
XENIX® System V

Development System

Programmer's Guide

Infonnation in this document is subject to change without notice and does not represent
a commitment on the part of The Santa Cruz Operation, Inc. nor Microsoft Corporation.
The software described in this document is furnished under a license agreement or
nondisclosure agreement. The software may be used or copied only in accordance with
the tenns of the agreement. It is against the law to copy this software on magnetic tape,
disk, or any other medium for any purpose other than the purchaser's personal use.

Portions © 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988 Microsoft
Corporation.
All rights reserved.
Portions © 1983, 1984, 1985, 1986, 1987, 1988 The Santa Cruz Operation, Inc.
All rights reserved.

ALL USE, DUPLICATION, OR DISCLOSURE WHATSOEVER BY THE
GOVERNMENT SHALL BE EXPRESSLY SUBJECT TO RESTRICTIONS AS SET
FORTH IN SUBDIVISION (b) (3) (ii) FOR RESTRICTED RIGHTS IN COMPUTER
SOFTWARE AND SUBDIVISION (b) (2) FOR LIMITED RIGHTS IN TECHNICAL
DATA, BOTH AS SET FORTH IN FAR 52.227-7013.

Microsoft, MS-DOS, and XENIX are registered trademarks of Microsoft Corporation.

SCO Document Number: XG-10-10-88-5.0/2.3

Replace this Page
with Tab Marked:

PROGRAMMER'S
GUIDE

Contents

1 Introduction

1.1 Introduction 1-1
1.2 Creating Programs 1-1
1.3 Creating and Maintaining Libraries 1-2
1.4 Maintaining Program Source Files 1-2
1.5 Creating Programs with Shell Commands 1-3
1.6 Using This Guide 1-3
1.7 Notational Conventions 1-4
1.8 Referencing Commands 1-5

2 make: A Program Maintainer

2.1 Introduction 2-1
2.2 Creating a Make file 2-1
2.3 Invoking make 2-3
2.4 U sing Pseudo-Target Names 2-6
2.5 Using Macros 2-6
2.6 U sing Shell Environment Variables 2-9
2.7 Using the Built-in Rules 2-10
2.8 Changing the Built-in Rules 2-12
2.9 U sing Libraries 2-14
2.10 Troubleshooting 2-15
2.11 Using make: AnExample 2-16

3 SCCS: A Source Code Control System

3.1 Introduction 3-1
3.2 Basic Information 3-1
3.3 Creating and Using s-files 3-5
3.4 Using Identification Keywords 3-15
3.5 Using s-file Flags 3-17
3.6 Modifying s-file Information 3-19
3.7 Printing from an s-file 3-22
3.8 Editing by Several Users 3-24
3.9 Protecting s-files 3-25
3.10 Repairing sees Files 3-28
3.11 Using Other Command Options 3-30

-i-

4 lint: A C Program Checker

4.1 Introduction 4-1
4.2 Invoking lint 4-1
4.3 Options 4-2
4.4 Checking for Unused Variables and Functions 4-3
4.5 Checking Local Variables 4-4
4.6 Checking for Unreachable Statements 4-5
4.7 Checking for Infinite Loops 4-6
4.8 Checking Function Return Values 4-7
4.9 Checking for Unused Return Values 4-7
4.10 Checking Types 4-8
4.11 Checking Type Casts 4-9
4.12 Checking for N onportable Character Use 4-9
4.13 Checking for Assignment oflongs to ints 4-10
4.14 Checking for Strange Constructions 4-10
4.15 CheckingforUseofOlderCSyntax 4-11
4.16 Checking Pointer Alignment 4-12
4.17 Checking Expression Evaluation Order 4-13
4.18 Embedding Directives 4-13
4.19 Checking For Library Compatibility 4-15

5 lex: A Lexical Analyzer

5.1 Introduction 5-1
5.2 AnOverviewoflexProgramming 5-2
5.3 How to Format lex Programs 5-3
5.4 Specifying lex Regular Expressions 5-4
5.5 Invokinglex 5-6
5.6 Specifying Character Classes 5-6
5.7 Specifying an Arbitrary Character 5-7
5.8 Specifying Optional Expressions 5-7
5.9 Specifying Repeated Expressions 5-8
5.10 Specifying Alternation and Grouping 5-8
5.11 Specifying Context Sensitivity 5-9
5.12 Specifying Definitions 5-9
5.13 Specifying Expression Repetition 5-10
5.14 Specifying Actions 5-10
5.15 Handling Ambiguous Source Rules 5-14
5.16 Specifying Left Context Sensitivity 5-17
5.17 Specifying Source Definitions 5-19
5 .18 Using lex and yacc Together 5-21
5.19 Specifying Character Sets 5-25
5.20 Source Format 5-26

-ii-

6 yacc: A Compiler-Compiler

6.1 Introduction 6-1
6.2 Basic yacc Specifications 6-4
6.3 How the Parser Works 6-11
6.4 AmbiguityandConfiicts 6-15
6.5 How to Handle Operator Precedences 6-20
6.6 Error Handling and Recovery 6-23
6.7 The yacc Environment 6-25
6.8 Preparing Specifications 6-26
6.9 Advanced Topics 6-30
6.10 Examples 6-35
6.11 Old Features Supported but Not Encouraged 6-43

7 Using Signals

7.1 Introduction 7-1
7.2 U sing the Signal System Call 7-1
7.3 Catching Several Signals 7-8
7.4 Controlling Execution with Signals 7-8
7.5 U sing Signals in Multiple Processes 7 -12

8 adb: A Program Debugger

8.1 Introduction 8-1
8.2 Starting and Stopping adb 8-1
8.3 Displaying Instructions and Data 8-4
8.4 Debugging Program Execution 8-16
8.5 Using the adb Memory Maps 8-32
8.6 Miscellaneous Features 8-37
8.7 Patching Binary Files 8-43

9 ld: the XENIX Link Editor

9.1 Introduction 9-1
9.2 Using the Link Editor 9-1
9.3 Link Editor Options 9-1
9.4 The Executable Object File 9-4
9.5 Communal Variable Allocation 9-5
9.6 Pointer and Integer Sizes 9-6
9.7 Segment and Register Sizes 9-8

- iii -

10 m4: A Macro Processor

10.1 Introduction 10-1
10.2 Invoking m4 10-2
10.3 Defining Macros 10-2
lOA Quoting 10-3
10.5 Using Arguments 10-6
10.6 Using Built-in Arithmetic Values 10-7
10.7 Manipulating Files 10-S
10.S Using System Commands 10-9
10.9 Using Conditionals 10-9
10.10 Manipulating Strings 10-10
10.11 Printing 10-11

11 sdb: The Symbolic Debugger

11.1 Introduction 11-1

A XENIX System Calls

A.l Introduction A-I
A.2 Executable File Format A-I
A.3 Revised System Calls A-2
AA Version 7 Additions A-4
A.5 Changes to the ioctl Function A-4
A.6 Pathname Resolution A-4
A.7 U sing the mountO and chownO Functions A-5
A.S Super-Block Format A-5
A.9 Separate Version Librarles A-5

B Kernel Error Messages

B.l Introduction B-1
B.2 Informational Messages B-1
B.3 Warning Messages B-2
BA Panic }v1essages B-5

-iv-

Chapter 1

Introduction

1.1 Introduction 1-1

1.2 Creating Programs 1-1

1.3 Creating and Maintaining Libraries

1.4 Maintaining Program Source Files

1-2

1-2

1.5 Creating Programs with Shell Commands

1.6 U sing This Guide 1-3

1.7 Notational Conventions 1-4

1.8 Referencing Commands 1-5

1-3

Introduction

1.1 Introduction

This guide explains how to use the XENIX Software Development System
to create and maintain C language and assembly language programs. The
system provides a broad spectrum of programs and commands to help you
design and develop applications and system software. These programs
and commands enable you to:

• create C and assembly language programs for execution on the
XENIX system

• debug programs

• automatically create C and assembly language

• maintain different versions of the programs that you develop

The following sections introduce the programs and commands of the
XENIX Software Development System. Some commands mentioned here
are part of the XENIX Timesharing System. These are explained in the
XENlX User's Guide and XENlX Operations Guide.

1.2 Creating Programs

The C programming language can meet the needs of most programming
projects. A complete description of how to write, compile, link, and run
C programs under the XENIX operating system is provided in the follow­
ing guides:

• XENIX C User's Guide

• XENIX C Language Reference

• XENlX C Library Guide

You can also create assembly language programs using the XENIX macro
assembler masm. It assembles source files and produces relocatable
object files that can be linked to your C language programs with Id, the
XENIX linker. Id links relocatable object files created by the C compiler
or assembler to produce executable programs. Note that the cc command
invokes the linker and the assembler automatically, so use of either
masm or Id is optional. For a complete description of how to write, com­
pile, link, and run assembly programs under the XENIX operating system,
see the XENIX Macro Assembler.

1-1

XENIX Programmer's Guide

You can create source files for lexical analyzers and parsers using the pro­
gram generators lex and yacc. You use lexical analyzers in programs to
pick patterns out of complex input and convert these patterns into mean­
ingful values or tokens. You use parsers in programs to convert meaning­
ful sequences of tokens and values into actions. The XENIX lex program
generates lexical analyzers, written in C program statements, from given
specification files. The XENIX yacc program generates parsers, written in
C program statements, from given specification files. You can use lex and
yacc together to make complete programs.

Special project programmers who need a convenient way to produce lexi­
cal analyzers and parsers should read "lex: A Lexical Analyzer" and
"yacc: A Compiler-Compiler," for explanations of the lex and yacc pro­
gram generators.

You can preprocess C and assembly language source files, or even lex and
yacc source files, using the m4 macro processor. The m4 program per­
forms several preprocessing functions, such as converting macros to their
defined values and including the contents of files into a source file. For
more information, see' 'm4: A Macro Processor."

1.3 Creating and Maintaining Libraries

You can create libraries of useful C and assembly language functions and
programs using the ar and ranlib programs. ar, the XENIX archiver,
creates libraries of relocatable object files. The XENIX random library
generator ranlib, converts archive libraries to random libraries and places
a table of contents at the front of each library. For more information on
ar, see the KENIK C User's Guide. For more information on ranlib, see
the KENIK C Library Guide.

1.4 Maintaining Program Source Files

You can automate the creation of executable programs from C and assem­
bly language source files and maintain your source files using the make
program and the sees (Source Code Control) commands. The make pro­
gram is described in "make: A Program Maintainer," and the sees com­
mands are described in "SCCS: A Source Code Control System."

The make program is the XENIX program maintainer. It automates the
steps required to create executable programs and provides a mechanism
for ensuring that programs are up-to-date. You use make with medium­
scale programming projects.

1-2

Introduction

The Source Code Control (SeeS) commands let you maintain different
versions of a single program. The commands compress all versions of a
source file into a single file containing a list of differences. These com­
mands also restore compressed files to their original size and content.

Many XENIX commands let you carefully examine a program's source
files. The ctags command creates a tags file so that C functions can be
quickly found in a set of related C source files. The mkstr command
creates an error message file by examining a C source file.

1.5 Creating Programs with Shell Commands

In some cases, it is easier to write a program as a series of XENIX shell
commands than it is to create a C language program. Shell commands
provide much of the same control capability as the C language, and give
direct access to all the commands and programs normally available to the
XENIXuser.

The csh command invokes the C-shell, a XENIX command interpreter.
The C-shell interprets and executes commands taken from the keyboard
or from a command file. It has a C-like syntax which makes program­
ming in this command language easy. It also has a facility for creating
aliases, and a command history feature. For more information, see "The
C-Shell.' ,

1.6 Using This Guide

This guide is intended for programmers who are familiar with the C pro­
gramming language, the assembly programming language, and with the
XENIX system. The following list briefly describes each chapter.

Chapter 1, "Introduction," introduces the XENIX Software Development
programs provided with this package.

Chapter 2, "make: A Program Maintainer, " explains how to automate the
development of a program or project using the make program.

Chapter 3, "SCCS: A Source Code Control System," explains how to
control and maintain all versions of a project's source files using the
sees commands.

Chapter 4, "lint: A C Program Checker," describes the XENIX program
checker, lint, and describes the available options.

1-3

XENIX Programmer's Guide

Chapter 5, "lex: A Lexical Analyzer," explains how to create lexical
analyzers using the program generator lex.

Chapter 6, "yacc: A Compiler-Compiler, " explains how to create parsers
using the program generator yacc.

Chapter 7, "Using Signals," describes the signal functions. These func­
tions let a program process signals that are normally processed by the sys­
tem.

Chapter 8, "adb: A Program Debugger," explains how to debug C and
assembly language programs using the XENIX debugger adb.

Chapter 9, "ld: the Link Editor" describes the design and function of the
XENIX link editor, Id. The available options are explained in detail.

Chapter 10, "m4: A Macro Processor," explains how to use, create, and
process macros using the m4 macro processor.

Chapter 11, "sdb: The Symbolic Debugger," explains how to debug C,
assembly language and Fortran programs using the XENIX debugger sdb.

Appendix A, "XENIX System Calls," explains how to create and use new
XENIX system calls.

Appendix B, "XENIX System V Error Messages," lists and describes the
system error messages produced by the XENIX kernel.

C language programmers should read the XENIXC User's Guide for an
explanation of how to compile and debug C language programs.

Assembly language programmers should read the XENIX Macro Assem­
bler User's Guide for an explanation of how to compile and debug masm
programs.

1.7 Notational Conventions

This guide uses a number of special symbols to describe the syntax of
XENIX commands. The following is a list of these symbols and their
meaning.

Examples

1-4

Examples of program fragments or com­
mands are indented and set in monospace
type.

SMALL

bold

italics

monospace

Introduction

Small capitals indicate keynames, con­
stants, or error conditions.

Boldface characters indicate a command or
program name, any command option or flag,
and any function, routine, or subroutine.

Italic characters indicate a filename (for
example, letclttys) or a placeholder for a
command argument. When typing a com­
mand, replace a placeholder with an
appropriate filename, number, or option.
Italics are also used to give emphasis in the
text, and are used to identify the first use of
a technical term.

Monospace type is used for sample
command-lines, program code and exam­
ples, and sample sessions.

Quotation marks are used in the text to set
off examples of characters you actually
type.

1.8 Referencing Commands

Within the XENIX Programmer's Guide, a command may end with one of
the following letters in parentheses:

(S), (F), (M), (CP), (C), or (ADM)

1-5

XENIX Programmer's Guide

These notations mark which section of the XENIX Reference you will find
a command in:

(S) System calls

(F) Files and Formats

(M) Miscellaneous

(CP) Programming Commands

(C) Commands

(ADM) System Administration

1-6

Chapter 2

make: A Program Maintainer

2.1 Introduction 2-1

2.2 Creating a Makefile 2-1

2.3 Invoking make 2-3

2.4 Using Pseudo-Target Names 2-6

2.5 U sing Macros 2-6

2.6 Using Shell Environment Variables 2-9

2.7 Using the Built-in Rules 2-10

2.8 Changing the Built-in Rules 2-12

2.9 Using Libraries 2-14

2.10 Troubleshooting 2-15

2.11 Using make: An Example 2-16

make: A Program Maintainer

2.1 Introduction

The make program provides an easy way to automate the creation of
large programs. It reads commands from a user-defined make/tie that lists
the files to be created, the commands that create them, and the files from
which they are created. When you invoke make to create a program, it
verifies that each file on which the program depends is current, then
creates the program by executing the given commands. If a file is not
current, make updates it before creating the program. Then, make
updates a program by executing explicitly given commands or one of the
many built-in commands.

This chapter explains how to use make to compile automatically
medium-sized programs. It explains how to create make files for each pro­
ject, and how to invoke make for creating programs and updating files.
For technical details about the program, see make(CP) in the XENIX
Programmer's Reference.

2.2 Creating a Makefile

A makefile contains one or more lines of text called dependency lines. A
dependency line shows how a given file depends on other files and what
commands are required to bring a file up to date. A dependency line has
the following form:

targets : [dependents] [; commands]

where:

• targets are the filenames of the files to be updated,

• dependents are the filenames of the files on which the target
depends,and

• commands are the XENIX commands needed to create the target
file.

Each dependency line must have at least one command associated with it,
even if it is only the null command (;).

You can give more than one target filename or dependent filename, but
you must separate each filename from the next by at least one space.
Separate the target filenames from the dependent filenames with a colon
(:). Remember to spell filenames correctly. You can also use shell meta­
characters, such as asterisk (*) and question mark (?).

2-1

XENIX Programmer '8 Guide

You can give a sequence of commands on the same line as the target and
dependent filenames if you precede each command with a semicolon (;).
You can give additional commands on following lines by beginning each
line with a TAB character. You must type commands exactly as they
would appear on a shell command line, and you can place the at sign (@)
in front of a command to prevent make from displaying the command
before executing it. Shell commands, such as cd(C), must appear on sin­
gle lines; they must not contain the backs lash (\) and Return character
combination.

You can add a comment to a makefile by starting the comment with a
number sign (#) and ending it with a Return. All characters after the
number sign are ignored. If you place comments in a dependency line,
they must go at the end of the line. If a command contains a number sign,
you must enclose it in double quotation marks (" ").

If a dependency line is too long, you can continue it by typing a backslash
(\) and a Return.

The make file should be kept in the same directory as the given source
files. For convenience, the filenames makefile, Makefile, s.makefile, and
s.Makefile, are provided as default filenames. The make program uses
these names if you don't supply an explicit name when the program is
invoked. You can use one of these names for your makefile, or choose one
of your own. If the filename begins with the s. prefix, make assumes that
it is an sees file and invokes the appropriate sees command to retrieve
the latest version of the file.

To illustrate dependency lines, consider the following example. A pro­
gram named prog is made by linking three object files, x.o, y.o, and z.o.
These object files are created by compiling the C language source files,
x.c, y.c, and z.c respectively. Furthermore, the x.c and y.e files contain the
line:

#include "defs"

2-2

make: A Program Maintainer

This means that prog depends on the three object files, the object files
depend on the C source files, and two of the source files depend on the
include file defs. You can represent these relationships in a makeflle with
the following lines:

prog: x.o y.o z.o
cc x.o y.o z.o -0 prog

X.o: x.c defs
cc -c x.c

y.o: y.c defs
cc -c y.c

z.o : z.c
cc -c z.c

where:

• In the first dependency line, prog is the target file and X.o, y.o, and
Z.o are its dependents. The command sequence on the next line
tells how to create prog if it is out of date:

cc x.o y.o Z.O -0 prog

The program is out of date if you have modified anyone of its
dependents since you last created prog.

• The second, third, and fourth dependency lines have the same
form, with the x.o, y.o, and z.o files as targets and x.c, y.c, Z.c, and
defs files as dependents. Each dependency line has one command
sequence which defines how to update the given target file.

2.3 Invoking make

Once you have a makefile and wish to update and modify one or more tar­
get files in the file, you can start make. The make command has the fol­
lowing syntax:

make [options] [macdefs] [targets]

where:

• options are program options used to modify program operation.

• macdefs are macro definitions used to give a macro a value.

• targets are the filenames of the files to be updated. They must
correspond to one of the target names in the makefile.

2-3

XENIX Programmer's Guide

All arguments are optional. If you give more than one argument, you
must separate them with spaces.

You can direct make to update the first target file in the makeftle by typ­
ing just the program name. In this case, make searches for the files
makeftle, Makeftle, s.makefile, and s.Makefile in the current directory, and
uses the first one it finds as the makefile. For example, assume that the
current makefile contains the dependency lines given in the previous sec­
tion. Typing the following command compares the current date of the
prog program with the current date of each of the object files x.o, y.o, and
z.o:

make

It recreates prog if you have made any changes to any object file since
you last created prog. It also compares the current dates of the object
files with the dates of the four source files, x.e, y.e, z.e, and defs, and
recreates the object files if the source files have changed. It does this
before recreating prog so that you can use the recreated object files to
recreate prog. If none of the source or object files has been altered since
the last time prog was created, make announces this fact and stops. No
files are changed.

You can direct make to update a given target file by giving the filename
of the target. For example, typing the following causes make to recom­
pile the x.o file if the x.e or defs files have changed since the object file
was last created:

make x.o

Similarly, the following command causes make to recompile x.o and z.o
if the corresponding dependents have been modified:

make x.o z.o

The make program processes target names from the command line in a
left to right order.

You can specify the name of the make file you wish make to use by giving
the -f option in the invocation. The option has the following form:

-f makefile

2-4

make: A Program Maintainer

You must supply a full pathname if the file is not in the current directory.
For example, the following command reads the dependency lines of the
make/tie makeprog found in the current directory:

make -f makeprog

You can direct make to read dependency lines from the standard input by
entering a hyphen (-) as the filename. The make program reads the stan­
dard input until the end-of-file is encountered.

You can use the program options to modify the operation of the make
program. The following list describes some of the options:

Option

-p

-1

-k

-s

-r

-n

-e

-t

Description

Prints the complete set of macro definitions and
dependency lines in a makefile.

Ignores errors returned by XENIX commands.

Abandons work on the current entry, but continues on
other branches that do not depend on that entry.

Executes commands without displaying them.

Ignores the built-in rules.

Displays commands but does not execute them.
make even displays lines beginning with the "at" sign
(@).

Ignores any macro definitions that attempt to assign
new values to the shell's environment variables.

Changes the modification date of each target file
without recreating the files.

Note that make executes each command in the make file by passing it to a
separate invocation of a shell. Because of this, take care with certain
commands. For example, cd and shell control commands have meaning
only within a single shell process; the results are forgotten before the next
line is executed. If an error occurs, make normally stops the command.

2-5

XENIX Programmer's Guide

2.4 Using Pseudo-Target Names

Often, you may want to include dependency lines with pseudo-target
names, that is, names for which no files actually exist or are produced.
Pseudo-target names allow make to perform tasks not directly connected
with the creation of a program, such as deleting old files or printing
copies of source files. For example, the following dependency line
removes old copies of the given object files when the pseudo-target name
cleanup is given in invoking make:

cleanup :
rm x.o y.o z.o

Since no file exists for a given pseudo-target name, the target is con­
sidered out-of-date. Thus, the associated command is always executed.

The make program also has built-in pseudo-target names that modify its
operation. The pseudo-target name .Ignore causes make to ignore errors
during execution of commands and continue after an error. This is the
same as the -i option. Also, fBmake ignores errors for a given command
if the command string begins with a hyphen (-).

The pseudo-target name .Default defines the commands to be executed
when no built-in rule or user-defined dependency line exists for the given
target. You can give any number of commands with this name. If you do
not use .Default and you give an undefined target, make prints a message
and stops.

The pseudo-target name .Precious prevents dependents of the current tar­
get from being deleted when make is terminated using the Delete (Quit)
key. The pseudo-target name .Silent has the same effect as the -s option.

2.5 Using Macros

An important feature of a makefile is that it can contain macros. A macro
is a short na.1Jle that represents a filename or command option. You Ca.l'l

define the macros when you invoke make or in the makefile itself.

A macro definition is a line containing a name, an equal sign (=), and a
value. You must not precede the equal sign with a colon (:) or a TAB.
The name (string of letters and digits) to the left of the equal sign is
assigned the string of characters following the equal sign. Trailing blanks

2-6

make: A Program Maintainer

and tabs on the name and leading blanks and tabs on the string are
stripped. The following are valid macro definitions:

2 = xyz
abc = -11 -ly
LIBES =

The last definition assigns LIBES the null string. A macro that is never
explicitly defined has the null string as its value.

You invoke a macro by preceding the macro name with a dollar sign ($).
You must put macro names longer than one character in parentheses. The
name of the macro is either the single character after the $ or a name
inside parentheses. The following are valid macro invocations:

$ (CFLAGS)
$2
$ (xy)
$Z
$ (Z)

The last two invocations are identical.

Typically, you use macros as placeholders for values that may change
from time to time. For example, the following make file uses a macro for
the names of the object files to be linked and one for the names of the
library:

OBJECTS = x.o y.o z.o
LIBES = -lln
prog: $ (OBJECTS)

cc $(OBJECTS) $ (LIBES) -0 prog

If you invoke this makefile by typing the following command, it will load
the three object files with the lex library specified with the -lin option:

make

You can include a macro definition in a command line. This has the same
form as a macro definition in a makefile. If you use spaces in the
definition, you should use double quotation marks (" ") to enclose the
definition. Macros in a command line override corresponding definitions
found in the makefile. For example, the following command assigns the
library options -lin and -1m to LIBES:

make "LIBES=-lln -1m"

You can modify all or part of the value generated from a macro invoca­
tion without changing the macro itself using the substitution sequence.
The sequence has the following form:

name: st1 =[st2]

2-7

XENIX Programmer's Guide

where:

• name is the name of the macro whose value is to be modified,

• stl is the character or characters to be modified, and

• st2 is the character or characters replacing the modified characters.
If you do not specify st2, then st1 is replaced by a null character.

You can use shell metacharacters in the substitution sequence. For exam­
pIe, suppose that you want to use .x as a metacharacter for a prefix and
suppose that your makefile contains the following definition:

FILES = progl.x prog2.x prog3.x

Then the macro invocation:

$ (FILES : .x=.o)

will generate the value:

progl.o prog2.o prog3.o

The actual value of FILES remains unchanged.

The make program has five built-in macros that can be used when writing
dependency lines. The following is a list of these macros:

Macro

$*

$@

$<

$?

2-8

Description

Contains the name of the current target with the suffix
removed. Thus if the current target is prog.o, $* con­
tains prog. Use in dependency lines that redefine the
built-in rules.

Contains the full pathname of the current target. Use
in dependency lines with user-defined target names.

Contains the filename of the dependent that is more
recent than the given target. Use in dependency lines
with built-in target names or the .Default pseudo­
target name.

Contains the filenames of the dependents that are
more recent than the given target. Use in dependency
lines with user-defined target names.

$%

make: A Program Maintainer

Contains the filename of a library member. Use with
target library names. (For more information, see
"Using Libraries.") In this case, $@ contains the
name of the library and $ % contains the name of the
library member.

You can change the meaning of a built-in macro by appending the D or F
descriptor to its name. A built-in macro with the D descriptor contains
the name of the directory containing the given file. If the file is in the
current directory, the macro contains a dot (.). A macro with the F
descriptor contains the name of the given file with the directory name part
removed. Do not use the D and F descriptors with the $! macro.

2.6 Using Shell Environment Variables

The make program provides access to current values of the shell's
environment variables such as Home, Path, and Login. It automatically
assigns the value of each shell variable in your environment to a macro of
the same name. You can access a variable's value in the same way that
you access the value of explicitly defined macros. For example, in the
following dependency line, $(HOME) has the same value as the user's
HOME variable:

prog
cc $(HOME)/x.o $(HOME)/y.o /usr/pub/z.o

make assigns the shell variable va!aes after it assigns values to the built­
in macros, but before it assigns values to user-specified macros. Thus,
you can override the value of a shell variable by explicitly assigning a
value to the corresponding macro. For example, the following macro
definition causes make to ignore the current value of the HOME variable
and use /usr/pub instead:

HOME = /usr/pub

If a makefile contains macro definitions that override the current values of
the shell variables, you can direct make to ignore these definitions using
the -e option.

make has two shell variables, make and Makefiags, that correspond to
two special-purpose macros.

The make macro provides a way to override the -n option and execute
selected commands in a makefile. When you use make in a command,
make will always execute that command, even if -n has been given in the
invocation. You can set the variable to any value or command sequence.

2-9

XENIX Programmer's Guide

The Makeflags macro contains one or more make options, and can be
used in invocations of make from within a make/tie. You may assign any
make options to MakefJ.ags except -f, -p, and -d. If you do not assign a
value to the macro, make automatically assigns the current options to it,
that is, the options given in the current invocation.

You can use the Make and MakefJ.ags variables with the -n option to
debug make/lies that generate entire software systems. For example, in
the following makefile, setting MAKE to "make" and invoking this file
with the -n options displays all the commands used to generate the pro­
grams progl, prog2, and prog3 without actually executing them:

system : progl prog2 prog3
@echo System complete.

progl : progl.c
$ (MAKE) $ (MAKEFLAGS) progl

prog2 : prog2.c
$ (MAKE) $ (MAKEFLAGS) prog2

prog3 : prog3.c
$ (MAKE) $ (MAKEFLAGS) prog3

2.7 Using the Built-in Rules

The make program provides a set of built-in dependency lines, called
built-in rules, that automatically check the targets and dependents given
in a make file and create up-to-date versions of these files if necessary.
The built-in rules are identical to user-defined dependency lines except
that they use the suffix of the filename as the target or dependent, instead
of the filename itself. For example, make assumes automatically that all
files with the .0 suffix have dependent files with the suffixes .c and .s.

When you do not specify an explicit dependency line for a given file in a
makefile, make checks the default dependents of the file automatically. It
then forms the nfulle of the dependents by removing the sufflx of the given
file and appending the predefined dependent suffixes. If the given file is
out-of-date with respect to these default dependents, make searches for a

2-10

make: A Program Maintainer

built-in rule that defines how to create an up-to-date version of the file,
then executes it. There are built-in rules for the following files:

Built-in
Rule File

.0 Object file

.c C source file

.r Ratfor source file

f Fortran source file

.s Assembler source file

.y Yacc-C source grammar

.yr Yacc-Ratfor source grammar

.1 Lex source grammar

For example, if you need the x.o file and there is an x.c in the description
or directory, it is compiled. If there also is an x.l, you could run that
grammar through lex before compiling the result.

The built-in rules are designed to reduce the size of your makefiles. They
provide the rules for creating common files from typical dependents, for
example:

prog: x.o y.o z.o
cc x.o y.o z.o -0 prog

x.o: x.c defs
cc -c x.c

y.o: y.c defs
cc -c y.c

z.o: z.c
cc -c z.c

In this example, the prog program depends on three object files, x.o, y.o,
and z.o. These files, in tum, depend on the C language source files, x.c,
y.c, and z.c. The x.c and y.c files also depend on the defs include file. In
this example, each dependency and corresponding command sequence is
explicitly given. Many of these dependency lines are unnecessary, since
the built-in rules can be used instead. The following example is all you
need to show the relationships between the files:

prog: x.o y.o z.o
cc x.o y.o z.o -0 prog

x.o y.o: defs

2-11

XENIX Programmer's Guide

In this makefile, prog depends on three object files, and an explicit com­
mand is given showing how to update prog. However, the second line
merely shows that two object files depend on the defs include file. No
explicit command sequence is given on how to update these files if neces­
sary. Instead, make uses the built-in rules to locate the desired C source
files, compile these files, and create the necessary object files.

2.8 Changing the Built-in Rules

You can change the built-in rules by redefining the macros used in these
lines or by redefining the commands associated with the rules. You can
display a complete list of the built-in rules and the macros used in the
rules by typing:

make -fp - 2>/dev/null </dev/null

The macros of the built-in dependency lines define the names and options
of the compilers, program generators, and other programs invoked by the
built-in commands. The make program automatically assigns a default
value to these macros when you start the program. You can change the
values by redefining the macro in your makefile. For example, the follow­
ing built-in rule contains three macros, CC, Cflags, and Loadlibe

. c :
$(CC) $ (CFLAGS) $< $ (LOADLIBES) -0 $@

You can redefine any of these macros by placing the appropriate macro
definition at the beginning of the makefile.

You can redefine the action of a built-in rule by giving a new rule in your
makefile. A built-in rule has the following form:

where:

suffix-rule:
command

• suffix-rule is a combination of suffixes showing the relationship of
the implied target and dependent, and

• command is the XENIX command required to carry out the rule.

2-12

make: A Program Maintainer

If you need more than one command, put each one on a separate line. The
new rule must begin with an appropriate suffix-rule. The following suffix­
rules are available:

.c .c
~

.1.0 .r.o
.sh .sh- .y.c .y ~.c

.C.o .c
~

.0 .l.c
.c -.c .c.a .c ~.a

.s.o .s -.0 .s ~.a

.y.o .y -.0 .h-.h

A tilde C) indicates an sees file. A single suffix indicates a rule that
makes an executable file from the given file. For example, the suffix rule
.c is for the built-in rule that creates an executable file from a C source
file. A pair of suffixes indicates a rule that makes one file from the other.
For example, .C.o is for the rule that creates an object file (.0) from a
corresponding C source file (.c).

Any commands in the rule may use the built-in macros provided by
make. For example, the following dependency line redefines the action
of the .c.o rule:

.c.O
cc68 $< -c $*.0

If necessary, you can also create new suffix-rules by adding a list of new
suffixes to a make/tie with . Suffixes. This pseudo-target name defines the
suffixes that may be used to make suffix-rules for the built-in rules. The
line has the following form:

.Suffixes: suffix] , suffix2

where suffix is usually a lowercase letter preceded by a dot. If you use
more than one suffix in a line, you must use spaces to separate them.

The order of the suffixes is significant. Each suffix is a dependent of the
suffix preceding it. For example, the following suffix list causes prog.c to
be a dependent ofprog.o, andprog.y to be a dependent ofprog.c:

. SUFFIXES: .0 . c . Y .1 . s

You can create new suffix-rules by combining a dependent suffix with the
suffix of the intended target. The dependent suffix must appear first.

If you use a list of .Suffixes more than once in a make file, the suffixes are
combined into a single list. If you give .Suffixes that have no list, all
suffixes are ignored.

2-13

XENIX Programmer's Guide

2.9 Using Libraries

You can direct make to use a file contained in an archive library as a tar­
get or dependent. To do this you must explicitly name the file that you
wish to access using a: library name. A library name has the following
form:

lib (member-name)

where:

• lib is the name of the library containing the file.

• member-name is the name of the file.

For example, the following library name refers to the print.a object file in
the archive library libtemp.a:

libtemp.a(print.o)

You can create your own built-in rules for archive libraries by adding the
.a suffix to the suffix list and creating new suffix combinations. For exam­
ple, you can use the combination .c.a for a rule that defines how to create
a library member from a C source file. Note that the dependent suffix in
the new combination must be different from the suffix of the ultimate file.
For example, you can use the .c.a combination for a rule that creates .a
files, but not for one that creates .c files.

The most common use of the library-naming convention is to create a
make/lie that automatically maintains an archive library. For example,
the following dependency lines define the commands required to create a
library, named lib, containing up-to-date versions of the files filel.a,
file2.a, andfile3.a:

lib:

.c.a:

2-14

lib (filel. 0) lib (file2. 0) lib (file3. 0)
@echo lib is now up to date

$(CC) -c $ (CFLAGS) $<
ar rv $@ $*.0
rm -f $*.0

make: A Program Maintainer

The .c.a rule shows how to redefine a built-in rule for a library. In the fol­
lowing example, the built-in rule is disabled, allowing the first depen­
dency to create the library:

lib:
lib (filel. 0) lib (file2 .0) lib (file3. 0)
$(CC) -c $ (CFLAGS) $(?: .o=.c)
ar rv lib $?
rm $?
@echo lib is now up to date

. c .a:;

In this example, a substitution sequence is used to change the value of
the $? macro from the names of the object filesfiiei.o,file2.o, andfile3.o
to filel.c, file2.c, and file3.c.

2.10 'froubleshooting

Most difficulties in using make arise from make's specific meaning of
dependency. If the X.C file has the line:

#include "defs"

then the x.o object file depends on defs; the x.c source file does not. (If
defs is changed, it is not necessary to do anything to the x.c file, while it is
necessary to recreate x.o.)

To determine which commands make executes, without actually execut­
ing them, use the -n option. For example, the following command prints
out the commands make normally executes without actually executing
them:

make -n

The debugging option -d causes make to print out a detailed description
of what make is doing, including the file times. Note that the output is
verbose and recommended only as a last resort.

If a change to a file is certain to be benign (such as, adding a new
definition to an include file), the touch (-t) option can save you a lot of
time. Instead of issuing a large number of superfluous recompilations,
make updates the modification times on the affected file. Thus, the fol­
lowing command, which stands for touch silently, causes the relevant
files to appear up-to-date:

make -ts

2-15

XENIX Programmer's Guide

2.11 Using make: An Example

As an example of the use of make, examine the make file in Figure 2-1,
used to maintain the make itself. The code for make is spread over a
number of C source files and a yacc grammar.

The make program usually prints out each command before issuing it.
The following output results from giving make in a directory containing
only the source and makefile:

cc -c vers.c
cc -c main.c
cc -c doname.c
cc -c misc.c
cc -c files.c
cc -c dosys.c
yacc gram.y
mv y.tab.c gram.c
cc -c gram.c
cc vers.o main.o ... dosys.o gram.o -0 make
13188+3348+3044 = 19580b = 046174b

Although none of the source files or grammars was mentioned by name in
the make file, make found them by using its suffix rules and issued the
needed commands. The string of digits results from the size make com­
mand.

The last few targets in the make file are useful maintenance sequences.
The print target prints only the files that have been changed since the last
make print command. A zero-length file, print, keeps track of the time
of the printing; the $? macro in the command line then picks up only the
names of the files changed since print was touched. The printed output
can be sent to a different printer or to a file by changing the definition of
the Pmacro.

2-16

make: A Program Maintainer

Example

* Description file for the make command

Macro definitions below
P = lpr
FILES = Makefile vers.c defs main.c doname.c misc.c files.c dosys.c\

gram.y lex.c
OBJECTS = vers.o main.o ... dosys.o gram.o
LIBES=
LINT = lint -p
CFIAGS = -0

#targets: dependents
*<TAB>actions

make: $ (OBJECTS)
cc $(CFIAGS) $ (OBJECTS) $ (LIBES) -0 make
size make

$ (OBJECTS): defs
gram. 0: lex.c

cleanup:
-rm *.0 gram.c
-du

install:
@size make /usr/bin/make
cp make /usr /bin/make ; rm make

print: $ (FILES)
pr $? I $P
touch print

print recently changed files

test:
make -dp I grep -v TIME >lzap
/usr/bin/make -dp I grep -v TIME >2zap
diff lzap 2zap
rm lzap 2zap

lint dosys.c doname.c files.c main.c misc.c vers.c gram.c

arch:

$ (LINT) dosys.c doname.c files.c main.c misc.c vers.c gram.c
rm gram.c

ar uv /sys/source/s2/make.a $(FlLES)

2-17

Chapter 3

SCCS: A Source

Code Control System

3.1 Introduction 3-1

3.2 Basic Information 3-1
3.2.1 Files and Directories 3-2
3.2.2 Deltas and SIDs 3-2
3.2.3 sees Working Files 3-3
3.2.4 sees Command Arguments 3-4
3.2.5 File Administrator 3-5

3.3 Creating and Using s-files 3-5
3.3.1 Creating an s-file 3-6
3.3.2 Retrieving a File for Reading 3-7
3.3.3 Retrieving a File for Editing 3-8
3.3.4 Saving a New Version of a File 3-9
3.3.5 Retrieving a Specific Version 3-10
3.3.6 Changing the Release Number of a File 3-11
3.3.7 Creating a Branch Version 3-12
3.3.8 Retrieving a Branch Version 3-12
3.3.9 Retrieving the Most Recent Version 3-13
3.3.10 Displaying a Version 3-13
3.3.11 Saving a Copy of a New Version 3-14
3.3.12 Displaying Helpful Information 3-14

3.4 Using Identification Keywords 3-15
3.4.1 Inserting a Keyword into a File 3-15
3.4.2 Assigning Values to Keywords 3-16
3.4.3 Forcing Keywords 3-16

3.5 Using s-file Flags 3-17
3.5.1 Setting s-file Flags 3-17
3.5.2 Using the i Flag 3-17
3.5.3 UsingtbedFlag 3-18
3.5.4 Using the v Flag 3-18

-1-

3.5.5 Removing an s-file Flag 3-18

3.6 Modifying s-file Information 3-19
3.6.1 Adding Comments 3-19
3.6.2 Changing Comments 3-20
3.6.3 Adding Modification Requests 3-20
3.6.4 Changing Modification Requests 3-21
3.6.5 Adding Descriptive Text 3-21

3.7 Printing from an s-file 3-22
3.7.1 Using a Data Specification 3-22
3.7.2 Printing a Specific Version 3-23
3.7.3 Printing Later and Earlier Versions 3-24

3.8 Editing by Several Users 3-24
3.8.1 Editing Different Versions 3-24
3.8.2 Editing a Single Version 3-24
3.8.3 Saving a Specific Version 3-25

3.9 Protecting s-files 3-25
3.9.1 Adding a User to the User List 3-26
3.9.2 Removing a User from a User List 3-26
3.9.3 Setting the Floor Flag 3-27
3.9.4 Setting the Ceiling Flag 3-27
3.9.5 Locking a Version 3-27

3.10 Repairing sees Files 3-28
3.10.1 Checking an s-file 3-28
3.10.2 Editing an s-file 3-29
3.10.3 Changing an s-file's Checksum 3-29
3.10.4 Regenerating a g-file for Editing 3-29
3.10.5 Restoring a Damaged p-file 3-29

3.11 Using Other Command Options 3-30
3.11.1 Getting Help With sees Commands 3-30
3.11.2 Creating a File With the Standard Input 3-30
3.11.3 Starting at a Specific Release 3-30
3.11.4 Adding a Comment to the First Version 3-31
3.11.5 Suppressing Normal Output 3-31
3.11.6 Including and Excluding Deltas 3-32
3.11.7 Listing the Deltas of a Version 3-33
3.11.8 Mapping Lines to Deltas 3-33
3.11.9 Naming Lines 3-34
3.11.10 Displaying a List of Differences 3-34
3.11.11 Comparing sees Files 3-34
3.11.12 Checking a File Versi?n 3-35

-11-

3.11.13 Removing a Delta 3-35
3.11.14 Searching for Strings 3-36

- iii -

SCCS: A Source Code Control System

3.1 Introduction

The Source Code Control System (SeeS) is a collection of XENIX com­
mands that create, maintain, and control special files called sees files.
The sees commands let you create and store multiple versions of a pro­
gram or document in a single file, instead of one file for each version.
The commands let you retrieve any version you wish at any time, make
changes to a version, and save the changes as a new version of the file in
the sees file.

The sees system is useful wherever you require a compact way to store
multiple versions of the same file. The sees system provides an easy
way to update any given version of a file and explicitly record the
changes made. Typically, you use the commands to control changes to
multiple versions of source programs, but you can also use them to con­
trol multiple versions of guides, specifications, and other documentation.

This chapter explains how to:

• make sees files

• update the files contained in sees files

• maintain the sees files once they are created

The following sections describe the basic information you need to start
using the sees commands.

3.2 Basic Information

This section provides some basic information about the sees system. In
particular, it describes:

• files and directories

• deltas and SIDs

• sees working files

• sees command arguments

• file administration

3-1

XENIX Programmer's Guide

3.2.1 Files and Directories

All sees files (also called s-files) are originally text files contammg
documents or programs created by a user. The text files must have been
created using a XENIX text editor such as vi. You can use special charac­
ters in the files only if they are allowed by the given editor.

To simplify s-file storage, you should keep all logically related files (such
as, files belonging to the same project) in the same directory. Such direc­
tories should contain s-flles only, and should have read and examine per­
mission for everyone and write permission for the user only.

Note that you must not use the XENIX link command to create multiple
copies of an s-flle.

3.2.2 Deltas and SIDs

Unlike an ordinary text file, an sees file contains nothing more than lists
of changes. Each list corresponds to the changes needed to construct
exactly one version of the file. You can then combine the lists to create
the desired version from the original.

Each list of changes is called a delta. Each delta has an identification
string called an SID. The SID is a string of at least two, and at most four,
numbers separated by periods. The numbers name the version and define
how it is related to other versions. For example, the first delta is usually
numbered 1.1 and the second, 1.2.

The first number in any SID is called the release number. The release
number usually indicates a group of versions that are similar and gen­
erally compatible. The second number in the SID is the level number. It
indicates major differences between files in the same release.

An SID may also have two optional numbers. The branch number, the
optional third number, indicates changes at a particular level; and the
sequence number, the fourth number, indicates changes at a particular
branch. For example, the SIDs 1.1.1.1 and 1.1.1.2 indicate two new ver­
sions that contain slight changes to the original delta 1.1.

An s-file can contain several different releases, levels, branches, and
sequences of the same file. In general, the maximum number of releases
an s-file can contain is 9999; that is, release numbers can range from 1 to
9999. The same limit applies to level, branch, and sequence numbers.

When you create a new version, the sees system usually creates a new
SID by incrementing the level number of the original version. If you wish

3-2

SCCS: A Source Code Control System

to create a new release, you must instruct the system to do so explicitly. A
change to a release number indicates a major new version of the file.
How to create a new version of a file and change release numbers is
described later.

The sees system creates a branch and sequence number for the SID of a
new version, if the next higher level number already exists. For example,
if you change version 1.3 to create a version 1.4 and then change 1.3
again, the sees system creates a new version named 1.3.1.1.

Version numbers can become quite complicated. You should keep the
numbers as simple as possible by carefully planning the creation of each
new version.

3.2.3 sees Working Files

The sees system uses several different kinds of files to complete its
tasks. In general, these files contain either actual text or information
about the commands in progress. For convenience, the sees system
names these files by placing a prefix before the name of the original file
from which all versions were made. The following is a list of the working
files.

File Description

s-flle A permanent file that contains all versions of the given
text file. The versions are stored as deltas, that is, lists
of changes to be applied to the original file to create the
given version. You form the name of an s-file by placing
the file prefix s. at the beginning of the original
filename.

x-file A temporary copy of the s-file. You create x-files with
sees commands that change the s-file. You use x-files
instead of the s-file to carry out the changes. When all
changes are complete, the sees system removes the ori­
ginal s-file and gives the x-file the name of the original
s-file. You form the name of the x-file by placing the
prefix x. at the beginning of the original file.

g-file An ordinary text file created by applying the deltas in a
given s-file to the original file. The g-file represents a
copy of the given version of the original file, and as such
receives the same filename as the original. When you
create a g-file, it is placed in your current working direc­
tory.

3-3

XENIX Programmer's Guide

p-file A special file containing infonnation about the versions
of an s-file currently being edited. You create a p-file
when you retrieve a g-file from the s-file. The p-file
exists until you have saved all currently retrieved files in
the s-file; it is then deleted. The p-file contains one or
more entries describing the SID of the retrieved g-file,
the proposed SID of the new, edited g-file, and the log-in
name of the user who retrieved the g-file. You fonn the
p-file name by placing the prefix p. at the beginning of
the original filename.

z-file A lock file used by sees commands to prevent two
users from updating a single sees file at the same time.
Before a command modifies an sees file, it creates a z­
file and copies its own process ID to it. Any other com­
mand that attempts to access the file while the z-file is
present displays an error message and stops. When the
original command has finished its tasks, it deletes the z­
file before stopping. You fonn the z-file name by placing
the prefix z. at the beginning of the original filename.

I-file A special file containing a list of the deltas required to
create a given version of a file. You fonn the I-file name
by placing the prefix I. at the beginning of the original
filename.

d-file A temporary copy of the g-file used to generate a new
delta.

q-file A temporary file used by the delta command when
updating the p-file. The q-file is not directly accessible.

In general, you never directly access x-files, z-files, d-files, or q-files. If a
system crash or similar situation abnonnally tenninates a command, you
may wish to delete these files to ensure proper operation of subsequent
sees commands.

3.2.4 sees Command Arguments

Almost all sees commands accept options and filenames as arguments.
These appear in the sees command line immediately after the command
name.

An option indicates a special action to be taken by the given sees com­
mand. An option is usually a lowercase letter preceded by a minus sign
(-). Some options require an additional name or value.

3-4

SCCS: A Source Code Control System

A filename indicates the file to be acted on. The syntax for sees
filenames is like other XENIX filename syntax. Appropriate pathnames
must be given if required. Some commands also allow directory names.
In this case, all files in the directory are acted on. If the directory con­
tains non-SeeS and unreadable files, these are ignored. A filename must
not begin with a minus sign (-).

You can use the special symbol (-) to make the given command read a list
of filenames from the standard input. Then, when you process files, you
can use these filenames. The list must terminate with an end-of-file char­
acter.

Any options that you give with a command apply to all files. The sees
commands process the options before any filenames, so the options may
appear anywhere on the command line.

Filenames are processed left to right. If a command encounters a fatal
error, it stops processing the current file; and, if you have given any other
filenames, it begins processing the next one.

3.2.5 File Administrator

Every sees file requires an administrator to maintain and keep the file in
order. The administrator is usually the user who created the file and
therefore owns it. Before other users can access the file, the administrator
must ensure that they have adequate access. Several sees commands let
the administrator define who has access to the versions in a given s-file.
These are described in "Protecting s-files."

3.3 Creating and Using s-files

The s-file is the key element in the sees system. It provides compact
storage for all versions of a given file and automatic maintenance of the
relationships between the versions.

This section explains how to use the admin, get, and delta commands to
create and use s-files. In particular, it describes how to:

• create the first version of a file

• retrieve versions for reading and editing

• save new versions

3-5

XENIX Programmer's Guide

3.3.1 Creating an s-file

You can create an s-ftle from an existing text file using the -i (initialize)
option of the admin command. The command has the following form:

admin -ifilename s filename

where:

• -i filename is the name of the text file from which the s-file is to be
created, and

• sfilename is the name of the new s-ftle.

The name must begin with s. and must be unique; no other s-ftle in the
same directory can have the same name. For example, suppose the file
demo.c contains the short C language program:

#include <stdio.h>

main ()
{
printf("This is version 1.1 \n");
}

To create an s-flle, type:

adrnin -idemo.c s.demo.c

This command creates s.demo.c and copies the first delta describing the
contents of demo.c to this new file. The first delta is numbered 1.1.

After you have created an s-file, you should remove the original text file
using the rm command, since that file is no longer needed. If you wish to
view the text file or make changes to it, you can retrieve the file using the
get command described in "Retrieving a File for Editing."

When first creating an s-file, the admin command may display the warn­
ing message:

No id keywords (cm7)

You can ignore this message unless you have specifically included key­
words in your file. For more information, see' 'Using Identification Key­
words."

Note that only a user with write permission in the directory containing the
s-file can use the admin command on that file. This protects the file from
administration by unauthorized users.

3-6

SCCS: A Source Code Control System

3.3.2 Retrieving a File for Reading

You can retrieve a file for reading from a given s-file using the get com­
mand. The command has the following form:

get s.filename ...

where s.filename is the name of an s-ftle containing the text file.

The command retrieves the latest version of the text file and copies it to a
regular file. The file has the same name as the s-file but with the s.
removed. It also has read-only file permission. For example, suppose
s.demo.c contains the first version of the short C program shown in the
previous section. To retrieve this program, type:

get s.demo.c

The command retrieves the program and copies it to the file named
demo.c. You can then display the file just as you would any other text
file.

The command also displays a message which describes the SID of the
retrieved file and its size in lines. For example, after retrieving the short
C program from s.demo.c, the command displays the following message:

1.1
6 lines
No id keywords (cm7)

You can also retrieve more than one file at a time by giving mUltiple s-file
names in the command line. For example, the following command
retrieves the contents of s.demo.c and s.defh and copies them to the text
files demo.c and defh:

get s.demo.c s.def.h

When giving multiple s-file names in a command, you must separate each
with at least one space. When the get command displays information
about the files, it places the corresponding filename before the relevant
information.

3-7

XENIX Programmer's Guide

3.3.3 Retrieving a File for Editing

You can retrieve a file for editing from a given s-ftle using the -e (editing)
option of the get command. The command has the following form:

get -e s .filename ...

where s.filename is the name of an s-file containing the text file. To give
more than one filename, separate each name with a space.

The command retrieves the latest version of the text file and copies it to
an ordinary text file. The file has the same name as the s-file but with the
s. removed. It has read and write file permissions. For example, suppose
s.demo.c contains the first version of a C program. To retrieve this pro­
gram, type:

get -e s.demo.c

The command retrieves the program and copies it to the demo.c file. You
can now edit the file just as you would any other text file.

If you give more than one filename, the command creates files for each
corresponding s-file. Since the -e option applies to all the files, you can
edit each one.

After retrieving a text file, the command displays a message giving the
SID of the file and its size in lines. The message also displays a proposed
SID, that is, the SID for the new version after editing. For example, after.
retrieving the six-line C program in s.demo.c, the command displays the
following message:

1.1
new delta 1.2
6 lines

The proposed SID is 1.2. If more than one file is retrieved, the
corresponding filename precedes the relevant information.

Note that any changes made to the text file are not immediately copied to
the corresponding s-file. To save these changes, you must use the delta
command described in the next section. To keep track of the current file
version, the get command creates another file, called a p-file, that con­
tains information about the text file. This file is used by a subsequent
delta command when saving the new version. The p-file has the same
name as the s-file but begins with a p .. The user must not access the p-file
directly.

3-8

SCCS: A Source Code Control System

3.3.4 Saving a New Version of a File

You can save a new version of a text file using the delta command. The
command has the form:

delta s filename

where sfilename is the name of the s-ftle from which the modified text file
was retrieved. For example, to save changes made to a C program in the
file demo.c (which was retrieved from the file s.demo.c), type:

delta s.demo.c

Before saving the new version, the delta command asks for comments
explaining the nature of the changes. It displays the prompt:

comments?

You can type any appropriate text, up to 512 characters. The comment
must end with a Return. If necessary, you can start a new line by typing a
backslash (\) followed by a Return. If you do not wish to include a com­
ment, just type a Return.

Once you have given a comment, the command uses the information in
the corresponding p-file to compare the original version with the new ver­
sion. It then copies a list of all the changes to the s-file. This is the new
delta.

After a command has copied the new delta to the s-file, it displays a mes­
sage showing the new SID and the number of lines inserted, deleted, or
left unchanged in the new version. For example, if the C program has
been changed to the following:

#include <stdio.h>

main ()
{
int i = 2;

printf("This is version 1.%d 0, i);
}

the command displays the following message:

1.2
3 inserted
1 deleted
5 unchanged

3-9

XENIX Programmer '8 Guide

Once you save a new version, the next get command retrieves it. The
command ignores previous versions. If you wish to retrieve a previous
version, use the -r option of the get command as described in the next
section.

3.3.5 Retrieving a Specific Version

You can retrieve any version you wish from an s-file using the -r
(retrieve) option of the get command. The command has the following
form:

get [-e] -rSID sfilename ...

where:

• -e is the edit option.

• -r SID eives the SID of the version to be retrieved.

• s filename is the name of an s-file containing the file to be
retrieved. You can give more than one filename, if you separate
each name with a space.

The command retrieves the given version and copies it to the file having
the same name as the s-file but with the s. removed. The file has read­
only permission unless you also give the -e option. If you give multiple
filenames, the command retrieves one text file of the given version from
each. For example, to retrieve version 1.1 from s.demo.c, type:

get -rl.l s.demo.c

To retrieve a version 1.1 from both s.demo.c and s.defh, type:

get -e -rl.l s.demo.c s.def.h

If you give the number of a version that does not exist, the command
displays an error message.

You can omit the level number of a version if you wish; that is, just give a
release number. The command automatically retrieves the most recent
version having the same release number. For example, if the most recent
version in the s.demo.c file is numbered 1.4, the following command
retrieves version 1.4:

get -rl s.demo.c

3-10

SCCS: A Source Code Control System

If there is no version with the given release number, the command
retrieves the most recent version in the previous release.

3.3.6 Changing the Release Number of a File

You can direct the delta command to change the release number of a new
version of a file using the -r option of the get command. In this case, the
get command has the following form:

get -e -rrel-num s.filename ...

where:

• -e is the required edit option,

• -r rel-num is the new release number of the file, and

• s-filename is the name of an s-file containing the file to be
retrieved.

The new release number must be an entirely new number; that is, no
existing version can have this number. You can give more than one
filename.

The command retrieves the most recent version from the s-file, then
copies the new release number to the p-file. The subsequent delta com­
mand saves the new version using the new release number and level
number 1.

For example, if the most recent version of s.demo.c is 1.4, typing the fol­
lowing command causes the subsequent delta to save a new version 2.1,
not 1.5:

get -e -r2 s.demo.c

The new release number applies to the new version only; the release
numbers of previous versions are not affected. Therefore, if you edit ver­
sion 1.4 (from which 2.1 was derived) and save the changes, you create a
new version, 1.5. Similarly, if you edit version 2.1, you create a new ver­
sion, 2.2.

As before, the get command also displays a message showing the current
version number, the proposed version number, and the size of the file in
lines. Similarly, the subsequent delta command displays the new version
number and the number of lines inserted, deleted, and unchanged in the
new file.

3-11

XENIX Programmer's Guide

3.3.7 Creating a Branch Version

You can create a branch version of a file by editing a version that has
been previously edited. A branch version is simply a version whose SID
contains a branch and a sequence number.

For example, if version 1.4 already exists, typing the following command
retrieves version 1.3 for editing and assigns 1.3.1.1 as the proposed SID:

get -e -rl.3 s.demo.c

In general, whenever get discovers that you wish to edit a version that
already has a succeeding version, get uses the first available branch and
sequence numbers for the proposed SID. For example, if you edit version
1.3 a third time, get assigns 1.3.2.1 as the proposed SID.

You can save a branch version just like any other version using the delta
command.

3.3.8 Retrieving a Branch Version

You can retrieve a branch version of a file using the -r option of the get
command. For example, typing the following command retrieves branch
version 1.3.1.1:

get -rl.3.1.1 s.demo.c

You can retrieve a branch version for editing using the -e option of the get
command. When you are retrieving for editing, get creates the proposed
SID by incrementing the sequence number by one. For example, if you
retrieve branch version 1.3.1.1 for editing, get assigns 1.3.1.2 as the pro­
posed SID.

As always, the command displays the version number and file size. If the
given branch version does not exist, the command displays an error mes­
sage.

You can omit the sequence number if you wish. The command retrieves
the most recent branch version with the given branch number. For exam­
ple, if the most recent branch version in s.defh is 1.3.1.4, the following
command retrieves version 1.3.1.4:

get -rl.3.1 s.def.h

3-12

SCCS: A Source Code Control System

3.3.9 Retrieving the Most Recent Version

You can always retrieve the most recent version of a file using the -t
option with the get command. For example, type the following to retrieve
the most recent version from the file s.demo.c:

get -t s.demo.c

You can combine the -r and -t options to retrieve the most recent version
of a given release number. For example, if the most recent version with
release number 3 is 3.5, type the following to retrieve version 3.5:

get -r3 -t s.demo.c

If a branch version exists that is more recent than version 3.5 (such as,
3.2.1.5), then the above command retrieves the branch version and
ignores version 3.5.

3.3.10 Displaying a Version

You can display the contents of a version at the standard output using the
-p option of the get command. For example, typing the following com­
mand displays the most recent version in the file, s.demo.c:

get -p s.demo.c

Similarly, the following command displays version 2.1:

get -p -r2.1 s.demo.c

The -p option is useful for creating g-files with user-supplied names. This
option also directs all output normally sent to the standard output, such as
the SID of the retrieved file, to the standard error file. Thus, the resulting
file contains only the contents of the given version. For example, the fol­
lowing command copies the most recent version in s.demo.c to the
version.c file:

get -p s.demo.c >version.c

The command also copies the SID of the file and its size to the standard
error file.

3-13

XENIX Programmer's Guide

3.3.11 Saving a Copy of a New Version

The delta command nonnally removes the edited file after saving it in the
s-ftle. You can save a copy of this file using the -n option of the delta
command. For example, the following command first saves a new version
of s.demo.c and then saves a copy of this version in the file demo.c:

delta -n s.demo.c

You can display or edit the demo.c file as desired, but you cannot edit this
file through sees.

3.3.12 Displaying Helpful Information

An sees command displays an error message in the following fonn
whenever it encounters an error in a file:

ERROR [filename]: message (code)

where:

• filename is the name of the file being processed,

• message is a short description of the error, and

• code is the error code.

You can use the error code as an argument to the help command to
display additional infonnation about the error. Type:

help code

where code is the error code given in an error message.

The command displays one or more lines of text that explain the error and
suggest a possible remedy. For example, typing:

help col

displays the message:

col:
"not an sees file"
A file that you think is an sees file
does not begin with the characters "s.".

You can use the help command at any time.

3-14

SCCS: A Source Code Control System

3.4 Using Identification Keywords

The sees system provides several special symbols called identification
keywords that you can use in the text of a program or document to
represent a predefined value. Keywords represent a wide range of values,
from the creation date and time of a given file to the name of the module
containing the keyword. When you retrieve the file for reading, the sees
system automatically replaces any keywords it finds in a given version of
a file with the keyword's value.

This section explains how keywords are treated by the various sees com­
mands and how you can use the keywords in your own files. Only a few
keywords are described in this section. For a complete list of the key­
words, see get(CP) in the KENIK Programmer's Reference.

3.4.1 Inserting a Keyword into a File

You can insert a keyword into any text file. A keyword is simply an
uppercase letter enclosed in percent signs (%); it requires no special char­
acters. For example, %1% is the keyword representing the SID of the
current version, and % H % is the keyword representing the current date.

When you retrieve a program for reading using the get command, the
command replaces the keywords with their current values. For example,
the % M %, % I %, and % H % keywords are used in place of the module
name, the SID, and the current date in a program statement:

char header[] = {" %M% %1% %H% "};

The get command expands these keywords in the retrieved version of the
program:

char header [] = {" MODNAME 2.3 07/07/77"};

The get command does not replace keywords when retrieving a version
for editing. The system assumes that you want to keep the keywords (and
not their values) when you save the new version of the file.

To indicate that a file has no keywords, the get, delta, and admin com­
mands display the following message:

No id keywords (cm7)

This message is normally a warning, letting you know that no keywords
are present. However, you can change the operation of the system to
make this a fatal error, as explained later in this chapter.

3-15

XENIX Programmer's Guide

3.4.2 Assigning Values to Keywords

The system predefines values of most keywords, but you can define some
keywords explicitly, such as the value for the % M % keyword. To assign
a value to a keyword, you must set the corresponding s-ftle flag to the
desired value using the -f option of the admin command.

For example, to set the % M % keyword to cdemo, set the m flag as in the
following command:

admin -fmcdemo s.demo.c

This command records cdemo as the current value of the %M% key­
word. Note that if you do not set the m flag, the sees system uses the
name of the original text file for % M % by default.

The t and q flags are also associated with keywords. You will find a
description of these flags and their corresponding keywords in get(CP) in
the XENIK Programmer's Reference. You can change keyword values at
any time.

3.4.3 Forcing Keywords

If a version contains no keywords, you can force a fatal error by setting
the i flag in the given s-ftle. The flag causes the delta and adniin com­
mands to stop processing of the given version and report an error. You
can use the flag to ensure that keywords are used properly in a given file.

To set the i flag, use the -f option of the admin command. For example,
typing the following command sets the i flag in s.demo.c:

admin -fi s.demo.c

If the given version does not contain keywords, subsequent delta or
admin commands that access this file print an error message.

Note that if you attempt to set the i flag at the same time as you create an
s-ftle and if the initial text file contains no keywords, then the admin
command displays a fatal error message and stops without creating the s­
file.

3-16

SCCS: A Source Code Control System

3.5 Using s-file Flags

An s-file flag is a special value that defines how a given sees command
will operate on the corresponding s-flle. The s-file flags are stored in the
s-file and each sees command reads these flags before it operates on the
file. The s-file flags affect operations such as keyword checking, keyword
replacement values, and default values for commands.

This section explains how to set and use s-file flags. It also describes the
action of commonly used flags. For a complete description of all flags,
see admin(CP) in the XENIX Programmer's Reference.

3.5.1 Setting s-file Flags

You can set the flags in a given s-file using the -f option of the admin
command. The command has the following form:

admin -fjlag s .filename

where:

• -fjlag is the flag to be set, and

• s .filename is the name of the s-file in which the flag is to be set.

For example, typing the following command sets the i flag in s.demo.c:

admin -fi s.demo.c

Note that some s-file flags take values when they are set. For example,
the m flag requires that you give a module name. When a value is
required, it must immediately follow the flag name, as in this command
which sets the m flag to the module name dmod:

admin -f mdmod s.demo.c

3.5.2 Using the i Flag

If no keywords are found in the given text file, the i flag causes the admin
and delta commands to print a fatal error message and stop. The flag
prevents a version of a file containing expanded keywords from being
saved as a new version. (Saving an expanded version destroys the key­
words for all subsequent versions.)

3-17

XENIX Programmer's Guide

When you set the i flag, each new version of a file must contain at least
one keyword. Otherwise, you cannot save the version.

3.5.3 Using the d Flag

The d flag gives the default SID for versions retrieved by the get com­
mand. The flag takes an SID as its value. For example, the following
command sets the default SID to 1.1:

admin -fdl.l s.demo.c

A subsequent get command which does not use the -r option will retrieve
version 1.1.

3.5.4 Using the v Flag

The v flag lets you include modification requests in an s-ftle.
Modification requests are names or numbers that you use as a shorthand
means of indicating the reason for each new version.

When you set the v flag, the delta command asks for the modification
requests just before asking for comments. The v flag also lets you use
the -m option in the delta and admin commands.

3.5.5 Removing an s-file Flag

You can remove an s-ftle flag from an s-ftle using the -d option of the
admin command:

admin -dflag s filename

where:

• -dflag is the name of the flag to be removed, and

• sfilename is the name of the s-ftle from which the flag is to be
removed.

For example, the following command removes the i flag from s.demo.c:

admin -di s.demo.c

3-18

SCCS: A Source Code Control System

When you are removing a flag that takes a value, only the flag name is
required. For example, the following command removes the m flag from
the s-file: .

adrnin -drn s.demo.c

You must not use the -d and -i options at the same time.

3.6 Modifying s-file Information

Every s-file contains information about the deltas it contains. Normally,
the sees commands maintain this information, so it is not directly acces­
sible to you. Some information, however, is specific to the user who
creates the s-file and can be changed to meet the user's requirements.
This information is in two special parts of the s-file called the delta table
and the description field.

The delta table contains infonnation about each delta, such as the SID and
the date and time of creation. It also contains user-supplied information,
such as comments and modification requests.

The description field contains a user-supplied description of the s-file and
its contents. You can change or delete both parts at any time to reflect
changes to the s-file contents.

3.6.1 Adding Comments

You can add comments to an s-file using the -y option of the delta and
admin commands. This option copies the given text to the s-file as the
comment for the new version. The comment can be any combination of
letters, digits, and punctuation symbols, but no embedded Returns are
allowed. If you use spaces, enclose the comment in double quotes. The
complete command must fit on one line. For example, the following com­
mand saves the comment "George Wheeler" in s.demo.c:

delta -y"George Wheeler" s.demo.c

Typically, you use the -y option in shell procedures as part of an
automated approach to maintaining files. When you do use the -y option,
the delta command does not print the corresponding comment prompt, so
no interaction is required. If you give more than one s-file in the com­
mand line, the given comment applies to all of them.

3-19

XENIX Programmer's Guide

3.6.2 Changing Comments

You can change the comments in a given s-flle using the cdc command.
The command has the following fonn:

cdc -rSID s.filename

where:

• -rSID is the SID of the version whose comment is to be changed.

• s.filename is the name of the s-flle containing the version.

The command asks for a new comment by displaying the following
prompt:

comments?

You can type any sequence of characters up to 512. The sequence can
contain embedded Returns if they are preceded by a backslash (\). You
must tenninate the sequence with a Return. For example, the following
command prompts for a new comment for version 3.4:

cdc -r3.4 s.demo.c

Although the command does not delete the old comment, it is no longer
directly accessible to you. The new comment contains the log-in name of
the user who invoked the cdc command and the time the comment was
changed.

3.6.3 Adding Modification Requests

You can add modification requests to an s-flle when the v flag is set, using
the -m option of the delta and admin commands. A modification request
is a shorthand method of describing the reason for a particular version.
Modification requests are usually names or numbers that you choose to
represent specific requests.

The -m option causes the given command to save the requests following
the option. A request can be any combination of letters, digits, and punc­
tuation symbols. If you give more than one request, you must separate
each with a space and enclose the request in double quotes. For example,
the following command copies the requests "error35" and "optimizeIO"
to s.demo.c, while saving the new version:

delta -m"error35 optimizelO" s.demo.c

3-20

SCCS: A Source Code Control System

The delta command does not prompt for modification requests if you use
the -m option.

When you use the -m option with the admin command, you must com­
bine it with the -i option. Also, you must set the v flag with the -f option.
For example, the following command inserts the modification request
"errorO" in the new s.defh: file

admin -idef.h -m"errorO" -fv s.def.h

3.6.4 Changing Modification Requests

You can change modification requests when the v flag is set, using the cdc
command. The command asks for a list of modification requests by
displaying the prompt:

MRs?

You can type any number of requests. Each request can have any combi­
nation of letters, digits, or punctuation symbols, but no more than 512
characters are allowed; you must terminate the last request with a Return.
To remove a request, you must precede the request with an exclamation
point (!). For example, the following command asks for changes to the
modification requests:

cdc -rl.4 s.demo.c

The following response adds the request "error36" and removes
"error35":

MRs? error36 !error35

3.6.5 Adding Descriptive Text

You can add descriptive text to an s-ftle using the -t option of the admin
command. Descriptive text is any text that describes the reason for the
given s-file. Descriptive text is independent of the contents of the s-file
and you can display it only by using the prs command.

The -t option directs admin to copy the contents of a given file into the
description field of the s-file. The command has the following form:

admin -tfilename s .filename

3-21

XENIX Programmer's Guide

where:

• -t filename gives the name of the file containing the descriptive
text, and

• sfilename is the name of the s-file to receive the descriptive text.

The file to be inserted can contain any amount of text. For example, the
following command inserts the contents of the edema file into the descrip­
tion field of s.demo.e:

admin -tcdemo s.demo.c

You can also use the -t option to initialize the description field when
creating the s-file. For example, the following command inserts the con­
tents of the edema file into s.demo.e:

admin -idemo.c -tcdemo s.demo.c

If you do not use -t, the description field of the new s-flle is left empty.

You can remove the current descriptive text in an s-file using the -t option
without a filename. For example, the following command removes the
descriptive text from the s-file, s.demo.e:

admin -t s.demo.c

3.7 Printing from an s-file

This section explains how to use the prs command to display information
contained in an s-file. The prs command has a variety of options that
control the display format and content.

3.7.1 Using a Data Specification

You can define explicitly the information to be printed from an s-file
using the -d option of the prs command. The command copies user­
specified information to the standard output. The command has the fol­
lowing form:

prs -dspee s filename

3-22

SCCS: A Source Code Control System

where:

• -dspec is the data specification.

• sfilename is the name of the s-file from which the information is to
be taken.

The data specification is a string of data keywords and text. A data key­
word is an uppercase letter enclosed in colons (:). It represents a value
contained in the given s-file. For example, the :1: keyword represents the
SID of a given version, :F: represents the filename of the given s-file, and
:C: represents the comment line associated with a given version. These
values replace data keywords when the information is printed.

For example, typing:

prs -d" version: : I: filename: :F:" s.demo.c

may produce the line:

version: 2.1 filename: s.demo.c

For a complete list of data keywords, see prs(CP) in the XENIX
Programmer's Reference.

3.7.2 Printing a Specific Version

You can print information about a specific version in a given s-file using
the -r option of the prs command. The command has the following form:

prs -rSID s .filename

where:

• -r SID is the SID of the desired version, and

• s.filename is the name of the s-file containing the version.

For example, the following command prints information about version 2.1
in s.demo.c:

prs -r2.1 s.demo.c

If you do not specify the -r option, the command prints information about
the most recently created delta.

3-23

XENIX Programmer's Guide

3.7.3 Printing Later and Earlier Versions

You can print information about a group of versions using the -I and -e
options of the prs command. The -I option causes the command to print
information about all versions immediately after the given version. The
-e option causes the command to print· information about all versions
immediately preceding the given version. For example, the following
command prints information about all versions that precede version 1.4
(such as, 1.3, 1.2, and 1.1):

prs -rl.4 -e s.demo.c

The following command prints information about versions that succeed
version 1.4 (e.g., 1.5, 1.6, and 2.1):

prs -rl.4 -1 s.abc

If you specify both options, prs prints information about all versions.

3.8 Editing by Several Users

The following sections explain how to perform concurrent editing and
how to save edited versions when you have retrieved more than one ver­
sion for editing.

3.8.1 Editing Different Versions

The sees system lets several different versions of a file be edited at the
same time. This means that you can edit version 2.1 while another user
edits version 1.1. There is no limit to the number of versions that can be
edited at any given time.

When several users edit different versions concurrently, all users must
begin work in their own directories If users attempt to share a directory
and work on versions from the same s-file at the same time, the get com­
mand will refuse to retrieve a version.

3.8.2 Editing a Single Version

You can allow a single version of a file to be edited by more than one user
by setting the j flag in the given s-file. The flag causes the get command
to check the p-file and create a new proposed SID if the given version is
already being edited.

3-24

SCCS: A Source Code Control System

You can set the flag using the -f option of the admin command. For
example, the following command sets the flag for s.demo.c:

admin -fj s.demo.c

When you set the -f flag, the get command uses the next available branch
SID for each new proposed SID. For example, suppose a user retrieves
version 104 in the s.demo.c file, and the proposed version is 1.5. If another
user retrieves version 104 for editing before the first user has saved
changes, the proposed version for the new user will be 104.1.1, since ver­
sion 1.5 is already proposed and likely to be taken. In no case will a ver­
sion edited by two separate users result in a single new version.

3.8.3 Saving a Specific Version

When editing two or more versions of a file, you can direct the delta com­
mand to save a specific version, using the -r option to give the SID of that
version. The command has the following form:

delta -rSID sfilename

where:

• -r SID is the SID of the version being saved, and

• sfilename is the name of the s-flle to receive the new version.

The SID can be the SID of the version you have just edited or the proposed
SID for the new version. For example, if you have retrieved version 104
for editing (and no version 1.5 exists), then either of the following com­
mands saves version 1.5:

delta -rl.5 s.demo.c

or:

delta -rl.4 s.demo.c

3.9 Protecting s-files

The sees system uses the normal XENIX system file permissions to pro­
tect s-flles from changes by unauthorized users. In addition to the XENIX
system protections, the sees system provides two ways to protect the s­
files: the user list and the protection flags. The user list is a list of log-in
names and group IDs of users who are allowed to access the s-file and
create new versions of the file. The protection flags are three special s-file

3-25

XENIX Programmer's Guide

flags that define which versions are currently accessible to otherwise
authorized users. The following sections explain how to set and use the
user list and protection flags.

3.9.1 Adding a User to the User List

You can add a user or a group of users to the user list of a given s-file
using the -a option of the admin command. The option adds the given
name to the user list. The user list defines who may access and edit the
versions in the s-ftle. The command has the following form:

admin -aname s .filename

where:

• -aname gives the log-in name of the user or the group name of a
group of users to be added to the list.

• s.filename gives the name of the s-ftle to receive the new users.

For example, the following command adds the users johnd and suex and
the group marketing to the user list of s.demo.c:

admin -ajohnd -asuex -amarketing s.demo.c

If you create an s-file without giving the -a option, the user list remains
empty, and all users may access and edit the files. When you explicitly
give a user name or names, only those users can access the files.

3.9.2 Removing a User from a User List

You can remove a user or a group of users from the user list of a given s­
file using the -e option of the admin command. The command has the
following form:

admin -ename s .filename

where:

• -ename is the log-in name of a user or the group name of a group of
users, to be removed from the list.

• s.filename is the name of the s-file from which the names are to be
removed.

3-26

SCCS: A Source Code Control System

For example, the following command removes the user johnd and the
group marketing from the user list of s.demo.c:

admin -ejohnd -emarketing s.demo.c

3.9.3 Setting the Floor Flag

The floor flag f defines the release number of the lowest version that you
can edit in a given s-ftle. You can set the flag using the -f option of the
admin command. For example, the following command sets the floor to
release number 2:

admin -ff2 s.demo.c

If you attempt to retrieve any versions with a release number less than 2,
an error will result.

3.9.4 Setting the Ceiling Flag

The ceiling flag c defines the release number of the highest version that
you can edit in a given s-ftle. You can set the flag using the -f option of
the admin command. For eXaDJ.ple, the following command sets the ceil­
ing to release number 5:

admin -fc5 s.demo.c

If you attempt to retrieve any versions with a release number greater than
5, an error will result.

3.9.5 Locking a Version

The lock flag I lists, by release number, all versions in a given s-file that
are locked against further editing. You can set the flag using the -f flag of
the admin command, followed by one or more release numbers. You
must separate multiple release numbers with commas. For example, the
following command locks all versions with release number 3 against
further editing:

admin -f13 s.demo.c

3-27

XENIX Programmer's Guide

The following command locks all versions with release numbers 4, 5, and
9:

admin -f14,5,9 s.def.h

Note that the special symbol a can be used to specify all release numbers.
The following command locks all versions in the s.demo.c file:

admin -fla s.demo.c

3.10 Repairing sees Files

The sees system carefully maintains all sees files. However, damage
can result from hardware malfunctions copying incorrect information to
the file. The following sections explain how to check for damage to
sees files and how to repair the damage or regenerate the file.

3.10.1 Checking an s-file

You can check a file for damage using the -h option of the admin com­
mand. This option computes the checksum of the given s-ftle and com­
pares it with the existing sum. An s-ftle checksum is an internal value
computed from the sum of all bytes in the file. If the new and existing
checksums are not equal, the command displays the following message
which indicates damage to the file:

corrupted file (co6)

For example, the following command checks the file s.demo.c for damage
by generating a new checksum for the file, and comparing the new sum
with the existing sum:

admin -h s.demo.c

You can give more than one filename. The command checks each file in
tum. You may also give the name of a directory, in which case, the com­
mand checks all files in the directory.

Since failure to repair a damaged s-file can destroy the file's contents or
make the file inaccessible, it is a good idea to check all s-files regularly
for damage.

3-28

SCCS: A Source Code Control System

3.10.2 Editing an s-file

When you find a damaged s-fde, you should restore a backup copy of the
file from a backup disk rather than attempting to repair the file. (Restor­
ing a backup copy of a file is described in the XENIX Operations Guide.)
If this is not possible, you can edit the file with a XENIX text editor.

To repair a damaged s-file, use the description of an s-file given in
sccsfile(F) in the XENIX User's Reference to locate the part of the file that
is damaged. Use extreme care when making changes; small errors often
cause unwanted results.

3.10.3 Changing an s-file's Checksum

After repairing a damaged s-file, you must change the file's checksum by
using the -z option of the admin command. For example, to restore the
checksum of the repaired file s.demo.c, type:

admin -z s.demo.c

The command computes and saves the new checksum, replacing the old
sum.

3.10.4 Regenerating a g-file for Editing

You can create a g-file for editing without affecting the current contents of
the p-file using the -k option of the get command. The option has the
same affect as the -e option, except that the current contents of the p-file
remain unchanged. Typically, you use this option to regenerate a g-file
that has been removed accidentally or destroyed before it has been saved
by the delta command.

3.10.5 Restoring a Damaged p-file

You can use the -g option of the get command to generate a new copy of a
p-file that has been removed accidentally. For example, the following
command creates a new p-file entry for the most recent version in
s.demo.c:

get -e -g s.demo.c

If demo.c already exists, it will not be changed by this command.

3-29

XENIX Programmer's Guide

3.11 Using Other Command Options

Many of the sees commands provide options that control their operation
in useful ways. This section describes these options and explains how
you can use them to perform useful work.

3.11.1 Getting Help With sees Commands

You can display helpful information about an sees command by giving
the name of the command as an argument to the help command. The
help command displays a short explanation of the command and its syn­
tax. For example, typing:

help rmdel

displays the following message:

rmdel:
rmdel -rSID name

3.11.2 Creating a File With the Standard Input

You can direct admin to use the standard input as the source for a new s­
file using the -i option without a filename. For example, the following
command causes admin to create s.demo.c, using the demo.c text file as
its first version:

admin -i s.demo.c <demo.c

This method of creating a new s-file is used typically to connect admin to
a pipe. For example, the following command creates a new s .mod.c,
which contains the first version of the concatenated files modl.c and
mod2.c:

cat modl.c mod2.c I admin -i s.mod.c

3.11.3 Starting at a Specific Release

Normally, the admin command starts numbering versions with release
number 1. You can direct the command to start with any given release
number using the -r option. The-command has the following form:

admin -rrel-num s.filename

3-30

SCCS: A Source Code Control System

where:

• -r rel-num is the value of the starting release number.

• sfilename is the name of the s-ftle to be created.

For example, the following command starts with release number 3:

admin -idemo.c -r3 s.demo.c

The first version is 3.1.

3.11.4 Adding a Comment to the First Version

You can add a comment to the first version of a file using the -y option of
the admin command when creating the s-file. For example, the following
command inserts the comment George Wheeler in s.demo.c:

admin -idemo.c -y"George Wheeler" s.demo.c

The comment can be any combination of letters, digits, and punctuation
symbols. If you use spaces, enclose the comment in double quotes. The
complete command must fit on one line.

If you do not use the -y option when creating an s-file, a comment of the
following form is inserted automatically:

date and time created IT/MM/DD HH:MM:SS by username

where:

• YYIMMIDD HH:MM:SS are the date and time the file was created,
and

• user name is the login name of the user who created the file.

3.11.5 Suppressing Normal Output

You can suppress the normal display of messages created by the get com­
mand using the -s option. This option prevents information, such as the
SID of the retrieved file, from being copied to the standard output. The
option does not suppress error messages.

3-31

XENIX Programmer's Guide

The -s option is often used with the -p option to pipe the output of the get
command to other commands. For example, the following command
copies the most recent version of s.demo.c to the lineprinter:

get -p -s s.demo.c I Ipr

You can also suppress the nomlal output of the delta command using the
-s option. This option suppresses all output normally directed to the stan­
dard output, except for the comment prompt.

3.11.6 Including and Excluding Deltas

When creating a g-file, you can define explicitly which deltas you want to
include and exclude by using the -i and -x options of the get command:

-i causes the command to apply the given deltas when construct­
ing a version.

-x causes the command to ignore the given deltas when con­
structing a version.

Both options must be followed by one or more SIDs. If you supply multi­
pIe SIDs, you must separate them with commas. For example, the follow­
ing command constructs the g-file using deltas 1.2 and 1.3:

get -il.2,1.3 s.demo.c

The -i option is useful if you wish to apply changes automatically to a
version while retrieving it for editing. For example, the following com­
mand retrieves version 3.3 for editing:

get -e -i4.1 -r3.3 s.demo.c

When get retrieves the file, the changes in delta 4.1 are applied to it
automatically, making the g-file the same as if version 3.3 had been edited
by hand using the changes in delta 4.1. You can . save these changes
immediately by issuing a delta command. No editing is required.

The -x option is useful for removing changes performed on a given ver­
sion. For example, the following command retrieves version 1.6 for edit­
ing:

get -e -xl.5 -rl.6 s.demo.c

3-32

SCCS: A Source Code Control System

When get retrieves the file, the changes in delta 1.5 are left out of it
automatically, making the g-fiie the same as if version 1.4 had been
changed according to delta 1.6 (with no intervening delta 1.5). You can
save these changes immediately by issuing a delta command. No editing
is required.

When you include or exclude deltas using the -i and -x options, get com­
pares them with the deltas normally used in constructing the given ver­
sion. If two deltas attempt to change the same line of the retrieved file,
the command displays a warning message. The message shows the range
of lines in which the problem may exist. Corrective action, if required, is
your responsibility.

3.11.7 Listing the Deltas of a Version

Using the -I option, you can create a table showing the deltas required to
create a given version. This option causes the get command to create an
i-file containing the SIDs of all deltas used to create the given version.
Typically, you use this option to create a history of a given version's
development. For example, the following command creates a file
i.demo.c containing the deltas required to create the most recent version
of demo.c:

get -1 s.demo.c

You can display the list of deltas required to create a version using the -Ip
option. The option performs the same function as the -I option except it
copies the list to the standard output file. For example, the following
command copies the list of deltas required to create version 2.3 of demo.c
to the standard output:

get -lp -r2.3 s.demo.c

Note that you can combine the -I option with the -g option to create a list
of deltas without retrieving the actual version.

3.11.8 Mapping Lines to Deltas

You can map each line in a given version to its corresponding delta by
using the -m option of the get command. This option precedes each line
in a g-fiie with the SID of the delta that caused that line to be inserted. A
TAB character separates the SID from the beginning of the line. The-m
option is typically used to review the history of each line in a given ver­
sion.

3-33

XENIX Programmer's Guide

3.11.9 Naming Lines

You can name each line in a given version with the current module name
(that is, the value of the %M% keyword) using the -n option of the get
command. This option precedes each line of the retrieved file with the
value of the % M % keyword and a TAB character.

Often you will use the -n option to indicate that a given line is from the
given file. When you specify both the -m and the -n options, each line
begins with the % M % keyword.

3.11.10 Displaying a List of Differences

You can display a detailed list of the differences between a new version of
a file and the previous version using the -p option of the delta command.
This option causes delta to display the differences in a format similar to
the output of diff(C).

3.11.11 Comparing sees Files

You can compare two versions from a given s-file using the sccsdiff com­
mand. This command prints on the standard output the differences
between two versions of the s-file. The command has the following form:

sccsdiff -rSID] -rSID2 sfilename

where:

• -r SID] and -r SID2 are the SIDs of the versions to be compared,
and

• sfilename is the name of the s-file containing the versions.

The SID versions must be given in the order in which they were created.
For example, the following command displays the differences between
versions 3.4 and 5.6:

sccsdiff -r3.4 -r5.6 s.demo.c

The differences are displayed in a form similar to the diff(C) command.

3-34

SCCS: A Source Code Control System

3.11.12 Checking a File Version

You can display information about a given version using the -g option of
the get command. This option suppresses the actual retrieval of a version
and displays only the most recent version's SID.

You can also use the -g with the -r option to check for the existence of a
given version. For example, the following command displays the SID for
this version of s.demo.c, if it exists:

get -g -r4.3 s.demo.c

If the version does not exist, the command displays an error message.

3.11.13 Removing a Delta

You can remove a delta from an s-file using the rmdel command. The
command has the following form:

rmdel -rSID s.filename

where:

• -r SID is the SID of the delta to be removed, and

• s .filename is the name of the s-ftle from which the delta is to be
removed.

The delta must be the most recently created delta in the s-file. Further­
more, you must have write permission in the directory containing the s­
file, and must own the s-file or be the user who created the delta.

For example, the following command removes delta 2.3 from s.demo.c:

rmdel -r2.3 s.demo.c

The rmdel command will not remove a protected delta, that is, a delta
whose release number is below the current floor value, above the current
ceiling value, or equal to a current locked value. (For more information,
see "Protecting s-files. ' ') The command will also refuse to remove a
delta which is currently being edited.

Reserve the rmdel command for those cases in which incorrect global
changes were made to an s-file.

3-35

XENIX Programmer's Guide

Note that rmdel changes the type indicator of the given delta from D
(existing) to R (removed). A type indicator defines the type of delta. Type
indicators are described in more detail in delta(CP) in the XENIX
Programmer's Reference.

3.11.14 Searching for Strings

You can search for strings in files created from an s-ftle using the what(C)
command. This command searches for the @(#) symbol (the current
value of the %Z% keyword) in the given file. It then prints, on the stan­
dard output, all text immediately following the symbol, up to the next
double quote ("), greater than (», backs lash (\), Return, or non-printing
character. For example, if s.demo.c contains the line:

char id[] = "%Z%%M%:%I%";

and the following command is executed:

get -r3.4 s.prog.c

then the following command:

what prog.c

displays:

prog.c:
prog.c:3.4

You can also use the what command to search files that have not been
created by sees commands.

3-36

Chapter 4

lint: A C Program Checker

4.1 Introduction 4-1

4.2 Invoking lint 4-1

4.3 Options 4-2

4.4 Checking for Unused Variables and Functions

4.5 Checking Local Variables 4-4

4.6 Checking for Unreachable Statements 4-5

4.7 Checking for Infinite Loops 4-6

4.8 Checking Function Return Values 4-7

4.9 Checking for Unused Return Values 4-7

4.10 Checking Types 4-8

4.11 Checking Type Casts 4-9

4.12 Checking for Nonportable Character Use 4-9

4.13 Checking for Assignment of longs to ints 4-10

4.14 Checking for Strange Constructions 4-10

4.15 Checking for Use of Older C Syntax 4-11

4.16 Checking Pointer Alignment 4-12

4.17 Checking Expression Evaluation Order 4-13

4.18 Embedding Directives 4-13

-1-

4-3

4.19 Checking For Library Compatibility 4-15

-ii-

lint: A C Program Checker

4.1 Introduction

This chapter explains how to use the C program checker lint(CP). The
program examines C source files and warns of errors or misconstructions
that may cause errors during compilation of the file or during execution of
the compiled file.

In particular, lint checks for:

• unused functions and variables

• unknown values in local variables

• unreachable statements and infinite loops

• unused and misused return values

• inconsistent types and type casts

• mismatched types in assignments

• nonportable and old-fashioned syntax

• strange constructions

• inconsistent pointer alignment and expression evaluation order

The lint program and the C compiler are generally used together to check
and compile C language programs. Although the C compiler rapidly and
efficiently compiles C language source files, it does not perform the
sophisticated type- and error- checking required by many programs. The
lint program, on the other hand, provides thorough checking of source
files without compiling.

4.2 Invoking lint

You can invoke lint by typing its name at the shell command line. The
command has the form:

lint [option ...]filename ... lib ...

4-1

XENIX Programmer's Guide

where option is a command option that defines how the checker should
operate, filename is the name of the C language source file to be checked,
and lib is the name of a library to check. You can give more than one
option, filename, or library name in the command as long as you use
spaces to separate them. If you give two or more filenames, lint assumes
that the files form a complete program and checks the files accordingly.
For example, the command:

lint main.c add.c

treats main.c and add.c as two parts of a complete program.

If lint discovers errors or inconsistencies in a source file, it produces mes­
sages describing the problem. The messages have the form:

filename (num): description

where filename is the name of the source file containing the problem, num
is the number of the line in the source containing the problem, and
description is a description of the problem. For example, the message:

main.c (3): warning: x unused in function main

shows that the variable-x, defined in line three of the source file main.c, is
not used anywhere in the file.

4.3 Options

The options available to you may be classed into two categories: those
that instruct lint to suppress certain kinds of complaints, and those that
alter the behavior of lint. The following list summarizes both kinds.

Suppressive Options

4-2

- a Suppresses complaints about assignments of long values to
variables that are not long.

- b Suppresses complaints about break statements that cannot
be reached. (Programs produced by lex or yacc will often
result in a large number of such complaints.)

- c Suppresses complaints about casts that have questionable
portability.

lint: A C Program Checker

- h Does not apply heuristic tests that attempt to intuit bugs,
improve style, and reduce waste.

- u Suppresses complaints about functions and external vari-
abIes used and not defined, or defined and not used. (This
option is suitable for running lint on a subset of files of a
larger program.)

- v Suppresses complaints about unused arguments in func-
tions.

- x Does not report variables referred to by external declara­
tions but never used.

Other Options

- n Does not check compatibility against either the standard or
the portable lint library.

- p Attempts to check portability to other dialects of C.

- llibrary Checks function definitions in the specified lint library. For
example, -1m causes the library llibm.ln to be searched.

4.4 Checking for Unused Variables and Functions

The lint program checks for unused variables and functions by seeing if
each declared variable and function is used at least once in the source file.
The program considers a variable or function used if the name appears in
at least one statement. It is not considered used if it only appears on the
left side of an assignment. For example, in the following program frag­
ment:

main ()

int x,y, Zi

X=li y=2i Z=X+Yi

the variables x and y are considered used, but variable z is not.

Unused variables and functions often occur during the development of
large programs. It is not uncommon for a programmer to remove all
references to a variable or function from a source file, but forget to

4-3

XENIX Programmer's Guide

remove its declaration. Such unused variables and functions rarely cause
working programs to fail, but do make programs harder to understand and
change. Checking for unused variables and functions can also help you
find variables or functions that you intended to use but have accidentally
left out of the program.

Note that the lint program does not report a variable or function unused if
it is explicitly declared with the extern storage class. Such a variable or
function is assumed to be used in another source file.

You can direct lint to ignore all the external declarations in a source file
by using the -x (for "external' ') option. This option causes the program
checker to skip any line that begins with the extern storage class. The-x
option is typically used to save time when checking a program, especially
if all external declarations are known to be valid.

Some programming styles require functions that perform closely related
tasks to have the same number and type of arguments, regardless of
whether these arguments are used. Under normal operation, lint reports
any argument not used as an unused variable. You can direct lint to
ignore unused arguments by using the -v option.

The -v option causes lint to ignore all unused function arguments except
for those declared with register storage class. The program considers
unused arguments of this class to be a preventable waste of the register
resources of the computer.

You can direct lint to ignore all unused variables and functions by using
the -u (for "unused") option. This option prevents lint from reporting
variables and functions it considers unused.

The -u option is typically used when checking a source file that contains
just a portion of a large program. Such source files usually contain
declarations of variables and functions that are intended to be used in
other source files and are not explicitly used within the file. Since lint
can only check the given file, it assumes that such variables or functions
are unused and and reports them as errors whenever the -u option is not
given.

4.5 Checking Local Variables

The lint program checks all local variables to ensure that they are set to a
value before being used. Since local variables have either automatic or
register storage class, their values at the start of the program or function
cannot be known. Using such a variable before assigning a value to it is
an error.

4-4

lint: A C Program Checker

The lint program checks the local variables by searching for the first
assignment in which the variable receives a value, and for the first state­
ment or expression in which the variable is used. If the first assignment
appears later than the first use, lint considers the variable inappropriately
used. For example, in the program fragment:

char c;

if (c != EOF)
c = getchar();

lint warns that the the variable c is used before it is assigned.

If a variable is used in the same statement in which it is assigned for the
first time, lint determines the order of evaluation of the statement and
displays an appropriate message. For example, in the program fragment

int i,total;

scanf("%d", &i);
total = total + i;

lint warns that the variable total is used before it is set, since it appears
on the right side of the same statement that assigns its first value.

Static and external variables are always initialized to zero before program
execution begins, so lint does not report such variables if they are used
before being set to a value.

4.6 Checking for Unreachable Statements

The lint program checks for unreachable statements. Unreachable state­
ments are unlabeled statements that immediately follow a goto, break,
continue, or return statement. During execution of a program, the
unreachable statements never receive execution control and therefore are
considered wasteful. For example, in the program fragment:

int x, y;

return (x+y);
exit (1);

the function call exit after the return statement is unreachable.

4-5

XENIX Programmer's Guide

Unreachable statements are common when you are developing programs
containing large case constructions, or loops containing break and con­
tinue statements. Such statements are wasteful and should be removed
when convenient.

During normal operation, lint reports all unreachable break statements.
These are relatively common (in fact, some programs created by the yacc
and lex programs contain hundreds), so it may be desirable to suppress
these reports. You can direct lint to suppress the reports by using the -b
option.

Note that lint assumes that all functions eventually return control, so it
does not report as unreachable any statement that follows a function that
takes control and never returns it. For example, in the program fragment:

exit (1);
return;

the call to exit causes the return statement to become an unreachable
statement, but lint does not report it as such.

4.7 Checking for Infinite Loops

The lint program checks for infinite loops and for loops that are never
executed. For example, the statements:

while (1) { }

and:

for (;;) {}

are both considered infinite loops. The statements:

while (0) { }

and:

for (0;0;) { }

will be reported as never executed.

Although some valid programs have such loops, they are generally con­
sidered errors.

4-6

lint: A C Program Checker

4.8 Checking Function Return Values

The lint program checks to ensure that a function returns a meaningful
value if a return value is expected. Some functions return values that are
never used. Some programs incorrectly use function values that have
never been returned. So lint addresses these problems in a number of
ways.

Within a function definition, the appearance of both:

return (expr);

and:

return ;

statements is cause for alarm. In this case, lint produces the following
error message:

warning: funct ion filename has return(e); and return;

It is difficult to detect when a function return is implied by the flow of
control reaching the end of the given function. This is demonstrated with
a simple example:

f(a)
{

if (a)

g ();
return (3);

If a is false, then f() will call the function g() and then return with no
defined return value. This will trigger a report from lint. If gO, like
exit(), never returns, the message will still be produced when in fact noth­
ing is wrong. In practice, potentially serious bugs can be discovered with
this feature. It also accounts for a substantial fraction of the undeserved
error messages produced by lint.

4.9 Checking for Unused Return Values

The lint program checks for cases where a function returns a value, but
the value is rarely, if ever, used. The program considers functions that
return unused values to be inefficient, and functions that return rarely­
used values to be a result of bad programming style.

4-7

XENIX Programmer's Guide

In addition, lint checks for cases where a function does not return a value
but the value is used anyway. This is considered a serious error.

4.10 Checking Types

The lint program enforces the type-checking rules of C more strictly than
does the C compiler. The additional checking occurs in four major areas:

• across certain binary operators and implied assignments

• at the structure-selection operators

• between the definitions and uses of functions

• in the use of enumerations

There are a number of operators that have an implied balancing between
types of operands. The assignment, conditional, and relational operators
have this property. The argument of a return statement and expressions
used in initialization also suffer similar conversions. In these operations,
char, short, int, long, unsigned, float, and double types may be freely
intermixed. The types of pointers must agree exactly, except that arrays
of x's can be intermixed with pointers to x's.

The type-checking rules also require that, in structure references, the left
operand of a pointer-arrow symbol (-» must be a pointer to a structure,
the left operand of a period (.) must be a structure, and the right operand
of these operators must be a member of the structure implied by the left
operand. Similar checking is done for references to unions.

Strict rules apply to function argument and return-value matching. The
types float and double may be freely matched, as may the types char,
short, int, and unsigned. Pointers can also be matched with the associ­
ated arrays. Aside from these relaxations in type-checking, all actual
arguments must agree in type with their declared counterparts.

The lint program checks to ensure that enumeration variables or members
are not mixed with other types or other enumerations. It also ensures that
the only operations applied to enumerated variables are assignment (=),
initialization, equals (==), and not-equals (!=). Enumerations may also be
function arguments and return values.

4-8

lint: A C Program Checker

4.11 Checking Type Casts

The type cast feature in C was introduced largely as an aid to producing
more portable programs. Consider the assignment:

p = 1 ;

where p is a character pointer. The lint program reports this as suspect.
However, in the assignment:

p = (char *)1 ;

a cast has been used to convert the integer to a character pointer. The
programmer obviously had a strong motivation for doing this, and has
clearly signaled his intentions. On the other hand, if this code is moved to
another machine, it should be looked at carefully. The -c option controls
the printing of comments about casts. When -c is in effect, casts are not
checked, and all legal casts are passed without comment, no matter how
strange the type mixing seems to be.

4.12 Checking for Nonportable Character Use

The lint program flags certain comparisons and assignments as illegal or
nonportable. For example, the fragment:

char c;

if((c = getchar()) < 0) ...

works on some machines, but fails on machines where characters always
take on positive values. In this case, lint issues the message:

nonportable character comparison

The solution is to declare c an integer, since getchar is actually returning
integer values.

A similar issue arises with bitfields. When assignments of constant values
are made to bitfields, the field may be too small to hold the value. This is
especially true on some machines where bit fields are considered as signed
quantities. Although a 2-bit field with int type cannot hold the value 3, a
2-bit field with unsigned type can.

4-9

XENIX Programmer's Guide

4.13 Checking for Assignment of longs to ints

Problems may arise from the assignment of long values to int values,
because of a loss in accuracy in the assignment. This may happen in pro­
grams that have been incompletely converted by changing type
definitions with typedef. When a typedef variable is changed from int to
long, the program can stop working because some intermediate results
may be assigned to integer values, losing accuracy. Since there are a
number of legitimate reasons for assigning longs to integers, you may
wish to suppress detection of these assignments by using the -a option.

4.14 Checking for Strange Constructions

Several perfectly legal but somewhat strange constructions are flagged by
lint. The generated messages encourage better code quality, clearer style,
and may even point out bugs. For example, in the statement:

*p++ ;

the star (*) does nothing, so lint prints:

null effect

The program fragment:

unsigned x ;
if (x < 0) •••

is also considered strange since the test will never succeed.

Similarly, the test:

if (x > 0)

is equivalent to:

if (x != 0)

which may not be the intended action. In these cases, lint prints the mes­
sage:

degenerate unsigned comparison

If you use:

if (1 ! = 0) ...

4-10

lint: A C Program Checker

then lint reports:

constant in conditional context

since the comparison of I with 0 gives a constant result.

Another construction detected by lint involves operator precedence.
Bugs that arise from misunderstandings about the precedence of operators
can be accentuated by spacing and formatting, making such bugs
extremely hard to find. For example, the statements:

if (x&077 == 0) •..

and:

x« 2 + 40

probably do not do what is intended. The best solution is to place
parentheses around such expressions. The lint program encourages this
by printing an appropriate message.

Finally, lint checks variables that are redeclared in inner blocks in a way
that conflicts with their use in outer blocks. This is legal, but is con­
sidered bad style, is usually unnecessary, and frequently points out a bug.

If you do not want these heuristic checks, you can suppress them by using
the -h option.

4.15 Checking for Use of Older C Syntax

The lint program checks for older C constructions. These fall into two
classes: assignment operators and initialization.

The older forms of assignment operators (such as, =+, =-, ...) can cause
ambiguous expressions, such as:

a =-1 ;

which could be taken as either:

a =- 1;

or:

a -1

4-11

XENIX Programmer '8 Guide

The situation is especially perplexing if this kind of ambiguity arises as
the result of a macro substitution. The newer, and preferred operators
(such as, +=, -=) have no such ambiguities. To encourage the abandon­
ment of the older forms, lint checks for occurrences of these old­
fashioned operators.

A similar issue arises with initialization. The older language allowed:

int x 1

to initialize x to 1. This causes syntactic difficulties. For example:

int x (-1) ;

looks somewhat like the beginning of a function declaration:

int x (y) {

and the compiler must read past x to determine what the declaration
really is. The problem is even more perplexing when the initializer
involves a macro. The current C syntax places an equal sign between the
variable and the initializer:

int x -1 ;

This form is free of any possible syntactic ambiguity.

4.16 Checking Pointer Alignment

Certain pointer assignments may be reasonable on some machines, and
illegal on others, due to alignment restrictions. For example, on some
machines it is reasonable to assign integer pointers to double pointers,
since double precision values may begin on any integer boundary. On
other machines, however, double precision values must begin on even­
word boundaries; thus, not all such assignments make sense. The lint
program tries to detect cases where pointers are assigned to other
pointers, and such alignment problems might arise. The message:

possible pointer alignment problem

results from this situation.

4-12

lint: A C Program Checker

4.17 Checking Expression Evaluation Order

In complicated expressions, the best order in which to evaluate subex­
pressions may be highly machine-dependent. For example, on machines
in which the stack runs backwards, function arguments are probably best
evaluated from right to left; on machines with a stack running forward,
left to right is probably best. Function calls embedded as arguments of
other functions mayor may not be treated in the same way as ordinary
arguments. Similar issues arise with other operators that have side
effects, such as the assignment operators and the increment and decre­
ment operators.

To ensure maximum efficiency of C on a particular machine, the C
language leaves the order of evaluation of complicated expressions up to
the compiler. Various C compilers have considerable differences in the
order in which they will evaluate complicated expressions. In particular,
if any variable is changed by a side effect, and is also used elsewhere in
the same expression, the result is undefined.

The lint program checks for the important special case where a simple
scalar variable is affected. For example, the statement:

a[i] = b[i++]

draws the comment:

warning: i evaluation order undefined

4.18 Embedding Directives

There are occasions when the programmer is smarter than lint. There
may be valid reasons for illegal type casts, functions with variable
numbers of arguments, and other constructions that lint finds objection­
able. Moreover, as specified in the above sections, the flow of control
information produced by lint often has blind spots, causing occasional
spurious messages about perfectly reasonable programs. Some way of
communicating with lint, typically to tum off its output, is desirable.
Therefore, a number of words are recognized by lint when they are
embedded in comments in a C source file. These words are called direc­
tives. and are invisible to the compiler.

4-13

XENIX Programmer's Guide

The first directive discussed concerns flow of control infonnation. If a
particular place in the program cannot be reached, this can be asserted at
the appropriate spot in the program with the directive:

/* NOTREACHED */

Similarly, if you desire to tum off strict type checking for the next expres­
sion, use the directive:

/* NOSTRICT */

The situation reverts to the previous default after the next expression.
The -v option can be turned on for one function with the directive:

/* ARGSUSED */

Comments about a variable number of arguments in calls to a function
can be turned off by preceding the function definition with the directive:

/* VARARGS */

In some cases, it is desirable to check the first several arguments, and
leave the later arguments unchecked. You can define the number of argu­
ments to be checked by placing a digit (giving the number) immediately
after the VARARGS keyword. For example:

/* VARARGS2 */

causes only the first two arguments to be checked. Finally, the directive:

/* LINTLIBRARY */

at the head of a file identifies it as a library declaration file, which is dis­
cussed in the next section.

4-14

lint: A C Program Checker

4.19 Checking For Library Compatibility

The lint program accepts certain library directives, such as:

-ly

and tests the source files for compatibility with these libraries. This test­
ing is done by accessing library description files whose names are con­
structed from the library directives. These files all begin with the direc­
tive:

/* LINTLIBRARY */

which is followed by a series of dummy function definitions. These
definitions indicate whether a function returns a value, what type a
function's return type is, and the number and types of arguments expected
by the function. The VARARGS and ARGSUSED directives can be
used to specify features of the library functions.

The lint library files are processed almost exactly like ordinary source
files. The only difference is that functions defined in a library file but not
used in a source file draw no comments. The lint program does not simu­
late a full library-search algorithm, but checks to see if the source files
contain redefinitions of library routines.

By default, lint checks the programs it is given against a standard library
file, which contains descriptions of the programs that are normally loaded
when a C program is run. When the -p option is in effect, the portable
library file is checked. This library contains descriptions of the standard
I/O library routines which are expected to be portable across various
machines. The -n option can be used to suppress all library-checking.

4-15

Chapter 5

lex: A Lexical Analyzer

5.1 Introduction 5-1

5.2 An Overview of lex Programming 5-2

5.3 How to Format lex Programs 5-3

5.4 Specifying lex Regular Expressions 5-4

5.5 Invoking lex 5-6

5.6 Specifying Character Classes 5-6

5.7 Specifying an Arbitrary Character 5-7

5.8 Specifying Optional Expressions 5-7

5.9 Specifying Repeated Expressions 5-8

5.10 Specifying Alternation and Grouping 5-8

5.11 Specifying Context Sensitivity 5-9

5.12 Specifying Definitions 5-9

5.13 Specifying Expression Repetition 5-10

5.14 Specifying Actions 5-10

5.15 Handling Ambiguous Source Rules 5-14

5.16 Specifying Left Context Sensitivity 5-17

5.17 Specifying Source Definitions 5-19

5.18 Using lex and yacc Together 5-21

-i-

5.19 Specifying Character Sets 5-25

5.20 Source Format 5-26

- ii-

lex: A Lexical Analyzer

5.1 Introduction

A software tool called lex(CP) lets you solve a wide class of problems
drawn from such tasks as:

• text processing, where you can check the spelling of words for
errors

• code enciphering, where you can translate certain patterns of char­
acters into others

• compiler writing, where you can determine what the tokens (smal­
lest meaningful sequences of characters) are in the program to be
compiled

The problem common to all of these tasks is recognizing different strings
of characters that satisfy certain characteristics. To solve these problems,
you can use the compiler's lexical analyzer, also known as lex.

It is not essential to use lex to handle problems of this kind. You could
write programs in a standard language like C to handle them. In fact,
what lex does is produce such C programs. Therefore, lex is called a pro­
gram generator.) What lex offers you is typically a faster, easier way to
create programs that perform these tasks. Its weakness is that it often pro­
duces C programs that are longer than necessary for the task and that exe­
cute more slowly.

So you can understand what lex does, the process is briefly described as
follows: You begin with the lex source (the lex specification) that you,
the programmer, write to solve the problem. This lex source consists of a
list of rules specifying sequences of characters (expressions) to be
searched for in an input text, and the actions to take when an expression is
found. This source is read by the lex program generator. The output of
the program generator is a C program named yylex. This program must
be compiled by a host-language C compiler to generate the executable
object program that does the lexical analysis. Note that this procedure
does not occur automatically. Finally, the lexical analyzer program pro­
duced by this process takes as input any source file and produces the
desired output, such as altered text or a list of tokens.

The lex tool can also be used to collect statistical data on features of the
input, such as character count, word length, or number of occurrences of a
word. In later sections of this chapter, you willieam how to:

• translate lex source

5-1

XENIX Programmer's Guide

• fornrrat lex programs

• invoke lex

• specify characters and expressions

• write lex programs

• use lex and yacc together

5.2 An Overview of lex Programming

Consider a program that deletes from the input all blanks or TABs at the
ends of lines. The following lines are all you need:

%%
[\t]+$

The program contains a %% delimiter to mark the beginning of the rules
and one rule in particular. This rule contains a regular expression that
matches one or more instances of the blank or TAB characters (written as
\t for visibility, in accordance with the C language convention) just prior
to the end of a line. The brackets indicate the character class made up of
a blank and a TAB; the + indicates one or more of the previous item; and
the dollar sign ($) indicates the end of the line. No action is specified, so
lex will ignore these characters. Everything else will be copied. To
change any remaining string of blanks or TABs to a single blank, add
another rule:

%%
[\t]+$
[\t]+ printf(" ");

In the above example, the lex program scans for both rules at once,
observes at the ternrrination of the string of blanks or TABs whether or not
there is a Return, and then executes the desired rule's action. The first
rule matches all strings of blanks or TABs at the ends of lines, and the
second rule matches all remaining strings of blanks or TABs.

You can also use lex alone for simple transfornrrations, or for analysis and
gathering of statistics on a lexical level. In addition, you can use lex with
a parser generator to perfornrr lexical analysis; it is especially easy to
interface lex and yacc. A lex program recognizes only regular expres­
sions; yacc writes parsers that accept a large class of context-free gram­
mars, but that require a lower-level analyzer to recognize input tokens.

5-2

lex: A Lexical Analyzer

Thus, a combination of lex and yacc is often appropriate. (The yacc pro­
gram is discussed in "yacc: A Compiler-Compiler.") When you use lex
as a preprocessor for a later parser generator, it partitions the input
stream, and the parser generator assigns structure to the resulting pieces.
You can add programs written by other generators or by hand to programs
written by lex. Users of yacc will realize that the name yylex is what
yacc expects its lexical analyzer to be named, so the use of this name by
lex simplifies interfacing.

The lex program generates a finite automaton from the regular expres­
sions specified in the source. It interprets the automaton, rather than com­
piling it, in order to save space and analyze input faster. The time taken
by a lex program to recognize and partition an input stream is propor­
tional to the length of the input. The number of lex rules or the complex­
ity of the rules is not important in determining speed, unless rules that
include forward context require a significant amount of rescanning. What
does increase with the number and complexity of rules is the size of the
finite automaton and, therefore, the size of the program generated by lex.

In the program written by lex, your programming fragments (representing
the actions to be performed as each regular expression is found) are gath­
ered as cases of a switch. The automaton interpreter directs the control
flow. You can insert either declarations or additional statements in the
routine containing the actions, or add subroutines outside this action rou­
tine.

The use of lex is not limited to sources that can be interpreted on the basis
of one character lookahead. For example, if there are two rules, one look­
ing for ab and another for abcdefg, and the input stream is abcdejh, lex
will recognize ab and leave the input pointer just before cd. This back -up
feature can affect program performance.

5.3 How to Format lex Programs

A lex specification consists of at most three sections: definitions, rules,
and user subroutines. The general format of lex source is as follows:

{ definitions}
%%
{rules}
%%
{user subroutines}

5-3

XENIXProgrammer's Guide

The rules section is mandatory. Sections for definitions and user subrou­
tines are optional but, if present, must appear in the indicated order. The
second %% is optional, but the first is required to mark the beginning of
the rules. The absolute minimum lex program is the following (no
definitions, no rules) which translates into a program that copies the input
to the output unchanged:

%%

In the lex program format shown above, the rules represent your control
decisions. They make up a table in which the left column contains regular
expressions and the right column contains actions and program fragments
to be executed when the expressions are recognized. Thus, the following
individual rule might appear:

integer printf("found keyword INT");

This looks for the string integer in the input stream and prints the follow­
ing message whenever it appears in the input text:

found keyword INT

In this example, the C library function, printfO is used to print the string.
The end of the lex regular expression is indicated by the first blank or
TAB character. If the action is merely a single C expression, you can
place it on the right side of the line; if it is compound or takes more than a
line, you should enclose it in braces. As a more useful example, suppose
you need to change a number of words from British to American spelling.
You can start with lex rules such as the following:

colour
mechanise
petrol

printf("color");
printf("mechanize");
printf ("gas");

These rules are not quite enough since the word petroleum would become
gaseum. A way of dealing with such problems is described in "Source
Fonnat."

5.4 Specifying lex Regular Expressions

A regular expression specifies a set of strings to be matched. It contains
text characters (that match the corresponding characters in the strings
being compared) and operator characters (specifying repetitions, choices,
and other features). The letters of the alphabet and the digits are always

5-4

lex: A Lexical Analyzer

text characters. Thus, the following regular expression matches the
integer string wherever it appears:

integer

The following expression looks for the string a57D:

a57D

The operator characters are as follows:

"\[]~-?*+I ()$/{}%<>

If you use any of these characters literally, you need to quote them indivi­
dually with a backslash (\) or as a group within quotation marks (" ").
The quotation mark operator (" ") indicates that whatever is contained
between a pair of quotation marks is to be taken as text. Thus, the follow­
ing matches the string xyz++ when it appears:

xyz"++"

Note that you can put only a part of a string in quotation marks. It is
harmless but unnecessary to quote an ordinary text character; so the fol­
lowing expression is the same as the one above:

"xyz++"

Thus, by quoting every non alphanumeric character being used as a text
character, you need not memorize the list of current operator characters.

You can also tum an operator character into a text character by preceding
it with a backs lash (\) as follows, forming another, less readable,
equivalent of the above expressions:

xyz\+\+

You can also use the quoting feature to get a blank into an expression;
normally blanks or TABs end a rule. You must put any blank character
not contained within brackets within double quotation marks. Several
normal C escapes with the backslash (\) are recognized:

Escape Meaning

\n Newline

\t Tab

5-5

XENIX Programmer's Guide

\b Backspace

\\ Backslash

Since Newline is illegal in an expression, you must use a \n; but it is not
required to Escape Tab and Escape Backspace. Every character but
Space, Tab, Newline and those listed is always a text character.

5.5 Invoking lex

There are two steps in compiling a lex source program. First, you must
tum the lex source into a generated program in the host general-purpose
language. Then you must compile and load this program, usually with a
library of lex subroutines. Note that this program must be compiled as a
large model binary. The generated program is in a file named lex.yy.c.
The I/O library is defined in terms of the C standard library.

You access the library by using the loader flag -II. So an appropriate set
of commands is:

lex source
cc lex.yy.c -11

lex places the resulting program on the usual a.out file for later execution.
To use lex with yacc, see "Specifying Source Definitions" in this chapter
and "yacc: A Compiler-Compiler". Although the default lex I/O routines
use the C standard library, the lex automaton itself does not do so. If you
specify private versions of inputO, ootputO, and unputO, you can avoid
the library.

5.6 Specifying Character Classes

You can specify classes of characters by using brackets []. The follow­
ing construction matches a single character, which may be a, b, or c:

[abc]

Within square brackets, lex ignores most operator meanings. Only three
characters are special: the backslash (\), the dash (-), and the caret (").
The dash character indicates ranges. For example, the following indicates
the character class containing all the lowercase letters, the digits, the
angle brackets, and the underline:

[a-zQ-9<>_]

5-6

lex: A Lexical Analyzer

You can specify ranges in either order. If you use the dash between any
two characters that are not both uppercase letters, both lowercase letters,
or both digits, you will get a warning message that tells you this range of
characters is hardware-dependent. If you desire to include the dash in a
character class, it should be first or last; thus, the following matches all
the digits and the plus and minus signs:

[-+0-9]

In character classes, the caret C) operator must appear as the first charac­
ter after the left bracket; it indicates that the resulting string is to be com­
plemented with respect to the computer character set. Thus, the follow­
ing matches all characters except a, b, or c, including all special or con­
trol characters:

Alternatively, the following is any character which is not a letter:

The backslash (\) provides an escape within character class brackets, so
that you can type characters literally by preceding them with this charac­
ter.

5.7 Specifying an Arbitrary Character

To match almost any character, the dot (.) designates the class of all
characters except a Newline. Escaping into octal is possible although
nonportable. For example, the following matches all printable characters
in the ASCII character set, from octal 40 (blank) to octal 176 (tilde).

[\40-\176]

5.8 Specifying Optional Expressions

The question mark (?) operator indicates an optional element of an
expression. Thus, the following matches either ac or abc:

ab?c

Note that the meaning of the question mark here differs from its meaning
in the shell.

5-7

XENIX Programmer's Guide

5.9 Specifying Repeated Expressions

Repetitions of classes are indicated by the asterisk (*) and plus (+) opera­
tors. For example, the following matches any number of consecutive a
characters, including zero:

a*

a+ matches one or more instances of a. For example, the following
matches all strings of lowercase letters:

[a-z]+

The following matches all alphanumeric strings with a leading alphabetic
character:

[A-Za-z] [A-Za-zO-9] *

This is a typical expression for recognizing identifiers in computer
languages.

5.10 Specifying Alternation and Grouping

The vertical bar (I) operator indicates alternation. For example, the fol­
lowing matches either ab or cd:

(abled)

Note that parentheses are used for grouping, although they are not neces­
sary at the outside level. You could type:

abl ed

However, you should use parentheses for more complex expressions, such
as the following example, which matches such strings as abefef, efefef,
edef, and eddd, but not abc, abed, or abedef

(abled+)?(ef)*

5-8

lex: A Lexical Analyzer

5.11 Specifying Context Sensitivity

The lex program recognizes a small amount of surrounding context. The
two simplest operators for this are the caret C) and the dollar sign ($). If
the first character of an expression is a caret C), the expression is matched
at the beginning of a line (after a Newline character or at the beginning of
the input stream). This does not conflict with the complementation of
character classes, since complementation only applies within brackets. If
the last character is a dollar sign, the expression is matched at the end of a
line (when immediately followed by Newline). The latter operator is a
special case of the slash (/) operator, which indicates trailing context.
The following expression matches the string ab, but only if followed by
cd:

ab/ed

Thus:

ab$

is the same as:

ab/\n

The lex program handles left context by specifying start conditions as
explained in "Specifying Actions." If a rule is only to be executed when
the lex automaton interpreter is in start condition x, you should enclose
the rule in angle brackets:

<x>

Suppose you consider being at the beginning of a line to be start condition
ONE, then the caret C) operator would be equivalent to:

<ONE>

5.12 Specifying Definitions

Braces ({ }) specify definition expansion (if they enclose a name) or
repetitions (if they enclose numbers). For example, the following looks
for a predefined string named digit and inserts it at that point in the
expression:

{digit}

5-9

XENIX Programmer's Guide

5.13 Specifying Expression Repetition

The definitions are given in the first part of the lex input, before the rules.
In contrast, the following looks for 1 to 5 occurrences (repetitions) of the
character a:

a{1,5}

Finally, an initial percent sign (%) is special, since it is the separator for
lex source segments.

5.14 Specifying Actions

When a pattern of text in the input matches an expression, lex executes
the corresponding action. This section describes some features of lex that
aid in writing actions. Note that there is a default action that consists of
copying the input to the output. This is performed on all strings not other­
wise matched. Thus, if you want to absorb the entire input without pro­
ducing any output, you must provide rules to match everything. When
you use lex with yacc, this is the normal situation. You may consider that
actions are what is done instead of copying the input to the output; in gen­
eral, you can omit a rule which merely copies.

One of the simplest things that you can do is ignore the input by specify­
ing a C null statement. A frequent rule is the following, which ignores
the three spacing characters (Spacebar, Tab, and Newline):

[\t\n]

Another easy way to avoid writing actions is to use the repeat action char­
acter pipe (I), which indicates that the action for this rule is the action for
the next rule. The previous example could also have been written as fol­
lows with the same result:

"\t"
"\n"

The quotation marks around \n and \t are not required.

5-10

lex: A Lexical Analyzer

In more complex actions, you may want to know the actual text that
matched an expression like:

[a-z]+

The lex program leaves this text in an external character array named
yytext. Thus, to print the name found, a rule like the following prints the
string in yytext:

[a-z]+ printf("%s", yytext);

The C function printf accepts a format argument and data to be printed
when a pattern of text in the input matches an expression. In this case,
the fonnat is print string where the percent sign (%) indicates data
conversion, the s indicates string type, and the data are the characters in
yytext. This places the matched string on the output. This action is so
common that you can write it as ECHO. For example, the following is the
same as the preceding example:

[a-z]+ ECHO;

Since the default action is to print the characters found, you might ask
why give a rule which merely specifies the default action. Such rules are
often required to avoid matching some other rule that is not desired. For
example, if there is a rule that matches read, it will normally match the
instances of read contained in bread or readjust; to avoid this, you need a
rule of the form:

[a-z] +

For more information, see "Handling Ambiguous Source Rules."

Sometimes it is more convenient to know the end of that which has been
found; hence lex also provides a count of the number of characters
matched in the variable, yyleng.

To count both the number of words and the number of characters in words
in the input, you might write the following which accumulates in the vari­
abIes chars the number of characters in the words recognized:

[a - zA - Z] + {words++; chars += yyleng;}

You can access the last matched character in the string:

yytext[yyleng-l]

5-11

XENIX Programmer's Guide

Occasionally, a lex action may decide that a rule has not recognized the
correct span of characters. Two routines aid this situation. First, you can
call yymoreO to indicate that the next input expression recognized is to
be tacked onto the end of this input. Normally, the next input string
overwrites the current entry in yytext. Second, you can call yyless(n) to
indicate that not all of the characters matched by the currently successful
expression are needed right now. The argument n indicates the number of
characters in yytext to be retained. Further characters previously
matched are returned to the input. This provides the same sort of looka­
head offered by the slash (/) operator, but in a different form.

For example, consider a language that defines a string as a set of charac­
ters between quotation marks (" "); but, to include a quotation mark in a
string, it must be preceded by a backslash (\). The regular expression that
matches this is somewhat confusing, so it might be preferable to write:

\" [~"] * {
if (yytext[yyleng-l]

yymore()i
else

, \ \')

... normal user processing

which, when faced with a string such as:

"abc\"def"

will first match the five characters:

"abc\

and then the call to yymoreO will tack the next part of the string on the
end:

"def

Note that you should pick up the final quotation mark that terminates the
string in code-labeled, normal processing.

5-12

lex: A Lexical Analyzer

You might use the yylessO function to reprocess text in various cir­
cumstances. Consider the problem in the older C syntax of distinguishing
the ambiguity of =-a. Suppose you want to treat this as =- a and to print
a message. A possible rule that prints a message, returns the letter fol­
lowing the operator to the input stream, and treats the operator as
might be:

=-[a-zA-Z]
printf ("Operator (=-) arnbiguous\n");
yyless(yyleng-l);

action for =- ...

Alternatively, you might want to treat this as = -a. To do this, just return
the minus sign as well as the letter to the input. The following performs
the interpretation:

=- [a-zA-Z]
printf ("Operator (=-) arnbiguous\n");
yyless(yyleng-2);

action for = •••

Note that the expressions for the two cases might more easily be written

=- / [A-Za-z]

in the first case, and:

=/-[A-Za-z]

in the second; no backup would be required in the rule action. It is not
necessary to recognize the whole identifier to observe the ambiguity. The
possibility of =-3, however, makes the following an even better rule:

=-/["\t\n]

In addition to these routines, lex also permits access to the I/O routines it
uses. They include:

Routine Description

inputO Returns the next input character.

output(c) Writes the character c on the output.

unput(c) Pushes the character c back onto the input stream to be
read later by inputO.

5-13

XENIX Programmer's Guide

By default, these routines are provided as macro definitions, but you can
override them and supply private versions. These routines define the rela­
tionship between external files and internal characters, and must be
retained or modified consistently. You can redefine them to cause input
or output to be transmitted to or from strange places, including other pro­
grams or internal memory, but the character set that you use must be con­
sistent in all routines. A value of zero returned by inputO must mean
end-of-file, and the relationship between unputO and inputO must be
retained or the lookahead will not work. The lex program does not look
ahead if it does not have to, but every rule containing a slash (/) or end­
ing in one of the following characters implies lookahead:

+ * ? $

Lookahead is also necessary to match an expression that is a prefix of
another expression. See the following discussion of the character set used
by lex. The standard lex library imposes a lOO-character limit on backup.

Another lex library routine that you may need to redefine is yywrapO,
which is called whenever lex reaches an end-of-file. If yywrap returns a
1, lex continues with the normal wrapup on end of input. Sometimes,
however, it is convenient to arrange for more input to arrive from a new
source. In this case, you should provide a yywrap that arranges for new
input and returns O. This instructs lex to continue processing. The default
yywrap always returns 1.

This routine is also a convenient place to print tables or summaries at the
end of a program. Note that it is not possible to write a normal rule that
recognizes end-of-file; the only access to this condition is through
yywrapO. In fact, unless a private version of inputO is supplied, a file
containing nulls cannot be handled, since a value of 0 returned by input
is considered an end-of-file.

5.15 Handling Ambiguous Source Rules

The lex program can handle ambiguous specifications. When more than
one expression matches the current input, lex chooses as follows:

• The longest match is preferred.

• Among rules that match the same number of characters, the first
given rule is preferred.

5-14

lex: A Lexical Analyzer

For example, suppose the following rules are given:

integer keyword act ion ... i
[a-z]+ identifier action ... i

If the input is integers, it is taken as an identifier, because the following
matches eight characters:

[a-z]+

while integer matches only seven.

If the input is integer, both rules match seven characters, and lex selects
the keyword rule because it was given first. Anything shorter (for exam­
ple, int) does not match the expression integer, so lex uses the identifier
interpretation.

The principle of preferring the longest match makes certain constructions
dangerous, such as the following:

*

For example the following might seem a good way of recognizing a string
in single quotes:

, . *'

However, it is an invitation for the program to read far ahead, looking for
a distant single quote. Presented with the input:

'first' quoted string here, 'second' here

this expression matches:

, first' quoted string here, ' second'

which is probably not what was wanted. A better rule is of the following
form which, on the previous input, stops after "first":

, [~ , \n] *'

The fact that the dot (.) operator does not match a Newline lessens the
consequences of errors like this. Therefore, no more than one line is ever
matched by such expressions. Don't try to defeat this with expressions
like the following or their equivalents, because the lex -generated pro­
gram will try to read the entire input file, causing internal buffer
overflows:

[.\n]+

Note that lex is nonnally partitioning the input stream, not searching for
all possible matches of each expression. This means that each character
is accounted for only once. For example, suppose you want to count the

5-15

XENIX Programmer's Guide

occurrences of both she and he in an input text. Some lex rules to do this
might be the following where the last two rules ignore everything besides
he and she:

she s++;
he h++;
\n I

Remember that dot (.) does not include the Newline. Since she includes
he, lex will normally not recognize the instances of he included in she,
since once it has passed a she those characters are gone.

Sometimes you may want to override this choice. The Reject action
means, "go do the next alternative." It executes whatever rule was
second choice after the current rule. It then adjusts the position of the
input pointer accordingly. Suppose you want to count the included
instances of he:

she {s++; REJECT}
he {h++; REJECT}
\n I

These rules are one way of changing the previous example to do just that.
After each expression is counted, it is rejected; whenever appropriate, the
other expression will then be counted. In this example, of course, the user
could note that she includes he, but not vice versa, and omit the Reject
action on he. In other cases, it would not be possible to tell which input
characters were in both classes.

Consider the following two rules:

a[bc]+
a[cd]+

{ REJECT}
{ ••. ; REJECT}

If the input is ab, only the first rule matches; on ad, only the second
matches. The input string accb matches the first rule for four characters
and then the second rule for three characters. In contrast, the input aced
agrees with the second rule for four characters and then the first rule for
three.

In general, Reject is useful whenever the purpose of lex is, not to partition
the input stream, but to detect all examples of some items in the input,
and the instances of these items may overlap or include each other. Sup­
pose a digram table of the input is desired. Normally the digrams overlap,
that is; the word the is considered to contain both th and he. Assuming

5-16

lex: A Lexical Analyzer

you have a two-dimensional array named digram that you 'want to incre­
ment, the appropriate source is:

%%
[a-z] [a-z] {digram[yytext[O]] [yytext[l]]++; REJECT}

\n

where the Reject is necessary to pick up a letter pair beginning at every
character, rather than at every other character.

Remember that Reject does not rescan the input. Instead, it remembers the
results of the previous scan. This means that if a rule with trailing context
is found and Reject executed, you must not have used unput to change the
characters coming from the input stream. This is the only restriction on
manipulating the unprocessed input.

5.16 Specifying Left Context Sensitivity

You may need several sets of lexical rules to apply at different times in
the input. For example, a compiler preprocessor might distinguish
preprocessor statements and analyze them differently from ordinary state­
ments. This requires sensitivity to prior context, and there are several
ways of handling such problems. The caret C) operator, for example, is a
prior context operator, recognizing immediately preceding left context,
just as the dollar sign ($) recognizes immediately following right context.
Adjacent left context could be extended to produce a facility similar to
that for adjacent right context, but it is unlikely to be as useful, because
the relevant left context often appears first and at the beginning of a line.

This section describes three means of dealing with different environ­
ments:

• using flags, when only a few rules change from one environment to
another,

• using start conditions with rules, and

• using several lexical analyzers running together.

In each case, there are rules that recognize the need to change the
environment in which the following input text is analyzed and set to some
parameters to reflect the change. This may be a flag tested explicitly by
your action code; such a flag is the simplest way of dealing with the prob­
lem, since lex is not involved at all. It may be more convenient, however,
for lex to remember the flags as initial conditions on the rules. Any rule
may be associated with a start condition. It will only be recognized when
lex is in that start condition. The current start condition can be changed

5-17

XENIX Programmer's Guide

at any time. Finally, if the sets of rules for the different environments are
very dissimilar, you can, for the sake of clarity, write several distinct lexi­
cal analyzers and switch from one to another as you need them.

Consider the following problem: Copy the input to the output changing
the word magic to first on every line that begins with the letter a, chang­
ing magic to second on every line that begins with the letter b, and chang­
ing magic to third on every line that begins with the letter c. All other
words and all other lines are left unchanged.

These rules are so simple that the easiest way to do this job is with a flag:

int flag;
%%

a {flag a'; ECHO;}
'b'; ECHO;}
'c' ECHO;}
o ; ECHO;}

~b {flag
c {flag

\n {flag
magic {

switch (flag)
{

case 'a'; printf("first"); break;
case 'b'; printf("second"); break;
case 'c': printf("third"); break;
default: ECHO; break;
}
}

To handle the same problem with start conditions, you must introduce
each start condition to lex in the definitions section with a line reading

%Start name] name2

where the conditions may be named in any order. The word Start may be
abbreviated to s or S. You can reference the conditions at the head of a
rule with angle brackets. For example, the following is a rule that lex
recognizes only when it is in the start condition name}:

<name} >expression

To enter a start condition, execute the following action statement which
changes the start condition to name}:

BEGIN name];

To return to the initial state, the following resets the initial condition of
the lex automaton interpreter:

BEGIN 0;

5-18

lex: A Lexical Analyzer

A rule may be active in several start conditions. For example, the follow­
ing is a legal prefix:

<name] ,name2 ,name3>

Any rule not beginning with the <> prefix operator is always active.

The same example can be written as follows, where the logic is exactly
the same as in the previous method of handling the problem, but lex does
the work rather than your code:

%START AA BB CC
%%

a {ECHO; BEGIN AA;}
-b {ECHO; BEGIN BB;}

c {ECHO; BEGIN CC;}
\n {ECHO; BEGIN O;}
<AA>magic printf("first");
<BB>magic printf("second");
<CC>magic printf("third");

5.17 Specifying Source Definitions

Remember the format of the lex source:

{ definitions}
%%
{rules}
%%
{user routines}

So far only the rules have been described. You will need additional
options, though, to define variables for use in your program and for use by
lex, These can go either in the definitions section or in the rules section.

Remember that lex is turning the rules into a program. Any source that
lex does not intercept is. copied into the generated program. There are
three classes of such sources:

1. Any line that is not part of a lex rule or action that begins with a
blank or TAB is copied into the lex -generated program. Source
input prior to the first %% delimiter will be external to any func­
tion in the code; if it appears immediately after the first %%, it
appears in an appropriate place for declarations in the lex function
which contains the actions. This material must look like program
fragments and should precede the first lex rule.

5-19

XENIX Programmer's Guide

As a side effect of this, lines that begin with a blank or TAB and
contain a comment are passed through to the generated program.
You can use this to include comments in either the lex source or
the generated code. The comments should follow C language con­
ventions.

2. Anything included between lines containing only % { and %} is
copied out as stated earlier. The delimiters are discarded. This
format permits entering text like preprocessor statements which
begin in column 1 or copying lines that do not look like programs.

3. Anything after the third %% delimiter, regardless of format, is
copied out after the lex output.

Definitions intended for lex are given before the first %% delimiter. Any
line in this section not contained between % { and %} and beginning in
column 1 is assumed to define lex substitution strings. The format of such
lines is causing the translation string to be associated with the following
name:

name translation

The name and translation must be separated by at least one blank or Tab ,
and the name must begin with a letter. The translation can then be called
out by the {name} syntax in a rule. Using {D} for the digits and {E} for
an exponent field, for example, might abbreviate rules to recognize
numbers:

D
E
%%

[0-9]
[DEde] [-+] ?{D}+

{D}+ printf("integer");
{D}+"."{D}*({E})? I
{D}*"."{D}+({E})? I
{D}+{E} printf("real");

Note the first two rules for real numbers; each requires a decimal point
and contains an optional exponent field, but the first requires at least one
digit before the decimal point and the second requires at least one digit
after the decimal point. To handle correctly the problem posed by a FOR­
TRAN expression such as 35.EQ.I, which does not contain a real number,
you can use a context-sensitive rule such as the following in addition to
the normal rule for integers:

[0-9] +/" ."EQ printf("integer");

The definitions section can also contain other commands, including a
character set table, a list of start conditions, or adjustments to the default

5-20

lex: A Lexical Analyzer

size of arrays within lex to accommodate larger source programs. These
possibilities are discussed in "Specifying Character Sets."

5.18 Using lex and yacc Together

If you want to use lex with yacc, note that what lex writes is a program,
yylexO, which is the name required by yacc for its analyzer. Normally,
the default main program on the lex library calls this routine, but if yacc
is loaded and its main program is used, yacc will call yylexO. In this
case, each lex rule should end with the following where the appropriate
token value is returned:

ret urn (token) ;

An easy way to get access to yacc's names for tokens is to compile the lex
output file as part of the yacc output file by placing the following line in
the last section of yacc input:

include "lex.yy.c"

Supposing the grammar to be named good and the lexical rules to be
named better, the XENIX command sequence can be:

yacc good
lex better
cc y.tab.c -ly -11

You should load the yacc library (-ly) before the lex library to obtain a
main program which invokes the yacc parser. The generation of lex and
yacc programs can be done in either order.

As a trivial problem, consider copying an input file while adding 3 to
every positive number divisible by 7. Here is an example lex source pro­
gram:

%%
int k;

[0-9]+ {
k = atoi(yytext);
if (k%7 == 0)

printf("%d", k+3);
else

printf("%d",k) ;

The rule [0-9]+ recognizes strings of digits; atoiO converts the digits to
binary and stores the result in k. The remainder operator (%) is used to
check whether k is divisible by 7; if so, it is incremented by 3 as it is

5-21

XENIX Programmer's Guide

written out. You may object that this program will alter such input items
as 49.63 or X7. Furthermore, it increments the absolute value of all nega­
tive numbers divisible by 7. To avoid this, just add more rules after the
active one, as here:

%%
int k;

-?[O-9]+ {
k = atoi(yytext);
printf("%d", k%7 == 0 ? k+3 k);
}

-?[O-9.]+ ECHO;
[A-Za-z] [A-Za-zO-9] + ECHO;

Numerical strings containing a decimal point or preceded by a letter will
be picked up by one of the last two rules and not changed. The if-else has
been replaced by a C-conditional expression to save space; the form,
a?b:c, means: if a then b else c.

For an example of statistics gathering, here is a program which makes his­
tograms of word lengths, where a word is defined as a string of letters:

int "lengs [100];
%%
[a-z]+

I
\n
%%
yywrap ()
{
int i;

lengs [yyleng] + +;

printf("Length No. words\n");
for (i=O; i<100; i++)

if (lengs[i] > 0)
printf("%5d%10d\n",i,lengs[i]);

return(l);
}

This program accumulates the histogram while producing no output. At
the end of the input, it prints the table. The final statement, return(l),
indicates that lex is to perform wrapup. If yywrapO returns zero (false), it
implies that further input is available and the program is to continue read­
ing and processing. Providing a yywrapO that never returns true causes
an infinite loop.

5-22

lex: A Lexical Analyzer

As a larger example, the following are some parts of a program for con­
verting double-precision FORTRAN to single-precision FORTRAN.
Because FORTRAN does not distinguish between uppercase and lower­
case letters, this routine begins by defining a set of classes including both
cases of each letter:

a [aA]
b [bB]
c [cC]

z [zZ]

An additional class recognizes whitespace:

W [\t] *

The first rule changes double precision to real, or DOUBLE PRECISION to
REAL:

{d}{o}{u}{b}{l}{e}{W}{p}{r}{e}{c}{i}{s}{i}{o}{n}
printf (yytext [0] = =' d'? "real" : "REAL");
}

Care is taken throughout this program to preserve the case of the original
program. The conditional operator is used to select the proper form of the
keyword. The next rule copies continuation card indicators to avoid
confusing them with constants:

" [~ 0] ECHO;

In the regular expression, the quotes surround the blanks. It is interpreted
as beginning of line, then five blanks, then anything but blank or zero.
Note the two different meanings of the caret C) here. The following rules
change double-precision constants to ordinary floating constants:

[0-9]+{W}{d}{W} [+-] ?{W} [0-9]+ I
[0-9]+{W}"."{W}{d}{W} [+-]?{W} [0-9]+ I
"."{W} [0-9]+{W}{d}{W} [+-] ?{W} [0-9]+ {

/* convert constants */
for (p=yytext; *p != 0; p++)

{

if (*p == 'd' II *p 'D')
*p+= , e' - , d' ;

ECHO;
}

5-23

XENIX Programmer's Guide

After the floating point constant is recognized, it is scanned by the for
loop to find the letter d or D. The program then adds "'e'-'d'" which
converts it to the next letter of the alphabet. The modified constant, now
single-precision, is written out again. There follows a series of names
which must be respelled to remove their initial d's. If you use the yytext
array, the same action suffices for all the names. Only a sample of a
rather long list is given here:

{d}{s}{i}{n}
{d} {c} {a} {s}

{d} is} {q} {r} it}
{d} {a} {t} {a} in}

{d} if} {I} {a} {a} it} printf("%s",yytext+l);

Another list of names must have initial d's changed to initial a's

{d} {I} {a} {g}
{d} {I} {a} {g}lO
{d} {m} {i} {n}l
{d} {m} {a} {x} 1

yytext[O] += 'a' - 'do;
ECHO;
}

One routine must have an initial d changed to initial r:

{d}l{m}{a}{c}{h} {
yytext[O] += 'r' - 'dO;
ECHO;

To avoid such names as dsinx being detected as instances of dsin, some
final rules pick up longer words as identifiers and copy some surviving
characters. For more information on yacc, see "yacc: A Compiler­
Compiler. ' ,

[A-Za-z] [A-Za-zO-9]*
[0-9] +
\n

ECHO;

Note that this program is not complete; it does not deal with the spacing
problems in FORTRAN or with the use of keywords as identifiers.

5-24

lex: A Lexical Analyzer

5.19 Specifying Character Sets

The programs generated by lex handle character I/O only through the rou­
tines input, output, and unput. Thus, the character representation pro­
vided in these routines is accepted by lex and employed to return values
in yytext. For internal use, a character is represented as a small integer.
If you use the standard library, a character has a value equal to the integer
value of the bit pattern representing the character on the host computer.
Normally, the letter a is represented in the same form as the following
character constant:

'a'

If this interpretation is changed by providing I/O routines that translate
the characters, lex must be told about it by means of a translation table.
You must have this table in the definitions section, and it must be brack­
eted by lines containing only %T. The table contains lines of the follow­
ing form which indicate the value associated with each character:

{ integer} {character string}

For example:

%T
1 Aa
2 Bb

26 Zz
27 \n
28 +
29
30 0
31 1

39 9
%T

This table maps the lowercase and uppercase letters together into the
integers 1 through 26, Newline into 27, plus (+) and minus (-) into 28 and
29, and the digits into 30 through 39. Note the escape for Newline. If you
supply a table, you must include every character that is to appear either in
the rules or in any valid input. No character may be assigned the number
0, and no character may be assigned a larger number than the size of the
hardware character set.

5-25

XENIX Programmer's Guide

5.20 Source Format

Remember the general form of a lex source file:

{ definitions}
%%
{rules}
%%
{ user subroutines}

The definitions section contains a combination of the following:

• Definitions, in the form "name space translation"

• Included code, in the form "space code"

• Included code, in the form:

%{
code
%}

• Start conditions, given in the form:

%S namel name2

• Changes to internal array sizes, in the form:

%x nnn

where nnn is a decimal integer representing an array size, and x
selects the parameter as follows:

Letter Parameter
p positions
n states
e tree nodes
a transitions
k packed character classes
0 output array size

• Character set tables, in the form:

%T

5-26

number space character-string
%T

lex: A Lexical Analyzer

Lines in the rules section have the following fonn where the action may
be continued on succeeding lines by using braces to delimit it:

expression action

Regular expressions in lex use the following operators:

Operator Description

x The character x

"x" An "x", even if x is an operator

\x An "x", even if x is an operator

[xy] The character x or y

[x-z] The character x, y, or z

Any character but x

Any character but Newline

"x An x at the beginning of a line

<y>x An x when lex is in start condition y

x$ An x at the end of a line

x? An optional x

x* 0,1,2, ... instances of x

x+ 1,2,3, ... instances of x

xly Anx or ay

(x) Anx

x/y An x but only if followed by y

{xx} The translation of xx from the definitions section

x{m,n} m through n occurrences of x

5-27

Chapter 6

yacc: A Compiler-Compiler

6.1 Introduction 6-1

6.2 Basic yacc Specifications 6-4
6.2.1 Rules 6-5
6.2.2 Actions 6-7
6.2.3 How to Prepare the Lexical Analyzer 6-9

6.3 How the Parser Works 6-11

6.4 Ambiguity and Conflicts 6-15

6.5 How to Handle Operator Precedences 6-20

6.6 Error Handling and Recovery 6-23

6.7 The yacc Environment 6-25

6.8 Preparing Specifications 6-26
6.8.1 Input Style 6-27
6.8.2 Left Recursion 6-27
6.8.3 Lexical Tie-ins 6-28
6.8.4 Handling Reserved Words 6-29

6.9 Advanced Topics 6-30
6.9.1 Simulating Error and Accept in Actions 6-30
6.9.2 Accessing Values in Enclosing Rules 6-30
6.9.3 Supporting Arbitrary Value Types 6-31
6.9.4 yacc Input Syntax 6-32

6.10 Examples 6-35
6.10.1 A Simple Example 6-35
6.10.2 An Advanced Example 6-37

6.11 Old Features Supported but Not Encouraged 6-43

yacc: A Compiler-Compiler

6.1 Introduction

Computer program input generally has some structure; every computer
program that accepts input can be thought of as defining an input
language which it accepts. An input language may be as complex as a
programming language, or as simple as a sequence of numbers. Unfor­
tunately, usual input facilities are limited, difficult to use, and often lax
about checking their inputs for validity.

The yacc(CP) program provides a general tool for describing the input to
a computer program. The name yacc stands for "yet another compiler­
compiler. " The yacc user specifies the structures of input, together with
code to be invoked as each input structure is recognized. yacc turns this
structure specification into a subroutine that handles the input process and
controls the flow of the user's application.

The input subroutine produced by yacc calls a user-supplied routine to
return the next basic input item. Thus, the user can specify input in terms
of individual input characters or in terms of higher-level constructs such
as names and numbers. The user-supplied routine can also handle
idiomatic features such as comment and continuation conventions, which
typically defy easy grammatical specification. The class of specifications
accepted is a general one: LALR (lookahead-left-read) grammars with
rules for clarification, referred to as "disambiguating rules."

In addition to compilers such as those for C, APL, Pascal, RATFOR, less
conventional languages also use yacc, including a phototypesetter
language, several desk-calculator languages, a document retrieval system,
and a FORTRAN debugging system.

Since yacc imposes structure on the input to a computer program, the
yacc user can prepare a specification of the input process, including rules
that describe the input structure, code to be invoked when these rules are
recognized, and a low-level routine to do the basic input. Then yacc goes
through the following steps:

1. The yacc program generates a function (parser) to control the input
process.

2. The parser calls the user-supplied lexical analyzer to pick up the
basic terms (terminal symbols) from the input stream.

3. Terminal symbols are organized according to input structure rules
(grammar).

4. Once one of the grammar rules is recognized, the user code sup­
plied for this rule is invoked; these rules, which are actions, have

6-1

XENIX Programmer '8 Guide

the ability to return values and make use of the values of other
actions.

The yacc program is written in a portable dialect of C, and the actions and
output subroutines are in C as well. Also, many of the syntactic conven­
tions of yacc follow C.

The heart of the input specification is a collection of grammar rules. Each
rule describes an allowable structure and gives it a name. For example,
one grammar rule might be:

date: month_name day',' year ;

These represent structures of the input process; presumably, month_name,
day, and year are defined elsewhere. The comma (,) is enclosed in single
righthand quotation marks, implying that it is to appear literally in the
input. The colon and semicolon serve as punctuation in the rule and have
no significance in controlling the input. Thus, with proper definitions, the
following input might be matched by the given rule:

July 4, 1776

An important part of the input process is performed by the lexical
analyzer. The (lex) user routine reads the input stream, recognizes the
lower-level structures, and communicates these tokens to the parser. A
structure recognized by the lexical analyzer is called a terminal symbol,
while the structure recognized by the parser is called a nonterminal sym­
bol. To avoid confusion, terminal symbols are usually referred to as
tokens.

There is considerable leeway in deciding whether to recognize structures
using the lexical analyzer or grammar rules. For example, the following
rules might be used in the previous example:

month name
month name

'J' 'a' 'n'
'F' 'e' 'b'

month name: 'D' 'e' 'e' ;

The lexical analyzer would only need to recognize individual letters, and
month_name would be a nonterminal symbol. Such low-level rules can
waste time and space and can complicate the specification beyond yacc's
ability. Usually, the lexical analyzer would recognize the month names
and return an indication that a month name was seen; in this case,
month name would be a token.

6-2

yacc: A Compiler-Compiler

Literal characters, such as the comma, are considered tokens and must
also be passed through the lexical analyzer.

Specification files are very flexible. It is relatively easy to add the follow­
ing rule to the preceding example:

date : month '/' day '/' year;

allowing

7/4/1776

as a synonym for

July 4, 1776

In most cases, this new rule could be added to a working system with
minimal effort and with little danger of disrupting existing input.

The input being read may not conform to the specifications. These input
errors are detected as early as possible with a left-to-right scan; this sub­
stantially reduces the chance of reading and computing with bad input
data, and the bad data can usually be found quickly. Error handling, pro­
vided as part of the input specifications, permits the reentry of bad data or
continues the input process after skipping over the bad data.

In some cases, yacc fails to produce a parser when given a set of
specifications. For example, the specifications may be self-contradictory,
representing a design error; or the specifications may require more power­
ful recognition than yacc has available. (This can often be corrected by
making the lexical analyzer more powerful or by rewriting some of the
grammar rules.) While yacc cannot handle all possible specifications, its
power compares favorably with similar systems. The constructions which
are difficult for yacc to manage are also frequently difficult for people to
manage.

The following sections describe:

• preparing grammar rules,

• preparing the user-supplied actions associated with the grammar
rules,

• preparing lexical analyzers,

• using the parser,

6-3

XENIX Programmer's Guide

• handling operator precedences in arithmetic expressions,

• detecting errors and recovering from them,

• why yacc may be unable to produce a parser from a specification
and what to do about it,

• the operating environment and special features of the parsers yacc
produces, and

• some suggestions that can improve the style and efficiency of the
specifications.

6.2 Basic yacc Specifications

Names refer to either tokens or nonterminal symbols. The yacc program
requires token names to be declared as such. In addition, you may want
to include the lexical analyzer and other programs as part of the
specification file. Thus, every specification file consists of three sections:

• declarations

• rules (grammar)

• programs

Double percent (%%) marks separate the sections. (The percent sign (%)
is generally used in yacc specifications as an escape character.)

For example, a full-specification file looks like this:

declarations
%%
rules
%%
programs

The declaration and program sections can be empty. Thus, the smallest
legal yacc specification is:

%%
rules

Spaces, TAB, and Newline are ignored, except that they may not appear in
names or in multicharacter reserved symbols. Comments can appear
wherever a name is legal and are enclosed in /* ... * /, as in C.

6-4

yacc: A Compiler-Compiler

6.2.1 Rules

The rules section is made up of one or more grammar rules. A grammar
rule has the form:

A : BODY;

where:

• A represents a nonterminal name,

• BODY represents a sequence of zero or more names and literals,
and

• colon and the semicolon represent yacc punctuation.

Names can be of arbitrary length and can be made up of letters, dot (.), the
underscore C), and noninitial digits. Uppercase and lowercase letters are
distinct. The names used in the body of a grammar rule can represent
tokens or nonterminal symbols.

A literal consists of a character enclosed in single quotation marks (').
As in C, the backslash (\) is an escape character within literals and all the
C escapes are recognized:

'\n' NEWLINE

'\r' RETURN

'\" Single quotation mark
'\ \' Backslash
, \t' TAB

'\b' BACKSPACE
, \ f' FORMFEED

, \xxx' "xxx" in octal

For a number of technical reasons, the ASCII NULL character should
never be used in grammar rules.

If there are several grammar rules with the same left-hand side, then you
can use the pipe symbol (I) to avoid rewriting the left-hand side. fu addi­
tion, the semicolon at the end of a rule can be dropped before a vertical
bar. Thus, the following grammar rules:

A : BCD
A : E F
A : G

6-5

XENIX Programmer's Guide

can be given to yacc as:

C

F
D

It is not necessary that all grammar rules with the same left side appear
together in the grammar rules section, but doing so makes the input much
more readable and easier to change.

If a nonterminal symbol matches the empty string, you can indicate this in
the following manner:

empty : ;

Also, since you must declare names that represent tokens, you can do this
by typing the following in the declarations section:

%token name] name2

Every nonterminal symbol must appear on the left-hand side of at least
one rule. (For more information, see "How the Parser Works," "How to
Handle Operator Precedences, " and "Error Handling and Recovery. ' ')

The start symbol has particular importance. The parser is designed to
recognize the start symbol; this symbol represents the largest, most gen­
eral structure described by the grammar rules. By default, the start sym­
bol is the first character on the left-hand side of the first grammar rule in
the rules section. You can declare the start symbol explicitly in the
declarations section using the %start keyword:

%start symbol

A special token (called the endmarker) signals the end of the input to the
parser. If the tokens up to, but not including, the endmarker form a struc­
ture that matches the start symbol, the parser function returns to its caller.
After the endmarker is seen, the parser accepts the input. If the end­
marker is seen in any other context, it is an error.

The user-supplied lexical analyzer is responsible for returning the end­
marker when appropriate; for more information, see "How the Parser
Works." Usually the endmarker represents a particular I/O status, such as
end-of-file or end-of-record.

6-6

yacc: A Compiler-Compiler

6.2.2 Actions

With each grammar rule, you can associate actions to be performed each
time that rule is recognized in the input process. These actions can return
values and take values returned by previous actions. You can also make
the lexical analyzer return values for tokens.

An action is an arbitrary C statement, and as such can do input and out­
put, call subprograms, and alter external vectors and variables. You
specify an action with one or more statements enclosed in braces ({ }).
For example, the following are grammar rules with actions:

A:'{'B')'

and:
xxx yyy zzz

hello (1, "abc");

{ printf{"a message\n");
flag = 25;}

For easy communication between the actions and the parser, you must
alter the action statements slightly. In this context, the dollar sign ($) is
used as a signal to yacc.

To return a value, the action normally sets the $$ pseudo-variable to some
value. For example, the following action does nothing but return the
value 1:

$$ = 1; }

To obtain the values returned by previous actions and the lexical
analyzer, the action may use the $1, $2, ... pseudo-variables, which refer
to the values returned by the components of the right-hand side of a rule.
Thus, if the rule is as follows, $2 has the value returned by C, and $3 has
the value returned by D:

A : BCD ;

As a more concrete example, consider the following rule:

expr : '(' expr ')' ;

The value returned by this rule is usually the value of the expr in
parentheses. You can indicate this by typing:

expr : ' (' expr ')' { $ $ = $ 2 ; }

6-7

XENIX Programmer '8 Guide

By default, the value of a rule is the value of the first element in it ($1).
Thus, grammar rules of the following form frequently need not have an
explicit action:

A : B ;

In the preceding examples, all the actions came at the end of their rules.
Sometimes, you may need to get control before a rule is fully parsed. The
yacc program lets you write an action in the middle of a rule as well as at
the end. This rule is assumed to return a value, accessible through the
usual method by the actions to the right of it. In turn, the rule can access
the values returned by the symbols to its left. Thus, in the following rule,
the effect is to set x to I, and y to the value returned by C:

A : B
{ $$ 1 ;
C
{ x = $2; y $3;

Actions that do not terminate a rule are handled by yacc. In turn, yacc
manufactures a new nonterminal symbol name, and a new rule matching
this name, to the empty string. The interior action is triggered by recog­
nizing this added rule. The yacc program actually treats the previous
example as if it had been written as:

$ACT /* empty */
{ $$ 1;

A : B $ACT C
x = $2; y = $3;

In many applications, the actions do not produce output directly; instead,
you can construct a data structure (such as a parse tree) in memory and
apply transformations to it before the output is generated. Parse trees are
particularly easy to construct if you have the routines to build and main­
tain the desired tree structure.

For example, suppose there is a C function node, written so that the fol­
lowing call creates a node with label L and descendants nl and n2 and
returns the index of the newly created node:

node (L, nl, n2)

6-8

yacc: A Compiler-Compiler

Since the yacc parser uses only names beginning in yy, you should avoid
such names. In these examples, all the values are integers.

You can build the parse tree by supplying actions such as the following in
the specification:

expr : expr '+ ' expr
$ $ = node ('+', $1, $ 3);

You can define other variables to be used by the actions. For instance,
declarations (tokens) and definitions can appear in the declarations sec­
tion, enclosed in the %{ and %} marks. These declarations and
definitions have global scope, so they are known to the action statements
and the lexical analyzer. For example, you could type the following in
the declarations section, making variable accessible to all of the actions:

% { int variable = 0; %}

6.2.3 How to Prepare the Lexical Analyzer

You must use a lexical analyzer to read the input stream and communi­
cate tokens (with values, if desired) to the parser. The lexical analyzer is
an integer-valued function called yylex. The function returns an integer,
called the token number, which represents the kind of token read. If there
is a value associated with that token, you should assign it to the external
variable yylval.

The parser and the lexical analyzer must agree on these token numbers in
order for communication between them to take place. Either you or yacc
should choose these token numbers. In either case, using the # define
mechanism of C lets the lexical analyzer return these numbers symboli­
cally. For example, suppose that the token name DIGIT is defined in the

6-9

XENIX Programmer's Guide

declarations section of the yacc specification file. The relevant portion of
the lexical analyzer might look like this:

yylex () {
extern int yylval;
int Ci

c = getchar () ;

switch (c)

case '0':
case '1':

case ' 9' :
yylval = c-'O';
return (DIGIT);

The intent is to return a token number DIGIT and a value equal to the
numerical value of the digit. Provided that the lexical analyzer code is in
the programs section of the specification file, the identifier, DIGIT, is
defined as the token number associated with the token DIGIT.

This method leads to clear, easily modified lexical analyzers; the only pit­
fall is the need to avoid using token names in the grammars reserved or
significant in C or the parser. For example, if you use the token names if
or while, you will cause severe difficulties when the lexical analyzer is
compiled. The token name error is reserved for error handling so you
should not use it carelessly.

As mentioned previously, either you or yacc can choose the token
numbers. By default, yacc chooses the token numbers. The default token
number for a literal character is the numerical value of the character in
the local character set. Other names are assigned token numbers starting
at 257.

When you assign a token number to a token (including literals), you can
follow the first appearance of the token name or literal in the declarations
section with a positive integer. This integer specifies the token number of
the name or literal. Names and literals not defined by this mechanism
retain their default definition. It is important that all token numbers be
distinct.

6-10

yacc: A Compiler-Compiler

For historical reasons, the token number of the endmarker must be equal
to or less than O. You cannot redefine this token number. Therefore, you
should prepare every lexical analyzer to return a 0 or a negative value as
a token number upon reaching the end of its input.

A very useful tool for constructing lexical analyzers is lex, discussed in
"lex: A Lexical Analyzer." These lexical analyzers are designed to
work in close harmony with yacc parsers. The specifications for lexical
analyzers use regular expressions instead of grammar rules. You can use
lex to produce complicated lexical analyzers, but some languages (such
as Fortran) do not fit any theoretical framework, so you must design their
lexical analyzers by hand.

6.3 How the Parser Works

The yacc program turns the specification file into a C program that parses
the input according to the specification given. The parser produced by
yacc consists of a finite state machine with a stack. The parser is capable
of reading and remembering the next input token (called the lookahead
token). The current state is always the one on the top of the stack. The
states of the finite state machine are given small integer labels. Initially,
the machine is in state 0, the stack contains only state 0, and no lookahead
token has been read.

The machine has only four actions available to it: shift, reduce, accept,
and error. A move of the parser is done as follows:

1. Based on its current state, the parser determines whether it needs a
lookahead token to decide what action should be taken. If it needs
one and does not have one, it calls yylex to obtain the next token.

2. U sing the current state and the lookahead token if needed, the
parser determines its next action and executes it. This may result
in states being pushed onto the stack or popped off of the stack, and
in the lookahead token being processed or left alone.

The shift action is the most common action the parser takes. Whenever a
shift action is taken, there is always a lookahead token. For example, in
state 56 there may be an action:

IF shift 34

which says, in state 56, if the lookahead token is IF, the current state (56)
is pushed down on the stack, and state 34 becomes the current state (on
the top of the stack). The lookahead token is then cleared.

6-11

XENIX Programmer '8 Guide

The reduce actioil keeps the stack from growing without bounds. Reduce
actions are appropriate when the parser has seen the right-hand side of a
grammar rule and is prepared to announce that it has seen an instance of
the rule, replacing the right-hand side with the left-hand side. You may
have to consult the lookahead token to decide whether to reduce. The
default action (represented by a dot (.» is often a reduce action.

Reduce actions are associated with individual grammar rules. Grammar
rules can also contain small integer numbers, which can be confusing.
The following action refers to grammar rule 18:

reduce 18

while the following action refers to state 34:

IF shift 34

Suppose the rule being reduced is as follows:

A : x y z ;

The reduce action depends on the left-hand symbol (A in this case) and
the number of symbols on the right-hand side (three in this case). To
reduce, first pop off the top three states from the stack. In general, the
number of states popped equals the number of symbols on the right side of
the rule. In effect, these states were the ones put on the stack while recog­
nizing x, y, and z, and no longer serve any useful purpose.

After popping these states, you uncover the state that the parser was in
before it began to process the rule. Using this uncovered state and the
symbol on the left side of the rule, do a shift of A. A new state is
obtained and pushed onto the stack, and parsing continues.

There are significant differences between the processing of the left-hand
symbol and an ordinary shift of a token, so the processing of the left-hand
symbol is called a gata action. In particular, the lookahead token is
cleared by a shift and is not affected by a gata. In any case, the uncovered
state contains an entry such as the following that causes state 20 to be
pushed onto the stack and become the current state:

A goto 20

6-12

yacc: A Compiler-Compiler

In effect, the reduce action pops the states off the stack until it goes back
to the state where the right-hand side of the rule was first seen. The
parser then behaves as if it had seen the left side at that time. If the
right-hand side of the rule is empty, no states are popped off of the stack;
the uncovered state is, in fact, the current state.

The reduce action is also important in the treatment of actions and values
that you supply. When a rule is reduced, the code supplied with the rule
is executed before the stack is adjusted. In addition to the stack holding
the states, another stack running in parallel holds the values returned from
the lexical analyzer and the actions. Then, when a shift takes place, the
yylval external variable is copied onto the value stack. After the values
are returned from the user code, the reduce action is carried out. When
the goto action is done, the yyval external variable is copied onto the
value stack. The pseudo-variables $1, $2, and so on, refer to the value
stack.

The other two parser actions are simpler. The accept action indicates that
the entire input has been seen and that it matches the specification. This
action appears only when the lookahead token is the endmarker and indi­
cates that the parser has successfully done its job. The error action, on
the other hand, represents a place where the parser can no longer continue
parsing according to the specification. The input tokens it has seen,
together with the lookahead token, cannot be followed by anything that
would result in a legal input. The parser reports an error and attempts to
recover the situation and resume parsing; error recovery (as opposed to
the detection of error) is described in "Preparing Specifications."

Consider the following example:

%token DING DONG DELL
%%
rhyme sound place

sound DING DONG

place DELL

When you invoke yacc with the -v option, yacc produces a file called
y.output with a readable description of the parser. The y.output file that

6-13

XENIX Programmer's Guide

corresponds to the previous grammar (with some statistics stripped off the
end) is:

state 0

state 1

state 2

state 3

state 4

state 5

state 6

$accept : _rhyme Send

DING shift 3
· error

rhyme goto 1
sound goto 2

$accept : rhyme_Send

Send accept
· error

rhyme : sound_place

DELL shift 5
· error

place goto 4

sound : DING DONG

DONG shift 6
· error

rhyme : sound place_ (1)

· reduce 1

place : DELL_ (3)

· reduce 3

sound : DING DONG_ (2)

· reduce 2

Notice that, in addition to the actions for each state, there is a description
of the parsing rules being processed in each state. The underscore charac­
ter C) is used to indicate what has been seen and what is yet to come in
each rule. Suppose the input is:

DING DONG DELL

6-14

yacc: A Compiler-Compiler

Follow the steps of the parser while processing this input. Initially, the
current state is state O. The parser needs to refer to the input to decide
between the actions available in state 0, so it reads the first token, DING,
which becomes the lookahead token. The action in state 0 on DING is
shift 3, so the parser pushes state 3 onto the stack and clears the looka­
head token. State 3 becomes the current state. The parser reads the next
token, DONG, which becomes the lookahead token. The action in state 3
on the DONG token is shift 6, so the parser pushes state 6 onto the stack
and clears the lookahead token. The stack now contains 0, 3, and 6. In
state 6, without even consulting the lookahead token, the parser reduces
by rule 2:

sound : DING DONG

This rule has two symbols on the right-hand side. It pops two states, 6
and 3, off the stack, uncovering state O. By consulting the description of
state 0 and by looking for a goto on sound, it obtains:

sound goto 2

The parser then pushes state 2 onto the stack, making it the current state.

Now the parser reads DELL, the next token in state 3. Since the action is
shift 5, the parser pushes state 5 onto the stack and clears the lookahead
token. The stack now contains 0,2, and 5. In state 5, the action is reduce
by rule 3, which has one symbol on its right-hand side. So the parser pops
state 5 off the top of the stack, uncovering state 2. On place, the left-side
of rule 3, the goto in state 2 is state 4. The stack now contains 0, 2, and 4.
In state 4, the action is reduce by rule 1, which has two symbols on its
right-hand side. Therefore, the parser pops states 2 and 4 off the top of the
stack, uncovering state o. In state 0, a goto on rhyme causes the parser to
enter state 1, where it reads the input and obtains the endmarker Send in
the y.output file. When the parser sees the endmarker, the action in state
1 is to accept it, successfully completing the parse.

You should consider how the parser works when confronted with
incorrect strings like DING DONG DONG, DING DONG, DING DONG
DELL DELL, and so forth. Once you understand this process, you will be
prepared for more complicated problems.

6.4 Ambiguity and Conflicts

A set of grammar rules is ambiguous if there is some input string that can
be structured in two or more different ways. For example, the following

6-15

XENIX Programmer's Guide

grammar rule forms an arithmetic expression by putting two expressions
together with a minus sign between them:

expr : expr '-' expr

Unfortunately, this grammar rule does not completely specify how com­
plex inputs should be structured. For instance, if the input is:

expr - expr - expr

the rule allows this input to be structured as either

(expr - expr) - expr

or:

expr - (expr - expr)

(The first is called 1eft association; the second, right association).

The yacc program detects such ambiguities when it is attempting to build
the parser. Suppose the parser receives the following input:

expr - expr - expr

When the parser has read the second expr, the following input matches
the right-hand side of the previous grammar rule:

expr - expr

The can reduce the input by applying this rule; then, the input is reduced
to expr (the left-hand side of the rule). The parser reads the final part of
the input:

-expr

and reduces again. This takes the interpretation to be left-associative.

Alternatively, when the parser sees:

expr - expr

it can defer the immediate application of the rule and continue reading
the input until it sees:

expr - expr - expr

6-16

yacc: A Compiler-Compiler

It can then apply the rule to the rightmost of the three symbols, reduce the
input by expr, and leave the following:

expr - expr

Now the rule can be reduced once more and take the right-associative
interpretation. Thus, once it reads the following, the parser can do one of
two legal things, a shift or a reduce, with no way of deciding between
them:

expr - expr

This is called a shift/reduce conflict. The parser can also have a choice of
two legal reductions; this is called a reduce/reduce conflict. Note that
there are never any shift/shift conflicts.

When there are shift/reduce or reduce/reduce conflicts, yacc still pro­
duces a parser by selecting one of the valid steps whenever it has a
choice. A rule describing which choice to make in a given situation is
called a disambiguating rule.

The yacc program invokes two disambiguating rules by default:

1. In a shift/reduce conflict, the default is to do the shift.

2. In a reduce/reduce conflict, the default is to reduce by the earlier
grammar rule (in the input sequence).

Rule 1 implies that reductions are deferred, whenever there is a choice, in
favor of shifts. Rule 2 gives you crude control over the behavior of the
parser in this situation, but you should try to avoid reduce/reduce when­
ever possible.

Conflicts can arise because of mistakes in input or logic, or because the
grammar rules, while consistent, require a more complex parser than yacc
can construct. Using actions within rules can also cause conflicts if the
action must be completed before the parser can be sure which rule is
being recognized. In these cases, the application of disambiguating rules
is inappropriate and leads to an incorrect parser. For this reason, yacc
always reports the number of shift/reduce and reduce/reduce conflicts
resolved by rule 1 and rule 2.

In general, whenever it is possible to apply disambiguating rules to pro­
duce a correct parser, it is also possible to rewrite the grammar rules so
that the same inputs are read without conflicts. This is why most previous
parser generators have considered conflicts to be fatal errors. Experience
has shown that rewriting unnaturally produces slower parsers. Thus, yacc
will produce parsers even in the presence of conflicts.

6-17

XENIX Programmer's Guide

As an example of the power of disambiguating rules, consider a fragment
from a programming language involving an if-then-else construction:

stat: IF '(' cond ')' stat
I IF '(' cond ')' stat ELSE stat

In these rules, IF and ELSE are tokens, cond is a nonterminal symbol
describing conditional (logical) expressions, and stat is a nonterminal
symbol describing statements. The first rule is called the simple-if rule,
and the second, the if-else rule.

These two rules form an ambiguous construction, because input of the
form:

IF (C1) IF (C2) Sl ELSE S2

is structured according to these rules in one of two ways:

IF (C1)

ELSE S2

or:

IF (C1)

IF (C2) Sl
}

IF C2) Sl
ELSE S2
}

The second interpretation is the one given in most programming
languages having this construct. Each ELSE is associated with the IF
immediately preceding the ELSE. In this example, consider the situation
where the parser sees the following and is looking at the ELSE:

IF (C1) IF (C2) Sl

The parser can immediately reduce by the simple-if rule to get the follow­
ing:

IF (C1) stat

6-18

yacc: A Compiler-Compiler

Then read the remaining input:

ELSE S2

and reduce the following by the if-else rule:

IF (Cl) stat ELSE S2

This leads to the first of the previous groupings of the input.

On the other hand, if the ELSE is shifted, S2 is read, and the right-hand
portion of the following is reduced by the if-else rule:

IF (Cl) IF (C2) Sl ELSE S2

You get the following, which you can reduce by the simple-if rule:

IF (Cl) stat

This leads to the second of the previous groupings of the input, which is
the preferred grouping.

Once again, the parser can do two valid things because there is a
shift/reduce conflict. The application of disambiguating rule 1 tells the
parser to shift in this case, which produces the preferred grouping.

This shift/reduce conflict arises only when there is a particular current
input symbol, ELSE, and particular inputs already seen, such as

IF (Cl) IF (C2) Sl

In general, conflicts are frequent, each of them associated with an input
symbol and a set of previously read inputs. These inputs are character­
ized by the state of the parser.

The yacc conflict messages are best understood by examining the -v (ver­
bose) option output file. For example, the output corresponding to the
preceding conflict state might be:

23: shift/reduce conflict (shift 45, reduce 18) on ELSE

state 23

stat IF (cond) stat (18)
stat IF (cond) stat ELSE stat

ELSE shi ft 45
reduce 18

The first line describes the conflict, giving the state and the input symbol.
The ordinary state description follows, including the parser actions and

6-19

XENIX Programmer's Guide

the grammar rules active in the state. Recall that the underline marks the
portion of the grammar rules which has been seen. Thus, in the example,
in state 23 the parser has seen input corresponding to:

IF (cond) stat

and the two grammar rules shown are active at this time. The parser can
do two possible things. If the input symbol is ELSE, it may shift into state
45, which will have as part of its description the following line because
the ELSE has been shifted in this state:

stat: IF (cond) stat ELSE_stat

In state 23, the alternative action, described by dot "." , is taken if the
input symbol is not mentioned explicitly in the above actions. Thus, if
the input symbol is not ELSE, the parser reduces by grammar rule 18:

stat: IF '(' cond ')' stat

Notice that the numbers following shift commands refer to other states,
while the numbers following reduce commands refer to grammar rule
numbers.

In the y.output file, the rule numbers are printed after those rules that can
be reduced. In most states, there will be, at most, a reduce action possi­
ble. This reduce action is usually the default command. If you encounter
unexpected shift/reduce conflicts, you should look at the verbose output
to decide whether the default actions are appropriate.

6.5 How to Handle Operator Precedences

The one common situation where the rules for resolving conflicts are not
sufficient is in the parsing of arithmetic expressions. Most of the com­
monly used constructions for arithmetic expressions are described by the
precedence levels for operators, together with information about left or
right associativity . You can use ambiguous grammars with appropriate
disambiguating rules to create parsers that are faster and easier to write
than parsers constructed from unambiguous grammars. The basic idea is
to write grammar rules of the following forms for all desired binary and
unary operators:

expr : expr OP expr

and:

expr : UNARYexpr

6-20

yacc: A Compiler-Compiler

This method creates an ambiguous grammar with many parsing conflicts.
You can set disambiguating rules for the precedence, or binding strength,
of all the operators and the associativity of the binary operators. This
information should let yacc resolve the parsing conflicts in accordance
with these rules and construct a parser that realizes the preferred pre­
cedences and associativities.

These precedences and associativities are attached to tokens in the
declarations section. They are attached by a series of lines beginning
with a yacc keyword: % left, % right, or % nonassoc, followed by a list
of tokens. All of the tokens on the same line should have the same pre­
cedence and associativity; the lines are listed in order of increasing pre­
cedence or binding strength.

Thus the following describes the precedences and associativities of the
four arithmetic operators:

%left ,+, '-'
%left '*' 'I'

Plus and minus are left-associative and have lower precedence than aster­
isk (*) and slash (f), which are also left-associative. The %right keyword
describes right-associative operators, and the %nonassoc keyword
describes operators, like the .LT. operator in FORTRAN, all of which may
not associate with themselves. Thus, the following is illegal in FORTRAN
and would be described in yacc with the % nonassoc keyword:

A .LT. B .LT. C

As an example of the behavior of these declarations, you could use the
following description:

%right '='
%left '+' '-'
%left '*' 'I'

o 0
-0-0

expr expr '='
expr ' +,
expr ' -'
expr ' *'
expr 'I'
NAME

expr
expr
expr
expr
expr

6-21

XENIX Programmer's Guide

to structure the input:

a = b = c*d - e - f*g

as:

a = (b = (((c*d) -e) - (f*g)))

When you use this method, you must give a precedence to unary opera­
tors. Sometimes unary operators and binary operators have the same
symbolic representations with different precedences. An example is the
unary and binary symbol ' -'. The unary minus gives the same strength as
multiplication, or even higher, while binary minus has a lower strength
than multiplication. You can use the keyword % prec to change the pre­
cedence level associated with a particular grammar rule. The %prec
appears immediately after the body of the grammar rule, before the action
or closing semicolon (;), followed by a token name or literal. The %prec
keyword causes the precedence of the grammar rule to become that of the
following token name or literal. For example, to give unary minus the
same precedence as multiplication, you might use the following rule:

%left '+' '-'
%left '*' 'I'

%%

expr : expr '+' expr
I expr '-' expr
I expr '*' expr
I expr 'I' expr
I '-' expr %prec '*'
I NAME

If you declare a token by % left, % right, and % nonassoc, you need not
declare it by % token as well.

The precedences and associativities which yacc uses to resolve parsing
conflicts give rise to disambiguating rules. Formally, the rules work as
follows:

1. The precedences and associativities are recorded for those tokens
and literals that have them.

2. Each grammar rule has a precedence and an associativity, which
are those of the precedence and associativity of the last token or
literal in the body of the rule. If you use the %prec construction,
it overrides this default. Some grammar rules may have no pre­
cedence and associativity.

6-22

yacc: A Compiler-Compiler

3. When there is a reduce/reduce conflict, or there is a shift/reduce
conflict and either the input symbol or the grammar rule has no
precedence and associativity, then the parser uses the two disambi­
guating rules given at the beginning of the section and reports the
conflicts.

4. If there is a shift/ reduce conflict, and both the grammar rule and
the input character have a precedence and an associativity, then
the conflict resolves in favor of the action (shift or reduce) with the
higher precedence. If the precedences are the same, the associa­
tivity is used; left-associative implies reduce, right-associative
implies shift, and nonassociative implies error.

Conflicts resolved by precedence are not counted in the number of
shift/reduce and reduce/reduce conflicts reported by yacc. So mistakes in
the specification of precedences may disguise errors in the input gram­
mar. Be sparing with precedences, using them exactly as described here,
until you gain some experience. The y.output file is useful in determining
whether the parser is actually doing what you intended it to do.

6.6 Error Handling and Recovery

Error handling can be difficult, especially since many of the problems you
will see are semantic ones. When an error is found, for example, you may
have to reclaim parse-tree storage, delete or alter symbol-table entries, or
set switches to avoid generating further output.

You will seldom need to stop processing when you find an error. You
should try to continue scanning the input to find further syntax errors.
However, this may lead to the problem of getting the parser restarted after
an error. A class of algorithms to perform this scanning discards a
number of tokens from the input string and adjusts the parser so that input
can continue.

To allow you some control over this process, yacc provides a simple,
effective feature. The token name error which is reserved for error han­
dling, can be used in grammar rules to suggest places where errors are
expected and where recovery might take place. The parser pops its stack
until it enters a state where the token error is legal. It then treats the
token error as the current lookahead token and performs the action
encountered. The parser then resets the lookahead token to the token that
caused the error. If you do not specify any special error rules, the pro­
cessing halts when yacc detects an error.

To prevent a cascade of error messages, the parser, after detecting an
error, remains in error state until it has read and shifted three tokens. If

6-23

XENIX Programmer's Guide

the parser detects an error when it is already in error state, it gives no
message and deletes the input token.

As an example, a rule of the following form would, for every syntax error,
make the parser to skip over the statement in which the error is seen:

stat: error

More precisely, the parser scans ahead, looking for three tokens that
might legally follow a statement, and starts processing at the first of
these; if the beginnings of statements are not sufficiently distinctive, the
parser may make a false start in the middle of a statement and end up
reporting a second error where there is none.

You can use actions with these special error rules. With these actions,
you might, for example, reinitialize tables or reclaim symbol table space.

These preceding error rules are general and difficult to control. You can
use easier rules such as:

stat: error ';'

Here, when it detects an error, the parser tries to skip over the statement
by skipping to the next ';'. All tokens after the error and before the next
';" cannot be shifted and are discarded. When the parser sees ";', it
reduces this rule and cleans up any action associated with it.

Another form of error rule arises in interactive applications, where you
may want to reenter a line after an error. A possible error rule might be:

input : error '\n' { printf ("Reenter line: "); } input
{ $$ = $4;}

There is one potential difficulty with this approach. The parser must
correctly process three input tokens before it admits that it has correctly
resynchronized after the error. If the reentered line contains an error in
the first two tokens, the parser deletes the offending tokens and gives no
message. This is clearly unwanted. For this reason, there is a method that
you can use to force the parser to believe that it has fully recovered from
an error. In an action, the following statement resets the parser to its nor­
mal mode:

yyerrok

6-24

yacc: A Compiler-Compiler

It would be better to rewrite the last example as:

input : error '\n'
{ yyerrok;

printf("Reenter last line: "); }
input
{ $$ = $4; }

As mentioned previously, the token seen immediately after the error sym­
bol is the input token where the error was discovered. Sometimes, this is
inappropriate; for example, an error recovery action might assume the job
of finding the correct place to resume input. In this case, you must clear
the previous lookahead token. In an action, the following statement will
have this effect:

yyclearin

For example, suppose the action after the error tries to call a sophisticated
resynchronization routine (supplied by you) that attempts to advance the
input to the beginning of the next valid statement. After this routine is
called, yylex returns the first token in a legal statement. The parser would
have to discard the illegal token and reset the error state. You could do
this with the following rule:

stat : error
resynch()i
yyerrok i

yyclearin ;

These methods are crude, but they do allow for a simple, effective
recovery of the parser from many errors. Moreover, you can get control
to deal with the error actions required by other portions of the program.

6.7 The yacc Environment

When you input a specification to yacc, the output goes to a file of C pro­
grams, called y.tab.c on most systems. The integer-valued function pro­
duced by yacc is named yyparse. When it is called, it in turn repeatedly
calls yylex, the lexical analyzer that you supply to obtain input tokens.
Eventually, either the parser detects an error, in which case (if no error
recovery is possible) yyparse returns the value 1, or the lexical analyzer
returns the endmarker token and the parser accepts its input. (In this case,
yyparse returns the value 0.)

6-25

XENIX Programmer's Guide

You must set up much of the environment for this parser to obtain a work­
ing program. For example, as with every C program, a program called
main must be defined that eventually calls yyparse. In addition, the
yyerror routine prints a message when the parser detects a syntax error.

You must supply these two routines in one form or another. The yacc pro­
gram has default versions of main and yyerror in a library, which can
simplify the initial learning process. The name of this library, which is
system dependent, is accessed in many systems by a -ly argument to the
loader. The following shows the sources of two simple default programs:

and:

main () {
return (yyparse());
}

include <stdio.h>

yyerror(s) char *s;

fprintf (stderr, "%s\n", s);
}

The argument to yyerror is a string containing an error message, usually
the string syntax error. The average application will want to do better
than this. Ordinarily, you should keep track of the input line number and
print it along with the message when a syntax error is detected. The
external integer variable, yychar, contains the lookahead token number at
the time of the error's detection; this can be useful for giving better diag­
nostics. Since you will probably supply the main program, (for example,
to read arguments) the yacc library is useful only in small projects or in
the earliest stages of larger ones.

The external integer variable yydebug is normally set to O. If you set it to
a nonzero value, the parser outputs a verbose description of its actions,
including a discussion of which input symbols have been read and what
the parser actions are. Depending on the operating environment, you may
be able to set this variable by using a debugging system.

6.8 Preparing Specifications

This section contains various hints for preparing specifications that are
efficient, easy to change, and clear. The individual subsections are
independent.

6-26

yacc: A Compiler-Compiler

6.8.1 Input Style

The rules for input style are:

1. Use uppercase letters for token names, lowercase letters for non­
tenninal names.

2. Put grammar rules and actions on separate lines. This lets you
change one without changing the other.

3. Put all rules with the same left-hand side together. Put the left­
hand side in only once, and every following rule begin with a verti­
cal bar.

4. Put a semicolon only after the last rule with a given left-hand side,
and on a separate line. This lets you add new rules easily.

5. Indent rule bodies by two tab stops and action bodies by three tab
stops.

The examples in the text of this section follow this style (where space
permits). You must make up your own mind about these stylistic ques­
tions; however, the key problem is using these rules in the middle of
extensive action code.

6.8.2 Left Recursion

The algorithm used by the yacc parser encourages so-called left recursive
grammar rules, or rules of the fonn:

name: name rescoCrule ;

These rules arise frequently when you write specifications for lists and
sequences:

list item
list ',' item

and:

seq item
seq item

In each of these cases, the parser reduces the first rule for the first item
only, and the second rule is reduced for the second and all succeeding
items.

6-27

XENIX Programmer's Guide

With right-recursive rules, such as the following, the parser would be a bit
bigger, and the items would be seen and reduced from right to left:

seq item
item seq

More seriously, an internal stack in the parser would be in danger of
overflowing if the parser were to read a very long sequence. Thus, you
should use left recursion wherever applicable.

Consider whether a sequence with zero elements has any meaning and, if
so, consider writing the sequence specification with an empty rule:

seq : /* empty */
I seq item

Once again, the first rule is reduced exactly once, before the first item is
read, and then the second rule is reduced once for each item read. Permit­
ting empty sequences often leads to increased generality. However,
conflicts may arise if you ask yacc to determine which empty sequence it
has seen when it hasn't seen enough to know.

6.8.3 Lexical Tie-ins

Some lexical decisions depend on context. For example, the lexical
analyzer might want to delete blanks normally, but not within quoted
strings. For another, names might be entered into a symbol table in
declarations, but not in expressions.

6-28

yacc: A Compiler-Compiler

To handle this situation, you can create a global flag that is examined by
the lexical analyzer and set by actions. Let's say a program consists of 0
or more declarations followed by 0 or more statements:

%{
int dflag;

%}
other declarations ...

%%

prog decls stats

decls

stats

/* empty */
{ dflag

decls declaration

/* empty */
{

stats statement

other rules ...

dflag

1;

0;

The dflag flag is now 0 when reading statements and 1 when reading
declarations, except for the first token in the first statement. The parser
must see this token before it can tell that the declaration section has
ended and the statements have begun. In many cases, this single-token
exception does not affect the lexical scan.

This approach can be overdone. Nevertheless, it represents a way of
doing some things that are difficult to do otherwise.

6.8.4 Handling Reserved Words

Some programming languages permit you to .use words like if, that are
normally reserved as label or variable names, provided that this does not
conflict with the legal use of these names in the programming language.
This substitution is extremely hard to do in the framework of yacc; it is
difficult to pass information to the lexical analyzer telling it, "This
instance of 'if' is a keyword, and the next instance is a variable." You
should try to reserve keywords and not use them as variable names.

6-29

XENIX Programmer '8 Guide

6.9 Advanced Topics

This section discusses several advanced features of yacc.

6.9.1 Simulating Error and Accept in Actions

You can simulate the parsing actions of error and accept in an action by
using the macros, YYACCEPT and YYERROR. YYACCEPT causes
yyparse to return the value O. YYERROR causes the parser to behave as if
the current input symbol were a syntax error; yyerror is called, and error
recovery takes place. You can use these methods to simulate parsers with
multiple endmarkers or context-sensitive syntax checking.

6.9.2 Accessing Values in Enclosing Rules

An action may refer to values returned by actions to the left of the current
rule. The method is the same as with ordinary actions; you use a dollar
sign followed by a digit, but in this case the digit may be 0 or negative.
Consider:

sent adj noun verb adj noun
look at the sentence ... }

adj THE {$$ = THE; }
YOUNG { $$ = YOUNG;

noun DOG {$$ = DOG; }
CRONE { if($0 == YOUNG){

printf("what?\n");
}

$$ = CRONE;

In the action following the word CRONE, a check is made to ensure that
the preceding shifted token was not YOUNG. Obviously, this is only pos­
sible when a great deal is known about what might precede the noun sym­
bol in the input. Nevertheless, this method can save you a great deal of
trouble, especially when you want to exclude a few combinations from an
otherwise regular structure.

6-30

yacc: A Compiler-Compiler

6.9.3 Supporting Arbitrary Value Types

By default, actions and lexical analyzers return values that are integers.
The yacc program can also. support values of other types, including struc­
tures. In addition, yacc keeps track of the types and inserts appropriate
union member names so that the resulting parser will be strictly type
checked. The yacc value stack is declared to be a union of the various
types of values desired. You declare the union and associate union
member names to each token and nonterminal symbol having a value.
When the value is referenced through a $$ or $n construction, yacc
automatically inserts the appropriate union name so that no unwanted
conversions will take place. In addition, type-checking commands such
as Iint(C) will be less verbose.

You can use three methods to provide for this typing. First, you must
define the union, since other programs, notably the lexical analyzer, must
know about the union-member names. Second, you must associate a
union-member name with tokens and nonterminals. Finally, you can
describe the type of those few values which yacc cannot easily determine.

To declare the union, you include the following in the declaration section:

%union {
body of union} , body of union2
}

This declares the yacc value stack and the external variables yylval and
yyval to have types equal to this union. If you invoked yacc with the -d
option, you copy the union declaration onto the y.tab.h file. Alterna­
tively, you can declare the union in a header file, and use a typedef to
define the variable YYSTYP E to represent this union. Thus, your header
file might also have said:

typedef union {
body of union} , body of union2
} YYSTYPEi

You must include the header file in the declarations section using % { and
%}.

Once you have defined YYSTYPE, you must associate the union-member
names with the various terminal and nonterminal names. You can use the
following construction to indicate a union member name:

< name>

6-31

XENIX Programmer's Guide

If this follows one of the %token, % left, %right, and %nonassoc key­
words, the union member name is associated with the tokens listed. Thus,
the following causes any reference to values returned by these two tokens
to be tagged with the union-member name optype:

%left <optype> '+' , -'

You use another keyword, %type, similarly to associate union-member
names with nonterminals:

%type <nodetype> expr stat

There are a couple of cases where these methods are insufficient. If there
is an action within a rule, the value returned by this action has no
predefined type. Similarly, references to left context values (such as $0)
leave yacc with no easy way of determining the type. In this case, you
can impose a type on the reference by inserting a union member name
between < and> immediately after the first $. An example of this usage
is:

rule aaa { $<intval>$ = 3; } bbb
{ fun($<intval>2, $<other>O); }

There is little justification for this syntax, but the situation does arise
occasionally.

For more information, see" Accessing Values in Enclosing Rules."

The facilities described in this subsection are not triggered until you use
them. In particular, the use of %type will tum on these facilities. When
you use them, there is a fairly strict level of checking. For example, if
you use $$ or $n to refer to something with no defined type, it is diag­
nosed as an error. If you do not trigger these facilities, the yacc value
stack is used to hold into A sample specification is shown in the following
section.

6.9.4 yacc Input Syntax

This section describes the yacc input syntax as a yacc specification. The
yacc input-specification language is an LR(2) grammar. The language
becomes complex when an identifier is seen in a rule immediately follow­
ing an action. If this identifier is followed by a colon, it is the start of the
next rule; otherwise, it is a continuation of the current rule, which has an
action embedded in it.

6-32

yaee: A Compiler-Compiler

As implemented, the lexical analyzer looks ahead after seeing an
identifier and decides whether the next token (such as skipping blanks,
Newline or comments) is a colon. If so, it returns the token
C_IDENTIFIER. Otherwise, it returns IDENTIFIER. Literals (quoted
strings) are also returned as IDENTIFIER, but never as part of
C_IDENTIFIER.

Example

/* grammar for the input to yacc */

/* basic entities */
%token IDENTIFIER /* includes identifiers and literals */
%token C IDENTIFIER /* identifier followed by colon */
%token NUMBER /* [0-9]+ */

/* reserved words: %type => TYPE, %left => LEFT, etc. */

%token LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION

%token MARK /* the %% mark */
%token LCURL / * the % { mark * /
%token RCURL /* the %} mark */

/* ascii character literals stand for themselves */

%start spec

%%

spec defs MARK rules tail

tail : MARK {Eat up the rest'of the file}
I /* empty: the second MARK is optional */

defs : /* empty * /
I defs def

def : START IDENTIFIER
I UNION {Copy union definition to output }
I LCURL {Copy C code to output file} RCURL
I ndefs rword tag nlist

(Continued on next page.)

6-33

XENIX Programmer's Guide

Example (Continued)

rword TOKEN
LEFT
RIGHT
NONASSOC
TYPE

tag /* empty: union tag is optional */
'<' IDENTIFIER '>'

nlist : nmno
I nlist nmno
I nlist nmno

nmno IDENTIFIER /* Literal illegal with %type */
IDENTIFIER NUMBER /* Illegal with %type */

rules

rule

rbody

/* rules section */

C_IDENTIFIER rbody prec
rules rule

C IDENTIFIER rbody prec
, tr rbody prec

/* empty */
rbody IDENTIFIER
rbody act

act '{' {Copy action, translate $$, etc. } '}'

prec : /* empty */

6-34

I PREC IDENTIFIER
I PREC IDENTIFIER act
I prec ';'

yacc: A Compiler-Compiler

6.10 Examples

This section provides some examples to illustrate the features of· yacc
described in this chapter. The first example is a simple yacc specification
for a small desk calculator. The second example is an advanced yacc
specification for a desk calculator that uses floating-point arithmetic.

6.10.1 A Simple Example

This example gives the complete yacc specification for a small desk cal­
culator. The desk calculator has 26 registers, labeled a through z, and
accepts arithmetic expressions made up of the operators +, -, *, /, % (mod
operator), & (bitwise AND), I (bitwise OR), and assignment. If an
expression at the top level is an assignment, the value is not printed; oth­
erwise, it is. As in C, an integer that begins with 0 (zero) is likely octal;
otherwise, it is decimal.

As an example of a yacc specification, the desk calculator shows how
precedences and ambiguities are used, and demonstrates how to recover
from simple errors. The major oversimplifications are that the lexical
analysis phase is much simpler than for most applications, and the output
is produced immediately, line by line. Note the way that decimal and
octal integers are read in by the grammar rules; this job is better done by
the lexical analyzer.

Example

%{
include <stdio.h>
include <ctype.h>

int regs [26J ;
int base;

%}

%start list

%token DIGIT LETTER

%left 'I'
%left '&'

%left '+' -
%left '*' '/' '%'
%left UMINUS /* precedence for unary minus * /

(Continued on next page.)

6-35

XENIX Programmer's Guide

Example (Continued)

%% /* beginning of rules section */

list : /* empty */
I list stat '\n '
I list error '\n'

{ yyerrok; }

stat expr
{ printf ("%d\n", $1);
LETTER - expr

{ regs [$1] = $3;

expr ' (' expr ')'
{ $$ = $2;

expr '+' expr
{ $$ = $1 + $3;

expr '-' expr
{ $$ = $1 - $3;

expr '*' expr
{ $$ = $1 * $3;

expr 'I' expr
{ $$ = $1 / $3;

expr '%' expr
{ $$ = $1 % $3;

I expr '&' expr
{ $$ = $1 & $3;

I expr 'I' expr
{ $$ = $1 I $3;

I '-' expr %prec UMINUS
{ $$ = - $2; }

LETTER
{ $$ = regs[$l];

number

number DIGIT
{ $$ = $1; base = ($1==0) ? 8 10;}

I number DIGIT
{ $$ = base * $1 + $2; }

(Continued on next page.)

6-36

yacc: A Compiler-Compiler

Example (Continued)

%% /* start of programs */

yylex() /* lexical analysis routine */
/* returns LETTER for a lowercase letter, */
/* yylval = 0 through 25 */
/* return DIGIT for a digit, */
/* yylval = 0 through 9 */
/* all other characters */
/* are returned immediately */

int Ci

while ((c=getchar()) , ') {/* skip blanks */ }

/* c is now nonblank */

if(islower(c)) {
yylval = c - 'a';
return (LETTER);
}

if(isdigit(c)) {
yylval = c - '0';
return (DIGIT);
}

return(c);
}

6.10.2 An Advanced Example

This section describes an example of a grammar using some of the
advanced features discussed in earlier sections. The desk calculator
example in the previous section is modified to provide a desk calculator
that does floating point interval arithmetic. The calculator understands
floating point constants, arithmetic operations including +, -, *, /, unary -,
and = (assignment), and has 26 floating point variables, a through z.
Moreover, it also understands intervals, written as follows where x is less
than or equal to y:

(x ,y)

There are 26 interval valued variables A through Z that you can also use.
Assignments return no value and print nothing, while expressions print
the (floating or interval) value.

This example explores many features of yacc and C. Intervals,
represented by a structure, which consist of the left and right endpoint

6-37

XENIX Programmer '8 Guide

values, are stored as double-precision values. This structure is given the
type name INTERVAL, by using typedef The yacc value stack can also
contain floating-point scalars and integers (used to index into the arrays
holding the variable values). Notice that this strategy depends on the
ability to assign structures and unions in C. In fact, many of the actions
call functions that return structures as well.

You might also note the use of YYERROR to handle error conditions that
use division by an interval containing 0 and by an interval presented in
the wrong order. In effect, the error-recovery mechanism of yacc throws
away the rest of the offending line.

In addition to the mixing of types on the value stack, this grammar also
uses syntax to keep track of the type (such as, scalar or interval) of inter­
mediate expressions. Note that a scalar can be promoted automatically to
an interval if the context demands an interval value. This procedure
causes a large number of conflicts when the grammar is run through yacc:
18 shlft/reduce and 26 reduce/reduce actions. You can see the problem
by looking at the two input lines:

2.5 + (3.5 - 4.)

and:

2.5 + (3.5 , 4.)

Notice that 2.5 is used in an interval-valued expression in the second
example, but this is not known until the comma (,) is read; by this time,
2.5 is finished, and the parser cannot go back and change it. You may
need to look ahead an arbitrary number of tokens to decide whether to
convert a scalar to an interval. You can circumvent this problem by hav­
ing two rules for each binary interval-valued operator: one for when the
left operand is a scalar, and one for when the left operand is an interval.
In the second case, the right operand must be an interval, so the conver­
sion is applied automatically. However, there are still many cases where
the conversion may be applied or not, leading to the previously noted
conflicts. You can resolve these conflicts by listing the rules that yield
scalars first in the specification file. In this way, you resolve the conflicts
and keep scalar-valued expressions as scalar values until they are forced
to become intervals.

This way of handling multiple types is instructive, but not generally
applicable. If there were many kinds of expression types, instead of just
two, the number of rules needed would increase dramatically, and the
conflicts even more dramatically. Thus, while this example is instructive,
it is better for you to practice in a more normal programming language
environment to keep the type information as part of the value, not as part
of the grammar.

6-38

yacc: A Compiler-Compiler

The unusual feature concerning lexical analysis is the treatment of float­
ing point constants. The C library routine atof is used to convert a char­
acter string to a double-precision value. If the lexical analyzer detects an
error, it responds by returning an illegal token in the grammar, provoking
a syntax error in the parser, and, therefore, provoking error recovery.

Example

%{

include <stdio.h>
include <ctype.h>

typedef struct interval
double 10, hi;
} INTERVAL;

INTERVAL vrnul () , vdi v () ;

double atof ();

double dreg [26 l;
INTERVAL vreg [26 l;

%}

%start lines

%union
int ival;
double dval;
INTERVAL vval;
}

%token <ival> DREG VREG

%token <dval> CONST

%type <dval> dexp

%type <vval> vexp

/* indices into dreg, vreg arrays */

/* floating point constant */

/* expression */

/* interval expression */

/* precedence information about the operators */

%left ' +' , -'
%left '*' , /'
%left UMINUS /* precedence for unary minus */

(Continued on next page.)

6-39

XENIX Programmer's Guide

Example (Continued)

%%

lines : /* empty */
I lines line

line : dexp '\n'
{ printf ("%15. Sf\n", $1); }

I vexp '\n'
{ printf { "(%15. Sf, %15. Sf) \n", $1.10, $1.hi); }

I DREG ' =' dexp , \n'
{ dreg [$1] = $3;

I VREG ' =' vexp , \n'
{ vreg[$l] = $3;

I error '\n'
{ yyerrok;

dexp : CONST
I DREG

{ $$ = dreg[$l]; }
I dexp , +' dexp

{ $$ = $1 + $3;
I dexp , -' dexp

{ $$ = $1 - $3;
I dexp , *, dexp

{ $$ = $1 * $3;
I dexp , I' dexp

{ $$ = $1 / $3;
, -' dexp %prec {]MINUS

{ $$ = - $2; }
, (' dexp ')'

{ $$ = $2; }

vexp : dexp

6-40

{ $$.hi = $$.10 = $1;
I '(' dexp ',' dexp ')'

{

$$.10 = $2;
$$.hi = $4;
if{ $$.10 > $$.hi) {

printf ("interval out of order\n");
YYERROR;
}

(Continued on next page.)

yacc: A Compiler-Compiler

Example (Continued)

%%

I VREG
{ $$ = vreg[$l); }

vexp '+' vexp
{ $$.hi = $l.hi + $3.hi;

$$.10 = $1.10 + $3.10;
dexp '+' vexp

{ $$.hi = $1 + $3.hi;
$$.10 = $1 + $3.10;

I vexp '-' vexp
{ $$.hi = $l.hi - $3.10;

$$.10 = $1.10 - $3.hi;
I dexp '-' vexp

{ $$.hi = $1 - $3.10;
$$.10 = $1 - $3.hi;}

I vexp '*' vexp
{ $$ = vmul($1.10, $l.hi, $3); }

dexp '*' vexp
{ $$ = vmul($1, $1, $3);

vexp '/' vexp
{ if (dcheck($3)) YYERROR;

$$ = vdiv($1.10, $l.hi, $3);
dexp '/' vexp

{ if (dcheck($3)) YYERROR;
$$ = vdiv($1, $1, $3); }

'-' vexp %prec UMINUS
{ $$.hi = -$2.10; $$.10 = -$2.hi;

'(' vexp ')'
{ $$ = $2;

define BSZ 50 /* buffer size for fp numbers */

yylex () {

/* lexical analysis */

register c;
{ /* skip over blanks */ }

while ((c = get char ()) = , ,

if (isupper(c)) {
yylval.ival = c - 'AI;
return (VREG);
}

if (islower(c)) {
yylval.ival = c - 'a';
return (DREG);
}

(Continued on next page.)

6-41

XENIX Programmer's Guide

Example (Continued)

if (isdigit (c) II c='.') {
/* gobble up digits, points, exponents */

char buf[BSZ+l], *cp = buf;
int dot = 0, exp = 0;

for ((cp-buf)<BSZ; ++cp,c=getchar()) {

*cp = c;
if (isdigit(c)) continue;
if (c = '.') {

if (dot++ I I exp) return ('.');
/* above causes syntax error */

continue;
}

if (c = 'e') {
if (exp++ return ('e');

/* above causes syntax error */
continue;
}

/* end of number */
break;
}

*cp = , \0' ;
if((cp-buf) >= BSZ)

printf("constant too long: truncated\n");
else ungetc(c, stdin);

/* above pushes back last char read */
yylval.dval = atof (buf);
return (CONST);
}

return(c);
}

INTERVAL hilo (a, b, c, d) double a, b, c, d; {

6-42

/* returns the smallest interval containing a, b, c, and d */
/* used by *, / routines */
INTERVAL v;

if(a>b) {v.hi = a; v.lo = b;
else { v.hi = b; v.lo = a; }

if(c>d) {

else

if (c>v.hi
if (d<v.lo
}

v.hi = C;
v.lo = d;

if d>v.hi v.hi = d;
if c<v.lo v.lo = C;
}

return (v);
}

yacc: A Compiler-Compiler

(Continued on next page.)

Example (Continued)

INTERVAL vrnul (a, b, v) double a, bi INTERVAL Vi {
return(hilo(a*v.hi, a*v.lo, b*v.hi, b*v.lo))i
}

dcheck (V) INTERVAL Vi {
if(v.hi >= O. && v.lo <= O.) {

printf("divisor interval contains O.\n");
return(l);
}

return(O);
}

INTERVAL vdiv(a, b, v) double a, b; INTERVAL V; {
return (hilo(a/v.hi, a/v.lo, b/v.hi, b/v.lo));
}

6.11 Old Features Supported but Not Encouraged

This section covers synonyms and features that are supported for histori­
cal continuity, but that are not encouraged for various reasons:

1. You can delimit literals with double quotation marks (" ").

2. Literals can be more than one character long. If all the characters
are alphabetic, numeric, or underscore, the type number of the
literal is defined as if the literal did not have the quotation marks
around it. Otherwise, you will have difficulty finding the value for
such literals. The use of multicharacter literals is likely to mislead
those unfamiliar with yacc, since it suggests that yacc is doing a
job that must be actually done by the lexical analyzer.

3. In most places where '%' is legal, you can use a backslash (\). In
particular, the double backslash (\\) is the same as %%, \left, the
same as % left; and so on.

6-43

XENIX Programmer's Guide

4. There are a number of other synonyms:

% < is the same as % left
% > is the same as % right
% binary and %2 are the same as %nonassoc
%0 and %term are the same as %token
% = is the same as % prec

5. Actions can also have the following form and you can drop the
braces if the action is a single C statement:

={ ... }

6. C code between % { and %} used to be permitted at the head of the
rules section, as well as in the declaration section.

6-44

Chapter 7

Using Signals

7.1 Introduction 7-1

7.2 Using the Signal System Call 7-1
7.2.1 Disabling a Signal 7-2
7.2.2 Restoring a Signal's Default Action 7-3
7.2.3 Catching a Signal 7-4
7.2.4 Restoring a Signal 7-6
7.2.5 Program Example 7-7

7.3 Catching Several Signals 7-8

7.4 Controlling Execution with Signals 7-8
7.4.1 Delaying a Signal's Action 7-9
7.4.2 U sing Delayed Signals with System Calls 7 -10
7.4.3 Using Signals in Interactive Programs 7-10

7.5 Using Signals in Multiple Processes 7-12
7.5.1 Protecting Background Processes 7 -12
7.5.2 Protecting Parent Processes 7 -13

Using Signals

7.1 Introduction

This chapter explains how to use C library functions to process signals
sent to a program by the XENIX system. A signal is the system's response
to an unusual condition that occurs during execution of a program, such
as a user pressing the DELETE key or the system detecting an illegal
operation. A signal interrupts normal execution of the program and ini­
tiates an action such as terminating the program or displaying an error
message.

The signal(S) system call of the standard C library lets a program define
the action of a signal. You can use the system call to disable a signal to
prevent it from affecting the program. It can also be used to give a signal
a user-defined action.

You can often use the signal system call with the setjmp(S) and
longjmp(S) system calls to redefine and reshape the action of a signal.
These functions let programs save and restore the execution state of a
program, and give a program a means to jump from one state of execution
to another without a complex assembly language interface.

To use the signal system call, you must put the following line at the
beginning of the program:

#include <signal.h>

The signal:h file defines the various manifest constants used as arguments
by the system call. To use the setjmp and longjmp system calls, you
must put the following line at the beginning of the program:

#include <setjrnp.h>

The setjmp.h file contains the declaration for the type jmp_huf, a tem­
plate for saving a program's current execution state.

7.2 Using the Signal System Call

The signal system call changes the action of a signal from its current
function to one an alternate one. The system call has the following form:

signal (sigtype, ptr)

7-1

XENIX Programmer's Guide

where:

• sigtype is an integer or a manifest constant that defines the signal
to be changed, and

• ptr is a pointer to the function defining the new action or a mani­
fest constant giving a predefined action.

The signal system call always returns a pointer value, which defines the
signal's previous action and can be used in subsequent calls to restore the
signal to its previous value.

The sigtype can be:

SIGINT Interrupt signal caused by pressing the Delete key.

SIGQUIT Quit signal caused by pressing the Quit key.

SIGHUP Hang-up signal caused by hanging up the line when con­
nected to the system by a modem.

The ptr can be:

SIG_IGN No action (ignore the signal).

SIG_DFL Default action.

For more information on signal constants, see signal(S) in the XENIX
Programmer's Reference.

For example, the following system call changes the action of the interrupt
signal to no action:

signal (SIGINT, ,SIG_IGN)

The signal will have no effect on the program. The default action is usu­
ally to terminate the program.

The following sections show how to use the signal system call to disable,
change, and restore signals.

7.2.1 Disabling a Signal

You can disable a signal, that is, prevent it from affecting a program, by
using the SIG_IGN constant with signal. The system call has the follow­
ing form:

signal (sigtype, SIG _ IGN)

7-2

Using Signals

where sigtype is the manifest constant of the signal you wish to disable.
For example, the following system call disables the interrupt signal:

signal (SIGINT, SIG_IGN};

You use this system call to prevent a signal from tenninating a program
that is executing in the background (for example, a child process that is
not using the tenninal for input or output). The system passes signals
generated from keystrokes at a tenninal to all programs that have been
invoked from that tenninal. This means that pressing the Delete key to
stop a program that is running in the foreground will also stop a program
running in the background if it has not disabled that signal. For example,
in the following program fragment, signal is used to disable the interrupt
signal for the child:

#include <signal.h>

main ()

if fork () == 0) {
signal (SIGINT, SIG IGN);
/* Child process. */

/* Parent process. */

This call does not affect the parent process, which continues to receive
interrupts as before. Note that if the parent process is interrupted, the
child process continues to execute until it reaches its nonnal end.

7.2.2 Restoring a Signal's Default Action

You can restore a signal to its default action using the SIG_DFL constant
with signal. The system call has the following fonn:

signal (sigtype, SIG_DFL)

where sigtype is the manifest constant defining the signal you wish to
restore. For example, the following system call restores the interrupt sig­
nal to its default action:

signal (SIGINT, SIG_DFL)

7-3

XENIX Programmer's Guide

You use this system call to restore a signal after it has been temporarily
disabled to keep it from interrupting critical operations. For example, in
the following program fragment, the second call to signal restores the sig­
nal to its default action:

#include <signal.h>
#include <stdio.h>

main ()

FILE *fp;
char *record[BUF], filename[MAX];

signal (SIGINT, SIG IGN);
fp = fopen(filename~ nan);
fwrite(fp, BUF, record, 512);
signal (SIGINT, SIG_DFL);

In this example, the interrupt signal is ignored while a record is read from
the file given by fp.

7.2.3 Catching a Signal

You can catch a signal and define your own action for it by providing a
system call that defines the new action and giving that system call as an
argument to signal. The function call has the following form:

signal (sigtype, newptr)

where:

• sigtype is the manifest constant defining the signal to be caught,
and

• newptr is a pointer to the function defining the new action.

For example, the following signal system call changes the action of the
interrupt signal to the action defined by the function catch:

signal (SIGINT, catch)

7-4

Using Signals

This signal call might be used to let a program do additional processing
before terminating. In the following program fragment, the catch func­
tion defines the new action for the interrupt signal:

#include <signal.h>

main ()

int catch ();

printf ("Press INTERRUPT key to stop. \n");
signal (SIGINT, catch);
while () {

/* Body */

catch ()
{

printf ("Program terminated. \n") ;
exit(l);

The catchO function prints the message "Program terminated" before
stopping the program with the exit(S) function. .

A program can redefine the action of a signal at any time. Thus, many
programs define different actions for different conditions. For example, in
the following program fragment, the action of the interrupt signal depends
on the return value of a function named key test:

#include <signal.h>

main ()

int catch1 (), catch2 ();

if (keytest() == 1)
signal (SIGINT, catch1);

else
signal (SIGINT, catch2);

Later, the program can change the signal to the other action or even a
third action.

7-5

XENIX Programmer's Guide

When using a function pointer in the signal call, you must make sure that
the function name is defined before the call. In the program fragment
shown above, catch! and catch2 are explicitly declared at the beginning
of the main program function. Their formal definitions are assumed to
appear after the signal call.

7.2.4 Restoring a Signal

You can restore a signal to its previous value by saving the return value of
a signal call, then using this value in a subsequent call. The signal sys­
tem call has the following form:

signal (sigtype, oldptr)

where:

• sigtype is the manifest constant defining the signal to be restored,
and

• oldptr is the pointer value returned by a previous signal call.

This system call is typically used to restore a signal when its previous
action may be one of many possible actions. For example, in the follow­
ing program fragment, the previous action depends solely on the return
value of a function key test:

#include <signal.h>

main ()

int catchl(), catch2();
int (* savesig) () ;

if (keytest() == 1)
signal (SIGINT, catch1);

else
signal (SIGINT, catch2);

savesig = signal (SIGINT, SIG IGN);
compute() ;
signal (SIGINT, savesig);

In this example, the old pointer is saved in the variable savesig. This
value is restored after the compute function returns.

7-6

Using Signals

7.2.5 Program Example

This section shows by an example how to use the signal system call to
create a modified version of system. In this example, system disables all
interrupts in the parent process until the child process has completed its
operation. It then restores the signals to their previous actions. You can
invoke this with the following program fragment:

*include <stdio.h>
*include <signal.h>

system (s)
char *s;

/* run command string s */

{

int status, pid, w;
register int (*istat) (), (*qstat) () ;

if ((pid = fork ()) == 0)
execl("/bin/sh", "sh", "-c", s, NULL);
exit (127) ;

istat = signal(SIGINT, SIG IGN);
qstat = signal(SIGQUIT, SIG IGN);
while ((w = wait(&status)) != pid && w != -1)

if (w == -1)
status = -1;

signal (SIGINT, istat);
signal (SIGQUIT, qstat);
return (status) ;

Note that the parent uses the while statement to wait until the child's pro­
cess ID (pid) is returned by wait. If wait returns the error code "-I", no
more child processes are left, so the parent returns the error code as its
own status.

7-7

XENIX Programmer's Guide

7.3 Catching Several Signals

There are many more signals besides SIGINT, SIGQUIT, and SIGHUP. For
a complete list, see signal(S) in the XENIX Programmer's Reference. In
the following program fragment, all signals are caught by the same func­
tion. This function makes use of the specific signal number which is
passed as a parameter by the system:

#include <signal.h>

main ()
{

int i;
int catch () ;

for (i = 1; i.<= NSIG; ++i)
signal(i, catch);

/*
* Body
*/

catch (sig)
int sig;
{

signal(sig, SIG IGN);
if (sig != SIGINT && sig != SIGQUIT && sig != SIGHUP)

printf (nOh, oh. Signal %d was received. \nn, sig);
exit (1);

The constant NSIG, the total number of signals, is defined in the file
signal.h.

Note that the first action of the catch function is to ignore the specific sig­
nal that was caught. This is necessary because the system automatically
resets a caught signal to its default action.

7.4 Controlling Execution with Signals

You need not use signals solely as a means of immediately terminating a
program. You can redefine many signals to delay their actions or even
cause actions that terminate a portion of a program without terminating
the entire program. The following sections describe ways that you can
catch signals and use them to control a program.

7-8

Using Signals

7.4.1 Delaying a Signal's Action

You can delay the action of a signal by catching the signal and redefining
its action to be nothing more than setting a globally-defined flag. Such a
signal does nothing to the current execution of the program. Instead, the
program continues uninterrupted until it can test the flag to see if a signal
has been received. It can then respond according to the value of the flag.

The key to a delayed signal is that all functions return execution to the
exact point at which the program was interrupted. If the function returns
normally, the program continues execution just as if no signal had
occurred.

Delaying a signal is especially useful in programs that must not be
stopped at an arbitrary point. If, for example, a program updates a linked
list, you can delay the action of a signal to prevent it from interrupting the
update and destroying the list. In the following program fragment, the
delay function, used to catch the interrupt signal, sets the globally­
defined flag sigflag and returns immediately to the point of interruption:

#include <signal.h>
int sigflag;

main ()

int delay ();
int (*savesig) ();
extern int sigflag;

signal(SIGINT, delay); /* Delay the signal. */
update list () ;
savesig = signal(SIGINT, SIG IGN); /* Disable the signal. */
if (sigflag) -

/* Process delayed signals if any. */

delay ()
{

extern int sigflag;

sigflag=l;

In this example, if the signal is received while updatelist is executing, it
is delayed until after updatelist returns. Note that the interrupt signal is
disabled before processing the delayed signal to prevent a change to
sigflag when it is being tested.

7-9

XENIX Programmer's Guide

Note that the system automatically resets a signal to its default action
immediately after the signal is processed. If your program delays a sig­
nal, make sure that you redefine the signal after each interrupt. Other­
wise, the default action will be taken on the next occurrence of the signal.

7.4.2 Using Delayed Signals with System Calls

When you use a delayed signal to interrupt the execution ofaXENIX sys­
tem function, such as read or wait, the system forces the function to stop
and return an error code. This action, unlike actions taken during execu­
tion of other functions, discards all processing performed by the system
function. A serious error can occur if a program interprets a system­
function error caused by delayed signals as a normal error. For example,
if a program receives a signal when reading the terminal, all characters
read before the interruption are lost, making it appear as though no char­
acters were typed.

Whenever a program intends to use delayed signals during calls to system
calls, the program should include a check of the function return values to
ensure that an error was not caused by an interruption. In the following
program fragment, the program checks the current value of the intflag
interrupt flag to make sure that the EOF value returned by getchar actu­
ally indicates the end of the file:

if (getchar() == EOF)
if (intflag)

/* EOF caused by interrupt */
else

/* true end-af-file */

7.4.3 Using Signals in Interactive Programs

You can use signals in interactive programs to control the execution of
their various commands and operations. For example, you can use a sig­
nal in a text editor to interrupt the current operation (such as, displaying a
file) and return the program to a previous operation (for instance, waiting
for a command).

To provide this control, the function that redefines the signal's action
must be able to return execution of the program to a meaningful location,
not just to the point of interruption. The standard C library provides two
system calls to do this: setjmp and longjmp. The setjmp system call
saves a copy of a program's execution state. The longjmp system call
changes the current execution state to a previously saved state. The

7-10

Using Signals

system calls cause a program to continue execution at an old location
with old register values and status as if no operations had been performed
between the time the state was saved and the time it was restored.

The setjrnp system call has the following form:

setjrnp (buffer)

Buffer is the variable to receive the execution state. It must be declared
explicitly with type jrnp _ buf before it is used in the call. For example,
in the following program fragment, setjrnp copies the execution of the
program to the variable oldstate defined with type jrnp _ buf:

jmp _ buf oldstate;

set jmp (oldstate);

Note that after a setjrnp call, the buffer variable contains values for the
program counter, the data and address registers, and the process status.
You must not modify these values.

The longjrnp function has the following form:

longjrnp (buffer)

Buffer is the variable containing the execution state. It must contain
values previously saved with a setjrnp system call. The system call
copies the values in the buffer variable to the program counter, data and
address registers, and the process status table. Execution continues as if it
had just returned from the setjrnp system call which saved the previous
execution state. For example, in the following program fragment, setjrnp

7-11

XENIX Programmer's Guide

saves the execution state of the program at the location just before the
main processing loop and longjmp restores it on an interrupt signal:

#include <signal.h>
#include <setjmp.h>

main ()
{

int onintr () ;

setjmp(sjbuf);
signal (SIGINT, onintr);

/* main processing loop */

onintr ()
{

printf("\nlnterrupt\n") ;
longjmp(sjbuf) ;
}

In this example, the action of the interrupt signal as defined by onintr is to
print the message "Interrupt" and restore the old execution state. When
an interrupt signal is received in the main processing loop, execution
passes to onintr, which prints the message, then passes execution back to
the main program function, making it appear as though control is return­
ing from the setjmp system call.

7.5 Using Signals in Multiple Processes

The XENIX system passes all signals generated at a given terminal to all
programs invoked at that terminal. This means that a program has poten­
tial access to a signal even if that program is executing in the background
or as a child to some other program. The following sections explain how
signals can be used in multiple processes.

7.5.1 Protecting Background Processes

Any program that has been invoked and followed by the shell's back­
ground symbol (&) is executed as a background process. Such programs
usually do not use the terminal for input or output. Also, they complete
their tasks silently. Since these programs do not need additional input,
the shell automatically disables the signals before executing the program.
This means signals generated at the terminal do not affect execution of
the program. This is how the shell protects the program from signals
intended for other programs invoked from the same terminal.

7-12

Using Signals

In some cases, a program that has been invoked as a background process
can also attempt to catch its own signals. If it succeeds, the protection
from interruption given to it by the shell is defeated, and signals intended
for other programs will interrupt the program. To prevent this, any pro­
gram which is intended to be executed as a background process should
test the current state of a signal before redefining its action. A program
should redefine a signal only if the signal has not been disabled. For
example, in the following program fragment, the action of the interrupt
signal is changed only if the signal is not currently being ignored:

#include <signal.h>

main()
{

int catch () ;

if (signal (SlGlNT, SlG lGN) != SlG lGN)
signal (SlGlNT, catch); -

/ * Program body. * /

This step lets a program continue to ignore signals if it is already doing
so, and changes the signal if it is not.

7.5.2 Protecting Parent Processes

A program can create and wait for a child process that catches its own
signals if and only if the program protects itself by disabling all signals
before calling the wait function. By disabling the signals, the parent pro­
cess prevents signals intended for the child processes from terminating
the parent process' call to wait. This prevents serious errors that may
result if the parent process continues execution before the child processes
are finished.

7-13

XENIX Programmer's Guide

For example, in the following program fragment, the interrupt signal is
disabled in the parent process immediately after the child process is
created:

#include <signal.h>

main ()

int (*saveintr) () ;

if (fork () == 0)
execl (...);

saveintr = signal (SIGINT, SIG_IGN);
wait (&status);
signal (SIGINT, saveintr);

The signal's action is restored after the wait function returns normal con­
trol to the parent.

7-14

Chapter 8

adb: A Program Debugger

8.1 Introduction 8-1

8.2 Starting and Stopping adb 8-1
8.2.1 Starting with a Program File 8-1
8.2.2 Starting with a Core Image File 8-2
8.2.3 Starting adb with Data Files 8-3
8.2.4 Starting with the Write Option 8-3
8.2.5 Starting with the Prompt Option 8-4
8.2.6 Leaving adb 8-4

8.3 Displaying Instructions and Data 8-4
8.3.1 Forming Addresses 8-5
8.3.2 Forming Expressions 8-5
8.3.3 Choosing Data Formats 8-11
8.3.4 Using the = Command 8-13
8.3.5 Using the? and / Commands 8-14
8.3.6 An Example: Simple Formatting 8-15

8.4 Debugging Program Execution 8-16
8.4.1 Executing a Program 8-17
8.4.2 Setting Breakpoints 8-18
8.4.3 Displaying Breakpoints 8-19
8.4.4 Continuing Execution 8-19
8.4.5 Stopping a Program with Interrupt and Quit 8-20
8.4.6 Single-Stepping a Program 8-20
8.4.7 Killing a Program 8-21
8.4.8 Deleting Breakpoints 8-21
8.4.9 Displaying the C Stack Backtrace 8-21
8.4.10 Displaying CPU Registers 8-22
8.4.11 Displaying External Variables 8-23
8.4.12 A 286 Example: Tracing Multiple Functions 8-23
8.4.13 A 386 Example: Tracing Multiple Functions 8-28

8.5 Using the adb Memory Maps 8-32
8.5.1 Displaying the Memory Maps 8-32
8.5.2 Changing the Memory Map 8-35

-i-

8.5.3 Creating New Map Entries 8-35
8.5.4 Validating Addresses 8-36

8.6 Miscellaneous Features 8-37
8.6.1 Combining Commands on a Single Line 8-37
8.6.2 Creating adb Scripts 8-37
8.6.3 Setting Output Width 8-38
8.6.4 Setting the Maximum Offset 8-39
8.6.5 Setting Default Input Format 8-39
8.6.6 Using XENIX Commands 8-40
8.6.7 Computing Numbers and Displaying Text 8-40
8.6.8 An Example: Directory and Inode Dumps 8-41

8.7 Patching Binary Files 8-43
8.7.1 Locating Values in a File 8-43
8.7.2 Writing to a File 8-44
8.7.3 Making Changes to Memory 8-45

- ii-

adb: A Program Debugger

8.1 Introduction

The adb(CP) program is a debugging tool for C and assembly language
programs. It carefully controls the execution of a program while letting
you examine and modify it's data and text areas.

This chapter explains how to use adb. In particular, it explains how to:

• start the debugger

• display program instructions and data

• run, breakpoint, and single-step a program

• patch program files and memory

It also illustrates techniques for debugging C programs, and explains how
to display information in non-ASCII data files.

8.2 Starting and Stopping adb

The adb program provides a powerful set of commands that lets you
examine, debug, and repair executable binary files as well as examine
non-ASCII data files. To use these commands, you must invoke adb from
a shell command line and specify the file or files you wish to debug. The
following sections explain how to start adb and describe the types of files
available for debugging.

8.2.1 Starting with a Program File

You can debug any executable C or assembly language program file using
the following form:

adb [filename]

where filename is the name of the program file to be debugged. The adb
program opens the file and prepares its text (instructions) and data for
subsequent debugging. For example, the following command prepares
the program named sample for examination and execution:

adb sample

Once started, adb prompts with an asterisk (*) and waits for you to enter
commands. If you have given the name of a file that does not exist or is in
the wrong format, adb will display an error message first, then wait for

8-1

XENIX Programmer's Guide

commands. For example, suppose you invoke adb with the following
command:

adb sample

If the file sample does not exist, adb displays the following message:

adb: cannot open 'sample'

You can also start adb without a filename. In this case, adb searches for
the default file a.out in your current working directory and prepares it for
debugging. The a.out executable file is created by the C compiler when a
program is compiled and linked successfully. Thus, typing:

adb

is the same as typing:

adb a.out

The adb program displays an error message and waits for a command if
the a.out file does not exist.

8.2.2 Starting with a Core Image File

The adb program also lets you examine the core image files of programs
that caused fatal system errors. Core image files contain the contents of
the CPU registers, stack, and memory areas of the program at the time the
error occurred and provide a way to determine the cause of an error.

To examine a core image file with its corresponding program, you must
give the names of both the core and the program file. The command line
has the following form: .

adb program file corefile

where:

• programfile is the filename of the program that caused the error,
and

• corefile is the filename of the core image file generated by the sys­
tem.

then adb uses information from both files to provide responses to your
commands.

8-2

adb: A Program Debugger

If you do not give a core image file, adb searches for the default core file
in your current working directory. If such a file is found, adb uses it
regardless of whether or not the file belongs to the given program. You
can prevent adb from opening this file by using the hyphen (-) in place of
the core filename. For example, the following command prevents adb
from searching your current working directory for a core file:

adb sample -

8.2.3 Starting adb with Data Files

You can use adb to examine a data file by giving the name of the data file
in place of the program or core file. For example, to examine a data file
named outdata, type:

adb outdata

The adb program opens this file and lets you examine its contents.

This method of examining files is very useful if the file contains non­
Ascn data. The adb program provides a way to look at the contents of
the file in a variety of formats and structures. Note that adb may display
a warning when you give the name of a non-ASCn data file in place of a
program file. This usually happens when the content of the data file is
similar to a program file. Like core files, data files cannot be executed.

8.2.4 Starting with the Write Option

You can make changes and corrections in a program or data file using
adb, if you open it for writing using the -woption. For example, the fol­
lowing command opens the program file sample for writing:

adb -w sample

You can then use adb commands to examine and modify this file.

Note that the -w option causes adb to create a given file if it does not
already exist. The option also lets you write directly to memory after
executing the given program. See" Patching Binary Files. "

8-3

XENIX Programmer's Guide

8.2.5 Starting with the Prompt Option

You can define your adb prompt using the -p option. The option has the
following form:

-p prompt

where prompt is any combination of characters. If you use spaces,
enclose the prompt in quotes. For example, the following command sets
the prompt:

adb -p "Mar 10->" sample

The new prompt takes the place of the default prompt (*) when adb
begins to prompt for commands.

Make sure there is at least one space between the -p and the new prompt;
otherwise adb will display an error message. Note that adb automati­
cally supplies a space at the end of the new prompt, so you need not.

8.2.6 Leaving adb

You can stop adb and return to the system shell using the $q or $Q com­
mand. You can also stop the debugger by pressing CTRL-D.

You cannot stop the adb command by pressing the Quit or Delete key. adb
ignores Quit; Delete is caught by adb and causes it to wait for a new com­
mand.

8.3 Displaying Instructions and Data

The adb program provides several commands for displaying the instruc­
tions and data of a given program and the data of a given data file. The
commands have the following form:

address [, count] = format

address [, count] ? format

address [, count] / format

where:

• address is a value or expression giving the location of the instruc­
tion or data item,

8-4

adb: A Program Debugger

• count is an expression giving the number of items to be displayed,
and

• format is an expression defining how to display the items.

The equal sign (=), question mark (?), and slash (I) tell adb from what
source to take the item for display.

The following sections explain how to form addresses, how to choose for­
mats, and the meaning of each of the display commands.

8.3.1 Forming Addresses

In adb, every address has the following form:

[segment :] offset

where:

• segment is an expression giving the address of a specific segment
.of 8086/286/386 memory, and

• offset is an expression giving an offset from the beginning of the
specified segment to the desired item.

Segments and offsets are formed by combining numbers, symbols, vari­
ables, and operators. The following are some valid addresses:

0:1
OxObce:772

The segment: is optional. If not given, the most recently typed segment
is used.

8.3.2 Forming Expressions

Expressions contain decimal, octal, and hexadecimal integers, symbols,
adb variables, register names, and a variety of arithmetic and logical
operators.

8-5

XENIX Programmer's Guide

Decimal, Octal, and Hexadecimal Integers

A decimal integer must begin with a nonzero decimal digit. An octal
number must begin with a zero and may have octal digits only. Hexade­
cimal numbers must begin with the prefix Ox and may contain decimal
digits and the letters a throughf (in both upper, and lowercase). The fol­
lowing are valid numbers:

Decimal

34
4090

Octal

042
07772

Hexadecimal

Ox22
Oxffa

Although every decimal number is displayed with a trailing decimal point
(.), you cannot use the decimal point when typing the number.

Symbols

A symbol is the name of a global variable or function defined within the
program being debugged, and is equal to the address of the given variable
or function. Symbols are stored in the program's symbol table, and are
available if the symbol table has not been stripped from the program file.
For more information, see strip(CP) in the XENIX Programmer's Refer­
ence).

When evaluating expressions that include functions, you can evaluate a
function by specifying its name or its symbol table name Symbols in the
symbol table are no more than eight characters long, and those defined in
C programs are given leading underscores C). The following are exam­
ples of symbols:

main main hex2bin out of

Note that if the spelling of any two symbols is the same (except for a
leading underscore), adb will ignore the second symbol and allow refer­
ences only to the first. For example, if both "main" and "_main" exist
in a program, then adb accesses only the first to appear in the source and
ignores the other.

When you use the question mark (?) command, adb uses the symbols
found in the symbol table of the program file to create symbolic
addresses. Thus, the command sometimes gives a function name when it
displays data. This does not happen if you use the? command for text
(instructions) and the slash (I) command for data. You cannot address
local variables.

8-6

adb: A Program Debugger

adb Variables

The adb program automatically creates a set of its own variables when­
ever you start the debugger. These variables are set to the addresses and
sizes of various parts of the program file as defined below:

Variable Definition

b base address of data segment

d size of data

e entry address of the program

m execution type

n number of segments

s size of stack

size of text

A user can access storage locations using the adb defined variables. The
following request prints these variables:

$v

The adb program reads the program file to find the values for these vari­
abIes. If the file does not seem to be a program file, then adb leaves the
values undefined.

You can use the current value of an adb variable in an expression by
preceding the variable name with a less than «) sign. For example, the
current value of the base variable b is:

<b

You can create your own variables or change the value of an existing
variable by assigning a value to a variable name with the greater than (»
sign. The assignment has the following form:

expression > variable-name

8-7

XENIX Programmer's Guide

where

• expression is the value to be assigned to the variable, and

• variable-name must be a single letter.

For example, the following assignment gives the hexadecimal value
"Ox2000" to the variable b:

Ox2000>b

You can display the values of all currently defined adb variables using the
$v command. The command lists the variable names followed by their
values in the current format. The command displays any variable whose
value is not zero. If a variable also has a nonzero segment value, the
variable's value is displayed as an address; otherwise it is displayed as a
number.

Current Address

The adb program has two special variables that keep track of the last
address to be used in a command and the last address to be typed with a
command. The dot (.) variable, also called the current address, contains
the last address to be used in a command. The double quotation marks
(" ") variable contains the last address to be typed with a command.
The dot and " " variables are usually the same except when you use
implied commands, such as the Newline and caret C) characters. (These
automatically increment and decrement dot, but leave " "unchanged.)

You can use both the dot and the " " in any expression. The less than
«) sign is not required. For example, the following command displays
the value of the current address:

and the following command displays the last address to be typed:

8-8

adb: A Program Debugger

Register Names

The adb program lets you use the current value of the CPU registers when
evaluating expressions. You can give the value of a register by preceding
its name with the less than «) sign. The adb program recognizes the fol­
lowing register names:

286 Registers 386 Registers

ax accumulator eax accumulator
cx counter ecx counter
dx data edx data
bx base ebx base
sp stack pointer esp stack pointer
bp base pointer ebp base pointer
si source index esi source index
di destination index edi destination index
es extra segment es extra segment
cs code segment cs code segment
ss stack segment ss stack segment
ds data segment ds data segment

fs extra segment
gs extra segment

fl flags register efl flags register
ip instruction pointer eip instruction pointer

All 286 and 386 registers can be evaluated in expressions on XENIX 386,
but only 286 registers can be evaluated in expressions on XENIX 286.

For example, the value of the 286 ax register can be evaluated in an
expression by specifying the register as follows:

<ax

Note that you can not use register names unless either you start adb with
a core file, or the program is currently being run under adb control.

8-9

XENIX Programmer's Guide

Operators

You can combine integers, symbols, variables, and register names with
the following operators:

Unary

*
Binary
+

*
%
&
I

Meaning
Not
Negative
Contents of location

Meaning
Addition
Subtraction
Multiplication
Integer division
Bitwise And
Bitwise inclusive Or
Modulo
Round up to the next multiple

Unary operators have higher precedence than binary operators. All
binary operators have the same precedence. Thus, the following expres­
sion evaluates to 10:

2*3+4

and the following expression evaluates to 18:

4+2*3

You can change the precedence of the operations in an expression by
using parentheses. For example, the following expression evaluates to
10:

4+(2*3)

8-10

adb: A Program Debugger

Note

The adb program uses 32-bit arithmetic. This means that values
that exceed 2,147,483,647 (decimal) are displayed as negative
values.

The unary * operator treats an expression as a pointer to an address.
An expression using this operator resolves to the value stored at the
given address. For example, the following expression resolves to
the value stored at the address "Ox1234":

*Ox1234

whereas the following is just equal to "Ox1234":

Ox1234

8.3.3 Choosing Data Formats

Data of different forms can be displayed by specifying a string of format
commands. A format command is a letter that specifies the format in
which data is displayed. One or more letter commands can be con­
catenated with an integer to specify the number of times the letter com­
mands are displayed.

8-11

XENIX Programmer '8 Guide

The following illustrates each letter command and associated data format
displayed:

Letter

o
d
D
x
X
u
f
F

c
s

i
b

a
A
n
r
t

Format

2 bytes in octal
2 bytes in decimal
4 bytes in decimal
2 bytes in hexadecimal
4 bytes in hexadecimal
2 bytes as an unsigned integer
4 bytes in floating point
8 bytes in floating point

1 byte as a character
A null terminated character string

Machine instruction
1 byte in octal

The current symbolic address
The current absolute address
A Newline
A blank space
A horizontal TAB

A letter command can be used by itself or combined with other com­
mands to present a combination of data in different forms.

You can use the d,o,x, and u commands to display int type variables; you
can use D and X to display long variables or 32-bit values. The f and F
commands can be used to display single- and double-precision floating­
point numbers. The c command displays char type variables, and the 8
command is for arrays of char that end with a null character (null ter­
minated strings).

The i command displays machine instructions in 8086/286/386 mnemon­
ics. The b command displays individual bytes and is useful for displaying
data associated with instructions, or the high or low bytes of registers.

You usually combine the a,r, and n commands with other commands to
make the display more readable. For example, the following format com­
mands display the current address after each instruction:

ia

8-12

adb: A Program Debugger

You can precede each format with a count of the number of times you
wish it to be repeated. For example, the following format commands
display four ASCII characters:

4c

You can also combine format requests to provide elaborate displays. For
instance, the following commands display four octal words followed by
their ASCII interpretation from the data space of the core image file:

<b,-1/404~8Cn

In this example, the display starts at the address "<b," the base address
of the program's data. The display continues until the end-of-the-file
since the negative count" -1" causes an indefinite execution of the com­
mands until an error condition, such as the end of the file, occurs. The
command 40 displays the next four words (l6-bit values) as octal
numbers. The command 4A then moves the current address back to the
beginning of these four words and the C command redisplays them as
eight ASCII characters. Finally, n sends a Newline character to the termi­
nal. The C command causes values to be displayed as ASCII characters
if they are in the range 32 to 126. If the value is in the range 0 to 31, it is
displayed as an at sign (@) followed by a lowercase letter. For example,
the value 0 is displayed as @. The at sign itself is displayed as a double
at sign@@.

8.3.4 Using the = Command

The equal sign (=) command displays a given address in a given format.
The command is used primarily to display instruction and data addresses
in simpler form, or to display the results of arithmetic expressions. For
example, typing the following displays the absolute address of the symbol
"main" (giving the segment and offset):

main=A

Typing the following displays (in decimal) the sum of the variable band
the hexadecimal value Ox2000:

<b+Ox2000=D

If a count is given, the same value is repeated that number of times. For
example, typing the following displays the value of "main" twice:

main,2=x

8-13

XENIX Programmer's Guide

If no address is given, the current address is used instead. This is the same
as the following command:

If you do not specify a format, the previous format given for this com­
mand is used. For example, in the following sequence, both "main" and
"_start" are displayed in hexadecimal:

maih=x
start=

8.3.5 Using the? and / Commands

You can display the contents of a text or data segment with the? and /
commands. The commands have the following form:

[address] [, count] ? [format]

[address] [, count] / [format]

where:

• address is an address with the given segment,

• count is the number of items you wish to display, and

• format is the format of the items you wish to display.

You use the? command to display instructions in the text segment. For
example, the following command displays five instructions starting at the
address "main," and the address of each instruction displays immediately
before it:

main,5?ia

The following command displays the instructions, with no addresses other
than the starting address:

main,5?i

You use the / command to check the values of variables in a program,
especially variables for which no name exists in the program's symbol
table. For example, the following command displays the value (in hexa­
decimal) of a local variable:

<bp-4?x

8-14

adb: A Program Debugger

Local variables are generally at some offset from the address indicated by
the bp register.

8.3.6 An Example: Simple Formatting

The following example illustrates how to combine formats in ? or / com­
mands, to display different types of values when stored together in the
same program. This program has the following source statements:

char str1 [
int one
int number
long Inurn
float fpt
char str2 [

main ()
{

one

1

2;

"This is a character string"
1 ;

1234
1. 25

456 ;

"This is the second character string"

The program is compiled and stored in a file named sample.

To start the session, type:

adb sample -

You can display the value of each individual variable by giving its name
and corresponding format in a / command. For example, typing:

strl/s

displays the contents of str 1 as a string:

strl: This is a character string

The following command:

number/d

displays the contents of number as a decimal integer:

number: 456.

8-15

XENIX Programmer '8 Guide

You can choose to view a variable in a variety of formats. For example,
you can display the long variable Inurn as a 4-byte decimal, octal, and
hexadecimal number by typing the following:

Inurn/D
Inurn: 1234

Inurn/O
Inurn: 02322

Inurn/X
Inurn: Ox4D2

You can also examine all variables as a whole. For example, if you wish
to see them all in hexadecimal, type:

str1,5/8x

This command displays eight hexadecimal values on a line, and continues
for five lines.

Since the data contains a combination of numeric and string values, it is
worthwhile to display each value as both a number and a character to see
where the actual strings are located. You can do this with one command
by typing:

str1,5/4x4~8Cn

In this case, the command displays four values in hexadecimal, then the
same values as eight ASCn characters. The caret C) is used four times,
immediately before displaying the characters to set the current address
back to the starting address for that line.

To make the display easier to read, you can insert a tab between the
values and characters, and give an address for each line by typing

strl,5/4x4~8t8Cna

8.4 Debugging Program Execution

The adb program provides a variety of commands to control the execu­
tion of programs being debugged. The following sections explain how to
use these commands as well as how to display the contents of memory
and registers.

8-16

adb: A Program Debugger

Note that C compiler does not normally generate statement labels for pro­
grams. This means it is not possible to refer to individual C statements
when using the debugger. In order to use execution commands
effectively, you must be familiar with the instructions generated by the C
compiler and how they relate to individual C statements. One useful
technique is to create an assembly-language listing of your C program
before using adb, then refer to the listing as you use the debugger. To
create an assembly-language listing, use the -S option of the cc command.
For more information, see cc(CP) in the XENIX Programmer's Reference.

8.4.1 Executing a Program

You can execute a program using the :r or :R command. The command
has the following form:

[address] [,count] :r [arguments]

[address] [,count] :R [arguments]

where:

• address gives the address at which to start execution,

• count is the number of breakpoints you wish to skip before one is
taken, and

• arguments are the command line arguments, such as filenames and
options, that you wish to pass to the program.

If no address is given, then the start of the program is used. Thus, to exe­
cute the program from the beginning, type:

:r

If a count is given, adb will ignore all breakpoints until the given number
have been encountered. For example, the following command causes adb
to skip the first 5 breakpoints:

,5:r

If you specify arguments, each of them must be separated by at least one
space. The arguments are passed to the program in the same way the sys­
tem shell passes command-line arguments to a program. You may use the
shell-redirection symbols if you wish.

8-17

XENIX Programmer's Guide

The :R command passes the command arguments through the shell before
starting program execution. This means you can use shell metacharacters
in the arguments to refer to multiple files or other input values. The shell
expands arguments containing metacharacters before passing them on to
the program.

The :R command is especially useful if the program expects multiple
filenames. For example, the following command passes the argument
"[a-zJ*.s" to the shell where it is expanded to a list of the corresponding
filenames before being passed to the program:

:R [a-z]*.s

The :r and :R commands remove the contents of all registers and destroy
the current stack before starting the program. This kills any previous
copy of the program you may have been running.

8.4.2 Setting Breakpoints

You can set a breakpoint in a program by using the :br command. Break­
points cause execution of the program to stop when it reaches the
specified address. Control then returns to adb. The command has the fol­
lowing form:

address [, count J : br command

where:

• address must be a valid instruction address,

• count is a count of the number of times you wish the breakpoint to
be skipped before it causes the program to stop, and

• command is the adb command you wish to execute when the
breakpoint is taken.

Breakpoints are typically set to stop program execution at a specific place
in the program, such as the beginning of a function, so that the contents of
registers and memory can be examined. For example, the following com­
mand sets a breakpoint at the start of the function named "main":

main:br

The breakpoint is taken just as control enters the function and before the
function's stack frame is created.

8-18

adb: A Program Debugger

A breakpoint with a count is typically used within a function, that is
called several times during execution of a program, or within the instruc­
tions that correspond to a for or while statement. Such a breakpoint lets
the program continue to execute until the given function or instructions
have been executed for the specified number of times. For example, the
following command sets a breakpoint at the fifth repetition of the function
"light' ':

light,5:br

The breakpoint does not stop the function until it has been called at least
five times.

Note that no more than 16 breakpoints at a time are allowed.

8.4.3 Displaying Breakpoints

You can display the location and count of each currently defined break­
point by using the $b command. The command displays a list of the
breakpoints given by address. If the breakpoint has a count and/or a com­
mand, these are given as well.

The $b command is useful if you have created several breakpoints in your
program.

8.4.4 Continuing Execution

You can continue program execution after it has been stopped by a break­
point by using the :co command. The command has the following form:

[address] [;count] :co [signal]

where:

• address is the address of the instruction at which you wish to con­
tinue execution,

• count is the number of breakpoints you wish to ignore, and

• signal is the number of the signal to send to the program. For more
information, see signal(S) in the XENIX Programmer's Reference.

If you don't specify an address, the program starts at the next instruction
after the breakpoint. If you do specify count, adb ignores the first count
breakpoints.

8-19

XENIX Programmer's Guide

8.4.5 Stopping a Program with Interrupt and Quit

You can stop program execution at any time by pressing the Delete,
CTRL-\ or Quit keys. These keys stop the current program and return con­
trol to adb. The keys are especially useful for programs that have infinite
loops or other program errors.

Note that whenever you press the Delete, CTRL-\ or Quit key to stop a
program, adb automatically saves the signal and passes it to the program,
if you start it again by using the :co command. This is very useful if you
wish to test a program that uses these signals as part of its processing.

If you wish to continue program execution, but you do not wish to send
the signals, type:

:co 0

The command argument 0 prevents a pending signal from being sent to
the program.

8.4.6 Single-Stepping a Program

You can single-step a program, that is, execute it one instruction at a time,
using the :s command. The command executes an instruction and returns
control to adb. The command has the following form:

[address] [, count] :s

where:

• address must be the address of the instruction you wish to execute,
and

• count is the number of times you wish to repeat the command.

If you do not specify an address, adb uses the current address. If you
specify a count, adb continues to execute each successive instruction
until count instructions have been executed. For example, the following
command executes the first 5 instructions in the function main:

main,5:s

8-20

adb: A Program Debugger

8.4.7 Killing a Program

You can kill the program you are debugging by using the :k command.
The command kills the process created for the program and returns con­
trol to adb. The command is typically used to clear the current contents
of the CPU registers and stack and begin the program again.

8.4.8 Deleting Breakpoints

You can delete a breakpoint from a program by using the :dl command.
The command has the following form:

address :dl

where address is the address of the breakpoint you wish to delete.

The :dl command is typically used to delete breakpoints you no longer
wish to use. Typing the following deletes the breakpoint set at the start
of the function "main":

main:dl

8.4.9 Displaying the C Stack Backtrace

You can trace the path of all active functions by using the $c command.
The command lists the names of all functions that have been called but
have not yet returned control, as well as the address from which each
function was called, and the arguments passed to it.

For example, the following command displays a backtrace of the C
language functions called:

$c

By default, the $c command displays all calls. If you wish to display just
a few, you must supply a count of the number of calls you wish to see.
For example, the following command displays up to 25 calls in the current
call path:

,25$c

Note that function calls and arguments are put on the stack after the func­
tion has been called. If you put breakpoints at the entry point to a func­
tion, the function will not appear in the list generated by the $c command.

8-21

XENIX Programmer's Guide

You can remedy this problem by pladng breakpoints a few instructions
into the function.

8.4.10 Displaying CPU Registers

You can display the contents of all CPU registers by using the $r com­
mand. The command displays the name and contents of each register in
the CPU as well as the current value of the program counter, and the
instruction at the current address.

Registers for XENIX 286

The adb program displays registers in the following format when execut­
ing in XENIX 286; the value of each register is given in the current
default format:

ax OxO fl OxO
bx OxO ip OxO
ex OxO es OxO
dx OxO ds OxO
di OxO ss OxO
si Oxo es OxO
sp OxO sp OxO
0:0: addb al,bl

Registers for XENIX 386

The adb program displays registers in the following format when execut­
ing in XENIX 386; the value of each register is given in the current
default format:

eax Ox8l000 efl Ox246
ebx OxO eip Ox142
eex OxO es Ox3f
edx Ox8 ds Ox47
edi OxO es Ox47
esi OxO fs Ox47
ebp OxO gs Ox47
esp Ox7fef8 ss Ox47
Ox3f:Ox142: push ebp

8-22

adb: A Program Debugger

8.4.11 Displaying External Variables

You can display the values of all external variables in a program by using
the $e command. External variables are variables in your program that
have global scope, or have been defined outside of any function. This
may include variables that have been defined in library routines used by
your program.

The $e command is useful whenever you need a list of the names for all
available variables, or to quickly summarize their values. The command
displays one name on each line with the variable's value (if any) on the
same line.

For example, use the $e command to display the following external vari­
ables and their values in hexadecimal format in a program:

environ: Oxff08 -
fent: OxO
gent: OxO
hent: OxO
errno: OxO -
bufend: OxO
xestar: OxO
xistar: OxO

end: OxO
stdbuf: OxlbO

iob: OxO
edata: OxO

argv: OxffOO --
aertus: OxO -
xeend: OxO
sibuf: OxO
lastbu: Ox130 -
xiend: OxO -
srnbuf: OxO -
sobuf: OxO

8.4.12 A 286 Example: Tracing Multiple Functions

The following example illustrates how to execute a program under adb
control using XENIX 286. In particular, it shows how to set breakpoints,

8-23

XENIX Programmer '8 Guide

start the program, and examine registers and memory. The program to be
examined has the following source statements:

int
h(x,y)
{

fcnt,gcnt,hcnt;

int hi; register int hr;
hi = x+1;
hr = x-y+1;
hcnt++ ;
hj:
f(hr,hi);

g(p,q)
{

int gi; register int gr;
gi = q-p;
gr = q-p+1;
gcnt++ ;
gj:
h(gr,gi);

f(a,b)
{

int fi; register int fr;
fi = a+2*b;
fr = a+b;
fcnt++ ;
fj:
g(fr,fi);

main ()
{

f (1, 1) ;

The program is compiled and stored in a file named sample. To start the
session, type:

adb sample

This starts adb and opens the corresponding program file. There is no core
image file.

The first step is to set breakpoints at the beginning of each function. You
can do this with the : br command. For example, to set a breakpoint at the
start of function "f;" type:

f:br

8-24

adb: A Program Debugger

You can use similar commands for the "g" and "h" functions. Once you
have created the breakpoints, you can display their locations by typing:

$b

This command lists the address, optional count, and optional command
associated with each breakpoint. In this case, the command displays:

breakpoints
count bkpt
1 h
1 _g
1 f

command

The next step is to display the first five instructions in the "f" function.
Type:

f,5?ia

This command displays five instructions, each preceded by its symbolic
address.

- f: push bp

- f+l. : mov bp, sp
f+3. : mov ax,4 -
f+6. : call near chkstk -
f+9. : di - push
f+l0. : -

You can display five instructions in the "g" function without their
addresses by typing:

g,5?i

The system displays:

g: - push bp
mov bp,sp
mov ax,4.
call near chkstk -
push di

To begin program execution, type:

:r

then adb displays the following message and begins to execute:

sample: running

8-25

XENIX Programmer's Guide

As soon as adb encounters the first breakpoint (at the beginning of the
"f" function), it stops execution and displays the following message:

breakpoint f: push bp

Since execution to this point caused no errors, you can remove the first
breakpoint by typing:

f:dl

You can continue the program by typing:

:co

The adb program displays the following message and begins program
execution at the next instruction:

sample: running

Execution continues until the next breakpoint, where adb displays the fol­
lowing message:

breakpoint _g: push bp

You can now trace the path of execution by typing:

$c

The display shows that only three functions are active: "f," "main," and
"start' ':

f (1., 1.)
_main (1., 5922., 5926.)

start

from main+18.
from start+50.

from startO+5.

Although the breakpoint has been set at the start of function "g," it will
not be listed in the backtrace until its first few instructions have been exe­
cuted. To execute these instructions, type:

,5:s

then adb single-steps the first five instructions. Now you can list the
backtrace again. Type:

$c

8-26

adb: A Program Debugger

This time, the list shows four active functions:

_g (2.,3.)
f (1.,1.)

_main (1.,
start ()

from f+39
from main+18

5922., 5926) from start+50
from startO+5

You can display the contents of the integer variable fent by typing:

fcnt/D

This command displays the value of fent found in memory. The number
should be 1. You can continue execution of the program and skip the first
10 breakpoints by typing:

,10:co

In response to this, adb starts the program and then displays the running·
message again. The program does not stop until adb encounters exactly
10 breakpoints, when it displays the following message:

breakpoint _g: push bp

To show that these breakpoints have been skipped, you can display the
backtrace again, by typing:

$c

For XENIX 286, your system displays:

f (2. , 11.) from h+36.
h (10. , 9.) from g+38.

-
g (11. , 20.) from f+39.

-
f (2. , 9.) from h+36.
h (8. , 7.) from g+38. -
g (9. , 16.) from f+39. -
f (2. , 7.) from h+36.
h (6. , 5.) from g+38. -

-g (7. , 12.) from f+39. -
f (2. , 5.) from h+36.
h (4. , 3.) from g+38. -
g (5. , 8.) from f+39.
h (2. , 3.) from g+38. -
g (2. , 1.) from f+39.

-
f (1. , 1.) from main+18.

=:main (1., 5922. , 5926.) from start+50.
start () from startO+5.

8-27

XENIX Programmer's Guide

8.4.13 A 386 Example: Tracing Multiple Functions

The following example illustrates how to execute a program under adb
control using XENIX 386. In particular, it shows how to set breakpoints,
start the program, and examine registers and memory. The program to be
examined has the following source statements:

int
h(x,y)
{

fcnt,gcnt,hcnt;

int hi; register int hr;
hi = x+1;
hr = x-y+1;
hcnt++ ;
hj:
f(hr,hi);

g(p,q)
{

int gi; register int gr;
gi = q-p;
gr = q-p+1;
gcnt++ ;
gj:
h(gr,gi) ;

f(a,b)
{

int fi; register int fr;
fi = a+2*b;
fr = a+b;
fcnt++ ;
fj:
g(fr,fi);

main ()
{

f (1,1) ;

The program is compiled and stored in a file named sample. To start the
session, type:

adb sample

This starts adb and opens the corresponding program file. There is no core
image file.

8-28

adb: A Program Debugger

The first step is to set breakpoints at the beginning of each function. You
can do this with the :br command. For example, to set a breakpoint at the
start of function" f," type:

f:br

You can use similar commands for the "g" and ., h" functions. Once you
have created the breakpoints, you can display their locations by typing:

$b

This command lists the address, optional count, and optional command
associated with each breakpoint. In this case, the command displays:

breakpoints
count bkpt
1 h
1 9
1 f

command

The next step is to display the first five instructions in the ''f'' function.
Type:

f,5?ia

This command displays five instructions, each proceeded by its symbolic
address:

f: push ebp
f+Oxl: mov ebp,esp
f+Ox3: sub esp, Ox8
f+Ox9: push ebx
f+Oxa: push edi
f+Oxb:

You can display five instructions in the "g" function without their
addresses by typing:

g,5?i

In this case, the display is:

g: push ebp
-

mov ebp, esp
sub esp, Ox8
push ebx
push edi

8-29

XENIX Programmer's Guide

To begin program execution, type:

:r

then adb displays the following message and begins to execute:

sample: running

As soon as adb encounters the first breakpoint (at the beginning of the
"f" function), it stops execution and displays the following message:

breakpoint f: push ebp

Since execution to this point caused no errors, you can remove the first
breakpoint by typing:

f:dl

You can continue the program by typing:

:co

then adb displays the following message and begins program execution at
the next instruction:

sample: running

Execution continues until the next breakpoint, where adb displays the fol­
lowing message:

breakpoint g: push ebp

You can now trace the path of execution by typing:

$c

The commands show that only three functions are active: "f," "main,"
and' 'start":

f (Oxl, Oxl)
_main (Oxl, Ox187ef20,

start ()

from main+Ox15
Ox187ef28) from start+Ox39

from startO+Oxc

Although the breakpoint has been set at the start of function "g," it will
not be listed in the backtrace until its first few instructions have been exe­
cuted. To execute these instructions, type:

,5:s

8-30

adb: A Program Debugger

The adb program single-steps the first five instructions. Now you can list
the backtrace again. Type:

$c

This time, the list shows four active functions:

_g (Ox2,Ox3) from f+Ox2c
f (OxI,OxI) from main+Ox15

_main (OxI, Ox187ef20, Ox187ef28) from start+Ox39
start () from startO+Oxc

You can display the contents of the integer variable lent by typing:

fcnt/D

This command displays the value of lent found in memory. The number
should be 1. You can continue execution of the program and skip the first
10 breakpoints by typing:

,10:co

now adb starts the program; then it displays the running message again.
It does not stop the program until it encounters exactly ten breakpoints. It
displays the following message:

breakpoint g: push ebp

To show that these breakpoints have been skipped, you can display the
backtrace again, by typing:

$c

8-31

XENIX Programmer's Guide

For XENIX 386, your system displays:

f (Ox2,Oxll) from h+Ox29
h (OxlO,Oxf) from g+Ox2b

-
-g (Oxll,Ox20) from

-
f+Ox2c

f (Ox2,Oxf) from h+Ox29
-

h (Oxe,Oxd) from g+Ox2b
-

g (Oxf, OxIc) from f+Ox2e
f (Ox2,Oxd) from h+Ox29
h (Oxc,Oxb) from g+Ox2b

-g (Oxd,Ox18) from f+Ox2c
f (Ox2,Oxb) from h+Ox29
h (Oxa,Ox9) from g+Ox2b

-
g (Oxb, Ox14) from f+Ox2e -
f (Ox2,Ox9) from h+Ox29
h (Ox8,Ox7) from g+Ox2b
g (Ox9,OxIO) from

-
f+Ox2c

f (Ox2,Ox7) from h+Ox29
h (Ox6,OxS) from g+Ox2b

-
g (Ox7,Oxe) from

-
f+Ox2c

-
f (Ox2,OxS) from h+Ox29
h (Ox4,Ox3) from g+Ox2b
g (OxS,Ox8) from f+Ox2c -
f (Ox2,Ox3) from h+Ox29

-
h (Ox2,Oxl) from g+Ox2b

-
g (Ox2,Ox3) from f+Ox2e
f (Oxl,Oxl) from main+Oxl5 -
main (Oxl,Ox187ef20,Ox187ef28) from start+Ox39
start () from startO+Oxe

8.5 Using the adb Memory Maps

The adb program prepares a set of maps for the text and data segments in
your program and uses these maps to access items that you request for
display. The following sections describe how to view these maps, and
how they are used to access the text and data segments.

8.5.1 Displaying the Memory Maps

You can display the contents of the memory maps using the $m com­
mand. The command has the following form:

$m [segment]

where segment is the number of a segment used in the program.

8-32

adb: A Program Debugger

The command displays the maps for all segments in the program using
information taken from either the program and core files or directly from
memory.

Displays for XENIX 286

If you have started adb but have not executed the program, the $m com­
mand display has the following form for XENIX 286:

Text Segments
Seg # File Pas
63. 160.

Data Segments
Seg # File Pas
71. 160.

Vir Size
3712.

Vir Size
3712.

Phys Size
2462.

Phys Size
2462.

'sample' - File

'sample' - File

If you have executed the program, the command displays the following
form for XENIX 286:

Text Segments
Seg # File Pas
63. 160.

Data Segments
Seg # File Pas
71. 160.

Vir Size
3712.

Vir Size
37l2.

Phys Size
2462.

Phys Size
2462.

'sample' - memory

'sample' - memory

Displays for XENIX 386

The $m command has the following form for XENIX 386:

Text Segments
Seg # File Pas
Ox3f Ox400

Data Segments
Seg # File Pas
Ox47 Ox1000

File - , sample'
Vir Size Phys Size Reloc Base
Oxb48 Oxb48 OxO

File - , sample'
Vir Size Phys Size Reloc Base
Oxe90 Ox460 Ox1880000

Each entry gives the segment number, file position, and physical size of a
segment. The segment number is the starting address of the segment. The

8-33

XENIX Programmer's Guide

file position is the offset from the start of the file to the contents of the
segment. The physical size is the number of bytes the segment occupies
in the program or core file. The filenames to the right of the display are
the program and core filenames.

If you have executed the program, the command displays the following
form for XENIX 386:

Text Segments
Seg # File Pas
Ox3f Ox400

Data Segments
Seg # File Pas
Ox47 OxlOOO

File - 'sample'
Vir Size Phys Size Relac Base
Oxb48 Oxb48 OxO

File - 'sample'
Vir Size Phys Size Relac Base
Ox1880e90 Ox460 Ox1880000

where virtual size is the number of bytes the segment occupies in
memory. This size is sometimes different from the size of the segment in
the file and will often change as you execute the program. This is due to
expansion of the stack or allocation of additional memory during program
execution. The filenames to the right always name program files. The file
position value is ignored.

Giving Segment Numbers

If you give a segment number with the command, adb displays informa­
tion only about that segment. For example, the following command
displays a map for segment 63 only:

$m 63

The display has the following form for XENIX 286:

Segment #= 63.
Type= Text
File position= 160.
Virtual Size= 3712.
Physical Size= 2048.

The display has the following form for XENIX 386:

8-34

Segment # = Ox3f
Type = Text
File position = Ox3f
Virtual size = Ox400
Physical Size = Ox400
Reloc Base = OxO

adb: A Program Debugger

8.5.2 Changing the Memory Map

You can change the values of a memory map by using the ?m and 1m
commands. These commands assign specified values to the correspond­
ing map entries. The commands have the following fonn:

?m segment-number file-position size

and:

1m segment-number file-position size

where:

• segment-number gives the number of the segment map you wish to
change,

• file-position gives the offset in the file to the beginning of the given
address,

• size gives the segment size in bytes,

• ?m assigns values to a text segment entry, and

• 1m assigns values to a data segment entry.

For example, the following command changes the file position for seg­
ment Ox3f in the text map to Ox2000:

?m Ox3f Ox2000

The following command changes the file position for segment Ox47 in the
data map to OxO:

1m Ox47 OxO

8.5.3 Creating New Map Entries

You can create new segment maps and add them to your memory map by
using the ?M and 1M commands. Unlike ?m and 1m, these commands

8-35

XENIX Programmer's Guide

create a new map instead of changing an existing one. These commands
have the following form:

?M segment-number file-position size

and:

1M segment-number file-position size

where:

• segment-number gives the number of the segment map you wish to
create,

• file-position gives the offset in the file to the beginning of the given
address, and

• size gives the segment size in bytes.

The ?M command creates a text segment entry; 1M creates a data seg­
ment entry. The segment number must be unique. You cannot create a
new map entry that has the same number as an existing one.

The ?M and 1M commands are especially useful if you wish to access
segments that are otherwise allocated to your program. For example, the
following command creates a text segment entry for segment Ox47 whose
size is Ox9c8 bytes:

?M Ox47 OxO Ox9c8

8.5.4 Validating Addresses

Whenever you use an address in a command, adb checks the address to
make sure it is valid. To validate the address, adb uses the segment
number, file position, and size values in each map entry. If an address is
correct, adb carries out the command; otherwise, it displays an error mes­
sage.

The first step adb takes when validating an address is to check the seg­
ment value to make sure it belongs to the appropriate map. Segments
used with the ? command must appear in the text segments map; seg­
ments used with the I command must appear in the data segments map. If
the value does not belong to the map, adb displays a bad segment error.

8-36

adb: A Program Debugger

The next step is to check the offset to see if it is in range. The offset must
be within the following range:

o <= offset <= segment-size

If it is not in this range, adb displays a bad address error.

If adb is currently accessing memory, the validating segment and offset
are used to access a memory location and no other processing takes place.
If adb is accessing files, it computes an effective file address like the fol­
lowing, then uses this effective address to read from the corresponding
file:

effective-file-address offset + file-position

8.6 Miscellaneous Features

The following sections explain a number of useful commands and
features of adb.

8.6.1 Combining Commands on a Single Line

You can give more than one command on a line by separating the com­
mands with a semicolon (;). The commands are performed one at a time,
starting at the left. Changes to the current address and format are carried
to the next command. If an error occurs, the remaining commands are
ignored.

One typical combination is to place a? command after an I command.
For example, the following command searches for and displays a string
that begins with the characters Th:

?l 'Th'; ?s

8.6.2 Creating adb Scripts

You can direct adb to read commands from a text file instead of the key­
board by redirecting adb's standard input file at invocation. To redirect

8-37

XENIX Programmer's Guide

the standard input, use the standard redirection symbol < and supply a
filename. For example, to read commands from the file script, type:

adb sample <script

The file you supply must contain valid adb commands. Such files are
called script files, and can be used with any invocation of the debugger.

Reading commands from a script file is very convenient when you wish to
use the same set of commands on several different object files. Scripts are
typically used to display the contents of core files after a program error.
For example, you can use a file containing the following commands to
display most of the relevant information about a program error:

120$w
4095$s
$v
=3n
$m
=3n"C Stack Backtrace"
$C
=3n"C External Variables"
$e
=3n"Registers"
$r
O$s
=3n"Data Segment"
<b,-1/8xna

8.6.3 Setting Output Width

You can set the maximum width (in characters) of each line of output
created by adb by using the $w command. The command has the follow­
ing form:

n$w

where n is an integer number giving the width in characters of the display.
You can give any width that is convenient for your given terminal or
display device. The default width, when adb is first invoked, is 80 charac­
ters.

The command is typically used when redirecting output to a lineprinter or
special terminal. For example, the following command sets the display
width to 120 characters, a common maximum width for lineprinters:

120$w

8-38

adb: A Program Debugger

8.6.4 Setting the Maximum Offset

The adb program normally displays memory and file addresses as the sum
of a symbol and an offset. This helps associate the instructions and data
you are viewing with a given function or variable. When first invoked,
adb sets the maximum offset to 255. This means instructions or data that
are no more than 255 bytes from the start of the function or variable are
given symbolic addresses. Instructions or data beyond this point are
given nu~eric addresses.

In many programs, the size of a function or variable is actually larger than
255 bytes. For this reason, adb lets you change the maximum offset to
accommodate larger programs. You can change the maximum offset by
using the $s command. The command has the following form where n is
an integer giving the new offset:

n$s

For example, the following command increases the maximum possible
offset to 4095:

4095$s

All instructions and data that are no more than 4095 bytes away are given
symbolic addresses.

Note that you can disable all symbolic addressing by setting the max­
imum offset to zero. All addresses will be given numeric values instead.

8.6.5 Setting Default Input Format

You can set the default format for numbers used in commands with the $d
(decimal), $0 (octal), and $x (hexadecimal) commands. The default for­
mat tells adb how to interpret numbers that do not begin with a or Ox, and
how to display numbers when no specific format is given.

The commands are useful if you wish to work with a combination of
decimal, octal, and hexadecimal numbers. For example, if you use the
following combination, you can give addresses in hexadecimal without
prepending each address with Ox:

$x

8-39

XENIX Programmer's Guide

Furthermore, adb displays all numbers in hexadecimal except those that
are specifically requested to be in some other format.

When you first start adb, the default format is decimal. You can change
this at any time and restore it as necessary using the $d command.

8.6.6 Using XENIX Commands

You can execute XENIX commands without leaving adb by using the adb
escape command !. The escape command has the following form:

! command

where command is the XENIX command you wish to execute. The com­
mand must have any required arguments. The adb passes this command
to the system shell which executes it. When finished, the shell returns
control to adb.

For example, to display the date, type:

! date

The system displays the date at your terminal and restores control to adb.

8.6.7 Computing Numbers and Displaying Text

You can perform arithmetic calculations while in adb by using the = com­
mand. This command directs adb to display the value of an expression in
a given format.

You use the = command to convert numbers in one base to another, to
double-check the arithmetic performed by a program, and to display com­
plex addresses in easier form. For example, the following command
displays the hexadecimal number' 'Ox2a" as the decimal number 42:

Ox2a=d

however, the following command displays it as the ASCII character aster­
isk (*):

Ox2a=c

8-40

adb: A Program Debugger

Expressions in a command may have any combination of symbols and
operators. You can also compute the value of external symbols, by typing:

main+5=X

This is helpful if you wish to check the hexadecimal value of an external
symbol address.

Note that the = command can also be used to display literal strings at your
terminal. This is especially useful in an adb script where you may wish
to display comments about the script as it performs its commands. For
example, the following command spaces three lines:

=3n"C Stack Backtrace"

The system then displays the following message:

C Stack Backtrace

8.6.8 An Example: Directory and Inode Dumps

This example illustrates how to create adb scripts to display the contents
of a directory file and the inode map ofaXENIX file system. The direc­
tory file is assumed to be named dir, and contains a variety of files. The
XENIX file system is assumed to be associated with the device file
/dev/src, and has the necessary permissions for you to read it.

To display a directory file, you must create an appropriate script, then
start adb with the name of the directory, redirecting its input to the script.

First, you can create a script file named script. A directory file normally
contains one or more entries. Each entry consists of an unsigned inumber
and a 14-character filename. You can display this information by adding
the following command to the script file:

O,-1?ut14cn

This command displays one entry for each line, separating the number
and filename with a tab. The display continues to the end of the file. If
you place the following command at the beginning of the script, adb will
display the strings as headings for the columns of numbers:

="inumber"8t"Name"

8-41

XENIX Programmer's Guide

Once you have the script file, type:

adb dir - <script

(The dash (-) is used to prevent adb from attempting to open a core file.)
The adb program reads the commands from the script and displays the
following:

inumber name
652
82
5971 cap.c
5323 cap
0 pp

To display the inode table of a file system, you must create a new script,
then start adb with the filename of the device associated with the file sys­
tem (such as the hard disk drive).

The structure of an inode table entry is defined III the file
lusrlincludel syslino.h. Each inode entry includes:

• an unsigned short containing the mode and type of the file

• a short containing the number of links to the file

• an unsigned short containing the owner's user ID

• an unsigned short containing the owner's group ID

• a long containing the size of the file in bytes

• an array of 40 bytes containing the disk block addresses (only 39 of
the 40 address bytes are in use: 13 addresses of 3 bytes each)

• a long giving the time the file was last accessed

• a long giving the time the file was last modified

• a long giving the time the file was created

The inode table starts at the address "04000" of the filesystem. This is
the address of the beginning of block 2 of the file system. (For a discus­
sion of the layout of a file system, see fiiesystem(F) of the XENIX User's
Reference.)

8-42

adb: A Program Debugger

You can display the first entry by typing:

04000,-1?onororon2un40b3Y2na

Several Newlines are inserted within the display to make it easier to read.

To use the script on the inode table of /dev/src, type:

adb /dev/src - <script

(Again, the dash (-) is used to prevent an unwanted core file.) Each entry
in the inode table display has the following fonn:

O. :2048.: 040755
046 03 03
640 0
0121 06 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1986 Dec 4 13:55:49 1986 N:Jv 20 20 :46:13 1986 N:Jv 20 20:46:13

8.7 Patching Binary Files

You can make corrections or changes to any file, including executable
binary files, by using the w and W commands and invoking adb with the
-w option. The following sections describe how to locate and change
values in a file.

8.7.1 Locating Values in a File

You can locate specific values within a file by using the I and L com­
mands. The commands have the following fonn:

[address] ?I value

[address] ?L value

8-43

XENIX Programmer's Guide

where:

• address is the address at which to start the search,

• I command searches for 2 byte values,

• L command searches for 4 byte values, and

• value is the value (given as an expression) to be located.

The following command starts the search at the current address, and con­
tinues until the first match or the end of the file:

?l

If the value is found, the current address is set to that value's address.

8.7.2 Writing to a File

You can write to a file by using the wand W commands. The commands
have the following form:

[address] ?w value

[address] ?W value

where:

• address is the address of the value you wish to change,

• w command writes 2 byte values,

• W writes' 4 bytes, and.

• value is the new value.

For example, the following commands change the word ' 'This' , to
"The":

?l 'Th'
?W 'The'

Note that W is used to change all four characters.

8-44

adb: A Program Debugger

8.7.3 Making Changes to Memory

You can also make changes to memory whenever a program has been exe­
cuted. If you have used an :r command with a breakpoint to start program
execution, subsequent w commands cause adb to write to the program in
memory rather than the file. This is useful if you wish to make changes to
a program's data as it runs, for example, to change the value of program
flags or constants temporarily.

8-45

Chapter 9

Id: the XENIX Link Editor

9.1 Introduction 9-1

9.2 U sing the Link Editor 9-1

9.3 Link Editor Options 9-1

9.4 The Executable Object File 9-4

9.5 Communal Variable Allocation 9-5

9.6 Pointer and Integer Sizes 9-6

9.7 Segment and Register Sizes 9-8

ld: the XENIX Link Editor

9.1 Introduction

The XENIX link editor Id(CP) is a companion tool to both the C compiler
cc and the macro assembler masm(CP).

The Id tool creates executable files by combining object modules and
resolving external references. The inputs to Id are relocatable object files
produced by the C compiler or the macro assembler.

For a synopsis of the information presented in this chapter, we refer you
to the Id page in the XENIX Reference.

9.2 Using the Link Editor

The link editor is invoked with the following form:

Id [options] filenamel filename2 ...

where options are of the form described in the next section, and filename
must be either an object file or an archive library containing object files.

Input object files and archive libraries of object files are linked together
to form an executable file. If there are no unresolved references encoun­
tered, this file will then be made executable.

Object files have the form name.o throughout the examples in this
chapter. The names of actual input object files need not follow this con­
vention.

If you merely want to link the object files filel.o andfile2.o, then the fol­
lowing command is sufficient:

Id filel.o file2.o

No directives to ld are necessary. If no enors are encountered during the
link edit, the output is left on the default file a.out.

9.3 Link Editor Options

Input object files are linked in the order in which they are encountered.
Options may be interspersed with filenames on the command line. The
ordering of options is not significant.

Every option for Id must be preceded by a dash (-) on the ld command
line. Any options that canies an argument is separated from that

9-1

XENIX Programmer's Guide

argument by white space (blanks or tabs). The following is a summary of
all the available options:

-A num

-B num

-c num

-c

-D num

-F num

-g

-i

9-2

Creates a stand-alone program whose
expected load address (in hexadecimal) is
num. This option sets the absolute flag in the
header of the a.out file. Such program files
can only be executed as standalone pro­
grams.

Sets the text selector bias to the specific
hexadecimal number.

Alters the default target CPU in the x.out
header. num can be 0, 1, 2, or 3, indicating
8086, 80186, 80286 and 80386 processors,
respectively. The default on 8086/80286
systems is O. The default on 80386 systems
is 3. Note that this option only alters the
default. If object modules containing code
for a higher-numbered processor are linked,
then this will take precedence over the
default.

Ignores case when matching symbols. Nor­
mally, the link editor is case-sensitive.

Sets the data to the specific hexadecimal
number.

Sets the size of the program stack to num
bytes where num is hexadecimal. In pro­
grams configured with the -MO, -MI, or
-M2 option, this option changes the default
stack size of 1000 bytes (hexadecimal) to
num bytes (hexadecimal). In programs
configured with the -M3 option, the size of
the stack is automatically controlled by the
80386; the -F option is not needed in this
case. The -F option is incompatible with
the -A option.

Retains symbolic information for use with
the sdb(CP) debugging program.

Creates separate instruction and data spaces
for small model programs. When the output

-m map/tie

-Mx

-N pagesize

-n num

-0 name

-p

-r

-Rx num

Id: the XENIX Link Editor

file is executed, the program text and data
areas are allocated separate physical seg­
ments. The text portion will be read-only
and shared by all users executing the file.

Instructs the link editor to produce a mapfile
that contains a description of all the seg­
ments in the executable file as well as list­
ings of all public symbols and their values
(sorted by both name and value).

Informs the link editor of the nature of the
memory model. The model x may be s
(small), m (middle), I (large), h (huge), or e
(mixed). The arguments s, m, and I are
mutually exclusive.

Forces the alignment of each segment to
pagesize (which should be a multiple of
512) boundaries within the linker output
file. The default is 1024 for 80386 pro­
grams. 8086/80186/80286 programs do not
normally have page-aligned x.out files and
the default for these is O.

Instructs the link editor to truncate all sym­
bols to a length equal to the specified num.

Produces an output object file named name.
Overrides the default object file name a.out.

Do not pack segments. Normally, the link
editor attempts to pack all logical segments
that do not have a group association into the
same physical segment. This switch dis­
ables packing.

Produces a relocatable object module as
output.

Used in conjunction with the -M3s option to
relocate a data segment specified by the
num argument; added to the final target
value of data fixups. -Rt is used to relocate
text segments. The default for both data
and text segments is O. (This option applies
only to the 80386.)

9-3

XENIX Programmer's Guide

-s relocating

-S num

-u symname

-v num

Instructs the link editor to strip the line
number entries and the symbol table infor­
mation from the output object file.

Sets the maximum number of segments
allowed to num, which must be;:; 1024. The
default maximum is 128.

Enters symname as an undefined link editor
symbol in the symbol table. This is useful
for loading entirely from a library, since ini­
tially the symbol table is empty and an
unresolved reference is needed to force the
loading of the first routine.

Takes the specified number as a decimal
version number identifying the a.out that is
produced. The version stamp is 2, 3, or 5 for
the XENIX version and is stored in the sys­
tem header.

9.4 The Executable Object File

Object files are produced both by the assembler (typically as a result of
invoking the compiler) and by ld. ld accepts relocatable object files as
input and produces an output object file.

Files produced from the compiler/assembler always contain three seg­
ments, called _TEXT, _DATA, and _BSS . The _TEXT segment contains
the instruction text (e.g. executable instructions), the j)ATA segment
contains initialized data variables, and the _BSS (blank static storage)
segment contains uninitialized data variables. The following program
fragment will serve to illustrate:

int i = 100; /* initialized variable */
char abc[200]; /* uninitialized variable */

main()
{

abc[i] 0; /* assignment */

Compiled code from the assignment would be stored in _TEXT . The
variable i would be located in _DATA , and the uninitialized string of
characters abc would be located in the _BSS segment.

9-4

ld: the XENIX Link Editor

There is one exception to this rule: both initialized and uninitialized stat­
ics are placed in the _DATA segment.

9.5 Communal Variable Allocation

A communal variable is an uninitialized global variable. The link editor
follows a number of rules in allocation of communal variables. They are
as follows:

• If there are defined multiple communal variables of the same
name, the link editor chooses the length of the largest definition
and allocates that amount of space in the C_COMMON segment.

• If there is a definition of the variable that is initialized (a public
definition), it takes precedence over all communal definitions and
the link editor allocates the length specified by the PUBDEF in the
_DATA segment.

• If there is more than one public definition, the link editor generates
an error message saying that the symbol is multiply defined.

The following example illustrates these rules. Suppose you link the fol­
lowing three modules, containing these global declarations:

A: char headr[512];
B: char headr[128];
c: char headr[256];

The link editor recognizes all three object modules (A,B ,C) as containing
declarations for headr, an uninitialized array. Then ld chooses the
definition in module A as the largest of the three and allocates 512 bytes
for headr in the C_COMMON segment.

Now suppose that the declarations were as follows:

A: char headr[512];
B: char headr [128] = "adc";
c: char headr[256];

Module B's array has been initialized and, according to the rules followed
by ld, it takes precedence over all other declarations. 128 bytes are allo­
cated for headr in the segment _DATA.

Note that in this case, any subsequent addressing beyond headr[l27] will
have unpredictable results.

9-5

XENIX Programmer's Guide

The simplest way to avoid these dangers is to put all global declarations
in a single header file that is included in all modules that reference them.

9.6 Pointer and Integer Sizes

The following tables define the bit sizes of text and data pointers in each
program memory model enabled by the -MO, -Ml, or -M2 option.

Model

Small

Medium

Large

Huge

Table 9.1

8086/80286 Memory-Model
Text and Data Pointers

Data Pointer Text Pointer

16 16

16 32

32 32

32 32

Integer

16

16

16

16

The following table defines the bit sizes of text and data pointers in each
program memory model enabled by the -M3 option.

Model

Pure-Text Small

Table 9.2

80386 Memory-Model
Text and Data Pointers

Data Pointer Text Pointer

32 32

Integer

32

The following table lists the default text- and data-segment names, and
the default module na..rne for each object file created by the -MO, -Ml, or
-M2 option.

9-6

ld: the XENIX Link Editor

Table 9.3

8086/80286 Memory-Model Defaults

Model Text Data Module

Small _TEXT _DATA filename

Medium module_TEXT - DATA filename

Large module_TEXT - DATA filename

Huge module_TEXT - DATA filename

The following table lists the default text- and data- segment names and
the default module name for each object file created by the -M3 option.

Table 9.4

80386 Memory-Model Defaults

Model Text Data Module

Pure-Text Small _TEXT - DATA filename

9-7

XENIX Programmer's Guide

9.7 Segment and Register Sizes

The following table summarizes the structure of text and data segments
for the four possible program memory models enabled by the -MO, -MI,
or -M2 option.

Table 9.S

8086/80286 Memory-Models Summary

Model Text Data Segment Registers

Small l' l' CS=DS=SS

Medium 1 per module 1 DS=SS

Large 1 per module 1 DS=SS

Huge 1 per module 1 DS=SS

t In impure-text small-model programs, text and data occupy the same segment.
In pure-text programs, they occupy different segments and the register'CS != DS.

The following table summarizes the structure of text and data segments
for the two possible program memory models enabled by the -M3 option.

Table 9.6

80386 Memory-Model Summary

Model Text Data Segment Registers

Pure-Text Small 1 per module 1 CS! =DS,DS=ES=SS

9-8

Chapter 10

m4: A Macro Processor

10.1 Introduction 10-1

10.2 Invoking m4 10-2

10.3 Defining Macros 10-2

lOA Quoting 10-3

10.5 U sing Arguments 10-6

10.6 Using Built-in Arithmetic Values

10.7 Manipulating Files 10-8

10.8 Using System Commands 10-9

10.9 Using Conditionals 10-9

10.10 Manipulating Strings 10-10

10.11 Printing 10-11

10-7

m4: A Macro Processor

10.1 Introduction

The m4 macro processor defines and processes specially defined strings
of characters called macros. You can use the m4 macro processor to
enhance your programming language by defining a set of macros to be
processed by m4 and then using these macros in your programs. You can
supplement your programming language with these macros to make your
program more structured, readable, or appropriate for a particular applica­
tion.

The major function of the m4 macro processor is to replace one string of
text with another as is done by the #define statement in C or the define
construct in the ratfor(CP) command. Besides the straightforward
replacement of one string of text with another, m4 also provides:

• macros with arguments

• conditional macro expansions

• arithmetic expressions

• file-manipulation facilities

• string-processing functions

The basic operation of m4 is to copy its input to its output. As the input is
read, each alphanumeric string (that is, string of letters and digits) is
checked. If the string is the name of a macro, the name of the macro is
replaced by its defining text. The resulting string is reread by m4. Mac­
ros can also be called with arguments, in which case the arguments are
collected and substituted in the right places in the defining text before m4
rescans the text.

The m4 macro processor provides a collection of about twenty built-in
macros. In addition, the user can define new macros. This chapter
describes some of the most commonly used built-in macros and explains
how you can define your own macros. Built-in and user-defined macros
work exactly the same way, except that some of the built-in macros have
side effects on the state of the process. For more information about the
built-in macros, see m4(CP) in the XENIX Programmer's Reference.

10-1

XENIX Programmer's Guide

10.2 Invoking m4

To invoke m4, use a command of the form:

m4 [filenames]

Filename arguments are processed in order. If there are no arguments, or
if an argument is a dash (-), then the standard input is read. The processed
text is written to the standard output, and can be redirected as shown by
the following command:

m4 filel file2 - >outputfile

Note the use of the dash in the above example to indicate processing of
the standard input after filel andfile2 have been processed by m4.

10.3 Defining Macros

The primary built-in function of m4 is define, which is used to define new
macros. The following statement defines the name string as stuff.

define(name, stuff)

All subsequent occurrences of name will be replaced by stuff. Name must
be alphanumeric and must begin with a letter. (The underscore C) counts
as a letter.) The term stuff means any text, including text that contains
balanced parentheses; it may stretch over multiple lines. The following
example defines N to be 100 and uses this symbolic constant in a later if
statement:

define(N, 100)

if (i > N)

The left parenthesis must immediately follow the word define, to signal
that define has arguments. If a macro or built-in name is not followed
immediately by a left parenthesis it is assumed to have no arguments.
This is the situation for N, since it is actually a macro with no arguments.
Thus, when it is used, no parentheses are needed following its name.

10-2

m4: A Macro Processor

You should also notice that a macro name is only recognized as such if it
appears surrounded by nonalphanumerics, as shown in the following
statements:

define (N, 100)

if (NNN > 100)

The NNN variable is absolutely unrelated to the defined macro N, even
though it contains three N's.

Macro names or arguments can also be defined in terms of other names or
arguments. The following statements define M and N each to be 100:

define (N, 100)
define(M, N)

In m4, if M is defined as N or as 100, M is 100. Therefore, even if N sub­
sequently changes, M does not.

This behavior arises because m4 expands macro names into their defining
text as soon as it possibly can. This means that when the N string is seen,
as the arguments of define are being collected, it is immediately replaced
by 100. Therefore, you could have used the following statement in the
first place:

define (M, 100)

If this isn't what you want, there are two ways out of it. The first, which
is specific to this situation, is to interchange the order of the definitions as
shown in the statements below:

define (M, N)
define (N, 100)

Now M is defined as the string N, so when you ask for M later, you will
always get the value of N at that time (because the M will be replaced by
N, which, in tum, will be replaced by 100).

10.4 Quoting

The more general solution is to delay the expansion of the arguments of
define by quoting them. Any text surrounded by a grave accent and a sin­
gle quotation mark ('and') is not expanded immediately, but has the
marks stripped off. The following statements remove the punctuation

10-3

XENIX Programmer's Guide

marks from the N as the argument is being collected, but they have served
their purpose, and M is defined as the N string, not as 100:

define (N, 100)
define (M, 'N')

The general rule is that m4 always strips off one level of single quotation
marks whenever it evaluates something. This is true even outside of mac­
ros. If you want the word define to appear in the output, you have to quote
it in the input, as shown below:

'define' = 1;

As another similar instance, consider redefining N with the following
statements:

define (N, 100)

define (N, 200)

The N in the second definition is evaluated as soon as it is seen; that is, it
is replaced by 100, which is the same as the following statement:

define (100, 200)

This statement is ignored by m4, since you can only define things that
look like names, but it obviously doesn't have the effect you wanted. To
really redefine N, you must delay the evaluation by quoting as shown
below:

define (N, 100)

define ('N', 200)

In m4, it is often wise to quote the first argument of a #define statement.

If the acute and grave marks (~ and ') are not convenient for some reason,
you can change the marks with the built-in function cbangequote. For
example, the following statement defines the new quotation marks to be
the left and right brackets:

changequote ([,])

You can restore the original characters by typing:

changequote

10-4

m4: A Macro Processor

There are two additional built-in functions that are related to define. The
built-in function undefine removes the definition of some macro or built­
in function. The following statement removes the definition of N:

undefine ('N')

Built-in functions can be removed with undefine, as in the following
statement:

undefine ('define')

Note

Once you remove a built-in function, you cannot get it back.

The built-in function ifdef determines whether a macro is currently
defined. For instance, suppose that either xenix or unix is defined accord­
ing to a particular implementation of a program. To perform operations
according to the system you are using, you could use the following state­
ments:

ifdef('xenix', 'define(system,l)')
ifdef ('unix', 'define (system, 2)')

Don't forget the punctuation marks in the previous example.

The ifdef function actually permits three arguments; if the name is
undefined, the value of ifdef is then the third argument, as shown in the
following statement:

ifdef('xenix', on XENIX, not on XENIX)

10-5

XENIX Programmer's Guide

10.5 Using Arguments

So far you have learned the simplest form of macro-processing, that is,
replacing one string with another (fixed) string. User-defined macros can
also have arguments, so different invocations can have different results.
Within the replacement text for a macro (the second argument of its
define), any occurrence of $n will be replaced by the nth argument when
the macro is actually used. Thus, the bump macro, shown here, generates
code to increment its argument by 1:

define (bump, $1 = $1 + 1)

Therefore, calling the bump macro as shown below will cause x to
become x+l:

bump (x)

A macro can have as many arguments as you want, but only the first nine,
$1 to $9, are accessible. (The macro name itself is $0.) Arguments not
supplied are replaced by null strings, so you can define a macro, cat,
which simply concatenates its arguments, like this:

define (cat, $1$2$3$4$5$6$7$8$9)

Therefore, the following statement equals the expression xyz:

cat (x, y, z)

The arguments $4 through $9 are null, since no corresponding arguments
were provided.

Leading unquoted spaces, TABs, or Newlines that occur during argument
collection are discarded. All other white space is retained. Therefore, the
following statement defines a to be b c:

define (a, b c)

Arguments are separated by commas, but parentheses are counted prop­
erly, so a comma protected by parentheses does not terminate an areu­
ment. Therefore, in the statement below there are only two arguments;
the second is literally (b,c):

define (a, (b,c))

Of course, a bare comma or parenthesis can be inserted by quoting it.

10-6

m4: A Macro Processor

10.6 Using Built-in Arithmetic Values

The m4 processor provides two built-in functions for doing arithmetic on
integers. The simplest is incr, which increments its numeric argument by
1. Thus, to handle the common programming situation where you want a
variable to be defined as one more than N, use the following statements:

define(N, 100)
define (Nl, 'incr (N)')

Then N 1 is defined as one more than the current value of N.

The more general mechanism for arithmetic is a built-in called eval,
which is capable of arbitrary arithmetic on integers. It provides the fol­
lowing operators (in decreasing order of precedence):

Precedence

1

2

3

4

5

6
7

8

Operator

+

**

*
/
%
+

- -
!=
<
<=
>
>=

&
&&
I
II

Name

Arithmetic Addition
Arithmetic Negation
Exponential
Exponential
Multiplication
Division
Remainder
Addition
Subtraction
Equal
Not Equal
Less than
Less than or Equal to
Greater than
Greater than or Equal to
Logical NOT
Logical AND
Logical AND
Logical OR
Logical OR

You can use parentheses to group operations where needed. All the
operands of an expression given to eval must ultimately be numeric. The
numeric value of a true relation (like 1>0) is 1, and false is O. The preci­
sion in eval depends on the implementation.

10-7

XENIX Programmer's Guide

For example, suppose you want M to be 2**N+l, you can use the follow­
ing statements:

define(N, 3)
define (M, 'eval (2* *N+l) ,)

As a matter of principle, it is advisable to quote the defining text for a
macro unless it is very simple (for example, just a number); this usually
gives the result you want and is good programming form.

10.7 Manipulating Files

You can include a new file in the input at any time by using the built-in
function include. The following statement inserts the contents of
filename in place of the include command:

include(filename)

The contents of the file are often a set of definitions. The value of
include (that is, its replacement text) is the contents of the file.

It is a fatal error if include cannot access the file named. To get some
control over this situation, you can use the alternate form sinclude. Sin­
clude (silent include) says nothing and continues if it can't access the file.

You can also divert the output of m4 to temporary files during processing
and output the collected material upon command. The m4 macro proces­
sor maintains nine of these diversions, numbered 1 through 9. The fol­
lowing statement puts all subsequent output at the end of a temporary file
referred to as n:

divert(n)

Diverting to this file is stopped by another divert command; in particular,
divert or divert(O) resumes the normal output process.

Diverted text is normally output all at once at the end of processing, with
the diversions output in numeric order. It is possible, however, to bring
back diversions at any time, that is, to append them to the current diver­
sion using the following statement:

undivert

10-8

m4: A Macro Processor

This brings back all diversions in numeric order, and undivert with argu­
ments brings back selected diversions in a given order. The act of
undiverting discards the diverted text, as does diverting into a diversion
whose number is not between 0 and 9, inclusive. The value of un divert is
not the diverted text. Furthermore, the diverted material is not rescanned
for macros.

The built-in divnum function returns the number of the currently active
diversion. This is zero during normal processing.

10.8 Using System Commands

You can run any program in the local operating system with the built-in
syscmd function. For example, the following statement runs the date
command:

syscmd(date)

Normally, syscmd would be used to create a file for a subsequent include
command.

To make unique filenames easily, the built-in function maketemp is pro­
vided with specifications identical to the system function mktemp. A
string of "XXXXX" in the argument is replaced by the process ID of the
current process.

10.9 Using Conditionals

There is a built-in conditional called ifelse that enables you to perfoim
arbitrary conditional testing. In the simplest form, the following state­
ment compares the two strings a and b:

ifelse (a, b, c, d)

If a and b are identical, ifelse returns the string c; otherwise, it returns d.
Therefore, you might define a macro called compare, which compares
two strings and returns "yes" if they are the same or "no" if they are
different, as shown:

define (compare, 'ifelse($l, $2, yes, no)')

Note the quotation marks, which prevent the premature evaluation of
ifelse. If the fourth argument is missing, it is treated as empty. Ifelse can
actually have any number of arguments, and thus provides a limited form
of multiple-decision capability. For example, the following statement

10-9

XENIX Programmer's Guide

compares the a and b strings. If they match, the result is c, and if d is the
same as e, the result isf. Otherwise, the result is g.

ifelse(a, b, c, d, e,f, g)

If the final argument is omitted, the result is null, so the following state­
ment evaluates to c if a matches b, and to null otherwise.

ifelse (a, b, c)

10.10 Manipulating Strings

The built-in len function returns the length of the string that makes up its
argument. The following statement will return a value of 6:

len (abcdef)

All characters within the parentheses are counted, so the following state­
ment will return a value of 5:

len ((a,b))

The built-in substr function produces substrings of strings. The follow­
ing statement returns the substring of s that starts at position i (origin
zero) and is n characters long:

substr(s,i,n)

If n is omitted, the rest of the string is returned, so the following statement
will return the string "ow is the time":

substr ('now is the time', 1)

If i or n is out of range, various things result. For example, the following
statement returns the index (position) in sl where the string s2 occurs, or
-1 if it doesn't occur:

index (si , s2)

As with the substr function, the origin for strings is O.

The built-in translit command perfonns character transliteration. The fol­
lowing command modifies s by replacing any character found in j with
the corresponding character of t:

translit(s,j, t)

10-10

m4: A Macro Processor

The following statement replaces the vowels with the corresponding
digits:

translit(s, aeiou, 12345)

If t is shorter than/, characters that don't have an entry in t are deleted, as
a limiting case. If t is not present at all, characters from f are deleted
from s. Therefore, the following statement deletes vowels from "s":

translit(s, aeiou)

There is also a built-in function called dnl which deletes all characters
that follow it up to and including the next Newline. It is useful for throw­
ing away empty lines that otherwise tend to clutter up m4 output. For
example, if you use any of the following statements, the Newline charac­
ter at the end of each line is not part of the definition, so it is copied into
the output where it may not be wanted:

define (N, 100)
define (M, 200)
define (L, 300)

If you add dnl to each of these lines, the Newline characters will disap­
pear.

The following statements illustrate another way to eliminate unwanted
Newline characters:

divert (-1)
define (...)

divert

10.11 Printing

The built-in command errprint writes its arguments out on the standard
error file. Thus, you can use the statement below to print a "fatal error"
message:

errprint ('fatal error')

The dumpdef function is a debugging aid that dumps the current
definitions of defined terms. If there are no arguments, you get every­
thing; otherwise, you get the ones you name as arguments. Don't forget
the punctuation marks.

10-11

Chapter 11

sdb: The Symbolic Debugger

11.1 Introduction 11-1

11.2 Using sdb 11-1
11.2.1 Starting sdb with a Program File 11-2
11.2.2 Starting sdb with a Core Image 11-2
11.2.3 Printing a Stack Trace 11-4
11.2.4 Examining Variables 11-4
11.2.5 Specifying Variable Formats 11-5
11.2.6 Leaving sdb 11-6

11.3 Displaying and Manipulating Source Files 11-6
11.3.1 Displaying the Source File 11-6
11.3.2 Setting the Current File or Function 11-7
11.3.3 Setting the Current Line 11-7
11.3.4 Searching for Regular Expressions 11-8

11.4 Controlling Program Execution 11-9
11.4.1 Setting and Deleting Breakpoints 11-9
11.4.2 Single Stepping through a Program 11-10
11.4.3 Running the Program 11-11
11.4.4 Calling Functions and Procedures 11-12

11.5 Debugging Machine-Language Programs 11-13
11.5.1 Displaying Machine-Language Statements 11-13
11.5.2 Manipulating Registers 11-13

11.6 Using XENIX Shell Commands 11-13

11.7 A Sample sdb Session 11-14

sdb: The Symbolic Debugger

11.1 Introduction

This chapter describes a symbolic debugger sdb(CP), as implemented for
C and assembly language programs on the XENIX operating system.

You can use the sdb program both for examining core images of aborted
programs and for providing an environment in which execution of a pro­
gram can be monitored and controlled. The sdb program allows you to
interact with a debugged program at the source language level. It care­
fully controls the execution of a program while letting you examine and
modify the program's data and text areas.

This chapter explains how to use sdb. In particular, it explains how to:

• Start and stop the debugger

• Display and manipulate instructions and data in source files

• Control and monitor program execution

• Debug machine language programs

A tutorial provided at the end of this chapter shows you how to work your
way through your program using sdb.

11.2 Using sdb

The sdb program provides a powerful set of commands to let you exam­
ine, debug, and repair source files. To realize the full power of sdb, you
need to compile the source program with the -Zi option using a command
of the following form:

cc -Zi prgm.c

This causes the compiler to generate additional information about the
variables and statements of the compiled program. When the -Zi option
has been specified, sdb can be used to obtain a trace of the called func­
tions at the time of the abort and interactively display the values of vari­
ables.

There are two basic ways to use sdb: by running your program file under
control of sdb, or by using sdb to examine the core image file left by a
program that failed. The first way lets you see what the program is doing
up to the point at which it fails (or skip around the failure point and
proceed with the run). The second method lets you check the status at the
moment of failure, which mayor may not disclose the reason the program
failed. Both of these methods are discussed in the following sections.

11-1

XENIX Programmer's Guide

11.2.1 Starting sdb with a Program File

You can debug any executable C or assembly language program file by
typing a command line of the following form:

sdb [filename]

where filename is the name of the program file to be debugged. The sdb
program opens the file and prepares its text (instructions) and data for
subsequent debugging. For example, the following command prepares
the program named sample for examination and execution:

sdb sample

Once started, sdb prompts with an asterisk (*) and waits for you to type
commands. If you have given the name of a file that does not exist or is in
the wrong format, sdb will display an error message first, then wait for
commands.

You can also start sdb without a filename. In this case, sdb searches for
the default file a.out in your current working directory and prepares it for
debugging. Thus, the following command:

sdb

is the same as typing:

sdb a.out

The sdb program displays an error message and waits for a command if
the a.out file does not exist.

11.2.2 Starting sdb with a Core Image

The sdb program lets you examine the core image files of programs that
caused fatal system errors. When debugging a core image from an
aborted program, sdb reports which line in the source program caused the
error, and allows all variables to be accessed symbolically and displayed
in the correct format.

To illustrate the process of debugging a core image file, we will use a
hypothetical file called prgm.c and show a typical set of commands and
responses for this process. First, you must compile and execute the pro­
gram by typing the following:

cc -zi prgm.c -0 prgm

11-2

sdb: The Symbolic Debugger

To execute the program, type:

prgm

For this example, suppose that an error occurred while executing the pro­
gram, causing a core dump. The output resulting from this error is:

Bus error - core dumped

Now invoke the sdb program and examine the core dump to determine
the causes of the error using the following command:

sdb prgm

A possible response from the sdb program is:

rna in: 25 : x [i] = 0 ;

*

This output means that the bus error occurred in function main at line 25
and outputs the source text of the offending line. Note that line numbers
are always relative to the beginning of the file, not the beginning of the
program. The sdb program then prompts the user with an *, which
signifies waiting for a command.

It is useful to know that sdb uses a notion of current function and current
line. In this example, they are initially set to main and 25, respectively.

In the example shown in this section, sdb was called with one argument,
prgm. In general, it takes two arguments on the command line:

1. The first is the name of the executable file that is to be debugged;
it defaults to a.out when not specified.

2. The second is the name of the core file, defaulting to core. You
can prevent sdb from opening this file by using the hyphen (-) in
place of the core filename.

In the example, the second argument defaulted to the correct value, so
only the first was specified.

If the error occurred in a function that was not compiled with the -Zi
option, sdb prints the function name and the address at which the error
occurred. The current line and function are set to the first executable line
in main. If main was not compiled with the -Zi option, sdb will print an
error message, but you can continue to debug for those routines that were
compiled with the -Zi option.

11-3

XENIX Programmer's Guide

A sample sdb session with more examples is shown at the end of this
chapter.

11.2.3 Printing a Stack Trace

When you are debugging a program, it is often useful to obtain a listing of
the function calls that led to the error. You can obtain this listing by typ­
ing the t command in response to the sdb prompt:

*t

Possible output from the t command might be:

SampMod (), line 1758
decode (520022), line 1829
main (2,519960), line 2057
_start ()

This indicates that the program was stopped within the function Samp­
Mod at line 1758. The decode function was called with argument
520022 at line 1829. The main function was called with the arguments 2
and 519960 at line 2057. The main function is usually called by a startup
routine with two arguments referred to as argc and argv. Note that argv
is a pointer and that the values of both arguments are printed in the
current radix, which is decimal.

11.2.4 Examining Variables

The sdb program can be used to display variables in the stopped program.
Variables are displayed by typing their names and pressing Return. To
display the value of variable errflag, type the following command:

errflag

To display the variable as a two-byte decimal value, type its name fol­
lowed by a slash:

errflag/

Unless otherwise specified, variables are assumed to be either local to, or
accessible from, the current function.

11-4

sdb: The Symbolic Debugger

11.2.5 Specifying Variable Formats

The sdb program normally displays the variable in a format determined
by its type as declared in the source program. To request a different for­
mat, place a specifier after the slash. The specifier consists of a length
option followed by the format. The length specifiers are as follows:

Specifier

b

h

I

Length

One byte

Two bytes (half word)

Four bytes (long word)

The length specifiers are effective only with the formats d, 0, x, and u. If
no length is specified, the word length of the host machine is used. A
number can be used with the s or a format to control the number of char­
acters printed. The s and a formats normally print characters until either
a null is reached or 128 characters have been printed. The number
specifies exactly how many characters should be printed. The available
format specifiers are described as follows:

Specifier

c

d

u

o

x

f

g

s

a

Format

character

decimal

decimal unsigned

octal

hexadecimal

32-bit single-precision floating point

64-bit double-precision floating point

assumes variable is a string pointer and prints
characters starting at the address pointed to by the
variable until a null is reached

prints characters starting at the variable's address
until a null is reached

interprets as a machine-language instruction

For example, to display the hexadecimal value of the variable flag, type

*flag/x

11-5

XENIX Programmer's Guide

The sdb program also knows about structures, arrays, and pointers so that
all of the following commands work:

*array [2] [3] /
*sym. id/
*psym->usage/
*xsym[20] .p->usage/

11.2.6 Leaving sdb

To exit sdb and return to the system shell, use the q or quit command.

11.3 Displaying and Manipulating Source Files

The sdb program makes it easy to debug a program without constant
reference to a current source listing. Features are provided that perform
context searches within the source files of the program being debugged
and that display selected portions of the source files. The commands are
similar to those of the line editor ed. Like ed, sdb uses a notion of current
file and line within the current file. The sdb program also knows how the
lines of a file are partitioned into functions, so it also uses a notion of
current function. As noted in other parts of this document, the current
function is used by a number of sdb commands.

11.3.1 Displaying the Source File

Four commands exist for displaying lines in the source file. They are use­
ful for examining the source program and for determining the context of
the current line. The commands are

11-6

Command Description

p Displays the current line.

w Displays a window of ten lines around the current line.

z Displays ten lines starting at the current line.
Advances the current line by ten.

Ctrl-D Scrolls. Displays the next ten lines and advances the
current line by ten. This command is used to display
cleanly long segments of the program.

sdb: The Symbolic Debugger

When a line from a file is displayed, it is preceded by its line number.
This not only gives an indication of its relative position in the file, but is
also used as input by some sdb commands.

11.3.2 Setting the Current File or Function

You can use the e command to change the current source file. For exam­
pIe, you can change the current file to file.c by typing:

*e file.c

In the above example, the current line is also set to the first line in the
specified file.

You can also specify that you want a file containing a certain function to
become the current file. For example, to change the current file to the file
containing junction, type:

*e function

This command also causes the first line of the function specified to
become the current line.

To display the current function and file, use the e command with no argu­
ments.

11.3.3 Setting the Current Line

There are several ways to change the current line in the source file. It
may be helpful for you to refer to the XENIX User's Guide if you are
unfamiliar with the concept of current line.

The + and - commands can be used to move the current line forward or
backward by a specified number of lines. Typing a new line advances the
current line by one, and typing a number causes that line to become the
current line in the file. For example, to advance the current line by 15 and
then print ten lines, use the following command line:

*15+z

When you use the z or Ctrl-D command to display data, it also sets the
current line to the last line displayed.

11-7

XENIX Programmer's Guide

11.3.4 Searching for Regular Expressions

There are two commands for searching for instances of regular expres­
sions in source files. To search forward through a file for a line containing
a string that matches a regular expression, type:

*/regular expression

To search backward through a file for a line containing a string that
matches a regular expression, type:

*?regular expression

To show all variables beginning with x, type:

* /x*/

To show all two letter variables in function sub, type:

* /sub:??/

To show all the variables in the current function, type:

*/

To display location 1024 in decimal representation, type:

*1024/

To display the address of the variable foo, type:

*foo=

To redisplay the last variable typed, type:

*./

11-8

sdb: The Symbolic Debugger

11.4 Controlling Program Execution

One very useful feature of sdb is breakpoint debugging. After you have
entered sdb, breakpoints can be set at certain lines in the source program.
The program is then started with an sdb command. Execution of the pro­
gram proceeds as normal until it is about to execute one of the lines
where a breakpoint has been set. The program stops and sdb reports the
breakpoint where the program stopped. Now, sdb commands can be used
to display the trace of function calls and the values of variables. If the
user is satisfied that the program is working correctly to this point, some
breakpoints can be deleted and others set and program execution can be
continued from the point where it stopped. .

11.4.1 Setting and Deleting Breakpoints

You can set breakpoints at any line in any function if your program has
been compiled correctly. You will use the b command to set breakpoints.
To set a breakpoint at line 12 in the current file, type:

*12b

The line numbers are relative to the beginning of the file as printed by the
source-file display commands: p, w, z, and Ctrl-D.

To set a breakpoint at line 12 of function proc, type:

*proc:12b

To set a breakpoint at the first line of function proc, type:

*proc:b

To set a breakpoint at the current line, type:

*b

You can delete breakpoints in the same way that you set them using the d
command. To delete a breakpoint at line 12 in the current file, type:

*12d

To delete a breakpoint at line 12 of function proc, type:

*proc:12d

11-9

XENIX Programmer's Guide

To delete a breakpoint at the first line of function proc, type:

*proc:b

To delete breakpoints interactively, type the d command with no argu­
ments. The sdb program prints the location of each breakpoint and waits
for a response from the user. If you respond with a y or d, the breakpoint
is deleted.

To print a list of all the current breakpoints, use the B command. To
delete all the current breakpoints, use the D command.

You can also use the breakpoint command to perform automatically a
sequence of commands at a breakpoint and then have execution continue.
For example, if you want both a stack back trace and the value of x to be
displayed each time execution gets to line 12, type:

*12b t;x/

The a command also lets sdb perform debugging functions. If you want
to set a breakpoint and announce the breakpoint by printing the top line of
the stack trace, type:

*proc: a

If you want to set a breakpoint at a given line in a procedure and
announce the breakpoint by printing the current line, type:

*proc: 12a

When you are using the a command, execution continues after the func­
tion name or source line is printed.

11.4.2 Single Stepping through a Program

A useful alternative to setting breakpoints is single-stepping through a
program. The sdb program can be requested to execute the next line of
the program and then stop using the s command. The command has the
following form:

[count]s

where count is the number of lines to execute in each step. This com­
mand is useful for slowly executing the program to examine its behavior
in detail.

11-10

sdb: The Symbolic Debugger

The S command is similar to the s command, but it steps through the sub­
routine calls, rather than execute only one line. It is often used when you
are confident that the called function works correctly but you are
interested in testing the calling routine.

Single-stepping is especially useful for testing new programs, so they can
be verified on a statement-by-statement basis. If an attempt is made to
single-step through a function that has not been compiled with the -Zi
option, execution proceeds until a function that has been compiled this
way is reached .

You can use the i command to run the program one machine-level instruc­
tion at a time while ignoring the signal that stopped the program. Its uses
are similar to the s command. The I command is similar to the i com­
mand except that it steps through the call instructions, rather than execute
only one line. These machine-level commands are particularly useful
when you have not compiled your program with the necessary options.

For more information on the single-stepping commands, see sdb(CP) in
the XENIX Programmer's Reference.

11.4.3 Running the Program

The r command is used to begin program execution. This command lets
you restart the program as if it were invoked from the shell. For example,
to run the current program with given arguments, use the following com­
mandform:

*r args

If no arguments are specified, then the arguments from the last execution
of the program within sdb are used. To run a program with no arguments,
use the R command.

After the program is started, execution continues until a breakpoint is
encountered, a signal such as Interrupt or Quit occurs, or the program ter­
minates. In all cases after an appropriate message is printed, control
returns to the user.

To continue execution of a stopped program, use the c command. You
can also use the c command to insert a temporary breakpoint during exe­
cution. For example, to place a temporary breakpoint at line 12 and
resume execution of a stopped program, type:

*proc:12c

11-11

XENIX Programmer's Guide

The temporary breakpoint is deleted when the c command finishes.

If you want the signal that stopped program execution to be passed back
to the program, use the C command. This is useful for testing user­
written signal handlers.

You can continue execution at a specified line with the g command. For
example, you can continue program execution at line 17 of the current
function with the following command:

*17 g

This is useful when you want to avoid a section of code that you already
know is bad. You should not attempt to continue execution in a function
different from that of the breakpoint.

11.4.4 Calling Functions and Procedures

It is possible to call any of the functions or procedures in the program
from sdb. This feature is useful both for testing individual functions with
different arguments and for calling a user-supplied function to display
structured data. To execute a function or procedure, use a command of
the following form:

*proc (arg1, arg2, ...)

This command will display the return value of the function using the
default format for the type of function called. To call a function, display
the value that it returns, and specify the format in which the value is to be
displayed, type:

*proc (arg1, arg2, ...) 1m

The value is displayed in decimal unless some other format is specified
by m. Arguments to functions can be integer, character or string con­
stants, or variables that are accessible from the current function.

If a function is called when the program is not stopped at a breakpoint
(such as when a core image is being debugged), all variables are initial­
ized before the function is started. This makes it impossible to use a
function that formats data from a dump.

11-12

sdb: The Symbolic Debugger

11.5 Debugging Machine-Language Programs

The sdb program has facilities for examining programs at the machine­
language level. It is possible to print the machine-language statements
associated with a line in the source and to place breakpoints at arbitrary
addresses. The sdb program can also be used to display or modify the
contents of the machine registers. '

11.5.1 Displaying Machine-Language Statements

To display the machine-language statements associated with line 25 in
function main, use the following command:

*rnain:25?

The ? command is identical to the / command except that it displays
from text space. The default format for printing text space is the i format,
which interprets the machine language instruction. To print the next ten
instructions, press Ctrl-D.

11.5.2 Manipulating Registers

The x command displays the values of all the registers. For example, to
display the value of all the registers, type:

*x

To display the value of a specific register (reg), type:

@reg

11.6 Using XENIX Shell Commands

The ! command (when used immediately after the * prompt) performs the
same function as it does in ed(C). It lets you temporarily escape from sdb
to execute a shell command. After the command executes, control. is
returned to the sdb program.

11-13

XENIX Programmer's Guide

The ! can also be used to change the values of variables when the pro­
gram is stopped at a breakpoint. To set a specified variable to a specified
value, use the following command:

*variable ! value

The value can be a number, a character constant, or the name of another
variable. If the variable is of type float or double, the value can also be a
floating-point constant (specified according to the standard C language
fom1at).

11.7 A Sample sdb Session

This section provides a sample sdb session to show you how to to debug a
program using sdb.

1. Before we can begin the sdb session, you must create a source file
named sampie.c with the contents as follows:

11-14

/*

* Program usage: Try number [number]
*
* Program echoes its numerical arguments
*/

#include <stdio.h>

struct node
int val;
struct node *

} ;

struct node First;

main (argc,argv)
int argc;
char **argv;
{

register int i;

next;

First.val = atoj (argv[l]);

for (i = 2; i < argc; i++) {
attach (&First, atoi(argv[i]));

traverse(&First);

sdb: The Symbolic Debugger

(continued)

attach (leaf, num)
struct node *leaf;
int num;
{

while (leaf->next != (struct node *) NULL) {
leaf = leaf->next;

leaf->next = (struct node *) malloc(sizeof(struct node));
leaf = leaf->next;
leaf->val = num;
leaf->next = (struct node *) NULL;
return (num) i

traverse (leaf)
struct node *leafi
{

while (leaf != (struct node *) NULL) {
printf ("%d It, leaf->val) i

leaf = leaf->nexti
}
put char ('\n') ;

2. You must compile the sample program using the -Zi option so
that you can use the full capabilities of the sdb commands dur­
ing this session. To compile the sample.c program, type:

cc -Zi sample.c

3. To rename the resulting executable object file from a.out to
sample, type:

mv a.out sample

4. To begin the sdb session, type:

sdb sample -

Please note that since you do not want sdb to examine the core
file associated with sample, a hyphen (-) has been specified here
to prevent this. The sdb program displays the following mes­
sage:

Core file ignored

11-15

XENIX Programmer's Guide

5. It is useful to set breakpoints anywhere in your program that
you suspect to be the trouble spot. For example, set a break­
point at the start of function attach by typing:

*attach:b

The sdb program displays the following message:

attach: 30

This message means that the function attach starts at line 30.

6. Start executing the program by typing:

*r 10 20 30 40

The sdb program displays the following message:

sample
Breakpoint at
attach: 30 struct node *leaf;

7. When debugging a program, it is often useful to obtain a listing
of the function calls that led to the error. To do this, type:

*t

The sdb program displays the following message:

attach (25691632,20), line 30
main (5,25685724), line 24
start ()

8. It is useful to peruse the source program to determine the con­
text of the current line. To do this, display the next ten lines of
the source file using the following command:

*z

The sdb program displays:

30:struct node *leaf;
31:int num;
32: {
33:
34:
35:

register struct node *p;
struct node *q;

36: while (leaf->next != (struct node *) NULL) {
37: leaf = leaf->next;
38:
39: leaf->next = (struct node *) malloc(sizeof(struct node));

11-16

sdb: The Symbolic Debugger

9. It is often useful to step through a program, line by line, while it
is executing to examine its behavior in detail. To do this, type:

*s

The sdb program displays:

36: while (leaf->next != (struct node *) NULL) {

Type the single step-command again:

*s

The sdb program displays:

39:leaf->next = (struct node *) malloc(sizeof(struct node»;

Continue using this command until you have examined all the
lines of the program that are of interest to you:

*s

The sdb program displays the following:

40: leaf = leaf->next;

10. An important alternative to the s command is the S command.
This command steps through the program a line at a time but
when it encounters a function call, it executes the function. To
do this, type:

*8

The sdb program displays the following:

41: leaf->val = nUffi;

11. You can single step through the program for a specified number
of lines. To step through the next 10 lines of the program, type:

*10s

11-17

XENIX Programmer's Guide

The sdb program displays the following:

41: leaf->val = num;
42: leaf->next = (struct node *) NULL;
43: return(num);
44: }
25:
24: attach (&First, atoi(argv[i]));
30:struct node *leaf;
36: while (leaf->next != (struct node *) NULL)
37: leaf = leaf->next;
38:

12. The sdb program can display the current value of variables used
in the program. For example, you can display the value of the
variable leaf->val by typing:

*leaf->val

The sdb program displays the following:

20

13. You can use the x command to display the contents of all the
registers in your program. To do this, type:

*x

The sdb program displays register information in the following
format:

eax=01881004 ebx=OOOOOOOO ecs=OOOOOOlE edx=OOOOOOOO
esp=0187EE74 ebp=0187EE88 esi=00000003 edo=0187EF74
ds=0047 es=0047 fs=003F gs=003F ss=0047 NV UP EI PL NZ NA PO NC
38: }
003F:0000011C 55 E9E5FFFFFFFF jrnpstartO+86 (00000106)

14. You can use sdb to change the values of variables when your
program is stopped at a breakpoint. To set the value of leaf­
>val to 99, type:

*leaf->val!99

15. Display the new value of leaf->val. To do this, type:

*leaf->val

11-18

sdb: The Symbolic Debugger

The sdb program displays the following:

99

16. Continue executing the program until the next breakpoint is
reached. To do this, type:

*c

The sdb program displays the following:

Breakpoint at
_attach: 30 struct node *leafi

17. When you have finished debugging your program, you will
want to delete all the breakpoints in it. To do this, type:

*D

The sdb program displays the following:

All breakpoints deleted

18. Continue executing your program until it has finished running.
To do this, type:

*c

When program execution is complete, the sdb program displays
the following:

10 99 30 40

Process terminated normally (5)

When you are ready to leave sdb, type the following command:

*q

This officially ends your sdb session.

11-19

Appendix A

XENIX System Calls

A.I Introduction A-I

A.2 Executable File Format A-I

A.3 Revised System Calls A-2

AA Version 7 Additions A-4

A.5 Changes to the ioctl Function A-4

A.6 Pathname Resolution A-4

A.7 Using the mountO and chownO Functions A-5

A.8 Super-Block Format A-5

A.9 Separate Version Libraries A-5

XENIX System Calls

A.I Introduction

Note that in this chapter, XENIX 2.3 refers to an older version of XENIX.
This is separate from XENIX System V version 2.3. All references to
XENIX System V in this chapter include all releases of System V. All
references to XENIX 2.3 refer to the pre-System V release numbering.

This appendix lists some of the differences among XENIX 2.3, XENIX 3.0,
UNIX V7, UNIX System 3.0 and XENIX System V (all releases). It is
intended to aid users who wish to convert system calls in existing applica­
tion programs for use on other systems.

A.2 Executable File Format

XENIX 3.0, UNIX System 3.0, and XENIX System V execute only those
programs with the x.out executable file format. The format is similar to
the old a.out format, but contains additional information about the execut­
able file such'as:

• text and data relocation bases

• target machine identification

• word and byte ordering

• symbol table

• relocation table format

• the revision number of the kernel which is used during execution
to control access to system functions

XENIX System V has a segmented x.out header which contains segmenta­
tion information, as well as relocation information. To execute existing
programs in a.out format, you must first convert to the x.out format. The
format is described in detail in a.out(F) in the XENIX User's Reference.

XENIX System V uses little-endian (low order word first in memory)
word order for longs whereas some XENIX 3.0 systems use big-endian
(high order word first in memory) word order. XENIX System V checks
the x.out header for information about the word order. XENIX System V
maintains full XENIX 3.0 binary compatibility. XENIX System V exe­
cutes XENIX 3.0 word-swapped (big-endian) executable files as well as
XENIX 3.0 and XENIX System V (little-endian) executables.

A-I

XENIX Programmer's Guide

A.3 Revised System Calls

Some system calls in XENIX System V and UNIX System V have been
revised and do not perlorm the same tasks as the corresponding calls in
previous systems. To provide compatibility for old programs, XENIX Sys­
tem V and UNIX System V maintain both the new and the old system
calls and automatically check the revision information in the x.out header
to determine which version of a system call should be made.

The following table lists the revised system calls and their previous ver­
sions:

System Call # XENIX2.3 System 3 System V
function function function

35 ftime unused unused
38 unused clocal clocal
39 unused setpgrp setpgrp
40 unused cxenix cxenix
57 unused utssys utssys
62 clocal fcntl fcntl
63 cxenix ulimit ulimit

The cxenix function provides access to system calls unique to XENIX 3.0
and XENIX System V. The clocal function provides access to all calls
unique to an OEM.

The new XENIX System V system calls are accessed by means of cxenix
system calls with their numbers. Note that these numbers are not regular
system call numbers, but cxenix numbers. To use these calls, make the
cxenix system call, with the high byte set to the appropriate number listed

A-2

XENIX System Calls

below. For example, to call locking, take 40, add 256* 1 to it, and pass
the resulting value in register ax when trapping into the kernel. The fol­
lowing table lists the XENlX 3.0 and XENIX System V system calls:

cxenix Call # Description

o shutdown as
1 record locking
2 create semaphore
3 open semaphore
4 signal semaphore
5 wait semaphore
6 nonblocking waitsem
7 blocking read check
8 set stack limit
9 extended ptrace
10 change file size
11 XENlX 2.3 ftime call
12 sleep for short interval
13 attach to shared data
14 release shared data
15 enter critical region
16 leave critical region
17 get shared data version #
18 wait for new shared data version

System Call

shutdown
locking
creatsem
opensem
sigsem
waitsem
nbwaitsem
rdchk
stkgrow
xptrace
chsize
ftime
nap
sdget
sdfree
sdenter
sdleave
sdgetv
sdwaitv

The following calls are found in XENIX System V only:

cxenix Call # Description

19 change segment size
22 message control
23 get message queue
24 send message
25 receive message
26 semaphore control
27 get semaphore set
28 semaphore ops
29 sys V shared memory control
30 sysV create shared memory
31 sysVattach shared memory

System Call

brkctl
msgctl
msgget
msgsnd
msgrcv
semctl
semget
semop
shmctl
shmget
shmat

A-3

XENIX Programmer's Guide

A.4 Version 7 Additions

XENIX System V maintains a number of XENIX 3.0 and UNIX V7
features that were dropped from UNIX System 3.0. In particular, XENIX
System V continues to support the dup2(S) and ftime(S) functions. The
ftime function, used with the etime(S) function, provides the default
value for the time zone when the TZ environment variable has not been
set. This means a binary configuration program can be used to change the
default time zone. No source license is required.

A.S Changes to the ioetl Function

XENIX 3.0 and UNIX System 3.0 have full sets of XENIX 2.3-compatible
ioetl calls. Furthermore, XENIX 3.0 and XENIX System V have resolved
problems that previously hindered UNIX System 3.0 compatibility. For
convenience, XENIX 2.3-compatible ioet} calls can be executed by a
UNIX System 3.0 executable. The available XENIX 2.3 ioet} calls are:

TIOCSETP

TIOCGETP

TIOCGETC

TIOCNXCL

TIOCFLUSH

TIOCSETD

A.6 Pathname Resolution

TIOCSETN

TIOCSETC

TIOCEXCL

TIOCHPCL

TIOCGETD

If a null pathname is given, XENIX 2.3 interprets the name to be the
current directory, but UNIX System 3.0 considers the name to be an error.
XENIX 3.0 and XENIX System V use the version number in the x.out
header to determine what action to take. A XENIX 2.3 header causes null
pathnames to be the current directory. Any other version is interpreted as
an error.

If the symbol" .. " is given as a pathname when in a root directory that
has been defined using the ehroot(S) function, XENIX 2.3 moves to the
next higher directory. XENIX 3.0 also lets the " .. " symbol move the
current working directory to the next higher directory, but restricts its use
to the super user. XENIX System V does not let the" .. " symbol move
the current working directory to the next higher directory.

A-4

XENIX System Calls

A.7 Using the mountO and chownO Functions

XENIX 3.0, and UNIX System 3.0 restrict the use of the mount(S) system
call to the super user. XENIX System V does not restrict the use of the
mount system call. However, usually the mount(C) function is only exe­
cutable by the super-user. Also, XENIX System V, XENIX 3.0 and UNIX
System 3.0 let the owner of a file use the chown(S) function to change the
file ownership.

A.8 Super-Block Format

XENIX System V, UNIX System 3.0 and UNIX System 5.0 have new super
block formats. XENIX System V and XENIX 3.0 use the System 5.0 for­
mat, but use a different magic number for each revision. The XENIX Sys­
tem V and XENIX 3.0 super blocks each have an additional field at the
end that can be used to distinguish between XENIX 2.3, 3.0 and System V
super blocks. XENIX System V and XENIX 3.0 check this magic number
at boot time and during a mount. IfaXENIX 2.3 super block is read,
XENIX 3.0 converts it to the new format internally. Similarly, ifaXENIX
2.3 super block is written, XENIX 3.0 converts it back to the old format.
This permits XENIX 2.3 kernels to be run on file systems also usable by
UNIX System 3.0.

However, XENIX System V is word-swapped relative to XENIX 3.0. Even
though the super block formats are the same, the order of bytes in long
words is different. XENIX System V's mount(C) and fsck(C) commands
cannot be used to mount or check XENIX 3.0 filesystems.

A.9 Separate Version Libraries

XENIX System V supports the construction of XENIX 3.0 executable files.
This systems maintains both the new and the old versions of system calls
in separate libraries.

A-5

Appendix B

Kernel Error Messages

B.l Introduction B-1

B.2 Infonnational Messages B-1
B.2.1 Memory Layout Messages B-1
B.2.2 Boot Sequence Messages B-2

B.3 Warning Messages B-2

B.4 Panic Messages B-5
B.4.1 Kernel Panic Messages B-5
B.4.2 286 Panic Messages B-7
B.4.3 386 Panic Messages B-8

Kernel Error Messages

B.1 Introduction

This appendix lists the messages that the XENIX kernel displays while
booting or running the operating system.

The XENIX system error messages fall into three categories:

• informational messages that give you information about memory
layout and the status of the boot sequence,

• warning messages that are informational only, and do not prevent
the XENIX kernel from running. These messages inform you of a
possible system problem that you may need to correct.

• panic messages that indicate a severe problem, one that prevents
the XENIX kernel from running. After displaying a message about
the panic error, the operating system shuts down and starts the
rebooting process.

B.2 Informational Messages

This section lists memory layout and boot sequence messages.

B.2.1 Memory Layout Messages

When XENIX is started, it displays information about the memory layout
of the system. The total amount of memory allocated for all of the fol­
lowing categories should equal the amount of memory on your system.
The memory messages are listed below:

Buffers =xK
The value of x specifies the amount of memory used by the I/O
buffers.

Kernel memory =xK
The value of x specifies the amount of memory used by the
XENIX kernel.

Reserved memory =xK
The value of x specifies the amount of memory between physi­
cal address zero and the load address for the kernel.

User memory =xK
The value of x specifies the amount of memory remaining on
the system for user processes.

B-1

XENIX Programmer's Guide

B.2.2 Boot Sequence Messages

The XENIX kernel displays messages that let you know the status of the
boot sequence:

Automatic Boot Procedure
This message displays if the XENIX system is automatically
rebooting after a system shutdown. The system automatically
reboots if a manual reboot does not occur within a specified
time after the system has been shut down. The specified time
varies depending on your target hardware.

Press Enter to reboot:
This message is displayed after the XENIX system is halted
using the shutdown or haltsys command. For more informa­
tion, see shutdown(ADM) and haltsys(ADM) in the XENIX Sys­
tem Administrator's Guide.

B.3 Warning Messages

The messages listed in this section indicate potential system problems,
but these problems do not prevent the kernel from running. Please refer
to your Operating System documentation for information on tuning sys­
tem parameters.

B-2

Can't allocate message buffer
This message appears on the system console during the XENIX
boot sequence if memory cannot be allocated for the message
buffers used by the interprocess communication (IPC) system
calls. This condition indicates an internal system error unless
there is an inadequate amount of memory present on the sys­
tem. Your system must have at least 512 Kbytes of memory to
give reasonable performance.

dscrfree: Cannot free descriptorse~no
The dscrfree routine is called from the device driver to free
segment selectors used by the driver. This message is
displayed if the driver cannot free the specified selector (sel­
no); in other words, the selector is not accessible to the device
driver.

error on dev device (majordev#/minordev#) , block=bnumber
cmd=command status=devstatus
An error occurred when the kernel tried to access the block
device identified by device. The bnumber indicates what
block was being read or written. The command indicates the

Kernel Error Messages

type of access that failed: read, write, format, or other com­
mand. The devstatus is the error status read in from the dev­
ice.

Inode table overflow
When the kernel tried to access a file, the inode table was full.
The parent process exited with errno set to ENFILE.

Interrupt from unknown device, vec=vector-number
The kernel received an interrupt from a vector that is not
assigned to any device.

Map overflow (map-type-indicator) , shutdown and reboot
The map specified by the map-type-indicator is fragmented to
such an extent that there are not enough map elements to keep
track of all the resource pieces. The map is either the core
map, the swap map, the message map used in interprocess
communication, or the semaphore map.

Maxmem was reduced based on the size of the swap
area. Refer to the system documentation for
information on the relationship between memory
size and swap size.
Maxmem represents the maximum amount of memory avail­
able to one user process. This is normally 75 percent of all
available user memory. However, the swap area must be at
least as big as maxmem, since the largest process allowed must
be able to swap out if necessary. If, on start-up, the kernel dis­
covers that maxmem is larger than the swap area, the kernel
reduces maxmem to approximately the size of the swap area as
stated in this message.

If you receive this warning message when you start your
XENIX system, you need to increase the size of the swap area
on your file system to make maximum use of the memory
available on your machine. If you decide that the reduced size
of maxmem (approximately the size of your swap area) is
acceptable, you do not need to make any changes in response
to this message. For more information on how to run
processes that are too big to swap, see runbig(ADM) in the
XENIX System Administrator's Guide and proctl(S) in the
XENIX Programmer's Reference.

If you decide you want to increase the size of the swap area,
follow these instructions carefully. The first step of this pro­
cess is to back up the whole disk. You must back up the disk

B-3

XENIX Programmer's Guide

B-4

because the file system will have to be reloaded after you
reconfigure your kernel with a bigger swap area.

Next, in the file lusrlsysvlconjlxenixconj , change the value
specified for the swap area. The line looks like this:

swap disk 5 6000 3000

This line specifies a swap area of 3000 Kbytes beginning at
6000 Kbytes on the disk. If you increase the size of the swap
area, increase the value 3000 to the size in kilobytes that you
need. Relink the kernel with the new swap area. If your disk
is partitioned into separate root and user file system partitions,
you will need to increase the size of the root partition to
accommodate the additional swap space. This means the user
partition size will probably need to be decreased. If you will
be distributing a system with a larger swap area size, you
should modify the hdinit program.

You can change the value of maxmem from its default of 75
percent of user memory. The default value of 75 percent is
specified by setting the maxprocmem parameter to zero in the
lusrlsysvlconjlmaster file. If you want to change maxmem,
define a non-zero value for maxprocmem in the
lusrlsysvlconjlxenixconj file and relink a new version of
XENIX. The xenixconj file is used to specify exceptions to the
default system configuration and overrides the parameters
specified in the master file. The master file is used to define
the default system configuration and should not be changed.
The maxprocmem parameter specifies the maximum size of a
user process in kilobytes. This number can be no larger than
75 percent of the size of your swap area.

no file
There is no room in the file table structure to make an entry for
the file that the kernel is trying to allocate. Since semaphores
also use entries in the file table structure, this message can
also indicate that a process with active semaphores has been
unable to pass those semaphores using a forkO routine.

Out of device descriptors, increase gdt size
(NGDT) and relink XENIX

The number of global descriptor table (GDT) entries reserved
for device drivers is inadequate to fill the requests of the
drivers on the system. A device driver has requested a GDT
entry and has been refused because the table is full. You must
increase the value assigned to NGDT in lusrlsysvlhlmachdep.h

Kernel Error Messages

and relink the kernel after removing the old configuration file
/usr/ sysv/ conf/ C.c.

out of text
There is no room in the text table structure for a process being
executed. The process is killed and can be resubmitted at a
later time.

proc on q
The scheduler tried to add a process to the ready-to-run queue
that was already waiting on the queue. This condition
represents an internal system error.

WARNING: SYSTEM MODE TYPE 7
A trap Type 7 (Processor Extension Not Available Exception)
has occurred in system mode on a system that has a 287 chip.

B.4 Panic Messages

The panic messages indicate a severe error condition, one that forces the
XENIX system to shut down. You will probably not see the majority of
these messages. After displaying a panic message, the XENIX system
immediately terminates and starts the rebooting process. The panic mes­
sages fall into three categories: those generated because of kernel prob­
lems, those generated by the 286 microprocessor, and those generated by
the 386 microprocessor hardware.

B.4.1 Kernel Panic Messages

This section lists the panic messages generated because of kernel prob­
lems.

panic: blkdev
During I/O buffer allocation, the kernel detects that the major
number of the device specified exceeds the maximum defined.
This error condition occurs deep in kernel system call process­
ing and should not happen, since the possibility has been
checked in earlier system code.

panic: devtab
During I/O buffer allocation, the kernel cannot locate the dev­
ice specified in its tables. This error condition occurs deep in
kernel system call processing and should not happen, since the
possibility has been checked in earlier system code.

B-5

XENIX Programmer '8 Guide

B-6

panic: iinit
The superblock of the root file system cannot be read on sys­
tem startup. This means that a device error has occurred and
could mean that the root device needs repair.

panic: IO err in swap
The kernel has encountered an error on the swap device while
trying to swap a process.

panic: Kernel buffer crosses 64k boundary, change
load address
This message means that the kernel buffer crossed a 64 Kbyte
boundary. When CTRL_I6BIT is defined in
lusrlsysvlhlmachdep.h, the XENIX kernel cannot have any of
its I/O buffers spanning a 64 Kbyte address boundary. You can
correct this problem by specifying a different XENIX load
address to the boot program when the system is booted.

panic: memory failure - parity error
A parity error has occurred on one of the memory boards of the
system. You should check the memory boards and replace the
faulty one.

If the system contains 1 ECC (Error Correcting Code) memory
boards, this message is slightly different and could indicate the
board that caused the error. The XENIX system only shuts
down if the problem cannot be corrected on the IECC memory
board.

panic: memory management failure
One of the memory management routines has encountered an
error when doing critical copying or allocating functions. This
indicates an internal kernel error and not an equipment mal­
function.

panic: no fs
The device specified in a command is not currently mounted.
This error condition occurs deep in kernel system call process­
ing and should not happen, since the possibility has been
checked in earlier system code.

panic: no imt
A mounted file system does not have an entry in the mount
table. This panic condition should not occur, since the mount
table was checked in previous code, but this message is
included as a safety check.

Kernel Error Messages

panic: no procs
This panic condition occurs if a process table entry cannot be
found for the process being forked. This should not happen,
since code reached; prior to this point has already checked for
the existence of a process table slot.

panic: Out of swap
The kernel ran out of free space on the swap device when the
kernel attempted to swap a process. If this error occurs more
than once, you should increase the size of the swap area.

panic: preadi
An error occurred when the system attempted to read in a pro­
cess' segments during an exec call. This condition represents
an internal system failure.

panic: Small model shared data copy failure
An error occurred when the system attempted to update a pro­
cess' shared data segments during a process switch. This con­
dition represents an internal system failure.

panic: Timeout table overflow
There is no room in the callout (or timeout) table for a new
entry. You can do nothing when this problem occurs except
let the system shutdown and reboot.

panic: unknown interrupt
The kernel received an interrupt from a vector that is not
assigned to any device.

B.4.2 286 Panic Messages

When the active process causes an exception or trap on the 286 micropro­
cessor that cannot be handled by software, one of the following panic
messages is displayed:

panic: general protection trap
A trap type 13 (General Protection) occurred while the 286
was in system mode. This condition represents an internal ker­
nel error.

panic: Invalid TSS
A trap type 10 (Invalid Task State Segment) occurred.

B-7

XENIX Programmer's Guide

panic: Segment Not Present
A trap type 11 (Segment Not Present) occurred. This condi­
tion means that an attempt has been made to access a segment
that is marked as not present.

panic: Trap in system
This is the default message for system mode traps. The infor­
mation displayed prior to the list of register contents specifies
what kind of trap occurred.

panic: TRAP violation # in mode
A trap violation has occurred on the 286 microprocessor. The
violation # specifies the vector number of the exception. The
mode specifies whether the 286 was executing user code (user
mode) or kernel code (system mode) when the trap occurred.
Before this message is given, a list of the contents of all the
286 registers is displayed. See the Intel iAPX 286
Programmer's Reference for a description of the 286 trap vec­
tors.

panic: 287 Exception
The 286 thinks it received a trap from the 287, but there is no
287 on the system.

panic: 287 Segment Overrun
A trap type 9 (Processor Extension Segment Overrun Excep­
tion) has occurred on a system that has a 287. This trap is
caused when the 287 overruns the limit of a segment while
attempting to read or write the second or subsequent words of
an operand. If a system without a 287 generates this excep­
tion, it will be killed with a segment violation signal (SIG­
SEGV).

B.4.3 386 Panic Messages

When the active process causes an exception or trap on the 386 micropro­
cessor that cannot be handled by software, the system displays a 386-
specific panic message. You must reboot the system after the kernel
displays a panic message. The following list describes the 386-specific
panic messages:

B-8

panic:added strange page table
The system has attempted to handle a page fault in an unex­
pected region of a process' address space; the system's protec­
tion mechanisms prevents this from occurring.

Kernel Error Messages

panic:bad page type for protection fault
The system detected an abnormal 'situation while processing a
page fault.

panic:protection fault on read access
The system detected an abnormal situation while processing a
page fault.

panic:xlcheck: xlink serial mismatch
The system detected an abnormal situation while processing a
page fault.

panic:swapping intransit page
The system detected an abnormal situation while processing a
page fault.

panic:buildpt: page directory already used
While loading a user program, the system attempted to load
two sets of data into tlie process' data address space.

panic:dfalloc: frame not free at exit
The system attempted to allocate a region on the swap device
from the list of free regions, but discovered that the region was
already in use.

panic:dftodp: bad frameno %x
The paging subsystem attempted to handle a reference to a
non-existent region on the swap device.

panic:dptodf: bad dp %x
The paging subsystem attempted to handle a reference to a
non-existent region on the swap device.

panic:dftomf: non-swap page table entry changed
A locked entry in the page table was altered.

panic:dftomf: swap disk frame rcnt != 1
The paging subsystem referenced more than one region on the
swap device; only one reference is possible.

panic:mftodf: swap disk frame rcnt != 1
The paging subsystem referenced more than one region on the
swap device; only one reference is possible.

panic:dftomf: swap mem frame rcnt != 1
The paging subsystem referenced more than one region on the
swap device; only one reference is possible.

B-9

XENIX Programmer's Guide

panic:dftomf: swap memory frame rcnt != 1
The paging subsystem referenced more than one region on the
swap device; only one reference is possible.

panic:mftodf: swap mem frame rcnt != 1
The paging subsystem referenced more than one region on the
swap device; only one reference is possible.

panic:impcode(): called to load impure 386 !!
The system detected an abnonnal condition while loading a
program.

panic:impcode(): more than 1 data segment ??
The system detected an abnonnal condition while loading a
program.

panic:preload(): invalid page (%x, %x)
The system detected an abnonnal condition while loading a
program.

panic:lverify: confused 286 segment
The paging subsystem detected an inconsistency in the struc­
ture of a process while processing a page fault.

panic:mfalloc: page not free
The system attempted to allocate a region of memory from the
list of free regions, but discovered that the region was already
in use.

panic:mfalloc: page not free at exit
The system attempted to allocate a region of memory from the
list of free regions, but discovered that the region was already
in use.

panic:mfcvt: zero ref count
The system discovered .that no references were actually made
to the page frame.

panic:mffree: page already free
The system attempted to free a region of free memory.

panic:mffree: page is locked
The system attempted to free a region of locked memory.

panic:mftodf: memory frame marked in transit
The system attempted to free a region of I/O pending memory.

B-IO

Kernel Error Messages

panic:mftomp: bad frameno
The paging subsystem referenced a non-existent region of
memory.

panic:mptomf: bad mp %x
The paging subsystem referenced a non-existent region of
memory.

panic:not enough contiguous memory
The system did not satisfy a request for contiguous memory.
An extremely large memory request was made, or memory is
configured in discontiguous frames.

panic:not present fault on shared data
The system detected an abnormal page fault in a shared data
segment.

panic:page table under page table?
The system detected a page type e~or.

panic:page type mismatch
The system detected an error in page-typing information.

panic:pgcheck
The system detected an error in page-typing information.

panic:pgfind
The system detected an inconsistency in its memory page
cache.

panic:pghash
The system detected an inconsistency in its memory page
cache.

panic:pginval: list broken
The system detected an inconsistency in its memory page
cache.

panic:pginval: not in cache
The system detected an inconsistency in its memory page
cache.

panic:pgfree: freeing intransit page
The system detected an abnormal page while freeing memory
used by a dead process.

B-ll

XENIX Programmer's Guide

panic:pgfree: invalid page marked present
The system detected an abnonnal page while freeing memory
used by a dead process.

panic:pgread: no xlink
After reading a page from swap area, the system discovered
that no frames were available to store the data.

panic:ptdup: TE(S)WAP page rcnt > 1
The system detected an abnonnal condition while duplicating
a process with fork.

panic:ptdup: intransit page
The system detected an abnonnal condition while duplicating
a process with fork.

panic:ptdup: locked page not present
The system detected an abnonnal condition while duplicating
a process with fork.

panic:ptdup: xlinked page has reference
The system detected an abnonnal condition while duplicating
a process with fork.

panic:sptmap overflow
The system attempted to allocate unavailable address space.

panic:swap io error
The system detected a hardware failure while reading data to
or writing it from the disk -swap area.

panic:swapping TE TABLE page
The system detected a process trying to swap a page when
paging was not enabled at compile time.

panic:bad boot string
The default boot string in the fetcldefaultfboot file or the string
entered in response to the boot prompt was syntactically
incorrect.

panic:bad mapping in copyio

B-12

The system could not detect the direction to copy data to or
from a buffer.

Kernel Error Messages

panic:fpsave: no fp task
The system attempted to save the current state of the math
coprocessor when no process was executing on the coproces­
sor.

panic:fp OVERRUN: coprocessor overrun - with no 287/387
The system detected a math coprocessor overrun with no math
processor installed on the system.

panic:fp COPROC: coprocessor error - with no 287/387,
The system detected a math coprocessor error with no math
processor installed on the system.

panic:fp_COPROC: coprocessor error - switched away
from fp task
The system detected a math coprocessor error with no process
running on the coprocessor.

panic:fp DNA: called when we have an emulator.
The system detected a Type 7 (Device Not Available) trap
when emulating a floating point processor through software.

panic:srmount(): cannot cvtv7superb() yet
The system attempted to mount a Version 7 root filesystem.
XENIX does not currently support Version 7 root filesystems.

panic:physio: bad state
The system detected an abnormal condition when preparing
buffers for a physical I/O operation.

panic:bad interrupt handler
An unknown hardware or software source initiated an inter­
rupt.

panic:u-area not page aligned
The system detected that the u-area is not page aligned.

panic:u-area address does not match SPTADDR
The system u-area address has not been initialized correctly.

panic:sdfrcm: sdp->sd inode not found
The system detected a-shared data region with no associated
inode.

panic:lost text
The system detected an active shared text segment with no
associated memory.

B-13

XENIX Programmer's Guide

panic:xexpand: no proc refers to text
The system discovered a text segment not associated with any
process.

panic:non-recoverable kernel page fault
The system could not pro~ess a page fault.

panic:DNA trap in kernel mode
The system detected a Type 7 (Device Not Available) trap
when in system mode.

panic:trap
The system detected an unknown trap.

panic:floating point int in kernel
The system detected a software floating point interrupt when
in system mode.

panic:write sb(): cannot cvts3superb() yet
The system attempted to write out a Version 7 superblock.
XENIX does not support Version 7 filesystems.

B-14

Replace this Page
with Tab Marked:

Index

Index

A

-a option
lint 4-10

adb
backtrace 8-21
binary files 8-43
breakpoints 8-18
combining commands on a single line 8-37
computing numbers and

displaying text 8-40
core image files 8-2
creating scripts 8-37
current address 8-8
data files 8-3
data formats 8-11
decimal integers 8-6
deleting breakpoints 8-21
displaying CPU registers 8-22
displaying external variables 8-23
displaying instructions and data 8-4
exiting 8-4
forming addresses 8-5
forming expressions 8-5
hexadecimal integers 8-6
introduction 8-1
killing a program 8-21
leaving 8-4
locating values in a file 8-43
making changes to memory 8-45
memory maps 8-32
miscellaneous features 8-37
octal integers 8-6
operators 8-10
patching binaries 8-43
program execution 8-16
prompt option 8-4
register names 8-9
setting default input format 8-39
setting output width 8-38
setting the maximum offset 8-39
single-stepping a program 8-20 .
starting and stopping 8-1
symbols 8-6
the ? and / commands 8-14
the = command 8-13
using XENIX commands 8-40
validating addresses 8-36
variables 8-7

adb (continued)
write option 8-3
writing to a file 8-44

a.out
link editor 9-1, 9-2,9-3,9-4

ar
description 1-2

Arguments
macro 10-6

As
basic tool 1-1

Assembler See As

B

-b option
lint 4-6

Boot messages B-1, B-2
Boot status B-1

c

C compiler
expression

evaluation order 4-13
lint directives, effect 4-13

C language
yacc 6-2

-c option
lint 4-9

C programming language 1-1
changequote function 10-4
Command

execution 1-3
interpretation 1-3
SCCS commands See SCCS
SCCS See SCCS

Conditionals
m4 macro processor 10-9

Core images
examining 11-1

CS register 9-8
csh

description 1-3
C-shell

command history mechanism 1-3
command language 1-3

I-I

Index

D

Data segments 9-8
Debugger

displaying data 11-1
displaying instructions 11-1
starting sdb 11-1
stopping sdb 11-1

Debugging
adb 8-1

Debugging programs
sdb 11-1

Debugging tools
sdb 11-1

define function 10-2
Defining macros 10-2
Delta See SCCS
dempdef function 10-11
Desk calculator

specifications 6-35
divert function 10-8
divnum function 10-9
dnl function 10-11
DS register 9-8
dscrfree() routine B-2

E

Error message file
creation 1-3

Error messages
information B-1
panic B-1, B-6
panic messages B-5
system traps B-7, B-8
warning B-1, B-2, B-3, B-4

eval function 10-7
Executing programs

controlling 11-1
monitoring 11-1

F

File
archives 1-2
error message file See Error message file
removal

SCCS use See SCCS

I-2

File (continued)
Source Code Control System See SCC

fork() routine B-4
FORTRAN

conversion program 5-23

G

Global
declaration

link editor 9-6
variable

communal variable allocation 9-5
uninitialized 9-5

Global descriptor table
messages B-4

H

-h option
lint 4-11

haltsys command B-2
Huge model

integer size 9-6
segment structure 9-8

Huge model 7 default names 9-6
Huge model 7 pointer size 9-6

I

ifdef function 10-5
ifelse function 10-9
include function 10-8

silent alternate
sinclude function 10-8

incr function 10-7
Information messages B-1
inode table B-3
Integer

size in memory model 9-6
Intel 286 microprocessor

messages B-7
Intel 386 microprocessor

messages B-8

K

Kernel
memory B-1
panic messages B-5, B-6

L

Large model
integer size 9-6
segment structure 9-8

Large model 7 default names 9-6
Large model 7 pointer size 9-6
Id

See Link editor 9-1
basic tool 1-1

len function 10-10
lex

0, end of file notation 5-14
action

default 5-10
description 5-4
repetition 5-10
specification 5-10

alternation 5-8
ambiguous source rules 5-14
angle brackets (<»

operator character 5-5,5-27
start condition referencing 5-18

a.out file
contents 5-6

arbitrary character match 5-7
array size change 5-26
asterisk (*)

operator character 5-5, 5-27
repeated expression specification 5-8

automaton interpreter
initial condition resetting 5-18

backs lash (\)
C escapes 5-5
operator character 5-5, 5-27
operator character escape 5-5 5-7

BEGIN '
start condition entry 5-18

blank character
quoting 5-5
rule ending 5-5

blank, tab line beginning 5-19
braces ({ })

expression repetition 5-9
operator character 5-5, 5-27

Index

lex (continued)
brackets ([])

character class specification 5-6
character class use 5-2
operator character 5-5,5-27
operator character escape 5-6

buffer overflow 5-15
C escapes 5-5
caretC)

character class inclusion 5-7
context sensitivity 5-9
operator character 5-5,5-27
string complement 5-7

caret n operator
left context recognizing 5-17

character
internal use 5-25
set table 5-25, 5-26
translation table See set table

character class
notation 5-2
specification 5-6

character set
specification 5-25

context sensitivity 5-9
copy classes 5-19
dash (-)

character class inclusion 5-7
operator character 5-5,5-27
range indicator 5-6

definitions
character set table 5-25
contents 5-20,5-26
expansion 5-9
format 5-20, 5-26
location 5-20
placement 5-10
specification 5-19

delimiter
discard 5-20
rule beginning marking 5-2
source format 5-4
third delimiter, copy 5-20

description 1-2
dollar sign ($)

context sensitivity 5-9
end of line notation 5-2
operator character 5-5, 5-27

dollar sign ($) operator
right context recognizing 5-17

dot (.) operator See period (.)
double precision constant change 5-23
ECHO

format argument, data printing 5-11

1-3

Index

lex (continued)
end-of-file

o handling 5-14
yywrap routine 5-14

environment
change 5-17

expression
new line illegal 5-6
repetition 5-9

external character array 5-11
flag

environment change 5-17
FORTRAN conversion program 5-23
grouping 5-8
input

end-of-file, 0 notation 5-14
ignoring 5-10
manipulation restriction 5-17

input 0 routine 5-13
input routine

character I/O handling 5-25
invocation 5-6
I/O library See library
I/O routine

access 5-13
consistency 5-14

left context 5-9
caret n operator 5-17
sensitivity 5-17

lexical analyzer
environment change 5-18

lex.yy.c file 5-6
library

access 5-6
avoidance 5-6
backup limitation 5-14
loading 5-21

line beginning match 5-9
line end match 5-9
-11 flag

library access 5-6
loader flag See -11 flag
lookahead characteristic 5-12,5-14
match count 5-11
matching

occurrence counting 5-16
preferences 5-14

new line
illegality 5-6

newline
escape 5-25
matching 5-15

octal escape 5-7
operator characters

1-4

lex (continued)
operator characters (continued)

See also Specific Operator Charactel
designated 5-27
escape 5-5,5-6,5-7
listing 5-5
literal meaning 5-5
quoting 5-5

optional expression
specification 5-7

output (c) routine 5-13
output routine

character I/O handling 5-25
overview 5-1
parentheses «))

grouping 5-8
operator character 5-5,5-27

parser generator
analysis phase 5-2

percentage sign (%)
delimiter notation (%%) 5-2
operator character 5-5
remainder operator 5-21
source segment separator 5-10

period (.)
arbitrary character match 5-7
newline no match 5-15
operator character 5-5

period (.) operator
designated 5-27

plus sign (+)
operator character 5-5,5-27
repeated expression specification 5-:

preprocessor statement entry 5-20
question mark (?)

operator character 5-5,5-27
optional expression specification 5-~

quotation marks, double (5-5,5-27
real numbers rule 5-20
regular expression

description 5-4
end indication 5-4
operators See operator characters
rule component 5-4

REJECT 5-16
repeated expression

specification 5-8
right context

dollar sign ($) operator 5-17
rules

active 5-19
components 5-4
format 5-27
real number 5-20

lex (continued)
semicolon (;)

null statement 5-10
slash (f)

operator character 5-5,5-27
trailing text 5-9

source
copy into generated program 5-19
description 5-1
format 5-3, 5-19
interception failure 5-19
segment separator 5-10

source definitions
specification 5-19

source file
format 5-26

source program
compilation 5-6

spacing character ignoring 5-10
start

abbreviation 5-18
start condition 5-9
start conditions

entry 5-18
environment change 5-17
format 5-26
location 5-26

statistics gathering 5-22
string

printing 5-4
substitution string

definition See definition
tab line beginning See blank, tab line

beginning
text character

quoting 5-5
trailing text 5-9
unput

REJECT noncompatible 5-17
unput (c) routine 5-13
unput routine

character I/O handling 5-25
unreachable statement 4-6
vertical bar (I)

action repetition 5-10
alternation 5-8
operator character 5-5,5-27

wrapup See yywrap routine
yacc

interface 5-2
library loading 5-21

yacc interface
tokens 5-21
yylex 05-21

Index

lex (continued)
yyleng variable 5-11
yyless ()

text reprocessing 5-13
yyless (n) 5-12
yylex () program

yacc interface 5-21
yylex program

contents 5-1
yymore () 5-12
yytext

external character array 5-11
yywrap () 5-22
yywrap () routine 5-14

Library
conversion 1-2
maintenance 1-2

Link editor
a.out 9-1, 9-2, 9-3, 9-4
_BSS 9-4
command line 9-1
communal variable

allocation of 9-5
_DATA 9-4
error message 9-5
global declaration 9-6
global variable 9-5
introduction 9-1
memory rnode19-3
object files 9-4
options 9-1

-A 9-2
-B 9-2
-c 9-2
-D 9-2
-F9-2
-g 9-2
-i 9-2
-M9-3
-n 9-3
-09-3
-p 9-3
-R 9-3
-s 9-4
-u 9-4
-v 9-4

packing, disable 9-3
relocatable object module 9-3
stack size 9-2
_TEST 9-4
using 9-1
variable allocation rules 9-5

lint
-a option 4-10

1-5

Index

lint (continued)
ARGSUSED directive 4-14,4-15
argument number comments turnoff 4-14
assignment

of long to int
check 4-10

operator
operand type balancing 4-8

assignment, implied See implied assignmen
assignment operator

new form 4-12
old form, check 4-11

-b option 4-6
binary operator, type check 4-8
break statement

unreachable See unreachable break
statement

-c option 4-9
C program check 4-1
C syntax, old form, check 4-11
cast See type cast
conditional operator

operand type balancing 4-8
constant in conditional context 4-11
construction check 4-1, 4-10
control information flow 4-14
degenerate unsigned comparison 4-10
description 4-1
directive

defined 4-13
embedding 4-13

enumeration, type check 4-8
error message, function name 4-7
expression, order 4-13
extern statement 4-4
external declaration, report suppression 4-4
file

library declaration file identification 4-14
function

error message 4-7
return value check 4-7
type check 4-8
unused See unused function

-h option 4-11
implied assignment, type check 4-8
initialization, old style check 4-12
library

compatibility check 4-15
suppression 4-15

directive acceptance 4-15
file processing 4-15

LINTLIBRARY directive 4-14,4-15
loop check 4-6
-ly directive 4-15

1-6

lint (continued)
-n option 4-15
nonportable

character check 4-9
expression evaluation order check 4-13

NOSTRICT directive 4-14
NOTREACHED directive 4-14
operator

operand types balancing 4-8
precedence 4-11

output turnoff 4-13
-p option 4-15
pointer .

agreement 4-8
alignment check 4-12

program flow
control 4-5

relational operator
operand type balancing 4-8

scalar variable check 4-13
source file

library compatibility check 4-15
statement

unlabeled report 4-5
structure selection operator

type check 4-8
syntax 4-1
type cast

check 4-9
comment printing control 4-9

type check
description 4-8
turnoff4-14

-u option 4-4
unreachable break statement

report suppression 4-6
unused argument

report suppression 4-4
unused function

check 4-4
unused variable

check 4-4
-v option

turnon 4-14
unused variable report suppression 4-4

VARARGS directive 4-14,4-15
variable

external variable initialization 4-5
inner/outer block conflict 4-11
set/used information 4-4
static variable initialization 4-5
unused See unused variable

-x option 4-4
Loader See ld

longjmp function 7-11
Loop

lint use See lint

M

m4
arithmetic values 10-7
basic operation 10-1
changequote function 10-4
define function 10-2
dempdef function 10-11
description 1-2,10-1
divert function 10-8
divnum function 10-9
dnl function 10-11
eval function 10-7
ifdef function 10-5
ifelse function 10-9
include function 10-8
incr function 10-7
len function 10-10
make temp function 10-9
overview 10-1
printing function 10-11
sinclude function 10-8
substr function 10-10
syscmd function 10-9
translit function 10-10
undefine function 10-5
undivert function 10-8
using arguments 10-6

m4 macro processor
invoking 10-2

m4 See Also Macro processor
Macro processor

arguments 10-6
arithmetic values 10-7
built-in function

changequote 10-4
define 10-2
dempdef 10-11
divert 10-8
divnum 10-9
dnllO-11
eVallO-7
ifdef 10-5
ifelse 10-9
include 10-8
incr 10-7
len 10-10
maketemp 10-9

Index

Macro processor (continued)
built-in function (continued)

printing 10-11
sinclude 10-8
substr 10-10
syscmd 10-9
translit 10-10
undefine 10-5
undivert 10-8

conditionals 10-9
defining macros 10-2
functions 10-1
m41O-1
manipulating strings 10-10
printing 10-11
quoting 10-3
redirecting input 10-2
redirecting output 10-2
removing functions 10-5
standard input 10-2
standard output 10-2
system commands 10-9

Macros 10-1
built-in 10-1
preprocessing 1-2
user defined 10-1

Maintainer See Make
make

argument quoting 2-7
backs lash (\)

description file continuation 2-2
Make

basic tool 1-2
.c suffix 2-11

make
command

form 2-1
location 2-1

Make
command

print without execution 2-15
make

command argument
macro definition 2-7

command string
hyphen (-) start 2-6

command string substitution 2-6
Make

-d option 2-15
make

.Default 2-6
dependency line

form 2-1
dependency line substitution 2-6

1-7

Index

make (continued)
description file

comment convention 2-2
macro definition 2-7

description filename
argument 2-5

dollar sign ($)
macro invocation 2-7

equal sign (=)
macro definition 2-6

Make
.f suffix 2-11
file

time, date printing 2-15
updating 2-15

make
file generation 2-6
file update 2-1
hyphen (-)

command string start 2-6
.IGNORE 2-6

Make
.1 suffix 2-11

make
macro

definition 2-7
definition override 2-7
invocation 2-7
substitution 2-6
value assignment 2-7

macro definition
analysis 2-7

Make
macro definition

argument 2-5
make

macro definition
description 2-6

medium sized projects 2-1
metacharacter expansion 2-1

Make
-n option 2-15

make
number sign (#)

description file comment 2-2
Make

.0 suffix 2-11
object file

suffix 2-11
make

option argument
use 2-5

parentheses (()
macro enclosure 2-7

1-8

make (continued)
.Precious 2-6
program maintenance 2-1

Make
.r suffix 2-11
.s suffix 2-11

make
semicolon (;)

command introduction 2-1
.Silent 2-6

Make
source file

suffixes 2-11
source grammar

suffixes 2-11
suffixes

list 2-11
table 2-11

-t option 2-15
make

target file
pseudo-target files 2-6

Make
target file

update 2-15
make

target filename
argument 2-5

target name omission 2-4
Make

touch option See -t option
transformation rules

table 2-11
troubleshooting 2-15
.y suffix 2-11
.yr suffix 2-11

make command
arguments 2-5
syntax 2-5

maketemp function 10-9
Manipulating files

include function 10-8
macro processors 10-8
using m4 to 10-8

Manipulating strings
m4 macro processor 10-10

Memory
layout B-1
requirements B-2
user B-1, B-3

Memory model 9-3
memory models

default names 9-6
Memory models

Memory models (continued)
integer size 9-6
pointer size 9-6
segment structure 9-8

Messages
386 panic B-8
boot B-1, B-2
error B-1
information B-1
panic B-1, B-5, B-6
system B-1
system traps B-7, B-8
warning B-2, B-3, B-4

Middle model
integer size 9-6
segment structure 9-8

Middle model 7 default names 9-6
Middle model 7 pointer size 9-6

N

-n option
lint 4-15

Notational conventions 1-4

p

-p option
lint 4-15

pack option
disable 9-3

Panic messages
386-specific B-8
system traps B-7, B-8, B-1, B-5, B-6

Pipe
sees use See sees

Pointers
size in memory model 9-6

Printing
m4 macro processor 10-11

printing function 10-11
Processes

background 7-12
restoring an execution state 7-11
saving the execution state 7-11

proctl system call B-3
Program

maintainer See Make
Program development 1-1

Index

R

ranlib
description 1-2

Registers
es 9-8
DS 9-8
segments 9-8
SS 9-8

Relocatable object module 9-3
rmcommand

sees use See sees
runbig command B-3

s

XENIX Timesharing system 1-1
sees

@(#) string
file information, search 3-36

-a option
login name addition use 3-26

admin command
file administration 3-28
file checking use 3-28
file creation 3-6
use authorization 3-6

administrator
description 3-5

argument
minus sign (-)

use 3-5
types designated 3-4

branch delta
retrieval 3-12

branch number
description 3-3

cdc command
commentary change 3-20

ceiling flag
protection 3-27

checksum
file corruption determination 3-28

command
argument See argument
execution control 3-4
explanation 3-30

comments

1-9

Index

sees (continued)
comments (continued)

change procedure 3-20
omission, effect 3-31

corrupted file
detelTI1ination 3-28
processing restrictions 3-28
restoration 3-29

d flag
default specification 3-18

-d flag
flags deletion 3-19

-d option
data specification provision 3-22
flag removal 3-18

data keyword
data specification component 3-23
replacement 3-23

data specification
description 3-23

delta
branch delta See branch delta
defined 3-1, 3-2
exclusion 3-32
inclusion 3-32
interference 3-33
latest release retrieval 3-13
level number See level number
name See SID
printing 3-23,3-34
range printing 3-24
release number See release number
removal 3-35

delta command
comments prompt 3-9
file change procedure 3-9
g-file removal 3-14
p-file reading 3-8, 3-9

delta table
delta removal, effect 3-36
description 3-19

descriptive text
initialization 3-21
modification 3-21
remova13-22

d-file
temporary g-file 3-4

diagnostic output
-p option effect 3-13

diagnostics
code as help argument 3-14
form 3-14

directory
file argument application 3-4

1-10

sees (continued)
directory (continued)

x-file location 3-3
directory use 3-2
-e option

delta range printing 3-24
file editing use 3-8
login name removal 3-27

error message
code use 3-14
f0lTI13-14

exclamation point (!)
MR deletion use 3-21

-f option
flag initialization, modification 3-1 'i
flag, value setting 3-18

file
administration 3-28
change identification 3-33
change, major 3-11
change procedure 3-9
changes See delta
checking procedure 3-28
comparison 3-34
composition 3-2, 3-19
corrupted file See corrupted file
creation 3-6
data keyword See data keyword
descriptive text description 3-19
descriptive text See descriptive text
editing, -e option use 3-8
grouping 3-2
identifying infolTI1ation 3-36
link See link
multiple concurrent edits 3-24
name arbitrary 3-13
name, s use 3-6
name See link
parameter initialization, modificatio
printing 3-22
protection methods 3-25
removal 3-6
retrieval See get command
x-file See x-file

file argument
description 3-4
processing 3-5

file creation
comment line generation 3-31
commentary 3-31
comments omission, effect 3-31
level number 3-31
release number 3-31

file protection 3-25

sees (continued)
flags

deletion 3-19
initialization 3-17
modification 3-17
setting, value setting 3-18
use 3-18

floor flag
protection 3-27

-g option
output suppression 3-35
p-file regeneration 3-29

get command
concurrent editing, directory use 3-24
delta inclusion, exclusion check 3-33
-e option use 3-8
file retrieval 3-7
filename creation 3-7
g-file creation 3-3
message 3-7
release number change 3-11

g-file
creation 3-3
creation date, time recordation 3-15
description 3-3
line identification 3-33
line, %M% keyword value 3-34
ownership 3-3
regeneration 3-29
removal, delta command use 3-14
temporary See d-file

-h option
file audit use 3-28

help command
argument 3-14
code use 3-14
use 3-30

i flag
file creation, effect 3-16

-i flag
keyword message, error treatment 3-17

-i option
delta inclusion list use 3-32

ID keyword See keyword
identification string See SID
j flag

multiple concurrent edits
specification 3-24

-koption
g-file regeneration 3-29

keyword
data See data keyword
format 3-15
lack, error treatment 3-17

sees (continued)
keyword (continued)

use 3-15
-1 option

delta range printing 3-24
I-file creation 3-33

level number
delta component 3-2
new file 3-31

Index

omission, file retrieval, effect 3-10
I-file

contents 3-4
creation 3-33

link
number restriction 3-2

lock file See z-file
lock flag

R protection 3-27
%M%keyword

g-file line precedence 3-34
-moption

effective when 3-21
file change identification 3-33
new file creation 3-31

minus sign (-)
argument use 3-5
option argument use 3-4

mode
g-file 3-3

MR
commentary supply 3-19
deletion 3-21
new file creation 3-31

multiple users 3-5
-n option

g-file preservation 3-14
%M% keyword value use 3-34
pipeline use 3-34

option argument
description 3-4
processing order 3-5

output
data specification

See data specification
piping 3-31
suppression, -g option 3-35
suppression, -s option 3-31, 3-32
write to standard output 3-13

-p option
delta printing 3-34
output effect 3-13

percentage sign (%)
keyword enclosure 3-15

p-file

1-11

Index

sees (continued)
p-file (continued)

contents 3-3,3-8
creation 3-3
delta command reading 3-9
naming 3-3
ownership 3-3
pennissions 3-3
regeneration 3-29
update 3-3
updating 3-4

piping 3-31
-n option use 3-34

prs command
file printing 3-22

purpose 3-1
q file

use 3-4
R

delta removal check 3-35
-r option

delta creation use 3-25
delta printing use 3-23
file retrieval 3-10
release number specification 3-31

release
protection 3-27

release number
change 3-2
change procedure 3-11
delta component 3-2
new file 3-31
-r option, specification 3-31

nncommand
file removal 3-6

nndel command
delta removal 3-35

-s option
output suppression 3-31, 3-32

SID
components 3-2
delta printing use 3-23

sccsdiff command
file comparison 3-34

sequence number
description 3-3

-t option
delta retrieval 3-13
file initialization 3-22
file modification 3-22

tab character
-n option, designation 3-34

user list
empty by default 3-26

1-12

sees (continued)
user list (continued)

login name addition 3-26
login name removal 3-27
protection feature 3-25

user name
list 3-25

v flag
new file use 3-18

what command
file information 3-36

write pennission
delta removal 3-35

-x option
delta exclusion list use 3-32

XENIX command
use precaution 3-29

x-file
directory, location 3-3
naming procedure 3-3
permissions 3-3
temporary file copy 3-3
use 3-3

-yoption
comments prompt response 3-19
new file creation 3-31

-z key
file audit use 3-29

z-file
lock file use 3-4
ownership 3-4
pennissions 3-4

sees, source code control 1-3
sdb

debugging tools 11-1
description 11-1
displaying data 11-1
displaying instructions 11-1
examining core images 11-1
overview 11-1
quitting 11-1
starting 11-1
stopping 11-1
symbolic names 11-1
using 11-1

Segment
structure

for memory models 9-8
Segments

text data 9-8
setjmp function 7-11
setjmp.h file, described 7-1
shutdown command B-2
signal function 7-1

signal.h file, described 7-1
Signals

catching 7-4
default action 7-3
delaying an action 7-9
described 7-1
disabling 7-2
redefining 7-4
restoring 7-3, 7-6
SIG_DFLconstant 7-1
SIGHANG constant 7-2
SIG_IGN constant 7-1
SIGINT constant 7-2
SIGQUlT constant 7-2
to a child process 7-13
to background processes 7-12
with interactive programs 7-10
with multiple processes 7-12
with system functions 7-10

sinc1ude function 10-8
Small model

integer size 9-6
segment structure 9-8

Small model 7 default names 9-6
Small model 7 pointer size 9-6
Software development

described 1-1
Source Code Control System See SCCS
SS register 9-8
Stack size 9-2
substr function 10-10
Swap size B-3
syscmd function 10-9
System commands

m4 macro processor 10-9
System messages

386-specific B-8
boot status B-1
memory layout B-1

System traps B-7, B-8

T

Table
inode B-3

Tags file
creation 1-3

Text segments 9-8
translit function 10-10

Index

u

-u option
lint 4-4

undefine function 10-5
undivert function 10-8
User memory B-1, B-3

v

-v option
lint 4-4, 4-14

w

Warning messages B-1, B-2, B-3

x

-x option
lint 4-4

XENIXfile
identifying information 3-36

xenixconf file
swap area B-4

y

yacc
% token keyword

union member name association 6-32
o character

grammar rules, avoidance 6-5
%0 keyword

endmarker token marker 6-11
accept action See parser
accept simulation 6-30
action

0, negative number 6-30
conflict source 6-17
defined 6-7

1-13

Index

yacc (continued)
action (continued)

error rules 6-24
form 6-44
global flag setting 6-29
input style 6-27
invocation 6-2
location 6-8
nonterminating 6-8
parser See parser
return value 6-31
statement 6-7, 6-9
value in enclosing rules, access 6-30

ampersand (&)
bitwise AND operator 6-35
desk calculator operator 6-35

arithmetic expression
desk calculator 6-35
parsing 6-20
precedence See precedence

associativity
arithmetic expression parsing 6-20
grammar rule association 6-22
recordation 6-22
token attachment 6-21

asterisk (*)
desk calculator operator 6-35

backslash (\)
escape character 6-5
percentage sign (%) substitution 6-43

binary operator
precedence 6-22

blank character
restrictions 6-4

braces ({ })
action 6-9
action, dropping 6-44
action statement enclosure 6-7
header file enclosure 6-31

colon (:)
identifier, effect 6-32
punctuation 6-5

comments
location 6-4

conflict
associativity See associativity
disambiguating rules 6-17, 6-18
message 6-19
precedence See precedence
reduce/reduce conflict 6-17, 6-23
resolution, not counted 6-23
shift/reduce conflict 6-17, 6-19, 6-23
source 6-17

declaration

1-14

yacc (continued)
declaration (continued)

specification file component 6-4
declaration section

header file 6-31
description 1-2
desk calculator

advanced features 6-37
error recovery 6-38
floating point interval 6-37
scalar conversion 6-38

desk calculator specifications 6-35
dflag 6-29
disambiguating rules 6-17, 6-18
dollar ~ign ($)

action significance 6-7
empty rule 6-28
enclosing rules, access 6-30
endmarker

lookahead token 6-13
parser input end 6-6
representation 6-6
token number 6-11

environment 6-25
error

handling 6-23
nonassociating implication 6-23
parser restart 6-23
simulation 6-30
yyerrok statement 6-24

error action See parser
error token

parser restart 6-23
escape characters 6-5
external integer variable 6-26
flag

global flag See global flag
floating point intervals See desk calcu
global flag

lexical analysis 6-29
grammar rules 6-1, 6-2

o character avoidance 6-5
advanced features 6-37
ambiguity 6-15
associativity association 6-22
C code location 6-44
empty rule 6-28
error token 6-23
format 6-5
input style 6-27
left recursion 6-27
left side repetition 6-5
names 6-5
numbers 6-20

yacc (continued)
grammar rules 6-1, 6-2 (continued)

precedence association 6-22
reduce action 6-12
reduction 6-13
rewrite 6-17
right recursion 6-28
specification file component 6-4
value 6-8

header file, union declaration 6-31
historical features 6-43
identifier

input syntax 6-32
if-else rule 6-18
if-then-else construction 6-18
input

language 6-1
style 6-27
syntax 6-32

input error detection 6-3
keyword 6-21

reservation 6-29
union member name association 6-32

left association 6-16
left associative

reduce implication 6-23
%left keyword 6-21

union member name association 6-32
left recursion 6-27

value type 6-32
%left token

synonym 6-44
le.x

interface 5-2
lexical analyzer construction 6-11

lexical analyzer
context dependency 6-28
defined 6-1, 6-9
endmarker return 6-6
floating point constants 6-39
function 6-2
global flag examination 6-29
identifier analysis
lex 6-11
return value 6-31
scope 6-9
specification file component 6-4
terminal symbol See terminal symbol
token number agreement 6-9

lexical tie-in 6-28
library 6-26
literal

defined 6-5
delimiting 6-43

Index

yacc (continued)
literal (continued)

length 6-43
lookahead token 6-11

clearing 6-25
error rules 6-23

LR(2) grammar 6-32
-ly argument, library access 6-26
main program
minus sign (-)

desk calculator operator 6-35
names

composition 6-5
length 6-5
reference 6-4
token name See token name

newline character
restrictions 6-4

%nonassoc keyword 6-21
union member name association 6-32

%nonassoc token
synonyms 6-44

nonassociating
error implication 6-23

nonterminal
union member name association 6-32

nonterminal name
input style 6-27
representation 6-5

nonterminal symbol 6-2
empty string match 6-6
location 6-6
name See nonterminal name
start symbol See start symbol

octal integer
o beginning 6-35

parser
accept action 6-13
accept simulation 6-30
actions 6-11
arithmetic expression 6-20
conflict See conflict
creation 6-20
defined 6-1
description 6-11
error action 6-13
error handling See error
goto action 6-12
initial state 6-15
input end 6-6
lookahead token 6-11
movement 6-11
names, yy prefix 6-9
nonterminal symbol See nonterminal

1-15

Index

yacc (continued)
parser (continued)

production failure 6-3
reduce action 6-12
restart 6-23
shift action 6-11
start symbol recognition 6-6
token number agreement 6-9

percentage sign (%)
action 6-9
desk calculator mod operator 6-35
header file enclosure 6-31
precedence keyword 6-21
specification file section separator 6-4
substitution 6-43

pipe symbol (I)
grammar rule repetition 6-5

plus sign (+)
desk calculator operator 6-35

%prec
synonym 6-44

%prec keyword 6-22
precedence

binary operator 6-22
change 6-22
grammar rule association 6-22
keyword 6-21
parsing function 6-20
recordation 6-22
token attachment 6-21
unary operator 6-22

program
specification file component 6-4

punctuation 6-5
quotation marks, double (6-43
quotation marks, single (")

literal enclosure 6-5
reduce action See parser
reduce command

number reference 6-20
reduce/reduce conflict 6-17, 6-23
reduction conflict See reduce/reduce conflict
reduction conflict See shift/reduce conflict
reserved words 6-29
right association 6-16
right associative

shift implication 6-23
%right keyword 6-21

union member name association 6-32
right recursion 6-28
%right token

synonym 6-44
semicolon (;)

input style 6-27

1-16

yacc (continued)
semicolon (;) (continued)

punctuation 6-5
shift action See parser
shift command

number reference 6-20
shift/reduce conflict 6-17, 6-19, 6-23
simple-if rule 6-18
slash (/)

desk calculator operator 6-35
specification file

contents 6-4
lexical analyzer inclusion 6-4
sections separator 6-4

specification files 6-3
start symbol

description 6-6
location 6-6

symbol synonyms 6-44
tab character

restrictions 6-4
terminal symbol 6-2
token

associativity 6-21
defined 6-1
error token See error token
names 6-4
organization 6-1
precedence 6-21

%token
synonym 6-44

token names 6-10
declaration 6-6
input style 6-27

token number 6-9
agreement 6-9
assignment 6-10
endmarker 6-11

%type keyword 6-32
unary operator

precedence 6-22
underscore sign C)

parser 6-14
union

copy 6-31
declaration 6-31
header file 6-31
name association 6-31

unreachable statement 4-6
-v option

y.output file 6-13
value

typing 6-31
union See union

yacc (continued)
value stack 6-31

declaration 6-31
floating point scalars, integers 6-38

vertical bar (I)
bitwise OR operator 6-35
desk calculator operator 6-35
input style 6-27

y.output file 6-14
parser checkup 6-23

y.tab.c file 6-25
y.tab.h file 6-31
YYACCEPT 6-30
yychar 6-26
yyc1earin statement 6-25
yydebug 6-26
yyerrok statement 6-24
yyerror 6-26
YYERROR 6-38
yylex 6-25
yyparse 6-25

YYACCEPT effect 6-30
YYSTYPE 6-31

Index

1-17

Replace this Page
with Tab Marked:

MASM
User's Guide

XENIX® System V

Development System

Macro Assembler User's Guide

Infonnation in this document is subject to change without notice and does not represent
a commitment on the part of The Santa Cruz Operation, Inc. nor Microsoft Corporation.
The software described in this document is furnished under a license agreement or
nondisclosure agreement. The software may be used or copied only in accordance with
the tenns of the agreement. It is against the law to copy this software on magnetic tape,
disk, or any other medium for any purpose other than the purchaser's personal use.

Portions © 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988 Microsoft
Corporation.
All rights reserved.
Portions © 1983, 1984, 1985, 1986, 1987, 1988 The Santa Cruz Operation, Inc.
All rights reserved.

ALL USE, DUPLICATION, OR DISCLOSURE WHATSOEVER BY THE
GOVERNMENT SHALL BE EXPRESSLY SUBJECT TO RESTRICTIONS AS SET
FORTH IN SUBDIVISION (b) (3) (ii) FOR RESTRICTED RIGHTS IN COMPUTER
SOFTWARE AND SUBDIVISION (b) (2) FOR LIMITED RIGHTS IN TECHNICAL
DATA, BOTH AS SET FORTH IN FAR 52.227-7013.

Microsoft, MS-DOS, and XENIX are registered trademarks of Microsoft Corporation.

SCO Document Number: XG-1O-31-88-5.0/2.3

Contents

1 Getting Started

1.1 Introduction 1-1
1.2 System Considerations 1-1
1.3 The Program-Development Cycle 1-1
1.4 Developing Programs 1-4

2 Usingmasm

2.1 Introduction 2-1
2.2 Running the Assembler 2-1
2.3 UsingmasmOptions 2-2
2.4 Reading Assembly Listings 2-15

3 Writing Source Code

3.1 Introduction 3-1
3.2 Writing Assembly-Language Statements 3-1
3.3 Assigning Names to Symbols 3-4
3.4 Constants 3-6
3.5 Defining Default Assembly Behavior 3-11
3.6 Ending a Source File 3-15

4 Defining Segment Structure

4.1 Introduction 4-1
4.2 Simplified Segment Definitions 4-1
4.3 Full Segment Definitions 4-15
4.4 Defining Segment Groups 4-26
4.5 Associating Segments with Registers 4-28
4.6 Initializing Segment Registers 4-31
4.7 Nesting Segments 4-35

5 Defining Labels and Variables

5.1 Introduction 5-1
5 .2 Using Type Speci fiers 5-1
5.3 Defining Code Labels 5-2
5.4 Defining and Initializing Data 5-5
5.5 Setting the Location Counter 5-20
5.6 Aligning Data 5-21

-i-

6 Using Structures and Records

6.1 Introduction 6-1
6.2 Structures 6-1
6.3 Records 6-6

7 Creating Programs from Multiple Modules

7.1 Introduction 7-1
7.2 Declaring Symbols Public 7-1
7.3 Declaring Symbols External 7-3
7.4 U sing Multiple Modules 7-6
7.5 Declaring Symbols Communal 7-8

8 Using Operands and Expressions

8: 1 Introduction 8-1
8.2 Using Operands with Directives 8-1
8.3 Using Operators 8-2
8.4 Using the Location Counter 8-20
8.5 Using Forward References 8-21
8.6 Strong Typing for Memory Operands 8-25

9 Assembling Conditionally

9.1 Introduction 9-1
9.2 Using Conditional-Assembly Directives 9-1
9.3 Using Conditional-Error Directives 9-6

10 Using Equates, Macros, and Repeat Blocks

10.1 Introduction 10-1
10.2 Using Equates 10-1
10.3 Using Macros 10-5
10.4 Defining Repeat Blocks 10-11
10.5 Using Macro Operators 10-15
10.6 Using Recursive, Nested, and Redefined Macros 10-21
10.7 Managing Macros and Equates 10-25

11 Controlling Assembly Output

11.1 Introduction 11-1
11.2 Sending Messages to Standard Output 11-1
11.3 Controlling Page Format in Listings 11-2
11.4 Controlling the Contents of Listings 11-5
11.5 Controlling Cross-Reference Output 11-9

-ii-

12 Understanding 8086-Family Processors

12.1 Introduction 12-1
12.2 Using the 8086-Family Processors 12-1
12.3 Segmented Addresses 12-4
12.4 Using 8086-Family Registers 12-5
12.5 Usingthe80386Processor 12-13

13 Using Addressing Modes

13.1 Introduction 13-1
13.2 Using Immediate Operands 13-1
13.3 Using Register Operands 13-2
13.4 Using Memory Operands 13-4

14 Loading, Storing, and Moving Data

14.1 Introduction 14-1
14.2 Transferring Data 14-1
14.3 Converting between Data Sizes 14-4
14.4 Loading Pointers 14-7
14.5 Transferring Data to and from the Stack 14-10
14.6 Transferring Data to and from Ports 14-15

15 Doing Arithmetic and Bit Manipulations

15.1 Introduction 15-1
15.2 Adding 15-1
15.3 Subtracting 15-3
15.4 Multiplying 15-6 .
15.5 Dividing 15-9
15.6 Calculating with Binary Coded Decimals 15-10
15.7 Doing Logical Bit Manipulations 15-14
15.8 Scanning for Set Bits 15-19
15.9 Shifting and Rotating Bits 15-20

16 Controlling Program Flow

16.1 Introduction 16-1
16.2 Jumping 16-1
16.3 Looping 16-12
16.4 Setting Bytes Conditionally 16-15
16.5 Using Procedures 16-16
16.6 Using Interrupts 16-25
16.7 Checking Memory Ranges 16-27

17 Processing Strings

- iii-

17.1 Introduction 17-1
17.2 Setting Up String Operations 17-1
17.3 Moving Strings 17 -5
17.4 Searching Strings 17-7
17.5 Comparing Strings 17-8
17.6 Filling Strings 17 -10
17.7 Loading Values from Strings 17 -11
17.8 Transferring Strings to and from Ports 17 -12

18 Calculating with a Math Coprocessor

18.1 Introduction 18-1
18.2 Coprocessor Architecture 18-1
18.3 Emulation 18-4
18 .4 Using Coprocessor Instructions 18-4
18.5 Coordinating Memory Access 18-9
18.6 Transferring Data 18-11
18.7 Doing Arithmetic Calculations 18-17
18.8 Controlling Program Flow 18-24
18.9 Using Transcendental Instructions 18-28
18.10 Controlling the Coprocessor 18-30

19 Controlling the Processor

19.1 Introduction 19-1
19.2 Controlling Timing and Alignment 19-1
19.3 Controlling the Processor 19-1
19.4 Controlling Protected-Mode Processes 19-2
19.5 Controlling the 80386 19-4

A New Features

A.1 Introduction A-I
A.2 Enhancements tomasm A-I
A.3 Compatibility with Assemblers and Compilers A-5

B Instruction Summary

B.1 Introduction B-1
B.2 8086 Instruction Mnemonics B-2
B.3 8087 Instruction Mnemonics B-8
B.4 80186 Instruction Mnemonics B-13
B.5 80286 N onprotected Instruction Mnemonics B-14
B.6 80286 Protected Instruction Mnemonics B-15
B.7 80287 Instruction Mnemonics B-15
B.8 80386 N onprotected Instruction Mnemonics B-16
B.9 80386 Protected Instruction Mnemonics B-19
B.10 80387 Instruction Mnemonics B-20

-iv -

C Directive Summary

C.1 Introduction C-1

D Segment Names for High-Level Languages

D.1 Introduction D-1
D.2 Text Segments D-2
D.3 Near Data Segments D-3
DA Far Data Segments D-4
D.5 BSS Segments D-5
D.6 Constant Segments D-6

E Error Messages and Exit Codes

E.1 Introduction E-1
E.2 Messages and Exit Codes from masm E-1

-v-

Part 1

Using Assembler Programs

Part 1 of the Macro Assembler User's Guide (comprising chapters 1 and
2) summarizes the process of creating programs from assembly-language
source files.

Chapter 1 describes how to set up an efficient system for producing pro­
grams. It also provides examples of simple assembly-language source
files and a brief summary of each of the utility programs used in program
development.

Chapter 2 describes the assembler program, masm, in detail.

Chapter 1

Getting Started

1.1 Introduction 1-1

1.2" System Considerations 1-1

1.3 The Program-Development Cycle 1-1

1.4 Developing Programs 1-4
1.4.1 Writing and Editing Assembly-Language Programs 1-4
1.4.2 Assembling Source Files 1-5

Getting Started

1.1 Introduction

This chapter describes how to set up Macro Assembler files and how to
start writing assembly-language programs. It provides an overview of the
development process and shows examples of simple programs. It also
refers you to other chapters where you can learn more about each subject.

1.2 System Considerations

Before you start developing assembly-language programs, you need to
verify that:

• The current operating system is XENIX System V/286 or System
V/386.

If the current operating system is not XENIX System V/286 or Sys­
tem V/386, determine the operating-system version and use the
corresponding masm manuals.

• The masm executable file is located in the lusr/bin directory.

If the masm executable file is not located in the lusr/bin directory,
ask your system administrator for its location.

• You know how to use the 8086, 80286 and 80386 instruction sets.

To create assembly-language programs, you need to know how to
use the 8086, 80286, and 80386 instruction sets. The directives,
operands, operators, and expressions of masm are explained in this
manual.

• Your text editor creates ASCII (American Standard Code for Infor­
mation Interchange) text files.

To assemble assembly-language programs, the source file· must be
in ASCII format. If your text editor does not produce ASCII files,
switch to an editor that produces ASCII files.

1.3 The Program-Development Cycle

The program-development cycle for assembly language is illustrated in
Figure 1.1.

1-1

Macro Assembler

®
O//~

.a .'

__ 1---

DONE

Figure 1-1 The Pr ogram Development Cycle

1-2

Getting Started

The specific steps for developing a stand-alone assembler program are as
follows:

1. Use a text editor to create or modify assembly-language source
modules. It is a convention, but not a requirement, to give source
modules the .s extension. Source modules can be organized in a
variety of ways. For instance, you can put all the procedures for a
program into one large module, or you can split the procedures
between modules. If your program will be linked with high-Ievel­
language modules, the source code for these modules is also
prepared at this point.

2. Use masm to assemble each of the modules for the program. Dur­
ing assembly, masm may optionally read in code from include
files. If assembly errors are encountered in a module, you must go
back to Step 1 and correct the errors before continuing. For each
source (.s) file, masm creates an object file with the default exten­
sion .0. Optional listing (.1st) files can also be created during
assembly. If your program will be linked with high-level-language
modules, the source modules are compiled to object files at this
point.

3. Use Id to combine all the object files and library modules that
make up a program into a single executable file. Id can be invoked
directly from the command line or indirectly from a high-Ievel­
language compiler such as the Microsoft C compiler, cc.

4. Debug your program to discover logical errors. Debugging may
involve several steps, including the following:

• Running the program and studying its input and output

• Studying source and listing files

• Using a XENIX debugger, such as adb

If logical errors are discovered, you must return to Step 1 to correct the
source code.

All or part of the program-development cycle can be automated by using
make with make description files. make is most useful for developing
complex programs involving numerous source modules.

1-3

Macro Assembler

1.4 Developing Programs

The following sections describe the steps involved in developing pro­
grams. Examples are shown for each step, and the chapters and manuals
that describe each topic in detail are cross-referenced.

1.4.1 Writing and Editing Assembly-Language Programs

Assembly-language programs are created from one or more source files.
Source files are text files containing statements that define the program's
data and instructions.

To create assembly-language source files, you need a text editor that is
capable of producing ASCII files.

The following example illustrates source code that produces a stand­
alone executable program.

Example 1

.286
title hello
.model small

. data
message db "Hello, world", 10, 0; message to be written
lmessage equ $ - message ; length of message

extrn _exit:proc
extrn _write:proc

. code
public _main
main proc

push bp
mov bp, sp establish stack frame

push
push
push
call
add

lmessage push length of message onto the stack

push
call

leave
_main endp

end

1-4

OFFSET message; push address of message onto the stack
1
write

sp, 6

o
exit

; write (l,message,lmessage)
; remove arguments to write ()

Getting Started

Note the following points about the source file:

1. The .data directive marks the start of the data segment. A string
variable and its length are defined in this segment.

2. The string variable message is displayed using the writeO system
call. File descriptor 1 is used to display to the screen.

3. To terminate the program, the exitO system call with an argument
of 0 is used. This is the recommended method.

1.4.2 Assembling Source Files

Source modules are assembled with masm. The masm command-line
syntax is:

masm [options] sourcefile

Suppose you had an assembly source file called hello.s. For the fastest
possible assembly, you could start masm with the following command
line:

rnasm hello.s

The output would be a file, hello.o, called an object file. To assemble the
same source file with the maximum amount of debugging information,
use the following command line:

rnasm -v -Zi hello.s

or

rnasm -vZi hello.s

The -v option instructs masm to send additional statistics and error infor­
mation to the standard output during assembly. The -Zi option instructs
masm to include symbolic and line-number information in the object file.

Chapter 2, "Using masm," describes the masm command line, options,
and listing format in more detail.

1-5

Chapter 2

Using masm

2.1 Introduction 2-1

2.2 Running the Assembler 2-1
2.2.1 Assembly Using the Command Line 2-1

2.3 Using masm Options 2-2
2.3.1 Specifying the Segment-Order Method 2-3
2.3.2 Setting the File-Buffer Size 2-4
2.3.3 Creating a Pass 1 Listing 2-5
2.3.4 Defining Assembler Symbols 2-5
2.3.5 Creating Code for a Floating-Point Emulator 2-6
2.3.6 Getting Command-Line Help 2-7
2.3.7 Setting a Search Path for Include Files 2-8
2.3.8 Specifying Listing Files 2-9
2.3.9 Specifying Case Sensitivity 2-9
2.3.1 0 Suppressing Tables in the Listing File 2-10
2.3 .11 Checking for Impure Code 2-10
2.3.12 Controlling Display of Assembly Statistics 2-11
2.3.13 Setting the Warning Level 2-12
2.3.14 Listing False Conditionals 2-13
2.3.15 Displaying Error Lines on Standard Error 2-14
2.3.16 Writing Symbolic Information to the Object File 2-14

2.4 Reading Assembly Listings 2-15
2.4.1 Reading Code in a Listing 2-15
2.4.2 Reading a Macro Table 2-18
2.4.3 Reading a Structure and Record Table 2-18
2.4.4 Reading a Segment and Group Table 2-20
2.4.5 Reading a Symbol Table 2-21
2.4.6 Reading Assembly Statistics 2-23
2.4.7 Reading a Pass 1 Listing 2-23

Usingmasm

2.1 Introduction

This chapter tells you how to run the masm program. It also explains the
options that control its behavior and describes the format of the assembly
listings masm generates.

2.2 Running the Assembler

Once masm has been started from the command line, it attempts to pro­
cess the source file that has been specified. If errors are encountered, they
are output to standard error, and masm terminates. If no errors are
encountered, masm creates an object file. It can also create a listing file if
that option is specified.

2.2.1 Assembly Using the Command Line

You can assemble a program source file by entering the masm command
name and the name of the file you wish to process. The command line has
the following syntax:

masm [options] sourcefile

The options can be any combination of the assembler options described in
the section entitled, "Using masm Options." The option letter or letters
must be preceded by a dash (-).

The source file must be the name of the source file to be assembled. Only
one source file is recognized on the command line; all other entries on the
command line are ignored.

An object file is created to receive the relocatable object code. The
object file is given the same name as the source file, but the source file
extension (if any) is replaced with .0.

An optional listing file, which receives the assembly listing, is created if
the -I option is given. The assembly listing shows the assembled code for
each source statement and for the names and types of symbols defined in
the program. The source file extension (if any) is replaced with the exten­
sion .1st.

All files created during the assembly are written to the current directory.

2-1

Macro Assembler

2.3 Using masm Options

The masm options control the operation of the assembler and the format
of the output files it generates.

The following options are recognized:

Option

-a

-bnumber

-d

-Dsymbol[=value]

-e

-h

-Ipath

-I

-MI

-Mu

-Mx

-n

-p

-s

-t

-v

2-2

Action

Writes segments in alphabetical order

Sets buffer size

Creates Pass 1 listing

Defines assembler symbol

Creates code for emulated floating­
point instructions

Lists command-line syntax and all
assembler options

Sets include- file search path

Specifies an assembly-listing file

Makes names case sensitive

Converts names to uppercase letters

Makes public and external names
case sensitive

Suppresses tables in listing file

Checks for impure code

Writes segments in source-code order

Suppresses messages for successful
assembly

Displays extra statistics to the stan­
dard output

-w{O 1112}

-X

-z

-Zd

-Zi

Note

Using masm

Sets error-display level

Includes false conditionals in listings

Displays error lines to standard error
(set by default)

Puts line-number information III the
object file

Puts symbolic and line-number infor­
mation in the object file

Previous versions of the assembler provided a -r option to enable
8087 instructions and real numbers in the IEEE format. Since the
current version of the assembler enables 8087 instructions and IEEE
format by default, the -r option is no longer needed. In the current
version, the -r option has no efiect, but it is still recognized so old
make files will work. The previous default format, Microsoft
Binary, can be specified with the .MSFLOAT directive, as
described in "Defining Default Assembly Behavior."

The following sections describe each of the masm options in more detail.

2.3.1 Specifying the Segment-Order Method

The following command-line options are used to control the order in
which segments are written to the object file.

Syntax

-s Default
-a

The -a option directs masm to place the assembled segments in alphabet­
ical order before copying them to the object file. The -s option directs the
assembler to write segments in the order in which they appear in the
source code.

2-3

Macro Assembler

Source-code order is the default segment order written to the object file.
If no option is given, masm copie's the segments in the order encountered
in the source file. The -s option 'is provided for compatibility with the
MS-DOS® operating system.

The order of object file segments is only one factor in determining the
order in which they will appear in the executable file. The significance of
segment order, and ways to control it, are discussed in "Setting the
Segment-Order Method," and "Defining Segment Combinations with
Combine Type."

Example

masm -a file.s

This example creates an object file, file.o, whose segments are arranged in
alphabetical order. If the -s option were used instead, or if no option were
specified, the segments would be arranged in sequential order.

2.3.2 Setting the File-Buffer Size

A buffer larger than your source file lets you do the entire assembly in
memory, greatly increasing assembly speed.

Syntax

-bnumber

The -b option directs the assembler to change the size of the file buffer
used for the source file. The number is the number of 1024-byte (1 kilo­
byte) memory blocks allocated for the buffer. You can set the buffer to any
size from lKbyte to 63Kbytes. The default size of the buffer is 32Kbytes.

You may not be able to use a large buffer if your computer does not have
enough memory. If you receive an error message indicating insufficient
memory, decrease the buffer size and try again.

Examples

masm -b16 file.s

This example decreases the buffer size to 16Kbytes.

masm -b63 file.s

2-4

Using masm

This example increases the buffer size to 63Kbytes.

2.3.3 Creating a Pass 1 Listing

A Pass I listing is typically used to locate phase errors. Phase errors
occur when the assembler makes assumptions about the program in Pass I
that are not valid in Pass 2.

Syntax

-d

The -d option directs masm to add a Pass 1 listing to the assembly-listing
file, making the assembly listing show the results of both assembler
passes.

The -d option does not create a Pass 1 listing unless you also direct masm
to create an assembly listing. It does direct the assembler to display error
messages for both Pass 1 and Pass 2 of the assembly, even if no assembly
listing is created. For more information about Pass 1 listings, see' 'Read­
ing a Pass 1 Listing."

Example

masm -d file.s

This example directs the assembler to create a Pass 1 listing for the
source file file.s. The file file.lst will contain both the first and second pass
listings.

2.3.4 Defining Assembler Symbols

Initial values of variables or information for conditional assembly can be
passed from the masm command line with symbols.

Syntax

-Dsymbol[=value]

The -D option, when given with a symbol argument, directs masm to
define a symbol that can be used during the assembly as if it were defined
as a text equate in the source file. Multiple symbols can be defined in a
single command line.

2-5

Macro Assembler

The value can be any text string that does not include a space, comma, or
semicolon. If no value is given, the symbol is assigned a null string.

Example

masm -Dwide -Dmode=3 file.s

This example defines the symbol wide and gives it a null value. The sym­
bol could then be used in the following conditional-assembly block:

IFDEF wide
PAGE 50,132
ENDIF

When the symbol is defined in the command line, the listing file is for­
matted for a 132-column printer. When the symbol is not defined in the
command line, the listing file is given the default width of 80 columns
(for more information about the PAGE directive, see "Controlling Page
Format in Listings ").

The example also defines the symbol mode and gives it the value 3. The
symbol could then be used in a variety of contexts:

IF mode LT 256 ; Use in expression
scrmode DB mode Initialize byte variable

ELSE
scrmode OW mode ; Initialize word variable

END IF

2.3.5 Creating Code for a Floating-Point Emulator

The Microsoft high-level-language compilers allow you to use options to
specify whether you want to use emulator code. If you link a high-Ievel­
language module prepared with emulator options with an assembler
module that uses coprocessor instructions, you should use the -e option
when assembling.

Syntax

-e

The -e option directs the assembler to generate data and code in the for­
mat expected by coprocessor emulator libraries. An emulator library uses
8088/8086 instructions to emulate the instructions of the 8087, 80287, or

2-6

Using masm

80387 coprocessors. An emulator library can be used if you want your
code to take advantage of a math coprocessor, or an emulator library can
be used if the machine does not have a coprocessor.

Emulator libraries are only available with high-level-language compilers,
including the Microsoft C, BASIC, FORTRAN, and Pascal compilers.
The option cannot be used in stand-alone assembler programs unless you
write your own emulator library. You cannot simply link with the emula­
tor library from a high-level language, since these libraries require that
the compiler start-up code be executed.

To the applications programmer, writing code for the emulator is like
writing code for a coprocessor. The instruction sets are the same (except
as noted in Chapter 18, "Calculating with a Math Coprocessor"). How­
ever, at run time the coprocessor instructions are used only if there is a
coprocessor available on the machine. If there is no coprocessor, the
slower code from the emulator library is used instead.

Example

masm -e -Mx math.s
cc calc.c math.o

In the first command line, the source file math.s is assembled with masm
by using the -e option. Then the C compiler (cc) is used to compile the C
source file calc.c and finally to link the resulting object file (calc.o) with
math.o. The compiler generates emulator code for floating-point instruc­
tions. There are similar options for the FORTRAN, BASIC, and Pascal
compilers.

2.3.6 Getting Command-Line Help

A quick reference for all the masm options is available from the com­
mand line.

Syntax

-b

The -b (help) option writes the command-line syntax and all the masm
options to the standard output. You should not give any file names or
other options with the -b option.

2-7

Macro Assembler

Example

masm -h

2.3.7 Setting a Search Path for Include Files

When the current source file being assembled uses the INCLUDE direc­
tive to incorporate other source files, the assembler finds these other files
by looking along a search path. The -I option is used to set search paths
for include files.

Syntax

-Ipath

You can set as many as 10 search paths by using the option for each path.
The order of searching is the order in which the paths are listed in the
command line. The INCLUDE directive and include files are discussed
in "Using Include Files."

Example

masm -I/usr/lib/io -Imacro file.s

This command line might be used if the source file contains the following
statement:

INCLUDE asm. inc

In this case, masm would search for the file asm.inc first along the abso­
lute path lusrlliblio, and then in the directory macro relative to the current
directory. If the file was not in either of these directories, masm would
then look in the current directory.

You should not specify a path name with the INCLUDE directive if you
plan to specify search paths from the command line. For example, masm
would ignore any search paths specified in the command line if the source
file contained any of the following statements:

2-8

INCLUDE /u/me/macro/asm.inc
INCLUDE .. /asm.inc
INCLUDE ./asm.inc

Using masm

2.3.8 Specifying Listing Files

When instructed to, masm creates an additional file, called a listing file,
that contains information about how your source code is assembled.

Syntax

-I

The -I option directs masm to create a listing file. Listing files always
have the base name of the source file plus the extension .1st. A complete
description of listing files is covered in "Reading Assembly Listings."

2.3.9 Specifying Case Sensitivity

By default, masm is completely case sensitive. The -MI and -Mx options
are provided for compatibility with MS-DOS, which uses -Mu by default.

Syntax

-Ml Default
-Mx
-Mu

The -Ml option directs the assembler to make all names case sensitive.
The -Mx option directs the assembler to make only the public and exter­
nal names case sensitive. The -Mu option directs the assembler to convert
all names into uppercase letters.

If case sensitivity is turned on, all names that have the same spelling, but
use letters of different cases, are considered different. For example, with
the -Ml option, DATA and data are different. They would also be different
with the -Mx option if they were declared external or public. Public and
external names include any label, variable, or symbol names defined by
using the EXTRN, PUBLIC, or COMM directives (see "Creating Pro­
grams from Multiple Modules' ').

If you use the -Zi or -Zd option (see "Writing Symbolic Information to
the Object File' '), the -MI, -Mx, and -Mu options affect the case of the
symbolic data that will be available to a symbolic debugger.

2-9

Macro Assembler

2.3.10 Suppressing Tables in the Listing File

By default, masm includes tables of macros, structures, records, segments
and groups, and symbols at the end of a listing file. This feature, however,
can be turned off.

Syntax

-n

The -n option directs the assembler to omit all tables from the end of the
listing file. The code portion of the listing file is not changed by the -n
option.

Example

rnasrn -n -1 fi1e.s

2.3.11 Checking for Impure Code

Code that moves data into memory with a CS: override is acceptable in
real mode. However, such code may cause problems in protected mode.

Syntax

-p

The -p option directs masm to check for impure code in the 80286 or
80386 privileged mode. When the -p option is in effect, the assembler
checks for these situations and generates an error if it encounters them.

Real and privileged modes are explained in Chapter 12, "Understanding
8086-Family Processors."

2-10

Example

addr
past:

. CODE

jrnp
DW

past
?

Using masm

; Don't execute data
; Allocate code space for data

; Calculate value of "addr" here

mov cs:addr,si ; Load register address

The example shows a CS override. If assembled with the -p option, an
error is generated.

2.3.12 Controlling Display of Assembly Statistics

The amount of information masm sends to the standard output can be
controlled from the command line.

Syntax

-v
-t

The -v (verbose) and -t (terse) options specify the level of information
displayed to the standard output at the end of assembly.

If the -v option is given, masm also reports the number of lines and sym­
bols processed.

If the -t option is given, masm does not output anything to the standard
output, while standard error remains unaffected. This option may be use­
ful in script or make files if you do not want the output cluttered with
unnecessary messages.

If neither option is given, masm outputs a line telling the amount of sym­
bol space free and the number of warnings and errors.

If errors are encountered during assembly, they will be displayed whether
these options are given or not. Appendix E, "Error Messages and Exit
Codes," describes the messages masm displays after assembly.

2-11

Macro Assembler

2.3.13 Setting the Warning Level

During assembly, masm provides warning messages for assembly state­
ments that are ambiguous or questionable but not necessarily illegal.
Some programmers purposely use practices that generate warnings. By
setting the appropriate warning level, they can turn off warnings if they
are aware of the problem and do not wish to take action to remedy it.

Syntax

-w{OII12}

The -w option sets the assembler warning level. There are three levels of
errors, as shown in Table 2.1.

Level
o

2

Table 2.1

Warning Levels

Type
Severe errors

Serious warnings

Advisory warnings

Description
Illegal statements

Ambiguous statements or
questionable programming
practices

Statements that may pro­
duce inefficient code

The default warning level is 1. A higher warning level adds to the number
of warning messages you would have received at a lower warning level.
Level 2 includes severe errors, serious warnings, and advisory warnings.
If masm encounters severe errors during assembly, no object file is pro­
duced.

The advisory warnings that indicate potentially inefficient code are

Number Message

104 Operand size does not match word size

105 Address size does not match word size

106 Jump within short distance

2-12

Using masm

The serious warnings, indications of ambiguous code, are

Number Message

Extra characters on line

16 Symbol is reserved word

31 Operand types must match

57 Illegal size for item

85 End of file, no END directive

101 Missing data; zero assumed

102 Segment near (or at) 64K limit

All other errors are severe, resulting from illegal code, and will terminate
all attempts to write an object file.

2.3.14 Listing False Conditionals

Conditional directives that have been evaluated as false are not included
in the listing files unless masm is told to include them.

Syntax

-x

The -X option directs masm to copy to the assembly listing all statements
forming the body of conditional-assembly blocks whose condition is
false. If you do not give the -X option in the command line, masm
suppresses all such statements. The -X option lets you display condition­
als that do not generate code. Conditional-assembly directives are
explained in Chapter 11, "Controlling Assembly Output."

The .LFCOND, .SFCOND, and .TFCOND directives can override the
effect of the -X option, as described in "Controlling Listing of Condi­
tional Blocks." The -X option does not affect the assembly listing unless
you direct the assembler to create an assembly-listing file with the -I
option.

2-13

Macro Assembler

Example

masm -x -1 fi1e.s

In this example, the listing of false conditionals is turned on whenfile.s is
assembled, and the listing file is created. Directives in the source file can
override the -X option to change the status of false-conditional listing.

2.3.15 Displaying Error Lines on Standard Error

Syntax

-x

The -x option directs masm to send lines containing errors to standard
error. This option is now set by default and the use of the -x option on the
command line is not necessary.

2.3.16 Writing Symbolic Information to the Object File

Information used by a symbolic debugger is not sent to the object file
unless masm is instructed to from the command line.

Syntax

-Zi
-Zd

The -Zi and -Zd options direct masm to write symbolic information to
the object file. There are two types of symbolic information available:
line-number data and symbolic data. The -Zi option writes both line­
number and symbolic data to the object file.

Line-number data relates each instruction to the source line that created
it. Some debuggers need this information for source-level debugging.

Symbolic data specifies a size for each variable or label used in the pro­
gram. This includes both public and nonpublic labels and variable names.
Public symbols are discussed in Chapter 7, "Creating Programs from
Multiple Modules."

The -Zd option writes only line-number information to the object file. It
can be used if you want to see line numbers in map files. The -Zi option
can also be used for these purposes, but it produces larger object files.

2-14

Usingmasm

The option names -Zi and -Zd are similar to corresponding option names
for recent versions of Microsoft compilers.

2.4 Reading Assembly Listings

An assembly listing of your source file is created whenever you give the -I
option on the masm command line. The assembly listing contains both
the statements in the source file and the object code (if any) generated for
each statement. The listing also shows the names and values of all labels,
variables, and symbols in your source file.

The assembler creates tables for macros, structures, records, segments,
groups, and other symbols. These tables are placed at the end of the
assembly listing (unless you suppress them with the -n option). Only the
types of symbols encountered in the program are listed. For example, if
your program has no macros, there will be no macro section in the symbol
table.

2.4.1 Reading Code in a Listing

When given the -I option, the assembler lists the code generated from the
statements of a source file. Each line has the following syntax:

[offset] [code] statement

The offset is the offset from the beginning of the current segment to the
code. If the statement generates code or data, code shows the numeric
value in hexadecimal if the value is known at assembly time. If the value
is calculated at link or load time, masm indicates what action is neces­
sary to compute the value. The statement is the source statement shown
exactly as it appears in the source file, or as expanded by a macro.

If any errors occur during assembly, each error message and error number
will appear directly below the statement where the error occurred. For a
list of masm errors and a discussion of the format in which errors are
displayed, refer to Appendix E, "Error Messages and Exit Codes." An
example of an error line and message is shown here:

71 0012 E8 001C R call doit
test.s(46): error A2071: Forward needs override or FAR

2-15

Macro Assembler

The number 46, in the error message, is the source line where the error
occurred. Number 71 on the code line is the listing line where the error
occurred. These lines will seldom be the same.

The assembler uses the symbols and abbreviations in Table 2.2 to indicate
addresses that need to be resolved by the linker or values that were gen­
erated in a special way.

Character

R
E

=
nn:

nn/

nn[xx]

n

c

Example

Table 2.2

Symbols and Abbreviations in Listings

Meaning

Relocatable address (linker must resolve)

External address (linker must resolve)

Segment/group address (linker must resolve)

EQ U or equal-sign (=) directive

Segment override in statement

REP or LOCK prefix instruction

DUP expression: nn copies of the value xx

Macro-expansion nesting level (+ if more than nine)

Line from INCLUDE file

80386 size or address prefix

The sample listing shown in this section is produced by using the -Zl
option. The command line is as follows:

masm -1 1istdemo.s

The following is the code portion of the resulting listing.

2-16

Usingmasm

Example

Microsoft (R) Macro Assembler Version 5.00.17 Nov 15 22:09:52 1987
Listing features demo Page 1-1

TITLE Listing features demo

INCLUDEasm.mac
C
C StrAlloc MACRO name, text
C name DB &text
C DB Oah, 0
C l&name EQU $ - name
C ENDM

= 0080 larg EQU 80h

• MODEL small

color RECORD b:1,r:3,i:1=1,f:3=7

date STRUC
0000 as month DB 5
0001 07 day DB 7
0002 07C3 year DW 1987
0004 date ENDS

0000 • DATA
0000 OF text color <>
0001 09 today date <9,22,1987>
0002 16
0003 07C3

0005 0064 [buffer dw 100 DUP(?)
????

StrAlloe ending, "Finished"
a OeD 46 69 6E 69 73 68 65 1 ending DB "Finished"
00D5 OA 00 1 DB Oah, a

EXTRN _exit:proe
EXTRN _write:proe
EXTRN work:proc

0000 . CODE
PUBLIC main

0000 main proc
0000 B8 0063 mov ax, 'e'
0003 26: 8B OE 0080 mov ex, es:larg
0008 BF 0052 mov di , 82
OOOB F2/ AE repne scasb

2-17

Macro Assembler

Example (cont.)

Microsoft (R) Macro Assembler Version 5.00.17 Nov 15 22:09:52 1987
Listing features demo Page 1-2'

OOOD 57 push di
EXTRN work:NEAR

OOOE E8 0000 E call work
0011 59 pop cx
0012 6A 33 push Oc

listdemo.s(40): error A2107: Non-digit in number
0014 E8 0000 E call exit
0017 main endp -
0017 end

2.4.2 Reading a Macro Table

A macro table at a listing file's end gives in alphabetical order the names
and sizes (in lines) of all macros called or defined in the source file.

Example

Macros:

N a m e Lines

StrAlloc ... 3

2.4.3 Reading a Structure and Record Table

All structures and records declared in the source file are given at the end
of the listing file. The names are listed alphabetically. Each name is fol­
lowed by all the fields of that particular record or structure, in the order in
which they are declared. All values are hexadecimal.

2-18

Example

Structures and Records:

color
b
r .
i ..
f ..

date.
month
day .
year .

Name Width
or

Shift

0008
0007
0004
0003
0000
0004
0000
0001
0002

Using masm

fields
or

Width Mask Initial

0004
0001 0080 0000
0003 0070 0000
0001 0008 0008
0003 0007 0007
0003

There are five columns of infonnation in a structure and record table.
They are organized as follows:

Heading

N a m e

Width or Shift

Meaning

This is the name of the structure, record, or
the fields therein.

If the entry in this column follows the name
of a structure (COLOR, in the example),
then it refers to the width of that structure in
bytes. If the entry follows the name of a
field within that structure, then it refers to
the shift, or offset, of that field (in bytes).
The entries for records, and fields within
records, are analogous, except that the
values are in bits instead of bytes.

fields or width In this column, entries that follow the name
of a structure or record are the number of
fields within that structure or record. The
entry that follows the name of a field within
a structure is the width of that field in bits.

Mask This column contains the maximum value
of the named record field. This value
assumes that all other fields in the record
are set to O.

2-19

Macro Assembler

Initial This column contains the initial value, if
any, of the named record field. This value
assumes that all other fields in the record
are set to O.

2.4.4 Reading a Segment and Group Table

Segments and groups used in the source file are listed at the end of the
program with their size, align type, combine type, and class. If you used
simplified segment directives in the source file, the actual segment names
generated by masm will be listed in the table.

Example

Segments and Groups:

Name Length Align Combine Class

DGROUP . GROUP
DATA 0007 WORD PUBLIC' DATA'

TEXT 0017 WORD PUBLIC 'CODE'

The "Name" column lists the names of all segments and groups. Seg­
ment and group names are given in alphabetical order, except for seg­
ments that belong to a group. Names of segments belonging to a group
are placed under the group name in the order in which they were added to
the group.

The" Size" column lists the byte size (in hexadecimal) of each segment.
The size of groups is not shown.

The" Align" column lists the align type of the segment.

The "Combine" column lists the combine type of the segment. If no
explicit combine type is defined for the segment, the listing shows NONE,
representing the private combine type. If the "Align" column contains
AT, the "Combine" column contains the hexadecimal address of the
beginning of the segment.

The "Class" column lists the class name of the segment. For a complete
explanation of the align, combine, and class types, see "Defining Full
Segments. ' ,

2-20

Usingmasm

2.4.5 Reading a Symbol Table

All symbols (except names for macros, structures, records, and segments)
are listed in a symbol table at the end of the listing.

Example

Symbols:

b
buffer

ending

f

i

larg
lending

r

text .
today

work .

@CodeSize
@DataSize

Name Type Value Attr

0007
L ViORD 0005 DATA Length = 0064

L BYTE OOCD DATA

0000

0003

NUMBER 0080
NUMBER OOOA

0004

L BYTE 0000 DATA
L DViORDOOOl DATA

L NEAR 0000 DATA External

TEXT 0
TEXT 0

Microsoft (R) Macro Assembler Version 5.00.17 Nov 15 22:09:52 1987
Listing features demo Symbols-2

@code
@fileName
exit
main

-write

TEXT TEXT
TEXT listdemo.s
L NEAR 0000 DATA External
N PROC 0000 TEXT Global Length=0017
L NEAR 0000 DATA External

The "Name" column lists the names in alphabetical order.

The "Type" column lists each symbol's type. A type is given as one of
the following:

Type

L type

Definition

An "L" before a type refers to a label to that type,
such as L NEAR (a near label), L BYTE (a byte
label), etc.

2-21

Macro Assembler

N PROC A near procedure label

F PROC A far procedure label

NUMBER An absolute label

ALIAS An alias for another symbol

OPCODE An equate for an instruction opcode

TEXT A text equate

BYTE One byte

WORD One word (two bytes)

DWORD Doubleword (four bytes)

FWORD Farword (six bytes)

QWORD Quadword (eight bytes)

TBYTE Ten bytes

number Length in bytes of a structure variable

The length of a multiple-element variable, such as an array or string, is
the length of a single element, not the length of the entire variable. For
example, string variables are always shown as L BYTE.

The "Value" column shows the symbol's value if the symbol represents
an absolute value defined with an EQU or equal-sign (=) directive. The
value may be another symbol, a string, or a constant numeric value (in
hexadecimal), depending on whether the type is ALIAS, TEXT, or
NUMBER. If the type is OPCODE, the "Value" column will be blank.
If the symbol represents a variable, label, or procedure, the "Value"
column shows the symbol's hexadecimal offset from the beginning of the
segment in which it is defined.

The "Attr" column shows the attributes of the symbol. The attributes
include the name of the segment (if any) in which the symbol is defined,
the scope of the symbol, and the code length. A symbol's scope is given
only if the symbol is defined using the EXTRN, PUBLIC, or COMM
directives. The scope can be EXTERNAL, GLOBAL, or COMMUNAL.
The code length (in hexadecimal) is given only for procedures. The
" Attr" column is blank if the symbol has no attribute.

2-22

Using masm

The text equates, shown at the end of the sample table, are defined
automatically when you use simplified segment directives (see "Under­
standing Memory Models").

2.4.6 Reading Assembly Statistics

Data on the assembly, including the number of lines and symbols pro­
cessed and the errors or warnings encountered, are shown at the end of the
listing. For further infon11ation on errors and warnings, see Appendix E,
"ElTor Messages and Exit Codes."

Example

48 Source Lines
52 Total Lines
53 Symbols

45570 + 310654 Bytes symbol space free

0 Warning Errors
1 Severe Errors

2.4.7 Reading a Pass 1 Listing

When you specify the -d option in the masm command line, the assem­
bIer puts a Pass 1 listing in the assembly-listing file. The listing file shows
the results of both assembler passes. Pass 1 listings are useful in analyz­
ing phase errors.

The following example illustrates a Pass 1 listing for a source file that
assembled without error on the second pass.

0017 7E 00 jle label1
pass_cmp.s(20) error 9 : Symbol not defined LABELl

0019 BB 1000 mov bx,4096
001e label1:

During Pass 1, the JLE instruction to a forward reference produces an
error message, and the value 0 is encoded as the operand. This error is
displayed because masm has not yet encountered the symbollabell.

2-23

Macro Assembler

Later in Pass I, labell is defined. Therefore, the assembler knows about
labell on Pass 2 and can fix the Pass I error. The Pass 2 listing is shown:

0017 7E 03
0019 BB 1000
00le label1:

jle
mov

label1
bx,4096

The operand for the JLE instruction is now coded as 3 instead of 0 to
indicate that the distance of the jump to labell is three bytes.

Since masm generated the same number of bytes for both passes, there
was no error. Phase errors occur if the assembler makes an assumption on
Pass I that it cannot change on Pass 2. If you get a phase error, you can
examine the Pass I listing to see what assumptions the assembler made.

2-24

Part 2

Using Directives

Part 2 of this manual (Chapters 3-11) describes the directives and opera­
tors recognized by the Macro Assembler. Directives tell you how to gen­
erate code and data at assembly time. Operators tell you how to combine
operands to fonn assembly-language expressions.

Chapter 3 introduces basic concepts of the assembly language recognized
by the Macro Assembler. Topics covered include symbols, constants,
statement syntax, and processor directives.

Chapters 4-7 explain the different directives and operators. The material
is organized topically, with related directives discussed together. Opera­
tors and expressions are discussed specifically in Chapter 8.

Chapter 9 describes how to use directives to assemble code conditionally.
This chapter covers two types of conditional directives: conditional­
assembly directives and conditional-error directives.

Chapter 10 explains how to use equates and macros to make the assembly
process more efficient.

Chapter 11 describes how to control the way masm reports assembly
results.

Chapter 3

Writing Source Code

3.1 Introduction 3-1

3.2 Writing Assembly-Language Statements 3-1
3 .2.1 Using Mnemonics and Operands 3-3
3.2.2 Writing Comments 3-3

3.3 Assigning Names to Symbols 3-4

3.4 Constants 3-6
3.4.1 Integer Constants 3-6
3.4.2 Packed Binary Coded Decimal Constants 3-9
3.4.3 Real-Number Constants 3-9
3.4.4 String Constants 3-10

3.5 Defining Default Assembly Behavior 3-11

3.6 Ending a Source File 3-15

Writing Source Code

3.1 Introduction

Assembly-language programs are written as source files, which can then
be assembled into object files by masm. Object files can then be pro­
cessed and combined with ld to form executable files.

Source files are made up of assembly-language statements. Statements
are in turn made up of mnemonics, operands, and comments. This chapter
describes how to write assembly-language statements. Symbol names and
constants are explained. It also tells you how to start and end assembly­
language source files.

3.2 Writing Assembly-Language Statements

A statement is a combination of mnemonics, operands, and comments
that defines the object code to be created at assembly time. Each line of
source code consists of a single statement. Multiline statements are not
allowed. Statements must not have more than 128 characters. Statements
can have up to four fields.

Syntax

[name] [operation] [operands] [;comment]

The fields are explained below, starting with the leftmost field:

Field

name

operation

operands

comment

Purpose

Labels the statement so that the statement
can be accessed by name in other state­
ments

Defines the action of the statement

Defines the data to be operated on by the
statement

Describes the statement without having any
effect on assembly

All fields are optional, although the operand or name fields may be
required if certain directives or instructions are given in the operation
field. A blank line is sitr..ply a statement in which all fields are blank. A
comment line is a statement in which all fields except the comment are
blank.

3-1

Macro Assembler

Statements can be entered in uppercase or lowercase letters. Sample code
in this manual uses uppercase letters for directives, hexadecimal letter
digits, and segment definitions. Your code will be clearer if you choose a
case convention and use it consistently.

Each field (except the comment field) must be separated from other fields
by a space or tab character. This is the only structure limitation imposed
by masm. For example, the following code is legal:

.286
title hello
.model small

. data
message db "Hello, world", 10, 0; message to be written
lmessage equ $ - message length of message

extrn exit:proc
extrn =write:proc

. code
public _main
main proc

push bp
mov bp, sp ; establish stack frame

push
push
push
call
add

lmessage ; push length of message onto the stack

push
call

leave
main endp

end

OFFSET message; push address of message onto the stack
1
write ; write(l,message,lmessage)

sp, 6 ; remove arguments to write()

o
exit

However, the code is much easier to interpret if each field is assigned a
specified tab position and a standard convention is used for capitalization.
The example program in Chapter 1, "Getting Started," is the same as the
example above except for the conventions used.

3-2

Writing Source Code

3.2.1 Using Mnemonics and Operands

Mnemonics are the names assigned to commands that tell either the
assembler or the processor what to do. There are two types of mnemonics:
directives and instructions.

Directives give directions to the assembler. They specify the manner in
which the assembler is to generate object code at assembly time. Part 2,
"Using Directives," describes the directives recognized by the assem­
bler. Directives are also discussed in Part 3, "Using Instructions."

Instructions give directions to the processor. At assembly time, they are
translated into object code. At run time, the object code controls the
behavior of the processor. Instructions are described in Part 3, "Using
Instructions.' ,

Operands define the data that is used by directives and instructions. They
can be made up of symbols, constants, expressions, and registers. Sections
3.2 and 3.3 discuss symbol names and constants. Operands, expressions,
and registers are discussed throughout the manual, but particularly in
Chapter 8, "Using Operands and Expressions," and Chapter 13, "Using
Addressing Modes."

3.2.2 Writing Comments

Comments are descriptions of the code. They are for documentation only
and are ignored by the assembler.

Any text following a semicolon is considered a comment. Comments
commonly start in the column assigned for the comment field, or in the
first column of the source code. The comment must follow all other fields
in the statement.

Multiline comments can either be specified with multiple comment state­
ments or with the COMMENT directive.

Syntax

COMMENT delimiter [text]
text
delimiter [text]

All text between the first delimiter and the line containing a second del­
imiter is ignored by the assembler. The delimiter character is the first
nonblank character after the COMMENT directive. The text includes the

3-3

Macro Assembler

comments up to and including the line containing the next occurrence of
the delimiter.

Example

+

COMMENT + The plus
sign is the delimiter. The
assembler ignores the statement
containing the last delimiter

mov ax,l (ignored)

3.3 Assigning Names to Symbols

A symbol is a name that represents a value. Symbols are one of the most
important elements of assembly-language programs. Elements that must
be represented symbolically in assembly-language source code include
variables, address labels, macros, segments, procedures, records, and
structures. Constants, expressions, and strings can also be represented
symbolically.

Symbol names are combinations of letters (both uppercase and lower­
case), digits, and special characters. The Macro Assembler recognizes the
following character set:

A-Za-z 0-9

? @ - $:.[]()<>{}+-/*

&%/' ~/\=#A;, '"

Letters, digits, and some characters can be used in symbol names, but
some restrictions on how certain characters can be used or combined are
listed below:

• A name can have any combination of uppercase and lowercase
letters. Case sensitivity is retained by the assembler, unless the
-Mu or -Mx options are used, as shown in Section 2.2.9, "Specify­
ing Case Sensitivity. ' ,

• Digits may be used within a name, but not as the first character.

• A name can be given any number of characters, but only the first
31 are significant. All other characters are ignored.

3-4

Writing Source Code

• The following characters may be used at the beginning of a name
or within a name: underscore C), question mark (?), dollar sign
($), and at sign (@).

• The period (.) is an operator and cannot be used within a name, but
it can be used as the first character of a name.

• A name may not be the same as any reserved name. Note that two
special characters, the question mark (?) and the dollar sign ($),
are reserved names and therefore can't stand alone as symbol
names.

A reserved name is any name with a special, predefined meaning to the
assembler. Reserved names include instruction and directive mnemonics,
register names, and operator names. All uppercase and lowercase letter
combinations of these names are treated as the same name.

Table 3.1 lists names that are always reserved by the assembler. Using
any of these names for a symbol results in an error.

Table 3.1

Reserved Names

$.DATA? .ERRNDEF LABEL REPT

* DB .ERRNZ .LALL .SALL
+ DD EVEN LE SEG

DF EXITM LENGTH SEGMENT
DOSSEG EXTRN .LFCOND .SEQ
DQ FAR .LIST .SFCOND

= DS .FARDATA LOCAL SHL
? DT .FARDATA? LOW SHORT
[] DW FWORD LT SHR
.186 DWORD GE MACRO SIZE
.286 ELSE GROUP MASK .STACK
.286P END GT MOD STRUC
.287 ENDIF IDGH .MODEL SUB TTL
.386 ENDM IF NAME TBYTE
.386P ENDP IFI NE .TFCOND
.387 ENDS IF2 NEAR TIDS
.8086 EQ IFB NOT TITLE
.8087 EQU IFDEF OFFSET TYPE
ALIGN .ERR IFDIF OR .TYPE

3-5

Macro Assembler

.CODE .ERRDIF IFNB PTR .XLIST
COMM .ERRDIFI IFNDEF PUBLIC XOR
COMMENT .ERRE INCLUDE PURGE
.CONST .ERRIDN INCLUDELIB QWORD
.CREF .ERRIDNI IRP .RADIX
.DATA .ERRNB IRPC RECORD

In addition to the names in Table 3.1, instruction mnemonics and register
names . are considered reserved names. These vary depending on the pro­
cessor directives given in the source file. For example, the register name
EAX is a reserved word with the .386 directive but not with the .286
directive. The section called "Defining Default Assembly Behavior,"
describes processor directives. Instruction mnemonics for each processor
are listed in Appendix B, "Instruction Summqry." Register names are
listed in "Using Register Operands."

3.4 Constants

Constants can be used in source files to specify numbers or strings that are
set or initialized at assembly time. Four types of constant values are
recognized: integers, packed binary coded decimals, real numbers, and
strings.

3.4.1 Integer Constants

Integer constants represent integer values. They can be used in a variety
of contexts in assembly-language source code. For example, they can be
used in data declarations and equates, or as immediate operands.

Packed decimal integers are a special kind of integer constant that can
only be used to initialize binary coded decimal (BCD) variables. They are
described in "Packed Binary Coded Decimal Constants," and "Binary
Coded Decimal Variables."

Integer constants can be specified in binary, octal, decimal, or hexade­
cimal values. Table 3.2 shows the legal digits for each of these radixes.
For hexadecimal radix, the digits can be either uppercase or lowercase
letters.

3-6

Name

Binary

Octal

Decimal

Hexadecimal

Writing Source Code

Table 3.2

Digits Used ",ith Each Radix

Base

2

8

10
16

Digits

01
01234567
0123456789
o 123456789ABCDEF

The radix for an integer can be defined for a specific integer by using
radix specifiers; or a default radix can be defined globally with the
.RADIX directive.

Specifying Integers with Radix Specifiers

The radix for an integer constant can be given by putting one of the fol­
lowing radix specifiers after the last digit of the number:

Radix Specifier

Binary B

Octal QorO

Decimal D

Hexadecimal H

Radix specifiers can be given in either uppercase or lowercase letters;
sample code in this manual uses lowercase letters.

Hexadecimal numbers must always start with a decimal digit (0 to 9). If
necessary, put a leading 0 at the left of the number to distinguish between
symbols and hexadecimal numbers that start with a letter. For example,
OABCh is interpreted as a hexadecimal number, but ABCh is interpreted
as a symbol. The hexadecimal digits A through F can be either uppercase
or lowercase letters. Sample code in this manual uses uppercase letters.

If no radix is given, the assembler interprets the integer by using the
current default radix. The initial default radix is decimal, but you can
change the default with the .RADIX directive.

3-7

Macro Assembler

Examples

n360
n60

EQU
EQU

01011010b + 132q + 5Ah + 90d ; 4 * 90
OOOOllllb + 170 + OFh + 15d ; 4 * 15

Setting the Default Radix

The .RADIX directive sets the default radix for integer constants in the
source file.

Syntax

.RADIX expression

The expression must evaluate to a number in the range 2-16. It defines
whether the numbers are binary, octal, decimal, hexadecimal, or numbers
of some other base.

Numbers given in expression are always considered decimal, regardless
of the current default radix. The initial default radix is decimal.

Note

The .RADIX directive does not affect real numbers initialized as
variables with the DD, DQ, or DT directive. Initial values for real­
number variables declared with these directives are always
evaluated as decimal unless a radix specifier is appended. Also, the
.RADIX directive does not affect the optional radix specifiers, B
and D, used with integer numbers. When the letters B or D appear at
the end of any integer, they are always considered to be a radix
specifier even if the current radix is 16. For example, if the input
radix is 16, the number OABCD will be interpreted as OABC
decimal, an illegal number, instead of as OABCD hexadecimal, as
intended. Type OABCDh to specify OABCD in hexadecimal. Simi­
larly, the number lIB will be treated as 11 binary, a legal number,
but not as lIB hexadecimal as intended. Type 11Bh to specify lIB
in hexadecimal.

Examples

.RADIX 16

.RADIX 2

3-8

Set default radix to hexadecimal
Set default radix to binary

Writing Source Code

3.4.2 Packed Binary Coded Decimal Constants

When an integer constant is used with the DT directive, the number is
interpreted by default as a packed binary coded decimal number. You can
use the D radix specifier to override the default and initialize lO-byte
integers as binary-format integers.

The syntax for specifying binary coded decimals is exactly the same as
for other integers. However, masm encodes binary coded decimals in a
completely different way. See "Binary Coded Decimal Variables," for
complete information on storage of binary coded decimals.

Examples

positive
negative

DT
DT

1234567890 Encoded as 00000000001234567890h
-1234567890 Encoded as 80000000001234567890h

3.4.3 Real-Number Constants

A real number is a number consisting of an integer part, a fractional part,
and an exponent. Real numbers are usually represented in decimal format.

Syntax

[+ I -] integer.fraction[E[+ I -]exponent]

The integer and fraction parts combine to form the value of the number.
This value is stored internally as a unit and is called the mantissa. It may
be signed. The optional exponent follows the exponent indicator (E). It
represents the magnitude of the value, and is stored internally as a unit. If
no exponent is given, 1 is assumed. If an exponent is given, it may be
signed.

During assembly, masm converts real-number constants given in the
decimal format to a binary format. The sign, exponent, and mantissa of
the real number are encoded as bit fields within the number. See "Real­
Number Variables, " for an explanation of how real numbers are encoded.

You can specify the encoded format directly using hexadecimal digits
(0-9 or A-F). The number must begin with a decimal digit (0-9) and can­
not be signed. It must be followed by the real-number designator (R). This
designator is used the same as a radix designator except it specifies that
the given hexadecimal number should be interpreted as a real number.

3-9

Macro Assembler

Real numbers can only be used to initialize variables with the DD, DQ,
and DT directives. They cannot be used in expressions. The maximum
number of digits in the number and the maximum range of exponent
values depend on the directive. The number of digits for encoded numbers
used with DD, DQ, and DT must be 8, 16, and 20 digits, respectively. (If
a leading 0 is supplied, the number must be 9, 17, or 21 digits.)

Note

Real numbers will be encoded differently depending upon whether
you use the .MSFLOAT directive. By default, real numbers are
encoded in the IEEE format. This is a change from previous ver­
sions, which assembled real numbers by default in the Microsoft
Binary format. The .MSFLOAT directive overrides the default and
specifies Microsoft Binary format. See "Real-Number Variables,"
for a description of these formats.

Example

shrt
long
ten_byte

; Real numbers
DO 25.23
DQ 2.523E1
DT 2523.0E-2

; Assumes .MSFLOAT
mbshort DO 81000000r 1.0 as Microsoft Binary short
mblong DQ 8100000000000000r 1.0 as Microsoft Binary long

; Assumes default IEEE format
ieeeshort DO 3F800000r 1.0 as IEEE short
ieeelong DQ 3FFOOOOOOOOOOOOOr 1.0 as IEEE long

; The same regardless of processor directives
temporary DT 3FFF8000000000000000r ; 1.0 as 10-byte temporary real

3.4.4 String Constants

A string constant consists of one or more ASCII characters enclosed in sin­
gle or double quotation marks.

3-10

Syntax

'characters'
"characters"

Writing Source Code

String constants are case sensitive. A string constant consisting of a sin­
gle character is sometimes called a character constant.

Single quotation marks must be encoded twice when used literally within
string constants that are also enclosed by single quotation marks. Simi­
larly, double quotation marks must be encoded twice when used in string
constants that are also enclosed by double quotation marks.

Examples

char
char2
message
warn
wam2

DB
DB
DB
DB
DB

'a'
"a"
"This is a message."
'can't find file.'
"Can't find file."

; can't find file.
; can't find file.

string
string2

DB
DB

"This ""value"" not found." ; This ''value'' not found.
'This "value" not found.' ; This ''value'' not found.

3.5 Defining Default Assembly Behavior

Since the assembler processes a source-code file sequentially, any direc­
tives that define the behavior of the assembler for sections of code or for
the entire source file must come before the sections affected by the direc­
tive.

There are three types of directives that may define behavior for the
assembly:

1. The .MODEL directive defines the memory model.

2. Processor directives define the processor and coprocessor.

3. The .MSFLOAT directive and the coprocessor directives define
how floating-point variables are encoded.

These directives are optional. If you do not use them, masm makes
default assumptions. However, if you do use them, you must put them
before any statements that will be affected by them.

3-11

Macro Assembler

The .MSFLOAT and .MODEL directives affect the entire assembly and
can only occur once in the source file. Normally they should be placed at
the beginning of the source file.

The .MODEL directive is part of the new system of simplified segment
directives implemented in Version 5.0. It is explained in "Defining the
Memory ModeL"

The .MSFLOAT directive disables all coprocessor instructions and
specifies that initialized real-number variables be encoded in the Micro­
soft Binary format. Without this directive, initialized real-number vari­
ables are encoded in the IEEE format. This is a change from previous ver­
sions of the assembler, which used Microsoft Binary format by default
and required a coprocessor directive or the -r option to specify IEEE for­
mat. .MSFLOAT must be used for programs that require real-number
data in the Microsoft Binary format. "Real-Number Variables,"
describes real-number data formats and the factors to consider in choos­
ing a format.

Processor and coprocessor directives define the instruction set that is
recognized by masm. They are listed and explained below:

3-12

Directive Description

.8086 The .8086 directive enables assembly of instructions for
the 8086 and 8088 processors and the 8087 coprocessor.
It disables assembly of the instructions unique to the
80186,80286, and 80386 processors.

This is the default mode and is used if no instruction set
directive is specified. Using the default instruction set
ensures that your program can be used on all 8086-
family processors. However, if you choose this direc­
tive, your program will not take advantage of the more
powerful instructions available on more advanced pro­
cessors .

. 186 The .186 directive enables assembly of the 8086 proces­
sor instructions, 8087 coprocessor instructions, and the
additional instructions for the 80186 processor .

. 286 The .286 directive enables assembly of the 8086 instruc­
tions plus the additional nonprivileged instructions of
the 80286 processor. It also enables 80287 coprocessor
instructions. If privileged instructions were previously
enabled, the .286 directive disables them.

.286P

. 386

.386P

. 8087

Writing Source Code

This directive should be used for programs that will be
executed only by an 80286, or 80386 processor. For
compatibility with previous versions of masm, the
.286C directive is also available. It is equivalent to the
.286 directive.

This directive is equivalent to the .286 directive except
that it also enables the privileged instructions of the
80286 processor. This does not mean that the directive is
required if the program will run in protected mode; it
only means that the directive is required if the program
uses the instructions that initiate and manage
privileged-mode processes. These instructions (see
"Controlling Protected- Mode Processes' ') are normally
used only by systems programmers .

The .386 directive enables assembly of the 8086 and the
nonprivileged instructions of the 80286 and 80386 pro­
cessors. It also enables 80387 coprocessor instructions.
If privileged instructions were previously enabled, this
directive disables them. .

This directive should be used for programs that will be
executed only by an 80386 processor.

This directive is equivalent to the .386 directive except
that it also enables the privileged instructions of the
80386 processor .

The .8087 directive enables assembly of instructions for
the 8087 math coprocessor and disables assembly of
instructions unique to the 80287 coprocessor. It also
specifies the IEEE format for encoding floating-point
variables.

This is the default mode and is used if no coprocessor
directive is specified. This directive should be used for
programs that must run with either the 8087, 80287, or
80387 coprocessors .

• 287 The .287 directive enables assembly of instructions for
the 8087 floating-point coprocessor and the additional
instructions for the 80287. It also specifies the IEEE for­
mat for encoding floating-point variables.

Coprocessor instructions are optimized if you use this
directive rather than the .8087 directive. Therefore, you

3-13

Macro Assembler

should use it if you know your program will never need
to run under an 8087 processor. See "Coordinating
Memory Access," for an explanation .

. 387 The .387 directive enables assembly of instructions for
the 8087 and 80287 floating-point coprocessors and the
additional instructions and addressing modes for the
80387. It also specifies the IEEE format for encoding
floating-point variables.

If you do not specify any processor directives, masm uses the following
defaults:

• 8086/8088 processor instruction set

• 8087 coprocessor instruction set

• IEEE format for floating-point variables

Normally the processor and coprocessor directives can be used at the start
of the source file to define the instruction sets for the entire assembly.
However, it is possible to use different processor directives at different
points in the source file to change assumptions for a section of code. For
instance, you might have processor-specific code in different parts of the
same source file. You can also turn privileged instructions on and off or
allow unusual combinations of the processor and coprocessor.

There are tw<? limitations on changing the processor or coprocessor:

1. The directives must be given outside segments. You must end the
current segment, give the processor directive, and then open
another segment. See "Using Predefined Equates," for an example
of changil1gJhe processor directives with simplified segment direc­
tives.

2. You can specify a lower-level coprocessor with a higher-level
coprocessor, but an error message will be generated if you try to
specify a lower-level processor with a higher-level coprocessor.

The coprocessor directives have the opposite effect of the .MSFLOAT
directive .. MSFLOAT turns off coprocessor instruction sets and enables
the Microsoft Binary format for floating-point variables. Any coprocessor
instruction turns on the specified coprocessor instruction set and enables
IEEE format for floating-point variables.

3-14

Examples

.MSFLOAT affects the whole source file
.MSFLOAT
.8087 ; Ignored

Legal - use 80386 and 80287
.386
.287

Illegal - can't use 8086 with 80287
.8086
.287

Turn privileged mode on and off
.286P

.286

3.6 Ending a Source File

Writing Source Code

Source files are always terminated with the END directive. This directive
has two purposes: it marks the end of the source file, and it can indicate
the address where execution begins when the program is loaded.

Syntax

END [startaddress]

Any statements following the END directive are ignored by the assem­
bIer. For instance, you can put comments after the END directive without
using comment specifiers (;) or the COMMENT directive.

The startaddress is a label or expression identifying the address where
you want execution to begin when the program is loaded. Specifying a
start address is discussed in detail in "Initializing the CS and IP Regis­
ters."

3-15

Chapter 4

Defining Segment Structure

4.1 Introduction 4-1

4.2 Simplified Segment Definitions 4-1
4.2.1 Understanding Memory Models 4-2
4.2.2 Specifying MS-DOS Segment Order 4-3
4.2.3 Defining the Memory Model 4-5
4.2.4 Defining Simplified Segments 4-6
4.2.5 Using Predefined Equates 4-9
4.2.6 Simplified Segment Defaults 4-11
4.2.7 Default Segment Names 4-12

4.3 Full Segment Definitions 4-15
4.3.1 Setting the Segment-Order Method 4-15
4.3.2 Defining Full Segments 4-16

4.4 Defining Segment Groups 4-26

4.5 Associating Segments with Registers 4-28

4.6 Initializing Segment Registers 4-31
4.6.1 Initializing the CS and IP Registers 4-31
4.6.2 Initializing the DS Register 4-32
4.6.3 Initializing the SS and SP Registers 4-33
4.6.4 Initializing the ES Register 4-34

4.7 Nesting Segments 4-35

Defining Segment Structure

4.1 Introduction

Segments are a fundamental part of assembly-language programming for
the 8086-family of processors. They are related to the segmented archi­
tecture used by Intel ® for its 16-bit and 32-bit microprocessors. This
architecture is explained in more detail in Chapter 12, "Understanding
8086-Family Processors."

A segment is a collection of instructions or data whose addresses are all
relative to the same segment register. Segments can be defined by using
simplified segment directives or full segment definitions.

In most cases, simplified segment definitions are a better choice. They are
easier to use and more consistent, yet you seldom sacrifice any func­
tionality by using them. Simplified segment directives automatically
define the segment structure required when combining assembler modules
with modules prepared with Microsoft high-level languages.

Although more difficult to use, full segment definitions give more com­
plete control over segments. A few complex programs may require full
segment definitions in order to get unusual segment orders and types. In
previous versions of masm, full segment definitions are the only way to
define segments, so you may need to use them to maintain existing source
code.

This chapter describes both methods. If you choose to use simplified seg­
ment directives, you will probably not need to read about full segment
definitions.

4.2 Simplified Segment Definitions

Version 5.0 of masm implements a new simplified system for declaring
segments. By default, the simplified segment directives use the segment
names and conventions followed by Microsoft high-level languages. If
you are willing to accept these conventions, the more difficult aspects of
segment definition are handled automatically.

If you are writing stand-alone assembler programs in which segment
names, order, and other definition factors are not crucial, the simplified
segment directives make programming easier. The Microsoft conventions
are flexible enough to work for most kinds of programs. If you are new to
assembly-language programming, you should use the simplified segment
qirectives for your first programs.

If you are writing assembler routines to be linked with Microsoft high­
level languages, the simplified segment directives ensure against

4-1

Macro Assembler

mistakes that would make your modules incompatible. The names are
automatically defined consistently and correctly.

When you use simplified segment directives, ASSUME and GROUP
statements that are consistent with Microsoft conventions are generated
automatically. You can learn more about the ASSUME and GROUP
directives in Sections 4.3 and 4.4. However, for most programs you do not
need to understand these directives. You simply use the simplified seg­
ment directives in the format shown in the examples.

4.2.1 Understanding Memory Models

To use simplified segment directives, you must declare a memory model
for your program. The memory model specifies the default size of data
and code used in a program.

Microsoft high-level languages require that each program have a default
size (or memory model). Any assembly-language routine called from a
high-level-language program should have the same memory model as the
calling program. See the documentation for your language to find out
what memory models it can use.

The most commonly used memory models are as follows:

Model

Tiny

Small

Medium

4-2

Description

All data and code fits in a single segment. Micro­
soft languages do not support this model. Some
compilers from other companies support tiny
model either as an option or as a requirement. You
cannot use simplified segment directives for tiny­
model programs.

All data fits within a single 64K segment, and all
code fits within a 64K segment. Therefore, all
code and data can be accessed as near. This is the
most common model for stand-alone assembler
programs. C is the only Microsoft language that
supports this model. All 386 C programs are
"small model" in the sense that all the data and
code each fit into a segment. However, on a 386,
the segment size is so large that this ceases to be
an issue.

All data fits within a single 64K segment, but
code may be greater than 64 K. Therefore, data is

Compact

Large

Huge

Defining Segment Structure

near, but code is far. Most recent versions of
Microsoft languages support this model.

All code fits within a single 64K segment, but the
total amount of data may be greater than 64K
(although no array can be larger than 64K). There­
fore, code is near, but data is far. C is the only
Microsoft.language that supports this model.

Both code and data may be greater than 64K
(although no array can be larger than 64K). There­
fore, both code and data are far. All Microsoft
languages support this model.

Both code and data may be greater than 64K. In
addition, data arrays may be larger than 64K. Both
code and data are far, and pointers to elements
within an array must also be far. Most recent ver­
sions of Microsoft languages support this model.
Segments are the same for large and huge models.

Stand-alone assembler programs can have any model. Small model is
adequate for most programs written entirely in assembly language. Since
near data or code can be accessed more quickly, the smallest memory
model that can accommodate your code and data is usually the most
efficient.

Mixed-model programs use the default size for most code and data but
override the default for particular data items. Stand-alone assembler pro­
grams can be written as mixed-model programs by making specific pro­
cedures or variables near or far. Some Microsoft high-level languages
have NEAR, FAR, and HUGE keywords that enable you to override the
default size of individual data or code items.

4.2.2 Specifying MS·DOS Segment Order

The DOSSEG directive specifies that segments be ordered according to
the MS-DOS segment-order convention. This is the convention used by
Microsoft high-level-language compilers.

Syntax

DOSSEG

Using the DOSSEG directive enables you to maintain a consistent, logi­
cal segment order without actually defining segments in that order in your

4-3

Macro Assembler

source file. Without this directive, the final segment order of the execut­
able file depends on a variety of factors, such as segment order, class
name, and order of linking. These factors are described in "Full Segment
Definitions.' ,

Since segment order is not crucial to the proper functioning of most
stand- alone assembler programs, you can simply use the DOSSEG direc­
tive and ignore the whole issue of segment order.

Note

Using the DOSSEG directive (or the -dosseg linker option) has two
side effects. The linker generates symbols called end and edata.
You should not use these names in programs that contain the DOS­
SEG directive. Also, the linker increases the offset of the first byte
of the code segment by 16 bytes in small and compact models. This
is to give proper alignment to executable files created with Micro­
soft compilers.

If you want to use the MS-DOS segment-order convention in stand-alone
assembler programs, you should use the DOSSEG argument in the main
module. Modules called from the main module need not use the DOS­
SEG directive.

You do not need to use the DOSSEG directive for modules called from
Microsoft high-level languages, since the compiler already defines MS­
DOS segment order.

Under the MS-DOS segment-order convention, segments have the follow­
ing order:

1. All segment names having the class name CODE

2. Any segments that do not have class name CODE and are not part
of the group DGROUP

3. Segments that are part of DGROUP, in the following order:

4-4

1. Any segments of class BEGDATA (this class name is
reserved for Microsoft use)

2. Any segments not of class BEGDATA, BSS, or STACK

Defining Segment Structure

3. Segments of class BSS

4. Segments of class STACK

Using the DOSSEG directive has the same effect as using the -dosseg
linker option.

The directive works by writing to the comment record of the object file.
The Intel title for this record is COMENT. If the linker detects a certain
sequence of bytes in this record, it automatically puts segments in the
MS-DOS order.

4.2.3 Defining the Memory Model

The .MODEL directive is used to initialize the memory model. This
directive should be used early in the source code before any other seg­
ment directive.

Syntax

.MODEL memorymodel

The memorymodel can be SMALL, MEDIUM, COMPACT, LARGE, or
HUGE. Segments are defined the same for large and huge models, but the
@DataSize equate (explained in "Using Predefined Equates") is
different.

If you are wntmg an assembler routine for a high-level language, the
memOlymodel should match the memory model used by the compiler or
interpreter.

If you are writing a stand-alone assembler program, you can use any of
the memory models described in "Understanding Memory Models."
Small model is the best choice for most stand-alone assembler programs.

4-5

Macro Assembler

Note

You must use the .MODEL directive before defining any segment.
If one of the other simplified segment directives (such as .CODE or
.DATA) is given before the .MODEL directive, an error is gen­
erated.

Example 1

.MODEL small

This statement defines default segments for small-model programs and
creates the ASSUME and GROUP statements used by small-model pro­
grams. The segments are automatically ordered according to the Micro­
soft convention. The example statements might be used at the start of the
main (or only) module of a stand-alone assembler program.

Example 2

.MODEL LARGE

This statement defines default segments for large-model programs and
creates the ASSUME and GROUP statements used by large-model pro­
grams. It does not automatically order segments according to the Micro­
soft convention. The example statement might be used at the start of an
assembly module that would be called from a large-model C, BASIC,
FORTRAN, or Pascal program.

80386 Only

If you use the .386 directive before the .MODEL directive, the segment
definitions defines 32-bit segments. If you want to enable the 80386 pro­
cessor with 16-bit segments, you should give the .386 directive after the
.MODEL directive.

4.2.4 Defining Simplified Segments

The .CODE, .DATA, .DATA?, .FARDATA, .FARDATA?, .CONST, and
.STACK directives indicate the start of a segment. They also end any
open segment definition used earlier in the source code.

4-6

Syntax

.STACK [size]

.CODE [name]

.DATA

.DATA?

.FARDATA [name]

.FARDATA? [name]

.CONST

Defining Segment Structure

Stack segment
Code segment
Initialized near-data segment
Uninitialized near-data segment
Initialized far-data segment
Uninitialized far-data segment
Constant-data segment

For segments that take an optional name, a default name is used if none is
specified. See "Default Segment Names," for more information.

Each new segment directive ends the previous segment. The END direc­
tive closes the last open segment in the source file.

The size argument of the .STACK directive is the number of bytes to be
declared in the stack. If no size is given, the segment is defined with a
default size of one kilobyte.

Stacks are defined by the compiler or interpreter for modules linked with
a main module from a high-level language.

Code should be placed in a segment initialized with the .CODE directive,
regardless of the memory model. Normally, only one code segment is
defined in a source module. If you put multiple code segments in one
source file, you must specify name to distinguish the segments. The name
can only be specified for models allowing multiple code segments
(medium and large). Name will be ignored if given with small or compact
models.

Uninitialized data is any variable declared by using the indeterminate
symbol (?) and the DUP operator. When declaring data for modules that
will be used with a Microsoft high-level language, you should follow the
convention of using .DATA or .FARDATA for initialized data and
.DATA? or .FARDATA? for uninitialized data. For stand-alone assembler
programs, using the .DATA? and .FARDATA? directives is optional. You
can put uninitialized data in any data segment.

Constant data is data that must be declared in a data segment but is not
subject to change at run time. Use of this segment is optional for stand­
alone assembler programs. If you are writing assembler routines to be
called from a high-level language, you can use the .CONST directive to
declare strings, real numbers, and other constant data that must be allo-
~~~d~~ . 

4-7 



Macro Assembler 

Data in segments defined with the .STACK, .CONST, .DATA or .DATA? 
directives is placed in a group called DGROUP. Data in segments 
defined with the .FARDATA or .FARDATA? directives is not placed in 
any group. For more infonnation on segment groups, see "Defining Seg­
ment Groups." When initializing the DS register to access data in a 
group-associated segment, the value of DGROUP should be loaded into 
DS. For infonnation on initializing data segments, see "Initializing the 
DS Register." 

Example 1 

.MJDEL SMALL 

. STACK 100h 

. DATA 
ivariable DB 5 
iarray OW 50DUP (5) 
string DB "This is a string" 
uarray DW 50DUP (?) 

EXTRN xvariable :WJRD 
. CODE 

start: mov ax,DGROUP 
mov ds,ax 
EXTRN xprocedure:NEAR 
call xprocedure 

END start 

This code uses simplified segment directives for a small-model, stand­
alone assembler program. Notice that initialized data, uninitialized data, 
and a string constant are all defined in the same data segment. See 
"Default Segment Names," for an equivalent version that uses full seg­
ment definitions. 

4-8 



Example 2 

fuarray 

string 

niarray 

fiarray 

.MJDEL LARGE 

.FARDATA? 
DW 10 DUP (?) 
.CONST 

Defining Segment Structure 

Far uninitialized data 

DB "This is a string" String constant 
. DATA 
DB 100 DUP (5) ; Near initialized data 
.FARDATA 
EXTRN xvariable:FAR 
DW 100 DUP (10) ; Far initialized data 
. CODE ACTION 
EXTRN xprocedure:PROC 

task PROC 

ret 
task ENDP 

END 

This example uses simplified segment directives to create a module that 
might be called from a large-model, high-level-language program. Notice 
that different types of data are put in different segments to conform to 
Microsoft compiler conventions. See "Default Segment Names," for an 
equivalent version using full segment definitions. 

4.2.5 Using Predefined Equates 

Several equates are predefined for you. You can use the equate names at 
any point in your code to represent the equate values. You should not 
assign equates having these names. The predefined equates are as follows: 

Name 

@CurSeg 

Value 

This name has the segment name of the current seg­
ment. This value may be convenient for ASSUME 
statements, segment overrides, or other cases in which 
you need to access the current segment. It can also be 
used to end a segment, as shown: 

@CurSeg ENDS 
.286 
.CODE 

; End current segment 
Must be outside segment 

; Restart segment 

4-9 



Macro Assembler 

@fileName 

@CodeSize 
and 
@DataSize 

This value represents the base name of the current 
source file. For example, if the current source file is 
task.s, the value of @fileName is task. This value can 
be used in any name you would like to change if the 
file name changes. For example, it can be used as a 
procedure name: 

@fileName PROC 

@fileName ENDP 

If the .MODEL directive has been used, the 
@CodeSize value is 0 for small and compact models 
or 1 for medium, large, and huge models. The 
@DataSize value is 0 for small and medium models, 1 
for compact and large models, and 2 for huge models. 
These values can be used in conditional-assembly 
statements: 

IF @DataSize 
les bx, pointer Load far pointer 
mov ax,es:WORD PTR [bx] 
ELSE 
mov bx,WORD PTR pointer Load near pointer 
mov ax,WORD PTR [bx] 
ENDIF 

Segment equates For each of the primary segment directives, there is a 
corresponding equate with the same name, except that 
the equate starts with an at sign (@) but the directive 
starts with a period. For example, the @code equate 
represents the segment name defined by the .CODE 
directive. Similarly, @fardata represents the .FAR­
DATA segment name and @fardata? represents the 
.FARDATA? segment name. The @data equate 
represents the group name shared by all the near data 
segments. It can be used to access the segments 
created by the .DATA, .DATA?, .CONST, and 
.STACK segments. 

4-10 



Note 

Defining Segment Structure 

These equates can be used in ASSUME statements 
and at any other time a segment must be referred to by 
name, for example: 

ASSUME es:@fardata ; Assume ES to far data 
(.MODEL handles DS) 

mov ax,@data ; Initialize near to DS 
mov ds,ax 
mov ax,@fardata; Initialize far to ES 
moves, ax 

Although predefined equates are part of the simplified segment sys­
tem, the @CurSeg and @fileName equates are also available when 
using full segment definitions. 

4.2.6 Simplified Segment Defaults 

When you use the simplified segment directives, defaults are different in 
certain situations than they would be if you gave full segment definitions. 
Defaults that change are: 

• If you give full segment definitions, the default size for the PROC 
directive is always NEAR. If you use the .MODEL directive, the 
PROC directive is associated with the specified memory model: 
NEAR for small and compact models and FAR for medium, large, 
and huge models. See "Procedure Labels," for further discussion 
of the PROC directive. 

• If you give full segment definitions, the segment address used as 
the base when calculating an offset with the OFFSET operator is 
the data segment (the segment associated with the DS register). 
With the simplified segment directives, the base address is the 
DGROUP segment for segments that are associated with a group. 
This includes segments declared with the .DATA, .DATA?, and 
.STACK directives, but not segments declared with the .CODE, 
.FARDATA, and .FARDATA? directives. For example, assume the 
variable test} was declared in a segment defined with the .DATA 
directive and test2 was declared in a segment defined with the 

4-11 



Macro Assembler 

.FARDATA directive. The following statement loads the address 
of test] relative to DGROUP. 

mov ax,OFFSET testl 

The next statement loads the address of test2 relative to the seg­
ment defined by the .FARDATA directive. 

mov ax,OFFSET test2 

For more information on groups, see "Defining Segment Groups." 

4.2.7 Default Segment Names 

If you use the simplified segment directives by themselves, you do not 
need to know the names assigned for each segment. However, it is possi­
ble to mix full segment definitions with simplified segment definitions. 
Therefore, some programmers may wish to know the actual names 
assigned to all segments. 

Table 4.1 shows the default segment names created by each directive. 

Table 4.1 

Default Segments and Types for Standard Memory Models 

Model Directive Name Align Combine Class Group 

Small .CODE _TEXT WORD PUBLIC 'CODE' 

.DATA DATA WORD PUBLIC 'DATA' DGROUP -

.CONST CONST WORD PUBLIC 'CONST' DGROUP 

.DATA? BSS WORD PUBLIC 'BSS' DGROUP -

.STACK STACK PARA STACK 'STACK' DGROUP 

Medium .CODE name_TEXT WORD PUBLIC 'CODE' 

.DATA DATA WORD PUBLIC 'DATA' DGROUP -

.CONST CONST WORD PUBLIC 'CONST' DGROUP 

.DATA? _BSS WORD PUBLIC 'BSS' DGROUP 

.STACK STACK PARA STACK 'STACK' DGROUP 

4-12 



Defining Segment Structure 

Model Directive Name Align Combine Class Group 

Compact .CODE _TEXT WORD PUBLIC 'CODE' 

.FARDATA FAR_DATA PARA private 'FAR_DATA' 

.FARDATA? FAR_BSS PARA private 'FAR_BSS' 

.DATA _DATA WORD PUBLIC 'DATA' DGROUP 

.CONST CONST WORD PUBLIC 'CONST' DGROUP 

.DATA? _BSS WORD PUBLIC 'BSS' DGROUP 

.STACK STACK PARA STACK 'STACK' DGROUP 

Large .CODE name_TEXT WORD PUBLIC 'CODE' 

or huge .FARDATA FAR_DATA PARA private 'FAR_DATA' 

.FARDATA? FAR_BSS PARA private 'FAR_BSS' 

.DATA _DATA WORD PUBLIC 'DATA' DGROUP 

.CONST CONST WORD PUBLIC 'CONST' DGROUP 

.DATA? _BSS WORD PUBLIC 'BSS' DGROUP 

.STACK STACK PARA STACK 'STACK' DGROUP 

The name used as part of far-code segment names is the file name of the 
module. The default name associated with the .CODE directive can be 
overridden in medium and large models. The default names for the .FAR­
DATA and .FARDATA? directives can always be overridden. 

The segment and group table at the end of listings always shows the 
actual segment names. However, the group and assume statements gen­
erated by the .MODEL directive are not shown in listing files. For a pro­
gram that uses all possible segments, group statements equivalent to the 
following would be generated: 

DGROUP GROUP _DATA, CONST, _BSS, STACK 

For small and compact models, the following would be generated: 

ASSUME cs:_TEXT,ds:DGROUP, ss:DGROUP 

For medium, large, and huge models the following statement is given: 

ASSUME cs:name_TEXT,ds:DGROUP,ss:DGROUP 

80386 Only 

If the .386 directive is used, the default align type for all segments is 
DWORD. 

4-13 



Macro Assembler 

Example 1 

DGROllP 

TEXT 
start: 

TEXT 
DRIA 

ivariable 
iarray 
string 
uarray 

DRIA 
STACK 

STACK 

EXTRN A~ariable:WORD 

EXTRN xprocedure:NEAR 
GROUP _DRIA,_BSS 
ASSUME cs:_TEX'l',ds:DGROUP,ss:DGROUP 
SEGMENT WORD PUBLIC 'CODE' 
mov aX,DGROUP 
mov ds,ax 

ENDS 
SEGME~r WORD PUBLIC 'DRIA' 
DB 5 
OW 50 DUP (5) 
DB "This ·is a string" 
OW 50 DUP (?) 

ENDS 
SEGMENT PARA STl-\CK 'STACK' 
DB 100h DUP (?) 

ENDS 
END start 

This example is equivalent to Example 1 in "Defining Simplified Seg­
ments. ' , The external variables are declared at the start of the source 
code in this example. With simplified segment directives, they can be 
declared in the segment in which they are used. 

4-14 



Defining Segment Structure 

Example 2 

DGROUP 

FAR BSS 
fuarray 
FAR BSS 
CONST 
string 
CONST 

DATA. 
niarray 

DATA. 
FAR DATA 
fiarray 
FAR DATA 

GROUP _DATA,CONST,STACK 
ASSUME cs: TASK TEXT, ds: FAR DATA, ss: STACK 
EXTRN xprocedure:FAR -
EXTRN xvariable:FAR 
SEGMENT PARA 'FAR DATA' 
DW 10 DUP (?) Far uninitialized data 
ENDS 
SEGMENT WJRD PUBLIC 'CaNST' 
DB "This is a string" String constant 
ENDS 
SEGMENT WJRD PUBLIC 'DATA' 
DB 100 DUP (5) ; Near initialized data 
ENDS 
SEGMENT WJRD 'FAR DATA' 
DW 100 DUP (10) 
ENDS 

TASK TEXT SEGMENT WJRD PUBLIC 'CODE 
task PROC FAR 

ret 
task ENDP 
TASK TEXT ENDS 

END 

This example is equivalent to Example 2 in "Defining Simplified Seg­
ments." Notice that the segment order is the same in both versions. The 
segment order shown here is written to the object file, but it is different in 
the executable file. The segment order specified by the compiler overrides 
the segment order in the module object file. 

4.3 Full Segment Definitions 

If you need complete control over segments, you may want to give com­
plete segment definitions. The following section explains all aspects of 
segment definitions, including how to order segments and how to define 
all the segment types. 

4.3.1 Setting the Segment-Order Method 

The order in which masm writes segments to the object file can be either 
sequential or alphabetical. If the sequential method is specified, segments 
are written in the order in which they appear in the source code. If the 
alphabetical method is specified, segments are written in the alphabetical 
order of their segment names. 

4-15 



Macro Assembler 

The default is sequential. 'If no segment-order directive or option is given, 
segments are ordered sequentially. The segment-order method is only one 
factor in determining the final order of segments in memory. The DOS­
SEG directive (see "Specifying MS-DOS Segment Order' ') and class type 
(see "Controlling Segment Structure with Class Type") can also affect 
segment order. 

The ordering method can be set by using the .ALPHA or .SEQ directive 
in the source code. The method can also be set using the -s (sequential) or 
-a (alphabetical) assembler options (see "Specifying the Segment-Order 
Method' '). The directives have precedence over the options. For example, 
if the source code contains the .ALPHA directive, but the -s option is 
given on the command line, the segments are ordered alphabetically. 

Changing the segment order is an advanced technique. In most cases you 
can simply leave the default sequential order in effect. If you are linking 
with high-level-language modules, the compiler automatically sets the 
segment order. 

Example 1 

.SEQ 
DATA SEGMENT WORD PUBLIC 'DATA' 
DATA ENDS 
CODE SEGMENT WORD PUBLIC 'CODE' 
CODE ENDS 

Example 2 

. ALPHA 
DATA SEGMENT WORD PUBLIC 'DATA' 
DATA ENDS 
CODE SEGMENT WORD PUBLIC 'CODE' 
CODE ENDS 

In Example 1, the DiITA segment is written to the object file first because 
it appears first in the source code. In Example 2, the CODE segment is 
written to the object file first because its name comes first alphabetically. 

4.3.2 Defining Full Segments 

The beginning of a program segment is defined with the SEGMENT 
directive, and the end of the segment is defined with the ENDS directive. 

4-16 



Defining Segment Structure 

Syntax 

name SEGMENT [align] [combine] [use] ['class'] 
statements 
name ENDS 

The name defines the name of the segment. This name can be unique or it 
can be the same name given to other segments in the program. Segments 
with identical names are treated as the same segment. For example, if it is 
convenient to put different portions of a single segment in different source 
modules, the segment is given the same name in both modules. 

The optional align, combine, use, and class types give the linker and the 
assembler instructions on how to set up and combine segments. Types 
should be specified in order, but it is not necessary to enter all types, or 
any type, for a given segment. 

Defining segment types is an advanced technique. Beginning assembly­
language programmers might try using the simplified segment directives 
discussed in "Simplified Segment Definitions." 

Note 

Don't confuse the PAGE align type and the PUBLIC combine type 
with the PAGE and PUBLIC directives. The distinction should be 
clear from context since the align and combine types are only used 
on the same line as the SEGMENT directive. 

Controlling Alignment with Align Type 

The optional align type defines the range of memory addresses from 
which a starting address for the segment can be selected. The align type 
can be anyone of the following: 

Align Type Meaning 

BYTE Uses the next available byte address. 

WORD Uses the next available word address (2 bytes per 
word). 

4-17 



Macro Assembler 

DWORD 

PARA 

PAGE 

Uses the next available doubleword address (4 bytes 
per doubleword); the DWORD align type is nonnally 
used in 32-bit segments with the 80386 processor. 

Uses the next available paragraph address (16 bytes 
per paragraph) . 

Uses the next available page address (256 bytes per 
page). 

If no align type is given, PARA is used by default (except with the 80386 
processor). 

The linker uses the alignment infonnation to detennine the relative start 
address for each segment. 

Align types are illustrated in Figure 4.1, in "Defining Segment Combina­
tions with Combine Type." 

Setting Segment Word Size with Use Type 

80386 Only 

The use type specifies the segment word size on the 80386 processor. 
Segment word size is the default operand and address size of a segment. 

The use type can be USE16 or USE32. These types are only relevant if 
you have enabled 80386 instructions and addressing modes with the .386 
directive. The assembler generates an error if you specify use type when 
the 80386 processor is not enabled. 

With the 80286 and other 16-bit processors, the segment word size is 
always 16 bits. A 16-bit segment can contain up to 65,536 (64K) bytes. 
However, the 80386 is capable of using either 16-bit or 32-bit segments. 
A 32-bit segment can contain up to 4,294,967,296 bytes (4 gigabytes). 

If you do not specify a use type, the segment word size is 32 bits by 
default when the .386 directive is used. 

The effect of addressing modes is changed by the word size you specify 
for the code segment. For more infonnation on 80386 addressing modes, 
see "80386 Indirect Memory Operands." The meaning of the WORD 
and DWORD type specifiers is not changed by the use type. WORD 
always indicates 16 bits and DWORD always indicates 32 bits regardless 
of the current segment word size. 

4-18 



Defining Segment Structure 

Note 

Although the assembler allows you to use 16-bit and 32-bit seg­
ments in the same program, you should nonnally make all segments 
the same size. Mixing segment sizes is an advanced technique that 
can have unexpected side effects. For the most part, it is used only 
by systems programmers. 

Example 1 

; 16-bit segment 
.386 

DATA SEGMENT DWORD USE16 PUBLIC 'DATA' 

DATA ENDS 

Example 2 

; 32-bit segment 
.386 

TEXT SEGMENT DWORD USE32 PUBLIC 'CODE' -

TEXT ENDS 

Defining Segment Combinations with Combine Type 

The optional combine type defines how to combine segments having the 
same name. The combine type can be anyone of the following: 

Combine Type Meaning 

PUBLIC Concatenates all segments having the same name 
to fonn a single, contiguous segment. All instruc­
tion and data addresses in the new segment are 
relative to a single segment register, and all offsets 
are adjusted to represent the distance from the 
beginning of the segment. 

4-19 



Macro Assembler 

STACK 

COMMON 

MEMORY 

4-20 

Concatenates all segments having the same name 
to form a single, contiguous segment. This com­
bine type is the same as the PUBLIC combine 
type, except that all addresses in the new segment 
are relative to the SS segment register. The stack 
pointer (SP) register is initialized to the length of 
,the segment. The stack segment of your program 
should normally use the STACK type, since this 
automatically initializes the SS register, as 
described in Section 4.5.3, "Initializing the SS 
and SP Registers. " If you create a stack segment 
and do not use the STACK type, you must give 
instructions to initialize the SS and SP registers. 

Creates overlapping segments by placing the start 
of all segments having the same name at the same 
address. The length of the resulting area is the 
length of the longest segment. All addresses in the 
segments are relative to the same base address. If 
variables are initialized in more than one segment 
having the same name and COMMON type, the 
most recently initialized data replace any previ-
0usly initialized data. 

Concatenates all segments having the same name 
to form a single, contiguous segment. The linker 
treats MEMORY segments exactly the same as 
PUBLIC segments. You are allowed to use 
MEMORY type even though Id does not recog­
nize a separate MEMORY type. This feature is 
compatible with other linkers that may support a 
combine type conforming to the Intel definition of 
MEMORY type. 



AT address 

Defining Segment Structure 

Causes all label and variable addresses defined in 
the segment to be relative to address. The address 
can be any valid expression, but must not contain 
a forward reference-that is, a reference to a sym­
bol defined later in the source file. An AT segment 
typically contains no code or initialized data. 
Instead, it represents an address template that can 
be placed over code or data already in memory, 
such as a screen buffer or other absolute memory 
locations defined by hardware. The linker will not 
generate any code or data for AT segments, but 
existing code or data can be accessed by name if it 
is given a label in an AT segment. Section 5.4, 
"Setting the Location Counter," shows an exam­
ple of a segment with AT combine type. The AT 
combine type has no meaning in protected-mode 
programs, since the segment represents a movable 
selector rather than a physical address. Real-mode 
programs that use AT segments must be modified 
before they can be used in protected mode. 

If no combine type is given, the segment has private type. Segments hav­
ing the same name are not combined. Instead, each segment receives its 
own physical segment when loaded into memory. 

Notes 

Although a given segment name can be used more than once in a 
source file, each segment definition using that name must have 
either exactly the same attributes, or attributes that do not conflict. 
If types are given for an initial segment definition, then subsequent 
definitions for that segment need not specify any types. 

Normally you should provide at least one stack segment (having 
STACK combine type) in a program. If no stack segment is 
declared, Id displays a warning message. You can ignore this mes­
sage if you have a specific reason for not declaring a stack segment. 

4-21 



Macro Assembler 

Example 

The following source-code shell illustrates one way in which the combine 
and align types can be used. Figure 4.1 shows the way ld would load the 
sample program into memory. 

NAME module 1 

ASEG SEGMENT WJRD PUBLIC 'CODE' 
start: 

ASEG ENDS 

BSEG SEGMENT WJRD CavMJN 'DATA' 

BSEG ENDS 

BSEG SEGMENT PARA STACK 'STACK' 

CSEG ENDS 

DSEG SEGMENT AT DB8DDH 

DSEG ENDS 
END start 

NAME module 2 

ASEG SEGMENT WJRD PUBLIC 'CODE' 

ASEG ENDS 

BSEG SEGMENT WJRD CavMJN 'DATA' 

BSEG ENDS 
END 

4-22 



high memory 

OB800h D 
First available D' 
paragraph address 
after bseg 

First available 
word address 
after aseg 

First available 
byte address 

low memory 

/ 

/ 

/ 

V 

Defining Segment Structure 

DSEG SEGMENT AT OB800h 

CSEG SEGMENT PARA STACK 'STACK' 

BSEG SEGMENT WORD COMMON 'DATA' 

In module 2 

BSEG SEGMENT WORD COMMON 'DATA' 

In module 1 

ASEG SEGMENT WORD PUBLIC 'CODE' 

In module 2 

ASEG SEGMENT WORD PUBLIC 'CODE' 

In module 1 

Figure 4-1 Segment Structure with Combine and Align Types 

Controlling Segment Structure with Class Type 

Class type is a means of associating segments that have different names, 
but similar purposes. It can be used to control segment order and to iden­
tify the code segment. 

The class name must be enclosed in single quotation marks ('). 

4-23 



Macro Assembler 

All segments belong to a class. Segments for which no class name is 
explicitly stated have the null class name. Because ld imposes no restric­
tion on the number or size of segments in a class, the total size of all seg­
ments in a class can exceed 64K. 

Note 

The names assigned for class types of segments should not be used 
for other symbol definitions in the source file. For example, if you 
give a segment the class name 'CONSTANT', you should not give 
the name constant to variables or labels in the source file. 

The linker expects segments having the class name CODE or a class 
name with the suffix CODE to contain program code. You should always 
assign this class name to segments containing code. 

Class type is one of two factors that control the final order of segments in 
an executable file. The other factor is the order of the segments in the 
source file (with the -s option or the .SEQ directive) or the alphabetical 
order of segments (with the -a option or the .ALPHA directive). 

These factors control different internal behavior, but both affect final 
order of segments in the executable file. The sequential or alphabetical 
order of segments in the source file determines the order in which the 
assembler writes segments to the object file. The class type can affect the 
order in which the linker writes segments from object files to the execut­
able file. 

Segments having the same class type are loaded into memory together, 
regardless of their sequential or alphabetical order in the source file. 

Example 

A SEG SEGMENT ' SEG. l' 
A SEG ENDS 

B SEG SEGMENT ' SEG 2' 
B SEG ENDS 

C_SEG SEGMENT ' SEG l' 
C SEG ENDS 

When masm assembles the preceding program fragment, it writes the 
segments to the object file in sequential or alphabetical order, depending 
on whether the -a option or the .ALPHA directive was used. In the 

4-24 



Defining Segment Structure 

example above, the sequential and alphabetical order are the same, so the 
order will be A _ SEG, B _ SEG, C _ SEG in either case. 

When the linker writes the segments to the executable file, it first checks 
to see if any segments have the same class type. If they do, it writes them 
to the executable file together. Thus A SEG and C SEG are placed 
together because they both have class type SEG _1. The final order in 
memory isA_SEG, C_SEG,B_SEG. 

Since Id processes modules in the order it receives them on the command 
line, you may not always be able to easily specify the order you want seg­
ments to be loaded. For example, assume your program has four segments 
that you want loaded in the following order: _TEXT, _DATA, CONST, and 
STACK. 

The TEXT, CONST, and STACK segments are defined in the first module 
of yOUr program, but the _DATA segment is defined in the second module. 
In this case, Id will not put the segments in the proper order because it 
first loads the segments encountered in the first module. 

You can avoid this problem by starting your program with dummy seg­
ment definitions in the order you wish to load your real segments. The 
dummy segments can either go at the start of the first module, or they can 
be placed in a separate include file that is called at the start of the first 
module. You can then put the actual segment definitions in any order or 
any module you find convenient. 

For example, you might call the following include file at the start of the 
first module of your program: 

TEXT SEGMENT WORD PUBLIC 'CODE' 
TEXT ENDS 
DATA SEGMENT WORD PUBLIC 'DATA' 
DATA ENDS 

CaNST SEGMENT WORD PUBLIC 'CaNST' 
CaNST ENDS 
STACK SEGMENT PARA STACK ' STACK' 
STACK ENDS 

Once a segment has been defined, you do not need to specify the align, 
combine, use, and class types on subsequent definitions. For example, if 

4-25 



Macro Assembler 

your code defined dummy segments as shown above, you could define an 
actual data segment with the following statements: 

DATA SEGMENT 

DATA ENDS 

4.4 Defining Segment Groups 

A group is a collection of segments associated with the same starting 
address. You may wish to use a group if you want several types of data to 
be organized in separate segments in your source code, but want them all 
to be accessible from a single, common segment register at run time. 

Syntax 

name GROUP segment [,segment]. .. 

The name is the symbol assigned to the starting address of the group. All 
labels and variables defined within the segments of the group are relative 
to the start of the group, rather than to the start of the segments in which 
they are defined. 

The segment can be any previously defined segment or a SEG expression 
(see "SEG Operator"). 

Segments can be added to a group one at a time. For example, you can 
define and add segments to a group one by one. This is a new feature of 
Version 5.0. Previous versions required that all segments in a group be 
defined at one time. 

The GROUP directive does not affect the order in which segments of a 
group are loaded. Loading order depends on each segment's class, or on 
the order in which object modules are given to the linker. 

Segments in a group need not be contiguous. Segments that do not belong 
to the group can be loaded between segments that do. The only restriction 
is that the distance (in bytes) between the first byte in the first segment of 
the group and the last byte in the last segment must not exceed 65,535 
bytes. 

4-26 



Defining Segment Structure 

Note 

When the MODEL directive is used, the offset of a group-relative 
segment refers to the ending address of the segment, not the begin­
ning. For example, the expression OFFSET STACK evaluates to the 
end of the stack segment. 

Group names can be used with the ASSUME directive (discussed in 
"Associating Segments with Registers") and as an operand prefix with 
the segment-override operator (discussed in "Segment-Override Opera­
tor"). 

Example 

DGROUP GROUP ASEG,CSEG 
ASSUME ds:DGROUP 

ASEG SEGMENT WOR:::l PUBLIC ' OAT}:,' 

asym 

ASEG ENDS 

BSEG SEGMENT WORD PUBLIC 'DATA' 

bsym 

BSEG ENDS 

CSEG SEGMENT WORD PUBLIC 'DATA' 

csym 

CSEG ENDS 
END 

Figure 4.2 shows the order of the example segments in memory. They are 
loaded in the order in which they appear in the source code (or in alpha­
betical order if the .ALPHA directive or -a option is specified). 

Since ASEG and CSEG are declared part of the same group, they have the 
same base despite their separation in memory. This means that the sym­
bols asym and csym have offsets from the beginning of the group, which is 
also the beginning of ASEG. The offset of bsym is from the beginning of 

4-27 



Macro Assembler 

BSEG, since it is not part of the group. This sample illustrates the way ld 
organizes segments in a group. It is not intended as a typical use of a 
group. 

high memory 
.,/ 

csym 
CSEG SEGMENT WORD PUBLIC 'DATA' 

-- (Part of DGROUP) 

offset csym 
II 

bsym BSEG SEGMENT WORD PUBLIC 'DATA' 

-- (Not part of DGROUP) 

offset bsym 
/ 

asym ASEG SEGMENT WORD PUBLIC 'DATA' 
(Part of DGROUP) 

- -

offset asym 
/ 

low memory Base of DGROUP 

Figure 4-2 Segment Structure with Groups 

4.5 Associating Segments with Registers 

Many instructions assume a default segment. For example, JMP instruc­
tions assume the segment associated with the CS register; PUSH and 
POP instructions assume the segment associated with the SS register; 
MOV instructions assume the segment associated with the DS register. 

When the assembler needs to reference an address, it must know what 
segment the address is in. It does this by using default segment or group 
addresses assigned with the ASSUME directive. 

4-28 



Defining Segment Structure 

Note 

U sing the ASSUME directive to tell the assembler which segment 
to associate with a segment register is not the same as telling the 
processor. The ASSUME directive only affects assembly-time 
assumptions. You may need to use instructions to change run-time 
assumptions. Initializing segment registers at run time is discussed 
in "Initializing Segment Registers." 

Syntax 

ASSUME segmentregister:name [,segmentregister:name] ... 
ASSUME segmentregister:NOTHING 
ASSUME NOTHING 

The name must be the name of the segment or group that is to be associ­
ated with the segmentregister. Subsequent instructions that assume a 
default register for referencing labels or variables automatically assume 
that if the default segment is segmentregister, then the label or variable is 
in the name segment or group. 

The ASSUME directive can define a segment for each of the segment 
registers. The segmentregister can be CS, DS, ES, or SS (FS and GS are 
also available on the 80386 processor). The name must be one of the fol­
lowing: 

• The name of a segment defined in the source file with the SEG­
MENT directive 

• The name of a group defined in the source file with the GROUP 
directive 

• The keyword NOTHING 

• A SEG expression (see "SEG Operator") 

• A string equate that evaluates to a segment or group name (but not 
a string equate that evaluates to a SEG expression) 

The keyword NOTHING cancels the current segment selection. For 
example, the statement ASSUME NOTHING cancels all register selec­
tions made by previous ASSUME statements. 

4-29 



Macro Assembler 

Usually a single ASSUME statement defines all four segment registers at 
the start of the source file. However, you can use the ASSUME directive 
at any point to change segment assumptions. 

Using the ASSUME directive to change segment assumptions is often 
equivalent to changing assumptions with the segment-override operator 
(:) (see "Segment-Override Operator"). The segment-override operator is 
more convenient for one-time overrides, whereas the ASSUME directive 
may be more convenient if previous assumptions must be overridden for a 
sequence of instructions. 

Example 

dl 

d2 

start: 

.MJOEL large 

.STACK lOOh 
• DATA 

OW 7 
.FARDATA 
OW 9 

. CODE 
mov ax,@data 
mov ds,ax 

OS automatically assumed to @data 

Initialize near data 

mov ax,@fardata ; Initialize far data 
mov es,ax 

; Method 1 for series of instructions that need override 
Use segment override for each statement 

mov ax,es:d2 

mov es:d2,bx 

; Method 2 for series of instructions that need override 
Use ASSUME at beginning of series of instructions 

ASSUME es:@fardata 
mov cx,d2 

mov d2,dx 

4-30 



Defining Segment Structure 

4.6 Initializing Segment Registers 

Assembly-language programs must initialize segment values for each 
segment register before instructions that reference the segment register 
can be used in the source program. 

Initializing segment registers is different from assigning default values for 
segment registers with the ASSUME statement. The ASSUME directive 
tells the assembler what segments to use at assembly time. Initializing 
segments gives them an initial value that will be used at run time. 

Each of the segment registers is initialized in a different way. 

4.6.1 Initializing the CS and IP Registers 

The CS and IP registers are initialized by specifying a starting address 
with the END directive. 

Syntax 

END [startaddress] 

The startaddress is a label or expression identifying the address where 
you want execution to begin when the program is loaded. Normally a 
label for the startaddress should be placed at the address of the first 
instruction in the code segment. 

The CS segment is initialized to the value of startaddress. The IP register 
is normally initialized to O. You can change the initial value of the IP 
register by using the ORG directive (see "Setting the Location 
Counter' ') just before the startaddress label. 

If a program consists of a single source module, then the startaddress is 
required for that module. If a program has several modules, all modules 
must terminate with an END directive, but only one of them can define a 
startaddress. 

4-31 



Macro Assembler 

Warning 

One, and only one, module must define a startaddress. If you do not 
specify a startaddress, none is assumed. Neither masm nor ld will 
generate an error message, but your program will probably start exe­
cution at the wrong address. 

Example 

; Module 1 
• CODE 

start: ; First executable instruction 

EXT.RN task:NEAR 
call task 

END start ; Starting address defined in main module 

; Module 2 
PUBLIC task 
. CODE 

task PROC 

task ENDP 
END ; No starting address in secondary module 

If Module 1 and Module 2 are linked into a single program, it is essential 
that only the calling module define a starting address. 

4.6.2 Initializing the DS Register 

The DS register must be initialized to the address of the segment that will 
be used for data. 

The address of the segment or group for the initial data segment must be 
loaded into the DS register. This is done in two statements because a 
memory value cannot be loaded· directly into a segment register. The 
segment-setup lines typically appear at the start or very near the start of 
the code segment. 

4-32 



Example 1 

DATA 

DATA 
TEXT 

start: 

TEXT 

SEGMENT WORD PUBLIC 'DATA' 

ENDS 
SEGMENT BYTE PUBLIC 'CODE' 
ASSUME cs: TEXT,ds: DATA 

Defining Segment Structure 

mov ax, -DATA - ; Load start of data segment 
mov ds,ax ;Transfer to DS register 

ENDS 
END start 

If you are using the Microsoft naming convention and segment order, the 
address loaded into the DS register is not a segment address but the 
address of DGROUP, as shown in Example 2. With simplified segment 
directives, the address of DGROUP is represented by the predefined 
equate @data. 

Example 2 

.MJDEL 

. DATA 

• CODE 
start: mov 

mov 

END 

SMALL 

ax,@data 
ds,ax 

start 

; Load start of DGROUP (@data) 
; Transfer to DS register 

4.6.3 Initializing the SS and SP Registers 

The SS register is automatically initialized to the value of the last seg­
ment in the source code having combine type STACK. The SP register is 
automatically initialized to the size of the stack segment. Thus SS:SP ini­
tially points to the end of the stack. 

4-33 



Macro Assembler 

If you use a stack segment with combine type STACK, initialization of 
SS and SP is automatic. The stack is automatically set up in this way with 
the simplified segment directives. 

However, you can initialize or reinitialize the stack segment directly by 
changing the values of SS and SP. Since hardware interrupts use the same 
stack as the program, you should turn off hardware interrupts while 
changing the stack. Most 8086-family processors do this automatically, 
but early versions of the 8088 processor do not. 

Example 

start: 

.MJDEL small 

.STACK lOOh 
• DATA 

. CODE 
mov 
mov 
mov 
mov 

ax,@data 
ds,ax 
ss,ax 
sp, OFFSET STACK 

Initialize "STACK" 

; Load segment location 
; into DS register 
; Load same value as DS into SS 
; Give SP new stack size 

This example reinitializes SS so that it has the same value as DS, and 
adjusts SP to reflect the new stack offset. Microsoft high-level-language 
compilers do this so that stack variables in near procedures can be 
accessed relative to either SS or DS. 

4.6.4 Initializing the ES Register 

The ES register is not automatically initialized. If your program uses the 
ES register, you must initialize it by moving the appropriate segment 
value into the register. 

Example 

ASSUME es:@fardata 
mov ax,@fardata 
mov es,ax 

4-34 

Tell the assembler 
Tell the processor 



Defining Segment Structure 

4.7 Nesting Segments 

Segments can be nested. When masm encounters a nested segment, it 
temporarily suspends assembly of the enclosing segment and begins 
assembly of the nested segment. When the nested segment has been 
assembled, masm continues assembly of the enclosing segment. 

Nesting of segments makes it possible to mix segment definitions in pro­
grams that use simplified segment directives for most segment definitions. 
When a full segment definition is given, the new segment is nested in the 
simplified segment in which it is defined. 

Example 1 

; Macro to print message to standard output 
; Uses full segment definitions - segments nested 

.286 

extrn _write:proc 

message MACRO text 
LCX:AL symbol, lsymbol 

DATA segment word public ' DATA.' 
symbol db &text 

db 10 
lsymbol db 0 
_DATA ends 

push offset lsymbol - offset symbol 
push offset symbol 
push 1 
call write 
add sp, 6 
endm 

TEXT segment byte public ' CODE' 
assume cs: TEXT, ds: DATA, ss: _DATA 

public _main - -
main proc near 

push bp 
rnov bp, sp 
message"Please insert disk" 
message"This is the second string" 
leave 
ret 

main endp 
TEXT ends 

end 

In this example, a macro called from inside of the code segment C TEXn 
allocates a variable within a nested data segment CDATA). This has the 
effect of allocating more data space on the end of the data segment each 

4-35 



Macro Assembler 

time the macro is called. The macro can be used for messages appearing 
only once in the source code. 

Example 

Macro to print message to standard output 
Uses simplified segment directives - segments not nested 

.286 

.MJDEL SMALL 

extrn ~write:proc 

message MACRO te/I 
LCCAL symbol, lsymbol 
• DATA 

symbol db &text 
db 10 

lsymbol db 0 

public 
main 

. CODE 
push offset lsymbol - offset symbol 
push offset symbol 
push 1 
call write 
add sp, 6 
endm 

• CODE 
main 

proc near 
push bp 
mov bp, sp 
message"Please insert disk" 
message"This is the second string" 
leave 
ret 

main endp 
TEXT ends 

end 

Although Example 2 has the same practical effect as Example 1, masm 
handles the two macros differently. In Example 1, assembly of the outer 
(code) segment is suspended rather than terminated. In Example 2, assem­
bly of the code segment terminates, assembly of the data segment starts 
and terminates, and then assembly of the code segment is restarted. 

4-36 



Chapter 5 

Defining Labels and Variables 

5.1 Introduction 5-1 

5.2 Using Type Specifiers 5-1 

5.3 Defining Code Labels 5-2 
5.3.1 Near Code Labels 5-2 
5.3.2 Procedure Labels 5-3 
5.3.3 Code Labels Defined with the LABEL Directive 5-5 

5.4 Defining and Initializing Data 5-5 
5.4.1 Variables 5-5 
5.4.2 Arrays and Buffers 5-18 
5.4.3 Labeling Variables 5-20 

5.5 Setting the Location Counter 5-20 

5.6 Aligning Data 5-21 





Defining Labels and Variables 

5.1 Introduction 

This chapter explains how to define labels, variables, and other symbols 
that refer to instruction and data locations within segments. 

The label- and variable-de finition directives described in this chapter are 
closely related to the segment-definition directives described in Chapter 
4, "Defining Segment Structure." Segment directives assign the 
addresses for segments. The variable-and label-definition directives 
assign offset addresses within segments. 

The assembler assigns offset addresses for each segment by keeping track 
of a value called the location counter. The location counter is incre­
mented as each source statement is processed so that it always contains 
the offset of the location being assembled. When a label or a variable 
name is encountered, the current value of the location counter is assigned 
to the symbol. 

This chapter tells you how to assign labels and most kinds of variables. 
(Multi field variables such as structures and records are discussed in 
Chapter 6, "Using Structures and Records.") The chapter also discusses 
related directives, including those that control the location counter 
directly. 

5.2 Using Type Specifiers 

Some statements require type specifiers to give the size or type of an 
operand. There are two kinds of type specifiers: those that specify the size 
of a variable or other memory operand, and those that specify the distance 
of a label. 

The type specifiers that give the size of a memory operand are as follows, 
with the number of bytes specified by each: 

Specifier Number of Bytes 

BYTE 1 

WORD 2 

DWORD 4 

FWORD 6 

QWORD 8 

TBYTE 10 

5-1 



Macro Assembler 

In some contexts, ABS can also be used as a type specifier that indicates 
an operand is a constant rather than a memory operand. 

The type specifiers that give the distance of a label are as follows: 

Specifier 

FAR 

NEAR 

PROC 

Description 

The label references both the segment and offset 
of the label. 

The label references only the offset of the label. 

The label has the default type (near or far) of the 
current memory model. The default size is always 
near if you use full segment definitions. If you use 
simplified segment definitions (see Section 4.1, 
"Simplified Segment Definitions' ') the default 
type is near for small and compact models or far 
for medium, large, and huge models. 

Directives that use type specifiers include LABEL, PROC, EXTRN, and 
COMM. Operators that use type specifiers include PTR and THIS. 

5.3 Defining Code Labels 

Code labels give symbolic names to the addresses of instructions in the 
code segment. These labels can be used as the operands to jump, call, and 
loop instructions to transfer program control to a new instruction. There 
are three types of code labels: near labels, procedure labels, and labels 
created with the LABEL directive. 

5.3.1 Near Code Labels 

Near-label definitions create instruction labels that have NEAR type. 
These instruction labels can be used to access the address of the label 
from other statements. 

Syntax 

name: 

The name must not be previously defined in the module and it must be 
followed by a colon (:). Furthermore, the segment containing the 
definition must be the one that the assembler currently associates with the 

5-2 



Defining Labels and Variables 

CS register. The ASSUME directive is used to associate a segment with a 
segment register (see" Associating Segments with Registers' '). 

A near label can appear on a line by itself or on a line with an instruction. 
The same label name can be used in different modules as long as each 
label is only referenced by instructions in its own module. If a label must 
be referenced by instructions in another module, it must be given a unique 
name and declared with the PUBLIC and EXTRN directives, as 
described in Chapter 7, "Creating Programs from Multiple Modules." 

Examples 

cmp ax, 5 i Compare with 5 
ja bigger 
jb smaller 

i Instructions if ~x = 5 

jmp done 
bigger: Instructions if AX > 5 

jmp done 
smaller: Instructions if AX < 5 

done: 

5.3.2 Procedure Labels 

The start of an assembly-language procedure can be defined with the 
PROC directive, and the end of the procedure can be defined with the 
ENDP directive. 

Syntax 

label PROC [NEARIFAR] 
statements 
RET [constant] 
label ENDP 

5-3 



Macro Assembler 

The label assigns a symbol to the procedure. The distance can be NEAR 
or FAR. Any RET instructions within the procedure automatically have 
the same distance (NEAR or FAR) as the procedure. Procedures and the 
RET instruction are discussed in more detail in "Using Procedures." 

The ENDP directive labels the address where the procedure ends. Every 
procedure label must have a matching ENDP label to mark the end of the 
procedure. If it does not find an ENDP directive to match each PROC 
directive, masm generates an error message. 

When the PROC label definition is encountered, the assembler sets the 
label's value to the current value of the location counter and sets its type 
to NEAR or FAR. If the label has FAR type, the assembler also sets its 
segment value to that of the enclosing segment. If you have specified full 
segment definitions, the default distance is NEAR. If you are using 
simplified segment definitions, the default distance is the distance associ­
ated with the declared memory model-that is, NEAR for small and com­
pact models or FAR for medium, large, and huge models. 

The procedure label can be used in a CALL instruction to direct execu­
tion control to the first instruction of the procedure. Control can be 
transferred to a NEAR procedure label from any address in the same seg­
ment as the label. Control can be transferred to a FAR procedure label 
from an address in any segment. 

Procedure labels must be declared with the PUBLIC and EXTRN direc­
tives if they are located in one module but called from another module, as 
described in Chapter 7, "Creating Programs from Multiple Modules." 

Examples 

task 

task 

5-4 

call task 

PRC:X:: NEAR 

ret 
ENDP 

Call procedure 

Start of procedure 

; End of procedure 



Defining Labels and Variables 

5.3.3 Code Labels Defined with the LABEL Directive 

The LABEL directive provides an alternative method of defining code 
labels. 

Syntax 

name LABEL distancc 

The name is the symbol name assigned to the label. The distance can be a 
type specifier such as NEAR, FAR, or PROC. PROC means NEAR or 
FAR, depending on the default memory model. You can use the LABEL 
directive to define a second entry point into a procedure. FAR code labels 
can also be the destination of far jumps or of far calls that use the RETF 
instruction (see "Defining Procedures "). 

Example 

task PRO:: F.JI~ 

taskl iJ"BEL FAR Seconda:>::y ent:>::y ~:,oint 

ret 
task ENDP E!id of procedure 

5.4 Defining and Initializing Data 

The data-definition directives enable you to allocate memory for data. At 
the same time, you can specify the initial values for the allocated data. 
Data can be specified as numbers, strings, or expres~ions that evaluate to 
constants. The assembler translates these constant values into binary 
bytes, words, or other units of data. The encoded data are written to the 
object file at assembly time. 

5.4.1 Variables 

Variables consist of one or more named data objects of a specified size. 

5-5 



Macro Assembler 

Syntax 

[name] directive initializer [,initializer]. .. 

The name is the symbol name assigned to the variable. If no name is 
assigned, the data is allocated; but the starting address of the variable has 
no symbolic name. 

The size of the variable is determined by directive. The directives that 
can be used to define single-item data objects are as follows: 

Directive Meaning 

DB Defines byte 

DW Defines word (2 bytes) 

DD Defines doubleword (4 bytes) 

DF Defines farword (6 bytes); normally used only 
with 80386 processor 

DQ Defines quadword (8 bytes) 

DT Defines 10-byte variable 

The optional initializer can be a constant, an expression that evaluates to 
a constant, or a question mark (?). The question mark is the symbol indi­
cating that the value of the variable is undefined. You can define multiple 
values by using multiple initializers separated by commas, or by using the 
DUP operator, as explained in "Arrays and Buffers." 

Simple data types can allocate memory for integers, strings, addresses, or 
real numbers. 

Integer Variables 

When defining an integer variable, you can specify an initial value as an 
integer constant or as a constant expression. If you specify an initial value 
too large for the specified variable, masm generates an error. 

Integer values for 'all sizes except 10-byte variables are stored in the com­
plement format of the binary two. They can be interpreted as either signed 
or unsigned numbers. For instance, the hexadecimal value OFFCD can be 
interpreted either as the signed number -51 or the unsigned number 
65,485. 

5-6 



Defining Labels and Variables 

The processor cannot tell the difference between signed and unsigned 
numbers. Some instructions are designed specifically for signed numbers. 
It is the programmer's responsibility to decide whether a value is to be 
interpreted as signed or unsigned, and then to use the appropriate instruc­
tions to handle the value correctly. 

The following is a list of the directives for defining integer variables 
along with the sizes of integers they can define: 

Directive 

DB (bytes) 

DW (words) 

o 

Size 

Allocates unsigned numbers from 0 to 255 
or signed numbers from -128 to 127. 

These values can be used directly in 8086-
family instructions. 

Allocates unsigned numbers from 0 to 
65,535 or signed numbers from -32,768 to 
32,767. The bytes of a word integer are 
stored in the following format: 

I '-----__ lO_W_b_y_te_-'-17 __ h_i_gh_b_Yt_e_->~ 
Word 

Note that in assembler listings and in many 
debuggers the bytes of a word are shown in 
the opposite order-high byte first-since 
this is the way most people think of 
numbers. 

Word values can be used directly in 8086-
family instructions. They can also be 
loaded, used in calculations, and stored with 
8087 -family instructions. 

5-7 



Macro Assembler 

DD (doublewords) 

0 

--------
....... -- --

I 

low word 

DF (farwords) 

DQ (quadwords) 

o 2 

Allocates unsigned numbers from 0 to 
4,294,967,295 or signed numbers from 
-2,147,483,648 to 2,147,483,647. The words 
of a doubleword integer are stored in the 
following format: 

2 3 

J~ 
high word lJ 

Doubleword 

These 32-bit values (called long integers) 
can be loaded, used in calculations, and 
stored with 8087-family instructions. Some 
calculations can be done on these numbers 
directly with 16-bit 8086-family processors; 
others involve an indirect method of doing 
calculations on each word separately (see 
"Adding"). These long integers can be 
used directly in calculations with the 80386 
processor. 

Allocates 6-byte (48-bit) integers. These 
values are normally only used as pointer 
variables on the 80386 processor 

Allocates 64-bit integers. The doublewords 
of a quadword integer are stored in the fol­
lowing format: 

3 

----. ------l 
4 5 6 7 

L~dOublewor~_--r--~~~~~Oubl~wor~j 

~---
Quadword 

5-8 



DT 

Example 

integer DB 
ex.-pression DW 
empty DQ 

DB 
high_byte DD 
tb DT 

Defining Labels and Variables 

These values can be loaded, used in calcula­
tions, and stored with 8087-family instruc­
tions. You must write your own routines to 
use them with l6-bit 8086-family proces­
sors. Some calculations can be done on 
these numbers directly with the 80386 pro­
cessor, but others require an indirect method 
of doing calculations on each doubleword 
separately (see" Adding' '). 

Allocates 10-byte (80-bit) integers if the D 
radix specifier is used. By default, DT allo­
cates packed BCD (binary coded decimal) 
numbers, as described in "Binary Coded 
Decimal Variables." If you define binary 
lO-byte integers, you must write your own 
routines to use routines in calculations. 

16 ; Initialize byte to 16 
4*3 ; Initialize word to 12 

; Allocate uninitialized quadword integer 
1,2,3,4,5,6 ; Initialize six unnamed bytes 
4294967295 Initialize double word to 4,294,967,295 
2345d Initialize 10-byte binary integer 

Binary Coded Decimal Variables 

Binary coded decimals (BCD) provide a method of doing calculations on 
large numbers without rounding errors. They are sometimes used in finan­
cial applications. There are two kinds: packed and unpacked. 

Unpacked BCD numbers are stored one digit to a byte, with the value in 
the lower four bits. They can be defined with the DB directive. For exam­
ple, an unpacked BCD number could be defined and initialized as shown 
here: 

unpackedr DB 
unpackedf DB 

1,5,8,2,5,2,9 
9,2,5,2,8,5,1 

Initialized to 9,252,851 
Initialized to 9,252,851 

Whether least-significant digits can come either first or last, depends on 
how you write the calculation routines that handle the numbers. 

5-9 



Macro Assembler 

Calculations with unpacked BCD numbers are discussed later. 

Packed BCD numbers are stored two digits to a byte, with one digit in the 
lower four bits and one in the upper four bits. The leftmost bit holds the 
sign (0 for positive or 1 for negative). 

Packed BCD variables can be defined with the DT directive as shown: 

packed DT 9252851 ; Allocate 9,252,851 

The 8087-family coprocessors can do fast calculations with packed BCD 
numbers, as described in Chapter 18, "Calculating with a Math Copro­
cessor." The 8086-famil y processors can also do some calculations with 
packed BCD numbers, but the process is slower and more complicated. 

String Variables 

Strings are normally initialized with the DB directive. The initializing 
value is specified as a string constant. Strings can also be initialized by 
specifying each value in the string. For example, the following definitions 
are equivalent: 

version1 
version2 
version3 

DB 
DB 
DB 

97,98,99 
'a' ,'b','c' 
"abc" 

; As ASCII values 
; As characters 

; As a string 

One- and two-character strings (four-character strings on the 80386) can 
also be initialized with any of the other data-definition directives. The 
last (or only) character in the string is placed in the byte with the lowest 
address. Either 0 or the first character is placed in the next byte. The 
unused portion of such variables is filled with zeros. 

5-10 



Examples 

function9 DB 

asciiz DB 

message DB 
I_message EQU 
a_message EQU 

str1 DB 
str2 DD 
str3 DD 

Pointer Variables 

Defining Labels and Variables 

'Hello' ,10,' $' 

"/u/me/asm/test. s", a ; Use as ASCIIZ string 

"Enter file name: " 
$-message 
OFFSET message 

"ab" 
"ab" 
"an 

Stored as 61 62 
Stored as 62 61 00 00 
Stored as 61 00 00 00 

Pointer variables (or pointers) are variables that contain the address of a 
data or code object rather than the object itself. The address in the vari­
able "points" to another address. Pointers can be either near addresses or 
far addresses. 

Near pointers consist of the offset portion of the address. They can be ini­
tialized in word variables by using the DW. directive. Values in near­
address variables can be used in situations where the segment portion of 
the address is known to be the current segment. 

Far pointers consist of both the segment and offset portions of the address. 
They can be initialized in doubleword variables, using the DD directive. 
Values in far-address variables must be used when the segment portion of 
the address may be outside the current segment. The segment and offset of 
a far pointer are stored in the following format: 

0 2 3 

~ / 

~ I 
offset 

I 
segment 

Far Pointer 

5-11 



Macro Assembler 

Examples 

string 
npstring 
fpstring 

DB 
DW 
DD 

"Text", ° 
string 
string 

Null-terminated string 
Near pointer to "strir 
Far pointer to "string 

80386 Only 

Pointers are different on the 80386 processor if the USE32 use type has 
been specified. In this case the offset portion of an address consists of 32 
bits, and the segment portion consists of 16 bits. Therefore a near pointer 
is 32 bits (a doubleword), and a far pointer is 48 bits (a farword). The seg­
ment and offset of a 32-bit-mode far pointer are stored in the following 
format: 

r 
Example 

DATA 
string 
npstring 
fpstring 

DATA 

0 2 3 4 5 

offset ( segment 

Far Pointer in 32-Bit Mode 

SEGMENT IDRD USE32 PUBLIC ' DATA' 
DB "Text", 0 ; Null-terminated string 
DD string ; Near (32-bit) pointer to "string" 
DF string ; Far (48-bit) pointer to "string" 
ENDS 

Real-Number Variables 

~ 

Real numbers must be stored in binary format. However, when initializ­
ing variables, you can specify decimal or hexadecimal constants and let 
the assembler automatically encode them into their binary equivalents. 
There are two different binary formats for real numbers that masm can 
use: IEEE or Microsoft Binary. You can specify the format by using direc­
tives (IEEE is the default). 

5-12 



Defining Labels and Variables 

This section tells you how to initialize real-number variables, describes 
the two binary formats, and explains real-number encoding. 

Initializing _and Allocating Real-Number Variables 

Real numbers can be defined by initializing them either with real-number 
constants or with encoded hexadecimal constants. The real-number desig­
nator (R) must follow numbers specified in encoded format. 

The directives for defining real numbers are as follows, along with the 
sizes of the numbers they can allocate: 

Directive 

DD 

DQ 

DT 

Size 

Allocates short (32-bit) real numbers in either the 
IEEE or Microsoft Binary format. 

Allocates long (64-bit) real numbers in either the 
IEEE or Microsoft Binary format. 

Allocates temporary or 10-byte (80-bit) real 
numbers. The format of these numbers is similar 
to the IEEE format. They are always encoded the 
same regardless of the real-number format. Their 
size is nonstandard and incompatible with Micro­
soft high-level languages. Temporary-real format 
is provided for those who want to initialize real 
numbers in the format used internally by 8087-
family processors. 

The 8086-family microprocessors do not have any instructions for han­
dling real numbers. You must write your own routines, use a library that 
includes real-number calculation routines, or use a coprocessor. The 
8087-family coprocessors can load real numbers in the IEEE format; they 
can also use the values in calculations and store the results back to 
memory, as explained in Chapter 18, "Calculating with a Math Copro­
cessor." 

5-13 



Macro Assembler 

Examples 

shrt DD 
long DQ 
ten_byte DT 

eshrt DD 

elong DQ 

98.6 
5.391E-4 
-7.31E7 

; masm automatically encodes 
in current format 

87453333r ; 98.6 encoded in Microsoft 
; Binary format 

3F41AA4C6F445B7Ar ; 5.391E-4 encoded in IEEE format 

The real-number designator (R) used to specify encoded numbers is 
explained in Section 3.3.3, "Real-Number Constants." 

Selecting a Real-Number Format 

There are two different formats that masm can encode four- and eight­
byte real numbers into: IEEE and Microsoft Binary. Your choice depends 
on the type of program you are writing. The four primary alternatives are 
as follows: 

1. If your program requires a coprocessor for calculations, you must 
use the IEEE format. 

2. Most high-level languages use the IEEE format. If you are writing 
modules that will be called from such a language, your program 
should use the IEEE format. All versions of the C, FORTRAN, and 
Pascal compilers sold by Microsoft use the IEEE format. 

3. If you are writing a module that will be called from Microsoft 
XENIX 286 BASIC, your program should use the Microsoft Binary 
fonnat. 

4. If you are creating a stand-alone program that does not use a 
coprocessor, you can choose either format. The IEEE format is 
better for overall compatibility with high-level languages; the 
Microsoft Binary fonnat may be necessary for compatibility with 
existing source code. 

5-14 



Defining Labels and Variables 

Note 

When you interface assembly-language modules with high-level 
languages, the real-number format only matters if you initialize 
real-number variables in the assembly module. If your assembly 
module does not use real numbers, or if all real numbers are initial­
ized in the high-level-language module, the real-number format 
does not make any difference. 

By default, masm assembles real-number data in the IEEE format. This is 
a change from previous versions of the assembler, which used the Micro­
soft Binary format by default. If you wish to use the Microsoft Binary for­
mat, you must put the .MSFLOAT directive at the start of your source file 
before initializing any real-number variables. 

Real-Number Encoding 

The IEEE format for encoding four- and eight-byte real numbers is illus­
trated in Figure 5.1. 

Short real number 
31 23 15 7 0 

s~;r~ 
Exponent Mantissa 

Long real number 
63 55 52 47 39 31 23 15 7 0 

Figure 5-1 Encoding for Real Numbers in IEEE Format 

5-15 



Macro Assembler 

The following list describes the parts of the real numbers: 

1. Sign bit (0 for positive or 1 for negative) in the upper bit of the first 
byte. 

2. Exponent in the next bits in sequence (8 bits for short real number 
or 11 bits for long real number). 

3. All except the first set bit of mantissa in the remaining bits of the 
variable. Since the first significant bit is known to be set, it need 
not be actually stored. The length is 23 bits for short real numbers 
and 52 bits for long real numbers. 

The Microsoft Binary format for encoding real numbers is illustrated in 
Figure 5.2. 

Short real number 
31 23 22 15 7 0 

( IT ~ 
Ts~~ 
Exponent Mantissa 

Long real number 
63 55 54 47 39 31 23 15 7 0 

1'-------------'-;--"-----Ir~~---'--__'______"__---Ju 
Ts~n --========::::::::=:;::::::::====-. 

Exponent 
Mantissa 

Figure 5-2 Encoding for Real Numbers in Microsoft Binary Format 

The three parts of real numbers are: 

1. Biased exponent (8 bits) in the high-address byte. The bias is 8lh 
for short real numbers and 401h for long real numbers. 

2. Sign bit (0 for positive or 1 for negative) in the upper bit of the 
second-highest byte. 

5-16 



Defining Labels and Variables 

3. All except the first set bit of mantissa in the remaining 7 bits of the 
second-highest byte and in the remaining bytes of the variable. 
Since the first significant bit is known to be set, it need not be actu­
ally stored. The length is 23 bits for short real numbers and 55 bits 
for long real numbers. 

Also supported is the 10-byte temporary-real format used internally by 
8087-family coprocessors. This format is similar to IEEE format. The size 
is nonstandard and is not used by Microsoft compilers or interpreters. 
Since the coprocessors can load and automatically convert numbers in the 
more standard 4- and 8-byte formats, the 10-byte format is seldom used in 
assembly-language programming. 

The temporary-real format for encoding real numbers is illustrated in Fig­
ure 5.3. 

Ten-byte real number 

79 71 6463 55 47 39 31 23 15 7 

If 
.' ~.' 

If 
S~~t;gerpart 

Exponent Mantissa 

Figure 5-3 Encoding for Real Numbers in Temporary-Real Format 

The four parts of the real numbers are described below: 

0 

~ 

1. Sign bit (0 for positive or 1 for negative) in the upper bit of the first 
byte. 

2. Exponent in the next bits in sequence (15 bits for 10-byte real). 

3. The integer part of mantissa in the next bit in sequence (bit 63). 

4. Remaining bits of mantissa in the remaining bits of the variable. 
The length is 63 bits. 

Notice that the 10-byte temporary-real format stores the integer part of 
the mantissa. This differs from the 4- and 8-byte formats, in which the 
integer part is implicit. 

5-17 



Macro Assembler 

5.4.2 Arrays and Buffers 

Arrays, buffers, and other data structures consisting of multiple data 
objects of the same size can be defined with the DUP operator. This 
operator can be used with any of the data-definition directives described 
in this chapter. 

Syntax 

count DUP (initialvalue[,initialvalue] . .. ) 

The count sets the number of times to define initialvalue. The initial 
value can be any expression that evaluates to an integer value, a character 
constant, or another DUP operator. It can also be the undefined symbol 
(?) if there is no initial value. 

Multiple initial values must be separated by commas. If multiple values 
are specified within the parentheses, the sequence of values is allocated 
count times. For example, the statement 

DB 5 DUP ("Text ") 

allocates the string "Text " five times for a total of 20 bytes. 

DUP operators can be nested up to 17 levels. The initial value (or values) 
must always be placed within parentheses. 

Examples 

array DD 10 DUP (1) ; 10 doublewords 
initialized to 1 

buffer DB 256 DUP (?) ; 256 byte buffer 

masks DB 20 DUP (040h,020h,04h,02h) 80 byte buffer 
with bit masks 

DB 32 DUP (tlI am here tI) 320 byte buffer with 
signature for debugging 

three d DD 5 DUP (5 DUP (5 DUP (0)) ) 125 doublewords 
initialized to 0 

5-18 



Defining Labels and Variables 

Note 

Sometimes masm will generate different object code when the DUP 
operator is used rather than when multiple values are given. For 
example, the statement 

testl DB ?,?,?,?,? ; Indeterminate 

is "indeterminate." It causes masm to write five zero-value bytes 
to the object file. The statement 

test2 DB 5 DUP (?) ; Undefined 

is "undefined." It causes masm to increase the offset of the next 
record in the object file by five bytes. Therefore an object file 
created with the first statement will be larger than one created with 
the second statement. 

In most cases, the distinction between indeterminate and undefined 
definitions is trivial. The linker adjusts the offsets so that the same 
executable file is generated in either case. However, the difference 
is significant in segments with the COMMON combine type. If 
COMMON segments in two modules contain definitions for the 
same variable, one with an indeterminate value and one with an 
explicit value, the actual value in the executable file varies depend­
ing on link order. If the module with the indeterminate value is 
linked last, the 0 initialized for it overrides the explicit value. You 
can prevent this by always using undefined rather than indeter­
minate values in COMMON segments. For example, use the first of 
the following statements: 

test3 
test4 

DB 
DB 

1 DUP (?) 

? 
Undefined - doesn't initialize 
Indeterminate - initializes a 

If you use the undefined definition, the explicit value is always used 
in the executable file regardless of link order. 

5-19 



Macro Assembler 

5.4.3 Labeling Variables 

The LABEL directive can be used to define a variable of a given size at a 
specified location. It is useful if you want to refer to the same data as vari­
abIes of different sizes. 

Syntax 

name LABEL type 

The name is the symbol assigned to the variable, and type is the variable 
size. The type can be anyone of the following type specifiers: BYTE, 
WORD, DWORD, FWORD, QWORD, or TBYTE. It can also be the 
name of a previously defined structure. 

Examples 

warray 
darray 
barray 

LABEL WORD 
LABEL DWORD 
DB 100 DUP(?) 

5.5 Setting the Location Counter 

Access array as 50 words 
Access same array as 25 doublewords 
Access same array as 100 bytes 

The location counter is the value masm maintains to keep track of the 
current location in the source file. The location counter is incremented 
automatically as each source statement is processed. However, the loca­
tion counter can be set specifically using the ORG directive. 

Syntax 

ORG expression 

Subsequent code and data offsets begin at the new offset specified set by 
expression. The expression must resolve to a constant number. In other 
words, all symbols used in the expression must be known on the first pass 
of the assembler. 

Note 

The value of the location counter, represented by the dollar sign ($), 
can be used in expression, as described in Section 8.3, "Using the 
Location Counter." 

5-20 



Example 1 

; Labeling absolute addresses 

STUFF SEGMENT M 0 
ORG 410h 

equipment LABEL "WORD 
ORG 417h 

keyboard LABEL "WORD 
STUFF ENDS 

. CODE 

Defining Labels and Variables 

Segment has constant value 0 
Offset has constant value 410h 
Value at 0000: 0410 labeled "equipment" 
Offset has constant value 417h 
Value at 0000:0417 labeled "keyboard" 

ASSUME ds : STUFF ; Tell the assembler 
rnov ax, STUFF ; Tell the processor 
rnov ds,ax 

rnov dx,equipment 
rnov keyboard,ax 

Example 1 illustrates one way of assigning symbolic names to absolute 
addresses. This technique is not possible under protected-mode operating 
systems. 

5.6 Aligning Data 

Some operations are more efficient when t4e variable used in the opera­
tion is lined up on a boundary of a particular size. The ALIGN and 
EVEN directives can be used to pad the object file so that the next vari­
able is aligned on a specified boundary. 

Syntax 1 

EVEN 

Syntax 2 

ALIGN number 

The EVEN directive always aligns on the next even byte. The ALIGN 
directive aligns on the next byte that is a multiple of number. The number 
must be a power of 2. For example, use ALIGN 2 or EVEN to align on 
word boundaries, or use ALIGN 4 to align on doubleword boundaries. 

If the value of the location counter is not on the specified boundary when 
an ALIGN directive is encountered, the location counter is incremented 

5-21 



Macro Assembler 

to a value on the boundary. NOP (no operation) instructions are generated 
to pad the object file. If the location counter is already on the boundary, 
the directive has no effect. 

The ALIGN and EVEN directives give no efficiency improvements on 
processors that have an 8-bit data bus (such as the 8088 or 80188). These 
processors always fetch data one byte at a time, regardless of the align­
ment. However, using EVEN can speed certain operation on processors 
that have a 16-bitdata bus (such as the 8086, 80186, or 80286), since the 
processor can fetch a word if the data is word aligned, but must do two 
memory fetches if the data is not word aligned. Similarly, using ALIGN 4 
can speed some operations with a 80386 processor, since the processor 
can fetch four bytes at a time if the data is doubleword aligned. 

Note 

The ALIGN directive is a new feature of Version 5.0 of the Macro 
Assembler. In previous versions, data could be word aligned by 
using the EVEN directive, but other alignments could not be 
specified. 

The EVEN directive should not be used in segments with BYTE 
align type. Similarly, the number specified with the ALIGN direc­
tive should be at least equal to the size of the align type of the seg­
ment where the directive is given. 

5-22 



Example 

stuff 

evenstuff 

start: 

mloop: 

.MJDEL 
• STACK 
• DATA 

ALIGN 
DW 

ALIGN 
DW 
• CODE 
mov 
mov 
mov 

mov 
mov 
mov 
ALIGN 
lodsw 
inc 
and 
stosw 
loop 

Defining Labels and Variables 

small 
100h 

4 ; For faster data access 
66,124,573,99,75 

4 ; For faster data access 
?,?,?,?,? 

ax,@data Load segment location 
ds,ax into DS 
es,ax and ES registers 

cx,5 ; Load count 
si,OFFSET stuff ; Point to source 
di,OFFSET evenstuff; and destination 
4 ; Align for faster loop access 

; Load a word 
ax ; Make it even by incrementing 
ax, NOT 1 and turning off first bit 

; Store 
mloop ; Again 

In this example, the words at stuff and evenstuJf are forced to doubleword 
boundaries. This makes access to the data faster with processors that have 
either a 32-bit or 16-bit data bus. Without this alignment, the initial data 
might start on an odd boundary and the processor would have to fetch half 
of each word at a time with a 16-bit data bus or half of each doubleword 
with a 32-bit data bus. 

Similarly, the alignment in the code segment speeds up repeated access to 
the code at the start of the loop. The sample code sacrifices program size 
in order to achieve significant speed improvements on the 80386 and 
more moderate improvements on the 8086 and 80286. There is no speed 
advantage on the 8088. 

5-23 





Chapter 6 

Using Structures and Records 

6.1 Introduction 6-1 

6.2 Structures 6-1 
6.2.1 Declaring Structure Types 6-2 
6.2.2 Defining Structure Variables 6-3 
6.2.3 Using Structure Operands 6-5 

6.3 Records 6-6 
6.3.1 Declaring Record Types 6-6 
6.3.2 Defining Record Variables 6-8 
6.3.3 Using Record Operands and Record Variables 6-10 
6.3.4 Record Operators 6-11 
6.3.5 Using Record-Field Operands 6-13 





Using Structures and Records 

6.1 Introduction 

The Macro Assembler can define and use two kinds of multi field vari­
ables: structures and records. 

Structures are templates for data objects made up of smaller data objects. 
A structure can be used to define structure variables, which are made up 
of smaller variables called fields. Fields within a structure can be different 
sizes, and each can be accessed individually. 

Records are templates for data objects whose bits can be described as 
groups of bits called fields. A record can be used to define record vari­
ables. Each bit field in a record variable can be used separately in con­
stant operands or expressions. The processor cannot access bits individu­
ally at run time, but bit fields can be used with logical bit instructions to 
change bits indirectly. 

This chapter describes structures and records and tells how to use them. 

6.2 Structures 

A structure variable is a collection of data objects that can be accessed 
symbolically as a single data object. Objects within the structure can have 
different sizes and can be accessed symbolically. 

There are two steps in using structure variables: 

1. Declare a structure type. A structure type is a template for data. It 
declares the sizes and, optionally, the initial values for objects in 
the structure. By itself the structure type does not define any data. 
The structure type is used by masm during assembly but is not 
saved as part of the object file. 

2. Define one or more variables having the structure type. For each 
variable defined, memory is allocated to the object file in the for­
mat declared by the structure type. 

The structure variable can then be used as an operand in assembler state­
ments. The structure variable can be accessed as a whole by using the 
structure name, or individual fields can be accessed by using structure and 
field names. 

6-1 



Macro Assembler 

6.2.1 Declaring Structure Types 

The STRUC and ENDS directives mark the beginning and end of a type 
declaration for a structure. 

Syntax 

nameSTRUC 
fielddeclarations 
name ENDS 

The name declares the name of the structure type. It must be unique. The 
fielddeclarations declare the fields of the structure. Any number of field 
declarations may be given. They must follow the form of data definitions 
described in "Defining and Initializing Data." Default initial values may 
be declared individually or with the DUP operator. 

The names given to fields must be unique within the source file where 
they are declared. When variables are defined, the field names will 
represent the offset from the beginning of the structure to the correspond­
ing field. 

When declaring strings in a structure type, make sure the initial values 
are long enough to accommodate the largest possible string. Strings 
smaller than the field size can be placed in the structure variable, but 
larger strings will be truncated. 

A structure declaration can contain field declarations and comments. 
Starting with Version 5.0 of the Macro Assembler, conditional-assembly 
statements are allowed in structure declarations. No other kinds of state­
ments are allowed. Since the STRUC directive is not allowed inside 
structure declarations, structures cannot be nested. 

Note 

The ENDS directive that marks the end of a structure has the same 
mnemonic as the ENDS directive that marks the end of a segment. 
The assembler recognizes the meaning of the directive from con­
text. Make sure each SEGMENT directive and each STRUC direc­
tive has its own ENDS directive. 

6-2 



Using Structures and Records 

Example 

student 
id 
sname 
scores 
student 

STRUC ; Structure for student records 
DW? ; Field for identification # 
DB "Last, First Middle 
DB 10 DUP (100) ; Field for 10 scores 
ENDS 

Within the sample structure student, the fields id, sname, and scores have 
the offset values 0, 2, and 24, respectively. 

6.2.2 Defining Structure Variables 

A structure variable is a variable with one or more fields of different sizes. 
The sizes and initial values of the fields are determined by the strurture 
type with which the variable is defined. 

Syntax 

[name] structurename <[initialvalue [,initialvalue . .. JJ> 

The name is the name assigned to the variable. If no name is given, the 
assembler allocates space for the variable, but does not give it a symbolic 
name. The structurename is the name of a structure type previously 
declared by using the STRUC and ENDS directives. 

An initialvalue can be given for each field in the structure. Its type must 
not be incompatible with the type of the corresponding field. The angle 
brackets « » are required even if no initial value is given. If initial­
values are given for more than one field, the values must be separated by 
commas. 

If the DUP operator (see "Arrays and Buffers") is used to initialize mul­
tiple structure variables, only the angle brackets and initial values, if 
given, need to be enclosed in parentheses. For example, you can define an 
array of structure variables as shown here: 

war date 365 DUP «" 1940» 

You need not initialize all fields in a structure. If an initial value is left 
blank, the assembler automatically uses the default initial value of the 
field, which was originally determined by the structure type. If there is no 
default vahle, the field is undefined. 

6-3 



Macro Assembler 

Examples 

The following examples use the student type declared in the first example 
in "Declaring Structure Types": 

sl 

s2 

student <> ; Uses default values of type 

student <1467,"White, Robert D.",> 
Override default values of first two 

fields--use default value of third 

sarray student 100 DUP «» Declare 100 student variables 
with default initial values 

Note 

You cannot initialize any structure field that has multiple values if 
this field was given a default initial value when the structure was 
declared. For example, assume the following structure declaration: 

stuff STRUC 
buffer DB 100 DUP (?) Can't override 
crlf DB 13,10 Can't override 
query DB 'Filename: 

, 
String <= can override 

endrnark DB 36 Can override 
stuff ENDS 

The buffer and crlf fields cannot be overridden by initial values in 
the structure definition because they have multiple values. The 
query field can be overridden as long as the overriding string is no 
longer than query (10 bytes). A longer string would generate an 
error. The endmark field can be overridden by any byte value. 

6-4 



Using Structures and Records 

6.2.3 Using Structure Operands 

Like other variables, structure variables can be accessed by name. Fields 
within structure variables can also be accessed by using the syntax shown 
below: 

Syntax 

variable .field 

The variable must be the name of a structure (or an operand that resolves 
to the address of a structure). The field must be the name of a field within 
that structure. The variable is separated from field by a period. The period 
is discussed as a structure-field-name operator in "Structure-Field-Name 
Operator. ' , 

The address of a structure operand is the sum of the offsets of variable 
and field. The address is relative to the segment or group in which the 
variable is declared. 

Examples 

date 
month 
day 
year 
date 

yesterday 
today 
tornorrow 

STRUC 
DB 
DB 
OW 
ENDS 

. DATA 
date 
date 
date 

. CODE 

? 
? 
? 

<9,30,1987> 
<10,1,1987> 
<10,2,1987> 

Declare structure 

Declare structure 
variables 

rnov ai, yesterday. day Use structure variables 
rnov ah,today.rnonth as operands 
rnov tornorrow.year,dx 
rnov bX,OFFSET yesterday ; Load structure address 
rnov ax, [bxJ .month Use as indirect operand 

6-5 



Macro Assembler 

6.3 Records 

A record variable is a byte or word variable in which specific bit fields 
can be accessed symbolically. Records can be doubleword variables with 
the 80386 processor. Bit fields within the record can have different sizes. 

There are two steps in declaring record variables: 

1. Declare a record type. A record type is a template for data. It 
declares the sizes and, optionally, the initial values for bit fields in 
the record. By itself the record type does not define any data. The 
record type is used by masm during assembly but is not saved as 
part of the object file. 

2. Define one or more variables having the record type. For each vari­
able defined, memory is allocated to the object file in the format 
declared by the type. 

The record variable can then be used as an operand in assembler state­
ments. The record variable can be accessed as a whole by using the record 
name, or individual fields can be specified by using the record name and a 
field name combined with the field-name operator. A record type can also 
be used as a constant (immediate data). 

6.3.1 Declaring Record Types 

The RECORD directive declares a record type for an 8- or 16-bit record 
that contains one or more bit fields. With the 80386, 32-bit records can 
also be declared. 

Syntax 

recordname RECORD field [field ... J 

The recordname is the name of the record type to be used when creating 
the record. The field declares the name, width, and initial value for the 
field. 

The syntax for each field is shown below: 

Syntax 

fieldname:width[ =expression J 

The fieldname is the name of a field in the record, width is the number of 
bits in the field, and expression is the initial (or default) value for the 
field. 

6-6 



Using Structures and Records 

Any number of field combinations can be given for a record, as long as 
each is separated from its predecessor by a comma. The sum of the widths 
for all fields must not exceed 16 bits. 

The width must be a constant. If the total width of all declared fields is 
larger than eight bits, then the assembler uses two bytes. Otherwise, only 
one byte is used. 

80386 Only 

Records can be up to 32 bits in width when the 80386 processor is 
enabled with .386. If the total width is 8 bits or less, the assembler uses 1 
byte; if the width is 9 to 16 bytes, the assembler uses 2 bytes; and if the 
width is larger than 16 bits, the assembler uses 4 bytes. 

If expression is given, it declares the initial value for the field. An error 
message is generated if an initial value is too large for the width of its 
field. If the field is at least seven bits wide, you can use an ASCII charac­
ter for expression. The expression must not contain a forward reference to 
any symbol. 

In all cases, the first field you declare goes into the most significant bits of 
the record. Successively declared fields are placed in the succeeding bits 
to the right. If the fields you declare do not total exactly 8 bits or exactly 
16 bits, the entire record is shifted right so that the last bit of the last field 
is the lowest bit of the record. Unused bits in the high end of the record 
are initialized to o. 

Example 1 

color RECORD blink:l,back:3,intense:l,fore:3 

The example above creates a byte record type color having four fields: 
blink, back, intense, andfore. The contents of the record type are: 

7 o 

(0 1:7 0 (0 (' 0 (0 (" 0 ( 0 ( 0 ~ 
T~l~T~ 

Blink Back Intense Fore 

6-7 



Macro Assembler 

Since no initial values are given, all bits are set to o. Note that this is only 
a template maintained by the assembler. No data are created. 

Example 2 

cw RECORD rl:3=O,ic:l=O,rc:2=O,pc:2=3,r2:2=1,masks:6=63 

Example 2 creates a record type cw having six fields. Each record 
declared by using this type occupies 16 bits of memory. The following bit 
diagram shows the contents of the record type: 

15 7 o 

r1 :3=0 ic:1 =0 rc:2=0 pc:2=3 r2:2=1 masks:6=63 

Default values are given for each field. They can be used when data is 
declared for the record. 

6.3.2 Defining Record Variables 

A record variable is an 8-bit or 16-bit variable whose bits are divided into 
one or more fields. With the 80386, 32-bit variables are also allowed. 

Syntax 

[name] recordname <[initialvalue [,initialvalue]. .. ]> 

The name is the symbolic name of the variable. If no name is given, the 
assembler allocates space for the variable, but does not give it a symbolic 
name. The recordname is the name of a record type that was previously 
declared by using the RECORD directive. 

An initialvalue for each field in the record can be given as an integer, 
character constant, or an expression that resolves to a value compatible 
with the size of the field. Angle brackets « » are required even if no ini­
tial value is given. If initial values for more than one field are given, the 
values must be separated by commas. 

If the DUP operator (see" Arrays and Buffers") is used to initialize mul­
tiple record variables, only the angle brackets and initial values, if given, 

6-8 



Using Structures and Records 

need to be enclosed in parentheses. For example, you can define an array 
of record variables as shown here: 

xmas color 50 DUP «1,2,0,4» 

You do not have to initialize all fields in a record. If an initial value is left 
blank, the assembler automatically uses the default initial value of the 
field. This is declared by the record type. If there is no default value, each 
bit in the field is cleared. 

"Using Record Operands and Record Variables," and "Record Opera­
tors," illustrate ways to use record data after it has been declared. 

Examples 

color RECORD blink:1,back:3,intense:1,fore:3 Record declaration 
warning color <1,0,1,4> Record definition 

The definition above creates a variable named warning whose type is 
given by the record type color. The initial values of the fields in the vari­
able are set to the values given in the record definition. The initial values 
would override the default record values, had any been given in the 
declaration. The contents of the record variable are: 

7 o 

((o(o(o( ( IZO(O~8Ch 
T~T~ 

Blink Back Intense Fore 

Example 2 

color RECORD blink:1,back:3,intense:1,fore:3; -Record declaration 
colors color 16 DUP «» ; Record declaration 

Example 2 creates an array named colors containing 16 variables of type 
color. Since no initial values are given in either the declaration or the 
definition, the variables have undefined (0) values. 

6-9 



Macro Assembler 

Example 3 

cw RECORD rl:3=O,ic:l=O,rc:2=O,pc:2=3,r2:2=1,masks:6=63 
newcw cw <"2,,,> 

Example 3 creates a variable named newcw with type cwo The default 
values set in the type declaration are used for all fields except the pc field. 
This field is set to 2. The contents of the variable are: 

15 7 o 

r1 :3=0 ic:1=O rc:2=2 pc:2=3 r2:2=1 masks:6=63 

6.3.3 Using Record Operands and Record Variables 

A record operand refers to the value of a record type. It should not be con­
fused with a record variable. A record operand is a constant; a record 
variable is a value stored in memory. A record operand can be used with 
the following syntax: 

Syntax 

recordname <[[valueH,valueJ ... J> 

The recordname must be the name of a record type declared in the source 
file. The optional value is the value of a field in the record. If more than 
one value is given, each value must be separated by a comma. Values can 
include expressions or symbols that evaluate to constants. The enclosing 
angle brackets « » are required, even if no value is given. If no value for 
a field is given, the default value for that field is used. 

6-10 



Example 

color 
window 

Using Structures and Records 

• DATA 
RECORD blink:1,back:3,intense:1,fore:3; Record declaration 
color <0,6,1,6> Record definition 

. CODE 

mov ah,color <0,3,0,2> ; Load record operand 
(constant value 32h) 

mov bh,window Load record variable 
(memory value 6Eh) 

In this example, the record operand color <0,3,0,2> and the record vari­
able warning are loaded into registers. The contents of the values are as 
follows: 

color 
<0,3,0,2> 

window 

7 o 

1-0 I 0 I 1 (' 17 0 (0 ( r 0 ~ 32h 

T~T~ 
o 

Blink 

7 

3 

Back 
o 

Intense 
2 

Fore 

o 

1./0 1/ 1/ (0 ( ( r (0 ~ 6Eh 

T~T~ 
a 

Blink 
6 

Back Intense 
6 

Fore 

6.3.4 Record Operators 

The WIDTH and MASK operators are used exclusively with records to 
return constant values representing different aspects of previously 
declared records. 

6-11 



Macro Assembler 

The MASK Operator 

The MASK operator returns a bit mask for the bit positions in a record 
occupied by the given record field. A bit in the mask contains a 1 if that 
bit corresponds to a field bit. All other bits contain O. 

Syntax 

MASK {recordfieldname I record} 

The recordfieldname may be the name of any field in a previously defined 
record. The record may be the name of any previously defined record. 
The NOT operator is sometimes used with the MASK operator to reverse 
the bits of a mask. 

Example 

color 
message 

• DATA 
RECORD blink:l,back:3,intense:l,fore:3 
color <0,5,1,1> 
• CODE 

mov ah,message ; Load initial 0101 1001 
and ah,NGr MASK back ; 'fum off AND 1000 1111 

; "back" ---------
0000 1001 

or ah, MASK blink ; 'fum on OR 1000 0000 
; "blink" ---------
; 1000 1001 

xor ah,MASK intense ; Toggle XOR 0000 1000 
"intense" ---------

1000 0001 

The WIDTH Operator 

The WIDTH operator returns the width (in bits) of a record or record 
field. 

Syntax 

WIDTH {recordfieldname I record} 

The recordfieldname may be the name of any field defined in any record. 
The record may be the name of any defined record. 

6-12 



Using Structures and Records 

Note that the width of a field is the number or bits assigned for that field; 
the value of the field is the starting position (from the right) of the field. 

Examples 

. DATA 
color RECORD 

wblink EQU 
wback EQU 
wintense EQU 
wfore EQU 
wcolor EQU 

prompt color 

. CODE 

IF 
mov 
ELSE 
mov 
xor 
ENDIF 

blink:l,back:3,intense:1,fore:3 

WIDTH blink 
WIDTH back 
WIDTH intense 
WIDTH fore 
WIDTH color 

<1,5,1,1> 

(WIDTH color) 
ax, prompt 

aI, prompt 
ah,ah 

"wblink" = 1 
"wback" = 3 
"wintense" = 1 
"wfore" = 3 
"wcolor" = 8 

"blink" = 7 
"back" = 4 
"intense" = 3 
"fore" = a 

GE 8 If color is 16 bit, load 
into 16-bit register 

else 
load into low 8-bit register 
and clear high 8-bit register 

6.3.5 Using Record-Field Operands 

Record-field operands represent the location of a field in its correspond­
ing record. The operand evaluates to the bit position of the low-order bit 
in the field and can be used as a constant operand. The field name must be 
from a previously declared record. 

Record-field operands are often used with the WIDTH and MASK opera­
tors, as described in "The MASK Operator," and "The WIDTH Opera­
tor." 

6-13 



Macro Assembler 

Example 

• DATIl. 
color RECORD blink:1,back:3,intense:1,fore:3 
cursor color <1,5,1,1> 

Record declaration 
Record definition 

. CODE 

Rotate "back" of "cursor" without changing other values 

mov 
mov 
and 

mov 
shr 
inc 

shl 
and 

or 

mov 

aI, cursor 
ah,al 
al,NOT MASK back 

cl,back 
ah,cl 
ah 

ah,cl 
ah, MASK back 

ah,al 

cursor,ah 

Load value from memory 
Save a copy for work 
Mask out old bits 

1101 1001=ah/al 
and 1000 1111=mask 

to save old cursor ---------
1000 1001=al 

Load bit position 
Shift to right 0000 1101=ah 
Increment 0000 1110=ah 

Shift left again 1110 OOOO=ah 
Mask off extra bits and 0111 OOOO=rnask 

to get new cursor ---------
0110 0000 ah 

Combine old and new or 1000 1001 al 
---------

Write back to memory 1110 1001 ah 

This example illustrates several ways in which record fields can be used 
as operands and in expressions. 

6-14 



Chapter 7 

Creating Programs 

from Multiple Modules 

7.1 Introduction 7-1 

7.2 Declaring Symbols Public 7-1 

7.3 Declaring Symbols External 7-3 

7.4 U sing Multiple Modules 7-6 

7.5 Declaring Symbols Communal 7-8 





Creating Programs from Multiple Modules 

7.1 Introduction 

~Aost medium and large assembly-language programs are created from 
several source files or modules. When several modules are used, the scope 
of symbols becomes important. This chapter discusses the scope of sym­
bols and explains how to declare global symbols that can be accessed 
from any module. It also tells you how to specify a module that will be 
accessed from a library. 

Symbols such as labels and variable names can be either local or global in 
scope. By default, all symbols are local; they are specific to the source file 
in which they are defined. Symbols must be declared global if they must 
be accessed from modules other than the one in which they are defined. 

To declare symbols global, they must be declared public in the source 
module in which they are defined. They must also be declared external in 
any module that must access the symbol. If the symbol represents unini­
tialized data; it can be declared communal-meaning that the symbol is 
both public and external. The PUBLIC, EXTRN, and COMM directives 
are used to declare symbols public, external, and communal, respectively. 

Note 

The term "local" has a different meaning in assembly language 
than in many high-level languages. Often, local symbols in com­
piled languages are symbols that are known only within a procedure 
(called a function, routine, subprogram, or subroutine, depending on 
the language). Local symbols of this type cannot be declared by 
masm, although procedures can be written to allocate local symbols 
dynamically at run time, as described in "Using Local Variables." 

7.2 Declaring Symbols Public 

The PUBLIC directive is used to declare symbols public so that they can 
be accessed from other modules. If a symbol is not declared public, the 
symbol name is not written to the object file. The symbol has the value of 
its offset address during assembly, but the name and address are not avail­
able to the linker. 

7 -1 



Macro Assembler 

If the symbol is declared public, its name is associated with its offset 
address in the object file. During linking, symbols in different modules­
but with the same name-are resolved to a single address. 

Public symbol names are also used by some symbolic debuggers to asso­
ciate addresses with symbols. 

Syntax 

PUBLIC name [,name] ... 

The name must be the name of a variable, label, or numeric equate 
defined within the current source file. PUBLIC declarations can be 
placed anywhere in the source file. Equate names, if given, can only 
represent 1- or 2-byte integer or string values. Text macros (or text 
equates) cannot be declared public. 

80386 Only 

Equate names on the 80386 processor can represent 1-, 2-, or 4-byte 
integer values or string values. 

Note 

Although absolute symbols can be declared public, aliases for pub­
lic symbols should be avoided, since they may decrease the 
efficiency of the linker. For example, the following statements 
would increase processing time for the linker: 

lines 
rows 

PUBLIC lines 
EQU rows 
EQU 25 

Declare absolute symbol public 
Declare alias for lines 
Assign value to alias 

In addition, the symbol made public is rows, not lines. 

7-2 



Creating Programs from Multiple Modules 

Example 

PUBLIC true,status,first,clear 
.MODEL small 

true EQU -1 
. DATA 

status DB 1 
.CODE 

first LABEL FAR 
clear PROC 

clear ENDP 

7.3 Declaring Symbols External 

If a symbol undeclared in a module must be accessed by instructions in 
that module, it must be declared with the EXTRN directive. 

This directive tells the assembler not to generate an error, even though the 
symbol is not in the current module. The assembler assumes that the sym­
bol occurs in another module. However, the symbol must actually exist 
and must be declared public in some module. Otherwise, the linker gen­
erates an error. 

Syntax 

EXTRN name:type [,name:type] ... 

The EXTRN directive defines an external variable, label, or symbol of 
the specified name and type. The type must match the type given to the 
item in its actual definition in some other module. It can be anyone of the 
following: 

Description 

Distance specifier 

Size specifier 

Absolute 

Types 

NEAR, FAR, or PROC 

BYTE, WORD, DWORD, FWORD, 
QWORD, or TBYTE 

ABS 

7-3 



Macro Assembler 

The ABS type is for symbols that represent constant numbers, such as 
equates declared with the EQU and = directives (see "Using Equates"). 

The PROC type represents the default type for a procedure. For programs 
that use simplified segment directives, the type of an external symbol 
declared with PROC will be near for small or compact model, or far for 
medium, large, or huge model. "Defining the Memory Model," tells you 
how to declare the memory model using the .MODEL directive. If full 
segment definitions are used, the default type represented by PROC is 
always near. 

Although the actual address of an external symbol is not determined until 
link time, the assembler assumes a default segment for the item, based on 
where the EXTRN directive is placed in the source code. Placement of 
EXTRN directives should follow these rules. 

• NEAR code labels (such as procedures) must be declared in the 
code segment from which they are accessed. 

• FAR code labels can be declared anywhere in the source code. It 
may be convenient to declare them in the code segment from 
which they are accessed if the label may be FAR in one context or 
NEAR in another. 

• Data must be declared in the segment in which it occurs. This may 
require that you define a dummy data segment for the external 
declaration. 

• Absolute symbols can be declared anywhere in the source code. 

7-4 



Example 1 

start: 

Creating Programs from Multiple Modules 

EXTRN max:ABS,act:FAR 
.MJDEL small 
.STACK lOOh 
• DATA 
EXTRN nvar:BYTE 
.FARDATA 
EXTRN fvar:WORD 

. CODE 
EXTRN task:PROC 
mov ax,@data 
mov cis, ax 
ASSUME es: @fardata 
mov ax,@fardata 
mov es,ax 

mov ah,nvar 
mov bx,fvar 
mov cx,max 
call task 
jrrp act 

END start 

Constant or FAR label anywhere 

; NEAR variable in near data 

FAR variable in far data 

PROC or NEAR in near code 
Load segment 

into OS 
Tell assembler 
Tell processor that ES 

has far data segment 

Load external NEAR variable 
Load external FAR variable 
Load external constant 
Call procedure (NEAR or FAR) 
Jurrp to FAR label 

Example 1 shows how each type of external symbol could be declared 
and used in a small-model program that uses simplified segment direc­
tives. Notice the use of the PROC type specifier to make the external­
procedure memory model independent. The jump and its external declara­
tion are written so that they will be FAR regardless of the memory model. 
Using these techniques, you can change the memory model without 
breaking code'. 

7-5 



Macro Assembler 

Example 2 

EXTRN max:ABS,act:FAR ; Constant or FAR label anywhere 
STACK SEGMENT PARA STACK 'STACK' 

DB lOOh DUP (?) 
STACK ENDS 
DATA SEGMENT IDRD PUBLIC 'DATA' 

EXTRN nvar:BYTE ; NEAR variable in near data 
DATA ENDS 

FAR DATA SEGMENT PARA 'FAR DATA' 
EXTRN fvar: IDRD ; FAR variable in far data 

FAR DATA ENDS 

DGROUP GROUP DATA, STACK 
TEXT SEGMENT BYTE PUBLIC 'CODE' 

EXTRN task:NEAR ; NEAR procedure in near code 
ASSUME cs: TEXT,ds:DGROUP,ss:DGROUP 

start: mov ax, i5GROUP ; Load segment 
mov ds,ax into OS 
ASSUME es:FAR DATA ; Tell assembler 
mov ax,FAR_DATA ; Tell processor that ES 
mov es, ax has far data segment 

mov ah,nvar ; Load external NEAR variable 
mov bx,fvar ; Load external FAR variable 
mov cX,max ; Load external constant 

call task ; Call NEAR procedure 

jmp act ; Jurrp to FAR label 

TEXT ENDS 
END start 

Example 2 shows a fragment similar to the one in Example 2, but with 
full segment definitions. Notice that the types of code labels must be 
declared specifically. If you wanted to change the memory model, you 
would have to specifically change each external decIaration and each call 
or jump. 

7.4 Using Multiple Modules 

The following source files illustrate a program that uses public and exter­
nal decIarations to access instruction labels. The program consists of two 
modules called hello and display. 

The hello module is the program's initializing module. Execution starts at 
the instruction labeled start in the hello module. After initializing the 
data segment, the program calls the procedure display in the display 

7-6 



Creating Programs from Multiple Modules 

module. Execution then returns to the address after the call in the hello 
module. 

Here is the hello module: 

.286 
TITlE hello 

.MJDEL SMALL 

. DATIl. 
public message, lmessage 
message DB "Hello, world", 10 
lmessage EQU $ - message 

EXTRN 
EXTRN 

PUBLIC 
main: 

. CODE 

display:PROC 
exit:PROC 

main 
call display 

call _exit 

END 

Next, the display module: 

.286 
TITlE display 

.MJDEL SMALL 

. DATIl. 
EXTRN lmessage:ABS 
EXTRN message:BYTE 

• CODE 

EXTRN write:PROC 

PUBLIC display 
display PROC 

push lmessage 
push offset message 
push 0 
call write 
add sp, 6 
ret 

display ENDP 
END 

declare in near code segment 
system call provided in system 
; library, libc. a 

call other module 

xenix system call 

declare anywhere 
declare in near data segment 

system call provided in 
; system library, libc. a 

xenix system call 

7-7 



Macro Assembler 

The sample program is a variation of the hello.s program used in exam­
ples in Chapter 1, "Getting Started," except that it uses an external pro­
cedure to display to the standard output. Notice that all symbols defined 
in one module but used in another are declared PUBLIC in the defining 
module and declared EXTRN in the using module. 

For instance, message and lmessage are declared PUBLIC in hello and 
declared EXTRN in display. The procedure display is declared EXTRN 
in hello and PUBLIC in display. 

To create an executable file for these modules, assemble each module 
separately, as in the following command lines: 

masm hello.s 
masm display.s 

Then link the two modules: 

ld display.o hello.o 

The result is the executable file hello. 

For each source module, masm writes a module name to the object file. 
The module name is used by some debuggers and by the linker when it 
displays error messages. Starting with Version 5.0, the module name is 
always the base name of the source module file. With previous versions, 
the module name could be specified with the NAME or TITLE directive. 

For compatibility, masm recognizes the NAME directive. However, 
NAME has no effect. Arguments to the directive are ignored. 

7.5 Declaring Symbols Communal 

Communal variables are uninitialized variables that are both public and 
external. They are often declared in include files. 

If a variable must be used by several assembly routines, you can declare 
the variable communal in an include file, and then include the file in each 
of the assembly routines. Although the variable is declared in each source 
module, it exists at only one address. Using a communal variable in an 
include file and including it in several source modules is an alternative to 
defining the variable and declaring it public in one source module and 
then declaring it external in other modules. 

7-8 



Creating Programs from Multiple Modules 

If a variable is declared communal in one module and public in another, 
the public declaration takes precedence and the communal declaration 
has the same effect as an external declaration. 

Syntax 

COMM definition[,definition] ... 

Each definition has the following syntax: 

[NEAR I FAR] label:size[:count] 

A communal variable can be NEAR or FAR. If neither is specified, the 
type will be that of the default memory model. If you use simplified seg­
ment directives, the default type is NEAR for small and medium models, 
or FAR for compact, large, and huge models. If you use full segment 
definitions the default type is NEAR. 

The label is the name of the variable. The size can be BYTE, WORD, 
DWORD, QWORD, or TBYTE. The count is the number of elements. If 
no count is given, one element is assumed. Multiple variables can be 
defined with one COMM statement by separating each variable with a 
comma. 

Note 

C variables declared outside functions (except static variables) are 
communal unless explicitly initialized; they are the same as 
assembly-language communal variables. If you are writing 
assembly-language modules for C, you can declare the same com­
munal variables in C include files and in masm include files. 

Because masm cannot tell whether a communal variable has been used in 
another module, allocation of communal variables is handled by the 
linker. As a result, communal variables have the following limitations 
that other variables declared in assembly language do not have: 

• Communal variables cannot be initialized. Under XENIX, initial 
values are guaranteed to be O. The variables can be used for data 
that are not given a value until run time, such as file buffers. 

• Communal variables are not guaranteed to be allocated in the 
sequence in which they are declared. Assembly-language tech­
niques that depend on the sequence and position in which data is 

7-9 



Macro Assembler 

defined should not be used with communal variables. For example, 
the following statements do not work: 

COMM buffer:WORD:128 
lbuffer EQU $ - buffer ; "lbuffer" won't have desired value 

bbuffer LABEL BY'IE "bbuffer" won't have desired address 
COMM wbuffer:WORD:128 

• Placement of communal declarations follows the same rules as 
external declarations. They must be declared inside a data seg­
ment. Examples of near and far communal variables are as follows: 

. DATA 
COMM NEAR nbuffer:BYTE:30 
.FARDATA 
COMM FAR fbuffer:WORD:40 

• Communal variables are allocated in segments that are part of the 
Microsoft segment conventions. You cannot override the default to 
place communal variables in other segments. 

7-10 

Near communal variables are placed in a segment called 
c_commoD, which is part of DGROUP. This group is created and 
initialized automatically if you use simplified segment directives. 
If you use full segment directives, you must create a group called 
DGROUP and use the ASSUME directive to associate it with the 
DS register. 

Far communal variables are placed in a segment called FAR _ BSS. 
This segment has combine type private and class type 'FAR_BSS'. 
This means that multiple segments with the same name can be 
created. Such segments cannot be accessed by name. They must be 
initialized indirectly using the SEG operator. For example, if a far 
communal variable (with word size) is called fcomvar, its segment 
can be initialized with the following lines: 

ASSUME ds : SEG comvar 
mov ax, SEG comvar 
mov ds,ax 
mov bx,comvar 

Tell the assembler 
Tell the processor 

Use the variable 



Creating Programs from Multiple Modules 

Example 1 

IF @DataSize 
.FARDATA 
ELSE 
. DATA 
ENDIF 
COMM var:WORD, buffer:BYTE:I0 

Example I creates two communal variables. The first is a word variable 
called var. The second is a IO-byte array called buffer. Both have the 
default size associated with the memory model of the program in which 
they are used. 

Example 2 

EXTRN 

• DATA. 
C(M'.1 

asciiz MACRO 
LOCAL 
push 
push 
push 
call 
add 
or 
jge 
xor 

ok: 
mov 
mov 

address EQU 
ENDM 

read:PROC 

temp:BY1E:128 

address 
ok 
128 
OFFSET temp 
a 
read 

sp, 6 
ax, ax 
ok 
ax, ax 

bx, ax 
temp [bx] , 0 
OFFSET temp 

; name of address for string 

; ffia.,'{imum length 

standard input 
xenix system call 

length of string 
overwrite CR with NULL 

7-11 



Macro Assembler 

Example 2 shows an include file that declares a buffer for temporary data. 
The buffer is then used in a macro in the same include file. The following 
is an example of how the macro could be used in a source file: 

.286 

. MODEL SMflLL 

INCLUDEcorrmunal.inc 

. DATA 
message DB "Enter file name: 
lmessage EQO 

PUBLIC 
main 

. CODE 
EXTRN 
EXTRN 

main 
PRO::: 
push 
mov 

push 
push 
push 
call 
add 

$ - message 

open:PRO::: 
-write:PRO::: 

bp 
bp, sp 

lmessage 
OFFSET message 
I 
write 

sp, 6 

asciiz place 

push 
push place 
call _open 
add sp, 4 

leave 
ret 

main ENDP 
end 

" , 

write (1, message, l~essage) 

clear stack 

get file name and 
; return address as "place" 

see <sys/fcntl.h> 

open (place, 0) 
clear stack 

Note that once the macro is written, the user does not need to know the 
name of the temporary buffer or how it is used in the macro. 

7-12 



Chapter 8 

Using Operands 

and Expressions 

8.1 Introduction 8-1 

8.2 Using Operands with Directives 8-1 

8.3 U sing Operators 8-2 
8.3.1 Calculation Operators 8-3 
8.3.2 Relational Operators 8-8 
8.3.3 Segment-Override Operator 8-10 
8.3.4 Type Operators 8-11 
8.3.5 Operator Precedence 8-19 

8.4 Using the Location Counter 8-20 

8.5 Using Forward References 8-21 
8.5.1 Forward References to Labels 8-22 
8.5.2 Forward References to Variables 8-24 

8.6 Strong Typing for Memory Operands 8-25 





Using Operands and Expressions 

8.1 Introduction 

Operands are the arguments that define values to be acted on by instruc­
tions or directives. Operands can be constants, variables, expressions, or 
keywords, depending on the instruction or directive, and the context of 
the statement. 

A common type of operand is an expression. An expression consists of 
several operands that are combined to describe a value or memory loca­
tion. Operators indicate the operations to be performed when combining 
the operands of an expression. 

Expressions are evaluated at assembly time. By using expressions, you 
can instruct the assembler to calculate values that would be difficult or 
inconvenient to calculate when you are writing source code. 

This chapter discusses operands, expressions, and operators as they are 
evaluated at assembly time. See Chapter 13, "Using Addressing Modes," 
for a discussion of the addressing modes that can be used to calculate 
operand values at run time. This chapter also discusses the location­
counter operand, forward references, and strong typing of operands. 

8.2 Using Operands with Directives 

Each directive requires a specific type of operand. Most directives take 
string or numeric constants, or symbols or expressions that evaluate to 
such constants. 

The type of operand varies for each directive, but the operand must 
always evaluate to a value that is known at assembly time. This differs 
from instructions, whose operands may not be known at assembly time 
and may vary at run time. Operands used with instructions are discussed 
in Chapter 13, "Using Addressing Modes." 

Some directives, such as those used in data declarations, accept labels or 
variables as operands. When a symbol that refers to a memory location is 
used as an operand to a directive, the symbol represents the address of the 
symbol rather than its contents. This is because the contents may change 
at run time and are therefore not known at assembly time. 

8-1 



Macro Assembler 

Example 1 

var 

pvar 

ORG 
DB 

DW 

100h 
10h 

var 

Set address to 100h 
Address of "var" is 100h 
Value of "var" is 10h 
Address of ''pvar'' is 101h 
Value of ''pvar'' is 

address of "var" (100h) 

In Example 1, the operand of the DW directive in the third statement 
represents the address of var (lOOh) rather than its contents (lOh). The 
address is relative to the start of the segment in which var is defined. 

Example 2 

TEXT 

tst 

sum 
here 

TITLE doit 
SEGMENT BYTE PUBLIC 'CODE' 
INCLUDE /include/bios.inc 
.RADIX 16 

DW a / b 
PAGE + 
EQU x * y 
LABEL WORD 

; String 
; Key words 
; Pathname 
; Numeric constant 
; Numeric expression 
; Special character 
; Numeric expression 
; Type specifier 

Example 2 illustrates the different kinds of values that can be used as 
directive operands. 

8.3 Using Operators 

The assembler provides a variety of operators for combining, comparing, 
changing, or analyzing operands. Some operators work with integer con­
stants, some with memory values, and some with both. Operators cannot 
be used with floating-point constants since masm does not recognize real 
numbers in expressions. 

It is important to understand the difference between operators and instruc­
tions. Operators handle calculations of constant values that are known at 
assembly time. Instructions handle calculations of values that may not be 
known until run time. For example, the addition operator (+) handles 
assembly-time addition, while the ADD and ADC instructions handle 
run-time addition. 

This section describes the different kinds of operators used in assembly­
language statements and gives examples of expressions formed with 
them. In addition to the operators described in this chapter, you can use 

8-2 



Using Operands and Expressions 

language statements and gives examples of expressions formed with 
them. In addition to the operators described in this chapter, you can use 
the DUP operator, the record operators and the macro operators. 

8.3.1 Calculation Operators 

Common arithmetic operators are provided by masm, as well as several 
other operators for adding, shifting, or doing bit manipulations. The sec­
tions below describe operators that can be used for doing numeric calcu­
lations. 

Note 

Constant values used with calculation operators are extended to 33 
bits before the calculations are done. This rule applies regardless of 
the processor used. Exceptions are noted to this rule. 

Arithmetic Operators 

A variety of arithmetic operators for common mathematical operations 
are recognized. Table 8.1 lists the arithmetic operators. 

Operator 

+ 

* 

MOD 

+ 

Syntax 

Table 8.1 

Arithmetic Operators 

%+<expression> 

-<expression> 

<expressionl>*<expression2> 

<expression 1 >/<expres sion2> 

<expressionl>MOD<expression2> 

<expression 1 >+<expression2> 

<expression 1 >-<expression2> 

Meaning 

Positive (unary) 

Negative (unary) 

Multiplication 

Integer division 

Remainder (modulus) 

Addition 

Subtraction 

For all arithmetic operators except the addition operator (+) and the sub­
traction operator (-), the expressions operated on must be integer con­
stants. 

8-3 



Macro Assembler 

The addition and subtraction operators can be used to add or subtract an 
integer constant and a memory operand. The result can be used as a 
memory operand. 

The subtraction operator can also be used to subtract one memory 
operand from another, but only if the operands refer to locations within 
the same segment. The result will be a constant, not a memory operand. 

Note 

The unary plus and minus (used to designate positive or negative 
numbers) are not the same as the binary plus and minus (used to 
designate addition or subtraction). The unary plus and minus have a 
higher level of precedence, as described in Section 8.2.5, "Operator 
Precedence." 

Example 1 

intgr 
intgr 
intgr 
intgr 
intgr 
intgr 
intgr 

14 * 3 
intgr / 4 
intgr MJD 4 
intgr + 4 
intgr - 3 
-intgr - 8 
-intgr - intgr 

; = 42 
; 42 / 4 = 10 
; 10 mod 4 = 2 
; 2 + 4 = 6 
;6-3=3 
; -3 - 8 = -11 
; 11 - (-11) = 22 

Example I illustrates arithmetic operators used in integer expressions. 

Example 2 

ORG 
a DB 
b DB 
mem1 EQU 
mem2 EQU 
canst EQU 

100h 
? 
? 
a + 5 
a - 5 
b - a 

; Address is 100h 
; Address is 101h 
; mem1 = lOOh + 5 = l05h 
; mem2 = lOOh - 5 = OFBh 
; canst = 101h - 100h = 1 

Example 2 illustrates arithmetic operators used in memory expressions. 
Note that meml and mem2 are memory addresses relative to the segment 
they are defined in, while const is equal to the constant 1. 

8-4 



Using Operands and Expressions 

Structure-Field-Name Operator 

The structure-field-name operator (.) indicates addition. It is used to 
designate a field within a structure. 

Syntax 

variable .field 

The variable is a memory operand (usually a previously declared struc­
ture variable) and field is the name of a field within the structure. For 
more information, see "Structures." 

Example 

• DATA 
date STRUC ; Declare structure 
month DB ? 
day DB ? 
year DW ? 
date ENDS 
yesterday date <12,31,1987> ; Define structure variables 
today date <1,1,1988> 

. CODE 

mov bh, yesterday . day ; Load structure variable 

mov bx,OFFSET today ; Load structure variable address 
inc [bxl . year ; Use in indirect memory operand 

Index Operator 

The index operator ([ ]) indicates addition. It is similar to the addition (+) 
operator. 

Syntax 

[expression1] [expression2] 

In most cases expression1 is simply added to expression2. The limitations 
of the addition operator for adding memory operands also apply to the 
index operator. For example, two direct memory operands cannot be 
added. The expression labell [label2 J is illegal if both are memory 
operands. 

8-5 



Macro Assembler 

The index operator has an extended function in specifying indirect 
memory operands. "Indirect Memory Operands," explains the use of 
indirect memory operands. The index brackets must be outside the regis­
ter or registers that specify the indirect displacement. However, any of the 
three operators that indicate addition (the addition operator, the index 
operator, or the structure- field-name operator) may be used for multiple 
additions within the expression. 

For example, the following statements are equivalent: 

mov ax,table[bx] [di] 
mov ax, table [bx+di] 
mov ax, [table+bx+di] 
mov ax, [table] [bx] [di] 

The following statements are illegal because the index operator does not 
enclose the registers that specify indirect displacement: 

mov 
mov 

ax,table+bx+di 
ax, [table]+bx+di 

Illegal - no index operator 
Illegal - registers not 
inside index operator 

The index operator is typically used to index elements of a data object, 
such as variables in an array or characters in a string. 

Example 1 

mov 
add 
mov 
mov 
mov 
mov 
mov 

al,string[3] 
ax, array [4] 
string[7],al 
ax, table [bx] [di] 
ax, table [bx+di] 
ax, [table+bx+di] 
ax, [table] [bx] [di] 

Get 4th element of string 
Add 5th element of array 
Load into 8th element of string 

Example 1 illustrates the index operator used with direct memory 
operands. 

Example 2 

8-6 

mov 
add 
mov 
cmp 

ax, [bx] 
ax, array [si] 
string[di],al 
ex, table [bx] [di] 

Get element BX points to 
Add element 3I points to 
Load element DI points to 
Compare to element BX and DI 

point to 



Using Operands and Expressions 

Example 2 illustrates the index operator used with indirect memory 
operands. 

Shift Operators 

The SHR and SHL operators can be used to shift bits in constant values. 
Both perform logical shifts. Bits on the right for SHL and on the left for 
SHR are zero-filled as their contents are shifted out of position. 

Syntax 

expression SHR count 
expression SHL count 

The expression is shifted right or left by count number of bits. Bits shifted 
off either end of the expression are lost. If count is greater than or equal to 
16 (32 on the 80386 processor), the result is O. 

Do not confuse the SHR and SHL operators with the processor instruc­
tions having the same names. The operators work on integer constants 
only at assembly time. The processor instructions work on register or 
memory values at run time. The assembler can tell the difference between 
instructions and operands from context. 

Examples 

mov 
mov 

ax,OlllOlllb SHL 3 
ah,OlllOlllb SHR 3 

Bitwise Logical Operators 

Load OlllOlllOOOb 
Load 01110b 

The bitwise operators perform logical operations on each bit of an expres­
sion. The expressions must resolve to constant values. Table 8.2 lists the 
logical operators and their meanings. 

8-7 



Macro Assembler 

Operator 

NOT 
AND 

OR 

XOR 

Syntax 

Table 8.2 

Logical Operators 

NOT <expression> 

<expression 1 > AND <expression2> 

<expression1> OR <expression2> 

<expression1> XOR <expression2> 

Meaning 

Bitwise complement 

Bitwise AND 

Bitwise inclusive OR 

Bitwise exclusive OR 

Do not confuse the NOT, AND, OR, and XOR operators with the proces­
sor instructions having the same names. The operators work on integer 
constants only at assembly time. The processor instructions work on 
register, immediate, or memory values at run time. The assembler can tell 
the difference between instructions and operands from context. 

Note 

Although calculations on expressions using the AND, OR, and 
XOR operators are done using 33-bit numbers, the results are trun­
cated to 32 bits. Calculations on expressions using the NOT opera­
tor are truncated to 16 bits (except on the 80386). 

Examples 

mov 
mov 
mov 
mov 
mov 

ax,NOT 11110000b 
ah,NOT 11110000b 
ah,01010101b AND 11110000b 
ah,0101010lb OR 11110000b 
ah,0101010lb XOR 11110000b 

8.3.2 Relational Operators 

Load 1111111100001111b 
Load 0000111lb 
Load 01010000b 
Load 1111010lb 
Load 1010010lb 

The relational operators compare two expressions and return true (-1) if 
the condition specified by the operator is satisfied, or false (0) if it is not. 
The expressions must resolve to constant values. Relational operators are 
typically used with conditional directives. Table 8.3 lists the operators 
and the values they return if the specified condition is satisfied. 

8-8 



Operator 
EQ 

NE 

LT 

LE 

GT 

GE 

Note 

Using Operands and Expressions 

Syntax 

Table 8.3 

Relational Operators 

<expression1> EQ <expression2> 

<expression1> NE <expression2> 

<expression1> LT <expression2> 

<expression1> LE <expression2> 

<expression1> GT <expression2> 

<expression1> GE <expression2> 

Returned Value 
True if expressions are 
equal 

True if expressions are 
not equal 

True if left expression is 
less than right 

True if left expression is 
less than or equal to 
right 

True if left expression is 
greater than right 

True if left expression is 
greater than or equal to 
right 

The EQ and NE operators treat their arguments as 32-bit numbers. 
Numbers specified with the 32nd bit set are considered negative. 
For example, the expression -1 EQ OFFFFFFFFh is true, but the 
expression -1 NE OFFFFFFFFh is false. 

The LT,LE,GT, and operators treat their arguments as 33-bit 
numbers, in which the 33rd bit specifies the sign. For example, 
OFFFFFFFFh is 4,294,967,295, not -1. The expression 1 GT -1 is 
true, but the expression 1 GT OFFFFFFFFh is false. 

8-9 



Macro Assembler 

Examples 

mov ax,4 EQ 3 Load false ( 0) 
mov ax,4 NE 3 Load true (-1) 

mov ax,4 LT 3 Load false ( 0) 
mov ax,4 LE 3 Load false ( 0) 
mov ax,4 GT 3 Load true (-1) 

mov ax,4 GE 3 Load true (-1) 

8.3.3 Segment-Override Operator 

The segment-override operator (:) forces the address of a variable or label 
to be computed relative to a specific segment. 

Syntax 

segment:expression 

The segment can be specified in several ways. It can be one of the seg­
ment registers: CS, DS, SS, or (or FS or GS on the 80386). It can also be a 
segment or group name. In this case, the name must have been previously 
defined with a SEGMENT or GROUP directive and assigned to a seg­
ment register with an ASSUME directive. The expression can be a con­
stant, expression, or a SEG expression. For more infonnation on the SEG 
operator, see "SEG Operator." 

Note 

When a segment override is given with an indexed operand, the seg­
ment must be specified outside the index operators. For example, 
es:[di] is correct, but [es:diJ generates an error. 

Examples 

mov 
mov 

ax, ss: [bx+4 ] 
al,es:082h 

ASSUME ds : FAR DATA 
mov 

8-10 

Override default assume (DS) 
Load from ES 

Tell the assembler and 
load from a far segment 



Using Operands and Expressions 

As shown in the last two statements, a segment override with a segment 
name is not enough if no segment register is assumed for the segment 
name. You must use the ASSUME statement to assign a segment register, 
as explained in "Associating Segments with Registers." 

8.3.4 '!ype Operators 

This section describes the assembler operators that specify or analyze the 
types of memory operands and other expressions. 

PTR Operator 

The PTR operator specifies the type for a variable or label. 

Syntax 

type PTR expression 

The operator forces expression to be treated as having type. The expres­
sion can be any operand. The type can be BYTE, WORD, DWORD, 
FWORD, QWORD, or TBYTE for memory operands. It can be NEAR, 
FAR, or PROC for labels. 

The PTR operator is typically used with forward references to define 
explicitly what size or distance a reference has. If it is not used, the 
assembler assumes a default size or distance for the reference. 

The PTR operator is also used to enable instructions to access variables 
in ways that would otherwise generate errors. For example, you could use 
the PTR operator to access the high-order byte of a WORD size variable. 
The PTR operator is required for FAR calls and jumps to forward­
referenced labels. 

8-11 



Macro Assembler 

Example 1 

stuff 
buffer 

.D]\.Ti\. 
DD ? 
DB 20 Dur (?) 

. CODE 

call 
jmp 

mov 

FAR PTR task 
F.Z\R PTR place 

b:"WOI~ PTE<. stuff[O] 

Call a far procedure 
Jump far 

add a:'1 WORD PTR buffer lb:,:] 

Load a word from a 
dcublewo.::d variable 

Add a word from a 
byte variable 

SHORT Operator 

The SHORT operator sets the type of a specified label to SHORT. Short 
labels can be used in JMP instructions whenever the distance from the 
label to the instruction is less than 128 bytes. 

Syntax 

SHORT label 

Instructions using short labels are a byte smaller than identical instruc­
tions using the default near labels. For information on using the SHORT 
operator with jump instructions, see' 'Forward References to Labels." 

Example 

jmp again Jump 128 bytes or more 

jmp SHORT again Jump less than 128 bytes 

8-12 



Using Operands and Expressions 

THIS Operator 

The THIS operator creates an operand whose offset and segment values 
are equal to the current location-counter value and whose type is 
specified by the operator. 

Syntax 

THIS type 

The type can be BYTE, WORD, DWORD, FWORD, QWORD, or 
TBYTE for memory operands. It can be NEAR, FAR, or PROC for 
labels. 

The THIS operator is typically used with the EQU or equal-sign (=) 
directive to create labels and variables. The result is similar to using the 
LABEL directive. 

Examples 

tagl EQU THIS BYTE ; Both represent the same variable 
tag2 LABEL BYTE 

checkl EQU THIS NEAR ; All represent the same address 
check2 LABEL NEAR 
check3: 
check 4 PRCX: NEAR 
check4 ENDP 

HIGH and LOW Operators 

The HIGH and LOW operators return the high and low bytes, respec­
tively, of an expression. 

Syntax 

HIGH expression 
LOW expression 

The HIGH operator returns the high-order eight bits of expression; the 
LOW operator returns the low-order eight bits. The expression must 
evaluate to a constant. You cannot use the HIGH and LOW operators 
on the contents of a memory operand since the contents may change at 
run time. 

8-13 



Macro Assembler 

Examples 

stuff 

SEG Operator 

EQU 
mov 
mov 

OABCDh 
ah,HIGH stuff 
al,LOW stuff 

Load OABh 
Load OCDh 

The SEG operator returns the segment address of an expression. 

Syntax 

SEG expression 

The expression can be any label, variable, segment name, group name, or 
other memory operand. The SEG operator cannot be used with constant 
expressions. The returned value can be used as a memory operand. 

Examples 

• DATA 
var DB 

• CODE 

mov 

ASSUME 

OFFSET Operator 

? 

ax,SEG var 

ds:SEG var 

; Get address of segment 
, where variable is declared 
; Assume segment of variable 

The OFFSET operator returns the offset address of an expression. 

Syntax 

OFFSET expression 

The expression can be any label, variable, or other direct memory 
operand. Constant expressions return meaningless values. The value 
returned by the OFFSET operand is an immediate (constant) operand. 

8-14 



Using Operands and Expressions 

If simplified segment directives are given, the returned value varies. If the 
item is declared in a near data segment, the returned value is the number 
of bytes between the item and the beginning of its group (normally 
DGROUP). If the item is declared in a far segment, the returned value is 
the number of bytes between the item and the beginning of the segment. 

If full segment definitions are given, the returned value is a memory 
operand equal to the number of bytes between the item and the beginning 
of the segment in which it is defined. 

The segment-override operator (:) can be used to force OFFSET to return 
the number of bytes between the item in expression and the beginning of 
a named segment or group. This is the method used to generate valid 
offsets for items in a group when full segment definitions are used. For 
example, the statement 

mov bx,OFFSET DGROUP:array 

is not the same as 

mov bx,OFFSET array 

if array is not in the first segment in DGROUP. 

Examples 

• DATA 
string DB "This is it." 

• CODE 

mov dx,OFFSET string ; Load offset of variable 

.TYPE Operator 

The • TYPE operator returns a byte that defines the mode and scope of an 
expression. 

Syntax 

• TYPE expression 

If the expression is not valid, .TYPE returns O. Otherwise .TYPE returns 
a byte having the bit setting shown in Table 8.4. Only bits 0, 1, 5, and 7 
are affected. Other bits are always undefined. 

8-15 



Macro Assembler 

Table 8.4 

.TYPE Operator and Variable Attributes 

Bit Position 

o 
1 
5 
7 

If Bit = 0 

Not program related 
Not data related 
Not defined 
Local or public scope 

If Bit = 1 

Program related 
Data related 
Defined 
External scope 

The .TYPE operator is typically used in macros in which different kinds 
of arguments may need to be handled differently. 

Example 

EXTRN -printf:PROC 
display MACRO string 

IFE (( .TYPE string) AND 02h) 
IF2 
%OUT Argument must be a variable 
ENDIF 
ENDIF 
push OFFSET string 
call _printf 
add sp,2 
ENDM 

This macro checks to see if the argument passed to it is data related (a 
variable). It does this by shifting all bits except the relevant bits (1 and 0) 
left so that they can be checked. If the data bit is not set, an error message 
is generated. 

TYPE Operator 

The TYPE operator returns a number that represents the type of an 
expression. 

Syntax 

TYPE expression 

If expression evaluates to a variable, the operator returns the number of 
bytes in each data object in the variable. Each byte in a string is con­
sidered a separate data object, so the TYPE operator returns 1 for strings. 

8-16 



Using Operands and Expressions 

If expression evaluates to a structure or structure variable, the operator 
returns the number of bytes in the structure. If expression is a label, the 
operator returns OFFFFh for NEAR labels and OFFFEh for FAR labels. If 
expression is a constant, the operator returns O. 

The returned value can be used to specify the type for a PTR operator. 

Examples 

var 
array 
str 

.OATA 
OW 
00 
DB 
. CODE 

mov 
mov 
mov 
jrnp 

? 
10 DUP (?) 

"This is a test" 

ax,TYPE var 
bx,TYPE array 
cX,TYFE str 
(TYPE room) PTR room 

room LABEL PROC 

LENGTH Operator 

; Puts 2 in KX 
; Puts 4 in EX 
; Puts 1 in ex 
; Jump is near or far, 

depending on memory model 

The LENGTH operator returns the number of data elements in an array 
or other variable defined with the DUP operator. 

Syntax 

LENGTH variable 

The returned value is the number of elements of the declared size in the 
variable. If the variable was declared with nested DUP operators, only the 
value given for the outer DUP operator is returned. If the variable was not 
declared with the DUP operator, the value returned is always 1. 

8-17 



Macro Assembler 

Examples 

array DO 100 DUP (OFFFFFFh) 
table OW 100 DUP(l,lO DUP(?)) 
string DB 'This is a string' 
var DT ? 
larray EQU LENGTH array 
ltable EQU LENGTH table 
1st ring EQU LENGTH string 
lvar EQU LENGTH var 

mov cx,LENGTH array 
again: 

loop again 

SIZE Operator 

100 - number of elements 
100 - inner DUP not counted 
1 - string is one element 
1 

; Load number of elements 
; Perform some operation on 

each element 

The SIZE operator returns the total number of bytes allocated for an array 
or other variable defined with the DUP operator. 

Syntax 

SIZE variable 

The returned value is equal to the value of LENGTH variable times the 
value of TYPE variable. If the variable was declared with nested DUP 
operators, only the value given for the outside DUP operator is con­
sidered. If the variable was not declared with the DUP operator, the value 
returned is always TYPE variable. 

8-18 



Using Operands and Expressions 

Example 

array 
table 
string 
var 
sarray 
stable 
sstring 
svar 

again: 

DD 100 DUP (1) 
DW 100 DUP(1,10 DUP(?)) 
DB ' This is a string' 
DT ? 
EQU SIZE array 
EQU SIZE table 
EQU SIZE string 
EQU SIZE var 

mov cx,SIZE array 

loop again 

400 - elements times size 
200 - inner DUP ignored 
1 - string is one element 
10 - bytes in variable 

; Load number of bytes 
; Perform some operation on 

each byte 

8.3.5 Operator Precedence 

Expressions are evaluated according to the following rules: 

• Operations of highest precedence are perfonned first. 

• Operations of equal precedence are perfonned from left to right. 

• The order of evaluation can be· overridden by using parentheses. 
Operations in parentheses are always performed before any adja­
cent operations. 

The order of precedence for all operators is listed in Table 8.5. Operators 
on the same line have equal precedence. 

8-19 



Macro Assembler 

Precedence 
(Highest) 

1 

2 

3 
4 

5 
6 

7 

8 

9 

10 

11 

12 

13 

(Lowest) 

Examples 

a 
b 
c 
d 
e 
f 

Table 8.5 

Operator Precedence 

Operators 

LENGTH, SIZE, WIDTH, MASK, (), [], <> 

• (structure-field-name operator) 

PTR, OFFSET, SEG, TYPE, THIS 
HIGH,LOW 

+,. (unary) 

*,/, MOD, SHL, SHR 

+, - (binary) 

EQ, NE, LT, LE, GT, GE 

NOT 

AND 
OR,XOR 
SHORT, .TYPE 

EQU 8 I 4 * 2 
EQU 8 I (4 * 2) 
EQU 8 + 4 * 2 
EQU (8 + 4) * 2 
EQU 8 OR 4 AND 2 
EQU (8 OR 4) AND 3 

Equals 
Equals 
Equals 
Equals 
Equals 
Equals 

4 
1 
16 
24 
8 
a 

8.4 Using the Location Counter 

The location counter is a special operand that, during assembly, 
represents the address of the statement currently being assembled. At 
assembly time, the location counter keeps changing, but when used in 
source code it resolves to a constant representing an address. 

8-20 



Using Operands and Expressions 

The location counter has the same attributes as a near label. It represents 
an offset that is relative to the current segment and is equal to the number 
of bytes generated for the segment to that point. 

Example 1 

string 

1st ring 

DB 
DB 
EQU 

"Who wants to count every byte in a string, " 
"especially if you might change it later." 
$-string ; Let the assembler do it 

Example shows one way of using the location-counter operand in 
expressions relating to data. 

Example 2 

short jump: 

longjump: 

anp 
jl 

ax,bx 
short jump 

anp ax,bx 

If ax < bx, go to "short jump" 
else if ax >= bx, continue 

jge $+5 ; If ax >= bx, continue 
jrnp longjump else if ax < bx, go to "longjump" 

; This is "$+5" 

Example 2 illustrates how you can use the location counter to do condi­
tional jumps of more than 128 bytes. The first part shows the normal way 
of coding jumps of less than 128 bytes, and the second part shows how to 
code the same jump when the label is more than 128 bytes away. 

8.S Using Forward References 

The assembler permits you to refer to labels, variable names, segment 
names, and other symbols before they are declared in the source code. 
Such references are called forward references. 

The assembler handles forward references by making assumptions about 
them on the first pass and then attempting to correct the assumptions, if 
necessary, on the second pass. Checking and correcting assumptions on 
the second pass takes processing time, so source code with forward refer­
ences assembles more slowly than source code with no forward refer­
ences. 

8-21 



Macro Assembler 

In addition, the assembler may make incorrect assumptions that it cannot 
correct, or corrects at a cost in program efficiency. 

S.S.1 Forward References to Labels 

Forward references to labels may result in incorrect or inefficient code. 

In the statement below, the label target is a forward reference: 

jrnp 

target: 

target ; Generates 3 bytes 
in 16-bit segment 

Since the assembler processes source files sequentially, target is unknown 
when it is first encountered. Assuming 16-bit segments, it could be one of 
three types: short (-128 to 127 bytes from the jump), near (-32,768 to 
32,767 bytes from the jump), or far (in a different segment than the jump). 
It is assumed that target is a near label, and masm assembles the number 
of bytes necessary to specify a near label: one byte for the instruction and 
two bytes for the operand. 

If on the second pass the assembler learns that target is a short label, it 
will need only two bytes: one for the instruction and one for the operand. 
However, it will not be able to change its previous assembly and the 
three-byte version of the assembly will stand. If the assembler learns that 
target is a far label, it will need five bytes. Since it can't make this adjust­
ment, it will generate a phase error. 

You can override the assembler's assumptions by specifying the exact 
size of the jump. For example, if you know that a JMP instruction refers 
to a label less than 128 bytes from the jump, you can use the SHORT 
operator, as shown below: 

jrnp 

target: 

SHORT target ; Generates 2 bytes 
in 16-bit segment 

Using the SHORT operator makes the code smaller and slightly faster. If 
the assembler has to use the three-byte form when the two-byte form 

8-22 



Using Operands and Expressions 

would be acceptable, it will generate a warning message if the warning 
level is 2. (The warning level can be set with the -w option.) You can 
ignore the warning, or you can go back to the source code and change the 
code to eliminate the forward references. 

Note 

The SHORT operator in the example above would not be needed if 
target were located before the jump. The assembler would have 
already processed target and would be able to make adjustments 
based on its distance. 

If you use the SHORT operator when the label being jumped to is more 
than 128 bytes away, masm generates an error message. You can either 
remove the SHORT operator, or try to reorganize your program to reduce 
the distance. 

If a far jump to a forward-referenced label is required, you must override 
the assembler's assumptions with the FAR and PTR operators, as shown 
below: 

jmp FAR PTR target 

target: 

; Generates 5 bytes 
in 16-bit segment 

In different segment 

If the type of a label has been established earlier in the source code with 
an EXTRN directive, the type does not need to be specified in the jump 
statement. 

80386 Only 

If the 80386 processor is enabled, jumps with forward references have 
different limitations. One difference is that conditional jumps can be 
either short or near. With previous processors, all conditional jumps were 
short. For 32-bit segments, the number of bytes generated for near and far 
jumps is greater in order to handle the larger addresses in the operand. 

8-23 



Macro Assembler 

Example 1 

.MJDEL large 

.386 

. CODE 

jmp 
jne 
jmp 
jne 
jmp 

SHORT place 
SHORT place 
place 
place 
FAR PTR place 

Example 2 

.386 

.MJDEL large 

. CODE 

jmp SHORT place 
jne SHORT place 
jmp place 
jne place 
jmp FAR PTR place 

; Model comes first, so use 
16-bit segments 

; Short unconditional jurrp - 2 bytes 
; Short conditional jurrp - 2 bytes 
; Near unconditional jurrp - 3 bytes 
; Near conditional jurrp - 4 bytes 
; Far unconditional jurrp - 5 bytes 

.386 comes first, so use 
32-bit segments 

Short unconditional jurrp - 2 bytes 
Short conditional jurrp - 2 bytes 

; Near unconditional jurrp - 5 bytes 
; Near conditional jurrp - 6 bytes 
; Far unconditional jurrp - 7 bytes 

8.5.2 Forward References to Variables 

When masm encounters code referencing variables that have not yet been 
defined in Pass 1, it makes assumptions about the segment where the vari­
able will be defined. If on Pass 2 the assumptions tum out to be wrong, an 
error will occur. 

These problems usually occur with complex segment structures that do 
not follow the Microsoft segment conventions. The problems never 
appear if simplified segment directives are used. 

By default, masm assumes that variables are referenced to the DS regis­
ter. If a statement must access a variable in a segment not associated with 
the DS register, and if the variable has not been defined earlier in the 
source code, you must use the segment-override operator to specify the 
segment. 

8-24 



Using Operands and Expressions 

The situation is different if neither the variable nor the segment in which 
it is defined has been defined earlier in the source code. In this case, you 
must assign the segment to a group earlier in the source code, then masm 
will know about the existence of the segment even though it has not yet 
been defined. 

8.6 Strong Typing for Memory Operands 

The assembler carries out strict syntax checks for all instruction state­
ments, including strong typing for operands that refer to memory loca­
tions. This means that when an instruction uses two operands with 
implied data types, the operand types must match. Warning messages are 
generated for nonmatching types. 

For example, in the following fragment, the variable string is incorrectly 
used in a move instruction: 

. DATA 
string DB "A message." 

.CODE 

mov ax,string[l] 

The AX register has WORD type, but string has BYTE type. Therefore, 
the statement generates warning message 37: 

Operand types must match 

To avoid all ambiguity and prevent the warning error, use the PTR opera­
tor to override the variable's type, as shown below: 

mov ax,WORD PTR string[l] 

8-25 



Macro Assembler 

You can ignore the warnings if you are willing to trust the assembler's 
assumptions. When a register and memory operand are mixed, the assem­
bler assumes that the register operand is always the correct size. For 
example, in the statement 

rnov ax,string[l] 

the assembler assumes that the programmer wishes the word size of the 
register to override the byte size of the variable. A word starting at 
string[1] will be moved into AX. In the statement 

rnov string[l],ax 

the assembler assumes that the programmer wishes to move the word 
value in AX into the word starting at string[1]. However, the assembler's 
assumptions are not always as clear as in these examples. You should not 
ignore warnings about type mismatches unless you are sure you under­
stand how your code will be assembled. 

Note 

Some assemblers do not do strict type checking. For compatibility 
with these assemblers, type errors are warnings rather than severe 
errors. Many assembly-language program listings in books and 
magazines are written for assemblers with weak type checking. 
Such programs may produce warning messages, but assemble 
correctly. You can use the -w option to tum offtype warnings if you 
are sure the code is correct. 

8-26 



Chapter 9 

Assembling Conditionally 

9.1 Introduction 9-1 

9.2 Using Conditional-Assembly Directives 9-1 
9.2.1 Testing Expressions with IF and IFE 9-2 
9.2.2 Testing the Pass with IFI and IF2 9-3 
9.2.3 Testing Symbol Definition with IFDEF and IFNDEF 9-3 
9.2.4 Verifying Macro Parameters with IFB and IFNB 9-4 
9.2.5 Comparing Macro Arguments with IFIDN and IFDIF 9-5 

9.3 Using Conditional-Error Directives 9-6 
9.3.1 Generating Unconditional Errors with .ERR, .ERRl, and 

.ERR2 9-7 
9.3.2 Testing Expressions with .ERRE or .ERRNZ 9-8 
9.3.3 Verifying Symbol Definition with .ERRDEF and 

.ERRNDEF 9-9 
9.3.4 Testing for Macro Parameters with .ERRB and 

.ERRNB 9-9 
9.3.5 Comparing Macro Arguments with .ERRIDN and 

.ERRDIF 9-10 





Assembling Conditionally 

9.1 Introduction 

The Macro Assembler provides two types of conditional directives, 
conditional-assembly and conditional-error directives. Conditional­
assembly directives test for a specified condition and assemble a block of 
statements if the condition is true. Conditional-error directives test for a 
specified condition and generate an assembly error if the condition is true. 

Both kinds of conditional directives test assembly-time conditions. They 
cannot test run-time conditions. Only expressions that evaluate to con­
stants during assembly can be compared or tested. 

Since macros and conditional-assembly directives are often used 
together, you may need to refer to Chapter 10, "Using Equates, Macros, 
and Repeat Blocks," to understand some of the examples in this chapter. 
In particular, conditional directives are frequently used with the special 
macro operators described in "Using Macro Operators." 

9.2 Using Conditional-Assembly Directives 

The conditional-assembly directives include the following: 

IF 
1Ft 
IF2 
IFB 

IFDEF 
IFDIF 
IFE 
IFIDN 

IFNB 
IFNDEF 
ENDIF 
ELSE 

The IF directives and the ENDIF and ELSE directives can be used to 
enclose the statements to be considered for conditional assembly. 

Syntax 

IFcondition 
statements 
[ELSE 
statements] 
ENDIF 

The statements following the IF directive can be any valid statements, 
including other conditional blocks. The ELSE directive and its state­
ments are optional. ENDIF ends the block. 

9-1 



Macro Assembler 

The statements in the conditional block are assembled only if the condi­
tion specified by the corresponding IF statement is satisfied. If the condi­
tional block contains an ELSE directive, only the statements up to the 
ELSE directive are assembled. The statements that follow the ELSE 
directive are assembled only if the IF statement is not met. An END IF 
directive must mark the end of any conditional-assembly block. No more 
than one ELSE directive is allowed for each IF statement. 

IF statements can be nested up to 255 levels. A nested ELSE directive 
always belongs to the nearest preceding IF statement that does not have 
its own ELSE. 

9.2.1 Testing Expressions with IF and IFE 

The IF and IFE directives test the value of an expression and grant 
assembly based on the result. 

Syntax 

IF expression 
IFE expression 

The IF directive grants assembly if the v(Jlue of expression is true 
(nonzero). The IFE directive grants assembly if the value of expression is 
false (0). The expression must resolve to a constant value and must not 
contain forward references. 

Example 

IF 
push 
call 
ELSE 
call 
ENDIF 

debug GT 20 
debug 
adebug 

bdebug 

In this example, a different debug routine will be called, depending on the 
value of debug. 

9-2 



Assembling Conditionally 

9.2.2 Testing the Pass with 1Ft and IF2 

The 1Ft and IF2 directives test the current assembly pass and grant 
assembly only on the pass specified by the directive. Multiple passes of 
the assembler are discussed in Section 2.3.7, "Reading a Pass 1 Listing." 

Syntax 

1Ft 
IF2 

The 1Ft directive grants assembly only on Pass 1. IF2 grants assembly 
only on Pass 2. The directives take no arguments. 

Macros usually only need to be processed once. You can enclose blocks 
of macros in 1Ft blocks to prevent them from being reprocessed on the 
second pass. 

Example 

dostuff 
IFl 
MACRO argument 

ENDM 
ENDIF 

Define on first pass only 

9.2.3 Testing Symbol Definition with IFDEF and IFNDEF 

The IFDEF and IFNDEF directives test whether or not a symbol has 
been defined and grant assembly based on the result. 

Syntax 

IFDEF name 
IFNDEFname 

The IFDEF directive grants assembly only if name is a defined label, 
variable, or symbol. The IFNDEF directive grants assembly if name has 
not yet been defined. 

9-3 



Macro Assembler 

The name can be any valid name. Note that if name is a forward refer­
ence, it is considered undefined on Pass 1, but defined on Pass 2. 

Example 

buff 
IFDEF 
DB 
ENDIF 

buffer 
buffer DUP (?) 

In this example, buff is allocated only if buffer has been previously 
defined. 

One way to use this conditional block is to leave buffer undefined in the 
source file and define it if needed by using the -Dsymbol option (see 
"Defining Assembler Symbols") when you start masm. For example, if 
the conditional block is in test.s, you could start the assembler with the 
following command line: 

masm -Dbuffer=1024 test.s 

The command line would define the symbol buffer; as a result, the condi­
tional assemble would allocate buff. However, if you didn't need buff, you 
could use the following command line: 

masm test.s 

9.2.4 Verifying Macro Parameters with IFB and IFNB 

The IFB and IFNB directives test to see if a specified argument was 
passed to a macro and grant assembly based on the result. 

Syntax 

IFB <argument> 
IFNB <argument> 

These directives are always used inside macros, and they always test 
whether a real argument was passed for a specified dummy argument. The 
IFB directive grants assembly if argument is blank. The IFNB directive 
grants assembly if argument is not blank. The arguments can be any 
name, number, or expression. Angle brackets « » are required. 

9-4 



Assembling Conditionally 

Example 

Write MACRO buffer, bytes, descriptor 
IFNB <descriptor> 
mov bx,descriptor; (l=standard output, 2=standard error) 
ELSE 
mov bx,l 
ENDIF 
push bytes 
push OFFSET buffer 
push descriptor 
call write 
add sp,6 
ENDM 

; default standard output 

; number of bytes to write 
; address of buffer to write to 
; stdout 
; xenix call 
; clear stack 

In this example, a default value is used if no value is specified for the 
third macro argument. 

9.2.5 Comparing Macro Arguments with IFIDN and IFDIF 

The IFIDN and IFDIF directives compare two macro arguments and 
grant assembly based on the result. 

Syntax 

IFIDN[I] <argument]>,<argument2> 
IFDIF[I] <argumentl>,<argument2> 

These directives are always used inside macros, and they always test 
whether real arguments passed for two specified arguments are the same. 
The IFIDN directive grants assembly if argument] and argument2 are 
identical. The IFDIF directive grants assembly if argument] and argu­
ment2 are different. The arguments can be names, numbers, or expres­
sions. They must be enclosed in angle brackets and separated by a 
comma. 

The optional I at the end of the directive name specifies that the directive 
is case insensitive. Arguments that are spelled the same will be evaluated 
the same, regardless of case. This is a new feature starting with Version 
5.0. If the I is not given, the directive is case sensitive. 

9-5 



Macro Assembler 

Example 

divideS MACRO numerator,denominator 
IFDIFI <numerator>,<al> "If numerator isn't AL 
mov aI, numerator "make it AL 
ENDIF 
xor ah,ah 
div denominator 
ENDM 

In this example, a macro uses the IFDIFI directive to check one of the 
arguments and take a different action, depending on the text of the string. 
The sample macro could be enhanced further by checking for other values 
that would require adjustment (such as a denominator passed in AL or 
passed in AH). 

9.3 Using Conditional-Error Directives 

Conditional-error directives can be used to debug programs and check for 
assembly-time errors. By inserting a conditional-error directive at a key 
point in your code, you can test assembly-time conditions at that point. 
You can also use conditional-error directives to test for boundary condi­
tions in macros. 

The conditional-error directives and the error messages they produce are 
listed in Table 9.1. 

Directive 

.ERR! 

.ERR2 

.ERR 

.ERRE 

.ERRNZ 

.ERRNDEF 

.ERRDEF 

.ERRB 

.ERRNB 

9-6 

Table 9.1 

Conditional-Error Directives 

# Message 

87 Forced error - passl 
88 Forced error - pass2 
89 Forced error 
90 Forced error - expression 
91 Forced error - expression 

true (0 ) 

false (not 
92 Forced error - symbol not defined 
93 Forced error - symbol defined 
94 Forced error - string blank 
95 Forced error - string not blank 

0) 



.ERRIDN%[%I%]% 

.ERRDIF%[%I%]% 
96 
97 

Assembling Conditionally 

Forced error - strings identical 
Forced error - strings different 

Like other severe errors, those generated by conditional-error directives 
cause the assembler to return exit code 7. If a severe error is encountered 
during assembly, masm will delete the object module. All conditional 
error directives except ERRI generate severe errors. 

9.3.1 Generating Unconditional Errors with .ERR, .ERR1, and 
.ERR2 

The .ERR, .ERR1, and .ERR2 directives force an error where the direc­
tives occur in the source file. The error is generated unconditionally when 
the directive is encountered, but the directives can be placed within 
conditional-assembly blocks to limit the errors to certain situations. 

Syntax 

.ERR 

.ERRI 

.ERR2 

The .ERR directive forces an error regardless of the pass. The .ERRI and 
.ERR2 directives force the error only on their respective passes. The 
.ERRI directive appears only on standard output or in the listing file if 
you use the -d option to request a Pass 1 listing (as described in Section 
2.2.3, "Creating a Pass 1 Listing"). 

You can place these directives within conditional-assembly blocks or 
macros to see which blocks are being expanded. 

Example 

IFDEF dos 

ELSE 
IFDEF xenix 

ELSE 

END IF 
END IF 

• ERR 
%OUT dos or xenix must be defined 

9-7 



Macro Assembler 

This example makes sure that either the symbol dos or the symbol xenix 
is defined. If neither is defined, the nested ELSE condition is assembled 
and an error message is generated. Since the .ERR directive is used, an 
error would be generated on each pass. You could use .ERRl or .ERR2 to 
check if you want the error to be generated only on the corresponding 
pass. 

9.3.2 Testing Expressions with .ERRE or .ERRNZ 

The .ERRE and .ERRNZ directives test the value of an expression and 
conditionally generate an error based on the result. 

Syntax 

.ERRE expression 

.ERRNZ expression 

The .ERRE directive generates an error if the expression is false (0). The 
.ERRNZ directive generates an error if the expression is true (nonzero). 
The expression must resolve to a constant value and must not contain for­
ward references. 

Example 

buffer 

bname 

MACRO count,bname 
.ERRE count LE 128 
DB count DUP(O) 
ENDM 

buffer 128,buf1 
buffer 129,buf2 

;; Allocate memory, but 
, , no more than 128 bytes 

; Data allocated - no error 
; Error generated 

In this example, the .ERRE directive is used to check the boundaries of a 
parameter passed to the macro buffer. If count is less than or equal to 128, 
the expression being tested by the error directive will be true (nonzero) 
and no error will be generated. If count is greater than 128, the expression 
will be false (0) and the error will be generated. 

9-8 



Assembling Conditionally 

9.3.3 Verifying Symbol Definition with .ERRDEF and .ERRNDEF 

The .ERRDEF and .ERRNDEF directives test whether or not a symbol is 
defined and conditionally generate an error based on the result. 

Syntax 

.ERRDEF name 

.ERRNDEF name 

The .ERRDEF directive produces an error if name is defined as a label, 
variable, or symbol. The .ERRNDEF directive produces an error if name 
has not yet been defined. If name is a forward reference, it is considered 
undefined on Pass 1, but defined on Pass 2. 

Example 

IF 
PUBLIC 
ELSE 
PUBLIC 
ENDIF 

publevel LE 2 
varl, var2 

varl, var2, var3 

In this example, the .ERRNDEF directive at the beginning of the condi­
tional block makes sure that a symbol being tested in the block actually 
exists. 

9.3.4 Testing for Macro Parameters with .ERRB and .ERRNB 

The .ERRB and .ERRNB directives test whether a specified argument 
was passed to a macro and conditionally generate an error based on the 
result. 

Syntax 

.ERRB <argument> 

.ERRNB <argument> 

These directives are always used inside macros, and they always test 
whether a real argument was passed for a specified dummy argument. The 
.ERRB directive generates an error if argument is blank. The .ERRNB 
directive generates an error if argument is not blank. The argument can 
be any name, number, or expression. Angle brackets « » are required. 

9-9 



Macro Assembler 

Example 

work MACRO realarg,testarg 
.ERRB <realarg> ;; Error if no parameters 
.ERRNB <testarg> ;; Error if more than one parameter 

ENDM 

In this example, error directives are used to make sure that one, and only 
one, argument is passed to the macro. The .ERRB directive generates an 
error if no argument is passed to the macro. The .ERRNB directive gen­
erates an error if more than one argument is passed to the macro. 

9.3.5 Comparing Macro Arguments with .ERRIDN and .ERRDIF 

The .ERRIDN and .ERRDIF directives compare two macro arguments 
and conditionally generate an error based on the result. 

Syntax 

.ERRIDN[I] <argumentl>,<argument2> 

.ERRDIF[I] <argumentl>,<argument2> 

These directives are always used inside macros, and they always compare 
the real arguments specified for two parameters. The .ERRIDN directive 
generates an error if the arguments are identical. The .ERRDIF directive 
generates an error if the arguments are different. The arguments can be 
names, numbers, or expressions. They must be enclosed in angle brackets 
and separated by a comma. 

The optional I at the end of the directive name specifies that the directive 
is case insensitive. Arguments that are spelled the same will be evaluated 
the same regardless of case. This is a new feature starting with Version 
5.0. If the I is not given, the directive is case sensitive. 

9-10 



Example 

addem 

Assembling Conditionally 

MACRO adl, ad2, sum 
.ERRIDNI <ax>, <ad2> ;; Error if ad2 is "ax" 
mov ax, adl ;; Would overwrite if ad2 were AX 
add ax,ad2 
mov 
ENDM 

sum, ax ;; Sum must be register or memory 

In this example, the .ERRIDNI directive is used to protect against pass­
ing the AX register as the second parameter, since this would cause the 
macro to fail. 

9-11 





Chapter 10 

Using Equates, Macros, 

and Repeat Blocks 

10.1 Introduction 10-1 

10.2 Using Equates 10-1 
10.2.1 Redefinable Numeric Equates 10-1 
10.2.2 Nonredefinable Numeric Equates 10-2 
10.2.3 String Equates 10-4 

10.3 Using Macros 10-5 
10.3.1 Defining Macros 10-6 
10.3.2 Calling Macros 10-8 
10.3.3 Using Local Symbols 10-9 
10.3.4 Exiting from a Macro 10-11 

10.4 Defining Repeat Blocks 10-11 
10.4.1 The REPT Directive 10-12 
10.4.2 The IRP Directive 10-13 
10.4.3 The IRPC Directive 10-13 

1 0.5 Using Macro Operators 10-15 
10.5.1 Substitute Operator 10-15 
10.5.2 Literal-Text Operator 10-17 
10.5.3 Literal-Character Operator 10-18 
10.5.4 Expression Operator 10-19 
10.5.5 Macro Comments 10-20 

10.6 Using Recursive, Nested, and Redefined Macros 10-21 
10.6.1 Using Recursion 10-21 
10.6.2 Nesting Macro Definitions 10-21 
10.6.3 Nesting Macro Calls 10-22 
10.6.4 Redefining Macros 10-23 
10.6.5 Avoiding Inadvertent Substitutions 10-24 

10.7 Managing Macros and Equates 10-25 



10.7.1 Using Include Files 10-25 
10.7.2 Purging Macros from Memory 10-26 



Using Equates, Macros, and Repeat Blocks 

10.1 Introduction 

This chapter explains how to use equates, macros, and repeat blocks. 
Equates are constant values assigned to symbols so that the symbol can be 
used in place of the value. Macros are a series of statements that are 
assigned a symbolic name (and optionally parameters) so that the symbol 
can be used in place of the statements. Repeat blocks are a special form 
of macro used to do repeated statements. 

Both equates and macros are processed at assembly time. They can sim­
plify writing source code by allowing the user to substitute mnemonic 
names for constants and repetitive code. By changing a macro or equate, a 
programmer can change the effect of statements throughout the source 
code. 

In exchange for these conveniences, the programmer loses some 
assembly-time efficiency. Assembly may be slightly slower for a program 
that uses macros and equates extensively than for the same program writ­
ten without them. However, the program without macros and equates usu­
ally takes longer to write and is more difficult to maintain. 

10.2 Using Equates 

The equate directives enable you to use symbols that represent numeric or 
string constants. There are three kinds of equates that masm recognizes: 

1. Redefinable numeric equates 

2. Nonredefinable numeric equates 

3. String equates (also called text macros) 

10.2.1 Redefinable Numeric Equates 

Redefinable numeric equates are used to assign a numeric constant to a 
symbol. The value of the symbol can be redefined at any point. during 
assembly time. Although the value of a redefinable equate may be 
different at different points in the source code, a constant value will be 
assigned for each use, and that value will not change at run time. 

Redefinable equates are often used for assembly-time calculations in 
macros and repeat blocks. 

10-1 



Macro Assembler 

Syntax 

name=expression 

The equal-sign (=) directive creates or redefines a constant symbol by 
assigning the numeric value of expression to name. No storage is allo­
cated for the symbol. The symbol can be used in subsequent statements as 
an immediate operand having the assigned value. It can be redefined at 
any time. 

The expression can be an integer, a constant expression, a one- or two­
character string constant (four-character on the 80386 processor), or an 
expression that evaluates to an address. The name must be either a unique 
name or a name previously defined by using the equal-sign (=) directive. 

Note 

Redefinable equates must be assigned numeric values. String con­
stants longer than two characters cannot be used. 

Example 

counter 
array 

counter 

a 
LABEL BYTE 
REPT 100 
DB counter 

counter + 1 
ENDM 

; Initialize counter 
; Label array of increasing numbers 
; Repeat 100 times 

Initialize number 
; Increment counter 

This example redefines equates inside a repeat block to declare an array 
initialized to increasing values from 0 to 100. The equal-sign directive is 
used to increment the counter symbol for each loop. See "Defining 
Repeat Blocks," for more information on repeat blocks. 

10.2.2 Nonredefinable Numeric Equates 

Nonredefinable numeric equates are used to assign a numeric constant to 
a symbol. The value of the symbol cannot be redefined. 

10-2 



Using Equates, Macros, and Repeat Blocks 

Nonredefinable numeric equates are often used for assigning mnemonic 
names to constant values. This can make the code more readable and 
easier to maintain. If a constant value used in numerous places in the 
source code needs to be changed, then the equate can be changed in one 
place rather than throughout the source code. 

Syntax 

name EQ U expression 

The EQU directive creates constant symbols by assigning expression to 
name. The assembler replaces each subsequent occurrence of name with 
the value of expression. Once a numeric equate has been defined with the 
EQU directive, it cannot be redefined. Attempting to do so generates an 
error. 

Note 

String constants can also be defined with the EQU directive, but the 
syntax is different, as described in Section 10.1.3, "String Equates." 

No storage is allocated for the symbol. Symbols defined with numeric 
values can be used in subsequent statements as immediate operands hav­
ing the assigned value. 

Examples 

column EQU 
row EQU 
screenful EQU 
line EQU 

• DATA 
buffer DW 

. CODE 

mov 
mov 

80 
25 
column * row 
row 

screenful 

cx,column 
bx,line 

Numeric constant 80 
Numeric constant 25 
Numeric constant 2000 
Alias for "row" 

10-3 



Macro Assembler 

10.2.3 String Equates 

String equates (or text macros) are used to assign a string constant to a 
symbol. String equates can be used in a variety of contexts, including 
defining aliases and string constants. 

Syntax 

name EQU [<]string[>] 

The EQU directive creates constant symbols by assigning string to name. 
The assembler replaces each subsequent occurrence of name with string. 
Symbols defined to represent strings with the EQU directive can be 
redefined to new strings. Symbols cannot be defined to represent strings 
with the equal-sign (=) directive. 

An alias is a special kind of string equate. It is a symbol that is equated to 
another symbol or keyword. 

Note 

The use of angle brackets to force string evaluation is a new feature 
of Version 5.0 of the Macro Assembler. Previous versions tried to 
evaluate equates as expressions. If the string did not evaluate to a 
valid expression, masm evaluated it as a string. This behavior 
sometimes caused unexpected consequences. 

For example, the statement 

rt EQU run-time 

would be evaluated as run minus time, even though the user might 
intend to define the string run-time. If run and time were not already 
defined as numeric equates, the statement would generate an error. 
U sing angle brackets solves this problem. The statement 

rt EQU <run-time> 

is evaluated as the string run-time. 

When maintaining existing source code, you can leave string 
equates alone that evaluate correctly, but for new source code that 
will not be used with previous versions of masm, it is a good idea to 
enclose all string equates in angle brackets. 

10-4 



Using Equates, Macros, and Repeat Blocks 

Example 

; String equate definitions 
pi EQU <3.1415> 
prompt EQU <'Type Name: '> 
WPT EQU <\\oRD PTR> 
parm1 EQU < [bp+4] > 

; Use of string equates 
• DATA 

message DB prompt 
pie DQ pi 

. CODE 

inc WPT parm1 

10.3 Using Macros 

String constant "3.1415" 
String constant "'Type Name: 
String constant for "WORD PTR" 
String constant for "[bp+4]" 

; Allocate string "Type Name: " 
; Allocate real number 3.1415 

Increment word value of 
argument passed on stack 

Macros enable you to assign a symbolic name to a block of source state­
ments' and then to use that name in your source file to represent the state­
ments. Parameters can also be defined to represent arguments passed to 
the macro. 

Macro expansion is a text-processing function that occurs at assembly 
time. Each time masm encounters the text associated with a macro name, 
it replaces that text with the text of the statements in the macro definition. 
Similarly, the text of parameter names is replaced with the text of the 
corresponding actual arguments. 

A macro can be defined any place in the source file as long as the 
definition precedes the first source line that calls the macro. Macros and 
equates are often kept in a separate file and made available to the pro­
gram through an INCLUDE directive (see "Using Include Files") at 
the start of the source code. 

10-5 



Macro Assembler 

Note 

Since most macros only need to be expanded once, you can increase 
efficiency by processing them only during a single pass of the 
assembler. You can do this by enclosing the macros (or an 
INCLUDE statement that calls them) in a conditional block using 
the IFI directive. Any macros that use the EXTRN or PUBLIC 
statements should be processed on Pass 1 rather than Pass 2 to 
increase linker efficiency. 

Often a task can be done by using either a macro or procedure. For exam­
pIe, the addup procedure shown in "Passing Arguments on the Stack," 
does the same thing as the addup macro in "Defining Macros." Macros 
are expanded on every occurrence of the macro name, so they can 
increase the length of the executable file if called repeatedly. Procedures 
are coded only once in the executable file, but the increased overhead of 
saving and restoring addresses and parameters can make them slower. 

The section below tells how to define and call macros. Repeat blocks, a 
special form of macro for doing repeated operations, are discussed 
separately. 

10.3.1 Defining Macros 

The MACRO and ENDM directives are used to define macros. MACRO 
designates the beginning of the macro block and ENDM designates the 
end of the macro block. 

Syntax 

name MACRO [parameter [,parameter]. .. ] 
statements 
ENDM 

The name must be unique and a valid symbol name. It can be used later in 
the source file to invoke the macro. 

The parameters (sometimes called dummy parameters) are names that act 
as placeholders for values to be passed as arguments to the macro when it 
is called. Any number of parameters can be specified, but they must all fit 
on one line. If you give more than one parameter, you must separate them 

10-6 



Using Equates, Macros, and Repeat Blocks 

with commas, spaces, or tabs. Commas can always be used as separators; 
spaces and tabs may cause ambiguity if the arguments are expressions. 

Note 

This manual uses the term "parameter" to refer to a placeholder for 
a value that will be passed to a macro or procedure. Parameters 
appear in macro or procedure definitions. The term "argument" is 
used to refer to an actual value passed to the macro or procedure 
when it is called. 

Any valid assembler statement may be placed within a macro, including 
statements that call or define other macros. Any number of statements can 
be used. The parameters can be used any number of times in the state­
ments. Macros can be nested, redefined, or used recursively, as explained 
in "Using Recursive, Nested, and Redefined Macros." 

The statements in a macro are assembled only if the macro is called, and 
only at the point in the source file from which it is called. The macro 
definition itself is never assembled. 

A macro definition can include the LOCAL directive, which lets you 
define labels used only within a macro, or the EXITM directive, which 
allows you to exit from a macro before all the statements in the block are 
expanded. These directives are discussed in "Using Local Symbols," and 
"Exiting from a Macro." Macro operators can also be used in macro 
definitions, as described in "Using Macro Operators." 

Example 

addup MACRO adl,aci2,ad3 
rnov ax,adl 
add ax,aci2 
add ax,ad3 
ENDM 

;; First parameter in AX 
;; Add next two parameters 
, , and leave sum in AX 

The preceding example defines a macro named addup, which uses three 
parameters to add three values and leave their sum in the AX register. 
The three parameters will be replaced with arguments when the macro is 
called. 

10-7 



Macro Assembler 

10.3.2 Calling Macros 

A macro call directs masm to copy the statements of the macro to the 
point of the call and to replace any parameters in the macro statements 
with the corresponding actual arguments. 

Syntax 

name [argument [,argument] ... ] 

The name must be the name of a macro defined earlier in the source file. 
The arguments can be any text. For example, symbols, constants, and 
registers are often given as arguments. Any number of arguments can be 
given, but they must all fit on one line. Multiple arguments must be 
separated by commas, spaces, or tabs. 

When assembling macros, masm replaces the first parameter with the first 
argument, the second parameter with the second argument, and so on. If a 
macro call has more arguments than the macro has parameters, the extra 
arguments are ignored. If a call has fewer arguments than the macro has 
parameters, any remaining parameters are replaced with a null (empty) 
string. 

You can use conditional statements to enable macros to check for null 
strings or other types of arguments. The macro can then take appropriate 
action to adjust to different kinds of arguments. See Chapter 9, "Assem­
bling Conditionally," for more information on using conditional­
assembly and conditional-error directives to test macro arguments. 

Example 

addup MACRO adl,ad2,ad3 
mov ax,adl 
add ax,ad2 
add ax,ad3 
ENDM 

addup bx, 2, count 

10-8 

; Macro definition 
;; First parameter in AX 
;; Add next two parameters 
, , and leave sum in AX 

; Macro call 



Using Equates, Macros, and Repeat Blocks 

When the addup macro is called, masm replaces the parameters with the 
actual parameters given in the macro call. In the example above, the 
assembler would expand the macro call to the following code: 

mov aX,bx 
add ax,2 
add ax, count 

This code could be shown in an assembler listing, depending on whether 
the .LALL, .XALL, or .SALL directive was in effect (see "Controlling 
Listing of Macros"). 

10.3.3 Using Local Symbols 

The LOCAL directive can be used within a macro to define symbols that 
are available only within the defined macro. 

Note 

In this context, the term "local" is not related to the public availa­
bility of a symbol, as described in Chapter 7, "Creating Programs 
from Multiple Modules," or to variables that are defined to be local 
to a procedure, as described in "Using Local Variables." "Local" 
simply means that the symbol is not known outside the macro where 
it is defined. 

Syntax 

LOCAL loealname [,Ioealname] ... 

The loealname is a temporary symbol name that is to be replaced by a 
unique symbol name when the macro is expanded. At least one loealname 
is required for each LOCAL directive. If more than one local symbol is 
given, the names must be separated with commas. Once declared, loeal­
name can be used in any statement within the macro definition. 

A new actual name for loealname is created each time the macro is 
expanded. The actual name has the following form: 

??number 

The number is a hexadecimal number in the range 0000 to OFFFF. You 
should not give other symbols names in this format, since doing so may 

10-9 



Macro Assembler 

produce a symbol with multiple definitions. In listings, the local name is 
shown in the macro definition, but the actual name is shown in expansions 
of macro calls. 

Nonlocallabels may be used in a macro; but if the macro is used more 
than once, the same label will appear in both expansions, and masm will 
display an error message, indicating that the file contains a symbol with 
multiple definitions. To avoid this problem, use only local labels (or 
redefinable equates) in macros. 

Note 

The LOCAL directive can only be used in macro definitions, and it 
must precede all other statements in the definition. If you try 
another statement (such as a comment instruction) before the 
LOCAL directive, an error will be generated. 

Example 

power 

again: 

gotzero: 

MACRO 
LOCAL 
xor 
mov 
mov 
jcxz 
mov 
mul 
loop 

ENDM 

factor, exponent 
again, got zero 
dx,dx 
cx,exponent 
ax, 1 
got zero 
bx,factor 
bx 
again 

;; Use for unsigned only 
;; Declare symbols for macro 
;; Clear DX 
;; Exponent is count for loop 
;; Multiply by 1 first time 
;; Get out if exponent is zero 

;; Multiply until done 

In this example, the LOCAL directive defines the local names again and 
gotzero as labels to be used within the power macro. 

These local names will be replaced with unique names each time the 
macro is expanded. For example, the first time the macro is called, again 
will be assigned the name ? ?OOOO and gotzero will be assigned ? ?0001. 
The second time through, again will be assigned ? ?0002 and gotzero will 
be assigned ? ?0003, and so on. 

10-10 



Using Equates, Macros, and Repeat Blocks 

10.3.4 Exiting from a Macro 

Nonnally, masm processes all the statements in a macro definition and 
then continues with the next statement after the macro call. However, you 
can use the EXITM directive to tell the assembler to tenninate macro 
expansion before all the statements in the macro have been assembled. 

When the EXITM directive is encountered, the assembler exits the macro 
or repeat block immediately. Any remaining statements in the macro or 
repeat block are not processed. If EXITM is encountered in a nested 
macro or repeat block, masm returns to expanding the outer block. 

The EXITM directive is typically used with conditional directives to skip 
the last statements in a macro under specified conditions. Often macros 
using the EXITM directive contain repeat blocks or are called recur­
sively. 

Example 

allocate 
x 

x 

MACRO 

REPT 
IF 
EXITM 
ELSE 
DB 
ENDIF 

ENDM 
ENDM 

times 
0 
times 
x GT OFFh 

x 

x + 1 

; Macro definition 

II Repeat up to 256 times 
II Is x > 255 yet? 
II If so, quit 

I I Else allocate x 

II Increment x 

This example defines a macro that allocates a variable amount of data, 
but no more than 255 bytes. The macro contains an IF directive that 
checks the expression x - OFFh. When the value of this expression is true 
(x-255 = 0), the EXITM directive is processed and expansion of the 
macro stops. 

10.4 Defining Repeat Blocks 

Repeat blocks are a special fonn of macro that allows you to create 
blocks of repeated statements. They differ from macros in that they are 
not named, and thus cannot be called. However, like macros, they can 
have parameters that are replaced by actual arguments during assembly. 
Macro operators, symbols declared with the LOCAL directive, and the 
EXITM directive can be used in repeat blocks. Like macros, repeat 
blocks are always tenninated by an ENDM directive. 

10-11 



Macro Assembler 

Repeat blocks are frequently placed in macros in order to repeat some of 
the statements in the macro. They can also be used independently, usually 
for declaring arrays with repeated data elements. 

Repeat blocks are processed at assembly time and should not be confused 
with the REP instruction, which causes string instructions to be repeated 
at run time, as explained in Chapter 17, "Processing Strings." 

Three different kinds of repeat blocks can be defined by using the REPT, 
IRP, and IRPC directives. The difference between them is in how the 
number of repetitions is specified. 

10.4.1 The REPT Directive 

The REPT directive is used to create repeat blocks in which the number 
of repetitions is specified with a numeric argu~ent. 

Syntax 

REPT expression 
statements 
ENDM 

The expression must evaluate to a numeric constant (a 16-bit unsigned 
number). It specifies the number of repetitions. Any valid assembler state­
ments may be placed within the repeat block. 

Example 

alphabet LABEL BYTE 
x 0 " 

Initialize 
REPT 26 ;; Specify 26 repetitions 
DB 'A' + x ;; Allocate ASCII code for letter 

x x + 1 " Increment 
ENDM 

This example repeats the equal-sign (=) and DB directives to initialize 
ASCII values for each uppercase letter of the alphabet. 

10-12 



Using Equates, Macros, and Repeat Blocks 

10.4.2 The IRP Directive 

The IRP directive is used to create repeat blocks in which the number of 
repetitions, as well as parameters for each repetition, are specified in a list 
of arguments. 

Syntax 

IRP parameter,<argument[,argument] ... > 
statements 
ENDM 

The assembler statements inside the block are repeated once for each 
argument in the list enclosed by angle brackets « ». The parameter is a 
name for a placeholder to be replaced by the current argument. Each 
argument can be text, such as a symbol, string, or numeric constant. Any 
number of arguments can be given. If multiple arguments are given, they 
must be separated by commas. The angle brackets « » around the argu­
ment list are required. The parameter can be used any number of times in 
the statements. 

When masm encounters an IRP directive, it makes one copy of the state­
ments for each argument in the enclosed list. While copying the state­
ments, it substitutes the current argument for all occurrences of parame­
ter in these statements. If a null argument « » is found in the list, the 
dummy name is replaced with a null value. If the argument list is empty, 
the IRP directive is ignored and no statements are copied. 

Example 

numbers LABEL BYTE 
IRP x,<0,1,2,3,4,5,6,7,8,9> 
DB 10 DUP(x) 
ENDM 

This example repeats the DB directive 10 times, allocating 10 bytes for 
each number in the list. The resulting statements create 100 bytes of data, 
starting with 10 zeros, followed by 10 ones, and so on. 

10.4.3 The IRPC Directive 

The IRPC directive is used to create repeat blocks in which the number 
of repetitions, as well as arguments for each repetition, is specified in a 
string. 

10-13 



Macro Assembler 

Syntax 

IRPC parameter,string 
statements 
ENDM 

The assembler statements inside the block are repeated as many times as 
there are character in string. The parameter is a name for a placeholder to 
be replaced by the current character in string. The string can be any com­
bination of letters, digits, and other characters. It should be enclosed with 
angle brackets « » if it contains spaces, commas, or other separating 
characters. The parameter can be used any number of times in these state­
ments. 

When masm encounters an IRPC directive, it makes one copy of the 
statements for each character in the string. While copying the statements, 
it substitutes the current character for all occurrences of parameter in 
these statements. 

Example 1 

ten LABEL 
IRPC 

BYTE 
x,0123456789 

DB x 
ENDM 

Example 1 repeats the DB directive 10 times, once for each character in 
the string 0123456789. The resulting statements create 10 bytes of data 
having the values 0-9. 

Example 2 

IRPC letter,ABCDEFGHIJKLMNOPQRSTUVWXYZ 
DB '&letter' ; Allocate uppercase letter 
DB , &letter'+20h ; Allocate lowercase letter 
DB '&letter'-40h ; Allocate number of letter 
ENDM 

Example 2 allocates the ASCII codes for uppercase, lowercase, and 
numeric versions of each letter in the string. Notice that the substitute 
operator (&) is required so that letter will be treated as an argument 
rather than a string. See "Substitute Operator," for more information. 

10-14 



Using Equates, Macros, and Repeat Blocks 

10.5 Using Macro Operators 

Macro and conditional directives use the following special set of macro 
operators: 

Operator Definition 

& Substitute operator 

< > Literal-text operator 

Literal-character operator 

% Expression operator 

" 
Macro comment 

When used in a macro definition, a macro call, a repeat block, or as the 
argument of a conditional-assembly directive, these operators carry out 
special control operations, such as text substitution. 

10.5.1 Substitute Operator 

The substitute operator (&) forces masm to replace a parameter with its 
corresponding actual argument value. 

Syntax 

&parameter 

The substitute operator can be used when a parameter immediately pre­
cedes or follows other characters, or whenever the parameter appears in a 
quoted string. 

Example 

errgen 

err&y 

MACRO y,x 
PUBLIC err&y 
DB 'Error &y: &x' 
ENDM 

10-15 



Macro Assembler 

In the example, masm replaces &x with the value of the argument passed 
to the macro errgen. If the macro is called with the statement 

errgen 5,<Unreadable disk> 

the macro is expanded to 

PUBLIC err5 
err5 DB 'Error 5: Unreadable disk' 

Note 

For complex, nested macros, you can use extra ampersands to delay 
the replacement of a parameter. In general, you need to supply as 
many ampersands as there are levels of nesting. 

For example, in the following macro definition, the substitute opera­
tor is used twice with z to make sure its replacement occurs while 
the IRP directive is being processed: 

alloc 

x&&z 

MACRO 
IRP 
DB 
ENDM 
ENDM 

x 
z,<1,2,3> 
z 

In this example, the dummy parameter x is replaced immediately 
when the macro is called. The dummy parameter z, however, is not 
replaced until the IRP directive is processed. This means the 
dummy parameter is replaced as many times as there are numbers in 
the IRP parameter list. If the macro is called with 

alloc var 

the macro will be expanded as shown below: 

10-16 

varl 
var2 
var3 

DB 
DB 
DB 

1 
2 
3 



Using Equates, Macros, and Repeat Blocks 

10.5.2 Literal-Text Operator 

The literal-text operator « » directs masm to treat a list as a single 
string rather than as separate arguments. 

Syntax 

<text> 

The text is considered a single literal element even if it contains commas, 
spaces, or tabs. The literal-text operator is most often used in macro calls 
and with the IRP directive to ensure that values in a parameter list are 
treated as a single parameter. 

The literal-text operator can also be used to force masm to treat special 
characters, such as the semicolon or the ampersand, literally. For exam­
ple, the semicolon inside angle brackets <;> becomes a semicolon, not a 
comment indicator. 

One set of angle brackets is removed by masm each time the parameter is 
used in a macro. When using nested macros, you will need to supply as 
many sets of angle brackets as there are levels of nesting. 

Example 

work 1,2,3,4,5 

work <1,2,3,4,5> 

; Passes five parameters 
to "work" 

; Passes one five-element 
parameter to "work" 

10-17 



Macro Assembler 

Note 

When the IRP directive is used inside a macro definition and when 
the argument list of the IRP directive is also a parameter of the 
macro, you must use the literal-text operator « » to enclose the 
macro parameter. 

For example, in the following macro definition, the parameter x is 
used as the argument list for the IRP directive: 

init MACRO x 
IRP y,<x> 
DB y 
ENDM 
ENDM 

If this macro is called with 

init <0,1,2,3,4,5,6,7,8,9> 

the macro removes the angle brackets from the parameter so that it 
is expanded as 0,1 ,2,3,4,5,6,7,8,9. The brackets inside the repeat 
block are necessary to put the angle brackets back on. The repeat 
block is then expanded as shown below: 

IRP y,<0,1,2,3,4,5,6,7,8,9> 
DB y 
ENDM 

10.5.3 Literal-Character Operator 

The literal-character operator (!) forces the assembler to treat a specified 
character literally rather than as a symbol. 

Syntax 

!character 

The literal-character operator is used with special characters such as the 
semicolon or ampersand when meaning of the special character must be 
suppressed. Using the literal-character operator is the same as enclosing a 
single character in brackets. For example, 11 is the same as <1>. 

10-18 



Example 

errgen 

err&y 

Using Equates, Macros, and Repeat Blocks 

MACRO y,x 
PUBLIC err&y 
DB ' Error &y: &x' 
ENDM 

errgen l03,<Expression !> 255> 

The example macro call is expanded to allocate the string Error 103: 
Expression> 255. Without the literal-character operator, the greater-than 
symbol would be interpreted as the end of the argument and an error 
would result. 

10.5.4 Expression Operator 

The expression operator (%) causes the assembler to treat the argument 
following the operator as an expression. 

Syntax 

% text 

The expression's value is computed and masm replaces text with the 
result. The expression can be either a numeric expression or a text equate. 
Handling text equates with this operator is a new feature in Version 5.0. 
Previous versions handled numeric expressions only. If there are addi­
tional arguments after an argument that uses the expression operator, the 
additional arguments must be preceded by a comma, not a space or tab. 

The expression operator is typically used in macro calls when the pro­
grammer needs to pass the result of an expression rather than the actual 
expression to a macro. 

10-19 



Macro Assembler 

Example 

printe MACRO exp, val 
IF2 
%OUT exp = val 
END IF 
ENDM 

syml EQU 100 
sym2 EQU 200 
msg EQU <"Hello, World."> 

On pass 2 only 
Display expression and result 

to standard output 

printe <syml + sym2>,%(syml + sym2) 
printe msg,%msg 

In the first macro call, the text literal syml + sym2 is passed to the param­
eter exp, and the result of the expression is passed to the parameter val. In 
the second macro call, the equate name msg is passed to the parameter 
exp, and the text of the equate is passed to the parameter val. As a result, 
masm displays the following messages: 

syrnl + syrn2 = 300 
rnsg = "Hello, World." 

The %OUT directive, which sends a message to the standard output, is 
described in "Sending Messages to Standard Output"; the IF2 directive 
is described in "Testing the Pass with IFI and IF2 Directives." 

10.5.5 Macro Comments 

A macro comment is any text in a macro definition that does not need to 
be copied in the macro expansion. A double semicolon (;;) is used to start 
a macro comment. 

Syntax 

;;text 

All text following the double semicolon (;;) is ignored by the assembler 
and will appear only in the macro definition when the source listing is 
created. 

The regular comment operator (;) can also be used in macros. However, 
regular comments may appear in listings when the macro is expanded. 
Macro comments will appear in the macro definition, but not in macro 
expansions. Whether or not regular comments are listed in macro 

10-20 



Using Equates, Macros, and Repeat Blocks 

expansions depends on the use of the .LALL, .XALL,· and .SALL direc­
tives, as described in "Controlling Page Breaks." 

10.6 Using Recursive, Nested, and Redefined Macros 

The concept of replacing macro names with predefined macro text is sim­
ple, but in practice it has many implications and potentially unexpected 
side effects. The following sections discuss advanced macro features 
(such as nesting, recursion, and redefinition) and point out some side 
effects of macros. 

10.6.1 Using Recursion 

Macro definitions can be recursive: that is, they can call themselves. 
Using recursive macros is one way of doing repeated operations. The 
macro does a task, and then calls itself to do the task again. The recursion 
is repeated until a specified condition is met. 

Example 

pushall 

pushall 
pushall 

MACRO regl,reg2,reg3,reg4,reg5,reg6 
IFNB <regl> ;; If parameter not blank 
push regl " push one register and repeat 
pushall reg2,reg3,reg4,reg5,reg6 
END IF 
ENDM 

ax,bx,si,ds 
cS,es 

In this example, the pushall macro repeatedly calls itself to push a regis­
ter given in a parameter until no parameters are left to push. A variable 
number of parameters (up to six) can be given. 

10.6.2 Nesting Macro Definitions 

One macro can define another. Nested definitions are not processed until 
the outer macro has been called. Therefore, nested macros cannot be 
called until the outer macro has been called at least once. Macro 
definitions can be nested to any depth. Nesting is limited only by the 
amount of memory available when the source file is assembled. 

10-21 



Macro Assembler 

Using a macro to create similar macros can make maintenance easier. If 
you want to change all the macros, change the outer macro and it 
automatically changes the others. 

Example 

shifts MACRO opname Define macro that defines macros 
opname&s MACRO operand, rotates 

IF rotates IE 4 
REPT rotates 
opname operand, 1 " One at a time is faster 
ENDM for 4 or less on 8088/8086 
ELSE 
mov cl,rotates " Using CL is faster 
opname operand,cl for more than 4 on 8088/8086 
END IF 
ENDM 
ENDM 

shifts ror Call macro 
shifts rol to new macros 
shifts shr 
shifts shl 
shifts rcl 
shifts rcr 
shifts sal 
shifts sar 

shrs ax,S Call defined macros 
rols bx,3 

This macro, when called as shown, creates macros for mUltiple shifts with 
each of the shift and rotate instructions. All the macro names are identical 
except for the instruction. For example, the macro for the SHR instruction 
is called shrs; the macro for the ROL instruction is called rols. If you 
want to enhance the macros by doing more parameter checking, you can 
modify the original macro. Doing so will change the created macros 
automatically. This macro uses the substitute operator, as described in 

10.6.3 Nesting Macro Calls 

Macro definitions can contain calls to other macros. Nested macro calls 
are expanded like any other macro call, but only when the outer macro is 
called. 

10-22 



Using Equates, Macros, and Repeat Blocks 

Example 

ex MACRO text, val ; Inner macro definition 

express 

IF2 
%OUT The expression (&text) has the value: &val 
END IF 
ENDM 

MACRO expression; Outer macro definition 
ex <expression>, % (expression) 
ENDM 

express <4 + 2 * 7 - 3 MOD 4> 

The two sample macros enable you to print the result of a complex 
expression to the standard output by using the %OUT directive, even 
though that directive expects text rather than an expression (see "Sending 
Messages to Standard Output' '). Being able to see the value of an expres­
sion is convenient during debugging. 

Both macros are necessary. The express macro calls the ex macro, using 
operators to pass the expression both as text and as the value of the 
expression. With the call in the example, the assembler sends the follow­
ing line to the standard output: 

The expression (4 + 2 * 7 - 3 MOD 4) has the value: 15 

You could get the same output by using only the ex macro, but you would 
have to type the expression twice and supply the macro operators in the 
correct places yourself. The express macro does this for you automati­
cally. Notice that expressions containing spaces must still be enclosed in 
angle brackets. "Literal-Text Operator," explains why. 

10.6.4 Redefining Macros 

Macros can be redefined. You do not need to purge the macro before 
redefining it. The new definition automatically replaces the old definition. 
If you redefine a macro from within the macro itself, make sure there are 
no statements or comments between the ENDM directive of the nested 
redefinition and the ENDM directive of the original macro. 

10-23 



Macro Assembler 

Example 

EXTRN _read:PRCC 

getasciiz MACRO 
• DATA 

max DW 80 
actual DW ? 
tmpstr DB 80 DUP (?) 

. CODE 
push max 
push OFFSET tmpstr 
push 0 " standard input 
call read 
add sp, 6 
mov actual, ax 

getasciiz MACRO 
push max 
push OFFSET tmpstr 
push 0 " standard input 
call read 
add sp, 6 
mov actual, ax 
ENDM 
ENDM 

This macro allocates data space the first time it is called, and then 
redefines itself so that it doesn't try to reallocate the data on subsequent 
calls. 

10.6.5 Avoiding Inadvertent Substitutions 

All parameters are replaced when they occur with the corresponding 
argument, even if the substitution is inappropriate. For example, if you 
use a register name such as AX or BH as a parameter, masm replaces all 
occurrences of that name when it expands the macro. If the macro 
definition contains statements that use the register, not the parameter, the 
macro will be incorrectly expanded. You will not be warned about using 
reserved names as macro parameters. 

You will be given a warning if you use a reserved name as a macro name. 
You can ignore the warning, but be aware that the reserved name will no 
longer have its original meaning. For example, if you define a macro 
called ADD, the ADD instruction will no longer be available. Your ADD 
macro takes its place. 

10-24 



Using Equates, Macros, and Repeat Blocks 

10.7 Managing Macros and Equates 

Macros and equates are often kept in a separate file and read into the 
assembler source file at assembly time. In this way, libraries of related 
macros and equates can be used by many different source files. 

The INCLUDE directive is used to read an include file into a source file. 
Memory can be saved by using the PURGE directive to delete the 
unneeded macros from memory. 

10.7.1 Using Include Files 

The INCLUDE directive inserts source code from a specified file into the 
source file from which the directive is given. 

Syntax 

INCLUDE filespec 

The filespec must specify an existing file containing valid assembler 
statements. When the assembler encounters an INCLUDE directive, it 
opens the specified source file and begins processing its statements. When 
all statements have been read, masm continues with the statement 
immediately following the INCLUDE directive. 

The filespec can be given either as a file name, or as a complete or rela­
tive file specification including drive or directory name. 

If a complete or relative file specification is given, masm looks for the 
include file only in the specified directory. If a file name is given without 
a directory or drive name, masm looks for the file in the following order: 

1. If paths are specified with the -I option, masm looks for the 
include file in the specified directory or directories. See Section 
2.2.7, "Setting a Search Path for Include Files," for more informa­
tion on the -I option. 

2. The current directory is searched for the include file. 

Nested INCLUDE directives are allowed, and masm marks included 
statements with the letter "C" in assembly listings. 

Directories can be specified in INCLUDE path names with either the 
backslash (\) or the forward slash (/). This is forMS-DOS compatibility. 

10-25 



Macro Assembler 

Note 

Any standard code can be placed in an include file. However, 
include files are usually used only for macros, equates, and standard 
segment definitions. Standard procedures are usually assembled into 
separate object files and linked with the main source modules. 

Examples 

INCLUDE fileio.rnac ; File name only; use with -I 

INCLUDE /usr/jons/include/stdio.rnac ; Complete file specification 

INCLUDE rnasm_inc\define.inc ; Partial path name in MS-!x)S format 

10.7.2 Purging Macros from Memory 

The PURGE directive can be used to delete a currently defined macro 
from memory. 

Syntax 

PURGE macroname[,macroname] ... 

Each macroname is deleted from memory when the directive is encoun­
tered at assembly time. 

The PURGE directive is intended to clear memory space no longer 
needed by a macro. If a macro has been used to redefine a reserved name, 
the reserved name is restored to its previous meaning. 

The PURGE directive can be used to clear memory if a macro or group of 
macros is needed only for part of a source file. 

It is not necessary to purge a macro before redefining it. Any redefinition 
of a macro automatically purges the previous definition. Also, a macro 
can purge itself as long as the PURGE directive is on the last line of the 
macro. 

10-26 



Using Equates, Macros, and Repeat Blocks 

The PURGE directive works by redefining the macro to a null string. 
Therefore, calling a purged macro does not cause an error. The macro 
name is simply ignored. 

Examples 

GetStuff 
PURGE GetStuff 

These examples call a macro and then purge it. You might need to purge 
macros in this way if your system does not have enough memory to keep 
all the macros needed for a source file in memory at the same time. 

10-27 





Chapter 11 

Controlling Assembly Output 

11.1 Introduction 11-1 

11.2 Sending Messages to Standard Output 11-1 

11.3 Controlling Page Format in Listings 11-2 
11.3.1 Setting the Listing Title 11-2 
11.3.2 Setting the Listing Subtitle 11-3 
11.3.3 Controlling Page Breaks 11-3 

11.4 Controlling the Contents of Listings 11-5 
11.4.1 Suppressing and Restoring Listing Output 11-5 
11.4.2 Controlling Listing of Conditional Blocks 11-6 
11.4.3 Controlling Listing of Macros 11-7 

11.5 Controlling Cross-Reference Output 11-9 





Controlling Assembly Output 

11.1 Introduction 

There are two ways that the Macro Assembler can communicate results of 
an assembly to the user: it can write information to a listing or object file, 
or it can display messages to the standard output. 

Both kinds of output can be controlled from the command line or from 
inside a source file. The command lines and options that affect informa­
tion output are described in Chapter 2, "Using masm." This chapter 
explains the directives that directly control output from inside source 
files. 

11.2 Sending Messages to Standard Output 

The %OUT directive instructs the assembler to display text to the stan­
dard output device. This device is normally the screen, but you can also 
redirect the output to a file or some other device. 

Syntax 

%OUT text 

The text can be any line of ASCII characters. If you want to display multi­
ple lines, you must use a separate %OUT directive for each line. 

The directive is useful for displaying messages at specific points of a long 
assembly. It can be used inside conditional-assembly blocks to display 
messages when certain conditions are met. 

The %OUT directive generates output for both assembly passes. The IFI 
and IF2 directives can be used for control when the directive is pro­
cessed. Macros that enable you to output the value of expressions are 
shown in "Nesting Macro Calls." 

Example 

IFl 
%OUT 
ENDIF 

First Pass - OK 

This sample block could be placed at the end of a source file so that the 
message First Pass - OK would be displayed at the end of the first pass, 
but ignored on the second pass. 

11-1 



Macro Assembler 

11.3 Controlling Page Format in Listings 

There are several directives provided for controlling the page fonnat of 
listings. These directives include the following: 

Directive Action 

TITLE Sets title for listings 

SUB TTL Sets title for sections in listings 

PAGE Sets page length and width, and controls page and sec­
tion breaks 

11.3.1 Setting the Listing Title 

The TITLE directive specifies a title to be used on each page of assembly 
listings. 

Syntax 

TITLE text 

The text can be any combination of characters up to 60 in length. The title 
is printed flush left on the second line of each page of the listing. 

If no TITLE directive is given, the title will be blank. No more than one 
TITLE directive per module is allowed. 

Example 

TITLE Graphics Routines 

This example sets the listing title. A page heading that reflects this title is 
shown below: 

Microsoft (R) Macro Assembler Version 5.00 
Graphics Routines 

11-2 

9/25/87 12:00:00 
Page 1-2 



Controlling Assembly Output 

11.3.2 Setting the Listing Subtitle 

The SUBTTL directive specifies the subtitle used on each page of assem­
bly listings. 

Syntax 

SUB TTL text 

The text can be any combination of characters up to 60 in length. The sub­
title is printed flush left on the third line of the listing pages. 

If no SUB TTL directive is used, or if no text is given for a SUBTTL 
directive, the subtitle line is left blank. 

Any number of SUB TTL directives can be given in a program. Each new 
directive replaces the current subtitle with the new text. SUBTTL direc­
tives are often used just before a PAGE + statement, which creates a new 
section (see Section 11.2.3, "Controlling Page Breaks"). 

Example 

SUBTTL Point Plotting Procedure 
PAGE + 

The example above creates a section title and then creates a page break 
and a new section. A page heading that reflects this title is shown below: 

Microsoft (R) Macro Assembler Version 5.00 
Graphics Routines 
Point Plotting Proc.edure 

11.3.3 Controlling Page Breaks 

9/25/87 12:00:00 
Page 3-1 

The PAGE directive can be used to designate the line length and width 
for the program listing, to increment the section and adjust the section 
number accordingly, or to generate a page break in the listing. 

Syntax 

PAGE [[length],width] 
PAGE 

11-3 



Macro Assembler 

If length and width are specified, the PAGE directive sets the maximum 
number of lines per page to length and the maximum number of charac­
ters per line to width. The length must be in the range of 10-255 lines. The 
default page length is 50 lines. The width must be in the range of 60-132 
characters. The default page width is 80 characters. To specify width 
without changing the default length, use a comma before width. 

If no argument is given, PAGE starts a new page in the program listing by 
copying a form-feed character to the file and generating new title and sub­
title lines. 

If a plus sign follows PAGE, a page break occurs, the section number is 
incremented, and the page number is reset to 1. Program-listing page 
numbers have the following format: 

section-page 

The section is the section number within the module, and page is the page 
number within the section. By default, section and page numbers begin 
with 1-1. The SUBTTL directive and the PAGE directive can be used 
together to start a new section with a new subtitle. For an example, see 
"Setting the Listing Subtitle. " 

Example 1 

PAGE 

Example 1 creates a page break. 

Example 2 

PAGE 58,90 

Example 2 sets the maximum page length to 58 lines and the maximum 
width to 90 characters. 

Example 3 

PAGE ,132 

Example 3 sets the maximum width to 132 characters. The current page 
length (either the default of 50 or a previously set value) remains 
unchanged. 

11-4 



Controlling Assembly Output 

Example 4 

PAGE + 

Example 4 creates a page break, increments the current section number, 
and sets the page number to 1. For example, if the preceding page was 3-
6, the new page would be 4-1. 

11.4 Controlling the Contents of Listings 

Several directives are provided for controlling what text will be shown in 
listings. The directives that control the contents of listings are shown 
below: 

Directive Action 

.LIST Lists statements in program listing 

.XLIST Suppresses listing of statements 

.LFCOND Lists false-conditional blocks in program listing 

.SFCOND Suppresses false-conditional listing 

.TFCOND Toggles false-conditional listing 

.LALL Includes macro expansions in program listing 

.SALL Suppresses listing of macro expansions 

.XALL Excludes comments from macro listing 

11.4.1 Suppressing and Restoring Listing Output 

The .LIST and .XLIST directives specify which source lines are included 
in the program listing. 

Syntax 

.LIST 

.XLIST 

11-5 



Macro Assembler 

The .XLIST directive suppresses copying of subsequent source lines to 
the program listing. The .LIST directive restores copying. The directives 
are typically used in pairs to prevent a particular section of a source file 
from being copied to the program listing. 

The .XLIST directive overrides other listing directives such as .SFCOND 
or.LALL. 

Example 

ST 

11.4.2 Controlling Listing of Conditional Blocks 

The .SFCOND, .LFCOND, and .TFCOND directives control whether 
false-conditional blocks should be included in assembly listings. 

Syntax 

.SFCOND 

.LFCOND 

.TFCOND 

The .SFCOND directive suppresses the listing of any subsequent condi­
tional blocks whose condition is false. The .LFCOND directive restores 
the listing of these blocks. Like .LIST and .XLIST, conditional-listing 
directives can be used to suppress listing of conditional blocks in sections 
of a program. 

The .TFCOND directive toggles the current status of listing of condi­
tional blocks. This directive can be used in conjunction with the -X 
option of the assembler. By default, conditional blocks are not listed on 
start-up. However, they will be listed on start-up if the -X option is given. 
This means that using -X reverses the meaning of the first .TFCOND 
directive in the source file. The -X option is discussed in Section 2.2.14, 
, 'Listing False Conditionals." 

11-6 



Controlling Assembly Output 

Example 

testl EQU 0 ; Defined to make all conditionals false 

;-x not used -x used 
.TFCOND 
IFNDEF testl ; Listed Not listed 

test2 DB 128 
ENDIF 
.TFCOND 
IFNDEF testl ; Not listed Listed 

test3 DB 128 
ENDIF 
.SFCOND 
IFNDEF testl ; Not listed Not listed 

test4 DB 128 
ENDIF 
.LFCOND 
IFNDEF test1 ; Listed Listed 

testS DB 128 
ENDIF 

In the example above, the listing status for the first two conditional blocks 
would be different, depending on whether the -X option was used. The 
blocks with .SFCOND and .LFCOND would not be affected by the -X 
option. 

11.4.3 Controlling Listing of Macros 

The .LALL, .XALL, and .SALL directives control the listing of the 
expanded macros calls. The assembler always lists the full macro 
definition. The directives only affect expansion of macro calls. 

Syntax 

.LALL 

.XALL 

.SALL 

The .LALL directive causes masm to list all the source statements in a 
macro expansion, including normal comments (preceded by a single 
semicolon) but not macro comments (preceded by a double semicolon). 

The .XALL directive causes masm to list only those source statements in 
a macro expansion that generate code or data. For instance, comments, 
equates, and segment definitions are ignored. 

11-7 



Macro Assembler 

The .SALL directive causes masm to suppress listing of all macro expan­
sions. The listing shows the macro call, but not the source lines generated 
by the call. 

The .XALL directive is in effect when masm first begins execution. 

Example 

tryout MACRO param 
; ; Macro comment 
; Normal corrment 

it EQU 3 ; No code or data 
ASSUME es: DATA ; No code or data 
DW param Generates data 
mov ax,it ; Generates code 
ENDM 

.XALL 
tryout 6 Call with .LALL 

.XALL 
tryout 6 Call with .XALL 

.SALL 
tryout 6 Call with . SALL 

The macro calls in the example generate the following listing lines: 

.LALL 
tryout ; Call with .LALL 

1 ; Normal corrment 
= 0003 1 it EQU 3 ; No code or da-ta 

1 ASSUME es: TEXT ; No code or data 
0015 0006 1 DW 6 Generates data 
0017 B8 0003 1 mov ax,it ; Generates code 

.XALL 
tryout 6 ; Call with .XALL 

OOlA 0006 1 DW 6 Generates data 
OOlC B8 0003 1 mov ax,it ; Generates code 

.SALL 
tryout 6 Call with . SALL 

Notice that the macro comment is never listed in macro expansions. Nor­
mal comments are listed only with the .LAIJL directive. 

11-8 



Controlling Assembly Output 

11.5 Controlling Cross-Reference Output 

The .CREF and .XCREF directives control the generation of cross­
references for the Macro Assembler's cross-reference file. 

Syntax 

.CREF 

.XCREF [name[,name] ... ] 

The .XCREF directive suppresses the generation of label, variable, and 
symbol cross-references. The .CREF directive restores generation of 
cross-references. 

If names are specified with .XCREF, only the named labels, variables, or 
symbols will be suppressed. All other names will be cross-referenced. 
The named labels, variables, or symbols will also be omitted from the 
symbol table of the program listing. 

Example 

.XCREF 

.CREF 

Suppress cross-referencing 
of symbols in this block 

; Restore cross-referencing 
of symbols in this block 

.XCREF testl,test2 ; Don't cross-reference testl or test2 
in this block 

11-9 





Part 3 

Using Instructions 

Part 3 of this manual (Chapters 12-19, Appendixes A-E) explains how to 
use instructions in assembly-language source code. Instructions define the 
code that will be executed by the processor at run time. 

Chapters 12 and 13 describe overall concepts that apply to all instruc­
tions. Chapter 12 summarizes the 8086-family of microprocessors; it 
explains protection modes, tells how the processors address memory, and 
describes registers. Chapter 13 explains the addressing modes that can be 
used with instruction operands. 

Chapters 14-19 describe the instructions themselves. The material is 
organized topically, with related instructions discussed together. The 
8087-family coprocessors and their instructions are explained in 
Chapter 18. 

Appendix A describes the new features included in Version 5.0 of masm. 
This appendix covers improvements and additions to masm, as well as 
compatibility issues. 

Appendix B lists the syntax of each instruction recognized by masm and 
the instruction-set directives. This appendix also includes mnemonics for 
various instruction sets. 

Appendix C summarizes masm directives, including concise functional 
descriptions. 

Appendix D describes the naming conventions used to form assembly­
language source files that are compatible with existing object modules. 
Several Microsoft compilers use the conventions listed in this appendix. 

Appendix E lists and explains status messages, error messages, and exit 
codes generated by masm. 





Chapter 12 

Understanding 

8086-Family Processors 

12.1 Introduction 12-1 

12.2 Using the 8086-Family Processors 12-1 
12.2.1 Processor Differences 12-1 
12.2.2 Real and Protected Modes 12-3 

12.3 Segmented Addresses 12-4 

12.4 Using 8086-Family Registers 12-5 
12.4.1 Segment Registers 12-8 
12.4.2 General-Purpose Registers 12-8 
12.4.3 Other Registers 12-10 
12.4.4 The Flags Register 12-11 
12.4.5 8087-Family Registers 12-13 

12.5 Using the 80386 Processor 12-13 





Understanding 8086-Family Processors 

12.1 Introduction 

This chapter introduces the 8086-family of processors. It describes their 
segmented-memory structure and their registers. Differences between the 
chips in the family are also covered. 

12.2 Using the 8086-Family Processors 

The Intel Corporation manufactures the group of processors referred to in 
this manual as the 8086-family processors. The XENIX 286/386 and MS­
DOS operating systems are designed to work under these processors and to 
take advantage of their features. The processors have several features in 
common, as follows: 

• Memory is organized by using a segmented architecture. 

• The instruction set is upwardly compatible-all features available 
in the early versions of the processor are also available in the 
newer versions, but the new versions contain additional features 
not supported in the old versions. 

• The register set is also upwardly compatible. 

12.2.1 Processor Differences 

The main 8086-family processors are discussed below: 

Processor 

8088 and 8086 

Description 

These processors work in real mode. They 
are designed to run a single process. No pro­
vision is made to protect one part of 
memory from actions occurring in another 
part of memory. The processor can address 
up to one megabyte of memory. Addresses 
specified in assembly language correspond 
to physical memory addresses. 

The 8088 uses an 8-bit data bus, and the 
8086 uses a 16-bit data bus. This makes the 
8086 somewhat faster. However, from the 
programming standpoint, the two processors 
are identical except that the 8086 will han­
dle certain data more efficiently if you 
word-align it by using the EVEN or ALIGN 
directives (see "Aligning Data"). 

12-1 



Macro Assembler 

12-2 

80186 

80286 

80386 

This processor is identical to the 8086 
except that new instructions have been 
added and some old instructions have been 
optimized. It runs significantly faster than 
the 8086. (There is also an enhanced version 
of the 8088 called the 80188.) 

This processor has the added instructions 
and speed of the 80186. It can run in the real 
mode of the 8088 and 8086, but it also has 
an optional protected mode in which multi­
pIe processes can be run concurrently. 
~emory used by each process can be pro­
tected from other processes. 

In protected mode, the processor can 
address up to 16 megabytes of memory. 
However, when memory is accessed in pro­
tected mode, the addresses do not 
correspond to physical memory. Under 
protected-mode operating systems, the pro­
cessor allocates and manages memory 
dynamically. Additional privileged instruc­
tions for initializing protected mode and 
controlling multiple processes are available. 

This is both a 16-bit and a 32-bit processor. 
It is fully compatible with the 80286; but at 
the system level, it implements many new 
features, including virtual memory, multiple 
8086 processes, and addressing for up to 
four gigabytes of memory. This manual 
does not explain how to use these features. 

For the applications programmer, the 80836 
supports all the instructions of the 80286 
and some additional instructions. It also 
allows limited use of 32-bit registers and 
addressing modes. Finally, the 80386 
operates significantly faster than the 80286. 
Considerations for programming the 80386 
are summarized in "Using the 80386 Pro­
cessor." 

8087,80287, and 80387 These are math coprocessors that work con­
currently with the 8086-family processors. 
They do mathematical calculations faster 
and more accurately than can be done with 



Understanding 8086-Family Processors 

the 8086-family processors. Although there 
are performance and technical differences 
between the three coprocessors, the main 
difference to the applications programmer is 
that the 80287 and 80387 can operate in 
protected mode. The 80387 also has several 
new instructions. 

12.2.2 Real and Protected Modes 

Protected mode is the mUltiple-process mode used in XENIX. It is also 
used in OS/2, the multitasking version of MS-DOS. Real mode is the 
single-process mode used in current versions of MS-DOS. 

To the applications programmer, there is little difference between 
assembly-language programming in real or protected mode. Processes are 
managed at the system level by the operating system. The applications 
programmer does not deal with processes except when interfacing with 
the operating system. 

This manual does not address issues of interfacing with multitasking 
operating systems. If you are using a multitasking system, you must use 
the documentation for that operating system. However, applications pro­
grammers should be aware of the following differences between real- and 
protected-mode programming: 

• In protected mode, up to 16 megabytes of memory can be 
addressed (compared to one megabyte in real mode). This distinc­
tion may make a difference in the number and size of data struc­
tures created, but it should make no difference in the assembly­
language syntax, since data is addressed in exactly the same way 
in either mode. 

• In protected mode, segment registers contain segment selectors 
rather than actual segment values. The selectors must come from 
the operating system. They cannot be calculated by the program. 
Programming techniques that attempt to calculate segment values 
or address memory directly will not work. 

• Certain instructions that can be used normally in real mode are 
privileged instructions in protected-mode operating systems. These 
include STI, eLI, IN, and OUT. These instructions are still avail­
able at privilege levels normally used only by systems program­
mers. 

12-3 



Macro Assembler 

Protected-mode operating systems, such as XENIX and OS/2, provide 
extended functions for doing the kinds of tasks that are currently done by 
using the previously described restricted practices. 

12.3 Segmented Addresses 

When used in real mode, 8086-family processors can store addresses as 
16-bit word values. Therefore, the maximum unsigned value that can be 
stored as an address is 65,635 (OFFFFh). Yet the processors are actually 
capable of accessing much larger addresses. The highest possible address 
is one megabyte (OFFFFFh) in real mode or 16 megabytes (OFFFFFFh) in 
protected mode. 

Addresses larger than 65,535 bytes are specified by combining two seg­
mented word addresses: a 16-bit segment and a 16-bit offset within the 
segment. A common syntax for showing segmented addresses is the 
segment:offset format. For example, an address with a segment of 053C2h 
and an offset of 0107 Ah would be represented as 53C2 :107 A. This method 
of specifying addresses can be used directly in most debuggers, but it is 
not legal in assembler source code. 

In real mode, the address 53C2:1 07 A represents a physical 20-bit address. 
This address can be calculated by mUltiplying the segment portion of the 
address by 16 (lOh), and then adding the offset portion, as shown below: 

53C20h 
+ 107Ah 

54C9Ah 

Segment times 10h 
Offset 

Physical address 

In protected mode, the address 53C2:1 07 A represents a movable address. 
The segment portion of the address is a selector assigned a physical 
address by the operating system. The applications programmer has no 
control (and needs none) over the physical address represented by the 
selector. 

80386 Only 

The 80386 processor supports 48-bit addresses consisting of a 16-bit seg­
ment selector and a 32-bit offset. This enables the processor to access 
addresses of up to four gigabytes per segment in protected mode. The pro­
cessor can also run in modes compatible with the 16-bit real- and 
protected-mode addressing schemes of the other 8086-family processors. 
Addresses cannot be represented directly in the segment:offset format in 
assembly language. Instead the segment portion of the address is specified 

12-4 



Understanding 8086-Family Processors 

symbolically, using a name assigned to the segment in the source code. 
The address represented by the symbol can then be assigned to one of the 
segment registers. Chapter 4, "Defining Segment Structure," describes 
the directives that assign symbols to segment addresses. 

The offset portion of addresses can be specified in a number of ways, 
depending on the context. Directives that assign symbols to offsets are 
discussed in Chapter 3, "Writing Source Code." 

In assembly-language programming, addresses can be near or far. A near 
address is simply the offset portion of the address. Any instruction that 
accesses a near address will assume that the segment address is the same 
as the current segment for the type of address being accessed (usually a 
code segment for code or a data segment for data). 

A far address consists of both the segment and offset portions of the 
address. Far addresses can be accessed from any segment. Both the seg­
ment and offset must be provided for instructions that access far 
addresses. Far addresses are more flexible because they can be used for 
larger programs and larger data objects. However, near addresses are 
more efficient, since they produce smaller code and can be accessed more 
quickly. 

12.4 Using 8086-Family Registers 

Like most microprocessors, the 8086-family processors have special areas 
of memory called registers. Some registers control the behavior or status 
of the processor. Others are used as temporary storage places where data 
can be accessed and processed faster than if data were stored in regular 
memory. 

All the 8086-family processors share the same set of 16-bit registers. 
Some registers can be accessed as two separate 8-bit registers. In the 
80386, most registers can also be accessed as extended 32-bit registers. 

Figure 12.1 shows the registers common to all the 8086-family proces­
sors. Each register and group of registers has its own special uses and lim­
itations, as described in this section. 

12-5 



Macro Assembler 

General-Purpose Registers 

15 7 o 

Accumulator AH AX AL 
Data OH OX OL 

I /' 

Count CH CX CL / 

Base BH BX BL V 

Base Pointer BP V 

Source Index 81 V 
Destination Index 01 V 
Stack Pointer 8P V 

Segment Registers 

Code Segment C8 
/' 

Data Segment 08 
V 

Stack Segment 88 V 

Extra Segment E8 / 

Multiply, divide, I/O, and optimized moves 

Multiply, divide, and I/O 

Count for loops, repeats, shifts, and rotates 

Pointer to base address (data segment) 

Pointer to base address (stack segment) 

Source string and index pointer 

Destination string index pointer 

Pointer to top of stack 

Other Registers 

Flags ~ 
Instruction Pointer ~ 

Figure 12-1 Register for 8088-80286 Processors 

80386 Only 

The 80386 processor uses the same registers as the other processors in the 
8086 family, but all except the segment registers can be extended to 32 
bits. The extended registers begin with the letter E. For example, the 32-
bit version of AX is EAX. The 80386 also has two additional segment 
registers, FS and GS. Figure 12.2 shows the extended registers of the 
80386. 

12-6 



Understanding 8086-Family Processors 

General-Purpose Registers 
3 1 23 1 5 

I I 
Accumulator EA~ AH A,X AL 

EDX DH DX DL I I /' 

Data 

I I 

ECX CH CX CL V 
Count 

I I 

EB~ BH B,X BL / 
Base 

I 

EBP BP :; Base Pointer 

I SI ESI / Source Index 

I DI V EDI Destination Index 

ESP SP / I 

Stack Pointer 

Segment Registers 

Code Segment CS 

Data Segment DS 

Stack Segment SS 

Extra Segment ES 

Extra Segment FS 

Other Registers 
Extra Segment GS 

Flags Eflags Flags 

Instruction 
Pointer 

EIP IP v 

Figure 12-2 Extended Registers of 80386 Processor 

./ 

v 

V 

V 

V 

/ 

12-7 



Macro Assembler 

12.4.1 Segment Registers 

At run time, all addresses are relative to one of four segment registers: 
CS, DS, SS, or ES. These registers and the segments they correspond to 
are listed below: 

Segment 

Code Segment (CS) 

Data Segment (DS) 

Stack Segment (SS) 

Extra Segment (ES) 

Purpose 

Addresses in the segment pointed to by this 
register contain the encoded instructions 
and operands specified by the program. 

Addresses in the segment pointed to by this 
register normally contain data allocated by 
the program. 

Addresses in the segment pointed to by this 
register are available for instructions that 
store data on the program stack. A stack is 
an area of memory reserved for storing tem­
porary data. For information on using 
stacks, see "Transferring Data to and from 
the Stack." 

Addresses in the segment pointed to by this 
register are available for string instructions. 
An additional segment can also be stored in 
the ES register. The 80386 has two addi­
tional segments, FS and GS. 

12.4.2 General-Purpose Registers 

The AX, DX, CX, BX, BP, SI, and DI registers are 16-bit, general­
purpose registers. They can be used to temporarily store data during pro­
cessing. Data in registers can be accessed much more quickly than data in 
memory. Therefore, it is more efficient to keep the most frequently used 
values in registers. 

Memory-to-memory operations are never allowed in 8086-family proces­
sors. As a result, data must often be moved into registers before doing cal­
culations or other operations involving more than one variable. 

Four of the general registers, AX, DX, CX, and BX, can be accessed as 
two 8-bit registers or as a single 16-bit register. The AH, DH, CH, BH 
registers represent the high-order 8 bits of the corresponding registers. 
Similarly, AL, DL, CL, and BL represent the low-order 8 bits of the 

12-8 



Understanding 8086-Family Processors 

registers. All the general registers can be extended to 32 bits on the 80386 
by appending the letter E-EAX, EDX, ECX, and so on. 

In addition to their general use for storing data, each of the general­
purpose registers has special uses in certain situations. Specific uses for 
each register are listed below: 

Register Description 

AX The AX (Accumulator) register is most often used for 
storing temporary data. Many instructions are optimized 
so that they work slightly faster on data in the accumula­
tor register than on data in other registers. 

With division instructions, the accumulator holds all or 
part of the dividend before the operation and the quo­
tient afterward. With multiplication instructions, the 
accumulator holds one of the factors before the opera­
tion and all or part of the result afterward. In I/O opera­
tions to and from ports, the accumulator holds the data 
being transferred. 

DX The DX (Data) register is most often used for storing 
temporary data. 

When dividing a doubleword value, DX holds the upper 
word of the dividend before the operation and the 
remainder afterward. When multiplying word values, 
DX holds the upper word of the doubleword result. In 
I/O operations to and from ports, DX holds the number 
of the port to be accessed. 

CX The CX (Count) register must be used to hold the count 
for instructions that do looping or other repeated opera­
tions. These include the loop instructions, certain jump 
instructions, repeated string instructions, and shifts and 
rotates. This register can also be used for temporary data 
storage. 

BX The BX (Base) register can be used as a pointer. For 
instance, it can point to the base of a data object (see 
"Indirect Memory Operands"). This register can also 
be used for temporary data storage. 

BP The BP (Base Pointer) register can be used for general 
data storage. It is more often used as a pointer. For 
instance, it is often used to point to the base of a stack 
frame. The conventions for passing arguments to 

12-9 



Macro Assembler 

procedures have a specific use for BP as described in 
"Passing Arguments on the Stack." The SS register is 
assumed as the segment register in operations using BP. 

SI The SI (Source Index) register can be used as a pointer 
or for general data storage. It is often used for pointing 
to (indexing) an item within a data object. With string 
instructions, SI is used to point to bytes or words within 
a source string. 

DI The DI (Destination Index) register can be used as a 
pointer or for general data storage. It is often used for 
pointing to (indexing) an item within a data object. With 
string instructions, DI is used to point to bytes or words 
within a destination string. 

12.4.3 Other Registers 

The 8086-family processors have two additional registers whose values 
are changed automatically by the processor. 

Register Description 

SP The SP (Stack Pointer) register points to the current 
location within the stack segment. Pushing a value onto 
the stack decreases the value of SP by two; popping 
from the stack increases the value of SP by two. Call 
instructions store the calling address on the stack and 
decrease SP accordingly; return instructions get the 
stored address and increase SP. With 80386 32-bit seg­
ments, SP is increased or decreased by four instead of 
two. "Using the Stack," and "Passing Arguments on 
the Stack," discuss operation of the stack in more detail. 

12-10 

SP is technically a general-purpose register that could 
be used in calculations or for temporary data storage. 
However, it should generally be used only for stack 
operations. . 



Understanding 8086-Family Processors 

IP The IP (Instruction Pointer) register always contains the 
address of the instruction about to be executed. The pro­
grammer cannot directly access or change the instruc­
tion pointer. However, instructions that control program 
flow (such as calls, jumps, loops, and interrupts) 
automatically change the instruction pointer. 

12.4.4 The Flags Register 

The flags register is a 16-bit register made up of bits that control various 
instructions and reflect the current status of the processor. In the 80386 
processor, the flags register is extended to 32 bits. Some bits are 
undefined, so there are actually 9 flags for real mode, 11 flags (including a 
2-bit flag) for 80286-protected mode, and 13 flags for the 80386. The 
extend flags register of the 80386 is sometimes called eflags. 

Figure 12.3 shows the bits of the 32-bit flags register for the 8088 -
808386. Only the lower word is used for the other 8086-family processors. 
The unmarked bits are reserved for processor use and should never be 
modified by the programmer. 

31 23 

80386 Only 

Virtual 8086 Mode 

Resume 

Nested Task 

I/O Protection Level 

Overflow 

Direction 

Interrupt Enable 

15 

80286 
80386 

Trap 

Sign 

Zero 

7 

Auxiliary Carry 

Parity 

I cr 
All Processors 

Figure 12-3 Flags for 8088-80386 Processors 

12-11 



Macro Assembler 

The thirteen flags common to all 8086-family processors are summarized 
below, starting with the low-order flags. In these descriptions, the term 
"set" means the bit value is 1, and "cleared" means the bit value is O. 

Flag Description 

Carry Is set if an operation generates a carry to or 
a borrow from a destination operand. 

Parity Is set if the low-order bits of the result of an 
operation contain an even number of set 
bits. 

Auxiliary Carry Is set if an operation generates a carry to or 
a borrow from the low-order four bits of an 
operand. This flag is used for binary-coded 
decimal arithmetic. 

Zero Is set if the result of an operation is O. 

Sign Equal to the high-order bit of the result of 
an operation (0 is positive, 1 is negative). 

Trap If set, the processor generates a single-step 
interrupt after each instruction. A debugger 
program can use this feature to execute a 
program one instruction at a time. 

Interrupt Enable If set, interrupts will be recognized and 
acted on as they are received. The bit can be 
cleared to temporarily tum off interrupt pro­
cessing. 

Direction Can be set to make string operations pro­
cess down from high addresses to low 
addresses, or can be cleared to make string 
operations process up from low addresses to 
high addresses. 

Overflow Is set if the result of an operation is too 
large or small to fit in the destination 
operand. 

I/O Protection Level This 2-bit flag indicates the protection level 
for input and output. Managing the protec­
tion level is a systems task not described in 
this manual. 

12-12 



Nested Task 

Resume 

Virtual 8086 Mode 

Understanding 8086-Family Processors 

Controls chaining of interrupted and called 
tasks. Controlling tasks in protected mode is 
a systems task not described in this manual. 

If set, debug exceptions are temporarily dis­
abled. Using 80386 debug exceptions is a 
systems task not described in this manual. 

If set, the processor is running an 8086-
family real-mode program in a protected 
multitasking environment. If clear, the 
80386 processor is in its normal mode. Run­
ning in virtual 8086 mode is a systems task 
not described in this manual. 

12.4.5 8087-Family Registers 

The 8087-family processors use a stack-based architecture to access up to 
eight 80-bit registers. For information on using 8087 -family registers and 
instructions, see Chapter 18, "Calculating with a Math Coprocessor." 
The format of real numbers used by coprocessors is explained in "Real­
Number Variables. " 

12.5 Using the 80386 Processor 

Applications programmers can use some 80386 enhancements. Note that 
using any of these features means your code will not run on machines that 
do not have an 80386 processor. 

• You can use the new 80386 instructions (except for those that 
manage protected mode). New instructions include bit scan (BSF 
and BFR); bit test (BT, BTC, BTR, and BTS); move with sign and 
zero extend (MOVSX and MOVZX); set byte on condition 
(SETcondition); and double-precision shift (SHLD and SHRD). 

• You can use 80286 instructions that have been enhanced to work 
with 32-bit registers. These include the integer-multiply instruc­
tion (IMUL); conversion instructions (CWDE and CDQ); string 
instructions (CMPSD, LODSD, MOVSD, SCASD, STOSD, 
INSD, OUTSD); and 32-bit stack enhancements (PUSHAD, 
POPAD, PUSHFD, POPFD, and IRETD). 

12-13 



Macro Assembler 

• You can use 32-bit registers for calculations. For instance, you can 
add and subtract doubleword integers without using mUltiple regis­
ters, and you can do some multiplication and division operations 
on 64-bit integers. 

• You can use 32-bit registers to point into 16-bit segments. In previ­
ous processors, only BX, BP, DI, and SI could be used as pointers 
in indirect memory operands. The 80386 has the same limitations 
on 16-bit registers, but allows any general-purpose 32-bit register 
to be a pointer in an indirect memory operand. If you use this tech­
nique' you must make sure that 32-bit registers used as pointers 
actually contain valid 16-bit addresses. 

12-14 



Chapter 13 

Using Addressing Modes 

13.1 Introduction 13-1 

13 .2 Using Immediate Operands 13-1 

13.3 Using Register Operands 13-2 

13.4 Using Memory Operands 13-4 
13.4.1 Direct Memory Operands 13-4 
13.4.2 Indirect Memory Operands 13-6 
13.4.3 80386 Indirect Memory Operands 13-11 





Using Addressing Modes 

13.1 Introduction 

Instruction operands can be given in different fonns called addressing 
modes. Addressing modes tell the processor how to calculate the actual 
value of an operand at run time. 

The three kinds of addressing modes are immediate, register, and memory 
operands. Memory operands are further broken into two groups, direct 
and indirect memory operands. 

The value of operands is calculated at assembly time for immediate 
operands, at load time for direct memory operands, and at run time for 
register operands and indirect memory operands. 

Although two statements may be similar and their instruction mnemonic 
the same, masm may actually assemble different code for an instruction 
when it is used with different addressing modes. For example, the state­
ments 

mov ax,l 

and 

ax,place[bx] [di] 

use the same instruction, but have different encoding, timing, and size. 

Instructions that take two or more operands always work right to left. The 
right operand is the source operand. It specifies data that will be used, but 
not changed, in the operation. The left operand is the destination operand. 
It specifies the data that will be operated on and possibly changed by the 
instruction. 

13.2 Using Immediate Operands 

Immediate operands consist of constant numeric data that are known or 
calculated at assembly time. Immediate values are coded into the execu­
table program and processed the same way each time the program is run. 

Some instructions have limits on the size of immediate values (usually 8-, 
16-, or 32-bit). String constants longer than two characters (four charac­
ters on the 80386) cannot be immediate data. They must be stored in 
memory before they can be processed by instructions. 

13-1 



Macro Assembler 

Many instructions pennit immediate data in the source (right) operand 
and either memory or register data in the destination (left) operand. The 
instruction combines or replaces the register or memory data with the 
immediate data in some way defined by the instruction. Examples of this 
type of instruction include MOV, ADD, eMP, and XOR. 

A few instructions, such as RET and INT, take a single immediate 
operand. 

Immediate data is never pennitted in the destination operand. If the 
source operand is immediate, the destination operand must be either 
register or direct memory so that there will be a place to store the result of 
the operation. 

Examples 

five 
nine 

• DATA 
DB 5 
EQU 9 

• CODE 

Source operand is immediate 
mov bx,nine+3 

; Memory data 
; Constant data 

or bx,OOlOOlOOb 
in al,43h 
cmp cx,200 

Only operand is immediate 
ret 6 
int 21h 

13.3 Using Register Operands 

Register operands consist of data stored in registers. Register-direct mode 
refers to using the actual value inside the register at the time the instruc­
tion is used. Registers can also be used indirectly to point to memory 
locations, as described in "Indirect Memory Operands." 

Most instructions allow register values in one or more operands. Some 
instructions can only be used with certain registers. Often instructions 
have shorter encoding (and faster operation) if the accumulator register 
(AX or AL) is specified. Use of segment registers in operands is limited 
to a few instructions and special circumstances. 

13-2 



Using Addressing Modes 

The registers shown in Table 13.1 can be used in register-direct mode. 

Table 13.1 

Register Operands 

Register-Operand Type Register Name 

8-bit high registers AH BH 

8-bit low registers AL BL 

16-bit general purpose AX BX 

32-bit general, pointer, and index 1 EAX EBX 

16-bit pointer and index SP BP 

32-bit general, pointer, and index 1 ESP EBP 

16-bit segment CS DS 
Additional 80386 segment 1 FS GS 

1 Available only if the 80386 processor is enabled 

CH DH 

CL DL 

CX DX 

ECX EDX 

SI DI 

ESI EDI 

SS ES 

Limitations on register use for specific instructions are discussed in sec­
tions on the specific instructions throughout Part 3, "Using Instructions." 

Examples 

Source and destination operands are register direct 
add aX,bx 
mov ds,ax 
XOT 

cmp 
eax,ebx 
ah,bh 

Source operand is register direct 
and stuff,dx 
sub array [bx] [si] ,ax 

Destination operand is register direct 
shl ax,l 
cmp cx,counter 

Only operand is register direct 
mul bx 
pop cx 
inc ah 

80386 only 

13-3 



Macro Assembler 

13.4 Using Memory Operands 

Many instructions can work on data in memory. When a memory operand 
is given, the processor must calculate the address of the data to be pro­
cessed. This address is called the "effective address." Calculation of the 
effective address depends on how the operand is specified, as explained 
below. 

Note 

Memory-to-memory operations are never allowed. These operations 
must be done indirectly by moving one of the memory values into a 
register before processing it. 

l3.4.1 Direct Memory Operands 

A direct memory operand is a symbol that represents the address (seg­
ment and offset) of an instruction or data. The offset address represented 
by a direct memory operand is calculated at assembly time. The address 
of each operand relative to the start of the program is calculated at link 
time. The actual (or effective) address is calculated at load time. 

Direct memory operands can be any constant or symbol representing an 
address. This includes labels, procedure names, variables, structure vari­
ables, record variables, or the value of the location counter. 

The effective address is always relative to a segment register. The default 
segment register is DS for direct memory operands, but the default seg­
ment can be overridden with the segment-override operator (:), as 
explained in ' , Segment-Override Operator." 

Direct memory operands are often specified as constant expressions by 
using the index operator. For example, the operand tabler 4 J refers to the 
byte having an offset four bytes from the address of table. This expression 
is equivalent to table+4. 

13-4 



Example 

• DATA 
stuff DW here 

. CODE 

mov ax,stuff 

mov bx,OFFSET stuff 

jrnp stuff 

jrnp here 

jrnp ax 

jrnp [bx] 

here: 

Using Addressing Modes 

Load value at address "stuff" 
(address of "here") into AX 

Load address of "stuff" 
into EX 

Jump to value of "stuff" 
(which is address of "here") 

Jump to the address of "here" 

Jump to AX (value of "stuff") 

Jump to [EX] (value at address 
of "stuff") 

This example illustrates the difference between memory operands that 
represent addresses and memory operands that represent the value at an 
address. Labels and variable names in the data segment (such as stuffJ 
represent the value at an address. Code labels (such as here) represent the 
address itself. The four jump statements at the end of the example use 
different kinds of operands to transfer control to the same address. 

13-5 



Macro Assembler 

Note 

If the label is omitted from a direct memory operand used with a 
constant index, a segment must be specified. The offset of the 
operand is assumed to be the start of the specified segment plus the 
indexed offset. For example, 

mov ax,ds: [100h] 

moves the value at address 100h in the data segment into the AX 
register. It is equivalent to 

mov ax,ds:100h 

If the segment override is omitted, the constant (immediate) value 
of the operand is used rather than the value it points to. For exam­
ple, 

mov ax, [100h] 

moves the value 100h into the AX register. It is equivalent to the 
statement 

mov ax,100h 

13.4.2 Indirect Memory Operands 

Indirect memory operands enable you to use registers to point to values in 
memory. Since values in the registers can change at run time, you can use 
indirect memory operands to operate on data dynamically. 

On all processors except the 80386, only four registers can be used in 
indirect mode (see "80386 Indirect Memory Operands," for information 
on 80386 enhancements). BX and BP are called base registers; DI and SI 
are called index registers. The distinction between base and index regis­
ters is not always important. In many contexts, any of these registers can 
be thought of as the base or the index. In any case, an attempt to use any 
register other than these four in a statement that accesses memory 
indirectly results in an error. 

13-6 



Using Addressing Modes 

You can use the base and index registers separately or in pairs, with or 
without specifying a displacement. A displacement can be either a con­
stant or a direct memory. Several displacements can be given, but they 
are all added into a single displacement at assembly time. For example, in 
the statement 

mav ax, table [bx] [di]+6 

both table and 6 are displacements. To get the total displacement, masm 
calculates the actual offset of table and the offset at 6. 

The modes in which registers can be used to specify indirect memory 
operands are shown in Table 13.2. 

Mode 

Register indirect 

Based or indexed 

Based indexed 

Based indexed 
with displacement 

Table 13.2 

Indirect Addressing Modes 

Syntax 

[BX] 
[BP] 
[DI] 

[BX]disp 
displacement[BP] 
displacement[DI] 
displacement[SI] 

[BX] [DI] 
[BP][DI] 
[BX][SI] 
[BP] [SI] 

displacement[BX] [DI] 
displacement[BP] [DI] 
displacement[BP] [SI] 

Description 

Effective address 
is contents of 
register 

Effective address 
is contents of 
register and dis­
placement 

Effective address 
is contents of base 
register and con­
tents of index 
register 

Effective address 
is contents of base 
register and con­
tents of index 
registers and dis­
placement 

Register-indirect operands are typically used to point to a memory 
address within a segment. Based and indexed operands are used to point 
to a memory address relative to a table, a one-dimensional array, or a 
structure. Operands with multiple indexes are useful for pointing to 
memory locations in complex data structures such as multidimensional 
arrays. 

13-7 



Macro Assembler 

The choice of which registers to use depends on the context of the state­
ment. String instructions require that specific registers are used in specific 
situations, as explained in "Processing Strings." With other instructions, 
base and index registers can often be used interchangeably, depending on 
which registers are available. 

When calculating the effective address of an indirect operand, the proces­
sor uses DS as the default segment register if BX is used as a base regis­
ter, or if no base register is specified. If BP is used anywhere in the 
operand, the default segment register is SS. The default segment can be 
overridden with the segment-override operator (:). 

A common syntax for indirect memory operands is each register put 
within index operators ([ D. The register or registers must always be 
within brackets, but a variety of alternate syntaxes is possible. Anyopera­
tor that indicates addition can be used to combine the displacement and 
mUltiple registers. For example, the following statements are equivalent: 

mov aX,table [bx] [di] 
mov ax,table[bx+di] 
mov ax, [table+bx+di] 
mov ax, [bx] [di] .table 
mov ax, [bx] [di] +table 
mov ax,table[di] [bx] 

When using based-indexed modes, one of the registers must be a base 
register and the other an index register. The following statements are ille­
gal: 

mov 
mov 

ax, table [bx] [bp] 
ax,table[di] lsi] 

Illegal - two base registers 
Illegal - two index registers 

Use of the index operator is explained in more detail in 

When an index or displacement points into an array, it must be scaled for 
the size of elements in the array. On all processors except the 80386, scal­
ing must be done in separate statements (see "80386 Indirect Memory 
Operands," for information on 80386 scaling). The scaling factor is 1 for 
bytes (no scaling necessary), 2 for words, 4 for doublewords, and 8 for 

13-8 



Using Addressing Modes 

quadwords. Since scaling factors (other than for bytes) are multiples of 2, 
they can usually be calculated quickly with the SHL instruction, as 
shown below: 

shl di,l Scale 01 for words (01 *2) 

shl di,l Scale 01 for doublewords (01*4) 
shl di,l 

shl di,l Scale 01 for quadwords (01*8) 
shl di,l 
shl di,l 

Use of the SHL instruction for multiplication is described in more detail 
in "Multiplying and Dividing by Constants." 

Example 1 

add dx, [bx] Add the word contents of OS:BX 
to the contents of OX 

mov dl, [bp+6] Load the byte contents 
of SS:BP+6 into OL 

sub dx, 12 [bx] Subtract the word contents of 
OS:12+BX from the contents of DX 

xor red[bx],dx XOR the contents of DX with 
the contents of OS:red+BX 

and dx,red[si]+3 AND the contents of OS:red+S1+3 
with the contents of OX 

dec BYTE PTR [bx] lsi] Decrement the byte 
at OS:BX+S1 

cmp cx,here [bp] lsi] Compare the contents of CX 
to the contents of SS:here+BP+S1 

push place [bx] [di] +2 Save the contents of 
DS:place+BX+01+2 on the stack 

call cs:table [bx] Call the routine pointed to 
by the contents of CS:table+bx 

The statements in Example 1 illustrate how the various instructions can 
be used with indirect memory operands. 

13-9 



Macro Assembler 

Example 2 

scrnbuff EQU OB800h 

mov ax,scrnbuff 
mov es,ax 

mov ax, 4 
push ax 
mov ax, 6 
push ax 
mov ax,"z" 
push ax 
call show 
add sp,6 

show PROC NEAR 
push bp 
mov bp,sp 
push si 

mov si, [bp+8] 
dec si 
shl si,l 
mov bx, [bp+6] 
dec bx 
mov ax, 160 
mul bx 
mov bx,ax 

mov dl,BYTE PTR [bp+4] 
mov es: [bx] [si],dl 

pop si 
pop bp 
ret 

show ENDP 

CGA screen buffer (actual 
value is hardware dependent) 

Load address of screen buffer 
into ES 

Push column 4 as third argument 

Push row 6 as second argument 

; Push "z" as first argument 

Call the procedure 
Restore stack 

Save BP 
and set up stack frame 

Save SI (so procedure could 
be called from C) 

Load column 
; Adjust for zero 
; Scale for 2 bytes per character 
; Load row 
; Adjust for zero 

Multiply 160 bytes per line 
times current row 

Put result in index 

Load character 
Put character in buffer 

Restore SI and BP 

Return 

Example 2 illustrates two uses of indirect memory operands. Arguments 
are pushed onto the stack before calling a procedure. When the procedure 
is called, the arguments are removed using indirect memory operands. 

The procedure writes a character to a screen buffer (a common technique 
with many computers and display adapters). The BX register points to the 
column position in the buffer; the SI register points to the row position. In 
this example, the ES register must contain the address of the screen buffer 
(this address varies for different hardware). 

13-10 



Using Addressing Modes 

The procedure follows the calling conventions of C and could be called 
directly from that language. Note that SI is saved and restored because 
the C compiler requires that it not be changed by a procedure. 

Example 2 works on any processor. "80386 Indirect Memory Operands," 
shows an enhanced version that uses 80386 instructions and addressing 
modes. 

13.4.3 80386 Indirect Memory Operands 

Instructions for the 80386 can be given in two modes, 16 bit and 32 bit. 
Understanding these modes is important, since indirect memory operands 
are different in each mode. 

The 80386 instruction modes are controlled by the use type of the code 
segment in which the instructions are located. The mode is 16 bit if the 
use type is USE16 or 32 bit if the use type is USE32. In 32-bit mode, an 
offset address can be up to four gigabytes. In 16-bit mode, an offset 
address can be up to 64K. The 16-bit mode of the 80386 is the same as the 
mode used by all the other 8086-family processors. 

If the 80386 processor is enabled (with the .386 directive), 32-bit 
general-purpose registers are always available. They can be used from 
16-bit or 32-bit segments. When 32-bit registers are used, many of the 
limitations of 16-bit.indirect memory modes do not apply. The following 
extensions are available when 32-bit registers are used in indirect 
memory operands: 

• There are fewer limitations on the registers that can be used as 
base and index registers. With other 8086-family processors, only 
BX, BP, DI, and SI registers can be used in indirect memory 
operands. With the 80386, any general-purpose 32-bit register can 
be used. The same register can even be used as both the base and 
the index. Several examples are shown below: 

add edx, [eax] 
mov dl, [esp+l0] 
dec WORD PTR [edx] [eax] 
amp cx,array[eax] [eax] 
jrrp table [ecx] 

Add double 
Add byte from stack 
Decrement word 
Compare word from array 
Jump into pointer table 

• The index register can have a scaling factor of 1, 2, 4, or 8. Any 
register except ESP can be the index register and can have a scal­
ing factor. The scaling factor is specified by using the multiplica­
tion operator (*) adjacent to the register. 

13-11 



Macro Assembler 

Scaling can be used to index into arrays with different sizes of ele­
ments. For example, the scaling factor is 1 for byte arrays (no scal­
ing needed), 2 for word arrays, 4 for doubleword arrays, and 8 for 
quadword arrays. There is no perfonnance penalty for using a scal­
ing factor. Scaling is illustrated in the following examples: 

mov eax,darray[edx*4] Load double of double array 
mov eax, [esi*8] [edi] ; Load double of quad array 
mov ax,wtbl[eex+2] [edx*2] ; Load word of word array 

• The default segment register is SS if the base register is EBP or 
ESP; it is DS for all other the base registers. If two registers are 
used, only one can have a scaling factor and it is defined to be the 
index register. The other register is the base. If scaling is not used, 
the first register is the base. If one register is used, it is the base, 
regardless of scaling. The following examples illustrate how to 
detennine the base register: 

mov eax, [edx] [ebp*4] EDX base (not scaled) - DS segment 
mov eax, [edx*l] [ebp] EBP base (not scaled) - SS segment 
mov eax, [edx] [ebp] EDX base (first) - DS segment 
mov eax, [ebp] [edx] EBP base (first) - SS segment 
mov eax, [ebp*2] EBP base (only) - SS segment 

Statements can mix 16- and 32-bit registers. However, it is important to 
understand the implications of these statements. For example, the follow­
ing statement is legal for either 16- or 32-bit segments: 

mov eax, [bx] 

This moves the 32-bit value pointed to by BX into the EAX register. 
Although BX is a 16-bit pointer, it may still point into a 32-bit segment. 
However, the following statement is never legal: 

mov eax, [ex] 

The CX register may not be used as a 16-bit pointer (although ECX may 
be used as a 32-bit pointer). 

The following statement is also legal in either mode: 

mov bx, [eax] 

This moves the 16-bit value pointed to by EAX into the BX register. This 
works fine in 32-bit mode; but in 16-bit mode, a 32-bit pointer moved into 
a 16-bit segment may cause problems. IfEAX contains a 16-bit value (the 
top half of the 32-bit register is 0), then the statement works. However, if 

13-12 



Using Addressing Modes 

the top half of the EAX register is not 0, the processor may generate an 
error. 

Warning 

It is possible to use both 16-bit and 32-bit modes in the same pro­
gram by defining separate code segments for the two modes. How­
ever, this is a complex technique that involves special calculations 
to account for the differences between the two modes. Combining 
modes is generally done only in systems programming and is 
beyond the scope of this manual. 

Example 

.MJDEL small .MJDEL precedes .386 

.386 to make 16-bit segments 

scrnbuff EQU OB800h eGA screen buffer (actual 
value is hardware dependent) 

• CODE 

mov ax,scrnbuff Load address of screen buffer 
mov es,ax into ES 

push 4 Push column 4 as third argument 
push 6 ; Push line 6 as second argument 
push "z" ; Push "z" as first argument 
call show Call the procedure 
add sp,6 ; Restore stack 

show PROC NEAR 

movzx ebx,WORD PTR [esp+6]; Load column 
dec ebx ; Adjust for zero 
movzx eax, WORD PTR [esp+4]; Load row 
dec eax ; Adjust for zero 
imul eax,160 Multiply 160 bytes per line 

mov dl, [esp+2] Load character 
mov es: [eax] [ebx*2],dl Put character in buffer 

ret Return 
show ENDP 

13-13 



Macro Assembler 

This example is the same as the one in "Indirect Memory Operands," 
except that it uses enhanced 80386 instructions and addressing modes to 
make the code shorter and more efficient. Note the following differences: 

• Since ESP can be used as a base register, stack registers can be 
accessed directly without the stack setup required by previous pro­
cessors. This assumes that ESP does not change inside the pro­
cedure. 

• Values are loaded and zero-extended in one step by using the 
MOVZX instruction (see "Moving and Extending Values "). 

• EBX is used with scaling. In the previous example, scaling had to 
be done with a separate instruction. 

• EAX and EBX are used instead of BX and SI. This saves some 
register swapping, since EAX can be used both for the result of the 
multiplication operation and as a base register. 

• Immediate operands are used with the PUSH and IMUL instruc­
tions (described in "Pushing and Popping," and "Multiplying, " 
respectively). These enhancements were implemented with the 
80186 processor, but they are rarely used since most programs 
have to be able to run on the 8088 and 8086. Since 80836 programs 
can never run on the earlier processors, there is no reason not to 
use enhanced 80186 instructions. 

13-14 



Chapter 14 

Loading, Storing, 

and Moving Data 

14.1 Introduction 14-1 

14.2 Transferring Data 14-1 
14.2.1 Copying Data 14-1 
14.2.2 Exchanging Data 14-2 
14.2.3 Looking Up Data 14-2 
14.2.4 Transferring Flags 14-3 

14.3 Converting between Data Sizes 14-4 
14.3.1 Extending Signed Values 14-4 
14.3.2 Extending Unsigned Values 14-6 
14.3.3 Moving and Extending Values 14-6 

14.4 Loading Pointers 14-7 
14.4.1 Loading Near Pointers 14-7 
14.4.2 Loading Far Pointers 14-8 

14.5 Transferring Data to and from the Stack 14-10 
14.5.1 Pushing and Popping 14-10 
14.5.2 Using the Stack 14-13 
14.5.3 Saving Flags on the Stack 14-14 
14.5.4 Saving All Registers on the Stack 14-14 

14.6 Transferring Data to and from Ports 14-15 





Loading, Storing, and Moving Data 

14.1 Introduction 

The 8086-family processors provide several instructions for loading, stor­
ing, or moving various kinds of data. Among the types of transferable data 
are variables, pointers, and flags. Data can be moved to and from regis­
ters, memory, ports, and the stack. This chapter explains the instructions 
for moving data from one location to another. 

14.2 Transferring Data 

Moving data is one of the most common tasks in assembly-language pro­
gramming. Data can be moved between registers or between memory and 
registers. Immediate data can be loaded into registers or into memory. 

14.2.1 Copying Data 

The MOV instruction is the most common method of moving data. This 
instruction can be thought of as a "copy" instruction, since it always 
copies the source operand to the destination operand. Immediately after a 
MOV instruction, the source and destination operands both contain the 
same value. The old value in the destination operand is destroyed. 

Syntax 

MOV {register I memory},{register I memory I immediate} 

Example 1 

mov ax, 7 Immediate to register 
mov mem,7 Immediate to memory direct 
mov rnem[bx],7 Immediate to memory indirect 

mov mem,ds Segment register to memory 
mov mem,ax Register to memory direct 
mov rnem [bx] , ax Register to memory indirect 

mov ax,rnem Memory direct to register 
mov ax,mem[bx] Memory indirect to register 
mov ds,mem Memory to segment register 

mov ax,bx Register to register 
mov ds,ax General register to segment register 
mov ax,ds Segment register to general register 

14-1 



Macro Assembler 

The statements in Example 1 illustrate each type of memory move that 
can be done with a single instruction. Example 2 illustrates several com­
mon types of moves that require two instructions. 

Example 2 

; Move immediate to segment register 
mov ax,DGROUP Load immediate to general register 
mov ds,ax Store general register to segment register 

Move memory to memory 
mov ax, meml 
mov mem2,ax 

; Load memory to general register 
; Store general register to memory 

; Move segment register to segment register 
mov ax, ds ; Load segment register to general register 
mov es,ax ; Store general register to segment register 

14.2.2 Exchanging Data 

The X CH G (Exchange) instruction exchanges the data in the source and 
destination operands. Data can be exchanged between registers or 
between registers and memory. 

Syntax 

XCHG {register I memory}, {register I memory} 

Examples 

xchg 
xchg 

ax,bx 
memory,ax 

14.2.3 Looking Up Data 

Put AX in BX and BX in AX 
Put ''memory'' in AX and AX in ''memory'' 

The XLAT (Translate) instruction is used to load data from a table in 
memory. The instruction is useful for translating bytes from one coding 
system to another. 

14-2 



Loading, Storing, and Moving Data 

Syntax 

XLAT[B] [[segment:]memory] 

The BX register must contain the address of the start of the table. By 
default the DS register contains the segment of the table, but a segment 
override can be used to specify a different segment. The operand need not 
be given except when specifying a segment override. 

Before the XLAT instruction is called, the AL register should contain a 
value that points into the table (the start of the table is considered 0). 
After the instruction is called, AL will contain the table value pointed to. 
For example, if AL contains 7, the 8th byte of the table will be placed in 
AL register. 

Note 

For compatibility with Intel 80386 mnemonics, masm recognizes 
XLATB as a synonym for XLAT. In the Intel syntax, XLAT 
requires an operand; XLATB does not allow one. An operand is 
never required by masm, but one is always allowed. 

14.2.4 Transferring Flags 

The 8086-family processors provide instructions for loading and storing 
flags in the AH register. 

Syntax 

LAHF 
SAHF 

The status of the lower byte of the flags register can be saved to the AH 
register with LAHF and then later restored with SAHF. If you need to 
save and restore the entire flags register, use PUSHF and POPF, as 
described in "Saving Flags on the Stack." 

SAHF is often used with a coprocessor to transfer coprocessor control 
flags to processor control flags. "Controlling Program Flow," explains 
and illustrates this technique. 

14-3 



Macro Assembler 

14.3 Converting between Data Sizes 

Since moving data between registers of different sizes is illegal, you must 
take special steps if you need to extend a register value to a larger register 
or register pair. 

The procedure is different for signed and unsigned values. The processor 
cannot tell the difference between signed and unsigned numbers; the pro­
grammer has to understand this difference and program accordingly. 

14.3.1 Extending Signed Values 

The CBW (Convert Byte to Word) and CWD (Convert Word to Double­
word) instructions are provided to sign-extend values. Sign-extending 
means copying the sign bit of the unextended operand to all bits of the 
extended operand. 

Syntax 

CBW 
CWD 

The CBW instruction converts an 8-bit signed value in AL to a 16-bit 
signed value in AX. The CWD instruction is similar except that it sign­
extends a 16-bit value in AX to a 32-bit value in the DX:AX register pair. 
Both instructions work only on values in the accumulator register. 

Example 1 

mern8 
mern16 

14-4 

• DATA 
DB 
DW 
• CODE 

-5 
-5 

mov al,mern8 ; Load 8-bit -5 (FBh) 
cbw ; Convert to 16-bit -5 (FFFBh) in AX 

mov ax,mem16 Load 16-bit -5 (FFFBh) 
cwd Convert to 32-bit -5 (FFFF:FFFBh) 

in DX:AX 



Loading, Storing, and Moving Data 

80386 Only 

The 80386 processor provides additional conversion instructions for 32-
bit signed values. 

Syntax 

CWDE 
CDQ 

The CWDE (Convert Word to Doubleword Extended) instruction con­
verts a signed 16-bit value in AX to a signed 32-bit signed value in EAX. 
The CDQ (Convert Doubleword to Quadword) instruction converts a 32-
bit signed value in EAX to a signed 64-bit value in the EDX:EAX regis­
ter pair. 

Example 2 

mern16 
mem32 

• DATA 
DW 
DD 
. CODE 

-5 
-5 

mov ax,mem16 Load 16-bit -5 (FFFBh) 
cwde Convert to 32-bit -5 (FFFFFFFBh) in EAX 
mov eax,mem32 Load 32-bit -5 (FFFFFFFBh) 
cdq Convert to 64-bit -5 

(FFFFFFFF:FFFFFFFBh) in EDX:EAX 

14-5 



Macro Assembler 

14.3.2 Extending Unsigned Values 

To extend unsigned numbers, set the value of the upper register to O. 

Example 

• DATI'\. 
mern8 DB 251 
mem16 DB 251 

. CODE 

mov aI,mern8 ; Load 251 (FBh) from 8-bit mernory 
xor ah, ah ; Zero upper half (AH) 

mov ax,mern16 ; Load 251 (FBh) from 16-bit memory 
xor dx, dx ; Zero upper half (DX) 

14.3.3 Moving and Extending Values 

80386 Only 

The 80386 processor provides instructions that move and extend a value 
to a larger data size in a single step. The same thing can be done in two 
steps with earlier processors, but the new 80386 instructions are faster. 

Syntax 

MOVSX register, {register I memory} 
MOVZX register, {register I memory} 

MOVSX moves a signed value into a register and sign-extends it. 
MOVZX moves an unsigned value into a register and zero-extends it. 

14-6 



Loading, Storing, and Moving Data 

Example 

Enhanced 80386 instructions 

movzx dx,bl ; Load unsigned 8-bit value into 
16-bit register and zero extend 

Equivalent to these 80286 instructions 

mov 
xor 

dl,bl 
dh,dh 

Enhanced 80386 instructions 

movsx dx,bl 

Load 8-bit unsigned value 
Clear the top of register 

; Load unsigned 8-bit value into 
16-bit register and sign extend 

Equivalent to these 80286 instructions 

mov 
cbw 
mov 

al,bl 

dx,ax 

14.4 Loading Pointers 

Load 8-bit unsigned value to AI.. 
Sign extend to AX 
Copy to 16-bit register 

The 8086-family processors provide several instructions for loading 
pointer values into registers or register pairs. They can be used to load 
either near or far pointers. 

14.4.1 Loading Near Pointers 

The LEA instruction loads a near pointer into a specified register. 

Syntax 

LEA register,memory 

The destination register may be any general-purpose register. The source 
operand may be any memory operand. The effective address of the source 
operand is placed in the destination register. 

The LEA instruction can be used to calculate the effective address of a 
direct memory operand, but this is usually not efficient, since the address 
of a direct memory operand is a constant known at assembly time. For 

14-7 



Macro Assembler 

example, the following statements have the same effect, but the second 
version is faster: 

lea dx,string Load effective address - slow 
mov dx,OFFSET string Load offset - fast 

The LEA instruction is more useful for calculating the address of indirect 
memory operands: 

lea dx, string lsi] ; Load effective address 

80386 Only 

Scaling of indirect memory operands gives the LEA instruction some 
interesting side effects with the 80386 processor. (Scaling is explained in 
"80386 Indirect Memory Operands.") By using a 32-bit value as both 
the index and the base register in an indirect memory operand, you can 
multiply by the constants 2, 3, 4, 5, 8, and 9 more quickly than you could 
by using the MUL instruction. 

lea ebx, [eax*2] EBX 2 * EAX 
lea ebx, [eax*2+eax] EBX 3 * EAX 
lea ebx, [eax*4] EBX 4 * EAX 
lea ebx, [eax*4+eax] EBX 5 * EAX 
lea ebx, [eax* 8] EBX 8 * EAX 
lea ebx, [eax*8+eax] EBX 9 * EAX 

Multiplication by constants can also sometimes be made faster by using 
shift instructions, as described in "Multiplying and Dividing by Con­
stants. " 

14.4.2 Loading Far Pointers 

The LDS and LES instructions load far pointers. Syntax 

LDS register,memory 
LES register,memory 

The memory address being pointed to is specified in the source operand, 
and the register where the offset will be stored is specified in the destina­
tion operand. 

The address must be stored in memory with the offset in the upper word 
and the segment in the lower word. The segment register where the seg­
ment will be stored is specified in the instruction name. For example, 
LDS puts the segment in DS, and LES puts the segment in ES. These 

14-8 



Loading, Storing, and Moving Data 

instructions are often used with string instructions, as explained in 
Chapter 17, "Processing Strings." 

Example 

string 
fpstring 
pointers 

80386 Only 

• DATA 
DB "This is a string." 
DD string ; Far pointer to string 
DD - 100 DUP (?) 
. CODE 

les 
lds 

di,fpstring 
si,pointers[bx] 

; Put address in ES:DI pair 
; Put address in DS:SI pair 

The 80386 processor has additional instructions for loading far pointers. 
These instructions are exactly like LDS and LES, except for the segment 
register in which they put the segment address. 

Syntax 

LSS register,memory 
LFS register,memory 
LGS register,memory 

The LSS, LFS, and LGS instructions load the segment address into SS, 
FS, and GS respectively. 

Example 

.386 .386 first for 32-bit mode 

.rxDDEL large 
• DATA 

string DB "This is a string." 
fpstring DF string ; Far pointer to string 

. CODE 

19s edi,fpstring ; Put address in GS:EDI pair 

14-9 



Macro Assembler 

14.5 Transferring Data to and from the Stack 

A stack is an area of memory for storing temporary data. Unlike other 
segments in which data is stored starting from low memory, data on the 
stack is stored in reverse order starting from high memory. 

Initially, the stack is an uninitialized segment of a finite size. As data is 
added to the stack at run time, the stack grows downward from high 
memory to low memory. When items ate removed from the stack, it 
shrinks upward from low memory to high memory. 

The stack has several purposes in the 8086-family processors. The CALL, 
INT, RET, and IRET instructions automatically use the stack to store the 
calling addresses of procedures and interrupts (see "Using Procedures," 
and "Using Interrupts"). You can also use the PUSH and POP instruc­
tions and their variations to store values on the stack. 

14.5.1 Pushing and Popping 

In 8086-family processors, the SP (stack pointer) register always points to 
the current location in the stack. The PUSH and POP instructions use the 
SP register to keep track of the current position in the stack. 

The values pointed to by the BP and SP registers are relative to the stack 
segment (SS register). The BP register is often used to point to the base of 
a frame of reference (a stack frame) within the stack. 

Syntax 

PUSH {register I memory} 
POP {register I memory} 
PUSH immediate (80186-80386 only) 

The PUSH instruction is used to store a two-byte operand on the stack. 
The POP instruction is used to retrieve a previously pushed value. When 
a value is pushed onto the stack, the SP register is decreased by two. 
When a value is popped off the stack, the SP register is increased by two. 
Although the stack always contains word values, the SP register points to 
bytes. Thus SP changes in multiples of two. (In 80386 32-bit segments, 
four-byte values are pushed and ESP changes in multiples of four.) 

14-10 



Loading, Storing, and Moving Data 

Note 

The 8088 and 8086 processors differ from later Intel processors in 
how they push and pop the SP register. If you give the statement 
push sp with the 8088 or 8086, the word pushed will be the word in 
SP after the push operation. The same statement under the 80186, 
80286, or 80386 processor pushes the word in SP before the push 
operation. 

Figure 14.1 illustrates how pushes and pops change the SP register. 
Notice that the value pushed onto the stack remains in stack memory even 
after it has been popped. However, since the stack pointer is above it, the 
value is now unknown and may be overwritten the next time the stack is 
used. 

Pushing Words Onto the Stack 

Before push ax 

High memory : 
~====?1 

/' 

Low memory : 

Popping Words Off the Stack 

Before pop ax 

High memory j 
~====P1 

word from ax 
V 

Low memory : 

<--SP 

<--SP 

After push ax 

High memory : 
~====?1 

word from ax <--SP 
/' 

Low memory : 

After pop ax 

High memory j 
~====P1 

V 

Low memory j 

<--SP 

Figure 14-1 Stack Status after Pushes and Pops 

14-11 



Macro Assembler 

The PUSH and POP instructions are almost always used in pairs. Words 
are popped off the stack in reverse order from the order in which they are 
pushed onto the stack. You should nonnally do the same number of pops 
as pushes to return the stack to its original position. However, it is possi­
ble to return the stack to its original position by adding the correct 
number of words from the SP register. 

Values on the stack can be accessed by using indirect memory operands 
with BP as the base register. 

Example 

mov bp,sp 
push ax 
push bx 
push cx 

mov ax, [bp-6] 
mov bx, [bp-4] 
mov cx, [bp-2] 

add sp,6 

80186/286/386 Only 

; Set stack frame 
; Push first; SP = BP - 2 
; Push second; SP = BP - 4 
; Push third; SP = BP - 6 

; Put third in AX 
; Put second in BX 
; Put first in ex 

; Restore stack pointer 
two bytes per push 

Starting with the 80186, the PUSH instruction can be given with an 
immediate operand. For example, the following statement is legal on the 
80186,80286, and 80386 processors: 

push 7 ; 3 clocks on 80286 

This statement is faster than the following equivalent statements, which 
are required on the 8088 or 8086: 

14-12 

mov 
push 

ax,7 
ax 

2 clocks on 80286 
3 clocks on 80286 



Loading, Storing, and Moving Data 

80386 Processor Only 

When a PUSH or POP instruction is used in a 32-bit code segment (one 
with USE32 use type), the value transferred is a four-byte value. A warn­
ing message will be generated if you try to push a 16-bit value in a 32-bit 
segment or a 32-bit value in a 16-bit segment. 

14.5.2 Using the Stack 

The stack can be used to store temporary data. For example, in the Micro­
soft calling convention, the stack is used to pass arguments to a pro­
cedure. The arguments are pushed onto the stack before the call. The pro­
cedure retrieves and uses them. Then the stack is restored to its original 
position at the end of the procedure. The stack can also be used to store 
variables that are local to a procedure. Both these techniques are dis­
cussed in "Passing Arguments on the Stack." 

Another common use of the stack is to store temporary data when there 
are no free registers available or when a particular register must hold 
more than one value. For example, the ex register usually holds the 
count for loops. If two loops are nested, the outer count is loaded into ex 
at the start. When the inner loop starts, the outer count is pushed onto the 
stack and the inner count loaded into ex: When the inner loop finishes, 
the original count is popped back into ex. 

Example 

mov cx,lO Load outer loop counter 
outer: 

Start outer loop task 

push cx Save outer loop value 
mov cx,20 Load inner loop counter 

inner: 
Do inner loop task 

loop inner 
pop cx Restore outer loop counter 

Continue outer loop task 

loop outer 

14-l3 



Macro Assembler 

14.5.3 Saving Flags on the Stack 

Flags can be pushed and popped onto the stack using the PUSHF and 
POPF instructions. Syntax 

PUSHF 
POPF 

These instructions are sometimes used to save the status of flags before a 
procedure call and then to restore the same status after the procedure. 
They can also be used within a procedure to save and restore the flag 
status of the caller. 

Example 

pushf 
call systask 
popf 

80386 Only 

When used from a 32-bit code segment, the PUSHF and POPF instruc­
tions do not automatically transfer 32-bit values. You must append the 
letter D (for doubleword) to the instruction name. Thus the 32-bit versions 
of these instructions are PUSHFD and PO PFD. 

14.5.4 Saving All Registers on the Stack 

80186/286/386 Only 

Starting with the 80186 processor, the PUSHA and POPA instructions 
were implemented to push or pop all the general-purpose registers with 
one instruction. 

Syntax 

PUSHA 
POPA 

These instructions can be used to save the status of all registers before a 
procedure call and then to restore them after the return. Using PUSHA 

14-14 



Loading, Storing, and Moving Data 

and POPA instructions is significantly faster and takes fewer bytes of 
code than pushing and popping each register individually. 

The registers are pushed in the following order: AX, ex, DX, BX, SP, 
BP, SI, and DI. The SP word pushed is the value before the first register is 
pushed. The registers are popped in the opposite order. 

Example 

pusha 
call systask 
popa 

80386 Only 

When used from a 32-bit code segment, the PUSHA and POPA instruc­
tions do not automatically transfer 32-bit values. You must append the 
letter D (for doubleword) to the instruction name. Thus the 32-bit versions 
of these instructions are PUSHAD and POPAD. 

14.6 Transferring Data to and from Ports 

Ports are the gateways between hardware devices and the processor. Each 
port has a unique number through which it can be accessed. Ports can be 
used for low-level communication with devices such as disks, the video 
display, or the keyboard. The OUT instruction is used to send data to a 
port; the IN instruction receives data from a port. 

Syntax 

IN accumulator, {portnumber I DX} 
OUT {portnumber I DX},accumulator 

When using the IN and OUT instructions, the number of the port can 
either be an 8-bit immediate value or the DX register. You must use DX 
for ports with a number higher than 256. The value to be received from 
the port must be in the accumulator register (AX for word values or AL 
for byte values). 

When using the IN instruction, the number of the port is given as the 
source operand and the value to be sent to the port is the destination 
operand. When using the OUT instruction, the number of the port is given 

14-15 



Macro Assembler 

as the destination operand and the value to be sent to the port is the 
source operand. 

In applications programming, most communication with hardware is done 
with system calls. Ports are more often used in systems programming. 
Since systems programming is beyond the scope of this manual and since 
ports differ greatly depending on hardware, the IN and OUT instructions 
are not explained in detail here. 

Note 

Under XENIX and other protected-mode operating systems, IN and 
OUT are privileged instructions and can only be used in privileged 
mode. 

80186/286/386 Only 

Starting with the 80186 processor, instructions were implemented to send 
strings of data to and from ports. The instructions are INS, INSB, INSW., 
OUTS, OUTSB, and OUTSW. The operation of these instructions is 
much like the operation of other string instructions. They are discussed in 
"Transferring Strings to and from Ports." 

14-16 



Chapter 15 

Doing Arithmetic 

and Bit Manipulations 

15.1 Introduction 15-1 

15.2 Adding 15-1 
15.2.1 Adding Values Directly 15-1 
15.2.2 Adding Values in Multiple Registers 15-3 

15.3 Subtracting 15-3 
15.3.1 Subtracting Values Directly 15-4 
15.3.2 Subtracting with Values in Multiple Registers 15-5 

15.4 Multiplying 15-6 

15.5 Dividing 15-9 

15.6 Calculating with Binary Coded Decimals 15-10 
15.6.1 Unpacked BCD Numbers 15-11 
15.6.2 Packed BCD Numbers 15-13 

15.7 Doing Logical Bit Manipulations 15-14 
15.7.1 AND Operations 15-15 
15.7.2 OR Operations 15-16 
15.7.3 XOR Operations 15-17 
15.7.4 NOT Operations 15-18 

15.8 Scanning for Set Bits 15-19 

15.9 Shifting and Rotating Bits 15-20 
15.9.1 Multiplying and Dividing by Constants 15-22 
15.9.2 Moving Bits to the Least-Significant Position 15-24 
15;9.3 Adjusting Masks 15-24 
15.9.4 Shifting Multiword Values 15-24 
15.9.5 Shifting Multiple Bits 15-25 





Doing Arithmetic and Bit Manipulations 

15.1 Introduction 

The 8086-family processors provide instructions for doing calculations on 
byte, word, and doubleword values. Operations include addition, subtrac­
tion, multiplication, and division. You can also do calculations at the bit 
level. This includes the AND, OR, XOR, and NOT logical operations. 
Bits can also be shifted or rotated to the right or left. 

This chapter tells you how to use the instructions that do calculations on 
numbers and bits. 

15.2 Adding 

The ADD, ADC, and INC instructions are used for adding and increment­
ing values. 

Syntax 

ADD {register I memory },{register I memory I immediate} 
ADC {register I memory}, {register I memory I immediate} 
INC {register I memory} 

These instructions can work directly on 8-bit or 16-bit values (32-bit 
values on the 80386). They can be also be used in combination to do cal­
culations on values that are too large to be held in a single register (such 
as 32-bit values on the 80286 or 64-bit values on the 80386). When used 
with AAA and DAA, they can be used to do calculations on BCD 
numbers, as described in Section 15.5. 

15.2.1 Adding Values Directly 

The ADD and INC instructions are used for adding to values in registers 
or memory. 

The INC instruction takes a single register or memory operand. The value 
of the operand is incremented. The value is treated as an unsigned integer, 
so the carry flag is not updated for signed carries. 

The ADD instruction adds values given in source and destination 
operands. The destination can be either a register or a memory operand. 
Its contents will be destroyed by the operation. The source operand can be 
an immediate, memory, or register operand. Since memory-to-memory 
operations are never allowed, the source and destination operands can 
never both be memory operands. 

15-1 



Macro Assembler 

The result of the operation is stored in the source operand. The operands 
can be either 8 bit or 16 bit (32 bit on the 80386), but both must be the 
same size. 

An addition operation can be interpreted as addition of either signed 
numbers or unsigned numbers. It is the programmer's responsibility to 
decide how the addition should be interpreted and to take appropriate 
action if the sum is too large for the destination operand. When an addi­
tion overflows the possible range for signed numbers, the overflow flag is 
set. When an addition overflows the range for unsigned numbers, the 
carry flag is set. 

There are two ways to take action on an overflow: you can use the JO or 
JNO instruction to direct program flow to or around instructions that han­
dle the overflow (see "Testing Bits and Jumping"). You can also use the 
INTO instruction to trigger the overflow interrupt (interrupt 4) if the 
overflow flag is set. 

Examples 

• DATA 
mem8 DB 39 

. CODE 

mov 
inc 
add 

add 

mov 
add 

al,26 
al 
al,76 

al,mem8 

ah,al 
al,ah 

unsigned 
Start with register 26 

signed 
26 

Increment 1 1 
76 ; Add immediate + 76 

; Add memory 

; Copy to AH 
; Add register 

103 103 
+ 39 39 

142 -114+overflow 
142 

28+carry 

This example shows 8-bit addition. When the sum exceeds 127, the 
overflow flag is set. A JO (Jump on Overflow) or INTO (Interrupt on 
Overflow) instruction at this point could transfer control to error-recovery 
statements. When the sum exceeds 255, the carry flag is set. A JC (Jump 
on Carry) instruction at this point could transfer control to error-recovery 
statements. 

15-2 



Doing Arithmetic and Bit Manipulations 

15.2.2 Adding Values in Multiple Registers 

The ADC (Add with Carry) instruction makes it possible to add numbers 
larger than can be held in a single register. 

The ADC instruction adds two numbers in the same fashion as the ADD 
instruction, except that the value of the carry flag is included in the addi­
tion. If a previous calculation has set the carry flag, then 1 will be added 
to the sum of the numbers. If the carry flag is not set, the ADC instruction 
has the same effect as the ADD instruction. 

When adding numbers in multiple registers, the carry flag should be 
ignored for the least-significant portion, but taken into account for the 
more-significant portion. This can be done by using the ADD instruction 
for the least-significant portion and the ADC instruction for more­
significant portions. 

You can add and carry repeatedly inside a loop for calculations that 
require more than two registers. Use the ADC instruction in each itera­
tion, but tum off the carry flag with the CLC (Clear Carry Flag) instruc­
tion before entering tpe loop so that it will not be used for the first itera­
tion. You could also do the first add outside the loop. 

Example 

. DATA 
mem32 DD 316423 

. CODE 

mov ax, 43981 ; Load immediate 43981 
xor dx, dx ; into DX:AX 
add ax,WORD PTR rnern32 [0] ; Add to both + 316423 
adc dx,WORD PTR mem32 [2]; memory words 

; Result in DX:AX 360404 

15.3 Subtracting 

The SUB, SBB, DEC, and NEG instructions are used for subtracting and 
decrementing values. 

15-3 



Macro Assembler 

Syntax 

SUB {register I memory}, {register I memory I immediate} 
SBB {register I memory}, {register I memory I immediate} 
DEC {register I memory } 
NEG {register I memory } 

These instructions can work directly on 8-bit or 16-bit values (32-bit 
values on the 80386). They can be also be used in combination to do cal­
culations on values too large to be held in a single register (such as 32-bit 
values on the 80286 or 64-bit values on the 80386). When used with AAA 
and DAA, they can used to do calculations on BCD numbers, as described 
in Section 15.5. 

15.3.1 Subtracting Values Directly 

The SUB and DEC instructions are used for subtracting from values in 
registers or memory. A related instruction, NEG (Negate), reverses the 
sign of a number. 

The DEC instruction takes a single register or memory operand. The 
value of the operand is decremented. The value is treated as an unsigned 
integer, so the carry flag is not updated for signed borrows. 

The NEG instruction takes a single register or memory operand. The sign 
of the value of the operand is reversed. The NEG instruction should only 
be used on signed numbers. 

The SUB instruction subtracts the values given in the source operand 
from the value of the destination operand. The destination can be either a 
register or a memory operand. It will be destroyed by the operation. The 
source operand can be an immediate, memory, or register operand. It will 
not be destroyed by the operation. Since memory-to-memory operations 
are never allowed, the source and destination operands cannot both be 
memory operands. 

The result of the operation is stored in the source operand. The operands 
can be either 8 bit or 16 bit (32 bit on the 80386), but both must be the 
same size. 

A subtraction operation can be interpreted as subtraction of either signed 
numbers or of unsigned numbers. It is the programmer's responsibility to 
decide how the subtraction should be interpreted and to take appropriate 
action if the result is too small for the destination operand. When a sub­
traction overflows the possible range for signed numbers, the carry flag is 

15-4 



Doing Arithmetic and Bit Manipulations 

set. When a subtraction underflows the range for unsigned numbers 
(becomes negative), the sign flag is set. 

Example 

. DATA 
mem8 DB 122 

. CODE 

; signed W1signed 
mov al,95 ; Load register 95 95 
dec al ; Decrement 1 - 1 
sub al,23 ; Subtract immediate - 23 - 23 

; 71 71 
sub al,mem8 ; Subtract memory - 122 - 122 

- 51 205+sign 

mov ah,119 ; Load register 119 
sub al,ah and subtract -- 51 

86+overflow 

This example shows 8-bit subtraction. When the result goes below 0, the 
sign flag is set. A JS (Jump on Sign) instruction at this point could 
transfer control to error-recovery statements. When the result goes below 
-128, the carry flag is set. A JC (Jump on Carry) instruction at this point 
could transfer control to error-recovery statements. 

15.3.2 Subtracting with Values in Multiple Registers 

The SBB (Subtract with Borrow) instruction makes it possible to subtract 
from numbers larger than can be held in a single register. 

The SBB instruction subtracts two numbers in the same fashion as the 
SUB instruction except that the value of the carry flag is included in the 
subtraction. If a previous calculation has set the carry flag, then 1 will be 
subtracted from the result. If the carry flag is not set, the SBB instruction 
has the same effect as the SUB instruction. 

When subtracting numbers in multiple registers, the carry flag should be 
ignored for the least-significant portion, but taken into account for the 
more-significant portion. This can be done by using the SUB instruction 
for the least-significant portion and the SBB instruction for more­
significant portions. 

15-5 



Macro Assembler 

You can subtract and borrow repeatedly inside a loop for calculations that 
require more than two registers. Use the SBB instruction in each iteration, 
but turn off the carry flag with the CLC (Clear Carry Flag) instruction 
before entering the loop so that it will not be used for the first iteration. 
You could also do the first subtraction outside the loop. 

Example 

rnem32a 
rnem32b 

• DATA 
DD 
DD 
. CODE 

rnov 
rnov 
sub 
sbb 

15.4 Multiplying 

316423 
156739 

ax, WORD PTR rnem32a [0] 
dx, WORD PTR rnem32a [2] 
ax, WORD PTR rnem32b [0] 
dx,WORD PTR rnem32b[2] 

; Load rnem32 316423 
; into DX:AX 
; Subtract low 156739 
; then high 
; Result in DX:AX 159684 

The MUL and IMUL instructions are used to multiply numbers. The 
MUL instruction should be used for unsigned numbers; the IMUL 
instruction should be used for signed numbers. This is the only difference 
between the two. 

Syntax 

MUL {register I memory } 
IMUL {register I memory } 

The mUltiply instructions require that one of the factors be in the accumu­
lator register (AL for 8-bit numbers, AX for 16-bit numbers, or EAX for 
32-bit numbers). This register is implied; it should not be specified in the 
source code. Its contents will be destroyed by the operation. 

The other factor to be multiplied must be specified in a single register or 
memory operand. The operand will not be destroyed by the operation, 
unless it is DX, AH, or AL. 

Note that multiplying two 8-bit numbers will produce a 16-bit number in 
AX. If the product is a 16-bit number, it will be placed in AX and the 
overflow and carry flags will be set. 

15-6 



Doing Arithmetic and Bit Manipulations 

Similarly, multiplying two 16-bit numbers will produce a 32-bit number 
in the DX:AX register pair. If the product is a 32-bit number, the most­
significant bits will be in DX, the least-signi ficant bits will be in AX, and 
the overflow and carry flags will be set. (The 80386 handles 64-bit pro­
ducts in the same way in the EDX:EAX register pair.) 

Note 

Multiplication is one of the slower operations on 8086-family pro­
cessors (especially the 8086 and 8088). Multiplying by certain com­
mon constants is often faster when done by shifting bits (see "Mul­
tiplying and Dividing by Constants") or by using 80386 scal­
ing (see "Loading Near Pointers"). 

Examples 

mem16 
• DATA 
ow 
. CODE 

mov 
mov 
mul 

mov 

imul 

-30000 

al,23 
bl,24 
bl 

ax, SO 

me'1116 

80186/286/386 Only 

; 8-bit unsigned multiply 
; Load AL 23 
; Load BL * 24 
; Multiply BL 

Product in AX 552 
overflow oDd carry set 

16-bit signed mult:iply 
Load AX 50 

; MultipJy memory 
Product in DX:AX 

-30000 

-1500000 
overflow and carry set 

Starting with the 80186, the IMUL instruction has two additional syn­
taxes that allow for 16-bit multiples that produce a 16-bit product. (These 
instructions can be extended to 32 bits on the 80386.) 

15-7 



Macro Assembler 

Syntax 

IMUL register 16,immediate 
IMUL register 16,memory16,immediate 

You can specify a 16-bit immediate value as the source operand and a 
word register as the destination operand. The product appears in the desti­
nation operand. The 16-bit product will be placed in the destination 
operand. If the product is too large to fit in 16 bits, the carry and overflow 
flags will be set. In this context, IMUL can be used for either signed or 
unsigned multiplication, since the 16-bit product is the same. 

You can also specify three operands for IMUL. The first operand must be 
a 16-bit register operand, the second a 16-bit memory operand, and the 
third a 16-bit immediate operand. The second and third operands are mul­
tiplied and the product stored in the first operand. 

With both these syntaxes, the carry and overflow flags will be set if the 
product is too large to fit in 16 bits. The IMUL instruction with mUltiple 
operands can be used for either signed or unsigned multiplication, since 
the 16-bit product is the same in either case. If you need to get a 32-bit 
result, you must use the single-operand version of MUL or IMUL. 

Examples 

imul dx,456 ; Multiply DX times 456 
imul ax, [bx),6 ; Multiply the value pointed to by BX 

times 6 and put the result in AX 

80386 Only 

On the 80386, the IMUL instruction has an additional instruction that 
allows multiplication of a register value by a register or memory value. 

Syntax 

IMUL register, {register I memory} 

The destination can be any 16-bit or 32-bit register. The source must be 
the same size as the destination. 

Examples 

15-8 

imul 
imul 

dx,ax 
ax, [bx) 

Multiply DX times AX 
Multiply AX by the value pointed to by BX 



Doing Arithmetic and Bit Manipulations 

15.5 Dividing 

The DIV and IDIV instructions are used to divide integers. Both a quo­
tient and a remainder are returned. The DIV instruction should be used 
for unsigned integers; the IDIV instruction should be used for signed 
integers. This is the only difference between the two. 

Syntax 

DIV {register I memory } 
IDIV {register I memory} 

To divide a 16-bit number by an 8-bit number, put the number to be 
divided (the dividend) in the AX register. The contents of this register 
will be destroyed by the operation. Specify the dividing number (the divi­
sor) in any 8-bit memory or register operand (except AL or AH). This 
operand will not be changed by the operation. After the multiplication, 
the result (quotient) will be in AL and the remainder will be in AH. 

To divide a 32-bit number by a 16-bit number, put the dividend in the 
DX:AX register pair. The least significant bits go in AX. The contents of 
these registers will be destroyed by the operation. Specify the divisor in 
any 16-bit memory or register operand (except AX or DX). This operand 
will not be changed by the operation. After the division, the quotient will 
be in AX and the remainder will be in DX. (The 80386 handles 64-bit 
division in the same way by using the EDX:EAX register pair.) 

To divide a 16-bit number by a 16-bit number, you must first sign-extend 
or zero-extend (see "Converting between Data Sizes") the dividend to 32 
bits; then divide as described above. You cannot divide a 32-bit number 
by another 32-bit number (except on the 80386). 

If division by zero is specified, or if the quotient exceeds the capacity of 
its register (AL or AX), the processor automatically generates an inter­
rupt O. By default, the program terminates. To solve this problem, deter­
mine the value of the divisor before division occurred. If the value of the 
divisor is invalid, go to an error routine. For more information on inter­
rupts, see "Using Interrupts." 

Note 
Division is. one of the slower operations on 8086-family processors 
(especially the 8086 and 8088). Dividing by common constants that 
are powers of two is often faster when done by shifting bits, as 
described in "Multiplying and Dividing by Constants." 

15-9 



Macro Assembler 

Examples 

mem16 
mem32 

. DATA 

DW 
DD 
. CODE 

mov 
mov 
div 

mov 
mov 
idiv 

mov 
cwd 
mov 
idiv 

-2000 
500000 

ax, 700 
bl,36 
bl 

; Divide 16-bit unsigned by 8-bit 

Load dividend 
; Load divisor 
; Divide BL 

700 
DIV 36 

; Quotient in AL 19 
; Remainder in AH 16 

; Divide 32-bit signed by 16-bit 

ax,WORD PTR mem32[0] ; Load into DX:AX 
dx,WORD PTR mem32 [2] 500000 

DIV -2000 mem16 

ax, WORD PTR meml6 

bx,-421 
bx 

, 
; Divide memory 
; Quotient in AX 
; Remainder in DX 

-250 
o 

; Divide 16-bit signed by 16-bit 

; Load into AX 
; Extend to DX:AX 
, 
; Divide by BX 
; Quotient in AX 
; Remainder in DX 

-2000 

DIV -421 

4 
-316 

15.6 Calculating with Binary Coded Decimals 

The 8086-family processors provide several instructions for adjusting 
BCD numbers. The BCD format is seldom used for applications program­
ming in assembly language. Programmers who wish to use BCD numbers 
usually use a high-level language. However, BCD instructions are used to 
develop compilers, function libraries, and other systems tools. 

Since systems programming is beyond the scope of this manual, this sec­
tion provides only a brief overview of calculations on the two kinds of 
BCD numbers, unpacked and packed. 

15-10 



Doing Arithmetic and Bit Manipulations 

Note 

Intel mnemonics use the tenn "ASCII" to refer to unpacked BCD 
numbers and "decimal" to refer to packed BCD numbers. Thus 
AAA (ASCII Adjust for Addition) adjusts unpacked numbers, while 
DAA (Decimal Adjust for Addition) adjusts packed numbers. 

15.6.1 Unpacked BCD Numbers 

Unpacked BCD numbers are made up of bytes contammg a single 
decimal digit in the lower four bits of each byte. The 8086-family proces­
sors provide instructions for adjusting unpacked values with the four 
arithmetic operations-addition, subtraction, multiplication, and division. 

To do arithmetic on unpacked BCD numbers, you must do the 8-bit arith­
metic calculations on each digit separately. The result should always be 
in the AL register. After each operation, use the corresponding BCD 
instruction to adjust the result. The ASCII adjust instructions do not take 
an operand. They always work on the value in the AL register. 

When a calculation using two one-digit values produces a two-digit 
result, the ASCII adjust instructions put the first digit in AL and the second 
in AH. If the digit in AL needs to carry to or borrow from the digit in AH, 
the carry and auxiliary carry flags are set. 

The four ASCII adjust instructions are described below: 

Instruction Description 

AAA Adjusts after an addition operation. For example, to add 
9 and 3, put 9 in AL and 3 in BL. Then use the following 
lines to add them: 

mov 
mov 
add 
aaa 

ax, 9 
bx,3 
al,bl 

Load 9 
and 3 as unpacked BCD 

Add 09h and 03h to get OCh 
Adjust OCh in AL to 02h, 

increment AH to 01h, set carry 
Result 12 unpacked BCD in AX 

15-11 



Macro Assembler 

AAS Adjusts after a subtraction operation. For example, to 
subtract 4 from 3, put 3 in AL and 4 in BL. Then use the 
following lines to subtract them: 

AAM 

mov ax,103h ; Load 13 
mov bx,4 and 4 as unpacked BCD 
sub al,bl Subtract 4 from 3 to get FFh (-1) 
aas Adjust OFFh in AL to 9, 

decrement AH to 0, set carry 
Result 9 unpacked BCD in AX 

Adjusts after a multiplication operation. Always use 
MUL, not IMUL. For example, to multiply 9 times 3, 
put 9 in AL and 3 in BL. Then use the following lines to 
multiply them: 

mov ax,903h Load 9 and 3 as unpacked BCD 
mul ah Multiply 9 and 3 to get 1Bh 
aam Adjust 1Bh in AL 

to get 27 unpacked BCD in AX 

AAD Adjusts before a division operation. Unlike other BCD 
instructions, this one converts a BCD value to a binary 
value before the operation. After the operation, the quo­
tient must still be adjusted by using AAM. For example, 
to divide 25 by 2, put 25 in AX in unpacked BCD for­
mat: 2 in AH and 5 in AL. Put 2 in BL. Then use the fol­
lowing lines to divide them: 

mov 
mov 
aad 

div 

aam 

ax,205h 
bl,2 

bl 

Load 25 
and 2 as unpacked BCD 

Adjust 0205h in AX 
to get 19h in AX 

Divide by 2 to get 
quotient OCh in AL 
remainder 1 in AH 

Adjust OCh in AL 
to 12 unpacked BCD in AX 
(remainder destroyed) 

Notice that the remainder is lost. If you need the 
remainder, save it in another register before adjusting 
the quotient. Then move it back to AL and adjust if 
necessary. 

Multidigit BCD numbers are usually processed in loops. Each digit is pro­
cessed and adjusted in tum. 

15-12 



Doing Arithmetic and Bit Manipulations 

In addition to their use for processing unpacked BCD numbers, the ASCII 
adjust instructions can be used in routines that convert between different 
number bases. 

15.6.2 Packed BCD Numbers 

Packed BCD numbers are made up of bytes containing two decimal 
digits: one in the upper four bits and one in the lower four bits. The 8086-
family processors provide instructions for adjusting packed BCD numbers 
after addition and subtraction. You must write your own routines to adjust 
for multiplication and division. 

To do arithmetic on packed BCD numbers, you must do the eight-bit 
arithmetic calculations on each byte separately. The result should always 
be in the AL register. After each operation, use the corresponding BCD 
instruction to adjust the result. The decimal adjust instructions do not take 
an operand. They always work on the value in the AL register. 

Unlike the ASCII adjust instructions, the decimal adjust instructions never 
affect AH. The auxiliary carry flag is set if the digit in the lower four bits 
carries to or borrows from the digit in the upper four bits. The carry flag is 
set if the digit in the upper four bits needs to carry to or borrow from 
another byte. 

The decimal adjust instructions are described below: 

Instruction Description 

DAA Adjusts after an addition operation. For example, to add 
88 and 33, put 88 in AL and 33 in BL in packed BCD 
format. Then use the following lines to add them: 

mov ax,8833hiLoad 88 and 33 as packed BCD 
add aI, ah ; Add 88 and 33 to get OBBh 
daa ; Adjust OBBh to 121 packed BCD: 

1 in carry and 21 in AL 

DAS Adjusts after a subtraction operation. For example, to 
subtract 38 from 83, put 83 in AL and 38 in BL in 
packed BCD format. Then use the following lines to 
subtract them: 

mov ax,3883h;Load 83 and 38 as packed BCD 
sub al,ah; Subtract 38 from 83 to get 04Bh 
das ; Adjust 04Bh to 45 packed BCD: 

o in carry and 45 in AL 

15-13 



Macro Assembler 

Multidigit BCD numbers are usually processed in loops. Each byte is pro­
cessed and adjusted in turn. 

IS.7 Doing Logical Bit Manipulations 

The logical instructions do Boolean operations on individual bits. The 
AND, OR, XOR, and NOT operations are supported by the 8086-family 
instructions. 

AND compares two bits and sets the result if both bits are set. OR com­
pares two bits and sets the result if either bit is set. XOR compares two 
bits and sets the result if the bits are different. NOT reverses a single bit. 
Table 15.1 shows a truth table for the logical operations. 

x 

o 

o 

Table IS.1 

Values Returned by Logical Operations 

NOT 
y X 

1 0 

0 0 

1 1 

0 1 

X 
AND 

y 

1 

0 

0 

0 

X 
OR 
Y 

X 
XOR 

Y 
1 0 

1 1 

o o 

The syntax of the AND, OR, and XOR instructions are the same. The 
only difference is the operation performed. For all instructions, the target 
value to be changed by the operation is placed in one operand. A mask 
showing the positions of bits to be changed is placed in the other operand. 
The format of the mask differs for each logical instruction. The destina­
tion operand can be register or memory. The source operand can be regis­
ter, memory, or immediate. However, the source and destination operands 
cannot both be memory. 

Either of the values can be in either operand. However, the source 
operand will be unchanged by the operation, while the destination 
operand will be destroyed by it. Your choice of operands depends on 
whether you want to save a copy of the mask or of the target value. 

15-14 



Doing Arithmetic and Bit Manipulations 

Note 

The logical instructions should not be confused with the logical 
operators. They specify completely different behavior. The instruc­
tions control run-time bit calculations. The operators control 
assembly-time bit calculations. Although the instructions and opera­
tors have the same name, the assembler can distinguish them from 
context. 

15.7.1 AND Operations 

The AND instruction does an AND operation on the bits of the source and 
destination operands. The original destination operand is replaced by the 
resulting bits. 

Syntax 

AND {register I memory },{register I memory I immediate} 

The AND instruction can be used to clear the value of specific bits 
regardless of their current settings. To do this, put the target value in one 
operand and a mask of the bits you want to clear in the other. The bits of 
the mask should be 0 for any bit positions you want to clear and 1 for any 
bit positions you want to remain unchanged. 

Example 1 

mov ax,035h ; Load value 00110101 
and ax,OFBh ; Mask off bit 2 AND 11111011 

; 
; Value is now 31h 00110001 

and ax,OF8h ; Mask off bits 2,1,0 AND 11111000 
; 
; Value is now 30h 00110000 

15-15 



Macro Assembler 

Example 2 

ans db ? 
mov al,ans 
and al,11011111b Convert to uppercase by clearing bit 5 
crop al,'Y' Is it Y? 
je yes If so, do Yes stuff 

else do No stuff 

yes: 

Example 2 illustrates how to use the AND instruction to convert a charac­
ter to uppercase. If the character is already uppercase, the AND instruc­
tion has no effect, since bit 5 is always clear in uppercase letters. If the 
character is lowercase, clearing bit 5 converts it to uppercase. 

15.7.2 OR Operations 

The OR instruction does an OR operation on the bits of the source and 
destination operands. The original destination operand is replaced by the 
resulting bits. 

Syntax 

OR {register I memory },{register I memory I immediate} 

The OR instruction can be used to set the value of specific bits regardless 
of their current settings. To do this, put the target value in one operand 
and a mask of the bits you want to clear in the other. The bits of the mask 
should be 1 for any bit positions you want to set and 0 for any bit posi­
tions you want to remain unchanged. 

Example 

mov ax,035h Move value to register 00110101 
mov ax,035h Move value to register 00110101 
or ax,OSh Mask on bit 3 OR 00001000 

Value is now 3Dh 00111101 
or ax,07h Mask on bits 2,1,0 OR 00000111 

--------
Value is now 3Fh 00111111 

15-16 



Doing Arithmetic and Bit Manipulations 

Another common use for OR is to compare an operand to O. For example: 

or 

jg 
jl 

bx,bx 

positive 
negative 

Compare to 0 
2 bytes, 2 clocks on 8088 

EX is positive 
EX is negative 
EX is zero 

The first statement has the same effect as the following statement, but is 
faster and smaller: 

crop bx,O ; 3 bytes, 3 clocks on 8088 

15.7.3 XOR Operations 

The XOR (Exclusive OR) instruction does an XOR operation on the bits 
of the source and destination operands. The original destination operand 
is replaced by the resulting bits. 

Syntax 

XOR {register I memory },{register I memory I immediate} 

The XOR instruction can be used to toggle the value of specific bits 
(reverse them from their current settings). To do this, put the target value 
in one operand and a mask of the bits you want to toggle in the other. The 
bits of the mask should be 1 for any bit positions you want to toggle and 0 
for any bit positions you want to remain unchanged. 

Example 

mov ax,035h ; Move value to register 00110101 
xor ax,08h ; Mask on bit 3 XOR 00001000 

; Value is now 3Dh 00111101 
xor ax,07h ; Mask on bits 2,1,0 XOR 00000111 

; Value is now 3Ah 00111010 

Another common use for the XOR instruction is to set a register to O. For 
example: 

xor cX,cx 2 bytes, 3 clocks on 8088 

15-17 



Macro Assembler 

This sets the ex register to O. When the identical operands are XORed, 
each bit cancels itself, producing O. The statement 

mov CX,O ; 3 bytes, 4 clocks on 8088 

is the obvious way of doing this, but it is larger and slower. The statement 

sub CX,CX ; 2 bytes, 3 clocks on 8088 

is also smaller than the MOV version. The only advantage of using MOV 
is that it does not affect any flags. 

15.7.4 NOT Operations 

The NOT instruction does a NOT operation on the bits of a single 
operand. It is used to toggle the value of all bits at once. 

Syntax 

NOT {register I memory} 

The NOT instruction is often used to reverse the sense of a bit mask from 
masking certain bits on to masking them off. Use the NOT instruction if 
the value of the mask is not known until run time; use the NOT operator 
(see "Bitwise Logical Operators") if the mask is a constant. 

Example 

masker 

15-18 

. DATA 
DB 00010000b 
. CODE 

mov 
or 

not 
and 

aX,OD743h 
al,masker 

masker 
ah,masker 

Value may change at run time 

Load OD7h to AH; 43h to AL 01000011 
Turn on bit 4 in "~ OR 00010000 

Result is 53h 01010011 

Reverse sense of mask 11101111 
Turn off bit 4 in AH AND 11010111 

Result is OC7h 11000111 



Doing Arithmetic and Bit Manipulations 

15.8 Scanning for Set Bits 

80386 Only 

The 80386 processor has instructions for scanning bits to find the first or 
last set bit in a register value. These instructions can be used to find the 
position of a set bit in a mask or other value. They can also check to see if 
a register value is O. 

Syntax 

BSF register, {register I memory } 
BSR register, {register I memory } 

The bit scan instructions work only on 16-bit or 32-bit registers. They 
cannot be used on memory operands or 8-bit registers. The source register 
contains the value to be scanned. The destination register should be the 
register where you want to store the position of the first or last set bit. 

The BSF (Bit Scan Forward) instruction scans the bits of the source regis­
ter starting with the 0 bit and working toward the most-significant bit. The 
BSR (Bit Scan Reverse) instruction scans the bits of the source register 
starting with the most-significant bit and working toward the 0 bit. 

Example 

• DATA 
widfield EQU 200 
bitfield DD widfield DUP (?) 

. CODE 

cld 
push 
pop 
mov 
xor 
mov 
repe 
jecxz 
sub 
mov 
bsr 

ds Load segment of bit field 
es into ES 
cx,widfield Load maximum count 
eax,eax ; Set search value to 0 
di,OFFSET bitfield ; Load bitfield address 
scasd 
none 
di,4 
eax, [dil 
ecx,eax 

Find first nonzero bit 
; If none found, get out 
; Point back to doubleword 
; Else load first nonzero 
; Find first set bit 
; ECX now contains bit position 
; DI points to doubleword 

none: 

15-19 



Macro Assembler 

This example scans a large bit field. Starting at the beginning of the field, 
it finds the first nonzero doubleword. Then it finds the first set bit within 
the doubleword. See the chapter "Processing Strings" for more informa­
tion on the string instructions used in this example. 

15.9 Shifting and Rotating Bits 

The 8086-family processors provide a complete set of instructions for 
shifting and rotating bits. Bits can be moved right (toward the most­
significant bits) or left (toward the 0 bit). Values shifted off the end of the 
operand go into the carry flag. 

Shift instructions move bits a specified number of places to the right or 
left. The last bit in the direction of the shift goes into the carry flag, and 
the first bit is filled with 0 or with the previous value of the first bit. 

Rotate instructions move bits a specified number of places to the right or 
left. For each bit rotated, the last bit in the direction of the rotate is moved 
into the first bit position at the other end of the operand. With some varia­
tions, the carry bit is used as an additional bit of the operand. Figure 15.1 
illustrates the eight variations of shift and rotate instructions for 8-bit 
operands. Notice that SHL and SAL are exactly the same. 

15-20 



Doing Arithmetic and Bit Manipulations 

SHL (Shift Left) SHR (Shift Right) 
7 0 7 0 

I_I_I_I_I_I_I_I_~O 
CF .t 

o~ __ '1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 
\lCF 

U U 
SAL (Shift Arithmetic Left) SAR (Shift Arithmetic Right) 

7 0 7 0 

1_1_1_1_1_1_1_1_~o 
CF .t 
U 

C§-H-H-H-I-~CF 
U 

ROL (Rotate Left) 

RCL (Rotate Through 
Carry Left) 

7 0 

ROR (Rotate Right) 

RCR (Rotate Through 
Carry Right) 

7 0 

CF I,P-H:-I-H-I-I-~ 
Uf------------' 

r-H-I-I-I-I-I--:~ CF 
'--------1U 

Figure 15-1 Shifts and Rotates 

Syntax 

SHL {register I memory},{CL II} 
SHR {register I memory},{CL II} 
SAL {register I memory},{CL II} 
SAR {register I memory},{CL II} 
ROL {register I memory},{CL II} 
ROR {register I memory},{CL II} 
RCL {register I memory},{CL II} 
RCR {register I memory},{CL II} 

15-21 



Macro Assembler 

The fonnat of all the shift instructions is the same. The destination 
operand should contain the value to be shifted. It will contain the shifted 
operand after the instruction. The source operand should contain the 
number of bits to shift or rotate. It can be the immediate value 1 or the CL 
register. No other value or register is accepted on the 8088 and 8086 pro­
cessors. 

8018612861386 Only 

Starting with the 80186 processor, 8-bit immediate values larger 
than 1 can be given as the source operand for shift or rotate instruc­
tions, as shown below: 

shr bx,4 ; 9 clocks, 3 bytes on 80286 

The following statements are equivalent if the program must run on 
the 8088 or 8086: 

rnov 
shr 

cl,4 
bx,cl 

; 2 clocks, 3 bytes on 80286 
; 9 clocks, 2 bytes on 80286 
;11 clocks, 5 bytes 

15.9.1 Multiplying and Dividing by Constants 

Shifting right by one has the effect of dividing by two; shifting left by one 
has the effect of mUltiplying by two. You can take advantage of this to do 
fast multiplication and division by common constants. The easiest con­
stants are the powers of two. Shifting left twice multiplies by four, shift­
ing left three times multiplies by eight, and so on. 

SHR is used to divide unsigned numbers. SAR can be used to divide 
signed numbers, but SAR rounds negative numbers down-IDIV always 
rounds up. Code that divides by using SAR must adjust for this difference. 
Multiplication by shifting is the same for signed and unsigned numbers, 
so either SAL or SHL can be used. Both instructions do the same opera­
tion. 

15-22 



Doing Arithmetic and Bit Manipulations 

Since the mUltiply and divide instructions are the slowest on the 8088 and 
8086 processors, using shifts instead can often speed operations by a fac­
tor of 10 or more. For example, on the 8088 or 8086 processor, the follow­
ing statements take 4 clocks: 

xor 
shl 

ah,ah 
ax,l 

Clear AH 
Multiply byte in AL by 2 

The following statements have the same effect, but take between 74 and 
81 clocks on the 8088 or 8086: 

mov 
mul 

bl,2 
bl 

Multiply byte in AL by 2 

The same statements take 15 clocks on the 80286 or between 11 and 16 
clocks on the 80386. 

Shift instructions can be combined with add or subtract instructions to do 
multiplication by common constants. These operations are best put in 
macros so that they can be changed if the constants 'in a program change. 

Example 1 

mul 10 

Example 2 

div u512 

MACRO 
mov 
shl 
mov 
shl 
shl 
add 
ENDM 

MACRO 
mov 
shr 
xchg 

cbw 
ENDM 

factor 
ax, factor 
ax, 1 
bx,ax 
ax, 1 
ax, 1 
ax,bx 

; Factor must be unsigned 
; Load into M 
; M = factor * 2 
; Save copy in BX 
; M = factor * 4 
; M = factor * 8 
; M = (factor * 8) + (factor * 2) 
; AX = factor * 10 

dividend ; Dividend must be unsigned 
ax, dividend; Load into M 
ax, 1 ; AX = dividend / 2 (unsigned) 
al,ah ; xchg is like rotate right 8 

AL = (dividend / 2) / 256 
; Clear upper byte 

AX = (dividend / 512 

15-23 



Macro Assembler 

15.9.2 Moving Bits to the Least-Significant Position 

Sometimes a group of bits within an operand needs to be treated as a sin­
gle unit-for example, to do an arithmetic operation on those bits without 
affecting other bits. This can be done by masking off the bits, and then 
shifting them into the least-significant positions. After the arithmetic 
operation is done, the bits are shifted back to the original position and 
merged with the original bits by using OR. For an example of this opera­
tion, see "Defining and Redefining Interrupt Routines." 

15.9.3 Adjusting Masks 

Masks for logical instructions can be shifted to new bit positions. For 
example, an operand that masks off a bit or group of bits can be shifted to 
move the mask to a different position. 

Example 

. DATA 
masker DB OOOOOOlOb ; Mask that may change at run time 

• CODE 

mov cl,2 ; Rotate two at a time 
mov bl,57h ; Load value to be changed OlOlOlllb 
rol masker,cl ; Rotate two to left OOOOlOOOb 
or bl,masker ; Turn on masked values ---------

; New value is 05Fh OlOlllllb 
rol masker,cl ; Rotate two more OOlOOOOOb 
or bl,masker ; Turn on masked values ---------

; New value is 07Fh Olllllllb 

This technique is useful only if the mask value is unknown until runtime. 

15.9.4 Shifting Multiword Values 

Sometimes it is necessary to shift a value that is too large to fit in a regis­
ter. In this case, you can shift each part separately, passing the shifted bits 
through the carry flag. The RCR or RCL instructions must be used to 
move the carry value from the first register to the second. 

RCR and RCL can also be used to initialize the high or low bit of an 
operand. Since the carry flag is treated as part of the operand (like using a 
9-bit operand), the flag value before the operation is crucial. The carry 
flag may be set by a previous instruction, or you can set it directly using 

15-24 



Doing Arithmetic and Bit Manipulations 

the CLC (Clear Carry Flag), CMC (Complement Carry Flag), and STC 
(Set Carry Flag) instructions. 

Example 

• DATA 
mem32 DD 500000 

• CODE 

mov cx,4 
again: shr IDRD PTR mem32 [2],1 

rcr IDRD PTR mem32 [0] , 1 
loop again 

15.9.5 Shifting Multiple Bits 

80386 Only 

; Divide 32-bit unsigned by 16 

Shift right 4 500000 
Shift into carry DIV 16 
Rotate carry in 

31250 

The 80836 processor has new instructions for shifting multiple bits into 
an operand. The SHLD (Double Precision Shift Left) instruction shifts a 
specified group of bits left and into an operand. The SHRD (Double Pre­
cision Shift Right) instruction shifts a specified group of bits right and 
into an operand. 

Syntax 

SHRD {register I memory} ,register, {CL I immediate} 
SHLD {register I memory},register,{CL I immediate} 

These instructions take three operands. The first (leftmost) contains the 
value to be shifted. It must be a 16-bit or 32-bit register or memory 
operand. The second operand contains the bits to be shifted into the value. 
It must be a register of the same size as the first operand. The third 
operand contains the number of bits to shift. It may be an immediate 
operand or the CL register. 

15-25 



Macro Assembler 

Example 

mov ax,3AF2h Load AX=00111010 11110010 
mov bx,9COOh Load BX= 10011100 00000000 
shld ax,bx,7 Shift 7 01111001 0 <- 7 

1001110 <- 7 

AX=01111001 01001110 (794Eh) 

15-26 



Chapter 16 

Controlling Program Flow 

16.1 futroduction 16-1 

16.2 Jumping 16-1 
16.2.1 Jumping Unconditionally 16-1 
16.2.2 Jumping Conditionally 16-3 

16.3 Looping 16-12 

16.4 Setting Bytes Conditionally 16-15 

16.5 Using Procedures 16-16 
16.5.1 Calling Procedures 16-16 
16.5.2 Defining Procedures 16-17 
16.5.3 Passing Arguments on the Stack 16-19 
16.5.4 Using Local Variables 16-21 
16.5.5 Setting Up Stack Frames 16-23 

16.6 Using futerrupts 16-25 
16.6.1 Calling futerrupts 16-25 
16.6.2 Defining and Redefining futerrupt Routines 16-27 

16.7 Checking Memory Ranges 16-27 





Controlling Program Flow 

16.1 Introduction 

The 8086-family processors provide a variety of instructions for control­
ling the flow of a program. The four major types of program-flow instruc­
tions are jumps, loops, procedure calls, and interrupts. 

This chapter tells you how to use these instructions and how to test condi­
tions for the instructions that change program flow conditionally. 

16.2 Jumping 

Jumps are the most direct method of changing program control from one 
location to another. At the internal level, jumps work by changing the 
value of the IP (Instruction Pointer) register from the address of the 
current instruction to a target address. 

Jumps can be short, near, or far. Near and short jumps are handled 
automatically, though masm may not always generate the most efficient 
code if the label being jumped to is a forward reference. The size and 
control of jumps is discussed in "Forward References to Labels." 

16.2.1 Jumping Unconditionally 

The JMP instruction is used to jump unconditionally to a specified 
address. 

Syntax 

JMP {register I memory} 

The operand should contain the address to be jumped to. Unlike condi­
tional jumps, whose target address must be short (within 128 bytes), the 
target address for unconditional jumps can be short, near, or far. For more 
information on specifying the distance for conditional jumps, see "For­
ward References to Labels. ' , 

16-1 



Macro Assembler 

If a conditional jump must be greater than 128 bytes, the construction 
must be reorganized (except on the 80386). This can be done by reversing 
the sense of the conditional jump and adding an unconditional jump, as 
shown in Example 1. 

Example 1 

close: 

distant: 

anp 
je 

cmp 
jne 
jrnp 

ax, 7 
close 

ax, 6 
close 
distant 

; If AX is 7 and jump is short 
then jtnnp close 

; If AX is 6 and jump is near 
; then test opposite and skip over 
; Now jump 

; Less than 128 bytes from jump 

; More than 128 bytes from jump 

An unconditional jump can be used as a form of conditional jump by 
specifying the address in a register or indirect memory operand. The 
value of the operand can be calculated at run time, based on user interac­
tion or other factors. You can use indirect memory operands to construct 
jump tables that work like C switch statements, BASIC ON GOTO state­
ments, or Pascal case statements. 

16-2 



Example 2 

. CODE 

jrnp 
ctl tbl LABEL 

OW 
OW 
OW 

process: 

cbw 
mov 
shl 

jrnp 

extended: 

ctrla: 

jrnp 

ctrill: 

jrnp 

next: 

process 
mRD 
extended 
ctrla 
ctrill 

bx,ax 
bx,l 

ctl_tbl[bxJ 

next 

next 

Controlling Program Flow 

; Jump over data 
(required in overlay procedures) 

; Null key (extended code) 
; Address of CONTROL-A key routine 
; Address of CONTROL-B key routine 

Get a key into AL 

Convert AL to l0( 

Copy 
Convert to address 

Jump to key routine 

Get second key of extended 

Use another jump table 
for extended keys 

CONTROL-A routine here 

CONTROL-B routine here 

Continue 

In Example 2, an indirect memory operand points to addresses of routines 
for handling different keystrokes. Notice that the jump table is placed in 
the code segment. This technique is optional in stand-alone assembler 
programs, but it may be required for procedures called from some 
languages. 

16.2.2 Jumping Conditionally 

The most common way of transferring control in assembly language is 
with conditional jumps. This is a two-step process: first test the condition, 
and then jump if the condition is true or continue if it is false. 

16-3 



Macro Assembler 

Syntax 

Jcondition label 

Conditional-jump instructions take a single operand contammg the 
address to be jumped to. The distance from the jump instruction to the 
specified address must be short (less than 128 bytes). If a longer distance 
is specified, an error will be generated telling the distance of the jump in 
bytes. For information on arranging longer conditional jumps, see 
"Jumping Unconditionally." 

80386 Only 

Conditional jumps to forward references are near by default under the 
80386 processor. But you can use the SHORT operator to specify short 
jumps. For information specifying the size of jumps, see "Forward 
References to Labels." 

Conditional-jump instructions (except JCXZ) use the status of one or 
more flags as their condition. Thus any statement that sets a flag under 
specified conditions can be the test statement. The most common test 
statements use the CMP or TEST instructions. The jump statement can 
be anyone of 31 conditional-jump instructions. 

Comparing and Jumping 

The CMP instruction is specifically designed to test for conditional 
jumps. It does not change the destination operand, so it can be used to 
compare two values without changing either of them. Instructions that 
change operands (such as SUB or AND) can also be used to test condi­
tions. 

The CMP instruction compares two operands and sets flags based on the 
result. It is used to test the following relationships: equal; not equal; 
greater than; less than; greater than or equal; or less than or equal. 

Syntax 

CMP {register I memory},{register I memory I immediate} 

The destination operand can be memory or register. The source operand 
can be immediate, memory, or register. However, they cannot both be 
memory operands. 

16-4 



Controlling Program Flow 

The jump instructions that can be used with CMP are made up of 
mnemonic letters combined to indicate the type of jump. The letters are 
shown below: 

Letter Meaning 

J Jump 

G Greater than (for signed comparisons) 

L Less than (for signed comparisons) 

A Above (for unsigned comparisons) 

B Below (for unsigned comparisons) 

E Equal 

N Not 

The mnemonic names always refer to the relationship that the first 
operand of the CMP instruction has to the second operand of the CMP 
instruction. For instance, JG tests whether the first operand is greater than 
the second. Several conditional instructions have two names. You can use 
whichever name seems more mnemonic in context. 

Comparisons and conditional jumps can be thought of as statements in the 
following format: 

IF (value1 relationship value2) THEN GOTO truelabel 

Statements of this type can be coded in assembly language by using the 
following syntax: 

CMP value} ,value2 
Jrelationship truelabel 

truelabel: 

Table 16.1 lists conditional-jump instructions for each relationship and 
shows the flags that are tested in order to see if relationship is true. 

16-5 



Macro Assembler 

Table 16.1 

Conditional-Jump Instructions Used after Compare 

Jump Signed Unsigned 
Condition Compare Jump if: Compare Jump if: 

Equal JE ZF=1 JE ZF=l 

Not equal -:f:. JNE ZF=O JNE ZF=O 

Greater > JGor ZF=Oand JAor CF=O and 
than JNLE SF=OF JNBE ZF=O 

Less than :::;; JLEor ZF=lor JBEor CF=lor 
or equal JNG SF-:f:.OF JNA ZF=l 

Less < JLor SF-:f:.OF JBor CF=l 
than JNGE JNAE 

Greater ~ JGEor SF=OF JAEor CF=O 
than JNL JNB 
or equal 

Internally, the CMP instruction is exactly the same as the SUB instruc­
tion, except that the destination operand is not changed. The flags are set 
according to the result that would have been generated by a subtraction. 

Example 1 

; If ex is less than -20, then make OX 30, else make OX 20 

anp 
jl 
rnov 
jrnp 

less: rnov 
further: 

cx,-20 
less 
dx,20 
further 
dx,30 

; If signed ex is smaller than -20 
; Then do stuff at "less" 
; Else set OX to 20 
; Finished 
; Then set OX to 30 

Example 1 shows the basic form of conditional jumps. Notice that in 
assembly language, if-then-else constructions are usually written in the 
form if-else-then. 

This theme has many variations. For example, you may find it more 
mnemonic to code in the if-then-else format. However, you must then use 
the opposite jump condition, as shown in Example 2. 

16-6 



Controlling Program Flow 

Example 2 

If ex is greater than or equal to -20, then make DX 20, else make DX 30 

notless: 
continue: 

c::rrp 
jnl 
mov 
jrrp 
mov 

cx,-20 
not less 
dx,30 
continue 
dx,20 

; If signed ex is smaller than -20 
; else do stuff at "not less" 
; Then set DX to 30 
; Finished 
; Else set DX to 20 

The then-if-else format shown in Example 3 is often more efficient. Do 
the work for the most likely case, and then compare for the opposite con­
dition. If the condition is true, you are finished. 

Example 3 

; DX is 20, unless ex is less than -20, then make DX 30 

greatequ: 

mov 
c::rrp 
jge 
mov 

dx,20 
cx,-20 
greatequ 
dx,30 

; DX is 20 
; If signed ex is greater than -20 
; Then done 
; Else set DX to 30 

This example avoids the unconditional jump used in Examples 1 and 2 
and thus is faster even if the less likely condition is true. 

Jumping Based on Flag Status 

The CMP instruction is the most mnemonic way to set the flags for condi­
tional jumps, but any instruction that changes flags can be used as the test 
condition. The conditional-jump instructions listed below enable you to 
jump based on the condition of flags rather than on relationships of 
operands. Some of these instructions have the same effect as instructions 
listed in Table 16.1. 

Instruction Action 

JO Jumps if the overflow flag is set 

JNO Jumps if the overflow flag is clear 

JC Jumps if the carry flag is set (same as JB) 

16-7 



Macro Assembler 

JNC Jumps if the carry flag is clear (same as JAE) 

JZ Jumps if the zero flag is set (same as JE) 

JNZ Jumps if the zero flag is clear (same as JNE) 

JS Jumps if the sign flag is set 

JNS Jumps if the sign flag is clear 

JP Jumps if the parity flag is set 

JNP Jumps if the parity flag is clear 

JPE Jumps if parity is even (parity flag set) 

JPO Jumps if parity is odd (parity flag clear) 

JCXZ Jumps if CX is 0 

Notice that the JCXZ is the only conditional jump based on the condition 
of a register (CX) rather than flags. Since JCXZ is usually used with loop 
instructions, it is discussed in more detail in "Setting Bytes Condition­
ally. " 

Example 1 

overflow: 

Example 2 

16-8 

add 
jo 

sub 
jnz 
call 

aX,bx 
overflow 

Add two values 
If value too large, adjust 

ax,dx 
go_on 
zhandler 

Adjustment routine here 

Subtract 
If the result is not zero, continue 

else do special case 



Controlling Program Flow 

Testing Bits and Jumping 

Like the CMP instruction, the TEST instruction is designed to test for 
conditional jumps. However, specific bits are compared rather than entire 
operands. 

Syntax 

TEST {register I memory}, {register I memory I immediate} 

The destination operand can be memory or register. The source operand 
can be immediate, memory, or register. However, the operands cannot 
both be memory. 

Normally, one of the operands is a mask in which the bits to be tested are 
the only bits set. The other operand contains the value to be tested. If all 
the bits set in the mask are clear in the operand being tested, the zero flag 
will be set. If any of the flags set in the mask are also set in the operand, 
the zero ~ag will be cleared. 

The TEST instruction is actually the same as the AND instruction, except 
that neither operand is changed. If the result of the operation is 0, the zero 
flag is set, but the 0 is not actually written to the destination operand. 

You can use the JZ and JNZ instructions to jump after the test. JE and 
JNE are the same and can be used if you find them more mnemonic. 

16-9 



Macro Assembler 

Example 

• DATA 
bits DB ? 

. CODE 

If bit 2 or bit 4 is set, then call taska 

; Assume "bits" is OD3h 11010011 
test bits,10100b; If 2 or 4 is set AND 00010100 
jz go_on ; Else continue 
call taska Then call taska 00010000 

; Jump not taken 

If bits 2 and 4 are clear, then call taskb 

; Assume "bits" is OE9h 11101001 
test bits,10100b; If 2 and 4 are clear AND 00010100 
jnz next ; Else continue 
call taskb Then call taskb 00000000 

next: ; Jump not taken 

Testing and Setting Bits 

80386 Only 

The 80386 processor has bit test and set instructions. These instructions 
have two purposes. They can test the status of a bit to control program 
flow; some of them can also change the value of a specified bit. 

Syntax 

BT {register I memory}, {register I immediate} 
BTC {register I memory}, {register I immediate} 
BTR {register I memory}, {register I immediate} 
BTS {register I memory },{register I immediate} 

For each of the instructions, the memory or register destination operand is 
the target value that will be tested. The register or immediate source 

16-10 



Controlling Program Flow 

operand specifies the number of the bit to be tested in the destination 
operand. The four bit-testing instructions are described below: 

Instruction Description 

BT The Bit Test instruction examines the specified bit in the 
target value and puts a copy in the carry flag. The carry 
flag can then be used by another instruction such as a 
conditional jump. For example, assume BX points to a 
bit field and CX contains 4 in the following statements: 

bt 

jc 

[bx] ,cx 

somewhere 

Put bit 4 of bit field 
pointed to by BX in carry 

Jump if carry set 

The same thing could be done less efficiently on other 
8086-family processors with the following statements: 

mov 
shr 
test 
jnz 

ax, [bx] 
aX,cl 
ax, 1 
somewhere 

Load value pointed to by BX 
Shift bit 4 to first position 
See if bit is set 
Jump if it is 

This instruction is only useful if the source operand is 
not known until run time. If the source operand is a con­
stant, the TEST instruction (see "Testing Bits and 
Jumping' ') is more efficient. 

BTC The Bit Test and Complement instruction examines the 
specified bit in the target value and puts a copy in the 
carry flag. It then reverses the value of the bit. For exam­
pIe, assume BX points to a bit field and CX contains 4 in 
the following statements: 

btc [bx],cx ; Put bit 4 of bit field in carry 
and toggle bit 4 

jc somewhere; Jump if carry set 

BTR The Bit Test and Reset instruction examines the 
specified bit in the target value and puts a copy in the 
carry flag. It then clears the bit. For example, assume 
BX points to a bit field and CX contains 4 in the follow­
ing statements: 

btr [bx] ,cx 

jc somewhere 

Put bit 4 of bit field in carry 
and clear bit 4 

Jump if carry set 

16-11 



Macro Assembler 

BTS The Bit Test and Set instruction examines the specified 
bit in the target value and puts a copy in the carry flag. It 
then sets the bit. For example, assume BX points to a bit 
field and CX contains 4 in the following statements: 

bts 

jc 

Example 

• DATA 

[bx],cx 

somewhere 

Put bit 4 of bit field in carry 
and set bit 4 

Jurrp if carry was set 

flag 
error 

RECORD a:3=O,b:2=O,e:l=O,d:2=O,e:l=O,f:l=O 
flag <> 
.CODE 

btr error,e 
je fixe 

fixa: 

In this example, a bit field made up of error flags is tested. If the bit flag 
being tested is set, indicating an error, the flag is turned off and control is 
directed to a label where the error is corrected. 

16.3 Looping 

The 8086-family of processors has several instructions specifically 
designed for creating loops of repeated instructions. In addition, you can 
create loops using conditional jumps. 

Syntax 

LOOP label 
, LOOPE label 
LOOPZ label 
LOOPNE label 
LOOPNZ label 
JCXZ label 

The LOOP instruction is used for loops with a set number of iterations. 
For example, it can be used in constructions similar to the "for" loops of 
BASIC, C, and Pascal, and the "do" loops of FORTRAN. 

16-12 



Controlling Program Flow 

A single operand specifies the address to jump to each time through the 
loop. The CX register is used as a counter for the number of times to loop. 
On each iteration, CX is decremented. When CX reaches 0, control 
passes to the instruction after the loop. 

The LOOPE, LOOPZ, LOOPNE, and LOOPNZ instructions are used in 
loops that check for a condition. For example, they can be used in con­
structions similar to the "while" loops of BASIC, C, and Pascal; the 
"repeat" loops of Pascal; and the "do" loops of C. 

The LOOPE (also called LOOPZ) instruction can be thought of as mean­
ing "loop while equal." Similarly, LOOPNE (also called LOOPNZ) 
instruction can be thought of as meaning "loop while not equaL" A sin­
gle short memory operand specifies the address to loop to each time 
through. The CX register can specify a maximum number of times to go 
through the loop. The CX register can be set to a number that is out of 
range if you do not want a maximum count. 

The JCXZ instruction (and its 32-bit 80386 extension, JECXZ) are often 
used in loop structures. For example, it may be used in loops that check a 
condition at the start of the loop rather than at the end. Unlike the loop 
instruction, JCXZ does not decrement CX, so the programmer must use 
another statement to decrement the count. 

80386 Only 

Unlike conditional-jump instructions, which can jump to either a near or a 
short label under the 80386, the loop instructions, JCXZ instruction, and 

. _ JECXZ instruction always jump to a short label. 

Example 1 

; For 0 to 200 do task 

mov cx,200 ; Set counter 
next: ; Do the task here 

loop next ; Do again 
; Continue after loop 

16-13 



Macro Assembler 

This loop has the same effect as the following statements: 

; For 0 to 200, do task 

next: 
mov cx,200 

dec ex 
c:mp 
jne 

ex, 0 
next 

Set counter 

Do the task here 

Do again 
Continue after loop 

The first version is more efficient as well as easier to understand. How­
ever, there are situations in which you must use conditional-jump instruc­
tions rather than loop instructions. For example, conditional jumps are 
often required for loops that test several conditions. 

If the counter in CX is variable because of previous instructions, you 
should use the JCXZ instruction to check for 0, as shown in Example 2. 
Otherwise, if CX is 0, it will be decremented to -1 in the first iteration and 
will continue through 65,535 iterations before it reaches ° again. 

Example 2 

For 0 to CX do task 

jcxz done 
next: 

loop next 
done: 

Example 3 

; While AX is not 128, do task 

mov cx,OFFFFh 
wend: 

c:mp ax, 128 
loopne wend 

16-14 

CX counter set previously 
Check for 0 
Do the task here 

Do again 
Continue after loop 

Set count too high to interfere 
Do the task here 

Is it 128? 
No? Repeat 
Yes? Continue 



Controlling Program Flow 

16.4 Setting Bytes Conditionally 

80386 Only 

The 80386 processor has a new group of instructions for setting bytes 
conditionally. These instructions test the condition of specified flags, and 
depending on the result, set a memory operand either to 1 or to O. They 
can be used to set byte variables that are used as Boolean flags. 

Syntax 

SETcondition {register I memory } 

Conditional-set instructions test conditions in the same way as 
conditional-jump instructions, except that instead of jumping if the 
condition is met, they set a specified byte. For example, SETZ is similar 
to JZ, SETNE is similar to JNE, and so on. For more information on 
how flags are tested for conditional jumps, see "Jumping Uncondition­
ally." 

Conditional-set instructions require one 8-bit operand, which can be 
either a register or a memory operand. If the condition tested by the 
instruction is true, the operand is set to 1. Otherwise the operand is set to 
O. 

Conditional-set instructions are usually preceded by a CMP or TEST 
instruction, although any instruction that sets flags can be used to test for 
the condition. 

Example 

bigflag 
amount 

• DATA 
DB 
OW 
• CODE 

; bigflag = amount > 1000 

amp size, 1000 
setg bigflag 

; Boolean flag 
Size variable to be set at run time 

Size is set 

Is "size" greater than 1000? 
If greater, "bigflag" = 1 

else "bigflag" = a 

16-15 



Macro Assembler 

In the example, the Boolean variable bigfiag is set according to a com­
parison of two other values. Some languages (such as BASIC) set the 
result of true relational statements to -1 rather than 1. To make the code 
compatible with such compilers, you should negate the value after setting 
it. For example, add the following line to the previous example: 

neg bigflag ; Negate result 

This statement would be necessary for BASIC, since the expression 
BIGFLAG=SIZE>IOOO evaluates to -1. It would not be necessary for C, 
since the expression bigfiag=size> 1000 evaluates to 1. 

16.5 Using Proced ures 

Procedures are units of code that do a specific task. They provide a way of 
modularizing code so that a task can be accomplished from any point in a 
program without using the same code in each place. Assembly-language 
procedures are comparable to functions in C; subprograms, functions, and 
subroutines in BASIC; procedures and functions in Pascal; or routines and 
functions in FORTRAN. 

Two instructions and two directives are usually used in combination to 
define and use assembly-language procedures. The CALL instruction is 
used to call procedures defined elsewhere. The RET instruction is used to 
return control from a called procedure to the code that called it. The 
PROC and ENDP directives normally mark the beginning and end of a 
procedure definition, as described in "Defining Procedures." 

The CALL and RET instructions use the stack to keep track of the loca­
tion of the procedure. The CALL instruction pushes the calling address 
onto the stack and then jumps to the starting address of the procedure. 
The RET instruction pops the address pushed by the CALL instruction 
and returns control to the instruction following the call. 

Every CALL must have a RET to restore the stack to its status before the 
CALL. Calls may be nested. 

16.5.1 Calling Procedures 

The CALL instruction saves the address following the instruction on the 
stack and passes control to a specified address. 

16-16 



Controlling Program Flow 

Syntax 

CALL {register I memory} 

The address is usually specified as a direct memory operand. However, 
the operand can also be a register or indirect memory operand containing 
a value calculated at run time. This enables you to write call tables simi­
lar to the jump table illustrated in "Comparing and Jumping." 

Calls can be near or far. Near calls push only the offset portion of the cal­
ling address. Far calls push both the segment and offset. You must give 
the type of far calls to forward-referenced labels using the FAR type 
specifier and the PTR operator. For example, use the following statement 
to make a far call to a label that has not been earlier defined or declared 
external in the source code: 

call FAR PTR task 

16.5.2 Defining Procedures 

Procedures are defined by labeling the start of the procedure and placing a 
RET instruction at the end. There are several variations on this syntax. 

Syntax 1 

label PROC [NEAR I FAR] 
statements 
RET [constant] 
label ENDP 

Procedures are normally defined by using the PROC directive at the start 
of the procedure and the ENDP directive at the end. The RET instruction 
is normally placed immediately before the ENDP directive. The size of 
the RET instruction automatically matches the size defined by the PROC 
directive. 

Syntax 2 

label: 
statements 
RETN [constant] 

16-17 



Macro Assembler 

Syntax 3 

label LABEL FAR 
statements 
RETF [constant] 

Starting with Version 5.0 of the Macro Assembler, the RET instruction 
can be extended to RETN (Return Near) to override the default size. This 
enables you to define and use procedures without the PROC and ENDP 
directives, as shown in Syntax 2 and Syntax 3 above. However, with this 
method, the programmer is responsible for making sure the size of the 
CALL matches the size of the RET. 

The RET instruction (and its RETF and RETN variations) allows a con­
stant operand that specifies a number of bytes to be added to the value of 
the SP register after the return. This operand can be used to adjust for 
arguments passed to the procedure before the call, as shown in the exam­
pIe in "Using Local Variables." 

Example 1 

task 

task 

call 

PRCC 

ret 
ENDP 

task 

NEAR 

; Call is near because procedure is near 
; Return comes to here 

; Define "task" to be near 

; Instructions of "task" go here 

; Return to instruction after call 
; End "task" definition 

Example 1 shows the recommended way of making calls with masm. 
Example 2 shows another method that programmers who are used to other 
assemblers may find more familiar. 

Example 2 

call NEAR PTR task ; Call is declared near 
; Return comes to here 

task: ; Procedure begins with near label 

; Instructions go here 

retn ; Return declared near 

16-18 



Controlling Program Flow 

This method gives more direct control over procedures, but the program­
mer must make sure that calls have the same size as corresponding 
returns. 

For example, if a call is made with the statement 

call NEAR PTR task 

the assembler does a near call. This means that one word (the offset fol­
lowing the calling address) is pushed onto the stack. If the return is made 
with the statement 

retf 

two words are popped off the stack. The first will be the offset, but the 
second will be whatever happened to be on the stack before the call. Not 
only will the popped value be meaningless, but the stack status will be 
incorrect, causing the program to fail. 

16.5.3 Passing Arguments on the Stack 

Procedure arguments can be passed in various ways. For example, values 
can be passed to a procedure in registers or in variables. However, the 
most common method of passing arguments is to use the stack. Microsoft 
languages have a specific convention for doing this. 

The arguments are pushed onto the stack before the call. After the call, 
the procedure retrieves and processes them. At the end of the procedure, 
the stack is adjusted to account for the arguments. 

Although the same basic method is used for all Microsoft high-level 
languages, the details vary. For instance, in some languages, pointers to 
the arguments are passed to the procedure; in others the arguments them­
selves are passed. The order in which arguments are passed (whether the 
first argument is pushed first or last) also varies according the language. 
Finally, in some languages, the stack is adjusted by the RET instruction 
in the called procedure; in others the code immediately following the 
CALL instruction adjusts the stack. For details on calling conventions for 
each Microsoft language, see Appendix D, "Segment Names for High­
Level Languages." 

16-19 



Macro Assembler 

Example 

C-style procedure call and definition 

addup 

addup 

mov 
push 
push 
push 
call 
add 

PROC 

push 

mov 
mov 

add 

add 

pop 
ret 
ENDP 

ax, 10 
ax 
arg2 
cx 
addup 
sp,6 

NEAR 

bp 

bp,sp 
ax, [bP+4] 

ax, [bp+6] 

ax, [bp+8] 

bp 

Load and 
push constant as third argument 

Push memory as second argument 
Push register as first argument 
Call the procedure 
Destroy the pushed arguments 

(equivalent to three pops) 

Return address for near call 
takes two bytes 

Save base pointer - takes two bytes 
so arguments start at 4th byte 

Load stack into base pointer 
Get first argument fram 

4th byte above pointer 
; Add second argument fram 

6th byte above pointer 
; Add third argument fram 

8th byte above pointer 
Restore BP 
Return result in AX 

The example shows one method of passing arguments to a procedure. 
This method is similar to the way procedures are called in C. Figure 16.1 
shows the stack condition at key points in the process. 

16-20 



Controlling Program Flow 

Before call addup After call addup After mov bp, sp 

, , 

: j High memory: : 
: ' , 

argument 3 

argument 2 

argument 1 
/ 
~SP 

/ 

/j 
: Lowmemory 

After pop bp 

j High memory j j 

argument 3 

argument 2 

argument 1 
/ 

return address / 
~SP 

.Ii 
: Low memory 

; : : 
: j High memory: : 
: ' , 

argument 3 

argument 2 
/' 

argument 1 
V 

return address 1/ 

.v: , , 

: Low memory ! 

After ret 

j High memory j j 

argument 3 

argument 2 

argument 1 
/ 

/ 

/j 
: Low memory 

~SP 

~SP 

: 
High memory j j 

argument 3 

argument 2 

argument 1 
/ 

return address / 

old value of BP /j 
, ' , ' 

: Low memory j 

~BP+8 

~BP+6 

~BP+4 

~BP/SP 

After add sp, 6 

. , 

! High memory ! ! ~SP 

v 

V 

v 

f-----,---------!'vi 
: Low memory 

Figure 16-1 Procedure Arguments on the Stack 

16.5.4 Using Local Variables 

In high-level languages, local variables are variables known only within a 
procedure. In Microsoft languages, these variables are usually stored on 
the stack. Assembly-language programs can use the same concept. These 
variables should not be confused with labels or variable names that are 
local to a module, as described in Chapter 7, "Creating Programs from 
Multiple Modules." 

Local variables are created by saving stack space for the variable at the 
start of the procedure. The variable can then be accessed by its position in 
the stack. At the end of the procedure, the stack pointer is restored to 
restore the memory used by local variables. 

16-21 



Macro Assembler 

Example 

arg 
lac 

task 

task 

push 
call 

EQU 
EQU 

PROC 
push 
mov 
sub 

mov 
add 
sub 

mov 
pop 
ret 
ENDP 

ax Push one argument 
task Call 

< [bp+4] > Name for argument 
< [bp-2] > Name for local variable 

NEAR 
bp Save base pointer 
bp,sp Load stack into base pointer 
sp,2 Save two bytes for local variable 

loc,3 Initialize local variable 
ax,loc Add local variable to AX 
arg,ax Subtract local from argument 

Use "loc" and "arg" in other operations 

sp,bp Adjust for stack variable 
bp Restore base 

Return result in AX 

In this example, two bytes are subtracted from the SP register to make 
room for a local word variable. This variable can then be accessed as 
[bp-2 J. In the example, this value is given the name lac with a text 
equate. Notice that the instruction mov sp,bp is given at the end to restore 
the original value of SP. The statement is ,only required if the value of SP 
is changed inside the procedure (usually by allocating local variables). 
The argument passed to the procedure is returned with the RET instruc­
tion. Contrast this to the example in "Passing Arguments on the Stack," 
in which the calling code adjusts for the argument. Figure 16.2 shows the 
state of the stack at key points in the process. 

16-22 



Controlling Program Flow 

Before call task 

High memory: 

argument 

./ 

V 

V 
: Lowmemory 

After sub sp, 2 

, . 

: : High memory : 

argument v 

return address 

old value of BP V 

space for local 
V: 

Low memory 

k-BP+4 (arg) 

k-BP 

k-BP-2 (loc) 

After call task 

. , . 

: : High memory: 

argument 

return address ./ 

V 

/i 
: Low memory 

After pop bp 

, . 

: High memory : 

argument v 

return address 

V 

v: 
: Low memory 

After mov bp, sp 

i i High memory i 
: ' , 

argument ~BP 

~SP return address 

old value of BP / ~BP 

.< 
: Lowmemory 

After ret 2 

i High memory :~SP 

~SP 

I----------{/ 

1---,------->"/: 

: Low memory 

Figure 16-2 Local Variables on the Stack 

16.5.5 Setting Up Stack Frames 

80186/286/386 Only 

Starting with the 80186 processor, the ENTER and LEAVE instructions 
are provided for setting up a stack frame. These instructions do the same 
thing as the multiple instructions at the start and end of procedures in the 
Microsoft calling conventions (see the examples in "Passing Arguments 
on the Stack' '). 

16-23 



Macro Assembler 

Syntax 

ENTER Jramesize,nestinglevel 
statements 
LEAVE 

The ENTER instruction takes two constant operands. The Jramesize (a 
16-bit constant) specifies how many bytes to reserve for local variables. 
The nestinglevel (an 8-bit constant) specifies the level at which the pro­
cedure is nested. This operand should always be 0 when writing pro­
cedures for BASIC, C, and FORTRAN. The nestinglevel can be greater 
than 0 with Pascal and other languages that enable procedures to access 
the local variables of calling procedures. 

The LEAVE instruction reverses the effect of the last ENTER instruction 
by restoring BP and SP to their values before the procedure call. 

Example 1 

task PROC 
enter 

leave 
ret 

task ENDP 

NEAR 
6,0 ; Set stack frame and reserve 6 

; bytes for local variables 
; Do task here 

; Restore stack frame 
; Return 

Example 1 has the same effect as the code in Example 2. 

Example 2 

task 

task 

PROC NEAR 
push bp 
mov bp,sp 
sub sp,6 

mov 
pop 
ret 
ENDP 

sp,bp 
bp 

; Save base pointer 
; Load stack into base pointer 
; Reserve 6 bytes for local variables 

; Do task here 

; Restore stack pointer 
; Restore base 
; Return 

The code in Example 1 takes fewer bytes, but is slightly slower. 

16-24 



Controlling Program Flow 

16.6 Using Interrupts 

Interrupts are a special fonn of routines that are called by number instead 
of by address. They can be initiated by hardware devices as well as by 
software. Hardware interrupts are called automatically whenever certain 
events occur in the hardware. 

Interrupts can have any number from 0 to 255. Most of the interrupts with 
lower numbers are reserved for use by the processor, the BIOS, or the 
operating system. 

The programmer can call existing interrupts with the INT instruction. 
Interrupt routines can also be defined or redefined to be called later. For 
example, an interrupt routine that is called automatically by a hardware 
device can be redefined so that its action is different. 

16.6.1 Calling Interrupts 

Interrupts are called with the INT instruction. Syntax 

INT interruptnumber 
INTO 

The INT instruction takes an immediate operand with a value between 0 
and 255. 

When the instruction is called, the processor takes the following six steps: 

1. Looks up the address of the interrupt routine in the interrupt 
descriptor table. In real mode, this table starts at the lowest point 
in memory (segment 0, offset 0) and consists of four bytes (two 
segment and two offset) for each interrupt. Thus the address of an 
interrupt routine can be found by multiplying the number of the 
interrupt by four. 

"2. Pushes the flags register, the current code segment (CS), and the 
current instruction pointer (IP). 

3. Clears the trap (TF) and interrupt enable (IF) flags. 

4. Jumps to the address of the interrupt routine, as specified in the 
interrupt description table. 

16-25 



Macro Assembler 

5. Executes the code of the interrupt routine until it encounters an 
IRET instruction. 

6. Pops the instruction pointer, code segment, and flags. 

Figure 16.3 shows the status of the stack immediately after the INT 
instruction has been executed. 

Before INT 

Interrupt INT segments 
Descriptor 
Table INT offset 

Flags Status I program flags ~ 

Code Segment 

Instruction 
Pointer 

Stack 

SP 
~ 

Inside INT routine 

program flags 

new IPfrom 
table 

(changes in routine) 

After IRET 

r >[:;,m 11'9' ] 

>[ p:;;~] 

Figure 16-3 Operation of Interrupts 

The INTO (Interrupt on Overflow) instruction is a variation of the INT 
instruction. It calls interrupt 04h if called when the overflow flag is set. 
By default, interrupt 4 sends a SIGSEGV to the process. Using INTO is 
an alternative to using JO (Jump on Overflow) to jump to an overflow 
routine. "Defining and Redefining Interrupt Routines," gives an example 
of this. 

The CLI (Clear Interrupt Flag) and STI (Set Interrupt Flag) instructions 
can be used to tum interrupts on or off. You can use CLI to tum interrupt 
processing off so that an important routine cannot be stopped by a 
hardware interrupt. After the routine has finished, use STI to tum 

16-26 



Controlling Program Flow 

interrupt processing back on. Interrupts received while interrupt process­
ing was turned off by CLI are saved and executed when STI turns inter­
rupts back on. 

16.6.2 Defining and Redefining Interrupt Routines 

You can write your own interrupt routines, either to replace an existing 
routine or to use an undefined interrupt number. 

Syntax 

label PROC FAR 
statements 
IRET 
label ENDP 

An interrupt routine can be written like a procedure by using the PROC 
and ENDP directives. The only differences are that the routine should 
always be defined as far and the routine should be terminated by an IRET 
instruction instead of a RET instruction. 

Interrupt routines can be part of device drivers. Writing interrupt routines 
is usually a systems task. 

80386 Only 

The INT instruction automatically pushes a 32-bit instruction pointer for 
32-bit segments or a 16-bit instruction pointer for 16-bit segments. How­
ever, the IRET instruction always pops a 16-bit instruction pointer before 
returning. To pop a 32-bit instruction pointer, you must append the letter 
D (for doubleword) to the instruction to form IRETD. 

16.7 Checking Memory Ranges 

80186/286/386 Only 

Starting with the 80186 processor, the BOUND instruction can check to 
see if a value is within a specified range. This instruction is usually used 
to check a signed index value to see if it is within the range of an array. 
BOUND is a conditional interrupt instruction like INTO. If the condition 
is not met (the index is out of range), an interrupt 5 is executed. 

16-27 



Macro Assembler 

Syntax 

BOUND register] 6,memory32 
BOUND register32,memory64 (80386 Only) 

To use it for this purpose, the starting and ending values of the array must 
be stored as 16-bit values in the low and high words of a doubleword 
memory operand. This operand is given as the source operand. The index 
value to be checked is given as the destination operand. If the index value 
is out of range, the instruction issues interrupt 5. This means that the 
operating system or the program must provide an interrupt routine for 
interrupt 5. XENIX does not provide an interrupt routine for interrupt 5, so 
you must write your own. For more infom1ation, see' 'Using Interrupts." 

Example 

bottom 
top 
dbounds 
wbounds 
array 

80386 Only 

. DATA 
EQU 0 
EQU 19 
LABEL DWORD 
DW bottom, top 
DB top+1 DG'P (?) 

. CODE 

bound di,dbounds 

mov Q~,array[diJ 

; Allocate boundaries 
initialized to bounds 

; Allocate array 

; Assume index in DI 
Check to see if it is in range 

if out of range, interrupt 5 
If in range, use it 

The 80386 can optionally check larger arrays. The destination operand 
can be a 32-bit register and the source can be a 64-bit memory operand 
containing 32-bit starting and ending values. 

16-28 



Chapter 17 

Processing Strings 

17.1 Introduction 17-1 

17.2 Setting Up String Operations 17-1 

17.3 Moving Strings 17-5 

17.4 Searching Strings 17-7 

17.5 Comparing Strings 17-8 

17.6 Filling Strings 17-10 

17.7 Loading Values from Strings 17-11 

17.8 Transferring Strings to and from Ports 17-12 





Processing Strings 

17.1 Introduction 

The 8086-family processors have a full set of instructions for manipulat­
ing strings. In the discussion of these instructions, the term "string" 
refers not only to the common definition of a string-a sequence of bytes 
containing characters-but to any sequence of bytes or words (or double­
words on the 80386). 

The following instructions are provided for 8086-family string functions: 

Instruction Description 

MOVS Moves string from one location to another 

SCAS Scans string for specified values 

CMPS Compares values in one string with values in another 

LODS Loads values from a string to accumulator register 

STOS Stores values from accumulator register to a string 

INS Transfers values from a port to memory 

OUTS Transfers values from memory to a port 

All these instructions use registers in the same way and have a similar 
syntax. Most are used with the repeat instruction prefixes: REP, REPE, 
REPNE, REPZ, and REPNZ. 

This chapter first explains the general format for string instructions and 
then tells you how to use each instruction. 

17.2 Setting Up String Operations 

The string instructions all work in a similar way. Once you understand the 
general procedure, it is easy to adapt the format for a particular string 
operation. The five steps are listed below: 

1. Make sure the direction flag indicates the direction in which you 
want the string to be processed. If the direction flag (DF) is clear, 
the string will be processed up (from low addresses to high 
addresses). If the direction flag is set, the string will be processed 
down (from high addresses to low addresses). The CLD instruction 
clears the flag, while STD sets it. 

17-1 



Macro Assembler 

2. Load the number of iterations for the string instruction into the ex 
register. For instance, if you want to process a 100-byte string, load 
100. If a string instruction will be terminated conditionally, load 
the maximum number of iterations that can be done without an 
error. 

3. Load the starting offset address of the source string into DS:SI and 
the starting address of the destination string into ES:DI. Some 
string instructions take only a destination or source (shown in 
Table 17.1 below). Normally the segment address of the source 
string should be DS, but,you can use a segment override with the 
string instruction to specify a different segment. You cannot over­
ride the segment address for the destination string. Therefore you 
may need to change the value of ES. 

4. Choose the appropriate repeat-prefix instruction. Table 17.1 shows 
the repeat prefixes that can be used with each instruction. 

5. Put the appropriate string instruction immediately after the repeat 
prefix (on the same line). 

String instructions have two basic forms, as shown below: 

Syntax 1 

[repeatprefix] stringinstruction[ES: [destination,]] [[ se gmentregister: ] source ] 

The string instruction can be given with the source and/or destination as 
operands. The size of the operand or operands indicates the size of the 
objects to be processed by the string. Note that the operands only specify 
the size. The actual values to be worked on are the ones pointed to by 
DS:SI and/or ES:DI. No error is generated if the operand is not the same 
as the actual source or destination. One important advantage of this syn­
tax is that the source operand can have a segment override. The destina­
tion operand is always relative to ES and cannot be overridden. 

Syntax 2 

17-2 

[repeatprefixl stringinstructionB 
[repeat pre fix 1 stringinstruction W 
[repeatprefixl stringinstructionD (80386 only) 



Processing Strings 

The letter B or W appended to the string instruction indicates bytes or 
words; the letter D indicates double words on the 80386. With a letter 
appended to a string instruction, no operand is allowed. 

For instance, MOVS can be given with byte operands to move bytes or 
with word operands to move words. As an alternative, MOVSB can be 
given with no operands to move bytes or MOVSW can be given with no 
operands to move words. 

Note 

Instructions that specify the size in the name never accept operands. 
Therefore, the following statement is illegal: 

lodsb es:O ; Illegal - no operand allowed 

Instead, the statement must be coded as shown below: 

lods BYTE PTR es: 0 ; Legal - use type specifier 

If a repeat prefix is used, it can be one of the following instructions: 

Instruction Description 

REP Repeats for a speCified number of iterations. 
The number is given in ex. 

REPE or REPZ Repeats while equal. The maximum number 
of iterations should be specified in ex. 

REPNE or REPNZ Repeats while not equal. The maximum 
number of iterations should be specified in 
ex. 

REPE is the same as REPZ, and REPNE is the same as REPNZ. You 
can use whichever name you find more mnemonic. The prefixes ending 
with E are used in syntax listings and tables in the rest of this chapter. 

Table 17.1 lists each string instruction with the type of repeat prefix it 
uses and whether the instruction works on a source, a destination, or both. 

17-3 



Macro Assembler 

Table 17.1 

Requirements for String Instructions 

Instruction Repeat Prefix Source/Destination Register Pair 

MOVS REP Both DS:SI, ES:DI 

SCAS REPE/REPNE Destination ES:DI 

CMPS REPE/REPNE Both ES:DI, DS:SI 

LODS None Source DS:SI 

STOS REP Destination ES:DI 

INS REP Destination ES:DI 

OUTS REP Source DS:SI 

At run time, a string instruction preceded by a repeat sequence causes the 
processor to take the following steps: 

1. Checks the CX registers and exits from the string instruction if CX 
is o. 

2. Performs the string operation once. 

3. Increases SI and/or DI if the direction flag is cleared. Decreases SI 
and/or DI if the direction flag is set. The amount of increase or 
decrease is one for byte operations, two for word operations, or 
four for doubleword operations (80386 only). 

4. Decrements CX (no flags are modified). 

5. If the string instruction is SCAS or CMPS, checks the zero flag 
and exits if the repeat condition is false-that is, if the flag is set 
with REPE or REPZ or if it is clear with REPNE or REPNZ. 

6. Goes to the next iteration (step 1). 

Although string instructions (except LODS) are most often used with 
repeat prefixes, they can also be used by themselves. In this case, the SI 
and/or DI registers are adjusted as specified by the direction flag and the 
size of operands. However, you must decrement the CX register and set 
up a loop for the repeated action. 

17-4 



Processing Strings 

Note 

Although you can use a segment override on the source operand, a 
segment override combined with a repeat prefix can cause problems 
in certain situations on all processors except the 80386. If an inter­
rupt occurs during the string operation, the segment override is lost 
and the rest of the string operation processes incorrectly. Segment 
overrides can be used safely when interrupts are turned off, when a 
string instruction is used without a segment override, or when a 
80386 processor is used. 

17.3 Moving Strings 

The MOVS instruction is used to move data from one area of memory to 
another. 

Syntax 

[REP MOVS [ES:]destination,[segmentregister:]source 
[REP] MOVSB 
[REP] MOVSW 
[REP] MOVSD (80386 only) 

To move the data, load the count and the source and destination addresses 
into the appropriate registers, as discussed in "Setting Up String Opera­
tions." Then use the REP instruction with the MOVS instruction. 

17-5 



Macro Assembler 

Example 1 

source 
destin 

.M)DEL 

. DATI\.. 
DB 
DB 
. CODE 
mov 
mov 
mov 

cld 
mov 
mov 
mov 
rep 

small 

10 DUP (' 0123456789' ) 
100 DUP (?) 

ax,@data 
ds,ax 
es,ax 

cx,lOO 
si,OFFSET source 
di,OFFSET destin 
movsb 

Load same segment 
to both DS 
and ES 

; Work upward 
; Set iteration count to 100 
; Load address of source 
; Load address of destination 
; Move 100 bytes 

Example 1 shows how to move a string by using string instructions. For 
comparison, Example 2 shows a much less efficient way of doing the 
same operation without string instructions. 

Example 2 

source 
destin 

repeat: 

.M)DEL small 

. DATI\.. 
DB 10 DUP ('0123456789') 
DB 100 DUP (?) 
. CODE 

; Assume ES = DS 

mov ex, 100 ; Set iteration count to 100 
mov si,OFFSET source ; Load offset of source 
mov di,OFFSET destin ; Load offset of destination 
mov al,es: lsi] ; Get a byte from source 
mov [di] ,al ; Put it in destination 
inc si Increment source pointer 
inc di Increment destination pointer 
loop repeat Do it again 

Both examples illustrate how to move byte strings in a small-model pro­
gram in which DS already points to the segment containing the variables. 
In such programs, ES can be set to the same value as DS. 

There are several variations on this. If the source string was not in the 
current data segment, you could load the starting address of its segment 
into ES. Another option would be to use the MOVS instruction with 
operands and give a segment override on the source operand. For 

17-6 



Processing Strings 

example, you could use the following statement if ES pointed to both the 
source and the destination strings: 

rep movs destin,es:source 

It is sometimes faster to move a string of bytes as words (or as double­
words on the 80386). You must adjust for any odd bytes, as shown in 
Example 3. Assume the source and destination are already loaded. 

Example 3 

mov cX,count 
shr cx,l 

rep movsw 
rei cx,l 
rep movsb 

17.4 Searching Strings 

; Load count 
; Divide by 2 (carry will be set 

if count is odd) 
; Move words 
; If odd, make ex 1 
; Move odd byte if there is one 

The SCAS instruction is used to scan a string for a specified value. 

Syntax 

[REPE I REPNE] SCAS [ES:]destination 
[REPE I REPNE] SCASB 
[REPE I REPNE] SCASW 
[REPE I REPNE] SCASD (80386 only) 

SCAS and its variations work only on a destination string, which must be 
pointed to by ES:DI. The value to scan for must be in the accumulator 
register-ALfor bytes, AX for words, or EAX (80386 only) for double­
words. 

The SCAS instruction works by comparing the value pointed to by DI 
with the value in the accumulator. If the values are the same, the zero flag 
is set. Thus the instruction only makes sense when used with one of the 
repeat prefixes that checks the zero flag. 

If you want to search for the first occurrence of a specified value, use the 
REPNE or REPNZ instruction. If the value is found, ES:DI will point to 
the value immediately after the first occurrence. You can decrement DI to 
make it point to the first matching value. 

17-7 



Macro Assembler 

If you want to search for the first value that does not have a specified 
value, use REPE or REPZ. If the value is found, ES:DI will point to the 
position after the first nonmatching value. You can decrement DI to make 
it point to the first nonmatching value. 

If the value is not found, the CX register will contain o. You can use the 
JCXZ instruction to handle cases where the value is not found. 

Example 

string 
Istring 
pst ring 

I not found , 

• DATA 
DB 
EQU 
DD 

"The quick brown fox jumps over the lazy dog" 
$-string Length of string 
string ; Far pointer to string 

. CODE 

cld 
mov cx,lstring 
les di,pstring 
mov al,'z' 
repne scasb 
jcxz not found 

; Work upward 
; Load length of string 
; Load address of string 
; Load character to find 

Search 
ex is 0 if not found 
ES:DI points to character 

after first ' Z' 

Special case for not found 

This example assumes that ES is not the same as DS, but that the address 
of the string is stored in a pointer variable. The LES instruction is used to 
load the far address of the string into ES:DI. 

17.5 Comparing Strings 

The CMPS instruction is used to compare two strings and point to the 
address where a match or nonmatch occurs. 

Syntax 

[REPE I REPNE] CMPS [segment register:]source,[ES:],destination 
[REPE I REPNE] CMPSB 
[REPE I REPNE] CMPSW 
[REPE I REPNE] CMPSD (80386 only) 

The count and the addresses of the strings are loaded into registers, as 
described in "Setting Up String Operations." Either string can be con­
sidered the destination or source string unless a segment override is used. 

17-8 



Processing Strings 

Notice that unlike other instructions, CMPS requires the source to be on 
the left. 

The CMPS instruction works by comparing in tum each value pointed to 
by DI with the value pointed to by SI. If the values are the same, the zero 
flag is set. Thus the instruction makes sense only when used with one of 
the repeat prefixes that checks the zero flag. 

If you want to search for the first match between the strings, use the 
REPNE or REPNZ instruction. If a match is found, ES:DI and DS:SI 
will point to the position after the first match in the respective strings. 
You can decrement DI or SI to point to the match. 

If you want to search for a nonmatch, use REPE or REPZ. If a nonmatch 
is found, ES:DI and DS:SI will point to the position after the first non­
match in the respective strings. You can decrement DI or SI to point to 
the nonmatch. 

If the specified condition (match or nonmatch) never occurs, the CX 
register will contain zero. You can use the JCXZ instruction to handle 
cases in which the entire string is processed. 

Example 

stringl 

string2 
lstring 

allmatch: 

.f:vDDEL large' 
• DATA 
DB "The quick brown fox jumps over the lazy dog" 
.FARDATA 
DB "The quick brown dog jumps over the lazy fox" 
EQU $-string2 
. CODE 
mov ax,@data Load data segmeEt 
mov ds,ax into OS 
mov ax,@fardata Load far data segment 
mov es,ax into ES 

cld ; Work upward 
mov cx,lstring Load length of string 
mov si,OFFSET stringl Load offset of stringl 
mov di,OFFSET string2 Load offset of string2 
repe anpsb Compare 
jcxz allmatch ; CX is 0 if no nonmatch 
dec si ; Adjust to point to nonmatch 
dec di in each string 

Special case for all match 

17-9 



Macro Assembler 

This example assumes that the strings are in different segments. Both seg­
ments must be initialized to the appropriate segment register. 

17.6 Filling Strings 

The STOS instruction is used to store a specified value in each position of 
a string. 

Syntax 

[REP] STOS [ES:]destination 
[REP] STOSB 
[REP] STOSW 
[REP] STOSD (80386 only) 

The string is considered the destination, so it must be pointed to by 
ES:DI. The length and address of the string must be loaded into registers, 
as described in "Setting Up String Operations." The value to store must 
be in the accumulator register-AL for bytes, AX for words, or EAX 
(80386 only) for doublewords. 

For each iteration specified by the REP instruction prefix, the value in the 
accumulator is loaded into the string. 

Example 

.MJDEL small 

. DATA 
destin DB 100 DUP ? 

. CODE 
; Assume ES = DS 

cld ; Work upward 
mov ax,'aa' ; Load character to fill 
mov ex, 50 ; Load length of string 
mov di,OFFSET destin ; Load address of destination 
rep stosw ; Store 'a' into array 

This example loads 100 bytes containing the character "a." Notice that 
this is done by storing 50 words rather than 100 bytes. This makes the 
code faster by reducing the number of iterations. You would have to 
adjust for the last byte if you wanted to fill an odd number of bytes. 

17-10 



Processing Strings 

17.7 Loading Values from Strings 

The LODS instruction is used to load a value from a string into a register. 

Syntax 

LODS [segmentregister:]source 
LODSB 
LODSW 
LODSD (80386 only) 

The string is considered the source, so it must be pointed to by DS:SI. The 
value is always loaded from the string into the accumulator register-AL 
for bytes, AX for words, or EAX (80386 only) for doublewords. 

Unlike other string instructions, LODS is not normally used with a repeat 
prefix since there is no reason to move a value repeatedly to a register. 
However, LODS does adjust the DI register as specified by the direction 
flag and the size of operands. The programmer must code the instructions 
to use the value after it is loaded. 

Example 1 

• DATA 
stuff DB 0,1,2,3,4,5,6,7,8,9 

. CODE 

cld 
mov cx,10 
mov si, OFFSET stuff 

get: lodsb 
add al,48 
mov dl,al 

; Work upward 
; Load length 
; Load offset of source 
; Get a character 
; Convert to ASCII 
; Move to DL 

Example 1 loads, processes, and displays each byte in a string of bytes. 

17-11 



Macro Assembler 

17.8 Transferring Strings to and from Ports 

80186/286/386 Only 

The INS instruction reads a string from a port to memory, and the OUTS 
instruction writes a string from memory to a port. 

Syntax 

OUTS DX,[segmentregister:]source 
OUTSB 
OUTSW 
OUTSD (80386 only) 

INS [ES:]destination,DX 
INSB 
INSW 
INSD (80386 only) 

The INS and OUTS instructions require that the number of the port be in 
DX. The port cannot be specified as an immediate value, as it can be with 
IN and OUT. 

To move the data, load the count into ex. The string to be transferred by 
INS is considered the destination string, so it must be pointed to by 
ES:DI. The string to be transferred by OUTS is considered the source 
string, so it must be pointed to by DS:SI. 

If you specify the source or destination as an operand, DX must be 
specified. Otherwise DX is assumed and should be omitted. 

If you need to process the string as it is transferred (for instance, to check 
for the end of a null-terminated string), you must set up the loop yourself 
instead of using the REP instruction prefix. 

17-12 



Processing Strings 

Example 

. DATA 
count EQU 100 
buffer DB count DUP (?) 
inport DW ? 

. CODE 
Assume ES = DS 

cld Work upward 
mov cX,count Load length to transfer 
mov di,OFFSET buffer Load address of destination 
mov dx,inport Load port number 
rep insb Transfer the string 

from port to buffer 

Note 

Under XENIX and other protected-mode operating systems, IN and 
OUT are privileged instructions and can only be used in privileged· 
mode. 

17-13 





Chapter 18 

Calculating 

with a Math Coprocessor 

18.1 Introduction 18-1 

18.2 Coprocessor Architecture 18-1 
18.2.1 Coprocessor Data Registers 18-2 
18.2.2 Coprocessor Control Registers 18-3 

18.3 Emulation 18-4 

18.4 Using Coprocessor Instructions 18-4 

5 
18.4.1 Using Implied Operands in the Classical-Stack Form 18-

18.4.2 Using Memory Operands 18-6 
18.4.3 Specifying Operands in the Register Form 18-7 
18.4.4 Specifying Operands in the Register-Pop Form 18-8 

18.5 Coordinating Memory Access 18-9 

18.6 Transferring Data 18-11 
18.6.1 Transferring Data to and from Registers 18-11 
18.6.2 Loading Constants 18-15 
18.6.3 Transferring Control Data 18-16 

18.7 Doing Arithmetic Calculations 18-17 

18.8 Controlling Program Flow 18-24 
18.8.1 Comparing Operands to Control Program Flow 18-25 
18.8.2 Testing Control Flags after Other Instructions 18-29 

18.9 Using Transcendental Instructions 18-29 

18.10 Controlling the Coprocessor 18-31 





Calculating with a Math Coprocessor 

18.1 Introduction 

The 8087-family coprocessors are used to do fast mathematical calcula­
tions. When used with real numbers, packed BCD numbers, or long 
integers, they do calculations many times faster than the same operations 
done with 8086-family processors. 

This chapter explains how to use the 8087-family processors to transfer 
and process data. The approach taken is from an applications standpoint. 
Features that would be used by systems programmers (such the flags used 
when writing exception handlers) are not explained. This chapter is 
intended as a reference, not a tutorial. 

Note 

This manual does not attempt to explain the mathematical concepts 
involved in using certain coprocessor features. It assumes that you 
will not need to use a feature unless you understand the mathemat­
ics involved. For example, you need to understand logarithms to use 
the FYL2X and FYL2XP1 instructions. 

18.2 Coprocessor Architecture 

The math coprocessor works simultaneously with the main processor. 
However, since the coprocessor cannot handle device input or output, 
most data originates in the main processor. 

The main processor and the coprocessor each have their own registers, 
which are completely separate and inaccessible to the other. They 
exchange data through memory, since memory is available to both. 

Ordinarily you follow these three steps when using the coprocessor: 

1. Load data from memory to coprocessor registers 

2. Process the data 

3. Store the data from coprocessor registers back to memory 

Step 2, processing the data, can occur while the main processor is han­
dling other tasks. Steps 1 and 3 must be coordinated with the main proces­
sor so that the processor and coprocessor do not try to access the same 

18-1 



Macro Assembler 

memory at the same time, as is explained in "Transferring Data." 

18.2.1 Coprocessor Data Registers 

The 8087-family coprocessors have eight 80-bit data registers. Unlike 
8086-family registers, the coprocessor data registers are organized as a 
stack. As data is pushed into the top register, previQus data items move 
into higher-numbered registers. Register 0 is the top of the stack; register 
7 is the bottom. The syntax for specifying registers is shown below: 

ST[(number)] 

The number must be a digit between 0 and 7. If number is omitted, regis­
ter 0 (top of stack) is assumed. 

All coprocessor data are stored in registers in the temporary-real format. 
This is the 10-byte IEEE format described in "Real-Number Variables." 
The registers and the register format are shown in Figure 18.1. 

Register 
ST 

ST(1) 

ST(2) 

ST(3) 

ST(4) 

ST(5) 

ST(6) 

ST(7) 

79 63 
;..-- ./ 

t ~ -----=----====­
Sign t 

Exponent 
Mantissa 

Figure 18-1 Coprocessor Data Registers 

o 

/ 

/ 

/ 

/ 

/ 

/ 

/ 

Internally, all calculations are done on numbers of the same type. Since 
temporary-real numbers have the greatest precision, lower-precision 
numbers are guaranteed not to lose precision as a result of calculations. 
The instructions that transfer values between the main processor and the 

18-2 



Calculating with a Math Coprocessor 

coprocessor automatically convert numbers to and from the temporary­
real format. 

18.2.2 Coprocessor Control Registers 

The 8087-family coprocessors have seven 16-bit control registers. The 
most useful control registers are made up of bit fields or flags. Some flags 
control coprocessor operations, while others maintain the current status of 
the coprocessor. In this sense, they are much like the 8086-family flags 
registers. 

You do not need to understand these registers to do most coprocessor 
operations. Control flags are set by default to the values appropriate for 
most programs. Errors and exceptions are reported in the status-word 
register. However, the coprocessor already has a default system for han­
dling exceptions. Applications programmers can usually accept the 
defaults. Systems programmers may want to use the status-word and 
control-word registers when writing exception handlers, but such prob­
lems are beyond the scope of this manual. 

Figure 18.2 shows the overall layout of the control registers including the 
control word, status word, tag word, instruction pointer, and operand 
pointer. The format of each of the registers is not shown, since these 
registers are generally of use only to systems programmers. The exception 
is the condition-code bits of the status-word register. These bits are 
explained in "Controlling Program Flow." 

Control Word 
Status Word 
Tag Word 

Instruction Pointer 

Operand Pointer 

Registers 

/ 

L--____ -----Y/ 

Figure 18-2 Coprocessor Control Registers 

18-3 



Macro Assembler 

18.3 Emulation 

If you have a Microsoft high-level language that supports floating-point 
emulation, you can write assembly-language procedures that use the emu­
lator library when called from the high-level language. First write the 
procedure by using coprocessor instructions, then assemble it using the -e 
option, and finally link it with your high-level-language modules. When 
compiling modules, use the compiler options that specify emulation. 

Some coprocessor instructions are not emulated by Microsoft emulation 
libraries. How unemulated instructions vary depends on the language and 
version. If you use a coprocessor instruction that is not emulated, the pro­
gram will generate a run-time error when it tries to execute the unemu­
lated instruction. You cannot use a Microsoft emulation library with 
stand-alone assembler programs, since the library depends on the com­
piler start-up code. 

For information on the -e option, see' 'Creating Code for a Floating-Point 
Emulator." For information on writing assembly-language procedures for 
high-level languages, see Appendix D, "Segment Names for High-Level 
Languages. ' , 

18.4 Using Coprocessor Instructions 

Coprocessor instructions are readily recognizable because, unlike all 
8086-family instruction mnemonics, they start with the letter F. 

Most coprocessor instructions have two operands, but in many cases one 
or both operands are implied. Often, one operand can be a memory 
operand; in this case, the other operand is always implied as the stack-top 
register. Coprocessor instructions can never have immediate operands, 
and with the exception of the FSTSW instruction (see "Loading Con­
stants"), they cannot have processor registers as operands. As with 8086-
family instructions, memory-to-memory operations are never allowed. 
One operand must be a coprocessor register. 

Instructions usually have a source and a destination operand. The source 
specifies one of the values to be processed. It is never changed by the 
operation. The destination specifies the value to be operated on and 
replaced with the result of the operation. If operands are specified, the 
first is the destination and the second is the source. 

The stack organization of registers gives the programmer flexibility to 
think of registers either as elements on a stack or as registers much like 
8086-family registers. Table 18.1 lists the variations of coprocessor 
instructions along with the syntax for each. 

18-4 



Instruction 
Form 

Classical-stack 
Memory 

Register 

Register pop 

Calculating with a Math Coprocessor 

Table 18.1 

Coprocessor Operand Forms 

Syntax 

Faction 

Faction memory 

Faction ST(num),ST 
Faction ST,ST(num) 

FactionP ST(num),ST 

Implied 
Operands 

ST(l),ST 

ST 

Example 

jadd 

jadd memloc 

jadd st( 5) ,st 
jadd st ,st( 3 ) 

jaddp st( 4) ,st 

Not all instructions accept all operand variations. For example, load and 
store instructions always require the memory form. Load-constant 
instructions always take the classical-stack form. Arithmetic instructions 
can usually take any form. 

Some instructions that accept the memory form can have the letter I 
(integer) or B (BCD) following the initial F to specify how a memory 
operand is to be interpreted. For example, FILD interprets its operand as 
an integer and FBLD interprets its operand as a BCD number. If no type 
letter is included in the instruction name, the instruction works on real 
numbers. 

18.4.1 Using Implied Operands in the Classical-Stack Form 

The classical-stack form treats coprocessor registers like items on a stack. 
Items are pushed onto or popped off the top elements of the stack. Since 
only the top item can be accessed on a traditional stack, there is no need 
to specify operands. The first register (and the second if there are two 
operands) is always assumed. 

In arithmetic operations, the top of the stack (ST) is the source operand, , 
and the second register (ST(I)) is the destination. The result of the opera­
tion goes into the destination operand, and the source is popped off the 
stack. The effect is that both of the values used in the operation are des­
troyed and the result is left at the top of the stack. 

Instructions that load constants always use the stack form (see "Transfer­
ring Data to and from Registers"). In this case the constant created by 
the instruction is the implied source, and the top of the stack (ST) is the 
destination. The source is pushed into the destination. 

18-5 



Macro Assembler 

Note 

The classical-stack fonn with its implied operands is similar to the 
register-pop fonn, not to the register fonn. For example, fadd, with 
the implied operands ST(I),ST, is equivalent to faddp st( 1 ),st, rather 
than to fadd st( 1) ,st. 

Example 

fldl 
fldpi 
fadd 

Push 1 into first position 
Push pi into first position 
Add pi and 1 and pop 

The status of the register stack after each instruction is shown below: 

fldl > fldpi ) fadd > 

ST LJl ~ ~ f1 ST(1 ) ~ LV ~ 

18.4.2 Using Memory Operands 

The memory fonn treats coprocessor registers like items on a stack. Items 
are pushed from memory onto the top element of the stack, or popped 
from the top element to memory. Since only the top item can be accessed 
on a traditional stack, there is no need to specify the stack operand. The 
top register (ST) is always assumed. However, the memory operand must 
be specified. 

Memory operands can be used in load and store instructions (see 
"Transferring Data to and from Registers "). Load instructions push 
source values from memory to an implied destination register (ST). Store 
instructions pop source values from an implied source register (ST) to the 
destination in memory. Some versions of store instructions pop the regis­
ter stack so that the source is destroyed. Others simply copy the source 
without changing the stack. 

18-6 

I 



Calculating with a Math Coprocessor 

Memory operands can also be used in calculation instructions that operate 
on two values (see "Doing Arithmetic Calculations' '). The memory 
operand is always the source. The stack top (ST) is always the implied 
destination. The result of the operation replaces the destination without 
changing its stack position. 

Example 

• DATA. 
ml DO 1.0 
m2 DO 2.0 

• CODE 

fld ml ; Push ml into first position 
fld m2 ; Push m2 into first position 
fadd ml ; Add m2 to first position 
fstp ml ; Pop first position into ml 
fst m2 ; Copy first position to m2 

The status of the register stack and the memory locations used in the 
instructions is shown below: 

tid m1 ~tld m2~ fadd m1 ~ fstp m1~ fst m2 :> 

m1 ~ ~ ~ ~ ~ tflli m2 2.0 2.0 2.0 2.0 2.0 1.0 

ST e ~ tflli tflli EU ~ ST(1) ; 1;.0 , : ,1:.0 : : 

18.4.3 Specifying Operands in the Register Form 

The register form treats coprocessor registers as traditional registers. 
Registers are specified the same as SOS6-family instructions with two 
register operands. The only limitation is that one of the two registers must 
be the stack top (ST). 

IS-7 



Macro Assembler 

In the register form, operands are specified by name. The second operand 
is the source; it is not affected by the operation. The first operand is the 
destination; its value is replaced with the result of the operation. The 
stack position of the operands does not change. 

The register form can only be used with the FXCH instruction and with 
arithmetic instructions that do calculations on two values. With the 
FXCH instruction, the stack top is implied and need not be specified. 

Example 

fadd st(l),st ;Add second position to first -
; result goes in second position 

fadd st,st(2) ;Add first position to second -
; result goes in first position 

fxch st(l) ;Exchange first and second positions 

The status of the register stack if the registers were previously initi~lized 
to 1.0, 2.0, and 3.0 is shown below: 

faddp st(1), st ~ faddp st, st(2) ~ fxch st(1) ) 

~ 

I ~ 
~ 

8T 

~ ~ ST(1 ) 2.0 3.0 3.0 4.0 
ST(2) ,3.0 

i
3
.
0 i~'Oi ~.O i 

18.4.4 Specifying Operands in the Register-Pop Form 

The register-pop form treats coprocessor registers as a modified stack. 
This form has some of the aspects of both a stack and registers. The desti­
nation register can be specified by name, but the source register must 
always be the stack top. 

The result of the operation will be placed in the destination operand, and 
the stack top will be popped off the stack. The effect is that both values 
being operated on will be destroyed and the result of the operation will be 
saved in the specified destination register. The register-pop form is only 
used for instructions that do calculations on two values. 

18-8 



Example 

faddp st(2),st 

Calculating with a Math Coprocessor 

Add first and third positions and pop -
first position destroyed 
third moves to second and holds result 

The status of the register stack if the registers were already initialized to 
1.0, 2.0, and 3.0 is shown below: 

ST 

ST(1) 

ST(2) 

faddp st(2), st ---->~ 

1.0 ~.o 
2.0 4.0 

3.0 i 

18.5 Coordinating Memory Access 

Problems of coordinating memory access can occur when the coprocessor 
and the main processor both try to access a memory location at the same 
time. Since the processor and coprocessor work independently, they may 
not finish working on memory in the order in which you give instructions. 
There are two separate cases, and they are handled in different ways. 

In the first case, if a processor instruction is given and then followed by a 
coprocessor instruction, the coprocessor must wait until the processor is 
finished before it can start the next instruction. This is handled automati­
cally by masm for the 8088 and 8086 or by the processor for the 80186, 
80286, and 80386. 

18-9 



Macro Assembler 

Coprocessor Differences 

To synchronize operations between the 8088 or 8086 processor and 
the 8087 coprocessor, each 8087 instruction must be preceded by a 
WAIT instruction. This is not necessary for the 80287 or 80387. If 
you use the .8087 directive, masm inserts WAIT instructions 
automatically. However, if you use the .286 or .386 directive, masm 
assumes the instructions are for the 80287 or 80387 and does not 
insert the WAIT instructions. If your code will never need to run on 
an 8086 or 8088 processor, you can make your programs shorter and 
more efficient by using the .286 or .386 directive. 

In the second case, if a coprocessor instruction that accesses memory is 
followed by a processor instruction attempting to access the same 
memory location, memory access is not automatically synchronized. For 
instance, if you store a coprocessor register to a variable and then try to 
load that variable into a processor register, the coprocessor may not be 
finished. Thus the processor gets the value that was in memory before the 
coprocessor finished rather than the value stored by the coprocessor. Use 
the WAIT or FWAIT instruction (they are mnemonics for the same 
instruction) to ensure that the coprocessor finishes before the processor 
begins. 

Example 

; Coprocessor instruction first - Wait needed 

fist mem32 ; Store to memory 
fwait ; Wait until coprocessor is done 
mov ax, ViORD PTR mem32 ; Move to register 
mov dx,ViORD PTR mem32 [2] 

; Processor instruction first - No wait needed 
mov ViORD PTR mem32, ax ; Load memory 
mov ViORD PTR mem32 [2],dx 
f ild mem32 ; Load to register 

18-10 



Calculating with a Math Coprocessor 

18.6 Transferring Data 

The 8087-family coprocessors have separate instructions for each of the 
following types of transfers: 

• Transferring data between memory and registers, or between 
different registers 

• Loading certain common constants into registers 

• Transferring control data to and from memory 

18.6.1 Transferring Data to and from Registers 

Data-transfer instructions transfer data between main memory and the 
coprocessor registers, or between different coprocessor registers. Two 
basic principles govern data transfers: 

• The instruction determines whether a value in memory will be con­
sidered an integer, a BCD number, or a real number. The value is 
always considered a temporary-real number once it is transferred 
to the coprocessor. 

• The size of the operand determines the size of a value in memory. 
Values in the coprocessor always take up 10 bytes. 

The adjustments between formats are made automatically. Notice that 
floating-point numbers must be stored in the IEEE format, not in the 
Microsoft Binary format. Data is automatically stored correctly by 
default. It is stored incorrectly and the coprocessor instructions disabled if 
you use the .MSFLOAT directive. Data formats for real numbers are 
explained in "Real-Number Variables." 

Data are transferred to stack registers by using load commands. These 
push data onto the stack from memory or coprocessor registers. Data are 
removed by using store commands. Some store commands pop data off 
the register stack into memory or coprocessor registers, whereas others 
simply copy the data without changing it on the stack. 

18-11 



Macro Assembler 

Real Transfers 

The following instructions are available for transferring real numbers. 

Syntax 

FLD mem 

FLD ST(num) 

FST mem 

FST ST(num) 

FSTP mem 

FSTP ST(num) 

FXCH [ST(num)] 

18-12 

Description 

Pushes a copy of mem into ST. The source 
must a 4-,8-, or 10-byte memory operand. It 
is automatically converted to the 
temporary-real format. 

Pushes a copy of the specified register into 
ST. 

Copies ST to mem without affecting the 
register stack. The destination can be a 4- or 
8-byte memory operand. It is automatically 
converted from temporary-real format to 
short real or long real format, depending on 
the size of the operand. It cannot be con­
verted to the 10-byte-real format. 

Copies ST to the specified register. The 
current value of the specified register is 
replaced. 

Pops a copy of ST into memo The destina­
tion can be a 4-, 8-, or lO-byte memory 
operand. It is automatically converted from 
temporary-real format to the appropriate 
real-number format, depending on the size 
of the operand. 

Pops ST into the specified register. The 
current value of the specified register is 
replaced. 

Exchanges the value in ST with the value in 
ST(num). If no operand is specified, ST(O) 
and STet) are exchanged. 



Calculating with a Math Coprocessor 

Integer Transfers 

The following instructions are available for transferring binary integers. 

Syntax 

FILDmem 

FIST mem 

FISTP mem 

Description 

Pushes a copy of mem into ST. The source must be 
a 2-, 4-, or 8-byte integer memory operand. It is 
interpreted as an integer and converted to 
temporary-real format. 

Copies ST to memo The destination must be a 2- or 
4-byte memory operand. It is automatically con­
verted from temporary-real format to a word or a 
doubleword, depending on the size of the operand. 
It cannot be converted to a quadword integer. 

Pops ST into memo The destination must be a 2-, 
4-, or 8-byte memory operand. It is automatically 
converted from temporary-real format to a word, 
doubleword, or quadword integer, depending on 
the size of the operand. 

Packed BCD Transfers 

The following instructions are available for transferring BCD integers. 

Syntax 

FBLD mem 

FBSTP mem 

Description 

Pushes a copy of mem into ST. The source 
must be a lO-byte memory operand. It 
should contain a packed BCD value, 
although no check is made to see that the 
data is valid. 

Pops ST into memo The destination must be 
a 10-byte memory operand. The value is 
rounded to an integer if necessary, and con­
verted to a packed BCD value. 

18-13 



Macro Assembler 

Example 1 

fld m1 
fld st(2) 
fst m2 
fxch st(2) 
fstp m1 

Push m1 into first item 
Push third item into first 
Copy first item to m2 
Exchange first and third items 
Pop first item into m1 

With the assumption that registers ST and ST(l) were previously initial­
ized to 3.0 and 4.0, the status of the register stack is shown below: 

m1 
m2 

ST 

ST(1) 

ST(2) 

ST(3) 

18-14 

Main Memory 

fld m1 ~fld st(2)~ fst m2 ~ fxch st(2) ~ fstp m1 ~ 

rFoUrFoUrFoUrFoUrFoU~ 
[ill) [ill) [ill) @]) @]) @]) 

Coprocessor Registers 



Calculating with a Math Coprocessor 

Example 2 

. DATA 
shortreal DD 
longreal DQ 

. CODE 

mov 
xor 
xor 

again: fld 
fstp 
add 
add 
loop 

100 DUP (?) 

100 DUP (?) 

cx,lOO 
si,si 
di,di 
shortreal lsi] 
longreal[di] 
si,4 
di,S 
again 

; Assume array short real has been 
filled by previous code 

; Initialize loop 
; Clear pointer into short real 
; Clear pointer into longreal 
; Push short real 
; Pop longreal 
; Increment source pointer 
; Increment destination pointer 
; Do it again 

Example 2 illustrates one way of doing run-time type conversions. 

18.6.2 Loading Constants 

Constants cannot be given as operands and loaded directly into coproces­
sor registers. You must allocate memory and initialize the variable to a 
constant value. The variable can then be loaded by using one of the load 
instructions described in "Transferring Data to and from Registers. ' , 

However, special instructions are provided for loading certain constants. 
You can load 0, 1, pi, and several common logarithmic values directly. 
Using these instructions is faster and often more precise than loading the 
values from initialized variables. 

The instructions that load constants all have the stack top as the implied 
destination operand. The constant to be loaded is the implied source 
operand. The instructions are listed below. 

Syntax Description 

FLDZ Pushes 0 into ST 

FLDI Pushes 1 into ST 

FLDPI Pushes the value of pi into ST 

FLDL2E Pushes the value of log2e into ST 

18-15 



Macro Assembler 

FLDL2T Pushes log210 into ST 

FLDLG2 Pushes log102 into ST 

FLDLN2 Pushes loge2 ST 

18.6.3 Transferring Control Data 

The coprocessor data area, or parts of it, can be stored to memory and 
later loaded back. One reason for doing this is to save a snapshot of the 
coprocessor state before going into a procedure, and restore the same 
status after the procedure. Another reason is to modify coprocessor 
behavior by storing certain data to main memory, operating on the data 
with 8086-family instructions, and then loading it back to the coprocessor 
data area. 

You can choose to transfer the entire coprocessor data area, the control 
registers, or just the status or control word. Applications programmers 
seldom need to load anything other than the status word. 

All the control-transfer instructions take a single memory operand. Load 
instructions use the memory operand as the destination; store instructions 
use it as the source. The coprocessor data area is the implied source for 
load instructions and the implied destination for store instructions. 

Each store instruction has two forms. The "wait form" checks for 
unmasked numeric-error exceptions and waits until they have been han­
dled. The "no-wait" form (which always begins with FN) ignores 
unmasked exceptions. The instructions are listed below. 

Syntax Description 

FLDCW mem2byte Loads control word 

F[N]STCW mem2byte Stores control word 

F[N]STSW mem2byte Stores status word 

FLENV mem14byte Loads environment 

F[N]STENV mem14byte Stores environment 

FRSTOR mem94byte Restores state 

F[N]SA VB mem94byte Saves state 

18-16 



Calculating with a Math Coprocessor 

80287/387 Only 

Starting with the 80287, the FSTSW and FNSTSW instructions can store 
data directly to the AX register. This is the only case in which data can be 
transferred directly between processor and coprocessor registers, as 
shown below: 

fstsw ax 

80387 Only 

In 32-bit mode, the 80387 stores 32-bit addresses in the instruction and 
operand pointers. Therefore, the FSA VE instruction stores 98 bytes 
instead of 94, and the FSTENV instruction stores 18 bytes instead of 14. 

18.7 Doing Arithmetic Calculations 

The math coprocessors offer a rich set of instructions for doing arithmetic. 
Most arithmetic instructions accept operands in any of the formats dis­
cussed in "Using Coprocessor Instructions." 

When using memory operands with an arithmetic instruction, make sure 
you indicate in the name whether you want the memory operand to be 
treated as a real number or an integer. For example, use FADD to add a 
real number to the stack top or FIADD to add an integer to the stack top. 
You do not need to specify the operand type in the instruction if both 
operands are stack registers, since register values are always real 
numbers. You cannot do arithmetic on BCD numbers in memory. You 
must use FBLD to load the numbers into stack registers. 

The arithmetic instructions are listed below. 

Addition 

The following instructions add the source and destination and put the 
result in the destination. 

Syntax 

FADD 

Description 

Classical-stack form. Adds ST and ST(I) 
and pops the result into ST. Both operands 
are destroyed. 

18-17 



Macro Assembler 

FADD ST(num),ST Register form with stack top as source. 
Adds the two register values and replaces 
ST(num) with the result. 

FADD ST,ST(num) Register form with stack top as destination. 
Adds the two register values and replaces 
ST with the result. 

FADD mem Real-memory form. Adds a real number in 
mem to ST. The result replaces ST. 

FIADD mem Integer-memory form. Adds an integer in 
mem to ST. The result replaces ST. 

FADDP ST(num),ST Register-pop form. Adds the two register 
values and pops the result into ST(num). 
Both operands are destroyed. 

Normal Subtraction 

The following instructions subtract the source from the destination and 
put the difference in the destination. Thus the number being subtracted 
from is replaced by the result. 

Syntax 

FSUB 

FSUB ST(num),ST 

FSUB ST,ST(num) 

FSUB mem 

FISUB mem 

18-18 

Description 

Classical-stack form. Subtracts ST from 
ST(l) and pops the result into ST. Both 
operands are destroyed. 

Register form with stack top as source. Sub­
tracts ST from ST(num) and replaces 
ST(num) with the result. 

Register form with stack top as destination. 
Subtracts ST(num) from ST and replaces 
ST with the result. 

Real-memory form. Subtracts the real 
number in mem from ST. The result replaces 
ST. 

Integer-memory form. Subtracts the integer 
in mem from ST. The result replaces ST. 



Calculating with a Math Coprocessor 

FSUBP ST(num),ST Register-pop form. Subtracts ST from 

Reversed Subtraction 

ST(num) and pops the result into ST(num). 
Both operands are destroyed. 

The following instructions subtract the destination from the source and 
put the difference in the destination. Thus the number subtracted is 
replaced by the result. 

Syntax 

FSUBR 

FSUBR ST(num),ST 

FSUBR ST,ST(num) 

FSUBR mem 

FISUBR mem 

FSUBRP ST(num),ST 

Description 

Classical-stack form. Subtracts STet) 
from ST and pops the result into ST. 
Both operands are destroyed. 

Register form with stack top as 
source. Subtracts ST(num) from ST 
and replaces ST(num) with the result. 

Register fonn with stack top as desti­
nation. Subtracts ST from ST(num) 
and replaces ST with the result. 

Real-memory fonn. Subtracts ST 
from the real number in memo The 
result replaces ST. 

Integer-memory fonn. Subtracts ST 
from the integer in memo The result 
replaces ST. 

Register-pop fonn. Subtracts ST(num) 
from ST and pops the result into 
ST(num). Both operands are des­
troyed. 

18-19 



Macro Assembler 

Multiplication 

The following instructions mUltiply the source and destination and put the 
product in the destination. 

Syntax Description 

FMUL Classical-stack form. Multiplies ST by 
ST(l) and pops the result into ST. Both 
operands are destroyed. 

FMUL ST(num),ST Register form with stack top as source. Mul­
tiplies the two register values and replaces 
ST(num) with the result. 

FMUL ST,ST(num) Register form with stack top as destination. 
Multiplies the two register values and 
replaces ST with the result. 

FMUL mem Real-memory form. Multiplies a real 
number in mem by ST. The result replaces 
ST. 

FIMUL mem Integer-memory form. Multiplies an integer 
in mem by ST. The result replaces ST. 

FMULP ST(num),ST Register-pop form. Multiplies the two regis­
ter values and pops the result into ST(num). 
Both operands are destroyed. 

Normal Division 

The following instructions divide the destination by the source and put 
the quotient in the destination. Thus the dividend is replaced by the quo­
tient. 

Syntax 

FDIV 

FDIV ST(num),ST 

18-20 

Description 

Classical-stac1; form. Divides ST(l) by ST 
and pops the result into ST. Both operands 
are destroyed. 

Register form with stack top as source. 
Divides ST(num) by ST and replaces 
ST(num) with the result. 



Calculating with a Math Coprocessor 

FDIV ST,ST(num) Register fonn with stack top as destination. 
Divides ST by ST(num) and replaces ST 
with the result. 

FDIV mem Real-memory fonn. Divides ST by the real 
number in memo The result replaces ST. 

FIDIV mem Integer-memory fonn. Divides ST by the 
integer in memo The result replaces ST. 

FDIVP ST(num),ST Register-pop fonn. Divides ST(num) by ST 
and pops the result into ST(num). Both 
operands are destroyed. 

Reversed Division 

The following instructions divide the source by the destination and put 
the quotient in the destination. Thus the divisor is replaced by the quo­
tient. 

Syntax Description 

FDIVR Classical-stack fonn. Divides ST by ST(l) 
and pops the result into ST. Both operands 
are destroyed. 

FDIVR ST(num),ST Register fonn with stack top as source. 
Divides ST by ST(num) and replaces 
ST(num) with the result. 

FDIVR ST,ST(num) Register fonn with stack top as destination. 
Divides ST(num) by ST and replaces ST 
with the result. 

FDIVR mem Real-memory fonn. Divides the real number 
in mem by ST. The result replaces ST. 

FIDIVR mem Integer-memory fonn. Divides the integer in 
mem by ST. The result replaces ST. 

FDIVRP ST(num),ST Register-pop fonn. Divides ST by ST(num) 
and pops the result into ST(num). Both 
operands are destroyed. 

18-21 



Macro Assembler 

Other Operations 

The following instructions all use the stack top (ST) as an implied desti­
nation operand. The result of the operation replaces the value in the stack 
top. No operand should be given. 

Syntax 

FADS 

FCHS 

FRNDINT 

FSQRT 

FSCALE 

FPREM 

FXTRACT 

18-22 

Description 

Sets the sign of ST to positive. 

Reverses the sign of ST. 

Rounds the ST to an integer. 

Replaces the contents of ST with its square 
root. 

Scales by powers of two by adding the value 
of ST(l) to the exponent of the value in ST. 
This effectively multiplies the stack-top 
value by two to the power contained in 
ST(l). Since the exponent field is an 
integer, the value in ST(l) should normally 
be an integer. 

Calculates the partial remainder by per­
forming modulo division on the top two 
stack registers. The value in ST is divided 
by the value in ST(l). The remainder 
replaces the value in ST. The value in ST(l) 
is unchanged. Since this instruction works 
by repeated subtractions, it can take a lot of 
execution time if the operands are greatly 
different in magnitude. FPREM is some­
times used with trigonometric functions. 

Breaks a number down into its exponent and 
mantissa and pushes the mantissa onto the 
register stack. Following the operation, ST 
contains the value of the original mantissa 
and ST(l) contains the value of the 
unbiased exponent. 



Calculating with a Math Coprocessor 

80387 Only 

The 80387 has a new instruction called FPREMI. Its effect is similar to 
that of FPREM, but it conforms to the IEEE standard. 

Example 

. DATA 
a DO 3.0 
b DD 7.0 
c DD 2.0 
posx DD 0.0 
negx DD 0.0 

. CODE 

Solve quadratic equation - no error checking 

fldl Get const.ants 2 and 4 
fadd st,st 2 at bottom 
fld st Copy it 
fmul a = 2a 

fmul st(l),st = 4a 
fxch Exchange 
fmul c = 4ac 

fld b Load b 
fmul st,st = b~2 
fsubr = b~2 - 4ac 

Negative value here produces error 
fsqrt = square root(b~2 - 4ac) 
fld b Load b 
fchs Make it negative 
fxch Exchange 
fld st Copy square root 
fadd st, st (2) Plus version = -b + root ((b~2 - 4ac) 
fxch Exchange 
fsubp st(2),st Minus version = -b - root ((b~2 - 4ac) 

fdiv st,st(2) Divide plus version 
fstp posx Store it 
fdivr Divide minus version 
fstp negx Store it 

This example solves quadratic equations. It does no error checking and 
fails for some values because it attempts to find the square root of a nega­
tive number. You could enhance the code by using the FTST instruction 
(see "Comparing Operands to Control Program Flow") to check for a 
negative number or 0 just before the square root is calculated. If b squared 

18-23 



Macro Assembler 

minus 4ac is negative or 0, the code can jump to routines that handle spe­
cial cases for no solution or one solution, respectively. 

18.8 Controlling Program Flow 

The math coprocessors have several instructions that set control flags in 
the status word. The 8087-family control flags can be used with condi­
tional jumps to direct program flow in the same way that 8086-family 
flags are used. 

Since the coprocessor does not have jump instructions, you must transfer 
the status word to memory so that the flags can be used by 8086-family 
instructions. 

An easy way to use the status word with conditional jumps is to move its 
upper byte into the lower byte of the processor flags. For example, use 
the following statements: 

fstsw 
fwait 
mov 
sahf 

mem16 

ax,mem16 

Store status word in memory 
Make sure coprocessor is done 
Move to AX 
Store upper word in flags 

As noted in "Transferring Control Data," you can save several steps by 
loading the status word directly to AX on the 80287 and 80387. 

Figure 18.3 shows how the coprocessor control flags line up with the pro­
cessor flags. C3 overwrites the zero flag, C2 overwrites the parity flag, 
and CO overwrites the carry flag. Cl overwrites an undefined bit, so it 
cannot be used directly with conditional jumps, although you can use the 
TEST instruction to check Cl in memory or in a register. The sign and 
auxiliary-carry flags are also overwritten, so you cannot count on them 
being unchanged after the operation. 

18-24 



Calculating with a Math Coprocessor 

Status Word 

15 8 

---- L ~ ./" /' Z z 

I 

7 

~ I I 
C3 

I I I I I 
C1 CO 

Flags 

7 0 
~ ~ ~ ./" /' 7 Z Z 

~ I 
SF 

I 
ZF 

I I 
AF 

I I 
PF 

I I 
CF 

Figure 18-3 Coprocessor and Processor Control Flags 

18.8.1 Comparing Operands to Control Program Flow 

The 8087-family coprocessors provide several instructions for comparing 
operands. All these instructions compare the stack top (ST) to a source 
operand, which may either be specified or implied as ST(I). 

The compare instructions affect the C3, C2, and CO control flags. The Cl 
flag is not affected. Table 18.2 below shows the flags set for each possible 
result of a comparison or test. 

Table 18.2 

Control-Flag Settings 
after Compare or Test 

After FCOM After FTEST C3 C2 CO 

ST> source ST is positive 0 0 0 
ST < source ST is negative 0 0 1 

ST = source STis 0 1 0 0 
Not comparable ST is NAN or 1 1 

projective 
infinity 

18-25 



Macro Assembler 

Variations on the compare instructions allow you to pop the stack once or 
twice, and to compare integers and zero. For each instruction, the stack 
top is always the implied destination operand. If you do not give an 
operand, ST(l) is the implied source. Some compare instructions allow 
you to specify the source as a memory or register operand. 

The compare instructions are listed below. 

Compare 

These instructions compare the stack top to the source. The source and 
destination are unaffected by the comparison. 

Syntax 

FCOM 

FCOM ST(num) 

FCOMmem 

FICOMmem 

FTST 

Compare and Pop 

Description 

Compares ST to ST(l). 

Compares ST to ST(num). 

Compares ST to memo The memory operand 
can be a four- or eight-byte real number. 

Compares ST to memo The memory operand 
can be a two- or four-byte integer. 

Compares the ST to O. The control registers 
will be affected as if ST had been compared 
to 0 in ST(l). Table 18.2 above shows the 
possible results. 

These instructions compare the stack top to the source, and then pop the 
stack. Thus the destination is destroyed by the comparison. 

Syntax 

FCOMP 

FCOMP ST(num) 

18-26 

Description 

Compares ST to ST(l) and pops ST off the 
register stack. 

Compares ST to ST(num) and pops ST off 
the register stack. 



FCOMP mem 

FICOMP mem 

FCOMPP 

80387 Only 

Calculating with a Math Coprocessor 

Compares ST to mem and pops ST off the 
register stack. The operand can be a four- or 
eight-byte real number. 

Compares ST to mem and pops ST off the 
register stack. The operand can be a two- or 
four-byte integer. 

Compares ST to ST(l), and then pops the 
stack twice. Both the source and destination 
are destroyed by the comparison. 

Unordered compare instructions are available with the 80387. The 
FUCOM, FUCOMP, and FUCOMPP instructions are like FCOM, 
FCOMP, and FCOMPP except that the unordered versions do not cause 
invalid operation exceptions if one of the operands is a quiet NAN (not a 
number). Exceptions and NANs are beyond the scope of this manual and 
are not explained here. See Intel coprocessor reference books for more 
information. 

18-27 



Macro Assembler 

Example 

IFDEF c287 
.287 
END IF 
. DATA 

down DD 10.35 
across DD 13.07 
diameter DD 12.93 
status DW 

. CODE 

Get area of rectangle 
fld across 
fmul down 

Get area of circle 
fld1 
fadd st,st 
fdivr diameter 
fmul st,st 
fldpi 
fmul 

Sides of a rectangle 

Diameter of a circle 

Load one side 
Multiply by the other 

Load one and 
double it to get constant 2 

Divide diameter to get radius 
Square radius 
Load pi 
Multiply it 

Compare area of circle and rectangle 

nocomp: 

same: 

rectangle: 

circle: 

fcompp Compare and throw both away 
IFNDEF c287 
fstsw status 
fwait 
mov ax,status 
ELSE 
fstsw ax 
END IF 
sahf 
jp nocomp 
jz same 
jc rectangle 
jmp circle 

Load from coprocessor to memory 
Wait for coprocessor 
Memory to register 

(for 287+, skip memory) 

to flags 
If parity set, can't compare 
If zero set, they're the same 
If carry set, rectangle is bigger 
else circle is bigger 

Error handler 

Both equal 

Rectangle bigger 

Circle bigger 

Notice how conditional blocks are used to enhance 80287 code. If you 
define the symbol c287 from the command line by using the -Dsymbol 
option (see' 'Defining Assembler Symbols' ') the code is smaller and fas­
ter, but does not run on an 8087. 

18-28 



Calculating with a Math Coprocessor 

18.8.2 Testing Control Flags after Other Instructions 

In addition to the compare instructions, the FXAM and FPREM instruc­
tions affect coprocessor control flags. 

The FXAM instruction sets the value of the control flags based on the 
type of the number in the stack top (ST). This instruction is used to iden­
tify and handle special values such as infinity, zero, unnormal numbers, 
denormal numbers, and NANs (not a number). Certain math operations 
are capable of producing these special-format numbers. 

FPREM also sets control flags. Since this instruction must sometimes be 
repeated to get a correct remainder for large operands, it uses the C2 flag 
to indicate whether the remainder returned is partial (C2 is set) or com­
plete (C2 is clear). If the bit is set, the operation should be repeated. 

FPREM also returns the least-significant three bits of the quotient in CO, 
C3, and Cl. These bits are useful for reducing operands of periodic tran­
scendental functions, such as sine and cosine, to an acceptable range. 

18.9 Using Transcendental Instructions 

The 8087-family coprocessors provide a variety of instructions for doing 
transcendental calculations, including exponentiation, logarithmic calcu­
lations, and some trigonometric functions. 

Use of these advanced instructions is beyond the scope of this manual. 
However, the instructions are listed below for reference. All transcenden­
tal instructions have implied operands--either ST as a single destination 
operand, or ST as the destination and ST(l) as the source. 

Instruction Description 

F2XMl 

FYL2X 

Calculates 2x -1, where x is the value of the stack top. 
The value x must be between 0 and .5, inclusive. 
Returning 2x -1 instead of 2x allows the instruction to 
return the value with greater accuracy. The programmer 
can adjust the result to get 2x. 

Calculates Y times log2 X, where X is in ST and Y is in 
ST(l). The stack is popped, so both X and Y are des­
troyed, leaving the result in ST. The value of X must be 
positive. 

18-29 



Macro Assembler 

FYL2XPt Calculates Y times log2 (X + 1), where X is in ST and Y is 
in STet). The stack is popped, so both X and Yare des­
troyed, leaving the result in ST. The absolute value of X 
must be between 0 and the square root of 2 divided by 2. 
This instruction is more accurate than FYL2X when 
computing the log of a number close to 1. 

FPTAN Calculates the tangent of the value in ST. The result is a 
ratio Y/X, with Y replacing the value in ST and X pushed 
onto the stack so that after the instruction, ST contains Y 
and STet) contains X. The value being calculated must 
be a positive number less than pi/4. The result of the 
FPTAN instruction can be used to calculate other tri­
gonometric functions, including sine and cosine. 

FPATAN Calculates the arctangent of the ratio Y/X, where X is in 
ST and Y is in STet). The stack is popped, so both X and 
Y are destroyed, leaving the result in ST. Both X and Y 
must be positive numbers less than infinity, and Y. must 
be less than X. The result of the FPATAN instruction 
can be used to calculate other inverse trigonometric 
functions, including arcsine and arccosine. 

80387 Only 

The following additional trigonometric functions are available on the 
80387. 

Instruction Description 

FSIN Calculates the sine of the value in ST. The stack-top 
value is replaced by its sine. 

FCOS Calculates the cosine of the value in ST. The stack-top 
value is replaced by its cosine. 

FSINCOS Calculates the sine and cosine of the value in ST. When 
the instruction is complete, the value in ST is the cosine 
of the original stack-top value. The value in STet) is the 
sine of the original stack-top value. One of the values is 
pushed so that the former value in STet) is in ST(2). 

18-30 



Calculating with a Math Coprocessor 

18.10 Controlling the Coprocessor 

Additional instructions are available for controlling various aspects of the 
coprocessor. With the exception of FINIT, these instructions are gen­
erally used only by systems programmers. They are summarized below, 
but not fully explained or illustrated. Some instructions have a wait ver­
sion and a no-wait version. The no-wait versions have N as the second 
letter. 

Syntax 

F[N]INIT 

F[N]CLEX 

FINCSTP 

FDECSTP 

Description 

Resets the coprocessor and restores all the default 
conditions in the control and status words. It is a 
good idea to use this instruction at the start and 
end of your program. Placing it at the start ensures 
that no register values from previous programs 
affect your program. Placing it at the end ensures 
that register values from your program will not 
affect later programs. 

Clears all exception flags and the busy flag of the 
status word. It also clears the error-status flag on 
the 80287 and 80387, or the interrupt-request flag 
on the 8087. 

Adds one to the stack pointer in the status word. 
Do not use to pop the register stack. No tags or 
registers are altered. 

Subtracts one from the stack pointer in the status 
word. No tags or registers are altered. 

FREE ST(num) Marks the specified register as empty. 

FNOP 

8087 Only 

Copies the stack top to itself, thus padding the 
executable file and taking up processing time 
without having any effect on registers or memory. 

The 8087 has the instructions FDISI, FNDISI, FENI, and FNENI. These 
instructions can be used to enable or disable interrupts. The 80287 and 
80387 coprocessors permit these instructions, but ignore them. Applica­
tions programmers will not normally need these instructions. Systems 
programmers should avoid using them so that their programs are portable 
to all coprocessors. 

18-31 



Macro Assembler 

80287/387 Only 

Starting with the 80287, the FSETPM (Set Protected Mode) instruction is 
available. This instruction enables the coprocessor to run in protected 
mode. The primary difference is that the addresses stored in the instruc­
tion and operand pointers have a segment selector instead of an actual 
segment address. For information on segment selectors, see "Segmented 
Addresses.' , 

Either the .286P or .386P directive must be given before the FSETPM 
instruction can be used. Protected-mode operating systems normally set 
protected mode automatically. Therefore, you need this instruction only if 
you are writing control software. 

18-32 



Chapter 19 

Controlling the Processor 

19.1 Introduction 19-1 

19.2 Controlling Timing and Alignment 19-1 

19.3 Controlling the Processor 19-1 

19.4 Controlling Protected-Mode Processes 19-2 

19.5 Controlling the 80386 19-4 





Controlling the Processor 

19.1 Introduction 

The 8086-family processors provide instructions for processor control. 
Some of these instructions are available on all processors; others are for 
controlling protected-mode operations on the 80286 and 80386. 

System-control instructions have limited use in applications program­
ming. They are primarily used by systems programmers who write operat­
ing systems and other control software. Since systems programming is 
beyond the scope of this manual, the systems-control instructions are 
summarized, but not explained in detail, in the sections below. 

19.2 Controlling Timing and Alignment 

The NOP instruction does nothing but take up time and space. It works by 
exchanging the AX register with itself. The NOP instruction can be used 
for delays in timing loops, or to pad executable code for alignment. 

Normally, applications programmers should avoid using the NOP instruc­
tion in timing loops, since such loops take different lengths of time on 
different machines. 

NOP instructions are automatically inserted for padding when you use 
the ALIGN or EVEN directive (see "Aligning Data' ') to align data or 
code on a given boundary. The assembler automatically inserts NOP 
instructions for alignment. 

19.3 Controlling the Processor 

The WAIT, ESC, LOCK, and HLT instructions control different aspects 
of the processor. 

These instructions can be used to control processes handled by external 
coprocessors. The 8087-family coprocessors are the coprocessors most 
commonly used with 8086-family processors, but 8086-based machines 
can work with other coprocessors if they have the proper hardware and 
control software. 

19-1 



Macro Assembler 

These instructions are summarized below: 

Instruction Description 

LOCK 

WAIT 

ESC 

Locks out other processors until a specified instruction 
is finished. This is a prefix that precedes the instruction. 
It can be used to make sure that a coprocessor does not 
change data being worked on by the processor. 

Instructs the processor to do nothing until it receives a 
signal that a coprocessor has finished with a task being 
performed at the same time. For information on using 
WAIT or its coprocessor equivalent, FW AIT, with the 
8087-family coprocessors, see "Coordinating Memory 
Access." 

Provides an instruction and possibly a memory operand 
for use by a coprocessor. ESC instructions are automati­
cally inserted when required for use with 8087-family 
coprocessors. 

HLT Stops the processor until an interrupt is received. It can 
be used in place of an endless loop if a program needs to 
wait for an interrupt. 

19.4 Controlling Protected-Mode Processes 

80286/386 Only 

Protected mode is available starting with the 80286 processors. This 
mode is generally initiated and controlled by the operating system. Under 
XENIX and OS/2, applications programmers do not need to use protected­
mode instructions. Process control is managed through system calls. 

The instructions that control protected mode are privileged and can only 
be used if the .286P or .386P directives have been given. These instruc­
tions are generally needed only for operating systems and other control 
software. Some privileged-mode instructions use internal registers of the 
80286 or 80386 processors. Instructions are provided for loading values 
from these registers into memory where the values can be modified. Other 
instructions can then be used to store the values back to the special regis­
ters. 

19-2 



Controlling the Processor 

The privileged-mode instructions are listed below: 

Instruction Description 

LAR Loads access rights 

LSL Loads segment limit 

LGDT Loads global descriptor table 

SGDT Stores global descriptor table 

LIDT Loads 8-byte-interrupt descriptor table 

SIDT Stores 8-byte-interrupt descriptor table 

LLDT Loads local descriptor table 

SLDT Stores local descriptor table 

LTR Loads task register 

STR Stores task register. 

LMSW Loads machine-status word 

SMCW Stores machine-status word 

ARPL Adjusts requested privilege level 

CLTS Clears task -switched flag 

VERR Verifies read access 

VERW Verifies write access 

19-3 



Macro Assembler 

19.5 Controlling the 80386 

80386 Only 

The 80386 processor can use all the privileged-mode instructions of the 
80286, but it also allows you to use MOV to transfer data between 
general-purpose registers and special registers. The following special 
registers can be accessed with move instructions on the 80386: 

Type 

Control 

Debug 

Test 

Registers 

CRO, CR2, and CR3 

DRO, DR1, DR2, DR3, DR6, and DR7 

TR6and TR7 

These registers can be moved directly to 32-bit registers or from them. 

Examples 

19-4 

mov 
mov 

eax,crO 
cr3,ecx 

Load CRO into EAX 
Store ECX in CR3 



Appendix A 

New Features 

A.I Introduction A-I 

A.2 Enhancements to masm A-I 
A.2.I 80386 Support A-I 
A.2.2 Segment Simplification A-2 
A.2.3 Performance Improvements A-3 
A.2.4 Enhanced Error Handling A-3 
A.2.5 New Options A-3 
A.2.6 String Equates A-4 
A.2.7 RETF and RETN Instructions A-4 
A.2.8 Communal Variables A-4 
A.2.9 Flexible Structure Definitions A-5 

A.3 Compatibility with Assemblers and Compilers A-5 





New Features 

A.l Introduction 

Version 5.0 of the Macro Assembler (masm) has many significant new 
features. This appendix describes these features and tells you where they 
are documented. 

A.2 Enhancements to masm 

This version of masm has several important enhancements. The follow­
ing sections summarize new options, directives, instructions, and other 
features. 

A.2.1 80386 Support 

The masm program now supports the 80386 instruction set and address­
ing modes. The 80386 processor is a superset of other 8086-family pro­
cessors. Most new features of the 80386 are simply 32-bit extensions of 
I6-bit features, and are used in much the same way as the I6-bit registers. 
However, some features of the 80386 processor are significantly different. 
(The 80386 registers are explained in "Using 8086-Family Registers.") 

Throughout this manual, the heading "80386 Only" indicates sections 
describing 80386 enhancements. Areas of particular importance include 
the following: 

• the .386 directive for initializing the 80386 (' 'Defining Default 
Assembly Behavior") 

• the USE32 and USE16 segment types for setting the segment word 
size ("Setting Segment Word Size with Use Type") 

• indirect addressing modes ("80386 Indirect Memory Operands") 

The 80386 processor and the 80387 coprocessor have some new instruc­
tions that are unique, and unrelated to any I6-bit instructions. These are 
listed in Table A.I. 

A-I 



Macro Assembler 

Table A.I 

80386 and 80387 Instructions 

Name 
Bit Scan Forward 
Bit Scan Reverse 
Bit Test 
Bit Test and Complement 
Bit Test and Reset 
Bit Test and Set 

. Move with Sign Extend 
Move with Zero Extend 
Set Byte on Condition 
Double Precision Shift Left 
Double Precision Shift Right 
Move to/from Special Registers 
Sine 
Cosine 
Sine Cosine 
IEEE Partial Remainder 
Unordered Compare Real 
Unordered Compare Real and Pop 
Unordered Compare Real and Pop Twice 

A.2.2 Segment Simplification 

Mnemonic 
BSF 
BSR 
BT 
BTC 
BTR 
BTS 
MOVSX 
MOVZX 
SETcondition 
SHLD 
SHRD 
MOV 
FSIN 
FCOS 
FSINCOS 
FPREMI 
FUCOM 
FUCOMP 
FUCOMPP 

A new system of defining segments is available in masm Version 5.0. The 
simplified segment directives use the Microsoft naming conventions and 
allow segments to be defined easily and consistently. However, this seg­
ment definition system is optional. You can still use the old system if you 
need more direct control over segments or if you need to be consistent 
with existing code. For more information about segment simplification, 
see" Simplified Segment Definitions." 

A new DOSSEG directive enables you to specify MS-DOS segment order 
in the source file. For more information on this feature, see "Specifying 
MS-DOS Segment Order." 

A-2 



New Features 

A.2.3 Performance Improvements 

The masm program's performance has been enhanced through faster 
assembly and larger symbol space: 

1. For most source files, Version 5.0 of the assembler is significantly 
faster than previous versions. The degree of improvement varies, 
depending on the relative amounts of code and data in the source 
file, and on the complexity of expressions used. 

2. Symbol space is now limited only by the amount of system 
memory available to your machine. 

A.2.4 Enhanced Error Handling 

Error handling has been enhanced from previous versions in the following 
ways: 

• Messages have been reworded, enhanced, or reorganized. 

• Messages are divided into three levels: severe errors, serious warn­
ings, and advisory warnings. The level of warning can be changed 
with the -w option. Type-checking errors are now serious warnings 
rather than severe errors. See "Setting the Warning LeveL" 

• During assembly, messages are output to standard output. In Ver­
sion 4.0 they were sent to standard error. 

A.2.S New Options 

The following command-line options have been added to Version 5.0: 

Option 

-w[01112] 

-Zd and -Zi 

Description 

Sets the warning level to determine what type of 
messages will be displayed: severe errors, serious 
warnings, or advisory warnings. For more infor­
mation about warning levels, see ' 'Setting the 
Warning LeveL" 

Sends debugging information for symbolic 
debuggers to the object file. The -Zd option out­
puts line-number information, whereas the -Zi 
option outputs both line-number and type 

A-3 



Macro Assembler 

-b 

-Dsym[=val] 

information. These options are described in 
"Writing Symbolic Information to the Object 
File." 

Displays the masm command line and options, as 
explained in "Creating Code for a Floating-Point 
Emulator.' , 

Allows definition of a symbol from the command 
line. This is an enhancement of a current option. 
For more information, see "Defining Assembler 
Symbols." 

In addition, .ALPHA and .SEQ directives have been added to masm. 
These directives have the same effect as the -a and -s options. These 
directives are described in "Setting the Segment-Order Method." 

A.2.6 String Equates 

String equates have been enhanced for easier use. By enclosing the argu­
ment to the EQU directive in angle brackets, you can ensure that the 
argument is evaluated as a string equate rather than as an expression. For 
examples, see "String Equates." 

The expression operator (%) can now be used with macro arguments that 
are text macros as well as with arguments that are expressions. This 
feature is described in "Expression Operator." 

A.2.7 RETF and RETN Instructions 

Version 5.0 makes two new instructions available, RETF (Return Far) 
and RETN (Return Near). These instructions let you define procedures 
without using the PROC and ENDP directives. "Defining Procedures," 
explains these instructions. 

A.2.S Communal Variables 

You can now declare communal variables. These uninitialized global data 
items can be used in include files, and are compatible with variables 
declared in C include files. For details, see' 'Using Multiple Modules." 

A-4 



New Features 

A.2.9 Flexible Structure Definitions 

Structure definitions can now include conditional-assembly statements, 
thus enabling more· flexible structures. For more information, see 
"Declaring Structure Types." 

A.3 Compatibility with Assemblers and Compilers 

If you are upgrading from a previous version of the Microsoft Macro 
Assembler, you may need to make some adjustments before assembling 
source code developed with previous versions. 

• Previous versions (pre-5.0) of masm assembled initialized real­
number variables in the Microsoft Binary format by default. Ver­
sion 5.0 assembles initialized real-number variables in the IEEE 
format. If you have source modules that expect Microsoft Binary 
format, you must modify them by placing the .MSFLOAT direc­
tive at the start of the module, before the first variable is initial­
ized. 

In previous versions of masm, the following default conditions 
were recognized: 

8086 instructions enabled 

math coprocessor instructions disabled 

real numbers assembled in Microsoft Binary format 

In these earlier versions, the -r option, the .8087 directive, or the .287 
directive was required to enable coprocessor instructions and to achieve 
IEEE format for real numbers. 

Version 5.0 recognizes the following default conditions: 

• 8086 and 8087 instructions enabled 

• real numbers assembled in IEEE format 

Although the -r option is no longer used, it is recognized and ignored by 
5.0 so that existing makefiles work without modification. 

Some early versions of masm did not have strict type checking. Later 
versions had strict type checking that produced errors on source code that 
would have run under the earlier versions. Version 5.0 solves this incom­
patibility by turning type errors into warning messages. You can set the 

A-5 



Macro Assembler 

warning level so that type warnings will not be displayed, or you can 
modify the code so that the type is given specifically. "Strong Typing for 
Memory Operands," describes strict type checking and how to modify 
source code that was developed without this type-checking feature. 

A-6 



Appendix B 

Instruction Summary 

B.1 Introduction B-1 

B.2 8086 Instruction Mnemonics B-2 

B.3 8087 Instruction Mnemonics B-8 

BA 80186 Instruction Mnemonics B-13 

B.5 80286 Nonprotected Instruction Mnemonics B-14 

B.6 80286 Protected Instruction Mnemonics B-15 

B.7 80287 Instruction Mnemonics B-15 

B.8 80386 Nonprotected Instruction Mnemonics B-16 

B.9 80386 Protected Instruction Mnemonics B-19 

B.10 80387 Instruction Mnemonics B-20 





Instruction Summary 

B.I Introduction 

The Macro Assembler is capable of assembling instructions for the 8086, 
80186, 80286, and 80386 microprocessors and the 8087 and 80287 float­
ing point coprocessors. It will assemble any program written for an 8086, 
80186, 80286, or 80386 microprocessor environment as long as the pro­
gram uses the instruction syntax described in this chapter. 

By default, masm recognizes 8086 and 8087 instructions only. If a 
source program contains 80186, 80286, 80287, or 80387 instructions, one 
or more instruction-set directives must be used in the source file to enable 
assembly of the instructions. The following sections list the syntax of all 
instructions recognized by masm and the instruction-set directives. 

Table B.l explains the abbreviations used in the 8086, 8087, 80186, 
80286,80287,80386, and 80387 syntax descriptions: 

Symbol 

accum 

reg 

segreg 

rim 

immed 

mem 

label 

Table B.1 

Syntax-Description Abbreviations 

Meaning 

accumulator: AX, or AL 

byte or word register 
byte: AL, AR, BL, BR, CL, CR, DL, DR 
word: AX, BX, CX, DX, SI, DI, BP, SP 
dword: EAX, EBX, ECX, EDX, ESI, EDI, EBP, ESP 

segment register: CS, DS, SS, ES, FS, as 
general operand: register, memory address, indexed 
operand, based operand, or based-indexed operand 

8-, 16-, or 32-bit immediate value: constant or symbol 

memory operand: label, variable, or symbol 

instruction label 

B-1 



Macro Assembler 

B.2 8086 Instruction Mnemonics 

The 8086 instructions are listed below. All 8086 instructions are assem­
bled by default. 

Syntax 

AAA 

AAD 

AAM 

AAS 

ADC accum, immed 

ADC rim, immed 

ADCrlm, reg 

ADCreg, rim 

ADD accum, immed 

ADD rim, immed 

ADD rim, reg 

ADD reg, rim 

AND accum, immed 

AND rim, immed 

AND rim, reg 

AND reg, rim 

CALL label 

CALL rim 

CBW 

CLC 

CLD 

CLI 

CMC 

CMP accum, immed 

CMP rim, immed 

B-2 

Table B.2 

8086 Instruction Mnemonics 

Action 

ASCII adjust for addition 

ASCII adjust for division 

ASCII adjust for multiplication 

ASCII adjust for subtraction 

Add immediate with carry to accumulator 

Add immediate with carry to operand 

Add register with carry to operand 

Add operand with carry to register 

Add immediate to accumulator 

Add immediate to operand 

Add register to operand 

Add operand to register 

Bitwise AND immediate with accumulator 

Bitwise AND immediate with operand 

Bitwise AND register with operand 

Bitwise AND operand with register 

Execute instruction at label 

Execute instruction indirect 

Convert byte to word 

Clear carry flag 

Clear direction flag 

Clear interrupt flag 

Complement carry flag 

Compare immediate with accumulator 

Compare immediate with operand 



Syntax 

CMPrlm,reg 

CMPreg,rlm 

CMPS src, dest 

CMPSB 

CMPSW 

CWD 

DAA 

DAS 

DEC rim 

DEC reg 

DIY rim 

ESC immed, rim 

lILT 
IDIY rim 

IMVLrlm 

IN accum, immed 

IN accum, DX 

INC rim 

INC reg 

INT3 

INTimmed 

INTO 

IRET 
JA label 

JAE label 

JB label 

JBE label 

JC label 
\ JCXZ label 

JE label 

Instruction Summary 

Action 

Compare register with operand 

Compare operand with register 

Compare strings 

Compare strings byte for byte 

Compare strings word for word 

Convert word to doubleword 

Decimal adjust for addition 

Decimal adjust for subtraction 

Decrement operand 

Decrement 16-bit register 

Divide accumulator by operand 

Escape with 6-bit immediate and operand 

Halt processor 

Integer divide accumulator by operand 

Integer multiply accumulator by operand 

Input from port (8-bit immediate) 

Input from port given by DX 

Increment operand 

Increment 16-bit register 

Execute software interrupt 3 (encoded as 
one byte) 

Execute software interrupt 0 through 255 

Interrupt on overflow 

Return from interrupt 

Jump on above 

Jump on above or equal 

Jump on below 

Jump on below or equal 

Jump on carry 

Jump on CX zero 

Jump on equal 

B-3 



Macro Assembler 

Syntax Action 

JG label Jump on greater 

JGE label Jump on greater or equal 

JL label Jump on less 

JLE label Jump on less or equal 

JMP label Jump to instruction at label 

JMP rim Jump to instruction indirect 

JNA label Jump on not above 

JNAE label Jump on not above or equal 

JNB label Jump on not below 

JNBE label Jump on not below or equal 

JNC label Jump on no carry 

JNE label Jump on not equal 

JNG label Jump on not greater 

JNGE label Jump on not greater or equal 

JNL label Jump on not less 

JNLE label Jump on not less or equal 

JNO label Jump on not overflow 

JNP label Jump on not parity 

JNS label Jump on not sign 

JNZ label Jump on not zero 

JO label Jump on overflow 

JP label Jump on parity 

JPE label Jump on parity even 

JPO label Jump on parity odd 

JS label Jump on sign 

JZ label Jump on zero 

LAHF Load AH with flags 

LDS rim Load operand into DS 

LEA rim Load effective address of operand 

LES rim Load operand into ES 

LOCK Lock bus 

B-4 



Syntax 
LODS src 

LODSB 

LODSW 

LOOP label 

LOOPE label 

LOOPNE label 

LOOPNZ label 

LOOPZ label 

MOV accum, mem 

MOV mem, accum 

MOV rim, immed 

MOV rim, reg 

MOV rim, segreg 

MOV reg, immed 

MOV reg, rim 

MOV segreg, rim 

MOVS dest, src 

MOVSB 

MOVSW 

MUL rim 

NEG rim 

NOP 

NOT rim 

OR accum, immed 

OR rim, immed 

OR rim, reg 

OR reg, rim 

OUT DX, accum 

OUT immed, accum 

Instruction Summary 

Action 
Load string 

Load byte from string into AL 

Load word from string into AX 

Loop 

Loop while equal 

Loop while not equal 

Loop while not zero 

Loop while zero 

Move memory to accumulator 

Move accumulator to memory 

Move immediate to operand 

Move register to operand 

Move segment register to operand 

Move immediate to register 

Move operand to register 

Move operand to segment register 

Move string 

Move string byte by byte 

Move string word by word 

Multiply accumulator by operand 

Negate operand 

No operation 

Invert operand bits 

Bitwise OR immediate with accumulator 

Bitwise OR immediate with operand 

Bitwise OR register with operand 

Bitwise OR operand with register 

Output to port given by DX 

Output to port (8-bit immediate) 

B-5 



Macro Assembler 

Syntax 

POP rim 

POP reg 

POP segreg 

POPF 

PUSH rim 

PUSH reg 

PUSH segreg 

PUSHF 

RCL rim, 1 

RCL rlm,CL 

RCR rim, 1 

RCR rlm,CL 

REPE 
REPNE 
REPNZ 
REPZ 
RET [immed] 

ROL rim, 1 

ROL rlm,CL 

ROR rim, 1 

ROR rlm,CL 

SAHF 

SAL rim, 1 

SAL rlm,CL 
SAR rim, 1 

SAR rlm,CL 

SBB accum, immed 

SBB rim, immed 

SBB rlm,reg 

SBB reg, rim 

B-6 

Action 

Pop 16-bit operand 

Pop 16-bit register from stack 

Pop segment register 

Pop flags 

Push 16-bit operand 

Push 16-bit register onto stack 

Push segment register 

Push flags 

Rotate left through carry by 1 bit 

Rotate left through carry by CL 

Rotate right through carry by 1 bit 

Rotate right through carry by CL 

Repeat if equal 

Repeat if not equal 

Repeat if not zero 

Repeat if zero 

Return after popping bytes from stack 

Rotate left by 1 bit 

Rotate left by CL 

Rotate right by 1 bit 

Rotate right by CL 

Store AH in flags 

Shift arithmetic left by 1 bit 

Shift arithmetic left by CL 

Shift arithmetic right by 1 bit 

Shift arithmetic right by CL 

Subtract immediate and carry flag 

Subtract immediate and carry flag 

Subtract register and carry flag 

Subtract operand and carry flag 



Syntax 

SCAS dest 

SCASB 

SCASW 

SHL rim, 1 
SHL rlm,CL 

SHR rim, 1 

SHR rlm,CL 

STC 

STD 

STI 

STOS dest 

STOSB 

STOSW 

SUB accum, immed 

SUB rim, immed 

SUB rim, reg 

SUB reg, rim 

TEST accum, immed 

TEST rim, immed 

TEST rim, reg 

TEST reg, rim 

WAIT 

XCHG accum, reg 

XCHG rim, reg 

XCHG reg, accum 

XCHG reg, rim 

XLAT mem 

XOR accum, immed 

XOR rim, immed 

XOR rim, reg 

XOR reg, rim 

Instruction Summary 

Action 

Scan string 

Scan string for byte in AL 

Scan string for word in AX 

Shift left by 1 bit 

Shift left by CL 

Shift right by 1 bit 

Shift right by CL 

Set carry flag 

Set direction flag 

Set interrupt flag 

Store string 

Store byte in AL at string 

Store word in AX at string 

Subtract immediate from accumulator 

Subtract immediate from operand 

Subtract register from operand 

Subtract operand from register 

Compare immediate bits with accumulator 

Compare immediate bits with operand 

Compare register bits with operand 

Compare operand bits with register 

Wait 

Exchange accumulator with register 

Exchange operand with register 

Exchange register with accumulator 

Exchange register with operand 

Translate 

Bitwise XOR immediate with accumulator 

Bitwise XOR immediate with operand 

Bitwise XOR register with operand 

Bitwise XOR operand with register 

B-7 



Macro Assembler 

The string instructions (CMPS, LODS, MOVS, SCAS, and STOS) use the 
DS, SI, ES, and DI registers to compute operand locations. Source 
operands are assumed to be at DS:[SI]; destination operands at ES:[DI]. 
The operand type (BYTE or WORD) is defined by the instruction 
mnemonic. For example, CMPSB specifies BYTE operands and CMPSW 
specifies WORD operands. For the CMPS, LODS, MOVS, SCAS, and 
STOS instructions, the src and dest operands are dummy operands that 
define the operand type only. The offsets associated with these operands 
are not used. The src operand can also be used to specify a segment over­
ride. The ES register for the destination operand cannot be overridden. 

Examples 

CMPS WORD ptr string, WORD ptr ES:O 
LODS BYTE ptr string 
mov BYTE ptr ES:O, BYTE ptr string 

The REP, REPE, REPNE, REPNZ, and REPZ instructions provide ways 
to repeatedly execute a string instruction for a given count or while a 
given condition is true. If a repeat instruction immediately precedes a 
string instruction (both instructions must be on the same line), the instruc­
tions are repeated until the specified repeat condition is false or the CX 
register is equal to zero. The repeat instruction decrements CX by one for 
each execution. 

Example 

mov CX, 10 
REP SCASB 

B.3 8087 Instruction Mnemonics 

The 8087 instructions are listed below. All 8087 instructions are assem­
bled by default. 

B-8 



Syntax 

F2XM1 

FABS 

FADD 

FADD mem 

FADD ST, STU) 

FADD STU), ST 

FADDP STU), ST 

FBLDmem 

FBSTPmem 

FCHS 

FCLEX 

FCOM 

FCOMST 

FCOMST(i) 

FCOMP 

FCOMPST 

FCOMPSTU) 

FCOMPP 

FDECSTP 

FDISI 

FDIV 

FDIV mem 

FDIV ST, ST(i) 

FDIV STU), ST 

FDIVP STU), ST 
FDIVR 

FDIVR mem 

FDIVR ST, STU) 

FDIVR STU), ST 

Instruction Summary 

Table B.3 

8087 Instruction Mnemonics 

Action 

Calculate 2x_1 

Take absolute value of top of stack 

Add real 

Add real from memory 

Add real from stack 

Add real to stack 

Add real and pop stack 

Load 10-byte packed decimal on stack 

Store 10-byte packed decimal and pop 

Change sign on the top stack element 

Clear exceptions after WAIT 

Compare real 

Compare real with top of stack 

Compare real with stack 

Compare real and pop stack 

Compare real with top of stack and pop 

Compare real with stack and pop stack 

Compare real and pop stack twice 

Decrement stack pointer 

Disable interrupts after WAIT 

Divide real 

Divide real from memory 

Divide real from stack 

Divide real in stack 

Divide real and pop stack 
Reversed real divide 

Reverse real divide from memory 

Reverse real divide from stack 

Reverse real divide in stack 

B-9 



Macro Assembler 

Syntax 

FDIVRP STU), ST 

FENI 

FFREE 

FFREEST 

FFREE STU) 

FIADDmem 

FICOMmem 

FICOMPmem 

FIDIV mem 

FIDIVRmem 

Fll..Dmem 

FIMULmem 

FINCSTP 

FINIT 

FISTmem 

FISTPmem 

FISUBmem 

FISUBRmem 

FLDmem 

FLDI 
FLDCWmem 

FLDENVmem 

FLDL2E 

FLDL2T 
FLDLG2 
FLDLN2 

FLDPI 

FLDZ 

FMUL 

FMUL mem 

FMUL ST, STU) 

FMUL STU), ST 

B-I0 

Action 

Reversed real divide and pop stack twice 

Enable interrupts after WAIT 

Free stack element 

Free top of stack element 

Free ith stack element 

Add 2- or 4-byte integer 

2- or 4-byte integer compare 

2- or 4-byte integer compare and pop stack 
2- or 4-byte integer divide 

Reversed 2- or 4-byte integer divide 

Load 2-, 4-, or 8-byte integer on stack 

Multiply 2- or 4-byte integer 

Increment stack pointer 

Initialize processor after WAIT 

Store 2- or 4-byte integer 

Store 2-,4-, or 8-byte integer and pop stack 

2- or 4-byte integer subtract 

Reversed 2- or 4-byte integer subtract 

Load 4-,8-, or 10-byte real on stack 

Load + 1.0 onto top of stack 

Load control word 

Load 8087 environment (14 bytes) 

Load logze onto top of stack 

Load logz10 onto top of stack 

Load logJ02 onto top of stack 

Load loge2 onto top of stack 

Load pi onto top of stack 

Load +0.0 onto top of stack 

Multiply real 

MUltiply real from memory 

Multiply real from stack 

Multiply real to stack 



Syntax 

FMULP STU), ST 

FNCLEX 

FNDISI 

FNENI 

FNINIT 

FNOP 

FNSAVEmem 

FNSTCWmem 

FNSTENVmem 

FNSTSWmem 

FPATAN 

FPREM 

PFPTAN 

FRNDINT 

FRSTORmem 

FSAVEmem 

FSCALE 

FSQRT 

FST 

FSTST 

FST STU) 

FSTCWmem 

FSTENVmem 

FSTPmem 

FSTSWmem 

FSUB 

FSUB mem 

FSUB ST, STU) 

FSUB STU), ST 

FSUBP STU), ST 

FSUBR 

Instruction Summary 

Action 

Multiply real and pop stack 

Clear exceptions with no WAIT 

Disable interrupts with no WAIT 

Enable interrupts with no WAIT 

Initialize processor with no WAIT 

No operation 

Save 8087 state (94 bytes) with no WAIT 

Store control word with no WAIT 

Store 8087 environment with no WAIT 

Store 8087 status word with no WAIT 

Calculate partial arctangent 

Calculate partial remainder 

Calculate partial tangent 

Round to integer 

Restore 8087 state (94 bytes) 

Save 8087 state (94 bytes) after WAIT 

Scale 

Square root 

Store real 

Store real from top of stack 

Store real from stack 

Store control word with WAIT 

Store 8087 environment after WAIT 

Store 4-, 8-, or lO-byte real and pop stack 

Store 8087 status word after WAIT 

Subtract real 

Subtract real from memory 

Subtract real from stack 

Subtract real to stack 

Subtract real and pop stack 

Reversed real subtract 

B-ll 



Macro Assembler 

Syntax 

FSUBR mem 

FSUBR ST, STU) 

FSUBR ST(i), ST 

FSUBRP STU), ST 

FTST 

FWAIT 

FXAM 

FXCH 

FFREEST 

FFREE STU) 

FXTRACT 

FYL2X 

FYL2PI 

B-12 

Action 

Reversed real subtract from memory 

Reversed real subtract from stack 

Reversed real subtract in stack 

Reversed real subtract and pop stack 

Test top of stack 

Wait for last 8087 operation to complete 

Examine top of stack element 

Exchange contents of stack elements 

Exchange top of stack element 

Exchange top of stack and ith element 

Extract exponent and significant 

Calculate Y log2x 

Calculate Y log/x+l) 



Instruction Summary 

B.4 80186 Instruction Mnemonics 

The 80186 instruction set consists of all 8086 instructions plus the follow­
ing instructions. The .186 directive must be placed at the beginning of 
the source file to enable these instructions. 

Table B.4 

80186 Instruction Mnemonics 

Syntax 

BOUND reg, mem 

ENTER immed16, immed8 

IMUL immed, reg 

IMUL rim, immed 

INSmem,DX 

INSBmem,DX 

INSWmem,DX 

LEAVE 

OUTS DX,mem 

OUTSB DX, mem 

OUTSW DX, mem 

POPA 

PUSHimmed 

PUSHA 

RCL rim, immed 

RCR rim, immed 

ROL rim, immed 

ROL rim, immed 

SAL rim, immed 

SAR rim, immed 

SHL rim, immed 

SHR rim, immed 

Action 

Detect value out of range 

Enter procedure 

Integer multiply immediate byte 
into word register 

Integer multiply operand by 
immediate word/byte 

Input string from port DX 

Input byte string from port DX 

Input word string from port DX 

Leave procedure 

Output byte/word/string to port DX 

Output byte string to port DX 

Output word string to port DX 

Pop all registers 

Push immediate word/byte 

Push all registers 

Rotate left through carry immediate 

Rotate 

Rotate left immediate 

Rotate right immediate 

Shift arithmetic left immediate 

Shift arithmetic right immediate 

Shift left immediate 

Shift right immediate 

B-13 



Macro Assembler 

B.S 80286 Nonprotected Instruction Mnemonics 

The 80286 nonprotected instruction set consists of all 8086 instructions 
plus the following instructions. The .286 directive must be placed at the 
beginning of the source file to enable these instructions. 

Table B.S 

80286 Nonprotected Instruction Mnemonics 

Syntax 

BOUND reg, mem 

ENTER immed16, immed8 

IMUL immed, reg 

IMUL rim, immed 

INSmem,DX 

INSBmem,DX 

INSWmem,DX 

LEAVE 

OUTS DX,mem 

OUTSB DX, mem 

OUTSW DX, mem 

POPA 

PUSHimmed 

PUSHA 

RCL rim, immed 

RCR rim, immed 

ROL rim, immed 

ROL rim, immed 

SAL rim, immed 

SAR rim, immed 

SHL rim, immed 

SHR rim, immed 

B-14 

Action 

Detect value out of range 

Enter procedure 

Integer multiply immediate byte into 
word register 

Integer multiply operand by immedi­
ate word/byte 

Input string from port DX 

Illput byte string from port DX 

Input word string from port DX 

Leave procedure 

Output byte/word/string to port DX 

Output byte string to port DX 

Output word string to port DX 

Pop all registers 

Push immediate word/byte 

Push all registers 

Rotate left through carry immediate 

Rotate right through carry immediate 

Rotate left immediate 

Rotate right immediate 

Shift arithmetic left immediate 

Shift arithmetic right immediate 

Shift left immediate 

Shift right immediate 



Instruction Summary 

B.6 80286 Protected Instruction Mnemonics 

The 80286 protected instruction set consists of all 8086 and 80286 
nonprotected instructions plus the following instructions. The .286P 
directive must be placed at the beginning of the source file to enable these 
instructions. 

Table B.6 

80286 Protected Instruction Mnemonics 

Syntax 

ARPL mem, reg 
LARreg, mem 
LSLreg,mem 
SGDTmem 
SIDTmem 

SLDTmem 

SMSWmem 
STRmem 
VERRmem 

VERWmem 

Action 

Adjust requested privilege level 

Load access rights 

Load segment limit 
Store global-descriptor table (8 bytes) 

Store interrupt-descriptor table (8 bytes) 

Store local-descriptor table 

Store machine-status word 
Store task register 

Verify read access 

Verify write access 

B.7 80287 Instruction Mnemonics 

The 80287 instruction set consists of all 8087 instructions plus the follow­
ing instructions. The .287 directive must be used to enable these instruc­
tions. 

Syntax 

FSETPM 

FSTSW AX 

FNSTSW AX 

Table B.7 

80287 Instruction Mnemonics 

Action 

Set protected mode 
Store status word in AX (wait) 

Store status word in AX (no wait) 

B-15 



Macro Assembler 

B.8 80386 Nonprotected Instruction Mnemonics 

The 80386 nonprotected instruction set consists of all 8086 and 80286 
nonprotected instructions plus the following instructions. The .386 direc­
tive must be placed at the beginning of the source file to enable these 
instructions. 

Table B.8 

80386 Nonprotected Instruction Mnemonics 

Syntax Action 

BT reg, reg Bit test 

BTmem,reg Bit test 

BT reg, immed Bit test 

BT mem, immed Bit test 
BTmem Bit test 
BTC reg, reg Bit test and complement 
BTCmem, reg Bit test and complement 
BTC reg, immed Bit test and complement 
BTC mem, immed Bit test and complement 
BTCmem Bit test and complement 

BTR reg, reg Bit test and reset 

BTRmem, reg Bit test and reset 
BTR reg, immed Bit test and reset 

BTRmem, immed Bit test and reset 

BTRmem Bit test and reset 

BTS reg, reg Bit test and set 

BTSmem, reg Bit test and set 

BTS reg, immed Bit test and set 
BTS mem, immed Bit test and set 
BTSmem B it test and set 
CDQ Convert doubleword in EAX to quad-

word in EAX:EDX 

CMPSD String compare doubleword 
CWDE Convert word in AX, doubleword in EAX 

B-16 



Syntax 

IMULrim 

IMUL reg, rim 

IMUL reg, rim, immed 

IMUL reg, immed 

INSD 

IRETD 

JA 

JAE 

JB 

JBE 

JC 

JE 

JG 

JGE 

JL 
JNA 
JNA 
JNB 
JNBE 
JNC 
JNE 
JNG 
JNGE 

JNL 

JNLE 

JNO 
JNP 
JNS 
LFS reg, mem 

LGSreg,mem 

LODSDmem 

LSS 

Instruction Summary 

Action 

Uncharacterized multiply 

Uncharacterized multiply 

Uncharacterized multiply 

Uncharacterized multiply 

String input doubleword 

Return from an 80386 32-bit mode far interrupt 

Jump on above 

Jump on above or equal 

Jump on below 

Jump on below or equal 

Jump on carry 

Jump on equal 

Jump on greater 

Jump on greater or equal 

Jump on less 

Jump on not above 

Jump on not above or equal 

Jump on not below 

Jump on not below or equal 

Jump on no carry 

Jump on not equal 

Ju'!lP on not greater 

Jump on not greater or equal 

Jump on not less 

Jump on not less or equal 

Jump on not overflow 

Jump on not parity 

Jump on not sign 

Load reg and FS with far pointer 

Load reg and GS with far pointer 

Load string doubleword 

Load reg and SS with far pointer 

B-17 



Macro Assembler 

Syntax Action 

MOVSD String move doubleword 

MOVSX reg, rim Sign extend 

MOVZX reg, rim Zero extend 

OUTSD Output string doubleword 

POP FS/GS Pop 80386 segment register 

POPFD Pop doubleword flags 

POPAD Pop all doubleword registers 

PUSH FS/GS Push 80386 segment register 

PUS HAD Push all doubleword registers 

PUSHFD Push doubleword flags 

SCASD Scan string doubleword 

SETA rim Set byte if above 
SETAE rim Set byte if above or equal 

SETB rim Set byte if below 

SETBErlm Set byte if below or equal 

SETCrlm Set byte if carry 
SETEr/m Set byte if equal 

SETGrlm Set byte if greater 

SETGEr/m Set byte if greater or equal 

SETLrlm Set byte if less 

SETLErlm Set byte if less or equal 

SETNArlm Set byte if not above 

SETNAErlm Set byte if not above or equal 

SETNB rim Set byte if not below 

SETNBErlm Set byte if not below or equal 

SETNCrlm Set byte if not carry 

SETNEr/m Set byte if not equal 

SETNGr/m Set byte if greater 

B-18 



Instruction Summary 

Syntax 

SETNGErlm 

SETNLrlm 

SETNLErlm 

SETNOrlm 

SETNPrlm 

SETNS rim 

SETNZrlm 

SETOrlm 

SETP rim 

SETPErlm 

SETPOrlm 

SETS rim 

SETZrlm 

SHLD reglmem,reg,immlcl 

SHRD reglmem,reg,immlcl 

STOSDmem 

Action 

Set byte if not greater or equal 

Set byte if not less 

Set byte if not less or equal 

Set byte if not overflow 

Set byte if not parity 

Set byte if not sign 

Set byte if not zero 

Set byte if overflow 

Set byte if parity 

Set byte if parity even 

Set byte if parity odd 

Set byte if sign 

Set byte if zero 

Shift double-precision left 

Shift double-precision right 

Store string doubleword 

B.9 80386 Protected Instruction Mnemonics 

The 80386 protected instruction set consists of all 8086 instructions and 
80286 protected instructions plus the following instructions. The .386P 
directive must be placed at the beginning of the source file to enable these 
instructions. 

Syntax 

CLTS 

HLT 

LGDTmem 

LIDTmem 

LLDTmem 

Table B.9 

80386 Protected Instruction Mnemonics 

Action 

Clear task switched flag 

Halt processor 

Load global-descriptor table (8 bytes) 

Load interrupt-descriptor table (8 bytes) 

Load local-descriptor table 

B-19 



Macro Assembler 

LMSWmem 
LTRmem 

MOV creg,creg 
MOV dreg ,dreg 
MOV treg ,treg 
MOV creg,reg 

MOV dreg ,reg 

MOV treg ,reg 

Load machine-status word 

Load task register 

Move to or from creg 

Move to or from dreg 
Move to or from treg 
Move to or from creg 

Move to or from dreg 
Move to or from treg 

B.lO 80387 Instruction Mnemonics 

The 80387 instruction set consists of all 80287 instructions plus the fol­
lowing instructions. The .387 directive must be used to enable these 
instructions. 

Syntax 

FCOS 

FPRIMI 

FSIN 
FSINCOS 
FUCOM 

FUCOMP 

FUCOMPP 

B-20 

Table B.lO 

80387 Instruction Mnemonics 

Action 

Cosine 

Partial remainder (IEEE compatible) 

Sine 
Sine and cosine 

Unordered compare 

Unordered compare and pop stack 

Unordered compare and pop stack twice 



Appendix C 

Directive Summary 

C.l Introduction C-l 





Directive Summary 

C.I Introduction 

Directives give the assembler directions and information about input and 
output, memory organization, conditional assembly, listing and cross­
reference control, and definitions. Table C.1 shows the directives. 

.186 

.286 

.286C 

.286P 

.287 

.386 

.386C 

.386P 

.387 

.8086 

.8087 
= 
ALIGN 

ASSUME 
COMMENT 
.CREF 
DB 
DD 
DF 
DQ 
DT 
DW 
ELSE 
END 
ENDIF 
ENDP 

Table C.I 

Directives 

ENDS 
EQU 
EVEN 
EXTRN 
GROUP 
IF 
IF1 
IF2 
IFB 
IFDEF 
IFDIF 
IFE 
IFIDN 

IFNB 
IFNDEF 
INCLUDE 
LABEL 
.LALL 
.LFCOND 
.LIST 
NAME 
ORG 
%OUT 
PAGE 
.PRIV 
PROC 

PUBLIC 
.RADIX 
RECORD 
.SALL 
SEGMENT 
.SFCOND 
STRUC 
SUBTTL 
.TFCOND 
TITLE 
.XALL 
.XCREF 
.XLIST 

Any combination of upper- and lowercase letters can be used when giving 
directive names in a source file. 

The following is a complete list of directive syntax and function: 

Directive 

.186 

.286 

.286C 

Table C.2 

Directive Syntax and Function 

Action 

Enables assembly of 80186 instruction set. 

Enables assembly of 80286 nonprotected 
instruction set. 

Enables assembly of 80286 nonprotected 
instruction set. 

C-l 



Macro Assembler 

Directive 

.286P 

.287 

.386 

.386C 

.386P 

.381' 

.8086 

.8087 
name == expression 

ALIGN size 

Action 

Enables assembly of 80286 protected instruc­
tion set and is equivalent to the following 
sequence: 

.286 

.PRIV 

Enables assembly of 80287 instruction set. 

Enables assembly of 80386 nonprotected 
instruction set and sets the default segment 
wordsize to 4 bytes. 

Enables assembly of 80386 nonprotected 
instruction set and sets the default segment 
wordsize to 4 bytes. 

Enables assembly of 80386 protected instruc­
tion set and is equivalent to the following 
sequence: 

.386 

.PRIV 

Enables assembly of 80287 instruction set. 

Enables assembly of 8086 instruction set. 

Enables assembly of 8087 instruction set. 
Assigns the numeric value of expression to 
name. 

Aligns the segment word size to size bytes. The 
size argument must be a power of 2. 

ASSUME segmentregister : segmentname", 
Selects the given segmentregister to be the 
default segment register for all symbols in the 
named segment or group. If segmentname is 
NOTHING, no register is selected. 

COMMENT delimiter text delimiter 

C-2 

Treats all text between the given pair of delim­
iter delimiters as a comment. 



Directive Summary 

Directive Action 

.CREF Restores listing of symbols in the cross­
reference listing file. 

[ name] DB initialvalue,,, Allocates and initializes a byte (8 bits) 
of storage for each initialvalue. 

[ name] DD initialvalue, " Allocates and initializes a doubleword 
(4 bytes) of storage for each given 
initialvalue. 

[ name] DF initialvalue,,, Allocates and initializes 6 bytes of 
storage for each given initialvalue. 

[name] DQ initialvalue,,, Allocates and initializes a quadword 
(8 bytes) of storage for each given 
initialvalue. 

[ name] DT initialvalue,,, Allocates and initializes 1 0 bytes of 
storage for each given initialvalue. 

[name] DW initialvaJue,,, Allocates and initializes a word 
(2 bytes) of storage for each given 
initialvalue. 

ELSE Marks the beginning of an alternate 
block within a conditional block. 

END [ expression] Marks the end of the module and option­
ally sets the program entry point to 
expression. 

ENDIF 

name ENDP 

name ENDS 

name EQU expression 

EVEN 

EXTRN name: type", 

Terminates a conditional block. 

Marks the end of a procedure definition. 

Marks the end of a segment or structure 
type definition. 

Assigns the expression to the given 
name. 

If necessary, increments the IQcation 
counter to an even value and generates 
one NOP instruction (90h). 

Defines an external variable, label, or 
symbol named name whose type is type. 

C-3 



Macro Assembler 

Directive Action 

name GROUP segmentname", 

IF expression 

IFI 

IF2 

IFB < argument> 

IFDEF name 

Associates a group name with one or 
more segments. 

Grants assembly if the expression is 
nonzero (true). 

Grants assembly on Pass I only. 

Grants assembly on Pass 2 only. 

Grants assembly if the argument is 
blank. 
Grants assembly if name is a previously 
defined label, variable, or symbol. 

IFDIF < argumentl >, < argument2 > 

IFE expression 

Grants assembly if the arguments are 
different. 

Grants assembly if the expression is 0 
(false). . 

IFIDN < argumentl >, < argument2 > 

IFNB < argument> 

IFNDEF name 

INCLUDE filename 

name LABEL type 

. LALL 

.LFCOND 

C-4 

Grants assembly if the arguments are 
identical. 

Grants assembly if the argument is not 
blank. 

Grants assembly if name has not yet 
been defined. 

Inserts source code from the source file 
given by filename into the current source 
file during assembly. 

Creates a new variable or label by 
assigning the current location-counter 
value and the given type to name . 

Lists all statements in a macro. 

Restores the listing of conditional 
blocks. 



Directive 

.LIST 

NAME modulename 

ORG expression 

%OUT text 

PAGE length , width 

PAGE + 

PAGE 

.PRIV 

name PROC type 

PUBLIC name", 

.RADIX expression 

Directive Summary 

Action 

Restores the listing of statements in the 
program listing. 

Sets the name of the current module to 
modulename. 

Sets the location counter to expression. 

Displays text at the user's terminal. 

Sets the line length and character width 
of the program listing. 

Increments section page numbering. 

Generates a page break in the listing. 

Enables the protected-mode instruction 
set. Use with either the .286 or .386 
directive. 

Marks the beginning of a procedure 
definition. . 

Makes the variable, label, or absolute 
symbol given by name available to all 
other modules in the program. 

Sets to expression the input radix for 
numbers in the source file. 

recordname RECORD fieldname : width [= exp ]", 

. SALL 

. Defines a record type for a 8- or 16-bit 
record that contains one or more fields . 

Suppresses listing of all macro expan­
sions. 

name SEGMENT align combine class 

. SFCOND 

Marks the beginning of a program seg­
ment name having segment attributes 
align, combine, and class . 

Suppresses listing of any subsequent 
conditional blocks whose IF condition is 
false. 

C-5 



Macro Assembler 

Directive 

name STRUC 

SUBTTLtext 

.TFCOND 

TITLE text 

.XALL 

.XCREF name", 

.XLIST 

C-6 

Action 

Marks the beginning of a type definition 
for a structure. 

Defines the listing subtitle. 

Sets the default mode for listing of con­
ditional blocks. 

Defines the program-listing title. 

Lists only those macro statements that 
generate code or data. 

Suppresses the listing of symbols in the 
cross-reference-listing file. 

Suppresses listing of subsequent source 
lines to the program listing. 



AppendixD 

Segment Names 

for High-Level Languages 

D.I Introduction D-I 

D.2 Text Segments D-2 

D.3 Near Data Segments D-3 

D.4 Far Data Segments D-4 

D.5 BSS Segments D-5 

D.6 Constant Segments D-6 





Segment Names for High-Level Languages 

D.I Introduction 

This appendix describes the naming conventions used to form assembly­
language source files that are compatible with object modules produced 
by recent Microsoft language compilers. Compilers that use these con­
ventions include the following: 

• Microsoft C Version 3.0 or later 

• Microsoft Pascal Version 3.3 or later 

• Microsoft FORTRAN Version 3.3 or later 

High-Ievel-Ianguage modules have the following four predefined segment 
types: 

. Type Contents 

_TEXT Program code 

_DATA Program data 

_BSS Uninitialized space (blank static storage) 

_CaNST Constant data 

Any assembly-language source file to be assembled and linked to a high­
level-language module must use these segments. Segments are covered in 
Chapter 4, "Defining Segment Structure." 

High-Ievel-Ianguage modules must be one of three different memory­
model types when integrated with 8086 or 80286 code: 

Type Contents 

Small Single code and data segments 

Medium Multiple code segments with a single data segment 

Large Multiple code and data segments 

D-l 



Macro Assembler 

High-level-language modules must be one of two different memory­
model types when integrated with 80386 code: 

Type Contents 

Pure-Text Small Text and data in separate segments 

Mixed Code located in one segment and procedures or 
data located in another segment 

For more information on memory models, see "Understanding Memory 
Models," and "Defining the Memory Model." 

D.2 Text Segments 

Syntax 

name_TEXT SEGMENT BYTE PUBLIC 'CODE' 
statements 

name_TEXT ENDS 

A text segment defines a module's program code. It contains statements 
that define instructions and data within the segment. A text segment must 
have the name name_TEXT, where name can be any valid name. 

A segment can contain any combination of instructions and data state­
ments. These statements must appear in an order that creates a valid pro­
gram. All instructions and data addresses in a text segment are relative to 
the CS segment register. Therefore, the following statement must appear 
at the beginning of the segment: 

ASSUME CS: name TEXT 

This statement ensures that each label and variable declared in the seg­
ment will be associated with the CS segment register (this is covered in 
"Associating Segments with Registers' '). 

Text segments must have BYTE alignment and PUBLIC combination 
type, and must have the class name CODE. These directives define load­
ing instructions that are passed to the linker. Although other segment 
attributes are available, they should not be used. (For a complete descrip­
tion of the attributes, see "Defining Segment Structure.") 

D-2 



Segment Names for High-Level Languages 

For small-model programs, only one text segment is allowed. The seg­
ment must not exceed 64K in 8086 or 80286 code, or 4 gigabytes in 80386 
code. All procedure and statement labels must have NEAR type. 

Example 

TEXT segment BYTE PUBLIC 'CODE' 
assume cs: TEXT 

_main proc near 

main endp 
TEXT ends 

D.3 Near Data Segments 

Syntax 

DGROUP group _DATA 
ASSUME ds:DGROUP 

_DATA SEGMENT WORD PUBLIC 'DATA' 
statements 

_DATA ENDS 

A "near" data segment contains initialized data that is in the segment 
pointed to by the DS segment register when the program starts execution. 
The segment is "near" because all data in the segment is accessible 
without giving an explicit segment value. All programs have exactly one 
near data segment. 

A near data segment's name must be DATA. The segment can contain 
any combination of data statements defining variables to be used by the 
program. The segment must not exceed 64K in 8086 or 80286 code or 4 
gigabytes in 80386 code. All data addresses in the segment are relative to 
the predefined group DGROUP. Therefore, the following statements 
must appear at the beginning of the segment: 

DGROUP group_DATA 
ASSUME ds: DGROUP 

These statements ensure that each variable declared in the data segment 
will be associated with the DS segment register and DGROUP. For more 
information, see "Associating Segments with Registers. " 

D-3 



Macro Assembler 

Near data segments must be WORD aligned in 8086 or 80286 code, and 
DWORD aligned in 80386 code. They must also have PUBLIC combina­
tion type, and they must have the class name DATA. These directives 
define loading instructions that are passed to the linker. Although other 
segment attributes are available, they must not be used. For a complete 
description of the attributes, see "Defining Segment Structure. ' , 

Example 

DGROUP group _DATA 
assume ds:DGROUP 

_DATA segment 
count dw 0 

word public 'DATA' 

array dw 10 dup(l) 
string db "Type CANCEL then press RETURN", Oah, 0 

DATA ends 

D.4 Far Data Segments 

Syntax 

name_DATA SEGMENT WORD PUBLIC 'FAR_DATA' 
statements 

name_DATA ENDS 

A "far" data segment contains data that is not pointed to by the DS seg­
ment register when the program starts execution. To access data in a far 
data segment, an explicit segment value must be given. 

A far data segment's name must be name_DATA, where name can be any 
valid name. The name of the first variable declared in the segment is 
recommended. The segment can contain any combination of data state­
ments defining variables to be used by the program. The segment must 
not exceed 64K in 8086 or 80286 code or 4 gigabytes in 80386 code. All 
data addresses in the segment are relative to the ES segment register. 
When accessing a variable in a far data segment, the ES register must be 
set to the appropriate segment value. Also, the segment-override operator 
(:) must be used with the variable's name. For further information, see 
"Segment-Override Operator," and "Using Memory Operands." 

D-4 



Segment Names for High-Level Languages 

Far data segments must be WORD aligned, must have PUBLIC combi­
nation type, and must have the class name FAR_DATA. These directives 
define loading instructions that are passed to the linker. For a complete 
description of the attributes, see' 'Defining Segment Structure." 

Example 

array __ DATA segment 
array dw 0 

dw 1 
dw 2 
dw 4 

table dw 1600 
array_DATA ends 

D.S BSS Segments 

Syntax 

word public 'far DATA' 

dup (?) 

DGROUP group_BSS 
ASSUME ds:DGROUP 

_BSS SEGMENT WORD PUBLIC 'BSS' 
statements 

_BSS ENDS 

A BSS segment defines uninitialized data space. A BSS segment's name 
must be _BSS. The segment can contain any combination of data state­
ments defining variables to be used by the program. The segment must 
not exceed 64K in 8086 or 80286 code or 4 gigabytes in 80386 code. All 
data addresses in the segment are relative to the predefined group 
DGROUP. Therefore, the following statements must appear at the begin­
ning of the segment: 

DGROUP group_BSS 
ASSUME ds:DGROUP 

These statements ensure that each variable declared in the BSS segment 
will be associated with the DS segment register and DGROUP. For more 
information, see" Associating Segments with Registers." 

D-5 



Macro Assembler 

The group name DGROUP must not be defined in more than . one 
GROUP directive in a source file. If a source file contains both a DATA 
and a BSS segment, the DGROUP directive should be used: 

DGROUP group _DATA, _BSS 

A BSS segment must be WORD aligned, must have PUBLIC combina­
tion type, and must have the class name BSS. These directives define 
loading instructions that are passed to the linker. Although other segment 
attributes are available, they must not be used. 

Example 

DGROUP 
ASSUME 

group BSS 
ds:DGROUP 

_BSS segment 
count dw ? 

word public 'BSS' 

array dw 10 dup(?) 
string db 30 dup(?) 
_BSS ends 

D.6 Constant Segments 

Syntax 

DGROUP group_CONST 
ASSUME ds:DGROUP 

CONST SEGMENT WORD PUBLIC 'CONST' 
statements 

CONST ENDS 

A constant segment defines constant data that will not change during pro­
gram execution. 

The constant segment's name must be CONST. The segment can contain 
any combination of data statements defining constants to be used by the 
program. The segment must not exceed 64K in 8086 or 80286 code or 4 
gigabytes in 80386 code. All data addresses in the segment are relative to 

D-6 



Segment Names for High-Level Languages 

the predefined group DGROUP. Therefore, the following statements 
must appear at the beginning of the segment: 

DGROUP group_CONST 
ASSUME ds: DGROUP 

These statements ensure that each variable declared in the constant seg­
ment will be associated with the DS segment register and DGROUP. For 
more information, see Section 4.4, "Associating Segments with Regis­
ters." The group name DGROUP must not be defined in more than one 
GROUP directive in a source file. If a source file contains a DATA, BSS, 
or CONST segment, the DGROUP directive should be used: 

DGROUP group_DATA, _BSS, CONST 

A constant segment must be WORD aligned, must have PUBLIC combi­
nation type, and must have the class name CONST. These directives 
define loading instructions that are passed to the linker. Although other 
segment attributes are available, they must not be used. 

In the following example, the constant segment receives the segment 
values of two far data segments: ARRAY _DATA and MESSAGE JJATA. 
These data segments must be defined elsewhere in the module. 

Example 

DGROUP group CONST 
ASSUME ds:DGROUP 

CONST segment word public 'CONST' 
segl dw ARRAY DATA 
seg2 dw MESSAGE DATA 
CONST ends 

D-7 





Appendix E 

Error Messages and Exit Codes 

E.l Introduction E-l 

E.2 Messages and Exit Codes from masm E-l 
E.2.1 Assembler Status Messages E-l 
E.2.2 Numbered Assembler Messages E-2 
E.2.3 Unnumbered Error Messages E-18 
E.2.4 Exit Codes from masm E-20 





Error Messages and Exit Codes 

E.I Introduction 

This appendix lists and explains the messages and exit codes that can be 
generated by masm. 

Messages are sent to the standard output device. By default, this device is 
the screen, but you can redirect the messages to a file or to a device such 
as a printer. 

E.2 Messages and Exit Codes from masm 

The assembler can display several kinds of messages as well as output an 
exit code; the kind of exit code output depends on the error, if any, 
encountered during the assembly. 

E.2.1 Assembler Status Messages 

After every assembly, masm reports on the symbol space, errors, and 
warnings. A sample display is shown below: 

Microsoft (R) Macro Assembler Version 5.00 
Copyright (C) Microsoft Corp 1981, 1987. All rights reserved. 

47904 + 353887 Bytes symbol space free 

o Warning Errors 
o Severe Errors 

The first line indicates how much near and far symbol space was unused 
during the assembly. This data may help you determine whether increas­
ing the size of your program will exhaust available memory. 

The first number indicates near symbol space. There is 64K total. The 
second number indicates far symbol space. This is equal to the size of 
masm, the size of masm buffers, and the amount of available memory 
less near data space. Most symbols go into far space. When far space is 
exhausted, additional symbols go into near space. Using both far and near 
space causes a decrease in speed of assembly. 

You can use the -v option to direct masm to display additional statistics. 
The number of source lines, the total number of source- and include-file 

E-l 



Macro Assembler 

lines, and the number of symbols are shown. This information appears 
only if no severe errors are encountered. An example is shown below: 

742 Source Lines 
799 Total Lines 

44 Symbols 

The -t option can be used to suppress all output to standard output after 
assembly. 

E.2.2 Numbered Assembler Messages 

The assembler displays messages on the standard error (stderr) whenever 
it encounters an error while processing a source file. It also displays a 
warning message whenever it encounters questionable syntax. Messages 
that can be associated with a particular line of code are numbered. Gen­
eral errors related to the entire assembly rather than to a particular line 
are unnumbered. (For more information, see "Unnumbered Error Mes­
sages.") 

Numbered error messages are displayed in the following format: 

sourcefile(line) : code: message 

The source file is the name of the source file where the error occurred. If 
the error occurred in a macro in an include file, the source file is the file 
where the macro was called and expanded-not the file where it was 
defined. 

The line indicates the point in the source file where masm was no longer 
able to assemble. 

The code is an identifying code in the format used by all Microsoft 
language programs. It starts with the word "error" or "warning" fol­
lowed by a five-character code. The first character is a letter indicating 
the program or language. Assembler messages start with A. The first digit 
indicates the warning level. The number is 2 for severe errors, 4 for seri-
0us warnings, and 5 for advisory warnings. The next three digits are the 
error number. For example, severe error 38 is shown as A2038. 

The message is a descriptive line describing the error. 

Messages from masm are listed in numerical order in this section with a 
short explanation for each. 

E-2 



Error Messages and Exit Codes 

Note 

Some numbers in sequence are not assigned messages because 
errors that could be generated in previous versions of masm have 
been removed or reorganized in this version. 

o Block nesting error 
Nested procedures, segments, structures, macros, or repeat 
blocks were not properly terminated. This error may indicate 
that you closed an outer level of nesting with inner levels still 
open. 

1 Extra characters on line 
Sufficient information to define a statement has been received 
on a line, but additional characters were also provided. This 
may indicate that you provided too many arguments. 

2 Internal error - Register already definedrymbol 
Note the conditions when the error occurs and contact your 
software distributor. 

3 Unknown type specifier 
An invalid type specifier was used to give the size of a label or 
external declaration. For instance, BYTE or NEAR might 
have been misspelled. 

4 Redefinition of symbol 
A symbol was defined in two places with different types. This 
error occurs during Pass 1 on the second declaration of the 
symbol. 

5 Symbol is multidefined: 
A symbol is defined in two places. This error occurs during 
Pass 2 on each declaration of the symbol. 

6 Phase error between passes 
An ambiguous instruction or directive caused the relative 
address of a label to be changed between Pass 1 and Pass 2. 
You can use the -d option to produce a Pass 1 listing to aid in 
resolving phase errors between passes. 

E-3 



Macro Assembler 

E-4 

7 Already had ELSE clause 
More than one ELSE clause was used within a conditional 
assembly block. Each nested ELSE must have its own IF 
directive and END IF. 

8 Must be in conditional block 
An ENDIF or ELSE was specified without a corresponding IF 
directive. 

9 Symbol not defined: 
A symbol was used without being defined. This error is pro­
duced for forward references on the first pass and is ignored if 
the references are resolved on the second pass. 

10 Syntax error 
A statement did not match any recognizable assembler syntax. 
Because masm tries to be specific, this error only occurs if the 
statement bears no resemblance to any legal statement. 

11 Type illegal in context 
The type specifier was given an unacceptable size. For exam­
pIe, a procedure was defined as having BYTE type, instead of 
NEAR or FAR type. 

12 Group name must be unique 
A name assigned as a group name was already defined as 
another type of symbol. 

13 Must be declared during Pass 1: symbol 
An item was referenced before it was defined in Pass 1. For 
example, IF DEBUG is illegal if the symbol DEBUG was not 
previously defined. 

14 Illegal public declaration 
A symbol was declared public illegally. For instance, a text 
equate cannot be declared public. Section 7.1, "Declaring 
Symbols Public," explains public declarations. 

15 Symbol already different kind: symbol 
A symbol was redefined to a different kind of symbol. For 
example, a segment name was reused as a variable name, or a 
structure name was reused as an equate name. 

16 Reserved word used as symbol: name 
An assembler keyword was used as a symbol. This is a warn­
ing, not an error, and can be ignored if you wish. However, the 
keyword is no longer available for its original purpose. For 



Error Messages and Exit Codes 

example, if you name a macro add, it replaces the ADD 
instruction. 

17 Forward reference illegal 
A symbol was referenced before it was defined on Pass 1. For 
example, the following lines produce an error: 

DB 
count EQU 

count DUP ( ?) 
10 

The statements would be legal if the lines were reversed. 

18 Operand must be register: operand 
A register was expected as an operand, but a symbol or con­
stant was supplied. 

20 Operand must be segment or group 
A segment or group name was expected, but some other kind 
of operand was given. For instance, the ASSUME directive 
requires that the symbol assigned to a segment register be a 
segment name, a group name, a SEG expression, or a text 
equate representing a segment or group name. Thus the fol­
lowing statement is accepted: 

ASSUME ds:SEG variable ; Legal 

However, if the same statement is assigned to an equate, it is 
not accepted, as shown below: 

segvar EQU SEG variable 
ASSUME ds:segvar Illegal 

22 Operand must be type specifier 
An operand was expected to be a type specifier, such as 
NEAR or FAR, but some other kind of operand was received. 

23 Symbol already defined locally 
A symbol that had already been defined within the current 
module was declared EXTRN. 

24 Segment parameters are changed 
A segment declaration with the same name as a previous seg­
ment declaration was given with arguments that did not match 
the previous declaration. 

E-5 



Macro Assembler 

E-6 

25 Improper align/combine type 
SEGMENT parameters are incorrect. Check the align and 
combine types to make sure you have entered valid types from 
among those discussed in "Full Segment Definitions." 

26 Reference to multidefined symbol 
An instruction referenced a symbol defined in more than one 
place. 

27 Operand expected 
An operand was expected, but an operator was received. 

28 Operator expected 
An operator was expected, but an operand was received. 

29 Division by 0 or overflow 
An expression resulted in division by 0 or in a number too 
large to be represented. 

30 Negative shift count 
An expression using the SHR or SHL operator evaluated to a 
negative shift count. 

31 Operand types must match 
An instruction received operands of different sizes. For exam­
ple, this warning is generated by the following code: 

string DB "This is a test" 

mov ax,string[4] 

Since this is a warning rather than an error, masm attempts to 
generate code based on its best guess of the intended result. If 
one of the operands is a register, the register size overrides the 
size of the other operand. In the example, the word size of AX 
overrides the byte size of string[4}. You can avoid this warn­
ing and make your code less ambiguous by specifying the 
operand size with the PTR operator. For example: 

move aX,WORD PTR string[4] 

32 Illegal use of external 
An external variable was used incorrectly. 



Error Messages and Exit Codes 

34 Operand must be record or field name 
An operand was expected to be a record name or record-field 
name, but another kind of operand was received. 

35 Operand must have size 
An operand was expected to have a specified size, but no size 
was supplied. For example, the following statement is illegal: 

inc [bx] 

Often this error can be remedied by using the PTR operator to 
specify a size type, as shown below: 

inc BYTE PTR [bx] 

38 Left operand must have segment 
The left operand of a segment-override expression must be a 
segment register, group, or segment name. For example, if 
meml and mem2 are variables, the following statement is ille­
gal: 

mov dx,meml:mem2 

39 One operand must be constant 
The addition operator was used incorrectly. For instance, two 
memory operands cannot be added in an expression. Valid uses 
of the addition operator are explained in "Arithmetic Opera­
tors." 

40 Operands must be in same segment, or one must 
be constant 
The subtraction operator was used incorrectly. For instance, a 
memory operand in the code segment cannot be subtracted 
from a memory operand in the data segment. Valid uses of the 
subtraction operator are explained in "Arithmetic Operators." 

42 Constant expected 
A constant operand was expected, but an operand or expres­
sion that does not evaluate to a constant was supplied. 

43 Operand must have segment 
The SEG operator was used incorrectly. For instance, a con­
stant operand cannot have a segment. 

E-7 



Macro Assembler 

E-8 

44 Must be associated with data 
A code-related item was used where a data-related item was 
expected. 

45 Must be associated with code 
A data-related item was used where a code-related item was 
expected. 

46 Multiple base registers 
More than one base register was used in an operand. For exam­
ple, the following line is illegal: 

mov ax, [bx+bp] 

47 Multiple index registers 
More than one index register was used in an operand. For 
example, the following line is illegal: 

mov ax, [si+di] 

48 Must be index or base register 
An indirect memory operand requires a base or index register, 
but some other register was specified. For example, the follow­
ing line is illegal: 

mov ax, [bx+ax] 

Only BP, BX, DI, and SI may be used in indirect operands 
(except with 32-bit registers on the 80386). 

49 Illegal use of register 
A register was used in an illegal context. For example, the fol­
lowing statement is illegal: 

mov ax, cs: [si] 

50 Value out of range 
A value was too large for its context. For example, 

mov al,5000 

is illegal; you must use a byte value for a byte register. 

51 Operand not in current CS ASSUME segment 
An operand was used to represent a code address outside the 
code segment assigned with the ASSUME statement. This 
usually indicates a call or jump to a label outside the current 
code segment. 



Error Messages and Exit Codes 

52 Improper operand type: symbol 
An illegal operand was given for a particular context. For 
example 

mav meml,mem2 

is illegal if both operands are memory operands. 

53 Jump out of range by number bytes 
A conditional jump was not within the required range. For all 
except the 80386 processor, the range is 128 bytes backward 
or 127 bytes forward from the start of the instruction following 
the jump instruction. For the 80386, the default range is from 
-32,768 to 32,767. You can usually correct the problem by 
reversing the condition of the conditional jump and using an 
unconditional jump (JMP) to the out-of-range label. For more 
information, see "Forward References to Labels." 

55 Illegal register value 
A register was specified with an illegal syntax. For example, 
you cannot access a stack variable with the following: 

mav ax,bp+4 

The correct syntax (as explained in "Passing Arguments on 
the Stack") is shown below: 

mav ax, [bp+4J 

56 Immediate mode illegal 
An immediate operand was supplied to an instruction that can­
not use immediate data. For example, the following statement 
is illegal: 

mav ds,DGROUP 

You must move the segment address into a general register and 
then move it from that register to DS. 

57 Illegal size for operand 
The size of an operand is illegal with the specified instruction. 
For instance, you cannot use a shift or rotate instruction with a 
doubleword (except on the 80386). Since this is a warning 
rather than an error, masm does assemble code for the instruc-

E-9 



Macro Assembler 

E-IO 

tion, making a reasonable guess at your intention. For exam­
ple, if the statement 

inc mem32 

is given where mem32 is a doubleword memory operand, 
masm actually only increments the low-order word of the 
operand, since a word is the largest operand that can be incre­
mented (except on the 80386). This error may occur if you try 
to assemble source code written for assemblers that have less 
strict type checking than the Macro Assembler. Usually you 
can solve the problem by specifying the size of the item with 
the PTR operator, as explained in "Strong Typing for Memory 
Operands." 

58 Byte register illegal 
A byte register was used in a context where a word register (or 
32-bit register on the 80386) is required. For example, push al 
is illegal; use push ax instead. 

59 Illegal use of CS register 
The CS register was used in an illegal context, such as those 
listed below: 

pop cs 
mov cs,ax 

60 Must be accumulator register 
A register other than AL, AX, or EAX was supplied in a con­
text where only the accumulator register is acceptable. For 
instance, the IN instruction requires the accumulator register 
as its left (destination) operand. 

61 Improper use of segment register 
A segment register was used in a context where it is illegal. 
For example, inc cs is illegal. 

62 Missing or unreachable code segment 
A jump was attempted to a label in a segment that masm does 
not recognize as a code segment. This usually indicates that 
there is no ASSUME statement associating the CS register 
with a segment. 



Error Messages and Exit Codes 

63 Operand combination illegal 
Two operands were used with an instruction that does not 
allow the specified combination of operands. For example, the 
following operand combination is illegal: 

xchg meml,mem2 

64 Near JMP/CALL to different code segment 
A near jump or call instruction attempted to access an address 
in a code segment other than the one used in the currently 
active ASSUME. To correct the error, use a far call or jump, 
or use an ASSUME statement to change the code segment 
currently referenced by CS. See "Associating Segments with 
Registers, " for information on the ASSUME directive. 

65 Label cannot have segment override 
A segment override was used incorrectly. 

66 Must have instruction after prefix 
A repeat prefix such as REP, REPE, or REPNE was given 
without specifying the instruction to repeat. 

67 Cannot override ES for destination 
A segment override was used on the destination of a string 
instruction. Although the default DS:SI register pair for the 
source can have a segment override, the destination must 
always be in the ES:DI register pair. The ES segment cannot 
be overridden. For example, the following statement is illegal: 

rep stos ds:destin ; Can't override ES 

68 Cannot address with segment register 
A statement tried to access a memory operand, but no 
ASSUME directive had been used to specify a segment for the 
operand. See ' 'Associating Segments with Registers,' , for 
information on the ASSUME directive. 

69 Must be in segment block 
A directive (such as EVEN) that is expected to be in a seg­
ment is used outside a segment. 

E-ll 



Macro Assembler 

E-12 

70 Cannot use EVEN or ALIGN with byte alignment 
The EVEN or ALIGN directive was used in a segment that is 
byte aligned. "Aligning Data, ' , explains the EVEN and 
ALIGN directives. 

71 Forward reference needs override or FAR 
A call or jump attempts to access a far label that was not 
declared far earlier in the source code. You can use the PTR 
operator to specify far calls and jumps, as shown below: 

call FAR PTR task 
jmp FAR PTR location 

72 Illegal value for DUP count 
The count value specified for a DUP operator did not evaluate 
to a constant integer greater than O. 

73 Symbol is already external 
A symbol that had already been declared external was later 
defined locally. 

74 DUP nesting too deep 
DUP operators were nested to more than 17 levels. 

75 Illegal use of undefined operand (?) 
The undefined operand (?) was used incorrectly. For example, 
the following statements are illegal: 

stuff DB 
mov 

5 DUP (?+5) Can't use in expression 
ax,? ; Can't use in code 

Valid uses of the undefined operand are explained in "Arrays 
and Buffers." 

76 Too many values for structure or record 
initialization 
Too many initial values were given when declaring a record or 
structure variable. The number of values in the declaration 
must match the number in the definition. For example, a struc­
ture test defined with four fields could be declared as shown 
below: 

stest test <4" 'c', 0> 

The declaration must have four or fewer fields. 



Error Messages and Exit Codes 

77 Angle brackets required around initialized list 
A structure variable was defined without angle brackets 
around the initial values in the list. For example, the following 
definition is illegal: 

stest test 4, " c' 0 

The following definitions are correct: 

stest test <4,,'c',O>; Three initial values, one blank 
ttest test <> ; No initial values 

78 Directive illegal in structure 
A statement within a structure definition was not one of the 
following: a data definition using define directives such as DB 
or DW, a comment preceded by a semicolon, or a conditional­
assembly directive. 

79 Override with OUP illegal 
The DUP operator was used in a structure initialization list. 
For example, the following example is illegal because of the 
DUP operator: 

stest test <3,4DUP (3),5> 

80 Field cannot be overridden 
An item in a structure-initialization list attempted to override 
a structure field that could not be overridden. For instance, if a 
field is initialized in the structure definition with the DUP 
operator, it cannot be overridden in a declaration. See the note 
in "Defining Structure Variables. " 

83 Circular chain of EQU aliases 
An alias declared with the EQU directive points to itself. For 
example, the following lines are illegal: 

a 
b 

EQU 
EQU 

b 
a 

84 Cannot emulate coprocessor opcode 
Either a coprocessor instruction or operands used with such an 
instruction produced an opcode that the coprocessor emulator 
does not support. Since the emulator library is not supplied 
with the Macro Assembler, this error can only occur if you are 
linking assembler routines with code from a high-Ievel­
language compiler that uses the emulator. 

E-13 



Macro Assembler 

E-14 

85 End of file, no END directive 
The source code was not tenninated by an END statement. 
This error can also occur as the result of segment-nesting 
errors. 

86 Data emitted with no segment 
A statement that generates code or data was used outside all 
segment blocks. Instructions and data declarations must be in 
segments, but directives that specify assembler behavior 
without generating code or data can be outside segments. 

87 Forced error - passl 
An error was forced with the .ERRl directive. 

88 Forced error - pass2 
An error was forced with the .ERR2 directive. 

89 Forced error 
An error was forced with the .ERR directive. 

90 Forced error - expression true (0) 
An error was forced with the .ERRE directive. 

91 Forced error - expression false (not 0) 
An error was forced with the .ERRNZ directive. 

92 Forced error - symbol not defined 
An error was forced with the .ERRNDEF directive. 

93 Forced error - symbol defined 
An error was forced with the .ERRDEF directive. 

94 Forced error - string blank 
An error was forced with the .ERRB directive. 

95 Forced error - string not blank 
An error was forced with the .ERRNB directive. 

96 Forced error - strings identical 
An error was forced with the .ERRIDN directive. 

97 Forced error - strings different 
An error was forced with the .ERRDIF directive. 



Error Messages and Exit Codes 

98 Wrong length for override value 
The override value for a structure field is too large to fit in the 
field. An example is shown below: 

x STRUC 
xl DB "A" 
x ENDS 

y x <"AB"> 

The override value is a string consisting of two bytes; the 
structure declaration provided only room for one byte. 

99 Line too long expanding symbol: symbol 
An equate defined with the EQU directive was so long that 
expanding it caused the assembler's internal buffers to 
overflow. This message may indicate a recursive text macro. 

100 Impure memory reference 
Data was stored into the code segment when the -p option and 
privileged instructions (enabled with .286P or .386P) were in 
effect. An example of storing data in the code segment is 
shown below: 

c word 
. CODE 
DW ? 

mov cs:c_word,data 

The -p option checks for such statements, which are accept­
able in real mode, but can cause problems in privileged mode. 

101 Missing data; zero assumed 
An operand is missing from a statement, as shown below: 

mov ax, 

Since some programmers use this syntax purposely, the mes­
sage is a warning. It is assumed that 0 was intended and masm 
assembles the following code: 

mov ax,O 

102 Segment near (or at) 64K limit 
A bug in the 80286 processor causes jump errors when a code 
segment approaches within a few bytes of the 64K limit in 
privileged mode. This error warns about code that may fail 

E-15 



Macro Assembler 

E-16 

because of the bug. The error can only be generated when the 
.286 directive is given. 

103 Align must be power of 2 
A number that is not a power of two was used with the 
ALIGN directive. The directive is explained in "Aligning 
Data." 

104 Jump within short distance 
A JMP instruction was used to jump to a short label (128 or 
fewer bytes before the end of the JMP instruction, or 127 or 
fewer bytes beyond the instruction). By default the assembler 
assumes that jumps are near (greater than short, but still in one 
segment). If a short jump is encountered, masm uses a short 
form of the JMP instruction (2 bytes) rather than the long 
form (3 bytes with 16-bit segments or 5 bytes with 32-bit seg­
ments). You can make your code slightly more efficient by 
using the SHORT operator to specify that a jump is short 
rather than near. For example, using the SHORT operator in 
the following example saves 1 byte of code: 

jmp SHORT there 

there: ; Less than 127 bytes 

With the 80386 processor, this also applies to conditional 
jumps, which can be either short (2 bytes) or near (4 bytes). 

105 Expected element 
An element such as a punctuation mark or operator was omit­
ted. For instance, if you omit the comma between source and 
destination operands, the message Expected comma is gen­
erated. 

106 Line too long 
A source line was longer than 128 characters, the maximum 
allowed by masm. 

107 Illegal digit in number 
A constant number contained a digit that is not allowed in the 
current radix. 



Error Messages and Exit Codes 

108 Empty string not allowed 
A statement used an empty string. For example, the following 
definition is illegal: 

null DB 

In many languages an empty string represents ASCII character 
0. In assembly language, you must give the value 0, as shown 
below: 

null DB o 

109 Missing operand 
The instruction or directive requires more operands than were 
provided. 

110 Open parenthesis or bracket 
Only one parenthesis or bracket was given in a statement that 
requires opening and closing parentheses or brackets. 

111 Directive must be in macro 
A directive that is expected only in macro definitions was used 
outside a macro. 

112 Unexpected end of line 
A line ended before a complete statement was formed. More 
information is expected, but masm cannot identify what infor­
mation is missing. 

113 Cannot change processor in segment 
A processor directive was encountered within a segment. Pro­
cessor directives must be given before the first segment direc­
tive or between segments. If you want to change the processor 
in the middle of the segment, you must close the current seg­
ment, give the processor directive, and then start another seg­
ment. 

114 Operand size does not match segment word size 
A 32-bit operand was used in a 16-bit segment, or vice versa. 
This warning can only occur with the 80386. For example, the 
following statement is a questionable practice in a 32-bit seg­
ment: 

mov ax,OFFSET nearlabel Load near (32-bit) label 

E-17 



Macro Assembler 

The following statement is a questionable practice in a 16-bit 
segment: 

mov eax,OFFSET farlabel ; Load far (48-bit) label 

This is a warning that you can ignore if you are certain you 
know what you are doing. 

115 Address size does not match segment word size 
A 32-bit address was used in a 16-bit segment, or vice versa. 
This warning can only occur with the 80386. For example, the 
following statement is a questionable practice in a 32-bit seg­
ment: 

mov eax, [siJ ; Load value pointed to by 16-bit pointer 

The following statement is a questionable practice in a 16-bit 
segment: 

mov ax, [esiJ ; Load value pointed to by 32-bit pointer 

This is a warning that you can ignore if you are certain you 
know what you are doing. 

E.2.3 Unnumbered Error Messages 

Unnumbered messages appear when an error occurs that cannot be associ­
ated with a particular line of code. Generally these errors indicate prob­
lems with the command line, memory allocation, or file access. 

File-Access Errors 

Any of the following errors may occur when masm tries to access a file 
for processing. They usually indicate insufficient disk space, a corrupted 
file, or some other file error. 

End of file encountered on input file 

Include filefilename not found 

Read error on standard input 

Unable to access input file: filename 

E-18 



Error Messages and Exit Codes 

Unable to open cref file: filename 

Unable to open input file: filename 

Unable to open listing f i 1 e : filename 

Unable to open object f i 1 e : filename 

Write error on cross-reference file 

Write error on listing file 

Write error on object file 

Command-Line Errors 

Any of the following errors may occur if you give an invalid command 
line when starting masm. 

Buffer size expected after B option 

Error defining symbol "name"from command line 

Extra file name ignored 

Line invalid, start again 

Path expected after I option 

Unknown case option: option 

Unknown option: option 

Miscellaneous Errors 

The following errors indicate a problem with memory allocation or some 
other assembler problem that is not related to a specific source line. 

Internal error - Problem with expression analyzer 
Note the conditions when the error occurs and contact your software dis­
tributor. 

Internal unknown error 
This error may indicate that the internal error table has been corrupted 
and masm cannot figure out what the error is. Note the conditions when 
the error occurs and contact your software distributor. 

E-19 



Macro Assembler 

The following errors indicate a problem with memory allocation or some 
other assembler problem not related to a specific source line. 

Number of open conditionals: <number> 
Conditional-assembly directives (starting with IF) were given 
without corresponding ENDIF directives. 

Open procedures 
A PROC directive was given without a corresponding ENDP 
directive. 

Open segments 
A segment was defined, but never terminated with an ENDS 
directive. This error does not occur with simplified segment 
directives. 

Out of memory 
All available memory has been used, either because. the source 
file is too long, or because there are too many symbols defined 
in the symbol table. 

You can solve this problem in several ways. First, try assem­
bling with no listing file. If this works, you can reassemble by 
specifying a null object file to get a listing file. You can also 
rewrite the source file to require less symbol space. Tech­
niques for reducing symbol space include minimizing use of 
macros, equates, and structures; using short symbol names; 
using tab characters in macros rather than series of spaces; 
using macro comments (;;) rather than normal comments (;); 
and purging macro definitions after last use. 

E.2.4 Exit Codes from masm 

The assembler returns one of the following codes after an assembly. The 
codes can be tested by a make file or batch file. 

Code Meaning 

o No error 

1 Argument error 

2 Unable to open input file 

3 Unable to open listing file 

E-20 



Error Messages and Exit Codes 

4 Unable to open object file 

5 Unable to open cross-reference file 

6 Unable to open include file 

7 Assembly error 

8 Memory-allocation error 

10 Error defining symbol from command line (-d) 

11 User interrupted 

Note that if the exit code is 7, masm automatically deletes the invalid 
object file. 

E-21 





Replace this Page 
with Tab Marked: 

Index 





Index 

& (ampersand), operator 10-15 
< > (angle brackets), operator 9-4 
* (asterisk), operator 8-3,13-11 
@ ("at sign") 3-5 
: (colon), operator 

definition 8-10 
$ (dollar sign) 

location counter symbol 5-20 
symbol names, used in 3-5 

= (equal sign), directive 2-5, 7-4, 10-1 
! (exclamation point), operator 10-18 
/ (forward slash), operator 8-3 
- (minus sign), operator 8-3 
% (percent sign) 

expression operator 10-19 
symbol names, used in 3-5 

. (period) 3-5 
+ (plus sign), operator 8-3 
? (question mark) 3-5 
: (Segment-override operator) 

definition 8-10 
memory operands, with 13-4, 13-8 
OFFSET operator, with 8-15 
String instructions, with 17-2 
XLAT instructions, with 14-3 

;; (semicolons), operator 10-20 
_ (underscore) 3-5 
lO-byte temporary-real format 5-16 
16-bit 

addressing modes 13-11 
segments 4-6, 4-18 

.186 directive 3-12 

.286Pdirective 3-12,3-13,19-2 

.287 directive 3-10,3-13,5-14 18-11 
32-bit ' 

addressing modes 12-14, 13-11 
segments 4-6, 4-18, 12-4, 14-13 

.386P directive 3-13,4-6,4-18 19-2 

.387 directive 3-10,3-14,5-14: 18-11 
80186 processor described 12-2 
80286 processor described 12-2 
80287 processor described 12-2 
8036 processor 

bytes, setting conditionally 16-15 
80386 processor 12-13 

32-bit 
addressing modes 12-14, 13-11 

80386 processor 12-13 (continued) 
32-bit (continued) 

pointers 5-11 
registers 12-14 
segments 4-6, 4-18,12-4,14-13 

.386 directive 3-13,4-18,19-2 
bit scan instructions 15-19 
bit test instructions 15-18, 16-10 
BSF instruction 15-19 
BSR instruction 15-19 
BT instruction 16-10 
BTC instruction 16-10 
BTR instruction 16-10 
BTS instruction 16-10 
CDQ instruction 14-5 
CWDE instruction 14-5 
data conversion 14-5, 14-6 
described 12-2 
double shifts 15-25 
enhanced instructions 12-13 
equate names 7-2 
IMUL instruction 15-8 
LFS instruction 14-9 
LGS instruction 14-9 
loading pointers 14-9 
LSS instruction 14-9 
MOVSX instruction 14-6 
MOVZX instruction 14-6 
new instructions 12-13 
PUSHAD and POPAD instructions 14-15 
PUSHD and POPD instructions 14-14 
registers 12-5, 19-4 
scaling 14-8 
SETcondition instruction 16-15 
SHLD instruction 15-25 
SHRD instruction 15-25 
simplified segment directives, with 4-6 
special registers 19-4 

80387 processor, described 12-2 
.8086 directive 3-12 
.8087 directive 3-10,3-13,5-14, 18-11 
8087 processor described 12-2 
8087/80287/80387 instruction set 2-3 
8088/8086 processors described 12-1 
-087 -family registers 12-13 

I-I 



Index 

A 

-a option 2-3, 4-16 
AAA instruction 15-11 
AAD instruction 15-12 
AAM instruction 15-12 
AAS instruction 15-12 
ABS type 7-3 
Absolute segments 4-21 
Accumulator registers 12-9 
ADC instruction 15-1, 15-3 
ADD instruction 15-1,15-3 
Adding 15-1 
Addition operator (+) 8-3 
Addresses 

assembly listing 2-16 
effective 13-4, 13-8 

Addressing modes 
16-bit 13-11 
32-bit 12-14 

Adjusting masks 15-24 
Advisory warnings 2-12 
Aliases 104 
ALIGN directive 5-21, 12-1 
Align type 4-17, 4-22 
Alignment, of segments 4-17, 5-21 
.ALPHA directive 4-16 
Ampersand (&), operator 10-15 
AND instruction 15-14, 15-15, 16-9 
AND operator 8-7 
Angle brackets « »), operators 9-4 
Arguments 

macros 10-6, 10-8, 10-24 
passing on stack 16-19 
repeat blocks 10-11 

Arithmetic operators 8-3 
Arrays 

boundary checking 16-27 
defining of 5-17 

Assembler See masm 
Assembly listing 

false conditionals 11-6 
macros 11-7 
page breaks 11-3 
page length 11-3 
page width 11-3 
Pass 1 2-5 
reading 2-15 
subtitle 11-3 
suppressing 11-5 
title 11-2 

ASSUME directive 4-27,4-28,8-10 
Asterisk (*), operator 8-3, 13-11 

1-2 

AT combine type 4-21 
Auxiliary-carry flag 12-12 
AX register 12-9 

B 

-b option 2-4 
Base registers 13-6, 13-11 
Based operands 13-6 
Based-indexed operands 13-6 
BASIC 

modules called from 5-14 
BASIC language, mentioned 16-2, 16-1: 

16-16, 16-24 
BCD (binary coded decimal) numbers 

calculations with 15-10, 18-17 
constants 3-9 
coprocessor, with 18-11 
defining of 5-9 
variables initialized 3-6 

Binary coded decimals See BCD 
Binary radix 3-7,3-8 
Binary to decimal conversion 15-13 
Bit fields 6-1, 6-6 
Bit mask 15-13, 16-9 
Bit scan instructions 15-19 
Bit test instructions 16-10 
Bits, rotating 15-20 
Bits, shifting 15-20 
Bitwise operators 8-7 
Boolean bit operations 15-14 
BOUND instruction 16-27 
Boundary-checking array 16-27 
BP registers 12-9 
BSF instruction 15-19 
BSR instruction 15-19 
BT instruction 16-10 
BTC instruction 16-10 
BTR instruction 16-10 
BTS instruction 16-10 
Buffers 

defining 5-17 
file, setting size 2-4 

BYTE align type 4-17 
BYTE type specifier 5-1 



c 

C compiler 5-14 
C language 4-2, 4-3 
C language, mentioned 16-2, 16-12, 16-13, 16-

16,16-20,16-24 
Calculation operators 8-3 
CALL instruction 5-4,14-10,16-16 
Call tables 16-17 
Carry flag 12-12, 15-2, 15-3, 15-5 
Case 

emulating Pascal statement 16-2 
CBW instruction 14-4 
CDQ instruction 14-5 
Character constant 3-10 
Character set 3-4 
Class type 4-23 
Classical-stack operands, coprocessor 18-5 
CLC instruction 15-3, 15-5 
CLD instruction 17-1 
CLI instruction 16-26 
CMP instruction 16-4, 16-15 
CMPS instruction 17-8 
Code, assembly listing 2-15 
CODE class name 4-4, 4-24 
.CODE directive 4-7 
@code equate 4-9 
Code segments 

defining 4-7 
initializing 4-31 
register 12-8 

@CodeSize equate 4-9 
Combine type 4-19, 4-22 
COMENT object record 4-5 
COMM directive 7":1,7-8 
Command lines 

with masm 2-1 
Command-line help 2-7 
COMMENT directive 3-3 
Comments, writing 3-3 
COMMON combine type 4-20 
Communal symbols 7-1, 7-8 
Compact memory model 4-3, 4-5 
Compare instructions 18-25 
Comparing register to zero 15-16 
Comparing strings 17-8 
Compatibility 

other assemblers A-5 
upward 12-1 

Conditional directives 
assembly directives 2-13,9-0,9-1, 10-8 
assembly passes 9-3, 9-7 
error directives 9-0, 10-8 

Index 

Conditional directives (continued) 
macro arguments 9-4, 9-5, 9-9, 9-10 
nesting 9-2 
operators 10-15 
symbol definition 9-3, 9-9 
value of true and false 9-2, 9-8 

Conditional-error directives 9-6 
Conditional-jump instructions 16-3, 18-25 
.CONST directive 4-7 
Constants 3-6, 13-1, 15-22 
Control data, coprocessor 18-16 
Conversion, binary to decimal 15-13 
Converting data sizes 14-4 
Coprocessor 

8086 family 12-2 
architecture 18-1 
control data 18-16 
directives 3-12 
emulator 2-6 
loading data 18-11 
loading pi 18-15 
no-wait instructions 18-30 
operands 18-4 
-r options 2-3 
registers 12-13 

Copying data 14-1 
~REF 

directive (.CREF) 11-9 
Cross-reference files 

comparing with listing 2-16 
CS: override 2-10 
CS Register 12-8 
CurSeg equate 4-9 
CWD instruction 14-4 
CWDE instruction 14-5 
CX Register 12-9 

D 

-d option 2-5, E-3 
DAA instruction 15-13 
DAS instruction 15-13 
Data bus 12-1 
Data conversion 14-4 
.data directive 1-5 
.DATA? directive 4-7 
@data equate 4-9 
Data segments 

defining 4-7 
developing programs 1-5 
initializing 4-32 
registers 12-8 

1-3 



Index 

Data-definition directives 5-5 
DataSize equate 4-5, 4-9 
@DataSize equate 4-5, 4-9 
DB directive 5-6, 5-7, 5-10 
DD directive 5-6, 5-7 
DEC instruction 15-3, 15-4 
Decimal, packed BCD numbers 15-11 
Decimal radix 3-7, 3-8 
Decrementing 15-3 
Defaults 

radix 3-8 
segment names 4-7, 4-12 
segment registers 4-28 
simplified segment 4-11 
types 8-26 

Defining symbols from command line 2-5 
Destination string 17-2 
Development cycle 1-1 
DF directive 5-6, 5-7 
DGROUP group name 

COMM directive, with 7-10 
simplified segments, with 4-4, 4-8, 4-11 

Direction flag 12-12, 17-1 
Directives 

.1863-12 

.2863-12, 19-2 

.286P 3-13 

.2873-10,3-13,5-14, 18-11 

.3863-13,4-6,4-18, 19-2 

.386P 3-13 

.3873-10,3-14,5-14, 18-11 

.80863-12 

.80873-10,3-13,5-14, 18-11 
ALIGN 5-21,12-1 
.ALPHA4-16 
ASSUME 4-27,4-28, 8-10 
.CODE4-7 
COMM 7-1, 7-8 
COMMENT 3-3 
.CONST 4-7 
.CREF 11-9 
.DATA 1-5 
.DATA? 4-7 
data definition 5-5 
DB 5-6,5-7,5-10 
DD 5-6, 5-7 
defined 3-3 
DF 5-6,5-7 
DOSSEG4-3 
DQ 5-6, 5-7, 5-12 
DT 5-6, 5-7, 5-12 
DW 5-6,5-7,5-11 
ELSE 9-2 
END 3-15, 4-7, 4-31 

1-4 

Directives (continued) 
ENDIF9-2 
ENDM 10-6, 10-11,10-12, 10-13 
ENDP 5-4,16-17,16-27 
ENDS 4-15, 4-16, 6-2 
EQU 2-16, 7-4, 10-2, 10-4 
equal sign (=) 2-5, 7-4, 10-1 
.ERR 9-7 
.ERRI9-7 
.ERR29-7 
.ERRB 9-9 
.ERRDEF9-9 
.ERRDIF 9-10 
.ERRE9-8 
.ERRIDN 9-10 
.ERRNB 9-9 
.ERRNDEF 9-9 
.ERRNZ9-8 
EVEN 5-21,12-1 
EXITM 10-11 
EXTRN 5-3,7-1,7-3 
.FARDATA? 4-7 
full segment 4-1 
functions c-o 
global 7-0, 7-6 
GROUP 4-2, 4-26, 8-10 
IF 2-13,9-2 
IFI 9-3, 11-1 
IF2 9-3, 11-1 
IFB 9-4 
IFDEF9-3 
IFDIF9-5 
IFE 9-2 
IFIDN9-5 
IFNB 9-4 
IFNDEF9-3 
INCLUDE 10-5, 10-25, 10-26 
instruction set 3-12 
IRP 10-13 
IRPC 10-13 
LABEL 5-5, 5-20 
.LALL 10-9, 11-7 
.LFCOND 2-13,11-6 
.LIST 11-5 
LOCAL 10-9, 10-11 
MACRO 10-6 
.MODEL 3-11, 4-5, 7-4 
.MSFLOAT 3-12, 5-14 
NAME 7-8 
ORG 4-31, 5-20 
%OUT 11-1 
PAGE 11-3 
PROC 4-11, 5-3, 16-16, 16-27 
PUBLIC 5-3,5-4,7-1 



Directives (continued) 
PURGE 10-26 
.RADIX3-8 
RECORD 6-6 
REPT 10-12 
.sALL 10-9, 11-7 
SEGMENT 4-15,4-16,8-10 
.SEQ4-16 
.SFCOND 2-13, 11-6 
simplified segment 4-1 
.STACK4-7 
STRUC6-2 
SUBTTL 11-3 
summary C-O 
syntax C-O 
.TFCOND 2-13, 11-6 
TITLE 7-8,11-2 
XALL 10-9, 11-7 
XCREF 11-9 
XLIST 11-5 

Displacement 13-6 
DIV instruction 15-9 
Dividing 15-9 
Dividing by constants 15-22 
Division operator (/) 8-3 
Do 

emulating C statement 16-13 
emulating FORTRAN statement 16-12 

Dollar sign ($) 
location counter symbol 5-20 
symbol names, used in 3-5 

DOSSEG directive 4-3 
-dosseg linker option 4-5 
Double shifts, with 80386 processor 15-25 
DQ directive 5-6, 5-7, 5-12 . 
DS registers 12-8 
-Dsymbol option 2-5 
DT directive 5-6, 5-7, 5-12 
DT Register 12-10 
Dummy parameters 

macros 10-6, 10-8, 10-24 
repeat blocks 10-11 

Dummy segment definitions 4-25 
DUP operator 5-17, 6-2, 6-3, 6-8 
DW directive 5-6,5-7,5-11 
DWORD align type 4-18 
DWORD type specifier 5-1 
DX Registers 12-9 

Index 

E 

-e option 2-6, 5-14 
Effective address 13-4, 13-8 
ELSE directive 9-2 
Emulator, coprocessor 2-6 
Encoded real numbers 3-9, 5-14 
Encoding of instructions 13-1 
END directive 3-15,4-7,4-31 
ENDIF directive 9-2 
ENDM directive 10-6,10-11,10-12,10-13 
ENDP directive 5-4,16-17, 16-27 
ENDS directive 4-15,4-16,6-2 
ENTER instruction 16-23 
EQ operator 8-8 
EQU directive 2-16,7-4, 10-2, 10-4 
Equal sign (=), directive 2-5,7-4,10-1 
Equates 

defined 10-0, 10-1 
nonredefinable 10-2 
predefined 4-9 
redefinable 10-1 
string 10-4 

.ERR directive 9-7 

.ERRI directive 9-7 

.ERR2 directive 9-7 

.ERRB directive 9-9 

.ERRDEF directive 9-9 

.ERRDIF directive 9-10 

.ERRE directive 9-8 

.ERRIDN directive 9-10 

.ERRNB directive 9-9 

.ERRNDEF directive 9-9 

.ERRNZ directive 9-8 
Error lines, displaying 2-14 
Error messages 

assembly listing 2-15, 2-16 
masmE-3 

ES registers 12-8 
ESC instruction 19-2 
EVEN directive 5-21, 12-1 
Exclamation point (!), operator 10-18 
Exit codes 

masmE-20 
EXITM directive 10-11 
Exponent, part of real-number constant 3-9 
Exponentiation, with087-family coprocessors 

18-28 
Expression operator (%) 10-19 
Expressions, defined 8-0 
External names 2-9 

1-5 



Index 

External symbols 7-3 
Extra segment 12-8 
EXTRN directive 5-3,7-1,7-3 

F 

F2XMl instruction 18-29 
FABS instruction 18-22 
FADD instruction 18-17 
FADDP instruction 18-18 
False conditionals, listing 2-13 11-6 
Far pointers 5-11, 14-8 ' 
FAR type specifier 5-2 
.FARDATA? directive 4-7 
@fardata? equate 4-9 
Fatal errors 9-7 
FBLD instruction 18-13 
FBSTP instruction 18-13 
FCHS instruction 18-22 
FCOM instruction 18-26 
FCOMP instruction 18-26 
FCOMPP instruction 18-27 
FCOS instruction 18-29 
FDIV instruction 18-20 
POIVP instruction 18-21 
FDIVR instruction 18-21 
FDIVRP instruction 18-21 
FIADD instruction 18-18 
FICOM instruction 18-26 
FICOMP instruction 18-27 
FIDIV instruction 18-21 
FIDIVR instruction 18-21 
Fields 

assembler statements 3-1 
bit 6-1,6-6 
records 6-6, 6-10 
structures 6-2, 6-4 

FILD instruction 18-13 
fileName equate 4-9 
Files 

buffer 2-4 
include 2-8,7-11,10-25 
listing 2-1,2-9,11-2 
source See Source files 
specifications 10-25 

Filling strings 17-10 
FIMUL instruction 18-20 
FINIT instruction 18-30 
First-in-first-out (FIFO) 14-10 
FIST instruction 18-13 
FISTP instruction 18-13 
FISUB instruction 18-18 

1-6 

FISUBR instruction 18-19 
Flags 

loading and storing 14-3 
register 12-11 

FLD instruction 18-12 
FLDI instruction 18-15 
FLDCW instruction 18-16 
FLDL2E instruction 18-15 
FLDL2T instruction 18-16 
FLDLG2 instruction 18-16 
FLDLN2 instruction 18-16 
FLDPI instruction 18-15 
FLDZ instruction 18-15 
Floating-point format 

compatibility A-5 
Floating-point numbers 2-3, 2-6 
FMUL instruction 18-20 
FMULP instruction 18-20 
For, emulating high-level-language st, 

16-12 
FORTRAN compiler 5-14 
FORTRAN language, mentioned 16-1 

16-16, 16-24 
Forward references 

defined 8-21 
during a pass 2-23 
labels 8-22 
variables 8-24 

Forward slash (f), operator 8-3 
FPATAN instruction 18-29 
FPREM instruction 18-22, 18-28 
FPTAN instruction 18-29 
Fraction 3-9 
FRNDINT instruction 18-22 
FS registers 12-8 
FSCALE instruction 18-22 
FSIN instruction 18-30 
FSINCOS instruction 18-29 
FSQRT instruction 18-22 
FST instruction 18-12 
FSTCW instruction 18-16 
FSTP instruction 18-12 
FSTSW instruction 18-16, 18-17 
FSUB instruction 18-18 
FSUBP instruction 18-19 
FSUBR instruction 18-19 
FSUBRP instruction 18-19 
FTST instruction 18-25, 18-26 
Full segment directives 4-1 
Functions 

C 16-16 
Pascal 16-16 

FW AIT instruction 18-10 
FWORD type specifier5-1 



FXAM instruction 18-28 
FXCH instruction 18-12 
FXTRACT instruction 18-22 
FYL2X instruction 18-29 
FYL2XPI instruction 18-29 

G 

GE operator 8-8 
General-purpose registers 12-8 
Getting strings from ports 17-12 
Global directives 

defined 7-0 
illustrated 7-6 

Global scope 7-1 
Global symbols 7-1, 7-3 
GROUP directive 4-2,4-26, 8-10 
Group-relative segments 4-27 
Groups 

assembly listing 2-20 
defined 4-26 
illustrated 4-27 
size restriction 4-26 

GS Registers 12-8 
GT operator 8-8 

H 

-h option 2-7 
Hardware interrupts 16-26 
Help 2-7 
Hexadecimal radix 3-7, 3-8 
HIGH operator 8-13 
High-level languages, memory model 4-2,4-5 
HLT instruction 19-2 
Huge memory model 4-3, 4-5 

I 

-I option 2-8, 10-25 
IDlY instruction 15-9 
IEEE format 3-10,5-13,5-14,18-11 
IF directives 2-13,9-2 
IFl directive 9-3, 11-1 
IF2 directive 9-3, 11-1 
IFB directive 9-4 
IFDEF directive 9-3 

IFDIF directive 9-5 
lFE directive 9-2 
IFIDN directive 9-5 
IFNB directive 9-4 
IFNDEF directive 9-3 
Immediate operands 13-1 
Implied operands 18-5 

Index 

Impure code, checking for 2-10 
IMUL instruction 15-6,15-7, 15-8 
IN instruction 14-15 
INC instruction 15-1 
INCLUDE directive 10-5, 10-25, 10-26 
Include files 10-25 

assembly listings 2-16 
communal variables 7-11 
setting search paths 2-8 
using 10-25 

Incrementing 15-1 
Indeterminate operand 5-19 
Index checking 16-27 
Index operator 8-5 
Index registers 13-6, 1 J-ll 
Indexed operands 13-6 
Initializing 

segment registers 4-31 
variables 5-6 

INS instruction 17-12 
Instruction sets 

80186 processor B-13 
80286 processor B-14, B-15 
80287 coprocessor B-15 
80386 processor B-16, B-19 
8086 processor B-2 
8087 coprocessor B-8 
assembly-language programs, used with 1-1 
Intel family B-1 

Instruction-pointer register (IP) 12-11, 16-1 
Instructions 

AAA 15-11 
AAD 15-12 
AAM 15-12 
AAS 15-12 
ADC 15-1, 15-3 
ADD 15-1, 15-3 
AND 15-14,15-15,16-9 
bit scan 15-19 
bit test 15-18, 16-10 
BOUND 16-27 
BSF 15-19 
BSR 15-19 
BT 16-10 
BTC 16-10 
BTR 16-10 
BTS 16-10 

1-7 



Index 

Instructions (continued) 
CALL 5-4,14-10,16-16 
CBW 14-4 
CDQ 14-5 
CLC 15-3, 15-5 
CLD 17-1 
CLI 16-26 
CMP 16-4, 16-15 
CMPS 17-8 
compare 18-25 
conditional jump 16-1, 18-25 
CWD 14-4 
CWDE 14-5 
DAA 15-13 
DAS 15-13 
DEC 15-3, 15-4 
defined 3-3 
DIV 15-9 
ENTER 16-23 
ESC 19-2 
F2XM118-29 
FABS 18-22 
FADD 18-17 
FADDP 18-18 
FBLD 18-13 
FBSTP 18-13 
FCHS 18-22 
FCOM 18-26 
FCOMP 18-26 
FCOMPP 18-27 
FCOS 18-29 
FDIV 18-20 
FDIVP 18-21 
FDIVR 18-21 
FDIVRP 18-21 
FIADD 18-18 
FICOM 18-26 
FICOMP 18-27 
FIDIV 18-21 
FIDIVR 18-21 
FILD 18-13 
FIMUL 18-20 
FINIT 18-30 
FIST 18-13 
FISTP 18-13 
FISUB 18-18 
FISUBR 18-19 
FLD 18-12 
FLD118-15 
FLDCW 18-16 
FLDL2E 18-15 
FLDL2T 18-16 
FLDLG218-16 
FLDLN218-16 

1-8 

Instructions (continued) 
FLDPII8-15 
FLDZ 18-15 
FMUL 18-20 
FMULP 18-20 
FPATAN 18-29 
FPREM 18-22,18-28 
FPTAN 18-29 
FRNDINT 18-22 
FSCALE 18-22 
FSIN 18-30 
FSINCOS 18-29 
FSQRT 18-22 
FST 18-12 
FSTCW 18-16 
FSTP 18-12 
FSTSW 18-16,18-17 
FSUB 18-18 
FSUBP 18-19 
FSUBR 18-19 
FSUBRP 18-19 
FTST 18-25, 18-26 
FWAIT 18-10 
FXAM 18-28 
FXCH 18-12 
FXTRACT 18-22 
FYL2X 18-29 
FYL2XP 1 18-29 
HLT 19-2 
IDIV 15-9 
IMUL 15-6, 15-7, 15-8 
IN 14-15 
INC 15-1 
INS 17-12 
INT 13-2, 14-10, 16-25, 16-27 
INTO 16-25, 16-26 
IRET 14-10, 16-26, 16-27 
IRETD 16-27 
JC 15-2, 15-5 
Jcondition 16-5, 16-7, 16-9, 16-26 
JCXZ 16-4, 16-14, 17-8, 17-9 
JECXZ 16-13 
JMP 4-28,8-22,16-1 
LAHF 14-3 
LDS 14-8 
LEA 14-7 
LEAVE 16-23 
LES 14-8, 17-8 
LFS 14-9 
LGS 14-9 
LOCK 19-2 
LODS 17-11 
logical 15-15 
LOOP 16-12 



Instructions (continued) 
LOOPE 16-13 
LOOPNE 16-13 
LOOPNZ 16-13 
LOOPZ 16-13 
LSS 14-9 
MOV 4-28, 14-1, 19-4 
MOVS 17-5 
MOVSX 14-6 
MOVZX 14-6 
MUL 15-6 
NEG 15-3, 15-4 
NOP 8-22, 19-1 
NOT 15-18 
OR 15-14, 15-16 
OUT 14-15 
OUTS 17-12 
POP 4-28, 14-10 
POPA 14-14 
POPAD 14-15 
POPD 14-14 
POPF 14-14 
POPFD 14-14 
program-flow 16-0 
protected mode 19-3 
PUSH 4-28,14-10 
PUSHA 14-14 
PUSHAD 14-15 
PUSHD 14-14 
PUSHF 14-14 
PUSHFD 14-14 
RCL 15-21 
RCR 15-21 
REP 17-3, 17-10, 17-12 
REPE 17-3, 17-8, 17-9 
REPNE 17-3, 17-7, 17-9 
REPNZ 17-3, 17-7, 17-9 
REPZ 17-3,17-8,17-9 
RET 5-4,13-2,14-10, 16-19 
RETF 16-18 
RETN 16-18 
ROL 15-21 
ROR 15-21 
SAHF 14-3 
SAL 15-21 
SAR 15-21 
SBB 15-3, 15-5 
SCAS 17-7 
SETcondition 16-15 
SHL 15-21 
SHLD 15-25 
SHR 15-21 
SHRD 15-25 
STD 17-1 

Index 

Instructions (continued) 
STI 16-26 
STOS 17-10 
SUB 15-3, 15-4, 15-5, 16-6 
TEST 16-4, 16-9, 16-15 
timing of 13-1 
WAIT 18-10,19-2 
XCHG 14-2 
XLAT 14-2 
XOR 15-14, 15-17 

Instruction-set directives 3-12 
INT instruction 13-2, 14-10, 16-25, 16-27 
Integers 3-6, 18-17 
Integers, with coprocessor 18-11 
Interrupt-enable flag 12-12, 16-25 
Interrupts 16-25 
INTO instruction 16-25, 16-26 
I/O protection level flag 12-12 
IP Registers 12-11 
IRET instruction 14-10, 16-26, 16-27 
IRETD instruction 16-27 
IRP directive 10-13 
IRPC directive 10-13 

J 

JC instruction 15-2, 15-5, 16-7 
Jcondition instruction 16-5, 16-7, 16-9, 16-26 
JCXZ instruction 16-4,16-14,17-8,17-9 
JECXZ instruction 16-13 
JMP instruction 4-28, 8-22, 16-1 
JO 15-2, 16-7, 16-26 
Jump tables 16-2 
Jumping conditionally 16-3 

L 

-1 option 2-9 
LABEL directive 5-5,5-20 
Labels 

defined 5-2 
macros, in 10-10 
near code 5-2 
procedures 5-3 

LAHF instruction 14-3 
.LALL directive 10-9, 11-7 
Large memory model 4-3, 4-5 
Id 

development cycle, in 1-3 

1-9 



Index 

LDS instruction 14-8 
LE operator 8-8 
LEA instruction 14-7 
LEAVE instruction 16-23 
LENGTH operator 8-17 
LES instruction 14-8, 17-8 
.LFCOND directive 2-13, 11-6 
LFS instruction 14-9 
LGS Instruction 14-9 
Line number data 2-14 
.LIST directive 11-5 
Listing 

false conditionals 11-6 
files 2-1, 2-9,11-2 
format 

addresses 2-16 
code 2-15 
described 2-15 
EQU directive 2-16 
errors 2-15, 2-16 
groups 2-20 
include files 2-16 
LOCK directive 2-16 
macro expansions 2-16 
macros 2-18 
Pass 1, reading 2-23 
records 2-18 
REP directive 2-16 
segment override 2-16 
segments 2-20 
structures 2-18 
symbols 2-21 

macros 11-7 
Pass 1 ,creating 2-5 
subtitles in 11-3 
suppressing output 11-5 
suppressing tables 2-10 
tables, suppressing 2-10 

Literal-character operator (!) 10-18 
Literal-text operator « > » 9-4 
Loading constants to coprocessor 18-15 
Loading coprocessor data 18-11 
Loading pointers 14-9 
Loading values from strings 17-11 
LOCAL directive 10-9,10-11 
Local scope 7-1 
Local symbols in macros 10-9 
Local variables, in procedures 16-21 
Location counter 5-1, 5-20, 5-21 8-20 
Location counter symbol 5-20 ' 
LOCK directive, assembly listing 2-16 
LOCK instruction 19-2 
LODS instruction 17-11 
Logarithms 18-28 

1-10 

Logical bit operations 15-14 
Logical instructions 15-15 
Logical operators 15-15 
Loop 

while equal 16-13 
while not equal 16-13 

LOOP instruction 16-12 
LOOPE instruction 16-13 
LOOPNE instruction 16-13 
LOOPNZ instruction 16-13 
LOOPZ instruction 16-13 
LOW operator 8-13 
LSS instruction 14-9 
LT operator 8-8 

M 

Macro Assembler See masm 
Macro comment operator (;;) 10-20 
MACRO directive 10-6 
Macro expansions, assembly listings 2-11 
Macros 

argument testing 9-5, 9-10 
arguments 10-6,10-8,10-24 
assembly listing 2-18 
calling 10-8 
communal variables 7-11 
compared to procedures 10-6 
defined 10-0, 10-5 
efficiency penalty 10-1 
exiting early 10-11 
expansions in listing 11-7 
local symbols 10-9 
nested 10-16, 10-21 
operators 10-15 
parameters 10-6, 10-8, 10-24 
recursive 9-5, 10-21 
redefining 10-23, 10-26 
removing from memory 10-26 
text 10-4 

make, in development cycle 1-3 
MASK operator 6-12 
Masking bits 15-14, 16-9 
masm 

command line 2-1 
described 2-0 
development cycle, in 1-3 
error messages E-3 
executable files 1-1 
exit codes E-20 
invoking 2-1 
summary 1-5 



Math coprocessors 2-3, 12-2, 18-1 
Medium memory model 4-2, 4-5 
Memory access, coordinating 18-9 
MEMORY combine type 4-20 
Memory models 4-2 
Memory operands 13-4 
Memory operands, coprocessor 18-6 
Messages 

status E-l 
suppressing 2-11 

Messages to Standard Output 11-1 
Microsoft Binary format 5-13, 5-14 
Microsoft Binary Real format 3-10, 18-11 
Minus operator (-) 8-3 
Mixed-languages programs 4-1, 4-16 
-MI option 2-9 
-MI option, masm 4-23 
Mnemonics 

defined 3-3 
reserved names, as 3-6 

MOD operator 8-3 
.MODEL directive 3-11,4-5,7-4 
Modes, addressing See Addressing modes 
Modular programming 7-0 
Modulo division 18-22 
Modulo division operator 8-3 
MOV instruction 4-28, 14-1, 19-4 
Moving strings 17-5 
MOVS instruction 17-5 
MOVSX instruction 14-6 
MOVZX instruction 14-6 
.MSFLOAT directive 3-12,5-14 
-Mu option 2-9 
MUL instruction 15-6 
MUltiple modules 7-6 
Multiplication operator (*) 13-11 
Multiplication operators 8-3 
Multiplying 15-6 
Multiplying by constants 15-22 
Multiword values, shifting 15-24 
-Mx option 2-9 
-Mx option, masm 4-23 

N 

-n option 2-10 
NAME directive 11-2 
Names 

Assigning 3-4 
extemal2-9 
public 2-9 
reserved 3-5, 10-24, 10-26 

NE operator 8-8 
Near pointers 5-11, 14-7 
NEAR type specifier 5-2 
NEG instruction 15-3, 15-4 
Negating 15-4 
Nested-task flag 12-13 
Nesting 

conditionals 9-2 
DUP operators 5-18 
include files 10-25 
macros 10-16, 10-21 
procedures for Pascal 16-24 
segments >,4-35" 

New features A-O 
Nonredefinable equates 10-2 
NOP instruction 8-22, 19-1 
NOT instruction 15-18 
NOT operator 8-7 
NOTHING, ASSUME 4-29 

Index 

No-wait coprocessor instructions 18-30 
Null class type 4-24 
Null string 10-8 
Numbers See Real numbers, signed numbers, 

etc. 

o 

Object records 4-3 
Octal radix 3-7, 3-8 
OFFSET operator 4-11, 8-14 
OFFSET operator, with group-relative segmen 

4-27 
ON GOSUB, emulating BASIC statement 16-: 
Opcode See Instructions 
Operands 

based 13-6 
based indexed 13-6 
based indexed with displacement 13-6 
classical stack 18-5 
coprocessor 18-4, 18-5 
defined 3-3, 8-0, 13-0 
immediate 13-1 
implied 18-5 
indeterminate 5-19 
indexed 13-6 
indirect memory 13-1, 13-4, 13-6 
location counter 8-20 
memory 13-1, 13-4, 13-6 
record field 6-13 
records 6-10 
register 12-5, 13-1, 13-2 
register indirect 13-6 

I-11 



Index 

Operands (continued) 
relocatable 13-4 
strong typing 8-25 
structures 6-5 
undefined 5-19 

Operating system 1-1 
Operators 

addition 8-3 
AND 8-7 
arithmetic 8-3 
bitwise 8-7 
calculation 8-3 
defined 8-1 
division (() 8-3 
DUP 5-17, 6-2, 6-3, 6-8 
EQ8-8 
expression (%) 10-19 
GE8-8 
GT8-8 
HIGH 8-13 
index 8-5 
LE8-8 
LENGTH 8-17 
literal character (!) 10-18 
logical 15-15 
LOW 8-13 
LT8-8 
macro comment (;;) 10-20 
MASK 6-12 
minus (.) 8-3 
MOD 8-3 
multiplication (*) 8-3 
NE8-8 
NOT 8-7 
OFFSET 4-11,8-14 
OR 8-7 
plus (+) 8-3 
precedence 8-19 
PTR 8-11, 8-23 
relational 8-8 
SEG 4-26,7-10,8-14 
segment override (:) 2-16,13-8 
segment override (:) See: (Segment-override 

operator) 
shift 8-7 
SHL 8-7 
SHORT 8-12, 8-22 
SHR 8-7 
SIZE 8-18 
structure-field name 8-5 
substitute (&) 10-15 
subtraction 8-3 
THIS 8-13 
.TYPE 8-15 

1-12 

Operators (continued) 
TYPE 8-16 
WIDTH 6-12 
XOR 8-7 

Options 
-a 2-3,4-16 
-b 2-4 
-d 2-5, E-3 
-dosseg linker 4-5 
-DsymboI2-5 
-e 2-6, 5-14 
-h2-7 
-12-8, 10-25 
-12-9 
-MI2-9 
-MI, masm 4-23 
-Mu 2-9 
-Mx 2-9 
-Mx, masm 4-23 
-n 2-10 
-p 2-10 
-r 2-3 
-s 2-3, 4-16 
summary 2-2 
-t 2-11, E-2 
using 2-1 
-v 2-11, E-1 
-w 2-12, 8-26 
-x 2-13 
-x 2-14, 11-6 
-z2-14 
-Zd 2-14 
-Zi 2-14 

OR instruction 15-14, 15-16 
OR operator 8-7 
ORG directive 4-31,5-20 
%OUT directive 11-1 
OUT instruction 14-15 
Output messages to Standard Output 11-
OUTS instruction 17-12 
Overflow flag 12-12, 15-2 
Override 

CS: 2-10 

p 

-p option 2-10 
Packed BCD numbers 5-10,15-11,15-1 
Packed decimal integers 3-6 
Packed decimal numbers 3-9 
PAGE align type 4-18 
Page breaks in assembly listings 11-3 



PAGE directive 11-3 
Page format of listing files 11-2 
PARA align type 4-18 
Parameters 

defining in procedures 16-19 
macros 10-6, 10-8, 10-24 
repeat blocks 10-11 

Parity flag 12-12 
Partial remainder 18-22 
Pascal compiler 5-14 
Pascal language, mentioned 16-2, 16-12, 16-13, 

16-16,16-24 
Pass 1 listing 2-5, 2-23 
Percent sign (%) 

expression operator 10-19 
symbol names, used in 3-5 

Period (.) 3-5 
Phase errors 2-5, 2-23 
Pi, loading to coprocessor 18-15 
Plus sign (+), operator 8-3 
Pointers 

defining 5-11 
loading 14-7 

POP instruction 4-2S, 14-10 
POPA instruction 14-14 
POPAD instruction 14-15 
POPD instruction 14-14 
POPF instruction 14-14 
POPFD instruction 14-14 
Ports 

defined 14-15 
getting strings from 17-12 
sending strings to 17 -12 

Precedence of operators 8-19 
Preserving case sensitivity 2-9 
PRIVATE combine type 4-21 
PROC directive 4-11, 5-3,16-17,16-27 
PROC type specifier 5-2, 7-4 
Procedures 

compared to macros 10-6 
defining labels 5-3 
Pascal 16-16 
using 16-16 

Processor directives 3-12 
Processors See Coprocessors 
Program-development cycle 1-1 
Program-flow instructions 16-0 
Protected mode 12-2,12-3, IS-31 
Protected-mode instructions 19-3 
Pseudo-op See Directives 
PTR operator S-l1, S-23 
PUBLIC combine type 4-19 
PUBLIC directive 5-3, 7-1 
Public names 2-9 

Index 

Public symbols 7-1 
PURGE directive 10-26 
PUSH instruction 4-28, 14-10 
PUSHA instruction 14-14 
PUSHAD instruction 14-15 
PUSHD instruction 14-14 
PUSHF instruction 14-14 
PUSHFD instruction 14-14 

Q 

Question mark (?) 3-5 
QWORD type specifier 5-1 

R 

-r option 2-3 
.RADIX directive 3-S 
Radixes 

binary 3-7, 3-S 
default 3-S 
specifiers 3-7 

RCL instruction 15-21 
RCR instruction 15-21 
Real mode 12-1, 12-3, 19-1 
Real numbers 

arithmetic calculations 18-17 
coprocessor IS-II 
designator (R) 5-12 
encoding 3-9,5-14 
format 2-3, 2-6,3-9 
format, compatibility A-5 

RECORD directive 6-6 
Record type 6-6 
Records 

assembly listing 2-18 
declarations 6-6 
defining 6-1, 6-8 
field operands 6-13 
fields 6-10 
initializing 6-6, 6-S, 6-10 
MASK operator 6-12 
object 4-3 
operands 6-10 
variables 6-S 
WIDTH operator 6-12 

Recursive macros 9-5, 10-21 
Redefinable equates 10-1 
Redefining interrupts 16-27 

1-13 



Index 

Redefining macros 10-23 
Registers 

80386 12-5 
80386, special 19-4 
8087 family 12-13 
accumulator 12-9 
AX 12-9 
base 13-6, 13-11 
BP 12-9 
BX 12-9 
coprocessor 12-13,18-2,18-3 
CS 12-8 
CX 12-9 
DI12-1O 
DS 12-8 
DX 12-9 
ES 12-8 
flags 12-11 
FS 12-8 
general purpose 12-8 
GS 12-8 
index 13-6, 13-11 
IP 12-11,16-1 
mixing 16-bit and, 32-bit, 13-12 
operands 12-5,13-1, 13-2 
operands, coprocessor 18-7 
register-pop operands, coprocessor 18-8 
reserved names, as 3-6 
segment 4-31, 12-8 
SI12-10 
SP 12-10 
special 19-4 
SS 12-8 

Relational operators 8-8 
Reloc~tabl~ operands See Memory operands 
REP drrectlve, assembly listing 2-16 
REP instruction 17-3,17-10, 17-12 
REPE instruction 17-3, 17-8, 17-9 
Repeat blocks 

arguments 10-11 
defined 10-0, 10-11 
parameters 10-11 
repeat for each argument 10-13 
repeat for each character of string 10-13 
repeat for specified count 10-12 

Repeat, emulating Pascal statement 16-13 
Repeat, using086-family string functions 17-0 
REPNE instruction 17-3,17-7,17-9 
REPNZ instruction 17-3,17-7,17-9 
REPT directive 10-12 
REPZ instruction 17-3,17-8,17-9 
Reserved names 3-5, 10-24, 10-26 
Resume flag 12-13 
RET instruction 5-4, 13-2, 14-10, 16-16 

1-14 

RETF instruction 16-18 
RETN instruction 16-18 
ROL instruction 15-21 
ROR instruction 15-21 
Rotating bits 15-20 
Routines, FORTRAN 16-16 

s 

-s option 2-3,4-16 
ASCII 

format for text files 1-4 
name for unpacked BCD numbers 15-

MS-DOS 

80386 under 12-13 
segment-order convention 4-3 

MS-DOS compatibility 
-12-9 
-M12-9 
pathnames, with (backslash) 10-25 
-s 2-4 

XENIX 12-3 
SAHF instruction 14-3 
SAL instruction 15-21 
.SALL directive 10-9, 11-7 
SAR instruction 15-21 
SBB instruction 15-3, 15-5 
Scaling 14-8 
Scaling by powers of two 18-22 
Scaling factor 13-11 
SCAS instruction 17-7 
Search paths 

include files 10-25 
setting 2-8 

Searching strings 17-7 
Sections in assembly listings 11-3, 11-4 
SEG operator 4-26, 7-10, 8-14 
SEGMENT directive 4-15,4-16,8-10 
Segment-order method 4-15 
Segments 

16-bit 4-6, 4-18 
32-bit 4-6,4-18 
32-bit 12-4 
32-bit 14-13 
absolute 4-21 
alignment 4-17, 5-21 
assembly listing 2-20 
combine types 4-19 
defined 4-1 
definition 4-15 
extra 12-8 
group-relative offset 4-27 



Segments (continued) 
groups 4-26 
MEMORY 4-20 
nesting 4-35 
ordering 2-3,4-24 
override, assembly listings 2-16 
override operator (:) 13-8 . 
override operator (:) See: (Segment-override 

operator) 
registers 12-8 
selectors 12-4 
size 4-18 
types 4-17 

Selectors, segment 12-4 
Semicolons (;;), operator 10-20 
Sending strings to ports 17-12 
.SEQ directive 4-16 
Serious warnings 2-12 
SET condition instruction 16-15 
Setting file buffer size 2-4 
Setting register to zero 15-17 
Severe errors 2-12, 9-7 
.SFCOND directive 2-13,11-6 
Shift operators 8-7 
Shifting bits 15-20 
Shifting multi word values 15-24 
SHL instruction 15-21 
SHL operator 8-7 
SHLD instruction 15-25 
SHORT operator 8-12, 8-22 
SHR instruction 15-21 
SHR operator 8-7 
SHRD instruction 15-25 
SI registers 12-10 
Sign flag 12-12, 15-5 
Signed numbers 5-6, 14-4, 15-2, 15-4 
Sign-extending 14-6 
Simplified segment defaults 4-11 
Simplified segment directives 4-1 
SIZE operator 8-18 
Small memory model 4-2, 4-5 
Source files 

compatibility 
high-level languages D-O 
memory models D-O 

defined 1-4 
format 3-1 
illustrated 1-4 
include 10-25 
segments D-O 

Source modules 1-3,7-0 
Source string 17-2 
SP registers 12-10 
Special registers 19-4 

Square root 18-22 
SS registers 12-8 
Stack 

defined 14-10 
frame 16-23 
operands, coprocessor 18-5 
registers 18-4 
segment 4-7, 4-20, 12-8 
segment, initializing 4-33 
use of 14-13 

STACK combine type 4-20 
.STACK directive 4-7 

Index 

Standard output device 11-1, E-l 
Statement fields 3-1 
Statements, defined 3-1 
Statistics 2-11, E-l 
Status messages E-l 
STD instruction 17-1 
STI instruction 16-26 
Storing coprocessor data 18-11 
STOS instruction 17-10 
Strict type checking A-5 
Strings 

comparing 17-8 
constants 3-10, 13-1 
defined 17-0 
destination strings 17-2 
equates 10-4 
filling 17-10 
getting from ports 17-12 
loading values from 17-11 
moving 17-5 
null 10-8 
ports, transfer from and to 17-12 
searching 17-7 
source 17-2 
structures, in 6-2 
variables 5-10 

Strong typing 8-25 
STRUC directive 6-2 
Structure type 6-2 
Structure-field-name operator 8-5 
Structures 

assembly listing 2-18 
declarations 6-2 
definitions 6-1, 6-3 
fields 6-5 
initializing 6-2,6-3,6-4 
operands 6-5 
overview 6-1, 6-6 
variables 6-3 

SUB instruction 15-3, 16-6 
Subprograms, BASIC 16-16 
Subroutines, BASIC 16-16 

1-15 



Index 

Substitute operator (&) 10-15 
Subtitles in listings 11-3 
Subtracting values 15-3 
Subtraction operator 8-3 
SUBTIL Directive 11-3 
Summary 

masm 1-5 
options 2-2 

Switch, emulating C statement 16-2 
Symbol space E-1 
Symbolic information 2-14 
Symbols 

assembly listing 2-21 
communal 7-1, 7-8 
defined 3-4 
defining from command line 2-5 
external 7-3 
global 7-1, 7-3 
location counter 5-20 
public 7-1 
relocatab1e operands 13-4 

T 

-t option 2-11, E-2 
TBYTE type specifier 5-1 
Temporary real format 5-16 
TEST instruction 16-4,16-9, 16-15 
Testing bits 16-10 
Text editor 1-1, 1-3, 1-4 
Text equates See String equates 
Text Macros 10-4 
.TFCOND directive 2-13,11-6 
THIS operator 8-13 
Timing of instructions 13-1 
Tiny memory model 4-2 
TITLE directive 11-2 
Transcendental calculations 18-28 
Trap flag 12-12, 16-25 
Trigonometric functions 18-28 
Two's complement 5-6 
Type 

ABS 7-3 
align 4-17,4-22 
checking, strict A-5 
class 4-23 
combine 4-19, 4-21 
data 2-14 
null class 4-24 
operand matching 8-25 
operators 8-11 
PROC 7-4 

1-16 

Type (continued) 
record 6-6 
specifiers 7-4 
structure 6-2 
use 4-18 
USE 13-11 

.TYPE operator 8-15 
TYPE operator 8-16 
Type specifiers 5-1 

u 

Unary minus 8-3 
Unary plus 8-3 
Undefined operand 5-19 
Underscore L) 3-5 
Unpacked BCD numbers 5-9,15-11 
Unsigned numbers 5-6, 14-4, 15-2, 15-, 
Uppercase See Case 
Upward compatibility 12-1 
Use type 4-18 
USE type 13-11 

v 

-v option 2-11, E-l 
Variables 

communal 7-8 
defined 5-5 
external 7-3 
floating point 5-12 
initializing 5-6 
integer 5-6 
local 16-21 
pointer 5-11 
public 7-1 
real number 5-12 
record 6-8 
string 5-10 
structure 6-3 

Virtual 8086 Mode flag 12-13 

w 

-w option 2-12,8-26 
WAIT instruction 18-10, 19-2 
Warning levels 2-12, 8-26 



Weak typing in other assemblers 8-26 
While, emulating high-level-language statement 

16-13 
WIDTH operator 6-12 
Width, structures 6-7 
WORD align type 4-17 
WORD type specifier 5-1 

x 

-x option 2-13 
-x option 2-14,11-6 
.xALL directive 10-9, 11-7 
XCHG instruction 14-2 
.xCREF directive 11-9 
XLAT instruction 14-2 
.xLIST directive 11-5 
XOR instruction 15-14,15-17 
XOR operator 8-7 

z 

-z option 2-14 
-Zd option 2-14 
Zero flag 12-12 
Zero-extending 14-6 
-Zi option 2-14 

Index 

I-17 







10-31-88 

SCO-514-210-015 


