. 1961, 39 pp. An official reference
manual for the programmer on the 7090 compiler and the
Checker, a source language debugging tool for use with the
compiler.

2. SPIERER, M. The 7090-JOVIAL-to-7090 compiler system.
FN-LO-503, July 1961, 173pp. An official reference manual
(with flow charts) for the maintainer describing the 7090
compiler.

3. I-IOWELL,]7I. L., ISBITZ, H., AND SCHWARTZ, J . I . Documenta-
tion of the JOVIAL language and compiler for the IBM
7090 computer; The JOVIAL language for the 7090
computer; Techniques of input-output for JOVIAL on the
7090 computer; Available subroutines for JOVIAL on the
7090 computer; Operation of the JOVIAL compiler on the
7090 computer; Error messages of the 7090 JOVIAL com-
piler; Reporting and responding to problems with the 7090
JOVIAL compiler; The communication pool for the 7090
JOVIAL compiler. FN-6223 & supplements; about 150 pp.,
Jan. 1962. An official reference manual, for the programmer,
on the 7090 compiler and the language it accepts.

4. SHAW, C.J. The JOVIAL grannnar and lexicon. TM-555/002/
01 and TM-555/OO2/O1A, June 1961, 77 pp. An official refer-
ence manual, for the implementer, specifying the language,
with syntactic definitions.

5. SHAW, C.J. A programmer's introduction to basic JOVIAL.
TM-629, Aug. 1961, 39 pp. An official reference manual for
the experienced programmer, briefly describing, with
syntactic definitions, the basic elements of the language.

6. SHAW, C. J. The JOVIAL primer. TM-555/003/00, Dec.
1961, 216 pp. An official primer, for the programmer, on the
use of the language with syntactic definitions, examples
and exercises.

7. CARTMELL, D. J. The Intermediate Language (IL) table.
TM-555/050/00, Jan. 1962, 15 pp. An official reference manual
for the implementer and maintainer on the Intermediate
Language, in which JOVIAL imperative statements are
encoded between the Generator and Translator portions of
the Q-7, 2000, and 1604 compilers.

8. PERSTEIN, ~./~. H. JOVIAL for the dilettante, :Part 1. TM-
555/061/00, Oct. 1962, 40 pp. An official primer and reference
manual for the nonprofessional programmer describing a
limited subset of JOVIAL and some standard input-output
procedures.

9. KENNEDY, P. A simplified approach to JOVIAL (a training
document). T1V~ 780/000/00, Sept. 1962. 387 pp. An interim
primer and reference manual for the beginning programmer
on the language, its use and the restrictions on its use im~
posed by the various compilers.

10. PERSTEIN, M. I{., CLARK, E., AND HAYES, E. Implementation
of JOVIAL in SSRL. TM-555/200/00 and TM-555/200/OOA,
Dec. 1961 and Mar. 1962, 37 pp. An official reference manual
for the programmer and the implementer/maintainer de-
scribing the language accepted by the 2000 compiler in
terms of its differences from that described in [4].

11. CLARK, E. Phase 1 of the Phileo 2000 JOVIAL translator.
TM-555/211/00, Aug. 1962, 60 pp. An official reference
manual for the maintainer describing the first phase of the
Translator part of the 2000 compiler.

12. Phase 2 of the Phileo 2000 JOVIAL translator. TM-555/212/00,
Aug. 1962, 326 pp. An official reference manual for the main-
tainer on the second (and final) phase of the Translator
part of the 2000 compiler.

13. 1604 JOVIAL compiler, program description of the translator
pass 1. TM-555/302/00, June 1962, 74 pp. An official reference
manual for the maintainer, describing the first pass of the
Translator portion of the 1604 compiler.

14. JACOBY, L. 1604 JOVIAL compiler, JOVIAL programming
guide. TM-WD-555/301/00, Oct. 1962, 90 pp. An official
reference manual for the programmer on the language ac-
cepted by the 1604 compiler.

NELIAC

M. H. I~ALSTEAD*, U.S. N a v y Electronics Labora tory , San Diego, California

The following is an account of current documentation on the
NELIAC Language.

Admini s tra t ive Aspects of the Language

Sponsor. The NnLIAC language has been sponsored pri-
marily by the Navy Electronics Laboratory, with valuable
assistance from the Navy Postgraduate School at Monterey, the
University of California at Berkeley and the Signal Corps at
Fort Hnachuca. In each case, however, it has been more a matter
of the enthusiasm of individual supporters at these installations
than of official sponsorship. Perhaps this factor has contributed
to an increased flexibility of design which has proved advan-
tageous.

Key Dates. Work on the first NELIAC compiler was started
in July, 1958, and completed within the following six months.
Specifications for the language were determined concurrently.

* The opinions and assertions contained herein are the private
ones of the writer, and are not to be construed as official, or as
reflecting the views of the Navy Department or the naval service
at large.

Maintenance. Maintenance of NELIAC compilers is offi-
cially nonexistent. In the view of some nonusers this is a fatal
deficiency, while in the view of some users it is an unqualified
advantage. In order to understand the latter point of view, three
of the special characteristics of NELIAC compilers should be
recognized. First, iNELIAC compilers are self-compilers. Con~
sequently, they are all written in the NELIAC Language.
Second, most ~NELIAC compilers have been kept relatively
short and simple, with very few rules or exceptions to rules.
Third, most NELIAC compilers have become relatively fast,
with compiling speeds of many thousands of computer words per
minute. As a result of the first two factors, a programmer who is
familiar with the Language can read, understand and improve
any given compiler. As a result of the third factor, he can recom-
pile an improved version of a compiler quite cheaply, since some
of them actually recompile in less than one minute.

Machines for Which Implemented. NELIAC compilers have
been implemented for machines shown in Table 1. Most dates are
approximate.

Communicat ions of the ACM 91

