
JOVIAL Session

Chairman: John Goodenough
Speaker: Jules I. Schwartz

PAPER: THE DEVELOPMENT OF JOVIAL

Jules I. Schwartz
Computer Sciences Corp.

1. The Background

1.1. The Environmental and Personnel Setting

The time was late 1958. Computers that those who were involved with the first JOVIAL
project had been using included the JOHNNIAC (built at RAND Corporation), the IBM
AN/FSQ-7 (for SAGE), 701, and 704. A few had worked with board wired calculators.
Some had never programmed. For those using IBM, the 709 was the current machine.
There were various other manufacturers at the time, some of whom do not exist today as
computer manufacturers.

The vacuum tube was still in vogue. Very large memories, either high-speed direct ac-
cess or peripheral storage, didn't exist, except for magnetic tape and drums on some com-
puters.

The first large-scale system which was built and maintained by thousands of people was
in the process of being installed after a considerable amount of effort, expense, and tech-
nological innovation. Called SAGE, it was a large real-time system (very large by 1958
standards). It had, among other things, an interesting and very valuable (even by today's
standards) utility system for assisting in development. This included the Communication
Pool. The Comm Pool's purpose was to permit the sharing of System Data among many
programs by providing a centralized data description. Programming for SAGE had been
done in machine language, as was almost all programming up to that time.

FORTRAN existed and had been in use for a few years, but use of higher level lan-
guages wasn't nearly as common as the use of such languages today. Certainly the major-
ity of people involved in compiler efforts at that time, and in particular the initial JOVIAL
language development and compiler effort, had almost no experience with such activities.

Y

HISTORY OF PROGRAMMING LANGUAGES 369
Copyright © 1981 by the Association for Computing Machinery, Inc.
Permission for reproduction in any form must be obtained from Academic Press, Inc.
ISBN 0-12-745040-8

Jules I. Schwartz

I had had experience with the language and compiler called PACT (Project for Automatic
Coding Techniques) which was developed and described in 1954-1955 (Melahn et al.,
1956). But actually this experience, largely because of the nature of that language and the
computer the first version ran on (the IBM 701), was not particularly valuable for the de-
velopment of languages in the ALGOL class.

One of the significant things that got the JOVIAL language and compiler work started
was an article on Expression Analysis that appeared in the 1958 Communications of the
ACM (Wolpe, 1958). The fact that this was actually quite a revelation to us at that time
seems interesting now. Since that day, of course, there have been many developments in
the parsing of mathematical and logical expressions. However, that article was the first
exposure many of us had to the subject. Some of us who had just finished work on some
other projects (including SAGE) began experimentation with the processing of complex
expressions to produce an intermediate language utilizing the techniques described. There
was no compiler language at the time in our plans, but the idea of being able to understand
and parse complex expressions in itself was of sufficient interest to motivate our efforts.

Another article which was to have great influence on our future development was also
published in the Communications of the ACM in 1958. This was the description of what
was then called the International Algebraic Language (IAL, later called ALGOL), which
had been defined by what became (and for the most part had been) an esteemed group of
computer people (Perlis and Samelson, 1958).

1.2. The Economic and Situation Stimulus

JOVIAL really got its beginning because of the launching by the Air Force of another
large system. This one followed SAGE and it was called the SACCS System. SACCS was
to be developed from scratch. This meant new computers, a new system, new program-
ming techniques, and a new operating (executive) system. All of these had to be developed
before the operational program could be developed. The main computer was the IBM
AN/FSQ-31. Other communications computers (built by ITT) were also utilized.

1.3. The Technical Base for JOVIAL

The two major influences on the language of JOVIAL were, first, the International Alge-
braic Language, which served as the language architectural base, and SAGE, which con-
tributed to the knowledge of many of the problems and ideas needed to solve the large
programming system problem. IAL was.chosen as the base language for several reasons.
One was that at the time it appeared as if it would become the commonly accepted stan-
dard for languages. Secondly, it seemed like a better technical basis for a new language
than FORTRAN, which was the only other possibility. SAGE influenced such matters as
data handling, Communication Pool, and the need for a variety of types of variables (items
or elements). These things were deemed essential to the programming of SACCS and
served as the basis for the first definition of JOVIAL.

1.4. Organizational and People Beginnings

The first actual contribution to the language effort that eventually led to JOVIAL was
the small study which took place at SDC in California in the latter part of 1958. As stated
before, it started with experimentation with the analysis of logical and mathematical ex-

370 Part VII

Paper: The Development of JOVIAL

pressions. And, although the intent was not, at the time, to start developing a language,
that was not completely out of the realm of possibility. (But it should be remembered that
up until then language development was not a wide-spread phenomenon. Within a year or
two, it would become as wide-spread as certain viruses.) Key members of this study were
Erwin Book, Harvey Bratman, and myself. During the latter months of 1958, I was trans-
ferred to New Jersey to work on the SACCS project. This transfer came shortly after the
publication of the description of IAL in the Communications of the ACM that was ref-
erenced above. Based on the experience with SAGE and the reading of the IAL descrip-
tion, I recommended to the SACCS development managers, prior to my transfer, the use
of a higher level language to program the system. To my and a number of other people's
surprise, this recommendation was accepted.

Actually the final recommendation was made in New Jersey, where the SACCS pro-
gram was to be developed. This written recommendation was done with a paper typed on
about seven or eight onion-skin pages around December 1958. The title of it was "OVIAL
- - O u r Version of the International Algebraic Language". It was a brief description of
some of the language concepts which could be implemented in order to develop the
SACCS program. This paper was accepted as the beginning of the project, and the first
work was begun. (I realized some years later that I had not kept that paper. There were
not many copies, and it was never a formally issued document. At the time it seemed like a
relatively small item and not likely to be continued much in the future, at least outside of
the particular SACCS development environment. So the paper didn't seem very important
to me. Now it would be of great interest to me for several reasons. One is its historical
interest to me and perhaps some others. Secondly, I am quite curious what my first ideas
were at that time for the language 1 called OVIAL.)

The project that was formed to develop this language and compilers for it was called the
CUSS (Compiler and Utility System for SACCS) project. It was part of the SACCS Divi-
sion of System Development Corporation which at the time was serving as a subcontrac-
tor to IEC. IEC was part of the ITT complex, formed specifically to develop the SACCS
system.

During this period of the organization and beginning of the JOVIAL effort in New Jer-
sey, the other members of the team who did some of the initial language investigation also
started a project to develop a language. Eventually this language was called CLIP (Com-
piler Language for Information Processing) (Bratman, 1959; Englund and Clark, 1961).
These two activities, the one in New Jersey and the one in California, were rather inde-
pendent efforts, the one in California being somewhat research oriented, while the one in
New Jersey on JOVIAL was operationally or iented--and in fact with a fairly difficult
schedule (which wasn't met).

The people on the CUSS project were primarily implementors. With the exception of
my own experience with the language PACT in 1954 and 1955, nobody else on the project
had any experience with compilers or languages. Some had had experience in the develop-
ment of the SAGE system. For some members of the project, this was their first program-
ming experience. The list of people who served at least sometime on the CUSS project
(and their current, or last known affiliation, where known) follows:

Jules Schwartz
Moe Spierer
Hank Howell

(Manager)
(Manager 709 JOVIAL)(CSC)
(Manager Q-31 JOVIAL)(SDC)

JOVIAL Session 371

Jules I. Schwartz

Paul Mclsaac (Data Vantage)
John Rafferty (IBM)
Patricia Weaver (Unaffiliated)
Emmanuel Hayes (Century Data Systems)
Lynn Shirley (Consultant)
Jack Friedland (Consultant)
Donna Neeb (CSC)
Richard Brewer (TELOS)
Stan Cohn (Unknown)
Mike Denlinger (Unknown)
John Bockhorst (Northrop)
Phil Bartram (Unknown)
Frank Palmer (SDC)
Ed Foote (IBM)
John Dolan (Unknown)
Patricia Metz (Unknown)

Some of the members of the CLIP Project, in addition to Book and Bratman mentioned
previously, were:

Howard Manelowitz
Don Englund
Harold Isbitz
Ellen Clark
Ellis Myer

1.5. History of the Name

Since it has been stated that this paper on JOVIAL will serve as some sort of permanent
record of the language, this seems like the right place to describe the origin of the name.
For many people this seems to be the most important and best known part of the language.
I have over the years met many people who know the name (and that Jules is part of it) but
know nothing about the language. There is a discussion of this in Sammet's book on lan-
guages (Sammet, 1969), but the following expands somewhat on that.

As stated above, the name OVIAL was the one originally recommended, which meant
Our Version of the International Algebraic Language. In the late 1950s, society Wasn't
quite as free thinking as it is today. The name OVIAL seemed to have a connotation rela-
tive to the birth process that did not seem acceptable to some people. So, during a meet-
ing, held approximately January 1959, at which a number of technical issues were dis-
cussed--a meeting attended by members of the staff of the SACCS Division
Management, the CUSS project, and IEC personnel--the subject of an acceptable name
for the language was initiated. Someone in the group, and it's not known by me who it
was, suggested the name JOVIAL. This seemed like the easiest transition from OVIAL.
The question then was the meaning of the " J . " Since I was standing in front of the room

372 Part VII

Paper: The Development of JOVIAL

conducting the meeting at the time, somebody--perhaps somebody other than the one
who suggested JOVIAL--suggested it be called Jules' Own Version of the International
Algebraic Language. This suggestion was met with laughter by the assembled group. The
meeting ended shortly afterward without actually finalizing the discussion of the name.

I left town for a trip soon after. Upon my return I found that the IEC people had put in
the performance contract an obligation for SDC to develop the language called "JOVIAL
(Jules' Own Version of the International Algebraic Language) and compilers for this lan-
guage for the IBM 709 and AN/FSQ-31." The AN/FSQ-31 computer wasn't due to be
installed for quite some time, but the 709 was available and was to be used by user person-
nel for a variety of kinds of work. (I didn't remember who the IEC people were, but was
told in 1976 by Joe Ceran, now of CSC, who was then one of the IEC personnel at the
meeting.) Thus, along with the dates for various deliveries, the name JOVIAL, which in-
cluded my first name, became the official term.

1.6. Objectives

Both compilers were to be delivered to the Strategic Air Command in Omaha and to be
used for a variety of functions. The AN/FSQ-31 Compiler was intended for the program-
ming of the SACCS System, the 709 for a variety of other ongoing SAC functions as well
as the early development of the Q-31 Development System prior to the availability of the
Q-31. The JOVIAL language was to be the same for both the 709 and Q-31. The compilers
were to be programmed in JOVIAL.

1.7. Schedules and Allocated Manpower

I have not been able to find the original contract statements containing the actual sched-
ules that were required. Whatever they were, it is quite certain that they didn't get met. As
I recall, the first version of the compiler for the language was scheduled something like six
months after the beginning of the effort on the IBM 709. Since the AN/FSQ-31 wasn't due
to be installed for quite some time afterwards, that had a much later scheduled delivery.
The number of people on the project soon after it got started was around nine and it grew
to a maximum of about 15 people as the CUSS project continued. The actual first users of
JOVIAL, asidefrom the compiler developers themselves, were to use the first processor,
which was an interpreter, not a compiler, for a very simple subset of the language, which
was available in about 12 months (around January 1960).

People within the SACCS development effort began to use the language for very simple
things (e.g., short subroutines for conversion, calculations, expression analysis). There
were somewhere around eight man-years' effort before the language began to be used.
About 25 man-years of effort were expended before very heavy use of the 709 Compiler
took place. The first programs to make use of the compilers (outside of the compiler build-
ers) were the utility and executive systems that were to be used for the further develop-
ment of the SACCS system. The compiler development itself utilized the early compilers.
Once the earliest subset of the language was available in a machine-coded compiler, the
compiler was immediately reprogrammed in that language. From then on, all versions
were programmed in some version of JOVIAL.

JOVIAL Session 373

Jules I. Schwartz

1.8. Planning and Procedures

Today there are a variety of concepts for orderly development, including structured
programming, structured design, top-down development, continuously evolving specifica-
tions, and in general rigorous planning and disciplined effort. These ideas were unknown
to the original JOVIAL development. The language design actually proceeded largely in
parallel with the implementation of the compilers. There were some basic concepts (e.g.,
IAL, SAGE data definitions) and enough definition to get started with the development,
but a firm baseline never existed, and changes were made almost daily. The early docu-
ments were limited and essentially working papers, subject to considerable change. No
reasonably complete "final" documents were published until the end of the major work.

The main "management technique" used was frequent interaction among all personnel,
including the project leaders, where changes, techniques, and progress were discussed on
an individual and group basis. Although not to be recommended as the major way to run a
project, it seemed to work for this project (where most personnel, although rather inex-
perienced, were quite capable and hard-working). No detailed plans or schedules or sys-
tematic growth from design through testing were ever written or followed. The only real
test case was the compiler itself.

The first official document on JOVIAL was published in April 1959 (Schwartz, 1959a)
and the second in May 1959 (Schwartz, 1959b). These described a number of the concepts
and details of the language. Additional documents came out on the state of the language
over the next six months.

Since one of the major emphases of this language was to be the development of the com-
piler in the language itself, many of the ideas for the language came from those who were
actually in the process of developing parts of the compiler. Changes were suggested by
those people as they programmed.

Many of the important parts of the language were developed in an incredibly short time.
A good example of this is the Data Definition Capability, which was the original heart of
JOVIAL. It was not well defined when we embarked on the development effort. It had to
be developed as the compiler development proceeded. When it was determined that we
couldn't postpone the data definition any longer, it was developed in about 30 minutes.
One other person (H. Howell) and I examined each possible type and structure and devel-
oped the syntax for them immediately (Howell, 1960). Those who know the original JO-
VIAL will readily agree that that part of the language could have been developed in only
30 minutes. Many of the syntactic improvements over the years have been in that area,
although the capability provided has always been well received. Other language features
(such as the CLOSE Routine and Item Switch--discussed below) were decided on and
added in minutes. Rarely did language features require more than a day to determine both
need and structure. STRING Items (discussed below) were one exception, mainly be-
cause of objections by the compiler producers.

1.9. Documentation and Early Versions

As stated previously, the first document describing the language was published in April
1959 (Schwartz, 1959a). It was superseded by another in May (Schwartz, 1959b). The next
two language documents appeared in September (Bockhorst and Reynolds, 1959;

374 Part VII

Paper: The Development of JOVIAL

Schwartz, 1959c). In early 1960 work began in California on JOVIAL itself in addition to
CLIP, so documents began to appear in the spring of 1960 (Shaw, 1960a) on the language
JOVIAL and some plans for JOVIAL on computers other than those being developed in
New Jersey. However, those versions of JOVIAL were not identical to the East Coast
version.

The early use of the interpreter (for language version J0) occurred in January of 1960,
about a year after the system was started. The first compiler for the language version
called J - 1 (J minus one) was available for the compiler developers in the fall of 1959.
That compiler was used to program the next version of the language--called J l - -which
was available in the winter of 1960. This was used to produce the J2 version. The J2 ver,
sion was delivered in March of 1961 (Schwartz and Howell, 1961). It ran on the IBM 7090,
which had replaced the 709 by that time.

The AN/FSQ-31 version of J2 was delivered some months later. Usage of the 709 ver-
sion really began back with the Jl version of the compiler for the development of utility
systems. In Omaha, at SAC Headquarters, it began with the delivery of the 709 J2 version
in March of 1961.

What eventually became a standard was the J3 version of JOVIAL. That was originally
described by Chris Shaw (Shaw, 1960b, 1964). This version was developed in California.
Chris Shaw was responsible for most of the early formal descriptions of JOVIAL.

The first formal presentation on JOVIAL was given at the International Symposium
on Symbolic Languages in March of 1962 (Schwartz, 1962).

2. Rationale of the Content of the Language

2.1. Language Objectives

The actual major objective of the original JOVIAL was a language for programming
large systems, although it has typically been referred to as a Command and Control Lan-
guage. These were systems which required the contributions of many people. Also, they
would not be constrained to utilize limited sections or instructions of the computer, nor to
work with strictly computational problems. These properties certainly seem to serve the
Command and Control problem, but serve equally well the programming of a compiler or
operating system.

A natural result of this basic objective was the requirement for flexibility. The language
had to be able to handle a variety of situations. The necessity for people to use machine
language often would not be considered satisfactory, even in those cases in which machine
language had always been assumed necessary in the past.

Another language objective was a reasonable level of machine independence. The fact
that two compilers for two totally different computers was the original contractual objec-
tive of the language helped to achieve this latter objective (Wilkerson, 1961).

2.2. Things Which Were Pretty Much Ignored in the Language

One thing which was given little attention until the first versions of the compiler began
. \

to be used to compile themselves was compiler speed. Capablhtles were added to the lan-
guage independent of their effects on compilation speed. This was not true of some other

JOVIAL Session 375

Jules I. Schwartz

languages being developed at that time, one of which was NELIAC, which has similar
overall objectives but tended to emphasize compilation speed to a much greater extent.

Another thing which was ignored was language elegance. An example of this was given
previously in the discussion of how the Data Description part of the language was devel-
oped. Almost everyone on the project had no foundation in language design, including the
managers. Consequently, although the example of IAL existed for a relatively formal de-
scription of a language, the formality of JOVIAL tended to be ignored. This could not
have been completely bad, I think. It certainly had its weak points, but in fact JOVIAL
actually turned out to be very natural for people to use. Many language features were de-
veloped as actual needs were recognized, leading to useful, if inelegant, results. The Data
Definition area easily fits here. It contained quite a bit of flexibility and power, along with
reasonable programming transparency, but syntactically was a string of hard-to-memorize
characters required in specific sequence. Long string constants were defined in a very
awkward way (e.g., 18H (THIS IS AN EXAMPLE)), requiring considerable counting and
recounting for changing. The use of the symbols "($" and "$)" for liberally used brackets
was a bad choice. Imprecision in semantic definitions did not help in making all versions
totally compatible, even when there were attempts at compatibility.

Another thing which was ignored was standardization with other efforts. Even other
efforts within SDC at that time were ignored--partially because of the need for (if not the
achievement of) meeting of schedules on the SACCS effort. It was also partially because
of the physical distance between the JOVIAL efforts (for much of the time period of the
Project, the coast-to-coast trip was by propeller-driven aircraft) and the not unusual ten-
dency for people to ignore other people's work. And the initial inspiration of IAL didn't
lead to continued following of it. No further attention was paid to IAL (or ALGOL, as it
was eventually called) after the initial design.

2.3. Things Excluded in the Language or Given Little Attention

One of the major initial exclusions of the language was input-output. This can be at-
tributed to SAGE. In the SAGE system no program except the central control program did
any input-output. Consequently, it was felt that the great majority of programs would not
require input-output for the SACCS System. JOVIAL thus did not include it initially.
Eventually, subroutines were written and called Through Procedures (Bockhorst, 1961).
One of the original omissions (and still omitted) is interrupt handling or any other ob-
viously real-time instruction or capability. Instead, JOVIAL gave access to parts of the
machine through various operations and modifiers. These included access to parts of
words in arbitrary groupings of bits or bytes, which allowed one to inspect interrupt or
message registers, therefore obviating the absolute need for more direct commands in this
area. In the initial versions of the language no real debugging facilities were added. But the
Communications Pool provided capability for supporting systems to give considerable de-
bugging capability at both the individual program and system level. Also, no data alloca-
tion statements were put into the initial version of the language.

One thing which was allowed in the language but somewhat ignored in the compiler
were multidimensional arrays. The language provided for them, but the efficiency of han-
dling anything more than a single subscripted variable was not stressed in the compiler.

376 Part VII

Paper: The Development of JOVIAL

(However, single-subscripting was handled quite well.) This resulted in relatively little in-
terest in JOVIAL for programming multidimensional matrix problems. It was felt, in justi-
fication of the latter, that the use of multidimensional arrays for the kinds of systems for
which JOVIAL was to be used would be minimal.

2.4. Major Language Features

The basis of JOVIAL taken from IAL included such things as compound statements.
The use and syntax of compound statements was the same as defined in IAL. The major
operators were generally the same, including a switch which was similar to the IAL
switch. The statement structure, labelling, and ending were the same. Procedure calls, at
least initially, were similar to IAL's, and the general loop structure and FOR statements
were similar.

The biggest departure (and the original one) from IAL was in the Data Definition area.
Where IAL provided primarily for floating point arrays and some integer values, the JO-
VIAL language included at the lowest data description level entities which were called
" i tems" (based on the SAGE term) which had a variety of types. The types included float-
ing point, fixed point (where the scaling was specified to be a part of the item), Hollerith
and Standard Transmission Code character strings (in the initial version, these were lim-
ited to reside within one computer word), and status valued items. These latter repre-
sented with symbolic values finite states such as GOOD, FAIR, and POOR, or ON and
OFF, or any predefined set of values. In the JOVIAL program these are referred to by the
symbolic names (e.g., IF WEATHER = V(CLOUDY)), although internally they are as-
signed integer values by the compiler.

Items were assigned to the next higher level of hierarchy, which was an "en t ry" in JO-
VIAL. Each entry contained all of the elements or the items that were necessary to de-
scribe particular objects (such as Aircraft and Persons). All entries for an object were con-
tained in a " table" , the top level of the hierarchy.

Tables could take on several forms. These were serial, parallel, and variable.
In the serial table, all words containing an entry were contiguous. As an example, a

serial table containing the items A, B, C, D, E, and F in a three-word entry would appear
as follows:

Entry 0 1

Entry 1 I

A I B

O L D I E
F

A I B
OIDI E

F

A parallel table containing the same items could appear as in the following:

JOVIAL Session 377

Jules I. Schwartz

Entry 0 A
Entry 1 A
Entry 2 A

Entry 0 C D
Entry 1 C D
Entry 2 C D

Entry 0 } F
Entry 1 F
Entry 2 F

B
B
B

Indexing in both cases with J O V I A L was independent of the entry size or paral lel /serial
format. For example , the sequence:

FOR I = O, i, i05
Di(I) = 55

would set D1 in the first 11 entries to the value 5 for either of the above (and would work in
the serial case if fewer or more words were in an entry).

It was also possible to utilize a variable format which might have a different s t ructure
for each entry, as follows:

Entry 0 {

Entry 1 {

Entry 2 {

[A] F B [

C D E
F

al IE

In the variable case, there would normally be some i tem in each entry (say A1 in this exam-
ple) which would provide assistance in stepping f rom one entry to the next. This was not
done automatically by the compiler. A sequence of the following kind would be possible:

FOR I = 05
BEGIN Xl. IF Ai(SIS) = 35 Di(SIS) = 55

I = I + Ai(I) $
IF Ai(I) = 05 STOP $
GOT0 Xi$

END

378 Part VII

Paper: The Development of JOVIAL

This sequence would set all existing Dls to 5 until the end of the table, where only three
word entries contained D1, and the end was signaled by an A1 equal to 0.

Another data type was added to the language--much to my chagrin because of its awk-
wardness -dur ing its early implementation. This was called STRING and it provided for
a rather complex combination of character string elements in a variety of formats within
an entry. This went beyond the original concept of items and character string items. (This
was one of the only "committee type" additions to the early language.)

These data types and data structures provided for a comprehensive capability for access
to almost any configuration of logical or arithmetic values. Items could be either full or
part words. (No item could be more than one word. This was changed in later versions of
the language.) Also, access to parts of items (discussed below) was provided. The point of
this was not only the definition of data structures. It was to provide it in such a way that
the programmer would not need to know where the item was placed within a word, which
word in an entry it was in, and in most cases the size of the items and other facts about it.
In some cases, the type itself did not have to be known.

Thus, the JOVIAL program could remain largely unaffected by changes ifi the data de-
scription. That was a crucial part of the language. Also, in some ways this capability was
used to show that in fact JOVIAL would produce more efficient code for programming
systems than the machine language as used for SAGE. The following type of example was
used as an illustration.

In SAGE, "pseudo-instructions" (macros) were used in machine language when refer-
ring to Communication Pool items. The purpose was to prevent any assumptions about the
size or position of items by programmers while producing reasonably good code for spe-
cific situations. (Programs had to be reassembled when the Communication Pool
changed.) Four such pseudo instructions were:

ETR Perform an AND to the Accumulator with a mask the size and position of the
item.

POS Shift the accumulator so that the least significant bit of the item is in the least
significant bit of the accumulator.

RES Shift the accumulator left so that the least significant bit of the accumulator
moves to the least significant bit position of the item.

DEP Deposit into the word containing the item from the proper bit positions of the
accumulator.

At least one instruction was generated for each pseudo-instruction.
Thus, to add two items and store in a third, the following sequence had to be used.

CLA ITEM1
ETR ITEM1
POS ITEM1
STO TEMP
CLA ITEM2
ETR ITEM2
POS ITEM2
ADD TEMP
RES ITEM3
DEP ITEM3

Move ITEM1 to accumulator

Save ITEM 1
Move ITEM2 to accoumulator

Add the two items

JOVIAL Session 379

Jules I. Schwar t z

This sequence generated a minimum of 10 instructions (on the SAGE computer). In JO-
VIAL, the same operation would appear in the following statement:

ITEM3 = ITEMi + ITEM2$

Depending on the definitions of the items, this statement could generate as few as three
instructions because of the capability of the compiler to analyze the entire statement.

The Communication Pool is essentially the Data Definition for all items and tables to be
used by the subprograms of the system. In some versions of JOVIAL compilers the Com-
munication Pool is syntactically identical to the Data Definition section within a program.
In other versions, however , the Communicat ion Pool actually has a different format from
the Data Definitions and has more information than the JOVIAL programs themselves
permit. Such things as allocation information can be put into the Communication Pool for
both programs and data. The Communicat ion Pool is used for more than compiling pro-
grams. It can also be used for such things as simulating data for testing. It allows for the
entry of the item name and its value without the programmer having to specify where to
place the value or its internal form. The Communication Pool also can serve as a tool for
data reduction after tests are run. This is because the Data Reduction Program can exam-
ine the information as it exists after a run and use the Communication Pool definition to
translate it to a readable form for the user or the tester (Tjomsland, 1960).

Another significant feature of the JOVIAL language from its earliest version was the
provision for access to bits and bytes of items. Modifiers for this provided access to a
variable number of bits or bytes of the item, starting from any position within the item.
The expressions are BIT ($i,j $)(itern) and BYTE(Si , j $)(itern), where i is the starting bit or
byte and j the number of them. These provide a good deal of power. However , the effi-
ciency of this form when i a n d j are both variable is at best adequate, but normally much
worse. The simpler expression where only one of a constant number of bits or bytes was
referenced can produce more efficient code.

Access to entries of tables also was given in JOVIAL. Thus, one can move whole en-
tries other than on an item-by-item basis. A modifier was provided which provided access
to the count of entries in a table for use or modification. For example, the statement
N E N T (T A B L E) = N E N T (T A B L E) + 15 increments the count of entries in T A B L E .

Some other rather unique forms were added to the early JOVIAL to resolve certain
problems. One was the CLOSE Statement. This provided for a closed subroutine with no
entrance or exit parameters, but it maintained and could use the value of a subscript when
it was within its domain of definition. The LOC modifier was added. This modifier, which
stands fo r" (abso lu te) core locat ion," provided the capability of getting to the location of a
part of memory. The expression L O C (T A B L E or ITEM) enabled one to reference relocat-
able information. Today, pointers can be used for this without some of the awkwardness
and inadequacy available only with LOC. Another kind of flexibility which was provided
(and which created problems for compiler writers) was the fact that the step factor in the
FOR statement (FOR I -- A, B, C; with B being the increment or the decrement for I) was
allowed to be a variable. It could be either negative or positive, and in fact during the loop
was allowed to change sign. Of course, that was not the normal case, but the need for
providing for it in the compiler was one of those things which created some of the early
compiler problems in achieving efficiency and speed.

N E N T , BIT, BYTE, LOC, ENT, MANT, and other terms are examples of functional

380 Part VII

Paper: The Development of JOVIAL

modifiers which were added during the early development of JOVIAL. These were uti-
lized to satisfy a number of the problems which required language solutions. They can
normally be used in "right" or "left side" expressions. For example, the statement

BIT(SIS) (ITEM) = i$

causes the Ith bit of ITEM to be set to 1. (When the number of bits or bytes is 1, it doesn't
have to be specified.)

Although the purpos e of the language was to provide for machine oriented programming
without the use of machine language, the originators were realistic enough to know that
there would be a requirement for the use of machine language, at least occasionally. Par-
ticularly in the early versions, at a minimum, access to input and output required some
n~achine language operations.

Access to machine language is easy in JOVIAL. The operator DIRECT signals the be-
ginning and the operator JOVIAL the end of machine language. Within the machine lan-
guage, it was expected that users would need access to JOVIAL (and Comm Pool) defined
items and tables. Thus, an operator was defined to give access to these from within the
machine language part of the program. This operator was called ASSIGN and it permitted
one to place an item in the accumulator or the accumulator to an item. The compiler auto-
matically took care of the shifting of the item as it would in normal JOVIAL statements.
(The scaling of the accumulator was specified by the programmer in the ASSIGN state-
ment.) Actually, the ASSIGN combined the functions available in the pseudo-instructions
of SAGE shown above. Another capability of interest was called the .Item Switch. A Nu-
meric switch is provided as in IAL for a series of branches based on normally continuous
integer values of an item. But this was not sufficient for things like status items which
were, first of all, symbolically named where users could not assume values for the names.
Also, the Item Switch could be used for other item types such as character strings, which
can have quite random values.

2.5. Language Design Methodology

The primary technical driving forces for JOVIAL are quite clear. Given that the basic
structure would be that of IAL, the major question was what would have helped in the
programming of SAGE, since it was assumed that the programming of SACCS would have
a similar set of problems. These included the use of a large number of people, different
types of data, more logic operations than calculation, and the need for item packaging to
save space and access certain machine registers. For example on the SAGE computer
there was no floating point arithmetic. Everything was fixed point. So, although the
SACCS computer had floating point, it was assumed that fixed point arithmetic would be
useful for it as well. Other major influences were those things found necessary to program
the compiler itself. That was the source of most of the early modifications to the language.
Other ideas came from early users who were beginning to use the language. They dis-
cussed and wrote about problems that they had found in using the language.

It would be quite an extreme exaggeration to say that a strict methodology or control
system was used in developing the JOVIAL language. As stated earlier, much of the de-
velopment came from innovation when needs were recognized. Most problems were re-
solved by adding to or modifying the language. Many problem resolutions had as a goal the

JOVIAL Session 381

Jules I. Schwartz

obviation of the need to resort to machine language. This mode of working led to some
extremely fast decisions, some awkward syntax, some difficulties for the compilers, but a
quite practical and usuable language.

The basic approach was essentially as described before. The base language was chosen,
and it was initially implemented in a variety of processors. Compiler work was begun with
a minimal form of the language. Data Definitions were added for the total range of data
that was to be needed both for the compiler and for the application systems. As time went
on, modifiers and other forms were added as need arose. The language continued to
evolve for some years thereafter, both within the original effort and in California and other
places as the language was used elsewhere.

3. A Posteriori Evaluation

It is always difficult to provide an accurate objective accou.nt of a product's success or
failure (even when one's name isn't directly involved). This is true for many reasons, in-
cluding the fact that nothing is ever absolutely good or bad. But the following attempts to
present a reasonable assessment of JOVIAL's effect on the world.

3.1. Meeting of Objectives

In general, it seems that JOVIAL met its goals. There have been a large number of sys-
tems of many types produced using JOVIAL. Most of these have been for areas which up
until the time when JOVIAL was developed were not thought programmable in other than
machine language.

For the first decade of use there were really never very many serious complaints about
the language capability (after the first year or two of development). The difficulties and
complaints tended to be largely the result of early implementations. The early compilers
were, to put it mildly, not very reliable. They were extremely slow. The first compiler on
the 709 took eight hours to compile itself. In those days the probability that one could
compile for eight straight hours and get a properly punched binary deck for output was
less than 0.5. Of course this slowness was also recognized when compiling other sizeable
programs. This, combined with the fact that the compiler might produce erroneous re-
suits, could dampen even the most ardent enthusiasm. But even with these kinds of prob-
lems, there was little drive on the part of early users to disassociate themselves from the
use of the language. Rather strong statements were used to point out compiler problems,
but once many of the early difficulties were overcome with the compiler the language was
considered quitesatisfactory.

Another interesting fact was pointed out by someone responsible for teaching early
users how to use the language (Rizzo, 1962). The initial capability didn't provide much
tutorial assistance, so that learning of the language was not easy and the documentation,
although it improved with time, wasn't the best for beginners. But those who were respon-
sible for training and criticized this lack of good teaching aids also pointed out that once
people got over the hurdle of learning JOVIAL there were very few questions and very
few problems in using what they learned. Most people found the language relatively easy
to retain and use for everyday work.

The fact that the SAC organization under Colonel William Shirey in Omaha (the first
non-SDC users) continued to use the language on a fairly heavy basis, despite some early

382 Part VII

Paper: The Development of JOVIAL

tough going, was critical in keeping the JOVIAL language alive. This led to an eventual
spread of use in the Air Force. It is also true that its use spread without support from any
major manufacturer. Almost all the JOVIAL compilers that were produced until the mid-
late 1960s were done under contract to a government agency for a specific system. Manu-
facturers were evolving COBOL and FORTRAN at that time. Of course a number of other
languages were also in development in the period from 1960 to 1965, such as MAD, NEL-
IAC, ALGOL 60, SNOBOL, JOSS, and hundreds of others. But JOVIAL maintained its
progress during that period.

The objective of moving JOVIAL-coded programs and the compilers from computer to
computer was partially met. The initial effort in New Jersey provided compilers for two
computers for the same language almost simultaneously. When one moved a program
from a computer with six characters in a word to another which had eight-character
words, the fact that the early compilers didn't provide for character string items of
more than one word in length certainly made the portability imperfect. Similar results
occurred because of the restrictions on scaled fixed point items. However, considering the
type of programming which was permitted (much more variable than possible with
FORTRAN), portability was reasonable. I 'm not sure that it had too much effect on the
ultimate success or failure of the language. Most users tended to program for a machine and
stay with it on that machine. It is true that very few JOVIAL compilers handled the same
version of the language. After the J2 effort, most others produced different subsets
of J3.

The objectives for JOVIAL that were set originally were not changed. The flexibility
and power of the language continued to be objectives throughout and were reasonably
well satisfied. In fact, as people developed the language further there were actually some
restrictions put in that did not exist in the early version. These included restriction to
equal types for formal and entrance parameters of procedures. Restrictions on the step
factor of the FOR Statement were implemented in some later versions.

3.2. Contributions of the Language

It is hard to say what contribution to programming technology in general or to other
languages JOVIAL actually made.

There are a number of languages which contain some of the capabilities or characteris-
tics of JOVIAL. Most often they are in a different format and except for certain situations
it's not possible to directly relate that language to JOVIAL itself. A good example of this is
PL/I . JOVIAL knowledgeable reviewers of PL/ I when it was first developed pointed out
that many of the characteristics of JOVIAL had been adopted in PL/I . However, there's
no official acknowledgement of the use of JOVIAL as one of the bases for PL/ I to my
knowledge.

Nevertheless JOVIAL had things to offer and, whether directly or indirectly, should
have contributed something to the technology. It was one of the first system programming
languages and helped show that languages were capable of serving that purpose. It was
one of the early, if not the earliest, compilers coded completely in its own language. It
provided for data structures, types, and operations that permitted programming outside the
realm of the strictly computational. It was even possible to use it for commercial program-
ming. Although certain problems occurred in the early versions with rounding and report
formatting, JOVIAL was used for the programming of a wide variety of systems. It pro-

JOVIAL Session 383

Jules I. Schwartz

vided for access to subparts of elements and words, which in early computers with small
memories was very important, and is still valuable today for a variety of things. It was a
language really aimed at flexibility and nonconstraint on the program. These were all con-
tributions and valuable factors for the people who used it. They have helped maintain the
language's use for a lengthy period, although the initial intent of the language was actually
intended for only one specific set of users and a single system.

There have been quite a few versions of JOVIAL. I don't know them all and within each
version there were variations with different implementations, so that there is unlikely to
be a comprehensive list of all the capabilities that actually were in each version. A list of
the names for different varieties or versions of JOVIAL includes: J0 (Olson et al. , 1960),
J - l , J1, J2 (Schwartz and Howell, 1961), J3 (Shaw, 1961, 1964), and J3B (Department of
the Air Force, 1967). This was the original Air Force standard version, J3 being the ver-
sion developed in California in parallel with the development of J2 in New Jersey for the
SACCS contract. Other versions included J4, J5, and J5.2, the latter two being outgrowths
of a version called Basic JOVIAL (Perstein, 1968), which was actually an attempt to pro-
vide a working version with a fast compiler. (For example, it didn't include fixed point
arithmetic). This was developed because of the criticism of the slowness of the compiler.
Basic JOVIAL was itself derived from an experimental version called JX2 (developed in
1961), which rivaled other compilers in speed but did not have enough language. When
timesharing came in the early 1960s, another interpretive version of a subset of JOVIAL
was produced. It had language capability similar to JOSS (if not the elegance) in that it
provided for arithmetic, formatting, simple terminal input-output, and other capabilities
useful for interactive users. That was a version of JOVIAL which had quite different ob-
jectives than the original system programming language. This version was called TINT
and was described in a paper at the 1965 IFIP Conference (Schwartz, 1965).

Although the preceding references to the various versions of JOVIAL may appear
rather mind-boggling, it is actually probably an understatement. With the exception of
some Air Force sponsored versions of J3, little control was exercised over the language.
So, for reasons of implementation pressure, computer idiosyncrasies, particular needs or
lack of needs, and individual choice, one will note differences within "versions" as well as
among different ones. New versions were sometimes labeled after compilers were devel-
oped. However, the major aspects generally were implemented, and there was "near-
compatibility" in most versions.

JOVIAL has served as a direct contributor to at least several languages. One language
which is in use today in Europe is CORAL (Woodward and Wetherall, 1970). Many of the
initial concepts for CORAL were taken from the JOVIAL of the early 1960s. A language
which has been used by Computer Sciences Corporation for much of its systems program-
ming work is called SYMPL. It consists of elements of JOVIAL and FORTRAN and some
other properties developed at CSC. SPL, a Space Programming Language which was de-
veloped by the Air Force Space Command some years ago, was based to a large extent on
the experience with JOVIAL. Others, such as CMS II used by the Navy and perhaps PL/I
as stated before, have had either a direct or some indirect relationship with JOVIAL.

In the early 1970s a group was formed by the Air Staff under Leo Berger to produce a
new standard version of JOVIAL. They developed a specification for a language called J73
(Department of Defense, date unknown). There have been several implementations of it,
and it is being used on a variety of computers at the present time. This is the first version
which, by design, is not upward-compatible with other versions. Some version of JO-

384 Part VII

Paper: The Development of JOVIAL

VIAL, or several versions of JOVIAL in some cases, have existed on just about every
major manufacturer's computers and some less well-known computers over the years. A
minimum of ten companies have produced JOVIAL compilers.

JOVIAL was adopted in the mid-1960s as a standard language (Department of the Air
Force, 1967) for the Air Force and that's where most of its use has been. It also was for a
short period of time adoptedby one part of the Navy (NAVCOSSAT). This adaptation of
JOVIAL for the Navy was done on the basis of a comparative study comparing JOVIAL,
a number of other languages, and machine language. However, there were a number of
criticisms of the particular study, and the future of JOVIAL in the Navy became some-
what tenuous. (An interesting sidelight to that particular study was the fact that the first
time it was run the machine language version of the program was assumed to be the base
with which to compare other languages' efficiency and size. But the machine language
program actually came out worse in these respects than some of the higher level languages
involved. This caused the people responsible for the study to rerun it. Machine language
fared better the second time.)

In 1961, members of the RAND Corporation conducted a study to compare JOVIAL
with FORTRAN to see if JOVIAL or any language really merited being used as a Com-
mand and Control language at the time. The actual test consisted of seven problems, five
of which utilized multidimensional arrays within several statements. The basis of the test
was to see how well these would be compiled. FORTRAN won handsomely on all of the
array problems with respect to generated code.

JOVIAL compared favorably on the nonmatrix problems, JOVIAL was much worse in
compilation time, which didn't help its cause. In any case, based on that experiment,
which seemed inadequate for the choosing of a Command and Control language, the
people doing the study recommended that no language be adopted for Command and Con-
trol use at that time. The main thing proven by some of this is that we haven't mastered the
art of comparative studies. The conclusion may have been right, but it always seemed to
me that if so, it was in spite of the method used to reach it (Haverty and Patrick, 1963).

JOVIAL has been used by a variety of services and some other organizations, including
the FAA, the Air Force (of course), the Navy (for some things and a variety of research
and system projects).

Since the earliest versions of JOVIAL, the most significant changes that have been
added are in the area of input-output. There are now a number of input-output com-
mands in the language. Dynamic control of data allocation has been entered through data
structure definitions, and pointers have been added in J73. Some syntax improvements
have been provided in the language, particularly in the data definition area and in some of
the modifiers. Some types have been purified to a certain extent. Originally, arrays and
tables were separate. For example, when one defined an array he couldn't include items,
and arrays couldn't be part of tables. That has been changed. There are a number of other
changes which have taken place. Many of the key ones, of course, are being implemented
in J73.

3.3 Mistakes and Omissions

The first major omission which contrained the use of JOVIAL considerably was its lack
of input-output. This of course was actually a planned omission from the beginning. But
its use for systems other than large systems where it is assumed that just one or several

JOVIAL Session 385

Jules I. Schwartz

routines would service all input-output is of course diminished by this lack of input-out-
put for individual programs. The lack of formatting and the ability to output or input by
format or other convenient means (which is still an official omission from the language)
has kept the language at arms length for many applications. Actually formatting has been
implemented in at least a few versions. One which included formatting was the interpre-
tive version called TINT (Schwartz, 1965). That was essential for it to operate as an inter-
active user oriented language. JOVIAL syntax awkwardness in certain areas probably
didn't affect its use from the point of view of those who started using the language but
helped keep certain communities uninterested in the language. The early implementation
problems, particularly the speed and size of the initial compilers, which were 50,000 or
more instructions, helped keep down any overwhelming use that might have occurred oth-
erwise. To a great extent these implementation problems were due to the fact that features
which made compiling difficult were sometimes added with reckless abandon. And, of
course, the lack of efficiency in certain areas--particularly multidimensional
arrays--restricted its application by programs which required them. It is unlikely that
much interest would have been generated in JOVIAL for programming outside of its major
areas of current use even if it had been much improved in these areas. Other languages
such as FORTRAN and COBOL are accepted for programming these problems.

3.4. Problems and Trade-Offs

The hurry-up mode in the early versions created incompatibilities among different ver-
sions, particularly those separated geographically and those developed by different
groups. And, of course, this detracted from portability among versions. The overall em-
phasis was for flexibility and generality of the language, which in turn led to a variety of
implementation problems. This caused reliability, speed, and code generation difficulties.
But the trade-off was made. There is a question whether in the long run it was a bad
trade-off. The flexibility and the generality were probably worth some initial difficulties.
Time for implementation was always a problem in this development. The language was
defined rapidly, and the compilers were written quickly. There wasn't a lot of planning by
the individuals and the managers concerned, but I think to some extent that this hurrying
was as much a question of personalities as pressure. The people who were involved liked
to do things in a hurry, were not very academically or research oriented, and they liked to
see things run (typical system programmers). So I sometimes wonder if there hadn't been
imposed deadlines (which in many cases of course were missed anyway) whether the
people would have done a significantly more studious effort. (I'm certain that the tendency
to "produce" rather than "s tudy" is true for me, who was responsible through J2.)

4. Implications for Current and Future Language

Certainly, whether or not directly a stimulus, the work that went on in the early JO-
VIAL is now represented in a variety of ways. System programming languages are quite
common. Complex data definition capability in a variety of languages certainly is not un-
usual today. Much of the system programming language work today is based to a large
extent on PL/I , but it is also based on other languages as well. This concept within JO-
VIAL did prove feasible and valuable.

The original JOVIAL work was not a committee effort. There were relatively few

386 Part VII

Paper: The Development of JOVIAL

people who actually helped design the language. Most of the people involved hadn ' t done
this kind of work before and were basically implementors, or programmers. The fact that
it wasn ' t a committee effort in many ways created the positive characteristics of the lan-
guage as well as some of its negative ones. The language did maintain its original objec-
tives, and its major characteristics remained fairly consistent throughout its early develop-
ment. Perhaps the influence of others who had some better or more experience in this area
could have been valuable, but it is also quite possible that with a variety of other contribu-
tors, it would have lost some of its flavor. For initial efforts on language design, an individ-
ual driving effort is probably a good idea.

I 'm not certain what the future of JOVIAL is. The Department of Defense is trying to
~standardize once and for all on a language. This is one of those efforts which is going to
take a long time to resolve. Meanwhile JOVIAL itself is being implemented and used for a
number of projects. It has of course much more competition now in the areas for which it
was intended. Also, competit ion from entrenched languages like COBOL and FORTRAN
for things outside of what are typically JOVIAL applications, or considered to be JOVIAL
applications, is much too intense to assume that it'll ever go beyond that. It 's probably
more likely that it will continue to have about the same percentage of use in the world as it
has had until now. Hopefully, it will have influenced the Department of Defense standard
language [Ada] which is eventually chosen to some degree.

REFERENCES

Bockhorst, J. (1961). JOVIAL I / 0 (7090). Paramus, New Jersey: System Development Corporation SDC Rep.
FN-L0-34-3, S1.

Bockhorst, J., and Reynolds, J. (1959). Introduction to "JOVIAL" Coding. Lodi, New Jersey: System Develop-
ment Corporation SDC Rep. FN-L0-139.

Bratman, H. (1959). Project CLIP. Santa Monica, California: System Development Corporation SDC Rep. SP-
106.

Department of Defense (date unknown). Military Standard, JOVIAL (J73/I), MIL-STD-1589.
Department of the Air Force (1967). Standard Computer Language for Air Force Command and Control Sys-

tems. Washington, D.C.: Air Force Manual AFM 100-24.
Englund, D., and Clark, E. (1961) January. CLIP Translator. Communications of the ACM 4(1): 19-22.
Haverty, J. P., and Patrick, R. L. (1963). Programming Languages and Standardization in Command and Con-

trol. Santa Monica, California: Rand Corporation Memo RM-3447-PR and DDC Doc. AD-296 046.
Howell, H. L. (1960). JOVIAL--Variable Definition For the 709 Translator. Paramus, New Jersey: System De-

velopment Corporation SDC Rep. FN-L0-34-2-52.
Kennedy, P. R. (1962). A Simplified Approach to JOVIAL. Santa Monica, California: System Development Cor-

poration SDC Rep. TM-555/063/00.
Melahn, W. S., et al. (1956) October. PACT I (A series of 7 papers). Journal o f the Association for Computing

Machinery 3(4): 266-313.
Olson, W. J., Petersen, K. E., and Schwartz, J. I. (1960). JOVIAL and its Interpreter, a Higher Level Program-

ming Language and an Interpretive Technique for Checkout. Paramus, New Jersey: System Development
Corporation SDC Paper SP-165.

Perlis, A. J., and Samelson, K. (1958) December. Preliminary Report--International Algebraic Language.
Communications of the ACM 1(12): 8-22.

Perstein, M. H. (1968). Grammar and Lexicon for Basic JOVIAL. Santa Monica, California: System Develop-
ment Corporation SDC Rep. TM-555/O5/O1A.

Rizzo, M. (1962). Critique of the JOVIAL User's Manual, FN-LO-34-3. Paramus, New Jersey: System Develop-
ment Corporation SDC (internal use only) Rep. N-L0-2109/000/00.

Sammet, J. (1969). Programming Languages: History and Fundamentals. Englewood Cliffs, New Jersey: Pren-
tice-Hall.

JOVIAL Session 387

Jules I. Schwartz

Schwartz, J. I. (1959a). Preliminary Report on JOVIAL. Lodi, New Jersey: System Development Corporation
SDC Rep. FN-L0-34.

Schwartz, J. I. (1959b). JOVIAL--Report #2. Lodi, New Jersey: System Development Corporation SDC Rep.
FN-L0-34-1.

Schwartz, J. I. (1959c). JOVIAL--Primer #1. Lodi, New Jersey: System Development Corporation SDC Rep.
FN-L0-154.

Schwartz, J. I. (1960a). JOVIAL--A Description of the Language. Paramus, New Jersey: System Development
Corporation SDC Rep. FN-L0-34-2.

Schwartz, J. I. (1960b). JOVIAL--Clarifications and Corrections for FN-LO-34-2. Paramus, New Jersey: Sys-
tem Development Corporation SDC Rep. FN-L0-34-2-51.

Schwartz, J. I. (1962). JOVIAL: A General Algorithmic Language. In Proceedings of the Symposium on Sym-
bolic Languages in Data Processing, pp. 481-493. New York: Gordon & Breach.

Schwartz, J. I. (1965). Programming Languages For On-Line Computing. In Proceedings of the IFIP Congress,
Vol. 2, pp. 546-547. Washington, D.C.: Spartan Books.

Schwartz, J. I., and Howell, H. L. (1961). The JOVIAL (J-2) Language for the 7090 Computer. Santa Monica,
California: System Development Corporation SDC Rep. FN-6223/100/00.

Shaw, C. J, (1960a). The Compleat JOVIAL Grammar. Santa Monica, California: System Development Cor-
poration SDC Rep. FN-4178.

Shaw, C. J. (1960b). The JOVIAL Lexicon: A Brief Semantic Description. Santa Monica, California: System
Development Corporation SDC Rep. FN-4178, 51.

Shaw, C. J. (1960c). Computers, Programming Languages and JOVIAL. Santa Monica, California: System De-
velopment Corporation SDC Rep. TM-555, Part 1.

Shaw, C. J. (1961). The JOVIAL Manual, Part 3, The JOVIAL Primer. Santa Monica, California: System Devel-
opment Corporation SDC Rep. TM-555/003/00.

Shaw, C. J. (1964). Part 2, The JOVIAL Grammar and Lexicon. Santa Monica, California: System Development
Corporation SDC Rep. TM-555/002/02.

Tjomsland, I. A. (1960). The 709 JOVIAL Compool. Paramus, New Jersey: System Development Corporation
SDC Rep. FN-3836.

Wilkerson, M. (1961). JOVIAL User's Manual. Subtitled JOVIAL Language Specifications for 7090 and MC
Compilers. Paramus, New Jersey: System Development Corporation SDC Rep. FN-L0-34-3.

Wolpe, H. (1958) March. Algorithm for Analyzing Logical Statements to Produce Truth Function Table. Com-
munications of the ACM 1(3): 4-13.

Woodward, P. M., and Wetherall, P. R. (1970). The Official Definition of CORAL 66. London: HM Stationery
Office.

T R A N S C R I P T OF P R E S E N T A T I O N

JOHN GOODENOUGH: The next paper is by Jules Schwartz on the JOVIAL language. Mr.
Schwartz began his career in computing at Columbia University in 1953 when he was a
graduate student in Mathematical Statistics. He joined the RAND Corporation in 1954
where he worked with early systems such as the JOHNNIAC Computer, some IBM 701
scientific routines, and the development of a higher level language, PACT, for the IBM 701.
In 1956 and 1957 he was part of the SAGE (Semi-Automatic Ground Environment) devel-
opment effort at Lincoln Laboratory. When System Development Corporation was spun
off from RAND, Jules Schwartz went with SDC. He began his work on JOVIAL at the
System Development Corporation in 1958.

Currently Jules is at Computer Sciences Corporation, where he is responsible for a staff
which consults, manages, audits, and plans projects both in the commercial and in the
government sectors. He has also continued some work in language design, most recently a
few years ago for a Data Base Management system called DML (Data Management Lan-
guage) for use on CSC's Infonet System.

388 Part VII

Jules I. Schwartz

Schwartz, J. I. (1959a). Preliminary Report on JOVIAL. Lodi, New Jersey: System Development Corporation
SDC Rep. FN-L0-34.

Schwartz, J. I. (1959b). JOVIAL--Report #2. Lodi, New Jersey: System Development Corporation SDC Rep.
FN-L0-34-1.

Schwartz, J. I. (1959c). JOVIAL--Primer #1. Lodi, New Jersey: System Development Corporation SDC Rep.
FN-L0-154.

Schwartz, J. I. (1960a). JOVIAL--A Description of the Language. Paramus, New Jersey: System Development
Corporation SDC Rep. FN-L0-34-2.

Schwartz, J. I. (1960b). JOVIAL--Clarifications and Corrections for FN-LO-34-2. Paramus, New Jersey: Sys-
tem Development Corporation SDC Rep. FN-L0-34-2-51.

Schwartz, J. I. (1962). JOVIAL: A General Algorithmic Language. In Proceedings of the Symposium on Sym-
bolic Languages in Data Processing, pp. 481-493. New York: Gordon & Breach.

Schwartz, J. I. (1965). Programming Languages For On-Line Computing. In Proceedings of the IFIP Congress,
Vol. 2, pp. 546-547. Washington, D.C.: Spartan Books.

Schwartz, J. I., and Howell, H. L. (1961). The JOVIAL (J-2) Language for the 7090 Computer. Santa Monica,
California: System Development Corporation SDC Rep. FN-6223/100/00.

Shaw, C. J, (1960a). The Compleat JOVIAL Grammar. Santa Monica, California: System Development Cor-
poration SDC Rep. FN-4178.

Shaw, C. J. (1960b). The JOVIAL Lexicon: A Brief Semantic Description. Santa Monica, California: System
Development Corporation SDC Rep. FN-4178, 51.

Shaw, C. J. (1960c). Computers, Programming Languages and JOVIAL. Santa Monica, California: System De-
velopment Corporation SDC Rep. TM-555, Part 1.

Shaw, C. J. (1961). The JOVIAL Manual, Part 3, The JOVIAL Primer. Santa Monica, California: System Devel-
opment Corporation SDC Rep. TM-555/003/00.

Shaw, C. J. (1964). Part 2, The JOVIAL Grammar and Lexicon. Santa Monica, California: System Development
Corporation SDC Rep. TM-555/002/02.

Tjomsland, I. A. (1960). The 709 JOVIAL Compool. Paramus, New Jersey: System Development Corporation
SDC Rep. FN-3836.

Wilkerson, M. (1961). JOVIAL User's Manual. Subtitled JOVIAL Language Specifications for 7090 and MC
Compilers. Paramus, New Jersey: System Development Corporation SDC Rep. FN-L0-34-3.

Wolpe, H. (1958) March. Algorithm for Analyzing Logical Statements to Produce Truth Function Table. Com-
munications of the ACM 1(3): 4-13.

Woodward, P. M., and Wetherall, P. R. (1970). The Official Definition of CORAL 66. London: HM Stationery
Office.

T R A N S C R I P T OF P R E S E N T A T I O N

JOHN GOODENOUGH: The next paper is by Jules Schwartz on the JOVIAL language. Mr.
Schwartz began his career in computing at Columbia University in 1953 when he was a
graduate student in Mathematical Statistics. He joined the RAND Corporation in 1954
where he worked with early systems such as the JOHNNIAC Computer, some IBM 701
scientific routines, and the development of a higher level language, PACT, for the IBM 701.
In 1956 and 1957 he was part of the SAGE (Semi-Automatic Ground Environment) devel-
opment effort at Lincoln Laboratory. When System Development Corporation was spun
off from RAND, Jules Schwartz went with SDC. He began his work on JOVIAL at the
System Development Corporation in 1958.

Currently Jules is at Computer Sciences Corporation, where he is responsible for a staff
which consults, manages, audits, and plans projects both in the commercial and in the
government sectors. He has also continued some work in language design, most recently a
few years ago for a Data Base Management system called DML (Data Management Lan-
guage) for use on CSC's Infonet System.

388 Part VII

Transcript of Presentation

JULES SCHWARTZ: Thank you. IfI appear sleepy today there's a good reason. Yesterday,
during A1 Perlis's discussion, I learned for the first time that when the first ALGOL speci-
fications were published, the committee already knew that the name was to be changed to
ALGOL. But they published the specifications using the name IAL (International Alge-
graic Language). So I've been plagued all night with the specter of the ALGOL committee
having decided to call the original specs ALGOL. In that case, what would be,the name of
the language we're discussing today? JOVALGOL just doesn't work.

Well, as we already know--and of course, you know today if you didn't know yester-
d a y w w h e n the development of JOVIAL began, the world of computing was quite differ-
ent than it is today. Computers were vacuum tube based; most were quite small, even
relative to today's small computers. Utility routines such as one-card load programs, and
small memory dump routines, were used as individual programs rather than part of major
systems controlled by a job control language. Assembly language programming was used
in most environments.

My own experience with things like languages and compilers was limited to several
things. One was work on the PACT [Project for Automatic Coding Techniques] language
that was described in the 1956 ACM Conference, which, although called an automatic pro-
gramming language, was not syntactically anything like ALGOL or FORTRAN. I, with
several other people, namely, Irwin Book of SDC and Harvey Bratman also of the System
Development Corporation, had experimented with the expansion of algebraic and logical
expressions, based on an article in an ACM Communications of 1958 by H. Wolpe of
IBM. Other than that, and reading the IAL (International Algebraic Language) specifi-
cations, my language experience was nil.

By the time JOVIAL began, one large Command and Control System had been devel-
oped, and was in the process of its initial installation. The development of it had started in
1954. It was called SAGE, and it was a system built to track and intercept hostile aircraft.
It had a significant influence on JOVIAL.

The actual design of JOVIAL began in 1958. Its purpose was to program another large
Air Force Command and Control System called SACCS, with the actual designation
465-L. JOVIAL has been called a command and control language because of its use for
systems like 465-L. However, I prefer to call it a system programming language. A dem-
onstration of its capabilities can best be described, I think, by listing the objectives of the
language when it was developed, and presenting brief examples of how JOVIAL satisfied
these.

The major objective of JOVIAL was to permit people to program complete systems in a
higher level language. This capability was provided through various facilities, the first one
being a comprehensive data definition and referencing capability.

[Frame l] gives an example of part of the data definition capability. Now, incidentally,
through all these examples, you'll see dollar signs liberally sprinkled. This should not

ITEM XYZW
ITEM RMN
ITEM XTUVW
ITEM ABCl
ITEM VIX

F $ Floating Point
I 7 S $ Integer
A 14 U 6 $ Fixed Point
H 5 $ Hollerith
S V (CLOUDY)

V (RAIN) V (FAIR) $ Status

Frame 1. Items--examples of definitions.

JOVIAL Session 389

Jules I. Schwartz

TABLE RQW2 V 150 M$ Variable-length, serial,
medium-packed

BEGIN ITEM... $
ITEM... $

END
Frame 2. Tables.

be construed as an indicator of wealth, greed, or success on my part. When the language
was first implemented, there was, as we all know now, a shortage of characters available
on keypunches. In this case we decided to use the dollar sign to help form the character
set. One major place they are used is as end of statement symbols, as can be seen. The
other is as part of left and right brackets , to help form the left and right subscript brackets,
which will appear later.

Now, [Frame 1] illustrates the definition of items. Items are the lowest level of named
objects in the language. These are five examples of item definitions as they originally ex-
isted in the JOVIAL language. Each one illustrates a different type of item. Item XYZW is
defined as a floating point item, by the character F. The second item, RMN, is an integer
item. It has seven bits and it 's signed; the S means it 's signed. The next item is a fixed
point arithmetic item. It can be used for numerical calculations with fixed point arithme-
tic. It has 14 bits and the 6 means there are 6 bits to the right of the point; the U means
there is no sign; it 's always positive. The next item, ABC1, is a Hollerith or character
string item. It has five characters. The last item is a status item. It provides for name
values of an item without committing the programmer to know or to specify in code the
actual numeric values for the values. Internally, however , the item is assigned a numerical
value for each of the statuses represented. The statuses, in this case, are CLOUDY,

RAIN, and FAIR.
[Frame 2] represents some of the kinds of structures that were made available with JO-

VIAL. (Actually the next five slides) The major structure is called the table. The first ex-
ample here is table RQW2. Table RQW2 has a variable length designated by V, meaning
that it can have a varying number of entries, where an entry is a set of items. This particu-
lar table has a maximum of 150 entries. This can be seen in the header. And it is to be
"med ium p a c k e d " - - M stands for "med ium packed , " meaning that the compiler will allo-
cate the individual items of the table to fit into machine-oriented parts of the computer

A I B
EntryO C I D I E

F

A m B

F

Frame 3. Serial table--example.

390 Part VII

Transcript of Presentation

TABLE RMT3 R 75 3 P~ Fixed-length, Parallel,
Hand-packed

BEGIN ITEM XY I 15 U 2 4 D $ Word 2, BIT 4, Dense

Frame 4. Parallel table.

word which are easily accessible. In the early days of JOVIAL these would most likely
have been the address field, the operation field, and a few others. Today most machine-
oriented fields probably could be bytes or characters.

Following the table header, the definition of an entry is included between the BEG IN
and END. That 's where the items are listed.

Table RQW2 is defined as a serial table. Actually it's defined as a serial table by using
the default which in this case implies "se r ia l . " An example of a serial table is [in Frame 3].
A serial table groups all items of an entry into a contiguous set of words. Entry 0 is the
first entry; Entry 1 is the second, and all items within that table are in contiguous words.

Table RMT3, whose definition is [in Frame 4] is defined by the P as a parallel table. The
parallel format is illustrated [in Frame 5]. The parallel table is structured so that moving
between entries on the same item, such as from A of entry 0 to A of entry 1, is in incre-
ments of 1, and between words within an entry, such as from item A of entry 0 to item C
of Entry 0, is done by incrementing by the number of entries. That ' s the parallel structure.

Getting back to table RMT3 [in Frame 6], it 's defined as fixed length by the R (for rigid
table). This means that it has a fixed number of entries. 75 is the number of entries. In this
case, the number 3, which follows the 75 in the header, means that there are going to be
three words per entry, and the fact that this is stated in the table definition means that the
programmer himself will assign item positions within each entry. Again, the definition of
the entries or the items within the entries follows the table header. The difference between
these and the other item definitions discussed before is that the programmer will provide
information such as word 2 of the entry, bit 4 of the word for the starting position, and D
for " d e n s e " - - d e n s e as opposed to medium packed which we saw before. Dense means

Entry 0 A B

Entry 1 A i B

Entry 2 A B

Entry 0 C D E

Entry 1 C D E

Entry 2 C D E

Entry 0

Entry 1

Entry 2

Frame 5. Parallel table--example.

JOVIAL Session 391

Jules I. S c h w a r t z

TABLE PJVIT3 R 75 3 P$ Fixed-length, Parallel,
Hand-packed

BEGIN ITEM XY I 15 U 2 4 D $ Word2, BIT 4, Dense

Frame 6. Parallel table.

it's not going to be accessible by referencing a machine field such as the address or opera-
tion codes. In other words, the dense item is tightly packed within a word.

Also in JOVIAL one can define arrays. Arrays of any number of dimensions were possi-
ble in the original versions of JOVIAL.

After structures and items, the next major capability which provided for generalized
programming was direct access to bits and bytes, or characters, within items in JOVIAL.
The next slide [Frame 7] shows examples of that use. The first example says: set bit 3 of
IT3 (the item IT3) equal to 1. The second example as it would be stated in JOVIAL would
set the two bytes, starting with the Ith byte of Item HXY to the two bytes of Item PRQ
starting with the Jth byte.

The last example says to set the J bits of the Xth occurrence of item MNP, starting with
the Ith bit to the J bits starting in bit K of the Yth occurrence of item RQL. In other words,
you're setting a variable number of bits to a variable number of bits from one item to an-
other where both items are indexed.

A second major objective of the language was freedom from machine specifics. Al-
though the programming of very general and system oriented functions was permitted, one
of the ways this was done was through a set of modifiers. Some of the modifiers are shown
[in Frame 8]. With NENT one can access or modify the number of entries in a table.
MANT gives access to the mantissa of a floating point number, CHAR, the characteristic,
SIGN, the sign of an item, ENT, the whole entry of a table, and LOC, the absolute loca-
tion of a table. An example of the syntax and use of a modifier is shown at the bottom of
the slide.

In the first example at the bottom, the number of entries of table TABX is incremented
by 2. It's set to the number of entries of the same table plus 2. And in the second example,
the sign of iteml is set to 1. (Actual statements in JOVIAL would have had dollar signs at
the end.)

The third objective of JOVIAL was an attempt to make the program independent of the
data definition. That is, although the data definition could change, the program itself
should remain unchanged. One example of this is the ability to mix data types in a variety
of ways, within arithmetic expressions, on assignment statements, and elsewhere.

Another example of freedom from the data definition shows in the kinds of switches
JOVIAL allows. First of all, it allows the subscript or numeric switch, where the switch
point was simply based on the value of the subscript and the switch call, such as the first
example on the next slide [Frame 9], where one branches to ABLE subscripted by I. In this

BIT($3~) (IT3) = i$
BYTE($I, 25) (HXY) = BYTE($J, 25) (PRQ)S
BIT(I, J) (MNP(X)) = BIT(K, J) (RQL(~YS))$

Frame 7. Bit and byte--examples of use.

392 Part VII

Transcript of Presentation

NENT Number of Entries
MANT Mantissa
CHAR Characteristic
SIGN Sign
ENT Entry
L0C Location

Use Example

NENT (TABX) = NENT (TABX) + 2
SIGN(ITEM1) = 1

Frame 8. Modifiers--examples.

case, the branch would be the " I th" label on the switch declaration. Another kind of
switch initiated in JOVIAL was called the item switch. In this switch, the value of the
switch point is contained in an item and may not necessarily be chosen from a set of se-
quential integers known by the programmer. In this case, the switch labeled BAKER is
based on the value of the item RPQM which is a status item, the values you see to the
right: CLOUDY, RAINY, and FAIR. This call will go to R1, R2, or R3 depending on
whether the value of RPQM is CLOUDY, RAINY, or FAIR. And of course, in this case
the item could have had more values than just CLOUDY, RAINY, or FAIR--al l of which
are unknown to the programmer.

Another example of independence from data structure in programs is on the next slide
[Frame 10]. This particular program, without going into detail, cycles through a table set-
ting values of DX based on the values of AB. It does it whether the table is serial or paral-
lel, and independent of the number of words in an entry. So that if the structures involved
change from serial to parallel, or parallel to serial, or the number of words changes in an
entry, the program doesn't have to change.

In addition to these capabilities, JOVIAL does provide rather easy access to machine
language, although the object has always been to avoid its use as much as possible. An-
other objective of the language, and probably one of the first languages with this objective,
was that the compiler should be written in its own language. JOVIAL compilers were al-
ways programmed in JOVIAL.

Some of the basic ideas for the language came from the programming of SAGE. It was
the first large real time system, utilizing about 1000 or more people for development and
installation. SAGE provided ideas for the kinds of facilities that would be needed in a lan-
guage to program large systems. One of the key ideas of SAGE was in the area of data
definition. SAGE was programmed in machine language but used the concept of a central
data dictionary. This concept was implemented with the Communication Pool, or Comm
Pool, which was the central data definition used to assemble programs. The SAGE Com-

Subscript (Numeric) Switch

SWITCH ABLE = (S1, $2, $ 3 . . . S n) $ Declaration
GOTO ABLE (SIS) $ Call

Item Switch
SWITCH BAKER(RPQM) = (V(CLOUDY) = Ri, V(RAINY)

= R2, V (F A I R) = R 3) $ Declaration
GOTO BAKER (SIS) $ Call

• Frame 9. Switches--examples.

JOVIAL Session 393

Jules I. Schwar tz

FOR I = ALL(AB)$

BEGIN

IF AB(~IS) = 35

DX(I) = 55

END

Frame l0. A c c e s s i n g t a b l e s i n d e p e n d e n t o f s t r u c t u r e .

munication Pool also provided definitions of items of the various types that were even-
tually defined in JOVIAL. The Comm Pool capability was applied to JOVIAL, permitting
the data definition to exist outside of programs.

SAGE provided a scheme for accessing data through pseudo-instructions to permit con-
stant programs even when changes were made in the central data definition.

[Frame 11] gives an example of how that was done in SAGE. Again, I 'm not going to go
into detail, but there were operators in the machine language programs, such as ETR for
Extract, Position with POS, and Restore and Deposit. These were pseudo-instructions in
SAGE. Using these, the programmer did not have to know the actual positions of items
within words, but could manipulate them anyway, such as in this example of an addition of
two items.

One of the problems with this technique as used in SAGE was that to add these two
items together--ITEM1 + ITEM2--which is shown on the bottom of the example, took a
minimum of 10 instructions, one for each pseudo-instruction. One of the arguments used
for the development of JOVIAL was the fact that one could have the same data transpar-
ency, plus the generation of more efficient machine code with JOVIAL than was possible
with machine language, because the compiler could take advantage of the particular situa-
tions of ITEM1, ITEM2, and ITEM3 to do the same operation, and actually turn out
better code.

So SAGE was one of the major contributors to JOVIAL.
The other very strong contributor to JOVIAL, and actually the basis for the architecture

and the name of the original language, was the definition of IAL, later called ALGOL.
This definition appeared in 1958 in the Communications of the ACM. The basic structure
of JOVIAL, and of course many other languages, was taken from IAL. A number of

SAGE:
CLA ITEM1

ETR ITEM1

P0S ITEM1

STO TEMP

CLA ITEM2

ETR ITEM2

P0S ITEM2

ADD TEMP

RES ITEM3

DEP ITEM3

JOVIAL:

Move ITEM 1 to accumula tor
Mask ITEM1
Position ITEM1 to the least significant posit ion
Save ITEM1
Move ITEM2 to accumula tor
Mask ITEM2
Move ITEM2 to the least significant posit ion
Add the two i tems
Move to posit ion of ITEM3
Store in ITEM3

ITEM3 = ITEM1 + ITEM2$

Frame 11. Access ing i tems in S A G E - - a d d i n g two items.

394 Part VII

Transcript. of Presentation

changes were initially made to IAL for JOVIAL, particularly in the data definition area,
but as time went on, no attempts were made to incorporate concepts from succeeding ver-
sions of ALGOL, not at least in the first few years.

Another of the very important subjects of JOVIAL was schedules. This was not always
a happy subject in the days when JOVIAL was being developed. The original contractual
commitments were for several compilers to be produced by System Development Cor-
poration in parallel, one on the IBM 709, and the other on the AN/FSQ-31 Computer. The
IBM 709 version, according to the contract, was to be delivered within six months, the
Q-31 some months later. The work began at the end of 1958. The actual first formal deliv-
ery of the JOVIAL 709 compiler was made to SAC (Strategic Air Command) in Omaha in
early 1961. A little calculation will show that it missed the original schedule by a fair
amount.

However, a variety of intermediate versions of JOVIAL processors was produced prior
to the formal delivery and used for a number of in-house activities, one of which was pro-
gramming the compilers.

Another interesting aspect of this development in retrospect was the management prac-
tices used at the time. Today there are probably more people that have worked with com-
pilers in the world than there were total programmers in the world at the time of the JO-
VIAL development. The only person with previous experience on the original JOVIAL
project was myself, and at best my experience was very distant and limited. The project
that developed both the 709 and the Q-31 compilers varied in size from around 6 to 15
people over its life. For some of these peop lepand a fair number of them--this was their
first programming job. They were hired to do this and trained. Management practices
were, to put it favorably, informal. To put it bluntly, almost nonexistent. One of the major
problems with management was that the language was evolving as the compilers were
being implemented. Major language features were developed in literally minutes! With
minor exceptions, there were no committees involved. One couldn't define things in min-
utes with committees. The fact that there were no committees involved in the original ver-
sion of JOVIAL, was, I believe, good for the development. Most of the early features
were added by me, or one of several others working on the project (most of the time with
my concurrence).

Frequently, language features were determined as needs were recognized by compiler
writers who were programming in JOVIAL. Features were also put in or changed as early
users began to use it, in-house users, generally.

No complete language description existed at the beginning of compiler building. Infor-
mal documents were written which served as an adequate baseline, but frequently com-
piler code was produced based only on spoken communication. Updates of previous docu-
ments were eventually produced, after things were implemented in most cases. The first
comprehensive attempt for a stable language description was produced at the time of the
first compiler delivery, which was about 2½ years after the project started.

Other formal JOVIAL language descriptions were written in the following years. They
were written mostly by people associated with another version of JOVIAL being pro-
duced by SDC on the West Coast. You have to understand--the version I was talking
about up to now was produced on the East Coast, for 465-L. The West Coast efforts ini-
tially produced compilers for computers other than the ones that were being used on the
East Coast. An example of these computers were the Philco 2000, the AN/FSQ-7, which
was the original SAGE computer, and the CDC 1604, among others. However, these ef-

JOVIAL Session 395

Jules I. Schwartz

forts generally were also for versions of JOVIAL other than the versions being produced
on the East Coast.

The West Coast team grew from the early experimentation with expression analysis
which was worked on by Bratman (SDC), Book (SDC), and myself. When I left for the
465-L effort in 1958, that nucleus expanded and continued research into languages and
compilers. A language called CLIP evolved from this effort, in parallel with early JOVIAL
work on the East Coast. However, as time progressed, more effort was devoted to JO-
VIAL on the West Coast and the work on CLIP eventually stopped.

But the West Coast group continued with expansion, refinement, and formalizing of JO-
VIAL, and in fact, are responsible for the version that eventually became the Air Force
Standard. Most of the formally published literature on JOVIAL was written by Chris
Shaw on the West Coast. He's now at Xerox.

As the years continued, many other companies became JOVIAL compiler producers.
Examples are PRC, CSC, Abacus, SofTech, and a number of others. Computer manufac-
turers were not a major factor in producing or preserving the language initially, although
versions of JOVIAL have existed for almost all major and not-so-major computers that
have been in existence since those days.

With all these companies and computers, and with the exception of the eventual Air
Force published standard, very little control over the language existed, and a great num-
ber of variations were eventually produced.

These are some of the versions [Frame 12]. These are each a version of JOVIAL, J0,
J - I , J1, J2 it goes on. If this isn't sufficiently mind-boggling in its size, it should
be realized that it isn't a complete list. And for each of these variations, different subsets
of that variation were produced within compilers. In summary, although someone familiar
with a particular version of JOVIAL would probably recognize other variations as being
part of the JOVIAL family, he would also find that he'd better study the specific version
very carefully before producing any code.

JOVIAL did prove to be quite general and useful for a sizeable number of tasks, but
several areas of concern stand out quite distinctly in my mind. First, the original compilers
were slow--very slow. One of the things which was not a concern when language features
were being designed was the effect of a feature on the compiler. This was coupled with the
language's emphasis on generality and the use of fairly slow computers by today's stan-
dards. Also there was the rather small level of experience of the staff, although most of the
people were quite good, and quite hard-working. Also, the compiler was programmed in

J0
J-1
Jl
J2
J3
J3B
BASIC JOVIAL
JX-2
J5
J5.2
J73
J73I

The Original East Coast Set

The West Coast Versions--The Eventual AF Standard

Relatively Fast Compilers

Current AF Developed Versions

Frame 12. Some versions of JOVIAL.

396 Part VII

Transcript of Question and Answer Session

its own language. All these things contributed to long periods of compilation. At first it
took eight elapsed hours to compile the compiler on the 709, and that's with nothing else
running on the computer. Also, for a variety of reasons, some of which are probably obvi-
ous, the initial compilers were not very reliable. This, together with the lack of speed, not
infrequently led to long periods of waiting for wrong or nonexistent results. This caused
considerable tension on the part of early users! It also created a fair degree of strain for
those of us who had their names associated with the language!

Even with these and other problems, however, the language continued to grow in use,
and there was no significant attempt to avoid its use among most of the early users. It did
prove to be quite general, although not elegant syntactically nor particularly easy to learn;
it was easy to use, and once learned, easy to retain. It has been used for a wide variety of
programs, many of which were other than Command and Control Systems. It has been
compared against other languages in contests of various kinds, and has usually come out
fairly well. It was probably the first language with a large compiler totally programmed in
itself, and it was also the very first, (or near to it) System Programming Language. It was
one of the first high-level languages used for total programming of a large Command and
Control System.

JOVIAL, in a variety of flavors, continues to exist today and to be used for numerous
applications. The newest versions have resulted from an Air Force-sponsored design
committee's efforts begun in the early 1970s. These are the J73 versions which appeared
on the last slide. Several other languages have used JOVIAL as part of their original de-
sign basis. Some languages, such as PL/I , now have quite similar kinds of objectives and
capabilities, although it's not clear that their design was based directly or indirectly on
JOVIAL itself.

The Department of Defense is in the process of trying to find a standard language, and a
few versions of JOVIAL have been part of the several languages examined for this stan-
dard. If JOVIAL is not chosen, its use will probably decrease over the next decade. But
considering that JOVIAL originally had very short-range objectives, narrow support, the
rather over-ambitious nature of the original efforts, and a variety of other early problems,
it has survived and been used in a larger number of situations than one might have ex-
pected. It has been and will most likely continue to be used for some time. This provides
great satisfaction to its early developers, who thought of it in very short-range terms back
in 1958.

Thank you.

TRANSCRIPT OF QUESTION AND ANSWER SESSION

JOHN GOODENOUGH: One of the questioners, John Favaro, asks (I'm going to rephrase a
bit): One of the arguments you said that was in favor of developing JOVIAL was the fact
that you could develop more efficient programs using it, although it seems with most other
languages, people are always concerned that if you're developing a system implementa-
tion language, it'll be less efficient than using assembly language. Was there really a lot of
opposition to that argument at the time?

JULES SCHWARTZ; Yes, of course there's always opposition, particularly in some areas.
For example, JOVIAL did allow an unlimited number of dimensions for arrays, but little

JOVIAL Session 397

Transcript of Question and Answer Session

its own language. All these things contributed to long periods of compilation. At first it
took eight elapsed hours to compile the compiler on the 709, and that's with nothing else
running on the computer. Also, for a variety of reasons, some of which are probably obvi-
ous, the initial compilers were not very reliable. This, together with the lack of speed, not
infrequently led to long periods of waiting for wrong or nonexistent results. This caused
considerable tension on the part of early users! It also created a fair degree of strain for
those of us who had their names associated with the language!

Even with these and other problems, however, the language continued to grow in use,
and there was no significant attempt to avoid its use among most of the early users. It did
prove to be quite general, although not elegant syntactically nor particularly easy to learn;
it was easy to use, and once learned, easy to retain. It has been used for a wide variety of
programs, many of which were other than Command and Control Systems. It has been
compared against other languages in contests of various kinds, and has usually come out
fairly well. It was probably the first language with a large compiler totally programmed in
itself, and it was also the very first, (or near to it) System Programming Language. It was
one of the first high-level languages used for total programming of a large Command and
Control System.

JOVIAL, in a variety of flavors, continues to exist today and to be used for numerous
applications. The newest versions have resulted from an Air Force-sponsored design
committee's efforts begun in the early 1970s. These are the J73 versions which appeared
on the last slide. Several other languages have used JOVIAL as part of their original de-
sign basis. Some languages, such as PL/I , now have quite similar kinds of objectives and
capabilities, although it's not clear that their design was based directly or indirectly on
JOVIAL itself.

The Department of Defense is in the process of trying to find a standard language, and a
few versions of JOVIAL have been part of the several languages examined for this stan-
dard. If JOVIAL is not chosen, its use will probably decrease over the next decade. But
considering that JOVIAL originally had very short-range objectives, narrow support, the
rather over-ambitious nature of the original efforts, and a variety of other early problems,
it has survived and been used in a larger number of situations than one might have ex-
pected. It has been and will most likely continue to be used for some time. This provides
great satisfaction to its early developers, who thought of it in very short-range terms back
in 1958.

Thank you.

TRANSCRIPT OF QUESTION AND ANSWER SESSION

JOHN GOODENOUGH: One of the questioners, John Favaro, asks (I'm going to rephrase a
bit): One of the arguments you said that was in favor of developing JOVIAL was the fact
that you could develop more efficient programs using it, although it seems with most other
languages, people are always concerned that if you're developing a system implementa-
tion language, it'll be less efficient than using assembly language. Was there really a lot of
opposition to that argument at the time?

JULES SCHWARTZ; Yes, of course there's always opposition, particularly in some areas.
For example, JOVIAL did allow an unlimited number of dimensions for arrays, but little

JOVIAL Session 397

Transcript of Question and Answer Session

use was made of this feature. It was very inefficient once one got beyond a single sub-
script. But in the area I was talking about, which provided the ability for programs to refer
to tightly packed or otherwise structured items without having to worry about where they
were in the word, JOVIAL did provide the ability for the compiler to produce better code
for a particular setup than the programmer himself. In that area, and some others (includ-
ing single dimension arrays), it did quite well.

GOODENOUGH: A couple of people have asked, "What communication did you have with
people implementing other ALGOL 58 dialects, such as MAD and NELIAC?"

SCHWARTZ: Almost none with MAD. NELIAC-- the re was communication after one of
the contests. It was an experiment to compare the two to see which language the Navy
would use. NELIAC was the Navy base language, originally. JOVIAL wasn't. And in at
least one version of the contest, JOVIAL was chosen by the Navy. That created a lot of
communication! But JOVIAL didn't stay as the Navy language. [As far as ALGOL, even-
tually there was communication, but it didn't have continued influence on the early JO-
VIAL.]

GOODENOUGH: You mentioned that the term "by te" is used in JOVIAL. Where did the
term come from?

SCHWARTZ: As I recall, the AN/FSQ-31, a totally different computer than the 709, was
byte oriented. I don't recall for sure, but I 'm reasonably certain the description of that
computer included the word " by t e " , and we used it.

FRED BROOKS: May I speak to that? Werner Buchholz coined the word as part of the
definition of STRETCH, and the AN/FSQ-31 picked it up from STRETCH, but Werner is
very definitely the author of that word.

SCHWARTZ: That's right. Thank you.

GOODENOUGH: A question from Richard Miller: "Could you comment further on the fact
that JOVIAL was always used to compile itself? Who was primarily responsible for this
decision?"

SCHWARTZ: Oh, I think those of us who were on that original project out here on the
West Coas t - - Erwin Book and Harvey Bratman, and others. The idea always was, for some
reason, to compile the language in itself. It seemed quite logical at the time.

ERWIN BOOK: We also were kind of influenced by UNCOL [Universal Compiler Lan-
guage] at the time and we thought to make a technology whereby we had one generator for
all computers translating into an intermediate language. Then one could have different
translators producing code for each different computer that we wanted--and that's the
way the JOVIAL compilers are all built. The front end is reproduced very easily, and you
just write a translator and that intermediate language is kind of half an UNCOL, but very
limited.

GOODENOUGH: HOW much influence did FORTRAN have?

SCHWARTZ: FORTRAN really had, I would say, almost none on JOVIAL. It was really
just getting started in those days. I think we had one fellow on the project who had used it.

398 Part VII

Full Text of All Questions Submitted

The rest of us had read specs, but anything we did had really come from the IAL specs,
plus our own invention.

GOODENOUGH: HOW many problems resulted from the many variations of declarations
and the large number of descriptors in the language?

SCHWARTZ: I happened to read in preparing this material, much of the old documenta-
tion. (I got this from Chris Shaw, whom I mentioned as the guy who wrote much of the
early documentation. He also collected every piece of paper that was written, informally
or otherwise, and he donated it to me.) One of the documents was by people responsible
for teaching and seeing that other people used the language. One of their remarks was that
it was kind of difficult to teach the language, but they also said that they not iced--and
these people were totally unbiased--that once people learned JOVIAL, they didn't have
many problems. They remembered it, and they never had to go back to the documents.
So, it seems that initial learning was the worst problem.

GOODENOUGH: The language uses items as its term of declaring an individual variable,
which is different from the way FORTRAN or IAL uses REAL and INTEGER as its dec-
laration mechanism. How did you come to make that particular choice?

SCHWARTZ: That was really based largely on the way the SAGE definitions were done
(although SAGE had a machine language orientation). We added some things, but it was
based on SAGE, which used the name " i tem" in Comm Pools and tables.

GOODENOUGH: Do you have any further comments on the name of the language, beyond
what's in [pp 369-388] and in Jean Sammet's book?

SCHWARTZ: No, but I think if it had been called anything else, somebody else would
probably have been chosen to be up here today. No, the preprint does give, I think, the
fairly complete story on how the name came about.

GOODENOUGH; Thank you very much.

FULL TEXT OF ALL QUESTIONS SUBMITTEDt

CHUCK BAKER

In JOVIAL data descriptions, some data attributes are bound at compile time (item
type, length, etc.). Others are bound at execution time (table length). How was the choice
of when to bind made? Would you change these choices now?

KEN DICKEY

Implicit in the design of the language is a high level of programming awareness (assem-
bly language, data mixing, etc.). To what measure is this due to desire for flexibility, and
what measure to time constraints?

t Jules Schwartz has annotated the full set of questions and provided answers to several that were not asked at
the session.

JOVIAL Session 399

