
Division
Operation

Department

MISSILE SYSTEMS
Bedford Laboratories
Data Processing Systems

To Alan Deerfield (904)

From Steven \\Tallach (904)

Subiect CMS-2 I/O

Enclosure: Appendix A (2 pages)

1.0 INTRODUCTION

UNCLASSIFIED

Contract No.

Distribution aa

File No.

Memo No. SW-7l-7

Date 13 July 1971

The following is a description of the CMS-2 I/O system as

viewed from the compiler. The I/O drivers and peripheral control

programs will not be mentioned, other than the interfaces provided

for them by the CMS-2 I/O System. In reality, I/O requires co­

ordinated compiler and I/O executive systems. Lacking information

on the MEC (Master Ex'ecuti ve System) I/O system and areas where

interfaces are required, assumptions and brief specification pf

this common area will be made. Also, taking advantage of this

lack of specification, different philosophies will be expoused

wherever possible. Tradeoffs will be indicated wherever possible.

The reading of this document will be made much easier if the

reader has first read: "CMS-2, SW-7l-61 11 June 1971". Some of the

concepts used in this memo are introduced and explained in the

referenced document.

This memo is based on the material presented in: "CMS-2 Manual,

Volume I, 9 June 1969, pages 1-4-34 thru 1-4-61". Appendix A lists

new CMS-2 Instructions Defined.

~-~
<

. . PRODUCT
. ' EXCELLENCE

PROGRAM

1.1 CMS-2 1/0 Orientation

UNCLASSIFIED
S\v-7l-7
Page 2

CMS-2 I/O is structured around files and their manipulations.

In the programme~s manual, files are said to be stored on mag­

netic tape. It is quite probable that future applications will

find I/O centered around random access devices, mainly disk

drives. This in itself pe~sents no problem, since disk drives

can be logically accessed as tape drives, thereby affording the

same I/O interface to the programmer. However, additional CMS-2

I/O statements may be desirable to reference disk drives and

thereby taking advantage of the inherent benefits over tape

drives.

There are two types of CMS-2 files: logical and physical.

Physical files are portions of a magnetic tape that are delineated

by a hardware recognizable end-of-file mark. A logical file is

one or more physical files. A logical file is defined by the

FILE declaration. CMS-2 I/O primitives handle the different

types of files.

1.2 CMS-2 I/O

The following sections directly deal with CMS-2 I/O. How­

ever, before proceeding with the handling of these I/O statements,

some mention must be made concerning program linkage with the I/O

drivers of the executive system. The AADC will presumably be a

multiprogrammed system. As such, when an I/O task is invoked,

the executive assumes control. The executive must first ascertain

the reason for it being invoked, and then carry out the necessary

tasks. Since I/O is typically the slowest computer operation and

since data requested is buffered, a task swap usually occurs when

I/O is invoked. The task invoking the I/O is temporarily suspended

until the I/O is complete and a new task becomes resident in the

UNCLASSIFIED
SVV-7l-7
Page 3

processing element. Since the CMS-2 compiler is somewhat

autonomous from the executive system, means must exist to provide

communications between the two. For this purpose a SYSTEM ORIGIN

is defined. The System Origin contains information and pointers

to information that is necessary for executive system/compiler

communications. Since each task's data design is stored in

different areas in memory, a fixed area must be defined where

linkage information is passed. The linkage area can be likened to

a mailbox. It is always in the same location. It is the drop-off

point for data.

For I/O purposes, the following system origin mailboxes are

defined.

FIRST WORD OF FILE DELINEATION

RECEPTACLES/IMMEDIATE OPERAND

TASK CONTROL BLOCK POINTER

I/O STATUS WORD

INTERRUPT MASK

FORMAT CONTROL POINTER

SYSTEM ORIGIN

1.2.1 File Word

This mailbox contains the first word of the delineation

of the file declaration involved in the I/O operation. See

Section 2.0 for the handling of the FILE declaration.

1.2.2 Receptacles/Immediate Operand

The execution of an I/O statement results in the trans­

mission of data to/from a CMS-2 data e1ement(s). This mailbox

UNCLASSIFIED
SW-7l-7
Page 4

contains a structor pointing to the data element to be effected,

or a linked list of structors. A linked list of structors is

necessary when more than one data element stored in noncontiguous

memory locations is manipulated. CMS-2 I/O is buffered. There­

fore, it is necessary to interrogate the receptacle mailbox when

writing into the buffer on a write operation where a data design

to buffer move is initiated, or moving from the buffer into a

data design on a read operation.

This mailbox is also used to contain operands returned as

a result of the execution of certain types of I/O operations.

These operations will be described in subsequent sections.

1.2.3 Task Control Block

When a task is swapped and another task is initiated (as in

the case of a multiprogrammed environment), the identity of both

tasks must be defined. This identity is necessary to restore a

task once it is temporarily terminated. For this purpose a Task

Control Block (TCB) must be defined. The TCB contains information

which uniquely defines the state of the task upon interruption.

Included among this information is: contents of the deferral mech­

anism, mode indicators, program counters, etc.

Given this information, a means of TCB swapping must be

determined. In the Burroughs stack oriented machines, the

equivalent of a TCB is pushed into the stack. This portion of the

stack is in main memory. A pointer to the base of the TCB is kept

in the executive system. In the AADC, the 4K limitation of the

task memory may eliminate this manner of TCB handling. In a

multiprocessor configuration, one normally wants TCBts stored in

a common memory which can be accessed by all processors. (Thus,

UNCLASSIFIED
S\'J-71-7
Page 5

any available processor can execute a task in a ready state). As

presently configured, the AADC processing element has direct ac­

cess only to its task memory.

Therefore, it appears that storage of a TCB in a common

AADC memory is called for. The TCB mailbox in the system origin

provides the address of the present TCB in the task memory. The

one level of indirection to access the TCB is provided so that

the TCB need not be stored in the same task memory locations.

This should facilitate memory management. Complete specification

of a TCB is dependent upon final system definitions.

1.2.4 1/0 Status Word

CMS-2 provides the facility for the programmer to test for

certain I/O status conditions, such as: end-of-file, error checks,

etc. To facilitate this capability, the I/O drivers of the execu­

tive system deposits the I/O status word upon termination of the

specified I/O operation. This requires that the peripheral subsys­

tem be capable of tIansmitting an I/O status word upon request

from the executive system.

All CMS-2 logical statements that test I/O status, refer to

this fixed location in the system origin. See Section 10.0 for the

use of this feature.

1.2.5 Interrupt Mask

The Interrupt Mask is provided for processing element/

executive system communications. \ihen the processing element

wishes to interrupt the executive, a mask is deposited in this

mailbox. The contents identify the reason for the interruption

to the executive system. Via this approach only one executive

call instruction is defined. The address field of this instruc-

tion is used as an immediate operand and is deposited in the

interrupt mask mailbox.

UNCLASSIFIED
S\rV-71-7
Page 6

1.2.6 Format Control Pointer

This memory location contains the address of a linked

list which contains format control directives. These directives

are subsequently used by I/O operations involving formatting,

and the DECODE and ENCODE Instructions.

2.0 FILE DECLARATION

The FILE declaration defines the environment in which one

or more physical files may be written on a particular device.

All data that is to be inputted/outputted on a device is orga­

nized according to the information in its FILE declaration. All

I/O commands under CMS-2 generate references to a FILE. The

general form of the FILE declaration is:

FILE internal-name type maximum number of records

length-descriptor max-record-size hardware-name states $

where -internal name is used to reference the FILE declaration

- type indicates Hollerith or Binary records

- max. # of records indicates the maximum number of records

to be accessed

- length-descriptor indicates whether the records are

variable (V) in length or rigid (R) in length

- Max-record-size indicates the maximum length of the records

- hardware name is a mnemonic used to reference a particular

device

- states defines I/O states to be tested

The CMS-2 compiler makes an entry in the name-table. The

entry contains the internal name of the file and the address of the

delineation of the FILE declaration in the data partition. The

delineation of the FILE declaration is:

UNCLASSIFIED

DEVICE ~'f

1 8

[
1

TYPE LENGTH

9 10

ACCESS UNUSED RIGHTS

S~rV-7l-7
Page 7

MAXIMUH
RECORD SIZE

11 12 13 20 21

MAXIMUM NUMBER OF RECORDS

32

32

At compile time, a translation from hardware device name to

internal device number is made. This requires that the compiler

have an associative table which relates logical device name with

physical device number.

3.0 OPEN STATEMENT

The OPEN command establishes the I/O access rights for a

previous defined file. The general form of the OPEN statement is:

OPEN NAME ACTION $

,mere - name is the name of a file

- action specifies the access rights. The access

identifiers are:

• INPUT - only input operations allowed

• OUTPUT - only output operations allowed

• SCRATCH - both input & output allowed

The CMS-2 compiler generates code which sets bits 11-12 of

Word 1 of the file declaration with a binary configuration which

denotes one of the access rights. When an I/O operation is called

for at execution time, the I/O command checks the declared access

rights before invoking the executive system. A file can not be

declared reopened until it is closed. Thus, if a file is INPUT

and it is to be changed, it must first be closed.

4.0 CLOSE STATEMENT

UNCLASSIFIED
S'rV-7l-7
Page 8

The CLOSE statement deactivates the specified file. An

end-of-fi1e mark is written for output files when appropriate.

The general form of the CLOSE statement is:

CLOSE NAME $

where name is the identifier of a file. For the putpose of

supporting the OPEN and CLOSE statements, two instructions are

defined. TSFT (Test File Status Field) and SFST (Set File Status

Field). The format of these instructions are:

oPCODE I STATUS I I ADDRESS

1 6 7 10 11 12 13 20 21 32

The status field is used as an immediate operand. The TSFT

instruction does a comparison for equal with bits 11-12 of the

addressed word and of the instruction and returns a Boolean

value to the accumulator. The SFST instruction sets bits 11-12

of the addressed word with bits 11-12 of the SFST instruction.

Upon recognition of the CLOSE statement, the CMS-2 Compiler

generates an SFST instruction and tests the device address field

of the file declaration to see if an end-of-fi1e mark must be

written on the device. This last operation is a function of the

device type.

To support the CLOSE statement, the access right, CLOSED, is

defined for bits 11-12 of the first word of the file delineation.

Thus, a total of four access rights are defined.

5. a INPUT AND OUTPUT COMMANDS

SW-7l-7
Page 9

The INPUT and OUTPUT Commands transmit data between a

hardware device and a user's program. The FILE declaration

associated with the I/O operation reserves a buffer area.

I/O - operations proceed as follows:

DEVICE

The INPUT command results in the transfer of data from the

hardware device to the buffer, and then to the user's data area.

If formatting is used, the decoding operation is done at point Q).
The OUTPUT command results in the transfer of data from the user's

data area to the buffer, and then to the hardware device. If

formatting is used, the encoding operation is done at point Q)
Prior to each input or output operation on a device, the

buffer area associated with the file is preset either to blanks

or zero depending on whether the records are declared Hollerith

or binary, respectively.

The number of words transferred to the data area is the

smaller of the input record length or receptacle size. Thus, if

a 100 words of input is requested and the record is 50 words long,

only 50 words of information are transferred to the data area with

the remaining 50 words being blanks or zero. Conversely, if 20 Words

SW-71-7
Page 10

are requested and the input record is 50 words, the remaining

30 words are lost. Remember, CMS-2 is tape oriented, which

implies the reading of one physical record at a time.

5.1 Input Statement

The general form of the INPUT statement is:

INPUT NAME RECEPTACLE FORMAT-NAME $

where - name is the name of a FILE declaration or the name of a

standard device file (system dependent)

- receptacle is a CMS-2 data structure. More than one

More than one receptacle can be declared by specifying

receptacles separated by commas.

- format name (optional) refers to the name of a previously

defined FORMAT declaration.

The CMS-2 Compiler generates code which does the following:

1. The first word of the file delineation is deposited

in the system origin.

2. The format declaration address (if specified) is de­

posited in the system origin.

3. The address of the receptacle which will accept the

input data, is deposited in the system origin. This address is

a structor which contains the starting address and number of

memory words. The memory structor has the following format:

I TYPE COUNT ADDRESS

1 4 9 20 21 32

TYPE Memory structor

SW-71-7
Page 11

COUNT - Number of memory words

ADDRESS- Starting address of first word

If more than one noncontiguous (memory locationwise) re­

ceptacles are specified in the INPUT statement, the compiler must

build a list of memory structors which point to the receptacles

to receive data. In this case, a list structor is deposited in

the receptacle mailbox. The list structor has the following

format:

TYPE

1

TYPE

EXTENT

ADDRESS

4

EXTENT ADDRESS

13 20 21 32

List Structor

Number of memory structors

Address of first memory structor

Defining this capability allows the CMS-2 compiler

to build a list of memory structors which point to the recep­

tacles involved in the input operation. The following depicts

this linkage mechanism:

RECEPTACLE MAILBOX

SYSTEM ORIGIN

1

• ..
•
N

MEMORY
STRUCTORS

UNCLASSIFIED
SW-71-7
Page 12

MEHORY REGION #1

MEMORY REGION #N

4. A'Monitor Call instruction (MC) is executed. The Monitor

Call instruction has the following format:

OP-CODE MASK

I 6 7 32

The execution of the Monitor Call deposits the mask field

of the instruction in the interrupt mailbox of the system origin.

The monitor is then invoked. The method of invoking the monitor

is system dependent. In some systems, this might be a hardwired

connection to a dedicated processor, or to a predetermined memory

location. Once invoked, the monitor examines the interrupt mask

to determine the reason for its awakening. In this case, an input

operation is called for. The I/O drivers then assume system control.

5.2 OUTPUT Statement

UNCLASSIFIED
S1;'1-71-7
Page 13

The general form of the OUTPUT statement is:

OUTPUT NAME DATA-IMAGE FORMAT NAME $

The OUTPUT statement is handled in the same manner as the

INPUT statement with the eX'ceptions that:

• Data-image are receptacles that contain data to be

outputted.

• The standard devices may be different (Printer/Punch)

• The interrupt mask of the monitor call instruction

indicates an output operation.

6.0 FORMAT DECLARATION

The FORMAT declaration describes the conversion of data

between internal and external forms. The external form is usually

a Hollerith string, containing in addition to the data, certain

spacing and control information. The CMS-2 format declaration is

similar to the FORTRAN format statement.

The general form of the FORMAT declaration is:

FORMAT NAME $

where - name is the identifier to i~e used to reference the
\

FORMAT declaration. \.

- Q i is ·a format descriptor. lIThe format descriptors indicate

the form and arrangement of (iata and the types of

conversion to be performed.

UNCLASSIFIED
Svv-7l-7
Page 14

The CMS-2 compiler delineates the FORMAT descriptors into

a linked list in memory. The structure of the linked list is:

LINK DESCRIPTOR oN D REP CODE UNUSED CODE CODE CODE LINKAGE

1 2 3 6 7 11 12 16 17 24 25 27 28 32

where - Link code is either: first descriptor, intermediate

descriptor, or last descriptor.

- Descriptor Code is one of the ten allowable CMS-2 codes.

The defined codes are: I,F,E,O,Z,L,A,X,H,/. (See pages

1-4-48 to 49 of the CMS-2 manual for a description of the

use of these codes.)

W is an unsigned integer representing the maximum

number of characters of the field in the external mdeium.

- D is an unsigned integer representing the number of

characters in the field that appears to the right of the

binary or decimal point.

- Repetition Code indicates that a group of descriptors

are repeated M times. The binary value of M is contained

in this field.

- Code Linkage indicates whether the format descriptor

is the first, intermediate, or last in a repetition code

group. If no repetition group is specified, this field

is not use.

- Bits 17-32. If the descriptor code is FI (Hollerith) I

the character string is stored beginning~ith Bit 17 and

extending as many words as it is necessary to store the

string.

UNCLASSIFIED
SVv-71-7
Page 15

The delineation of the FORMAT declaration is in a data

design. It is never executed as an instruction sequence. If an

I/O operation is formatted, the address of the FORMAT delineation

is contained in the system origin.

7.0 ENCODE AND DECODE OPERATIONS

The ENCODE and DECODE statements direct an execution time

routine to transfer data from one area of core to another while

transforming the data from nonformatted to formatted status, or

vice versa. In effect, an I/O operation is executed with the

device being a buffer area in memory. Since, the routines which

normally execute the formatting algorithms are part of the exec­

utive system, the ENCODE and DECODE instructions, to avoid dupli­

cation, should invoke the supervisor.

7.1 ENCODE Statement

The ENCODE statement specifies that the data elements con­

tained in the image are to be converted according to a format

identified by the FORMAT declaration and packed into a character

string identified by a data name. The general form of the

ENCODE statement is:

ENCODE DATA UNIT IMAGE FORMAT DECLARATION $

The CMS-2 compiler deposits the Hollerith structor of the

data unit in the receptacle mailbox, the list structor of the

image in the file address mailbox, and the address of the deline­

ation of the format declarations in the format control mailbox.

In the AADC, with the task memory configuration, the system

processor which normally contains the executive system will normally

be the execute processor for the I/O drivers. Executing the ENCODE

UNCLASSIFIED
S1;I-7l-7
Page 16

and DECODE statement in this manner eliminates the need for

duplicating that portion of the I/O drivers which deal with

formatting data. Additionally, task memory space is saved

as a result of this elimination in tradeoff for the time

necessary to invoke the monitor. However, the frequency of

usuage for these operations and their importance makes this

tradeoff acceptable.

7.2 DECODE Statement

The DECODE statement specifies that the character string

identified by the data name is to be converted according to the

form specified by the format declaration and stored in the loca­

tions specified by the image. The DECODE operation is the reverse

of the ENCODE operation. The general for of the DECODE statement

is:

DECODE DATA UNIT IMAGE FORMAT DECLARATION NAME $

The CMS-2 compiler generates the same code as the ENCODE

statement with the exception that the interrupt mask of the MC

instruction indicates the DECODE operation.

8.0 ENDFILE STATEMENT

The ENDFILE statement is used to form a physical file by

writing an end-of-file mark at the present location of the file

of the device addressed. A logical file may be partitioned into

many physical files. The general form of the ENDFILE statement is:

ENDFILE NAME $

where name is the name of a previously opened file.

UNCLASSIFIED
SW-7l-7
Page 17

The CMS-2 Compiler inserts the file address in the system

origin and issues an MC instruction, with an interrupt mask

indicating end-of-file. The record position for the named file

is set to O. More will be said concerning this in the next

section.

9.0 DEVICE POSITIONING

CMS-2 allows the programmer to position devices by logical

files or physical records within a logical file. To support this

capability, the executive system must maintain within its domain,

a device table. This device table contains the following infor­

mation:

• Device Name (address)

• Present Record Position relative to the last end-of-file

mark.

• Length of last record read (bytes)

The use of these tables will become apparent in the follow­

ing sections.

9.1 Positioning By Files

A device may be positioned forward or backward a specified

number of files. The device is always automatically positioned

following the end-of-file mark. The general form of file posi­

tioning is:

SET POS (NAME) TO+
INTEGER CONSTANT

OR
DATA - NAME

$

where - POS(name) specifies the positioning of the device speci­
fied by the name of a file declaration.

UNCLASSIFIED
SH-7l-7
Page 18

+ specifies forward position (+) or backward positioning

(-) .
Integer constant or data name which specifies the number

of files which the unit is to be positioned. If the

value is 0, the device is positioned to the beginning

(TAPE physical beginning of tape, DISK-track 0, cylinder

0). If the value is -0, the device is closed. (Same

effect as a CLOSE statement.)

The compiler generates the following code:

If the positioning value is not-O, the positioning value

is deposited in the receptacle mailbox in the system origin. (This

will be interpreted as operand by the executive system.)

The file address is deposited in the file address mailbox.

The MC Instruction is executed with the interrupt mask

indicating file positioning.

The executive system, once invoked, must associate the

device with the named file, position the device as specified, and

update the device/record table with a 0 entry for the device.

If the positioning value is -0, the file status field in the

file declaration is changed to CLOSED by code contained in task

memory, not by the executive system.

9.2 Positioning by Records

A device may be positioned forward or backward a specified

number of records within the current file. Attempted record

positioning beyond the bounds of the current file will cause an

I/O abort. The general form of record positioning is:

SET POS(name) TO POS(name) +

UNCLASSIFIED
SvJ-7l-7
Page 19

INTEGER-CONSTANT
OR

DATA NAME
$

where - POS(name) specifies the device named by a file declaration.

+ specifies forward positioning (+) or backward

positioning (-).

Integer constant or data name specifies the number of

of records to be spaced forward or backward.

The CMS-2 Compiler deposits the file address and the

spacing operand (receptacle mailbox) in the system origin.

The MC instruction is executed with the interrupt mask

indicating record positioning.

9.3 Record Position Determination

The record position within the current file is determined

with the use of the POS modifier. The general form of the

record position determination is:

SET DATA NAME TO POS(NAME) $

The CMS-2 compiler generates

SET « FILE MAILBOX>

(STORE IMMEDIATE) TOI) < FILE ADDRESS)

MC RECORD DETERMINATION MASK

SET < ADDRESS OF DATA NAME >
TO < RECEPTACLE MAILBOX ")

The executive system returns the value of the present

record to the receptacle mailbox.

9.4 Record Length Determination

UNCLASSIFIED
S\rV-7l-7
Page 20

The length of the last record transmitted by either an

INPUT or an OUTPUT statement is determined by using the modifier

LENGTH. The general form of record length determination is:

SET DATA NAME TO LENGTH (NAME) $

where - LENGTH(name) specifies the lenght of the previous

record transmitted by an INPUT or OUTPUT operation on the

named file.

The CMS-2 Compiler generates:

SET < FILE MAILBOX ')

TOI < FILE ADDRESS>

MC RECORD LENGTH MASK

SET < ADDRESS OF DATA NAME >
TO < RECEPTACLE MAILBOX)

The executive system returns the value of the record

length to the receptacle mailbox.

10.0 DEVICE STATE CHECKING

The execution of any I/O operation results in the return

of an I/O status word in the system origin. Each bit in this word

signifies whether or not a specific condition resulted (e.g.,

end-of-file, transmission error, etc.). The programmer may test

this status word by using the following form:

IF NAME EQ/NOT STATE THEN

UNCLASSIFIED
SvJ-7l-7
Page 21

The testing IF statement must precede any subsequent I/O

operations to test the validity of the last executed I/O opera­

tion. The compiler generates

TBIF (Test Bit Immediate False)

or TBIT (Test Bit Immediate True)

depending whether or not NOT or EQ was specified, respectively.

The I/O status word is in a fixed location, thereby

e1imina.ting an explicit address in these instructions. The

CMS-2 compiler must know the bit position of each I/O state

to correctly structure the TBIF or TBIT instructions. The format

of these instructions is therefore:

lOP_CODE I UNUSED BIT ADDRESS BRANCH ADDRESS

1 6 7 15 16 20 21 32

If the test is true, the next sequential instruction is

executed, otherwise the branch address is taken.

SJW/gb

dc: S. Nissen 904
J. Baker 917
B. Scheff 917

Dept.
Wallach

Ext. 3473

Appendix A to SW-71-7
Page 1 of 2

APPENDIX A

The following are instructions defined specifically to

handle operations involving CMS-2 I/O.

• TSFT (Test File Status Field)

OP-CODE STATUS IADDRESS

1 6 7 10 11 12 13 20 21 32

The status field of the instruction are compared for equal

with bits 11-12 of the addressed word. A Boolean value is returned

to the accumulator.

• SFST (Set File Status Field)

Same format as TSFT. Bits 11-12 of the instruction are

set into bits 11-12 of the addressed word.

MASK

32

The mask is deposited in the interrupt mailbox of the

system origin. The monitor is then invoked. Method of monitor

awakening is system dependent.

• TBIF (Test Bit Immediate False)

OP-CODE UNUSED BIT ADDRESS I BRANCH ADDRESS

1 6 7 15 16 20 21 32

~Appendix A to SW-7l-7
Page 2 of 2

The addressed bit position in the I/O status word in the

system origin is tested for Boolean O. If the test is successful,

the next sequential instruction is executed, otherwise, a

transfer to the branch address is taken.

• TBIT (Test Bit Immediate True)

Same as TBIF except the test is for Boolean 1.

